1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 /* HINT instruction group, including various allocated HINTs */ 1653 static void handle_hint(DisasContext *s, uint32_t insn, 1654 unsigned int op1, unsigned int op2, unsigned int crm) 1655 { 1656 unsigned int selector = crm << 3 | op2; 1657 1658 if (op1 != 3) { 1659 unallocated_encoding(s); 1660 return; 1661 } 1662 1663 switch (selector) { 1664 case 0b00000: /* NOP */ 1665 break; 1666 case 0b00011: /* WFI */ 1667 s->base.is_jmp = DISAS_WFI; 1668 break; 1669 case 0b00001: /* YIELD */ 1670 /* When running in MTTCG we don't generate jumps to the yield and 1671 * WFE helpers as it won't affect the scheduling of other vCPUs. 1672 * If we wanted to more completely model WFE/SEV so we don't busy 1673 * spin unnecessarily we would need to do something more involved. 1674 */ 1675 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1676 s->base.is_jmp = DISAS_YIELD; 1677 } 1678 break; 1679 case 0b00010: /* WFE */ 1680 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1681 s->base.is_jmp = DISAS_WFE; 1682 } 1683 break; 1684 case 0b00100: /* SEV */ 1685 case 0b00101: /* SEVL */ 1686 case 0b00110: /* DGH */ 1687 /* we treat all as NOP at least for now */ 1688 break; 1689 case 0b00111: /* XPACLRI */ 1690 if (s->pauth_active) { 1691 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1692 } 1693 break; 1694 case 0b01000: /* PACIA1716 */ 1695 if (s->pauth_active) { 1696 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1697 } 1698 break; 1699 case 0b01010: /* PACIB1716 */ 1700 if (s->pauth_active) { 1701 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1702 } 1703 break; 1704 case 0b01100: /* AUTIA1716 */ 1705 if (s->pauth_active) { 1706 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1707 } 1708 break; 1709 case 0b01110: /* AUTIB1716 */ 1710 if (s->pauth_active) { 1711 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1712 } 1713 break; 1714 case 0b10000: /* ESB */ 1715 /* Without RAS, we must implement this as NOP. */ 1716 if (dc_isar_feature(aa64_ras, s)) { 1717 /* 1718 * QEMU does not have a source of physical SErrors, 1719 * so we are only concerned with virtual SErrors. 1720 * The pseudocode in the ARM for this case is 1721 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1722 * AArch64.vESBOperation(); 1723 * Most of the condition can be evaluated at translation time. 1724 * Test for EL2 present, and defer test for SEL2 to runtime. 1725 */ 1726 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1727 gen_helper_vesb(cpu_env); 1728 } 1729 } 1730 break; 1731 case 0b11000: /* PACIAZ */ 1732 if (s->pauth_active) { 1733 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1734 tcg_constant_i64(0)); 1735 } 1736 break; 1737 case 0b11001: /* PACIASP */ 1738 if (s->pauth_active) { 1739 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1740 } 1741 break; 1742 case 0b11010: /* PACIBZ */ 1743 if (s->pauth_active) { 1744 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1745 tcg_constant_i64(0)); 1746 } 1747 break; 1748 case 0b11011: /* PACIBSP */ 1749 if (s->pauth_active) { 1750 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1751 } 1752 break; 1753 case 0b11100: /* AUTIAZ */ 1754 if (s->pauth_active) { 1755 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1756 tcg_constant_i64(0)); 1757 } 1758 break; 1759 case 0b11101: /* AUTIASP */ 1760 if (s->pauth_active) { 1761 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1762 } 1763 break; 1764 case 0b11110: /* AUTIBZ */ 1765 if (s->pauth_active) { 1766 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1767 tcg_constant_i64(0)); 1768 } 1769 break; 1770 case 0b11111: /* AUTIBSP */ 1771 if (s->pauth_active) { 1772 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1773 } 1774 break; 1775 default: 1776 /* default specified as NOP equivalent */ 1777 break; 1778 } 1779 } 1780 1781 static void gen_clrex(DisasContext *s, uint32_t insn) 1782 { 1783 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1784 } 1785 1786 /* CLREX, DSB, DMB, ISB */ 1787 static void handle_sync(DisasContext *s, uint32_t insn, 1788 unsigned int op1, unsigned int op2, unsigned int crm) 1789 { 1790 TCGBar bar; 1791 1792 if (op1 != 3) { 1793 unallocated_encoding(s); 1794 return; 1795 } 1796 1797 switch (op2) { 1798 case 2: /* CLREX */ 1799 gen_clrex(s, insn); 1800 return; 1801 case 4: /* DSB */ 1802 case 5: /* DMB */ 1803 switch (crm & 3) { 1804 case 1: /* MBReqTypes_Reads */ 1805 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1806 break; 1807 case 2: /* MBReqTypes_Writes */ 1808 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1809 break; 1810 default: /* MBReqTypes_All */ 1811 bar = TCG_BAR_SC | TCG_MO_ALL; 1812 break; 1813 } 1814 tcg_gen_mb(bar); 1815 return; 1816 case 6: /* ISB */ 1817 /* We need to break the TB after this insn to execute 1818 * a self-modified code correctly and also to take 1819 * any pending interrupts immediately. 1820 */ 1821 reset_btype(s); 1822 gen_goto_tb(s, 0, 4); 1823 return; 1824 1825 case 7: /* SB */ 1826 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1827 goto do_unallocated; 1828 } 1829 /* 1830 * TODO: There is no speculation barrier opcode for TCG; 1831 * MB and end the TB instead. 1832 */ 1833 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1834 gen_goto_tb(s, 0, 4); 1835 return; 1836 1837 default: 1838 do_unallocated: 1839 unallocated_encoding(s); 1840 return; 1841 } 1842 } 1843 1844 static void gen_xaflag(void) 1845 { 1846 TCGv_i32 z = tcg_temp_new_i32(); 1847 1848 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1849 1850 /* 1851 * (!C & !Z) << 31 1852 * (!(C | Z)) << 31 1853 * ~((C | Z) << 31) 1854 * ~-(C | Z) 1855 * (C | Z) - 1 1856 */ 1857 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1858 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1859 1860 /* !(Z & C) */ 1861 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1862 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1863 1864 /* (!C & Z) << 31 -> -(Z & ~C) */ 1865 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1866 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1867 1868 /* C | Z */ 1869 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1870 } 1871 1872 static void gen_axflag(void) 1873 { 1874 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1875 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1876 1877 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1878 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1879 1880 tcg_gen_movi_i32(cpu_NF, 0); 1881 tcg_gen_movi_i32(cpu_VF, 0); 1882 } 1883 1884 /* MSR (immediate) - move immediate to processor state field */ 1885 static void handle_msr_i(DisasContext *s, uint32_t insn, 1886 unsigned int op1, unsigned int op2, unsigned int crm) 1887 { 1888 int op = op1 << 3 | op2; 1889 1890 /* End the TB by default, chaining is ok. */ 1891 s->base.is_jmp = DISAS_TOO_MANY; 1892 1893 switch (op) { 1894 case 0x00: /* CFINV */ 1895 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1896 goto do_unallocated; 1897 } 1898 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1899 s->base.is_jmp = DISAS_NEXT; 1900 break; 1901 1902 case 0x01: /* XAFlag */ 1903 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1904 goto do_unallocated; 1905 } 1906 gen_xaflag(); 1907 s->base.is_jmp = DISAS_NEXT; 1908 break; 1909 1910 case 0x02: /* AXFlag */ 1911 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1912 goto do_unallocated; 1913 } 1914 gen_axflag(); 1915 s->base.is_jmp = DISAS_NEXT; 1916 break; 1917 1918 case 0x03: /* UAO */ 1919 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1920 goto do_unallocated; 1921 } 1922 if (crm & 1) { 1923 set_pstate_bits(PSTATE_UAO); 1924 } else { 1925 clear_pstate_bits(PSTATE_UAO); 1926 } 1927 gen_rebuild_hflags(s); 1928 break; 1929 1930 case 0x04: /* PAN */ 1931 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1932 goto do_unallocated; 1933 } 1934 if (crm & 1) { 1935 set_pstate_bits(PSTATE_PAN); 1936 } else { 1937 clear_pstate_bits(PSTATE_PAN); 1938 } 1939 gen_rebuild_hflags(s); 1940 break; 1941 1942 case 0x05: /* SPSel */ 1943 if (s->current_el == 0) { 1944 goto do_unallocated; 1945 } 1946 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1947 break; 1948 1949 case 0x19: /* SSBS */ 1950 if (!dc_isar_feature(aa64_ssbs, s)) { 1951 goto do_unallocated; 1952 } 1953 if (crm & 1) { 1954 set_pstate_bits(PSTATE_SSBS); 1955 } else { 1956 clear_pstate_bits(PSTATE_SSBS); 1957 } 1958 /* Don't need to rebuild hflags since SSBS is a nop */ 1959 break; 1960 1961 case 0x1a: /* DIT */ 1962 if (!dc_isar_feature(aa64_dit, s)) { 1963 goto do_unallocated; 1964 } 1965 if (crm & 1) { 1966 set_pstate_bits(PSTATE_DIT); 1967 } else { 1968 clear_pstate_bits(PSTATE_DIT); 1969 } 1970 /* There's no need to rebuild hflags because DIT is a nop */ 1971 break; 1972 1973 case 0x1e: /* DAIFSet */ 1974 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1975 break; 1976 1977 case 0x1f: /* DAIFClear */ 1978 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1979 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1980 s->base.is_jmp = DISAS_UPDATE_EXIT; 1981 break; 1982 1983 case 0x1c: /* TCO */ 1984 if (dc_isar_feature(aa64_mte, s)) { 1985 /* Full MTE is enabled -- set the TCO bit as directed. */ 1986 if (crm & 1) { 1987 set_pstate_bits(PSTATE_TCO); 1988 } else { 1989 clear_pstate_bits(PSTATE_TCO); 1990 } 1991 gen_rebuild_hflags(s); 1992 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1993 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1994 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1995 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1996 s->base.is_jmp = DISAS_NEXT; 1997 } else { 1998 goto do_unallocated; 1999 } 2000 break; 2001 2002 case 0x1b: /* SVCR* */ 2003 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2004 goto do_unallocated; 2005 } 2006 if (sme_access_check(s)) { 2007 int old = s->pstate_sm | (s->pstate_za << 1); 2008 int new = (crm & 1) * 3; 2009 int msk = (crm >> 1) & 3; 2010 2011 if ((old ^ new) & msk) { 2012 /* At least one bit changes. */ 2013 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2014 tcg_constant_i32(msk)); 2015 } else { 2016 s->base.is_jmp = DISAS_NEXT; 2017 } 2018 } 2019 break; 2020 2021 default: 2022 do_unallocated: 2023 unallocated_encoding(s); 2024 return; 2025 } 2026 } 2027 2028 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2029 { 2030 TCGv_i32 tmp = tcg_temp_new_i32(); 2031 TCGv_i32 nzcv = tcg_temp_new_i32(); 2032 2033 /* build bit 31, N */ 2034 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2035 /* build bit 30, Z */ 2036 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2037 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2038 /* build bit 29, C */ 2039 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2040 /* build bit 28, V */ 2041 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2042 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2043 /* generate result */ 2044 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2045 } 2046 2047 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2048 { 2049 TCGv_i32 nzcv = tcg_temp_new_i32(); 2050 2051 /* take NZCV from R[t] */ 2052 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2053 2054 /* bit 31, N */ 2055 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2056 /* bit 30, Z */ 2057 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2058 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2059 /* bit 29, C */ 2060 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2061 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2062 /* bit 28, V */ 2063 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2064 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2065 } 2066 2067 static void gen_sysreg_undef(DisasContext *s, bool isread, 2068 uint8_t op0, uint8_t op1, uint8_t op2, 2069 uint8_t crn, uint8_t crm, uint8_t rt) 2070 { 2071 /* 2072 * Generate code to emit an UNDEF with correct syndrome 2073 * information for a failed system register access. 2074 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2075 * but if FEAT_IDST is implemented then read accesses to registers 2076 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2077 * syndrome. 2078 */ 2079 uint32_t syndrome; 2080 2081 if (isread && dc_isar_feature(aa64_ids, s) && 2082 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2083 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2084 } else { 2085 syndrome = syn_uncategorized(); 2086 } 2087 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2088 } 2089 2090 /* MRS - move from system register 2091 * MSR (register) - move to system register 2092 * SYS 2093 * SYSL 2094 * These are all essentially the same insn in 'read' and 'write' 2095 * versions, with varying op0 fields. 2096 */ 2097 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2098 unsigned int op0, unsigned int op1, unsigned int op2, 2099 unsigned int crn, unsigned int crm, unsigned int rt) 2100 { 2101 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2102 crn, crm, op0, op1, op2); 2103 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2104 bool need_exit_tb = false; 2105 TCGv_ptr tcg_ri = NULL; 2106 TCGv_i64 tcg_rt; 2107 2108 if (!ri) { 2109 /* Unknown register; this might be a guest error or a QEMU 2110 * unimplemented feature. 2111 */ 2112 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2113 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2114 isread ? "read" : "write", op0, op1, crn, crm, op2); 2115 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2116 return; 2117 } 2118 2119 /* Check access permissions */ 2120 if (!cp_access_ok(s->current_el, ri, isread)) { 2121 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2122 return; 2123 } 2124 2125 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2126 /* Emit code to perform further access permissions checks at 2127 * runtime; this may result in an exception. 2128 */ 2129 uint32_t syndrome; 2130 2131 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2132 gen_a64_update_pc(s, 0); 2133 tcg_ri = tcg_temp_new_ptr(); 2134 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2135 tcg_constant_i32(key), 2136 tcg_constant_i32(syndrome), 2137 tcg_constant_i32(isread)); 2138 } else if (ri->type & ARM_CP_RAISES_EXC) { 2139 /* 2140 * The readfn or writefn might raise an exception; 2141 * synchronize the CPU state in case it does. 2142 */ 2143 gen_a64_update_pc(s, 0); 2144 } 2145 2146 /* Handle special cases first */ 2147 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2148 case 0: 2149 break; 2150 case ARM_CP_NOP: 2151 return; 2152 case ARM_CP_NZCV: 2153 tcg_rt = cpu_reg(s, rt); 2154 if (isread) { 2155 gen_get_nzcv(tcg_rt); 2156 } else { 2157 gen_set_nzcv(tcg_rt); 2158 } 2159 return; 2160 case ARM_CP_CURRENTEL: 2161 /* Reads as current EL value from pstate, which is 2162 * guaranteed to be constant by the tb flags. 2163 */ 2164 tcg_rt = cpu_reg(s, rt); 2165 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2166 return; 2167 case ARM_CP_DC_ZVA: 2168 /* Writes clear the aligned block of memory which rt points into. */ 2169 if (s->mte_active[0]) { 2170 int desc = 0; 2171 2172 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2173 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2174 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2175 2176 tcg_rt = tcg_temp_new_i64(); 2177 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2178 tcg_constant_i32(desc), cpu_reg(s, rt)); 2179 } else { 2180 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2181 } 2182 gen_helper_dc_zva(cpu_env, tcg_rt); 2183 return; 2184 case ARM_CP_DC_GVA: 2185 { 2186 TCGv_i64 clean_addr, tag; 2187 2188 /* 2189 * DC_GVA, like DC_ZVA, requires that we supply the original 2190 * pointer for an invalid page. Probe that address first. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 clean_addr = clean_data_tbi(s, tcg_rt); 2194 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2195 2196 if (s->ata) { 2197 /* Extract the tag from the register to match STZGM. */ 2198 tag = tcg_temp_new_i64(); 2199 tcg_gen_shri_i64(tag, tcg_rt, 56); 2200 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2201 } 2202 } 2203 return; 2204 case ARM_CP_DC_GZVA: 2205 { 2206 TCGv_i64 clean_addr, tag; 2207 2208 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2209 tcg_rt = cpu_reg(s, rt); 2210 clean_addr = clean_data_tbi(s, tcg_rt); 2211 gen_helper_dc_zva(cpu_env, clean_addr); 2212 2213 if (s->ata) { 2214 /* Extract the tag from the register to match STZGM. */ 2215 tag = tcg_temp_new_i64(); 2216 tcg_gen_shri_i64(tag, tcg_rt, 56); 2217 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2218 } 2219 } 2220 return; 2221 default: 2222 g_assert_not_reached(); 2223 } 2224 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2225 return; 2226 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2227 return; 2228 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2229 return; 2230 } 2231 2232 if (ri->type & ARM_CP_IO) { 2233 /* I/O operations must end the TB here (whether read or write) */ 2234 need_exit_tb = translator_io_start(&s->base); 2235 } 2236 2237 tcg_rt = cpu_reg(s, rt); 2238 2239 if (isread) { 2240 if (ri->type & ARM_CP_CONST) { 2241 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2242 } else if (ri->readfn) { 2243 if (!tcg_ri) { 2244 tcg_ri = gen_lookup_cp_reg(key); 2245 } 2246 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2247 } else { 2248 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2249 } 2250 } else { 2251 if (ri->type & ARM_CP_CONST) { 2252 /* If not forbidden by access permissions, treat as WI */ 2253 return; 2254 } else if (ri->writefn) { 2255 if (!tcg_ri) { 2256 tcg_ri = gen_lookup_cp_reg(key); 2257 } 2258 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2259 } else { 2260 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2261 } 2262 } 2263 2264 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2265 /* 2266 * A write to any coprocessor regiser that ends a TB 2267 * must rebuild the hflags for the next TB. 2268 */ 2269 gen_rebuild_hflags(s); 2270 /* 2271 * We default to ending the TB on a coprocessor register write, 2272 * but allow this to be suppressed by the register definition 2273 * (usually only necessary to work around guest bugs). 2274 */ 2275 need_exit_tb = true; 2276 } 2277 if (need_exit_tb) { 2278 s->base.is_jmp = DISAS_UPDATE_EXIT; 2279 } 2280 } 2281 2282 /* System 2283 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2284 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2285 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2286 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2287 */ 2288 static void disas_system(DisasContext *s, uint32_t insn) 2289 { 2290 unsigned int l, op0, op1, crn, crm, op2, rt; 2291 l = extract32(insn, 21, 1); 2292 op0 = extract32(insn, 19, 2); 2293 op1 = extract32(insn, 16, 3); 2294 crn = extract32(insn, 12, 4); 2295 crm = extract32(insn, 8, 4); 2296 op2 = extract32(insn, 5, 3); 2297 rt = extract32(insn, 0, 5); 2298 2299 if (op0 == 0) { 2300 if (l || rt != 31) { 2301 unallocated_encoding(s); 2302 return; 2303 } 2304 switch (crn) { 2305 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2306 handle_hint(s, insn, op1, op2, crm); 2307 break; 2308 case 3: /* CLREX, DSB, DMB, ISB */ 2309 handle_sync(s, insn, op1, op2, crm); 2310 break; 2311 case 4: /* MSR (immediate) */ 2312 handle_msr_i(s, insn, op1, op2, crm); 2313 break; 2314 default: 2315 unallocated_encoding(s); 2316 break; 2317 } 2318 return; 2319 } 2320 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2321 } 2322 2323 /* Exception generation 2324 * 2325 * 31 24 23 21 20 5 4 2 1 0 2326 * +-----------------+-----+------------------------+-----+----+ 2327 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2328 * +-----------------------+------------------------+----------+ 2329 */ 2330 static void disas_exc(DisasContext *s, uint32_t insn) 2331 { 2332 int opc = extract32(insn, 21, 3); 2333 int op2_ll = extract32(insn, 0, 5); 2334 int imm16 = extract32(insn, 5, 16); 2335 uint32_t syndrome; 2336 2337 switch (opc) { 2338 case 0: 2339 /* For SVC, HVC and SMC we advance the single-step state 2340 * machine before taking the exception. This is architecturally 2341 * mandated, to ensure that single-stepping a system call 2342 * instruction works properly. 2343 */ 2344 switch (op2_ll) { 2345 case 1: /* SVC */ 2346 syndrome = syn_aa64_svc(imm16); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 break; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 break; 2354 case 2: /* HVC */ 2355 if (s->current_el == 0) { 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 /* The pre HVC helper handles cases when HVC gets trapped 2360 * as an undefined insn by runtime configuration. 2361 */ 2362 gen_a64_update_pc(s, 0); 2363 gen_helper_pre_hvc(cpu_env); 2364 gen_ss_advance(s); 2365 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2366 break; 2367 case 3: /* SMC */ 2368 if (s->current_el == 0) { 2369 unallocated_encoding(s); 2370 break; 2371 } 2372 gen_a64_update_pc(s, 0); 2373 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2374 gen_ss_advance(s); 2375 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2376 break; 2377 default: 2378 unallocated_encoding(s); 2379 break; 2380 } 2381 break; 2382 case 1: 2383 if (op2_ll != 0) { 2384 unallocated_encoding(s); 2385 break; 2386 } 2387 /* BRK */ 2388 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2389 break; 2390 case 2: 2391 if (op2_ll != 0) { 2392 unallocated_encoding(s); 2393 break; 2394 } 2395 /* HLT. This has two purposes. 2396 * Architecturally, it is an external halting debug instruction. 2397 * Since QEMU doesn't implement external debug, we treat this as 2398 * it is required for halting debug disabled: it will UNDEF. 2399 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2400 */ 2401 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2402 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2403 } else { 2404 unallocated_encoding(s); 2405 } 2406 break; 2407 case 5: 2408 if (op2_ll < 1 || op2_ll > 3) { 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 /* DCPS1, DCPS2, DCPS3 */ 2413 unallocated_encoding(s); 2414 break; 2415 default: 2416 unallocated_encoding(s); 2417 break; 2418 } 2419 } 2420 2421 /* Branches, exception generating and system instructions */ 2422 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2423 { 2424 switch (extract32(insn, 25, 7)) { 2425 case 0x6a: /* Exception generation / System */ 2426 if (insn & (1 << 24)) { 2427 if (extract32(insn, 22, 2) == 0) { 2428 disas_system(s, insn); 2429 } else { 2430 unallocated_encoding(s); 2431 } 2432 } else { 2433 disas_exc(s, insn); 2434 } 2435 break; 2436 default: 2437 unallocated_encoding(s); 2438 break; 2439 } 2440 } 2441 2442 /* 2443 * Load/Store exclusive instructions are implemented by remembering 2444 * the value/address loaded, and seeing if these are the same 2445 * when the store is performed. This is not actually the architecturally 2446 * mandated semantics, but it works for typical guest code sequences 2447 * and avoids having to monitor regular stores. 2448 * 2449 * The store exclusive uses the atomic cmpxchg primitives to avoid 2450 * races in multi-threaded linux-user and when MTTCG softmmu is 2451 * enabled. 2452 */ 2453 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2454 int size, bool is_pair) 2455 { 2456 int idx = get_mem_index(s); 2457 TCGv_i64 dirty_addr, clean_addr; 2458 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2459 2460 s->is_ldex = true; 2461 dirty_addr = cpu_reg_sp(s, rn); 2462 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2463 2464 g_assert(size <= 3); 2465 if (is_pair) { 2466 g_assert(size >= 2); 2467 if (size == 2) { 2468 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2469 if (s->be_data == MO_LE) { 2470 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2471 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2472 } else { 2473 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2474 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2475 } 2476 } else { 2477 TCGv_i128 t16 = tcg_temp_new_i128(); 2478 2479 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2480 2481 if (s->be_data == MO_LE) { 2482 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2483 cpu_exclusive_high, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2486 cpu_exclusive_val, t16); 2487 } 2488 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2489 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2490 } 2491 } else { 2492 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2493 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2494 } 2495 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2496 } 2497 2498 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2499 int rn, int size, int is_pair) 2500 { 2501 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2502 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2503 * [addr] = {Rt}; 2504 * if (is_pair) { 2505 * [addr + datasize] = {Rt2}; 2506 * } 2507 * {Rd} = 0; 2508 * } else { 2509 * {Rd} = 1; 2510 * } 2511 * env->exclusive_addr = -1; 2512 */ 2513 TCGLabel *fail_label = gen_new_label(); 2514 TCGLabel *done_label = gen_new_label(); 2515 TCGv_i64 tmp, clean_addr; 2516 MemOp memop; 2517 2518 /* 2519 * FIXME: We are out of spec here. We have recorded only the address 2520 * from load_exclusive, not the entire range, and we assume that the 2521 * size of the access on both sides match. The architecture allows the 2522 * store to be smaller than the load, so long as the stored bytes are 2523 * within the range recorded by the load. 2524 */ 2525 2526 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2527 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2528 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2529 2530 /* 2531 * The write, and any associated faults, only happen if the virtual 2532 * and physical addresses pass the exclusive monitor check. These 2533 * faults are exceedingly unlikely, because normally the guest uses 2534 * the exact same address register for the load_exclusive, and we 2535 * would have recognized these faults there. 2536 * 2537 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2538 * unaligned 4-byte write within the range of an aligned 8-byte load. 2539 * With LSE2, the store would need to cross a 16-byte boundary when the 2540 * load did not, which would mean the store is outside the range 2541 * recorded for the monitor, which would have failed a corrected monitor 2542 * check above. For now, we assume no size change and retain the 2543 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2544 * 2545 * It is possible to trigger an MTE fault, by performing the load with 2546 * a virtual address with a valid tag and performing the store with the 2547 * same virtual address and a different invalid tag. 2548 */ 2549 memop = size + is_pair; 2550 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2551 memop |= MO_ALIGN; 2552 } 2553 memop = finalize_memop(s, memop); 2554 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2555 2556 tmp = tcg_temp_new_i64(); 2557 if (is_pair) { 2558 if (size == 2) { 2559 if (s->be_data == MO_LE) { 2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2561 } else { 2562 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2563 } 2564 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2565 cpu_exclusive_val, tmp, 2566 get_mem_index(s), memop); 2567 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2568 } else { 2569 TCGv_i128 t16 = tcg_temp_new_i128(); 2570 TCGv_i128 c16 = tcg_temp_new_i128(); 2571 TCGv_i64 a, b; 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2575 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2576 cpu_exclusive_high); 2577 } else { 2578 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2579 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2580 cpu_exclusive_val); 2581 } 2582 2583 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2584 get_mem_index(s), memop); 2585 2586 a = tcg_temp_new_i64(); 2587 b = tcg_temp_new_i64(); 2588 if (s->be_data == MO_LE) { 2589 tcg_gen_extr_i128_i64(a, b, t16); 2590 } else { 2591 tcg_gen_extr_i128_i64(b, a, t16); 2592 } 2593 2594 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2595 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2596 tcg_gen_or_i64(tmp, a, b); 2597 2598 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2599 } 2600 } else { 2601 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2602 cpu_reg(s, rt), get_mem_index(s), memop); 2603 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2604 } 2605 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2606 tcg_gen_br(done_label); 2607 2608 gen_set_label(fail_label); 2609 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2610 gen_set_label(done_label); 2611 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2612 } 2613 2614 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2615 int rn, int size) 2616 { 2617 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2618 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2619 int memidx = get_mem_index(s); 2620 TCGv_i64 clean_addr; 2621 MemOp memop; 2622 2623 if (rn == 31) { 2624 gen_check_sp_alignment(s); 2625 } 2626 memop = check_atomic_align(s, rn, size); 2627 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2628 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2629 memidx, memop); 2630 } 2631 2632 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2633 int rn, int size) 2634 { 2635 TCGv_i64 s1 = cpu_reg(s, rs); 2636 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2637 TCGv_i64 t1 = cpu_reg(s, rt); 2638 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2639 TCGv_i64 clean_addr; 2640 int memidx = get_mem_index(s); 2641 MemOp memop; 2642 2643 if (rn == 31) { 2644 gen_check_sp_alignment(s); 2645 } 2646 2647 /* This is a single atomic access, despite the "pair". */ 2648 memop = check_atomic_align(s, rn, size + 1); 2649 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2650 2651 if (size == 2) { 2652 TCGv_i64 cmp = tcg_temp_new_i64(); 2653 TCGv_i64 val = tcg_temp_new_i64(); 2654 2655 if (s->be_data == MO_LE) { 2656 tcg_gen_concat32_i64(val, t1, t2); 2657 tcg_gen_concat32_i64(cmp, s1, s2); 2658 } else { 2659 tcg_gen_concat32_i64(val, t2, t1); 2660 tcg_gen_concat32_i64(cmp, s2, s1); 2661 } 2662 2663 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2664 2665 if (s->be_data == MO_LE) { 2666 tcg_gen_extr32_i64(s1, s2, cmp); 2667 } else { 2668 tcg_gen_extr32_i64(s2, s1, cmp); 2669 } 2670 } else { 2671 TCGv_i128 cmp = tcg_temp_new_i128(); 2672 TCGv_i128 val = tcg_temp_new_i128(); 2673 2674 if (s->be_data == MO_LE) { 2675 tcg_gen_concat_i64_i128(val, t1, t2); 2676 tcg_gen_concat_i64_i128(cmp, s1, s2); 2677 } else { 2678 tcg_gen_concat_i64_i128(val, t2, t1); 2679 tcg_gen_concat_i64_i128(cmp, s2, s1); 2680 } 2681 2682 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2683 2684 if (s->be_data == MO_LE) { 2685 tcg_gen_extr_i128_i64(s1, s2, cmp); 2686 } else { 2687 tcg_gen_extr_i128_i64(s2, s1, cmp); 2688 } 2689 } 2690 } 2691 2692 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2693 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2694 */ 2695 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2696 { 2697 int opc0 = extract32(opc, 0, 1); 2698 int regsize; 2699 2700 if (is_signed) { 2701 regsize = opc0 ? 32 : 64; 2702 } else { 2703 regsize = size == 3 ? 64 : 32; 2704 } 2705 return regsize == 64; 2706 } 2707 2708 /* Load/store exclusive 2709 * 2710 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2711 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2712 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2713 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2714 * 2715 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2716 * L: 0 -> store, 1 -> load 2717 * o2: 0 -> exclusive, 1 -> not 2718 * o1: 0 -> single register, 1 -> register pair 2719 * o0: 1 -> load-acquire/store-release, 0 -> not 2720 */ 2721 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2722 { 2723 int rt = extract32(insn, 0, 5); 2724 int rn = extract32(insn, 5, 5); 2725 int rt2 = extract32(insn, 10, 5); 2726 int rs = extract32(insn, 16, 5); 2727 int is_lasr = extract32(insn, 15, 1); 2728 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2729 int size = extract32(insn, 30, 2); 2730 TCGv_i64 clean_addr; 2731 MemOp memop; 2732 2733 switch (o2_L_o1_o0) { 2734 case 0x0: /* STXR */ 2735 case 0x1: /* STLXR */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 if (is_lasr) { 2740 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2741 } 2742 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2743 return; 2744 2745 case 0x4: /* LDXR */ 2746 case 0x5: /* LDAXR */ 2747 if (rn == 31) { 2748 gen_check_sp_alignment(s); 2749 } 2750 gen_load_exclusive(s, rt, rt2, rn, size, false); 2751 if (is_lasr) { 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 } 2754 return; 2755 2756 case 0x8: /* STLLR */ 2757 if (!dc_isar_feature(aa64_lor, s)) { 2758 break; 2759 } 2760 /* StoreLORelease is the same as Store-Release for QEMU. */ 2761 /* fall through */ 2762 case 0x9: /* STLR */ 2763 /* Generate ISS for non-exclusive accesses including LASR. */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2768 memop = check_ordered_align(s, rn, 0, true, size); 2769 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2770 true, rn != 31, memop); 2771 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2772 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2773 return; 2774 2775 case 0xc: /* LDLAR */ 2776 if (!dc_isar_feature(aa64_lor, s)) { 2777 break; 2778 } 2779 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2780 /* fall through */ 2781 case 0xd: /* LDAR */ 2782 /* Generate ISS for non-exclusive accesses including LASR. */ 2783 if (rn == 31) { 2784 gen_check_sp_alignment(s); 2785 } 2786 memop = check_ordered_align(s, rn, 0, false, size); 2787 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2788 false, rn != 31, memop); 2789 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2790 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2792 return; 2793 2794 case 0x2: case 0x3: /* CASP / STXP */ 2795 if (size & 2) { /* STXP / STLXP */ 2796 if (rn == 31) { 2797 gen_check_sp_alignment(s); 2798 } 2799 if (is_lasr) { 2800 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2801 } 2802 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2803 return; 2804 } 2805 if (rt2 == 31 2806 && ((rt | rs) & 1) == 0 2807 && dc_isar_feature(aa64_atomics, s)) { 2808 /* CASP / CASPL */ 2809 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2810 return; 2811 } 2812 break; 2813 2814 case 0x6: case 0x7: /* CASPA / LDXP */ 2815 if (size & 2) { /* LDXP / LDAXP */ 2816 if (rn == 31) { 2817 gen_check_sp_alignment(s); 2818 } 2819 gen_load_exclusive(s, rt, rt2, rn, size, true); 2820 if (is_lasr) { 2821 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2822 } 2823 return; 2824 } 2825 if (rt2 == 31 2826 && ((rt | rs) & 1) == 0 2827 && dc_isar_feature(aa64_atomics, s)) { 2828 /* CASPA / CASPAL */ 2829 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2830 return; 2831 } 2832 break; 2833 2834 case 0xa: /* CAS */ 2835 case 0xb: /* CASL */ 2836 case 0xe: /* CASA */ 2837 case 0xf: /* CASAL */ 2838 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2839 gen_compare_and_swap(s, rs, rt, rn, size); 2840 return; 2841 } 2842 break; 2843 } 2844 unallocated_encoding(s); 2845 } 2846 2847 /* 2848 * Load register (literal) 2849 * 2850 * 31 30 29 27 26 25 24 23 5 4 0 2851 * +-----+-------+---+-----+-------------------+-------+ 2852 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2853 * +-----+-------+---+-----+-------------------+-------+ 2854 * 2855 * V: 1 -> vector (simd/fp) 2856 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2857 * 10-> 32 bit signed, 11 -> prefetch 2858 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2859 */ 2860 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2861 { 2862 int rt = extract32(insn, 0, 5); 2863 int64_t imm = sextract32(insn, 5, 19) << 2; 2864 bool is_vector = extract32(insn, 26, 1); 2865 int opc = extract32(insn, 30, 2); 2866 bool is_signed = false; 2867 int size = 2; 2868 TCGv_i64 tcg_rt, clean_addr; 2869 MemOp memop; 2870 2871 if (is_vector) { 2872 if (opc == 3) { 2873 unallocated_encoding(s); 2874 return; 2875 } 2876 size = 2 + opc; 2877 if (!fp_access_check(s)) { 2878 return; 2879 } 2880 memop = finalize_memop_asimd(s, size); 2881 } else { 2882 if (opc == 3) { 2883 /* PRFM (literal) : prefetch */ 2884 return; 2885 } 2886 size = 2 + extract32(opc, 0, 1); 2887 is_signed = extract32(opc, 1, 1); 2888 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2889 } 2890 2891 tcg_rt = cpu_reg(s, rt); 2892 2893 clean_addr = tcg_temp_new_i64(); 2894 gen_pc_plus_diff(s, clean_addr, imm); 2895 2896 if (is_vector) { 2897 do_fp_ld(s, rt, clean_addr, memop); 2898 } else { 2899 /* Only unsigned 32bit loads target 32bit registers. */ 2900 bool iss_sf = opc != 0; 2901 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2902 } 2903 } 2904 2905 /* 2906 * LDNP (Load Pair - non-temporal hint) 2907 * LDP (Load Pair - non vector) 2908 * LDPSW (Load Pair Signed Word - non vector) 2909 * STNP (Store Pair - non-temporal hint) 2910 * STP (Store Pair - non vector) 2911 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2912 * LDP (Load Pair of SIMD&FP) 2913 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2914 * STP (Store Pair of SIMD&FP) 2915 * 2916 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2917 * +-----+-------+---+---+-------+---+-----------------------------+ 2918 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2919 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2920 * 2921 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2922 * LDPSW/STGP 01 2923 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2924 * V: 0 -> GPR, 1 -> Vector 2925 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2926 * 10 -> signed offset, 11 -> pre-index 2927 * L: 0 -> Store 1 -> Load 2928 * 2929 * Rt, Rt2 = GPR or SIMD registers to be stored 2930 * Rn = general purpose register containing address 2931 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2932 */ 2933 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2934 { 2935 int rt = extract32(insn, 0, 5); 2936 int rn = extract32(insn, 5, 5); 2937 int rt2 = extract32(insn, 10, 5); 2938 uint64_t offset = sextract64(insn, 15, 7); 2939 int index = extract32(insn, 23, 2); 2940 bool is_vector = extract32(insn, 26, 1); 2941 bool is_load = extract32(insn, 22, 1); 2942 int opc = extract32(insn, 30, 2); 2943 bool is_signed = false; 2944 bool postindex = false; 2945 bool wback = false; 2946 bool set_tag = false; 2947 TCGv_i64 clean_addr, dirty_addr; 2948 MemOp mop; 2949 int size; 2950 2951 if (opc == 3) { 2952 unallocated_encoding(s); 2953 return; 2954 } 2955 2956 if (is_vector) { 2957 size = 2 + opc; 2958 } else if (opc == 1 && !is_load) { 2959 /* STGP */ 2960 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2961 unallocated_encoding(s); 2962 return; 2963 } 2964 size = 3; 2965 set_tag = true; 2966 } else { 2967 size = 2 + extract32(opc, 1, 1); 2968 is_signed = extract32(opc, 0, 1); 2969 if (!is_load && is_signed) { 2970 unallocated_encoding(s); 2971 return; 2972 } 2973 } 2974 2975 switch (index) { 2976 case 1: /* post-index */ 2977 postindex = true; 2978 wback = true; 2979 break; 2980 case 0: 2981 /* signed offset with "non-temporal" hint. Since we don't emulate 2982 * caches we don't care about hints to the cache system about 2983 * data access patterns, and handle this identically to plain 2984 * signed offset. 2985 */ 2986 if (is_signed) { 2987 /* There is no non-temporal-hint version of LDPSW */ 2988 unallocated_encoding(s); 2989 return; 2990 } 2991 postindex = false; 2992 break; 2993 case 2: /* signed offset, rn not updated */ 2994 postindex = false; 2995 break; 2996 case 3: /* pre-index */ 2997 postindex = false; 2998 wback = true; 2999 break; 3000 } 3001 3002 if (is_vector && !fp_access_check(s)) { 3003 return; 3004 } 3005 3006 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3007 3008 if (rn == 31) { 3009 gen_check_sp_alignment(s); 3010 } 3011 3012 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3013 if (!postindex) { 3014 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3015 } 3016 3017 if (set_tag) { 3018 if (!s->ata) { 3019 /* 3020 * TODO: We could rely on the stores below, at least for 3021 * system mode, if we arrange to add MO_ALIGN_16. 3022 */ 3023 gen_helper_stg_stub(cpu_env, dirty_addr); 3024 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3025 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3026 } else { 3027 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3028 } 3029 } 3030 3031 if (is_vector) { 3032 mop = finalize_memop_asimd(s, size); 3033 } else { 3034 mop = finalize_memop(s, size); 3035 } 3036 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3037 (wback || rn != 31) && !set_tag, 3038 2 << size, mop); 3039 3040 if (is_vector) { 3041 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3042 if (is_load) { 3043 do_fp_ld(s, rt, clean_addr, mop); 3044 } else { 3045 do_fp_st(s, rt, clean_addr, mop); 3046 } 3047 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3048 if (is_load) { 3049 do_fp_ld(s, rt2, clean_addr, mop); 3050 } else { 3051 do_fp_st(s, rt2, clean_addr, mop); 3052 } 3053 } else { 3054 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3055 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3056 3057 /* 3058 * We built mop above for the single logical access -- rebuild it 3059 * now for the paired operation. 3060 * 3061 * With LSE2, non-sign-extending pairs are treated atomically if 3062 * aligned, and if unaligned one of the pair will be completely 3063 * within a 16-byte block and that element will be atomic. 3064 * Otherwise each element is separately atomic. 3065 * In all cases, issue one operation with the correct atomicity. 3066 * 3067 * This treats sign-extending loads like zero-extending loads, 3068 * since that reuses the most code below. 3069 */ 3070 mop = size + 1; 3071 if (s->align_mem) { 3072 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3073 } 3074 mop = finalize_memop_pair(s, mop); 3075 3076 if (is_load) { 3077 if (size == 2) { 3078 int o2 = s->be_data == MO_LE ? 32 : 0; 3079 int o1 = o2 ^ 32; 3080 3081 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3082 if (is_signed) { 3083 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3084 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3085 } else { 3086 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3087 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3088 } 3089 } else { 3090 TCGv_i128 tmp = tcg_temp_new_i128(); 3091 3092 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3093 if (s->be_data == MO_LE) { 3094 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3095 } else { 3096 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3097 } 3098 } 3099 } else { 3100 if (size == 2) { 3101 TCGv_i64 tmp = tcg_temp_new_i64(); 3102 3103 if (s->be_data == MO_LE) { 3104 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3105 } else { 3106 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3107 } 3108 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3109 } else { 3110 TCGv_i128 tmp = tcg_temp_new_i128(); 3111 3112 if (s->be_data == MO_LE) { 3113 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3114 } else { 3115 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3116 } 3117 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3118 } 3119 } 3120 } 3121 3122 if (wback) { 3123 if (postindex) { 3124 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3125 } 3126 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3127 } 3128 } 3129 3130 /* 3131 * Load/store (immediate post-indexed) 3132 * Load/store (immediate pre-indexed) 3133 * Load/store (unscaled immediate) 3134 * 3135 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3136 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3137 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3138 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3139 * 3140 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3141 10 -> unprivileged 3142 * V = 0 -> non-vector 3143 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3144 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3145 */ 3146 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3147 int opc, 3148 int size, 3149 int rt, 3150 bool is_vector) 3151 { 3152 int rn = extract32(insn, 5, 5); 3153 int imm9 = sextract32(insn, 12, 9); 3154 int idx = extract32(insn, 10, 2); 3155 bool is_signed = false; 3156 bool is_store = false; 3157 bool is_extended = false; 3158 bool is_unpriv = (idx == 2); 3159 bool iss_valid; 3160 bool post_index; 3161 bool writeback; 3162 int memidx; 3163 MemOp memop; 3164 TCGv_i64 clean_addr, dirty_addr; 3165 3166 if (is_vector) { 3167 size |= (opc & 2) << 1; 3168 if (size > 4 || is_unpriv) { 3169 unallocated_encoding(s); 3170 return; 3171 } 3172 is_store = ((opc & 1) == 0); 3173 if (!fp_access_check(s)) { 3174 return; 3175 } 3176 memop = finalize_memop_asimd(s, size); 3177 } else { 3178 if (size == 3 && opc == 2) { 3179 /* PRFM - prefetch */ 3180 if (idx != 0) { 3181 unallocated_encoding(s); 3182 return; 3183 } 3184 return; 3185 } 3186 if (opc == 3 && size > 1) { 3187 unallocated_encoding(s); 3188 return; 3189 } 3190 is_store = (opc == 0); 3191 is_signed = !is_store && extract32(opc, 1, 1); 3192 is_extended = (size < 3) && extract32(opc, 0, 1); 3193 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3194 } 3195 3196 switch (idx) { 3197 case 0: 3198 case 2: 3199 post_index = false; 3200 writeback = false; 3201 break; 3202 case 1: 3203 post_index = true; 3204 writeback = true; 3205 break; 3206 case 3: 3207 post_index = false; 3208 writeback = true; 3209 break; 3210 default: 3211 g_assert_not_reached(); 3212 } 3213 3214 iss_valid = !is_vector && !writeback; 3215 3216 if (rn == 31) { 3217 gen_check_sp_alignment(s); 3218 } 3219 3220 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3221 if (!post_index) { 3222 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3223 } 3224 3225 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3226 3227 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3228 writeback || rn != 31, 3229 size, is_unpriv, memidx); 3230 3231 if (is_vector) { 3232 if (is_store) { 3233 do_fp_st(s, rt, clean_addr, memop); 3234 } else { 3235 do_fp_ld(s, rt, clean_addr, memop); 3236 } 3237 } else { 3238 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3239 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3240 3241 if (is_store) { 3242 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3243 iss_valid, rt, iss_sf, false); 3244 } else { 3245 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3246 is_extended, memidx, 3247 iss_valid, rt, iss_sf, false); 3248 } 3249 } 3250 3251 if (writeback) { 3252 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3253 if (post_index) { 3254 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3255 } 3256 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3257 } 3258 } 3259 3260 /* 3261 * Load/store (register offset) 3262 * 3263 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3264 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3265 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3266 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3267 * 3268 * For non-vector: 3269 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3270 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3271 * For vector: 3272 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3273 * opc<0>: 0 -> store, 1 -> load 3274 * V: 1 -> vector/simd 3275 * opt: extend encoding (see DecodeRegExtend) 3276 * S: if S=1 then scale (essentially index by sizeof(size)) 3277 * Rt: register to transfer into/out of 3278 * Rn: address register or SP for base 3279 * Rm: offset register or ZR for offset 3280 */ 3281 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3282 int opc, 3283 int size, 3284 int rt, 3285 bool is_vector) 3286 { 3287 int rn = extract32(insn, 5, 5); 3288 int shift = extract32(insn, 12, 1); 3289 int rm = extract32(insn, 16, 5); 3290 int opt = extract32(insn, 13, 3); 3291 bool is_signed = false; 3292 bool is_store = false; 3293 bool is_extended = false; 3294 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3295 MemOp memop; 3296 3297 if (extract32(opt, 1, 1) == 0) { 3298 unallocated_encoding(s); 3299 return; 3300 } 3301 3302 if (is_vector) { 3303 size |= (opc & 2) << 1; 3304 if (size > 4) { 3305 unallocated_encoding(s); 3306 return; 3307 } 3308 is_store = !extract32(opc, 0, 1); 3309 if (!fp_access_check(s)) { 3310 return; 3311 } 3312 } else { 3313 if (size == 3 && opc == 2) { 3314 /* PRFM - prefetch */ 3315 return; 3316 } 3317 if (opc == 3 && size > 1) { 3318 unallocated_encoding(s); 3319 return; 3320 } 3321 is_store = (opc == 0); 3322 is_signed = !is_store && extract32(opc, 1, 1); 3323 is_extended = (size < 3) && extract32(opc, 0, 1); 3324 } 3325 3326 if (rn == 31) { 3327 gen_check_sp_alignment(s); 3328 } 3329 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3330 3331 tcg_rm = read_cpu_reg(s, rm, 1); 3332 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3333 3334 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3335 3336 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3337 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3338 3339 if (is_vector) { 3340 if (is_store) { 3341 do_fp_st(s, rt, clean_addr, memop); 3342 } else { 3343 do_fp_ld(s, rt, clean_addr, memop); 3344 } 3345 } else { 3346 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3347 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3348 3349 if (is_store) { 3350 do_gpr_st(s, tcg_rt, clean_addr, memop, 3351 true, rt, iss_sf, false); 3352 } else { 3353 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3354 is_extended, true, rt, iss_sf, false); 3355 } 3356 } 3357 } 3358 3359 /* 3360 * Load/store (unsigned immediate) 3361 * 3362 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3363 * +----+-------+---+-----+-----+------------+-------+------+ 3364 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3365 * +----+-------+---+-----+-----+------------+-------+------+ 3366 * 3367 * For non-vector: 3368 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3369 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3370 * For vector: 3371 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3372 * opc<0>: 0 -> store, 1 -> load 3373 * Rn: base address register (inc SP) 3374 * Rt: target register 3375 */ 3376 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3377 int opc, 3378 int size, 3379 int rt, 3380 bool is_vector) 3381 { 3382 int rn = extract32(insn, 5, 5); 3383 unsigned int imm12 = extract32(insn, 10, 12); 3384 unsigned int offset; 3385 TCGv_i64 clean_addr, dirty_addr; 3386 bool is_store; 3387 bool is_signed = false; 3388 bool is_extended = false; 3389 MemOp memop; 3390 3391 if (is_vector) { 3392 size |= (opc & 2) << 1; 3393 if (size > 4) { 3394 unallocated_encoding(s); 3395 return; 3396 } 3397 is_store = !extract32(opc, 0, 1); 3398 if (!fp_access_check(s)) { 3399 return; 3400 } 3401 } else { 3402 if (size == 3 && opc == 2) { 3403 /* PRFM - prefetch */ 3404 return; 3405 } 3406 if (opc == 3 && size > 1) { 3407 unallocated_encoding(s); 3408 return; 3409 } 3410 is_store = (opc == 0); 3411 is_signed = !is_store && extract32(opc, 1, 1); 3412 is_extended = (size < 3) && extract32(opc, 0, 1); 3413 } 3414 3415 if (rn == 31) { 3416 gen_check_sp_alignment(s); 3417 } 3418 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3419 offset = imm12 << size; 3420 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3421 3422 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3423 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3424 3425 if (is_vector) { 3426 if (is_store) { 3427 do_fp_st(s, rt, clean_addr, memop); 3428 } else { 3429 do_fp_ld(s, rt, clean_addr, memop); 3430 } 3431 } else { 3432 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3433 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3434 if (is_store) { 3435 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3436 } else { 3437 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3438 is_extended, true, rt, iss_sf, false); 3439 } 3440 } 3441 } 3442 3443 /* Atomic memory operations 3444 * 3445 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3446 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3447 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3448 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3449 * 3450 * Rt: the result register 3451 * Rn: base address or SP 3452 * Rs: the source register for the operation 3453 * V: vector flag (always 0 as of v8.3) 3454 * A: acquire flag 3455 * R: release flag 3456 */ 3457 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3458 int size, int rt, bool is_vector) 3459 { 3460 int rs = extract32(insn, 16, 5); 3461 int rn = extract32(insn, 5, 5); 3462 int o3_opc = extract32(insn, 12, 4); 3463 bool r = extract32(insn, 22, 1); 3464 bool a = extract32(insn, 23, 1); 3465 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3466 AtomicThreeOpFn *fn = NULL; 3467 MemOp mop = size; 3468 3469 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3470 unallocated_encoding(s); 3471 return; 3472 } 3473 switch (o3_opc) { 3474 case 000: /* LDADD */ 3475 fn = tcg_gen_atomic_fetch_add_i64; 3476 break; 3477 case 001: /* LDCLR */ 3478 fn = tcg_gen_atomic_fetch_and_i64; 3479 break; 3480 case 002: /* LDEOR */ 3481 fn = tcg_gen_atomic_fetch_xor_i64; 3482 break; 3483 case 003: /* LDSET */ 3484 fn = tcg_gen_atomic_fetch_or_i64; 3485 break; 3486 case 004: /* LDSMAX */ 3487 fn = tcg_gen_atomic_fetch_smax_i64; 3488 mop |= MO_SIGN; 3489 break; 3490 case 005: /* LDSMIN */ 3491 fn = tcg_gen_atomic_fetch_smin_i64; 3492 mop |= MO_SIGN; 3493 break; 3494 case 006: /* LDUMAX */ 3495 fn = tcg_gen_atomic_fetch_umax_i64; 3496 break; 3497 case 007: /* LDUMIN */ 3498 fn = tcg_gen_atomic_fetch_umin_i64; 3499 break; 3500 case 010: /* SWP */ 3501 fn = tcg_gen_atomic_xchg_i64; 3502 break; 3503 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3504 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3505 rs != 31 || a != 1 || r != 0) { 3506 unallocated_encoding(s); 3507 return; 3508 } 3509 break; 3510 default: 3511 unallocated_encoding(s); 3512 return; 3513 } 3514 3515 if (rn == 31) { 3516 gen_check_sp_alignment(s); 3517 } 3518 3519 mop = check_atomic_align(s, rn, mop); 3520 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3521 3522 if (o3_opc == 014) { 3523 /* 3524 * LDAPR* are a special case because they are a simple load, not a 3525 * fetch-and-do-something op. 3526 * The architectural consistency requirements here are weaker than 3527 * full load-acquire (we only need "load-acquire processor consistent"), 3528 * but we choose to implement them as full LDAQ. 3529 */ 3530 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3531 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3532 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3533 return; 3534 } 3535 3536 tcg_rs = read_cpu_reg(s, rs, true); 3537 tcg_rt = cpu_reg(s, rt); 3538 3539 if (o3_opc == 1) { /* LDCLR */ 3540 tcg_gen_not_i64(tcg_rs, tcg_rs); 3541 } 3542 3543 /* The tcg atomic primitives are all full barriers. Therefore we 3544 * can ignore the Acquire and Release bits of this instruction. 3545 */ 3546 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3547 3548 if (mop & MO_SIGN) { 3549 switch (size) { 3550 case MO_8: 3551 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3552 break; 3553 case MO_16: 3554 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3555 break; 3556 case MO_32: 3557 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3558 break; 3559 case MO_64: 3560 break; 3561 default: 3562 g_assert_not_reached(); 3563 } 3564 } 3565 } 3566 3567 /* 3568 * PAC memory operations 3569 * 3570 * 31 30 27 26 24 22 21 12 11 10 5 0 3571 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3572 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3573 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3574 * 3575 * Rt: the result register 3576 * Rn: base address or SP 3577 * V: vector flag (always 0 as of v8.3) 3578 * M: clear for key DA, set for key DB 3579 * W: pre-indexing flag 3580 * S: sign for imm9. 3581 */ 3582 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3583 int size, int rt, bool is_vector) 3584 { 3585 int rn = extract32(insn, 5, 5); 3586 bool is_wback = extract32(insn, 11, 1); 3587 bool use_key_a = !extract32(insn, 23, 1); 3588 int offset; 3589 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3590 MemOp memop; 3591 3592 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3593 unallocated_encoding(s); 3594 return; 3595 } 3596 3597 if (rn == 31) { 3598 gen_check_sp_alignment(s); 3599 } 3600 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3601 3602 if (s->pauth_active) { 3603 if (use_key_a) { 3604 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3605 tcg_constant_i64(0)); 3606 } else { 3607 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3608 tcg_constant_i64(0)); 3609 } 3610 } 3611 3612 /* Form the 10-bit signed, scaled offset. */ 3613 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3614 offset = sextract32(offset << size, 0, 10 + size); 3615 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3616 3617 memop = finalize_memop(s, size); 3618 3619 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3620 clean_addr = gen_mte_check1(s, dirty_addr, false, 3621 is_wback || rn != 31, memop); 3622 3623 tcg_rt = cpu_reg(s, rt); 3624 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3625 /* extend */ false, /* iss_valid */ !is_wback, 3626 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3627 3628 if (is_wback) { 3629 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3630 } 3631 } 3632 3633 /* 3634 * LDAPR/STLR (unscaled immediate) 3635 * 3636 * 31 30 24 22 21 12 10 5 0 3637 * +------+-------------+-----+---+--------+-----+----+-----+ 3638 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3639 * +------+-------------+-----+---+--------+-----+----+-----+ 3640 * 3641 * Rt: source or destination register 3642 * Rn: base register 3643 * imm9: unscaled immediate offset 3644 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3645 * size: size of load/store 3646 */ 3647 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3648 { 3649 int rt = extract32(insn, 0, 5); 3650 int rn = extract32(insn, 5, 5); 3651 int offset = sextract32(insn, 12, 9); 3652 int opc = extract32(insn, 22, 2); 3653 int size = extract32(insn, 30, 2); 3654 TCGv_i64 clean_addr, dirty_addr; 3655 bool is_store = false; 3656 bool extend = false; 3657 bool iss_sf; 3658 MemOp mop = size; 3659 3660 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3661 unallocated_encoding(s); 3662 return; 3663 } 3664 3665 switch (opc) { 3666 case 0: /* STLURB */ 3667 is_store = true; 3668 break; 3669 case 1: /* LDAPUR* */ 3670 break; 3671 case 2: /* LDAPURS* 64-bit variant */ 3672 if (size == 3) { 3673 unallocated_encoding(s); 3674 return; 3675 } 3676 mop |= MO_SIGN; 3677 break; 3678 case 3: /* LDAPURS* 32-bit variant */ 3679 if (size > 1) { 3680 unallocated_encoding(s); 3681 return; 3682 } 3683 mop |= MO_SIGN; 3684 extend = true; /* zero-extend 32->64 after signed load */ 3685 break; 3686 default: 3687 g_assert_not_reached(); 3688 } 3689 3690 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3691 3692 if (rn == 31) { 3693 gen_check_sp_alignment(s); 3694 } 3695 3696 mop = check_ordered_align(s, rn, offset, is_store, mop); 3697 3698 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3699 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3700 clean_addr = clean_data_tbi(s, dirty_addr); 3701 3702 if (is_store) { 3703 /* Store-Release semantics */ 3704 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3705 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3706 } else { 3707 /* 3708 * Load-AcquirePC semantics; we implement as the slightly more 3709 * restrictive Load-Acquire. 3710 */ 3711 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3712 extend, true, rt, iss_sf, true); 3713 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3714 } 3715 } 3716 3717 /* Load/store register (all forms) */ 3718 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3719 { 3720 int rt = extract32(insn, 0, 5); 3721 int opc = extract32(insn, 22, 2); 3722 bool is_vector = extract32(insn, 26, 1); 3723 int size = extract32(insn, 30, 2); 3724 3725 switch (extract32(insn, 24, 2)) { 3726 case 0: 3727 if (extract32(insn, 21, 1) == 0) { 3728 /* Load/store register (unscaled immediate) 3729 * Load/store immediate pre/post-indexed 3730 * Load/store register unprivileged 3731 */ 3732 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3733 return; 3734 } 3735 switch (extract32(insn, 10, 2)) { 3736 case 0: 3737 disas_ldst_atomic(s, insn, size, rt, is_vector); 3738 return; 3739 case 2: 3740 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3741 return; 3742 default: 3743 disas_ldst_pac(s, insn, size, rt, is_vector); 3744 return; 3745 } 3746 break; 3747 case 1: 3748 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3749 return; 3750 } 3751 unallocated_encoding(s); 3752 } 3753 3754 /* AdvSIMD load/store multiple structures 3755 * 3756 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3757 * +---+---+---------------+---+-------------+--------+------+------+------+ 3758 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3759 * +---+---+---------------+---+-------------+--------+------+------+------+ 3760 * 3761 * AdvSIMD load/store multiple structures (post-indexed) 3762 * 3763 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3764 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3765 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3766 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3767 * 3768 * Rt: first (or only) SIMD&FP register to be transferred 3769 * Rn: base address or SP 3770 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3771 */ 3772 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3773 { 3774 int rt = extract32(insn, 0, 5); 3775 int rn = extract32(insn, 5, 5); 3776 int rm = extract32(insn, 16, 5); 3777 int size = extract32(insn, 10, 2); 3778 int opcode = extract32(insn, 12, 4); 3779 bool is_store = !extract32(insn, 22, 1); 3780 bool is_postidx = extract32(insn, 23, 1); 3781 bool is_q = extract32(insn, 30, 1); 3782 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3783 MemOp endian, align, mop; 3784 3785 int total; /* total bytes */ 3786 int elements; /* elements per vector */ 3787 int rpt; /* num iterations */ 3788 int selem; /* structure elements */ 3789 int r; 3790 3791 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3792 unallocated_encoding(s); 3793 return; 3794 } 3795 3796 if (!is_postidx && rm != 0) { 3797 unallocated_encoding(s); 3798 return; 3799 } 3800 3801 /* From the shared decode logic */ 3802 switch (opcode) { 3803 case 0x0: 3804 rpt = 1; 3805 selem = 4; 3806 break; 3807 case 0x2: 3808 rpt = 4; 3809 selem = 1; 3810 break; 3811 case 0x4: 3812 rpt = 1; 3813 selem = 3; 3814 break; 3815 case 0x6: 3816 rpt = 3; 3817 selem = 1; 3818 break; 3819 case 0x7: 3820 rpt = 1; 3821 selem = 1; 3822 break; 3823 case 0x8: 3824 rpt = 1; 3825 selem = 2; 3826 break; 3827 case 0xa: 3828 rpt = 2; 3829 selem = 1; 3830 break; 3831 default: 3832 unallocated_encoding(s); 3833 return; 3834 } 3835 3836 if (size == 3 && !is_q && selem != 1) { 3837 /* reserved */ 3838 unallocated_encoding(s); 3839 return; 3840 } 3841 3842 if (!fp_access_check(s)) { 3843 return; 3844 } 3845 3846 if (rn == 31) { 3847 gen_check_sp_alignment(s); 3848 } 3849 3850 /* For our purposes, bytes are always little-endian. */ 3851 endian = s->be_data; 3852 if (size == 0) { 3853 endian = MO_LE; 3854 } 3855 3856 total = rpt * selem * (is_q ? 16 : 8); 3857 tcg_rn = cpu_reg_sp(s, rn); 3858 3859 /* 3860 * Issue the MTE check vs the logical repeat count, before we 3861 * promote consecutive little-endian elements below. 3862 */ 3863 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3864 total, finalize_memop(s, size)); 3865 3866 /* 3867 * Consecutive little-endian elements from a single register 3868 * can be promoted to a larger little-endian operation. 3869 */ 3870 align = MO_ALIGN; 3871 if (selem == 1 && endian == MO_LE) { 3872 align = pow2_align(size); 3873 size = 3; 3874 } 3875 if (!s->align_mem) { 3876 align = 0; 3877 } 3878 mop = endian | size | align; 3879 3880 elements = (is_q ? 16 : 8) >> size; 3881 tcg_ebytes = tcg_constant_i64(1 << size); 3882 for (r = 0; r < rpt; r++) { 3883 int e; 3884 for (e = 0; e < elements; e++) { 3885 int xs; 3886 for (xs = 0; xs < selem; xs++) { 3887 int tt = (rt + r + xs) % 32; 3888 if (is_store) { 3889 do_vec_st(s, tt, e, clean_addr, mop); 3890 } else { 3891 do_vec_ld(s, tt, e, clean_addr, mop); 3892 } 3893 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3894 } 3895 } 3896 } 3897 3898 if (!is_store) { 3899 /* For non-quad operations, setting a slice of the low 3900 * 64 bits of the register clears the high 64 bits (in 3901 * the ARM ARM pseudocode this is implicit in the fact 3902 * that 'rval' is a 64 bit wide variable). 3903 * For quad operations, we might still need to zero the 3904 * high bits of SVE. 3905 */ 3906 for (r = 0; r < rpt * selem; r++) { 3907 int tt = (rt + r) % 32; 3908 clear_vec_high(s, is_q, tt); 3909 } 3910 } 3911 3912 if (is_postidx) { 3913 if (rm == 31) { 3914 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3915 } else { 3916 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3917 } 3918 } 3919 } 3920 3921 /* AdvSIMD load/store single structure 3922 * 3923 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3924 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3925 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3926 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3927 * 3928 * AdvSIMD load/store single structure (post-indexed) 3929 * 3930 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3931 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3932 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3933 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3934 * 3935 * Rt: first (or only) SIMD&FP register to be transferred 3936 * Rn: base address or SP 3937 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3938 * index = encoded in Q:S:size dependent on size 3939 * 3940 * lane_size = encoded in R, opc 3941 * transfer width = encoded in opc, S, size 3942 */ 3943 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3944 { 3945 int rt = extract32(insn, 0, 5); 3946 int rn = extract32(insn, 5, 5); 3947 int rm = extract32(insn, 16, 5); 3948 int size = extract32(insn, 10, 2); 3949 int S = extract32(insn, 12, 1); 3950 int opc = extract32(insn, 13, 3); 3951 int R = extract32(insn, 21, 1); 3952 int is_load = extract32(insn, 22, 1); 3953 int is_postidx = extract32(insn, 23, 1); 3954 int is_q = extract32(insn, 30, 1); 3955 3956 int scale = extract32(opc, 1, 2); 3957 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3958 bool replicate = false; 3959 int index = is_q << 3 | S << 2 | size; 3960 int xs, total; 3961 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3962 MemOp mop; 3963 3964 if (extract32(insn, 31, 1)) { 3965 unallocated_encoding(s); 3966 return; 3967 } 3968 if (!is_postidx && rm != 0) { 3969 unallocated_encoding(s); 3970 return; 3971 } 3972 3973 switch (scale) { 3974 case 3: 3975 if (!is_load || S) { 3976 unallocated_encoding(s); 3977 return; 3978 } 3979 scale = size; 3980 replicate = true; 3981 break; 3982 case 0: 3983 break; 3984 case 1: 3985 if (extract32(size, 0, 1)) { 3986 unallocated_encoding(s); 3987 return; 3988 } 3989 index >>= 1; 3990 break; 3991 case 2: 3992 if (extract32(size, 1, 1)) { 3993 unallocated_encoding(s); 3994 return; 3995 } 3996 if (!extract32(size, 0, 1)) { 3997 index >>= 2; 3998 } else { 3999 if (S) { 4000 unallocated_encoding(s); 4001 return; 4002 } 4003 index >>= 3; 4004 scale = 3; 4005 } 4006 break; 4007 default: 4008 g_assert_not_reached(); 4009 } 4010 4011 if (!fp_access_check(s)) { 4012 return; 4013 } 4014 4015 if (rn == 31) { 4016 gen_check_sp_alignment(s); 4017 } 4018 4019 total = selem << scale; 4020 tcg_rn = cpu_reg_sp(s, rn); 4021 4022 mop = finalize_memop(s, scale); 4023 4024 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4025 total, mop); 4026 4027 tcg_ebytes = tcg_constant_i64(1 << scale); 4028 for (xs = 0; xs < selem; xs++) { 4029 if (replicate) { 4030 /* Load and replicate to all elements */ 4031 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4032 4033 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4034 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4035 (is_q + 1) * 8, vec_full_reg_size(s), 4036 tcg_tmp); 4037 } else { 4038 /* Load/store one element per register */ 4039 if (is_load) { 4040 do_vec_ld(s, rt, index, clean_addr, mop); 4041 } else { 4042 do_vec_st(s, rt, index, clean_addr, mop); 4043 } 4044 } 4045 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4046 rt = (rt + 1) % 32; 4047 } 4048 4049 if (is_postidx) { 4050 if (rm == 31) { 4051 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4052 } else { 4053 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4054 } 4055 } 4056 } 4057 4058 /* 4059 * Load/Store memory tags 4060 * 4061 * 31 30 29 24 22 21 12 10 5 0 4062 * +-----+-------------+-----+---+------+-----+------+------+ 4063 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4064 * +-----+-------------+-----+---+------+-----+------+------+ 4065 */ 4066 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4067 { 4068 int rt = extract32(insn, 0, 5); 4069 int rn = extract32(insn, 5, 5); 4070 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4071 int op2 = extract32(insn, 10, 2); 4072 int op1 = extract32(insn, 22, 2); 4073 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4074 int index = 0; 4075 TCGv_i64 addr, clean_addr, tcg_rt; 4076 4077 /* We checked insn bits [29:24,21] in the caller. */ 4078 if (extract32(insn, 30, 2) != 3) { 4079 goto do_unallocated; 4080 } 4081 4082 /* 4083 * @index is a tri-state variable which has 3 states: 4084 * < 0 : post-index, writeback 4085 * = 0 : signed offset 4086 * > 0 : pre-index, writeback 4087 */ 4088 switch (op1) { 4089 case 0: 4090 if (op2 != 0) { 4091 /* STG */ 4092 index = op2 - 2; 4093 } else { 4094 /* STZGM */ 4095 if (s->current_el == 0 || offset != 0) { 4096 goto do_unallocated; 4097 } 4098 is_mult = is_zero = true; 4099 } 4100 break; 4101 case 1: 4102 if (op2 != 0) { 4103 /* STZG */ 4104 is_zero = true; 4105 index = op2 - 2; 4106 } else { 4107 /* LDG */ 4108 is_load = true; 4109 } 4110 break; 4111 case 2: 4112 if (op2 != 0) { 4113 /* ST2G */ 4114 is_pair = true; 4115 index = op2 - 2; 4116 } else { 4117 /* STGM */ 4118 if (s->current_el == 0 || offset != 0) { 4119 goto do_unallocated; 4120 } 4121 is_mult = true; 4122 } 4123 break; 4124 case 3: 4125 if (op2 != 0) { 4126 /* STZ2G */ 4127 is_pair = is_zero = true; 4128 index = op2 - 2; 4129 } else { 4130 /* LDGM */ 4131 if (s->current_el == 0 || offset != 0) { 4132 goto do_unallocated; 4133 } 4134 is_mult = is_load = true; 4135 } 4136 break; 4137 4138 default: 4139 do_unallocated: 4140 unallocated_encoding(s); 4141 return; 4142 } 4143 4144 if (is_mult 4145 ? !dc_isar_feature(aa64_mte, s) 4146 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4147 goto do_unallocated; 4148 } 4149 4150 if (rn == 31) { 4151 gen_check_sp_alignment(s); 4152 } 4153 4154 addr = read_cpu_reg_sp(s, rn, true); 4155 if (index >= 0) { 4156 /* pre-index or signed offset */ 4157 tcg_gen_addi_i64(addr, addr, offset); 4158 } 4159 4160 if (is_mult) { 4161 tcg_rt = cpu_reg(s, rt); 4162 4163 if (is_zero) { 4164 int size = 4 << s->dcz_blocksize; 4165 4166 if (s->ata) { 4167 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4168 } 4169 /* 4170 * The non-tags portion of STZGM is mostly like DC_ZVA, 4171 * except the alignment happens before the access. 4172 */ 4173 clean_addr = clean_data_tbi(s, addr); 4174 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4175 gen_helper_dc_zva(cpu_env, clean_addr); 4176 } else if (s->ata) { 4177 if (is_load) { 4178 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4179 } else { 4180 gen_helper_stgm(cpu_env, addr, tcg_rt); 4181 } 4182 } else { 4183 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4184 int size = 4 << GMID_EL1_BS; 4185 4186 clean_addr = clean_data_tbi(s, addr); 4187 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4188 gen_probe_access(s, clean_addr, acc, size); 4189 4190 if (is_load) { 4191 /* The result tags are zeros. */ 4192 tcg_gen_movi_i64(tcg_rt, 0); 4193 } 4194 } 4195 return; 4196 } 4197 4198 if (is_load) { 4199 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4200 tcg_rt = cpu_reg(s, rt); 4201 if (s->ata) { 4202 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4203 } else { 4204 /* 4205 * Tag access disabled: we must check for aborts on the load 4206 * load from [rn+offset], and then insert a 0 tag into rt. 4207 */ 4208 clean_addr = clean_data_tbi(s, addr); 4209 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4210 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4211 } 4212 } else { 4213 tcg_rt = cpu_reg_sp(s, rt); 4214 if (!s->ata) { 4215 /* 4216 * For STG and ST2G, we need to check alignment and probe memory. 4217 * TODO: For STZG and STZ2G, we could rely on the stores below, 4218 * at least for system mode; user-only won't enforce alignment. 4219 */ 4220 if (is_pair) { 4221 gen_helper_st2g_stub(cpu_env, addr); 4222 } else { 4223 gen_helper_stg_stub(cpu_env, addr); 4224 } 4225 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4226 if (is_pair) { 4227 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4228 } else { 4229 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4230 } 4231 } else { 4232 if (is_pair) { 4233 gen_helper_st2g(cpu_env, addr, tcg_rt); 4234 } else { 4235 gen_helper_stg(cpu_env, addr, tcg_rt); 4236 } 4237 } 4238 } 4239 4240 if (is_zero) { 4241 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4242 TCGv_i64 zero64 = tcg_constant_i64(0); 4243 TCGv_i128 zero128 = tcg_temp_new_i128(); 4244 int mem_index = get_mem_index(s); 4245 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4246 4247 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4248 4249 /* This is 1 or 2 atomic 16-byte operations. */ 4250 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4251 if (is_pair) { 4252 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4253 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4254 } 4255 } 4256 4257 if (index != 0) { 4258 /* pre-index or post-index */ 4259 if (index < 0) { 4260 /* post-index */ 4261 tcg_gen_addi_i64(addr, addr, offset); 4262 } 4263 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4264 } 4265 } 4266 4267 /* Loads and stores */ 4268 static void disas_ldst(DisasContext *s, uint32_t insn) 4269 { 4270 switch (extract32(insn, 24, 6)) { 4271 case 0x08: /* Load/store exclusive */ 4272 disas_ldst_excl(s, insn); 4273 break; 4274 case 0x18: case 0x1c: /* Load register (literal) */ 4275 disas_ld_lit(s, insn); 4276 break; 4277 case 0x28: case 0x29: 4278 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4279 disas_ldst_pair(s, insn); 4280 break; 4281 case 0x38: case 0x39: 4282 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4283 disas_ldst_reg(s, insn); 4284 break; 4285 case 0x0c: /* AdvSIMD load/store multiple structures */ 4286 disas_ldst_multiple_struct(s, insn); 4287 break; 4288 case 0x0d: /* AdvSIMD load/store single structure */ 4289 disas_ldst_single_struct(s, insn); 4290 break; 4291 case 0x19: 4292 if (extract32(insn, 21, 1) != 0) { 4293 disas_ldst_tag(s, insn); 4294 } else if (extract32(insn, 10, 2) == 0) { 4295 disas_ldst_ldapr_stlr(s, insn); 4296 } else { 4297 unallocated_encoding(s); 4298 } 4299 break; 4300 default: 4301 unallocated_encoding(s); 4302 break; 4303 } 4304 } 4305 4306 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4307 4308 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4309 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4310 { 4311 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4312 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4313 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4314 4315 fn(tcg_rd, tcg_rn, tcg_imm); 4316 if (!a->sf) { 4317 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4318 } 4319 return true; 4320 } 4321 4322 /* 4323 * PC-rel. addressing 4324 */ 4325 4326 static bool trans_ADR(DisasContext *s, arg_ri *a) 4327 { 4328 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4329 return true; 4330 } 4331 4332 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4333 { 4334 int64_t offset = (int64_t)a->imm << 12; 4335 4336 /* The page offset is ok for CF_PCREL. */ 4337 offset -= s->pc_curr & 0xfff; 4338 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4339 return true; 4340 } 4341 4342 /* 4343 * Add/subtract (immediate) 4344 */ 4345 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4346 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4347 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4348 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4349 4350 /* 4351 * Add/subtract (immediate, with tags) 4352 */ 4353 4354 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4355 bool sub_op) 4356 { 4357 TCGv_i64 tcg_rn, tcg_rd; 4358 int imm; 4359 4360 imm = a->uimm6 << LOG2_TAG_GRANULE; 4361 if (sub_op) { 4362 imm = -imm; 4363 } 4364 4365 tcg_rn = cpu_reg_sp(s, a->rn); 4366 tcg_rd = cpu_reg_sp(s, a->rd); 4367 4368 if (s->ata) { 4369 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4370 tcg_constant_i32(imm), 4371 tcg_constant_i32(a->uimm4)); 4372 } else { 4373 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4374 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4375 } 4376 return true; 4377 } 4378 4379 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4380 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4381 4382 /* The input should be a value in the bottom e bits (with higher 4383 * bits zero); returns that value replicated into every element 4384 * of size e in a 64 bit integer. 4385 */ 4386 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4387 { 4388 assert(e != 0); 4389 while (e < 64) { 4390 mask |= mask << e; 4391 e *= 2; 4392 } 4393 return mask; 4394 } 4395 4396 /* 4397 * Logical (immediate) 4398 */ 4399 4400 /* 4401 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4402 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4403 * value (ie should cause a guest UNDEF exception), and true if they are 4404 * valid, in which case the decoded bit pattern is written to result. 4405 */ 4406 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4407 unsigned int imms, unsigned int immr) 4408 { 4409 uint64_t mask; 4410 unsigned e, levels, s, r; 4411 int len; 4412 4413 assert(immn < 2 && imms < 64 && immr < 64); 4414 4415 /* The bit patterns we create here are 64 bit patterns which 4416 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4417 * 64 bits each. Each element contains the same value: a run 4418 * of between 1 and e-1 non-zero bits, rotated within the 4419 * element by between 0 and e-1 bits. 4420 * 4421 * The element size and run length are encoded into immn (1 bit) 4422 * and imms (6 bits) as follows: 4423 * 64 bit elements: immn = 1, imms = <length of run - 1> 4424 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4425 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4426 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4427 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4428 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4429 * Notice that immn = 0, imms = 11111x is the only combination 4430 * not covered by one of the above options; this is reserved. 4431 * Further, <length of run - 1> all-ones is a reserved pattern. 4432 * 4433 * In all cases the rotation is by immr % e (and immr is 6 bits). 4434 */ 4435 4436 /* First determine the element size */ 4437 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4438 if (len < 1) { 4439 /* This is the immn == 0, imms == 0x11111x case */ 4440 return false; 4441 } 4442 e = 1 << len; 4443 4444 levels = e - 1; 4445 s = imms & levels; 4446 r = immr & levels; 4447 4448 if (s == levels) { 4449 /* <length of run - 1> mustn't be all-ones. */ 4450 return false; 4451 } 4452 4453 /* Create the value of one element: s+1 set bits rotated 4454 * by r within the element (which is e bits wide)... 4455 */ 4456 mask = MAKE_64BIT_MASK(0, s + 1); 4457 if (r) { 4458 mask = (mask >> r) | (mask << (e - r)); 4459 mask &= MAKE_64BIT_MASK(0, e); 4460 } 4461 /* ...then replicate the element over the whole 64 bit value */ 4462 mask = bitfield_replicate(mask, e); 4463 *result = mask; 4464 return true; 4465 } 4466 4467 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4468 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4469 { 4470 TCGv_i64 tcg_rd, tcg_rn; 4471 uint64_t imm; 4472 4473 /* Some immediate field values are reserved. */ 4474 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4475 extract32(a->dbm, 0, 6), 4476 extract32(a->dbm, 6, 6))) { 4477 return false; 4478 } 4479 if (!a->sf) { 4480 imm &= 0xffffffffull; 4481 } 4482 4483 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4484 tcg_rn = cpu_reg(s, a->rn); 4485 4486 fn(tcg_rd, tcg_rn, imm); 4487 if (set_cc) { 4488 gen_logic_CC(a->sf, tcg_rd); 4489 } 4490 if (!a->sf) { 4491 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4492 } 4493 return true; 4494 } 4495 4496 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4497 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4498 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4499 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4500 4501 /* 4502 * Move wide (immediate) 4503 */ 4504 4505 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4506 { 4507 int pos = a->hw << 4; 4508 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4509 return true; 4510 } 4511 4512 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4513 { 4514 int pos = a->hw << 4; 4515 uint64_t imm = a->imm; 4516 4517 imm = ~(imm << pos); 4518 if (!a->sf) { 4519 imm = (uint32_t)imm; 4520 } 4521 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4522 return true; 4523 } 4524 4525 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4526 { 4527 int pos = a->hw << 4; 4528 TCGv_i64 tcg_rd, tcg_im; 4529 4530 tcg_rd = cpu_reg(s, a->rd); 4531 tcg_im = tcg_constant_i64(a->imm); 4532 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4533 if (!a->sf) { 4534 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4535 } 4536 return true; 4537 } 4538 4539 /* 4540 * Bitfield 4541 */ 4542 4543 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 if (si >= ri) { 4553 /* Wd<s-r:0> = Wn<s:r> */ 4554 len = (si - ri) + 1; 4555 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4556 if (!a->sf) { 4557 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4558 } 4559 } else { 4560 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4561 len = si + 1; 4562 pos = (bitsize - ri) & (bitsize - 1); 4563 4564 if (len < ri) { 4565 /* 4566 * Sign extend the destination field from len to fill the 4567 * balance of the word. Let the deposit below insert all 4568 * of those sign bits. 4569 */ 4570 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4571 len = ri; 4572 } 4573 4574 /* 4575 * We start with zero, and we haven't modified any bits outside 4576 * bitsize, therefore no final zero-extension is unneeded for !sf. 4577 */ 4578 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4579 } 4580 return true; 4581 } 4582 4583 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4584 { 4585 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4586 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4587 unsigned int bitsize = a->sf ? 64 : 32; 4588 unsigned int ri = a->immr; 4589 unsigned int si = a->imms; 4590 unsigned int pos, len; 4591 4592 tcg_rd = cpu_reg(s, a->rd); 4593 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4594 4595 if (si >= ri) { 4596 /* Wd<s-r:0> = Wn<s:r> */ 4597 len = (si - ri) + 1; 4598 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4599 } else { 4600 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4601 len = si + 1; 4602 pos = (bitsize - ri) & (bitsize - 1); 4603 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4604 } 4605 return true; 4606 } 4607 4608 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4609 { 4610 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4611 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4612 unsigned int bitsize = a->sf ? 64 : 32; 4613 unsigned int ri = a->immr; 4614 unsigned int si = a->imms; 4615 unsigned int pos, len; 4616 4617 tcg_rd = cpu_reg(s, a->rd); 4618 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4619 4620 if (si >= ri) { 4621 /* Wd<s-r:0> = Wn<s:r> */ 4622 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4623 len = (si - ri) + 1; 4624 pos = 0; 4625 } else { 4626 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4627 len = si + 1; 4628 pos = (bitsize - ri) & (bitsize - 1); 4629 } 4630 4631 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4632 if (!a->sf) { 4633 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4634 } 4635 return true; 4636 } 4637 4638 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4639 { 4640 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4641 4642 tcg_rd = cpu_reg(s, a->rd); 4643 4644 if (unlikely(a->imm == 0)) { 4645 /* 4646 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4647 * so an extract from bit 0 is a special case. 4648 */ 4649 if (a->sf) { 4650 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4651 } else { 4652 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4653 } 4654 } else { 4655 tcg_rm = cpu_reg(s, a->rm); 4656 tcg_rn = cpu_reg(s, a->rn); 4657 4658 if (a->sf) { 4659 /* Specialization to ROR happens in EXTRACT2. */ 4660 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4661 } else { 4662 TCGv_i32 t0 = tcg_temp_new_i32(); 4663 4664 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4665 if (a->rm == a->rn) { 4666 tcg_gen_rotri_i32(t0, t0, a->imm); 4667 } else { 4668 TCGv_i32 t1 = tcg_temp_new_i32(); 4669 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4670 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4671 } 4672 tcg_gen_extu_i32_i64(tcg_rd, t0); 4673 } 4674 } 4675 return true; 4676 } 4677 4678 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4679 * Note that it is the caller's responsibility to ensure that the 4680 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4681 * mandated semantics for out of range shifts. 4682 */ 4683 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4684 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4685 { 4686 switch (shift_type) { 4687 case A64_SHIFT_TYPE_LSL: 4688 tcg_gen_shl_i64(dst, src, shift_amount); 4689 break; 4690 case A64_SHIFT_TYPE_LSR: 4691 tcg_gen_shr_i64(dst, src, shift_amount); 4692 break; 4693 case A64_SHIFT_TYPE_ASR: 4694 if (!sf) { 4695 tcg_gen_ext32s_i64(dst, src); 4696 } 4697 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4698 break; 4699 case A64_SHIFT_TYPE_ROR: 4700 if (sf) { 4701 tcg_gen_rotr_i64(dst, src, shift_amount); 4702 } else { 4703 TCGv_i32 t0, t1; 4704 t0 = tcg_temp_new_i32(); 4705 t1 = tcg_temp_new_i32(); 4706 tcg_gen_extrl_i64_i32(t0, src); 4707 tcg_gen_extrl_i64_i32(t1, shift_amount); 4708 tcg_gen_rotr_i32(t0, t0, t1); 4709 tcg_gen_extu_i32_i64(dst, t0); 4710 } 4711 break; 4712 default: 4713 assert(FALSE); /* all shift types should be handled */ 4714 break; 4715 } 4716 4717 if (!sf) { /* zero extend final result */ 4718 tcg_gen_ext32u_i64(dst, dst); 4719 } 4720 } 4721 4722 /* Shift a TCGv src by immediate, put result in dst. 4723 * The shift amount must be in range (this should always be true as the 4724 * relevant instructions will UNDEF on bad shift immediates). 4725 */ 4726 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4727 enum a64_shift_type shift_type, unsigned int shift_i) 4728 { 4729 assert(shift_i < (sf ? 64 : 32)); 4730 4731 if (shift_i == 0) { 4732 tcg_gen_mov_i64(dst, src); 4733 } else { 4734 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4735 } 4736 } 4737 4738 /* Logical (shifted register) 4739 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4740 * +----+-----+-----------+-------+---+------+--------+------+------+ 4741 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4742 * +----+-----+-----------+-------+---+------+--------+------+------+ 4743 */ 4744 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4745 { 4746 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4747 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4748 4749 sf = extract32(insn, 31, 1); 4750 opc = extract32(insn, 29, 2); 4751 shift_type = extract32(insn, 22, 2); 4752 invert = extract32(insn, 21, 1); 4753 rm = extract32(insn, 16, 5); 4754 shift_amount = extract32(insn, 10, 6); 4755 rn = extract32(insn, 5, 5); 4756 rd = extract32(insn, 0, 5); 4757 4758 if (!sf && (shift_amount & (1 << 5))) { 4759 unallocated_encoding(s); 4760 return; 4761 } 4762 4763 tcg_rd = cpu_reg(s, rd); 4764 4765 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4766 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4767 * register-register MOV and MVN, so it is worth special casing. 4768 */ 4769 tcg_rm = cpu_reg(s, rm); 4770 if (invert) { 4771 tcg_gen_not_i64(tcg_rd, tcg_rm); 4772 if (!sf) { 4773 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4774 } 4775 } else { 4776 if (sf) { 4777 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4778 } else { 4779 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4780 } 4781 } 4782 return; 4783 } 4784 4785 tcg_rm = read_cpu_reg(s, rm, sf); 4786 4787 if (shift_amount) { 4788 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4789 } 4790 4791 tcg_rn = cpu_reg(s, rn); 4792 4793 switch (opc | (invert << 2)) { 4794 case 0: /* AND */ 4795 case 3: /* ANDS */ 4796 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4797 break; 4798 case 1: /* ORR */ 4799 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4800 break; 4801 case 2: /* EOR */ 4802 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4803 break; 4804 case 4: /* BIC */ 4805 case 7: /* BICS */ 4806 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4807 break; 4808 case 5: /* ORN */ 4809 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4810 break; 4811 case 6: /* EON */ 4812 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4813 break; 4814 default: 4815 assert(FALSE); 4816 break; 4817 } 4818 4819 if (!sf) { 4820 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4821 } 4822 4823 if (opc == 3) { 4824 gen_logic_CC(sf, tcg_rd); 4825 } 4826 } 4827 4828 /* 4829 * Add/subtract (extended register) 4830 * 4831 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4832 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4833 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4834 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4835 * 4836 * sf: 0 -> 32bit, 1 -> 64bit 4837 * op: 0 -> add , 1 -> sub 4838 * S: 1 -> set flags 4839 * opt: 00 4840 * option: extension type (see DecodeRegExtend) 4841 * imm3: optional shift to Rm 4842 * 4843 * Rd = Rn + LSL(extend(Rm), amount) 4844 */ 4845 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4846 { 4847 int rd = extract32(insn, 0, 5); 4848 int rn = extract32(insn, 5, 5); 4849 int imm3 = extract32(insn, 10, 3); 4850 int option = extract32(insn, 13, 3); 4851 int rm = extract32(insn, 16, 5); 4852 int opt = extract32(insn, 22, 2); 4853 bool setflags = extract32(insn, 29, 1); 4854 bool sub_op = extract32(insn, 30, 1); 4855 bool sf = extract32(insn, 31, 1); 4856 4857 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4858 TCGv_i64 tcg_rd; 4859 TCGv_i64 tcg_result; 4860 4861 if (imm3 > 4 || opt != 0) { 4862 unallocated_encoding(s); 4863 return; 4864 } 4865 4866 /* non-flag setting ops may use SP */ 4867 if (!setflags) { 4868 tcg_rd = cpu_reg_sp(s, rd); 4869 } else { 4870 tcg_rd = cpu_reg(s, rd); 4871 } 4872 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4873 4874 tcg_rm = read_cpu_reg(s, rm, sf); 4875 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4876 4877 tcg_result = tcg_temp_new_i64(); 4878 4879 if (!setflags) { 4880 if (sub_op) { 4881 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4882 } else { 4883 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4884 } 4885 } else { 4886 if (sub_op) { 4887 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4888 } else { 4889 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4890 } 4891 } 4892 4893 if (sf) { 4894 tcg_gen_mov_i64(tcg_rd, tcg_result); 4895 } else { 4896 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4897 } 4898 } 4899 4900 /* 4901 * Add/subtract (shifted register) 4902 * 4903 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4904 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4905 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4906 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4907 * 4908 * sf: 0 -> 32bit, 1 -> 64bit 4909 * op: 0 -> add , 1 -> sub 4910 * S: 1 -> set flags 4911 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4912 * imm6: Shift amount to apply to Rm before the add/sub 4913 */ 4914 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4915 { 4916 int rd = extract32(insn, 0, 5); 4917 int rn = extract32(insn, 5, 5); 4918 int imm6 = extract32(insn, 10, 6); 4919 int rm = extract32(insn, 16, 5); 4920 int shift_type = extract32(insn, 22, 2); 4921 bool setflags = extract32(insn, 29, 1); 4922 bool sub_op = extract32(insn, 30, 1); 4923 bool sf = extract32(insn, 31, 1); 4924 4925 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4926 TCGv_i64 tcg_rn, tcg_rm; 4927 TCGv_i64 tcg_result; 4928 4929 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4930 unallocated_encoding(s); 4931 return; 4932 } 4933 4934 tcg_rn = read_cpu_reg(s, rn, sf); 4935 tcg_rm = read_cpu_reg(s, rm, sf); 4936 4937 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4938 4939 tcg_result = tcg_temp_new_i64(); 4940 4941 if (!setflags) { 4942 if (sub_op) { 4943 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4944 } else { 4945 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4946 } 4947 } else { 4948 if (sub_op) { 4949 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4950 } else { 4951 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4952 } 4953 } 4954 4955 if (sf) { 4956 tcg_gen_mov_i64(tcg_rd, tcg_result); 4957 } else { 4958 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4959 } 4960 } 4961 4962 /* Data-processing (3 source) 4963 * 4964 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4965 * +--+------+-----------+------+------+----+------+------+------+ 4966 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4967 * +--+------+-----------+------+------+----+------+------+------+ 4968 */ 4969 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4970 { 4971 int rd = extract32(insn, 0, 5); 4972 int rn = extract32(insn, 5, 5); 4973 int ra = extract32(insn, 10, 5); 4974 int rm = extract32(insn, 16, 5); 4975 int op_id = (extract32(insn, 29, 3) << 4) | 4976 (extract32(insn, 21, 3) << 1) | 4977 extract32(insn, 15, 1); 4978 bool sf = extract32(insn, 31, 1); 4979 bool is_sub = extract32(op_id, 0, 1); 4980 bool is_high = extract32(op_id, 2, 1); 4981 bool is_signed = false; 4982 TCGv_i64 tcg_op1; 4983 TCGv_i64 tcg_op2; 4984 TCGv_i64 tcg_tmp; 4985 4986 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4987 switch (op_id) { 4988 case 0x42: /* SMADDL */ 4989 case 0x43: /* SMSUBL */ 4990 case 0x44: /* SMULH */ 4991 is_signed = true; 4992 break; 4993 case 0x0: /* MADD (32bit) */ 4994 case 0x1: /* MSUB (32bit) */ 4995 case 0x40: /* MADD (64bit) */ 4996 case 0x41: /* MSUB (64bit) */ 4997 case 0x4a: /* UMADDL */ 4998 case 0x4b: /* UMSUBL */ 4999 case 0x4c: /* UMULH */ 5000 break; 5001 default: 5002 unallocated_encoding(s); 5003 return; 5004 } 5005 5006 if (is_high) { 5007 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5008 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5009 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5010 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5011 5012 if (is_signed) { 5013 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5014 } else { 5015 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5016 } 5017 return; 5018 } 5019 5020 tcg_op1 = tcg_temp_new_i64(); 5021 tcg_op2 = tcg_temp_new_i64(); 5022 tcg_tmp = tcg_temp_new_i64(); 5023 5024 if (op_id < 0x42) { 5025 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5026 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5027 } else { 5028 if (is_signed) { 5029 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5030 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5031 } else { 5032 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5033 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5034 } 5035 } 5036 5037 if (ra == 31 && !is_sub) { 5038 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5039 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5040 } else { 5041 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5042 if (is_sub) { 5043 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5044 } else { 5045 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5046 } 5047 } 5048 5049 if (!sf) { 5050 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5051 } 5052 } 5053 5054 /* Add/subtract (with carry) 5055 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5056 * +--+--+--+------------------------+------+-------------+------+-----+ 5057 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5058 * +--+--+--+------------------------+------+-------------+------+-----+ 5059 */ 5060 5061 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5062 { 5063 unsigned int sf, op, setflags, rm, rn, rd; 5064 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5065 5066 sf = extract32(insn, 31, 1); 5067 op = extract32(insn, 30, 1); 5068 setflags = extract32(insn, 29, 1); 5069 rm = extract32(insn, 16, 5); 5070 rn = extract32(insn, 5, 5); 5071 rd = extract32(insn, 0, 5); 5072 5073 tcg_rd = cpu_reg(s, rd); 5074 tcg_rn = cpu_reg(s, rn); 5075 5076 if (op) { 5077 tcg_y = tcg_temp_new_i64(); 5078 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5079 } else { 5080 tcg_y = cpu_reg(s, rm); 5081 } 5082 5083 if (setflags) { 5084 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5085 } else { 5086 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5087 } 5088 } 5089 5090 /* 5091 * Rotate right into flags 5092 * 31 30 29 21 15 10 5 4 0 5093 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5094 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5095 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5096 */ 5097 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5098 { 5099 int mask = extract32(insn, 0, 4); 5100 int o2 = extract32(insn, 4, 1); 5101 int rn = extract32(insn, 5, 5); 5102 int imm6 = extract32(insn, 15, 6); 5103 int sf_op_s = extract32(insn, 29, 3); 5104 TCGv_i64 tcg_rn; 5105 TCGv_i32 nzcv; 5106 5107 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5108 unallocated_encoding(s); 5109 return; 5110 } 5111 5112 tcg_rn = read_cpu_reg(s, rn, 1); 5113 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5114 5115 nzcv = tcg_temp_new_i32(); 5116 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5117 5118 if (mask & 8) { /* N */ 5119 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5120 } 5121 if (mask & 4) { /* Z */ 5122 tcg_gen_not_i32(cpu_ZF, nzcv); 5123 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5124 } 5125 if (mask & 2) { /* C */ 5126 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5127 } 5128 if (mask & 1) { /* V */ 5129 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5130 } 5131 } 5132 5133 /* 5134 * Evaluate into flags 5135 * 31 30 29 21 15 14 10 5 4 0 5136 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5137 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5138 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5139 */ 5140 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5141 { 5142 int o3_mask = extract32(insn, 0, 5); 5143 int rn = extract32(insn, 5, 5); 5144 int o2 = extract32(insn, 15, 6); 5145 int sz = extract32(insn, 14, 1); 5146 int sf_op_s = extract32(insn, 29, 3); 5147 TCGv_i32 tmp; 5148 int shift; 5149 5150 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5151 !dc_isar_feature(aa64_condm_4, s)) { 5152 unallocated_encoding(s); 5153 return; 5154 } 5155 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5156 5157 tmp = tcg_temp_new_i32(); 5158 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5159 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5160 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5161 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5162 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5163 } 5164 5165 /* Conditional compare (immediate / register) 5166 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5167 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5168 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5169 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5170 * [1] y [0] [0] 5171 */ 5172 static void disas_cc(DisasContext *s, uint32_t insn) 5173 { 5174 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5175 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5176 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5177 DisasCompare c; 5178 5179 if (!extract32(insn, 29, 1)) { 5180 unallocated_encoding(s); 5181 return; 5182 } 5183 if (insn & (1 << 10 | 1 << 4)) { 5184 unallocated_encoding(s); 5185 return; 5186 } 5187 sf = extract32(insn, 31, 1); 5188 op = extract32(insn, 30, 1); 5189 is_imm = extract32(insn, 11, 1); 5190 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5191 cond = extract32(insn, 12, 4); 5192 rn = extract32(insn, 5, 5); 5193 nzcv = extract32(insn, 0, 4); 5194 5195 /* Set T0 = !COND. */ 5196 tcg_t0 = tcg_temp_new_i32(); 5197 arm_test_cc(&c, cond); 5198 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5199 5200 /* Load the arguments for the new comparison. */ 5201 if (is_imm) { 5202 tcg_y = tcg_temp_new_i64(); 5203 tcg_gen_movi_i64(tcg_y, y); 5204 } else { 5205 tcg_y = cpu_reg(s, y); 5206 } 5207 tcg_rn = cpu_reg(s, rn); 5208 5209 /* Set the flags for the new comparison. */ 5210 tcg_tmp = tcg_temp_new_i64(); 5211 if (op) { 5212 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5213 } else { 5214 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5215 } 5216 5217 /* If COND was false, force the flags to #nzcv. Compute two masks 5218 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5219 * For tcg hosts that support ANDC, we can make do with just T1. 5220 * In either case, allow the tcg optimizer to delete any unused mask. 5221 */ 5222 tcg_t1 = tcg_temp_new_i32(); 5223 tcg_t2 = tcg_temp_new_i32(); 5224 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5225 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5226 5227 if (nzcv & 8) { /* N */ 5228 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5229 } else { 5230 if (TCG_TARGET_HAS_andc_i32) { 5231 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5232 } else { 5233 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5234 } 5235 } 5236 if (nzcv & 4) { /* Z */ 5237 if (TCG_TARGET_HAS_andc_i32) { 5238 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5239 } else { 5240 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5241 } 5242 } else { 5243 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5244 } 5245 if (nzcv & 2) { /* C */ 5246 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5247 } else { 5248 if (TCG_TARGET_HAS_andc_i32) { 5249 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5250 } else { 5251 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5252 } 5253 } 5254 if (nzcv & 1) { /* V */ 5255 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5256 } else { 5257 if (TCG_TARGET_HAS_andc_i32) { 5258 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5259 } else { 5260 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5261 } 5262 } 5263 } 5264 5265 /* Conditional select 5266 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5267 * +----+----+---+-----------------+------+------+-----+------+------+ 5268 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5269 * +----+----+---+-----------------+------+------+-----+------+------+ 5270 */ 5271 static void disas_cond_select(DisasContext *s, uint32_t insn) 5272 { 5273 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5274 TCGv_i64 tcg_rd, zero; 5275 DisasCompare64 c; 5276 5277 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5278 /* S == 1 or op2<1> == 1 */ 5279 unallocated_encoding(s); 5280 return; 5281 } 5282 sf = extract32(insn, 31, 1); 5283 else_inv = extract32(insn, 30, 1); 5284 rm = extract32(insn, 16, 5); 5285 cond = extract32(insn, 12, 4); 5286 else_inc = extract32(insn, 10, 1); 5287 rn = extract32(insn, 5, 5); 5288 rd = extract32(insn, 0, 5); 5289 5290 tcg_rd = cpu_reg(s, rd); 5291 5292 a64_test_cc(&c, cond); 5293 zero = tcg_constant_i64(0); 5294 5295 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5296 /* CSET & CSETM. */ 5297 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5298 if (else_inv) { 5299 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5300 } 5301 } else { 5302 TCGv_i64 t_true = cpu_reg(s, rn); 5303 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5304 if (else_inv && else_inc) { 5305 tcg_gen_neg_i64(t_false, t_false); 5306 } else if (else_inv) { 5307 tcg_gen_not_i64(t_false, t_false); 5308 } else if (else_inc) { 5309 tcg_gen_addi_i64(t_false, t_false, 1); 5310 } 5311 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5312 } 5313 5314 if (!sf) { 5315 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5316 } 5317 } 5318 5319 static void handle_clz(DisasContext *s, unsigned int sf, 5320 unsigned int rn, unsigned int rd) 5321 { 5322 TCGv_i64 tcg_rd, tcg_rn; 5323 tcg_rd = cpu_reg(s, rd); 5324 tcg_rn = cpu_reg(s, rn); 5325 5326 if (sf) { 5327 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5328 } else { 5329 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5330 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5331 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5332 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5333 } 5334 } 5335 5336 static void handle_cls(DisasContext *s, unsigned int sf, 5337 unsigned int rn, unsigned int rd) 5338 { 5339 TCGv_i64 tcg_rd, tcg_rn; 5340 tcg_rd = cpu_reg(s, rd); 5341 tcg_rn = cpu_reg(s, rn); 5342 5343 if (sf) { 5344 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5345 } else { 5346 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5347 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5348 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5349 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5350 } 5351 } 5352 5353 static void handle_rbit(DisasContext *s, unsigned int sf, 5354 unsigned int rn, unsigned int rd) 5355 { 5356 TCGv_i64 tcg_rd, tcg_rn; 5357 tcg_rd = cpu_reg(s, rd); 5358 tcg_rn = cpu_reg(s, rn); 5359 5360 if (sf) { 5361 gen_helper_rbit64(tcg_rd, tcg_rn); 5362 } else { 5363 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5364 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5365 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5366 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5367 } 5368 } 5369 5370 /* REV with sf==1, opcode==3 ("REV64") */ 5371 static void handle_rev64(DisasContext *s, unsigned int sf, 5372 unsigned int rn, unsigned int rd) 5373 { 5374 if (!sf) { 5375 unallocated_encoding(s); 5376 return; 5377 } 5378 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5379 } 5380 5381 /* REV with sf==0, opcode==2 5382 * REV32 (sf==1, opcode==2) 5383 */ 5384 static void handle_rev32(DisasContext *s, unsigned int sf, 5385 unsigned int rn, unsigned int rd) 5386 { 5387 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5388 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5389 5390 if (sf) { 5391 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5392 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5393 } else { 5394 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5395 } 5396 } 5397 5398 /* REV16 (opcode==1) */ 5399 static void handle_rev16(DisasContext *s, unsigned int sf, 5400 unsigned int rn, unsigned int rd) 5401 { 5402 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5403 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5404 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5405 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5406 5407 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5408 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5409 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5410 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5411 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5412 } 5413 5414 /* Data-processing (1 source) 5415 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5416 * +----+---+---+-----------------+---------+--------+------+------+ 5417 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5418 * +----+---+---+-----------------+---------+--------+------+------+ 5419 */ 5420 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5421 { 5422 unsigned int sf, opcode, opcode2, rn, rd; 5423 TCGv_i64 tcg_rd; 5424 5425 if (extract32(insn, 29, 1)) { 5426 unallocated_encoding(s); 5427 return; 5428 } 5429 5430 sf = extract32(insn, 31, 1); 5431 opcode = extract32(insn, 10, 6); 5432 opcode2 = extract32(insn, 16, 5); 5433 rn = extract32(insn, 5, 5); 5434 rd = extract32(insn, 0, 5); 5435 5436 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5437 5438 switch (MAP(sf, opcode2, opcode)) { 5439 case MAP(0, 0x00, 0x00): /* RBIT */ 5440 case MAP(1, 0x00, 0x00): 5441 handle_rbit(s, sf, rn, rd); 5442 break; 5443 case MAP(0, 0x00, 0x01): /* REV16 */ 5444 case MAP(1, 0x00, 0x01): 5445 handle_rev16(s, sf, rn, rd); 5446 break; 5447 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5448 case MAP(1, 0x00, 0x02): 5449 handle_rev32(s, sf, rn, rd); 5450 break; 5451 case MAP(1, 0x00, 0x03): /* REV64 */ 5452 handle_rev64(s, sf, rn, rd); 5453 break; 5454 case MAP(0, 0x00, 0x04): /* CLZ */ 5455 case MAP(1, 0x00, 0x04): 5456 handle_clz(s, sf, rn, rd); 5457 break; 5458 case MAP(0, 0x00, 0x05): /* CLS */ 5459 case MAP(1, 0x00, 0x05): 5460 handle_cls(s, sf, rn, rd); 5461 break; 5462 case MAP(1, 0x01, 0x00): /* PACIA */ 5463 if (s->pauth_active) { 5464 tcg_rd = cpu_reg(s, rd); 5465 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5466 } else if (!dc_isar_feature(aa64_pauth, s)) { 5467 goto do_unallocated; 5468 } 5469 break; 5470 case MAP(1, 0x01, 0x01): /* PACIB */ 5471 if (s->pauth_active) { 5472 tcg_rd = cpu_reg(s, rd); 5473 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5474 } else if (!dc_isar_feature(aa64_pauth, s)) { 5475 goto do_unallocated; 5476 } 5477 break; 5478 case MAP(1, 0x01, 0x02): /* PACDA */ 5479 if (s->pauth_active) { 5480 tcg_rd = cpu_reg(s, rd); 5481 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5482 } else if (!dc_isar_feature(aa64_pauth, s)) { 5483 goto do_unallocated; 5484 } 5485 break; 5486 case MAP(1, 0x01, 0x03): /* PACDB */ 5487 if (s->pauth_active) { 5488 tcg_rd = cpu_reg(s, rd); 5489 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5490 } else if (!dc_isar_feature(aa64_pauth, s)) { 5491 goto do_unallocated; 5492 } 5493 break; 5494 case MAP(1, 0x01, 0x04): /* AUTIA */ 5495 if (s->pauth_active) { 5496 tcg_rd = cpu_reg(s, rd); 5497 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5498 } else if (!dc_isar_feature(aa64_pauth, s)) { 5499 goto do_unallocated; 5500 } 5501 break; 5502 case MAP(1, 0x01, 0x05): /* AUTIB */ 5503 if (s->pauth_active) { 5504 tcg_rd = cpu_reg(s, rd); 5505 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5506 } else if (!dc_isar_feature(aa64_pauth, s)) { 5507 goto do_unallocated; 5508 } 5509 break; 5510 case MAP(1, 0x01, 0x06): /* AUTDA */ 5511 if (s->pauth_active) { 5512 tcg_rd = cpu_reg(s, rd); 5513 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5514 } else if (!dc_isar_feature(aa64_pauth, s)) { 5515 goto do_unallocated; 5516 } 5517 break; 5518 case MAP(1, 0x01, 0x07): /* AUTDB */ 5519 if (s->pauth_active) { 5520 tcg_rd = cpu_reg(s, rd); 5521 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5522 } else if (!dc_isar_feature(aa64_pauth, s)) { 5523 goto do_unallocated; 5524 } 5525 break; 5526 case MAP(1, 0x01, 0x08): /* PACIZA */ 5527 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5528 goto do_unallocated; 5529 } else if (s->pauth_active) { 5530 tcg_rd = cpu_reg(s, rd); 5531 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5532 } 5533 break; 5534 case MAP(1, 0x01, 0x09): /* PACIZB */ 5535 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5536 goto do_unallocated; 5537 } else if (s->pauth_active) { 5538 tcg_rd = cpu_reg(s, rd); 5539 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5540 } 5541 break; 5542 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5543 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5544 goto do_unallocated; 5545 } else if (s->pauth_active) { 5546 tcg_rd = cpu_reg(s, rd); 5547 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5548 } 5549 break; 5550 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5551 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5552 goto do_unallocated; 5553 } else if (s->pauth_active) { 5554 tcg_rd = cpu_reg(s, rd); 5555 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5556 } 5557 break; 5558 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5559 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5560 goto do_unallocated; 5561 } else if (s->pauth_active) { 5562 tcg_rd = cpu_reg(s, rd); 5563 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5564 } 5565 break; 5566 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5567 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5568 goto do_unallocated; 5569 } else if (s->pauth_active) { 5570 tcg_rd = cpu_reg(s, rd); 5571 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5572 } 5573 break; 5574 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5575 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5576 goto do_unallocated; 5577 } else if (s->pauth_active) { 5578 tcg_rd = cpu_reg(s, rd); 5579 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5580 } 5581 break; 5582 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5583 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5584 goto do_unallocated; 5585 } else if (s->pauth_active) { 5586 tcg_rd = cpu_reg(s, rd); 5587 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5588 } 5589 break; 5590 case MAP(1, 0x01, 0x10): /* XPACI */ 5591 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5592 goto do_unallocated; 5593 } else if (s->pauth_active) { 5594 tcg_rd = cpu_reg(s, rd); 5595 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5596 } 5597 break; 5598 case MAP(1, 0x01, 0x11): /* XPACD */ 5599 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5600 goto do_unallocated; 5601 } else if (s->pauth_active) { 5602 tcg_rd = cpu_reg(s, rd); 5603 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5604 } 5605 break; 5606 default: 5607 do_unallocated: 5608 unallocated_encoding(s); 5609 break; 5610 } 5611 5612 #undef MAP 5613 } 5614 5615 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5616 unsigned int rm, unsigned int rn, unsigned int rd) 5617 { 5618 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5619 tcg_rd = cpu_reg(s, rd); 5620 5621 if (!sf && is_signed) { 5622 tcg_n = tcg_temp_new_i64(); 5623 tcg_m = tcg_temp_new_i64(); 5624 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5625 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5626 } else { 5627 tcg_n = read_cpu_reg(s, rn, sf); 5628 tcg_m = read_cpu_reg(s, rm, sf); 5629 } 5630 5631 if (is_signed) { 5632 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5633 } else { 5634 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5635 } 5636 5637 if (!sf) { /* zero extend final result */ 5638 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5639 } 5640 } 5641 5642 /* LSLV, LSRV, ASRV, RORV */ 5643 static void handle_shift_reg(DisasContext *s, 5644 enum a64_shift_type shift_type, unsigned int sf, 5645 unsigned int rm, unsigned int rn, unsigned int rd) 5646 { 5647 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5648 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5649 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5650 5651 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5652 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5653 } 5654 5655 /* CRC32[BHWX], CRC32C[BHWX] */ 5656 static void handle_crc32(DisasContext *s, 5657 unsigned int sf, unsigned int sz, bool crc32c, 5658 unsigned int rm, unsigned int rn, unsigned int rd) 5659 { 5660 TCGv_i64 tcg_acc, tcg_val; 5661 TCGv_i32 tcg_bytes; 5662 5663 if (!dc_isar_feature(aa64_crc32, s) 5664 || (sf == 1 && sz != 3) 5665 || (sf == 0 && sz == 3)) { 5666 unallocated_encoding(s); 5667 return; 5668 } 5669 5670 if (sz == 3) { 5671 tcg_val = cpu_reg(s, rm); 5672 } else { 5673 uint64_t mask; 5674 switch (sz) { 5675 case 0: 5676 mask = 0xFF; 5677 break; 5678 case 1: 5679 mask = 0xFFFF; 5680 break; 5681 case 2: 5682 mask = 0xFFFFFFFF; 5683 break; 5684 default: 5685 g_assert_not_reached(); 5686 } 5687 tcg_val = tcg_temp_new_i64(); 5688 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5689 } 5690 5691 tcg_acc = cpu_reg(s, rn); 5692 tcg_bytes = tcg_constant_i32(1 << sz); 5693 5694 if (crc32c) { 5695 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5696 } else { 5697 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5698 } 5699 } 5700 5701 /* Data-processing (2 source) 5702 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5703 * +----+---+---+-----------------+------+--------+------+------+ 5704 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5705 * +----+---+---+-----------------+------+--------+------+------+ 5706 */ 5707 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5708 { 5709 unsigned int sf, rm, opcode, rn, rd, setflag; 5710 sf = extract32(insn, 31, 1); 5711 setflag = extract32(insn, 29, 1); 5712 rm = extract32(insn, 16, 5); 5713 opcode = extract32(insn, 10, 6); 5714 rn = extract32(insn, 5, 5); 5715 rd = extract32(insn, 0, 5); 5716 5717 if (setflag && opcode != 0) { 5718 unallocated_encoding(s); 5719 return; 5720 } 5721 5722 switch (opcode) { 5723 case 0: /* SUBP(S) */ 5724 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5725 goto do_unallocated; 5726 } else { 5727 TCGv_i64 tcg_n, tcg_m, tcg_d; 5728 5729 tcg_n = read_cpu_reg_sp(s, rn, true); 5730 tcg_m = read_cpu_reg_sp(s, rm, true); 5731 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5732 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5733 tcg_d = cpu_reg(s, rd); 5734 5735 if (setflag) { 5736 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5737 } else { 5738 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5739 } 5740 } 5741 break; 5742 case 2: /* UDIV */ 5743 handle_div(s, false, sf, rm, rn, rd); 5744 break; 5745 case 3: /* SDIV */ 5746 handle_div(s, true, sf, rm, rn, rd); 5747 break; 5748 case 4: /* IRG */ 5749 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5750 goto do_unallocated; 5751 } 5752 if (s->ata) { 5753 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5754 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5755 } else { 5756 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5757 cpu_reg_sp(s, rn)); 5758 } 5759 break; 5760 case 5: /* GMI */ 5761 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5762 goto do_unallocated; 5763 } else { 5764 TCGv_i64 t = tcg_temp_new_i64(); 5765 5766 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5767 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5768 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5769 } 5770 break; 5771 case 8: /* LSLV */ 5772 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5773 break; 5774 case 9: /* LSRV */ 5775 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5776 break; 5777 case 10: /* ASRV */ 5778 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5779 break; 5780 case 11: /* RORV */ 5781 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5782 break; 5783 case 12: /* PACGA */ 5784 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5785 goto do_unallocated; 5786 } 5787 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5788 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5789 break; 5790 case 16: 5791 case 17: 5792 case 18: 5793 case 19: 5794 case 20: 5795 case 21: 5796 case 22: 5797 case 23: /* CRC32 */ 5798 { 5799 int sz = extract32(opcode, 0, 2); 5800 bool crc32c = extract32(opcode, 2, 1); 5801 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5802 break; 5803 } 5804 default: 5805 do_unallocated: 5806 unallocated_encoding(s); 5807 break; 5808 } 5809 } 5810 5811 /* 5812 * Data processing - register 5813 * 31 30 29 28 25 21 20 16 10 0 5814 * +--+---+--+---+-------+-----+-------+-------+---------+ 5815 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5816 * +--+---+--+---+-------+-----+-------+-------+---------+ 5817 */ 5818 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5819 { 5820 int op0 = extract32(insn, 30, 1); 5821 int op1 = extract32(insn, 28, 1); 5822 int op2 = extract32(insn, 21, 4); 5823 int op3 = extract32(insn, 10, 6); 5824 5825 if (!op1) { 5826 if (op2 & 8) { 5827 if (op2 & 1) { 5828 /* Add/sub (extended register) */ 5829 disas_add_sub_ext_reg(s, insn); 5830 } else { 5831 /* Add/sub (shifted register) */ 5832 disas_add_sub_reg(s, insn); 5833 } 5834 } else { 5835 /* Logical (shifted register) */ 5836 disas_logic_reg(s, insn); 5837 } 5838 return; 5839 } 5840 5841 switch (op2) { 5842 case 0x0: 5843 switch (op3) { 5844 case 0x00: /* Add/subtract (with carry) */ 5845 disas_adc_sbc(s, insn); 5846 break; 5847 5848 case 0x01: /* Rotate right into flags */ 5849 case 0x21: 5850 disas_rotate_right_into_flags(s, insn); 5851 break; 5852 5853 case 0x02: /* Evaluate into flags */ 5854 case 0x12: 5855 case 0x22: 5856 case 0x32: 5857 disas_evaluate_into_flags(s, insn); 5858 break; 5859 5860 default: 5861 goto do_unallocated; 5862 } 5863 break; 5864 5865 case 0x2: /* Conditional compare */ 5866 disas_cc(s, insn); /* both imm and reg forms */ 5867 break; 5868 5869 case 0x4: /* Conditional select */ 5870 disas_cond_select(s, insn); 5871 break; 5872 5873 case 0x6: /* Data-processing */ 5874 if (op0) { /* (1 source) */ 5875 disas_data_proc_1src(s, insn); 5876 } else { /* (2 source) */ 5877 disas_data_proc_2src(s, insn); 5878 } 5879 break; 5880 case 0x8 ... 0xf: /* (3 source) */ 5881 disas_data_proc_3src(s, insn); 5882 break; 5883 5884 default: 5885 do_unallocated: 5886 unallocated_encoding(s); 5887 break; 5888 } 5889 } 5890 5891 static void handle_fp_compare(DisasContext *s, int size, 5892 unsigned int rn, unsigned int rm, 5893 bool cmp_with_zero, bool signal_all_nans) 5894 { 5895 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5896 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5897 5898 if (size == MO_64) { 5899 TCGv_i64 tcg_vn, tcg_vm; 5900 5901 tcg_vn = read_fp_dreg(s, rn); 5902 if (cmp_with_zero) { 5903 tcg_vm = tcg_constant_i64(0); 5904 } else { 5905 tcg_vm = read_fp_dreg(s, rm); 5906 } 5907 if (signal_all_nans) { 5908 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5909 } else { 5910 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5911 } 5912 } else { 5913 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5914 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5915 5916 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5917 if (cmp_with_zero) { 5918 tcg_gen_movi_i32(tcg_vm, 0); 5919 } else { 5920 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5921 } 5922 5923 switch (size) { 5924 case MO_32: 5925 if (signal_all_nans) { 5926 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5927 } else { 5928 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5929 } 5930 break; 5931 case MO_16: 5932 if (signal_all_nans) { 5933 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5934 } else { 5935 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5936 } 5937 break; 5938 default: 5939 g_assert_not_reached(); 5940 } 5941 } 5942 5943 gen_set_nzcv(tcg_flags); 5944 } 5945 5946 /* Floating point compare 5947 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5948 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5949 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5950 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5951 */ 5952 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5953 { 5954 unsigned int mos, type, rm, op, rn, opc, op2r; 5955 int size; 5956 5957 mos = extract32(insn, 29, 3); 5958 type = extract32(insn, 22, 2); 5959 rm = extract32(insn, 16, 5); 5960 op = extract32(insn, 14, 2); 5961 rn = extract32(insn, 5, 5); 5962 opc = extract32(insn, 3, 2); 5963 op2r = extract32(insn, 0, 3); 5964 5965 if (mos || op || op2r) { 5966 unallocated_encoding(s); 5967 return; 5968 } 5969 5970 switch (type) { 5971 case 0: 5972 size = MO_32; 5973 break; 5974 case 1: 5975 size = MO_64; 5976 break; 5977 case 3: 5978 size = MO_16; 5979 if (dc_isar_feature(aa64_fp16, s)) { 5980 break; 5981 } 5982 /* fallthru */ 5983 default: 5984 unallocated_encoding(s); 5985 return; 5986 } 5987 5988 if (!fp_access_check(s)) { 5989 return; 5990 } 5991 5992 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5993 } 5994 5995 /* Floating point conditional compare 5996 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5997 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5998 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5999 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6000 */ 6001 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6002 { 6003 unsigned int mos, type, rm, cond, rn, op, nzcv; 6004 TCGLabel *label_continue = NULL; 6005 int size; 6006 6007 mos = extract32(insn, 29, 3); 6008 type = extract32(insn, 22, 2); 6009 rm = extract32(insn, 16, 5); 6010 cond = extract32(insn, 12, 4); 6011 rn = extract32(insn, 5, 5); 6012 op = extract32(insn, 4, 1); 6013 nzcv = extract32(insn, 0, 4); 6014 6015 if (mos) { 6016 unallocated_encoding(s); 6017 return; 6018 } 6019 6020 switch (type) { 6021 case 0: 6022 size = MO_32; 6023 break; 6024 case 1: 6025 size = MO_64; 6026 break; 6027 case 3: 6028 size = MO_16; 6029 if (dc_isar_feature(aa64_fp16, s)) { 6030 break; 6031 } 6032 /* fallthru */ 6033 default: 6034 unallocated_encoding(s); 6035 return; 6036 } 6037 6038 if (!fp_access_check(s)) { 6039 return; 6040 } 6041 6042 if (cond < 0x0e) { /* not always */ 6043 TCGLabel *label_match = gen_new_label(); 6044 label_continue = gen_new_label(); 6045 arm_gen_test_cc(cond, label_match); 6046 /* nomatch: */ 6047 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6048 tcg_gen_br(label_continue); 6049 gen_set_label(label_match); 6050 } 6051 6052 handle_fp_compare(s, size, rn, rm, false, op); 6053 6054 if (cond < 0x0e) { 6055 gen_set_label(label_continue); 6056 } 6057 } 6058 6059 /* Floating point conditional select 6060 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6061 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6062 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6063 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6064 */ 6065 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6066 { 6067 unsigned int mos, type, rm, cond, rn, rd; 6068 TCGv_i64 t_true, t_false; 6069 DisasCompare64 c; 6070 MemOp sz; 6071 6072 mos = extract32(insn, 29, 3); 6073 type = extract32(insn, 22, 2); 6074 rm = extract32(insn, 16, 5); 6075 cond = extract32(insn, 12, 4); 6076 rn = extract32(insn, 5, 5); 6077 rd = extract32(insn, 0, 5); 6078 6079 if (mos) { 6080 unallocated_encoding(s); 6081 return; 6082 } 6083 6084 switch (type) { 6085 case 0: 6086 sz = MO_32; 6087 break; 6088 case 1: 6089 sz = MO_64; 6090 break; 6091 case 3: 6092 sz = MO_16; 6093 if (dc_isar_feature(aa64_fp16, s)) { 6094 break; 6095 } 6096 /* fallthru */ 6097 default: 6098 unallocated_encoding(s); 6099 return; 6100 } 6101 6102 if (!fp_access_check(s)) { 6103 return; 6104 } 6105 6106 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6107 t_true = tcg_temp_new_i64(); 6108 t_false = tcg_temp_new_i64(); 6109 read_vec_element(s, t_true, rn, 0, sz); 6110 read_vec_element(s, t_false, rm, 0, sz); 6111 6112 a64_test_cc(&c, cond); 6113 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6114 t_true, t_false); 6115 6116 /* Note that sregs & hregs write back zeros to the high bits, 6117 and we've already done the zero-extension. */ 6118 write_fp_dreg(s, rd, t_true); 6119 } 6120 6121 /* Floating-point data-processing (1 source) - half precision */ 6122 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6123 { 6124 TCGv_ptr fpst = NULL; 6125 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6126 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6127 6128 switch (opcode) { 6129 case 0x0: /* FMOV */ 6130 tcg_gen_mov_i32(tcg_res, tcg_op); 6131 break; 6132 case 0x1: /* FABS */ 6133 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6134 break; 6135 case 0x2: /* FNEG */ 6136 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6137 break; 6138 case 0x3: /* FSQRT */ 6139 fpst = fpstatus_ptr(FPST_FPCR_F16); 6140 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6141 break; 6142 case 0x8: /* FRINTN */ 6143 case 0x9: /* FRINTP */ 6144 case 0xa: /* FRINTM */ 6145 case 0xb: /* FRINTZ */ 6146 case 0xc: /* FRINTA */ 6147 { 6148 TCGv_i32 tcg_rmode; 6149 6150 fpst = fpstatus_ptr(FPST_FPCR_F16); 6151 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6152 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6153 gen_restore_rmode(tcg_rmode, fpst); 6154 break; 6155 } 6156 case 0xe: /* FRINTX */ 6157 fpst = fpstatus_ptr(FPST_FPCR_F16); 6158 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6159 break; 6160 case 0xf: /* FRINTI */ 6161 fpst = fpstatus_ptr(FPST_FPCR_F16); 6162 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6163 break; 6164 default: 6165 g_assert_not_reached(); 6166 } 6167 6168 write_fp_sreg(s, rd, tcg_res); 6169 } 6170 6171 /* Floating-point data-processing (1 source) - single precision */ 6172 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6173 { 6174 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6175 TCGv_i32 tcg_op, tcg_res; 6176 TCGv_ptr fpst; 6177 int rmode = -1; 6178 6179 tcg_op = read_fp_sreg(s, rn); 6180 tcg_res = tcg_temp_new_i32(); 6181 6182 switch (opcode) { 6183 case 0x0: /* FMOV */ 6184 tcg_gen_mov_i32(tcg_res, tcg_op); 6185 goto done; 6186 case 0x1: /* FABS */ 6187 gen_helper_vfp_abss(tcg_res, tcg_op); 6188 goto done; 6189 case 0x2: /* FNEG */ 6190 gen_helper_vfp_negs(tcg_res, tcg_op); 6191 goto done; 6192 case 0x3: /* FSQRT */ 6193 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6194 goto done; 6195 case 0x6: /* BFCVT */ 6196 gen_fpst = gen_helper_bfcvt; 6197 break; 6198 case 0x8: /* FRINTN */ 6199 case 0x9: /* FRINTP */ 6200 case 0xa: /* FRINTM */ 6201 case 0xb: /* FRINTZ */ 6202 case 0xc: /* FRINTA */ 6203 rmode = opcode & 7; 6204 gen_fpst = gen_helper_rints; 6205 break; 6206 case 0xe: /* FRINTX */ 6207 gen_fpst = gen_helper_rints_exact; 6208 break; 6209 case 0xf: /* FRINTI */ 6210 gen_fpst = gen_helper_rints; 6211 break; 6212 case 0x10: /* FRINT32Z */ 6213 rmode = FPROUNDING_ZERO; 6214 gen_fpst = gen_helper_frint32_s; 6215 break; 6216 case 0x11: /* FRINT32X */ 6217 gen_fpst = gen_helper_frint32_s; 6218 break; 6219 case 0x12: /* FRINT64Z */ 6220 rmode = FPROUNDING_ZERO; 6221 gen_fpst = gen_helper_frint64_s; 6222 break; 6223 case 0x13: /* FRINT64X */ 6224 gen_fpst = gen_helper_frint64_s; 6225 break; 6226 default: 6227 g_assert_not_reached(); 6228 } 6229 6230 fpst = fpstatus_ptr(FPST_FPCR); 6231 if (rmode >= 0) { 6232 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6233 gen_fpst(tcg_res, tcg_op, fpst); 6234 gen_restore_rmode(tcg_rmode, fpst); 6235 } else { 6236 gen_fpst(tcg_res, tcg_op, fpst); 6237 } 6238 6239 done: 6240 write_fp_sreg(s, rd, tcg_res); 6241 } 6242 6243 /* Floating-point data-processing (1 source) - double precision */ 6244 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6245 { 6246 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6247 TCGv_i64 tcg_op, tcg_res; 6248 TCGv_ptr fpst; 6249 int rmode = -1; 6250 6251 switch (opcode) { 6252 case 0x0: /* FMOV */ 6253 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6254 return; 6255 } 6256 6257 tcg_op = read_fp_dreg(s, rn); 6258 tcg_res = tcg_temp_new_i64(); 6259 6260 switch (opcode) { 6261 case 0x1: /* FABS */ 6262 gen_helper_vfp_absd(tcg_res, tcg_op); 6263 goto done; 6264 case 0x2: /* FNEG */ 6265 gen_helper_vfp_negd(tcg_res, tcg_op); 6266 goto done; 6267 case 0x3: /* FSQRT */ 6268 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6269 goto done; 6270 case 0x8: /* FRINTN */ 6271 case 0x9: /* FRINTP */ 6272 case 0xa: /* FRINTM */ 6273 case 0xb: /* FRINTZ */ 6274 case 0xc: /* FRINTA */ 6275 rmode = opcode & 7; 6276 gen_fpst = gen_helper_rintd; 6277 break; 6278 case 0xe: /* FRINTX */ 6279 gen_fpst = gen_helper_rintd_exact; 6280 break; 6281 case 0xf: /* FRINTI */ 6282 gen_fpst = gen_helper_rintd; 6283 break; 6284 case 0x10: /* FRINT32Z */ 6285 rmode = FPROUNDING_ZERO; 6286 gen_fpst = gen_helper_frint32_d; 6287 break; 6288 case 0x11: /* FRINT32X */ 6289 gen_fpst = gen_helper_frint32_d; 6290 break; 6291 case 0x12: /* FRINT64Z */ 6292 rmode = FPROUNDING_ZERO; 6293 gen_fpst = gen_helper_frint64_d; 6294 break; 6295 case 0x13: /* FRINT64X */ 6296 gen_fpst = gen_helper_frint64_d; 6297 break; 6298 default: 6299 g_assert_not_reached(); 6300 } 6301 6302 fpst = fpstatus_ptr(FPST_FPCR); 6303 if (rmode >= 0) { 6304 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6305 gen_fpst(tcg_res, tcg_op, fpst); 6306 gen_restore_rmode(tcg_rmode, fpst); 6307 } else { 6308 gen_fpst(tcg_res, tcg_op, fpst); 6309 } 6310 6311 done: 6312 write_fp_dreg(s, rd, tcg_res); 6313 } 6314 6315 static void handle_fp_fcvt(DisasContext *s, int opcode, 6316 int rd, int rn, int dtype, int ntype) 6317 { 6318 switch (ntype) { 6319 case 0x0: 6320 { 6321 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6322 if (dtype == 1) { 6323 /* Single to double */ 6324 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6325 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6326 write_fp_dreg(s, rd, tcg_rd); 6327 } else { 6328 /* Single to half */ 6329 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6330 TCGv_i32 ahp = get_ahp_flag(); 6331 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6332 6333 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6334 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6335 write_fp_sreg(s, rd, tcg_rd); 6336 } 6337 break; 6338 } 6339 case 0x1: 6340 { 6341 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6342 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6343 if (dtype == 0) { 6344 /* Double to single */ 6345 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6346 } else { 6347 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6348 TCGv_i32 ahp = get_ahp_flag(); 6349 /* Double to half */ 6350 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6351 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6352 } 6353 write_fp_sreg(s, rd, tcg_rd); 6354 break; 6355 } 6356 case 0x3: 6357 { 6358 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6359 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6360 TCGv_i32 tcg_ahp = get_ahp_flag(); 6361 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6362 if (dtype == 0) { 6363 /* Half to single */ 6364 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6365 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6366 write_fp_sreg(s, rd, tcg_rd); 6367 } else { 6368 /* Half to double */ 6369 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6370 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6371 write_fp_dreg(s, rd, tcg_rd); 6372 } 6373 break; 6374 } 6375 default: 6376 g_assert_not_reached(); 6377 } 6378 } 6379 6380 /* Floating point data-processing (1 source) 6381 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6382 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6383 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6384 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6385 */ 6386 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6387 { 6388 int mos = extract32(insn, 29, 3); 6389 int type = extract32(insn, 22, 2); 6390 int opcode = extract32(insn, 15, 6); 6391 int rn = extract32(insn, 5, 5); 6392 int rd = extract32(insn, 0, 5); 6393 6394 if (mos) { 6395 goto do_unallocated; 6396 } 6397 6398 switch (opcode) { 6399 case 0x4: case 0x5: case 0x7: 6400 { 6401 /* FCVT between half, single and double precision */ 6402 int dtype = extract32(opcode, 0, 2); 6403 if (type == 2 || dtype == type) { 6404 goto do_unallocated; 6405 } 6406 if (!fp_access_check(s)) { 6407 return; 6408 } 6409 6410 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6411 break; 6412 } 6413 6414 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6415 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6416 goto do_unallocated; 6417 } 6418 /* fall through */ 6419 case 0x0 ... 0x3: 6420 case 0x8 ... 0xc: 6421 case 0xe ... 0xf: 6422 /* 32-to-32 and 64-to-64 ops */ 6423 switch (type) { 6424 case 0: 6425 if (!fp_access_check(s)) { 6426 return; 6427 } 6428 handle_fp_1src_single(s, opcode, rd, rn); 6429 break; 6430 case 1: 6431 if (!fp_access_check(s)) { 6432 return; 6433 } 6434 handle_fp_1src_double(s, opcode, rd, rn); 6435 break; 6436 case 3: 6437 if (!dc_isar_feature(aa64_fp16, s)) { 6438 goto do_unallocated; 6439 } 6440 6441 if (!fp_access_check(s)) { 6442 return; 6443 } 6444 handle_fp_1src_half(s, opcode, rd, rn); 6445 break; 6446 default: 6447 goto do_unallocated; 6448 } 6449 break; 6450 6451 case 0x6: 6452 switch (type) { 6453 case 1: /* BFCVT */ 6454 if (!dc_isar_feature(aa64_bf16, s)) { 6455 goto do_unallocated; 6456 } 6457 if (!fp_access_check(s)) { 6458 return; 6459 } 6460 handle_fp_1src_single(s, opcode, rd, rn); 6461 break; 6462 default: 6463 goto do_unallocated; 6464 } 6465 break; 6466 6467 default: 6468 do_unallocated: 6469 unallocated_encoding(s); 6470 break; 6471 } 6472 } 6473 6474 /* Floating-point data-processing (2 source) - single precision */ 6475 static void handle_fp_2src_single(DisasContext *s, int opcode, 6476 int rd, int rn, int rm) 6477 { 6478 TCGv_i32 tcg_op1; 6479 TCGv_i32 tcg_op2; 6480 TCGv_i32 tcg_res; 6481 TCGv_ptr fpst; 6482 6483 tcg_res = tcg_temp_new_i32(); 6484 fpst = fpstatus_ptr(FPST_FPCR); 6485 tcg_op1 = read_fp_sreg(s, rn); 6486 tcg_op2 = read_fp_sreg(s, rm); 6487 6488 switch (opcode) { 6489 case 0x0: /* FMUL */ 6490 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6491 break; 6492 case 0x1: /* FDIV */ 6493 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6494 break; 6495 case 0x2: /* FADD */ 6496 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6497 break; 6498 case 0x3: /* FSUB */ 6499 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6500 break; 6501 case 0x4: /* FMAX */ 6502 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6503 break; 6504 case 0x5: /* FMIN */ 6505 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6506 break; 6507 case 0x6: /* FMAXNM */ 6508 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6509 break; 6510 case 0x7: /* FMINNM */ 6511 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6512 break; 6513 case 0x8: /* FNMUL */ 6514 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6515 gen_helper_vfp_negs(tcg_res, tcg_res); 6516 break; 6517 } 6518 6519 write_fp_sreg(s, rd, tcg_res); 6520 } 6521 6522 /* Floating-point data-processing (2 source) - double precision */ 6523 static void handle_fp_2src_double(DisasContext *s, int opcode, 6524 int rd, int rn, int rm) 6525 { 6526 TCGv_i64 tcg_op1; 6527 TCGv_i64 tcg_op2; 6528 TCGv_i64 tcg_res; 6529 TCGv_ptr fpst; 6530 6531 tcg_res = tcg_temp_new_i64(); 6532 fpst = fpstatus_ptr(FPST_FPCR); 6533 tcg_op1 = read_fp_dreg(s, rn); 6534 tcg_op2 = read_fp_dreg(s, rm); 6535 6536 switch (opcode) { 6537 case 0x0: /* FMUL */ 6538 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x1: /* FDIV */ 6541 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x2: /* FADD */ 6544 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6545 break; 6546 case 0x3: /* FSUB */ 6547 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6548 break; 6549 case 0x4: /* FMAX */ 6550 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6551 break; 6552 case 0x5: /* FMIN */ 6553 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6554 break; 6555 case 0x6: /* FMAXNM */ 6556 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6557 break; 6558 case 0x7: /* FMINNM */ 6559 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6560 break; 6561 case 0x8: /* FNMUL */ 6562 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6563 gen_helper_vfp_negd(tcg_res, tcg_res); 6564 break; 6565 } 6566 6567 write_fp_dreg(s, rd, tcg_res); 6568 } 6569 6570 /* Floating-point data-processing (2 source) - half precision */ 6571 static void handle_fp_2src_half(DisasContext *s, int opcode, 6572 int rd, int rn, int rm) 6573 { 6574 TCGv_i32 tcg_op1; 6575 TCGv_i32 tcg_op2; 6576 TCGv_i32 tcg_res; 6577 TCGv_ptr fpst; 6578 6579 tcg_res = tcg_temp_new_i32(); 6580 fpst = fpstatus_ptr(FPST_FPCR_F16); 6581 tcg_op1 = read_fp_hreg(s, rn); 6582 tcg_op2 = read_fp_hreg(s, rm); 6583 6584 switch (opcode) { 6585 case 0x0: /* FMUL */ 6586 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6587 break; 6588 case 0x1: /* FDIV */ 6589 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6590 break; 6591 case 0x2: /* FADD */ 6592 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6593 break; 6594 case 0x3: /* FSUB */ 6595 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6596 break; 6597 case 0x4: /* FMAX */ 6598 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6599 break; 6600 case 0x5: /* FMIN */ 6601 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6602 break; 6603 case 0x6: /* FMAXNM */ 6604 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6605 break; 6606 case 0x7: /* FMINNM */ 6607 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6608 break; 6609 case 0x8: /* FNMUL */ 6610 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6611 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6612 break; 6613 default: 6614 g_assert_not_reached(); 6615 } 6616 6617 write_fp_sreg(s, rd, tcg_res); 6618 } 6619 6620 /* Floating point data-processing (2 source) 6621 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6622 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6623 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6624 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6625 */ 6626 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6627 { 6628 int mos = extract32(insn, 29, 3); 6629 int type = extract32(insn, 22, 2); 6630 int rd = extract32(insn, 0, 5); 6631 int rn = extract32(insn, 5, 5); 6632 int rm = extract32(insn, 16, 5); 6633 int opcode = extract32(insn, 12, 4); 6634 6635 if (opcode > 8 || mos) { 6636 unallocated_encoding(s); 6637 return; 6638 } 6639 6640 switch (type) { 6641 case 0: 6642 if (!fp_access_check(s)) { 6643 return; 6644 } 6645 handle_fp_2src_single(s, opcode, rd, rn, rm); 6646 break; 6647 case 1: 6648 if (!fp_access_check(s)) { 6649 return; 6650 } 6651 handle_fp_2src_double(s, opcode, rd, rn, rm); 6652 break; 6653 case 3: 6654 if (!dc_isar_feature(aa64_fp16, s)) { 6655 unallocated_encoding(s); 6656 return; 6657 } 6658 if (!fp_access_check(s)) { 6659 return; 6660 } 6661 handle_fp_2src_half(s, opcode, rd, rn, rm); 6662 break; 6663 default: 6664 unallocated_encoding(s); 6665 } 6666 } 6667 6668 /* Floating-point data-processing (3 source) - single precision */ 6669 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6670 int rd, int rn, int rm, int ra) 6671 { 6672 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6673 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6674 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6675 6676 tcg_op1 = read_fp_sreg(s, rn); 6677 tcg_op2 = read_fp_sreg(s, rm); 6678 tcg_op3 = read_fp_sreg(s, ra); 6679 6680 /* These are fused multiply-add, and must be done as one 6681 * floating point operation with no rounding between the 6682 * multiplication and addition steps. 6683 * NB that doing the negations here as separate steps is 6684 * correct : an input NaN should come out with its sign bit 6685 * flipped if it is a negated-input. 6686 */ 6687 if (o1 == true) { 6688 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6689 } 6690 6691 if (o0 != o1) { 6692 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6693 } 6694 6695 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6696 6697 write_fp_sreg(s, rd, tcg_res); 6698 } 6699 6700 /* Floating-point data-processing (3 source) - double precision */ 6701 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6702 int rd, int rn, int rm, int ra) 6703 { 6704 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6705 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6706 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6707 6708 tcg_op1 = read_fp_dreg(s, rn); 6709 tcg_op2 = read_fp_dreg(s, rm); 6710 tcg_op3 = read_fp_dreg(s, ra); 6711 6712 /* These are fused multiply-add, and must be done as one 6713 * floating point operation with no rounding between the 6714 * multiplication and addition steps. 6715 * NB that doing the negations here as separate steps is 6716 * correct : an input NaN should come out with its sign bit 6717 * flipped if it is a negated-input. 6718 */ 6719 if (o1 == true) { 6720 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6721 } 6722 6723 if (o0 != o1) { 6724 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6725 } 6726 6727 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6728 6729 write_fp_dreg(s, rd, tcg_res); 6730 } 6731 6732 /* Floating-point data-processing (3 source) - half precision */ 6733 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6734 int rd, int rn, int rm, int ra) 6735 { 6736 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6737 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6738 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6739 6740 tcg_op1 = read_fp_hreg(s, rn); 6741 tcg_op2 = read_fp_hreg(s, rm); 6742 tcg_op3 = read_fp_hreg(s, ra); 6743 6744 /* These are fused multiply-add, and must be done as one 6745 * floating point operation with no rounding between the 6746 * multiplication and addition steps. 6747 * NB that doing the negations here as separate steps is 6748 * correct : an input NaN should come out with its sign bit 6749 * flipped if it is a negated-input. 6750 */ 6751 if (o1 == true) { 6752 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6753 } 6754 6755 if (o0 != o1) { 6756 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6757 } 6758 6759 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6760 6761 write_fp_sreg(s, rd, tcg_res); 6762 } 6763 6764 /* Floating point data-processing (3 source) 6765 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6766 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6767 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6768 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6769 */ 6770 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6771 { 6772 int mos = extract32(insn, 29, 3); 6773 int type = extract32(insn, 22, 2); 6774 int rd = extract32(insn, 0, 5); 6775 int rn = extract32(insn, 5, 5); 6776 int ra = extract32(insn, 10, 5); 6777 int rm = extract32(insn, 16, 5); 6778 bool o0 = extract32(insn, 15, 1); 6779 bool o1 = extract32(insn, 21, 1); 6780 6781 if (mos) { 6782 unallocated_encoding(s); 6783 return; 6784 } 6785 6786 switch (type) { 6787 case 0: 6788 if (!fp_access_check(s)) { 6789 return; 6790 } 6791 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6792 break; 6793 case 1: 6794 if (!fp_access_check(s)) { 6795 return; 6796 } 6797 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6798 break; 6799 case 3: 6800 if (!dc_isar_feature(aa64_fp16, s)) { 6801 unallocated_encoding(s); 6802 return; 6803 } 6804 if (!fp_access_check(s)) { 6805 return; 6806 } 6807 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6808 break; 6809 default: 6810 unallocated_encoding(s); 6811 } 6812 } 6813 6814 /* Floating point immediate 6815 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6816 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6817 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6818 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6819 */ 6820 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6821 { 6822 int rd = extract32(insn, 0, 5); 6823 int imm5 = extract32(insn, 5, 5); 6824 int imm8 = extract32(insn, 13, 8); 6825 int type = extract32(insn, 22, 2); 6826 int mos = extract32(insn, 29, 3); 6827 uint64_t imm; 6828 MemOp sz; 6829 6830 if (mos || imm5) { 6831 unallocated_encoding(s); 6832 return; 6833 } 6834 6835 switch (type) { 6836 case 0: 6837 sz = MO_32; 6838 break; 6839 case 1: 6840 sz = MO_64; 6841 break; 6842 case 3: 6843 sz = MO_16; 6844 if (dc_isar_feature(aa64_fp16, s)) { 6845 break; 6846 } 6847 /* fallthru */ 6848 default: 6849 unallocated_encoding(s); 6850 return; 6851 } 6852 6853 if (!fp_access_check(s)) { 6854 return; 6855 } 6856 6857 imm = vfp_expand_imm(sz, imm8); 6858 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6859 } 6860 6861 /* Handle floating point <=> fixed point conversions. Note that we can 6862 * also deal with fp <=> integer conversions as a special case (scale == 64) 6863 * OPTME: consider handling that special case specially or at least skipping 6864 * the call to scalbn in the helpers for zero shifts. 6865 */ 6866 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6867 bool itof, int rmode, int scale, int sf, int type) 6868 { 6869 bool is_signed = !(opcode & 1); 6870 TCGv_ptr tcg_fpstatus; 6871 TCGv_i32 tcg_shift, tcg_single; 6872 TCGv_i64 tcg_double; 6873 6874 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6875 6876 tcg_shift = tcg_constant_i32(64 - scale); 6877 6878 if (itof) { 6879 TCGv_i64 tcg_int = cpu_reg(s, rn); 6880 if (!sf) { 6881 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6882 6883 if (is_signed) { 6884 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6885 } else { 6886 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6887 } 6888 6889 tcg_int = tcg_extend; 6890 } 6891 6892 switch (type) { 6893 case 1: /* float64 */ 6894 tcg_double = tcg_temp_new_i64(); 6895 if (is_signed) { 6896 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6897 tcg_shift, tcg_fpstatus); 6898 } else { 6899 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6900 tcg_shift, tcg_fpstatus); 6901 } 6902 write_fp_dreg(s, rd, tcg_double); 6903 break; 6904 6905 case 0: /* float32 */ 6906 tcg_single = tcg_temp_new_i32(); 6907 if (is_signed) { 6908 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6909 tcg_shift, tcg_fpstatus); 6910 } else { 6911 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6912 tcg_shift, tcg_fpstatus); 6913 } 6914 write_fp_sreg(s, rd, tcg_single); 6915 break; 6916 6917 case 3: /* float16 */ 6918 tcg_single = tcg_temp_new_i32(); 6919 if (is_signed) { 6920 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6921 tcg_shift, tcg_fpstatus); 6922 } else { 6923 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6924 tcg_shift, tcg_fpstatus); 6925 } 6926 write_fp_sreg(s, rd, tcg_single); 6927 break; 6928 6929 default: 6930 g_assert_not_reached(); 6931 } 6932 } else { 6933 TCGv_i64 tcg_int = cpu_reg(s, rd); 6934 TCGv_i32 tcg_rmode; 6935 6936 if (extract32(opcode, 2, 1)) { 6937 /* There are too many rounding modes to all fit into rmode, 6938 * so FCVTA[US] is a special case. 6939 */ 6940 rmode = FPROUNDING_TIEAWAY; 6941 } 6942 6943 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6944 6945 switch (type) { 6946 case 1: /* float64 */ 6947 tcg_double = read_fp_dreg(s, rn); 6948 if (is_signed) { 6949 if (!sf) { 6950 gen_helper_vfp_tosld(tcg_int, tcg_double, 6951 tcg_shift, tcg_fpstatus); 6952 } else { 6953 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6954 tcg_shift, tcg_fpstatus); 6955 } 6956 } else { 6957 if (!sf) { 6958 gen_helper_vfp_tould(tcg_int, tcg_double, 6959 tcg_shift, tcg_fpstatus); 6960 } else { 6961 gen_helper_vfp_touqd(tcg_int, tcg_double, 6962 tcg_shift, tcg_fpstatus); 6963 } 6964 } 6965 if (!sf) { 6966 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6967 } 6968 break; 6969 6970 case 0: /* float32 */ 6971 tcg_single = read_fp_sreg(s, rn); 6972 if (sf) { 6973 if (is_signed) { 6974 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6975 tcg_shift, tcg_fpstatus); 6976 } else { 6977 gen_helper_vfp_touqs(tcg_int, tcg_single, 6978 tcg_shift, tcg_fpstatus); 6979 } 6980 } else { 6981 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6982 if (is_signed) { 6983 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6984 tcg_shift, tcg_fpstatus); 6985 } else { 6986 gen_helper_vfp_touls(tcg_dest, tcg_single, 6987 tcg_shift, tcg_fpstatus); 6988 } 6989 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6990 } 6991 break; 6992 6993 case 3: /* float16 */ 6994 tcg_single = read_fp_sreg(s, rn); 6995 if (sf) { 6996 if (is_signed) { 6997 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6998 tcg_shift, tcg_fpstatus); 6999 } else { 7000 gen_helper_vfp_touqh(tcg_int, tcg_single, 7001 tcg_shift, tcg_fpstatus); 7002 } 7003 } else { 7004 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7005 if (is_signed) { 7006 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7007 tcg_shift, tcg_fpstatus); 7008 } else { 7009 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7010 tcg_shift, tcg_fpstatus); 7011 } 7012 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7013 } 7014 break; 7015 7016 default: 7017 g_assert_not_reached(); 7018 } 7019 7020 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7021 } 7022 } 7023 7024 /* Floating point <-> fixed point conversions 7025 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7026 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7027 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7028 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7029 */ 7030 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7031 { 7032 int rd = extract32(insn, 0, 5); 7033 int rn = extract32(insn, 5, 5); 7034 int scale = extract32(insn, 10, 6); 7035 int opcode = extract32(insn, 16, 3); 7036 int rmode = extract32(insn, 19, 2); 7037 int type = extract32(insn, 22, 2); 7038 bool sbit = extract32(insn, 29, 1); 7039 bool sf = extract32(insn, 31, 1); 7040 bool itof; 7041 7042 if (sbit || (!sf && scale < 32)) { 7043 unallocated_encoding(s); 7044 return; 7045 } 7046 7047 switch (type) { 7048 case 0: /* float32 */ 7049 case 1: /* float64 */ 7050 break; 7051 case 3: /* float16 */ 7052 if (dc_isar_feature(aa64_fp16, s)) { 7053 break; 7054 } 7055 /* fallthru */ 7056 default: 7057 unallocated_encoding(s); 7058 return; 7059 } 7060 7061 switch ((rmode << 3) | opcode) { 7062 case 0x2: /* SCVTF */ 7063 case 0x3: /* UCVTF */ 7064 itof = true; 7065 break; 7066 case 0x18: /* FCVTZS */ 7067 case 0x19: /* FCVTZU */ 7068 itof = false; 7069 break; 7070 default: 7071 unallocated_encoding(s); 7072 return; 7073 } 7074 7075 if (!fp_access_check(s)) { 7076 return; 7077 } 7078 7079 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7080 } 7081 7082 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7083 { 7084 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7085 * without conversion. 7086 */ 7087 7088 if (itof) { 7089 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7090 TCGv_i64 tmp; 7091 7092 switch (type) { 7093 case 0: 7094 /* 32 bit */ 7095 tmp = tcg_temp_new_i64(); 7096 tcg_gen_ext32u_i64(tmp, tcg_rn); 7097 write_fp_dreg(s, rd, tmp); 7098 break; 7099 case 1: 7100 /* 64 bit */ 7101 write_fp_dreg(s, rd, tcg_rn); 7102 break; 7103 case 2: 7104 /* 64 bit to top half. */ 7105 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7106 clear_vec_high(s, true, rd); 7107 break; 7108 case 3: 7109 /* 16 bit */ 7110 tmp = tcg_temp_new_i64(); 7111 tcg_gen_ext16u_i64(tmp, tcg_rn); 7112 write_fp_dreg(s, rd, tmp); 7113 break; 7114 default: 7115 g_assert_not_reached(); 7116 } 7117 } else { 7118 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7119 7120 switch (type) { 7121 case 0: 7122 /* 32 bit */ 7123 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7124 break; 7125 case 1: 7126 /* 64 bit */ 7127 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7128 break; 7129 case 2: 7130 /* 64 bits from top half */ 7131 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7132 break; 7133 case 3: 7134 /* 16 bit */ 7135 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7136 break; 7137 default: 7138 g_assert_not_reached(); 7139 } 7140 } 7141 } 7142 7143 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7144 { 7145 TCGv_i64 t = read_fp_dreg(s, rn); 7146 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7147 7148 gen_helper_fjcvtzs(t, t, fpstatus); 7149 7150 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7151 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7152 tcg_gen_movi_i32(cpu_CF, 0); 7153 tcg_gen_movi_i32(cpu_NF, 0); 7154 tcg_gen_movi_i32(cpu_VF, 0); 7155 } 7156 7157 /* Floating point <-> integer conversions 7158 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7159 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7160 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7161 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7162 */ 7163 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7164 { 7165 int rd = extract32(insn, 0, 5); 7166 int rn = extract32(insn, 5, 5); 7167 int opcode = extract32(insn, 16, 3); 7168 int rmode = extract32(insn, 19, 2); 7169 int type = extract32(insn, 22, 2); 7170 bool sbit = extract32(insn, 29, 1); 7171 bool sf = extract32(insn, 31, 1); 7172 bool itof = false; 7173 7174 if (sbit) { 7175 goto do_unallocated; 7176 } 7177 7178 switch (opcode) { 7179 case 2: /* SCVTF */ 7180 case 3: /* UCVTF */ 7181 itof = true; 7182 /* fallthru */ 7183 case 4: /* FCVTAS */ 7184 case 5: /* FCVTAU */ 7185 if (rmode != 0) { 7186 goto do_unallocated; 7187 } 7188 /* fallthru */ 7189 case 0: /* FCVT[NPMZ]S */ 7190 case 1: /* FCVT[NPMZ]U */ 7191 switch (type) { 7192 case 0: /* float32 */ 7193 case 1: /* float64 */ 7194 break; 7195 case 3: /* float16 */ 7196 if (!dc_isar_feature(aa64_fp16, s)) { 7197 goto do_unallocated; 7198 } 7199 break; 7200 default: 7201 goto do_unallocated; 7202 } 7203 if (!fp_access_check(s)) { 7204 return; 7205 } 7206 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7207 break; 7208 7209 default: 7210 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7211 case 0b01100110: /* FMOV half <-> 32-bit int */ 7212 case 0b01100111: 7213 case 0b11100110: /* FMOV half <-> 64-bit int */ 7214 case 0b11100111: 7215 if (!dc_isar_feature(aa64_fp16, s)) { 7216 goto do_unallocated; 7217 } 7218 /* fallthru */ 7219 case 0b00000110: /* FMOV 32-bit */ 7220 case 0b00000111: 7221 case 0b10100110: /* FMOV 64-bit */ 7222 case 0b10100111: 7223 case 0b11001110: /* FMOV top half of 128-bit */ 7224 case 0b11001111: 7225 if (!fp_access_check(s)) { 7226 return; 7227 } 7228 itof = opcode & 1; 7229 handle_fmov(s, rd, rn, type, itof); 7230 break; 7231 7232 case 0b00111110: /* FJCVTZS */ 7233 if (!dc_isar_feature(aa64_jscvt, s)) { 7234 goto do_unallocated; 7235 } else if (fp_access_check(s)) { 7236 handle_fjcvtzs(s, rd, rn); 7237 } 7238 break; 7239 7240 default: 7241 do_unallocated: 7242 unallocated_encoding(s); 7243 return; 7244 } 7245 break; 7246 } 7247 } 7248 7249 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7250 * 31 30 29 28 25 24 0 7251 * +---+---+---+---------+-----------------------------+ 7252 * | | 0 | | 1 1 1 1 | | 7253 * +---+---+---+---------+-----------------------------+ 7254 */ 7255 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7256 { 7257 if (extract32(insn, 24, 1)) { 7258 /* Floating point data-processing (3 source) */ 7259 disas_fp_3src(s, insn); 7260 } else if (extract32(insn, 21, 1) == 0) { 7261 /* Floating point to fixed point conversions */ 7262 disas_fp_fixed_conv(s, insn); 7263 } else { 7264 switch (extract32(insn, 10, 2)) { 7265 case 1: 7266 /* Floating point conditional compare */ 7267 disas_fp_ccomp(s, insn); 7268 break; 7269 case 2: 7270 /* Floating point data-processing (2 source) */ 7271 disas_fp_2src(s, insn); 7272 break; 7273 case 3: 7274 /* Floating point conditional select */ 7275 disas_fp_csel(s, insn); 7276 break; 7277 case 0: 7278 switch (ctz32(extract32(insn, 12, 4))) { 7279 case 0: /* [15:12] == xxx1 */ 7280 /* Floating point immediate */ 7281 disas_fp_imm(s, insn); 7282 break; 7283 case 1: /* [15:12] == xx10 */ 7284 /* Floating point compare */ 7285 disas_fp_compare(s, insn); 7286 break; 7287 case 2: /* [15:12] == x100 */ 7288 /* Floating point data-processing (1 source) */ 7289 disas_fp_1src(s, insn); 7290 break; 7291 case 3: /* [15:12] == 1000 */ 7292 unallocated_encoding(s); 7293 break; 7294 default: /* [15:12] == 0000 */ 7295 /* Floating point <-> integer conversions */ 7296 disas_fp_int_conv(s, insn); 7297 break; 7298 } 7299 break; 7300 } 7301 } 7302 } 7303 7304 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7305 int pos) 7306 { 7307 /* Extract 64 bits from the middle of two concatenated 64 bit 7308 * vector register slices left:right. The extracted bits start 7309 * at 'pos' bits into the right (least significant) side. 7310 * We return the result in tcg_right, and guarantee not to 7311 * trash tcg_left. 7312 */ 7313 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7314 assert(pos > 0 && pos < 64); 7315 7316 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7317 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7318 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7319 } 7320 7321 /* EXT 7322 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7323 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7324 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7325 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7326 */ 7327 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7328 { 7329 int is_q = extract32(insn, 30, 1); 7330 int op2 = extract32(insn, 22, 2); 7331 int imm4 = extract32(insn, 11, 4); 7332 int rm = extract32(insn, 16, 5); 7333 int rn = extract32(insn, 5, 5); 7334 int rd = extract32(insn, 0, 5); 7335 int pos = imm4 << 3; 7336 TCGv_i64 tcg_resl, tcg_resh; 7337 7338 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7339 unallocated_encoding(s); 7340 return; 7341 } 7342 7343 if (!fp_access_check(s)) { 7344 return; 7345 } 7346 7347 tcg_resh = tcg_temp_new_i64(); 7348 tcg_resl = tcg_temp_new_i64(); 7349 7350 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7351 * either extracting 128 bits from a 128:128 concatenation, or 7352 * extracting 64 bits from a 64:64 concatenation. 7353 */ 7354 if (!is_q) { 7355 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7356 if (pos != 0) { 7357 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7358 do_ext64(s, tcg_resh, tcg_resl, pos); 7359 } 7360 } else { 7361 TCGv_i64 tcg_hh; 7362 typedef struct { 7363 int reg; 7364 int elt; 7365 } EltPosns; 7366 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7367 EltPosns *elt = eltposns; 7368 7369 if (pos >= 64) { 7370 elt++; 7371 pos -= 64; 7372 } 7373 7374 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7375 elt++; 7376 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7377 elt++; 7378 if (pos != 0) { 7379 do_ext64(s, tcg_resh, tcg_resl, pos); 7380 tcg_hh = tcg_temp_new_i64(); 7381 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7382 do_ext64(s, tcg_hh, tcg_resh, pos); 7383 } 7384 } 7385 7386 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7387 if (is_q) { 7388 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7389 } 7390 clear_vec_high(s, is_q, rd); 7391 } 7392 7393 /* TBL/TBX 7394 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7395 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7396 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7397 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7398 */ 7399 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7400 { 7401 int op2 = extract32(insn, 22, 2); 7402 int is_q = extract32(insn, 30, 1); 7403 int rm = extract32(insn, 16, 5); 7404 int rn = extract32(insn, 5, 5); 7405 int rd = extract32(insn, 0, 5); 7406 int is_tbx = extract32(insn, 12, 1); 7407 int len = (extract32(insn, 13, 2) + 1) * 16; 7408 7409 if (op2 != 0) { 7410 unallocated_encoding(s); 7411 return; 7412 } 7413 7414 if (!fp_access_check(s)) { 7415 return; 7416 } 7417 7418 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7419 vec_full_reg_offset(s, rm), cpu_env, 7420 is_q ? 16 : 8, vec_full_reg_size(s), 7421 (len << 6) | (is_tbx << 5) | rn, 7422 gen_helper_simd_tblx); 7423 } 7424 7425 /* ZIP/UZP/TRN 7426 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7427 * +---+---+-------------+------+---+------+---+------------------+------+ 7428 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7429 * +---+---+-------------+------+---+------+---+------------------+------+ 7430 */ 7431 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7432 { 7433 int rd = extract32(insn, 0, 5); 7434 int rn = extract32(insn, 5, 5); 7435 int rm = extract32(insn, 16, 5); 7436 int size = extract32(insn, 22, 2); 7437 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7438 * bit 2 indicates 1 vs 2 variant of the insn. 7439 */ 7440 int opcode = extract32(insn, 12, 2); 7441 bool part = extract32(insn, 14, 1); 7442 bool is_q = extract32(insn, 30, 1); 7443 int esize = 8 << size; 7444 int i; 7445 int datasize = is_q ? 128 : 64; 7446 int elements = datasize / esize; 7447 TCGv_i64 tcg_res[2], tcg_ele; 7448 7449 if (opcode == 0 || (size == 3 && !is_q)) { 7450 unallocated_encoding(s); 7451 return; 7452 } 7453 7454 if (!fp_access_check(s)) { 7455 return; 7456 } 7457 7458 tcg_res[0] = tcg_temp_new_i64(); 7459 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7460 tcg_ele = tcg_temp_new_i64(); 7461 7462 for (i = 0; i < elements; i++) { 7463 int o, w; 7464 7465 switch (opcode) { 7466 case 1: /* UZP1/2 */ 7467 { 7468 int midpoint = elements / 2; 7469 if (i < midpoint) { 7470 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7471 } else { 7472 read_vec_element(s, tcg_ele, rm, 7473 2 * (i - midpoint) + part, size); 7474 } 7475 break; 7476 } 7477 case 2: /* TRN1/2 */ 7478 if (i & 1) { 7479 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7480 } else { 7481 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7482 } 7483 break; 7484 case 3: /* ZIP1/2 */ 7485 { 7486 int base = part * elements / 2; 7487 if (i & 1) { 7488 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7489 } else { 7490 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7491 } 7492 break; 7493 } 7494 default: 7495 g_assert_not_reached(); 7496 } 7497 7498 w = (i * esize) / 64; 7499 o = (i * esize) % 64; 7500 if (o == 0) { 7501 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7502 } else { 7503 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7504 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7505 } 7506 } 7507 7508 for (i = 0; i <= is_q; ++i) { 7509 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7510 } 7511 clear_vec_high(s, is_q, rd); 7512 } 7513 7514 /* 7515 * do_reduction_op helper 7516 * 7517 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7518 * important for correct NaN propagation that we do these 7519 * operations in exactly the order specified by the pseudocode. 7520 * 7521 * This is a recursive function, TCG temps should be freed by the 7522 * calling function once it is done with the values. 7523 */ 7524 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7525 int esize, int size, int vmap, TCGv_ptr fpst) 7526 { 7527 if (esize == size) { 7528 int element; 7529 MemOp msize = esize == 16 ? MO_16 : MO_32; 7530 TCGv_i32 tcg_elem; 7531 7532 /* We should have one register left here */ 7533 assert(ctpop8(vmap) == 1); 7534 element = ctz32(vmap); 7535 assert(element < 8); 7536 7537 tcg_elem = tcg_temp_new_i32(); 7538 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7539 return tcg_elem; 7540 } else { 7541 int bits = size / 2; 7542 int shift = ctpop8(vmap) / 2; 7543 int vmap_lo = (vmap >> shift) & vmap; 7544 int vmap_hi = (vmap & ~vmap_lo); 7545 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7546 7547 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7548 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7549 tcg_res = tcg_temp_new_i32(); 7550 7551 switch (fpopcode) { 7552 case 0x0c: /* fmaxnmv half-precision */ 7553 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7554 break; 7555 case 0x0f: /* fmaxv half-precision */ 7556 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7557 break; 7558 case 0x1c: /* fminnmv half-precision */ 7559 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7560 break; 7561 case 0x1f: /* fminv half-precision */ 7562 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7563 break; 7564 case 0x2c: /* fmaxnmv */ 7565 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7566 break; 7567 case 0x2f: /* fmaxv */ 7568 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7569 break; 7570 case 0x3c: /* fminnmv */ 7571 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7572 break; 7573 case 0x3f: /* fminv */ 7574 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7575 break; 7576 default: 7577 g_assert_not_reached(); 7578 } 7579 return tcg_res; 7580 } 7581 } 7582 7583 /* AdvSIMD across lanes 7584 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7585 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7586 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7587 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7588 */ 7589 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7590 { 7591 int rd = extract32(insn, 0, 5); 7592 int rn = extract32(insn, 5, 5); 7593 int size = extract32(insn, 22, 2); 7594 int opcode = extract32(insn, 12, 5); 7595 bool is_q = extract32(insn, 30, 1); 7596 bool is_u = extract32(insn, 29, 1); 7597 bool is_fp = false; 7598 bool is_min = false; 7599 int esize; 7600 int elements; 7601 int i; 7602 TCGv_i64 tcg_res, tcg_elt; 7603 7604 switch (opcode) { 7605 case 0x1b: /* ADDV */ 7606 if (is_u) { 7607 unallocated_encoding(s); 7608 return; 7609 } 7610 /* fall through */ 7611 case 0x3: /* SADDLV, UADDLV */ 7612 case 0xa: /* SMAXV, UMAXV */ 7613 case 0x1a: /* SMINV, UMINV */ 7614 if (size == 3 || (size == 2 && !is_q)) { 7615 unallocated_encoding(s); 7616 return; 7617 } 7618 break; 7619 case 0xc: /* FMAXNMV, FMINNMV */ 7620 case 0xf: /* FMAXV, FMINV */ 7621 /* Bit 1 of size field encodes min vs max and the actual size 7622 * depends on the encoding of the U bit. If not set (and FP16 7623 * enabled) then we do half-precision float instead of single 7624 * precision. 7625 */ 7626 is_min = extract32(size, 1, 1); 7627 is_fp = true; 7628 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7629 size = 1; 7630 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7631 unallocated_encoding(s); 7632 return; 7633 } else { 7634 size = 2; 7635 } 7636 break; 7637 default: 7638 unallocated_encoding(s); 7639 return; 7640 } 7641 7642 if (!fp_access_check(s)) { 7643 return; 7644 } 7645 7646 esize = 8 << size; 7647 elements = (is_q ? 128 : 64) / esize; 7648 7649 tcg_res = tcg_temp_new_i64(); 7650 tcg_elt = tcg_temp_new_i64(); 7651 7652 /* These instructions operate across all lanes of a vector 7653 * to produce a single result. We can guarantee that a 64 7654 * bit intermediate is sufficient: 7655 * + for [US]ADDLV the maximum element size is 32 bits, and 7656 * the result type is 64 bits 7657 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7658 * same as the element size, which is 32 bits at most 7659 * For the integer operations we can choose to work at 64 7660 * or 32 bits and truncate at the end; for simplicity 7661 * we use 64 bits always. The floating point 7662 * ops do require 32 bit intermediates, though. 7663 */ 7664 if (!is_fp) { 7665 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7666 7667 for (i = 1; i < elements; i++) { 7668 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7669 7670 switch (opcode) { 7671 case 0x03: /* SADDLV / UADDLV */ 7672 case 0x1b: /* ADDV */ 7673 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7674 break; 7675 case 0x0a: /* SMAXV / UMAXV */ 7676 if (is_u) { 7677 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7678 } else { 7679 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7680 } 7681 break; 7682 case 0x1a: /* SMINV / UMINV */ 7683 if (is_u) { 7684 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7685 } else { 7686 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7687 } 7688 break; 7689 default: 7690 g_assert_not_reached(); 7691 } 7692 7693 } 7694 } else { 7695 /* Floating point vector reduction ops which work across 32 7696 * bit (single) or 16 bit (half-precision) intermediates. 7697 * Note that correct NaN propagation requires that we do these 7698 * operations in exactly the order specified by the pseudocode. 7699 */ 7700 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7701 int fpopcode = opcode | is_min << 4 | is_u << 5; 7702 int vmap = (1 << elements) - 1; 7703 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7704 (is_q ? 128 : 64), vmap, fpst); 7705 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7706 } 7707 7708 /* Now truncate the result to the width required for the final output */ 7709 if (opcode == 0x03) { 7710 /* SADDLV, UADDLV: result is 2*esize */ 7711 size++; 7712 } 7713 7714 switch (size) { 7715 case 0: 7716 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7717 break; 7718 case 1: 7719 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7720 break; 7721 case 2: 7722 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7723 break; 7724 case 3: 7725 break; 7726 default: 7727 g_assert_not_reached(); 7728 } 7729 7730 write_fp_dreg(s, rd, tcg_res); 7731 } 7732 7733 /* DUP (Element, Vector) 7734 * 7735 * 31 30 29 21 20 16 15 10 9 5 4 0 7736 * +---+---+-------------------+--------+-------------+------+------+ 7737 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7738 * +---+---+-------------------+--------+-------------+------+------+ 7739 * 7740 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7741 */ 7742 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7743 int imm5) 7744 { 7745 int size = ctz32(imm5); 7746 int index; 7747 7748 if (size > 3 || (size == 3 && !is_q)) { 7749 unallocated_encoding(s); 7750 return; 7751 } 7752 7753 if (!fp_access_check(s)) { 7754 return; 7755 } 7756 7757 index = imm5 >> (size + 1); 7758 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7759 vec_reg_offset(s, rn, index, size), 7760 is_q ? 16 : 8, vec_full_reg_size(s)); 7761 } 7762 7763 /* DUP (element, scalar) 7764 * 31 21 20 16 15 10 9 5 4 0 7765 * +-----------------------+--------+-------------+------+------+ 7766 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7767 * +-----------------------+--------+-------------+------+------+ 7768 */ 7769 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7770 int imm5) 7771 { 7772 int size = ctz32(imm5); 7773 int index; 7774 TCGv_i64 tmp; 7775 7776 if (size > 3) { 7777 unallocated_encoding(s); 7778 return; 7779 } 7780 7781 if (!fp_access_check(s)) { 7782 return; 7783 } 7784 7785 index = imm5 >> (size + 1); 7786 7787 /* This instruction just extracts the specified element and 7788 * zero-extends it into the bottom of the destination register. 7789 */ 7790 tmp = tcg_temp_new_i64(); 7791 read_vec_element(s, tmp, rn, index, size); 7792 write_fp_dreg(s, rd, tmp); 7793 } 7794 7795 /* DUP (General) 7796 * 7797 * 31 30 29 21 20 16 15 10 9 5 4 0 7798 * +---+---+-------------------+--------+-------------+------+------+ 7799 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7800 * +---+---+-------------------+--------+-------------+------+------+ 7801 * 7802 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7803 */ 7804 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7805 int imm5) 7806 { 7807 int size = ctz32(imm5); 7808 uint32_t dofs, oprsz, maxsz; 7809 7810 if (size > 3 || ((size == 3) && !is_q)) { 7811 unallocated_encoding(s); 7812 return; 7813 } 7814 7815 if (!fp_access_check(s)) { 7816 return; 7817 } 7818 7819 dofs = vec_full_reg_offset(s, rd); 7820 oprsz = is_q ? 16 : 8; 7821 maxsz = vec_full_reg_size(s); 7822 7823 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7824 } 7825 7826 /* INS (Element) 7827 * 7828 * 31 21 20 16 15 14 11 10 9 5 4 0 7829 * +-----------------------+--------+------------+---+------+------+ 7830 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7831 * +-----------------------+--------+------------+---+------+------+ 7832 * 7833 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7834 * index: encoded in imm5<4:size+1> 7835 */ 7836 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7837 int imm4, int imm5) 7838 { 7839 int size = ctz32(imm5); 7840 int src_index, dst_index; 7841 TCGv_i64 tmp; 7842 7843 if (size > 3) { 7844 unallocated_encoding(s); 7845 return; 7846 } 7847 7848 if (!fp_access_check(s)) { 7849 return; 7850 } 7851 7852 dst_index = extract32(imm5, 1+size, 5); 7853 src_index = extract32(imm4, size, 4); 7854 7855 tmp = tcg_temp_new_i64(); 7856 7857 read_vec_element(s, tmp, rn, src_index, size); 7858 write_vec_element(s, tmp, rd, dst_index, size); 7859 7860 /* INS is considered a 128-bit write for SVE. */ 7861 clear_vec_high(s, true, rd); 7862 } 7863 7864 7865 /* INS (General) 7866 * 7867 * 31 21 20 16 15 10 9 5 4 0 7868 * +-----------------------+--------+-------------+------+------+ 7869 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7870 * +-----------------------+--------+-------------+------+------+ 7871 * 7872 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7873 * index: encoded in imm5<4:size+1> 7874 */ 7875 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7876 { 7877 int size = ctz32(imm5); 7878 int idx; 7879 7880 if (size > 3) { 7881 unallocated_encoding(s); 7882 return; 7883 } 7884 7885 if (!fp_access_check(s)) { 7886 return; 7887 } 7888 7889 idx = extract32(imm5, 1 + size, 4 - size); 7890 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7891 7892 /* INS is considered a 128-bit write for SVE. */ 7893 clear_vec_high(s, true, rd); 7894 } 7895 7896 /* 7897 * UMOV (General) 7898 * SMOV (General) 7899 * 7900 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7901 * +---+---+-------------------+--------+-------------+------+------+ 7902 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7903 * +---+---+-------------------+--------+-------------+------+------+ 7904 * 7905 * U: unsigned when set 7906 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7907 */ 7908 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7909 int rn, int rd, int imm5) 7910 { 7911 int size = ctz32(imm5); 7912 int element; 7913 TCGv_i64 tcg_rd; 7914 7915 /* Check for UnallocatedEncodings */ 7916 if (is_signed) { 7917 if (size > 2 || (size == 2 && !is_q)) { 7918 unallocated_encoding(s); 7919 return; 7920 } 7921 } else { 7922 if (size > 3 7923 || (size < 3 && is_q) 7924 || (size == 3 && !is_q)) { 7925 unallocated_encoding(s); 7926 return; 7927 } 7928 } 7929 7930 if (!fp_access_check(s)) { 7931 return; 7932 } 7933 7934 element = extract32(imm5, 1+size, 4); 7935 7936 tcg_rd = cpu_reg(s, rd); 7937 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7938 if (is_signed && !is_q) { 7939 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7940 } 7941 } 7942 7943 /* AdvSIMD copy 7944 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7945 * +---+---+----+-----------------+------+---+------+---+------+------+ 7946 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7947 * +---+---+----+-----------------+------+---+------+---+------+------+ 7948 */ 7949 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7950 { 7951 int rd = extract32(insn, 0, 5); 7952 int rn = extract32(insn, 5, 5); 7953 int imm4 = extract32(insn, 11, 4); 7954 int op = extract32(insn, 29, 1); 7955 int is_q = extract32(insn, 30, 1); 7956 int imm5 = extract32(insn, 16, 5); 7957 7958 if (op) { 7959 if (is_q) { 7960 /* INS (element) */ 7961 handle_simd_inse(s, rd, rn, imm4, imm5); 7962 } else { 7963 unallocated_encoding(s); 7964 } 7965 } else { 7966 switch (imm4) { 7967 case 0: 7968 /* DUP (element - vector) */ 7969 handle_simd_dupe(s, is_q, rd, rn, imm5); 7970 break; 7971 case 1: 7972 /* DUP (general) */ 7973 handle_simd_dupg(s, is_q, rd, rn, imm5); 7974 break; 7975 case 3: 7976 if (is_q) { 7977 /* INS (general) */ 7978 handle_simd_insg(s, rd, rn, imm5); 7979 } else { 7980 unallocated_encoding(s); 7981 } 7982 break; 7983 case 5: 7984 case 7: 7985 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7986 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7987 break; 7988 default: 7989 unallocated_encoding(s); 7990 break; 7991 } 7992 } 7993 } 7994 7995 /* AdvSIMD modified immediate 7996 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7997 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7998 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7999 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8000 * 8001 * There are a number of operations that can be carried out here: 8002 * MOVI - move (shifted) imm into register 8003 * MVNI - move inverted (shifted) imm into register 8004 * ORR - bitwise OR of (shifted) imm with register 8005 * BIC - bitwise clear of (shifted) imm with register 8006 * With ARMv8.2 we also have: 8007 * FMOV half-precision 8008 */ 8009 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8010 { 8011 int rd = extract32(insn, 0, 5); 8012 int cmode = extract32(insn, 12, 4); 8013 int o2 = extract32(insn, 11, 1); 8014 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8015 bool is_neg = extract32(insn, 29, 1); 8016 bool is_q = extract32(insn, 30, 1); 8017 uint64_t imm = 0; 8018 8019 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8020 /* Check for FMOV (vector, immediate) - half-precision */ 8021 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8022 unallocated_encoding(s); 8023 return; 8024 } 8025 } 8026 8027 if (!fp_access_check(s)) { 8028 return; 8029 } 8030 8031 if (cmode == 15 && o2 && !is_neg) { 8032 /* FMOV (vector, immediate) - half-precision */ 8033 imm = vfp_expand_imm(MO_16, abcdefgh); 8034 /* now duplicate across the lanes */ 8035 imm = dup_const(MO_16, imm); 8036 } else { 8037 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8038 } 8039 8040 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8041 /* MOVI or MVNI, with MVNI negation handled above. */ 8042 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8043 vec_full_reg_size(s), imm); 8044 } else { 8045 /* ORR or BIC, with BIC negation to AND handled above. */ 8046 if (is_neg) { 8047 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8048 } else { 8049 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8050 } 8051 } 8052 } 8053 8054 /* AdvSIMD scalar copy 8055 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8056 * +-----+----+-----------------+------+---+------+---+------+------+ 8057 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8058 * +-----+----+-----------------+------+---+------+---+------+------+ 8059 */ 8060 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8061 { 8062 int rd = extract32(insn, 0, 5); 8063 int rn = extract32(insn, 5, 5); 8064 int imm4 = extract32(insn, 11, 4); 8065 int imm5 = extract32(insn, 16, 5); 8066 int op = extract32(insn, 29, 1); 8067 8068 if (op != 0 || imm4 != 0) { 8069 unallocated_encoding(s); 8070 return; 8071 } 8072 8073 /* DUP (element, scalar) */ 8074 handle_simd_dupes(s, rd, rn, imm5); 8075 } 8076 8077 /* AdvSIMD scalar pairwise 8078 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8079 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8080 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8081 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8082 */ 8083 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8084 { 8085 int u = extract32(insn, 29, 1); 8086 int size = extract32(insn, 22, 2); 8087 int opcode = extract32(insn, 12, 5); 8088 int rn = extract32(insn, 5, 5); 8089 int rd = extract32(insn, 0, 5); 8090 TCGv_ptr fpst; 8091 8092 /* For some ops (the FP ones), size[1] is part of the encoding. 8093 * For ADDP strictly it is not but size[1] is always 1 for valid 8094 * encodings. 8095 */ 8096 opcode |= (extract32(size, 1, 1) << 5); 8097 8098 switch (opcode) { 8099 case 0x3b: /* ADDP */ 8100 if (u || size != 3) { 8101 unallocated_encoding(s); 8102 return; 8103 } 8104 if (!fp_access_check(s)) { 8105 return; 8106 } 8107 8108 fpst = NULL; 8109 break; 8110 case 0xc: /* FMAXNMP */ 8111 case 0xd: /* FADDP */ 8112 case 0xf: /* FMAXP */ 8113 case 0x2c: /* FMINNMP */ 8114 case 0x2f: /* FMINP */ 8115 /* FP op, size[0] is 32 or 64 bit*/ 8116 if (!u) { 8117 if (!dc_isar_feature(aa64_fp16, s)) { 8118 unallocated_encoding(s); 8119 return; 8120 } else { 8121 size = MO_16; 8122 } 8123 } else { 8124 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8125 } 8126 8127 if (!fp_access_check(s)) { 8128 return; 8129 } 8130 8131 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8132 break; 8133 default: 8134 unallocated_encoding(s); 8135 return; 8136 } 8137 8138 if (size == MO_64) { 8139 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8140 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8141 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8142 8143 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8144 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8145 8146 switch (opcode) { 8147 case 0x3b: /* ADDP */ 8148 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8149 break; 8150 case 0xc: /* FMAXNMP */ 8151 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8152 break; 8153 case 0xd: /* FADDP */ 8154 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8155 break; 8156 case 0xf: /* FMAXP */ 8157 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8158 break; 8159 case 0x2c: /* FMINNMP */ 8160 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8161 break; 8162 case 0x2f: /* FMINP */ 8163 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8164 break; 8165 default: 8166 g_assert_not_reached(); 8167 } 8168 8169 write_fp_dreg(s, rd, tcg_res); 8170 } else { 8171 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8172 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8173 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8174 8175 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8176 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8177 8178 if (size == MO_16) { 8179 switch (opcode) { 8180 case 0xc: /* FMAXNMP */ 8181 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8182 break; 8183 case 0xd: /* FADDP */ 8184 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8185 break; 8186 case 0xf: /* FMAXP */ 8187 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8188 break; 8189 case 0x2c: /* FMINNMP */ 8190 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8191 break; 8192 case 0x2f: /* FMINP */ 8193 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8194 break; 8195 default: 8196 g_assert_not_reached(); 8197 } 8198 } else { 8199 switch (opcode) { 8200 case 0xc: /* FMAXNMP */ 8201 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8202 break; 8203 case 0xd: /* FADDP */ 8204 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8205 break; 8206 case 0xf: /* FMAXP */ 8207 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8208 break; 8209 case 0x2c: /* FMINNMP */ 8210 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8211 break; 8212 case 0x2f: /* FMINP */ 8213 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8214 break; 8215 default: 8216 g_assert_not_reached(); 8217 } 8218 } 8219 8220 write_fp_sreg(s, rd, tcg_res); 8221 } 8222 } 8223 8224 /* 8225 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8226 * 8227 * This code is handles the common shifting code and is used by both 8228 * the vector and scalar code. 8229 */ 8230 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8231 TCGv_i64 tcg_rnd, bool accumulate, 8232 bool is_u, int size, int shift) 8233 { 8234 bool extended_result = false; 8235 bool round = tcg_rnd != NULL; 8236 int ext_lshift = 0; 8237 TCGv_i64 tcg_src_hi; 8238 8239 if (round && size == 3) { 8240 extended_result = true; 8241 ext_lshift = 64 - shift; 8242 tcg_src_hi = tcg_temp_new_i64(); 8243 } else if (shift == 64) { 8244 if (!accumulate && is_u) { 8245 /* result is zero */ 8246 tcg_gen_movi_i64(tcg_res, 0); 8247 return; 8248 } 8249 } 8250 8251 /* Deal with the rounding step */ 8252 if (round) { 8253 if (extended_result) { 8254 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8255 if (!is_u) { 8256 /* take care of sign extending tcg_res */ 8257 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8258 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8259 tcg_src, tcg_src_hi, 8260 tcg_rnd, tcg_zero); 8261 } else { 8262 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8263 tcg_src, tcg_zero, 8264 tcg_rnd, tcg_zero); 8265 } 8266 } else { 8267 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8268 } 8269 } 8270 8271 /* Now do the shift right */ 8272 if (round && extended_result) { 8273 /* extended case, >64 bit precision required */ 8274 if (ext_lshift == 0) { 8275 /* special case, only high bits matter */ 8276 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8277 } else { 8278 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8279 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8280 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8281 } 8282 } else { 8283 if (is_u) { 8284 if (shift == 64) { 8285 /* essentially shifting in 64 zeros */ 8286 tcg_gen_movi_i64(tcg_src, 0); 8287 } else { 8288 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8289 } 8290 } else { 8291 if (shift == 64) { 8292 /* effectively extending the sign-bit */ 8293 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8294 } else { 8295 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8296 } 8297 } 8298 } 8299 8300 if (accumulate) { 8301 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8302 } else { 8303 tcg_gen_mov_i64(tcg_res, tcg_src); 8304 } 8305 } 8306 8307 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8308 static void handle_scalar_simd_shri(DisasContext *s, 8309 bool is_u, int immh, int immb, 8310 int opcode, int rn, int rd) 8311 { 8312 const int size = 3; 8313 int immhb = immh << 3 | immb; 8314 int shift = 2 * (8 << size) - immhb; 8315 bool accumulate = false; 8316 bool round = false; 8317 bool insert = false; 8318 TCGv_i64 tcg_rn; 8319 TCGv_i64 tcg_rd; 8320 TCGv_i64 tcg_round; 8321 8322 if (!extract32(immh, 3, 1)) { 8323 unallocated_encoding(s); 8324 return; 8325 } 8326 8327 if (!fp_access_check(s)) { 8328 return; 8329 } 8330 8331 switch (opcode) { 8332 case 0x02: /* SSRA / USRA (accumulate) */ 8333 accumulate = true; 8334 break; 8335 case 0x04: /* SRSHR / URSHR (rounding) */ 8336 round = true; 8337 break; 8338 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8339 accumulate = round = true; 8340 break; 8341 case 0x08: /* SRI */ 8342 insert = true; 8343 break; 8344 } 8345 8346 if (round) { 8347 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8348 } else { 8349 tcg_round = NULL; 8350 } 8351 8352 tcg_rn = read_fp_dreg(s, rn); 8353 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8354 8355 if (insert) { 8356 /* shift count same as element size is valid but does nothing; 8357 * special case to avoid potential shift by 64. 8358 */ 8359 int esize = 8 << size; 8360 if (shift != esize) { 8361 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8362 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8363 } 8364 } else { 8365 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8366 accumulate, is_u, size, shift); 8367 } 8368 8369 write_fp_dreg(s, rd, tcg_rd); 8370 } 8371 8372 /* SHL/SLI - Scalar shift left */ 8373 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8374 int immh, int immb, int opcode, 8375 int rn, int rd) 8376 { 8377 int size = 32 - clz32(immh) - 1; 8378 int immhb = immh << 3 | immb; 8379 int shift = immhb - (8 << size); 8380 TCGv_i64 tcg_rn; 8381 TCGv_i64 tcg_rd; 8382 8383 if (!extract32(immh, 3, 1)) { 8384 unallocated_encoding(s); 8385 return; 8386 } 8387 8388 if (!fp_access_check(s)) { 8389 return; 8390 } 8391 8392 tcg_rn = read_fp_dreg(s, rn); 8393 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8394 8395 if (insert) { 8396 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8397 } else { 8398 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8399 } 8400 8401 write_fp_dreg(s, rd, tcg_rd); 8402 } 8403 8404 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8405 * (signed/unsigned) narrowing */ 8406 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8407 bool is_u_shift, bool is_u_narrow, 8408 int immh, int immb, int opcode, 8409 int rn, int rd) 8410 { 8411 int immhb = immh << 3 | immb; 8412 int size = 32 - clz32(immh) - 1; 8413 int esize = 8 << size; 8414 int shift = (2 * esize) - immhb; 8415 int elements = is_scalar ? 1 : (64 / esize); 8416 bool round = extract32(opcode, 0, 1); 8417 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8418 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8419 TCGv_i32 tcg_rd_narrowed; 8420 TCGv_i64 tcg_final; 8421 8422 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8423 { gen_helper_neon_narrow_sat_s8, 8424 gen_helper_neon_unarrow_sat8 }, 8425 { gen_helper_neon_narrow_sat_s16, 8426 gen_helper_neon_unarrow_sat16 }, 8427 { gen_helper_neon_narrow_sat_s32, 8428 gen_helper_neon_unarrow_sat32 }, 8429 { NULL, NULL }, 8430 }; 8431 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8432 gen_helper_neon_narrow_sat_u8, 8433 gen_helper_neon_narrow_sat_u16, 8434 gen_helper_neon_narrow_sat_u32, 8435 NULL 8436 }; 8437 NeonGenNarrowEnvFn *narrowfn; 8438 8439 int i; 8440 8441 assert(size < 4); 8442 8443 if (extract32(immh, 3, 1)) { 8444 unallocated_encoding(s); 8445 return; 8446 } 8447 8448 if (!fp_access_check(s)) { 8449 return; 8450 } 8451 8452 if (is_u_shift) { 8453 narrowfn = unsigned_narrow_fns[size]; 8454 } else { 8455 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8456 } 8457 8458 tcg_rn = tcg_temp_new_i64(); 8459 tcg_rd = tcg_temp_new_i64(); 8460 tcg_rd_narrowed = tcg_temp_new_i32(); 8461 tcg_final = tcg_temp_new_i64(); 8462 8463 if (round) { 8464 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8465 } else { 8466 tcg_round = NULL; 8467 } 8468 8469 for (i = 0; i < elements; i++) { 8470 read_vec_element(s, tcg_rn, rn, i, ldop); 8471 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8472 false, is_u_shift, size+1, shift); 8473 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8474 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8475 if (i == 0) { 8476 tcg_gen_mov_i64(tcg_final, tcg_rd); 8477 } else { 8478 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8479 } 8480 } 8481 8482 if (!is_q) { 8483 write_vec_element(s, tcg_final, rd, 0, MO_64); 8484 } else { 8485 write_vec_element(s, tcg_final, rd, 1, MO_64); 8486 } 8487 clear_vec_high(s, is_q, rd); 8488 } 8489 8490 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8491 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8492 bool src_unsigned, bool dst_unsigned, 8493 int immh, int immb, int rn, int rd) 8494 { 8495 int immhb = immh << 3 | immb; 8496 int size = 32 - clz32(immh) - 1; 8497 int shift = immhb - (8 << size); 8498 int pass; 8499 8500 assert(immh != 0); 8501 assert(!(scalar && is_q)); 8502 8503 if (!scalar) { 8504 if (!is_q && extract32(immh, 3, 1)) { 8505 unallocated_encoding(s); 8506 return; 8507 } 8508 8509 /* Since we use the variable-shift helpers we must 8510 * replicate the shift count into each element of 8511 * the tcg_shift value. 8512 */ 8513 switch (size) { 8514 case 0: 8515 shift |= shift << 8; 8516 /* fall through */ 8517 case 1: 8518 shift |= shift << 16; 8519 break; 8520 case 2: 8521 case 3: 8522 break; 8523 default: 8524 g_assert_not_reached(); 8525 } 8526 } 8527 8528 if (!fp_access_check(s)) { 8529 return; 8530 } 8531 8532 if (size == 3) { 8533 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8534 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8535 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8536 { NULL, gen_helper_neon_qshl_u64 }, 8537 }; 8538 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8539 int maxpass = is_q ? 2 : 1; 8540 8541 for (pass = 0; pass < maxpass; pass++) { 8542 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8543 8544 read_vec_element(s, tcg_op, rn, pass, MO_64); 8545 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8546 write_vec_element(s, tcg_op, rd, pass, MO_64); 8547 } 8548 clear_vec_high(s, is_q, rd); 8549 } else { 8550 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8551 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8552 { 8553 { gen_helper_neon_qshl_s8, 8554 gen_helper_neon_qshl_s16, 8555 gen_helper_neon_qshl_s32 }, 8556 { gen_helper_neon_qshlu_s8, 8557 gen_helper_neon_qshlu_s16, 8558 gen_helper_neon_qshlu_s32 } 8559 }, { 8560 { NULL, NULL, NULL }, 8561 { gen_helper_neon_qshl_u8, 8562 gen_helper_neon_qshl_u16, 8563 gen_helper_neon_qshl_u32 } 8564 } 8565 }; 8566 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8567 MemOp memop = scalar ? size : MO_32; 8568 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8569 8570 for (pass = 0; pass < maxpass; pass++) { 8571 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8572 8573 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8574 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8575 if (scalar) { 8576 switch (size) { 8577 case 0: 8578 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8579 break; 8580 case 1: 8581 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8582 break; 8583 case 2: 8584 break; 8585 default: 8586 g_assert_not_reached(); 8587 } 8588 write_fp_sreg(s, rd, tcg_op); 8589 } else { 8590 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8591 } 8592 } 8593 8594 if (!scalar) { 8595 clear_vec_high(s, is_q, rd); 8596 } 8597 } 8598 } 8599 8600 /* Common vector code for handling integer to FP conversion */ 8601 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8602 int elements, int is_signed, 8603 int fracbits, int size) 8604 { 8605 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8606 TCGv_i32 tcg_shift = NULL; 8607 8608 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8609 int pass; 8610 8611 if (fracbits || size == MO_64) { 8612 tcg_shift = tcg_constant_i32(fracbits); 8613 } 8614 8615 if (size == MO_64) { 8616 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8617 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8618 8619 for (pass = 0; pass < elements; pass++) { 8620 read_vec_element(s, tcg_int64, rn, pass, mop); 8621 8622 if (is_signed) { 8623 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8624 tcg_shift, tcg_fpst); 8625 } else { 8626 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8627 tcg_shift, tcg_fpst); 8628 } 8629 if (elements == 1) { 8630 write_fp_dreg(s, rd, tcg_double); 8631 } else { 8632 write_vec_element(s, tcg_double, rd, pass, MO_64); 8633 } 8634 } 8635 } else { 8636 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8637 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8638 8639 for (pass = 0; pass < elements; pass++) { 8640 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8641 8642 switch (size) { 8643 case MO_32: 8644 if (fracbits) { 8645 if (is_signed) { 8646 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8647 tcg_shift, tcg_fpst); 8648 } else { 8649 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8650 tcg_shift, tcg_fpst); 8651 } 8652 } else { 8653 if (is_signed) { 8654 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8655 } else { 8656 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8657 } 8658 } 8659 break; 8660 case MO_16: 8661 if (fracbits) { 8662 if (is_signed) { 8663 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8664 tcg_shift, tcg_fpst); 8665 } else { 8666 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8667 tcg_shift, tcg_fpst); 8668 } 8669 } else { 8670 if (is_signed) { 8671 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8672 } else { 8673 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8674 } 8675 } 8676 break; 8677 default: 8678 g_assert_not_reached(); 8679 } 8680 8681 if (elements == 1) { 8682 write_fp_sreg(s, rd, tcg_float); 8683 } else { 8684 write_vec_element_i32(s, tcg_float, rd, pass, size); 8685 } 8686 } 8687 } 8688 8689 clear_vec_high(s, elements << size == 16, rd); 8690 } 8691 8692 /* UCVTF/SCVTF - Integer to FP conversion */ 8693 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8694 bool is_q, bool is_u, 8695 int immh, int immb, int opcode, 8696 int rn, int rd) 8697 { 8698 int size, elements, fracbits; 8699 int immhb = immh << 3 | immb; 8700 8701 if (immh & 8) { 8702 size = MO_64; 8703 if (!is_scalar && !is_q) { 8704 unallocated_encoding(s); 8705 return; 8706 } 8707 } else if (immh & 4) { 8708 size = MO_32; 8709 } else if (immh & 2) { 8710 size = MO_16; 8711 if (!dc_isar_feature(aa64_fp16, s)) { 8712 unallocated_encoding(s); 8713 return; 8714 } 8715 } else { 8716 /* immh == 0 would be a failure of the decode logic */ 8717 g_assert(immh == 1); 8718 unallocated_encoding(s); 8719 return; 8720 } 8721 8722 if (is_scalar) { 8723 elements = 1; 8724 } else { 8725 elements = (8 << is_q) >> size; 8726 } 8727 fracbits = (16 << size) - immhb; 8728 8729 if (!fp_access_check(s)) { 8730 return; 8731 } 8732 8733 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8734 } 8735 8736 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8737 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8738 bool is_q, bool is_u, 8739 int immh, int immb, int rn, int rd) 8740 { 8741 int immhb = immh << 3 | immb; 8742 int pass, size, fracbits; 8743 TCGv_ptr tcg_fpstatus; 8744 TCGv_i32 tcg_rmode, tcg_shift; 8745 8746 if (immh & 0x8) { 8747 size = MO_64; 8748 if (!is_scalar && !is_q) { 8749 unallocated_encoding(s); 8750 return; 8751 } 8752 } else if (immh & 0x4) { 8753 size = MO_32; 8754 } else if (immh & 0x2) { 8755 size = MO_16; 8756 if (!dc_isar_feature(aa64_fp16, s)) { 8757 unallocated_encoding(s); 8758 return; 8759 } 8760 } else { 8761 /* Should have split out AdvSIMD modified immediate earlier. */ 8762 assert(immh == 1); 8763 unallocated_encoding(s); 8764 return; 8765 } 8766 8767 if (!fp_access_check(s)) { 8768 return; 8769 } 8770 8771 assert(!(is_scalar && is_q)); 8772 8773 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8774 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8775 fracbits = (16 << size) - immhb; 8776 tcg_shift = tcg_constant_i32(fracbits); 8777 8778 if (size == MO_64) { 8779 int maxpass = is_scalar ? 1 : 2; 8780 8781 for (pass = 0; pass < maxpass; pass++) { 8782 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8783 8784 read_vec_element(s, tcg_op, rn, pass, MO_64); 8785 if (is_u) { 8786 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8787 } else { 8788 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8789 } 8790 write_vec_element(s, tcg_op, rd, pass, MO_64); 8791 } 8792 clear_vec_high(s, is_q, rd); 8793 } else { 8794 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8795 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8796 8797 switch (size) { 8798 case MO_16: 8799 if (is_u) { 8800 fn = gen_helper_vfp_touhh; 8801 } else { 8802 fn = gen_helper_vfp_toshh; 8803 } 8804 break; 8805 case MO_32: 8806 if (is_u) { 8807 fn = gen_helper_vfp_touls; 8808 } else { 8809 fn = gen_helper_vfp_tosls; 8810 } 8811 break; 8812 default: 8813 g_assert_not_reached(); 8814 } 8815 8816 for (pass = 0; pass < maxpass; pass++) { 8817 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8818 8819 read_vec_element_i32(s, tcg_op, rn, pass, size); 8820 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8821 if (is_scalar) { 8822 write_fp_sreg(s, rd, tcg_op); 8823 } else { 8824 write_vec_element_i32(s, tcg_op, rd, pass, size); 8825 } 8826 } 8827 if (!is_scalar) { 8828 clear_vec_high(s, is_q, rd); 8829 } 8830 } 8831 8832 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8833 } 8834 8835 /* AdvSIMD scalar shift by immediate 8836 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8837 * +-----+---+-------------+------+------+--------+---+------+------+ 8838 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8839 * +-----+---+-------------+------+------+--------+---+------+------+ 8840 * 8841 * This is the scalar version so it works on a fixed sized registers 8842 */ 8843 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8844 { 8845 int rd = extract32(insn, 0, 5); 8846 int rn = extract32(insn, 5, 5); 8847 int opcode = extract32(insn, 11, 5); 8848 int immb = extract32(insn, 16, 3); 8849 int immh = extract32(insn, 19, 4); 8850 bool is_u = extract32(insn, 29, 1); 8851 8852 if (immh == 0) { 8853 unallocated_encoding(s); 8854 return; 8855 } 8856 8857 switch (opcode) { 8858 case 0x08: /* SRI */ 8859 if (!is_u) { 8860 unallocated_encoding(s); 8861 return; 8862 } 8863 /* fall through */ 8864 case 0x00: /* SSHR / USHR */ 8865 case 0x02: /* SSRA / USRA */ 8866 case 0x04: /* SRSHR / URSHR */ 8867 case 0x06: /* SRSRA / URSRA */ 8868 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8869 break; 8870 case 0x0a: /* SHL / SLI */ 8871 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8872 break; 8873 case 0x1c: /* SCVTF, UCVTF */ 8874 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8875 opcode, rn, rd); 8876 break; 8877 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8878 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8879 if (!is_u) { 8880 unallocated_encoding(s); 8881 return; 8882 } 8883 handle_vec_simd_sqshrn(s, true, false, false, true, 8884 immh, immb, opcode, rn, rd); 8885 break; 8886 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8887 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8888 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8889 immh, immb, opcode, rn, rd); 8890 break; 8891 case 0xc: /* SQSHLU */ 8892 if (!is_u) { 8893 unallocated_encoding(s); 8894 return; 8895 } 8896 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8897 break; 8898 case 0xe: /* SQSHL, UQSHL */ 8899 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8900 break; 8901 case 0x1f: /* FCVTZS, FCVTZU */ 8902 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8903 break; 8904 default: 8905 unallocated_encoding(s); 8906 break; 8907 } 8908 } 8909 8910 /* AdvSIMD scalar three different 8911 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8912 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8913 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8914 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8915 */ 8916 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8917 { 8918 bool is_u = extract32(insn, 29, 1); 8919 int size = extract32(insn, 22, 2); 8920 int opcode = extract32(insn, 12, 4); 8921 int rm = extract32(insn, 16, 5); 8922 int rn = extract32(insn, 5, 5); 8923 int rd = extract32(insn, 0, 5); 8924 8925 if (is_u) { 8926 unallocated_encoding(s); 8927 return; 8928 } 8929 8930 switch (opcode) { 8931 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8932 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8933 case 0xd: /* SQDMULL, SQDMULL2 */ 8934 if (size == 0 || size == 3) { 8935 unallocated_encoding(s); 8936 return; 8937 } 8938 break; 8939 default: 8940 unallocated_encoding(s); 8941 return; 8942 } 8943 8944 if (!fp_access_check(s)) { 8945 return; 8946 } 8947 8948 if (size == 2) { 8949 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8950 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8951 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8952 8953 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8954 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8955 8956 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8957 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8958 8959 switch (opcode) { 8960 case 0xd: /* SQDMULL, SQDMULL2 */ 8961 break; 8962 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8963 tcg_gen_neg_i64(tcg_res, tcg_res); 8964 /* fall through */ 8965 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8966 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8967 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8968 tcg_res, tcg_op1); 8969 break; 8970 default: 8971 g_assert_not_reached(); 8972 } 8973 8974 write_fp_dreg(s, rd, tcg_res); 8975 } else { 8976 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8977 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8978 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8979 8980 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8981 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8982 8983 switch (opcode) { 8984 case 0xd: /* SQDMULL, SQDMULL2 */ 8985 break; 8986 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8987 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8988 /* fall through */ 8989 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8990 { 8991 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8992 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8993 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8994 tcg_res, tcg_op3); 8995 break; 8996 } 8997 default: 8998 g_assert_not_reached(); 8999 } 9000 9001 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9002 write_fp_dreg(s, rd, tcg_res); 9003 } 9004 } 9005 9006 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9007 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9008 { 9009 /* Handle 64x64->64 opcodes which are shared between the scalar 9010 * and vector 3-same groups. We cover every opcode where size == 3 9011 * is valid in either the three-reg-same (integer, not pairwise) 9012 * or scalar-three-reg-same groups. 9013 */ 9014 TCGCond cond; 9015 9016 switch (opcode) { 9017 case 0x1: /* SQADD */ 9018 if (u) { 9019 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9020 } else { 9021 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9022 } 9023 break; 9024 case 0x5: /* SQSUB */ 9025 if (u) { 9026 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9027 } else { 9028 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9029 } 9030 break; 9031 case 0x6: /* CMGT, CMHI */ 9032 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9033 * We implement this using setcond (test) and then negating. 9034 */ 9035 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9036 do_cmop: 9037 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9038 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9039 break; 9040 case 0x7: /* CMGE, CMHS */ 9041 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9042 goto do_cmop; 9043 case 0x11: /* CMTST, CMEQ */ 9044 if (u) { 9045 cond = TCG_COND_EQ; 9046 goto do_cmop; 9047 } 9048 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9049 break; 9050 case 0x8: /* SSHL, USHL */ 9051 if (u) { 9052 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9053 } else { 9054 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9055 } 9056 break; 9057 case 0x9: /* SQSHL, UQSHL */ 9058 if (u) { 9059 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9060 } else { 9061 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9062 } 9063 break; 9064 case 0xa: /* SRSHL, URSHL */ 9065 if (u) { 9066 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9067 } else { 9068 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9069 } 9070 break; 9071 case 0xb: /* SQRSHL, UQRSHL */ 9072 if (u) { 9073 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9074 } else { 9075 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9076 } 9077 break; 9078 case 0x10: /* ADD, SUB */ 9079 if (u) { 9080 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9081 } else { 9082 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9083 } 9084 break; 9085 default: 9086 g_assert_not_reached(); 9087 } 9088 } 9089 9090 /* Handle the 3-same-operands float operations; shared by the scalar 9091 * and vector encodings. The caller must filter out any encodings 9092 * not allocated for the encoding it is dealing with. 9093 */ 9094 static void handle_3same_float(DisasContext *s, int size, int elements, 9095 int fpopcode, int rd, int rn, int rm) 9096 { 9097 int pass; 9098 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9099 9100 for (pass = 0; pass < elements; pass++) { 9101 if (size) { 9102 /* Double */ 9103 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9104 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9105 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9106 9107 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9108 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9109 9110 switch (fpopcode) { 9111 case 0x39: /* FMLS */ 9112 /* As usual for ARM, separate negation for fused multiply-add */ 9113 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9114 /* fall through */ 9115 case 0x19: /* FMLA */ 9116 read_vec_element(s, tcg_res, rd, pass, MO_64); 9117 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9118 tcg_res, fpst); 9119 break; 9120 case 0x18: /* FMAXNM */ 9121 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 case 0x1a: /* FADD */ 9124 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9125 break; 9126 case 0x1b: /* FMULX */ 9127 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9128 break; 9129 case 0x1c: /* FCMEQ */ 9130 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9131 break; 9132 case 0x1e: /* FMAX */ 9133 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9134 break; 9135 case 0x1f: /* FRECPS */ 9136 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9137 break; 9138 case 0x38: /* FMINNM */ 9139 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9140 break; 9141 case 0x3a: /* FSUB */ 9142 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9143 break; 9144 case 0x3e: /* FMIN */ 9145 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9146 break; 9147 case 0x3f: /* FRSQRTS */ 9148 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9149 break; 9150 case 0x5b: /* FMUL */ 9151 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9152 break; 9153 case 0x5c: /* FCMGE */ 9154 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9155 break; 9156 case 0x5d: /* FACGE */ 9157 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9158 break; 9159 case 0x5f: /* FDIV */ 9160 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9161 break; 9162 case 0x7a: /* FABD */ 9163 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9164 gen_helper_vfp_absd(tcg_res, tcg_res); 9165 break; 9166 case 0x7c: /* FCMGT */ 9167 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9168 break; 9169 case 0x7d: /* FACGT */ 9170 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9171 break; 9172 default: 9173 g_assert_not_reached(); 9174 } 9175 9176 write_vec_element(s, tcg_res, rd, pass, MO_64); 9177 } else { 9178 /* Single */ 9179 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9180 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9181 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9182 9183 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9184 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9185 9186 switch (fpopcode) { 9187 case 0x39: /* FMLS */ 9188 /* As usual for ARM, separate negation for fused multiply-add */ 9189 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9190 /* fall through */ 9191 case 0x19: /* FMLA */ 9192 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9193 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9194 tcg_res, fpst); 9195 break; 9196 case 0x1a: /* FADD */ 9197 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9198 break; 9199 case 0x1b: /* FMULX */ 9200 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9201 break; 9202 case 0x1c: /* FCMEQ */ 9203 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9204 break; 9205 case 0x1e: /* FMAX */ 9206 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9207 break; 9208 case 0x1f: /* FRECPS */ 9209 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9210 break; 9211 case 0x18: /* FMAXNM */ 9212 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9213 break; 9214 case 0x38: /* FMINNM */ 9215 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9216 break; 9217 case 0x3a: /* FSUB */ 9218 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9219 break; 9220 case 0x3e: /* FMIN */ 9221 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9222 break; 9223 case 0x3f: /* FRSQRTS */ 9224 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9225 break; 9226 case 0x5b: /* FMUL */ 9227 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9228 break; 9229 case 0x5c: /* FCMGE */ 9230 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9231 break; 9232 case 0x5d: /* FACGE */ 9233 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9234 break; 9235 case 0x5f: /* FDIV */ 9236 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9237 break; 9238 case 0x7a: /* FABD */ 9239 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9240 gen_helper_vfp_abss(tcg_res, tcg_res); 9241 break; 9242 case 0x7c: /* FCMGT */ 9243 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9244 break; 9245 case 0x7d: /* FACGT */ 9246 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9247 break; 9248 default: 9249 g_assert_not_reached(); 9250 } 9251 9252 if (elements == 1) { 9253 /* scalar single so clear high part */ 9254 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9255 9256 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9257 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9258 } else { 9259 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9260 } 9261 } 9262 } 9263 9264 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9265 } 9266 9267 /* AdvSIMD scalar three same 9268 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9269 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9270 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9271 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9272 */ 9273 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9274 { 9275 int rd = extract32(insn, 0, 5); 9276 int rn = extract32(insn, 5, 5); 9277 int opcode = extract32(insn, 11, 5); 9278 int rm = extract32(insn, 16, 5); 9279 int size = extract32(insn, 22, 2); 9280 bool u = extract32(insn, 29, 1); 9281 TCGv_i64 tcg_rd; 9282 9283 if (opcode >= 0x18) { 9284 /* Floating point: U, size[1] and opcode indicate operation */ 9285 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9286 switch (fpopcode) { 9287 case 0x1b: /* FMULX */ 9288 case 0x1f: /* FRECPS */ 9289 case 0x3f: /* FRSQRTS */ 9290 case 0x5d: /* FACGE */ 9291 case 0x7d: /* FACGT */ 9292 case 0x1c: /* FCMEQ */ 9293 case 0x5c: /* FCMGE */ 9294 case 0x7c: /* FCMGT */ 9295 case 0x7a: /* FABD */ 9296 break; 9297 default: 9298 unallocated_encoding(s); 9299 return; 9300 } 9301 9302 if (!fp_access_check(s)) { 9303 return; 9304 } 9305 9306 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9307 return; 9308 } 9309 9310 switch (opcode) { 9311 case 0x1: /* SQADD, UQADD */ 9312 case 0x5: /* SQSUB, UQSUB */ 9313 case 0x9: /* SQSHL, UQSHL */ 9314 case 0xb: /* SQRSHL, UQRSHL */ 9315 break; 9316 case 0x8: /* SSHL, USHL */ 9317 case 0xa: /* SRSHL, URSHL */ 9318 case 0x6: /* CMGT, CMHI */ 9319 case 0x7: /* CMGE, CMHS */ 9320 case 0x11: /* CMTST, CMEQ */ 9321 case 0x10: /* ADD, SUB (vector) */ 9322 if (size != 3) { 9323 unallocated_encoding(s); 9324 return; 9325 } 9326 break; 9327 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9328 if (size != 1 && size != 2) { 9329 unallocated_encoding(s); 9330 return; 9331 } 9332 break; 9333 default: 9334 unallocated_encoding(s); 9335 return; 9336 } 9337 9338 if (!fp_access_check(s)) { 9339 return; 9340 } 9341 9342 tcg_rd = tcg_temp_new_i64(); 9343 9344 if (size == 3) { 9345 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9346 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9347 9348 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9349 } else { 9350 /* Do a single operation on the lowest element in the vector. 9351 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9352 * no side effects for all these operations. 9353 * OPTME: special-purpose helpers would avoid doing some 9354 * unnecessary work in the helper for the 8 and 16 bit cases. 9355 */ 9356 NeonGenTwoOpEnvFn *genenvfn; 9357 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9358 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9359 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9360 9361 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9362 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9363 9364 switch (opcode) { 9365 case 0x1: /* SQADD, UQADD */ 9366 { 9367 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9368 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9369 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9370 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9371 }; 9372 genenvfn = fns[size][u]; 9373 break; 9374 } 9375 case 0x5: /* SQSUB, UQSUB */ 9376 { 9377 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9378 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9379 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9380 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9381 }; 9382 genenvfn = fns[size][u]; 9383 break; 9384 } 9385 case 0x9: /* SQSHL, UQSHL */ 9386 { 9387 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9388 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9389 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9390 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9391 }; 9392 genenvfn = fns[size][u]; 9393 break; 9394 } 9395 case 0xb: /* SQRSHL, UQRSHL */ 9396 { 9397 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9398 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9399 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9400 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9401 }; 9402 genenvfn = fns[size][u]; 9403 break; 9404 } 9405 case 0x16: /* SQDMULH, SQRDMULH */ 9406 { 9407 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9408 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9409 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9410 }; 9411 assert(size == 1 || size == 2); 9412 genenvfn = fns[size - 1][u]; 9413 break; 9414 } 9415 default: 9416 g_assert_not_reached(); 9417 } 9418 9419 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9420 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9421 } 9422 9423 write_fp_dreg(s, rd, tcg_rd); 9424 } 9425 9426 /* AdvSIMD scalar three same FP16 9427 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9428 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9429 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9430 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9431 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9432 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9433 */ 9434 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9435 uint32_t insn) 9436 { 9437 int rd = extract32(insn, 0, 5); 9438 int rn = extract32(insn, 5, 5); 9439 int opcode = extract32(insn, 11, 3); 9440 int rm = extract32(insn, 16, 5); 9441 bool u = extract32(insn, 29, 1); 9442 bool a = extract32(insn, 23, 1); 9443 int fpopcode = opcode | (a << 3) | (u << 4); 9444 TCGv_ptr fpst; 9445 TCGv_i32 tcg_op1; 9446 TCGv_i32 tcg_op2; 9447 TCGv_i32 tcg_res; 9448 9449 switch (fpopcode) { 9450 case 0x03: /* FMULX */ 9451 case 0x04: /* FCMEQ (reg) */ 9452 case 0x07: /* FRECPS */ 9453 case 0x0f: /* FRSQRTS */ 9454 case 0x14: /* FCMGE (reg) */ 9455 case 0x15: /* FACGE */ 9456 case 0x1a: /* FABD */ 9457 case 0x1c: /* FCMGT (reg) */ 9458 case 0x1d: /* FACGT */ 9459 break; 9460 default: 9461 unallocated_encoding(s); 9462 return; 9463 } 9464 9465 if (!dc_isar_feature(aa64_fp16, s)) { 9466 unallocated_encoding(s); 9467 } 9468 9469 if (!fp_access_check(s)) { 9470 return; 9471 } 9472 9473 fpst = fpstatus_ptr(FPST_FPCR_F16); 9474 9475 tcg_op1 = read_fp_hreg(s, rn); 9476 tcg_op2 = read_fp_hreg(s, rm); 9477 tcg_res = tcg_temp_new_i32(); 9478 9479 switch (fpopcode) { 9480 case 0x03: /* FMULX */ 9481 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9482 break; 9483 case 0x04: /* FCMEQ (reg) */ 9484 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9485 break; 9486 case 0x07: /* FRECPS */ 9487 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9488 break; 9489 case 0x0f: /* FRSQRTS */ 9490 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9491 break; 9492 case 0x14: /* FCMGE (reg) */ 9493 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9494 break; 9495 case 0x15: /* FACGE */ 9496 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9497 break; 9498 case 0x1a: /* FABD */ 9499 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9500 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9501 break; 9502 case 0x1c: /* FCMGT (reg) */ 9503 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9504 break; 9505 case 0x1d: /* FACGT */ 9506 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9507 break; 9508 default: 9509 g_assert_not_reached(); 9510 } 9511 9512 write_fp_sreg(s, rd, tcg_res); 9513 } 9514 9515 /* AdvSIMD scalar three same extra 9516 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9517 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9518 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9519 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9520 */ 9521 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9522 uint32_t insn) 9523 { 9524 int rd = extract32(insn, 0, 5); 9525 int rn = extract32(insn, 5, 5); 9526 int opcode = extract32(insn, 11, 4); 9527 int rm = extract32(insn, 16, 5); 9528 int size = extract32(insn, 22, 2); 9529 bool u = extract32(insn, 29, 1); 9530 TCGv_i32 ele1, ele2, ele3; 9531 TCGv_i64 res; 9532 bool feature; 9533 9534 switch (u * 16 + opcode) { 9535 case 0x10: /* SQRDMLAH (vector) */ 9536 case 0x11: /* SQRDMLSH (vector) */ 9537 if (size != 1 && size != 2) { 9538 unallocated_encoding(s); 9539 return; 9540 } 9541 feature = dc_isar_feature(aa64_rdm, s); 9542 break; 9543 default: 9544 unallocated_encoding(s); 9545 return; 9546 } 9547 if (!feature) { 9548 unallocated_encoding(s); 9549 return; 9550 } 9551 if (!fp_access_check(s)) { 9552 return; 9553 } 9554 9555 /* Do a single operation on the lowest element in the vector. 9556 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9557 * with no side effects for all these operations. 9558 * OPTME: special-purpose helpers would avoid doing some 9559 * unnecessary work in the helper for the 16 bit cases. 9560 */ 9561 ele1 = tcg_temp_new_i32(); 9562 ele2 = tcg_temp_new_i32(); 9563 ele3 = tcg_temp_new_i32(); 9564 9565 read_vec_element_i32(s, ele1, rn, 0, size); 9566 read_vec_element_i32(s, ele2, rm, 0, size); 9567 read_vec_element_i32(s, ele3, rd, 0, size); 9568 9569 switch (opcode) { 9570 case 0x0: /* SQRDMLAH */ 9571 if (size == 1) { 9572 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9573 } else { 9574 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9575 } 9576 break; 9577 case 0x1: /* SQRDMLSH */ 9578 if (size == 1) { 9579 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9580 } else { 9581 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9582 } 9583 break; 9584 default: 9585 g_assert_not_reached(); 9586 } 9587 9588 res = tcg_temp_new_i64(); 9589 tcg_gen_extu_i32_i64(res, ele3); 9590 write_fp_dreg(s, rd, res); 9591 } 9592 9593 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9594 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9595 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9596 { 9597 /* Handle 64->64 opcodes which are shared between the scalar and 9598 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9599 * is valid in either group and also the double-precision fp ops. 9600 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9601 * requires them. 9602 */ 9603 TCGCond cond; 9604 9605 switch (opcode) { 9606 case 0x4: /* CLS, CLZ */ 9607 if (u) { 9608 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9609 } else { 9610 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9611 } 9612 break; 9613 case 0x5: /* NOT */ 9614 /* This opcode is shared with CNT and RBIT but we have earlier 9615 * enforced that size == 3 if and only if this is the NOT insn. 9616 */ 9617 tcg_gen_not_i64(tcg_rd, tcg_rn); 9618 break; 9619 case 0x7: /* SQABS, SQNEG */ 9620 if (u) { 9621 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9622 } else { 9623 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9624 } 9625 break; 9626 case 0xa: /* CMLT */ 9627 /* 64 bit integer comparison against zero, result is 9628 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9629 * subtracting 1. 9630 */ 9631 cond = TCG_COND_LT; 9632 do_cmop: 9633 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9634 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9635 break; 9636 case 0x8: /* CMGT, CMGE */ 9637 cond = u ? TCG_COND_GE : TCG_COND_GT; 9638 goto do_cmop; 9639 case 0x9: /* CMEQ, CMLE */ 9640 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9641 goto do_cmop; 9642 case 0xb: /* ABS, NEG */ 9643 if (u) { 9644 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9645 } else { 9646 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9647 } 9648 break; 9649 case 0x2f: /* FABS */ 9650 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9651 break; 9652 case 0x6f: /* FNEG */ 9653 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9654 break; 9655 case 0x7f: /* FSQRT */ 9656 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9657 break; 9658 case 0x1a: /* FCVTNS */ 9659 case 0x1b: /* FCVTMS */ 9660 case 0x1c: /* FCVTAS */ 9661 case 0x3a: /* FCVTPS */ 9662 case 0x3b: /* FCVTZS */ 9663 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9664 break; 9665 case 0x5a: /* FCVTNU */ 9666 case 0x5b: /* FCVTMU */ 9667 case 0x5c: /* FCVTAU */ 9668 case 0x7a: /* FCVTPU */ 9669 case 0x7b: /* FCVTZU */ 9670 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9671 break; 9672 case 0x18: /* FRINTN */ 9673 case 0x19: /* FRINTM */ 9674 case 0x38: /* FRINTP */ 9675 case 0x39: /* FRINTZ */ 9676 case 0x58: /* FRINTA */ 9677 case 0x79: /* FRINTI */ 9678 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9679 break; 9680 case 0x59: /* FRINTX */ 9681 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9682 break; 9683 case 0x1e: /* FRINT32Z */ 9684 case 0x5e: /* FRINT32X */ 9685 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9686 break; 9687 case 0x1f: /* FRINT64Z */ 9688 case 0x5f: /* FRINT64X */ 9689 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9690 break; 9691 default: 9692 g_assert_not_reached(); 9693 } 9694 } 9695 9696 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9697 bool is_scalar, bool is_u, bool is_q, 9698 int size, int rn, int rd) 9699 { 9700 bool is_double = (size == MO_64); 9701 TCGv_ptr fpst; 9702 9703 if (!fp_access_check(s)) { 9704 return; 9705 } 9706 9707 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9708 9709 if (is_double) { 9710 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9711 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9712 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9713 NeonGenTwoDoubleOpFn *genfn; 9714 bool swap = false; 9715 int pass; 9716 9717 switch (opcode) { 9718 case 0x2e: /* FCMLT (zero) */ 9719 swap = true; 9720 /* fallthrough */ 9721 case 0x2c: /* FCMGT (zero) */ 9722 genfn = gen_helper_neon_cgt_f64; 9723 break; 9724 case 0x2d: /* FCMEQ (zero) */ 9725 genfn = gen_helper_neon_ceq_f64; 9726 break; 9727 case 0x6d: /* FCMLE (zero) */ 9728 swap = true; 9729 /* fall through */ 9730 case 0x6c: /* FCMGE (zero) */ 9731 genfn = gen_helper_neon_cge_f64; 9732 break; 9733 default: 9734 g_assert_not_reached(); 9735 } 9736 9737 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9738 read_vec_element(s, tcg_op, rn, pass, MO_64); 9739 if (swap) { 9740 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9741 } else { 9742 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9743 } 9744 write_vec_element(s, tcg_res, rd, pass, MO_64); 9745 } 9746 9747 clear_vec_high(s, !is_scalar, rd); 9748 } else { 9749 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9750 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9751 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9752 NeonGenTwoSingleOpFn *genfn; 9753 bool swap = false; 9754 int pass, maxpasses; 9755 9756 if (size == MO_16) { 9757 switch (opcode) { 9758 case 0x2e: /* FCMLT (zero) */ 9759 swap = true; 9760 /* fall through */ 9761 case 0x2c: /* FCMGT (zero) */ 9762 genfn = gen_helper_advsimd_cgt_f16; 9763 break; 9764 case 0x2d: /* FCMEQ (zero) */ 9765 genfn = gen_helper_advsimd_ceq_f16; 9766 break; 9767 case 0x6d: /* FCMLE (zero) */ 9768 swap = true; 9769 /* fall through */ 9770 case 0x6c: /* FCMGE (zero) */ 9771 genfn = gen_helper_advsimd_cge_f16; 9772 break; 9773 default: 9774 g_assert_not_reached(); 9775 } 9776 } else { 9777 switch (opcode) { 9778 case 0x2e: /* FCMLT (zero) */ 9779 swap = true; 9780 /* fall through */ 9781 case 0x2c: /* FCMGT (zero) */ 9782 genfn = gen_helper_neon_cgt_f32; 9783 break; 9784 case 0x2d: /* FCMEQ (zero) */ 9785 genfn = gen_helper_neon_ceq_f32; 9786 break; 9787 case 0x6d: /* FCMLE (zero) */ 9788 swap = true; 9789 /* fall through */ 9790 case 0x6c: /* FCMGE (zero) */ 9791 genfn = gen_helper_neon_cge_f32; 9792 break; 9793 default: 9794 g_assert_not_reached(); 9795 } 9796 } 9797 9798 if (is_scalar) { 9799 maxpasses = 1; 9800 } else { 9801 int vector_size = 8 << is_q; 9802 maxpasses = vector_size >> size; 9803 } 9804 9805 for (pass = 0; pass < maxpasses; pass++) { 9806 read_vec_element_i32(s, tcg_op, rn, pass, size); 9807 if (swap) { 9808 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9809 } else { 9810 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9811 } 9812 if (is_scalar) { 9813 write_fp_sreg(s, rd, tcg_res); 9814 } else { 9815 write_vec_element_i32(s, tcg_res, rd, pass, size); 9816 } 9817 } 9818 9819 if (!is_scalar) { 9820 clear_vec_high(s, is_q, rd); 9821 } 9822 } 9823 } 9824 9825 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9826 bool is_scalar, bool is_u, bool is_q, 9827 int size, int rn, int rd) 9828 { 9829 bool is_double = (size == 3); 9830 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9831 9832 if (is_double) { 9833 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9834 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9835 int pass; 9836 9837 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9838 read_vec_element(s, tcg_op, rn, pass, MO_64); 9839 switch (opcode) { 9840 case 0x3d: /* FRECPE */ 9841 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9842 break; 9843 case 0x3f: /* FRECPX */ 9844 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9845 break; 9846 case 0x7d: /* FRSQRTE */ 9847 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9848 break; 9849 default: 9850 g_assert_not_reached(); 9851 } 9852 write_vec_element(s, tcg_res, rd, pass, MO_64); 9853 } 9854 clear_vec_high(s, !is_scalar, rd); 9855 } else { 9856 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9857 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9858 int pass, maxpasses; 9859 9860 if (is_scalar) { 9861 maxpasses = 1; 9862 } else { 9863 maxpasses = is_q ? 4 : 2; 9864 } 9865 9866 for (pass = 0; pass < maxpasses; pass++) { 9867 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9868 9869 switch (opcode) { 9870 case 0x3c: /* URECPE */ 9871 gen_helper_recpe_u32(tcg_res, tcg_op); 9872 break; 9873 case 0x3d: /* FRECPE */ 9874 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9875 break; 9876 case 0x3f: /* FRECPX */ 9877 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9878 break; 9879 case 0x7d: /* FRSQRTE */ 9880 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9881 break; 9882 default: 9883 g_assert_not_reached(); 9884 } 9885 9886 if (is_scalar) { 9887 write_fp_sreg(s, rd, tcg_res); 9888 } else { 9889 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9890 } 9891 } 9892 if (!is_scalar) { 9893 clear_vec_high(s, is_q, rd); 9894 } 9895 } 9896 } 9897 9898 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9899 int opcode, bool u, bool is_q, 9900 int size, int rn, int rd) 9901 { 9902 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9903 * in the source becomes a size element in the destination). 9904 */ 9905 int pass; 9906 TCGv_i32 tcg_res[2]; 9907 int destelt = is_q ? 2 : 0; 9908 int passes = scalar ? 1 : 2; 9909 9910 if (scalar) { 9911 tcg_res[1] = tcg_constant_i32(0); 9912 } 9913 9914 for (pass = 0; pass < passes; pass++) { 9915 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9916 NeonGenNarrowFn *genfn = NULL; 9917 NeonGenNarrowEnvFn *genenvfn = NULL; 9918 9919 if (scalar) { 9920 read_vec_element(s, tcg_op, rn, pass, size + 1); 9921 } else { 9922 read_vec_element(s, tcg_op, rn, pass, MO_64); 9923 } 9924 tcg_res[pass] = tcg_temp_new_i32(); 9925 9926 switch (opcode) { 9927 case 0x12: /* XTN, SQXTUN */ 9928 { 9929 static NeonGenNarrowFn * const xtnfns[3] = { 9930 gen_helper_neon_narrow_u8, 9931 gen_helper_neon_narrow_u16, 9932 tcg_gen_extrl_i64_i32, 9933 }; 9934 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9935 gen_helper_neon_unarrow_sat8, 9936 gen_helper_neon_unarrow_sat16, 9937 gen_helper_neon_unarrow_sat32, 9938 }; 9939 if (u) { 9940 genenvfn = sqxtunfns[size]; 9941 } else { 9942 genfn = xtnfns[size]; 9943 } 9944 break; 9945 } 9946 case 0x14: /* SQXTN, UQXTN */ 9947 { 9948 static NeonGenNarrowEnvFn * const fns[3][2] = { 9949 { gen_helper_neon_narrow_sat_s8, 9950 gen_helper_neon_narrow_sat_u8 }, 9951 { gen_helper_neon_narrow_sat_s16, 9952 gen_helper_neon_narrow_sat_u16 }, 9953 { gen_helper_neon_narrow_sat_s32, 9954 gen_helper_neon_narrow_sat_u32 }, 9955 }; 9956 genenvfn = fns[size][u]; 9957 break; 9958 } 9959 case 0x16: /* FCVTN, FCVTN2 */ 9960 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9961 if (size == 2) { 9962 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9963 } else { 9964 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9965 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9966 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9967 TCGv_i32 ahp = get_ahp_flag(); 9968 9969 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9970 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9971 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9972 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9973 } 9974 break; 9975 case 0x36: /* BFCVTN, BFCVTN2 */ 9976 { 9977 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9978 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9979 } 9980 break; 9981 case 0x56: /* FCVTXN, FCVTXN2 */ 9982 /* 64 bit to 32 bit float conversion 9983 * with von Neumann rounding (round to odd) 9984 */ 9985 assert(size == 2); 9986 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9987 break; 9988 default: 9989 g_assert_not_reached(); 9990 } 9991 9992 if (genfn) { 9993 genfn(tcg_res[pass], tcg_op); 9994 } else if (genenvfn) { 9995 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9996 } 9997 } 9998 9999 for (pass = 0; pass < 2; pass++) { 10000 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10001 } 10002 clear_vec_high(s, is_q, rd); 10003 } 10004 10005 /* Remaining saturating accumulating ops */ 10006 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10007 bool is_q, int size, int rn, int rd) 10008 { 10009 bool is_double = (size == 3); 10010 10011 if (is_double) { 10012 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10013 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10014 int pass; 10015 10016 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10017 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10018 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10019 10020 if (is_u) { /* USQADD */ 10021 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10022 } else { /* SUQADD */ 10023 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10024 } 10025 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10026 } 10027 clear_vec_high(s, !is_scalar, rd); 10028 } else { 10029 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10030 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10031 int pass, maxpasses; 10032 10033 if (is_scalar) { 10034 maxpasses = 1; 10035 } else { 10036 maxpasses = is_q ? 4 : 2; 10037 } 10038 10039 for (pass = 0; pass < maxpasses; pass++) { 10040 if (is_scalar) { 10041 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10042 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10043 } else { 10044 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10045 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10046 } 10047 10048 if (is_u) { /* USQADD */ 10049 switch (size) { 10050 case 0: 10051 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10052 break; 10053 case 1: 10054 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10055 break; 10056 case 2: 10057 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10058 break; 10059 default: 10060 g_assert_not_reached(); 10061 } 10062 } else { /* SUQADD */ 10063 switch (size) { 10064 case 0: 10065 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10066 break; 10067 case 1: 10068 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10069 break; 10070 case 2: 10071 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10072 break; 10073 default: 10074 g_assert_not_reached(); 10075 } 10076 } 10077 10078 if (is_scalar) { 10079 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10080 } 10081 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10082 } 10083 clear_vec_high(s, is_q, rd); 10084 } 10085 } 10086 10087 /* AdvSIMD scalar two reg misc 10088 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10089 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10090 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10091 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10092 */ 10093 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10094 { 10095 int rd = extract32(insn, 0, 5); 10096 int rn = extract32(insn, 5, 5); 10097 int opcode = extract32(insn, 12, 5); 10098 int size = extract32(insn, 22, 2); 10099 bool u = extract32(insn, 29, 1); 10100 bool is_fcvt = false; 10101 int rmode; 10102 TCGv_i32 tcg_rmode; 10103 TCGv_ptr tcg_fpstatus; 10104 10105 switch (opcode) { 10106 case 0x3: /* USQADD / SUQADD*/ 10107 if (!fp_access_check(s)) { 10108 return; 10109 } 10110 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10111 return; 10112 case 0x7: /* SQABS / SQNEG */ 10113 break; 10114 case 0xa: /* CMLT */ 10115 if (u) { 10116 unallocated_encoding(s); 10117 return; 10118 } 10119 /* fall through */ 10120 case 0x8: /* CMGT, CMGE */ 10121 case 0x9: /* CMEQ, CMLE */ 10122 case 0xb: /* ABS, NEG */ 10123 if (size != 3) { 10124 unallocated_encoding(s); 10125 return; 10126 } 10127 break; 10128 case 0x12: /* SQXTUN */ 10129 if (!u) { 10130 unallocated_encoding(s); 10131 return; 10132 } 10133 /* fall through */ 10134 case 0x14: /* SQXTN, UQXTN */ 10135 if (size == 3) { 10136 unallocated_encoding(s); 10137 return; 10138 } 10139 if (!fp_access_check(s)) { 10140 return; 10141 } 10142 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10143 return; 10144 case 0xc ... 0xf: 10145 case 0x16 ... 0x1d: 10146 case 0x1f: 10147 /* Floating point: U, size[1] and opcode indicate operation; 10148 * size[0] indicates single or double precision. 10149 */ 10150 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10151 size = extract32(size, 0, 1) ? 3 : 2; 10152 switch (opcode) { 10153 case 0x2c: /* FCMGT (zero) */ 10154 case 0x2d: /* FCMEQ (zero) */ 10155 case 0x2e: /* FCMLT (zero) */ 10156 case 0x6c: /* FCMGE (zero) */ 10157 case 0x6d: /* FCMLE (zero) */ 10158 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10159 return; 10160 case 0x1d: /* SCVTF */ 10161 case 0x5d: /* UCVTF */ 10162 { 10163 bool is_signed = (opcode == 0x1d); 10164 if (!fp_access_check(s)) { 10165 return; 10166 } 10167 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10168 return; 10169 } 10170 case 0x3d: /* FRECPE */ 10171 case 0x3f: /* FRECPX */ 10172 case 0x7d: /* FRSQRTE */ 10173 if (!fp_access_check(s)) { 10174 return; 10175 } 10176 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10177 return; 10178 case 0x1a: /* FCVTNS */ 10179 case 0x1b: /* FCVTMS */ 10180 case 0x3a: /* FCVTPS */ 10181 case 0x3b: /* FCVTZS */ 10182 case 0x5a: /* FCVTNU */ 10183 case 0x5b: /* FCVTMU */ 10184 case 0x7a: /* FCVTPU */ 10185 case 0x7b: /* FCVTZU */ 10186 is_fcvt = true; 10187 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10188 break; 10189 case 0x1c: /* FCVTAS */ 10190 case 0x5c: /* FCVTAU */ 10191 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10192 is_fcvt = true; 10193 rmode = FPROUNDING_TIEAWAY; 10194 break; 10195 case 0x56: /* FCVTXN, FCVTXN2 */ 10196 if (size == 2) { 10197 unallocated_encoding(s); 10198 return; 10199 } 10200 if (!fp_access_check(s)) { 10201 return; 10202 } 10203 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10204 return; 10205 default: 10206 unallocated_encoding(s); 10207 return; 10208 } 10209 break; 10210 default: 10211 unallocated_encoding(s); 10212 return; 10213 } 10214 10215 if (!fp_access_check(s)) { 10216 return; 10217 } 10218 10219 if (is_fcvt) { 10220 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10221 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10222 } else { 10223 tcg_fpstatus = NULL; 10224 tcg_rmode = NULL; 10225 } 10226 10227 if (size == 3) { 10228 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10229 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10230 10231 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10232 write_fp_dreg(s, rd, tcg_rd); 10233 } else { 10234 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10235 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10236 10237 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10238 10239 switch (opcode) { 10240 case 0x7: /* SQABS, SQNEG */ 10241 { 10242 NeonGenOneOpEnvFn *genfn; 10243 static NeonGenOneOpEnvFn * const fns[3][2] = { 10244 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10245 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10246 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10247 }; 10248 genfn = fns[size][u]; 10249 genfn(tcg_rd, cpu_env, tcg_rn); 10250 break; 10251 } 10252 case 0x1a: /* FCVTNS */ 10253 case 0x1b: /* FCVTMS */ 10254 case 0x1c: /* FCVTAS */ 10255 case 0x3a: /* FCVTPS */ 10256 case 0x3b: /* FCVTZS */ 10257 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10258 tcg_fpstatus); 10259 break; 10260 case 0x5a: /* FCVTNU */ 10261 case 0x5b: /* FCVTMU */ 10262 case 0x5c: /* FCVTAU */ 10263 case 0x7a: /* FCVTPU */ 10264 case 0x7b: /* FCVTZU */ 10265 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10266 tcg_fpstatus); 10267 break; 10268 default: 10269 g_assert_not_reached(); 10270 } 10271 10272 write_fp_sreg(s, rd, tcg_rd); 10273 } 10274 10275 if (is_fcvt) { 10276 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10277 } 10278 } 10279 10280 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10281 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10282 int immh, int immb, int opcode, int rn, int rd) 10283 { 10284 int size = 32 - clz32(immh) - 1; 10285 int immhb = immh << 3 | immb; 10286 int shift = 2 * (8 << size) - immhb; 10287 GVecGen2iFn *gvec_fn; 10288 10289 if (extract32(immh, 3, 1) && !is_q) { 10290 unallocated_encoding(s); 10291 return; 10292 } 10293 tcg_debug_assert(size <= 3); 10294 10295 if (!fp_access_check(s)) { 10296 return; 10297 } 10298 10299 switch (opcode) { 10300 case 0x02: /* SSRA / USRA (accumulate) */ 10301 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10302 break; 10303 10304 case 0x08: /* SRI */ 10305 gvec_fn = gen_gvec_sri; 10306 break; 10307 10308 case 0x00: /* SSHR / USHR */ 10309 if (is_u) { 10310 if (shift == 8 << size) { 10311 /* Shift count the same size as element size produces zero. */ 10312 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10313 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10314 return; 10315 } 10316 gvec_fn = tcg_gen_gvec_shri; 10317 } else { 10318 /* Shift count the same size as element size produces all sign. */ 10319 if (shift == 8 << size) { 10320 shift -= 1; 10321 } 10322 gvec_fn = tcg_gen_gvec_sari; 10323 } 10324 break; 10325 10326 case 0x04: /* SRSHR / URSHR (rounding) */ 10327 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10328 break; 10329 10330 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10331 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10332 break; 10333 10334 default: 10335 g_assert_not_reached(); 10336 } 10337 10338 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10339 } 10340 10341 /* SHL/SLI - Vector shift left */ 10342 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10343 int immh, int immb, int opcode, int rn, int rd) 10344 { 10345 int size = 32 - clz32(immh) - 1; 10346 int immhb = immh << 3 | immb; 10347 int shift = immhb - (8 << size); 10348 10349 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10350 assert(size >= 0 && size <= 3); 10351 10352 if (extract32(immh, 3, 1) && !is_q) { 10353 unallocated_encoding(s); 10354 return; 10355 } 10356 10357 if (!fp_access_check(s)) { 10358 return; 10359 } 10360 10361 if (insert) { 10362 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10363 } else { 10364 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10365 } 10366 } 10367 10368 /* USHLL/SHLL - Vector shift left with widening */ 10369 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10370 int immh, int immb, int opcode, int rn, int rd) 10371 { 10372 int size = 32 - clz32(immh) - 1; 10373 int immhb = immh << 3 | immb; 10374 int shift = immhb - (8 << size); 10375 int dsize = 64; 10376 int esize = 8 << size; 10377 int elements = dsize/esize; 10378 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10379 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10380 int i; 10381 10382 if (size >= 3) { 10383 unallocated_encoding(s); 10384 return; 10385 } 10386 10387 if (!fp_access_check(s)) { 10388 return; 10389 } 10390 10391 /* For the LL variants the store is larger than the load, 10392 * so if rd == rn we would overwrite parts of our input. 10393 * So load everything right now and use shifts in the main loop. 10394 */ 10395 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10396 10397 for (i = 0; i < elements; i++) { 10398 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10399 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10400 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10401 write_vec_element(s, tcg_rd, rd, i, size + 1); 10402 } 10403 } 10404 10405 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10406 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10407 int immh, int immb, int opcode, int rn, int rd) 10408 { 10409 int immhb = immh << 3 | immb; 10410 int size = 32 - clz32(immh) - 1; 10411 int dsize = 64; 10412 int esize = 8 << size; 10413 int elements = dsize/esize; 10414 int shift = (2 * esize) - immhb; 10415 bool round = extract32(opcode, 0, 1); 10416 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10417 TCGv_i64 tcg_round; 10418 int i; 10419 10420 if (extract32(immh, 3, 1)) { 10421 unallocated_encoding(s); 10422 return; 10423 } 10424 10425 if (!fp_access_check(s)) { 10426 return; 10427 } 10428 10429 tcg_rn = tcg_temp_new_i64(); 10430 tcg_rd = tcg_temp_new_i64(); 10431 tcg_final = tcg_temp_new_i64(); 10432 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10433 10434 if (round) { 10435 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10436 } else { 10437 tcg_round = NULL; 10438 } 10439 10440 for (i = 0; i < elements; i++) { 10441 read_vec_element(s, tcg_rn, rn, i, size+1); 10442 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10443 false, true, size+1, shift); 10444 10445 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10446 } 10447 10448 if (!is_q) { 10449 write_vec_element(s, tcg_final, rd, 0, MO_64); 10450 } else { 10451 write_vec_element(s, tcg_final, rd, 1, MO_64); 10452 } 10453 10454 clear_vec_high(s, is_q, rd); 10455 } 10456 10457 10458 /* AdvSIMD shift by immediate 10459 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10460 * +---+---+---+-------------+------+------+--------+---+------+------+ 10461 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10462 * +---+---+---+-------------+------+------+--------+---+------+------+ 10463 */ 10464 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10465 { 10466 int rd = extract32(insn, 0, 5); 10467 int rn = extract32(insn, 5, 5); 10468 int opcode = extract32(insn, 11, 5); 10469 int immb = extract32(insn, 16, 3); 10470 int immh = extract32(insn, 19, 4); 10471 bool is_u = extract32(insn, 29, 1); 10472 bool is_q = extract32(insn, 30, 1); 10473 10474 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10475 assert(immh != 0); 10476 10477 switch (opcode) { 10478 case 0x08: /* SRI */ 10479 if (!is_u) { 10480 unallocated_encoding(s); 10481 return; 10482 } 10483 /* fall through */ 10484 case 0x00: /* SSHR / USHR */ 10485 case 0x02: /* SSRA / USRA (accumulate) */ 10486 case 0x04: /* SRSHR / URSHR (rounding) */ 10487 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10488 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10489 break; 10490 case 0x0a: /* SHL / SLI */ 10491 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10492 break; 10493 case 0x10: /* SHRN */ 10494 case 0x11: /* RSHRN / SQRSHRUN */ 10495 if (is_u) { 10496 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10497 opcode, rn, rd); 10498 } else { 10499 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10500 } 10501 break; 10502 case 0x12: /* SQSHRN / UQSHRN */ 10503 case 0x13: /* SQRSHRN / UQRSHRN */ 10504 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10505 opcode, rn, rd); 10506 break; 10507 case 0x14: /* SSHLL / USHLL */ 10508 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10509 break; 10510 case 0x1c: /* SCVTF / UCVTF */ 10511 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10512 opcode, rn, rd); 10513 break; 10514 case 0xc: /* SQSHLU */ 10515 if (!is_u) { 10516 unallocated_encoding(s); 10517 return; 10518 } 10519 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10520 break; 10521 case 0xe: /* SQSHL, UQSHL */ 10522 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10523 break; 10524 case 0x1f: /* FCVTZS/ FCVTZU */ 10525 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10526 return; 10527 default: 10528 unallocated_encoding(s); 10529 return; 10530 } 10531 } 10532 10533 /* Generate code to do a "long" addition or subtraction, ie one done in 10534 * TCGv_i64 on vector lanes twice the width specified by size. 10535 */ 10536 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10537 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10538 { 10539 static NeonGenTwo64OpFn * const fns[3][2] = { 10540 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10541 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10542 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10543 }; 10544 NeonGenTwo64OpFn *genfn; 10545 assert(size < 3); 10546 10547 genfn = fns[size][is_sub]; 10548 genfn(tcg_res, tcg_op1, tcg_op2); 10549 } 10550 10551 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10552 int opcode, int rd, int rn, int rm) 10553 { 10554 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10555 TCGv_i64 tcg_res[2]; 10556 int pass, accop; 10557 10558 tcg_res[0] = tcg_temp_new_i64(); 10559 tcg_res[1] = tcg_temp_new_i64(); 10560 10561 /* Does this op do an adding accumulate, a subtracting accumulate, 10562 * or no accumulate at all? 10563 */ 10564 switch (opcode) { 10565 case 5: 10566 case 8: 10567 case 9: 10568 accop = 1; 10569 break; 10570 case 10: 10571 case 11: 10572 accop = -1; 10573 break; 10574 default: 10575 accop = 0; 10576 break; 10577 } 10578 10579 if (accop != 0) { 10580 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10581 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10582 } 10583 10584 /* size == 2 means two 32x32->64 operations; this is worth special 10585 * casing because we can generally handle it inline. 10586 */ 10587 if (size == 2) { 10588 for (pass = 0; pass < 2; pass++) { 10589 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10590 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10591 TCGv_i64 tcg_passres; 10592 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10593 10594 int elt = pass + is_q * 2; 10595 10596 read_vec_element(s, tcg_op1, rn, elt, memop); 10597 read_vec_element(s, tcg_op2, rm, elt, memop); 10598 10599 if (accop == 0) { 10600 tcg_passres = tcg_res[pass]; 10601 } else { 10602 tcg_passres = tcg_temp_new_i64(); 10603 } 10604 10605 switch (opcode) { 10606 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10607 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10608 break; 10609 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10610 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10611 break; 10612 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10613 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10614 { 10615 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10616 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10617 10618 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10619 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10620 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10621 tcg_passres, 10622 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10623 break; 10624 } 10625 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10626 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10627 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10628 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10629 break; 10630 case 9: /* SQDMLAL, SQDMLAL2 */ 10631 case 11: /* SQDMLSL, SQDMLSL2 */ 10632 case 13: /* SQDMULL, SQDMULL2 */ 10633 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10634 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10635 tcg_passres, tcg_passres); 10636 break; 10637 default: 10638 g_assert_not_reached(); 10639 } 10640 10641 if (opcode == 9 || opcode == 11) { 10642 /* saturating accumulate ops */ 10643 if (accop < 0) { 10644 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10645 } 10646 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10647 tcg_res[pass], tcg_passres); 10648 } else if (accop > 0) { 10649 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10650 } else if (accop < 0) { 10651 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10652 } 10653 } 10654 } else { 10655 /* size 0 or 1, generally helper functions */ 10656 for (pass = 0; pass < 2; pass++) { 10657 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10658 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10659 TCGv_i64 tcg_passres; 10660 int elt = pass + is_q * 2; 10661 10662 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10663 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10664 10665 if (accop == 0) { 10666 tcg_passres = tcg_res[pass]; 10667 } else { 10668 tcg_passres = tcg_temp_new_i64(); 10669 } 10670 10671 switch (opcode) { 10672 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10673 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10674 { 10675 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10676 static NeonGenWidenFn * const widenfns[2][2] = { 10677 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10678 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10679 }; 10680 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10681 10682 widenfn(tcg_op2_64, tcg_op2); 10683 widenfn(tcg_passres, tcg_op1); 10684 gen_neon_addl(size, (opcode == 2), tcg_passres, 10685 tcg_passres, tcg_op2_64); 10686 break; 10687 } 10688 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10689 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10690 if (size == 0) { 10691 if (is_u) { 10692 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10693 } else { 10694 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10695 } 10696 } else { 10697 if (is_u) { 10698 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10699 } else { 10700 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10701 } 10702 } 10703 break; 10704 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10705 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10706 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10707 if (size == 0) { 10708 if (is_u) { 10709 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10710 } else { 10711 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10712 } 10713 } else { 10714 if (is_u) { 10715 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10716 } else { 10717 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10718 } 10719 } 10720 break; 10721 case 9: /* SQDMLAL, SQDMLAL2 */ 10722 case 11: /* SQDMLSL, SQDMLSL2 */ 10723 case 13: /* SQDMULL, SQDMULL2 */ 10724 assert(size == 1); 10725 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10726 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10727 tcg_passres, tcg_passres); 10728 break; 10729 default: 10730 g_assert_not_reached(); 10731 } 10732 10733 if (accop != 0) { 10734 if (opcode == 9 || opcode == 11) { 10735 /* saturating accumulate ops */ 10736 if (accop < 0) { 10737 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10738 } 10739 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10740 tcg_res[pass], 10741 tcg_passres); 10742 } else { 10743 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10744 tcg_res[pass], tcg_passres); 10745 } 10746 } 10747 } 10748 } 10749 10750 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10751 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10752 } 10753 10754 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10755 int opcode, int rd, int rn, int rm) 10756 { 10757 TCGv_i64 tcg_res[2]; 10758 int part = is_q ? 2 : 0; 10759 int pass; 10760 10761 for (pass = 0; pass < 2; pass++) { 10762 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10763 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10764 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10765 static NeonGenWidenFn * const widenfns[3][2] = { 10766 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10767 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10768 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10769 }; 10770 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10771 10772 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10773 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10774 widenfn(tcg_op2_wide, tcg_op2); 10775 tcg_res[pass] = tcg_temp_new_i64(); 10776 gen_neon_addl(size, (opcode == 3), 10777 tcg_res[pass], tcg_op1, tcg_op2_wide); 10778 } 10779 10780 for (pass = 0; pass < 2; pass++) { 10781 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10782 } 10783 } 10784 10785 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10786 { 10787 tcg_gen_addi_i64(in, in, 1U << 31); 10788 tcg_gen_extrh_i64_i32(res, in); 10789 } 10790 10791 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10792 int opcode, int rd, int rn, int rm) 10793 { 10794 TCGv_i32 tcg_res[2]; 10795 int part = is_q ? 2 : 0; 10796 int pass; 10797 10798 for (pass = 0; pass < 2; pass++) { 10799 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10800 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10801 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10802 static NeonGenNarrowFn * const narrowfns[3][2] = { 10803 { gen_helper_neon_narrow_high_u8, 10804 gen_helper_neon_narrow_round_high_u8 }, 10805 { gen_helper_neon_narrow_high_u16, 10806 gen_helper_neon_narrow_round_high_u16 }, 10807 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10808 }; 10809 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10810 10811 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10812 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10813 10814 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10815 10816 tcg_res[pass] = tcg_temp_new_i32(); 10817 gennarrow(tcg_res[pass], tcg_wideres); 10818 } 10819 10820 for (pass = 0; pass < 2; pass++) { 10821 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10822 } 10823 clear_vec_high(s, is_q, rd); 10824 } 10825 10826 /* AdvSIMD three different 10827 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10828 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10829 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10830 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10831 */ 10832 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10833 { 10834 /* Instructions in this group fall into three basic classes 10835 * (in each case with the operation working on each element in 10836 * the input vectors): 10837 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10838 * 128 bit input) 10839 * (2) wide 64 x 128 -> 128 10840 * (3) narrowing 128 x 128 -> 64 10841 * Here we do initial decode, catch unallocated cases and 10842 * dispatch to separate functions for each class. 10843 */ 10844 int is_q = extract32(insn, 30, 1); 10845 int is_u = extract32(insn, 29, 1); 10846 int size = extract32(insn, 22, 2); 10847 int opcode = extract32(insn, 12, 4); 10848 int rm = extract32(insn, 16, 5); 10849 int rn = extract32(insn, 5, 5); 10850 int rd = extract32(insn, 0, 5); 10851 10852 switch (opcode) { 10853 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10854 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10855 /* 64 x 128 -> 128 */ 10856 if (size == 3) { 10857 unallocated_encoding(s); 10858 return; 10859 } 10860 if (!fp_access_check(s)) { 10861 return; 10862 } 10863 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10864 break; 10865 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10866 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10867 /* 128 x 128 -> 64 */ 10868 if (size == 3) { 10869 unallocated_encoding(s); 10870 return; 10871 } 10872 if (!fp_access_check(s)) { 10873 return; 10874 } 10875 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10876 break; 10877 case 14: /* PMULL, PMULL2 */ 10878 if (is_u) { 10879 unallocated_encoding(s); 10880 return; 10881 } 10882 switch (size) { 10883 case 0: /* PMULL.P8 */ 10884 if (!fp_access_check(s)) { 10885 return; 10886 } 10887 /* The Q field specifies lo/hi half input for this insn. */ 10888 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10889 gen_helper_neon_pmull_h); 10890 break; 10891 10892 case 3: /* PMULL.P64 */ 10893 if (!dc_isar_feature(aa64_pmull, s)) { 10894 unallocated_encoding(s); 10895 return; 10896 } 10897 if (!fp_access_check(s)) { 10898 return; 10899 } 10900 /* The Q field specifies lo/hi half input for this insn. */ 10901 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10902 gen_helper_gvec_pmull_q); 10903 break; 10904 10905 default: 10906 unallocated_encoding(s); 10907 break; 10908 } 10909 return; 10910 case 9: /* SQDMLAL, SQDMLAL2 */ 10911 case 11: /* SQDMLSL, SQDMLSL2 */ 10912 case 13: /* SQDMULL, SQDMULL2 */ 10913 if (is_u || size == 0) { 10914 unallocated_encoding(s); 10915 return; 10916 } 10917 /* fall through */ 10918 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10919 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10920 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10921 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10922 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10923 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10924 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10925 /* 64 x 64 -> 128 */ 10926 if (size == 3) { 10927 unallocated_encoding(s); 10928 return; 10929 } 10930 if (!fp_access_check(s)) { 10931 return; 10932 } 10933 10934 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10935 break; 10936 default: 10937 /* opcode 15 not allocated */ 10938 unallocated_encoding(s); 10939 break; 10940 } 10941 } 10942 10943 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10944 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10945 { 10946 int rd = extract32(insn, 0, 5); 10947 int rn = extract32(insn, 5, 5); 10948 int rm = extract32(insn, 16, 5); 10949 int size = extract32(insn, 22, 2); 10950 bool is_u = extract32(insn, 29, 1); 10951 bool is_q = extract32(insn, 30, 1); 10952 10953 if (!fp_access_check(s)) { 10954 return; 10955 } 10956 10957 switch (size + 4 * is_u) { 10958 case 0: /* AND */ 10959 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10960 return; 10961 case 1: /* BIC */ 10962 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10963 return; 10964 case 2: /* ORR */ 10965 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10966 return; 10967 case 3: /* ORN */ 10968 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10969 return; 10970 case 4: /* EOR */ 10971 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10972 return; 10973 10974 case 5: /* BSL bitwise select */ 10975 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10976 return; 10977 case 6: /* BIT, bitwise insert if true */ 10978 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10979 return; 10980 case 7: /* BIF, bitwise insert if false */ 10981 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10982 return; 10983 10984 default: 10985 g_assert_not_reached(); 10986 } 10987 } 10988 10989 /* Pairwise op subgroup of C3.6.16. 10990 * 10991 * This is called directly or via the handle_3same_float for float pairwise 10992 * operations where the opcode and size are calculated differently. 10993 */ 10994 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10995 int size, int rn, int rm, int rd) 10996 { 10997 TCGv_ptr fpst; 10998 int pass; 10999 11000 /* Floating point operations need fpst */ 11001 if (opcode >= 0x58) { 11002 fpst = fpstatus_ptr(FPST_FPCR); 11003 } else { 11004 fpst = NULL; 11005 } 11006 11007 if (!fp_access_check(s)) { 11008 return; 11009 } 11010 11011 /* These operations work on the concatenated rm:rn, with each pair of 11012 * adjacent elements being operated on to produce an element in the result. 11013 */ 11014 if (size == 3) { 11015 TCGv_i64 tcg_res[2]; 11016 11017 for (pass = 0; pass < 2; pass++) { 11018 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11019 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11020 int passreg = (pass == 0) ? rn : rm; 11021 11022 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11023 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11024 tcg_res[pass] = tcg_temp_new_i64(); 11025 11026 switch (opcode) { 11027 case 0x17: /* ADDP */ 11028 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11029 break; 11030 case 0x58: /* FMAXNMP */ 11031 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11032 break; 11033 case 0x5a: /* FADDP */ 11034 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11035 break; 11036 case 0x5e: /* FMAXP */ 11037 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11038 break; 11039 case 0x78: /* FMINNMP */ 11040 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11041 break; 11042 case 0x7e: /* FMINP */ 11043 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11044 break; 11045 default: 11046 g_assert_not_reached(); 11047 } 11048 } 11049 11050 for (pass = 0; pass < 2; pass++) { 11051 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11052 } 11053 } else { 11054 int maxpass = is_q ? 4 : 2; 11055 TCGv_i32 tcg_res[4]; 11056 11057 for (pass = 0; pass < maxpass; pass++) { 11058 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11059 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11060 NeonGenTwoOpFn *genfn = NULL; 11061 int passreg = pass < (maxpass / 2) ? rn : rm; 11062 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11063 11064 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11065 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11066 tcg_res[pass] = tcg_temp_new_i32(); 11067 11068 switch (opcode) { 11069 case 0x17: /* ADDP */ 11070 { 11071 static NeonGenTwoOpFn * const fns[3] = { 11072 gen_helper_neon_padd_u8, 11073 gen_helper_neon_padd_u16, 11074 tcg_gen_add_i32, 11075 }; 11076 genfn = fns[size]; 11077 break; 11078 } 11079 case 0x14: /* SMAXP, UMAXP */ 11080 { 11081 static NeonGenTwoOpFn * const fns[3][2] = { 11082 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11083 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11084 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11085 }; 11086 genfn = fns[size][u]; 11087 break; 11088 } 11089 case 0x15: /* SMINP, UMINP */ 11090 { 11091 static NeonGenTwoOpFn * const fns[3][2] = { 11092 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11093 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11094 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11095 }; 11096 genfn = fns[size][u]; 11097 break; 11098 } 11099 /* The FP operations are all on single floats (32 bit) */ 11100 case 0x58: /* FMAXNMP */ 11101 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11102 break; 11103 case 0x5a: /* FADDP */ 11104 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11105 break; 11106 case 0x5e: /* FMAXP */ 11107 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11108 break; 11109 case 0x78: /* FMINNMP */ 11110 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11111 break; 11112 case 0x7e: /* FMINP */ 11113 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11114 break; 11115 default: 11116 g_assert_not_reached(); 11117 } 11118 11119 /* FP ops called directly, otherwise call now */ 11120 if (genfn) { 11121 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11122 } 11123 } 11124 11125 for (pass = 0; pass < maxpass; pass++) { 11126 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11127 } 11128 clear_vec_high(s, is_q, rd); 11129 } 11130 } 11131 11132 /* Floating point op subgroup of C3.6.16. */ 11133 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11134 { 11135 /* For floating point ops, the U, size[1] and opcode bits 11136 * together indicate the operation. size[0] indicates single 11137 * or double. 11138 */ 11139 int fpopcode = extract32(insn, 11, 5) 11140 | (extract32(insn, 23, 1) << 5) 11141 | (extract32(insn, 29, 1) << 6); 11142 int is_q = extract32(insn, 30, 1); 11143 int size = extract32(insn, 22, 1); 11144 int rm = extract32(insn, 16, 5); 11145 int rn = extract32(insn, 5, 5); 11146 int rd = extract32(insn, 0, 5); 11147 11148 int datasize = is_q ? 128 : 64; 11149 int esize = 32 << size; 11150 int elements = datasize / esize; 11151 11152 if (size == 1 && !is_q) { 11153 unallocated_encoding(s); 11154 return; 11155 } 11156 11157 switch (fpopcode) { 11158 case 0x58: /* FMAXNMP */ 11159 case 0x5a: /* FADDP */ 11160 case 0x5e: /* FMAXP */ 11161 case 0x78: /* FMINNMP */ 11162 case 0x7e: /* FMINP */ 11163 if (size && !is_q) { 11164 unallocated_encoding(s); 11165 return; 11166 } 11167 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11168 rn, rm, rd); 11169 return; 11170 case 0x1b: /* FMULX */ 11171 case 0x1f: /* FRECPS */ 11172 case 0x3f: /* FRSQRTS */ 11173 case 0x5d: /* FACGE */ 11174 case 0x7d: /* FACGT */ 11175 case 0x19: /* FMLA */ 11176 case 0x39: /* FMLS */ 11177 case 0x18: /* FMAXNM */ 11178 case 0x1a: /* FADD */ 11179 case 0x1c: /* FCMEQ */ 11180 case 0x1e: /* FMAX */ 11181 case 0x38: /* FMINNM */ 11182 case 0x3a: /* FSUB */ 11183 case 0x3e: /* FMIN */ 11184 case 0x5b: /* FMUL */ 11185 case 0x5c: /* FCMGE */ 11186 case 0x5f: /* FDIV */ 11187 case 0x7a: /* FABD */ 11188 case 0x7c: /* FCMGT */ 11189 if (!fp_access_check(s)) { 11190 return; 11191 } 11192 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11193 return; 11194 11195 case 0x1d: /* FMLAL */ 11196 case 0x3d: /* FMLSL */ 11197 case 0x59: /* FMLAL2 */ 11198 case 0x79: /* FMLSL2 */ 11199 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11200 unallocated_encoding(s); 11201 return; 11202 } 11203 if (fp_access_check(s)) { 11204 int is_s = extract32(insn, 23, 1); 11205 int is_2 = extract32(insn, 29, 1); 11206 int data = (is_2 << 1) | is_s; 11207 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11208 vec_full_reg_offset(s, rn), 11209 vec_full_reg_offset(s, rm), cpu_env, 11210 is_q ? 16 : 8, vec_full_reg_size(s), 11211 data, gen_helper_gvec_fmlal_a64); 11212 } 11213 return; 11214 11215 default: 11216 unallocated_encoding(s); 11217 return; 11218 } 11219 } 11220 11221 /* Integer op subgroup of C3.6.16. */ 11222 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11223 { 11224 int is_q = extract32(insn, 30, 1); 11225 int u = extract32(insn, 29, 1); 11226 int size = extract32(insn, 22, 2); 11227 int opcode = extract32(insn, 11, 5); 11228 int rm = extract32(insn, 16, 5); 11229 int rn = extract32(insn, 5, 5); 11230 int rd = extract32(insn, 0, 5); 11231 int pass; 11232 TCGCond cond; 11233 11234 switch (opcode) { 11235 case 0x13: /* MUL, PMUL */ 11236 if (u && size != 0) { 11237 unallocated_encoding(s); 11238 return; 11239 } 11240 /* fall through */ 11241 case 0x0: /* SHADD, UHADD */ 11242 case 0x2: /* SRHADD, URHADD */ 11243 case 0x4: /* SHSUB, UHSUB */ 11244 case 0xc: /* SMAX, UMAX */ 11245 case 0xd: /* SMIN, UMIN */ 11246 case 0xe: /* SABD, UABD */ 11247 case 0xf: /* SABA, UABA */ 11248 case 0x12: /* MLA, MLS */ 11249 if (size == 3) { 11250 unallocated_encoding(s); 11251 return; 11252 } 11253 break; 11254 case 0x16: /* SQDMULH, SQRDMULH */ 11255 if (size == 0 || size == 3) { 11256 unallocated_encoding(s); 11257 return; 11258 } 11259 break; 11260 default: 11261 if (size == 3 && !is_q) { 11262 unallocated_encoding(s); 11263 return; 11264 } 11265 break; 11266 } 11267 11268 if (!fp_access_check(s)) { 11269 return; 11270 } 11271 11272 switch (opcode) { 11273 case 0x01: /* SQADD, UQADD */ 11274 if (u) { 11275 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11276 } else { 11277 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11278 } 11279 return; 11280 case 0x05: /* SQSUB, UQSUB */ 11281 if (u) { 11282 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11283 } else { 11284 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11285 } 11286 return; 11287 case 0x08: /* SSHL, USHL */ 11288 if (u) { 11289 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11290 } else { 11291 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11292 } 11293 return; 11294 case 0x0c: /* SMAX, UMAX */ 11295 if (u) { 11296 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11297 } else { 11298 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11299 } 11300 return; 11301 case 0x0d: /* SMIN, UMIN */ 11302 if (u) { 11303 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11304 } else { 11305 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11306 } 11307 return; 11308 case 0xe: /* SABD, UABD */ 11309 if (u) { 11310 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11311 } else { 11312 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11313 } 11314 return; 11315 case 0xf: /* SABA, UABA */ 11316 if (u) { 11317 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11318 } else { 11319 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11320 } 11321 return; 11322 case 0x10: /* ADD, SUB */ 11323 if (u) { 11324 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11325 } else { 11326 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11327 } 11328 return; 11329 case 0x13: /* MUL, PMUL */ 11330 if (!u) { /* MUL */ 11331 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11332 } else { /* PMUL */ 11333 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11334 } 11335 return; 11336 case 0x12: /* MLA, MLS */ 11337 if (u) { 11338 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11339 } else { 11340 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11341 } 11342 return; 11343 case 0x16: /* SQDMULH, SQRDMULH */ 11344 { 11345 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11346 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11347 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11348 }; 11349 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11350 } 11351 return; 11352 case 0x11: 11353 if (!u) { /* CMTST */ 11354 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11355 return; 11356 } 11357 /* else CMEQ */ 11358 cond = TCG_COND_EQ; 11359 goto do_gvec_cmp; 11360 case 0x06: /* CMGT, CMHI */ 11361 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11362 goto do_gvec_cmp; 11363 case 0x07: /* CMGE, CMHS */ 11364 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11365 do_gvec_cmp: 11366 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11367 vec_full_reg_offset(s, rn), 11368 vec_full_reg_offset(s, rm), 11369 is_q ? 16 : 8, vec_full_reg_size(s)); 11370 return; 11371 } 11372 11373 if (size == 3) { 11374 assert(is_q); 11375 for (pass = 0; pass < 2; pass++) { 11376 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11377 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11378 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11379 11380 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11381 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11382 11383 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11384 11385 write_vec_element(s, tcg_res, rd, pass, MO_64); 11386 } 11387 } else { 11388 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11389 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11390 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11391 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11392 NeonGenTwoOpFn *genfn = NULL; 11393 NeonGenTwoOpEnvFn *genenvfn = NULL; 11394 11395 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11396 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11397 11398 switch (opcode) { 11399 case 0x0: /* SHADD, UHADD */ 11400 { 11401 static NeonGenTwoOpFn * const fns[3][2] = { 11402 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11403 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11404 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11405 }; 11406 genfn = fns[size][u]; 11407 break; 11408 } 11409 case 0x2: /* SRHADD, URHADD */ 11410 { 11411 static NeonGenTwoOpFn * const fns[3][2] = { 11412 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11413 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11414 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11415 }; 11416 genfn = fns[size][u]; 11417 break; 11418 } 11419 case 0x4: /* SHSUB, UHSUB */ 11420 { 11421 static NeonGenTwoOpFn * const fns[3][2] = { 11422 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11423 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11424 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11425 }; 11426 genfn = fns[size][u]; 11427 break; 11428 } 11429 case 0x9: /* SQSHL, UQSHL */ 11430 { 11431 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11432 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11433 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11434 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11435 }; 11436 genenvfn = fns[size][u]; 11437 break; 11438 } 11439 case 0xa: /* SRSHL, URSHL */ 11440 { 11441 static NeonGenTwoOpFn * const fns[3][2] = { 11442 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11443 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11444 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11445 }; 11446 genfn = fns[size][u]; 11447 break; 11448 } 11449 case 0xb: /* SQRSHL, UQRSHL */ 11450 { 11451 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11452 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11453 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11454 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11455 }; 11456 genenvfn = fns[size][u]; 11457 break; 11458 } 11459 default: 11460 g_assert_not_reached(); 11461 } 11462 11463 if (genenvfn) { 11464 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11465 } else { 11466 genfn(tcg_res, tcg_op1, tcg_op2); 11467 } 11468 11469 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11470 } 11471 } 11472 clear_vec_high(s, is_q, rd); 11473 } 11474 11475 /* AdvSIMD three same 11476 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11477 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11478 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11479 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11480 */ 11481 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11482 { 11483 int opcode = extract32(insn, 11, 5); 11484 11485 switch (opcode) { 11486 case 0x3: /* logic ops */ 11487 disas_simd_3same_logic(s, insn); 11488 break; 11489 case 0x17: /* ADDP */ 11490 case 0x14: /* SMAXP, UMAXP */ 11491 case 0x15: /* SMINP, UMINP */ 11492 { 11493 /* Pairwise operations */ 11494 int is_q = extract32(insn, 30, 1); 11495 int u = extract32(insn, 29, 1); 11496 int size = extract32(insn, 22, 2); 11497 int rm = extract32(insn, 16, 5); 11498 int rn = extract32(insn, 5, 5); 11499 int rd = extract32(insn, 0, 5); 11500 if (opcode == 0x17) { 11501 if (u || (size == 3 && !is_q)) { 11502 unallocated_encoding(s); 11503 return; 11504 } 11505 } else { 11506 if (size == 3) { 11507 unallocated_encoding(s); 11508 return; 11509 } 11510 } 11511 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11512 break; 11513 } 11514 case 0x18 ... 0x31: 11515 /* floating point ops, sz[1] and U are part of opcode */ 11516 disas_simd_3same_float(s, insn); 11517 break; 11518 default: 11519 disas_simd_3same_int(s, insn); 11520 break; 11521 } 11522 } 11523 11524 /* 11525 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11526 * 11527 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11528 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11529 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11530 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11531 * 11532 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11533 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11534 * 11535 */ 11536 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11537 { 11538 int opcode = extract32(insn, 11, 3); 11539 int u = extract32(insn, 29, 1); 11540 int a = extract32(insn, 23, 1); 11541 int is_q = extract32(insn, 30, 1); 11542 int rm = extract32(insn, 16, 5); 11543 int rn = extract32(insn, 5, 5); 11544 int rd = extract32(insn, 0, 5); 11545 /* 11546 * For these floating point ops, the U, a and opcode bits 11547 * together indicate the operation. 11548 */ 11549 int fpopcode = opcode | (a << 3) | (u << 4); 11550 int datasize = is_q ? 128 : 64; 11551 int elements = datasize / 16; 11552 bool pairwise; 11553 TCGv_ptr fpst; 11554 int pass; 11555 11556 switch (fpopcode) { 11557 case 0x0: /* FMAXNM */ 11558 case 0x1: /* FMLA */ 11559 case 0x2: /* FADD */ 11560 case 0x3: /* FMULX */ 11561 case 0x4: /* FCMEQ */ 11562 case 0x6: /* FMAX */ 11563 case 0x7: /* FRECPS */ 11564 case 0x8: /* FMINNM */ 11565 case 0x9: /* FMLS */ 11566 case 0xa: /* FSUB */ 11567 case 0xe: /* FMIN */ 11568 case 0xf: /* FRSQRTS */ 11569 case 0x13: /* FMUL */ 11570 case 0x14: /* FCMGE */ 11571 case 0x15: /* FACGE */ 11572 case 0x17: /* FDIV */ 11573 case 0x1a: /* FABD */ 11574 case 0x1c: /* FCMGT */ 11575 case 0x1d: /* FACGT */ 11576 pairwise = false; 11577 break; 11578 case 0x10: /* FMAXNMP */ 11579 case 0x12: /* FADDP */ 11580 case 0x16: /* FMAXP */ 11581 case 0x18: /* FMINNMP */ 11582 case 0x1e: /* FMINP */ 11583 pairwise = true; 11584 break; 11585 default: 11586 unallocated_encoding(s); 11587 return; 11588 } 11589 11590 if (!dc_isar_feature(aa64_fp16, s)) { 11591 unallocated_encoding(s); 11592 return; 11593 } 11594 11595 if (!fp_access_check(s)) { 11596 return; 11597 } 11598 11599 fpst = fpstatus_ptr(FPST_FPCR_F16); 11600 11601 if (pairwise) { 11602 int maxpass = is_q ? 8 : 4; 11603 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11604 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11605 TCGv_i32 tcg_res[8]; 11606 11607 for (pass = 0; pass < maxpass; pass++) { 11608 int passreg = pass < (maxpass / 2) ? rn : rm; 11609 int passelt = (pass << 1) & (maxpass - 1); 11610 11611 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11612 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11613 tcg_res[pass] = tcg_temp_new_i32(); 11614 11615 switch (fpopcode) { 11616 case 0x10: /* FMAXNMP */ 11617 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11618 fpst); 11619 break; 11620 case 0x12: /* FADDP */ 11621 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11622 break; 11623 case 0x16: /* FMAXP */ 11624 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11625 break; 11626 case 0x18: /* FMINNMP */ 11627 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11628 fpst); 11629 break; 11630 case 0x1e: /* FMINP */ 11631 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11632 break; 11633 default: 11634 g_assert_not_reached(); 11635 } 11636 } 11637 11638 for (pass = 0; pass < maxpass; pass++) { 11639 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11640 } 11641 } else { 11642 for (pass = 0; pass < elements; pass++) { 11643 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11644 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11645 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11646 11647 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11648 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11649 11650 switch (fpopcode) { 11651 case 0x0: /* FMAXNM */ 11652 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11653 break; 11654 case 0x1: /* FMLA */ 11655 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11656 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11657 fpst); 11658 break; 11659 case 0x2: /* FADD */ 11660 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11661 break; 11662 case 0x3: /* FMULX */ 11663 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11664 break; 11665 case 0x4: /* FCMEQ */ 11666 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11667 break; 11668 case 0x6: /* FMAX */ 11669 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11670 break; 11671 case 0x7: /* FRECPS */ 11672 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11673 break; 11674 case 0x8: /* FMINNM */ 11675 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11676 break; 11677 case 0x9: /* FMLS */ 11678 /* As usual for ARM, separate negation for fused multiply-add */ 11679 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11680 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11681 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11682 fpst); 11683 break; 11684 case 0xa: /* FSUB */ 11685 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0xe: /* FMIN */ 11688 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11689 break; 11690 case 0xf: /* FRSQRTS */ 11691 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11692 break; 11693 case 0x13: /* FMUL */ 11694 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11695 break; 11696 case 0x14: /* FCMGE */ 11697 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11698 break; 11699 case 0x15: /* FACGE */ 11700 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11701 break; 11702 case 0x17: /* FDIV */ 11703 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11704 break; 11705 case 0x1a: /* FABD */ 11706 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11707 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11708 break; 11709 case 0x1c: /* FCMGT */ 11710 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11711 break; 11712 case 0x1d: /* FACGT */ 11713 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11714 break; 11715 default: 11716 g_assert_not_reached(); 11717 } 11718 11719 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11720 } 11721 } 11722 11723 clear_vec_high(s, is_q, rd); 11724 } 11725 11726 /* AdvSIMD three same extra 11727 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11728 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11729 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11730 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11731 */ 11732 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11733 { 11734 int rd = extract32(insn, 0, 5); 11735 int rn = extract32(insn, 5, 5); 11736 int opcode = extract32(insn, 11, 4); 11737 int rm = extract32(insn, 16, 5); 11738 int size = extract32(insn, 22, 2); 11739 bool u = extract32(insn, 29, 1); 11740 bool is_q = extract32(insn, 30, 1); 11741 bool feature; 11742 int rot; 11743 11744 switch (u * 16 + opcode) { 11745 case 0x10: /* SQRDMLAH (vector) */ 11746 case 0x11: /* SQRDMLSH (vector) */ 11747 if (size != 1 && size != 2) { 11748 unallocated_encoding(s); 11749 return; 11750 } 11751 feature = dc_isar_feature(aa64_rdm, s); 11752 break; 11753 case 0x02: /* SDOT (vector) */ 11754 case 0x12: /* UDOT (vector) */ 11755 if (size != MO_32) { 11756 unallocated_encoding(s); 11757 return; 11758 } 11759 feature = dc_isar_feature(aa64_dp, s); 11760 break; 11761 case 0x03: /* USDOT */ 11762 if (size != MO_32) { 11763 unallocated_encoding(s); 11764 return; 11765 } 11766 feature = dc_isar_feature(aa64_i8mm, s); 11767 break; 11768 case 0x04: /* SMMLA */ 11769 case 0x14: /* UMMLA */ 11770 case 0x05: /* USMMLA */ 11771 if (!is_q || size != MO_32) { 11772 unallocated_encoding(s); 11773 return; 11774 } 11775 feature = dc_isar_feature(aa64_i8mm, s); 11776 break; 11777 case 0x18: /* FCMLA, #0 */ 11778 case 0x19: /* FCMLA, #90 */ 11779 case 0x1a: /* FCMLA, #180 */ 11780 case 0x1b: /* FCMLA, #270 */ 11781 case 0x1c: /* FCADD, #90 */ 11782 case 0x1e: /* FCADD, #270 */ 11783 if (size == 0 11784 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11785 || (size == 3 && !is_q)) { 11786 unallocated_encoding(s); 11787 return; 11788 } 11789 feature = dc_isar_feature(aa64_fcma, s); 11790 break; 11791 case 0x1d: /* BFMMLA */ 11792 if (size != MO_16 || !is_q) { 11793 unallocated_encoding(s); 11794 return; 11795 } 11796 feature = dc_isar_feature(aa64_bf16, s); 11797 break; 11798 case 0x1f: 11799 switch (size) { 11800 case 1: /* BFDOT */ 11801 case 3: /* BFMLAL{B,T} */ 11802 feature = dc_isar_feature(aa64_bf16, s); 11803 break; 11804 default: 11805 unallocated_encoding(s); 11806 return; 11807 } 11808 break; 11809 default: 11810 unallocated_encoding(s); 11811 return; 11812 } 11813 if (!feature) { 11814 unallocated_encoding(s); 11815 return; 11816 } 11817 if (!fp_access_check(s)) { 11818 return; 11819 } 11820 11821 switch (opcode) { 11822 case 0x0: /* SQRDMLAH (vector) */ 11823 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11824 return; 11825 11826 case 0x1: /* SQRDMLSH (vector) */ 11827 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11828 return; 11829 11830 case 0x2: /* SDOT / UDOT */ 11831 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11832 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11833 return; 11834 11835 case 0x3: /* USDOT */ 11836 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11837 return; 11838 11839 case 0x04: /* SMMLA, UMMLA */ 11840 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11841 u ? gen_helper_gvec_ummla_b 11842 : gen_helper_gvec_smmla_b); 11843 return; 11844 case 0x05: /* USMMLA */ 11845 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11846 return; 11847 11848 case 0x8: /* FCMLA, #0 */ 11849 case 0x9: /* FCMLA, #90 */ 11850 case 0xa: /* FCMLA, #180 */ 11851 case 0xb: /* FCMLA, #270 */ 11852 rot = extract32(opcode, 0, 2); 11853 switch (size) { 11854 case 1: 11855 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11856 gen_helper_gvec_fcmlah); 11857 break; 11858 case 2: 11859 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11860 gen_helper_gvec_fcmlas); 11861 break; 11862 case 3: 11863 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11864 gen_helper_gvec_fcmlad); 11865 break; 11866 default: 11867 g_assert_not_reached(); 11868 } 11869 return; 11870 11871 case 0xc: /* FCADD, #90 */ 11872 case 0xe: /* FCADD, #270 */ 11873 rot = extract32(opcode, 1, 1); 11874 switch (size) { 11875 case 1: 11876 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11877 gen_helper_gvec_fcaddh); 11878 break; 11879 case 2: 11880 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11881 gen_helper_gvec_fcadds); 11882 break; 11883 case 3: 11884 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11885 gen_helper_gvec_fcaddd); 11886 break; 11887 default: 11888 g_assert_not_reached(); 11889 } 11890 return; 11891 11892 case 0xd: /* BFMMLA */ 11893 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11894 return; 11895 case 0xf: 11896 switch (size) { 11897 case 1: /* BFDOT */ 11898 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11899 break; 11900 case 3: /* BFMLAL{B,T} */ 11901 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11902 gen_helper_gvec_bfmlal); 11903 break; 11904 default: 11905 g_assert_not_reached(); 11906 } 11907 return; 11908 11909 default: 11910 g_assert_not_reached(); 11911 } 11912 } 11913 11914 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11915 int size, int rn, int rd) 11916 { 11917 /* Handle 2-reg-misc ops which are widening (so each size element 11918 * in the source becomes a 2*size element in the destination. 11919 * The only instruction like this is FCVTL. 11920 */ 11921 int pass; 11922 11923 if (size == 3) { 11924 /* 32 -> 64 bit fp conversion */ 11925 TCGv_i64 tcg_res[2]; 11926 int srcelt = is_q ? 2 : 0; 11927 11928 for (pass = 0; pass < 2; pass++) { 11929 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11930 tcg_res[pass] = tcg_temp_new_i64(); 11931 11932 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11933 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11934 } 11935 for (pass = 0; pass < 2; pass++) { 11936 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11937 } 11938 } else { 11939 /* 16 -> 32 bit fp conversion */ 11940 int srcelt = is_q ? 4 : 0; 11941 TCGv_i32 tcg_res[4]; 11942 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11943 TCGv_i32 ahp = get_ahp_flag(); 11944 11945 for (pass = 0; pass < 4; pass++) { 11946 tcg_res[pass] = tcg_temp_new_i32(); 11947 11948 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11949 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11950 fpst, ahp); 11951 } 11952 for (pass = 0; pass < 4; pass++) { 11953 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11954 } 11955 } 11956 } 11957 11958 static void handle_rev(DisasContext *s, int opcode, bool u, 11959 bool is_q, int size, int rn, int rd) 11960 { 11961 int op = (opcode << 1) | u; 11962 int opsz = op + size; 11963 int grp_size = 3 - opsz; 11964 int dsize = is_q ? 128 : 64; 11965 int i; 11966 11967 if (opsz >= 3) { 11968 unallocated_encoding(s); 11969 return; 11970 } 11971 11972 if (!fp_access_check(s)) { 11973 return; 11974 } 11975 11976 if (size == 0) { 11977 /* Special case bytes, use bswap op on each group of elements */ 11978 int groups = dsize / (8 << grp_size); 11979 11980 for (i = 0; i < groups; i++) { 11981 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11982 11983 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11984 switch (grp_size) { 11985 case MO_16: 11986 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11987 break; 11988 case MO_32: 11989 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11990 break; 11991 case MO_64: 11992 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11993 break; 11994 default: 11995 g_assert_not_reached(); 11996 } 11997 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11998 } 11999 clear_vec_high(s, is_q, rd); 12000 } else { 12001 int revmask = (1 << grp_size) - 1; 12002 int esize = 8 << size; 12003 int elements = dsize / esize; 12004 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12005 TCGv_i64 tcg_rd[2]; 12006 12007 for (i = 0; i < 2; i++) { 12008 tcg_rd[i] = tcg_temp_new_i64(); 12009 tcg_gen_movi_i64(tcg_rd[i], 0); 12010 } 12011 12012 for (i = 0; i < elements; i++) { 12013 int e_rev = (i & 0xf) ^ revmask; 12014 int w = (e_rev * esize) / 64; 12015 int o = (e_rev * esize) % 64; 12016 12017 read_vec_element(s, tcg_rn, rn, i, size); 12018 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12019 } 12020 12021 for (i = 0; i < 2; i++) { 12022 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12023 } 12024 clear_vec_high(s, true, rd); 12025 } 12026 } 12027 12028 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12029 bool is_q, int size, int rn, int rd) 12030 { 12031 /* Implement the pairwise operations from 2-misc: 12032 * SADDLP, UADDLP, SADALP, UADALP. 12033 * These all add pairs of elements in the input to produce a 12034 * double-width result element in the output (possibly accumulating). 12035 */ 12036 bool accum = (opcode == 0x6); 12037 int maxpass = is_q ? 2 : 1; 12038 int pass; 12039 TCGv_i64 tcg_res[2]; 12040 12041 if (size == 2) { 12042 /* 32 + 32 -> 64 op */ 12043 MemOp memop = size + (u ? 0 : MO_SIGN); 12044 12045 for (pass = 0; pass < maxpass; pass++) { 12046 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12047 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12048 12049 tcg_res[pass] = tcg_temp_new_i64(); 12050 12051 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12052 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12053 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12054 if (accum) { 12055 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12056 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12057 } 12058 } 12059 } else { 12060 for (pass = 0; pass < maxpass; pass++) { 12061 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12062 NeonGenOne64OpFn *genfn; 12063 static NeonGenOne64OpFn * const fns[2][2] = { 12064 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12065 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12066 }; 12067 12068 genfn = fns[size][u]; 12069 12070 tcg_res[pass] = tcg_temp_new_i64(); 12071 12072 read_vec_element(s, tcg_op, rn, pass, MO_64); 12073 genfn(tcg_res[pass], tcg_op); 12074 12075 if (accum) { 12076 read_vec_element(s, tcg_op, rd, pass, MO_64); 12077 if (size == 0) { 12078 gen_helper_neon_addl_u16(tcg_res[pass], 12079 tcg_res[pass], tcg_op); 12080 } else { 12081 gen_helper_neon_addl_u32(tcg_res[pass], 12082 tcg_res[pass], tcg_op); 12083 } 12084 } 12085 } 12086 } 12087 if (!is_q) { 12088 tcg_res[1] = tcg_constant_i64(0); 12089 } 12090 for (pass = 0; pass < 2; pass++) { 12091 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12092 } 12093 } 12094 12095 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12096 { 12097 /* Implement SHLL and SHLL2 */ 12098 int pass; 12099 int part = is_q ? 2 : 0; 12100 TCGv_i64 tcg_res[2]; 12101 12102 for (pass = 0; pass < 2; pass++) { 12103 static NeonGenWidenFn * const widenfns[3] = { 12104 gen_helper_neon_widen_u8, 12105 gen_helper_neon_widen_u16, 12106 tcg_gen_extu_i32_i64, 12107 }; 12108 NeonGenWidenFn *widenfn = widenfns[size]; 12109 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12110 12111 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12112 tcg_res[pass] = tcg_temp_new_i64(); 12113 widenfn(tcg_res[pass], tcg_op); 12114 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12115 } 12116 12117 for (pass = 0; pass < 2; pass++) { 12118 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12119 } 12120 } 12121 12122 /* AdvSIMD two reg misc 12123 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12124 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12125 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12126 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12127 */ 12128 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12129 { 12130 int size = extract32(insn, 22, 2); 12131 int opcode = extract32(insn, 12, 5); 12132 bool u = extract32(insn, 29, 1); 12133 bool is_q = extract32(insn, 30, 1); 12134 int rn = extract32(insn, 5, 5); 12135 int rd = extract32(insn, 0, 5); 12136 bool need_fpstatus = false; 12137 int rmode = -1; 12138 TCGv_i32 tcg_rmode; 12139 TCGv_ptr tcg_fpstatus; 12140 12141 switch (opcode) { 12142 case 0x0: /* REV64, REV32 */ 12143 case 0x1: /* REV16 */ 12144 handle_rev(s, opcode, u, is_q, size, rn, rd); 12145 return; 12146 case 0x5: /* CNT, NOT, RBIT */ 12147 if (u && size == 0) { 12148 /* NOT */ 12149 break; 12150 } else if (u && size == 1) { 12151 /* RBIT */ 12152 break; 12153 } else if (!u && size == 0) { 12154 /* CNT */ 12155 break; 12156 } 12157 unallocated_encoding(s); 12158 return; 12159 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12160 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12161 if (size == 3) { 12162 unallocated_encoding(s); 12163 return; 12164 } 12165 if (!fp_access_check(s)) { 12166 return; 12167 } 12168 12169 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12170 return; 12171 case 0x4: /* CLS, CLZ */ 12172 if (size == 3) { 12173 unallocated_encoding(s); 12174 return; 12175 } 12176 break; 12177 case 0x2: /* SADDLP, UADDLP */ 12178 case 0x6: /* SADALP, UADALP */ 12179 if (size == 3) { 12180 unallocated_encoding(s); 12181 return; 12182 } 12183 if (!fp_access_check(s)) { 12184 return; 12185 } 12186 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12187 return; 12188 case 0x13: /* SHLL, SHLL2 */ 12189 if (u == 0 || size == 3) { 12190 unallocated_encoding(s); 12191 return; 12192 } 12193 if (!fp_access_check(s)) { 12194 return; 12195 } 12196 handle_shll(s, is_q, size, rn, rd); 12197 return; 12198 case 0xa: /* CMLT */ 12199 if (u == 1) { 12200 unallocated_encoding(s); 12201 return; 12202 } 12203 /* fall through */ 12204 case 0x8: /* CMGT, CMGE */ 12205 case 0x9: /* CMEQ, CMLE */ 12206 case 0xb: /* ABS, NEG */ 12207 if (size == 3 && !is_q) { 12208 unallocated_encoding(s); 12209 return; 12210 } 12211 break; 12212 case 0x3: /* SUQADD, USQADD */ 12213 if (size == 3 && !is_q) { 12214 unallocated_encoding(s); 12215 return; 12216 } 12217 if (!fp_access_check(s)) { 12218 return; 12219 } 12220 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12221 return; 12222 case 0x7: /* SQABS, SQNEG */ 12223 if (size == 3 && !is_q) { 12224 unallocated_encoding(s); 12225 return; 12226 } 12227 break; 12228 case 0xc ... 0xf: 12229 case 0x16 ... 0x1f: 12230 { 12231 /* Floating point: U, size[1] and opcode indicate operation; 12232 * size[0] indicates single or double precision. 12233 */ 12234 int is_double = extract32(size, 0, 1); 12235 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12236 size = is_double ? 3 : 2; 12237 switch (opcode) { 12238 case 0x2f: /* FABS */ 12239 case 0x6f: /* FNEG */ 12240 if (size == 3 && !is_q) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 break; 12245 case 0x1d: /* SCVTF */ 12246 case 0x5d: /* UCVTF */ 12247 { 12248 bool is_signed = (opcode == 0x1d) ? true : false; 12249 int elements = is_double ? 2 : is_q ? 4 : 2; 12250 if (is_double && !is_q) { 12251 unallocated_encoding(s); 12252 return; 12253 } 12254 if (!fp_access_check(s)) { 12255 return; 12256 } 12257 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12258 return; 12259 } 12260 case 0x2c: /* FCMGT (zero) */ 12261 case 0x2d: /* FCMEQ (zero) */ 12262 case 0x2e: /* FCMLT (zero) */ 12263 case 0x6c: /* FCMGE (zero) */ 12264 case 0x6d: /* FCMLE (zero) */ 12265 if (size == 3 && !is_q) { 12266 unallocated_encoding(s); 12267 return; 12268 } 12269 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12270 return; 12271 case 0x7f: /* FSQRT */ 12272 if (size == 3 && !is_q) { 12273 unallocated_encoding(s); 12274 return; 12275 } 12276 break; 12277 case 0x1a: /* FCVTNS */ 12278 case 0x1b: /* FCVTMS */ 12279 case 0x3a: /* FCVTPS */ 12280 case 0x3b: /* FCVTZS */ 12281 case 0x5a: /* FCVTNU */ 12282 case 0x5b: /* FCVTMU */ 12283 case 0x7a: /* FCVTPU */ 12284 case 0x7b: /* FCVTZU */ 12285 need_fpstatus = true; 12286 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12287 if (size == 3 && !is_q) { 12288 unallocated_encoding(s); 12289 return; 12290 } 12291 break; 12292 case 0x5c: /* FCVTAU */ 12293 case 0x1c: /* FCVTAS */ 12294 need_fpstatus = true; 12295 rmode = FPROUNDING_TIEAWAY; 12296 if (size == 3 && !is_q) { 12297 unallocated_encoding(s); 12298 return; 12299 } 12300 break; 12301 case 0x3c: /* URECPE */ 12302 if (size == 3) { 12303 unallocated_encoding(s); 12304 return; 12305 } 12306 /* fall through */ 12307 case 0x3d: /* FRECPE */ 12308 case 0x7d: /* FRSQRTE */ 12309 if (size == 3 && !is_q) { 12310 unallocated_encoding(s); 12311 return; 12312 } 12313 if (!fp_access_check(s)) { 12314 return; 12315 } 12316 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12317 return; 12318 case 0x56: /* FCVTXN, FCVTXN2 */ 12319 if (size == 2) { 12320 unallocated_encoding(s); 12321 return; 12322 } 12323 /* fall through */ 12324 case 0x16: /* FCVTN, FCVTN2 */ 12325 /* handle_2misc_narrow does a 2*size -> size operation, but these 12326 * instructions encode the source size rather than dest size. 12327 */ 12328 if (!fp_access_check(s)) { 12329 return; 12330 } 12331 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12332 return; 12333 case 0x36: /* BFCVTN, BFCVTN2 */ 12334 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12335 unallocated_encoding(s); 12336 return; 12337 } 12338 if (!fp_access_check(s)) { 12339 return; 12340 } 12341 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12342 return; 12343 case 0x17: /* FCVTL, FCVTL2 */ 12344 if (!fp_access_check(s)) { 12345 return; 12346 } 12347 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12348 return; 12349 case 0x18: /* FRINTN */ 12350 case 0x19: /* FRINTM */ 12351 case 0x38: /* FRINTP */ 12352 case 0x39: /* FRINTZ */ 12353 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12354 /* fall through */ 12355 case 0x59: /* FRINTX */ 12356 case 0x79: /* FRINTI */ 12357 need_fpstatus = true; 12358 if (size == 3 && !is_q) { 12359 unallocated_encoding(s); 12360 return; 12361 } 12362 break; 12363 case 0x58: /* FRINTA */ 12364 rmode = FPROUNDING_TIEAWAY; 12365 need_fpstatus = true; 12366 if (size == 3 && !is_q) { 12367 unallocated_encoding(s); 12368 return; 12369 } 12370 break; 12371 case 0x7c: /* URSQRTE */ 12372 if (size == 3) { 12373 unallocated_encoding(s); 12374 return; 12375 } 12376 break; 12377 case 0x1e: /* FRINT32Z */ 12378 case 0x1f: /* FRINT64Z */ 12379 rmode = FPROUNDING_ZERO; 12380 /* fall through */ 12381 case 0x5e: /* FRINT32X */ 12382 case 0x5f: /* FRINT64X */ 12383 need_fpstatus = true; 12384 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12385 unallocated_encoding(s); 12386 return; 12387 } 12388 break; 12389 default: 12390 unallocated_encoding(s); 12391 return; 12392 } 12393 break; 12394 } 12395 default: 12396 unallocated_encoding(s); 12397 return; 12398 } 12399 12400 if (!fp_access_check(s)) { 12401 return; 12402 } 12403 12404 if (need_fpstatus || rmode >= 0) { 12405 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12406 } else { 12407 tcg_fpstatus = NULL; 12408 } 12409 if (rmode >= 0) { 12410 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12411 } else { 12412 tcg_rmode = NULL; 12413 } 12414 12415 switch (opcode) { 12416 case 0x5: 12417 if (u && size == 0) { /* NOT */ 12418 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12419 return; 12420 } 12421 break; 12422 case 0x8: /* CMGT, CMGE */ 12423 if (u) { 12424 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12425 } else { 12426 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12427 } 12428 return; 12429 case 0x9: /* CMEQ, CMLE */ 12430 if (u) { 12431 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12432 } else { 12433 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12434 } 12435 return; 12436 case 0xa: /* CMLT */ 12437 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12438 return; 12439 case 0xb: 12440 if (u) { /* ABS, NEG */ 12441 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12442 } else { 12443 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12444 } 12445 return; 12446 } 12447 12448 if (size == 3) { 12449 /* All 64-bit element operations can be shared with scalar 2misc */ 12450 int pass; 12451 12452 /* Coverity claims (size == 3 && !is_q) has been eliminated 12453 * from all paths leading to here. 12454 */ 12455 tcg_debug_assert(is_q); 12456 for (pass = 0; pass < 2; pass++) { 12457 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12458 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12459 12460 read_vec_element(s, tcg_op, rn, pass, MO_64); 12461 12462 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12463 tcg_rmode, tcg_fpstatus); 12464 12465 write_vec_element(s, tcg_res, rd, pass, MO_64); 12466 } 12467 } else { 12468 int pass; 12469 12470 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12471 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12472 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12473 12474 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12475 12476 if (size == 2) { 12477 /* Special cases for 32 bit elements */ 12478 switch (opcode) { 12479 case 0x4: /* CLS */ 12480 if (u) { 12481 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12482 } else { 12483 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12484 } 12485 break; 12486 case 0x7: /* SQABS, SQNEG */ 12487 if (u) { 12488 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12489 } else { 12490 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12491 } 12492 break; 12493 case 0x2f: /* FABS */ 12494 gen_helper_vfp_abss(tcg_res, tcg_op); 12495 break; 12496 case 0x6f: /* FNEG */ 12497 gen_helper_vfp_negs(tcg_res, tcg_op); 12498 break; 12499 case 0x7f: /* FSQRT */ 12500 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12501 break; 12502 case 0x1a: /* FCVTNS */ 12503 case 0x1b: /* FCVTMS */ 12504 case 0x1c: /* FCVTAS */ 12505 case 0x3a: /* FCVTPS */ 12506 case 0x3b: /* FCVTZS */ 12507 gen_helper_vfp_tosls(tcg_res, tcg_op, 12508 tcg_constant_i32(0), tcg_fpstatus); 12509 break; 12510 case 0x5a: /* FCVTNU */ 12511 case 0x5b: /* FCVTMU */ 12512 case 0x5c: /* FCVTAU */ 12513 case 0x7a: /* FCVTPU */ 12514 case 0x7b: /* FCVTZU */ 12515 gen_helper_vfp_touls(tcg_res, tcg_op, 12516 tcg_constant_i32(0), tcg_fpstatus); 12517 break; 12518 case 0x18: /* FRINTN */ 12519 case 0x19: /* FRINTM */ 12520 case 0x38: /* FRINTP */ 12521 case 0x39: /* FRINTZ */ 12522 case 0x58: /* FRINTA */ 12523 case 0x79: /* FRINTI */ 12524 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12525 break; 12526 case 0x59: /* FRINTX */ 12527 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12528 break; 12529 case 0x7c: /* URSQRTE */ 12530 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12531 break; 12532 case 0x1e: /* FRINT32Z */ 12533 case 0x5e: /* FRINT32X */ 12534 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12535 break; 12536 case 0x1f: /* FRINT64Z */ 12537 case 0x5f: /* FRINT64X */ 12538 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12539 break; 12540 default: 12541 g_assert_not_reached(); 12542 } 12543 } else { 12544 /* Use helpers for 8 and 16 bit elements */ 12545 switch (opcode) { 12546 case 0x5: /* CNT, RBIT */ 12547 /* For these two insns size is part of the opcode specifier 12548 * (handled earlier); they always operate on byte elements. 12549 */ 12550 if (u) { 12551 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12552 } else { 12553 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12554 } 12555 break; 12556 case 0x7: /* SQABS, SQNEG */ 12557 { 12558 NeonGenOneOpEnvFn *genfn; 12559 static NeonGenOneOpEnvFn * const fns[2][2] = { 12560 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12561 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12562 }; 12563 genfn = fns[size][u]; 12564 genfn(tcg_res, cpu_env, tcg_op); 12565 break; 12566 } 12567 case 0x4: /* CLS, CLZ */ 12568 if (u) { 12569 if (size == 0) { 12570 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12571 } else { 12572 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12573 } 12574 } else { 12575 if (size == 0) { 12576 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12577 } else { 12578 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12579 } 12580 } 12581 break; 12582 default: 12583 g_assert_not_reached(); 12584 } 12585 } 12586 12587 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12588 } 12589 } 12590 clear_vec_high(s, is_q, rd); 12591 12592 if (tcg_rmode) { 12593 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12594 } 12595 } 12596 12597 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12598 * 12599 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12600 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12601 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12602 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12603 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12604 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12605 * 12606 * This actually covers two groups where scalar access is governed by 12607 * bit 28. A bunch of the instructions (float to integral) only exist 12608 * in the vector form and are un-allocated for the scalar decode. Also 12609 * in the scalar decode Q is always 1. 12610 */ 12611 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12612 { 12613 int fpop, opcode, a, u; 12614 int rn, rd; 12615 bool is_q; 12616 bool is_scalar; 12617 bool only_in_vector = false; 12618 12619 int pass; 12620 TCGv_i32 tcg_rmode = NULL; 12621 TCGv_ptr tcg_fpstatus = NULL; 12622 bool need_fpst = true; 12623 int rmode = -1; 12624 12625 if (!dc_isar_feature(aa64_fp16, s)) { 12626 unallocated_encoding(s); 12627 return; 12628 } 12629 12630 rd = extract32(insn, 0, 5); 12631 rn = extract32(insn, 5, 5); 12632 12633 a = extract32(insn, 23, 1); 12634 u = extract32(insn, 29, 1); 12635 is_scalar = extract32(insn, 28, 1); 12636 is_q = extract32(insn, 30, 1); 12637 12638 opcode = extract32(insn, 12, 5); 12639 fpop = deposit32(opcode, 5, 1, a); 12640 fpop = deposit32(fpop, 6, 1, u); 12641 12642 switch (fpop) { 12643 case 0x1d: /* SCVTF */ 12644 case 0x5d: /* UCVTF */ 12645 { 12646 int elements; 12647 12648 if (is_scalar) { 12649 elements = 1; 12650 } else { 12651 elements = (is_q ? 8 : 4); 12652 } 12653 12654 if (!fp_access_check(s)) { 12655 return; 12656 } 12657 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12658 return; 12659 } 12660 break; 12661 case 0x2c: /* FCMGT (zero) */ 12662 case 0x2d: /* FCMEQ (zero) */ 12663 case 0x2e: /* FCMLT (zero) */ 12664 case 0x6c: /* FCMGE (zero) */ 12665 case 0x6d: /* FCMLE (zero) */ 12666 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12667 return; 12668 case 0x3d: /* FRECPE */ 12669 case 0x3f: /* FRECPX */ 12670 break; 12671 case 0x18: /* FRINTN */ 12672 only_in_vector = true; 12673 rmode = FPROUNDING_TIEEVEN; 12674 break; 12675 case 0x19: /* FRINTM */ 12676 only_in_vector = true; 12677 rmode = FPROUNDING_NEGINF; 12678 break; 12679 case 0x38: /* FRINTP */ 12680 only_in_vector = true; 12681 rmode = FPROUNDING_POSINF; 12682 break; 12683 case 0x39: /* FRINTZ */ 12684 only_in_vector = true; 12685 rmode = FPROUNDING_ZERO; 12686 break; 12687 case 0x58: /* FRINTA */ 12688 only_in_vector = true; 12689 rmode = FPROUNDING_TIEAWAY; 12690 break; 12691 case 0x59: /* FRINTX */ 12692 case 0x79: /* FRINTI */ 12693 only_in_vector = true; 12694 /* current rounding mode */ 12695 break; 12696 case 0x1a: /* FCVTNS */ 12697 rmode = FPROUNDING_TIEEVEN; 12698 break; 12699 case 0x1b: /* FCVTMS */ 12700 rmode = FPROUNDING_NEGINF; 12701 break; 12702 case 0x1c: /* FCVTAS */ 12703 rmode = FPROUNDING_TIEAWAY; 12704 break; 12705 case 0x3a: /* FCVTPS */ 12706 rmode = FPROUNDING_POSINF; 12707 break; 12708 case 0x3b: /* FCVTZS */ 12709 rmode = FPROUNDING_ZERO; 12710 break; 12711 case 0x5a: /* FCVTNU */ 12712 rmode = FPROUNDING_TIEEVEN; 12713 break; 12714 case 0x5b: /* FCVTMU */ 12715 rmode = FPROUNDING_NEGINF; 12716 break; 12717 case 0x5c: /* FCVTAU */ 12718 rmode = FPROUNDING_TIEAWAY; 12719 break; 12720 case 0x7a: /* FCVTPU */ 12721 rmode = FPROUNDING_POSINF; 12722 break; 12723 case 0x7b: /* FCVTZU */ 12724 rmode = FPROUNDING_ZERO; 12725 break; 12726 case 0x2f: /* FABS */ 12727 case 0x6f: /* FNEG */ 12728 need_fpst = false; 12729 break; 12730 case 0x7d: /* FRSQRTE */ 12731 case 0x7f: /* FSQRT (vector) */ 12732 break; 12733 default: 12734 unallocated_encoding(s); 12735 return; 12736 } 12737 12738 12739 /* Check additional constraints for the scalar encoding */ 12740 if (is_scalar) { 12741 if (!is_q) { 12742 unallocated_encoding(s); 12743 return; 12744 } 12745 /* FRINTxx is only in the vector form */ 12746 if (only_in_vector) { 12747 unallocated_encoding(s); 12748 return; 12749 } 12750 } 12751 12752 if (!fp_access_check(s)) { 12753 return; 12754 } 12755 12756 if (rmode >= 0 || need_fpst) { 12757 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12758 } 12759 12760 if (rmode >= 0) { 12761 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12762 } 12763 12764 if (is_scalar) { 12765 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12766 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12767 12768 switch (fpop) { 12769 case 0x1a: /* FCVTNS */ 12770 case 0x1b: /* FCVTMS */ 12771 case 0x1c: /* FCVTAS */ 12772 case 0x3a: /* FCVTPS */ 12773 case 0x3b: /* FCVTZS */ 12774 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12775 break; 12776 case 0x3d: /* FRECPE */ 12777 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12778 break; 12779 case 0x3f: /* FRECPX */ 12780 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12781 break; 12782 case 0x5a: /* FCVTNU */ 12783 case 0x5b: /* FCVTMU */ 12784 case 0x5c: /* FCVTAU */ 12785 case 0x7a: /* FCVTPU */ 12786 case 0x7b: /* FCVTZU */ 12787 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12788 break; 12789 case 0x6f: /* FNEG */ 12790 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12791 break; 12792 case 0x7d: /* FRSQRTE */ 12793 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12794 break; 12795 default: 12796 g_assert_not_reached(); 12797 } 12798 12799 /* limit any sign extension going on */ 12800 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12801 write_fp_sreg(s, rd, tcg_res); 12802 } else { 12803 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12804 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12805 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12806 12807 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12808 12809 switch (fpop) { 12810 case 0x1a: /* FCVTNS */ 12811 case 0x1b: /* FCVTMS */ 12812 case 0x1c: /* FCVTAS */ 12813 case 0x3a: /* FCVTPS */ 12814 case 0x3b: /* FCVTZS */ 12815 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12816 break; 12817 case 0x3d: /* FRECPE */ 12818 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12819 break; 12820 case 0x5a: /* FCVTNU */ 12821 case 0x5b: /* FCVTMU */ 12822 case 0x5c: /* FCVTAU */ 12823 case 0x7a: /* FCVTPU */ 12824 case 0x7b: /* FCVTZU */ 12825 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12826 break; 12827 case 0x18: /* FRINTN */ 12828 case 0x19: /* FRINTM */ 12829 case 0x38: /* FRINTP */ 12830 case 0x39: /* FRINTZ */ 12831 case 0x58: /* FRINTA */ 12832 case 0x79: /* FRINTI */ 12833 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12834 break; 12835 case 0x59: /* FRINTX */ 12836 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12837 break; 12838 case 0x2f: /* FABS */ 12839 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12840 break; 12841 case 0x6f: /* FNEG */ 12842 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12843 break; 12844 case 0x7d: /* FRSQRTE */ 12845 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12846 break; 12847 case 0x7f: /* FSQRT */ 12848 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12849 break; 12850 default: 12851 g_assert_not_reached(); 12852 } 12853 12854 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12855 } 12856 12857 clear_vec_high(s, is_q, rd); 12858 } 12859 12860 if (tcg_rmode) { 12861 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12862 } 12863 } 12864 12865 /* AdvSIMD scalar x indexed element 12866 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12867 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12868 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12869 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12870 * AdvSIMD vector x indexed element 12871 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12872 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12873 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12874 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12875 */ 12876 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12877 { 12878 /* This encoding has two kinds of instruction: 12879 * normal, where we perform elt x idxelt => elt for each 12880 * element in the vector 12881 * long, where we perform elt x idxelt and generate a result of 12882 * double the width of the input element 12883 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12884 */ 12885 bool is_scalar = extract32(insn, 28, 1); 12886 bool is_q = extract32(insn, 30, 1); 12887 bool u = extract32(insn, 29, 1); 12888 int size = extract32(insn, 22, 2); 12889 int l = extract32(insn, 21, 1); 12890 int m = extract32(insn, 20, 1); 12891 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12892 int rm = extract32(insn, 16, 4); 12893 int opcode = extract32(insn, 12, 4); 12894 int h = extract32(insn, 11, 1); 12895 int rn = extract32(insn, 5, 5); 12896 int rd = extract32(insn, 0, 5); 12897 bool is_long = false; 12898 int is_fp = 0; 12899 bool is_fp16 = false; 12900 int index; 12901 TCGv_ptr fpst; 12902 12903 switch (16 * u + opcode) { 12904 case 0x08: /* MUL */ 12905 case 0x10: /* MLA */ 12906 case 0x14: /* MLS */ 12907 if (is_scalar) { 12908 unallocated_encoding(s); 12909 return; 12910 } 12911 break; 12912 case 0x02: /* SMLAL, SMLAL2 */ 12913 case 0x12: /* UMLAL, UMLAL2 */ 12914 case 0x06: /* SMLSL, SMLSL2 */ 12915 case 0x16: /* UMLSL, UMLSL2 */ 12916 case 0x0a: /* SMULL, SMULL2 */ 12917 case 0x1a: /* UMULL, UMULL2 */ 12918 if (is_scalar) { 12919 unallocated_encoding(s); 12920 return; 12921 } 12922 is_long = true; 12923 break; 12924 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12925 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12926 case 0x0b: /* SQDMULL, SQDMULL2 */ 12927 is_long = true; 12928 break; 12929 case 0x0c: /* SQDMULH */ 12930 case 0x0d: /* SQRDMULH */ 12931 break; 12932 case 0x01: /* FMLA */ 12933 case 0x05: /* FMLS */ 12934 case 0x09: /* FMUL */ 12935 case 0x19: /* FMULX */ 12936 is_fp = 1; 12937 break; 12938 case 0x1d: /* SQRDMLAH */ 12939 case 0x1f: /* SQRDMLSH */ 12940 if (!dc_isar_feature(aa64_rdm, s)) { 12941 unallocated_encoding(s); 12942 return; 12943 } 12944 break; 12945 case 0x0e: /* SDOT */ 12946 case 0x1e: /* UDOT */ 12947 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12948 unallocated_encoding(s); 12949 return; 12950 } 12951 break; 12952 case 0x0f: 12953 switch (size) { 12954 case 0: /* SUDOT */ 12955 case 2: /* USDOT */ 12956 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12957 unallocated_encoding(s); 12958 return; 12959 } 12960 size = MO_32; 12961 break; 12962 case 1: /* BFDOT */ 12963 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12964 unallocated_encoding(s); 12965 return; 12966 } 12967 size = MO_32; 12968 break; 12969 case 3: /* BFMLAL{B,T} */ 12970 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12971 unallocated_encoding(s); 12972 return; 12973 } 12974 /* can't set is_fp without other incorrect size checks */ 12975 size = MO_16; 12976 break; 12977 default: 12978 unallocated_encoding(s); 12979 return; 12980 } 12981 break; 12982 case 0x11: /* FCMLA #0 */ 12983 case 0x13: /* FCMLA #90 */ 12984 case 0x15: /* FCMLA #180 */ 12985 case 0x17: /* FCMLA #270 */ 12986 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12987 unallocated_encoding(s); 12988 return; 12989 } 12990 is_fp = 2; 12991 break; 12992 case 0x00: /* FMLAL */ 12993 case 0x04: /* FMLSL */ 12994 case 0x18: /* FMLAL2 */ 12995 case 0x1c: /* FMLSL2 */ 12996 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12997 unallocated_encoding(s); 12998 return; 12999 } 13000 size = MO_16; 13001 /* is_fp, but we pass cpu_env not fp_status. */ 13002 break; 13003 default: 13004 unallocated_encoding(s); 13005 return; 13006 } 13007 13008 switch (is_fp) { 13009 case 1: /* normal fp */ 13010 /* convert insn encoded size to MemOp size */ 13011 switch (size) { 13012 case 0: /* half-precision */ 13013 size = MO_16; 13014 is_fp16 = true; 13015 break; 13016 case MO_32: /* single precision */ 13017 case MO_64: /* double precision */ 13018 break; 13019 default: 13020 unallocated_encoding(s); 13021 return; 13022 } 13023 break; 13024 13025 case 2: /* complex fp */ 13026 /* Each indexable element is a complex pair. */ 13027 size += 1; 13028 switch (size) { 13029 case MO_32: 13030 if (h && !is_q) { 13031 unallocated_encoding(s); 13032 return; 13033 } 13034 is_fp16 = true; 13035 break; 13036 case MO_64: 13037 break; 13038 default: 13039 unallocated_encoding(s); 13040 return; 13041 } 13042 break; 13043 13044 default: /* integer */ 13045 switch (size) { 13046 case MO_8: 13047 case MO_64: 13048 unallocated_encoding(s); 13049 return; 13050 } 13051 break; 13052 } 13053 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13054 unallocated_encoding(s); 13055 return; 13056 } 13057 13058 /* Given MemOp size, adjust register and indexing. */ 13059 switch (size) { 13060 case MO_16: 13061 index = h << 2 | l << 1 | m; 13062 break; 13063 case MO_32: 13064 index = h << 1 | l; 13065 rm |= m << 4; 13066 break; 13067 case MO_64: 13068 if (l || !is_q) { 13069 unallocated_encoding(s); 13070 return; 13071 } 13072 index = h; 13073 rm |= m << 4; 13074 break; 13075 default: 13076 g_assert_not_reached(); 13077 } 13078 13079 if (!fp_access_check(s)) { 13080 return; 13081 } 13082 13083 if (is_fp) { 13084 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13085 } else { 13086 fpst = NULL; 13087 } 13088 13089 switch (16 * u + opcode) { 13090 case 0x0e: /* SDOT */ 13091 case 0x1e: /* UDOT */ 13092 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13093 u ? gen_helper_gvec_udot_idx_b 13094 : gen_helper_gvec_sdot_idx_b); 13095 return; 13096 case 0x0f: 13097 switch (extract32(insn, 22, 2)) { 13098 case 0: /* SUDOT */ 13099 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13100 gen_helper_gvec_sudot_idx_b); 13101 return; 13102 case 1: /* BFDOT */ 13103 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13104 gen_helper_gvec_bfdot_idx); 13105 return; 13106 case 2: /* USDOT */ 13107 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13108 gen_helper_gvec_usdot_idx_b); 13109 return; 13110 case 3: /* BFMLAL{B,T} */ 13111 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13112 gen_helper_gvec_bfmlal_idx); 13113 return; 13114 } 13115 g_assert_not_reached(); 13116 case 0x11: /* FCMLA #0 */ 13117 case 0x13: /* FCMLA #90 */ 13118 case 0x15: /* FCMLA #180 */ 13119 case 0x17: /* FCMLA #270 */ 13120 { 13121 int rot = extract32(insn, 13, 2); 13122 int data = (index << 2) | rot; 13123 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13124 vec_full_reg_offset(s, rn), 13125 vec_full_reg_offset(s, rm), 13126 vec_full_reg_offset(s, rd), fpst, 13127 is_q ? 16 : 8, vec_full_reg_size(s), data, 13128 size == MO_64 13129 ? gen_helper_gvec_fcmlas_idx 13130 : gen_helper_gvec_fcmlah_idx); 13131 } 13132 return; 13133 13134 case 0x00: /* FMLAL */ 13135 case 0x04: /* FMLSL */ 13136 case 0x18: /* FMLAL2 */ 13137 case 0x1c: /* FMLSL2 */ 13138 { 13139 int is_s = extract32(opcode, 2, 1); 13140 int is_2 = u; 13141 int data = (index << 2) | (is_2 << 1) | is_s; 13142 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13143 vec_full_reg_offset(s, rn), 13144 vec_full_reg_offset(s, rm), cpu_env, 13145 is_q ? 16 : 8, vec_full_reg_size(s), 13146 data, gen_helper_gvec_fmlal_idx_a64); 13147 } 13148 return; 13149 13150 case 0x08: /* MUL */ 13151 if (!is_long && !is_scalar) { 13152 static gen_helper_gvec_3 * const fns[3] = { 13153 gen_helper_gvec_mul_idx_h, 13154 gen_helper_gvec_mul_idx_s, 13155 gen_helper_gvec_mul_idx_d, 13156 }; 13157 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13158 vec_full_reg_offset(s, rn), 13159 vec_full_reg_offset(s, rm), 13160 is_q ? 16 : 8, vec_full_reg_size(s), 13161 index, fns[size - 1]); 13162 return; 13163 } 13164 break; 13165 13166 case 0x10: /* MLA */ 13167 if (!is_long && !is_scalar) { 13168 static gen_helper_gvec_4 * const fns[3] = { 13169 gen_helper_gvec_mla_idx_h, 13170 gen_helper_gvec_mla_idx_s, 13171 gen_helper_gvec_mla_idx_d, 13172 }; 13173 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13174 vec_full_reg_offset(s, rn), 13175 vec_full_reg_offset(s, rm), 13176 vec_full_reg_offset(s, rd), 13177 is_q ? 16 : 8, vec_full_reg_size(s), 13178 index, fns[size - 1]); 13179 return; 13180 } 13181 break; 13182 13183 case 0x14: /* MLS */ 13184 if (!is_long && !is_scalar) { 13185 static gen_helper_gvec_4 * const fns[3] = { 13186 gen_helper_gvec_mls_idx_h, 13187 gen_helper_gvec_mls_idx_s, 13188 gen_helper_gvec_mls_idx_d, 13189 }; 13190 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13191 vec_full_reg_offset(s, rn), 13192 vec_full_reg_offset(s, rm), 13193 vec_full_reg_offset(s, rd), 13194 is_q ? 16 : 8, vec_full_reg_size(s), 13195 index, fns[size - 1]); 13196 return; 13197 } 13198 break; 13199 } 13200 13201 if (size == 3) { 13202 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13203 int pass; 13204 13205 assert(is_fp && is_q && !is_long); 13206 13207 read_vec_element(s, tcg_idx, rm, index, MO_64); 13208 13209 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13210 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13211 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13212 13213 read_vec_element(s, tcg_op, rn, pass, MO_64); 13214 13215 switch (16 * u + opcode) { 13216 case 0x05: /* FMLS */ 13217 /* As usual for ARM, separate negation for fused multiply-add */ 13218 gen_helper_vfp_negd(tcg_op, tcg_op); 13219 /* fall through */ 13220 case 0x01: /* FMLA */ 13221 read_vec_element(s, tcg_res, rd, pass, MO_64); 13222 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13223 break; 13224 case 0x09: /* FMUL */ 13225 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13226 break; 13227 case 0x19: /* FMULX */ 13228 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13229 break; 13230 default: 13231 g_assert_not_reached(); 13232 } 13233 13234 write_vec_element(s, tcg_res, rd, pass, MO_64); 13235 } 13236 13237 clear_vec_high(s, !is_scalar, rd); 13238 } else if (!is_long) { 13239 /* 32 bit floating point, or 16 or 32 bit integer. 13240 * For the 16 bit scalar case we use the usual Neon helpers and 13241 * rely on the fact that 0 op 0 == 0 with no side effects. 13242 */ 13243 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13244 int pass, maxpasses; 13245 13246 if (is_scalar) { 13247 maxpasses = 1; 13248 } else { 13249 maxpasses = is_q ? 4 : 2; 13250 } 13251 13252 read_vec_element_i32(s, tcg_idx, rm, index, size); 13253 13254 if (size == 1 && !is_scalar) { 13255 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13256 * the index into both halves of the 32 bit tcg_idx and then use 13257 * the usual Neon helpers. 13258 */ 13259 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13260 } 13261 13262 for (pass = 0; pass < maxpasses; pass++) { 13263 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13264 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13265 13266 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13267 13268 switch (16 * u + opcode) { 13269 case 0x08: /* MUL */ 13270 case 0x10: /* MLA */ 13271 case 0x14: /* MLS */ 13272 { 13273 static NeonGenTwoOpFn * const fns[2][2] = { 13274 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13275 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13276 }; 13277 NeonGenTwoOpFn *genfn; 13278 bool is_sub = opcode == 0x4; 13279 13280 if (size == 1) { 13281 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13282 } else { 13283 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13284 } 13285 if (opcode == 0x8) { 13286 break; 13287 } 13288 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13289 genfn = fns[size - 1][is_sub]; 13290 genfn(tcg_res, tcg_op, tcg_res); 13291 break; 13292 } 13293 case 0x05: /* FMLS */ 13294 case 0x01: /* FMLA */ 13295 read_vec_element_i32(s, tcg_res, rd, pass, 13296 is_scalar ? size : MO_32); 13297 switch (size) { 13298 case 1: 13299 if (opcode == 0x5) { 13300 /* As usual for ARM, separate negation for fused 13301 * multiply-add */ 13302 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13303 } 13304 if (is_scalar) { 13305 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13306 tcg_res, fpst); 13307 } else { 13308 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13309 tcg_res, fpst); 13310 } 13311 break; 13312 case 2: 13313 if (opcode == 0x5) { 13314 /* As usual for ARM, separate negation for 13315 * fused multiply-add */ 13316 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13317 } 13318 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13319 tcg_res, fpst); 13320 break; 13321 default: 13322 g_assert_not_reached(); 13323 } 13324 break; 13325 case 0x09: /* FMUL */ 13326 switch (size) { 13327 case 1: 13328 if (is_scalar) { 13329 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13330 tcg_idx, fpst); 13331 } else { 13332 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13333 tcg_idx, fpst); 13334 } 13335 break; 13336 case 2: 13337 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13338 break; 13339 default: 13340 g_assert_not_reached(); 13341 } 13342 break; 13343 case 0x19: /* FMULX */ 13344 switch (size) { 13345 case 1: 13346 if (is_scalar) { 13347 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13348 tcg_idx, fpst); 13349 } else { 13350 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13351 tcg_idx, fpst); 13352 } 13353 break; 13354 case 2: 13355 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13356 break; 13357 default: 13358 g_assert_not_reached(); 13359 } 13360 break; 13361 case 0x0c: /* SQDMULH */ 13362 if (size == 1) { 13363 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13364 tcg_op, tcg_idx); 13365 } else { 13366 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13367 tcg_op, tcg_idx); 13368 } 13369 break; 13370 case 0x0d: /* SQRDMULH */ 13371 if (size == 1) { 13372 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13373 tcg_op, tcg_idx); 13374 } else { 13375 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13376 tcg_op, tcg_idx); 13377 } 13378 break; 13379 case 0x1d: /* SQRDMLAH */ 13380 read_vec_element_i32(s, tcg_res, rd, pass, 13381 is_scalar ? size : MO_32); 13382 if (size == 1) { 13383 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13384 tcg_op, tcg_idx, tcg_res); 13385 } else { 13386 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13387 tcg_op, tcg_idx, tcg_res); 13388 } 13389 break; 13390 case 0x1f: /* SQRDMLSH */ 13391 read_vec_element_i32(s, tcg_res, rd, pass, 13392 is_scalar ? size : MO_32); 13393 if (size == 1) { 13394 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13395 tcg_op, tcg_idx, tcg_res); 13396 } else { 13397 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13398 tcg_op, tcg_idx, tcg_res); 13399 } 13400 break; 13401 default: 13402 g_assert_not_reached(); 13403 } 13404 13405 if (is_scalar) { 13406 write_fp_sreg(s, rd, tcg_res); 13407 } else { 13408 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13409 } 13410 } 13411 13412 clear_vec_high(s, is_q, rd); 13413 } else { 13414 /* long ops: 16x16->32 or 32x32->64 */ 13415 TCGv_i64 tcg_res[2]; 13416 int pass; 13417 bool satop = extract32(opcode, 0, 1); 13418 MemOp memop = MO_32; 13419 13420 if (satop || !u) { 13421 memop |= MO_SIGN; 13422 } 13423 13424 if (size == 2) { 13425 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13426 13427 read_vec_element(s, tcg_idx, rm, index, memop); 13428 13429 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13430 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13431 TCGv_i64 tcg_passres; 13432 int passelt; 13433 13434 if (is_scalar) { 13435 passelt = 0; 13436 } else { 13437 passelt = pass + (is_q * 2); 13438 } 13439 13440 read_vec_element(s, tcg_op, rn, passelt, memop); 13441 13442 tcg_res[pass] = tcg_temp_new_i64(); 13443 13444 if (opcode == 0xa || opcode == 0xb) { 13445 /* Non-accumulating ops */ 13446 tcg_passres = tcg_res[pass]; 13447 } else { 13448 tcg_passres = tcg_temp_new_i64(); 13449 } 13450 13451 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13452 13453 if (satop) { 13454 /* saturating, doubling */ 13455 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13456 tcg_passres, tcg_passres); 13457 } 13458 13459 if (opcode == 0xa || opcode == 0xb) { 13460 continue; 13461 } 13462 13463 /* Accumulating op: handle accumulate step */ 13464 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13465 13466 switch (opcode) { 13467 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13468 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13469 break; 13470 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13471 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13472 break; 13473 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13474 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13475 /* fall through */ 13476 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13477 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13478 tcg_res[pass], 13479 tcg_passres); 13480 break; 13481 default: 13482 g_assert_not_reached(); 13483 } 13484 } 13485 13486 clear_vec_high(s, !is_scalar, rd); 13487 } else { 13488 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13489 13490 assert(size == 1); 13491 read_vec_element_i32(s, tcg_idx, rm, index, size); 13492 13493 if (!is_scalar) { 13494 /* The simplest way to handle the 16x16 indexed ops is to 13495 * duplicate the index into both halves of the 32 bit tcg_idx 13496 * and then use the usual Neon helpers. 13497 */ 13498 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13499 } 13500 13501 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13502 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13503 TCGv_i64 tcg_passres; 13504 13505 if (is_scalar) { 13506 read_vec_element_i32(s, tcg_op, rn, pass, size); 13507 } else { 13508 read_vec_element_i32(s, tcg_op, rn, 13509 pass + (is_q * 2), MO_32); 13510 } 13511 13512 tcg_res[pass] = tcg_temp_new_i64(); 13513 13514 if (opcode == 0xa || opcode == 0xb) { 13515 /* Non-accumulating ops */ 13516 tcg_passres = tcg_res[pass]; 13517 } else { 13518 tcg_passres = tcg_temp_new_i64(); 13519 } 13520 13521 if (memop & MO_SIGN) { 13522 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13523 } else { 13524 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13525 } 13526 if (satop) { 13527 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13528 tcg_passres, tcg_passres); 13529 } 13530 13531 if (opcode == 0xa || opcode == 0xb) { 13532 continue; 13533 } 13534 13535 /* Accumulating op: handle accumulate step */ 13536 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13537 13538 switch (opcode) { 13539 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13540 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13541 tcg_passres); 13542 break; 13543 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13544 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13545 tcg_passres); 13546 break; 13547 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13548 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13549 /* fall through */ 13550 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13551 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13552 tcg_res[pass], 13553 tcg_passres); 13554 break; 13555 default: 13556 g_assert_not_reached(); 13557 } 13558 } 13559 13560 if (is_scalar) { 13561 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13562 } 13563 } 13564 13565 if (is_scalar) { 13566 tcg_res[1] = tcg_constant_i64(0); 13567 } 13568 13569 for (pass = 0; pass < 2; pass++) { 13570 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13571 } 13572 } 13573 } 13574 13575 /* Crypto AES 13576 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13577 * +-----------------+------+-----------+--------+-----+------+------+ 13578 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13579 * +-----------------+------+-----------+--------+-----+------+------+ 13580 */ 13581 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13582 { 13583 int size = extract32(insn, 22, 2); 13584 int opcode = extract32(insn, 12, 5); 13585 int rn = extract32(insn, 5, 5); 13586 int rd = extract32(insn, 0, 5); 13587 int decrypt; 13588 gen_helper_gvec_2 *genfn2 = NULL; 13589 gen_helper_gvec_3 *genfn3 = NULL; 13590 13591 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13592 unallocated_encoding(s); 13593 return; 13594 } 13595 13596 switch (opcode) { 13597 case 0x4: /* AESE */ 13598 decrypt = 0; 13599 genfn3 = gen_helper_crypto_aese; 13600 break; 13601 case 0x6: /* AESMC */ 13602 decrypt = 0; 13603 genfn2 = gen_helper_crypto_aesmc; 13604 break; 13605 case 0x5: /* AESD */ 13606 decrypt = 1; 13607 genfn3 = gen_helper_crypto_aese; 13608 break; 13609 case 0x7: /* AESIMC */ 13610 decrypt = 1; 13611 genfn2 = gen_helper_crypto_aesmc; 13612 break; 13613 default: 13614 unallocated_encoding(s); 13615 return; 13616 } 13617 13618 if (!fp_access_check(s)) { 13619 return; 13620 } 13621 if (genfn2) { 13622 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13623 } else { 13624 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13625 } 13626 } 13627 13628 /* Crypto three-reg SHA 13629 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13630 * +-----------------+------+---+------+---+--------+-----+------+------+ 13631 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13632 * +-----------------+------+---+------+---+--------+-----+------+------+ 13633 */ 13634 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13635 { 13636 int size = extract32(insn, 22, 2); 13637 int opcode = extract32(insn, 12, 3); 13638 int rm = extract32(insn, 16, 5); 13639 int rn = extract32(insn, 5, 5); 13640 int rd = extract32(insn, 0, 5); 13641 gen_helper_gvec_3 *genfn; 13642 bool feature; 13643 13644 if (size != 0) { 13645 unallocated_encoding(s); 13646 return; 13647 } 13648 13649 switch (opcode) { 13650 case 0: /* SHA1C */ 13651 genfn = gen_helper_crypto_sha1c; 13652 feature = dc_isar_feature(aa64_sha1, s); 13653 break; 13654 case 1: /* SHA1P */ 13655 genfn = gen_helper_crypto_sha1p; 13656 feature = dc_isar_feature(aa64_sha1, s); 13657 break; 13658 case 2: /* SHA1M */ 13659 genfn = gen_helper_crypto_sha1m; 13660 feature = dc_isar_feature(aa64_sha1, s); 13661 break; 13662 case 3: /* SHA1SU0 */ 13663 genfn = gen_helper_crypto_sha1su0; 13664 feature = dc_isar_feature(aa64_sha1, s); 13665 break; 13666 case 4: /* SHA256H */ 13667 genfn = gen_helper_crypto_sha256h; 13668 feature = dc_isar_feature(aa64_sha256, s); 13669 break; 13670 case 5: /* SHA256H2 */ 13671 genfn = gen_helper_crypto_sha256h2; 13672 feature = dc_isar_feature(aa64_sha256, s); 13673 break; 13674 case 6: /* SHA256SU1 */ 13675 genfn = gen_helper_crypto_sha256su1; 13676 feature = dc_isar_feature(aa64_sha256, s); 13677 break; 13678 default: 13679 unallocated_encoding(s); 13680 return; 13681 } 13682 13683 if (!feature) { 13684 unallocated_encoding(s); 13685 return; 13686 } 13687 13688 if (!fp_access_check(s)) { 13689 return; 13690 } 13691 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13692 } 13693 13694 /* Crypto two-reg SHA 13695 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13696 * +-----------------+------+-----------+--------+-----+------+------+ 13697 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13698 * +-----------------+------+-----------+--------+-----+------+------+ 13699 */ 13700 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13701 { 13702 int size = extract32(insn, 22, 2); 13703 int opcode = extract32(insn, 12, 5); 13704 int rn = extract32(insn, 5, 5); 13705 int rd = extract32(insn, 0, 5); 13706 gen_helper_gvec_2 *genfn; 13707 bool feature; 13708 13709 if (size != 0) { 13710 unallocated_encoding(s); 13711 return; 13712 } 13713 13714 switch (opcode) { 13715 case 0: /* SHA1H */ 13716 feature = dc_isar_feature(aa64_sha1, s); 13717 genfn = gen_helper_crypto_sha1h; 13718 break; 13719 case 1: /* SHA1SU1 */ 13720 feature = dc_isar_feature(aa64_sha1, s); 13721 genfn = gen_helper_crypto_sha1su1; 13722 break; 13723 case 2: /* SHA256SU0 */ 13724 feature = dc_isar_feature(aa64_sha256, s); 13725 genfn = gen_helper_crypto_sha256su0; 13726 break; 13727 default: 13728 unallocated_encoding(s); 13729 return; 13730 } 13731 13732 if (!feature) { 13733 unallocated_encoding(s); 13734 return; 13735 } 13736 13737 if (!fp_access_check(s)) { 13738 return; 13739 } 13740 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13741 } 13742 13743 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13744 { 13745 tcg_gen_rotli_i64(d, m, 1); 13746 tcg_gen_xor_i64(d, d, n); 13747 } 13748 13749 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13750 { 13751 tcg_gen_rotli_vec(vece, d, m, 1); 13752 tcg_gen_xor_vec(vece, d, d, n); 13753 } 13754 13755 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13756 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13757 { 13758 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13759 static const GVecGen3 op = { 13760 .fni8 = gen_rax1_i64, 13761 .fniv = gen_rax1_vec, 13762 .opt_opc = vecop_list, 13763 .fno = gen_helper_crypto_rax1, 13764 .vece = MO_64, 13765 }; 13766 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13767 } 13768 13769 /* Crypto three-reg SHA512 13770 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13771 * +-----------------------+------+---+---+-----+--------+------+------+ 13772 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13773 * +-----------------------+------+---+---+-----+--------+------+------+ 13774 */ 13775 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13776 { 13777 int opcode = extract32(insn, 10, 2); 13778 int o = extract32(insn, 14, 1); 13779 int rm = extract32(insn, 16, 5); 13780 int rn = extract32(insn, 5, 5); 13781 int rd = extract32(insn, 0, 5); 13782 bool feature; 13783 gen_helper_gvec_3 *oolfn = NULL; 13784 GVecGen3Fn *gvecfn = NULL; 13785 13786 if (o == 0) { 13787 switch (opcode) { 13788 case 0: /* SHA512H */ 13789 feature = dc_isar_feature(aa64_sha512, s); 13790 oolfn = gen_helper_crypto_sha512h; 13791 break; 13792 case 1: /* SHA512H2 */ 13793 feature = dc_isar_feature(aa64_sha512, s); 13794 oolfn = gen_helper_crypto_sha512h2; 13795 break; 13796 case 2: /* SHA512SU1 */ 13797 feature = dc_isar_feature(aa64_sha512, s); 13798 oolfn = gen_helper_crypto_sha512su1; 13799 break; 13800 case 3: /* RAX1 */ 13801 feature = dc_isar_feature(aa64_sha3, s); 13802 gvecfn = gen_gvec_rax1; 13803 break; 13804 default: 13805 g_assert_not_reached(); 13806 } 13807 } else { 13808 switch (opcode) { 13809 case 0: /* SM3PARTW1 */ 13810 feature = dc_isar_feature(aa64_sm3, s); 13811 oolfn = gen_helper_crypto_sm3partw1; 13812 break; 13813 case 1: /* SM3PARTW2 */ 13814 feature = dc_isar_feature(aa64_sm3, s); 13815 oolfn = gen_helper_crypto_sm3partw2; 13816 break; 13817 case 2: /* SM4EKEY */ 13818 feature = dc_isar_feature(aa64_sm4, s); 13819 oolfn = gen_helper_crypto_sm4ekey; 13820 break; 13821 default: 13822 unallocated_encoding(s); 13823 return; 13824 } 13825 } 13826 13827 if (!feature) { 13828 unallocated_encoding(s); 13829 return; 13830 } 13831 13832 if (!fp_access_check(s)) { 13833 return; 13834 } 13835 13836 if (oolfn) { 13837 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13838 } else { 13839 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13840 } 13841 } 13842 13843 /* Crypto two-reg SHA512 13844 * 31 12 11 10 9 5 4 0 13845 * +-----------------------------------------+--------+------+------+ 13846 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13847 * +-----------------------------------------+--------+------+------+ 13848 */ 13849 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13850 { 13851 int opcode = extract32(insn, 10, 2); 13852 int rn = extract32(insn, 5, 5); 13853 int rd = extract32(insn, 0, 5); 13854 bool feature; 13855 13856 switch (opcode) { 13857 case 0: /* SHA512SU0 */ 13858 feature = dc_isar_feature(aa64_sha512, s); 13859 break; 13860 case 1: /* SM4E */ 13861 feature = dc_isar_feature(aa64_sm4, s); 13862 break; 13863 default: 13864 unallocated_encoding(s); 13865 return; 13866 } 13867 13868 if (!feature) { 13869 unallocated_encoding(s); 13870 return; 13871 } 13872 13873 if (!fp_access_check(s)) { 13874 return; 13875 } 13876 13877 switch (opcode) { 13878 case 0: /* SHA512SU0 */ 13879 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13880 break; 13881 case 1: /* SM4E */ 13882 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13883 break; 13884 default: 13885 g_assert_not_reached(); 13886 } 13887 } 13888 13889 /* Crypto four-register 13890 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13891 * +-------------------+-----+------+---+------+------+------+ 13892 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13893 * +-------------------+-----+------+---+------+------+------+ 13894 */ 13895 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13896 { 13897 int op0 = extract32(insn, 21, 2); 13898 int rm = extract32(insn, 16, 5); 13899 int ra = extract32(insn, 10, 5); 13900 int rn = extract32(insn, 5, 5); 13901 int rd = extract32(insn, 0, 5); 13902 bool feature; 13903 13904 switch (op0) { 13905 case 0: /* EOR3 */ 13906 case 1: /* BCAX */ 13907 feature = dc_isar_feature(aa64_sha3, s); 13908 break; 13909 case 2: /* SM3SS1 */ 13910 feature = dc_isar_feature(aa64_sm3, s); 13911 break; 13912 default: 13913 unallocated_encoding(s); 13914 return; 13915 } 13916 13917 if (!feature) { 13918 unallocated_encoding(s); 13919 return; 13920 } 13921 13922 if (!fp_access_check(s)) { 13923 return; 13924 } 13925 13926 if (op0 < 2) { 13927 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13928 int pass; 13929 13930 tcg_op1 = tcg_temp_new_i64(); 13931 tcg_op2 = tcg_temp_new_i64(); 13932 tcg_op3 = tcg_temp_new_i64(); 13933 tcg_res[0] = tcg_temp_new_i64(); 13934 tcg_res[1] = tcg_temp_new_i64(); 13935 13936 for (pass = 0; pass < 2; pass++) { 13937 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13938 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13939 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13940 13941 if (op0 == 0) { 13942 /* EOR3 */ 13943 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13944 } else { 13945 /* BCAX */ 13946 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13947 } 13948 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13949 } 13950 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13951 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13952 } else { 13953 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13954 13955 tcg_op1 = tcg_temp_new_i32(); 13956 tcg_op2 = tcg_temp_new_i32(); 13957 tcg_op3 = tcg_temp_new_i32(); 13958 tcg_res = tcg_temp_new_i32(); 13959 tcg_zero = tcg_constant_i32(0); 13960 13961 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13962 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13963 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13964 13965 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13966 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13967 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13968 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13969 13970 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13971 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13972 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13973 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13974 } 13975 } 13976 13977 /* Crypto XAR 13978 * 31 21 20 16 15 10 9 5 4 0 13979 * +-----------------------+------+--------+------+------+ 13980 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13981 * +-----------------------+------+--------+------+------+ 13982 */ 13983 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13984 { 13985 int rm = extract32(insn, 16, 5); 13986 int imm6 = extract32(insn, 10, 6); 13987 int rn = extract32(insn, 5, 5); 13988 int rd = extract32(insn, 0, 5); 13989 13990 if (!dc_isar_feature(aa64_sha3, s)) { 13991 unallocated_encoding(s); 13992 return; 13993 } 13994 13995 if (!fp_access_check(s)) { 13996 return; 13997 } 13998 13999 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14000 vec_full_reg_offset(s, rn), 14001 vec_full_reg_offset(s, rm), imm6, 16, 14002 vec_full_reg_size(s)); 14003 } 14004 14005 /* Crypto three-reg imm2 14006 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14007 * +-----------------------+------+-----+------+--------+------+------+ 14008 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14009 * +-----------------------+------+-----+------+--------+------+------+ 14010 */ 14011 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14012 { 14013 static gen_helper_gvec_3 * const fns[4] = { 14014 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14015 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14016 }; 14017 int opcode = extract32(insn, 10, 2); 14018 int imm2 = extract32(insn, 12, 2); 14019 int rm = extract32(insn, 16, 5); 14020 int rn = extract32(insn, 5, 5); 14021 int rd = extract32(insn, 0, 5); 14022 14023 if (!dc_isar_feature(aa64_sm3, s)) { 14024 unallocated_encoding(s); 14025 return; 14026 } 14027 14028 if (!fp_access_check(s)) { 14029 return; 14030 } 14031 14032 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14033 } 14034 14035 /* C3.6 Data processing - SIMD, inc Crypto 14036 * 14037 * As the decode gets a little complex we are using a table based 14038 * approach for this part of the decode. 14039 */ 14040 static const AArch64DecodeTable data_proc_simd[] = { 14041 /* pattern , mask , fn */ 14042 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14043 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14044 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14045 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14046 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14047 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14048 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14049 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14050 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14051 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14052 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14053 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14054 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14055 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14056 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14057 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14058 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14059 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14060 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14061 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14062 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14063 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14064 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14065 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14066 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14067 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14068 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14069 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14070 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14071 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14072 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14073 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14074 { 0x00000000, 0x00000000, NULL } 14075 }; 14076 14077 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14078 { 14079 /* Note that this is called with all non-FP cases from 14080 * table C3-6 so it must UNDEF for entries not specifically 14081 * allocated to instructions in that table. 14082 */ 14083 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14084 if (fn) { 14085 fn(s, insn); 14086 } else { 14087 unallocated_encoding(s); 14088 } 14089 } 14090 14091 /* C3.6 Data processing - SIMD and floating point */ 14092 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14093 { 14094 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14095 disas_data_proc_fp(s, insn); 14096 } else { 14097 /* SIMD, including crypto */ 14098 disas_data_proc_simd(s, insn); 14099 } 14100 } 14101 14102 static bool trans_OK(DisasContext *s, arg_OK *a) 14103 { 14104 return true; 14105 } 14106 14107 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14108 { 14109 s->is_nonstreaming = true; 14110 return true; 14111 } 14112 14113 /** 14114 * is_guarded_page: 14115 * @env: The cpu environment 14116 * @s: The DisasContext 14117 * 14118 * Return true if the page is guarded. 14119 */ 14120 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14121 { 14122 uint64_t addr = s->base.pc_first; 14123 #ifdef CONFIG_USER_ONLY 14124 return page_get_flags(addr) & PAGE_BTI; 14125 #else 14126 CPUTLBEntryFull *full; 14127 void *host; 14128 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14129 int flags; 14130 14131 /* 14132 * We test this immediately after reading an insn, which means 14133 * that the TLB entry must be present and valid, and thus this 14134 * access will never raise an exception. 14135 */ 14136 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14137 false, &host, &full, 0); 14138 assert(!(flags & TLB_INVALID_MASK)); 14139 14140 return full->guarded; 14141 #endif 14142 } 14143 14144 /** 14145 * btype_destination_ok: 14146 * @insn: The instruction at the branch destination 14147 * @bt: SCTLR_ELx.BT 14148 * @btype: PSTATE.BTYPE, and is non-zero 14149 * 14150 * On a guarded page, there are a limited number of insns 14151 * that may be present at the branch target: 14152 * - branch target identifiers, 14153 * - paciasp, pacibsp, 14154 * - BRK insn 14155 * - HLT insn 14156 * Anything else causes a Branch Target Exception. 14157 * 14158 * Return true if the branch is compatible, false to raise BTITRAP. 14159 */ 14160 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14161 { 14162 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14163 /* HINT space */ 14164 switch (extract32(insn, 5, 7)) { 14165 case 0b011001: /* PACIASP */ 14166 case 0b011011: /* PACIBSP */ 14167 /* 14168 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14169 * with btype == 3. Otherwise all btype are ok. 14170 */ 14171 return !bt || btype != 3; 14172 case 0b100000: /* BTI */ 14173 /* Not compatible with any btype. */ 14174 return false; 14175 case 0b100010: /* BTI c */ 14176 /* Not compatible with btype == 3 */ 14177 return btype != 3; 14178 case 0b100100: /* BTI j */ 14179 /* Not compatible with btype == 2 */ 14180 return btype != 2; 14181 case 0b100110: /* BTI jc */ 14182 /* Compatible with any btype. */ 14183 return true; 14184 } 14185 } else { 14186 switch (insn & 0xffe0001fu) { 14187 case 0xd4200000u: /* BRK */ 14188 case 0xd4400000u: /* HLT */ 14189 /* Give priority to the breakpoint exception. */ 14190 return true; 14191 } 14192 } 14193 return false; 14194 } 14195 14196 /* C3.1 A64 instruction index by encoding */ 14197 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14198 { 14199 switch (extract32(insn, 25, 4)) { 14200 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14201 disas_b_exc_sys(s, insn); 14202 break; 14203 case 0x4: 14204 case 0x6: 14205 case 0xc: 14206 case 0xe: /* Loads and stores */ 14207 disas_ldst(s, insn); 14208 break; 14209 case 0x5: 14210 case 0xd: /* Data processing - register */ 14211 disas_data_proc_reg(s, insn); 14212 break; 14213 case 0x7: 14214 case 0xf: /* Data processing - SIMD and floating point */ 14215 disas_data_proc_simd_fp(s, insn); 14216 break; 14217 default: 14218 unallocated_encoding(s); 14219 break; 14220 } 14221 } 14222 14223 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14224 CPUState *cpu) 14225 { 14226 DisasContext *dc = container_of(dcbase, DisasContext, base); 14227 CPUARMState *env = cpu->env_ptr; 14228 ARMCPU *arm_cpu = env_archcpu(env); 14229 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14230 int bound, core_mmu_idx; 14231 14232 dc->isar = &arm_cpu->isar; 14233 dc->condjmp = 0; 14234 dc->pc_save = dc->base.pc_first; 14235 dc->aarch64 = true; 14236 dc->thumb = false; 14237 dc->sctlr_b = 0; 14238 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14239 dc->condexec_mask = 0; 14240 dc->condexec_cond = 0; 14241 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14242 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14243 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14244 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14245 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14246 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14247 #if !defined(CONFIG_USER_ONLY) 14248 dc->user = (dc->current_el == 0); 14249 #endif 14250 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14251 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14252 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14253 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14254 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14255 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14256 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14257 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14258 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14259 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14260 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14261 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14262 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14263 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14264 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14265 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14266 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14267 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14268 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14269 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14270 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14271 dc->vec_len = 0; 14272 dc->vec_stride = 0; 14273 dc->cp_regs = arm_cpu->cp_regs; 14274 dc->features = env->features; 14275 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14276 14277 #ifdef CONFIG_USER_ONLY 14278 /* In sve_probe_page, we assume TBI is enabled. */ 14279 tcg_debug_assert(dc->tbid & 1); 14280 #endif 14281 14282 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14283 14284 /* Single step state. The code-generation logic here is: 14285 * SS_ACTIVE == 0: 14286 * generate code with no special handling for single-stepping (except 14287 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14288 * this happens anyway because those changes are all system register or 14289 * PSTATE writes). 14290 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14291 * emit code for one insn 14292 * emit code to clear PSTATE.SS 14293 * emit code to generate software step exception for completed step 14294 * end TB (as usual for having generated an exception) 14295 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14296 * emit code to generate a software step exception 14297 * end the TB 14298 */ 14299 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14300 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14301 dc->is_ldex = false; 14302 14303 /* Bound the number of insns to execute to those left on the page. */ 14304 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14305 14306 /* If architectural single step active, limit to 1. */ 14307 if (dc->ss_active) { 14308 bound = 1; 14309 } 14310 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14311 } 14312 14313 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14314 { 14315 } 14316 14317 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14318 { 14319 DisasContext *dc = container_of(dcbase, DisasContext, base); 14320 target_ulong pc_arg = dc->base.pc_next; 14321 14322 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14323 pc_arg &= ~TARGET_PAGE_MASK; 14324 } 14325 tcg_gen_insn_start(pc_arg, 0, 0); 14326 dc->insn_start = tcg_last_op(); 14327 } 14328 14329 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14330 { 14331 DisasContext *s = container_of(dcbase, DisasContext, base); 14332 CPUARMState *env = cpu->env_ptr; 14333 uint64_t pc = s->base.pc_next; 14334 uint32_t insn; 14335 14336 /* Singlestep exceptions have the highest priority. */ 14337 if (s->ss_active && !s->pstate_ss) { 14338 /* Singlestep state is Active-pending. 14339 * If we're in this state at the start of a TB then either 14340 * a) we just took an exception to an EL which is being debugged 14341 * and this is the first insn in the exception handler 14342 * b) debug exceptions were masked and we just unmasked them 14343 * without changing EL (eg by clearing PSTATE.D) 14344 * In either case we're going to take a swstep exception in the 14345 * "did not step an insn" case, and so the syndrome ISV and EX 14346 * bits should be zero. 14347 */ 14348 assert(s->base.num_insns == 1); 14349 gen_swstep_exception(s, 0, 0); 14350 s->base.is_jmp = DISAS_NORETURN; 14351 s->base.pc_next = pc + 4; 14352 return; 14353 } 14354 14355 if (pc & 3) { 14356 /* 14357 * PC alignment fault. This has priority over the instruction abort 14358 * that we would receive from a translation fault via arm_ldl_code. 14359 * This should only be possible after an indirect branch, at the 14360 * start of the TB. 14361 */ 14362 assert(s->base.num_insns == 1); 14363 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14364 s->base.is_jmp = DISAS_NORETURN; 14365 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14366 return; 14367 } 14368 14369 s->pc_curr = pc; 14370 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14371 s->insn = insn; 14372 s->base.pc_next = pc + 4; 14373 14374 s->fp_access_checked = false; 14375 s->sve_access_checked = false; 14376 14377 if (s->pstate_il) { 14378 /* 14379 * Illegal execution state. This has priority over BTI 14380 * exceptions, but comes after instruction abort exceptions. 14381 */ 14382 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14383 return; 14384 } 14385 14386 if (dc_isar_feature(aa64_bti, s)) { 14387 if (s->base.num_insns == 1) { 14388 /* 14389 * At the first insn of the TB, compute s->guarded_page. 14390 * We delayed computing this until successfully reading 14391 * the first insn of the TB, above. This (mostly) ensures 14392 * that the softmmu tlb entry has been populated, and the 14393 * page table GP bit is available. 14394 * 14395 * Note that we need to compute this even if btype == 0, 14396 * because this value is used for BR instructions later 14397 * where ENV is not available. 14398 */ 14399 s->guarded_page = is_guarded_page(env, s); 14400 14401 /* First insn can have btype set to non-zero. */ 14402 tcg_debug_assert(s->btype >= 0); 14403 14404 /* 14405 * Note that the Branch Target Exception has fairly high 14406 * priority -- below debugging exceptions but above most 14407 * everything else. This allows us to handle this now 14408 * instead of waiting until the insn is otherwise decoded. 14409 */ 14410 if (s->btype != 0 14411 && s->guarded_page 14412 && !btype_destination_ok(insn, s->bt, s->btype)) { 14413 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14414 return; 14415 } 14416 } else { 14417 /* Not the first insn: btype must be 0. */ 14418 tcg_debug_assert(s->btype == 0); 14419 } 14420 } 14421 14422 s->is_nonstreaming = false; 14423 if (s->sme_trap_nonstreaming) { 14424 disas_sme_fa64(s, insn); 14425 } 14426 14427 if (!disas_a64(s, insn) && 14428 !disas_sme(s, insn) && 14429 !disas_sve(s, insn)) { 14430 disas_a64_legacy(s, insn); 14431 } 14432 14433 /* 14434 * After execution of most insns, btype is reset to 0. 14435 * Note that we set btype == -1 when the insn sets btype. 14436 */ 14437 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14438 reset_btype(s); 14439 } 14440 } 14441 14442 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14443 { 14444 DisasContext *dc = container_of(dcbase, DisasContext, base); 14445 14446 if (unlikely(dc->ss_active)) { 14447 /* Note that this means single stepping WFI doesn't halt the CPU. 14448 * For conditional branch insns this is harmless unreachable code as 14449 * gen_goto_tb() has already handled emitting the debug exception 14450 * (and thus a tb-jump is not possible when singlestepping). 14451 */ 14452 switch (dc->base.is_jmp) { 14453 default: 14454 gen_a64_update_pc(dc, 4); 14455 /* fall through */ 14456 case DISAS_EXIT: 14457 case DISAS_JUMP: 14458 gen_step_complete_exception(dc); 14459 break; 14460 case DISAS_NORETURN: 14461 break; 14462 } 14463 } else { 14464 switch (dc->base.is_jmp) { 14465 case DISAS_NEXT: 14466 case DISAS_TOO_MANY: 14467 gen_goto_tb(dc, 1, 4); 14468 break; 14469 default: 14470 case DISAS_UPDATE_EXIT: 14471 gen_a64_update_pc(dc, 4); 14472 /* fall through */ 14473 case DISAS_EXIT: 14474 tcg_gen_exit_tb(NULL, 0); 14475 break; 14476 case DISAS_UPDATE_NOCHAIN: 14477 gen_a64_update_pc(dc, 4); 14478 /* fall through */ 14479 case DISAS_JUMP: 14480 tcg_gen_lookup_and_goto_ptr(); 14481 break; 14482 case DISAS_NORETURN: 14483 case DISAS_SWI: 14484 break; 14485 case DISAS_WFE: 14486 gen_a64_update_pc(dc, 4); 14487 gen_helper_wfe(cpu_env); 14488 break; 14489 case DISAS_YIELD: 14490 gen_a64_update_pc(dc, 4); 14491 gen_helper_yield(cpu_env); 14492 break; 14493 case DISAS_WFI: 14494 /* 14495 * This is a special case because we don't want to just halt 14496 * the CPU if trying to debug across a WFI. 14497 */ 14498 gen_a64_update_pc(dc, 4); 14499 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14500 /* 14501 * The helper doesn't necessarily throw an exception, but we 14502 * must go back to the main loop to check for interrupts anyway. 14503 */ 14504 tcg_gen_exit_tb(NULL, 0); 14505 break; 14506 } 14507 } 14508 } 14509 14510 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14511 CPUState *cpu, FILE *logfile) 14512 { 14513 DisasContext *dc = container_of(dcbase, DisasContext, base); 14514 14515 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14516 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14517 } 14518 14519 const TranslatorOps aarch64_translator_ops = { 14520 .init_disas_context = aarch64_tr_init_disas_context, 14521 .tb_start = aarch64_tr_tb_start, 14522 .insn_start = aarch64_tr_insn_start, 14523 .translate_insn = aarch64_tr_translate_insn, 14524 .tb_stop = aarch64_tr_tb_stop, 14525 .disas_log = aarch64_tr_disas_log, 14526 }; 14527