1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* Table based decoder typedefs - used when the relevant bits for decode 60 * are too awkwardly scattered across the instruction (eg SIMD). 61 */ 62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 63 64 typedef struct AArch64DecodeTable { 65 uint32_t pattern; 66 uint32_t mask; 67 AArch64DecodeFn *disas_fn; 68 } AArch64DecodeTable; 69 70 /* initialize TCG globals. */ 71 void a64_translate_init(void) 72 { 73 int i; 74 75 cpu_pc = tcg_global_mem_new_i64(cpu_env, 76 offsetof(CPUARMState, pc), 77 "pc"); 78 for (i = 0; i < 32; i++) { 79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 80 offsetof(CPUARMState, xregs[i]), 81 regnames[i]); 82 } 83 84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 85 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 86 } 87 88 /* 89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 90 */ 91 static int get_a64_user_mem_index(DisasContext *s) 92 { 93 /* 94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 95 * which is the usual mmu_idx for this cpu state. 96 */ 97 ARMMMUIdx useridx = s->mmu_idx; 98 99 if (s->unpriv) { 100 /* 101 * We have pre-computed the condition for AccType_UNPRIV. 102 * Therefore we should never get here with a mmu_idx for 103 * which we do not know the corresponding user mmu_idx. 104 */ 105 switch (useridx) { 106 case ARMMMUIdx_E10_1: 107 case ARMMMUIdx_E10_1_PAN: 108 useridx = ARMMMUIdx_E10_0; 109 break; 110 case ARMMMUIdx_E20_2: 111 case ARMMMUIdx_E20_2_PAN: 112 useridx = ARMMMUIdx_E20_0; 113 break; 114 default: 115 g_assert_not_reached(); 116 } 117 } 118 return arm_to_core_mmu_idx(useridx); 119 } 120 121 static void set_btype_raw(int val) 122 { 123 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 124 offsetof(CPUARMState, btype)); 125 } 126 127 static void set_btype(DisasContext *s, int val) 128 { 129 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 130 tcg_debug_assert(val >= 1 && val <= 3); 131 set_btype_raw(val); 132 s->btype = -1; 133 } 134 135 static void reset_btype(DisasContext *s) 136 { 137 if (s->btype != 0) { 138 set_btype_raw(0); 139 s->btype = 0; 140 } 141 } 142 143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 144 { 145 assert(s->pc_save != -1); 146 if (tb_cflags(s->base.tb) & CF_PCREL) { 147 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 148 } else { 149 tcg_gen_movi_i64(dest, s->pc_curr + diff); 150 } 151 } 152 153 void gen_a64_update_pc(DisasContext *s, target_long diff) 154 { 155 gen_pc_plus_diff(s, cpu_pc, diff); 156 s->pc_save = s->pc_curr + diff; 157 } 158 159 /* 160 * Handle Top Byte Ignore (TBI) bits. 161 * 162 * If address tagging is enabled via the TCR TBI bits: 163 * + for EL2 and EL3 there is only one TBI bit, and if it is set 164 * then the address is zero-extended, clearing bits [63:56] 165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 166 * and TBI1 controls addressses with bit 55 == 1. 167 * If the appropriate TBI bit is set for the address then 168 * the address is sign-extended from bit 55 into bits [63:56] 169 * 170 * Here We have concatenated TBI{1,0} into tbi. 171 */ 172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 173 TCGv_i64 src, int tbi) 174 { 175 if (tbi == 0) { 176 /* Load unmodified address */ 177 tcg_gen_mov_i64(dst, src); 178 } else if (!regime_has_2_ranges(s->mmu_idx)) { 179 /* Force tag byte to all zero */ 180 tcg_gen_extract_i64(dst, src, 0, 56); 181 } else { 182 /* Sign-extend from bit 55. */ 183 tcg_gen_sextract_i64(dst, src, 0, 56); 184 185 switch (tbi) { 186 case 1: 187 /* tbi0 but !tbi1: only use the extension if positive */ 188 tcg_gen_and_i64(dst, dst, src); 189 break; 190 case 2: 191 /* !tbi0 but tbi1: only use the extension if negative */ 192 tcg_gen_or_i64(dst, dst, src); 193 break; 194 case 3: 195 /* tbi0 and tbi1: always use the extension */ 196 break; 197 default: 198 g_assert_not_reached(); 199 } 200 } 201 } 202 203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 204 { 205 /* 206 * If address tagging is enabled for instructions via the TCR TBI bits, 207 * then loading an address into the PC will clear out any tag. 208 */ 209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 210 s->pc_save = -1; 211 } 212 213 /* 214 * Handle MTE and/or TBI. 215 * 216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 217 * for the tag to be present in the FAR_ELx register. But for user-only 218 * mode we do not have a TLB with which to implement this, so we must 219 * remove the top byte now. 220 * 221 * Always return a fresh temporary that we can increment independently 222 * of the write-back address. 223 */ 224 225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 226 { 227 TCGv_i64 clean = new_tmp_a64(s); 228 #ifdef CONFIG_USER_ONLY 229 gen_top_byte_ignore(s, clean, addr, s->tbid); 230 #else 231 tcg_gen_mov_i64(clean, addr); 232 #endif 233 return clean; 234 } 235 236 /* Insert a zero tag into src, with the result at dst. */ 237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 238 { 239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 240 } 241 242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 243 MMUAccessType acc, int log2_size) 244 { 245 gen_helper_probe_access(cpu_env, ptr, 246 tcg_constant_i32(acc), 247 tcg_constant_i32(get_mem_index(s)), 248 tcg_constant_i32(1 << log2_size)); 249 } 250 251 /* 252 * For MTE, check a single logical or atomic access. This probes a single 253 * address, the exact one specified. The size and alignment of the access 254 * is not relevant to MTE, per se, but watchpoints do require the size, 255 * and we want to recognize those before making any other changes to state. 256 */ 257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 258 bool is_write, bool tag_checked, 259 int log2_size, bool is_unpriv, 260 int core_idx) 261 { 262 if (tag_checked && s->mte_active[is_unpriv]) { 263 TCGv_i64 ret; 264 int desc = 0; 265 266 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 267 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 268 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 269 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 270 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 271 272 ret = new_tmp_a64(s); 273 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 274 275 return ret; 276 } 277 return clean_data_tbi(s, addr); 278 } 279 280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 281 bool tag_checked, int log2_size) 282 { 283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 284 false, get_mem_index(s)); 285 } 286 287 /* 288 * For MTE, check multiple logical sequential accesses. 289 */ 290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 291 bool tag_checked, int size) 292 { 293 if (tag_checked && s->mte_active[0]) { 294 TCGv_i64 ret; 295 int desc = 0; 296 297 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 298 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 299 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 300 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 301 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 302 303 ret = new_tmp_a64(s); 304 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 305 306 return ret; 307 } 308 return clean_data_tbi(s, addr); 309 } 310 311 typedef struct DisasCompare64 { 312 TCGCond cond; 313 TCGv_i64 value; 314 } DisasCompare64; 315 316 static void a64_test_cc(DisasCompare64 *c64, int cc) 317 { 318 DisasCompare c32; 319 320 arm_test_cc(&c32, cc); 321 322 /* Sign-extend the 32-bit value so that the GE/LT comparisons work 323 * properly. The NE/EQ comparisons are also fine with this choice. */ 324 c64->cond = c32.cond; 325 c64->value = tcg_temp_new_i64(); 326 tcg_gen_ext_i32_i64(c64->value, c32.value); 327 328 arm_free_cc(&c32); 329 } 330 331 static void a64_free_cc(DisasCompare64 *c64) 332 { 333 tcg_temp_free_i64(c64->value); 334 } 335 336 static void gen_rebuild_hflags(DisasContext *s) 337 { 338 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 339 } 340 341 static void gen_exception_internal(int excp) 342 { 343 assert(excp_is_internal(excp)); 344 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 345 } 346 347 static void gen_exception_internal_insn(DisasContext *s, int excp) 348 { 349 gen_a64_update_pc(s, 0); 350 gen_exception_internal(excp); 351 s->base.is_jmp = DISAS_NORETURN; 352 } 353 354 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 355 { 356 gen_a64_update_pc(s, 0); 357 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 358 s->base.is_jmp = DISAS_NORETURN; 359 } 360 361 static void gen_step_complete_exception(DisasContext *s) 362 { 363 /* We just completed step of an insn. Move from Active-not-pending 364 * to Active-pending, and then also take the swstep exception. 365 * This corresponds to making the (IMPDEF) choice to prioritize 366 * swstep exceptions over asynchronous exceptions taken to an exception 367 * level where debug is disabled. This choice has the advantage that 368 * we do not need to maintain internal state corresponding to the 369 * ISV/EX syndrome bits between completion of the step and generation 370 * of the exception, and our syndrome information is always correct. 371 */ 372 gen_ss_advance(s); 373 gen_swstep_exception(s, 1, s->is_ldex); 374 s->base.is_jmp = DISAS_NORETURN; 375 } 376 377 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 378 { 379 if (s->ss_active) { 380 return false; 381 } 382 return translator_use_goto_tb(&s->base, dest); 383 } 384 385 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 386 { 387 if (use_goto_tb(s, s->pc_curr + diff)) { 388 /* 389 * For pcrel, the pc must always be up-to-date on entry to 390 * the linked TB, so that it can use simple additions for all 391 * further adjustments. For !pcrel, the linked TB is compiled 392 * to know its full virtual address, so we can delay the 393 * update to pc to the unlinked path. A long chain of links 394 * can thus avoid many updates to the PC. 395 */ 396 if (tb_cflags(s->base.tb) & CF_PCREL) { 397 gen_a64_update_pc(s, diff); 398 tcg_gen_goto_tb(n); 399 } else { 400 tcg_gen_goto_tb(n); 401 gen_a64_update_pc(s, diff); 402 } 403 tcg_gen_exit_tb(s->base.tb, n); 404 s->base.is_jmp = DISAS_NORETURN; 405 } else { 406 gen_a64_update_pc(s, diff); 407 if (s->ss_active) { 408 gen_step_complete_exception(s); 409 } else { 410 tcg_gen_lookup_and_goto_ptr(); 411 s->base.is_jmp = DISAS_NORETURN; 412 } 413 } 414 } 415 416 static void init_tmp_a64_array(DisasContext *s) 417 { 418 #ifdef CONFIG_DEBUG_TCG 419 memset(s->tmp_a64, 0, sizeof(s->tmp_a64)); 420 #endif 421 s->tmp_a64_count = 0; 422 } 423 424 static void free_tmp_a64(DisasContext *s) 425 { 426 int i; 427 for (i = 0; i < s->tmp_a64_count; i++) { 428 tcg_temp_free_i64(s->tmp_a64[i]); 429 } 430 init_tmp_a64_array(s); 431 } 432 433 TCGv_i64 new_tmp_a64(DisasContext *s) 434 { 435 assert(s->tmp_a64_count < TMP_A64_MAX); 436 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(); 437 } 438 439 TCGv_i64 new_tmp_a64_zero(DisasContext *s) 440 { 441 TCGv_i64 t = new_tmp_a64(s); 442 tcg_gen_movi_i64(t, 0); 443 return t; 444 } 445 446 /* 447 * Register access functions 448 * 449 * These functions are used for directly accessing a register in where 450 * changes to the final register value are likely to be made. If you 451 * need to use a register for temporary calculation (e.g. index type 452 * operations) use the read_* form. 453 * 454 * B1.2.1 Register mappings 455 * 456 * In instruction register encoding 31 can refer to ZR (zero register) or 457 * the SP (stack pointer) depending on context. In QEMU's case we map SP 458 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 459 * This is the point of the _sp forms. 460 */ 461 TCGv_i64 cpu_reg(DisasContext *s, int reg) 462 { 463 if (reg == 31) { 464 return new_tmp_a64_zero(s); 465 } else { 466 return cpu_X[reg]; 467 } 468 } 469 470 /* register access for when 31 == SP */ 471 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 472 { 473 return cpu_X[reg]; 474 } 475 476 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 477 * representing the register contents. This TCGv is an auto-freed 478 * temporary so it need not be explicitly freed, and may be modified. 479 */ 480 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 481 { 482 TCGv_i64 v = new_tmp_a64(s); 483 if (reg != 31) { 484 if (sf) { 485 tcg_gen_mov_i64(v, cpu_X[reg]); 486 } else { 487 tcg_gen_ext32u_i64(v, cpu_X[reg]); 488 } 489 } else { 490 tcg_gen_movi_i64(v, 0); 491 } 492 return v; 493 } 494 495 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 496 { 497 TCGv_i64 v = new_tmp_a64(s); 498 if (sf) { 499 tcg_gen_mov_i64(v, cpu_X[reg]); 500 } else { 501 tcg_gen_ext32u_i64(v, cpu_X[reg]); 502 } 503 return v; 504 } 505 506 /* Return the offset into CPUARMState of a slice (from 507 * the least significant end) of FP register Qn (ie 508 * Dn, Sn, Hn or Bn). 509 * (Note that this is not the same mapping as for A32; see cpu.h) 510 */ 511 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 512 { 513 return vec_reg_offset(s, regno, 0, size); 514 } 515 516 /* Offset of the high half of the 128 bit vector Qn */ 517 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 518 { 519 return vec_reg_offset(s, regno, 1, MO_64); 520 } 521 522 /* Convenience accessors for reading and writing single and double 523 * FP registers. Writing clears the upper parts of the associated 524 * 128 bit vector register, as required by the architecture. 525 * Note that unlike the GP register accessors, the values returned 526 * by the read functions must be manually freed. 527 */ 528 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 529 { 530 TCGv_i64 v = tcg_temp_new_i64(); 531 532 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 533 return v; 534 } 535 536 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 537 { 538 TCGv_i32 v = tcg_temp_new_i32(); 539 540 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 541 return v; 542 } 543 544 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 545 { 546 TCGv_i32 v = tcg_temp_new_i32(); 547 548 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 549 return v; 550 } 551 552 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 553 * If SVE is not enabled, then there are only 128 bits in the vector. 554 */ 555 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 556 { 557 unsigned ofs = fp_reg_offset(s, rd, MO_64); 558 unsigned vsz = vec_full_reg_size(s); 559 560 /* Nop move, with side effect of clearing the tail. */ 561 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 562 } 563 564 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 565 { 566 unsigned ofs = fp_reg_offset(s, reg, MO_64); 567 568 tcg_gen_st_i64(v, cpu_env, ofs); 569 clear_vec_high(s, false, reg); 570 } 571 572 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 573 { 574 TCGv_i64 tmp = tcg_temp_new_i64(); 575 576 tcg_gen_extu_i32_i64(tmp, v); 577 write_fp_dreg(s, reg, tmp); 578 tcg_temp_free_i64(tmp); 579 } 580 581 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 582 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 583 GVecGen2Fn *gvec_fn, int vece) 584 { 585 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 586 is_q ? 16 : 8, vec_full_reg_size(s)); 587 } 588 589 /* Expand a 2-operand + immediate AdvSIMD vector operation using 590 * an expander function. 591 */ 592 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 593 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 594 { 595 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 596 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 597 } 598 599 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 600 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 601 GVecGen3Fn *gvec_fn, int vece) 602 { 603 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 604 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 605 } 606 607 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 608 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 609 int rx, GVecGen4Fn *gvec_fn, int vece) 610 { 611 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 612 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 613 is_q ? 16 : 8, vec_full_reg_size(s)); 614 } 615 616 /* Expand a 2-operand operation using an out-of-line helper. */ 617 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 618 int rn, int data, gen_helper_gvec_2 *fn) 619 { 620 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 621 vec_full_reg_offset(s, rn), 622 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 623 } 624 625 /* Expand a 3-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 627 int rn, int rm, int data, gen_helper_gvec_3 *fn) 628 { 629 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 633 } 634 635 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 636 * an out-of-line helper. 637 */ 638 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 639 int rm, bool is_fp16, int data, 640 gen_helper_gvec_3_ptr *fn) 641 { 642 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 643 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 644 vec_full_reg_offset(s, rn), 645 vec_full_reg_offset(s, rm), fpst, 646 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 647 tcg_temp_free_ptr(fpst); 648 } 649 650 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 651 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 652 int rm, gen_helper_gvec_3_ptr *fn) 653 { 654 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 655 656 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 657 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 658 vec_full_reg_offset(s, rn), 659 vec_full_reg_offset(s, rm), qc_ptr, 660 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 661 tcg_temp_free_ptr(qc_ptr); 662 } 663 664 /* Expand a 4-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 666 int rm, int ra, int data, gen_helper_gvec_4 *fn) 667 { 668 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 vec_full_reg_offset(s, rm), 671 vec_full_reg_offset(s, ra), 672 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 673 } 674 675 /* 676 * Expand a 4-operand + fpstatus pointer + simd data value operation using 677 * an out-of-line helper. 678 */ 679 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 680 int rm, int ra, bool is_fp16, int data, 681 gen_helper_gvec_4_ptr *fn) 682 { 683 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 684 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 685 vec_full_reg_offset(s, rn), 686 vec_full_reg_offset(s, rm), 687 vec_full_reg_offset(s, ra), fpst, 688 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 689 tcg_temp_free_ptr(fpst); 690 } 691 692 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 693 * than the 32 bit equivalent. 694 */ 695 static inline void gen_set_NZ64(TCGv_i64 result) 696 { 697 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 698 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 699 } 700 701 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 702 static inline void gen_logic_CC(int sf, TCGv_i64 result) 703 { 704 if (sf) { 705 gen_set_NZ64(result); 706 } else { 707 tcg_gen_extrl_i64_i32(cpu_ZF, result); 708 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 709 } 710 tcg_gen_movi_i32(cpu_CF, 0); 711 tcg_gen_movi_i32(cpu_VF, 0); 712 } 713 714 /* dest = T0 + T1; compute C, N, V and Z flags */ 715 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 716 { 717 if (sf) { 718 TCGv_i64 result, flag, tmp; 719 result = tcg_temp_new_i64(); 720 flag = tcg_temp_new_i64(); 721 tmp = tcg_temp_new_i64(); 722 723 tcg_gen_movi_i64(tmp, 0); 724 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 725 726 tcg_gen_extrl_i64_i32(cpu_CF, flag); 727 728 gen_set_NZ64(result); 729 730 tcg_gen_xor_i64(flag, result, t0); 731 tcg_gen_xor_i64(tmp, t0, t1); 732 tcg_gen_andc_i64(flag, flag, tmp); 733 tcg_temp_free_i64(tmp); 734 tcg_gen_extrh_i64_i32(cpu_VF, flag); 735 736 tcg_gen_mov_i64(dest, result); 737 tcg_temp_free_i64(result); 738 tcg_temp_free_i64(flag); 739 } else { 740 /* 32 bit arithmetic */ 741 TCGv_i32 t0_32 = tcg_temp_new_i32(); 742 TCGv_i32 t1_32 = tcg_temp_new_i32(); 743 TCGv_i32 tmp = tcg_temp_new_i32(); 744 745 tcg_gen_movi_i32(tmp, 0); 746 tcg_gen_extrl_i64_i32(t0_32, t0); 747 tcg_gen_extrl_i64_i32(t1_32, t1); 748 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 749 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 750 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 751 tcg_gen_xor_i32(tmp, t0_32, t1_32); 752 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 753 tcg_gen_extu_i32_i64(dest, cpu_NF); 754 755 tcg_temp_free_i32(tmp); 756 tcg_temp_free_i32(t0_32); 757 tcg_temp_free_i32(t1_32); 758 } 759 } 760 761 /* dest = T0 - T1; compute C, N, V and Z flags */ 762 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 763 { 764 if (sf) { 765 /* 64 bit arithmetic */ 766 TCGv_i64 result, flag, tmp; 767 768 result = tcg_temp_new_i64(); 769 flag = tcg_temp_new_i64(); 770 tcg_gen_sub_i64(result, t0, t1); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 775 tcg_gen_extrl_i64_i32(cpu_CF, flag); 776 777 tcg_gen_xor_i64(flag, result, t0); 778 tmp = tcg_temp_new_i64(); 779 tcg_gen_xor_i64(tmp, t0, t1); 780 tcg_gen_and_i64(flag, flag, tmp); 781 tcg_temp_free_i64(tmp); 782 tcg_gen_extrh_i64_i32(cpu_VF, flag); 783 tcg_gen_mov_i64(dest, result); 784 tcg_temp_free_i64(flag); 785 tcg_temp_free_i64(result); 786 } else { 787 /* 32 bit arithmetic */ 788 TCGv_i32 t0_32 = tcg_temp_new_i32(); 789 TCGv_i32 t1_32 = tcg_temp_new_i32(); 790 TCGv_i32 tmp; 791 792 tcg_gen_extrl_i64_i32(t0_32, t0); 793 tcg_gen_extrl_i64_i32(t1_32, t1); 794 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 795 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 796 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 797 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 798 tmp = tcg_temp_new_i32(); 799 tcg_gen_xor_i32(tmp, t0_32, t1_32); 800 tcg_temp_free_i32(t0_32); 801 tcg_temp_free_i32(t1_32); 802 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 803 tcg_temp_free_i32(tmp); 804 tcg_gen_extu_i32_i64(dest, cpu_NF); 805 } 806 } 807 808 /* dest = T0 + T1 + CF; do not compute flags. */ 809 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 TCGv_i64 flag = tcg_temp_new_i64(); 812 tcg_gen_extu_i32_i64(flag, cpu_CF); 813 tcg_gen_add_i64(dest, t0, t1); 814 tcg_gen_add_i64(dest, dest, flag); 815 tcg_temp_free_i64(flag); 816 817 if (!sf) { 818 tcg_gen_ext32u_i64(dest, dest); 819 } 820 } 821 822 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 823 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 824 { 825 if (sf) { 826 TCGv_i64 result = tcg_temp_new_i64(); 827 TCGv_i64 cf_64 = tcg_temp_new_i64(); 828 TCGv_i64 vf_64 = tcg_temp_new_i64(); 829 TCGv_i64 tmp = tcg_temp_new_i64(); 830 TCGv_i64 zero = tcg_constant_i64(0); 831 832 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 833 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 834 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 835 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 836 gen_set_NZ64(result); 837 838 tcg_gen_xor_i64(vf_64, result, t0); 839 tcg_gen_xor_i64(tmp, t0, t1); 840 tcg_gen_andc_i64(vf_64, vf_64, tmp); 841 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 842 843 tcg_gen_mov_i64(dest, result); 844 845 tcg_temp_free_i64(tmp); 846 tcg_temp_free_i64(vf_64); 847 tcg_temp_free_i64(cf_64); 848 tcg_temp_free_i64(result); 849 } else { 850 TCGv_i32 t0_32 = tcg_temp_new_i32(); 851 TCGv_i32 t1_32 = tcg_temp_new_i32(); 852 TCGv_i32 tmp = tcg_temp_new_i32(); 853 TCGv_i32 zero = tcg_constant_i32(0); 854 855 tcg_gen_extrl_i64_i32(t0_32, t0); 856 tcg_gen_extrl_i64_i32(t1_32, t1); 857 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 858 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 859 860 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 861 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 862 tcg_gen_xor_i32(tmp, t0_32, t1_32); 863 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 864 tcg_gen_extu_i32_i64(dest, cpu_NF); 865 866 tcg_temp_free_i32(tmp); 867 tcg_temp_free_i32(t1_32); 868 tcg_temp_free_i32(t0_32); 869 } 870 } 871 872 /* 873 * Load/Store generators 874 */ 875 876 /* 877 * Store from GPR register to memory. 878 */ 879 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 880 TCGv_i64 tcg_addr, MemOp memop, int memidx, 881 bool iss_valid, 882 unsigned int iss_srt, 883 bool iss_sf, bool iss_ar) 884 { 885 memop = finalize_memop(s, memop); 886 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 887 888 if (iss_valid) { 889 uint32_t syn; 890 891 syn = syn_data_abort_with_iss(0, 892 (memop & MO_SIZE), 893 false, 894 iss_srt, 895 iss_sf, 896 iss_ar, 897 0, 0, 0, 0, 0, false); 898 disas_set_insn_syndrome(s, syn); 899 } 900 } 901 902 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 903 TCGv_i64 tcg_addr, MemOp memop, 904 bool iss_valid, 905 unsigned int iss_srt, 906 bool iss_sf, bool iss_ar) 907 { 908 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 909 iss_valid, iss_srt, iss_sf, iss_ar); 910 } 911 912 /* 913 * Load from memory to GPR register 914 */ 915 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 916 MemOp memop, bool extend, int memidx, 917 bool iss_valid, unsigned int iss_srt, 918 bool iss_sf, bool iss_ar) 919 { 920 memop = finalize_memop(s, memop); 921 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 922 923 if (extend && (memop & MO_SIGN)) { 924 g_assert((memop & MO_SIZE) <= MO_32); 925 tcg_gen_ext32u_i64(dest, dest); 926 } 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 (memop & MO_SIGN) != 0, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 943 MemOp memop, bool extend, 944 bool iss_valid, unsigned int iss_srt, 945 bool iss_sf, bool iss_ar) 946 { 947 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 948 iss_valid, iss_srt, iss_sf, iss_ar); 949 } 950 951 /* 952 * Store from FP register to memory 953 */ 954 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 955 { 956 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 957 TCGv_i64 tmplo = tcg_temp_new_i64(); 958 MemOp mop; 959 960 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 961 962 if (size < 4) { 963 mop = finalize_memop(s, size); 964 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 965 } else { 966 bool be = s->be_data == MO_BE; 967 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 968 TCGv_i64 tmphi = tcg_temp_new_i64(); 969 970 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 971 972 mop = s->be_data | MO_UQ; 973 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 974 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 975 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 976 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 977 get_mem_index(s), mop); 978 979 tcg_temp_free_i64(tcg_hiaddr); 980 tcg_temp_free_i64(tmphi); 981 } 982 983 tcg_temp_free_i64(tmplo); 984 } 985 986 /* 987 * Load from memory to FP register 988 */ 989 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 990 { 991 /* This always zero-extends and writes to a full 128 bit wide vector */ 992 TCGv_i64 tmplo = tcg_temp_new_i64(); 993 TCGv_i64 tmphi = NULL; 994 MemOp mop; 995 996 if (size < 4) { 997 mop = finalize_memop(s, size); 998 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 999 } else { 1000 bool be = s->be_data == MO_BE; 1001 TCGv_i64 tcg_hiaddr; 1002 1003 tmphi = tcg_temp_new_i64(); 1004 tcg_hiaddr = tcg_temp_new_i64(); 1005 1006 mop = s->be_data | MO_UQ; 1007 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 1008 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 1009 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 1010 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 1011 get_mem_index(s), mop); 1012 tcg_temp_free_i64(tcg_hiaddr); 1013 } 1014 1015 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1016 tcg_temp_free_i64(tmplo); 1017 1018 if (tmphi) { 1019 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1020 tcg_temp_free_i64(tmphi); 1021 } 1022 clear_vec_high(s, tmphi != NULL, destidx); 1023 } 1024 1025 /* 1026 * Vector load/store helpers. 1027 * 1028 * The principal difference between this and a FP load is that we don't 1029 * zero extend as we are filling a partial chunk of the vector register. 1030 * These functions don't support 128 bit loads/stores, which would be 1031 * normal load/store operations. 1032 * 1033 * The _i32 versions are useful when operating on 32 bit quantities 1034 * (eg for floating point single or using Neon helper functions). 1035 */ 1036 1037 /* Get value of an element within a vector register */ 1038 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1039 int element, MemOp memop) 1040 { 1041 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1042 switch ((unsigned)memop) { 1043 case MO_8: 1044 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1045 break; 1046 case MO_16: 1047 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1048 break; 1049 case MO_32: 1050 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1051 break; 1052 case MO_8|MO_SIGN: 1053 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1054 break; 1055 case MO_16|MO_SIGN: 1056 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1057 break; 1058 case MO_32|MO_SIGN: 1059 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1060 break; 1061 case MO_64: 1062 case MO_64|MO_SIGN: 1063 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 default: 1066 g_assert_not_reached(); 1067 } 1068 } 1069 1070 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1071 int element, MemOp memop) 1072 { 1073 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1074 switch (memop) { 1075 case MO_8: 1076 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1077 break; 1078 case MO_16: 1079 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1080 break; 1081 case MO_8|MO_SIGN: 1082 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1083 break; 1084 case MO_16|MO_SIGN: 1085 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1086 break; 1087 case MO_32: 1088 case MO_32|MO_SIGN: 1089 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1090 break; 1091 default: 1092 g_assert_not_reached(); 1093 } 1094 } 1095 1096 /* Set value of an element within a vector register */ 1097 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1098 int element, MemOp memop) 1099 { 1100 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1101 switch (memop) { 1102 case MO_8: 1103 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1104 break; 1105 case MO_16: 1106 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1107 break; 1108 case MO_32: 1109 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1110 break; 1111 case MO_64: 1112 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1113 break; 1114 default: 1115 g_assert_not_reached(); 1116 } 1117 } 1118 1119 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1120 int destidx, int element, MemOp memop) 1121 { 1122 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1123 switch (memop) { 1124 case MO_8: 1125 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_16: 1128 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1129 break; 1130 case MO_32: 1131 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1132 break; 1133 default: 1134 g_assert_not_reached(); 1135 } 1136 } 1137 1138 /* Store from vector register to memory */ 1139 static void do_vec_st(DisasContext *s, int srcidx, int element, 1140 TCGv_i64 tcg_addr, MemOp mop) 1141 { 1142 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1143 1144 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1145 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1146 1147 tcg_temp_free_i64(tcg_tmp); 1148 } 1149 1150 /* Load from memory to vector register */ 1151 static void do_vec_ld(DisasContext *s, int destidx, int element, 1152 TCGv_i64 tcg_addr, MemOp mop) 1153 { 1154 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1155 1156 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1157 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1158 1159 tcg_temp_free_i64(tcg_tmp); 1160 } 1161 1162 /* Check that FP/Neon access is enabled. If it is, return 1163 * true. If not, emit code to generate an appropriate exception, 1164 * and return false; the caller should not emit any code for 1165 * the instruction. Note that this check must happen after all 1166 * unallocated-encoding checks (otherwise the syndrome information 1167 * for the resulting exception will be incorrect). 1168 */ 1169 static bool fp_access_check_only(DisasContext *s) 1170 { 1171 if (s->fp_excp_el) { 1172 assert(!s->fp_access_checked); 1173 s->fp_access_checked = true; 1174 1175 gen_exception_insn_el(s, 0, EXCP_UDEF, 1176 syn_fp_access_trap(1, 0xe, false, 0), 1177 s->fp_excp_el); 1178 return false; 1179 } 1180 s->fp_access_checked = true; 1181 return true; 1182 } 1183 1184 static bool fp_access_check(DisasContext *s) 1185 { 1186 if (!fp_access_check_only(s)) { 1187 return false; 1188 } 1189 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1190 gen_exception_insn(s, 0, EXCP_UDEF, 1191 syn_smetrap(SME_ET_Streaming, false)); 1192 return false; 1193 } 1194 return true; 1195 } 1196 1197 /* 1198 * Check that SVE access is enabled. If it is, return true. 1199 * If not, emit code to generate an appropriate exception and return false. 1200 * This function corresponds to CheckSVEEnabled(). 1201 */ 1202 bool sve_access_check(DisasContext *s) 1203 { 1204 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1205 assert(dc_isar_feature(aa64_sme, s)); 1206 if (!sme_sm_enabled_check(s)) { 1207 goto fail_exit; 1208 } 1209 } else if (s->sve_excp_el) { 1210 gen_exception_insn_el(s, 0, EXCP_UDEF, 1211 syn_sve_access_trap(), s->sve_excp_el); 1212 goto fail_exit; 1213 } 1214 s->sve_access_checked = true; 1215 return fp_access_check(s); 1216 1217 fail_exit: 1218 /* Assert that we only raise one exception per instruction. */ 1219 assert(!s->sve_access_checked); 1220 s->sve_access_checked = true; 1221 return false; 1222 } 1223 1224 /* 1225 * Check that SME access is enabled, raise an exception if not. 1226 * Note that this function corresponds to CheckSMEAccess and is 1227 * only used directly for cpregs. 1228 */ 1229 static bool sme_access_check(DisasContext *s) 1230 { 1231 if (s->sme_excp_el) { 1232 gen_exception_insn_el(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_AccessTrap, false), 1234 s->sme_excp_el); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* This function corresponds to CheckSMEEnabled. */ 1241 bool sme_enabled_check(DisasContext *s) 1242 { 1243 /* 1244 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1245 * to be zero when fp_excp_el has priority. This is because we need 1246 * sme_excp_el by itself for cpregs access checks. 1247 */ 1248 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1249 s->fp_access_checked = true; 1250 return sme_access_check(s); 1251 } 1252 return fp_access_check_only(s); 1253 } 1254 1255 /* Common subroutine for CheckSMEAnd*Enabled. */ 1256 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1257 { 1258 if (!sme_enabled_check(s)) { 1259 return false; 1260 } 1261 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1262 gen_exception_insn(s, 0, EXCP_UDEF, 1263 syn_smetrap(SME_ET_NotStreaming, false)); 1264 return false; 1265 } 1266 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1267 gen_exception_insn(s, 0, EXCP_UDEF, 1268 syn_smetrap(SME_ET_InactiveZA, false)); 1269 return false; 1270 } 1271 return true; 1272 } 1273 1274 /* 1275 * This utility function is for doing register extension with an 1276 * optional shift. You will likely want to pass a temporary for the 1277 * destination register. See DecodeRegExtend() in the ARM ARM. 1278 */ 1279 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1280 int option, unsigned int shift) 1281 { 1282 int extsize = extract32(option, 0, 2); 1283 bool is_signed = extract32(option, 2, 1); 1284 1285 if (is_signed) { 1286 switch (extsize) { 1287 case 0: 1288 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1289 break; 1290 case 1: 1291 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1292 break; 1293 case 2: 1294 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1295 break; 1296 case 3: 1297 tcg_gen_mov_i64(tcg_out, tcg_in); 1298 break; 1299 } 1300 } else { 1301 switch (extsize) { 1302 case 0: 1303 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1304 break; 1305 case 1: 1306 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1307 break; 1308 case 2: 1309 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1310 break; 1311 case 3: 1312 tcg_gen_mov_i64(tcg_out, tcg_in); 1313 break; 1314 } 1315 } 1316 1317 if (shift) { 1318 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1319 } 1320 } 1321 1322 static inline void gen_check_sp_alignment(DisasContext *s) 1323 { 1324 /* The AArch64 architecture mandates that (if enabled via PSTATE 1325 * or SCTLR bits) there is a check that SP is 16-aligned on every 1326 * SP-relative load or store (with an exception generated if it is not). 1327 * In line with general QEMU practice regarding misaligned accesses, 1328 * we omit these checks for the sake of guest program performance. 1329 * This function is provided as a hook so we can more easily add these 1330 * checks in future (possibly as a "favour catching guest program bugs 1331 * over speed" user selectable option). 1332 */ 1333 } 1334 1335 /* 1336 * This provides a simple table based table lookup decoder. It is 1337 * intended to be used when the relevant bits for decode are too 1338 * awkwardly placed and switch/if based logic would be confusing and 1339 * deeply nested. Since it's a linear search through the table, tables 1340 * should be kept small. 1341 * 1342 * It returns the first handler where insn & mask == pattern, or 1343 * NULL if there is no match. 1344 * The table is terminated by an empty mask (i.e. 0) 1345 */ 1346 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1347 uint32_t insn) 1348 { 1349 const AArch64DecodeTable *tptr = table; 1350 1351 while (tptr->mask) { 1352 if ((insn & tptr->mask) == tptr->pattern) { 1353 return tptr->disas_fn; 1354 } 1355 tptr++; 1356 } 1357 return NULL; 1358 } 1359 1360 /* 1361 * The instruction disassembly implemented here matches 1362 * the instruction encoding classifications in chapter C4 1363 * of the ARM Architecture Reference Manual (DDI0487B_a); 1364 * classification names and decode diagrams here should generally 1365 * match up with those in the manual. 1366 */ 1367 1368 /* Unconditional branch (immediate) 1369 * 31 30 26 25 0 1370 * +----+-----------+-------------------------------------+ 1371 * | op | 0 0 1 0 1 | imm26 | 1372 * +----+-----------+-------------------------------------+ 1373 */ 1374 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) 1375 { 1376 int64_t diff = sextract32(insn, 0, 26) * 4; 1377 1378 if (insn & (1U << 31)) { 1379 /* BL Branch with link */ 1380 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1381 } 1382 1383 /* B Branch / BL Branch with link */ 1384 reset_btype(s); 1385 gen_goto_tb(s, 0, diff); 1386 } 1387 1388 /* Compare and branch (immediate) 1389 * 31 30 25 24 23 5 4 0 1390 * +----+-------------+----+---------------------+--------+ 1391 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | 1392 * +----+-------------+----+---------------------+--------+ 1393 */ 1394 static void disas_comp_b_imm(DisasContext *s, uint32_t insn) 1395 { 1396 unsigned int sf, op, rt; 1397 int64_t diff; 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 sf = extract32(insn, 31, 1); 1402 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ 1403 rt = extract32(insn, 0, 5); 1404 diff = sextract32(insn, 5, 19) * 4; 1405 1406 tcg_cmp = read_cpu_reg(s, rt, sf); 1407 reset_btype(s); 1408 1409 match = gen_disas_label(s); 1410 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1411 tcg_cmp, 0, match.label); 1412 gen_goto_tb(s, 0, 4); 1413 set_disas_label(s, match); 1414 gen_goto_tb(s, 1, diff); 1415 } 1416 1417 /* Test and branch (immediate) 1418 * 31 30 25 24 23 19 18 5 4 0 1419 * +----+-------------+----+-------+-------------+------+ 1420 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | 1421 * +----+-------------+----+-------+-------------+------+ 1422 */ 1423 static void disas_test_b_imm(DisasContext *s, uint32_t insn) 1424 { 1425 unsigned int bit_pos, op, rt; 1426 int64_t diff; 1427 DisasLabel match; 1428 TCGv_i64 tcg_cmp; 1429 1430 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); 1431 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ 1432 diff = sextract32(insn, 5, 14) * 4; 1433 rt = extract32(insn, 0, 5); 1434 1435 tcg_cmp = tcg_temp_new_i64(); 1436 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); 1437 1438 reset_btype(s); 1439 1440 match = gen_disas_label(s); 1441 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1442 tcg_cmp, 0, match.label); 1443 tcg_temp_free_i64(tcg_cmp); 1444 gen_goto_tb(s, 0, 4); 1445 set_disas_label(s, match); 1446 gen_goto_tb(s, 1, diff); 1447 } 1448 1449 /* Conditional branch (immediate) 1450 * 31 25 24 23 5 4 3 0 1451 * +---------------+----+---------------------+----+------+ 1452 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | 1453 * +---------------+----+---------------------+----+------+ 1454 */ 1455 static void disas_cond_b_imm(DisasContext *s, uint32_t insn) 1456 { 1457 unsigned int cond; 1458 int64_t diff; 1459 1460 if ((insn & (1 << 4)) || (insn & (1 << 24))) { 1461 unallocated_encoding(s); 1462 return; 1463 } 1464 diff = sextract32(insn, 5, 19) * 4; 1465 cond = extract32(insn, 0, 4); 1466 1467 reset_btype(s); 1468 if (cond < 0x0e) { 1469 /* genuinely conditional branches */ 1470 DisasLabel match = gen_disas_label(s); 1471 arm_gen_test_cc(cond, match.label); 1472 gen_goto_tb(s, 0, 4); 1473 set_disas_label(s, match); 1474 gen_goto_tb(s, 1, diff); 1475 } else { 1476 /* 0xe and 0xf are both "always" conditions */ 1477 gen_goto_tb(s, 0, diff); 1478 } 1479 } 1480 1481 /* HINT instruction group, including various allocated HINTs */ 1482 static void handle_hint(DisasContext *s, uint32_t insn, 1483 unsigned int op1, unsigned int op2, unsigned int crm) 1484 { 1485 unsigned int selector = crm << 3 | op2; 1486 1487 if (op1 != 3) { 1488 unallocated_encoding(s); 1489 return; 1490 } 1491 1492 switch (selector) { 1493 case 0b00000: /* NOP */ 1494 break; 1495 case 0b00011: /* WFI */ 1496 s->base.is_jmp = DISAS_WFI; 1497 break; 1498 case 0b00001: /* YIELD */ 1499 /* When running in MTTCG we don't generate jumps to the yield and 1500 * WFE helpers as it won't affect the scheduling of other vCPUs. 1501 * If we wanted to more completely model WFE/SEV so we don't busy 1502 * spin unnecessarily we would need to do something more involved. 1503 */ 1504 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1505 s->base.is_jmp = DISAS_YIELD; 1506 } 1507 break; 1508 case 0b00010: /* WFE */ 1509 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1510 s->base.is_jmp = DISAS_WFE; 1511 } 1512 break; 1513 case 0b00100: /* SEV */ 1514 case 0b00101: /* SEVL */ 1515 case 0b00110: /* DGH */ 1516 /* we treat all as NOP at least for now */ 1517 break; 1518 case 0b00111: /* XPACLRI */ 1519 if (s->pauth_active) { 1520 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1521 } 1522 break; 1523 case 0b01000: /* PACIA1716 */ 1524 if (s->pauth_active) { 1525 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1526 } 1527 break; 1528 case 0b01010: /* PACIB1716 */ 1529 if (s->pauth_active) { 1530 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1531 } 1532 break; 1533 case 0b01100: /* AUTIA1716 */ 1534 if (s->pauth_active) { 1535 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1536 } 1537 break; 1538 case 0b01110: /* AUTIB1716 */ 1539 if (s->pauth_active) { 1540 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1541 } 1542 break; 1543 case 0b10000: /* ESB */ 1544 /* Without RAS, we must implement this as NOP. */ 1545 if (dc_isar_feature(aa64_ras, s)) { 1546 /* 1547 * QEMU does not have a source of physical SErrors, 1548 * so we are only concerned with virtual SErrors. 1549 * The pseudocode in the ARM for this case is 1550 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1551 * AArch64.vESBOperation(); 1552 * Most of the condition can be evaluated at translation time. 1553 * Test for EL2 present, and defer test for SEL2 to runtime. 1554 */ 1555 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1556 gen_helper_vesb(cpu_env); 1557 } 1558 } 1559 break; 1560 case 0b11000: /* PACIAZ */ 1561 if (s->pauth_active) { 1562 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1563 new_tmp_a64_zero(s)); 1564 } 1565 break; 1566 case 0b11001: /* PACIASP */ 1567 if (s->pauth_active) { 1568 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1569 } 1570 break; 1571 case 0b11010: /* PACIBZ */ 1572 if (s->pauth_active) { 1573 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1574 new_tmp_a64_zero(s)); 1575 } 1576 break; 1577 case 0b11011: /* PACIBSP */ 1578 if (s->pauth_active) { 1579 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1580 } 1581 break; 1582 case 0b11100: /* AUTIAZ */ 1583 if (s->pauth_active) { 1584 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1585 new_tmp_a64_zero(s)); 1586 } 1587 break; 1588 case 0b11101: /* AUTIASP */ 1589 if (s->pauth_active) { 1590 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1591 } 1592 break; 1593 case 0b11110: /* AUTIBZ */ 1594 if (s->pauth_active) { 1595 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1596 new_tmp_a64_zero(s)); 1597 } 1598 break; 1599 case 0b11111: /* AUTIBSP */ 1600 if (s->pauth_active) { 1601 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1602 } 1603 break; 1604 default: 1605 /* default specified as NOP equivalent */ 1606 break; 1607 } 1608 } 1609 1610 static void gen_clrex(DisasContext *s, uint32_t insn) 1611 { 1612 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1613 } 1614 1615 /* CLREX, DSB, DMB, ISB */ 1616 static void handle_sync(DisasContext *s, uint32_t insn, 1617 unsigned int op1, unsigned int op2, unsigned int crm) 1618 { 1619 TCGBar bar; 1620 1621 if (op1 != 3) { 1622 unallocated_encoding(s); 1623 return; 1624 } 1625 1626 switch (op2) { 1627 case 2: /* CLREX */ 1628 gen_clrex(s, insn); 1629 return; 1630 case 4: /* DSB */ 1631 case 5: /* DMB */ 1632 switch (crm & 3) { 1633 case 1: /* MBReqTypes_Reads */ 1634 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1635 break; 1636 case 2: /* MBReqTypes_Writes */ 1637 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1638 break; 1639 default: /* MBReqTypes_All */ 1640 bar = TCG_BAR_SC | TCG_MO_ALL; 1641 break; 1642 } 1643 tcg_gen_mb(bar); 1644 return; 1645 case 6: /* ISB */ 1646 /* We need to break the TB after this insn to execute 1647 * a self-modified code correctly and also to take 1648 * any pending interrupts immediately. 1649 */ 1650 reset_btype(s); 1651 gen_goto_tb(s, 0, 4); 1652 return; 1653 1654 case 7: /* SB */ 1655 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1656 goto do_unallocated; 1657 } 1658 /* 1659 * TODO: There is no speculation barrier opcode for TCG; 1660 * MB and end the TB instead. 1661 */ 1662 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1663 gen_goto_tb(s, 0, 4); 1664 return; 1665 1666 default: 1667 do_unallocated: 1668 unallocated_encoding(s); 1669 return; 1670 } 1671 } 1672 1673 static void gen_xaflag(void) 1674 { 1675 TCGv_i32 z = tcg_temp_new_i32(); 1676 1677 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1678 1679 /* 1680 * (!C & !Z) << 31 1681 * (!(C | Z)) << 31 1682 * ~((C | Z) << 31) 1683 * ~-(C | Z) 1684 * (C | Z) - 1 1685 */ 1686 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1687 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1688 1689 /* !(Z & C) */ 1690 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1691 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1692 1693 /* (!C & Z) << 31 -> -(Z & ~C) */ 1694 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1695 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1696 1697 /* C | Z */ 1698 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1699 1700 tcg_temp_free_i32(z); 1701 } 1702 1703 static void gen_axflag(void) 1704 { 1705 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1706 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1707 1708 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1709 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1710 1711 tcg_gen_movi_i32(cpu_NF, 0); 1712 tcg_gen_movi_i32(cpu_VF, 0); 1713 } 1714 1715 /* MSR (immediate) - move immediate to processor state field */ 1716 static void handle_msr_i(DisasContext *s, uint32_t insn, 1717 unsigned int op1, unsigned int op2, unsigned int crm) 1718 { 1719 int op = op1 << 3 | op2; 1720 1721 /* End the TB by default, chaining is ok. */ 1722 s->base.is_jmp = DISAS_TOO_MANY; 1723 1724 switch (op) { 1725 case 0x00: /* CFINV */ 1726 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1727 goto do_unallocated; 1728 } 1729 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1730 s->base.is_jmp = DISAS_NEXT; 1731 break; 1732 1733 case 0x01: /* XAFlag */ 1734 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1735 goto do_unallocated; 1736 } 1737 gen_xaflag(); 1738 s->base.is_jmp = DISAS_NEXT; 1739 break; 1740 1741 case 0x02: /* AXFlag */ 1742 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1743 goto do_unallocated; 1744 } 1745 gen_axflag(); 1746 s->base.is_jmp = DISAS_NEXT; 1747 break; 1748 1749 case 0x03: /* UAO */ 1750 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1751 goto do_unallocated; 1752 } 1753 if (crm & 1) { 1754 set_pstate_bits(PSTATE_UAO); 1755 } else { 1756 clear_pstate_bits(PSTATE_UAO); 1757 } 1758 gen_rebuild_hflags(s); 1759 break; 1760 1761 case 0x04: /* PAN */ 1762 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1763 goto do_unallocated; 1764 } 1765 if (crm & 1) { 1766 set_pstate_bits(PSTATE_PAN); 1767 } else { 1768 clear_pstate_bits(PSTATE_PAN); 1769 } 1770 gen_rebuild_hflags(s); 1771 break; 1772 1773 case 0x05: /* SPSel */ 1774 if (s->current_el == 0) { 1775 goto do_unallocated; 1776 } 1777 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1778 break; 1779 1780 case 0x19: /* SSBS */ 1781 if (!dc_isar_feature(aa64_ssbs, s)) { 1782 goto do_unallocated; 1783 } 1784 if (crm & 1) { 1785 set_pstate_bits(PSTATE_SSBS); 1786 } else { 1787 clear_pstate_bits(PSTATE_SSBS); 1788 } 1789 /* Don't need to rebuild hflags since SSBS is a nop */ 1790 break; 1791 1792 case 0x1a: /* DIT */ 1793 if (!dc_isar_feature(aa64_dit, s)) { 1794 goto do_unallocated; 1795 } 1796 if (crm & 1) { 1797 set_pstate_bits(PSTATE_DIT); 1798 } else { 1799 clear_pstate_bits(PSTATE_DIT); 1800 } 1801 /* There's no need to rebuild hflags because DIT is a nop */ 1802 break; 1803 1804 case 0x1e: /* DAIFSet */ 1805 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1806 break; 1807 1808 case 0x1f: /* DAIFClear */ 1809 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1810 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1811 s->base.is_jmp = DISAS_UPDATE_EXIT; 1812 break; 1813 1814 case 0x1c: /* TCO */ 1815 if (dc_isar_feature(aa64_mte, s)) { 1816 /* Full MTE is enabled -- set the TCO bit as directed. */ 1817 if (crm & 1) { 1818 set_pstate_bits(PSTATE_TCO); 1819 } else { 1820 clear_pstate_bits(PSTATE_TCO); 1821 } 1822 gen_rebuild_hflags(s); 1823 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1824 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1825 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1826 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1827 s->base.is_jmp = DISAS_NEXT; 1828 } else { 1829 goto do_unallocated; 1830 } 1831 break; 1832 1833 case 0x1b: /* SVCR* */ 1834 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1835 goto do_unallocated; 1836 } 1837 if (sme_access_check(s)) { 1838 int old = s->pstate_sm | (s->pstate_za << 1); 1839 int new = (crm & 1) * 3; 1840 int msk = (crm >> 1) & 3; 1841 1842 if ((old ^ new) & msk) { 1843 /* At least one bit changes. */ 1844 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1845 tcg_constant_i32(msk)); 1846 } else { 1847 s->base.is_jmp = DISAS_NEXT; 1848 } 1849 } 1850 break; 1851 1852 default: 1853 do_unallocated: 1854 unallocated_encoding(s); 1855 return; 1856 } 1857 } 1858 1859 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1860 { 1861 TCGv_i32 tmp = tcg_temp_new_i32(); 1862 TCGv_i32 nzcv = tcg_temp_new_i32(); 1863 1864 /* build bit 31, N */ 1865 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1866 /* build bit 30, Z */ 1867 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1868 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1869 /* build bit 29, C */ 1870 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1871 /* build bit 28, V */ 1872 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1873 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1874 /* generate result */ 1875 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1876 1877 tcg_temp_free_i32(nzcv); 1878 tcg_temp_free_i32(tmp); 1879 } 1880 1881 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1882 { 1883 TCGv_i32 nzcv = tcg_temp_new_i32(); 1884 1885 /* take NZCV from R[t] */ 1886 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1887 1888 /* bit 31, N */ 1889 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1890 /* bit 30, Z */ 1891 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1892 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1893 /* bit 29, C */ 1894 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1895 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1896 /* bit 28, V */ 1897 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1898 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1899 tcg_temp_free_i32(nzcv); 1900 } 1901 1902 static void gen_sysreg_undef(DisasContext *s, bool isread, 1903 uint8_t op0, uint8_t op1, uint8_t op2, 1904 uint8_t crn, uint8_t crm, uint8_t rt) 1905 { 1906 /* 1907 * Generate code to emit an UNDEF with correct syndrome 1908 * information for a failed system register access. 1909 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1910 * but if FEAT_IDST is implemented then read accesses to registers 1911 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1912 * syndrome. 1913 */ 1914 uint32_t syndrome; 1915 1916 if (isread && dc_isar_feature(aa64_ids, s) && 1917 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1918 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1919 } else { 1920 syndrome = syn_uncategorized(); 1921 } 1922 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 1923 } 1924 1925 /* MRS - move from system register 1926 * MSR (register) - move to system register 1927 * SYS 1928 * SYSL 1929 * These are all essentially the same insn in 'read' and 'write' 1930 * versions, with varying op0 fields. 1931 */ 1932 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 1933 unsigned int op0, unsigned int op1, unsigned int op2, 1934 unsigned int crn, unsigned int crm, unsigned int rt) 1935 { 1936 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1937 crn, crm, op0, op1, op2); 1938 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 1939 TCGv_ptr tcg_ri = NULL; 1940 TCGv_i64 tcg_rt; 1941 1942 if (!ri) { 1943 /* Unknown register; this might be a guest error or a QEMU 1944 * unimplemented feature. 1945 */ 1946 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 1947 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 1948 isread ? "read" : "write", op0, op1, crn, crm, op2); 1949 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1950 return; 1951 } 1952 1953 /* Check access permissions */ 1954 if (!cp_access_ok(s->current_el, ri, isread)) { 1955 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1956 return; 1957 } 1958 1959 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 1960 /* Emit code to perform further access permissions checks at 1961 * runtime; this may result in an exception. 1962 */ 1963 uint32_t syndrome; 1964 1965 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1966 gen_a64_update_pc(s, 0); 1967 tcg_ri = tcg_temp_new_ptr(); 1968 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 1969 tcg_constant_i32(key), 1970 tcg_constant_i32(syndrome), 1971 tcg_constant_i32(isread)); 1972 } else if (ri->type & ARM_CP_RAISES_EXC) { 1973 /* 1974 * The readfn or writefn might raise an exception; 1975 * synchronize the CPU state in case it does. 1976 */ 1977 gen_a64_update_pc(s, 0); 1978 } 1979 1980 /* Handle special cases first */ 1981 switch (ri->type & ARM_CP_SPECIAL_MASK) { 1982 case 0: 1983 break; 1984 case ARM_CP_NOP: 1985 goto exit; 1986 case ARM_CP_NZCV: 1987 tcg_rt = cpu_reg(s, rt); 1988 if (isread) { 1989 gen_get_nzcv(tcg_rt); 1990 } else { 1991 gen_set_nzcv(tcg_rt); 1992 } 1993 goto exit; 1994 case ARM_CP_CURRENTEL: 1995 /* Reads as current EL value from pstate, which is 1996 * guaranteed to be constant by the tb flags. 1997 */ 1998 tcg_rt = cpu_reg(s, rt); 1999 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2000 goto exit; 2001 case ARM_CP_DC_ZVA: 2002 /* Writes clear the aligned block of memory which rt points into. */ 2003 if (s->mte_active[0]) { 2004 int desc = 0; 2005 2006 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2007 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2008 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2009 2010 tcg_rt = new_tmp_a64(s); 2011 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2012 tcg_constant_i32(desc), cpu_reg(s, rt)); 2013 } else { 2014 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2015 } 2016 gen_helper_dc_zva(cpu_env, tcg_rt); 2017 goto exit; 2018 case ARM_CP_DC_GVA: 2019 { 2020 TCGv_i64 clean_addr, tag; 2021 2022 /* 2023 * DC_GVA, like DC_ZVA, requires that we supply the original 2024 * pointer for an invalid page. Probe that address first. 2025 */ 2026 tcg_rt = cpu_reg(s, rt); 2027 clean_addr = clean_data_tbi(s, tcg_rt); 2028 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2029 2030 if (s->ata) { 2031 /* Extract the tag from the register to match STZGM. */ 2032 tag = tcg_temp_new_i64(); 2033 tcg_gen_shri_i64(tag, tcg_rt, 56); 2034 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2035 tcg_temp_free_i64(tag); 2036 } 2037 } 2038 goto exit; 2039 case ARM_CP_DC_GZVA: 2040 { 2041 TCGv_i64 clean_addr, tag; 2042 2043 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2044 tcg_rt = cpu_reg(s, rt); 2045 clean_addr = clean_data_tbi(s, tcg_rt); 2046 gen_helper_dc_zva(cpu_env, clean_addr); 2047 2048 if (s->ata) { 2049 /* Extract the tag from the register to match STZGM. */ 2050 tag = tcg_temp_new_i64(); 2051 tcg_gen_shri_i64(tag, tcg_rt, 56); 2052 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2053 tcg_temp_free_i64(tag); 2054 } 2055 } 2056 goto exit; 2057 default: 2058 g_assert_not_reached(); 2059 } 2060 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2061 goto exit; 2062 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2063 goto exit; 2064 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2065 goto exit; 2066 } 2067 2068 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2069 gen_io_start(); 2070 } 2071 2072 tcg_rt = cpu_reg(s, rt); 2073 2074 if (isread) { 2075 if (ri->type & ARM_CP_CONST) { 2076 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2077 } else if (ri->readfn) { 2078 if (!tcg_ri) { 2079 tcg_ri = gen_lookup_cp_reg(key); 2080 } 2081 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2082 } else { 2083 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2084 } 2085 } else { 2086 if (ri->type & ARM_CP_CONST) { 2087 /* If not forbidden by access permissions, treat as WI */ 2088 goto exit; 2089 } else if (ri->writefn) { 2090 if (!tcg_ri) { 2091 tcg_ri = gen_lookup_cp_reg(key); 2092 } 2093 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2094 } else { 2095 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2096 } 2097 } 2098 2099 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2100 /* I/O operations must end the TB here (whether read or write) */ 2101 s->base.is_jmp = DISAS_UPDATE_EXIT; 2102 } 2103 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2104 /* 2105 * A write to any coprocessor regiser that ends a TB 2106 * must rebuild the hflags for the next TB. 2107 */ 2108 gen_rebuild_hflags(s); 2109 /* 2110 * We default to ending the TB on a coprocessor register write, 2111 * but allow this to be suppressed by the register definition 2112 * (usually only necessary to work around guest bugs). 2113 */ 2114 s->base.is_jmp = DISAS_UPDATE_EXIT; 2115 } 2116 2117 exit: 2118 if (tcg_ri) { 2119 tcg_temp_free_ptr(tcg_ri); 2120 } 2121 } 2122 2123 /* System 2124 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2125 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2126 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2127 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2128 */ 2129 static void disas_system(DisasContext *s, uint32_t insn) 2130 { 2131 unsigned int l, op0, op1, crn, crm, op2, rt; 2132 l = extract32(insn, 21, 1); 2133 op0 = extract32(insn, 19, 2); 2134 op1 = extract32(insn, 16, 3); 2135 crn = extract32(insn, 12, 4); 2136 crm = extract32(insn, 8, 4); 2137 op2 = extract32(insn, 5, 3); 2138 rt = extract32(insn, 0, 5); 2139 2140 if (op0 == 0) { 2141 if (l || rt != 31) { 2142 unallocated_encoding(s); 2143 return; 2144 } 2145 switch (crn) { 2146 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2147 handle_hint(s, insn, op1, op2, crm); 2148 break; 2149 case 3: /* CLREX, DSB, DMB, ISB */ 2150 handle_sync(s, insn, op1, op2, crm); 2151 break; 2152 case 4: /* MSR (immediate) */ 2153 handle_msr_i(s, insn, op1, op2, crm); 2154 break; 2155 default: 2156 unallocated_encoding(s); 2157 break; 2158 } 2159 return; 2160 } 2161 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2162 } 2163 2164 /* Exception generation 2165 * 2166 * 31 24 23 21 20 5 4 2 1 0 2167 * +-----------------+-----+------------------------+-----+----+ 2168 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2169 * +-----------------------+------------------------+----------+ 2170 */ 2171 static void disas_exc(DisasContext *s, uint32_t insn) 2172 { 2173 int opc = extract32(insn, 21, 3); 2174 int op2_ll = extract32(insn, 0, 5); 2175 int imm16 = extract32(insn, 5, 16); 2176 uint32_t syndrome; 2177 2178 switch (opc) { 2179 case 0: 2180 /* For SVC, HVC and SMC we advance the single-step state 2181 * machine before taking the exception. This is architecturally 2182 * mandated, to ensure that single-stepping a system call 2183 * instruction works properly. 2184 */ 2185 switch (op2_ll) { 2186 case 1: /* SVC */ 2187 syndrome = syn_aa64_svc(imm16); 2188 if (s->fgt_svc) { 2189 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2190 break; 2191 } 2192 gen_ss_advance(s); 2193 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2194 break; 2195 case 2: /* HVC */ 2196 if (s->current_el == 0) { 2197 unallocated_encoding(s); 2198 break; 2199 } 2200 /* The pre HVC helper handles cases when HVC gets trapped 2201 * as an undefined insn by runtime configuration. 2202 */ 2203 gen_a64_update_pc(s, 0); 2204 gen_helper_pre_hvc(cpu_env); 2205 gen_ss_advance(s); 2206 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2207 break; 2208 case 3: /* SMC */ 2209 if (s->current_el == 0) { 2210 unallocated_encoding(s); 2211 break; 2212 } 2213 gen_a64_update_pc(s, 0); 2214 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2215 gen_ss_advance(s); 2216 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2217 break; 2218 default: 2219 unallocated_encoding(s); 2220 break; 2221 } 2222 break; 2223 case 1: 2224 if (op2_ll != 0) { 2225 unallocated_encoding(s); 2226 break; 2227 } 2228 /* BRK */ 2229 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2230 break; 2231 case 2: 2232 if (op2_ll != 0) { 2233 unallocated_encoding(s); 2234 break; 2235 } 2236 /* HLT. This has two purposes. 2237 * Architecturally, it is an external halting debug instruction. 2238 * Since QEMU doesn't implement external debug, we treat this as 2239 * it is required for halting debug disabled: it will UNDEF. 2240 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2241 */ 2242 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2243 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2244 } else { 2245 unallocated_encoding(s); 2246 } 2247 break; 2248 case 5: 2249 if (op2_ll < 1 || op2_ll > 3) { 2250 unallocated_encoding(s); 2251 break; 2252 } 2253 /* DCPS1, DCPS2, DCPS3 */ 2254 unallocated_encoding(s); 2255 break; 2256 default: 2257 unallocated_encoding(s); 2258 break; 2259 } 2260 } 2261 2262 /* Unconditional branch (register) 2263 * 31 25 24 21 20 16 15 10 9 5 4 0 2264 * +---------------+-------+-------+-------+------+-------+ 2265 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | 2266 * +---------------+-------+-------+-------+------+-------+ 2267 */ 2268 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) 2269 { 2270 unsigned int opc, op2, op3, rn, op4; 2271 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ 2272 TCGv_i64 dst; 2273 TCGv_i64 modifier; 2274 2275 opc = extract32(insn, 21, 4); 2276 op2 = extract32(insn, 16, 5); 2277 op3 = extract32(insn, 10, 6); 2278 rn = extract32(insn, 5, 5); 2279 op4 = extract32(insn, 0, 5); 2280 2281 if (op2 != 0x1f) { 2282 goto do_unallocated; 2283 } 2284 2285 switch (opc) { 2286 case 0: /* BR */ 2287 case 1: /* BLR */ 2288 case 2: /* RET */ 2289 btype_mod = opc; 2290 switch (op3) { 2291 case 0: 2292 /* BR, BLR, RET */ 2293 if (op4 != 0) { 2294 goto do_unallocated; 2295 } 2296 dst = cpu_reg(s, rn); 2297 break; 2298 2299 case 2: 2300 case 3: 2301 if (!dc_isar_feature(aa64_pauth, s)) { 2302 goto do_unallocated; 2303 } 2304 if (opc == 2) { 2305 /* RETAA, RETAB */ 2306 if (rn != 0x1f || op4 != 0x1f) { 2307 goto do_unallocated; 2308 } 2309 rn = 30; 2310 modifier = cpu_X[31]; 2311 } else { 2312 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ 2313 if (op4 != 0x1f) { 2314 goto do_unallocated; 2315 } 2316 modifier = new_tmp_a64_zero(s); 2317 } 2318 if (s->pauth_active) { 2319 dst = new_tmp_a64(s); 2320 if (op3 == 2) { 2321 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2322 } else { 2323 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2324 } 2325 } else { 2326 dst = cpu_reg(s, rn); 2327 } 2328 break; 2329 2330 default: 2331 goto do_unallocated; 2332 } 2333 /* BLR also needs to load return address */ 2334 if (opc == 1) { 2335 TCGv_i64 lr = cpu_reg(s, 30); 2336 if (dst == lr) { 2337 TCGv_i64 tmp = new_tmp_a64(s); 2338 tcg_gen_mov_i64(tmp, dst); 2339 dst = tmp; 2340 } 2341 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2342 } 2343 gen_a64_set_pc(s, dst); 2344 break; 2345 2346 case 8: /* BRAA */ 2347 case 9: /* BLRAA */ 2348 if (!dc_isar_feature(aa64_pauth, s)) { 2349 goto do_unallocated; 2350 } 2351 if ((op3 & ~1) != 2) { 2352 goto do_unallocated; 2353 } 2354 btype_mod = opc & 1; 2355 if (s->pauth_active) { 2356 dst = new_tmp_a64(s); 2357 modifier = cpu_reg_sp(s, op4); 2358 if (op3 == 2) { 2359 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2360 } else { 2361 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2362 } 2363 } else { 2364 dst = cpu_reg(s, rn); 2365 } 2366 /* BLRAA also needs to load return address */ 2367 if (opc == 9) { 2368 TCGv_i64 lr = cpu_reg(s, 30); 2369 if (dst == lr) { 2370 TCGv_i64 tmp = new_tmp_a64(s); 2371 tcg_gen_mov_i64(tmp, dst); 2372 dst = tmp; 2373 } 2374 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2375 } 2376 gen_a64_set_pc(s, dst); 2377 break; 2378 2379 case 4: /* ERET */ 2380 if (s->current_el == 0) { 2381 goto do_unallocated; 2382 } 2383 switch (op3) { 2384 case 0: /* ERET */ 2385 if (op4 != 0) { 2386 goto do_unallocated; 2387 } 2388 if (s->fgt_eret) { 2389 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2390 return; 2391 } 2392 dst = tcg_temp_new_i64(); 2393 tcg_gen_ld_i64(dst, cpu_env, 2394 offsetof(CPUARMState, elr_el[s->current_el])); 2395 break; 2396 2397 case 2: /* ERETAA */ 2398 case 3: /* ERETAB */ 2399 if (!dc_isar_feature(aa64_pauth, s)) { 2400 goto do_unallocated; 2401 } 2402 if (rn != 0x1f || op4 != 0x1f) { 2403 goto do_unallocated; 2404 } 2405 /* The FGT trap takes precedence over an auth trap. */ 2406 if (s->fgt_eret) { 2407 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2408 return; 2409 } 2410 dst = tcg_temp_new_i64(); 2411 tcg_gen_ld_i64(dst, cpu_env, 2412 offsetof(CPUARMState, elr_el[s->current_el])); 2413 if (s->pauth_active) { 2414 modifier = cpu_X[31]; 2415 if (op3 == 2) { 2416 gen_helper_autia(dst, cpu_env, dst, modifier); 2417 } else { 2418 gen_helper_autib(dst, cpu_env, dst, modifier); 2419 } 2420 } 2421 break; 2422 2423 default: 2424 goto do_unallocated; 2425 } 2426 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2427 gen_io_start(); 2428 } 2429 2430 gen_helper_exception_return(cpu_env, dst); 2431 tcg_temp_free_i64(dst); 2432 /* Must exit loop to check un-masked IRQs */ 2433 s->base.is_jmp = DISAS_EXIT; 2434 return; 2435 2436 case 5: /* DRPS */ 2437 if (op3 != 0 || op4 != 0 || rn != 0x1f) { 2438 goto do_unallocated; 2439 } else { 2440 unallocated_encoding(s); 2441 } 2442 return; 2443 2444 default: 2445 do_unallocated: 2446 unallocated_encoding(s); 2447 return; 2448 } 2449 2450 switch (btype_mod) { 2451 case 0: /* BR */ 2452 if (dc_isar_feature(aa64_bti, s)) { 2453 /* BR to {x16,x17} or !guard -> 1, else 3. */ 2454 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 2455 } 2456 break; 2457 2458 case 1: /* BLR */ 2459 if (dc_isar_feature(aa64_bti, s)) { 2460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 2461 set_btype(s, 2); 2462 } 2463 break; 2464 2465 default: /* RET or none of the above. */ 2466 /* BTYPE will be set to 0 by normal end-of-insn processing. */ 2467 break; 2468 } 2469 2470 s->base.is_jmp = DISAS_JUMP; 2471 } 2472 2473 /* Branches, exception generating and system instructions */ 2474 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2475 { 2476 switch (extract32(insn, 25, 7)) { 2477 case 0x0a: case 0x0b: 2478 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ 2479 disas_uncond_b_imm(s, insn); 2480 break; 2481 case 0x1a: case 0x5a: /* Compare & branch (immediate) */ 2482 disas_comp_b_imm(s, insn); 2483 break; 2484 case 0x1b: case 0x5b: /* Test & branch (immediate) */ 2485 disas_test_b_imm(s, insn); 2486 break; 2487 case 0x2a: /* Conditional branch (immediate) */ 2488 disas_cond_b_imm(s, insn); 2489 break; 2490 case 0x6a: /* Exception generation / System */ 2491 if (insn & (1 << 24)) { 2492 if (extract32(insn, 22, 2) == 0) { 2493 disas_system(s, insn); 2494 } else { 2495 unallocated_encoding(s); 2496 } 2497 } else { 2498 disas_exc(s, insn); 2499 } 2500 break; 2501 case 0x6b: /* Unconditional branch (register) */ 2502 disas_uncond_b_reg(s, insn); 2503 break; 2504 default: 2505 unallocated_encoding(s); 2506 break; 2507 } 2508 } 2509 2510 /* 2511 * Load/Store exclusive instructions are implemented by remembering 2512 * the value/address loaded, and seeing if these are the same 2513 * when the store is performed. This is not actually the architecturally 2514 * mandated semantics, but it works for typical guest code sequences 2515 * and avoids having to monitor regular stores. 2516 * 2517 * The store exclusive uses the atomic cmpxchg primitives to avoid 2518 * races in multi-threaded linux-user and when MTTCG softmmu is 2519 * enabled. 2520 */ 2521 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2522 TCGv_i64 addr, int size, bool is_pair) 2523 { 2524 int idx = get_mem_index(s); 2525 MemOp memop = s->be_data; 2526 2527 g_assert(size <= 3); 2528 if (is_pair) { 2529 g_assert(size >= 2); 2530 if (size == 2) { 2531 /* The pair must be single-copy atomic for the doubleword. */ 2532 memop |= MO_64 | MO_ALIGN; 2533 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2534 if (s->be_data == MO_LE) { 2535 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2536 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2537 } else { 2538 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2539 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2540 } 2541 } else { 2542 /* The pair must be single-copy atomic for *each* doubleword, not 2543 the entire quadword, however it must be quadword aligned. */ 2544 memop |= MO_64; 2545 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2546 memop | MO_ALIGN_16); 2547 2548 TCGv_i64 addr2 = tcg_temp_new_i64(); 2549 tcg_gen_addi_i64(addr2, addr, 8); 2550 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2551 tcg_temp_free_i64(addr2); 2552 2553 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2554 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2555 } 2556 } else { 2557 memop |= size | MO_ALIGN; 2558 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2559 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2560 } 2561 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2562 } 2563 2564 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2565 TCGv_i64 addr, int size, int is_pair) 2566 { 2567 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2568 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2569 * [addr] = {Rt}; 2570 * if (is_pair) { 2571 * [addr + datasize] = {Rt2}; 2572 * } 2573 * {Rd} = 0; 2574 * } else { 2575 * {Rd} = 1; 2576 * } 2577 * env->exclusive_addr = -1; 2578 */ 2579 TCGLabel *fail_label = gen_new_label(); 2580 TCGLabel *done_label = gen_new_label(); 2581 TCGv_i64 tmp; 2582 2583 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2584 2585 tmp = tcg_temp_new_i64(); 2586 if (is_pair) { 2587 if (size == 2) { 2588 if (s->be_data == MO_LE) { 2589 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2590 } else { 2591 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2592 } 2593 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2594 cpu_exclusive_val, tmp, 2595 get_mem_index(s), 2596 MO_64 | MO_ALIGN | s->be_data); 2597 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2598 } else { 2599 TCGv_i128 t16 = tcg_temp_new_i128(); 2600 TCGv_i128 c16 = tcg_temp_new_i128(); 2601 TCGv_i64 a, b; 2602 2603 if (s->be_data == MO_LE) { 2604 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2605 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2606 cpu_exclusive_high); 2607 } else { 2608 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2609 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2610 cpu_exclusive_val); 2611 } 2612 2613 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2614 get_mem_index(s), 2615 MO_128 | MO_ALIGN | s->be_data); 2616 tcg_temp_free_i128(c16); 2617 2618 a = tcg_temp_new_i64(); 2619 b = tcg_temp_new_i64(); 2620 if (s->be_data == MO_LE) { 2621 tcg_gen_extr_i128_i64(a, b, t16); 2622 } else { 2623 tcg_gen_extr_i128_i64(b, a, t16); 2624 } 2625 2626 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2627 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2628 tcg_gen_or_i64(tmp, a, b); 2629 tcg_temp_free_i64(a); 2630 tcg_temp_free_i64(b); 2631 tcg_temp_free_i128(t16); 2632 2633 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2634 } 2635 } else { 2636 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2637 cpu_reg(s, rt), get_mem_index(s), 2638 size | MO_ALIGN | s->be_data); 2639 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2640 } 2641 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2642 tcg_temp_free_i64(tmp); 2643 tcg_gen_br(done_label); 2644 2645 gen_set_label(fail_label); 2646 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2647 gen_set_label(done_label); 2648 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2649 } 2650 2651 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2652 int rn, int size) 2653 { 2654 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2655 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2656 int memidx = get_mem_index(s); 2657 TCGv_i64 clean_addr; 2658 2659 if (rn == 31) { 2660 gen_check_sp_alignment(s); 2661 } 2662 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2663 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2664 size | MO_ALIGN | s->be_data); 2665 } 2666 2667 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2668 int rn, int size) 2669 { 2670 TCGv_i64 s1 = cpu_reg(s, rs); 2671 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2672 TCGv_i64 t1 = cpu_reg(s, rt); 2673 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2674 TCGv_i64 clean_addr; 2675 int memidx = get_mem_index(s); 2676 2677 if (rn == 31) { 2678 gen_check_sp_alignment(s); 2679 } 2680 2681 /* This is a single atomic access, despite the "pair". */ 2682 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2683 2684 if (size == 2) { 2685 TCGv_i64 cmp = tcg_temp_new_i64(); 2686 TCGv_i64 val = tcg_temp_new_i64(); 2687 2688 if (s->be_data == MO_LE) { 2689 tcg_gen_concat32_i64(val, t1, t2); 2690 tcg_gen_concat32_i64(cmp, s1, s2); 2691 } else { 2692 tcg_gen_concat32_i64(val, t2, t1); 2693 tcg_gen_concat32_i64(cmp, s2, s1); 2694 } 2695 2696 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2697 MO_64 | MO_ALIGN | s->be_data); 2698 tcg_temp_free_i64(val); 2699 2700 if (s->be_data == MO_LE) { 2701 tcg_gen_extr32_i64(s1, s2, cmp); 2702 } else { 2703 tcg_gen_extr32_i64(s2, s1, cmp); 2704 } 2705 tcg_temp_free_i64(cmp); 2706 } else { 2707 TCGv_i128 cmp = tcg_temp_new_i128(); 2708 TCGv_i128 val = tcg_temp_new_i128(); 2709 2710 if (s->be_data == MO_LE) { 2711 tcg_gen_concat_i64_i128(val, t1, t2); 2712 tcg_gen_concat_i64_i128(cmp, s1, s2); 2713 } else { 2714 tcg_gen_concat_i64_i128(val, t2, t1); 2715 tcg_gen_concat_i64_i128(cmp, s2, s1); 2716 } 2717 2718 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2719 MO_128 | MO_ALIGN | s->be_data); 2720 tcg_temp_free_i128(val); 2721 2722 if (s->be_data == MO_LE) { 2723 tcg_gen_extr_i128_i64(s1, s2, cmp); 2724 } else { 2725 tcg_gen_extr_i128_i64(s2, s1, cmp); 2726 } 2727 tcg_temp_free_i128(cmp); 2728 } 2729 } 2730 2731 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2732 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2733 */ 2734 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2735 { 2736 int opc0 = extract32(opc, 0, 1); 2737 int regsize; 2738 2739 if (is_signed) { 2740 regsize = opc0 ? 32 : 64; 2741 } else { 2742 regsize = size == 3 ? 64 : 32; 2743 } 2744 return regsize == 64; 2745 } 2746 2747 /* Load/store exclusive 2748 * 2749 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2750 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2751 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2752 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2753 * 2754 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2755 * L: 0 -> store, 1 -> load 2756 * o2: 0 -> exclusive, 1 -> not 2757 * o1: 0 -> single register, 1 -> register pair 2758 * o0: 1 -> load-acquire/store-release, 0 -> not 2759 */ 2760 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2761 { 2762 int rt = extract32(insn, 0, 5); 2763 int rn = extract32(insn, 5, 5); 2764 int rt2 = extract32(insn, 10, 5); 2765 int rs = extract32(insn, 16, 5); 2766 int is_lasr = extract32(insn, 15, 1); 2767 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2768 int size = extract32(insn, 30, 2); 2769 TCGv_i64 clean_addr; 2770 2771 switch (o2_L_o1_o0) { 2772 case 0x0: /* STXR */ 2773 case 0x1: /* STLXR */ 2774 if (rn == 31) { 2775 gen_check_sp_alignment(s); 2776 } 2777 if (is_lasr) { 2778 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2779 } 2780 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2781 true, rn != 31, size); 2782 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2783 return; 2784 2785 case 0x4: /* LDXR */ 2786 case 0x5: /* LDAXR */ 2787 if (rn == 31) { 2788 gen_check_sp_alignment(s); 2789 } 2790 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2791 false, rn != 31, size); 2792 s->is_ldex = true; 2793 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2794 if (is_lasr) { 2795 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2796 } 2797 return; 2798 2799 case 0x8: /* STLLR */ 2800 if (!dc_isar_feature(aa64_lor, s)) { 2801 break; 2802 } 2803 /* StoreLORelease is the same as Store-Release for QEMU. */ 2804 /* fall through */ 2805 case 0x9: /* STLR */ 2806 /* Generate ISS for non-exclusive accesses including LASR. */ 2807 if (rn == 31) { 2808 gen_check_sp_alignment(s); 2809 } 2810 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2811 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2812 true, rn != 31, size); 2813 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2814 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2815 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2816 return; 2817 2818 case 0xc: /* LDLAR */ 2819 if (!dc_isar_feature(aa64_lor, s)) { 2820 break; 2821 } 2822 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2823 /* fall through */ 2824 case 0xd: /* LDAR */ 2825 /* Generate ISS for non-exclusive accesses including LASR. */ 2826 if (rn == 31) { 2827 gen_check_sp_alignment(s); 2828 } 2829 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2830 false, rn != 31, size); 2831 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2832 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2833 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2834 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2835 return; 2836 2837 case 0x2: case 0x3: /* CASP / STXP */ 2838 if (size & 2) { /* STXP / STLXP */ 2839 if (rn == 31) { 2840 gen_check_sp_alignment(s); 2841 } 2842 if (is_lasr) { 2843 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2844 } 2845 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2846 true, rn != 31, size); 2847 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2848 return; 2849 } 2850 if (rt2 == 31 2851 && ((rt | rs) & 1) == 0 2852 && dc_isar_feature(aa64_atomics, s)) { 2853 /* CASP / CASPL */ 2854 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2855 return; 2856 } 2857 break; 2858 2859 case 0x6: case 0x7: /* CASPA / LDXP */ 2860 if (size & 2) { /* LDXP / LDAXP */ 2861 if (rn == 31) { 2862 gen_check_sp_alignment(s); 2863 } 2864 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2865 false, rn != 31, size); 2866 s->is_ldex = true; 2867 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2868 if (is_lasr) { 2869 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2870 } 2871 return; 2872 } 2873 if (rt2 == 31 2874 && ((rt | rs) & 1) == 0 2875 && dc_isar_feature(aa64_atomics, s)) { 2876 /* CASPA / CASPAL */ 2877 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2878 return; 2879 } 2880 break; 2881 2882 case 0xa: /* CAS */ 2883 case 0xb: /* CASL */ 2884 case 0xe: /* CASA */ 2885 case 0xf: /* CASAL */ 2886 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2887 gen_compare_and_swap(s, rs, rt, rn, size); 2888 return; 2889 } 2890 break; 2891 } 2892 unallocated_encoding(s); 2893 } 2894 2895 /* 2896 * Load register (literal) 2897 * 2898 * 31 30 29 27 26 25 24 23 5 4 0 2899 * +-----+-------+---+-----+-------------------+-------+ 2900 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2901 * +-----+-------+---+-----+-------------------+-------+ 2902 * 2903 * V: 1 -> vector (simd/fp) 2904 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2905 * 10-> 32 bit signed, 11 -> prefetch 2906 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2907 */ 2908 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2909 { 2910 int rt = extract32(insn, 0, 5); 2911 int64_t imm = sextract32(insn, 5, 19) << 2; 2912 bool is_vector = extract32(insn, 26, 1); 2913 int opc = extract32(insn, 30, 2); 2914 bool is_signed = false; 2915 int size = 2; 2916 TCGv_i64 tcg_rt, clean_addr; 2917 2918 if (is_vector) { 2919 if (opc == 3) { 2920 unallocated_encoding(s); 2921 return; 2922 } 2923 size = 2 + opc; 2924 if (!fp_access_check(s)) { 2925 return; 2926 } 2927 } else { 2928 if (opc == 3) { 2929 /* PRFM (literal) : prefetch */ 2930 return; 2931 } 2932 size = 2 + extract32(opc, 0, 1); 2933 is_signed = extract32(opc, 1, 1); 2934 } 2935 2936 tcg_rt = cpu_reg(s, rt); 2937 2938 clean_addr = new_tmp_a64(s); 2939 gen_pc_plus_diff(s, clean_addr, imm); 2940 if (is_vector) { 2941 do_fp_ld(s, rt, clean_addr, size); 2942 } else { 2943 /* Only unsigned 32bit loads target 32bit registers. */ 2944 bool iss_sf = opc != 0; 2945 2946 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2947 false, true, rt, iss_sf, false); 2948 } 2949 } 2950 2951 /* 2952 * LDNP (Load Pair - non-temporal hint) 2953 * LDP (Load Pair - non vector) 2954 * LDPSW (Load Pair Signed Word - non vector) 2955 * STNP (Store Pair - non-temporal hint) 2956 * STP (Store Pair - non vector) 2957 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2958 * LDP (Load Pair of SIMD&FP) 2959 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2960 * STP (Store Pair of SIMD&FP) 2961 * 2962 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2963 * +-----+-------+---+---+-------+---+-----------------------------+ 2964 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2965 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2966 * 2967 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2968 * LDPSW/STGP 01 2969 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2970 * V: 0 -> GPR, 1 -> Vector 2971 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2972 * 10 -> signed offset, 11 -> pre-index 2973 * L: 0 -> Store 1 -> Load 2974 * 2975 * Rt, Rt2 = GPR or SIMD registers to be stored 2976 * Rn = general purpose register containing address 2977 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2978 */ 2979 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2980 { 2981 int rt = extract32(insn, 0, 5); 2982 int rn = extract32(insn, 5, 5); 2983 int rt2 = extract32(insn, 10, 5); 2984 uint64_t offset = sextract64(insn, 15, 7); 2985 int index = extract32(insn, 23, 2); 2986 bool is_vector = extract32(insn, 26, 1); 2987 bool is_load = extract32(insn, 22, 1); 2988 int opc = extract32(insn, 30, 2); 2989 2990 bool is_signed = false; 2991 bool postindex = false; 2992 bool wback = false; 2993 bool set_tag = false; 2994 2995 TCGv_i64 clean_addr, dirty_addr; 2996 2997 int size; 2998 2999 if (opc == 3) { 3000 unallocated_encoding(s); 3001 return; 3002 } 3003 3004 if (is_vector) { 3005 size = 2 + opc; 3006 } else if (opc == 1 && !is_load) { 3007 /* STGP */ 3008 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 3009 unallocated_encoding(s); 3010 return; 3011 } 3012 size = 3; 3013 set_tag = true; 3014 } else { 3015 size = 2 + extract32(opc, 1, 1); 3016 is_signed = extract32(opc, 0, 1); 3017 if (!is_load && is_signed) { 3018 unallocated_encoding(s); 3019 return; 3020 } 3021 } 3022 3023 switch (index) { 3024 case 1: /* post-index */ 3025 postindex = true; 3026 wback = true; 3027 break; 3028 case 0: 3029 /* signed offset with "non-temporal" hint. Since we don't emulate 3030 * caches we don't care about hints to the cache system about 3031 * data access patterns, and handle this identically to plain 3032 * signed offset. 3033 */ 3034 if (is_signed) { 3035 /* There is no non-temporal-hint version of LDPSW */ 3036 unallocated_encoding(s); 3037 return; 3038 } 3039 postindex = false; 3040 break; 3041 case 2: /* signed offset, rn not updated */ 3042 postindex = false; 3043 break; 3044 case 3: /* pre-index */ 3045 postindex = false; 3046 wback = true; 3047 break; 3048 } 3049 3050 if (is_vector && !fp_access_check(s)) { 3051 return; 3052 } 3053 3054 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3055 3056 if (rn == 31) { 3057 gen_check_sp_alignment(s); 3058 } 3059 3060 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3061 if (!postindex) { 3062 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3063 } 3064 3065 if (set_tag) { 3066 if (!s->ata) { 3067 /* 3068 * TODO: We could rely on the stores below, at least for 3069 * system mode, if we arrange to add MO_ALIGN_16. 3070 */ 3071 gen_helper_stg_stub(cpu_env, dirty_addr); 3072 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3073 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3074 } else { 3075 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3076 } 3077 } 3078 3079 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3080 (wback || rn != 31) && !set_tag, 2 << size); 3081 3082 if (is_vector) { 3083 if (is_load) { 3084 do_fp_ld(s, rt, clean_addr, size); 3085 } else { 3086 do_fp_st(s, rt, clean_addr, size); 3087 } 3088 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3089 if (is_load) { 3090 do_fp_ld(s, rt2, clean_addr, size); 3091 } else { 3092 do_fp_st(s, rt2, clean_addr, size); 3093 } 3094 } else { 3095 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3096 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3097 3098 if (is_load) { 3099 TCGv_i64 tmp = tcg_temp_new_i64(); 3100 3101 /* Do not modify tcg_rt before recognizing any exception 3102 * from the second load. 3103 */ 3104 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 3105 false, false, 0, false, false); 3106 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3107 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 3108 false, false, 0, false, false); 3109 3110 tcg_gen_mov_i64(tcg_rt, tmp); 3111 tcg_temp_free_i64(tmp); 3112 } else { 3113 do_gpr_st(s, tcg_rt, clean_addr, size, 3114 false, 0, false, false); 3115 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3116 do_gpr_st(s, tcg_rt2, clean_addr, size, 3117 false, 0, false, false); 3118 } 3119 } 3120 3121 if (wback) { 3122 if (postindex) { 3123 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3124 } 3125 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3126 } 3127 } 3128 3129 /* 3130 * Load/store (immediate post-indexed) 3131 * Load/store (immediate pre-indexed) 3132 * Load/store (unscaled immediate) 3133 * 3134 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3135 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3136 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3137 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3138 * 3139 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3140 10 -> unprivileged 3141 * V = 0 -> non-vector 3142 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3143 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3144 */ 3145 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3146 int opc, 3147 int size, 3148 int rt, 3149 bool is_vector) 3150 { 3151 int rn = extract32(insn, 5, 5); 3152 int imm9 = sextract32(insn, 12, 9); 3153 int idx = extract32(insn, 10, 2); 3154 bool is_signed = false; 3155 bool is_store = false; 3156 bool is_extended = false; 3157 bool is_unpriv = (idx == 2); 3158 bool iss_valid; 3159 bool post_index; 3160 bool writeback; 3161 int memidx; 3162 3163 TCGv_i64 clean_addr, dirty_addr; 3164 3165 if (is_vector) { 3166 size |= (opc & 2) << 1; 3167 if (size > 4 || is_unpriv) { 3168 unallocated_encoding(s); 3169 return; 3170 } 3171 is_store = ((opc & 1) == 0); 3172 if (!fp_access_check(s)) { 3173 return; 3174 } 3175 } else { 3176 if (size == 3 && opc == 2) { 3177 /* PRFM - prefetch */ 3178 if (idx != 0) { 3179 unallocated_encoding(s); 3180 return; 3181 } 3182 return; 3183 } 3184 if (opc == 3 && size > 1) { 3185 unallocated_encoding(s); 3186 return; 3187 } 3188 is_store = (opc == 0); 3189 is_signed = extract32(opc, 1, 1); 3190 is_extended = (size < 3) && extract32(opc, 0, 1); 3191 } 3192 3193 switch (idx) { 3194 case 0: 3195 case 2: 3196 post_index = false; 3197 writeback = false; 3198 break; 3199 case 1: 3200 post_index = true; 3201 writeback = true; 3202 break; 3203 case 3: 3204 post_index = false; 3205 writeback = true; 3206 break; 3207 default: 3208 g_assert_not_reached(); 3209 } 3210 3211 iss_valid = !is_vector && !writeback; 3212 3213 if (rn == 31) { 3214 gen_check_sp_alignment(s); 3215 } 3216 3217 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3218 if (!post_index) { 3219 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3220 } 3221 3222 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3223 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3224 writeback || rn != 31, 3225 size, is_unpriv, memidx); 3226 3227 if (is_vector) { 3228 if (is_store) { 3229 do_fp_st(s, rt, clean_addr, size); 3230 } else { 3231 do_fp_ld(s, rt, clean_addr, size); 3232 } 3233 } else { 3234 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3235 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3236 3237 if (is_store) { 3238 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3239 iss_valid, rt, iss_sf, false); 3240 } else { 3241 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3242 is_extended, memidx, 3243 iss_valid, rt, iss_sf, false); 3244 } 3245 } 3246 3247 if (writeback) { 3248 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3249 if (post_index) { 3250 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3251 } 3252 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3253 } 3254 } 3255 3256 /* 3257 * Load/store (register offset) 3258 * 3259 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3260 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3261 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3262 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3263 * 3264 * For non-vector: 3265 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3266 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3267 * For vector: 3268 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3269 * opc<0>: 0 -> store, 1 -> load 3270 * V: 1 -> vector/simd 3271 * opt: extend encoding (see DecodeRegExtend) 3272 * S: if S=1 then scale (essentially index by sizeof(size)) 3273 * Rt: register to transfer into/out of 3274 * Rn: address register or SP for base 3275 * Rm: offset register or ZR for offset 3276 */ 3277 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3278 int opc, 3279 int size, 3280 int rt, 3281 bool is_vector) 3282 { 3283 int rn = extract32(insn, 5, 5); 3284 int shift = extract32(insn, 12, 1); 3285 int rm = extract32(insn, 16, 5); 3286 int opt = extract32(insn, 13, 3); 3287 bool is_signed = false; 3288 bool is_store = false; 3289 bool is_extended = false; 3290 3291 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3292 3293 if (extract32(opt, 1, 1) == 0) { 3294 unallocated_encoding(s); 3295 return; 3296 } 3297 3298 if (is_vector) { 3299 size |= (opc & 2) << 1; 3300 if (size > 4) { 3301 unallocated_encoding(s); 3302 return; 3303 } 3304 is_store = !extract32(opc, 0, 1); 3305 if (!fp_access_check(s)) { 3306 return; 3307 } 3308 } else { 3309 if (size == 3 && opc == 2) { 3310 /* PRFM - prefetch */ 3311 return; 3312 } 3313 if (opc == 3 && size > 1) { 3314 unallocated_encoding(s); 3315 return; 3316 } 3317 is_store = (opc == 0); 3318 is_signed = extract32(opc, 1, 1); 3319 is_extended = (size < 3) && extract32(opc, 0, 1); 3320 } 3321 3322 if (rn == 31) { 3323 gen_check_sp_alignment(s); 3324 } 3325 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3326 3327 tcg_rm = read_cpu_reg(s, rm, 1); 3328 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3329 3330 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3331 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3332 3333 if (is_vector) { 3334 if (is_store) { 3335 do_fp_st(s, rt, clean_addr, size); 3336 } else { 3337 do_fp_ld(s, rt, clean_addr, size); 3338 } 3339 } else { 3340 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3341 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3342 if (is_store) { 3343 do_gpr_st(s, tcg_rt, clean_addr, size, 3344 true, rt, iss_sf, false); 3345 } else { 3346 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3347 is_extended, true, rt, iss_sf, false); 3348 } 3349 } 3350 } 3351 3352 /* 3353 * Load/store (unsigned immediate) 3354 * 3355 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3356 * +----+-------+---+-----+-----+------------+-------+------+ 3357 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3358 * +----+-------+---+-----+-----+------------+-------+------+ 3359 * 3360 * For non-vector: 3361 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3362 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3363 * For vector: 3364 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3365 * opc<0>: 0 -> store, 1 -> load 3366 * Rn: base address register (inc SP) 3367 * Rt: target register 3368 */ 3369 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3370 int opc, 3371 int size, 3372 int rt, 3373 bool is_vector) 3374 { 3375 int rn = extract32(insn, 5, 5); 3376 unsigned int imm12 = extract32(insn, 10, 12); 3377 unsigned int offset; 3378 3379 TCGv_i64 clean_addr, dirty_addr; 3380 3381 bool is_store; 3382 bool is_signed = false; 3383 bool is_extended = false; 3384 3385 if (is_vector) { 3386 size |= (opc & 2) << 1; 3387 if (size > 4) { 3388 unallocated_encoding(s); 3389 return; 3390 } 3391 is_store = !extract32(opc, 0, 1); 3392 if (!fp_access_check(s)) { 3393 return; 3394 } 3395 } else { 3396 if (size == 3 && opc == 2) { 3397 /* PRFM - prefetch */ 3398 return; 3399 } 3400 if (opc == 3 && size > 1) { 3401 unallocated_encoding(s); 3402 return; 3403 } 3404 is_store = (opc == 0); 3405 is_signed = extract32(opc, 1, 1); 3406 is_extended = (size < 3) && extract32(opc, 0, 1); 3407 } 3408 3409 if (rn == 31) { 3410 gen_check_sp_alignment(s); 3411 } 3412 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3413 offset = imm12 << size; 3414 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3415 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3416 3417 if (is_vector) { 3418 if (is_store) { 3419 do_fp_st(s, rt, clean_addr, size); 3420 } else { 3421 do_fp_ld(s, rt, clean_addr, size); 3422 } 3423 } else { 3424 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3425 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3426 if (is_store) { 3427 do_gpr_st(s, tcg_rt, clean_addr, size, 3428 true, rt, iss_sf, false); 3429 } else { 3430 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3431 is_extended, true, rt, iss_sf, false); 3432 } 3433 } 3434 } 3435 3436 /* Atomic memory operations 3437 * 3438 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3439 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3440 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3441 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3442 * 3443 * Rt: the result register 3444 * Rn: base address or SP 3445 * Rs: the source register for the operation 3446 * V: vector flag (always 0 as of v8.3) 3447 * A: acquire flag 3448 * R: release flag 3449 */ 3450 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3451 int size, int rt, bool is_vector) 3452 { 3453 int rs = extract32(insn, 16, 5); 3454 int rn = extract32(insn, 5, 5); 3455 int o3_opc = extract32(insn, 12, 4); 3456 bool r = extract32(insn, 22, 1); 3457 bool a = extract32(insn, 23, 1); 3458 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3459 AtomicThreeOpFn *fn = NULL; 3460 MemOp mop = s->be_data | size | MO_ALIGN; 3461 3462 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3463 unallocated_encoding(s); 3464 return; 3465 } 3466 switch (o3_opc) { 3467 case 000: /* LDADD */ 3468 fn = tcg_gen_atomic_fetch_add_i64; 3469 break; 3470 case 001: /* LDCLR */ 3471 fn = tcg_gen_atomic_fetch_and_i64; 3472 break; 3473 case 002: /* LDEOR */ 3474 fn = tcg_gen_atomic_fetch_xor_i64; 3475 break; 3476 case 003: /* LDSET */ 3477 fn = tcg_gen_atomic_fetch_or_i64; 3478 break; 3479 case 004: /* LDSMAX */ 3480 fn = tcg_gen_atomic_fetch_smax_i64; 3481 mop |= MO_SIGN; 3482 break; 3483 case 005: /* LDSMIN */ 3484 fn = tcg_gen_atomic_fetch_smin_i64; 3485 mop |= MO_SIGN; 3486 break; 3487 case 006: /* LDUMAX */ 3488 fn = tcg_gen_atomic_fetch_umax_i64; 3489 break; 3490 case 007: /* LDUMIN */ 3491 fn = tcg_gen_atomic_fetch_umin_i64; 3492 break; 3493 case 010: /* SWP */ 3494 fn = tcg_gen_atomic_xchg_i64; 3495 break; 3496 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3497 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3498 rs != 31 || a != 1 || r != 0) { 3499 unallocated_encoding(s); 3500 return; 3501 } 3502 break; 3503 default: 3504 unallocated_encoding(s); 3505 return; 3506 } 3507 3508 if (rn == 31) { 3509 gen_check_sp_alignment(s); 3510 } 3511 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3512 3513 if (o3_opc == 014) { 3514 /* 3515 * LDAPR* are a special case because they are a simple load, not a 3516 * fetch-and-do-something op. 3517 * The architectural consistency requirements here are weaker than 3518 * full load-acquire (we only need "load-acquire processor consistent"), 3519 * but we choose to implement them as full LDAQ. 3520 */ 3521 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3522 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3523 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3524 return; 3525 } 3526 3527 tcg_rs = read_cpu_reg(s, rs, true); 3528 tcg_rt = cpu_reg(s, rt); 3529 3530 if (o3_opc == 1) { /* LDCLR */ 3531 tcg_gen_not_i64(tcg_rs, tcg_rs); 3532 } 3533 3534 /* The tcg atomic primitives are all full barriers. Therefore we 3535 * can ignore the Acquire and Release bits of this instruction. 3536 */ 3537 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3538 3539 if ((mop & MO_SIGN) && size != MO_64) { 3540 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3541 } 3542 } 3543 3544 /* 3545 * PAC memory operations 3546 * 3547 * 31 30 27 26 24 22 21 12 11 10 5 0 3548 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3549 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3550 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3551 * 3552 * Rt: the result register 3553 * Rn: base address or SP 3554 * V: vector flag (always 0 as of v8.3) 3555 * M: clear for key DA, set for key DB 3556 * W: pre-indexing flag 3557 * S: sign for imm9. 3558 */ 3559 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3560 int size, int rt, bool is_vector) 3561 { 3562 int rn = extract32(insn, 5, 5); 3563 bool is_wback = extract32(insn, 11, 1); 3564 bool use_key_a = !extract32(insn, 23, 1); 3565 int offset; 3566 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3567 3568 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3569 unallocated_encoding(s); 3570 return; 3571 } 3572 3573 if (rn == 31) { 3574 gen_check_sp_alignment(s); 3575 } 3576 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3577 3578 if (s->pauth_active) { 3579 if (use_key_a) { 3580 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3581 new_tmp_a64_zero(s)); 3582 } else { 3583 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3584 new_tmp_a64_zero(s)); 3585 } 3586 } 3587 3588 /* Form the 10-bit signed, scaled offset. */ 3589 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3590 offset = sextract32(offset << size, 0, 10 + size); 3591 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3592 3593 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3594 clean_addr = gen_mte_check1(s, dirty_addr, false, 3595 is_wback || rn != 31, size); 3596 3597 tcg_rt = cpu_reg(s, rt); 3598 do_gpr_ld(s, tcg_rt, clean_addr, size, 3599 /* extend */ false, /* iss_valid */ !is_wback, 3600 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3601 3602 if (is_wback) { 3603 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3604 } 3605 } 3606 3607 /* 3608 * LDAPR/STLR (unscaled immediate) 3609 * 3610 * 31 30 24 22 21 12 10 5 0 3611 * +------+-------------+-----+---+--------+-----+----+-----+ 3612 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3613 * +------+-------------+-----+---+--------+-----+----+-----+ 3614 * 3615 * Rt: source or destination register 3616 * Rn: base register 3617 * imm9: unscaled immediate offset 3618 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3619 * size: size of load/store 3620 */ 3621 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3622 { 3623 int rt = extract32(insn, 0, 5); 3624 int rn = extract32(insn, 5, 5); 3625 int offset = sextract32(insn, 12, 9); 3626 int opc = extract32(insn, 22, 2); 3627 int size = extract32(insn, 30, 2); 3628 TCGv_i64 clean_addr, dirty_addr; 3629 bool is_store = false; 3630 bool extend = false; 3631 bool iss_sf; 3632 MemOp mop; 3633 3634 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3635 unallocated_encoding(s); 3636 return; 3637 } 3638 3639 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3640 mop = size | MO_ALIGN; 3641 3642 switch (opc) { 3643 case 0: /* STLURB */ 3644 is_store = true; 3645 break; 3646 case 1: /* LDAPUR* */ 3647 break; 3648 case 2: /* LDAPURS* 64-bit variant */ 3649 if (size == 3) { 3650 unallocated_encoding(s); 3651 return; 3652 } 3653 mop |= MO_SIGN; 3654 break; 3655 case 3: /* LDAPURS* 32-bit variant */ 3656 if (size > 1) { 3657 unallocated_encoding(s); 3658 return; 3659 } 3660 mop |= MO_SIGN; 3661 extend = true; /* zero-extend 32->64 after signed load */ 3662 break; 3663 default: 3664 g_assert_not_reached(); 3665 } 3666 3667 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3668 3669 if (rn == 31) { 3670 gen_check_sp_alignment(s); 3671 } 3672 3673 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3674 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3675 clean_addr = clean_data_tbi(s, dirty_addr); 3676 3677 if (is_store) { 3678 /* Store-Release semantics */ 3679 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3680 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3681 } else { 3682 /* 3683 * Load-AcquirePC semantics; we implement as the slightly more 3684 * restrictive Load-Acquire. 3685 */ 3686 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3687 extend, true, rt, iss_sf, true); 3688 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3689 } 3690 } 3691 3692 /* Load/store register (all forms) */ 3693 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3694 { 3695 int rt = extract32(insn, 0, 5); 3696 int opc = extract32(insn, 22, 2); 3697 bool is_vector = extract32(insn, 26, 1); 3698 int size = extract32(insn, 30, 2); 3699 3700 switch (extract32(insn, 24, 2)) { 3701 case 0: 3702 if (extract32(insn, 21, 1) == 0) { 3703 /* Load/store register (unscaled immediate) 3704 * Load/store immediate pre/post-indexed 3705 * Load/store register unprivileged 3706 */ 3707 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3708 return; 3709 } 3710 switch (extract32(insn, 10, 2)) { 3711 case 0: 3712 disas_ldst_atomic(s, insn, size, rt, is_vector); 3713 return; 3714 case 2: 3715 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3716 return; 3717 default: 3718 disas_ldst_pac(s, insn, size, rt, is_vector); 3719 return; 3720 } 3721 break; 3722 case 1: 3723 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3724 return; 3725 } 3726 unallocated_encoding(s); 3727 } 3728 3729 /* AdvSIMD load/store multiple structures 3730 * 3731 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3732 * +---+---+---------------+---+-------------+--------+------+------+------+ 3733 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3734 * +---+---+---------------+---+-------------+--------+------+------+------+ 3735 * 3736 * AdvSIMD load/store multiple structures (post-indexed) 3737 * 3738 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3739 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3740 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3741 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3742 * 3743 * Rt: first (or only) SIMD&FP register to be transferred 3744 * Rn: base address or SP 3745 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3746 */ 3747 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3748 { 3749 int rt = extract32(insn, 0, 5); 3750 int rn = extract32(insn, 5, 5); 3751 int rm = extract32(insn, 16, 5); 3752 int size = extract32(insn, 10, 2); 3753 int opcode = extract32(insn, 12, 4); 3754 bool is_store = !extract32(insn, 22, 1); 3755 bool is_postidx = extract32(insn, 23, 1); 3756 bool is_q = extract32(insn, 30, 1); 3757 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3758 MemOp endian, align, mop; 3759 3760 int total; /* total bytes */ 3761 int elements; /* elements per vector */ 3762 int rpt; /* num iterations */ 3763 int selem; /* structure elements */ 3764 int r; 3765 3766 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3767 unallocated_encoding(s); 3768 return; 3769 } 3770 3771 if (!is_postidx && rm != 0) { 3772 unallocated_encoding(s); 3773 return; 3774 } 3775 3776 /* From the shared decode logic */ 3777 switch (opcode) { 3778 case 0x0: 3779 rpt = 1; 3780 selem = 4; 3781 break; 3782 case 0x2: 3783 rpt = 4; 3784 selem = 1; 3785 break; 3786 case 0x4: 3787 rpt = 1; 3788 selem = 3; 3789 break; 3790 case 0x6: 3791 rpt = 3; 3792 selem = 1; 3793 break; 3794 case 0x7: 3795 rpt = 1; 3796 selem = 1; 3797 break; 3798 case 0x8: 3799 rpt = 1; 3800 selem = 2; 3801 break; 3802 case 0xa: 3803 rpt = 2; 3804 selem = 1; 3805 break; 3806 default: 3807 unallocated_encoding(s); 3808 return; 3809 } 3810 3811 if (size == 3 && !is_q && selem != 1) { 3812 /* reserved */ 3813 unallocated_encoding(s); 3814 return; 3815 } 3816 3817 if (!fp_access_check(s)) { 3818 return; 3819 } 3820 3821 if (rn == 31) { 3822 gen_check_sp_alignment(s); 3823 } 3824 3825 /* For our purposes, bytes are always little-endian. */ 3826 endian = s->be_data; 3827 if (size == 0) { 3828 endian = MO_LE; 3829 } 3830 3831 total = rpt * selem * (is_q ? 16 : 8); 3832 tcg_rn = cpu_reg_sp(s, rn); 3833 3834 /* 3835 * Issue the MTE check vs the logical repeat count, before we 3836 * promote consecutive little-endian elements below. 3837 */ 3838 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3839 total); 3840 3841 /* 3842 * Consecutive little-endian elements from a single register 3843 * can be promoted to a larger little-endian operation. 3844 */ 3845 align = MO_ALIGN; 3846 if (selem == 1 && endian == MO_LE) { 3847 align = pow2_align(size); 3848 size = 3; 3849 } 3850 if (!s->align_mem) { 3851 align = 0; 3852 } 3853 mop = endian | size | align; 3854 3855 elements = (is_q ? 16 : 8) >> size; 3856 tcg_ebytes = tcg_constant_i64(1 << size); 3857 for (r = 0; r < rpt; r++) { 3858 int e; 3859 for (e = 0; e < elements; e++) { 3860 int xs; 3861 for (xs = 0; xs < selem; xs++) { 3862 int tt = (rt + r + xs) % 32; 3863 if (is_store) { 3864 do_vec_st(s, tt, e, clean_addr, mop); 3865 } else { 3866 do_vec_ld(s, tt, e, clean_addr, mop); 3867 } 3868 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3869 } 3870 } 3871 } 3872 3873 if (!is_store) { 3874 /* For non-quad operations, setting a slice of the low 3875 * 64 bits of the register clears the high 64 bits (in 3876 * the ARM ARM pseudocode this is implicit in the fact 3877 * that 'rval' is a 64 bit wide variable). 3878 * For quad operations, we might still need to zero the 3879 * high bits of SVE. 3880 */ 3881 for (r = 0; r < rpt * selem; r++) { 3882 int tt = (rt + r) % 32; 3883 clear_vec_high(s, is_q, tt); 3884 } 3885 } 3886 3887 if (is_postidx) { 3888 if (rm == 31) { 3889 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3890 } else { 3891 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3892 } 3893 } 3894 } 3895 3896 /* AdvSIMD load/store single structure 3897 * 3898 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3899 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3900 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3901 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3902 * 3903 * AdvSIMD load/store single structure (post-indexed) 3904 * 3905 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3906 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3907 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3908 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3909 * 3910 * Rt: first (or only) SIMD&FP register to be transferred 3911 * Rn: base address or SP 3912 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3913 * index = encoded in Q:S:size dependent on size 3914 * 3915 * lane_size = encoded in R, opc 3916 * transfer width = encoded in opc, S, size 3917 */ 3918 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3919 { 3920 int rt = extract32(insn, 0, 5); 3921 int rn = extract32(insn, 5, 5); 3922 int rm = extract32(insn, 16, 5); 3923 int size = extract32(insn, 10, 2); 3924 int S = extract32(insn, 12, 1); 3925 int opc = extract32(insn, 13, 3); 3926 int R = extract32(insn, 21, 1); 3927 int is_load = extract32(insn, 22, 1); 3928 int is_postidx = extract32(insn, 23, 1); 3929 int is_q = extract32(insn, 30, 1); 3930 3931 int scale = extract32(opc, 1, 2); 3932 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3933 bool replicate = false; 3934 int index = is_q << 3 | S << 2 | size; 3935 int xs, total; 3936 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3937 MemOp mop; 3938 3939 if (extract32(insn, 31, 1)) { 3940 unallocated_encoding(s); 3941 return; 3942 } 3943 if (!is_postidx && rm != 0) { 3944 unallocated_encoding(s); 3945 return; 3946 } 3947 3948 switch (scale) { 3949 case 3: 3950 if (!is_load || S) { 3951 unallocated_encoding(s); 3952 return; 3953 } 3954 scale = size; 3955 replicate = true; 3956 break; 3957 case 0: 3958 break; 3959 case 1: 3960 if (extract32(size, 0, 1)) { 3961 unallocated_encoding(s); 3962 return; 3963 } 3964 index >>= 1; 3965 break; 3966 case 2: 3967 if (extract32(size, 1, 1)) { 3968 unallocated_encoding(s); 3969 return; 3970 } 3971 if (!extract32(size, 0, 1)) { 3972 index >>= 2; 3973 } else { 3974 if (S) { 3975 unallocated_encoding(s); 3976 return; 3977 } 3978 index >>= 3; 3979 scale = 3; 3980 } 3981 break; 3982 default: 3983 g_assert_not_reached(); 3984 } 3985 3986 if (!fp_access_check(s)) { 3987 return; 3988 } 3989 3990 if (rn == 31) { 3991 gen_check_sp_alignment(s); 3992 } 3993 3994 total = selem << scale; 3995 tcg_rn = cpu_reg_sp(s, rn); 3996 3997 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3998 total); 3999 mop = finalize_memop(s, scale); 4000 4001 tcg_ebytes = tcg_constant_i64(1 << scale); 4002 for (xs = 0; xs < selem; xs++) { 4003 if (replicate) { 4004 /* Load and replicate to all elements */ 4005 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4006 4007 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4008 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4009 (is_q + 1) * 8, vec_full_reg_size(s), 4010 tcg_tmp); 4011 tcg_temp_free_i64(tcg_tmp); 4012 } else { 4013 /* Load/store one element per register */ 4014 if (is_load) { 4015 do_vec_ld(s, rt, index, clean_addr, mop); 4016 } else { 4017 do_vec_st(s, rt, index, clean_addr, mop); 4018 } 4019 } 4020 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4021 rt = (rt + 1) % 32; 4022 } 4023 4024 if (is_postidx) { 4025 if (rm == 31) { 4026 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4027 } else { 4028 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4029 } 4030 } 4031 } 4032 4033 /* 4034 * Load/Store memory tags 4035 * 4036 * 31 30 29 24 22 21 12 10 5 0 4037 * +-----+-------------+-----+---+------+-----+------+------+ 4038 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4039 * +-----+-------------+-----+---+------+-----+------+------+ 4040 */ 4041 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4042 { 4043 int rt = extract32(insn, 0, 5); 4044 int rn = extract32(insn, 5, 5); 4045 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4046 int op2 = extract32(insn, 10, 2); 4047 int op1 = extract32(insn, 22, 2); 4048 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4049 int index = 0; 4050 TCGv_i64 addr, clean_addr, tcg_rt; 4051 4052 /* We checked insn bits [29:24,21] in the caller. */ 4053 if (extract32(insn, 30, 2) != 3) { 4054 goto do_unallocated; 4055 } 4056 4057 /* 4058 * @index is a tri-state variable which has 3 states: 4059 * < 0 : post-index, writeback 4060 * = 0 : signed offset 4061 * > 0 : pre-index, writeback 4062 */ 4063 switch (op1) { 4064 case 0: 4065 if (op2 != 0) { 4066 /* STG */ 4067 index = op2 - 2; 4068 } else { 4069 /* STZGM */ 4070 if (s->current_el == 0 || offset != 0) { 4071 goto do_unallocated; 4072 } 4073 is_mult = is_zero = true; 4074 } 4075 break; 4076 case 1: 4077 if (op2 != 0) { 4078 /* STZG */ 4079 is_zero = true; 4080 index = op2 - 2; 4081 } else { 4082 /* LDG */ 4083 is_load = true; 4084 } 4085 break; 4086 case 2: 4087 if (op2 != 0) { 4088 /* ST2G */ 4089 is_pair = true; 4090 index = op2 - 2; 4091 } else { 4092 /* STGM */ 4093 if (s->current_el == 0 || offset != 0) { 4094 goto do_unallocated; 4095 } 4096 is_mult = true; 4097 } 4098 break; 4099 case 3: 4100 if (op2 != 0) { 4101 /* STZ2G */ 4102 is_pair = is_zero = true; 4103 index = op2 - 2; 4104 } else { 4105 /* LDGM */ 4106 if (s->current_el == 0 || offset != 0) { 4107 goto do_unallocated; 4108 } 4109 is_mult = is_load = true; 4110 } 4111 break; 4112 4113 default: 4114 do_unallocated: 4115 unallocated_encoding(s); 4116 return; 4117 } 4118 4119 if (is_mult 4120 ? !dc_isar_feature(aa64_mte, s) 4121 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4122 goto do_unallocated; 4123 } 4124 4125 if (rn == 31) { 4126 gen_check_sp_alignment(s); 4127 } 4128 4129 addr = read_cpu_reg_sp(s, rn, true); 4130 if (index >= 0) { 4131 /* pre-index or signed offset */ 4132 tcg_gen_addi_i64(addr, addr, offset); 4133 } 4134 4135 if (is_mult) { 4136 tcg_rt = cpu_reg(s, rt); 4137 4138 if (is_zero) { 4139 int size = 4 << s->dcz_blocksize; 4140 4141 if (s->ata) { 4142 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4143 } 4144 /* 4145 * The non-tags portion of STZGM is mostly like DC_ZVA, 4146 * except the alignment happens before the access. 4147 */ 4148 clean_addr = clean_data_tbi(s, addr); 4149 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4150 gen_helper_dc_zva(cpu_env, clean_addr); 4151 } else if (s->ata) { 4152 if (is_load) { 4153 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4154 } else { 4155 gen_helper_stgm(cpu_env, addr, tcg_rt); 4156 } 4157 } else { 4158 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4159 int size = 4 << GMID_EL1_BS; 4160 4161 clean_addr = clean_data_tbi(s, addr); 4162 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4163 gen_probe_access(s, clean_addr, acc, size); 4164 4165 if (is_load) { 4166 /* The result tags are zeros. */ 4167 tcg_gen_movi_i64(tcg_rt, 0); 4168 } 4169 } 4170 return; 4171 } 4172 4173 if (is_load) { 4174 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4175 tcg_rt = cpu_reg(s, rt); 4176 if (s->ata) { 4177 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4178 } else { 4179 clean_addr = clean_data_tbi(s, addr); 4180 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4181 gen_address_with_allocation_tag0(tcg_rt, addr); 4182 } 4183 } else { 4184 tcg_rt = cpu_reg_sp(s, rt); 4185 if (!s->ata) { 4186 /* 4187 * For STG and ST2G, we need to check alignment and probe memory. 4188 * TODO: For STZG and STZ2G, we could rely on the stores below, 4189 * at least for system mode; user-only won't enforce alignment. 4190 */ 4191 if (is_pair) { 4192 gen_helper_st2g_stub(cpu_env, addr); 4193 } else { 4194 gen_helper_stg_stub(cpu_env, addr); 4195 } 4196 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4197 if (is_pair) { 4198 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4199 } else { 4200 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4201 } 4202 } else { 4203 if (is_pair) { 4204 gen_helper_st2g(cpu_env, addr, tcg_rt); 4205 } else { 4206 gen_helper_stg(cpu_env, addr, tcg_rt); 4207 } 4208 } 4209 } 4210 4211 if (is_zero) { 4212 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4213 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4214 int mem_index = get_mem_index(s); 4215 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4216 4217 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4218 MO_UQ | MO_ALIGN_16); 4219 for (i = 8; i < n; i += 8) { 4220 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4221 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4222 } 4223 } 4224 4225 if (index != 0) { 4226 /* pre-index or post-index */ 4227 if (index < 0) { 4228 /* post-index */ 4229 tcg_gen_addi_i64(addr, addr, offset); 4230 } 4231 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4232 } 4233 } 4234 4235 /* Loads and stores */ 4236 static void disas_ldst(DisasContext *s, uint32_t insn) 4237 { 4238 switch (extract32(insn, 24, 6)) { 4239 case 0x08: /* Load/store exclusive */ 4240 disas_ldst_excl(s, insn); 4241 break; 4242 case 0x18: case 0x1c: /* Load register (literal) */ 4243 disas_ld_lit(s, insn); 4244 break; 4245 case 0x28: case 0x29: 4246 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4247 disas_ldst_pair(s, insn); 4248 break; 4249 case 0x38: case 0x39: 4250 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4251 disas_ldst_reg(s, insn); 4252 break; 4253 case 0x0c: /* AdvSIMD load/store multiple structures */ 4254 disas_ldst_multiple_struct(s, insn); 4255 break; 4256 case 0x0d: /* AdvSIMD load/store single structure */ 4257 disas_ldst_single_struct(s, insn); 4258 break; 4259 case 0x19: 4260 if (extract32(insn, 21, 1) != 0) { 4261 disas_ldst_tag(s, insn); 4262 } else if (extract32(insn, 10, 2) == 0) { 4263 disas_ldst_ldapr_stlr(s, insn); 4264 } else { 4265 unallocated_encoding(s); 4266 } 4267 break; 4268 default: 4269 unallocated_encoding(s); 4270 break; 4271 } 4272 } 4273 4274 /* PC-rel. addressing 4275 * 31 30 29 28 24 23 5 4 0 4276 * +----+-------+-----------+-------------------+------+ 4277 * | op | immlo | 1 0 0 0 0 | immhi | Rd | 4278 * +----+-------+-----------+-------------------+------+ 4279 */ 4280 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) 4281 { 4282 unsigned int page, rd; 4283 int64_t offset; 4284 4285 page = extract32(insn, 31, 1); 4286 /* SignExtend(immhi:immlo) -> offset */ 4287 offset = sextract64(insn, 5, 19); 4288 offset = offset << 2 | extract32(insn, 29, 2); 4289 rd = extract32(insn, 0, 5); 4290 4291 if (page) { 4292 /* ADRP (page based) */ 4293 offset <<= 12; 4294 /* The page offset is ok for CF_PCREL. */ 4295 offset -= s->pc_curr & 0xfff; 4296 } 4297 4298 gen_pc_plus_diff(s, cpu_reg(s, rd), offset); 4299 } 4300 4301 /* 4302 * Add/subtract (immediate) 4303 * 4304 * 31 30 29 28 23 22 21 10 9 5 4 0 4305 * +--+--+--+-------------+--+-------------+-----+-----+ 4306 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd | 4307 * +--+--+--+-------------+--+-------------+-----+-----+ 4308 * 4309 * sf: 0 -> 32bit, 1 -> 64bit 4310 * op: 0 -> add , 1 -> sub 4311 * S: 1 -> set flags 4312 * sh: 1 -> LSL imm by 12 4313 */ 4314 static void disas_add_sub_imm(DisasContext *s, uint32_t insn) 4315 { 4316 int rd = extract32(insn, 0, 5); 4317 int rn = extract32(insn, 5, 5); 4318 uint64_t imm = extract32(insn, 10, 12); 4319 bool shift = extract32(insn, 22, 1); 4320 bool setflags = extract32(insn, 29, 1); 4321 bool sub_op = extract32(insn, 30, 1); 4322 bool is_64bit = extract32(insn, 31, 1); 4323 4324 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 4325 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); 4326 TCGv_i64 tcg_result; 4327 4328 if (shift) { 4329 imm <<= 12; 4330 } 4331 4332 tcg_result = tcg_temp_new_i64(); 4333 if (!setflags) { 4334 if (sub_op) { 4335 tcg_gen_subi_i64(tcg_result, tcg_rn, imm); 4336 } else { 4337 tcg_gen_addi_i64(tcg_result, tcg_rn, imm); 4338 } 4339 } else { 4340 TCGv_i64 tcg_imm = tcg_constant_i64(imm); 4341 if (sub_op) { 4342 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4343 } else { 4344 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4345 } 4346 } 4347 4348 if (is_64bit) { 4349 tcg_gen_mov_i64(tcg_rd, tcg_result); 4350 } else { 4351 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4352 } 4353 4354 tcg_temp_free_i64(tcg_result); 4355 } 4356 4357 /* 4358 * Add/subtract (immediate, with tags) 4359 * 4360 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0 4361 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4362 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd | 4363 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4364 * 4365 * op: 0 -> add, 1 -> sub 4366 */ 4367 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn) 4368 { 4369 int rd = extract32(insn, 0, 5); 4370 int rn = extract32(insn, 5, 5); 4371 int uimm4 = extract32(insn, 10, 4); 4372 int uimm6 = extract32(insn, 16, 6); 4373 bool sub_op = extract32(insn, 30, 1); 4374 TCGv_i64 tcg_rn, tcg_rd; 4375 int imm; 4376 4377 /* Test all of sf=1, S=0, o2=0, o3=0. */ 4378 if ((insn & 0xa040c000u) != 0x80000000u || 4379 !dc_isar_feature(aa64_mte_insn_reg, s)) { 4380 unallocated_encoding(s); 4381 return; 4382 } 4383 4384 imm = uimm6 << LOG2_TAG_GRANULE; 4385 if (sub_op) { 4386 imm = -imm; 4387 } 4388 4389 tcg_rn = cpu_reg_sp(s, rn); 4390 tcg_rd = cpu_reg_sp(s, rd); 4391 4392 if (s->ata) { 4393 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4394 tcg_constant_i32(imm), 4395 tcg_constant_i32(uimm4)); 4396 } else { 4397 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4398 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4399 } 4400 } 4401 4402 /* The input should be a value in the bottom e bits (with higher 4403 * bits zero); returns that value replicated into every element 4404 * of size e in a 64 bit integer. 4405 */ 4406 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4407 { 4408 assert(e != 0); 4409 while (e < 64) { 4410 mask |= mask << e; 4411 e *= 2; 4412 } 4413 return mask; 4414 } 4415 4416 /* Return a value with the bottom len bits set (where 0 < len <= 64) */ 4417 static inline uint64_t bitmask64(unsigned int length) 4418 { 4419 assert(length > 0 && length <= 64); 4420 return ~0ULL >> (64 - length); 4421 } 4422 4423 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we 4424 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4425 * value (ie should cause a guest UNDEF exception), and true if they are 4426 * valid, in which case the decoded bit pattern is written to result. 4427 */ 4428 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4429 unsigned int imms, unsigned int immr) 4430 { 4431 uint64_t mask; 4432 unsigned e, levels, s, r; 4433 int len; 4434 4435 assert(immn < 2 && imms < 64 && immr < 64); 4436 4437 /* The bit patterns we create here are 64 bit patterns which 4438 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4439 * 64 bits each. Each element contains the same value: a run 4440 * of between 1 and e-1 non-zero bits, rotated within the 4441 * element by between 0 and e-1 bits. 4442 * 4443 * The element size and run length are encoded into immn (1 bit) 4444 * and imms (6 bits) as follows: 4445 * 64 bit elements: immn = 1, imms = <length of run - 1> 4446 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4447 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4448 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4449 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4450 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4451 * Notice that immn = 0, imms = 11111x is the only combination 4452 * not covered by one of the above options; this is reserved. 4453 * Further, <length of run - 1> all-ones is a reserved pattern. 4454 * 4455 * In all cases the rotation is by immr % e (and immr is 6 bits). 4456 */ 4457 4458 /* First determine the element size */ 4459 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4460 if (len < 1) { 4461 /* This is the immn == 0, imms == 0x11111x case */ 4462 return false; 4463 } 4464 e = 1 << len; 4465 4466 levels = e - 1; 4467 s = imms & levels; 4468 r = immr & levels; 4469 4470 if (s == levels) { 4471 /* <length of run - 1> mustn't be all-ones. */ 4472 return false; 4473 } 4474 4475 /* Create the value of one element: s+1 set bits rotated 4476 * by r within the element (which is e bits wide)... 4477 */ 4478 mask = bitmask64(s + 1); 4479 if (r) { 4480 mask = (mask >> r) | (mask << (e - r)); 4481 mask &= bitmask64(e); 4482 } 4483 /* ...then replicate the element over the whole 64 bit value */ 4484 mask = bitfield_replicate(mask, e); 4485 *result = mask; 4486 return true; 4487 } 4488 4489 /* Logical (immediate) 4490 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4491 * +----+-----+-------------+---+------+------+------+------+ 4492 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | 4493 * +----+-----+-------------+---+------+------+------+------+ 4494 */ 4495 static void disas_logic_imm(DisasContext *s, uint32_t insn) 4496 { 4497 unsigned int sf, opc, is_n, immr, imms, rn, rd; 4498 TCGv_i64 tcg_rd, tcg_rn; 4499 uint64_t wmask; 4500 bool is_and = false; 4501 4502 sf = extract32(insn, 31, 1); 4503 opc = extract32(insn, 29, 2); 4504 is_n = extract32(insn, 22, 1); 4505 immr = extract32(insn, 16, 6); 4506 imms = extract32(insn, 10, 6); 4507 rn = extract32(insn, 5, 5); 4508 rd = extract32(insn, 0, 5); 4509 4510 if (!sf && is_n) { 4511 unallocated_encoding(s); 4512 return; 4513 } 4514 4515 if (opc == 0x3) { /* ANDS */ 4516 tcg_rd = cpu_reg(s, rd); 4517 } else { 4518 tcg_rd = cpu_reg_sp(s, rd); 4519 } 4520 tcg_rn = cpu_reg(s, rn); 4521 4522 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { 4523 /* some immediate field values are reserved */ 4524 unallocated_encoding(s); 4525 return; 4526 } 4527 4528 if (!sf) { 4529 wmask &= 0xffffffff; 4530 } 4531 4532 switch (opc) { 4533 case 0x3: /* ANDS */ 4534 case 0x0: /* AND */ 4535 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); 4536 is_and = true; 4537 break; 4538 case 0x1: /* ORR */ 4539 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); 4540 break; 4541 case 0x2: /* EOR */ 4542 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); 4543 break; 4544 default: 4545 assert(FALSE); /* must handle all above */ 4546 break; 4547 } 4548 4549 if (!sf && !is_and) { 4550 /* zero extend final result; we know we can skip this for AND 4551 * since the immediate had the high 32 bits clear. 4552 */ 4553 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4554 } 4555 4556 if (opc == 3) { /* ANDS */ 4557 gen_logic_CC(sf, tcg_rd); 4558 } 4559 } 4560 4561 /* 4562 * Move wide (immediate) 4563 * 4564 * 31 30 29 28 23 22 21 20 5 4 0 4565 * +--+-----+-------------+-----+----------------+------+ 4566 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | 4567 * +--+-----+-------------+-----+----------------+------+ 4568 * 4569 * sf: 0 -> 32 bit, 1 -> 64 bit 4570 * opc: 00 -> N, 10 -> Z, 11 -> K 4571 * hw: shift/16 (0,16, and sf only 32, 48) 4572 */ 4573 static void disas_movw_imm(DisasContext *s, uint32_t insn) 4574 { 4575 int rd = extract32(insn, 0, 5); 4576 uint64_t imm = extract32(insn, 5, 16); 4577 int sf = extract32(insn, 31, 1); 4578 int opc = extract32(insn, 29, 2); 4579 int pos = extract32(insn, 21, 2) << 4; 4580 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4581 4582 if (!sf && (pos >= 32)) { 4583 unallocated_encoding(s); 4584 return; 4585 } 4586 4587 switch (opc) { 4588 case 0: /* MOVN */ 4589 case 2: /* MOVZ */ 4590 imm <<= pos; 4591 if (opc == 0) { 4592 imm = ~imm; 4593 } 4594 if (!sf) { 4595 imm &= 0xffffffffu; 4596 } 4597 tcg_gen_movi_i64(tcg_rd, imm); 4598 break; 4599 case 3: /* MOVK */ 4600 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16); 4601 if (!sf) { 4602 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4603 } 4604 break; 4605 default: 4606 unallocated_encoding(s); 4607 break; 4608 } 4609 } 4610 4611 /* Bitfield 4612 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4613 * +----+-----+-------------+---+------+------+------+------+ 4614 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | 4615 * +----+-----+-------------+---+------+------+------+------+ 4616 */ 4617 static void disas_bitfield(DisasContext *s, uint32_t insn) 4618 { 4619 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; 4620 TCGv_i64 tcg_rd, tcg_tmp; 4621 4622 sf = extract32(insn, 31, 1); 4623 opc = extract32(insn, 29, 2); 4624 n = extract32(insn, 22, 1); 4625 ri = extract32(insn, 16, 6); 4626 si = extract32(insn, 10, 6); 4627 rn = extract32(insn, 5, 5); 4628 rd = extract32(insn, 0, 5); 4629 bitsize = sf ? 64 : 32; 4630 4631 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { 4632 unallocated_encoding(s); 4633 return; 4634 } 4635 4636 tcg_rd = cpu_reg(s, rd); 4637 4638 /* Suppress the zero-extend for !sf. Since RI and SI are constrained 4639 to be smaller than bitsize, we'll never reference data outside the 4640 low 32-bits anyway. */ 4641 tcg_tmp = read_cpu_reg(s, rn, 1); 4642 4643 /* Recognize simple(r) extractions. */ 4644 if (si >= ri) { 4645 /* Wd<s-r:0> = Wn<s:r> */ 4646 len = (si - ri) + 1; 4647 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ 4648 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4649 goto done; 4650 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ 4651 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4652 return; 4653 } 4654 /* opc == 1, BFXIL fall through to deposit */ 4655 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4656 pos = 0; 4657 } else { 4658 /* Handle the ri > si case with a deposit 4659 * Wd<32+s-r,32-r> = Wn<s:0> 4660 */ 4661 len = si + 1; 4662 pos = (bitsize - ri) & (bitsize - 1); 4663 } 4664 4665 if (opc == 0 && len < ri) { 4666 /* SBFM: sign extend the destination field from len to fill 4667 the balance of the word. Let the deposit below insert all 4668 of those sign bits. */ 4669 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4670 len = ri; 4671 } 4672 4673 if (opc == 1) { /* BFM, BFXIL */ 4674 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4675 } else { 4676 /* SBFM or UBFM: We start with zero, and we haven't modified 4677 any bits outside bitsize, therefore the zero-extension 4678 below is unneeded. */ 4679 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4680 return; 4681 } 4682 4683 done: 4684 if (!sf) { /* zero extend final result */ 4685 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4686 } 4687 } 4688 4689 /* Extract 4690 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 4691 * +----+------+-------------+---+----+------+--------+------+------+ 4692 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | 4693 * +----+------+-------------+---+----+------+--------+------+------+ 4694 */ 4695 static void disas_extract(DisasContext *s, uint32_t insn) 4696 { 4697 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; 4698 4699 sf = extract32(insn, 31, 1); 4700 n = extract32(insn, 22, 1); 4701 rm = extract32(insn, 16, 5); 4702 imm = extract32(insn, 10, 6); 4703 rn = extract32(insn, 5, 5); 4704 rd = extract32(insn, 0, 5); 4705 op21 = extract32(insn, 29, 2); 4706 op0 = extract32(insn, 21, 1); 4707 bitsize = sf ? 64 : 32; 4708 4709 if (sf != n || op21 || op0 || imm >= bitsize) { 4710 unallocated_encoding(s); 4711 } else { 4712 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4713 4714 tcg_rd = cpu_reg(s, rd); 4715 4716 if (unlikely(imm == 0)) { 4717 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4718 * so an extract from bit 0 is a special case. 4719 */ 4720 if (sf) { 4721 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); 4722 } else { 4723 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); 4724 } 4725 } else { 4726 tcg_rm = cpu_reg(s, rm); 4727 tcg_rn = cpu_reg(s, rn); 4728 4729 if (sf) { 4730 /* Specialization to ROR happens in EXTRACT2. */ 4731 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm); 4732 } else { 4733 TCGv_i32 t0 = tcg_temp_new_i32(); 4734 4735 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4736 if (rm == rn) { 4737 tcg_gen_rotri_i32(t0, t0, imm); 4738 } else { 4739 TCGv_i32 t1 = tcg_temp_new_i32(); 4740 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4741 tcg_gen_extract2_i32(t0, t0, t1, imm); 4742 tcg_temp_free_i32(t1); 4743 } 4744 tcg_gen_extu_i32_i64(tcg_rd, t0); 4745 tcg_temp_free_i32(t0); 4746 } 4747 } 4748 } 4749 } 4750 4751 /* Data processing - immediate */ 4752 static void disas_data_proc_imm(DisasContext *s, uint32_t insn) 4753 { 4754 switch (extract32(insn, 23, 6)) { 4755 case 0x20: case 0x21: /* PC-rel. addressing */ 4756 disas_pc_rel_adr(s, insn); 4757 break; 4758 case 0x22: /* Add/subtract (immediate) */ 4759 disas_add_sub_imm(s, insn); 4760 break; 4761 case 0x23: /* Add/subtract (immediate, with tags) */ 4762 disas_add_sub_imm_with_tags(s, insn); 4763 break; 4764 case 0x24: /* Logical (immediate) */ 4765 disas_logic_imm(s, insn); 4766 break; 4767 case 0x25: /* Move wide (immediate) */ 4768 disas_movw_imm(s, insn); 4769 break; 4770 case 0x26: /* Bitfield */ 4771 disas_bitfield(s, insn); 4772 break; 4773 case 0x27: /* Extract */ 4774 disas_extract(s, insn); 4775 break; 4776 default: 4777 unallocated_encoding(s); 4778 break; 4779 } 4780 } 4781 4782 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4783 * Note that it is the caller's responsibility to ensure that the 4784 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4785 * mandated semantics for out of range shifts. 4786 */ 4787 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4788 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4789 { 4790 switch (shift_type) { 4791 case A64_SHIFT_TYPE_LSL: 4792 tcg_gen_shl_i64(dst, src, shift_amount); 4793 break; 4794 case A64_SHIFT_TYPE_LSR: 4795 tcg_gen_shr_i64(dst, src, shift_amount); 4796 break; 4797 case A64_SHIFT_TYPE_ASR: 4798 if (!sf) { 4799 tcg_gen_ext32s_i64(dst, src); 4800 } 4801 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4802 break; 4803 case A64_SHIFT_TYPE_ROR: 4804 if (sf) { 4805 tcg_gen_rotr_i64(dst, src, shift_amount); 4806 } else { 4807 TCGv_i32 t0, t1; 4808 t0 = tcg_temp_new_i32(); 4809 t1 = tcg_temp_new_i32(); 4810 tcg_gen_extrl_i64_i32(t0, src); 4811 tcg_gen_extrl_i64_i32(t1, shift_amount); 4812 tcg_gen_rotr_i32(t0, t0, t1); 4813 tcg_gen_extu_i32_i64(dst, t0); 4814 tcg_temp_free_i32(t0); 4815 tcg_temp_free_i32(t1); 4816 } 4817 break; 4818 default: 4819 assert(FALSE); /* all shift types should be handled */ 4820 break; 4821 } 4822 4823 if (!sf) { /* zero extend final result */ 4824 tcg_gen_ext32u_i64(dst, dst); 4825 } 4826 } 4827 4828 /* Shift a TCGv src by immediate, put result in dst. 4829 * The shift amount must be in range (this should always be true as the 4830 * relevant instructions will UNDEF on bad shift immediates). 4831 */ 4832 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4833 enum a64_shift_type shift_type, unsigned int shift_i) 4834 { 4835 assert(shift_i < (sf ? 64 : 32)); 4836 4837 if (shift_i == 0) { 4838 tcg_gen_mov_i64(dst, src); 4839 } else { 4840 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4841 } 4842 } 4843 4844 /* Logical (shifted register) 4845 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4846 * +----+-----+-----------+-------+---+------+--------+------+------+ 4847 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4848 * +----+-----+-----------+-------+---+------+--------+------+------+ 4849 */ 4850 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4851 { 4852 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4853 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4854 4855 sf = extract32(insn, 31, 1); 4856 opc = extract32(insn, 29, 2); 4857 shift_type = extract32(insn, 22, 2); 4858 invert = extract32(insn, 21, 1); 4859 rm = extract32(insn, 16, 5); 4860 shift_amount = extract32(insn, 10, 6); 4861 rn = extract32(insn, 5, 5); 4862 rd = extract32(insn, 0, 5); 4863 4864 if (!sf && (shift_amount & (1 << 5))) { 4865 unallocated_encoding(s); 4866 return; 4867 } 4868 4869 tcg_rd = cpu_reg(s, rd); 4870 4871 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4872 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4873 * register-register MOV and MVN, so it is worth special casing. 4874 */ 4875 tcg_rm = cpu_reg(s, rm); 4876 if (invert) { 4877 tcg_gen_not_i64(tcg_rd, tcg_rm); 4878 if (!sf) { 4879 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4880 } 4881 } else { 4882 if (sf) { 4883 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4884 } else { 4885 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4886 } 4887 } 4888 return; 4889 } 4890 4891 tcg_rm = read_cpu_reg(s, rm, sf); 4892 4893 if (shift_amount) { 4894 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4895 } 4896 4897 tcg_rn = cpu_reg(s, rn); 4898 4899 switch (opc | (invert << 2)) { 4900 case 0: /* AND */ 4901 case 3: /* ANDS */ 4902 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4903 break; 4904 case 1: /* ORR */ 4905 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4906 break; 4907 case 2: /* EOR */ 4908 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4909 break; 4910 case 4: /* BIC */ 4911 case 7: /* BICS */ 4912 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4913 break; 4914 case 5: /* ORN */ 4915 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4916 break; 4917 case 6: /* EON */ 4918 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4919 break; 4920 default: 4921 assert(FALSE); 4922 break; 4923 } 4924 4925 if (!sf) { 4926 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4927 } 4928 4929 if (opc == 3) { 4930 gen_logic_CC(sf, tcg_rd); 4931 } 4932 } 4933 4934 /* 4935 * Add/subtract (extended register) 4936 * 4937 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4938 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4939 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4940 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4941 * 4942 * sf: 0 -> 32bit, 1 -> 64bit 4943 * op: 0 -> add , 1 -> sub 4944 * S: 1 -> set flags 4945 * opt: 00 4946 * option: extension type (see DecodeRegExtend) 4947 * imm3: optional shift to Rm 4948 * 4949 * Rd = Rn + LSL(extend(Rm), amount) 4950 */ 4951 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4952 { 4953 int rd = extract32(insn, 0, 5); 4954 int rn = extract32(insn, 5, 5); 4955 int imm3 = extract32(insn, 10, 3); 4956 int option = extract32(insn, 13, 3); 4957 int rm = extract32(insn, 16, 5); 4958 int opt = extract32(insn, 22, 2); 4959 bool setflags = extract32(insn, 29, 1); 4960 bool sub_op = extract32(insn, 30, 1); 4961 bool sf = extract32(insn, 31, 1); 4962 4963 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4964 TCGv_i64 tcg_rd; 4965 TCGv_i64 tcg_result; 4966 4967 if (imm3 > 4 || opt != 0) { 4968 unallocated_encoding(s); 4969 return; 4970 } 4971 4972 /* non-flag setting ops may use SP */ 4973 if (!setflags) { 4974 tcg_rd = cpu_reg_sp(s, rd); 4975 } else { 4976 tcg_rd = cpu_reg(s, rd); 4977 } 4978 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4979 4980 tcg_rm = read_cpu_reg(s, rm, sf); 4981 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4982 4983 tcg_result = tcg_temp_new_i64(); 4984 4985 if (!setflags) { 4986 if (sub_op) { 4987 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4988 } else { 4989 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4990 } 4991 } else { 4992 if (sub_op) { 4993 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4994 } else { 4995 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4996 } 4997 } 4998 4999 if (sf) { 5000 tcg_gen_mov_i64(tcg_rd, tcg_result); 5001 } else { 5002 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5003 } 5004 5005 tcg_temp_free_i64(tcg_result); 5006 } 5007 5008 /* 5009 * Add/subtract (shifted register) 5010 * 5011 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5012 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5013 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5014 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5015 * 5016 * sf: 0 -> 32bit, 1 -> 64bit 5017 * op: 0 -> add , 1 -> sub 5018 * S: 1 -> set flags 5019 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5020 * imm6: Shift amount to apply to Rm before the add/sub 5021 */ 5022 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5023 { 5024 int rd = extract32(insn, 0, 5); 5025 int rn = extract32(insn, 5, 5); 5026 int imm6 = extract32(insn, 10, 6); 5027 int rm = extract32(insn, 16, 5); 5028 int shift_type = extract32(insn, 22, 2); 5029 bool setflags = extract32(insn, 29, 1); 5030 bool sub_op = extract32(insn, 30, 1); 5031 bool sf = extract32(insn, 31, 1); 5032 5033 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5034 TCGv_i64 tcg_rn, tcg_rm; 5035 TCGv_i64 tcg_result; 5036 5037 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5038 unallocated_encoding(s); 5039 return; 5040 } 5041 5042 tcg_rn = read_cpu_reg(s, rn, sf); 5043 tcg_rm = read_cpu_reg(s, rm, sf); 5044 5045 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5046 5047 tcg_result = tcg_temp_new_i64(); 5048 5049 if (!setflags) { 5050 if (sub_op) { 5051 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5052 } else { 5053 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5054 } 5055 } else { 5056 if (sub_op) { 5057 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5058 } else { 5059 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5060 } 5061 } 5062 5063 if (sf) { 5064 tcg_gen_mov_i64(tcg_rd, tcg_result); 5065 } else { 5066 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5067 } 5068 5069 tcg_temp_free_i64(tcg_result); 5070 } 5071 5072 /* Data-processing (3 source) 5073 * 5074 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5075 * +--+------+-----------+------+------+----+------+------+------+ 5076 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5077 * +--+------+-----------+------+------+----+------+------+------+ 5078 */ 5079 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5080 { 5081 int rd = extract32(insn, 0, 5); 5082 int rn = extract32(insn, 5, 5); 5083 int ra = extract32(insn, 10, 5); 5084 int rm = extract32(insn, 16, 5); 5085 int op_id = (extract32(insn, 29, 3) << 4) | 5086 (extract32(insn, 21, 3) << 1) | 5087 extract32(insn, 15, 1); 5088 bool sf = extract32(insn, 31, 1); 5089 bool is_sub = extract32(op_id, 0, 1); 5090 bool is_high = extract32(op_id, 2, 1); 5091 bool is_signed = false; 5092 TCGv_i64 tcg_op1; 5093 TCGv_i64 tcg_op2; 5094 TCGv_i64 tcg_tmp; 5095 5096 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5097 switch (op_id) { 5098 case 0x42: /* SMADDL */ 5099 case 0x43: /* SMSUBL */ 5100 case 0x44: /* SMULH */ 5101 is_signed = true; 5102 break; 5103 case 0x0: /* MADD (32bit) */ 5104 case 0x1: /* MSUB (32bit) */ 5105 case 0x40: /* MADD (64bit) */ 5106 case 0x41: /* MSUB (64bit) */ 5107 case 0x4a: /* UMADDL */ 5108 case 0x4b: /* UMSUBL */ 5109 case 0x4c: /* UMULH */ 5110 break; 5111 default: 5112 unallocated_encoding(s); 5113 return; 5114 } 5115 5116 if (is_high) { 5117 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5118 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5119 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5120 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5121 5122 if (is_signed) { 5123 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5124 } else { 5125 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5126 } 5127 5128 tcg_temp_free_i64(low_bits); 5129 return; 5130 } 5131 5132 tcg_op1 = tcg_temp_new_i64(); 5133 tcg_op2 = tcg_temp_new_i64(); 5134 tcg_tmp = tcg_temp_new_i64(); 5135 5136 if (op_id < 0x42) { 5137 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5138 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5139 } else { 5140 if (is_signed) { 5141 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5142 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5143 } else { 5144 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5145 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5146 } 5147 } 5148 5149 if (ra == 31 && !is_sub) { 5150 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5151 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5152 } else { 5153 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5154 if (is_sub) { 5155 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5156 } else { 5157 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5158 } 5159 } 5160 5161 if (!sf) { 5162 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5163 } 5164 5165 tcg_temp_free_i64(tcg_op1); 5166 tcg_temp_free_i64(tcg_op2); 5167 tcg_temp_free_i64(tcg_tmp); 5168 } 5169 5170 /* Add/subtract (with carry) 5171 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5172 * +--+--+--+------------------------+------+-------------+------+-----+ 5173 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5174 * +--+--+--+------------------------+------+-------------+------+-----+ 5175 */ 5176 5177 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5178 { 5179 unsigned int sf, op, setflags, rm, rn, rd; 5180 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5181 5182 sf = extract32(insn, 31, 1); 5183 op = extract32(insn, 30, 1); 5184 setflags = extract32(insn, 29, 1); 5185 rm = extract32(insn, 16, 5); 5186 rn = extract32(insn, 5, 5); 5187 rd = extract32(insn, 0, 5); 5188 5189 tcg_rd = cpu_reg(s, rd); 5190 tcg_rn = cpu_reg(s, rn); 5191 5192 if (op) { 5193 tcg_y = new_tmp_a64(s); 5194 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5195 } else { 5196 tcg_y = cpu_reg(s, rm); 5197 } 5198 5199 if (setflags) { 5200 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5201 } else { 5202 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5203 } 5204 } 5205 5206 /* 5207 * Rotate right into flags 5208 * 31 30 29 21 15 10 5 4 0 5209 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5210 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5211 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5212 */ 5213 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5214 { 5215 int mask = extract32(insn, 0, 4); 5216 int o2 = extract32(insn, 4, 1); 5217 int rn = extract32(insn, 5, 5); 5218 int imm6 = extract32(insn, 15, 6); 5219 int sf_op_s = extract32(insn, 29, 3); 5220 TCGv_i64 tcg_rn; 5221 TCGv_i32 nzcv; 5222 5223 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5224 unallocated_encoding(s); 5225 return; 5226 } 5227 5228 tcg_rn = read_cpu_reg(s, rn, 1); 5229 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5230 5231 nzcv = tcg_temp_new_i32(); 5232 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5233 5234 if (mask & 8) { /* N */ 5235 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5236 } 5237 if (mask & 4) { /* Z */ 5238 tcg_gen_not_i32(cpu_ZF, nzcv); 5239 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5240 } 5241 if (mask & 2) { /* C */ 5242 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5243 } 5244 if (mask & 1) { /* V */ 5245 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5246 } 5247 5248 tcg_temp_free_i32(nzcv); 5249 } 5250 5251 /* 5252 * Evaluate into flags 5253 * 31 30 29 21 15 14 10 5 4 0 5254 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5255 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5256 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5257 */ 5258 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5259 { 5260 int o3_mask = extract32(insn, 0, 5); 5261 int rn = extract32(insn, 5, 5); 5262 int o2 = extract32(insn, 15, 6); 5263 int sz = extract32(insn, 14, 1); 5264 int sf_op_s = extract32(insn, 29, 3); 5265 TCGv_i32 tmp; 5266 int shift; 5267 5268 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5269 !dc_isar_feature(aa64_condm_4, s)) { 5270 unallocated_encoding(s); 5271 return; 5272 } 5273 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5274 5275 tmp = tcg_temp_new_i32(); 5276 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5277 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5278 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5279 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5280 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5281 tcg_temp_free_i32(tmp); 5282 } 5283 5284 /* Conditional compare (immediate / register) 5285 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5286 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5287 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5288 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5289 * [1] y [0] [0] 5290 */ 5291 static void disas_cc(DisasContext *s, uint32_t insn) 5292 { 5293 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5294 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5295 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5296 DisasCompare c; 5297 5298 if (!extract32(insn, 29, 1)) { 5299 unallocated_encoding(s); 5300 return; 5301 } 5302 if (insn & (1 << 10 | 1 << 4)) { 5303 unallocated_encoding(s); 5304 return; 5305 } 5306 sf = extract32(insn, 31, 1); 5307 op = extract32(insn, 30, 1); 5308 is_imm = extract32(insn, 11, 1); 5309 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5310 cond = extract32(insn, 12, 4); 5311 rn = extract32(insn, 5, 5); 5312 nzcv = extract32(insn, 0, 4); 5313 5314 /* Set T0 = !COND. */ 5315 tcg_t0 = tcg_temp_new_i32(); 5316 arm_test_cc(&c, cond); 5317 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5318 arm_free_cc(&c); 5319 5320 /* Load the arguments for the new comparison. */ 5321 if (is_imm) { 5322 tcg_y = new_tmp_a64(s); 5323 tcg_gen_movi_i64(tcg_y, y); 5324 } else { 5325 tcg_y = cpu_reg(s, y); 5326 } 5327 tcg_rn = cpu_reg(s, rn); 5328 5329 /* Set the flags for the new comparison. */ 5330 tcg_tmp = tcg_temp_new_i64(); 5331 if (op) { 5332 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5333 } else { 5334 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5335 } 5336 tcg_temp_free_i64(tcg_tmp); 5337 5338 /* If COND was false, force the flags to #nzcv. Compute two masks 5339 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5340 * For tcg hosts that support ANDC, we can make do with just T1. 5341 * In either case, allow the tcg optimizer to delete any unused mask. 5342 */ 5343 tcg_t1 = tcg_temp_new_i32(); 5344 tcg_t2 = tcg_temp_new_i32(); 5345 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5346 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5347 5348 if (nzcv & 8) { /* N */ 5349 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5350 } else { 5351 if (TCG_TARGET_HAS_andc_i32) { 5352 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5353 } else { 5354 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5355 } 5356 } 5357 if (nzcv & 4) { /* Z */ 5358 if (TCG_TARGET_HAS_andc_i32) { 5359 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5360 } else { 5361 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5362 } 5363 } else { 5364 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5365 } 5366 if (nzcv & 2) { /* C */ 5367 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5368 } else { 5369 if (TCG_TARGET_HAS_andc_i32) { 5370 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5371 } else { 5372 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5373 } 5374 } 5375 if (nzcv & 1) { /* V */ 5376 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5377 } else { 5378 if (TCG_TARGET_HAS_andc_i32) { 5379 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5380 } else { 5381 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5382 } 5383 } 5384 tcg_temp_free_i32(tcg_t0); 5385 tcg_temp_free_i32(tcg_t1); 5386 tcg_temp_free_i32(tcg_t2); 5387 } 5388 5389 /* Conditional select 5390 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5391 * +----+----+---+-----------------+------+------+-----+------+------+ 5392 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5393 * +----+----+---+-----------------+------+------+-----+------+------+ 5394 */ 5395 static void disas_cond_select(DisasContext *s, uint32_t insn) 5396 { 5397 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5398 TCGv_i64 tcg_rd, zero; 5399 DisasCompare64 c; 5400 5401 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5402 /* S == 1 or op2<1> == 1 */ 5403 unallocated_encoding(s); 5404 return; 5405 } 5406 sf = extract32(insn, 31, 1); 5407 else_inv = extract32(insn, 30, 1); 5408 rm = extract32(insn, 16, 5); 5409 cond = extract32(insn, 12, 4); 5410 else_inc = extract32(insn, 10, 1); 5411 rn = extract32(insn, 5, 5); 5412 rd = extract32(insn, 0, 5); 5413 5414 tcg_rd = cpu_reg(s, rd); 5415 5416 a64_test_cc(&c, cond); 5417 zero = tcg_constant_i64(0); 5418 5419 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5420 /* CSET & CSETM. */ 5421 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5422 if (else_inv) { 5423 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5424 } 5425 } else { 5426 TCGv_i64 t_true = cpu_reg(s, rn); 5427 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5428 if (else_inv && else_inc) { 5429 tcg_gen_neg_i64(t_false, t_false); 5430 } else if (else_inv) { 5431 tcg_gen_not_i64(t_false, t_false); 5432 } else if (else_inc) { 5433 tcg_gen_addi_i64(t_false, t_false, 1); 5434 } 5435 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5436 } 5437 5438 a64_free_cc(&c); 5439 5440 if (!sf) { 5441 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5442 } 5443 } 5444 5445 static void handle_clz(DisasContext *s, unsigned int sf, 5446 unsigned int rn, unsigned int rd) 5447 { 5448 TCGv_i64 tcg_rd, tcg_rn; 5449 tcg_rd = cpu_reg(s, rd); 5450 tcg_rn = cpu_reg(s, rn); 5451 5452 if (sf) { 5453 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5454 } else { 5455 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5456 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5457 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5458 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5459 tcg_temp_free_i32(tcg_tmp32); 5460 } 5461 } 5462 5463 static void handle_cls(DisasContext *s, unsigned int sf, 5464 unsigned int rn, unsigned int rd) 5465 { 5466 TCGv_i64 tcg_rd, tcg_rn; 5467 tcg_rd = cpu_reg(s, rd); 5468 tcg_rn = cpu_reg(s, rn); 5469 5470 if (sf) { 5471 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5472 } else { 5473 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5474 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5475 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5476 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5477 tcg_temp_free_i32(tcg_tmp32); 5478 } 5479 } 5480 5481 static void handle_rbit(DisasContext *s, unsigned int sf, 5482 unsigned int rn, unsigned int rd) 5483 { 5484 TCGv_i64 tcg_rd, tcg_rn; 5485 tcg_rd = cpu_reg(s, rd); 5486 tcg_rn = cpu_reg(s, rn); 5487 5488 if (sf) { 5489 gen_helper_rbit64(tcg_rd, tcg_rn); 5490 } else { 5491 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5492 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5493 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5494 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5495 tcg_temp_free_i32(tcg_tmp32); 5496 } 5497 } 5498 5499 /* REV with sf==1, opcode==3 ("REV64") */ 5500 static void handle_rev64(DisasContext *s, unsigned int sf, 5501 unsigned int rn, unsigned int rd) 5502 { 5503 if (!sf) { 5504 unallocated_encoding(s); 5505 return; 5506 } 5507 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5508 } 5509 5510 /* REV with sf==0, opcode==2 5511 * REV32 (sf==1, opcode==2) 5512 */ 5513 static void handle_rev32(DisasContext *s, unsigned int sf, 5514 unsigned int rn, unsigned int rd) 5515 { 5516 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5517 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5518 5519 if (sf) { 5520 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5521 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5522 } else { 5523 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5524 } 5525 } 5526 5527 /* REV16 (opcode==1) */ 5528 static void handle_rev16(DisasContext *s, unsigned int sf, 5529 unsigned int rn, unsigned int rd) 5530 { 5531 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5532 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5533 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5534 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5535 5536 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5537 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5538 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5539 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5540 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5541 5542 tcg_temp_free_i64(tcg_tmp); 5543 } 5544 5545 /* Data-processing (1 source) 5546 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5547 * +----+---+---+-----------------+---------+--------+------+------+ 5548 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5549 * +----+---+---+-----------------+---------+--------+------+------+ 5550 */ 5551 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5552 { 5553 unsigned int sf, opcode, opcode2, rn, rd; 5554 TCGv_i64 tcg_rd; 5555 5556 if (extract32(insn, 29, 1)) { 5557 unallocated_encoding(s); 5558 return; 5559 } 5560 5561 sf = extract32(insn, 31, 1); 5562 opcode = extract32(insn, 10, 6); 5563 opcode2 = extract32(insn, 16, 5); 5564 rn = extract32(insn, 5, 5); 5565 rd = extract32(insn, 0, 5); 5566 5567 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5568 5569 switch (MAP(sf, opcode2, opcode)) { 5570 case MAP(0, 0x00, 0x00): /* RBIT */ 5571 case MAP(1, 0x00, 0x00): 5572 handle_rbit(s, sf, rn, rd); 5573 break; 5574 case MAP(0, 0x00, 0x01): /* REV16 */ 5575 case MAP(1, 0x00, 0x01): 5576 handle_rev16(s, sf, rn, rd); 5577 break; 5578 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5579 case MAP(1, 0x00, 0x02): 5580 handle_rev32(s, sf, rn, rd); 5581 break; 5582 case MAP(1, 0x00, 0x03): /* REV64 */ 5583 handle_rev64(s, sf, rn, rd); 5584 break; 5585 case MAP(0, 0x00, 0x04): /* CLZ */ 5586 case MAP(1, 0x00, 0x04): 5587 handle_clz(s, sf, rn, rd); 5588 break; 5589 case MAP(0, 0x00, 0x05): /* CLS */ 5590 case MAP(1, 0x00, 0x05): 5591 handle_cls(s, sf, rn, rd); 5592 break; 5593 case MAP(1, 0x01, 0x00): /* PACIA */ 5594 if (s->pauth_active) { 5595 tcg_rd = cpu_reg(s, rd); 5596 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5597 } else if (!dc_isar_feature(aa64_pauth, s)) { 5598 goto do_unallocated; 5599 } 5600 break; 5601 case MAP(1, 0x01, 0x01): /* PACIB */ 5602 if (s->pauth_active) { 5603 tcg_rd = cpu_reg(s, rd); 5604 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5605 } else if (!dc_isar_feature(aa64_pauth, s)) { 5606 goto do_unallocated; 5607 } 5608 break; 5609 case MAP(1, 0x01, 0x02): /* PACDA */ 5610 if (s->pauth_active) { 5611 tcg_rd = cpu_reg(s, rd); 5612 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5613 } else if (!dc_isar_feature(aa64_pauth, s)) { 5614 goto do_unallocated; 5615 } 5616 break; 5617 case MAP(1, 0x01, 0x03): /* PACDB */ 5618 if (s->pauth_active) { 5619 tcg_rd = cpu_reg(s, rd); 5620 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5621 } else if (!dc_isar_feature(aa64_pauth, s)) { 5622 goto do_unallocated; 5623 } 5624 break; 5625 case MAP(1, 0x01, 0x04): /* AUTIA */ 5626 if (s->pauth_active) { 5627 tcg_rd = cpu_reg(s, rd); 5628 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5629 } else if (!dc_isar_feature(aa64_pauth, s)) { 5630 goto do_unallocated; 5631 } 5632 break; 5633 case MAP(1, 0x01, 0x05): /* AUTIB */ 5634 if (s->pauth_active) { 5635 tcg_rd = cpu_reg(s, rd); 5636 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5637 } else if (!dc_isar_feature(aa64_pauth, s)) { 5638 goto do_unallocated; 5639 } 5640 break; 5641 case MAP(1, 0x01, 0x06): /* AUTDA */ 5642 if (s->pauth_active) { 5643 tcg_rd = cpu_reg(s, rd); 5644 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5645 } else if (!dc_isar_feature(aa64_pauth, s)) { 5646 goto do_unallocated; 5647 } 5648 break; 5649 case MAP(1, 0x01, 0x07): /* AUTDB */ 5650 if (s->pauth_active) { 5651 tcg_rd = cpu_reg(s, rd); 5652 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5653 } else if (!dc_isar_feature(aa64_pauth, s)) { 5654 goto do_unallocated; 5655 } 5656 break; 5657 case MAP(1, 0x01, 0x08): /* PACIZA */ 5658 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5659 goto do_unallocated; 5660 } else if (s->pauth_active) { 5661 tcg_rd = cpu_reg(s, rd); 5662 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5663 } 5664 break; 5665 case MAP(1, 0x01, 0x09): /* PACIZB */ 5666 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5667 goto do_unallocated; 5668 } else if (s->pauth_active) { 5669 tcg_rd = cpu_reg(s, rd); 5670 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5671 } 5672 break; 5673 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5674 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5675 goto do_unallocated; 5676 } else if (s->pauth_active) { 5677 tcg_rd = cpu_reg(s, rd); 5678 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5679 } 5680 break; 5681 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5682 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5683 goto do_unallocated; 5684 } else if (s->pauth_active) { 5685 tcg_rd = cpu_reg(s, rd); 5686 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5687 } 5688 break; 5689 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5690 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5691 goto do_unallocated; 5692 } else if (s->pauth_active) { 5693 tcg_rd = cpu_reg(s, rd); 5694 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5695 } 5696 break; 5697 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5698 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5699 goto do_unallocated; 5700 } else if (s->pauth_active) { 5701 tcg_rd = cpu_reg(s, rd); 5702 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5703 } 5704 break; 5705 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5706 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5707 goto do_unallocated; 5708 } else if (s->pauth_active) { 5709 tcg_rd = cpu_reg(s, rd); 5710 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5711 } 5712 break; 5713 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5714 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5715 goto do_unallocated; 5716 } else if (s->pauth_active) { 5717 tcg_rd = cpu_reg(s, rd); 5718 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s)); 5719 } 5720 break; 5721 case MAP(1, 0x01, 0x10): /* XPACI */ 5722 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5723 goto do_unallocated; 5724 } else if (s->pauth_active) { 5725 tcg_rd = cpu_reg(s, rd); 5726 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5727 } 5728 break; 5729 case MAP(1, 0x01, 0x11): /* XPACD */ 5730 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5731 goto do_unallocated; 5732 } else if (s->pauth_active) { 5733 tcg_rd = cpu_reg(s, rd); 5734 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5735 } 5736 break; 5737 default: 5738 do_unallocated: 5739 unallocated_encoding(s); 5740 break; 5741 } 5742 5743 #undef MAP 5744 } 5745 5746 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5747 unsigned int rm, unsigned int rn, unsigned int rd) 5748 { 5749 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5750 tcg_rd = cpu_reg(s, rd); 5751 5752 if (!sf && is_signed) { 5753 tcg_n = new_tmp_a64(s); 5754 tcg_m = new_tmp_a64(s); 5755 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5756 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5757 } else { 5758 tcg_n = read_cpu_reg(s, rn, sf); 5759 tcg_m = read_cpu_reg(s, rm, sf); 5760 } 5761 5762 if (is_signed) { 5763 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5764 } else { 5765 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5766 } 5767 5768 if (!sf) { /* zero extend final result */ 5769 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5770 } 5771 } 5772 5773 /* LSLV, LSRV, ASRV, RORV */ 5774 static void handle_shift_reg(DisasContext *s, 5775 enum a64_shift_type shift_type, unsigned int sf, 5776 unsigned int rm, unsigned int rn, unsigned int rd) 5777 { 5778 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5779 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5780 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5781 5782 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5783 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5784 tcg_temp_free_i64(tcg_shift); 5785 } 5786 5787 /* CRC32[BHWX], CRC32C[BHWX] */ 5788 static void handle_crc32(DisasContext *s, 5789 unsigned int sf, unsigned int sz, bool crc32c, 5790 unsigned int rm, unsigned int rn, unsigned int rd) 5791 { 5792 TCGv_i64 tcg_acc, tcg_val; 5793 TCGv_i32 tcg_bytes; 5794 5795 if (!dc_isar_feature(aa64_crc32, s) 5796 || (sf == 1 && sz != 3) 5797 || (sf == 0 && sz == 3)) { 5798 unallocated_encoding(s); 5799 return; 5800 } 5801 5802 if (sz == 3) { 5803 tcg_val = cpu_reg(s, rm); 5804 } else { 5805 uint64_t mask; 5806 switch (sz) { 5807 case 0: 5808 mask = 0xFF; 5809 break; 5810 case 1: 5811 mask = 0xFFFF; 5812 break; 5813 case 2: 5814 mask = 0xFFFFFFFF; 5815 break; 5816 default: 5817 g_assert_not_reached(); 5818 } 5819 tcg_val = new_tmp_a64(s); 5820 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5821 } 5822 5823 tcg_acc = cpu_reg(s, rn); 5824 tcg_bytes = tcg_constant_i32(1 << sz); 5825 5826 if (crc32c) { 5827 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5828 } else { 5829 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5830 } 5831 } 5832 5833 /* Data-processing (2 source) 5834 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5835 * +----+---+---+-----------------+------+--------+------+------+ 5836 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5837 * +----+---+---+-----------------+------+--------+------+------+ 5838 */ 5839 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5840 { 5841 unsigned int sf, rm, opcode, rn, rd, setflag; 5842 sf = extract32(insn, 31, 1); 5843 setflag = extract32(insn, 29, 1); 5844 rm = extract32(insn, 16, 5); 5845 opcode = extract32(insn, 10, 6); 5846 rn = extract32(insn, 5, 5); 5847 rd = extract32(insn, 0, 5); 5848 5849 if (setflag && opcode != 0) { 5850 unallocated_encoding(s); 5851 return; 5852 } 5853 5854 switch (opcode) { 5855 case 0: /* SUBP(S) */ 5856 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5857 goto do_unallocated; 5858 } else { 5859 TCGv_i64 tcg_n, tcg_m, tcg_d; 5860 5861 tcg_n = read_cpu_reg_sp(s, rn, true); 5862 tcg_m = read_cpu_reg_sp(s, rm, true); 5863 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5864 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5865 tcg_d = cpu_reg(s, rd); 5866 5867 if (setflag) { 5868 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5869 } else { 5870 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5871 } 5872 } 5873 break; 5874 case 2: /* UDIV */ 5875 handle_div(s, false, sf, rm, rn, rd); 5876 break; 5877 case 3: /* SDIV */ 5878 handle_div(s, true, sf, rm, rn, rd); 5879 break; 5880 case 4: /* IRG */ 5881 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5882 goto do_unallocated; 5883 } 5884 if (s->ata) { 5885 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5886 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5887 } else { 5888 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5889 cpu_reg_sp(s, rn)); 5890 } 5891 break; 5892 case 5: /* GMI */ 5893 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5894 goto do_unallocated; 5895 } else { 5896 TCGv_i64 t = tcg_temp_new_i64(); 5897 5898 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5899 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5900 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5901 5902 tcg_temp_free_i64(t); 5903 } 5904 break; 5905 case 8: /* LSLV */ 5906 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5907 break; 5908 case 9: /* LSRV */ 5909 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5910 break; 5911 case 10: /* ASRV */ 5912 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5913 break; 5914 case 11: /* RORV */ 5915 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5916 break; 5917 case 12: /* PACGA */ 5918 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5919 goto do_unallocated; 5920 } 5921 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5922 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5923 break; 5924 case 16: 5925 case 17: 5926 case 18: 5927 case 19: 5928 case 20: 5929 case 21: 5930 case 22: 5931 case 23: /* CRC32 */ 5932 { 5933 int sz = extract32(opcode, 0, 2); 5934 bool crc32c = extract32(opcode, 2, 1); 5935 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5936 break; 5937 } 5938 default: 5939 do_unallocated: 5940 unallocated_encoding(s); 5941 break; 5942 } 5943 } 5944 5945 /* 5946 * Data processing - register 5947 * 31 30 29 28 25 21 20 16 10 0 5948 * +--+---+--+---+-------+-----+-------+-------+---------+ 5949 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5950 * +--+---+--+---+-------+-----+-------+-------+---------+ 5951 */ 5952 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5953 { 5954 int op0 = extract32(insn, 30, 1); 5955 int op1 = extract32(insn, 28, 1); 5956 int op2 = extract32(insn, 21, 4); 5957 int op3 = extract32(insn, 10, 6); 5958 5959 if (!op1) { 5960 if (op2 & 8) { 5961 if (op2 & 1) { 5962 /* Add/sub (extended register) */ 5963 disas_add_sub_ext_reg(s, insn); 5964 } else { 5965 /* Add/sub (shifted register) */ 5966 disas_add_sub_reg(s, insn); 5967 } 5968 } else { 5969 /* Logical (shifted register) */ 5970 disas_logic_reg(s, insn); 5971 } 5972 return; 5973 } 5974 5975 switch (op2) { 5976 case 0x0: 5977 switch (op3) { 5978 case 0x00: /* Add/subtract (with carry) */ 5979 disas_adc_sbc(s, insn); 5980 break; 5981 5982 case 0x01: /* Rotate right into flags */ 5983 case 0x21: 5984 disas_rotate_right_into_flags(s, insn); 5985 break; 5986 5987 case 0x02: /* Evaluate into flags */ 5988 case 0x12: 5989 case 0x22: 5990 case 0x32: 5991 disas_evaluate_into_flags(s, insn); 5992 break; 5993 5994 default: 5995 goto do_unallocated; 5996 } 5997 break; 5998 5999 case 0x2: /* Conditional compare */ 6000 disas_cc(s, insn); /* both imm and reg forms */ 6001 break; 6002 6003 case 0x4: /* Conditional select */ 6004 disas_cond_select(s, insn); 6005 break; 6006 6007 case 0x6: /* Data-processing */ 6008 if (op0) { /* (1 source) */ 6009 disas_data_proc_1src(s, insn); 6010 } else { /* (2 source) */ 6011 disas_data_proc_2src(s, insn); 6012 } 6013 break; 6014 case 0x8 ... 0xf: /* (3 source) */ 6015 disas_data_proc_3src(s, insn); 6016 break; 6017 6018 default: 6019 do_unallocated: 6020 unallocated_encoding(s); 6021 break; 6022 } 6023 } 6024 6025 static void handle_fp_compare(DisasContext *s, int size, 6026 unsigned int rn, unsigned int rm, 6027 bool cmp_with_zero, bool signal_all_nans) 6028 { 6029 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6030 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6031 6032 if (size == MO_64) { 6033 TCGv_i64 tcg_vn, tcg_vm; 6034 6035 tcg_vn = read_fp_dreg(s, rn); 6036 if (cmp_with_zero) { 6037 tcg_vm = tcg_constant_i64(0); 6038 } else { 6039 tcg_vm = read_fp_dreg(s, rm); 6040 } 6041 if (signal_all_nans) { 6042 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6043 } else { 6044 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6045 } 6046 tcg_temp_free_i64(tcg_vn); 6047 tcg_temp_free_i64(tcg_vm); 6048 } else { 6049 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6050 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6051 6052 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6053 if (cmp_with_zero) { 6054 tcg_gen_movi_i32(tcg_vm, 0); 6055 } else { 6056 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6057 } 6058 6059 switch (size) { 6060 case MO_32: 6061 if (signal_all_nans) { 6062 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6063 } else { 6064 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6065 } 6066 break; 6067 case MO_16: 6068 if (signal_all_nans) { 6069 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6070 } else { 6071 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6072 } 6073 break; 6074 default: 6075 g_assert_not_reached(); 6076 } 6077 6078 tcg_temp_free_i32(tcg_vn); 6079 tcg_temp_free_i32(tcg_vm); 6080 } 6081 6082 tcg_temp_free_ptr(fpst); 6083 6084 gen_set_nzcv(tcg_flags); 6085 6086 tcg_temp_free_i64(tcg_flags); 6087 } 6088 6089 /* Floating point compare 6090 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6091 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6092 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6093 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6094 */ 6095 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6096 { 6097 unsigned int mos, type, rm, op, rn, opc, op2r; 6098 int size; 6099 6100 mos = extract32(insn, 29, 3); 6101 type = extract32(insn, 22, 2); 6102 rm = extract32(insn, 16, 5); 6103 op = extract32(insn, 14, 2); 6104 rn = extract32(insn, 5, 5); 6105 opc = extract32(insn, 3, 2); 6106 op2r = extract32(insn, 0, 3); 6107 6108 if (mos || op || op2r) { 6109 unallocated_encoding(s); 6110 return; 6111 } 6112 6113 switch (type) { 6114 case 0: 6115 size = MO_32; 6116 break; 6117 case 1: 6118 size = MO_64; 6119 break; 6120 case 3: 6121 size = MO_16; 6122 if (dc_isar_feature(aa64_fp16, s)) { 6123 break; 6124 } 6125 /* fallthru */ 6126 default: 6127 unallocated_encoding(s); 6128 return; 6129 } 6130 6131 if (!fp_access_check(s)) { 6132 return; 6133 } 6134 6135 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6136 } 6137 6138 /* Floating point conditional compare 6139 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6140 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6141 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6142 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6143 */ 6144 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6145 { 6146 unsigned int mos, type, rm, cond, rn, op, nzcv; 6147 TCGLabel *label_continue = NULL; 6148 int size; 6149 6150 mos = extract32(insn, 29, 3); 6151 type = extract32(insn, 22, 2); 6152 rm = extract32(insn, 16, 5); 6153 cond = extract32(insn, 12, 4); 6154 rn = extract32(insn, 5, 5); 6155 op = extract32(insn, 4, 1); 6156 nzcv = extract32(insn, 0, 4); 6157 6158 if (mos) { 6159 unallocated_encoding(s); 6160 return; 6161 } 6162 6163 switch (type) { 6164 case 0: 6165 size = MO_32; 6166 break; 6167 case 1: 6168 size = MO_64; 6169 break; 6170 case 3: 6171 size = MO_16; 6172 if (dc_isar_feature(aa64_fp16, s)) { 6173 break; 6174 } 6175 /* fallthru */ 6176 default: 6177 unallocated_encoding(s); 6178 return; 6179 } 6180 6181 if (!fp_access_check(s)) { 6182 return; 6183 } 6184 6185 if (cond < 0x0e) { /* not always */ 6186 TCGLabel *label_match = gen_new_label(); 6187 label_continue = gen_new_label(); 6188 arm_gen_test_cc(cond, label_match); 6189 /* nomatch: */ 6190 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6191 tcg_gen_br(label_continue); 6192 gen_set_label(label_match); 6193 } 6194 6195 handle_fp_compare(s, size, rn, rm, false, op); 6196 6197 if (cond < 0x0e) { 6198 gen_set_label(label_continue); 6199 } 6200 } 6201 6202 /* Floating point conditional select 6203 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6204 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6205 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6206 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6207 */ 6208 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6209 { 6210 unsigned int mos, type, rm, cond, rn, rd; 6211 TCGv_i64 t_true, t_false; 6212 DisasCompare64 c; 6213 MemOp sz; 6214 6215 mos = extract32(insn, 29, 3); 6216 type = extract32(insn, 22, 2); 6217 rm = extract32(insn, 16, 5); 6218 cond = extract32(insn, 12, 4); 6219 rn = extract32(insn, 5, 5); 6220 rd = extract32(insn, 0, 5); 6221 6222 if (mos) { 6223 unallocated_encoding(s); 6224 return; 6225 } 6226 6227 switch (type) { 6228 case 0: 6229 sz = MO_32; 6230 break; 6231 case 1: 6232 sz = MO_64; 6233 break; 6234 case 3: 6235 sz = MO_16; 6236 if (dc_isar_feature(aa64_fp16, s)) { 6237 break; 6238 } 6239 /* fallthru */ 6240 default: 6241 unallocated_encoding(s); 6242 return; 6243 } 6244 6245 if (!fp_access_check(s)) { 6246 return; 6247 } 6248 6249 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6250 t_true = tcg_temp_new_i64(); 6251 t_false = tcg_temp_new_i64(); 6252 read_vec_element(s, t_true, rn, 0, sz); 6253 read_vec_element(s, t_false, rm, 0, sz); 6254 6255 a64_test_cc(&c, cond); 6256 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6257 t_true, t_false); 6258 tcg_temp_free_i64(t_false); 6259 a64_free_cc(&c); 6260 6261 /* Note that sregs & hregs write back zeros to the high bits, 6262 and we've already done the zero-extension. */ 6263 write_fp_dreg(s, rd, t_true); 6264 tcg_temp_free_i64(t_true); 6265 } 6266 6267 /* Floating-point data-processing (1 source) - half precision */ 6268 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6269 { 6270 TCGv_ptr fpst = NULL; 6271 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6272 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6273 6274 switch (opcode) { 6275 case 0x0: /* FMOV */ 6276 tcg_gen_mov_i32(tcg_res, tcg_op); 6277 break; 6278 case 0x1: /* FABS */ 6279 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6280 break; 6281 case 0x2: /* FNEG */ 6282 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6283 break; 6284 case 0x3: /* FSQRT */ 6285 fpst = fpstatus_ptr(FPST_FPCR_F16); 6286 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6287 break; 6288 case 0x8: /* FRINTN */ 6289 case 0x9: /* FRINTP */ 6290 case 0xa: /* FRINTM */ 6291 case 0xb: /* FRINTZ */ 6292 case 0xc: /* FRINTA */ 6293 { 6294 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); 6295 fpst = fpstatus_ptr(FPST_FPCR_F16); 6296 6297 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); 6298 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6299 6300 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); 6301 tcg_temp_free_i32(tcg_rmode); 6302 break; 6303 } 6304 case 0xe: /* FRINTX */ 6305 fpst = fpstatus_ptr(FPST_FPCR_F16); 6306 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6307 break; 6308 case 0xf: /* FRINTI */ 6309 fpst = fpstatus_ptr(FPST_FPCR_F16); 6310 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6311 break; 6312 default: 6313 g_assert_not_reached(); 6314 } 6315 6316 write_fp_sreg(s, rd, tcg_res); 6317 6318 if (fpst) { 6319 tcg_temp_free_ptr(fpst); 6320 } 6321 tcg_temp_free_i32(tcg_op); 6322 tcg_temp_free_i32(tcg_res); 6323 } 6324 6325 /* Floating-point data-processing (1 source) - single precision */ 6326 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6327 { 6328 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6329 TCGv_i32 tcg_op, tcg_res; 6330 TCGv_ptr fpst; 6331 int rmode = -1; 6332 6333 tcg_op = read_fp_sreg(s, rn); 6334 tcg_res = tcg_temp_new_i32(); 6335 6336 switch (opcode) { 6337 case 0x0: /* FMOV */ 6338 tcg_gen_mov_i32(tcg_res, tcg_op); 6339 goto done; 6340 case 0x1: /* FABS */ 6341 gen_helper_vfp_abss(tcg_res, tcg_op); 6342 goto done; 6343 case 0x2: /* FNEG */ 6344 gen_helper_vfp_negs(tcg_res, tcg_op); 6345 goto done; 6346 case 0x3: /* FSQRT */ 6347 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6348 goto done; 6349 case 0x6: /* BFCVT */ 6350 gen_fpst = gen_helper_bfcvt; 6351 break; 6352 case 0x8: /* FRINTN */ 6353 case 0x9: /* FRINTP */ 6354 case 0xa: /* FRINTM */ 6355 case 0xb: /* FRINTZ */ 6356 case 0xc: /* FRINTA */ 6357 rmode = arm_rmode_to_sf(opcode & 7); 6358 gen_fpst = gen_helper_rints; 6359 break; 6360 case 0xe: /* FRINTX */ 6361 gen_fpst = gen_helper_rints_exact; 6362 break; 6363 case 0xf: /* FRINTI */ 6364 gen_fpst = gen_helper_rints; 6365 break; 6366 case 0x10: /* FRINT32Z */ 6367 rmode = float_round_to_zero; 6368 gen_fpst = gen_helper_frint32_s; 6369 break; 6370 case 0x11: /* FRINT32X */ 6371 gen_fpst = gen_helper_frint32_s; 6372 break; 6373 case 0x12: /* FRINT64Z */ 6374 rmode = float_round_to_zero; 6375 gen_fpst = gen_helper_frint64_s; 6376 break; 6377 case 0x13: /* FRINT64X */ 6378 gen_fpst = gen_helper_frint64_s; 6379 break; 6380 default: 6381 g_assert_not_reached(); 6382 } 6383 6384 fpst = fpstatus_ptr(FPST_FPCR); 6385 if (rmode >= 0) { 6386 TCGv_i32 tcg_rmode = tcg_const_i32(rmode); 6387 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); 6388 gen_fpst(tcg_res, tcg_op, fpst); 6389 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); 6390 tcg_temp_free_i32(tcg_rmode); 6391 } else { 6392 gen_fpst(tcg_res, tcg_op, fpst); 6393 } 6394 tcg_temp_free_ptr(fpst); 6395 6396 done: 6397 write_fp_sreg(s, rd, tcg_res); 6398 tcg_temp_free_i32(tcg_op); 6399 tcg_temp_free_i32(tcg_res); 6400 } 6401 6402 /* Floating-point data-processing (1 source) - double precision */ 6403 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6404 { 6405 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6406 TCGv_i64 tcg_op, tcg_res; 6407 TCGv_ptr fpst; 6408 int rmode = -1; 6409 6410 switch (opcode) { 6411 case 0x0: /* FMOV */ 6412 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6413 return; 6414 } 6415 6416 tcg_op = read_fp_dreg(s, rn); 6417 tcg_res = tcg_temp_new_i64(); 6418 6419 switch (opcode) { 6420 case 0x1: /* FABS */ 6421 gen_helper_vfp_absd(tcg_res, tcg_op); 6422 goto done; 6423 case 0x2: /* FNEG */ 6424 gen_helper_vfp_negd(tcg_res, tcg_op); 6425 goto done; 6426 case 0x3: /* FSQRT */ 6427 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6428 goto done; 6429 case 0x8: /* FRINTN */ 6430 case 0x9: /* FRINTP */ 6431 case 0xa: /* FRINTM */ 6432 case 0xb: /* FRINTZ */ 6433 case 0xc: /* FRINTA */ 6434 rmode = arm_rmode_to_sf(opcode & 7); 6435 gen_fpst = gen_helper_rintd; 6436 break; 6437 case 0xe: /* FRINTX */ 6438 gen_fpst = gen_helper_rintd_exact; 6439 break; 6440 case 0xf: /* FRINTI */ 6441 gen_fpst = gen_helper_rintd; 6442 break; 6443 case 0x10: /* FRINT32Z */ 6444 rmode = float_round_to_zero; 6445 gen_fpst = gen_helper_frint32_d; 6446 break; 6447 case 0x11: /* FRINT32X */ 6448 gen_fpst = gen_helper_frint32_d; 6449 break; 6450 case 0x12: /* FRINT64Z */ 6451 rmode = float_round_to_zero; 6452 gen_fpst = gen_helper_frint64_d; 6453 break; 6454 case 0x13: /* FRINT64X */ 6455 gen_fpst = gen_helper_frint64_d; 6456 break; 6457 default: 6458 g_assert_not_reached(); 6459 } 6460 6461 fpst = fpstatus_ptr(FPST_FPCR); 6462 if (rmode >= 0) { 6463 TCGv_i32 tcg_rmode = tcg_const_i32(rmode); 6464 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); 6465 gen_fpst(tcg_res, tcg_op, fpst); 6466 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); 6467 tcg_temp_free_i32(tcg_rmode); 6468 } else { 6469 gen_fpst(tcg_res, tcg_op, fpst); 6470 } 6471 tcg_temp_free_ptr(fpst); 6472 6473 done: 6474 write_fp_dreg(s, rd, tcg_res); 6475 tcg_temp_free_i64(tcg_op); 6476 tcg_temp_free_i64(tcg_res); 6477 } 6478 6479 static void handle_fp_fcvt(DisasContext *s, int opcode, 6480 int rd, int rn, int dtype, int ntype) 6481 { 6482 switch (ntype) { 6483 case 0x0: 6484 { 6485 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6486 if (dtype == 1) { 6487 /* Single to double */ 6488 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6489 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6490 write_fp_dreg(s, rd, tcg_rd); 6491 tcg_temp_free_i64(tcg_rd); 6492 } else { 6493 /* Single to half */ 6494 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6495 TCGv_i32 ahp = get_ahp_flag(); 6496 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6497 6498 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6499 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6500 write_fp_sreg(s, rd, tcg_rd); 6501 tcg_temp_free_i32(tcg_rd); 6502 tcg_temp_free_i32(ahp); 6503 tcg_temp_free_ptr(fpst); 6504 } 6505 tcg_temp_free_i32(tcg_rn); 6506 break; 6507 } 6508 case 0x1: 6509 { 6510 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6511 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6512 if (dtype == 0) { 6513 /* Double to single */ 6514 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6515 } else { 6516 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6517 TCGv_i32 ahp = get_ahp_flag(); 6518 /* Double to half */ 6519 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6520 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6521 tcg_temp_free_ptr(fpst); 6522 tcg_temp_free_i32(ahp); 6523 } 6524 write_fp_sreg(s, rd, tcg_rd); 6525 tcg_temp_free_i32(tcg_rd); 6526 tcg_temp_free_i64(tcg_rn); 6527 break; 6528 } 6529 case 0x3: 6530 { 6531 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6532 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6533 TCGv_i32 tcg_ahp = get_ahp_flag(); 6534 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6535 if (dtype == 0) { 6536 /* Half to single */ 6537 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6538 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6539 write_fp_sreg(s, rd, tcg_rd); 6540 tcg_temp_free_i32(tcg_rd); 6541 } else { 6542 /* Half to double */ 6543 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6544 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6545 write_fp_dreg(s, rd, tcg_rd); 6546 tcg_temp_free_i64(tcg_rd); 6547 } 6548 tcg_temp_free_i32(tcg_rn); 6549 tcg_temp_free_ptr(tcg_fpst); 6550 tcg_temp_free_i32(tcg_ahp); 6551 break; 6552 } 6553 default: 6554 g_assert_not_reached(); 6555 } 6556 } 6557 6558 /* Floating point data-processing (1 source) 6559 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6560 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6561 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6562 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6563 */ 6564 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6565 { 6566 int mos = extract32(insn, 29, 3); 6567 int type = extract32(insn, 22, 2); 6568 int opcode = extract32(insn, 15, 6); 6569 int rn = extract32(insn, 5, 5); 6570 int rd = extract32(insn, 0, 5); 6571 6572 if (mos) { 6573 goto do_unallocated; 6574 } 6575 6576 switch (opcode) { 6577 case 0x4: case 0x5: case 0x7: 6578 { 6579 /* FCVT between half, single and double precision */ 6580 int dtype = extract32(opcode, 0, 2); 6581 if (type == 2 || dtype == type) { 6582 goto do_unallocated; 6583 } 6584 if (!fp_access_check(s)) { 6585 return; 6586 } 6587 6588 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6589 break; 6590 } 6591 6592 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6593 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6594 goto do_unallocated; 6595 } 6596 /* fall through */ 6597 case 0x0 ... 0x3: 6598 case 0x8 ... 0xc: 6599 case 0xe ... 0xf: 6600 /* 32-to-32 and 64-to-64 ops */ 6601 switch (type) { 6602 case 0: 6603 if (!fp_access_check(s)) { 6604 return; 6605 } 6606 handle_fp_1src_single(s, opcode, rd, rn); 6607 break; 6608 case 1: 6609 if (!fp_access_check(s)) { 6610 return; 6611 } 6612 handle_fp_1src_double(s, opcode, rd, rn); 6613 break; 6614 case 3: 6615 if (!dc_isar_feature(aa64_fp16, s)) { 6616 goto do_unallocated; 6617 } 6618 6619 if (!fp_access_check(s)) { 6620 return; 6621 } 6622 handle_fp_1src_half(s, opcode, rd, rn); 6623 break; 6624 default: 6625 goto do_unallocated; 6626 } 6627 break; 6628 6629 case 0x6: 6630 switch (type) { 6631 case 1: /* BFCVT */ 6632 if (!dc_isar_feature(aa64_bf16, s)) { 6633 goto do_unallocated; 6634 } 6635 if (!fp_access_check(s)) { 6636 return; 6637 } 6638 handle_fp_1src_single(s, opcode, rd, rn); 6639 break; 6640 default: 6641 goto do_unallocated; 6642 } 6643 break; 6644 6645 default: 6646 do_unallocated: 6647 unallocated_encoding(s); 6648 break; 6649 } 6650 } 6651 6652 /* Floating-point data-processing (2 source) - single precision */ 6653 static void handle_fp_2src_single(DisasContext *s, int opcode, 6654 int rd, int rn, int rm) 6655 { 6656 TCGv_i32 tcg_op1; 6657 TCGv_i32 tcg_op2; 6658 TCGv_i32 tcg_res; 6659 TCGv_ptr fpst; 6660 6661 tcg_res = tcg_temp_new_i32(); 6662 fpst = fpstatus_ptr(FPST_FPCR); 6663 tcg_op1 = read_fp_sreg(s, rn); 6664 tcg_op2 = read_fp_sreg(s, rm); 6665 6666 switch (opcode) { 6667 case 0x0: /* FMUL */ 6668 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6669 break; 6670 case 0x1: /* FDIV */ 6671 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6672 break; 6673 case 0x2: /* FADD */ 6674 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6675 break; 6676 case 0x3: /* FSUB */ 6677 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6678 break; 6679 case 0x4: /* FMAX */ 6680 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6681 break; 6682 case 0x5: /* FMIN */ 6683 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6684 break; 6685 case 0x6: /* FMAXNM */ 6686 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6687 break; 6688 case 0x7: /* FMINNM */ 6689 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6690 break; 6691 case 0x8: /* FNMUL */ 6692 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6693 gen_helper_vfp_negs(tcg_res, tcg_res); 6694 break; 6695 } 6696 6697 write_fp_sreg(s, rd, tcg_res); 6698 6699 tcg_temp_free_ptr(fpst); 6700 tcg_temp_free_i32(tcg_op1); 6701 tcg_temp_free_i32(tcg_op2); 6702 tcg_temp_free_i32(tcg_res); 6703 } 6704 6705 /* Floating-point data-processing (2 source) - double precision */ 6706 static void handle_fp_2src_double(DisasContext *s, int opcode, 6707 int rd, int rn, int rm) 6708 { 6709 TCGv_i64 tcg_op1; 6710 TCGv_i64 tcg_op2; 6711 TCGv_i64 tcg_res; 6712 TCGv_ptr fpst; 6713 6714 tcg_res = tcg_temp_new_i64(); 6715 fpst = fpstatus_ptr(FPST_FPCR); 6716 tcg_op1 = read_fp_dreg(s, rn); 6717 tcg_op2 = read_fp_dreg(s, rm); 6718 6719 switch (opcode) { 6720 case 0x0: /* FMUL */ 6721 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6722 break; 6723 case 0x1: /* FDIV */ 6724 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6725 break; 6726 case 0x2: /* FADD */ 6727 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6728 break; 6729 case 0x3: /* FSUB */ 6730 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6731 break; 6732 case 0x4: /* FMAX */ 6733 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6734 break; 6735 case 0x5: /* FMIN */ 6736 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6737 break; 6738 case 0x6: /* FMAXNM */ 6739 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6740 break; 6741 case 0x7: /* FMINNM */ 6742 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6743 break; 6744 case 0x8: /* FNMUL */ 6745 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6746 gen_helper_vfp_negd(tcg_res, tcg_res); 6747 break; 6748 } 6749 6750 write_fp_dreg(s, rd, tcg_res); 6751 6752 tcg_temp_free_ptr(fpst); 6753 tcg_temp_free_i64(tcg_op1); 6754 tcg_temp_free_i64(tcg_op2); 6755 tcg_temp_free_i64(tcg_res); 6756 } 6757 6758 /* Floating-point data-processing (2 source) - half precision */ 6759 static void handle_fp_2src_half(DisasContext *s, int opcode, 6760 int rd, int rn, int rm) 6761 { 6762 TCGv_i32 tcg_op1; 6763 TCGv_i32 tcg_op2; 6764 TCGv_i32 tcg_res; 6765 TCGv_ptr fpst; 6766 6767 tcg_res = tcg_temp_new_i32(); 6768 fpst = fpstatus_ptr(FPST_FPCR_F16); 6769 tcg_op1 = read_fp_hreg(s, rn); 6770 tcg_op2 = read_fp_hreg(s, rm); 6771 6772 switch (opcode) { 6773 case 0x0: /* FMUL */ 6774 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6775 break; 6776 case 0x1: /* FDIV */ 6777 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6778 break; 6779 case 0x2: /* FADD */ 6780 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6781 break; 6782 case 0x3: /* FSUB */ 6783 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6784 break; 6785 case 0x4: /* FMAX */ 6786 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6787 break; 6788 case 0x5: /* FMIN */ 6789 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6790 break; 6791 case 0x6: /* FMAXNM */ 6792 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6793 break; 6794 case 0x7: /* FMINNM */ 6795 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6796 break; 6797 case 0x8: /* FNMUL */ 6798 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6799 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6800 break; 6801 default: 6802 g_assert_not_reached(); 6803 } 6804 6805 write_fp_sreg(s, rd, tcg_res); 6806 6807 tcg_temp_free_ptr(fpst); 6808 tcg_temp_free_i32(tcg_op1); 6809 tcg_temp_free_i32(tcg_op2); 6810 tcg_temp_free_i32(tcg_res); 6811 } 6812 6813 /* Floating point data-processing (2 source) 6814 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6815 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6816 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6817 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6818 */ 6819 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6820 { 6821 int mos = extract32(insn, 29, 3); 6822 int type = extract32(insn, 22, 2); 6823 int rd = extract32(insn, 0, 5); 6824 int rn = extract32(insn, 5, 5); 6825 int rm = extract32(insn, 16, 5); 6826 int opcode = extract32(insn, 12, 4); 6827 6828 if (opcode > 8 || mos) { 6829 unallocated_encoding(s); 6830 return; 6831 } 6832 6833 switch (type) { 6834 case 0: 6835 if (!fp_access_check(s)) { 6836 return; 6837 } 6838 handle_fp_2src_single(s, opcode, rd, rn, rm); 6839 break; 6840 case 1: 6841 if (!fp_access_check(s)) { 6842 return; 6843 } 6844 handle_fp_2src_double(s, opcode, rd, rn, rm); 6845 break; 6846 case 3: 6847 if (!dc_isar_feature(aa64_fp16, s)) { 6848 unallocated_encoding(s); 6849 return; 6850 } 6851 if (!fp_access_check(s)) { 6852 return; 6853 } 6854 handle_fp_2src_half(s, opcode, rd, rn, rm); 6855 break; 6856 default: 6857 unallocated_encoding(s); 6858 } 6859 } 6860 6861 /* Floating-point data-processing (3 source) - single precision */ 6862 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6863 int rd, int rn, int rm, int ra) 6864 { 6865 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6866 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6867 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6868 6869 tcg_op1 = read_fp_sreg(s, rn); 6870 tcg_op2 = read_fp_sreg(s, rm); 6871 tcg_op3 = read_fp_sreg(s, ra); 6872 6873 /* These are fused multiply-add, and must be done as one 6874 * floating point operation with no rounding between the 6875 * multiplication and addition steps. 6876 * NB that doing the negations here as separate steps is 6877 * correct : an input NaN should come out with its sign bit 6878 * flipped if it is a negated-input. 6879 */ 6880 if (o1 == true) { 6881 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6882 } 6883 6884 if (o0 != o1) { 6885 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6886 } 6887 6888 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6889 6890 write_fp_sreg(s, rd, tcg_res); 6891 6892 tcg_temp_free_ptr(fpst); 6893 tcg_temp_free_i32(tcg_op1); 6894 tcg_temp_free_i32(tcg_op2); 6895 tcg_temp_free_i32(tcg_op3); 6896 tcg_temp_free_i32(tcg_res); 6897 } 6898 6899 /* Floating-point data-processing (3 source) - double precision */ 6900 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6901 int rd, int rn, int rm, int ra) 6902 { 6903 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6904 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6905 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6906 6907 tcg_op1 = read_fp_dreg(s, rn); 6908 tcg_op2 = read_fp_dreg(s, rm); 6909 tcg_op3 = read_fp_dreg(s, ra); 6910 6911 /* These are fused multiply-add, and must be done as one 6912 * floating point operation with no rounding between the 6913 * multiplication and addition steps. 6914 * NB that doing the negations here as separate steps is 6915 * correct : an input NaN should come out with its sign bit 6916 * flipped if it is a negated-input. 6917 */ 6918 if (o1 == true) { 6919 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6920 } 6921 6922 if (o0 != o1) { 6923 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6924 } 6925 6926 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6927 6928 write_fp_dreg(s, rd, tcg_res); 6929 6930 tcg_temp_free_ptr(fpst); 6931 tcg_temp_free_i64(tcg_op1); 6932 tcg_temp_free_i64(tcg_op2); 6933 tcg_temp_free_i64(tcg_op3); 6934 tcg_temp_free_i64(tcg_res); 6935 } 6936 6937 /* Floating-point data-processing (3 source) - half precision */ 6938 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6939 int rd, int rn, int rm, int ra) 6940 { 6941 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6942 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6943 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6944 6945 tcg_op1 = read_fp_hreg(s, rn); 6946 tcg_op2 = read_fp_hreg(s, rm); 6947 tcg_op3 = read_fp_hreg(s, ra); 6948 6949 /* These are fused multiply-add, and must be done as one 6950 * floating point operation with no rounding between the 6951 * multiplication and addition steps. 6952 * NB that doing the negations here as separate steps is 6953 * correct : an input NaN should come out with its sign bit 6954 * flipped if it is a negated-input. 6955 */ 6956 if (o1 == true) { 6957 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6958 } 6959 6960 if (o0 != o1) { 6961 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6962 } 6963 6964 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6965 6966 write_fp_sreg(s, rd, tcg_res); 6967 6968 tcg_temp_free_ptr(fpst); 6969 tcg_temp_free_i32(tcg_op1); 6970 tcg_temp_free_i32(tcg_op2); 6971 tcg_temp_free_i32(tcg_op3); 6972 tcg_temp_free_i32(tcg_res); 6973 } 6974 6975 /* Floating point data-processing (3 source) 6976 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6977 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6978 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6979 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6980 */ 6981 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6982 { 6983 int mos = extract32(insn, 29, 3); 6984 int type = extract32(insn, 22, 2); 6985 int rd = extract32(insn, 0, 5); 6986 int rn = extract32(insn, 5, 5); 6987 int ra = extract32(insn, 10, 5); 6988 int rm = extract32(insn, 16, 5); 6989 bool o0 = extract32(insn, 15, 1); 6990 bool o1 = extract32(insn, 21, 1); 6991 6992 if (mos) { 6993 unallocated_encoding(s); 6994 return; 6995 } 6996 6997 switch (type) { 6998 case 0: 6999 if (!fp_access_check(s)) { 7000 return; 7001 } 7002 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7003 break; 7004 case 1: 7005 if (!fp_access_check(s)) { 7006 return; 7007 } 7008 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7009 break; 7010 case 3: 7011 if (!dc_isar_feature(aa64_fp16, s)) { 7012 unallocated_encoding(s); 7013 return; 7014 } 7015 if (!fp_access_check(s)) { 7016 return; 7017 } 7018 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7019 break; 7020 default: 7021 unallocated_encoding(s); 7022 } 7023 } 7024 7025 /* Floating point immediate 7026 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7027 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7028 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7029 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7030 */ 7031 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7032 { 7033 int rd = extract32(insn, 0, 5); 7034 int imm5 = extract32(insn, 5, 5); 7035 int imm8 = extract32(insn, 13, 8); 7036 int type = extract32(insn, 22, 2); 7037 int mos = extract32(insn, 29, 3); 7038 uint64_t imm; 7039 MemOp sz; 7040 7041 if (mos || imm5) { 7042 unallocated_encoding(s); 7043 return; 7044 } 7045 7046 switch (type) { 7047 case 0: 7048 sz = MO_32; 7049 break; 7050 case 1: 7051 sz = MO_64; 7052 break; 7053 case 3: 7054 sz = MO_16; 7055 if (dc_isar_feature(aa64_fp16, s)) { 7056 break; 7057 } 7058 /* fallthru */ 7059 default: 7060 unallocated_encoding(s); 7061 return; 7062 } 7063 7064 if (!fp_access_check(s)) { 7065 return; 7066 } 7067 7068 imm = vfp_expand_imm(sz, imm8); 7069 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7070 } 7071 7072 /* Handle floating point <=> fixed point conversions. Note that we can 7073 * also deal with fp <=> integer conversions as a special case (scale == 64) 7074 * OPTME: consider handling that special case specially or at least skipping 7075 * the call to scalbn in the helpers for zero shifts. 7076 */ 7077 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7078 bool itof, int rmode, int scale, int sf, int type) 7079 { 7080 bool is_signed = !(opcode & 1); 7081 TCGv_ptr tcg_fpstatus; 7082 TCGv_i32 tcg_shift, tcg_single; 7083 TCGv_i64 tcg_double; 7084 7085 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7086 7087 tcg_shift = tcg_constant_i32(64 - scale); 7088 7089 if (itof) { 7090 TCGv_i64 tcg_int = cpu_reg(s, rn); 7091 if (!sf) { 7092 TCGv_i64 tcg_extend = new_tmp_a64(s); 7093 7094 if (is_signed) { 7095 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7096 } else { 7097 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7098 } 7099 7100 tcg_int = tcg_extend; 7101 } 7102 7103 switch (type) { 7104 case 1: /* float64 */ 7105 tcg_double = tcg_temp_new_i64(); 7106 if (is_signed) { 7107 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7108 tcg_shift, tcg_fpstatus); 7109 } else { 7110 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7111 tcg_shift, tcg_fpstatus); 7112 } 7113 write_fp_dreg(s, rd, tcg_double); 7114 tcg_temp_free_i64(tcg_double); 7115 break; 7116 7117 case 0: /* float32 */ 7118 tcg_single = tcg_temp_new_i32(); 7119 if (is_signed) { 7120 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7121 tcg_shift, tcg_fpstatus); 7122 } else { 7123 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7124 tcg_shift, tcg_fpstatus); 7125 } 7126 write_fp_sreg(s, rd, tcg_single); 7127 tcg_temp_free_i32(tcg_single); 7128 break; 7129 7130 case 3: /* float16 */ 7131 tcg_single = tcg_temp_new_i32(); 7132 if (is_signed) { 7133 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7134 tcg_shift, tcg_fpstatus); 7135 } else { 7136 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7137 tcg_shift, tcg_fpstatus); 7138 } 7139 write_fp_sreg(s, rd, tcg_single); 7140 tcg_temp_free_i32(tcg_single); 7141 break; 7142 7143 default: 7144 g_assert_not_reached(); 7145 } 7146 } else { 7147 TCGv_i64 tcg_int = cpu_reg(s, rd); 7148 TCGv_i32 tcg_rmode; 7149 7150 if (extract32(opcode, 2, 1)) { 7151 /* There are too many rounding modes to all fit into rmode, 7152 * so FCVTA[US] is a special case. 7153 */ 7154 rmode = FPROUNDING_TIEAWAY; 7155 } 7156 7157 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); 7158 7159 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 7160 7161 switch (type) { 7162 case 1: /* float64 */ 7163 tcg_double = read_fp_dreg(s, rn); 7164 if (is_signed) { 7165 if (!sf) { 7166 gen_helper_vfp_tosld(tcg_int, tcg_double, 7167 tcg_shift, tcg_fpstatus); 7168 } else { 7169 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7170 tcg_shift, tcg_fpstatus); 7171 } 7172 } else { 7173 if (!sf) { 7174 gen_helper_vfp_tould(tcg_int, tcg_double, 7175 tcg_shift, tcg_fpstatus); 7176 } else { 7177 gen_helper_vfp_touqd(tcg_int, tcg_double, 7178 tcg_shift, tcg_fpstatus); 7179 } 7180 } 7181 if (!sf) { 7182 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7183 } 7184 tcg_temp_free_i64(tcg_double); 7185 break; 7186 7187 case 0: /* float32 */ 7188 tcg_single = read_fp_sreg(s, rn); 7189 if (sf) { 7190 if (is_signed) { 7191 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7192 tcg_shift, tcg_fpstatus); 7193 } else { 7194 gen_helper_vfp_touqs(tcg_int, tcg_single, 7195 tcg_shift, tcg_fpstatus); 7196 } 7197 } else { 7198 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7199 if (is_signed) { 7200 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7201 tcg_shift, tcg_fpstatus); 7202 } else { 7203 gen_helper_vfp_touls(tcg_dest, tcg_single, 7204 tcg_shift, tcg_fpstatus); 7205 } 7206 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7207 tcg_temp_free_i32(tcg_dest); 7208 } 7209 tcg_temp_free_i32(tcg_single); 7210 break; 7211 7212 case 3: /* float16 */ 7213 tcg_single = read_fp_sreg(s, rn); 7214 if (sf) { 7215 if (is_signed) { 7216 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7217 tcg_shift, tcg_fpstatus); 7218 } else { 7219 gen_helper_vfp_touqh(tcg_int, tcg_single, 7220 tcg_shift, tcg_fpstatus); 7221 } 7222 } else { 7223 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7224 if (is_signed) { 7225 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7226 tcg_shift, tcg_fpstatus); 7227 } else { 7228 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7229 tcg_shift, tcg_fpstatus); 7230 } 7231 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7232 tcg_temp_free_i32(tcg_dest); 7233 } 7234 tcg_temp_free_i32(tcg_single); 7235 break; 7236 7237 default: 7238 g_assert_not_reached(); 7239 } 7240 7241 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 7242 tcg_temp_free_i32(tcg_rmode); 7243 } 7244 7245 tcg_temp_free_ptr(tcg_fpstatus); 7246 } 7247 7248 /* Floating point <-> fixed point conversions 7249 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7250 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7251 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7252 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7253 */ 7254 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7255 { 7256 int rd = extract32(insn, 0, 5); 7257 int rn = extract32(insn, 5, 5); 7258 int scale = extract32(insn, 10, 6); 7259 int opcode = extract32(insn, 16, 3); 7260 int rmode = extract32(insn, 19, 2); 7261 int type = extract32(insn, 22, 2); 7262 bool sbit = extract32(insn, 29, 1); 7263 bool sf = extract32(insn, 31, 1); 7264 bool itof; 7265 7266 if (sbit || (!sf && scale < 32)) { 7267 unallocated_encoding(s); 7268 return; 7269 } 7270 7271 switch (type) { 7272 case 0: /* float32 */ 7273 case 1: /* float64 */ 7274 break; 7275 case 3: /* float16 */ 7276 if (dc_isar_feature(aa64_fp16, s)) { 7277 break; 7278 } 7279 /* fallthru */ 7280 default: 7281 unallocated_encoding(s); 7282 return; 7283 } 7284 7285 switch ((rmode << 3) | opcode) { 7286 case 0x2: /* SCVTF */ 7287 case 0x3: /* UCVTF */ 7288 itof = true; 7289 break; 7290 case 0x18: /* FCVTZS */ 7291 case 0x19: /* FCVTZU */ 7292 itof = false; 7293 break; 7294 default: 7295 unallocated_encoding(s); 7296 return; 7297 } 7298 7299 if (!fp_access_check(s)) { 7300 return; 7301 } 7302 7303 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7304 } 7305 7306 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7307 { 7308 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7309 * without conversion. 7310 */ 7311 7312 if (itof) { 7313 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7314 TCGv_i64 tmp; 7315 7316 switch (type) { 7317 case 0: 7318 /* 32 bit */ 7319 tmp = tcg_temp_new_i64(); 7320 tcg_gen_ext32u_i64(tmp, tcg_rn); 7321 write_fp_dreg(s, rd, tmp); 7322 tcg_temp_free_i64(tmp); 7323 break; 7324 case 1: 7325 /* 64 bit */ 7326 write_fp_dreg(s, rd, tcg_rn); 7327 break; 7328 case 2: 7329 /* 64 bit to top half. */ 7330 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7331 clear_vec_high(s, true, rd); 7332 break; 7333 case 3: 7334 /* 16 bit */ 7335 tmp = tcg_temp_new_i64(); 7336 tcg_gen_ext16u_i64(tmp, tcg_rn); 7337 write_fp_dreg(s, rd, tmp); 7338 tcg_temp_free_i64(tmp); 7339 break; 7340 default: 7341 g_assert_not_reached(); 7342 } 7343 } else { 7344 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7345 7346 switch (type) { 7347 case 0: 7348 /* 32 bit */ 7349 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7350 break; 7351 case 1: 7352 /* 64 bit */ 7353 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7354 break; 7355 case 2: 7356 /* 64 bits from top half */ 7357 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7358 break; 7359 case 3: 7360 /* 16 bit */ 7361 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7362 break; 7363 default: 7364 g_assert_not_reached(); 7365 } 7366 } 7367 } 7368 7369 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7370 { 7371 TCGv_i64 t = read_fp_dreg(s, rn); 7372 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7373 7374 gen_helper_fjcvtzs(t, t, fpstatus); 7375 7376 tcg_temp_free_ptr(fpstatus); 7377 7378 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7379 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7380 tcg_gen_movi_i32(cpu_CF, 0); 7381 tcg_gen_movi_i32(cpu_NF, 0); 7382 tcg_gen_movi_i32(cpu_VF, 0); 7383 7384 tcg_temp_free_i64(t); 7385 } 7386 7387 /* Floating point <-> integer conversions 7388 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7389 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7390 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7391 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7392 */ 7393 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7394 { 7395 int rd = extract32(insn, 0, 5); 7396 int rn = extract32(insn, 5, 5); 7397 int opcode = extract32(insn, 16, 3); 7398 int rmode = extract32(insn, 19, 2); 7399 int type = extract32(insn, 22, 2); 7400 bool sbit = extract32(insn, 29, 1); 7401 bool sf = extract32(insn, 31, 1); 7402 bool itof = false; 7403 7404 if (sbit) { 7405 goto do_unallocated; 7406 } 7407 7408 switch (opcode) { 7409 case 2: /* SCVTF */ 7410 case 3: /* UCVTF */ 7411 itof = true; 7412 /* fallthru */ 7413 case 4: /* FCVTAS */ 7414 case 5: /* FCVTAU */ 7415 if (rmode != 0) { 7416 goto do_unallocated; 7417 } 7418 /* fallthru */ 7419 case 0: /* FCVT[NPMZ]S */ 7420 case 1: /* FCVT[NPMZ]U */ 7421 switch (type) { 7422 case 0: /* float32 */ 7423 case 1: /* float64 */ 7424 break; 7425 case 3: /* float16 */ 7426 if (!dc_isar_feature(aa64_fp16, s)) { 7427 goto do_unallocated; 7428 } 7429 break; 7430 default: 7431 goto do_unallocated; 7432 } 7433 if (!fp_access_check(s)) { 7434 return; 7435 } 7436 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7437 break; 7438 7439 default: 7440 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7441 case 0b01100110: /* FMOV half <-> 32-bit int */ 7442 case 0b01100111: 7443 case 0b11100110: /* FMOV half <-> 64-bit int */ 7444 case 0b11100111: 7445 if (!dc_isar_feature(aa64_fp16, s)) { 7446 goto do_unallocated; 7447 } 7448 /* fallthru */ 7449 case 0b00000110: /* FMOV 32-bit */ 7450 case 0b00000111: 7451 case 0b10100110: /* FMOV 64-bit */ 7452 case 0b10100111: 7453 case 0b11001110: /* FMOV top half of 128-bit */ 7454 case 0b11001111: 7455 if (!fp_access_check(s)) { 7456 return; 7457 } 7458 itof = opcode & 1; 7459 handle_fmov(s, rd, rn, type, itof); 7460 break; 7461 7462 case 0b00111110: /* FJCVTZS */ 7463 if (!dc_isar_feature(aa64_jscvt, s)) { 7464 goto do_unallocated; 7465 } else if (fp_access_check(s)) { 7466 handle_fjcvtzs(s, rd, rn); 7467 } 7468 break; 7469 7470 default: 7471 do_unallocated: 7472 unallocated_encoding(s); 7473 return; 7474 } 7475 break; 7476 } 7477 } 7478 7479 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7480 * 31 30 29 28 25 24 0 7481 * +---+---+---+---------+-----------------------------+ 7482 * | | 0 | | 1 1 1 1 | | 7483 * +---+---+---+---------+-----------------------------+ 7484 */ 7485 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7486 { 7487 if (extract32(insn, 24, 1)) { 7488 /* Floating point data-processing (3 source) */ 7489 disas_fp_3src(s, insn); 7490 } else if (extract32(insn, 21, 1) == 0) { 7491 /* Floating point to fixed point conversions */ 7492 disas_fp_fixed_conv(s, insn); 7493 } else { 7494 switch (extract32(insn, 10, 2)) { 7495 case 1: 7496 /* Floating point conditional compare */ 7497 disas_fp_ccomp(s, insn); 7498 break; 7499 case 2: 7500 /* Floating point data-processing (2 source) */ 7501 disas_fp_2src(s, insn); 7502 break; 7503 case 3: 7504 /* Floating point conditional select */ 7505 disas_fp_csel(s, insn); 7506 break; 7507 case 0: 7508 switch (ctz32(extract32(insn, 12, 4))) { 7509 case 0: /* [15:12] == xxx1 */ 7510 /* Floating point immediate */ 7511 disas_fp_imm(s, insn); 7512 break; 7513 case 1: /* [15:12] == xx10 */ 7514 /* Floating point compare */ 7515 disas_fp_compare(s, insn); 7516 break; 7517 case 2: /* [15:12] == x100 */ 7518 /* Floating point data-processing (1 source) */ 7519 disas_fp_1src(s, insn); 7520 break; 7521 case 3: /* [15:12] == 1000 */ 7522 unallocated_encoding(s); 7523 break; 7524 default: /* [15:12] == 0000 */ 7525 /* Floating point <-> integer conversions */ 7526 disas_fp_int_conv(s, insn); 7527 break; 7528 } 7529 break; 7530 } 7531 } 7532 } 7533 7534 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7535 int pos) 7536 { 7537 /* Extract 64 bits from the middle of two concatenated 64 bit 7538 * vector register slices left:right. The extracted bits start 7539 * at 'pos' bits into the right (least significant) side. 7540 * We return the result in tcg_right, and guarantee not to 7541 * trash tcg_left. 7542 */ 7543 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7544 assert(pos > 0 && pos < 64); 7545 7546 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7547 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7548 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7549 7550 tcg_temp_free_i64(tcg_tmp); 7551 } 7552 7553 /* EXT 7554 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7555 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7556 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7557 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7558 */ 7559 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7560 { 7561 int is_q = extract32(insn, 30, 1); 7562 int op2 = extract32(insn, 22, 2); 7563 int imm4 = extract32(insn, 11, 4); 7564 int rm = extract32(insn, 16, 5); 7565 int rn = extract32(insn, 5, 5); 7566 int rd = extract32(insn, 0, 5); 7567 int pos = imm4 << 3; 7568 TCGv_i64 tcg_resl, tcg_resh; 7569 7570 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7571 unallocated_encoding(s); 7572 return; 7573 } 7574 7575 if (!fp_access_check(s)) { 7576 return; 7577 } 7578 7579 tcg_resh = tcg_temp_new_i64(); 7580 tcg_resl = tcg_temp_new_i64(); 7581 7582 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7583 * either extracting 128 bits from a 128:128 concatenation, or 7584 * extracting 64 bits from a 64:64 concatenation. 7585 */ 7586 if (!is_q) { 7587 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7588 if (pos != 0) { 7589 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7590 do_ext64(s, tcg_resh, tcg_resl, pos); 7591 } 7592 } else { 7593 TCGv_i64 tcg_hh; 7594 typedef struct { 7595 int reg; 7596 int elt; 7597 } EltPosns; 7598 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7599 EltPosns *elt = eltposns; 7600 7601 if (pos >= 64) { 7602 elt++; 7603 pos -= 64; 7604 } 7605 7606 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7607 elt++; 7608 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7609 elt++; 7610 if (pos != 0) { 7611 do_ext64(s, tcg_resh, tcg_resl, pos); 7612 tcg_hh = tcg_temp_new_i64(); 7613 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7614 do_ext64(s, tcg_hh, tcg_resh, pos); 7615 tcg_temp_free_i64(tcg_hh); 7616 } 7617 } 7618 7619 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7620 tcg_temp_free_i64(tcg_resl); 7621 if (is_q) { 7622 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7623 } 7624 tcg_temp_free_i64(tcg_resh); 7625 clear_vec_high(s, is_q, rd); 7626 } 7627 7628 /* TBL/TBX 7629 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7630 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7631 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7632 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7633 */ 7634 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7635 { 7636 int op2 = extract32(insn, 22, 2); 7637 int is_q = extract32(insn, 30, 1); 7638 int rm = extract32(insn, 16, 5); 7639 int rn = extract32(insn, 5, 5); 7640 int rd = extract32(insn, 0, 5); 7641 int is_tbx = extract32(insn, 12, 1); 7642 int len = (extract32(insn, 13, 2) + 1) * 16; 7643 7644 if (op2 != 0) { 7645 unallocated_encoding(s); 7646 return; 7647 } 7648 7649 if (!fp_access_check(s)) { 7650 return; 7651 } 7652 7653 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7654 vec_full_reg_offset(s, rm), cpu_env, 7655 is_q ? 16 : 8, vec_full_reg_size(s), 7656 (len << 6) | (is_tbx << 5) | rn, 7657 gen_helper_simd_tblx); 7658 } 7659 7660 /* ZIP/UZP/TRN 7661 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7662 * +---+---+-------------+------+---+------+---+------------------+------+ 7663 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7664 * +---+---+-------------+------+---+------+---+------------------+------+ 7665 */ 7666 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7667 { 7668 int rd = extract32(insn, 0, 5); 7669 int rn = extract32(insn, 5, 5); 7670 int rm = extract32(insn, 16, 5); 7671 int size = extract32(insn, 22, 2); 7672 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7673 * bit 2 indicates 1 vs 2 variant of the insn. 7674 */ 7675 int opcode = extract32(insn, 12, 2); 7676 bool part = extract32(insn, 14, 1); 7677 bool is_q = extract32(insn, 30, 1); 7678 int esize = 8 << size; 7679 int i, ofs; 7680 int datasize = is_q ? 128 : 64; 7681 int elements = datasize / esize; 7682 TCGv_i64 tcg_res, tcg_resl, tcg_resh; 7683 7684 if (opcode == 0 || (size == 3 && !is_q)) { 7685 unallocated_encoding(s); 7686 return; 7687 } 7688 7689 if (!fp_access_check(s)) { 7690 return; 7691 } 7692 7693 tcg_resl = tcg_const_i64(0); 7694 tcg_resh = is_q ? tcg_const_i64(0) : NULL; 7695 tcg_res = tcg_temp_new_i64(); 7696 7697 for (i = 0; i < elements; i++) { 7698 switch (opcode) { 7699 case 1: /* UZP1/2 */ 7700 { 7701 int midpoint = elements / 2; 7702 if (i < midpoint) { 7703 read_vec_element(s, tcg_res, rn, 2 * i + part, size); 7704 } else { 7705 read_vec_element(s, tcg_res, rm, 7706 2 * (i - midpoint) + part, size); 7707 } 7708 break; 7709 } 7710 case 2: /* TRN1/2 */ 7711 if (i & 1) { 7712 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size); 7713 } else { 7714 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size); 7715 } 7716 break; 7717 case 3: /* ZIP1/2 */ 7718 { 7719 int base = part * elements / 2; 7720 if (i & 1) { 7721 read_vec_element(s, tcg_res, rm, base + (i >> 1), size); 7722 } else { 7723 read_vec_element(s, tcg_res, rn, base + (i >> 1), size); 7724 } 7725 break; 7726 } 7727 default: 7728 g_assert_not_reached(); 7729 } 7730 7731 ofs = i * esize; 7732 if (ofs < 64) { 7733 tcg_gen_shli_i64(tcg_res, tcg_res, ofs); 7734 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res); 7735 } else { 7736 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64); 7737 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res); 7738 } 7739 } 7740 7741 tcg_temp_free_i64(tcg_res); 7742 7743 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7744 tcg_temp_free_i64(tcg_resl); 7745 7746 if (is_q) { 7747 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7748 tcg_temp_free_i64(tcg_resh); 7749 } 7750 clear_vec_high(s, is_q, rd); 7751 } 7752 7753 /* 7754 * do_reduction_op helper 7755 * 7756 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7757 * important for correct NaN propagation that we do these 7758 * operations in exactly the order specified by the pseudocode. 7759 * 7760 * This is a recursive function, TCG temps should be freed by the 7761 * calling function once it is done with the values. 7762 */ 7763 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7764 int esize, int size, int vmap, TCGv_ptr fpst) 7765 { 7766 if (esize == size) { 7767 int element; 7768 MemOp msize = esize == 16 ? MO_16 : MO_32; 7769 TCGv_i32 tcg_elem; 7770 7771 /* We should have one register left here */ 7772 assert(ctpop8(vmap) == 1); 7773 element = ctz32(vmap); 7774 assert(element < 8); 7775 7776 tcg_elem = tcg_temp_new_i32(); 7777 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7778 return tcg_elem; 7779 } else { 7780 int bits = size / 2; 7781 int shift = ctpop8(vmap) / 2; 7782 int vmap_lo = (vmap >> shift) & vmap; 7783 int vmap_hi = (vmap & ~vmap_lo); 7784 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7785 7786 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7787 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7788 tcg_res = tcg_temp_new_i32(); 7789 7790 switch (fpopcode) { 7791 case 0x0c: /* fmaxnmv half-precision */ 7792 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7793 break; 7794 case 0x0f: /* fmaxv half-precision */ 7795 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7796 break; 7797 case 0x1c: /* fminnmv half-precision */ 7798 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7799 break; 7800 case 0x1f: /* fminv half-precision */ 7801 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7802 break; 7803 case 0x2c: /* fmaxnmv */ 7804 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7805 break; 7806 case 0x2f: /* fmaxv */ 7807 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7808 break; 7809 case 0x3c: /* fminnmv */ 7810 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7811 break; 7812 case 0x3f: /* fminv */ 7813 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7814 break; 7815 default: 7816 g_assert_not_reached(); 7817 } 7818 7819 tcg_temp_free_i32(tcg_hi); 7820 tcg_temp_free_i32(tcg_lo); 7821 return tcg_res; 7822 } 7823 } 7824 7825 /* AdvSIMD across lanes 7826 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7827 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7828 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7829 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7830 */ 7831 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7832 { 7833 int rd = extract32(insn, 0, 5); 7834 int rn = extract32(insn, 5, 5); 7835 int size = extract32(insn, 22, 2); 7836 int opcode = extract32(insn, 12, 5); 7837 bool is_q = extract32(insn, 30, 1); 7838 bool is_u = extract32(insn, 29, 1); 7839 bool is_fp = false; 7840 bool is_min = false; 7841 int esize; 7842 int elements; 7843 int i; 7844 TCGv_i64 tcg_res, tcg_elt; 7845 7846 switch (opcode) { 7847 case 0x1b: /* ADDV */ 7848 if (is_u) { 7849 unallocated_encoding(s); 7850 return; 7851 } 7852 /* fall through */ 7853 case 0x3: /* SADDLV, UADDLV */ 7854 case 0xa: /* SMAXV, UMAXV */ 7855 case 0x1a: /* SMINV, UMINV */ 7856 if (size == 3 || (size == 2 && !is_q)) { 7857 unallocated_encoding(s); 7858 return; 7859 } 7860 break; 7861 case 0xc: /* FMAXNMV, FMINNMV */ 7862 case 0xf: /* FMAXV, FMINV */ 7863 /* Bit 1 of size field encodes min vs max and the actual size 7864 * depends on the encoding of the U bit. If not set (and FP16 7865 * enabled) then we do half-precision float instead of single 7866 * precision. 7867 */ 7868 is_min = extract32(size, 1, 1); 7869 is_fp = true; 7870 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7871 size = 1; 7872 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7873 unallocated_encoding(s); 7874 return; 7875 } else { 7876 size = 2; 7877 } 7878 break; 7879 default: 7880 unallocated_encoding(s); 7881 return; 7882 } 7883 7884 if (!fp_access_check(s)) { 7885 return; 7886 } 7887 7888 esize = 8 << size; 7889 elements = (is_q ? 128 : 64) / esize; 7890 7891 tcg_res = tcg_temp_new_i64(); 7892 tcg_elt = tcg_temp_new_i64(); 7893 7894 /* These instructions operate across all lanes of a vector 7895 * to produce a single result. We can guarantee that a 64 7896 * bit intermediate is sufficient: 7897 * + for [US]ADDLV the maximum element size is 32 bits, and 7898 * the result type is 64 bits 7899 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7900 * same as the element size, which is 32 bits at most 7901 * For the integer operations we can choose to work at 64 7902 * or 32 bits and truncate at the end; for simplicity 7903 * we use 64 bits always. The floating point 7904 * ops do require 32 bit intermediates, though. 7905 */ 7906 if (!is_fp) { 7907 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7908 7909 for (i = 1; i < elements; i++) { 7910 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7911 7912 switch (opcode) { 7913 case 0x03: /* SADDLV / UADDLV */ 7914 case 0x1b: /* ADDV */ 7915 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7916 break; 7917 case 0x0a: /* SMAXV / UMAXV */ 7918 if (is_u) { 7919 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7920 } else { 7921 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7922 } 7923 break; 7924 case 0x1a: /* SMINV / UMINV */ 7925 if (is_u) { 7926 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7927 } else { 7928 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7929 } 7930 break; 7931 default: 7932 g_assert_not_reached(); 7933 } 7934 7935 } 7936 } else { 7937 /* Floating point vector reduction ops which work across 32 7938 * bit (single) or 16 bit (half-precision) intermediates. 7939 * Note that correct NaN propagation requires that we do these 7940 * operations in exactly the order specified by the pseudocode. 7941 */ 7942 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7943 int fpopcode = opcode | is_min << 4 | is_u << 5; 7944 int vmap = (1 << elements) - 1; 7945 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7946 (is_q ? 128 : 64), vmap, fpst); 7947 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7948 tcg_temp_free_i32(tcg_res32); 7949 tcg_temp_free_ptr(fpst); 7950 } 7951 7952 tcg_temp_free_i64(tcg_elt); 7953 7954 /* Now truncate the result to the width required for the final output */ 7955 if (opcode == 0x03) { 7956 /* SADDLV, UADDLV: result is 2*esize */ 7957 size++; 7958 } 7959 7960 switch (size) { 7961 case 0: 7962 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7963 break; 7964 case 1: 7965 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7966 break; 7967 case 2: 7968 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7969 break; 7970 case 3: 7971 break; 7972 default: 7973 g_assert_not_reached(); 7974 } 7975 7976 write_fp_dreg(s, rd, tcg_res); 7977 tcg_temp_free_i64(tcg_res); 7978 } 7979 7980 /* DUP (Element, Vector) 7981 * 7982 * 31 30 29 21 20 16 15 10 9 5 4 0 7983 * +---+---+-------------------+--------+-------------+------+------+ 7984 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7985 * +---+---+-------------------+--------+-------------+------+------+ 7986 * 7987 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7988 */ 7989 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7990 int imm5) 7991 { 7992 int size = ctz32(imm5); 7993 int index; 7994 7995 if (size > 3 || (size == 3 && !is_q)) { 7996 unallocated_encoding(s); 7997 return; 7998 } 7999 8000 if (!fp_access_check(s)) { 8001 return; 8002 } 8003 8004 index = imm5 >> (size + 1); 8005 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 8006 vec_reg_offset(s, rn, index, size), 8007 is_q ? 16 : 8, vec_full_reg_size(s)); 8008 } 8009 8010 /* DUP (element, scalar) 8011 * 31 21 20 16 15 10 9 5 4 0 8012 * +-----------------------+--------+-------------+------+------+ 8013 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 8014 * +-----------------------+--------+-------------+------+------+ 8015 */ 8016 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 8017 int imm5) 8018 { 8019 int size = ctz32(imm5); 8020 int index; 8021 TCGv_i64 tmp; 8022 8023 if (size > 3) { 8024 unallocated_encoding(s); 8025 return; 8026 } 8027 8028 if (!fp_access_check(s)) { 8029 return; 8030 } 8031 8032 index = imm5 >> (size + 1); 8033 8034 /* This instruction just extracts the specified element and 8035 * zero-extends it into the bottom of the destination register. 8036 */ 8037 tmp = tcg_temp_new_i64(); 8038 read_vec_element(s, tmp, rn, index, size); 8039 write_fp_dreg(s, rd, tmp); 8040 tcg_temp_free_i64(tmp); 8041 } 8042 8043 /* DUP (General) 8044 * 8045 * 31 30 29 21 20 16 15 10 9 5 4 0 8046 * +---+---+-------------------+--------+-------------+------+------+ 8047 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 8048 * +---+---+-------------------+--------+-------------+------+------+ 8049 * 8050 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 8051 */ 8052 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 8053 int imm5) 8054 { 8055 int size = ctz32(imm5); 8056 uint32_t dofs, oprsz, maxsz; 8057 8058 if (size > 3 || ((size == 3) && !is_q)) { 8059 unallocated_encoding(s); 8060 return; 8061 } 8062 8063 if (!fp_access_check(s)) { 8064 return; 8065 } 8066 8067 dofs = vec_full_reg_offset(s, rd); 8068 oprsz = is_q ? 16 : 8; 8069 maxsz = vec_full_reg_size(s); 8070 8071 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 8072 } 8073 8074 /* INS (Element) 8075 * 8076 * 31 21 20 16 15 14 11 10 9 5 4 0 8077 * +-----------------------+--------+------------+---+------+------+ 8078 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8079 * +-----------------------+--------+------------+---+------+------+ 8080 * 8081 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 8082 * index: encoded in imm5<4:size+1> 8083 */ 8084 static void handle_simd_inse(DisasContext *s, int rd, int rn, 8085 int imm4, int imm5) 8086 { 8087 int size = ctz32(imm5); 8088 int src_index, dst_index; 8089 TCGv_i64 tmp; 8090 8091 if (size > 3) { 8092 unallocated_encoding(s); 8093 return; 8094 } 8095 8096 if (!fp_access_check(s)) { 8097 return; 8098 } 8099 8100 dst_index = extract32(imm5, 1+size, 5); 8101 src_index = extract32(imm4, size, 4); 8102 8103 tmp = tcg_temp_new_i64(); 8104 8105 read_vec_element(s, tmp, rn, src_index, size); 8106 write_vec_element(s, tmp, rd, dst_index, size); 8107 8108 tcg_temp_free_i64(tmp); 8109 8110 /* INS is considered a 128-bit write for SVE. */ 8111 clear_vec_high(s, true, rd); 8112 } 8113 8114 8115 /* INS (General) 8116 * 8117 * 31 21 20 16 15 10 9 5 4 0 8118 * +-----------------------+--------+-------------+------+------+ 8119 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 8120 * +-----------------------+--------+-------------+------+------+ 8121 * 8122 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 8123 * index: encoded in imm5<4:size+1> 8124 */ 8125 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 8126 { 8127 int size = ctz32(imm5); 8128 int idx; 8129 8130 if (size > 3) { 8131 unallocated_encoding(s); 8132 return; 8133 } 8134 8135 if (!fp_access_check(s)) { 8136 return; 8137 } 8138 8139 idx = extract32(imm5, 1 + size, 4 - size); 8140 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 8141 8142 /* INS is considered a 128-bit write for SVE. */ 8143 clear_vec_high(s, true, rd); 8144 } 8145 8146 /* 8147 * UMOV (General) 8148 * SMOV (General) 8149 * 8150 * 31 30 29 21 20 16 15 12 10 9 5 4 0 8151 * +---+---+-------------------+--------+-------------+------+------+ 8152 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 8153 * +---+---+-------------------+--------+-------------+------+------+ 8154 * 8155 * U: unsigned when set 8156 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 8157 */ 8158 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 8159 int rn, int rd, int imm5) 8160 { 8161 int size = ctz32(imm5); 8162 int element; 8163 TCGv_i64 tcg_rd; 8164 8165 /* Check for UnallocatedEncodings */ 8166 if (is_signed) { 8167 if (size > 2 || (size == 2 && !is_q)) { 8168 unallocated_encoding(s); 8169 return; 8170 } 8171 } else { 8172 if (size > 3 8173 || (size < 3 && is_q) 8174 || (size == 3 && !is_q)) { 8175 unallocated_encoding(s); 8176 return; 8177 } 8178 } 8179 8180 if (!fp_access_check(s)) { 8181 return; 8182 } 8183 8184 element = extract32(imm5, 1+size, 4); 8185 8186 tcg_rd = cpu_reg(s, rd); 8187 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 8188 if (is_signed && !is_q) { 8189 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 8190 } 8191 } 8192 8193 /* AdvSIMD copy 8194 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8195 * +---+---+----+-----------------+------+---+------+---+------+------+ 8196 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8197 * +---+---+----+-----------------+------+---+------+---+------+------+ 8198 */ 8199 static void disas_simd_copy(DisasContext *s, uint32_t insn) 8200 { 8201 int rd = extract32(insn, 0, 5); 8202 int rn = extract32(insn, 5, 5); 8203 int imm4 = extract32(insn, 11, 4); 8204 int op = extract32(insn, 29, 1); 8205 int is_q = extract32(insn, 30, 1); 8206 int imm5 = extract32(insn, 16, 5); 8207 8208 if (op) { 8209 if (is_q) { 8210 /* INS (element) */ 8211 handle_simd_inse(s, rd, rn, imm4, imm5); 8212 } else { 8213 unallocated_encoding(s); 8214 } 8215 } else { 8216 switch (imm4) { 8217 case 0: 8218 /* DUP (element - vector) */ 8219 handle_simd_dupe(s, is_q, rd, rn, imm5); 8220 break; 8221 case 1: 8222 /* DUP (general) */ 8223 handle_simd_dupg(s, is_q, rd, rn, imm5); 8224 break; 8225 case 3: 8226 if (is_q) { 8227 /* INS (general) */ 8228 handle_simd_insg(s, rd, rn, imm5); 8229 } else { 8230 unallocated_encoding(s); 8231 } 8232 break; 8233 case 5: 8234 case 7: 8235 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 8236 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 8237 break; 8238 default: 8239 unallocated_encoding(s); 8240 break; 8241 } 8242 } 8243 } 8244 8245 /* AdvSIMD modified immediate 8246 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8247 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8248 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8249 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8250 * 8251 * There are a number of operations that can be carried out here: 8252 * MOVI - move (shifted) imm into register 8253 * MVNI - move inverted (shifted) imm into register 8254 * ORR - bitwise OR of (shifted) imm with register 8255 * BIC - bitwise clear of (shifted) imm with register 8256 * With ARMv8.2 we also have: 8257 * FMOV half-precision 8258 */ 8259 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8260 { 8261 int rd = extract32(insn, 0, 5); 8262 int cmode = extract32(insn, 12, 4); 8263 int o2 = extract32(insn, 11, 1); 8264 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8265 bool is_neg = extract32(insn, 29, 1); 8266 bool is_q = extract32(insn, 30, 1); 8267 uint64_t imm = 0; 8268 8269 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8270 /* Check for FMOV (vector, immediate) - half-precision */ 8271 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8272 unallocated_encoding(s); 8273 return; 8274 } 8275 } 8276 8277 if (!fp_access_check(s)) { 8278 return; 8279 } 8280 8281 if (cmode == 15 && o2 && !is_neg) { 8282 /* FMOV (vector, immediate) - half-precision */ 8283 imm = vfp_expand_imm(MO_16, abcdefgh); 8284 /* now duplicate across the lanes */ 8285 imm = dup_const(MO_16, imm); 8286 } else { 8287 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8288 } 8289 8290 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8291 /* MOVI or MVNI, with MVNI negation handled above. */ 8292 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8293 vec_full_reg_size(s), imm); 8294 } else { 8295 /* ORR or BIC, with BIC negation to AND handled above. */ 8296 if (is_neg) { 8297 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8298 } else { 8299 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8300 } 8301 } 8302 } 8303 8304 /* AdvSIMD scalar copy 8305 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8306 * +-----+----+-----------------+------+---+------+---+------+------+ 8307 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8308 * +-----+----+-----------------+------+---+------+---+------+------+ 8309 */ 8310 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8311 { 8312 int rd = extract32(insn, 0, 5); 8313 int rn = extract32(insn, 5, 5); 8314 int imm4 = extract32(insn, 11, 4); 8315 int imm5 = extract32(insn, 16, 5); 8316 int op = extract32(insn, 29, 1); 8317 8318 if (op != 0 || imm4 != 0) { 8319 unallocated_encoding(s); 8320 return; 8321 } 8322 8323 /* DUP (element, scalar) */ 8324 handle_simd_dupes(s, rd, rn, imm5); 8325 } 8326 8327 /* AdvSIMD scalar pairwise 8328 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8329 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8330 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8331 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8332 */ 8333 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8334 { 8335 int u = extract32(insn, 29, 1); 8336 int size = extract32(insn, 22, 2); 8337 int opcode = extract32(insn, 12, 5); 8338 int rn = extract32(insn, 5, 5); 8339 int rd = extract32(insn, 0, 5); 8340 TCGv_ptr fpst; 8341 8342 /* For some ops (the FP ones), size[1] is part of the encoding. 8343 * For ADDP strictly it is not but size[1] is always 1 for valid 8344 * encodings. 8345 */ 8346 opcode |= (extract32(size, 1, 1) << 5); 8347 8348 switch (opcode) { 8349 case 0x3b: /* ADDP */ 8350 if (u || size != 3) { 8351 unallocated_encoding(s); 8352 return; 8353 } 8354 if (!fp_access_check(s)) { 8355 return; 8356 } 8357 8358 fpst = NULL; 8359 break; 8360 case 0xc: /* FMAXNMP */ 8361 case 0xd: /* FADDP */ 8362 case 0xf: /* FMAXP */ 8363 case 0x2c: /* FMINNMP */ 8364 case 0x2f: /* FMINP */ 8365 /* FP op, size[0] is 32 or 64 bit*/ 8366 if (!u) { 8367 if (!dc_isar_feature(aa64_fp16, s)) { 8368 unallocated_encoding(s); 8369 return; 8370 } else { 8371 size = MO_16; 8372 } 8373 } else { 8374 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8375 } 8376 8377 if (!fp_access_check(s)) { 8378 return; 8379 } 8380 8381 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8382 break; 8383 default: 8384 unallocated_encoding(s); 8385 return; 8386 } 8387 8388 if (size == MO_64) { 8389 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8390 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8391 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8392 8393 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8394 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8395 8396 switch (opcode) { 8397 case 0x3b: /* ADDP */ 8398 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8399 break; 8400 case 0xc: /* FMAXNMP */ 8401 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8402 break; 8403 case 0xd: /* FADDP */ 8404 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8405 break; 8406 case 0xf: /* FMAXP */ 8407 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8408 break; 8409 case 0x2c: /* FMINNMP */ 8410 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8411 break; 8412 case 0x2f: /* FMINP */ 8413 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8414 break; 8415 default: 8416 g_assert_not_reached(); 8417 } 8418 8419 write_fp_dreg(s, rd, tcg_res); 8420 8421 tcg_temp_free_i64(tcg_op1); 8422 tcg_temp_free_i64(tcg_op2); 8423 tcg_temp_free_i64(tcg_res); 8424 } else { 8425 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8426 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8427 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8428 8429 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8430 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8431 8432 if (size == MO_16) { 8433 switch (opcode) { 8434 case 0xc: /* FMAXNMP */ 8435 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8436 break; 8437 case 0xd: /* FADDP */ 8438 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8439 break; 8440 case 0xf: /* FMAXP */ 8441 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8442 break; 8443 case 0x2c: /* FMINNMP */ 8444 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8445 break; 8446 case 0x2f: /* FMINP */ 8447 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8448 break; 8449 default: 8450 g_assert_not_reached(); 8451 } 8452 } else { 8453 switch (opcode) { 8454 case 0xc: /* FMAXNMP */ 8455 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8456 break; 8457 case 0xd: /* FADDP */ 8458 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8459 break; 8460 case 0xf: /* FMAXP */ 8461 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8462 break; 8463 case 0x2c: /* FMINNMP */ 8464 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8465 break; 8466 case 0x2f: /* FMINP */ 8467 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8468 break; 8469 default: 8470 g_assert_not_reached(); 8471 } 8472 } 8473 8474 write_fp_sreg(s, rd, tcg_res); 8475 8476 tcg_temp_free_i32(tcg_op1); 8477 tcg_temp_free_i32(tcg_op2); 8478 tcg_temp_free_i32(tcg_res); 8479 } 8480 8481 if (fpst) { 8482 tcg_temp_free_ptr(fpst); 8483 } 8484 } 8485 8486 /* 8487 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8488 * 8489 * This code is handles the common shifting code and is used by both 8490 * the vector and scalar code. 8491 */ 8492 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8493 TCGv_i64 tcg_rnd, bool accumulate, 8494 bool is_u, int size, int shift) 8495 { 8496 bool extended_result = false; 8497 bool round = tcg_rnd != NULL; 8498 int ext_lshift = 0; 8499 TCGv_i64 tcg_src_hi; 8500 8501 if (round && size == 3) { 8502 extended_result = true; 8503 ext_lshift = 64 - shift; 8504 tcg_src_hi = tcg_temp_new_i64(); 8505 } else if (shift == 64) { 8506 if (!accumulate && is_u) { 8507 /* result is zero */ 8508 tcg_gen_movi_i64(tcg_res, 0); 8509 return; 8510 } 8511 } 8512 8513 /* Deal with the rounding step */ 8514 if (round) { 8515 if (extended_result) { 8516 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8517 if (!is_u) { 8518 /* take care of sign extending tcg_res */ 8519 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8520 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8521 tcg_src, tcg_src_hi, 8522 tcg_rnd, tcg_zero); 8523 } else { 8524 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8525 tcg_src, tcg_zero, 8526 tcg_rnd, tcg_zero); 8527 } 8528 } else { 8529 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8530 } 8531 } 8532 8533 /* Now do the shift right */ 8534 if (round && extended_result) { 8535 /* extended case, >64 bit precision required */ 8536 if (ext_lshift == 0) { 8537 /* special case, only high bits matter */ 8538 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8539 } else { 8540 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8541 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8542 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8543 } 8544 } else { 8545 if (is_u) { 8546 if (shift == 64) { 8547 /* essentially shifting in 64 zeros */ 8548 tcg_gen_movi_i64(tcg_src, 0); 8549 } else { 8550 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8551 } 8552 } else { 8553 if (shift == 64) { 8554 /* effectively extending the sign-bit */ 8555 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8556 } else { 8557 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8558 } 8559 } 8560 } 8561 8562 if (accumulate) { 8563 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8564 } else { 8565 tcg_gen_mov_i64(tcg_res, tcg_src); 8566 } 8567 8568 if (extended_result) { 8569 tcg_temp_free_i64(tcg_src_hi); 8570 } 8571 } 8572 8573 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8574 static void handle_scalar_simd_shri(DisasContext *s, 8575 bool is_u, int immh, int immb, 8576 int opcode, int rn, int rd) 8577 { 8578 const int size = 3; 8579 int immhb = immh << 3 | immb; 8580 int shift = 2 * (8 << size) - immhb; 8581 bool accumulate = false; 8582 bool round = false; 8583 bool insert = false; 8584 TCGv_i64 tcg_rn; 8585 TCGv_i64 tcg_rd; 8586 TCGv_i64 tcg_round; 8587 8588 if (!extract32(immh, 3, 1)) { 8589 unallocated_encoding(s); 8590 return; 8591 } 8592 8593 if (!fp_access_check(s)) { 8594 return; 8595 } 8596 8597 switch (opcode) { 8598 case 0x02: /* SSRA / USRA (accumulate) */ 8599 accumulate = true; 8600 break; 8601 case 0x04: /* SRSHR / URSHR (rounding) */ 8602 round = true; 8603 break; 8604 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8605 accumulate = round = true; 8606 break; 8607 case 0x08: /* SRI */ 8608 insert = true; 8609 break; 8610 } 8611 8612 if (round) { 8613 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8614 } else { 8615 tcg_round = NULL; 8616 } 8617 8618 tcg_rn = read_fp_dreg(s, rn); 8619 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8620 8621 if (insert) { 8622 /* shift count same as element size is valid but does nothing; 8623 * special case to avoid potential shift by 64. 8624 */ 8625 int esize = 8 << size; 8626 if (shift != esize) { 8627 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8628 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8629 } 8630 } else { 8631 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8632 accumulate, is_u, size, shift); 8633 } 8634 8635 write_fp_dreg(s, rd, tcg_rd); 8636 8637 tcg_temp_free_i64(tcg_rn); 8638 tcg_temp_free_i64(tcg_rd); 8639 } 8640 8641 /* SHL/SLI - Scalar shift left */ 8642 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8643 int immh, int immb, int opcode, 8644 int rn, int rd) 8645 { 8646 int size = 32 - clz32(immh) - 1; 8647 int immhb = immh << 3 | immb; 8648 int shift = immhb - (8 << size); 8649 TCGv_i64 tcg_rn; 8650 TCGv_i64 tcg_rd; 8651 8652 if (!extract32(immh, 3, 1)) { 8653 unallocated_encoding(s); 8654 return; 8655 } 8656 8657 if (!fp_access_check(s)) { 8658 return; 8659 } 8660 8661 tcg_rn = read_fp_dreg(s, rn); 8662 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8663 8664 if (insert) { 8665 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8666 } else { 8667 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8668 } 8669 8670 write_fp_dreg(s, rd, tcg_rd); 8671 8672 tcg_temp_free_i64(tcg_rn); 8673 tcg_temp_free_i64(tcg_rd); 8674 } 8675 8676 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8677 * (signed/unsigned) narrowing */ 8678 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8679 bool is_u_shift, bool is_u_narrow, 8680 int immh, int immb, int opcode, 8681 int rn, int rd) 8682 { 8683 int immhb = immh << 3 | immb; 8684 int size = 32 - clz32(immh) - 1; 8685 int esize = 8 << size; 8686 int shift = (2 * esize) - immhb; 8687 int elements = is_scalar ? 1 : (64 / esize); 8688 bool round = extract32(opcode, 0, 1); 8689 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8690 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8691 TCGv_i32 tcg_rd_narrowed; 8692 TCGv_i64 tcg_final; 8693 8694 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8695 { gen_helper_neon_narrow_sat_s8, 8696 gen_helper_neon_unarrow_sat8 }, 8697 { gen_helper_neon_narrow_sat_s16, 8698 gen_helper_neon_unarrow_sat16 }, 8699 { gen_helper_neon_narrow_sat_s32, 8700 gen_helper_neon_unarrow_sat32 }, 8701 { NULL, NULL }, 8702 }; 8703 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8704 gen_helper_neon_narrow_sat_u8, 8705 gen_helper_neon_narrow_sat_u16, 8706 gen_helper_neon_narrow_sat_u32, 8707 NULL 8708 }; 8709 NeonGenNarrowEnvFn *narrowfn; 8710 8711 int i; 8712 8713 assert(size < 4); 8714 8715 if (extract32(immh, 3, 1)) { 8716 unallocated_encoding(s); 8717 return; 8718 } 8719 8720 if (!fp_access_check(s)) { 8721 return; 8722 } 8723 8724 if (is_u_shift) { 8725 narrowfn = unsigned_narrow_fns[size]; 8726 } else { 8727 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8728 } 8729 8730 tcg_rn = tcg_temp_new_i64(); 8731 tcg_rd = tcg_temp_new_i64(); 8732 tcg_rd_narrowed = tcg_temp_new_i32(); 8733 tcg_final = tcg_const_i64(0); 8734 8735 if (round) { 8736 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8737 } else { 8738 tcg_round = NULL; 8739 } 8740 8741 for (i = 0; i < elements; i++) { 8742 read_vec_element(s, tcg_rn, rn, i, ldop); 8743 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8744 false, is_u_shift, size+1, shift); 8745 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8746 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8747 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8748 } 8749 8750 if (!is_q) { 8751 write_vec_element(s, tcg_final, rd, 0, MO_64); 8752 } else { 8753 write_vec_element(s, tcg_final, rd, 1, MO_64); 8754 } 8755 8756 tcg_temp_free_i64(tcg_rn); 8757 tcg_temp_free_i64(tcg_rd); 8758 tcg_temp_free_i32(tcg_rd_narrowed); 8759 tcg_temp_free_i64(tcg_final); 8760 8761 clear_vec_high(s, is_q, rd); 8762 } 8763 8764 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8765 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8766 bool src_unsigned, bool dst_unsigned, 8767 int immh, int immb, int rn, int rd) 8768 { 8769 int immhb = immh << 3 | immb; 8770 int size = 32 - clz32(immh) - 1; 8771 int shift = immhb - (8 << size); 8772 int pass; 8773 8774 assert(immh != 0); 8775 assert(!(scalar && is_q)); 8776 8777 if (!scalar) { 8778 if (!is_q && extract32(immh, 3, 1)) { 8779 unallocated_encoding(s); 8780 return; 8781 } 8782 8783 /* Since we use the variable-shift helpers we must 8784 * replicate the shift count into each element of 8785 * the tcg_shift value. 8786 */ 8787 switch (size) { 8788 case 0: 8789 shift |= shift << 8; 8790 /* fall through */ 8791 case 1: 8792 shift |= shift << 16; 8793 break; 8794 case 2: 8795 case 3: 8796 break; 8797 default: 8798 g_assert_not_reached(); 8799 } 8800 } 8801 8802 if (!fp_access_check(s)) { 8803 return; 8804 } 8805 8806 if (size == 3) { 8807 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8808 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8809 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8810 { NULL, gen_helper_neon_qshl_u64 }, 8811 }; 8812 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8813 int maxpass = is_q ? 2 : 1; 8814 8815 for (pass = 0; pass < maxpass; pass++) { 8816 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8817 8818 read_vec_element(s, tcg_op, rn, pass, MO_64); 8819 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8820 write_vec_element(s, tcg_op, rd, pass, MO_64); 8821 8822 tcg_temp_free_i64(tcg_op); 8823 } 8824 clear_vec_high(s, is_q, rd); 8825 } else { 8826 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8827 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8828 { 8829 { gen_helper_neon_qshl_s8, 8830 gen_helper_neon_qshl_s16, 8831 gen_helper_neon_qshl_s32 }, 8832 { gen_helper_neon_qshlu_s8, 8833 gen_helper_neon_qshlu_s16, 8834 gen_helper_neon_qshlu_s32 } 8835 }, { 8836 { NULL, NULL, NULL }, 8837 { gen_helper_neon_qshl_u8, 8838 gen_helper_neon_qshl_u16, 8839 gen_helper_neon_qshl_u32 } 8840 } 8841 }; 8842 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8843 MemOp memop = scalar ? size : MO_32; 8844 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8845 8846 for (pass = 0; pass < maxpass; pass++) { 8847 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8848 8849 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8850 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8851 if (scalar) { 8852 switch (size) { 8853 case 0: 8854 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8855 break; 8856 case 1: 8857 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8858 break; 8859 case 2: 8860 break; 8861 default: 8862 g_assert_not_reached(); 8863 } 8864 write_fp_sreg(s, rd, tcg_op); 8865 } else { 8866 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8867 } 8868 8869 tcg_temp_free_i32(tcg_op); 8870 } 8871 8872 if (!scalar) { 8873 clear_vec_high(s, is_q, rd); 8874 } 8875 } 8876 } 8877 8878 /* Common vector code for handling integer to FP conversion */ 8879 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8880 int elements, int is_signed, 8881 int fracbits, int size) 8882 { 8883 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8884 TCGv_i32 tcg_shift = NULL; 8885 8886 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8887 int pass; 8888 8889 if (fracbits || size == MO_64) { 8890 tcg_shift = tcg_constant_i32(fracbits); 8891 } 8892 8893 if (size == MO_64) { 8894 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8895 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8896 8897 for (pass = 0; pass < elements; pass++) { 8898 read_vec_element(s, tcg_int64, rn, pass, mop); 8899 8900 if (is_signed) { 8901 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8902 tcg_shift, tcg_fpst); 8903 } else { 8904 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8905 tcg_shift, tcg_fpst); 8906 } 8907 if (elements == 1) { 8908 write_fp_dreg(s, rd, tcg_double); 8909 } else { 8910 write_vec_element(s, tcg_double, rd, pass, MO_64); 8911 } 8912 } 8913 8914 tcg_temp_free_i64(tcg_int64); 8915 tcg_temp_free_i64(tcg_double); 8916 8917 } else { 8918 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8919 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8920 8921 for (pass = 0; pass < elements; pass++) { 8922 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8923 8924 switch (size) { 8925 case MO_32: 8926 if (fracbits) { 8927 if (is_signed) { 8928 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8929 tcg_shift, tcg_fpst); 8930 } else { 8931 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8932 tcg_shift, tcg_fpst); 8933 } 8934 } else { 8935 if (is_signed) { 8936 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8937 } else { 8938 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8939 } 8940 } 8941 break; 8942 case MO_16: 8943 if (fracbits) { 8944 if (is_signed) { 8945 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8946 tcg_shift, tcg_fpst); 8947 } else { 8948 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8949 tcg_shift, tcg_fpst); 8950 } 8951 } else { 8952 if (is_signed) { 8953 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8954 } else { 8955 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8956 } 8957 } 8958 break; 8959 default: 8960 g_assert_not_reached(); 8961 } 8962 8963 if (elements == 1) { 8964 write_fp_sreg(s, rd, tcg_float); 8965 } else { 8966 write_vec_element_i32(s, tcg_float, rd, pass, size); 8967 } 8968 } 8969 8970 tcg_temp_free_i32(tcg_int32); 8971 tcg_temp_free_i32(tcg_float); 8972 } 8973 8974 tcg_temp_free_ptr(tcg_fpst); 8975 8976 clear_vec_high(s, elements << size == 16, rd); 8977 } 8978 8979 /* UCVTF/SCVTF - Integer to FP conversion */ 8980 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8981 bool is_q, bool is_u, 8982 int immh, int immb, int opcode, 8983 int rn, int rd) 8984 { 8985 int size, elements, fracbits; 8986 int immhb = immh << 3 | immb; 8987 8988 if (immh & 8) { 8989 size = MO_64; 8990 if (!is_scalar && !is_q) { 8991 unallocated_encoding(s); 8992 return; 8993 } 8994 } else if (immh & 4) { 8995 size = MO_32; 8996 } else if (immh & 2) { 8997 size = MO_16; 8998 if (!dc_isar_feature(aa64_fp16, s)) { 8999 unallocated_encoding(s); 9000 return; 9001 } 9002 } else { 9003 /* immh == 0 would be a failure of the decode logic */ 9004 g_assert(immh == 1); 9005 unallocated_encoding(s); 9006 return; 9007 } 9008 9009 if (is_scalar) { 9010 elements = 1; 9011 } else { 9012 elements = (8 << is_q) >> size; 9013 } 9014 fracbits = (16 << size) - immhb; 9015 9016 if (!fp_access_check(s)) { 9017 return; 9018 } 9019 9020 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9021 } 9022 9023 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9024 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9025 bool is_q, bool is_u, 9026 int immh, int immb, int rn, int rd) 9027 { 9028 int immhb = immh << 3 | immb; 9029 int pass, size, fracbits; 9030 TCGv_ptr tcg_fpstatus; 9031 TCGv_i32 tcg_rmode, tcg_shift; 9032 9033 if (immh & 0x8) { 9034 size = MO_64; 9035 if (!is_scalar && !is_q) { 9036 unallocated_encoding(s); 9037 return; 9038 } 9039 } else if (immh & 0x4) { 9040 size = MO_32; 9041 } else if (immh & 0x2) { 9042 size = MO_16; 9043 if (!dc_isar_feature(aa64_fp16, s)) { 9044 unallocated_encoding(s); 9045 return; 9046 } 9047 } else { 9048 /* Should have split out AdvSIMD modified immediate earlier. */ 9049 assert(immh == 1); 9050 unallocated_encoding(s); 9051 return; 9052 } 9053 9054 if (!fp_access_check(s)) { 9055 return; 9056 } 9057 9058 assert(!(is_scalar && is_q)); 9059 9060 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO)); 9061 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9062 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 9063 fracbits = (16 << size) - immhb; 9064 tcg_shift = tcg_constant_i32(fracbits); 9065 9066 if (size == MO_64) { 9067 int maxpass = is_scalar ? 1 : 2; 9068 9069 for (pass = 0; pass < maxpass; pass++) { 9070 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9071 9072 read_vec_element(s, tcg_op, rn, pass, MO_64); 9073 if (is_u) { 9074 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9075 } else { 9076 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9077 } 9078 write_vec_element(s, tcg_op, rd, pass, MO_64); 9079 tcg_temp_free_i64(tcg_op); 9080 } 9081 clear_vec_high(s, is_q, rd); 9082 } else { 9083 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9084 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9085 9086 switch (size) { 9087 case MO_16: 9088 if (is_u) { 9089 fn = gen_helper_vfp_touhh; 9090 } else { 9091 fn = gen_helper_vfp_toshh; 9092 } 9093 break; 9094 case MO_32: 9095 if (is_u) { 9096 fn = gen_helper_vfp_touls; 9097 } else { 9098 fn = gen_helper_vfp_tosls; 9099 } 9100 break; 9101 default: 9102 g_assert_not_reached(); 9103 } 9104 9105 for (pass = 0; pass < maxpass; pass++) { 9106 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9107 9108 read_vec_element_i32(s, tcg_op, rn, pass, size); 9109 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9110 if (is_scalar) { 9111 write_fp_sreg(s, rd, tcg_op); 9112 } else { 9113 write_vec_element_i32(s, tcg_op, rd, pass, size); 9114 } 9115 tcg_temp_free_i32(tcg_op); 9116 } 9117 if (!is_scalar) { 9118 clear_vec_high(s, is_q, rd); 9119 } 9120 } 9121 9122 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 9123 tcg_temp_free_ptr(tcg_fpstatus); 9124 tcg_temp_free_i32(tcg_rmode); 9125 } 9126 9127 /* AdvSIMD scalar shift by immediate 9128 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9129 * +-----+---+-------------+------+------+--------+---+------+------+ 9130 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9131 * +-----+---+-------------+------+------+--------+---+------+------+ 9132 * 9133 * This is the scalar version so it works on a fixed sized registers 9134 */ 9135 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9136 { 9137 int rd = extract32(insn, 0, 5); 9138 int rn = extract32(insn, 5, 5); 9139 int opcode = extract32(insn, 11, 5); 9140 int immb = extract32(insn, 16, 3); 9141 int immh = extract32(insn, 19, 4); 9142 bool is_u = extract32(insn, 29, 1); 9143 9144 if (immh == 0) { 9145 unallocated_encoding(s); 9146 return; 9147 } 9148 9149 switch (opcode) { 9150 case 0x08: /* SRI */ 9151 if (!is_u) { 9152 unallocated_encoding(s); 9153 return; 9154 } 9155 /* fall through */ 9156 case 0x00: /* SSHR / USHR */ 9157 case 0x02: /* SSRA / USRA */ 9158 case 0x04: /* SRSHR / URSHR */ 9159 case 0x06: /* SRSRA / URSRA */ 9160 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9161 break; 9162 case 0x0a: /* SHL / SLI */ 9163 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9164 break; 9165 case 0x1c: /* SCVTF, UCVTF */ 9166 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9167 opcode, rn, rd); 9168 break; 9169 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9170 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9171 if (!is_u) { 9172 unallocated_encoding(s); 9173 return; 9174 } 9175 handle_vec_simd_sqshrn(s, true, false, false, true, 9176 immh, immb, opcode, rn, rd); 9177 break; 9178 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9179 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9180 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9181 immh, immb, opcode, rn, rd); 9182 break; 9183 case 0xc: /* SQSHLU */ 9184 if (!is_u) { 9185 unallocated_encoding(s); 9186 return; 9187 } 9188 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9189 break; 9190 case 0xe: /* SQSHL, UQSHL */ 9191 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9192 break; 9193 case 0x1f: /* FCVTZS, FCVTZU */ 9194 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9195 break; 9196 default: 9197 unallocated_encoding(s); 9198 break; 9199 } 9200 } 9201 9202 /* AdvSIMD scalar three different 9203 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9204 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9205 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9206 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9207 */ 9208 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9209 { 9210 bool is_u = extract32(insn, 29, 1); 9211 int size = extract32(insn, 22, 2); 9212 int opcode = extract32(insn, 12, 4); 9213 int rm = extract32(insn, 16, 5); 9214 int rn = extract32(insn, 5, 5); 9215 int rd = extract32(insn, 0, 5); 9216 9217 if (is_u) { 9218 unallocated_encoding(s); 9219 return; 9220 } 9221 9222 switch (opcode) { 9223 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9224 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9225 case 0xd: /* SQDMULL, SQDMULL2 */ 9226 if (size == 0 || size == 3) { 9227 unallocated_encoding(s); 9228 return; 9229 } 9230 break; 9231 default: 9232 unallocated_encoding(s); 9233 return; 9234 } 9235 9236 if (!fp_access_check(s)) { 9237 return; 9238 } 9239 9240 if (size == 2) { 9241 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9242 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9243 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9244 9245 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9246 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9247 9248 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9249 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 9250 9251 switch (opcode) { 9252 case 0xd: /* SQDMULL, SQDMULL2 */ 9253 break; 9254 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9255 tcg_gen_neg_i64(tcg_res, tcg_res); 9256 /* fall through */ 9257 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9258 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9259 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 9260 tcg_res, tcg_op1); 9261 break; 9262 default: 9263 g_assert_not_reached(); 9264 } 9265 9266 write_fp_dreg(s, rd, tcg_res); 9267 9268 tcg_temp_free_i64(tcg_op1); 9269 tcg_temp_free_i64(tcg_op2); 9270 tcg_temp_free_i64(tcg_res); 9271 } else { 9272 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9273 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9274 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9275 9276 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9277 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 9278 9279 switch (opcode) { 9280 case 0xd: /* SQDMULL, SQDMULL2 */ 9281 break; 9282 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9283 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9284 /* fall through */ 9285 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9286 { 9287 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9288 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9289 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 9290 tcg_res, tcg_op3); 9291 tcg_temp_free_i64(tcg_op3); 9292 break; 9293 } 9294 default: 9295 g_assert_not_reached(); 9296 } 9297 9298 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9299 write_fp_dreg(s, rd, tcg_res); 9300 9301 tcg_temp_free_i32(tcg_op1); 9302 tcg_temp_free_i32(tcg_op2); 9303 tcg_temp_free_i64(tcg_res); 9304 } 9305 } 9306 9307 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9308 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9309 { 9310 /* Handle 64x64->64 opcodes which are shared between the scalar 9311 * and vector 3-same groups. We cover every opcode where size == 3 9312 * is valid in either the three-reg-same (integer, not pairwise) 9313 * or scalar-three-reg-same groups. 9314 */ 9315 TCGCond cond; 9316 9317 switch (opcode) { 9318 case 0x1: /* SQADD */ 9319 if (u) { 9320 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9321 } else { 9322 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9323 } 9324 break; 9325 case 0x5: /* SQSUB */ 9326 if (u) { 9327 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9328 } else { 9329 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9330 } 9331 break; 9332 case 0x6: /* CMGT, CMHI */ 9333 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9334 * We implement this using setcond (test) and then negating. 9335 */ 9336 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9337 do_cmop: 9338 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9339 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9340 break; 9341 case 0x7: /* CMGE, CMHS */ 9342 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9343 goto do_cmop; 9344 case 0x11: /* CMTST, CMEQ */ 9345 if (u) { 9346 cond = TCG_COND_EQ; 9347 goto do_cmop; 9348 } 9349 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9350 break; 9351 case 0x8: /* SSHL, USHL */ 9352 if (u) { 9353 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9354 } else { 9355 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9356 } 9357 break; 9358 case 0x9: /* SQSHL, UQSHL */ 9359 if (u) { 9360 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9361 } else { 9362 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9363 } 9364 break; 9365 case 0xa: /* SRSHL, URSHL */ 9366 if (u) { 9367 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9368 } else { 9369 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9370 } 9371 break; 9372 case 0xb: /* SQRSHL, UQRSHL */ 9373 if (u) { 9374 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9375 } else { 9376 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9377 } 9378 break; 9379 case 0x10: /* ADD, SUB */ 9380 if (u) { 9381 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9382 } else { 9383 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9384 } 9385 break; 9386 default: 9387 g_assert_not_reached(); 9388 } 9389 } 9390 9391 /* Handle the 3-same-operands float operations; shared by the scalar 9392 * and vector encodings. The caller must filter out any encodings 9393 * not allocated for the encoding it is dealing with. 9394 */ 9395 static void handle_3same_float(DisasContext *s, int size, int elements, 9396 int fpopcode, int rd, int rn, int rm) 9397 { 9398 int pass; 9399 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9400 9401 for (pass = 0; pass < elements; pass++) { 9402 if (size) { 9403 /* Double */ 9404 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9405 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9406 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9407 9408 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9409 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9410 9411 switch (fpopcode) { 9412 case 0x39: /* FMLS */ 9413 /* As usual for ARM, separate negation for fused multiply-add */ 9414 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9415 /* fall through */ 9416 case 0x19: /* FMLA */ 9417 read_vec_element(s, tcg_res, rd, pass, MO_64); 9418 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9419 tcg_res, fpst); 9420 break; 9421 case 0x18: /* FMAXNM */ 9422 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9423 break; 9424 case 0x1a: /* FADD */ 9425 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9426 break; 9427 case 0x1b: /* FMULX */ 9428 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9429 break; 9430 case 0x1c: /* FCMEQ */ 9431 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9432 break; 9433 case 0x1e: /* FMAX */ 9434 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9435 break; 9436 case 0x1f: /* FRECPS */ 9437 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9438 break; 9439 case 0x38: /* FMINNM */ 9440 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9441 break; 9442 case 0x3a: /* FSUB */ 9443 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9444 break; 9445 case 0x3e: /* FMIN */ 9446 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9447 break; 9448 case 0x3f: /* FRSQRTS */ 9449 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9450 break; 9451 case 0x5b: /* FMUL */ 9452 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9453 break; 9454 case 0x5c: /* FCMGE */ 9455 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9456 break; 9457 case 0x5d: /* FACGE */ 9458 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9459 break; 9460 case 0x5f: /* FDIV */ 9461 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9462 break; 9463 case 0x7a: /* FABD */ 9464 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9465 gen_helper_vfp_absd(tcg_res, tcg_res); 9466 break; 9467 case 0x7c: /* FCMGT */ 9468 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9469 break; 9470 case 0x7d: /* FACGT */ 9471 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9472 break; 9473 default: 9474 g_assert_not_reached(); 9475 } 9476 9477 write_vec_element(s, tcg_res, rd, pass, MO_64); 9478 9479 tcg_temp_free_i64(tcg_res); 9480 tcg_temp_free_i64(tcg_op1); 9481 tcg_temp_free_i64(tcg_op2); 9482 } else { 9483 /* Single */ 9484 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9485 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9486 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9487 9488 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9489 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9490 9491 switch (fpopcode) { 9492 case 0x39: /* FMLS */ 9493 /* As usual for ARM, separate negation for fused multiply-add */ 9494 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9495 /* fall through */ 9496 case 0x19: /* FMLA */ 9497 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9498 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9499 tcg_res, fpst); 9500 break; 9501 case 0x1a: /* FADD */ 9502 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9503 break; 9504 case 0x1b: /* FMULX */ 9505 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9506 break; 9507 case 0x1c: /* FCMEQ */ 9508 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9509 break; 9510 case 0x1e: /* FMAX */ 9511 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9512 break; 9513 case 0x1f: /* FRECPS */ 9514 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9515 break; 9516 case 0x18: /* FMAXNM */ 9517 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9518 break; 9519 case 0x38: /* FMINNM */ 9520 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9521 break; 9522 case 0x3a: /* FSUB */ 9523 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9524 break; 9525 case 0x3e: /* FMIN */ 9526 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9527 break; 9528 case 0x3f: /* FRSQRTS */ 9529 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9530 break; 9531 case 0x5b: /* FMUL */ 9532 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9533 break; 9534 case 0x5c: /* FCMGE */ 9535 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9536 break; 9537 case 0x5d: /* FACGE */ 9538 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9539 break; 9540 case 0x5f: /* FDIV */ 9541 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9542 break; 9543 case 0x7a: /* FABD */ 9544 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9545 gen_helper_vfp_abss(tcg_res, tcg_res); 9546 break; 9547 case 0x7c: /* FCMGT */ 9548 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9549 break; 9550 case 0x7d: /* FACGT */ 9551 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9552 break; 9553 default: 9554 g_assert_not_reached(); 9555 } 9556 9557 if (elements == 1) { 9558 /* scalar single so clear high part */ 9559 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9560 9561 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9562 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9563 tcg_temp_free_i64(tcg_tmp); 9564 } else { 9565 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9566 } 9567 9568 tcg_temp_free_i32(tcg_res); 9569 tcg_temp_free_i32(tcg_op1); 9570 tcg_temp_free_i32(tcg_op2); 9571 } 9572 } 9573 9574 tcg_temp_free_ptr(fpst); 9575 9576 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9577 } 9578 9579 /* AdvSIMD scalar three same 9580 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9581 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9582 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9583 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9584 */ 9585 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9586 { 9587 int rd = extract32(insn, 0, 5); 9588 int rn = extract32(insn, 5, 5); 9589 int opcode = extract32(insn, 11, 5); 9590 int rm = extract32(insn, 16, 5); 9591 int size = extract32(insn, 22, 2); 9592 bool u = extract32(insn, 29, 1); 9593 TCGv_i64 tcg_rd; 9594 9595 if (opcode >= 0x18) { 9596 /* Floating point: U, size[1] and opcode indicate operation */ 9597 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9598 switch (fpopcode) { 9599 case 0x1b: /* FMULX */ 9600 case 0x1f: /* FRECPS */ 9601 case 0x3f: /* FRSQRTS */ 9602 case 0x5d: /* FACGE */ 9603 case 0x7d: /* FACGT */ 9604 case 0x1c: /* FCMEQ */ 9605 case 0x5c: /* FCMGE */ 9606 case 0x7c: /* FCMGT */ 9607 case 0x7a: /* FABD */ 9608 break; 9609 default: 9610 unallocated_encoding(s); 9611 return; 9612 } 9613 9614 if (!fp_access_check(s)) { 9615 return; 9616 } 9617 9618 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9619 return; 9620 } 9621 9622 switch (opcode) { 9623 case 0x1: /* SQADD, UQADD */ 9624 case 0x5: /* SQSUB, UQSUB */ 9625 case 0x9: /* SQSHL, UQSHL */ 9626 case 0xb: /* SQRSHL, UQRSHL */ 9627 break; 9628 case 0x8: /* SSHL, USHL */ 9629 case 0xa: /* SRSHL, URSHL */ 9630 case 0x6: /* CMGT, CMHI */ 9631 case 0x7: /* CMGE, CMHS */ 9632 case 0x11: /* CMTST, CMEQ */ 9633 case 0x10: /* ADD, SUB (vector) */ 9634 if (size != 3) { 9635 unallocated_encoding(s); 9636 return; 9637 } 9638 break; 9639 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9640 if (size != 1 && size != 2) { 9641 unallocated_encoding(s); 9642 return; 9643 } 9644 break; 9645 default: 9646 unallocated_encoding(s); 9647 return; 9648 } 9649 9650 if (!fp_access_check(s)) { 9651 return; 9652 } 9653 9654 tcg_rd = tcg_temp_new_i64(); 9655 9656 if (size == 3) { 9657 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9658 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9659 9660 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9661 tcg_temp_free_i64(tcg_rn); 9662 tcg_temp_free_i64(tcg_rm); 9663 } else { 9664 /* Do a single operation on the lowest element in the vector. 9665 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9666 * no side effects for all these operations. 9667 * OPTME: special-purpose helpers would avoid doing some 9668 * unnecessary work in the helper for the 8 and 16 bit cases. 9669 */ 9670 NeonGenTwoOpEnvFn *genenvfn; 9671 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9672 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9673 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9674 9675 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9676 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9677 9678 switch (opcode) { 9679 case 0x1: /* SQADD, UQADD */ 9680 { 9681 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9682 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9683 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9684 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9685 }; 9686 genenvfn = fns[size][u]; 9687 break; 9688 } 9689 case 0x5: /* SQSUB, UQSUB */ 9690 { 9691 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9692 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9693 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9694 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9695 }; 9696 genenvfn = fns[size][u]; 9697 break; 9698 } 9699 case 0x9: /* SQSHL, UQSHL */ 9700 { 9701 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9702 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9703 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9704 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9705 }; 9706 genenvfn = fns[size][u]; 9707 break; 9708 } 9709 case 0xb: /* SQRSHL, UQRSHL */ 9710 { 9711 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9712 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9713 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9714 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9715 }; 9716 genenvfn = fns[size][u]; 9717 break; 9718 } 9719 case 0x16: /* SQDMULH, SQRDMULH */ 9720 { 9721 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9722 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9723 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9724 }; 9725 assert(size == 1 || size == 2); 9726 genenvfn = fns[size - 1][u]; 9727 break; 9728 } 9729 default: 9730 g_assert_not_reached(); 9731 } 9732 9733 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9734 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9735 tcg_temp_free_i32(tcg_rd32); 9736 tcg_temp_free_i32(tcg_rn); 9737 tcg_temp_free_i32(tcg_rm); 9738 } 9739 9740 write_fp_dreg(s, rd, tcg_rd); 9741 9742 tcg_temp_free_i64(tcg_rd); 9743 } 9744 9745 /* AdvSIMD scalar three same FP16 9746 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9747 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9748 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9749 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9750 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9751 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9752 */ 9753 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9754 uint32_t insn) 9755 { 9756 int rd = extract32(insn, 0, 5); 9757 int rn = extract32(insn, 5, 5); 9758 int opcode = extract32(insn, 11, 3); 9759 int rm = extract32(insn, 16, 5); 9760 bool u = extract32(insn, 29, 1); 9761 bool a = extract32(insn, 23, 1); 9762 int fpopcode = opcode | (a << 3) | (u << 4); 9763 TCGv_ptr fpst; 9764 TCGv_i32 tcg_op1; 9765 TCGv_i32 tcg_op2; 9766 TCGv_i32 tcg_res; 9767 9768 switch (fpopcode) { 9769 case 0x03: /* FMULX */ 9770 case 0x04: /* FCMEQ (reg) */ 9771 case 0x07: /* FRECPS */ 9772 case 0x0f: /* FRSQRTS */ 9773 case 0x14: /* FCMGE (reg) */ 9774 case 0x15: /* FACGE */ 9775 case 0x1a: /* FABD */ 9776 case 0x1c: /* FCMGT (reg) */ 9777 case 0x1d: /* FACGT */ 9778 break; 9779 default: 9780 unallocated_encoding(s); 9781 return; 9782 } 9783 9784 if (!dc_isar_feature(aa64_fp16, s)) { 9785 unallocated_encoding(s); 9786 } 9787 9788 if (!fp_access_check(s)) { 9789 return; 9790 } 9791 9792 fpst = fpstatus_ptr(FPST_FPCR_F16); 9793 9794 tcg_op1 = read_fp_hreg(s, rn); 9795 tcg_op2 = read_fp_hreg(s, rm); 9796 tcg_res = tcg_temp_new_i32(); 9797 9798 switch (fpopcode) { 9799 case 0x03: /* FMULX */ 9800 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9801 break; 9802 case 0x04: /* FCMEQ (reg) */ 9803 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9804 break; 9805 case 0x07: /* FRECPS */ 9806 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9807 break; 9808 case 0x0f: /* FRSQRTS */ 9809 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9810 break; 9811 case 0x14: /* FCMGE (reg) */ 9812 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9813 break; 9814 case 0x15: /* FACGE */ 9815 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9816 break; 9817 case 0x1a: /* FABD */ 9818 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9819 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9820 break; 9821 case 0x1c: /* FCMGT (reg) */ 9822 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9823 break; 9824 case 0x1d: /* FACGT */ 9825 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9826 break; 9827 default: 9828 g_assert_not_reached(); 9829 } 9830 9831 write_fp_sreg(s, rd, tcg_res); 9832 9833 9834 tcg_temp_free_i32(tcg_res); 9835 tcg_temp_free_i32(tcg_op1); 9836 tcg_temp_free_i32(tcg_op2); 9837 tcg_temp_free_ptr(fpst); 9838 } 9839 9840 /* AdvSIMD scalar three same extra 9841 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9842 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9843 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9844 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9845 */ 9846 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9847 uint32_t insn) 9848 { 9849 int rd = extract32(insn, 0, 5); 9850 int rn = extract32(insn, 5, 5); 9851 int opcode = extract32(insn, 11, 4); 9852 int rm = extract32(insn, 16, 5); 9853 int size = extract32(insn, 22, 2); 9854 bool u = extract32(insn, 29, 1); 9855 TCGv_i32 ele1, ele2, ele3; 9856 TCGv_i64 res; 9857 bool feature; 9858 9859 switch (u * 16 + opcode) { 9860 case 0x10: /* SQRDMLAH (vector) */ 9861 case 0x11: /* SQRDMLSH (vector) */ 9862 if (size != 1 && size != 2) { 9863 unallocated_encoding(s); 9864 return; 9865 } 9866 feature = dc_isar_feature(aa64_rdm, s); 9867 break; 9868 default: 9869 unallocated_encoding(s); 9870 return; 9871 } 9872 if (!feature) { 9873 unallocated_encoding(s); 9874 return; 9875 } 9876 if (!fp_access_check(s)) { 9877 return; 9878 } 9879 9880 /* Do a single operation on the lowest element in the vector. 9881 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9882 * with no side effects for all these operations. 9883 * OPTME: special-purpose helpers would avoid doing some 9884 * unnecessary work in the helper for the 16 bit cases. 9885 */ 9886 ele1 = tcg_temp_new_i32(); 9887 ele2 = tcg_temp_new_i32(); 9888 ele3 = tcg_temp_new_i32(); 9889 9890 read_vec_element_i32(s, ele1, rn, 0, size); 9891 read_vec_element_i32(s, ele2, rm, 0, size); 9892 read_vec_element_i32(s, ele3, rd, 0, size); 9893 9894 switch (opcode) { 9895 case 0x0: /* SQRDMLAH */ 9896 if (size == 1) { 9897 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9898 } else { 9899 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9900 } 9901 break; 9902 case 0x1: /* SQRDMLSH */ 9903 if (size == 1) { 9904 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9905 } else { 9906 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9907 } 9908 break; 9909 default: 9910 g_assert_not_reached(); 9911 } 9912 tcg_temp_free_i32(ele1); 9913 tcg_temp_free_i32(ele2); 9914 9915 res = tcg_temp_new_i64(); 9916 tcg_gen_extu_i32_i64(res, ele3); 9917 tcg_temp_free_i32(ele3); 9918 9919 write_fp_dreg(s, rd, res); 9920 tcg_temp_free_i64(res); 9921 } 9922 9923 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9924 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9925 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9926 { 9927 /* Handle 64->64 opcodes which are shared between the scalar and 9928 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9929 * is valid in either group and also the double-precision fp ops. 9930 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9931 * requires them. 9932 */ 9933 TCGCond cond; 9934 9935 switch (opcode) { 9936 case 0x4: /* CLS, CLZ */ 9937 if (u) { 9938 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9939 } else { 9940 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9941 } 9942 break; 9943 case 0x5: /* NOT */ 9944 /* This opcode is shared with CNT and RBIT but we have earlier 9945 * enforced that size == 3 if and only if this is the NOT insn. 9946 */ 9947 tcg_gen_not_i64(tcg_rd, tcg_rn); 9948 break; 9949 case 0x7: /* SQABS, SQNEG */ 9950 if (u) { 9951 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9952 } else { 9953 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9954 } 9955 break; 9956 case 0xa: /* CMLT */ 9957 /* 64 bit integer comparison against zero, result is 9958 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9959 * subtracting 1. 9960 */ 9961 cond = TCG_COND_LT; 9962 do_cmop: 9963 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9964 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9965 break; 9966 case 0x8: /* CMGT, CMGE */ 9967 cond = u ? TCG_COND_GE : TCG_COND_GT; 9968 goto do_cmop; 9969 case 0x9: /* CMEQ, CMLE */ 9970 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9971 goto do_cmop; 9972 case 0xb: /* ABS, NEG */ 9973 if (u) { 9974 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9975 } else { 9976 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9977 } 9978 break; 9979 case 0x2f: /* FABS */ 9980 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9981 break; 9982 case 0x6f: /* FNEG */ 9983 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9984 break; 9985 case 0x7f: /* FSQRT */ 9986 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9987 break; 9988 case 0x1a: /* FCVTNS */ 9989 case 0x1b: /* FCVTMS */ 9990 case 0x1c: /* FCVTAS */ 9991 case 0x3a: /* FCVTPS */ 9992 case 0x3b: /* FCVTZS */ 9993 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9994 break; 9995 case 0x5a: /* FCVTNU */ 9996 case 0x5b: /* FCVTMU */ 9997 case 0x5c: /* FCVTAU */ 9998 case 0x7a: /* FCVTPU */ 9999 case 0x7b: /* FCVTZU */ 10000 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 10001 break; 10002 case 0x18: /* FRINTN */ 10003 case 0x19: /* FRINTM */ 10004 case 0x38: /* FRINTP */ 10005 case 0x39: /* FRINTZ */ 10006 case 0x58: /* FRINTA */ 10007 case 0x79: /* FRINTI */ 10008 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 10009 break; 10010 case 0x59: /* FRINTX */ 10011 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 10012 break; 10013 case 0x1e: /* FRINT32Z */ 10014 case 0x5e: /* FRINT32X */ 10015 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 10016 break; 10017 case 0x1f: /* FRINT64Z */ 10018 case 0x5f: /* FRINT64X */ 10019 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 10020 break; 10021 default: 10022 g_assert_not_reached(); 10023 } 10024 } 10025 10026 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 10027 bool is_scalar, bool is_u, bool is_q, 10028 int size, int rn, int rd) 10029 { 10030 bool is_double = (size == MO_64); 10031 TCGv_ptr fpst; 10032 10033 if (!fp_access_check(s)) { 10034 return; 10035 } 10036 10037 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 10038 10039 if (is_double) { 10040 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10041 TCGv_i64 tcg_zero = tcg_constant_i64(0); 10042 TCGv_i64 tcg_res = tcg_temp_new_i64(); 10043 NeonGenTwoDoubleOpFn *genfn; 10044 bool swap = false; 10045 int pass; 10046 10047 switch (opcode) { 10048 case 0x2e: /* FCMLT (zero) */ 10049 swap = true; 10050 /* fallthrough */ 10051 case 0x2c: /* FCMGT (zero) */ 10052 genfn = gen_helper_neon_cgt_f64; 10053 break; 10054 case 0x2d: /* FCMEQ (zero) */ 10055 genfn = gen_helper_neon_ceq_f64; 10056 break; 10057 case 0x6d: /* FCMLE (zero) */ 10058 swap = true; 10059 /* fall through */ 10060 case 0x6c: /* FCMGE (zero) */ 10061 genfn = gen_helper_neon_cge_f64; 10062 break; 10063 default: 10064 g_assert_not_reached(); 10065 } 10066 10067 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10068 read_vec_element(s, tcg_op, rn, pass, MO_64); 10069 if (swap) { 10070 genfn(tcg_res, tcg_zero, tcg_op, fpst); 10071 } else { 10072 genfn(tcg_res, tcg_op, tcg_zero, fpst); 10073 } 10074 write_vec_element(s, tcg_res, rd, pass, MO_64); 10075 } 10076 tcg_temp_free_i64(tcg_res); 10077 tcg_temp_free_i64(tcg_op); 10078 10079 clear_vec_high(s, !is_scalar, rd); 10080 } else { 10081 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10082 TCGv_i32 tcg_zero = tcg_constant_i32(0); 10083 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10084 NeonGenTwoSingleOpFn *genfn; 10085 bool swap = false; 10086 int pass, maxpasses; 10087 10088 if (size == MO_16) { 10089 switch (opcode) { 10090 case 0x2e: /* FCMLT (zero) */ 10091 swap = true; 10092 /* fall through */ 10093 case 0x2c: /* FCMGT (zero) */ 10094 genfn = gen_helper_advsimd_cgt_f16; 10095 break; 10096 case 0x2d: /* FCMEQ (zero) */ 10097 genfn = gen_helper_advsimd_ceq_f16; 10098 break; 10099 case 0x6d: /* FCMLE (zero) */ 10100 swap = true; 10101 /* fall through */ 10102 case 0x6c: /* FCMGE (zero) */ 10103 genfn = gen_helper_advsimd_cge_f16; 10104 break; 10105 default: 10106 g_assert_not_reached(); 10107 } 10108 } else { 10109 switch (opcode) { 10110 case 0x2e: /* FCMLT (zero) */ 10111 swap = true; 10112 /* fall through */ 10113 case 0x2c: /* FCMGT (zero) */ 10114 genfn = gen_helper_neon_cgt_f32; 10115 break; 10116 case 0x2d: /* FCMEQ (zero) */ 10117 genfn = gen_helper_neon_ceq_f32; 10118 break; 10119 case 0x6d: /* FCMLE (zero) */ 10120 swap = true; 10121 /* fall through */ 10122 case 0x6c: /* FCMGE (zero) */ 10123 genfn = gen_helper_neon_cge_f32; 10124 break; 10125 default: 10126 g_assert_not_reached(); 10127 } 10128 } 10129 10130 if (is_scalar) { 10131 maxpasses = 1; 10132 } else { 10133 int vector_size = 8 << is_q; 10134 maxpasses = vector_size >> size; 10135 } 10136 10137 for (pass = 0; pass < maxpasses; pass++) { 10138 read_vec_element_i32(s, tcg_op, rn, pass, size); 10139 if (swap) { 10140 genfn(tcg_res, tcg_zero, tcg_op, fpst); 10141 } else { 10142 genfn(tcg_res, tcg_op, tcg_zero, fpst); 10143 } 10144 if (is_scalar) { 10145 write_fp_sreg(s, rd, tcg_res); 10146 } else { 10147 write_vec_element_i32(s, tcg_res, rd, pass, size); 10148 } 10149 } 10150 tcg_temp_free_i32(tcg_res); 10151 tcg_temp_free_i32(tcg_op); 10152 if (!is_scalar) { 10153 clear_vec_high(s, is_q, rd); 10154 } 10155 } 10156 10157 tcg_temp_free_ptr(fpst); 10158 } 10159 10160 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 10161 bool is_scalar, bool is_u, bool is_q, 10162 int size, int rn, int rd) 10163 { 10164 bool is_double = (size == 3); 10165 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10166 10167 if (is_double) { 10168 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10169 TCGv_i64 tcg_res = tcg_temp_new_i64(); 10170 int pass; 10171 10172 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10173 read_vec_element(s, tcg_op, rn, pass, MO_64); 10174 switch (opcode) { 10175 case 0x3d: /* FRECPE */ 10176 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 10177 break; 10178 case 0x3f: /* FRECPX */ 10179 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 10180 break; 10181 case 0x7d: /* FRSQRTE */ 10182 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 10183 break; 10184 default: 10185 g_assert_not_reached(); 10186 } 10187 write_vec_element(s, tcg_res, rd, pass, MO_64); 10188 } 10189 tcg_temp_free_i64(tcg_res); 10190 tcg_temp_free_i64(tcg_op); 10191 clear_vec_high(s, !is_scalar, rd); 10192 } else { 10193 TCGv_i32 tcg_op = tcg_temp_new_i32(); 10194 TCGv_i32 tcg_res = tcg_temp_new_i32(); 10195 int pass, maxpasses; 10196 10197 if (is_scalar) { 10198 maxpasses = 1; 10199 } else { 10200 maxpasses = is_q ? 4 : 2; 10201 } 10202 10203 for (pass = 0; pass < maxpasses; pass++) { 10204 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 10205 10206 switch (opcode) { 10207 case 0x3c: /* URECPE */ 10208 gen_helper_recpe_u32(tcg_res, tcg_op); 10209 break; 10210 case 0x3d: /* FRECPE */ 10211 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 10212 break; 10213 case 0x3f: /* FRECPX */ 10214 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 10215 break; 10216 case 0x7d: /* FRSQRTE */ 10217 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 10218 break; 10219 default: 10220 g_assert_not_reached(); 10221 } 10222 10223 if (is_scalar) { 10224 write_fp_sreg(s, rd, tcg_res); 10225 } else { 10226 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 10227 } 10228 } 10229 tcg_temp_free_i32(tcg_res); 10230 tcg_temp_free_i32(tcg_op); 10231 if (!is_scalar) { 10232 clear_vec_high(s, is_q, rd); 10233 } 10234 } 10235 tcg_temp_free_ptr(fpst); 10236 } 10237 10238 static void handle_2misc_narrow(DisasContext *s, bool scalar, 10239 int opcode, bool u, bool is_q, 10240 int size, int rn, int rd) 10241 { 10242 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 10243 * in the source becomes a size element in the destination). 10244 */ 10245 int pass; 10246 TCGv_i32 tcg_res[2]; 10247 int destelt = is_q ? 2 : 0; 10248 int passes = scalar ? 1 : 2; 10249 10250 if (scalar) { 10251 tcg_res[1] = tcg_constant_i32(0); 10252 } 10253 10254 for (pass = 0; pass < passes; pass++) { 10255 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10256 NeonGenNarrowFn *genfn = NULL; 10257 NeonGenNarrowEnvFn *genenvfn = NULL; 10258 10259 if (scalar) { 10260 read_vec_element(s, tcg_op, rn, pass, size + 1); 10261 } else { 10262 read_vec_element(s, tcg_op, rn, pass, MO_64); 10263 } 10264 tcg_res[pass] = tcg_temp_new_i32(); 10265 10266 switch (opcode) { 10267 case 0x12: /* XTN, SQXTUN */ 10268 { 10269 static NeonGenNarrowFn * const xtnfns[3] = { 10270 gen_helper_neon_narrow_u8, 10271 gen_helper_neon_narrow_u16, 10272 tcg_gen_extrl_i64_i32, 10273 }; 10274 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10275 gen_helper_neon_unarrow_sat8, 10276 gen_helper_neon_unarrow_sat16, 10277 gen_helper_neon_unarrow_sat32, 10278 }; 10279 if (u) { 10280 genenvfn = sqxtunfns[size]; 10281 } else { 10282 genfn = xtnfns[size]; 10283 } 10284 break; 10285 } 10286 case 0x14: /* SQXTN, UQXTN */ 10287 { 10288 static NeonGenNarrowEnvFn * const fns[3][2] = { 10289 { gen_helper_neon_narrow_sat_s8, 10290 gen_helper_neon_narrow_sat_u8 }, 10291 { gen_helper_neon_narrow_sat_s16, 10292 gen_helper_neon_narrow_sat_u16 }, 10293 { gen_helper_neon_narrow_sat_s32, 10294 gen_helper_neon_narrow_sat_u32 }, 10295 }; 10296 genenvfn = fns[size][u]; 10297 break; 10298 } 10299 case 0x16: /* FCVTN, FCVTN2 */ 10300 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10301 if (size == 2) { 10302 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 10303 } else { 10304 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10305 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10306 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10307 TCGv_i32 ahp = get_ahp_flag(); 10308 10309 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10310 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10311 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10312 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10313 tcg_temp_free_i32(tcg_lo); 10314 tcg_temp_free_i32(tcg_hi); 10315 tcg_temp_free_ptr(fpst); 10316 tcg_temp_free_i32(ahp); 10317 } 10318 break; 10319 case 0x36: /* BFCVTN, BFCVTN2 */ 10320 { 10321 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10322 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10323 tcg_temp_free_ptr(fpst); 10324 } 10325 break; 10326 case 0x56: /* FCVTXN, FCVTXN2 */ 10327 /* 64 bit to 32 bit float conversion 10328 * with von Neumann rounding (round to odd) 10329 */ 10330 assert(size == 2); 10331 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 10332 break; 10333 default: 10334 g_assert_not_reached(); 10335 } 10336 10337 if (genfn) { 10338 genfn(tcg_res[pass], tcg_op); 10339 } else if (genenvfn) { 10340 genenvfn(tcg_res[pass], cpu_env, tcg_op); 10341 } 10342 10343 tcg_temp_free_i64(tcg_op); 10344 } 10345 10346 for (pass = 0; pass < 2; pass++) { 10347 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10348 tcg_temp_free_i32(tcg_res[pass]); 10349 } 10350 clear_vec_high(s, is_q, rd); 10351 } 10352 10353 /* Remaining saturating accumulating ops */ 10354 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10355 bool is_q, int size, int rn, int rd) 10356 { 10357 bool is_double = (size == 3); 10358 10359 if (is_double) { 10360 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10361 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10362 int pass; 10363 10364 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10365 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10366 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10367 10368 if (is_u) { /* USQADD */ 10369 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10370 } else { /* SUQADD */ 10371 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10372 } 10373 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10374 } 10375 tcg_temp_free_i64(tcg_rd); 10376 tcg_temp_free_i64(tcg_rn); 10377 clear_vec_high(s, !is_scalar, rd); 10378 } else { 10379 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10380 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10381 int pass, maxpasses; 10382 10383 if (is_scalar) { 10384 maxpasses = 1; 10385 } else { 10386 maxpasses = is_q ? 4 : 2; 10387 } 10388 10389 for (pass = 0; pass < maxpasses; pass++) { 10390 if (is_scalar) { 10391 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10392 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10393 } else { 10394 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10395 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10396 } 10397 10398 if (is_u) { /* USQADD */ 10399 switch (size) { 10400 case 0: 10401 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10402 break; 10403 case 1: 10404 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10405 break; 10406 case 2: 10407 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10408 break; 10409 default: 10410 g_assert_not_reached(); 10411 } 10412 } else { /* SUQADD */ 10413 switch (size) { 10414 case 0: 10415 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10416 break; 10417 case 1: 10418 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10419 break; 10420 case 2: 10421 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10422 break; 10423 default: 10424 g_assert_not_reached(); 10425 } 10426 } 10427 10428 if (is_scalar) { 10429 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10430 } 10431 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10432 } 10433 tcg_temp_free_i32(tcg_rd); 10434 tcg_temp_free_i32(tcg_rn); 10435 clear_vec_high(s, is_q, rd); 10436 } 10437 } 10438 10439 /* AdvSIMD scalar two reg misc 10440 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10441 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10442 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10443 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10444 */ 10445 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10446 { 10447 int rd = extract32(insn, 0, 5); 10448 int rn = extract32(insn, 5, 5); 10449 int opcode = extract32(insn, 12, 5); 10450 int size = extract32(insn, 22, 2); 10451 bool u = extract32(insn, 29, 1); 10452 bool is_fcvt = false; 10453 int rmode; 10454 TCGv_i32 tcg_rmode; 10455 TCGv_ptr tcg_fpstatus; 10456 10457 switch (opcode) { 10458 case 0x3: /* USQADD / SUQADD*/ 10459 if (!fp_access_check(s)) { 10460 return; 10461 } 10462 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10463 return; 10464 case 0x7: /* SQABS / SQNEG */ 10465 break; 10466 case 0xa: /* CMLT */ 10467 if (u) { 10468 unallocated_encoding(s); 10469 return; 10470 } 10471 /* fall through */ 10472 case 0x8: /* CMGT, CMGE */ 10473 case 0x9: /* CMEQ, CMLE */ 10474 case 0xb: /* ABS, NEG */ 10475 if (size != 3) { 10476 unallocated_encoding(s); 10477 return; 10478 } 10479 break; 10480 case 0x12: /* SQXTUN */ 10481 if (!u) { 10482 unallocated_encoding(s); 10483 return; 10484 } 10485 /* fall through */ 10486 case 0x14: /* SQXTN, UQXTN */ 10487 if (size == 3) { 10488 unallocated_encoding(s); 10489 return; 10490 } 10491 if (!fp_access_check(s)) { 10492 return; 10493 } 10494 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10495 return; 10496 case 0xc ... 0xf: 10497 case 0x16 ... 0x1d: 10498 case 0x1f: 10499 /* Floating point: U, size[1] and opcode indicate operation; 10500 * size[0] indicates single or double precision. 10501 */ 10502 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10503 size = extract32(size, 0, 1) ? 3 : 2; 10504 switch (opcode) { 10505 case 0x2c: /* FCMGT (zero) */ 10506 case 0x2d: /* FCMEQ (zero) */ 10507 case 0x2e: /* FCMLT (zero) */ 10508 case 0x6c: /* FCMGE (zero) */ 10509 case 0x6d: /* FCMLE (zero) */ 10510 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10511 return; 10512 case 0x1d: /* SCVTF */ 10513 case 0x5d: /* UCVTF */ 10514 { 10515 bool is_signed = (opcode == 0x1d); 10516 if (!fp_access_check(s)) { 10517 return; 10518 } 10519 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10520 return; 10521 } 10522 case 0x3d: /* FRECPE */ 10523 case 0x3f: /* FRECPX */ 10524 case 0x7d: /* FRSQRTE */ 10525 if (!fp_access_check(s)) { 10526 return; 10527 } 10528 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10529 return; 10530 case 0x1a: /* FCVTNS */ 10531 case 0x1b: /* FCVTMS */ 10532 case 0x3a: /* FCVTPS */ 10533 case 0x3b: /* FCVTZS */ 10534 case 0x5a: /* FCVTNU */ 10535 case 0x5b: /* FCVTMU */ 10536 case 0x7a: /* FCVTPU */ 10537 case 0x7b: /* FCVTZU */ 10538 is_fcvt = true; 10539 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10540 break; 10541 case 0x1c: /* FCVTAS */ 10542 case 0x5c: /* FCVTAU */ 10543 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10544 is_fcvt = true; 10545 rmode = FPROUNDING_TIEAWAY; 10546 break; 10547 case 0x56: /* FCVTXN, FCVTXN2 */ 10548 if (size == 2) { 10549 unallocated_encoding(s); 10550 return; 10551 } 10552 if (!fp_access_check(s)) { 10553 return; 10554 } 10555 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10556 return; 10557 default: 10558 unallocated_encoding(s); 10559 return; 10560 } 10561 break; 10562 default: 10563 unallocated_encoding(s); 10564 return; 10565 } 10566 10567 if (!fp_access_check(s)) { 10568 return; 10569 } 10570 10571 if (is_fcvt) { 10572 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); 10573 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10574 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 10575 } else { 10576 tcg_rmode = NULL; 10577 tcg_fpstatus = NULL; 10578 } 10579 10580 if (size == 3) { 10581 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10582 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10583 10584 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10585 write_fp_dreg(s, rd, tcg_rd); 10586 tcg_temp_free_i64(tcg_rd); 10587 tcg_temp_free_i64(tcg_rn); 10588 } else { 10589 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10590 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10591 10592 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10593 10594 switch (opcode) { 10595 case 0x7: /* SQABS, SQNEG */ 10596 { 10597 NeonGenOneOpEnvFn *genfn; 10598 static NeonGenOneOpEnvFn * const fns[3][2] = { 10599 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10600 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10601 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10602 }; 10603 genfn = fns[size][u]; 10604 genfn(tcg_rd, cpu_env, tcg_rn); 10605 break; 10606 } 10607 case 0x1a: /* FCVTNS */ 10608 case 0x1b: /* FCVTMS */ 10609 case 0x1c: /* FCVTAS */ 10610 case 0x3a: /* FCVTPS */ 10611 case 0x3b: /* FCVTZS */ 10612 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10613 tcg_fpstatus); 10614 break; 10615 case 0x5a: /* FCVTNU */ 10616 case 0x5b: /* FCVTMU */ 10617 case 0x5c: /* FCVTAU */ 10618 case 0x7a: /* FCVTPU */ 10619 case 0x7b: /* FCVTZU */ 10620 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10621 tcg_fpstatus); 10622 break; 10623 default: 10624 g_assert_not_reached(); 10625 } 10626 10627 write_fp_sreg(s, rd, tcg_rd); 10628 tcg_temp_free_i32(tcg_rd); 10629 tcg_temp_free_i32(tcg_rn); 10630 } 10631 10632 if (is_fcvt) { 10633 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 10634 tcg_temp_free_i32(tcg_rmode); 10635 tcg_temp_free_ptr(tcg_fpstatus); 10636 } 10637 } 10638 10639 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10640 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10641 int immh, int immb, int opcode, int rn, int rd) 10642 { 10643 int size = 32 - clz32(immh) - 1; 10644 int immhb = immh << 3 | immb; 10645 int shift = 2 * (8 << size) - immhb; 10646 GVecGen2iFn *gvec_fn; 10647 10648 if (extract32(immh, 3, 1) && !is_q) { 10649 unallocated_encoding(s); 10650 return; 10651 } 10652 tcg_debug_assert(size <= 3); 10653 10654 if (!fp_access_check(s)) { 10655 return; 10656 } 10657 10658 switch (opcode) { 10659 case 0x02: /* SSRA / USRA (accumulate) */ 10660 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10661 break; 10662 10663 case 0x08: /* SRI */ 10664 gvec_fn = gen_gvec_sri; 10665 break; 10666 10667 case 0x00: /* SSHR / USHR */ 10668 if (is_u) { 10669 if (shift == 8 << size) { 10670 /* Shift count the same size as element size produces zero. */ 10671 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10672 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10673 return; 10674 } 10675 gvec_fn = tcg_gen_gvec_shri; 10676 } else { 10677 /* Shift count the same size as element size produces all sign. */ 10678 if (shift == 8 << size) { 10679 shift -= 1; 10680 } 10681 gvec_fn = tcg_gen_gvec_sari; 10682 } 10683 break; 10684 10685 case 0x04: /* SRSHR / URSHR (rounding) */ 10686 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10687 break; 10688 10689 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10690 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10691 break; 10692 10693 default: 10694 g_assert_not_reached(); 10695 } 10696 10697 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10698 } 10699 10700 /* SHL/SLI - Vector shift left */ 10701 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10702 int immh, int immb, int opcode, int rn, int rd) 10703 { 10704 int size = 32 - clz32(immh) - 1; 10705 int immhb = immh << 3 | immb; 10706 int shift = immhb - (8 << size); 10707 10708 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10709 assert(size >= 0 && size <= 3); 10710 10711 if (extract32(immh, 3, 1) && !is_q) { 10712 unallocated_encoding(s); 10713 return; 10714 } 10715 10716 if (!fp_access_check(s)) { 10717 return; 10718 } 10719 10720 if (insert) { 10721 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10722 } else { 10723 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10724 } 10725 } 10726 10727 /* USHLL/SHLL - Vector shift left with widening */ 10728 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10729 int immh, int immb, int opcode, int rn, int rd) 10730 { 10731 int size = 32 - clz32(immh) - 1; 10732 int immhb = immh << 3 | immb; 10733 int shift = immhb - (8 << size); 10734 int dsize = 64; 10735 int esize = 8 << size; 10736 int elements = dsize/esize; 10737 TCGv_i64 tcg_rn = new_tmp_a64(s); 10738 TCGv_i64 tcg_rd = new_tmp_a64(s); 10739 int i; 10740 10741 if (size >= 3) { 10742 unallocated_encoding(s); 10743 return; 10744 } 10745 10746 if (!fp_access_check(s)) { 10747 return; 10748 } 10749 10750 /* For the LL variants the store is larger than the load, 10751 * so if rd == rn we would overwrite parts of our input. 10752 * So load everything right now and use shifts in the main loop. 10753 */ 10754 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10755 10756 for (i = 0; i < elements; i++) { 10757 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10758 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10759 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10760 write_vec_element(s, tcg_rd, rd, i, size + 1); 10761 } 10762 } 10763 10764 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10765 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10766 int immh, int immb, int opcode, int rn, int rd) 10767 { 10768 int immhb = immh << 3 | immb; 10769 int size = 32 - clz32(immh) - 1; 10770 int dsize = 64; 10771 int esize = 8 << size; 10772 int elements = dsize/esize; 10773 int shift = (2 * esize) - immhb; 10774 bool round = extract32(opcode, 0, 1); 10775 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10776 TCGv_i64 tcg_round; 10777 int i; 10778 10779 if (extract32(immh, 3, 1)) { 10780 unallocated_encoding(s); 10781 return; 10782 } 10783 10784 if (!fp_access_check(s)) { 10785 return; 10786 } 10787 10788 tcg_rn = tcg_temp_new_i64(); 10789 tcg_rd = tcg_temp_new_i64(); 10790 tcg_final = tcg_temp_new_i64(); 10791 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10792 10793 if (round) { 10794 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10795 } else { 10796 tcg_round = NULL; 10797 } 10798 10799 for (i = 0; i < elements; i++) { 10800 read_vec_element(s, tcg_rn, rn, i, size+1); 10801 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10802 false, true, size+1, shift); 10803 10804 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10805 } 10806 10807 if (!is_q) { 10808 write_vec_element(s, tcg_final, rd, 0, MO_64); 10809 } else { 10810 write_vec_element(s, tcg_final, rd, 1, MO_64); 10811 } 10812 tcg_temp_free_i64(tcg_rn); 10813 tcg_temp_free_i64(tcg_rd); 10814 tcg_temp_free_i64(tcg_final); 10815 10816 clear_vec_high(s, is_q, rd); 10817 } 10818 10819 10820 /* AdvSIMD shift by immediate 10821 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10822 * +---+---+---+-------------+------+------+--------+---+------+------+ 10823 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10824 * +---+---+---+-------------+------+------+--------+---+------+------+ 10825 */ 10826 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10827 { 10828 int rd = extract32(insn, 0, 5); 10829 int rn = extract32(insn, 5, 5); 10830 int opcode = extract32(insn, 11, 5); 10831 int immb = extract32(insn, 16, 3); 10832 int immh = extract32(insn, 19, 4); 10833 bool is_u = extract32(insn, 29, 1); 10834 bool is_q = extract32(insn, 30, 1); 10835 10836 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10837 assert(immh != 0); 10838 10839 switch (opcode) { 10840 case 0x08: /* SRI */ 10841 if (!is_u) { 10842 unallocated_encoding(s); 10843 return; 10844 } 10845 /* fall through */ 10846 case 0x00: /* SSHR / USHR */ 10847 case 0x02: /* SSRA / USRA (accumulate) */ 10848 case 0x04: /* SRSHR / URSHR (rounding) */ 10849 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10850 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10851 break; 10852 case 0x0a: /* SHL / SLI */ 10853 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10854 break; 10855 case 0x10: /* SHRN */ 10856 case 0x11: /* RSHRN / SQRSHRUN */ 10857 if (is_u) { 10858 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10859 opcode, rn, rd); 10860 } else { 10861 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10862 } 10863 break; 10864 case 0x12: /* SQSHRN / UQSHRN */ 10865 case 0x13: /* SQRSHRN / UQRSHRN */ 10866 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10867 opcode, rn, rd); 10868 break; 10869 case 0x14: /* SSHLL / USHLL */ 10870 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10871 break; 10872 case 0x1c: /* SCVTF / UCVTF */ 10873 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10874 opcode, rn, rd); 10875 break; 10876 case 0xc: /* SQSHLU */ 10877 if (!is_u) { 10878 unallocated_encoding(s); 10879 return; 10880 } 10881 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10882 break; 10883 case 0xe: /* SQSHL, UQSHL */ 10884 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10885 break; 10886 case 0x1f: /* FCVTZS/ FCVTZU */ 10887 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10888 return; 10889 default: 10890 unallocated_encoding(s); 10891 return; 10892 } 10893 } 10894 10895 /* Generate code to do a "long" addition or subtraction, ie one done in 10896 * TCGv_i64 on vector lanes twice the width specified by size. 10897 */ 10898 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10899 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10900 { 10901 static NeonGenTwo64OpFn * const fns[3][2] = { 10902 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10903 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10904 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10905 }; 10906 NeonGenTwo64OpFn *genfn; 10907 assert(size < 3); 10908 10909 genfn = fns[size][is_sub]; 10910 genfn(tcg_res, tcg_op1, tcg_op2); 10911 } 10912 10913 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10914 int opcode, int rd, int rn, int rm) 10915 { 10916 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10917 TCGv_i64 tcg_res[2]; 10918 int pass, accop; 10919 10920 tcg_res[0] = tcg_temp_new_i64(); 10921 tcg_res[1] = tcg_temp_new_i64(); 10922 10923 /* Does this op do an adding accumulate, a subtracting accumulate, 10924 * or no accumulate at all? 10925 */ 10926 switch (opcode) { 10927 case 5: 10928 case 8: 10929 case 9: 10930 accop = 1; 10931 break; 10932 case 10: 10933 case 11: 10934 accop = -1; 10935 break; 10936 default: 10937 accop = 0; 10938 break; 10939 } 10940 10941 if (accop != 0) { 10942 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10943 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10944 } 10945 10946 /* size == 2 means two 32x32->64 operations; this is worth special 10947 * casing because we can generally handle it inline. 10948 */ 10949 if (size == 2) { 10950 for (pass = 0; pass < 2; pass++) { 10951 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10952 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10953 TCGv_i64 tcg_passres; 10954 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10955 10956 int elt = pass + is_q * 2; 10957 10958 read_vec_element(s, tcg_op1, rn, elt, memop); 10959 read_vec_element(s, tcg_op2, rm, elt, memop); 10960 10961 if (accop == 0) { 10962 tcg_passres = tcg_res[pass]; 10963 } else { 10964 tcg_passres = tcg_temp_new_i64(); 10965 } 10966 10967 switch (opcode) { 10968 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10969 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10970 break; 10971 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10972 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10973 break; 10974 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10975 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10976 { 10977 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10978 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10979 10980 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10981 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10982 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10983 tcg_passres, 10984 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10985 tcg_temp_free_i64(tcg_tmp1); 10986 tcg_temp_free_i64(tcg_tmp2); 10987 break; 10988 } 10989 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10990 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10991 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10992 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10993 break; 10994 case 9: /* SQDMLAL, SQDMLAL2 */ 10995 case 11: /* SQDMLSL, SQDMLSL2 */ 10996 case 13: /* SQDMULL, SQDMULL2 */ 10997 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10998 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10999 tcg_passres, tcg_passres); 11000 break; 11001 default: 11002 g_assert_not_reached(); 11003 } 11004 11005 if (opcode == 9 || opcode == 11) { 11006 /* saturating accumulate ops */ 11007 if (accop < 0) { 11008 tcg_gen_neg_i64(tcg_passres, tcg_passres); 11009 } 11010 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 11011 tcg_res[pass], tcg_passres); 11012 } else if (accop > 0) { 11013 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 11014 } else if (accop < 0) { 11015 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 11016 } 11017 11018 if (accop != 0) { 11019 tcg_temp_free_i64(tcg_passres); 11020 } 11021 11022 tcg_temp_free_i64(tcg_op1); 11023 tcg_temp_free_i64(tcg_op2); 11024 } 11025 } else { 11026 /* size 0 or 1, generally helper functions */ 11027 for (pass = 0; pass < 2; pass++) { 11028 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11029 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11030 TCGv_i64 tcg_passres; 11031 int elt = pass + is_q * 2; 11032 11033 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 11034 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 11035 11036 if (accop == 0) { 11037 tcg_passres = tcg_res[pass]; 11038 } else { 11039 tcg_passres = tcg_temp_new_i64(); 11040 } 11041 11042 switch (opcode) { 11043 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 11044 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 11045 { 11046 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 11047 static NeonGenWidenFn * const widenfns[2][2] = { 11048 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 11049 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 11050 }; 11051 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 11052 11053 widenfn(tcg_op2_64, tcg_op2); 11054 widenfn(tcg_passres, tcg_op1); 11055 gen_neon_addl(size, (opcode == 2), tcg_passres, 11056 tcg_passres, tcg_op2_64); 11057 tcg_temp_free_i64(tcg_op2_64); 11058 break; 11059 } 11060 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 11061 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 11062 if (size == 0) { 11063 if (is_u) { 11064 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 11065 } else { 11066 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 11067 } 11068 } else { 11069 if (is_u) { 11070 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 11071 } else { 11072 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 11073 } 11074 } 11075 break; 11076 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 11077 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 11078 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 11079 if (size == 0) { 11080 if (is_u) { 11081 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 11082 } else { 11083 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 11084 } 11085 } else { 11086 if (is_u) { 11087 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 11088 } else { 11089 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 11090 } 11091 } 11092 break; 11093 case 9: /* SQDMLAL, SQDMLAL2 */ 11094 case 11: /* SQDMLSL, SQDMLSL2 */ 11095 case 13: /* SQDMULL, SQDMULL2 */ 11096 assert(size == 1); 11097 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 11098 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 11099 tcg_passres, tcg_passres); 11100 break; 11101 default: 11102 g_assert_not_reached(); 11103 } 11104 tcg_temp_free_i32(tcg_op1); 11105 tcg_temp_free_i32(tcg_op2); 11106 11107 if (accop != 0) { 11108 if (opcode == 9 || opcode == 11) { 11109 /* saturating accumulate ops */ 11110 if (accop < 0) { 11111 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 11112 } 11113 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 11114 tcg_res[pass], 11115 tcg_passres); 11116 } else { 11117 gen_neon_addl(size, (accop < 0), tcg_res[pass], 11118 tcg_res[pass], tcg_passres); 11119 } 11120 tcg_temp_free_i64(tcg_passres); 11121 } 11122 } 11123 } 11124 11125 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 11126 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 11127 tcg_temp_free_i64(tcg_res[0]); 11128 tcg_temp_free_i64(tcg_res[1]); 11129 } 11130 11131 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 11132 int opcode, int rd, int rn, int rm) 11133 { 11134 TCGv_i64 tcg_res[2]; 11135 int part = is_q ? 2 : 0; 11136 int pass; 11137 11138 for (pass = 0; pass < 2; pass++) { 11139 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11140 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11141 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 11142 static NeonGenWidenFn * const widenfns[3][2] = { 11143 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 11144 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 11145 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 11146 }; 11147 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 11148 11149 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11150 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 11151 widenfn(tcg_op2_wide, tcg_op2); 11152 tcg_temp_free_i32(tcg_op2); 11153 tcg_res[pass] = tcg_temp_new_i64(); 11154 gen_neon_addl(size, (opcode == 3), 11155 tcg_res[pass], tcg_op1, tcg_op2_wide); 11156 tcg_temp_free_i64(tcg_op1); 11157 tcg_temp_free_i64(tcg_op2_wide); 11158 } 11159 11160 for (pass = 0; pass < 2; pass++) { 11161 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11162 tcg_temp_free_i64(tcg_res[pass]); 11163 } 11164 } 11165 11166 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 11167 { 11168 tcg_gen_addi_i64(in, in, 1U << 31); 11169 tcg_gen_extrh_i64_i32(res, in); 11170 } 11171 11172 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 11173 int opcode, int rd, int rn, int rm) 11174 { 11175 TCGv_i32 tcg_res[2]; 11176 int part = is_q ? 2 : 0; 11177 int pass; 11178 11179 for (pass = 0; pass < 2; pass++) { 11180 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11181 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11182 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 11183 static NeonGenNarrowFn * const narrowfns[3][2] = { 11184 { gen_helper_neon_narrow_high_u8, 11185 gen_helper_neon_narrow_round_high_u8 }, 11186 { gen_helper_neon_narrow_high_u16, 11187 gen_helper_neon_narrow_round_high_u16 }, 11188 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 11189 }; 11190 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 11191 11192 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11193 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11194 11195 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 11196 11197 tcg_temp_free_i64(tcg_op1); 11198 tcg_temp_free_i64(tcg_op2); 11199 11200 tcg_res[pass] = tcg_temp_new_i32(); 11201 gennarrow(tcg_res[pass], tcg_wideres); 11202 tcg_temp_free_i64(tcg_wideres); 11203 } 11204 11205 for (pass = 0; pass < 2; pass++) { 11206 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 11207 tcg_temp_free_i32(tcg_res[pass]); 11208 } 11209 clear_vec_high(s, is_q, rd); 11210 } 11211 11212 /* AdvSIMD three different 11213 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 11214 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 11215 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 11216 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 11217 */ 11218 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 11219 { 11220 /* Instructions in this group fall into three basic classes 11221 * (in each case with the operation working on each element in 11222 * the input vectors): 11223 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 11224 * 128 bit input) 11225 * (2) wide 64 x 128 -> 128 11226 * (3) narrowing 128 x 128 -> 64 11227 * Here we do initial decode, catch unallocated cases and 11228 * dispatch to separate functions for each class. 11229 */ 11230 int is_q = extract32(insn, 30, 1); 11231 int is_u = extract32(insn, 29, 1); 11232 int size = extract32(insn, 22, 2); 11233 int opcode = extract32(insn, 12, 4); 11234 int rm = extract32(insn, 16, 5); 11235 int rn = extract32(insn, 5, 5); 11236 int rd = extract32(insn, 0, 5); 11237 11238 switch (opcode) { 11239 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 11240 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 11241 /* 64 x 128 -> 128 */ 11242 if (size == 3) { 11243 unallocated_encoding(s); 11244 return; 11245 } 11246 if (!fp_access_check(s)) { 11247 return; 11248 } 11249 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 11250 break; 11251 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 11252 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 11253 /* 128 x 128 -> 64 */ 11254 if (size == 3) { 11255 unallocated_encoding(s); 11256 return; 11257 } 11258 if (!fp_access_check(s)) { 11259 return; 11260 } 11261 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 11262 break; 11263 case 14: /* PMULL, PMULL2 */ 11264 if (is_u) { 11265 unallocated_encoding(s); 11266 return; 11267 } 11268 switch (size) { 11269 case 0: /* PMULL.P8 */ 11270 if (!fp_access_check(s)) { 11271 return; 11272 } 11273 /* The Q field specifies lo/hi half input for this insn. */ 11274 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 11275 gen_helper_neon_pmull_h); 11276 break; 11277 11278 case 3: /* PMULL.P64 */ 11279 if (!dc_isar_feature(aa64_pmull, s)) { 11280 unallocated_encoding(s); 11281 return; 11282 } 11283 if (!fp_access_check(s)) { 11284 return; 11285 } 11286 /* The Q field specifies lo/hi half input for this insn. */ 11287 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 11288 gen_helper_gvec_pmull_q); 11289 break; 11290 11291 default: 11292 unallocated_encoding(s); 11293 break; 11294 } 11295 return; 11296 case 9: /* SQDMLAL, SQDMLAL2 */ 11297 case 11: /* SQDMLSL, SQDMLSL2 */ 11298 case 13: /* SQDMULL, SQDMULL2 */ 11299 if (is_u || size == 0) { 11300 unallocated_encoding(s); 11301 return; 11302 } 11303 /* fall through */ 11304 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 11305 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 11306 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 11307 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 11308 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 11309 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 11310 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 11311 /* 64 x 64 -> 128 */ 11312 if (size == 3) { 11313 unallocated_encoding(s); 11314 return; 11315 } 11316 if (!fp_access_check(s)) { 11317 return; 11318 } 11319 11320 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 11321 break; 11322 default: 11323 /* opcode 15 not allocated */ 11324 unallocated_encoding(s); 11325 break; 11326 } 11327 } 11328 11329 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 11330 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 11331 { 11332 int rd = extract32(insn, 0, 5); 11333 int rn = extract32(insn, 5, 5); 11334 int rm = extract32(insn, 16, 5); 11335 int size = extract32(insn, 22, 2); 11336 bool is_u = extract32(insn, 29, 1); 11337 bool is_q = extract32(insn, 30, 1); 11338 11339 if (!fp_access_check(s)) { 11340 return; 11341 } 11342 11343 switch (size + 4 * is_u) { 11344 case 0: /* AND */ 11345 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 11346 return; 11347 case 1: /* BIC */ 11348 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 11349 return; 11350 case 2: /* ORR */ 11351 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 11352 return; 11353 case 3: /* ORN */ 11354 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11355 return; 11356 case 4: /* EOR */ 11357 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11358 return; 11359 11360 case 5: /* BSL bitwise select */ 11361 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11362 return; 11363 case 6: /* BIT, bitwise insert if true */ 11364 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11365 return; 11366 case 7: /* BIF, bitwise insert if false */ 11367 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11368 return; 11369 11370 default: 11371 g_assert_not_reached(); 11372 } 11373 } 11374 11375 /* Pairwise op subgroup of C3.6.16. 11376 * 11377 * This is called directly or via the handle_3same_float for float pairwise 11378 * operations where the opcode and size are calculated differently. 11379 */ 11380 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11381 int size, int rn, int rm, int rd) 11382 { 11383 TCGv_ptr fpst; 11384 int pass; 11385 11386 /* Floating point operations need fpst */ 11387 if (opcode >= 0x58) { 11388 fpst = fpstatus_ptr(FPST_FPCR); 11389 } else { 11390 fpst = NULL; 11391 } 11392 11393 if (!fp_access_check(s)) { 11394 return; 11395 } 11396 11397 /* These operations work on the concatenated rm:rn, with each pair of 11398 * adjacent elements being operated on to produce an element in the result. 11399 */ 11400 if (size == 3) { 11401 TCGv_i64 tcg_res[2]; 11402 11403 for (pass = 0; pass < 2; pass++) { 11404 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11405 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11406 int passreg = (pass == 0) ? rn : rm; 11407 11408 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11409 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11410 tcg_res[pass] = tcg_temp_new_i64(); 11411 11412 switch (opcode) { 11413 case 0x17: /* ADDP */ 11414 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11415 break; 11416 case 0x58: /* FMAXNMP */ 11417 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11418 break; 11419 case 0x5a: /* FADDP */ 11420 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11421 break; 11422 case 0x5e: /* FMAXP */ 11423 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11424 break; 11425 case 0x78: /* FMINNMP */ 11426 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11427 break; 11428 case 0x7e: /* FMINP */ 11429 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11430 break; 11431 default: 11432 g_assert_not_reached(); 11433 } 11434 11435 tcg_temp_free_i64(tcg_op1); 11436 tcg_temp_free_i64(tcg_op2); 11437 } 11438 11439 for (pass = 0; pass < 2; pass++) { 11440 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11441 tcg_temp_free_i64(tcg_res[pass]); 11442 } 11443 } else { 11444 int maxpass = is_q ? 4 : 2; 11445 TCGv_i32 tcg_res[4]; 11446 11447 for (pass = 0; pass < maxpass; pass++) { 11448 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11449 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11450 NeonGenTwoOpFn *genfn = NULL; 11451 int passreg = pass < (maxpass / 2) ? rn : rm; 11452 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11453 11454 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11455 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11456 tcg_res[pass] = tcg_temp_new_i32(); 11457 11458 switch (opcode) { 11459 case 0x17: /* ADDP */ 11460 { 11461 static NeonGenTwoOpFn * const fns[3] = { 11462 gen_helper_neon_padd_u8, 11463 gen_helper_neon_padd_u16, 11464 tcg_gen_add_i32, 11465 }; 11466 genfn = fns[size]; 11467 break; 11468 } 11469 case 0x14: /* SMAXP, UMAXP */ 11470 { 11471 static NeonGenTwoOpFn * const fns[3][2] = { 11472 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11473 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11474 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11475 }; 11476 genfn = fns[size][u]; 11477 break; 11478 } 11479 case 0x15: /* SMINP, UMINP */ 11480 { 11481 static NeonGenTwoOpFn * const fns[3][2] = { 11482 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11483 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11484 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11485 }; 11486 genfn = fns[size][u]; 11487 break; 11488 } 11489 /* The FP operations are all on single floats (32 bit) */ 11490 case 0x58: /* FMAXNMP */ 11491 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11492 break; 11493 case 0x5a: /* FADDP */ 11494 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11495 break; 11496 case 0x5e: /* FMAXP */ 11497 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11498 break; 11499 case 0x78: /* FMINNMP */ 11500 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11501 break; 11502 case 0x7e: /* FMINP */ 11503 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11504 break; 11505 default: 11506 g_assert_not_reached(); 11507 } 11508 11509 /* FP ops called directly, otherwise call now */ 11510 if (genfn) { 11511 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11512 } 11513 11514 tcg_temp_free_i32(tcg_op1); 11515 tcg_temp_free_i32(tcg_op2); 11516 } 11517 11518 for (pass = 0; pass < maxpass; pass++) { 11519 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11520 tcg_temp_free_i32(tcg_res[pass]); 11521 } 11522 clear_vec_high(s, is_q, rd); 11523 } 11524 11525 if (fpst) { 11526 tcg_temp_free_ptr(fpst); 11527 } 11528 } 11529 11530 /* Floating point op subgroup of C3.6.16. */ 11531 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11532 { 11533 /* For floating point ops, the U, size[1] and opcode bits 11534 * together indicate the operation. size[0] indicates single 11535 * or double. 11536 */ 11537 int fpopcode = extract32(insn, 11, 5) 11538 | (extract32(insn, 23, 1) << 5) 11539 | (extract32(insn, 29, 1) << 6); 11540 int is_q = extract32(insn, 30, 1); 11541 int size = extract32(insn, 22, 1); 11542 int rm = extract32(insn, 16, 5); 11543 int rn = extract32(insn, 5, 5); 11544 int rd = extract32(insn, 0, 5); 11545 11546 int datasize = is_q ? 128 : 64; 11547 int esize = 32 << size; 11548 int elements = datasize / esize; 11549 11550 if (size == 1 && !is_q) { 11551 unallocated_encoding(s); 11552 return; 11553 } 11554 11555 switch (fpopcode) { 11556 case 0x58: /* FMAXNMP */ 11557 case 0x5a: /* FADDP */ 11558 case 0x5e: /* FMAXP */ 11559 case 0x78: /* FMINNMP */ 11560 case 0x7e: /* FMINP */ 11561 if (size && !is_q) { 11562 unallocated_encoding(s); 11563 return; 11564 } 11565 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11566 rn, rm, rd); 11567 return; 11568 case 0x1b: /* FMULX */ 11569 case 0x1f: /* FRECPS */ 11570 case 0x3f: /* FRSQRTS */ 11571 case 0x5d: /* FACGE */ 11572 case 0x7d: /* FACGT */ 11573 case 0x19: /* FMLA */ 11574 case 0x39: /* FMLS */ 11575 case 0x18: /* FMAXNM */ 11576 case 0x1a: /* FADD */ 11577 case 0x1c: /* FCMEQ */ 11578 case 0x1e: /* FMAX */ 11579 case 0x38: /* FMINNM */ 11580 case 0x3a: /* FSUB */ 11581 case 0x3e: /* FMIN */ 11582 case 0x5b: /* FMUL */ 11583 case 0x5c: /* FCMGE */ 11584 case 0x5f: /* FDIV */ 11585 case 0x7a: /* FABD */ 11586 case 0x7c: /* FCMGT */ 11587 if (!fp_access_check(s)) { 11588 return; 11589 } 11590 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11591 return; 11592 11593 case 0x1d: /* FMLAL */ 11594 case 0x3d: /* FMLSL */ 11595 case 0x59: /* FMLAL2 */ 11596 case 0x79: /* FMLSL2 */ 11597 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11598 unallocated_encoding(s); 11599 return; 11600 } 11601 if (fp_access_check(s)) { 11602 int is_s = extract32(insn, 23, 1); 11603 int is_2 = extract32(insn, 29, 1); 11604 int data = (is_2 << 1) | is_s; 11605 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11606 vec_full_reg_offset(s, rn), 11607 vec_full_reg_offset(s, rm), cpu_env, 11608 is_q ? 16 : 8, vec_full_reg_size(s), 11609 data, gen_helper_gvec_fmlal_a64); 11610 } 11611 return; 11612 11613 default: 11614 unallocated_encoding(s); 11615 return; 11616 } 11617 } 11618 11619 /* Integer op subgroup of C3.6.16. */ 11620 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11621 { 11622 int is_q = extract32(insn, 30, 1); 11623 int u = extract32(insn, 29, 1); 11624 int size = extract32(insn, 22, 2); 11625 int opcode = extract32(insn, 11, 5); 11626 int rm = extract32(insn, 16, 5); 11627 int rn = extract32(insn, 5, 5); 11628 int rd = extract32(insn, 0, 5); 11629 int pass; 11630 TCGCond cond; 11631 11632 switch (opcode) { 11633 case 0x13: /* MUL, PMUL */ 11634 if (u && size != 0) { 11635 unallocated_encoding(s); 11636 return; 11637 } 11638 /* fall through */ 11639 case 0x0: /* SHADD, UHADD */ 11640 case 0x2: /* SRHADD, URHADD */ 11641 case 0x4: /* SHSUB, UHSUB */ 11642 case 0xc: /* SMAX, UMAX */ 11643 case 0xd: /* SMIN, UMIN */ 11644 case 0xe: /* SABD, UABD */ 11645 case 0xf: /* SABA, UABA */ 11646 case 0x12: /* MLA, MLS */ 11647 if (size == 3) { 11648 unallocated_encoding(s); 11649 return; 11650 } 11651 break; 11652 case 0x16: /* SQDMULH, SQRDMULH */ 11653 if (size == 0 || size == 3) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 break; 11658 default: 11659 if (size == 3 && !is_q) { 11660 unallocated_encoding(s); 11661 return; 11662 } 11663 break; 11664 } 11665 11666 if (!fp_access_check(s)) { 11667 return; 11668 } 11669 11670 switch (opcode) { 11671 case 0x01: /* SQADD, UQADD */ 11672 if (u) { 11673 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11674 } else { 11675 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11676 } 11677 return; 11678 case 0x05: /* SQSUB, UQSUB */ 11679 if (u) { 11680 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11681 } else { 11682 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11683 } 11684 return; 11685 case 0x08: /* SSHL, USHL */ 11686 if (u) { 11687 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11688 } else { 11689 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11690 } 11691 return; 11692 case 0x0c: /* SMAX, UMAX */ 11693 if (u) { 11694 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11695 } else { 11696 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11697 } 11698 return; 11699 case 0x0d: /* SMIN, UMIN */ 11700 if (u) { 11701 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11702 } else { 11703 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11704 } 11705 return; 11706 case 0xe: /* SABD, UABD */ 11707 if (u) { 11708 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11709 } else { 11710 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11711 } 11712 return; 11713 case 0xf: /* SABA, UABA */ 11714 if (u) { 11715 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11716 } else { 11717 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11718 } 11719 return; 11720 case 0x10: /* ADD, SUB */ 11721 if (u) { 11722 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11723 } else { 11724 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11725 } 11726 return; 11727 case 0x13: /* MUL, PMUL */ 11728 if (!u) { /* MUL */ 11729 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11730 } else { /* PMUL */ 11731 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11732 } 11733 return; 11734 case 0x12: /* MLA, MLS */ 11735 if (u) { 11736 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11737 } else { 11738 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11739 } 11740 return; 11741 case 0x16: /* SQDMULH, SQRDMULH */ 11742 { 11743 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11744 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11745 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11746 }; 11747 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11748 } 11749 return; 11750 case 0x11: 11751 if (!u) { /* CMTST */ 11752 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11753 return; 11754 } 11755 /* else CMEQ */ 11756 cond = TCG_COND_EQ; 11757 goto do_gvec_cmp; 11758 case 0x06: /* CMGT, CMHI */ 11759 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11760 goto do_gvec_cmp; 11761 case 0x07: /* CMGE, CMHS */ 11762 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11763 do_gvec_cmp: 11764 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11765 vec_full_reg_offset(s, rn), 11766 vec_full_reg_offset(s, rm), 11767 is_q ? 16 : 8, vec_full_reg_size(s)); 11768 return; 11769 } 11770 11771 if (size == 3) { 11772 assert(is_q); 11773 for (pass = 0; pass < 2; pass++) { 11774 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11775 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11776 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11777 11778 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11779 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11780 11781 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11782 11783 write_vec_element(s, tcg_res, rd, pass, MO_64); 11784 11785 tcg_temp_free_i64(tcg_res); 11786 tcg_temp_free_i64(tcg_op1); 11787 tcg_temp_free_i64(tcg_op2); 11788 } 11789 } else { 11790 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11791 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11792 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11793 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11794 NeonGenTwoOpFn *genfn = NULL; 11795 NeonGenTwoOpEnvFn *genenvfn = NULL; 11796 11797 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11798 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11799 11800 switch (opcode) { 11801 case 0x0: /* SHADD, UHADD */ 11802 { 11803 static NeonGenTwoOpFn * const fns[3][2] = { 11804 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11805 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11806 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11807 }; 11808 genfn = fns[size][u]; 11809 break; 11810 } 11811 case 0x2: /* SRHADD, URHADD */ 11812 { 11813 static NeonGenTwoOpFn * const fns[3][2] = { 11814 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11815 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11816 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11817 }; 11818 genfn = fns[size][u]; 11819 break; 11820 } 11821 case 0x4: /* SHSUB, UHSUB */ 11822 { 11823 static NeonGenTwoOpFn * const fns[3][2] = { 11824 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11825 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11826 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11827 }; 11828 genfn = fns[size][u]; 11829 break; 11830 } 11831 case 0x9: /* SQSHL, UQSHL */ 11832 { 11833 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11834 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11835 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11836 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11837 }; 11838 genenvfn = fns[size][u]; 11839 break; 11840 } 11841 case 0xa: /* SRSHL, URSHL */ 11842 { 11843 static NeonGenTwoOpFn * const fns[3][2] = { 11844 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11845 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11846 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11847 }; 11848 genfn = fns[size][u]; 11849 break; 11850 } 11851 case 0xb: /* SQRSHL, UQRSHL */ 11852 { 11853 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11854 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11855 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11856 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11857 }; 11858 genenvfn = fns[size][u]; 11859 break; 11860 } 11861 default: 11862 g_assert_not_reached(); 11863 } 11864 11865 if (genenvfn) { 11866 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11867 } else { 11868 genfn(tcg_res, tcg_op1, tcg_op2); 11869 } 11870 11871 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11872 11873 tcg_temp_free_i32(tcg_res); 11874 tcg_temp_free_i32(tcg_op1); 11875 tcg_temp_free_i32(tcg_op2); 11876 } 11877 } 11878 clear_vec_high(s, is_q, rd); 11879 } 11880 11881 /* AdvSIMD three same 11882 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11883 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11884 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11885 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11886 */ 11887 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11888 { 11889 int opcode = extract32(insn, 11, 5); 11890 11891 switch (opcode) { 11892 case 0x3: /* logic ops */ 11893 disas_simd_3same_logic(s, insn); 11894 break; 11895 case 0x17: /* ADDP */ 11896 case 0x14: /* SMAXP, UMAXP */ 11897 case 0x15: /* SMINP, UMINP */ 11898 { 11899 /* Pairwise operations */ 11900 int is_q = extract32(insn, 30, 1); 11901 int u = extract32(insn, 29, 1); 11902 int size = extract32(insn, 22, 2); 11903 int rm = extract32(insn, 16, 5); 11904 int rn = extract32(insn, 5, 5); 11905 int rd = extract32(insn, 0, 5); 11906 if (opcode == 0x17) { 11907 if (u || (size == 3 && !is_q)) { 11908 unallocated_encoding(s); 11909 return; 11910 } 11911 } else { 11912 if (size == 3) { 11913 unallocated_encoding(s); 11914 return; 11915 } 11916 } 11917 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11918 break; 11919 } 11920 case 0x18 ... 0x31: 11921 /* floating point ops, sz[1] and U are part of opcode */ 11922 disas_simd_3same_float(s, insn); 11923 break; 11924 default: 11925 disas_simd_3same_int(s, insn); 11926 break; 11927 } 11928 } 11929 11930 /* 11931 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11932 * 11933 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11934 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11935 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11936 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11937 * 11938 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11939 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11940 * 11941 */ 11942 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11943 { 11944 int opcode = extract32(insn, 11, 3); 11945 int u = extract32(insn, 29, 1); 11946 int a = extract32(insn, 23, 1); 11947 int is_q = extract32(insn, 30, 1); 11948 int rm = extract32(insn, 16, 5); 11949 int rn = extract32(insn, 5, 5); 11950 int rd = extract32(insn, 0, 5); 11951 /* 11952 * For these floating point ops, the U, a and opcode bits 11953 * together indicate the operation. 11954 */ 11955 int fpopcode = opcode | (a << 3) | (u << 4); 11956 int datasize = is_q ? 128 : 64; 11957 int elements = datasize / 16; 11958 bool pairwise; 11959 TCGv_ptr fpst; 11960 int pass; 11961 11962 switch (fpopcode) { 11963 case 0x0: /* FMAXNM */ 11964 case 0x1: /* FMLA */ 11965 case 0x2: /* FADD */ 11966 case 0x3: /* FMULX */ 11967 case 0x4: /* FCMEQ */ 11968 case 0x6: /* FMAX */ 11969 case 0x7: /* FRECPS */ 11970 case 0x8: /* FMINNM */ 11971 case 0x9: /* FMLS */ 11972 case 0xa: /* FSUB */ 11973 case 0xe: /* FMIN */ 11974 case 0xf: /* FRSQRTS */ 11975 case 0x13: /* FMUL */ 11976 case 0x14: /* FCMGE */ 11977 case 0x15: /* FACGE */ 11978 case 0x17: /* FDIV */ 11979 case 0x1a: /* FABD */ 11980 case 0x1c: /* FCMGT */ 11981 case 0x1d: /* FACGT */ 11982 pairwise = false; 11983 break; 11984 case 0x10: /* FMAXNMP */ 11985 case 0x12: /* FADDP */ 11986 case 0x16: /* FMAXP */ 11987 case 0x18: /* FMINNMP */ 11988 case 0x1e: /* FMINP */ 11989 pairwise = true; 11990 break; 11991 default: 11992 unallocated_encoding(s); 11993 return; 11994 } 11995 11996 if (!dc_isar_feature(aa64_fp16, s)) { 11997 unallocated_encoding(s); 11998 return; 11999 } 12000 12001 if (!fp_access_check(s)) { 12002 return; 12003 } 12004 12005 fpst = fpstatus_ptr(FPST_FPCR_F16); 12006 12007 if (pairwise) { 12008 int maxpass = is_q ? 8 : 4; 12009 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 12010 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 12011 TCGv_i32 tcg_res[8]; 12012 12013 for (pass = 0; pass < maxpass; pass++) { 12014 int passreg = pass < (maxpass / 2) ? rn : rm; 12015 int passelt = (pass << 1) & (maxpass - 1); 12016 12017 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 12018 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 12019 tcg_res[pass] = tcg_temp_new_i32(); 12020 12021 switch (fpopcode) { 12022 case 0x10: /* FMAXNMP */ 12023 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 12024 fpst); 12025 break; 12026 case 0x12: /* FADDP */ 12027 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 12028 break; 12029 case 0x16: /* FMAXP */ 12030 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 12031 break; 12032 case 0x18: /* FMINNMP */ 12033 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 12034 fpst); 12035 break; 12036 case 0x1e: /* FMINP */ 12037 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 12038 break; 12039 default: 12040 g_assert_not_reached(); 12041 } 12042 } 12043 12044 for (pass = 0; pass < maxpass; pass++) { 12045 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 12046 tcg_temp_free_i32(tcg_res[pass]); 12047 } 12048 12049 tcg_temp_free_i32(tcg_op1); 12050 tcg_temp_free_i32(tcg_op2); 12051 12052 } else { 12053 for (pass = 0; pass < elements; pass++) { 12054 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 12055 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 12056 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12057 12058 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 12059 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 12060 12061 switch (fpopcode) { 12062 case 0x0: /* FMAXNM */ 12063 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 12064 break; 12065 case 0x1: /* FMLA */ 12066 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12067 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 12068 fpst); 12069 break; 12070 case 0x2: /* FADD */ 12071 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 12072 break; 12073 case 0x3: /* FMULX */ 12074 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 12075 break; 12076 case 0x4: /* FCMEQ */ 12077 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12078 break; 12079 case 0x6: /* FMAX */ 12080 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 12081 break; 12082 case 0x7: /* FRECPS */ 12083 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12084 break; 12085 case 0x8: /* FMINNM */ 12086 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 12087 break; 12088 case 0x9: /* FMLS */ 12089 /* As usual for ARM, separate negation for fused multiply-add */ 12090 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 12091 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12092 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 12093 fpst); 12094 break; 12095 case 0xa: /* FSUB */ 12096 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 12097 break; 12098 case 0xe: /* FMIN */ 12099 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 12100 break; 12101 case 0xf: /* FRSQRTS */ 12102 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12103 break; 12104 case 0x13: /* FMUL */ 12105 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 12106 break; 12107 case 0x14: /* FCMGE */ 12108 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12109 break; 12110 case 0x15: /* FACGE */ 12111 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12112 break; 12113 case 0x17: /* FDIV */ 12114 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 12115 break; 12116 case 0x1a: /* FABD */ 12117 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 12118 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 12119 break; 12120 case 0x1c: /* FCMGT */ 12121 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12122 break; 12123 case 0x1d: /* FACGT */ 12124 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 12125 break; 12126 default: 12127 g_assert_not_reached(); 12128 } 12129 12130 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12131 tcg_temp_free_i32(tcg_res); 12132 tcg_temp_free_i32(tcg_op1); 12133 tcg_temp_free_i32(tcg_op2); 12134 } 12135 } 12136 12137 tcg_temp_free_ptr(fpst); 12138 12139 clear_vec_high(s, is_q, rd); 12140 } 12141 12142 /* AdvSIMD three same extra 12143 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 12144 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 12145 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 12146 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 12147 */ 12148 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 12149 { 12150 int rd = extract32(insn, 0, 5); 12151 int rn = extract32(insn, 5, 5); 12152 int opcode = extract32(insn, 11, 4); 12153 int rm = extract32(insn, 16, 5); 12154 int size = extract32(insn, 22, 2); 12155 bool u = extract32(insn, 29, 1); 12156 bool is_q = extract32(insn, 30, 1); 12157 bool feature; 12158 int rot; 12159 12160 switch (u * 16 + opcode) { 12161 case 0x10: /* SQRDMLAH (vector) */ 12162 case 0x11: /* SQRDMLSH (vector) */ 12163 if (size != 1 && size != 2) { 12164 unallocated_encoding(s); 12165 return; 12166 } 12167 feature = dc_isar_feature(aa64_rdm, s); 12168 break; 12169 case 0x02: /* SDOT (vector) */ 12170 case 0x12: /* UDOT (vector) */ 12171 if (size != MO_32) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 feature = dc_isar_feature(aa64_dp, s); 12176 break; 12177 case 0x03: /* USDOT */ 12178 if (size != MO_32) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 feature = dc_isar_feature(aa64_i8mm, s); 12183 break; 12184 case 0x04: /* SMMLA */ 12185 case 0x14: /* UMMLA */ 12186 case 0x05: /* USMMLA */ 12187 if (!is_q || size != MO_32) { 12188 unallocated_encoding(s); 12189 return; 12190 } 12191 feature = dc_isar_feature(aa64_i8mm, s); 12192 break; 12193 case 0x18: /* FCMLA, #0 */ 12194 case 0x19: /* FCMLA, #90 */ 12195 case 0x1a: /* FCMLA, #180 */ 12196 case 0x1b: /* FCMLA, #270 */ 12197 case 0x1c: /* FCADD, #90 */ 12198 case 0x1e: /* FCADD, #270 */ 12199 if (size == 0 12200 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 12201 || (size == 3 && !is_q)) { 12202 unallocated_encoding(s); 12203 return; 12204 } 12205 feature = dc_isar_feature(aa64_fcma, s); 12206 break; 12207 case 0x1d: /* BFMMLA */ 12208 if (size != MO_16 || !is_q) { 12209 unallocated_encoding(s); 12210 return; 12211 } 12212 feature = dc_isar_feature(aa64_bf16, s); 12213 break; 12214 case 0x1f: 12215 switch (size) { 12216 case 1: /* BFDOT */ 12217 case 3: /* BFMLAL{B,T} */ 12218 feature = dc_isar_feature(aa64_bf16, s); 12219 break; 12220 default: 12221 unallocated_encoding(s); 12222 return; 12223 } 12224 break; 12225 default: 12226 unallocated_encoding(s); 12227 return; 12228 } 12229 if (!feature) { 12230 unallocated_encoding(s); 12231 return; 12232 } 12233 if (!fp_access_check(s)) { 12234 return; 12235 } 12236 12237 switch (opcode) { 12238 case 0x0: /* SQRDMLAH (vector) */ 12239 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 12240 return; 12241 12242 case 0x1: /* SQRDMLSH (vector) */ 12243 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 12244 return; 12245 12246 case 0x2: /* SDOT / UDOT */ 12247 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 12248 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 12249 return; 12250 12251 case 0x3: /* USDOT */ 12252 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 12253 return; 12254 12255 case 0x04: /* SMMLA, UMMLA */ 12256 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 12257 u ? gen_helper_gvec_ummla_b 12258 : gen_helper_gvec_smmla_b); 12259 return; 12260 case 0x05: /* USMMLA */ 12261 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 12262 return; 12263 12264 case 0x8: /* FCMLA, #0 */ 12265 case 0x9: /* FCMLA, #90 */ 12266 case 0xa: /* FCMLA, #180 */ 12267 case 0xb: /* FCMLA, #270 */ 12268 rot = extract32(opcode, 0, 2); 12269 switch (size) { 12270 case 1: 12271 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 12272 gen_helper_gvec_fcmlah); 12273 break; 12274 case 2: 12275 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 12276 gen_helper_gvec_fcmlas); 12277 break; 12278 case 3: 12279 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 12280 gen_helper_gvec_fcmlad); 12281 break; 12282 default: 12283 g_assert_not_reached(); 12284 } 12285 return; 12286 12287 case 0xc: /* FCADD, #90 */ 12288 case 0xe: /* FCADD, #270 */ 12289 rot = extract32(opcode, 1, 1); 12290 switch (size) { 12291 case 1: 12292 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 12293 gen_helper_gvec_fcaddh); 12294 break; 12295 case 2: 12296 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 12297 gen_helper_gvec_fcadds); 12298 break; 12299 case 3: 12300 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 12301 gen_helper_gvec_fcaddd); 12302 break; 12303 default: 12304 g_assert_not_reached(); 12305 } 12306 return; 12307 12308 case 0xd: /* BFMMLA */ 12309 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 12310 return; 12311 case 0xf: 12312 switch (size) { 12313 case 1: /* BFDOT */ 12314 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 12315 break; 12316 case 3: /* BFMLAL{B,T} */ 12317 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 12318 gen_helper_gvec_bfmlal); 12319 break; 12320 default: 12321 g_assert_not_reached(); 12322 } 12323 return; 12324 12325 default: 12326 g_assert_not_reached(); 12327 } 12328 } 12329 12330 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 12331 int size, int rn, int rd) 12332 { 12333 /* Handle 2-reg-misc ops which are widening (so each size element 12334 * in the source becomes a 2*size element in the destination. 12335 * The only instruction like this is FCVTL. 12336 */ 12337 int pass; 12338 12339 if (size == 3) { 12340 /* 32 -> 64 bit fp conversion */ 12341 TCGv_i64 tcg_res[2]; 12342 int srcelt = is_q ? 2 : 0; 12343 12344 for (pass = 0; pass < 2; pass++) { 12345 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12346 tcg_res[pass] = tcg_temp_new_i64(); 12347 12348 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 12349 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 12350 tcg_temp_free_i32(tcg_op); 12351 } 12352 for (pass = 0; pass < 2; pass++) { 12353 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12354 tcg_temp_free_i64(tcg_res[pass]); 12355 } 12356 } else { 12357 /* 16 -> 32 bit fp conversion */ 12358 int srcelt = is_q ? 4 : 0; 12359 TCGv_i32 tcg_res[4]; 12360 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 12361 TCGv_i32 ahp = get_ahp_flag(); 12362 12363 for (pass = 0; pass < 4; pass++) { 12364 tcg_res[pass] = tcg_temp_new_i32(); 12365 12366 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 12367 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 12368 fpst, ahp); 12369 } 12370 for (pass = 0; pass < 4; pass++) { 12371 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 12372 tcg_temp_free_i32(tcg_res[pass]); 12373 } 12374 12375 tcg_temp_free_ptr(fpst); 12376 tcg_temp_free_i32(ahp); 12377 } 12378 } 12379 12380 static void handle_rev(DisasContext *s, int opcode, bool u, 12381 bool is_q, int size, int rn, int rd) 12382 { 12383 int op = (opcode << 1) | u; 12384 int opsz = op + size; 12385 int grp_size = 3 - opsz; 12386 int dsize = is_q ? 128 : 64; 12387 int i; 12388 12389 if (opsz >= 3) { 12390 unallocated_encoding(s); 12391 return; 12392 } 12393 12394 if (!fp_access_check(s)) { 12395 return; 12396 } 12397 12398 if (size == 0) { 12399 /* Special case bytes, use bswap op on each group of elements */ 12400 int groups = dsize / (8 << grp_size); 12401 12402 for (i = 0; i < groups; i++) { 12403 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12404 12405 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12406 switch (grp_size) { 12407 case MO_16: 12408 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12409 break; 12410 case MO_32: 12411 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12412 break; 12413 case MO_64: 12414 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12415 break; 12416 default: 12417 g_assert_not_reached(); 12418 } 12419 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12420 tcg_temp_free_i64(tcg_tmp); 12421 } 12422 clear_vec_high(s, is_q, rd); 12423 } else { 12424 int revmask = (1 << grp_size) - 1; 12425 int esize = 8 << size; 12426 int elements = dsize / esize; 12427 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12428 TCGv_i64 tcg_rd = tcg_const_i64(0); 12429 TCGv_i64 tcg_rd_hi = tcg_const_i64(0); 12430 12431 for (i = 0; i < elements; i++) { 12432 int e_rev = (i & 0xf) ^ revmask; 12433 int off = e_rev * esize; 12434 read_vec_element(s, tcg_rn, rn, i, size); 12435 if (off >= 64) { 12436 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, 12437 tcg_rn, off - 64, esize); 12438 } else { 12439 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); 12440 } 12441 } 12442 write_vec_element(s, tcg_rd, rd, 0, MO_64); 12443 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); 12444 12445 tcg_temp_free_i64(tcg_rd_hi); 12446 tcg_temp_free_i64(tcg_rd); 12447 tcg_temp_free_i64(tcg_rn); 12448 } 12449 } 12450 12451 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12452 bool is_q, int size, int rn, int rd) 12453 { 12454 /* Implement the pairwise operations from 2-misc: 12455 * SADDLP, UADDLP, SADALP, UADALP. 12456 * These all add pairs of elements in the input to produce a 12457 * double-width result element in the output (possibly accumulating). 12458 */ 12459 bool accum = (opcode == 0x6); 12460 int maxpass = is_q ? 2 : 1; 12461 int pass; 12462 TCGv_i64 tcg_res[2]; 12463 12464 if (size == 2) { 12465 /* 32 + 32 -> 64 op */ 12466 MemOp memop = size + (u ? 0 : MO_SIGN); 12467 12468 for (pass = 0; pass < maxpass; pass++) { 12469 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12470 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12471 12472 tcg_res[pass] = tcg_temp_new_i64(); 12473 12474 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12475 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12476 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12477 if (accum) { 12478 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12479 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12480 } 12481 12482 tcg_temp_free_i64(tcg_op1); 12483 tcg_temp_free_i64(tcg_op2); 12484 } 12485 } else { 12486 for (pass = 0; pass < maxpass; pass++) { 12487 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12488 NeonGenOne64OpFn *genfn; 12489 static NeonGenOne64OpFn * const fns[2][2] = { 12490 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12491 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12492 }; 12493 12494 genfn = fns[size][u]; 12495 12496 tcg_res[pass] = tcg_temp_new_i64(); 12497 12498 read_vec_element(s, tcg_op, rn, pass, MO_64); 12499 genfn(tcg_res[pass], tcg_op); 12500 12501 if (accum) { 12502 read_vec_element(s, tcg_op, rd, pass, MO_64); 12503 if (size == 0) { 12504 gen_helper_neon_addl_u16(tcg_res[pass], 12505 tcg_res[pass], tcg_op); 12506 } else { 12507 gen_helper_neon_addl_u32(tcg_res[pass], 12508 tcg_res[pass], tcg_op); 12509 } 12510 } 12511 tcg_temp_free_i64(tcg_op); 12512 } 12513 } 12514 if (!is_q) { 12515 tcg_res[1] = tcg_constant_i64(0); 12516 } 12517 for (pass = 0; pass < 2; pass++) { 12518 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12519 tcg_temp_free_i64(tcg_res[pass]); 12520 } 12521 } 12522 12523 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12524 { 12525 /* Implement SHLL and SHLL2 */ 12526 int pass; 12527 int part = is_q ? 2 : 0; 12528 TCGv_i64 tcg_res[2]; 12529 12530 for (pass = 0; pass < 2; pass++) { 12531 static NeonGenWidenFn * const widenfns[3] = { 12532 gen_helper_neon_widen_u8, 12533 gen_helper_neon_widen_u16, 12534 tcg_gen_extu_i32_i64, 12535 }; 12536 NeonGenWidenFn *widenfn = widenfns[size]; 12537 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12538 12539 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12540 tcg_res[pass] = tcg_temp_new_i64(); 12541 widenfn(tcg_res[pass], tcg_op); 12542 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12543 12544 tcg_temp_free_i32(tcg_op); 12545 } 12546 12547 for (pass = 0; pass < 2; pass++) { 12548 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12549 tcg_temp_free_i64(tcg_res[pass]); 12550 } 12551 } 12552 12553 /* AdvSIMD two reg misc 12554 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12555 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12556 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12557 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12558 */ 12559 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12560 { 12561 int size = extract32(insn, 22, 2); 12562 int opcode = extract32(insn, 12, 5); 12563 bool u = extract32(insn, 29, 1); 12564 bool is_q = extract32(insn, 30, 1); 12565 int rn = extract32(insn, 5, 5); 12566 int rd = extract32(insn, 0, 5); 12567 bool need_fpstatus = false; 12568 bool need_rmode = false; 12569 int rmode = -1; 12570 TCGv_i32 tcg_rmode; 12571 TCGv_ptr tcg_fpstatus; 12572 12573 switch (opcode) { 12574 case 0x0: /* REV64, REV32 */ 12575 case 0x1: /* REV16 */ 12576 handle_rev(s, opcode, u, is_q, size, rn, rd); 12577 return; 12578 case 0x5: /* CNT, NOT, RBIT */ 12579 if (u && size == 0) { 12580 /* NOT */ 12581 break; 12582 } else if (u && size == 1) { 12583 /* RBIT */ 12584 break; 12585 } else if (!u && size == 0) { 12586 /* CNT */ 12587 break; 12588 } 12589 unallocated_encoding(s); 12590 return; 12591 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12592 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12593 if (size == 3) { 12594 unallocated_encoding(s); 12595 return; 12596 } 12597 if (!fp_access_check(s)) { 12598 return; 12599 } 12600 12601 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12602 return; 12603 case 0x4: /* CLS, CLZ */ 12604 if (size == 3) { 12605 unallocated_encoding(s); 12606 return; 12607 } 12608 break; 12609 case 0x2: /* SADDLP, UADDLP */ 12610 case 0x6: /* SADALP, UADALP */ 12611 if (size == 3) { 12612 unallocated_encoding(s); 12613 return; 12614 } 12615 if (!fp_access_check(s)) { 12616 return; 12617 } 12618 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12619 return; 12620 case 0x13: /* SHLL, SHLL2 */ 12621 if (u == 0 || size == 3) { 12622 unallocated_encoding(s); 12623 return; 12624 } 12625 if (!fp_access_check(s)) { 12626 return; 12627 } 12628 handle_shll(s, is_q, size, rn, rd); 12629 return; 12630 case 0xa: /* CMLT */ 12631 if (u == 1) { 12632 unallocated_encoding(s); 12633 return; 12634 } 12635 /* fall through */ 12636 case 0x8: /* CMGT, CMGE */ 12637 case 0x9: /* CMEQ, CMLE */ 12638 case 0xb: /* ABS, NEG */ 12639 if (size == 3 && !is_q) { 12640 unallocated_encoding(s); 12641 return; 12642 } 12643 break; 12644 case 0x3: /* SUQADD, USQADD */ 12645 if (size == 3 && !is_q) { 12646 unallocated_encoding(s); 12647 return; 12648 } 12649 if (!fp_access_check(s)) { 12650 return; 12651 } 12652 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12653 return; 12654 case 0x7: /* SQABS, SQNEG */ 12655 if (size == 3 && !is_q) { 12656 unallocated_encoding(s); 12657 return; 12658 } 12659 break; 12660 case 0xc ... 0xf: 12661 case 0x16 ... 0x1f: 12662 { 12663 /* Floating point: U, size[1] and opcode indicate operation; 12664 * size[0] indicates single or double precision. 12665 */ 12666 int is_double = extract32(size, 0, 1); 12667 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12668 size = is_double ? 3 : 2; 12669 switch (opcode) { 12670 case 0x2f: /* FABS */ 12671 case 0x6f: /* FNEG */ 12672 if (size == 3 && !is_q) { 12673 unallocated_encoding(s); 12674 return; 12675 } 12676 break; 12677 case 0x1d: /* SCVTF */ 12678 case 0x5d: /* UCVTF */ 12679 { 12680 bool is_signed = (opcode == 0x1d) ? true : false; 12681 int elements = is_double ? 2 : is_q ? 4 : 2; 12682 if (is_double && !is_q) { 12683 unallocated_encoding(s); 12684 return; 12685 } 12686 if (!fp_access_check(s)) { 12687 return; 12688 } 12689 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12690 return; 12691 } 12692 case 0x2c: /* FCMGT (zero) */ 12693 case 0x2d: /* FCMEQ (zero) */ 12694 case 0x2e: /* FCMLT (zero) */ 12695 case 0x6c: /* FCMGE (zero) */ 12696 case 0x6d: /* FCMLE (zero) */ 12697 if (size == 3 && !is_q) { 12698 unallocated_encoding(s); 12699 return; 12700 } 12701 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12702 return; 12703 case 0x7f: /* FSQRT */ 12704 if (size == 3 && !is_q) { 12705 unallocated_encoding(s); 12706 return; 12707 } 12708 break; 12709 case 0x1a: /* FCVTNS */ 12710 case 0x1b: /* FCVTMS */ 12711 case 0x3a: /* FCVTPS */ 12712 case 0x3b: /* FCVTZS */ 12713 case 0x5a: /* FCVTNU */ 12714 case 0x5b: /* FCVTMU */ 12715 case 0x7a: /* FCVTPU */ 12716 case 0x7b: /* FCVTZU */ 12717 need_fpstatus = true; 12718 need_rmode = true; 12719 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12720 if (size == 3 && !is_q) { 12721 unallocated_encoding(s); 12722 return; 12723 } 12724 break; 12725 case 0x5c: /* FCVTAU */ 12726 case 0x1c: /* FCVTAS */ 12727 need_fpstatus = true; 12728 need_rmode = true; 12729 rmode = FPROUNDING_TIEAWAY; 12730 if (size == 3 && !is_q) { 12731 unallocated_encoding(s); 12732 return; 12733 } 12734 break; 12735 case 0x3c: /* URECPE */ 12736 if (size == 3) { 12737 unallocated_encoding(s); 12738 return; 12739 } 12740 /* fall through */ 12741 case 0x3d: /* FRECPE */ 12742 case 0x7d: /* FRSQRTE */ 12743 if (size == 3 && !is_q) { 12744 unallocated_encoding(s); 12745 return; 12746 } 12747 if (!fp_access_check(s)) { 12748 return; 12749 } 12750 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12751 return; 12752 case 0x56: /* FCVTXN, FCVTXN2 */ 12753 if (size == 2) { 12754 unallocated_encoding(s); 12755 return; 12756 } 12757 /* fall through */ 12758 case 0x16: /* FCVTN, FCVTN2 */ 12759 /* handle_2misc_narrow does a 2*size -> size operation, but these 12760 * instructions encode the source size rather than dest size. 12761 */ 12762 if (!fp_access_check(s)) { 12763 return; 12764 } 12765 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12766 return; 12767 case 0x36: /* BFCVTN, BFCVTN2 */ 12768 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12769 unallocated_encoding(s); 12770 return; 12771 } 12772 if (!fp_access_check(s)) { 12773 return; 12774 } 12775 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12776 return; 12777 case 0x17: /* FCVTL, FCVTL2 */ 12778 if (!fp_access_check(s)) { 12779 return; 12780 } 12781 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12782 return; 12783 case 0x18: /* FRINTN */ 12784 case 0x19: /* FRINTM */ 12785 case 0x38: /* FRINTP */ 12786 case 0x39: /* FRINTZ */ 12787 need_rmode = true; 12788 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12789 /* fall through */ 12790 case 0x59: /* FRINTX */ 12791 case 0x79: /* FRINTI */ 12792 need_fpstatus = true; 12793 if (size == 3 && !is_q) { 12794 unallocated_encoding(s); 12795 return; 12796 } 12797 break; 12798 case 0x58: /* FRINTA */ 12799 need_rmode = true; 12800 rmode = FPROUNDING_TIEAWAY; 12801 need_fpstatus = true; 12802 if (size == 3 && !is_q) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 break; 12807 case 0x7c: /* URSQRTE */ 12808 if (size == 3) { 12809 unallocated_encoding(s); 12810 return; 12811 } 12812 break; 12813 case 0x1e: /* FRINT32Z */ 12814 case 0x1f: /* FRINT64Z */ 12815 need_rmode = true; 12816 rmode = FPROUNDING_ZERO; 12817 /* fall through */ 12818 case 0x5e: /* FRINT32X */ 12819 case 0x5f: /* FRINT64X */ 12820 need_fpstatus = true; 12821 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12822 unallocated_encoding(s); 12823 return; 12824 } 12825 break; 12826 default: 12827 unallocated_encoding(s); 12828 return; 12829 } 12830 break; 12831 } 12832 default: 12833 unallocated_encoding(s); 12834 return; 12835 } 12836 12837 if (!fp_access_check(s)) { 12838 return; 12839 } 12840 12841 if (need_fpstatus || need_rmode) { 12842 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12843 } else { 12844 tcg_fpstatus = NULL; 12845 } 12846 if (need_rmode) { 12847 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); 12848 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 12849 } else { 12850 tcg_rmode = NULL; 12851 } 12852 12853 switch (opcode) { 12854 case 0x5: 12855 if (u && size == 0) { /* NOT */ 12856 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12857 return; 12858 } 12859 break; 12860 case 0x8: /* CMGT, CMGE */ 12861 if (u) { 12862 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12863 } else { 12864 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12865 } 12866 return; 12867 case 0x9: /* CMEQ, CMLE */ 12868 if (u) { 12869 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12870 } else { 12871 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12872 } 12873 return; 12874 case 0xa: /* CMLT */ 12875 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12876 return; 12877 case 0xb: 12878 if (u) { /* ABS, NEG */ 12879 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12880 } else { 12881 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12882 } 12883 return; 12884 } 12885 12886 if (size == 3) { 12887 /* All 64-bit element operations can be shared with scalar 2misc */ 12888 int pass; 12889 12890 /* Coverity claims (size == 3 && !is_q) has been eliminated 12891 * from all paths leading to here. 12892 */ 12893 tcg_debug_assert(is_q); 12894 for (pass = 0; pass < 2; pass++) { 12895 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12896 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12897 12898 read_vec_element(s, tcg_op, rn, pass, MO_64); 12899 12900 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12901 tcg_rmode, tcg_fpstatus); 12902 12903 write_vec_element(s, tcg_res, rd, pass, MO_64); 12904 12905 tcg_temp_free_i64(tcg_res); 12906 tcg_temp_free_i64(tcg_op); 12907 } 12908 } else { 12909 int pass; 12910 12911 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12912 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12913 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12914 12915 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12916 12917 if (size == 2) { 12918 /* Special cases for 32 bit elements */ 12919 switch (opcode) { 12920 case 0x4: /* CLS */ 12921 if (u) { 12922 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12923 } else { 12924 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12925 } 12926 break; 12927 case 0x7: /* SQABS, SQNEG */ 12928 if (u) { 12929 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12930 } else { 12931 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12932 } 12933 break; 12934 case 0x2f: /* FABS */ 12935 gen_helper_vfp_abss(tcg_res, tcg_op); 12936 break; 12937 case 0x6f: /* FNEG */ 12938 gen_helper_vfp_negs(tcg_res, tcg_op); 12939 break; 12940 case 0x7f: /* FSQRT */ 12941 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12942 break; 12943 case 0x1a: /* FCVTNS */ 12944 case 0x1b: /* FCVTMS */ 12945 case 0x1c: /* FCVTAS */ 12946 case 0x3a: /* FCVTPS */ 12947 case 0x3b: /* FCVTZS */ 12948 gen_helper_vfp_tosls(tcg_res, tcg_op, 12949 tcg_constant_i32(0), tcg_fpstatus); 12950 break; 12951 case 0x5a: /* FCVTNU */ 12952 case 0x5b: /* FCVTMU */ 12953 case 0x5c: /* FCVTAU */ 12954 case 0x7a: /* FCVTPU */ 12955 case 0x7b: /* FCVTZU */ 12956 gen_helper_vfp_touls(tcg_res, tcg_op, 12957 tcg_constant_i32(0), tcg_fpstatus); 12958 break; 12959 case 0x18: /* FRINTN */ 12960 case 0x19: /* FRINTM */ 12961 case 0x38: /* FRINTP */ 12962 case 0x39: /* FRINTZ */ 12963 case 0x58: /* FRINTA */ 12964 case 0x79: /* FRINTI */ 12965 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12966 break; 12967 case 0x59: /* FRINTX */ 12968 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12969 break; 12970 case 0x7c: /* URSQRTE */ 12971 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12972 break; 12973 case 0x1e: /* FRINT32Z */ 12974 case 0x5e: /* FRINT32X */ 12975 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12976 break; 12977 case 0x1f: /* FRINT64Z */ 12978 case 0x5f: /* FRINT64X */ 12979 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12980 break; 12981 default: 12982 g_assert_not_reached(); 12983 } 12984 } else { 12985 /* Use helpers for 8 and 16 bit elements */ 12986 switch (opcode) { 12987 case 0x5: /* CNT, RBIT */ 12988 /* For these two insns size is part of the opcode specifier 12989 * (handled earlier); they always operate on byte elements. 12990 */ 12991 if (u) { 12992 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12993 } else { 12994 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12995 } 12996 break; 12997 case 0x7: /* SQABS, SQNEG */ 12998 { 12999 NeonGenOneOpEnvFn *genfn; 13000 static NeonGenOneOpEnvFn * const fns[2][2] = { 13001 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 13002 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 13003 }; 13004 genfn = fns[size][u]; 13005 genfn(tcg_res, cpu_env, tcg_op); 13006 break; 13007 } 13008 case 0x4: /* CLS, CLZ */ 13009 if (u) { 13010 if (size == 0) { 13011 gen_helper_neon_clz_u8(tcg_res, tcg_op); 13012 } else { 13013 gen_helper_neon_clz_u16(tcg_res, tcg_op); 13014 } 13015 } else { 13016 if (size == 0) { 13017 gen_helper_neon_cls_s8(tcg_res, tcg_op); 13018 } else { 13019 gen_helper_neon_cls_s16(tcg_res, tcg_op); 13020 } 13021 } 13022 break; 13023 default: 13024 g_assert_not_reached(); 13025 } 13026 } 13027 13028 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13029 13030 tcg_temp_free_i32(tcg_res); 13031 tcg_temp_free_i32(tcg_op); 13032 } 13033 } 13034 clear_vec_high(s, is_q, rd); 13035 13036 if (need_rmode) { 13037 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 13038 tcg_temp_free_i32(tcg_rmode); 13039 } 13040 if (need_fpstatus) { 13041 tcg_temp_free_ptr(tcg_fpstatus); 13042 } 13043 } 13044 13045 /* AdvSIMD [scalar] two register miscellaneous (FP16) 13046 * 13047 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 13048 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 13049 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 13050 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 13051 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 13052 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 13053 * 13054 * This actually covers two groups where scalar access is governed by 13055 * bit 28. A bunch of the instructions (float to integral) only exist 13056 * in the vector form and are un-allocated for the scalar decode. Also 13057 * in the scalar decode Q is always 1. 13058 */ 13059 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 13060 { 13061 int fpop, opcode, a, u; 13062 int rn, rd; 13063 bool is_q; 13064 bool is_scalar; 13065 bool only_in_vector = false; 13066 13067 int pass; 13068 TCGv_i32 tcg_rmode = NULL; 13069 TCGv_ptr tcg_fpstatus = NULL; 13070 bool need_rmode = false; 13071 bool need_fpst = true; 13072 int rmode; 13073 13074 if (!dc_isar_feature(aa64_fp16, s)) { 13075 unallocated_encoding(s); 13076 return; 13077 } 13078 13079 rd = extract32(insn, 0, 5); 13080 rn = extract32(insn, 5, 5); 13081 13082 a = extract32(insn, 23, 1); 13083 u = extract32(insn, 29, 1); 13084 is_scalar = extract32(insn, 28, 1); 13085 is_q = extract32(insn, 30, 1); 13086 13087 opcode = extract32(insn, 12, 5); 13088 fpop = deposit32(opcode, 5, 1, a); 13089 fpop = deposit32(fpop, 6, 1, u); 13090 13091 switch (fpop) { 13092 case 0x1d: /* SCVTF */ 13093 case 0x5d: /* UCVTF */ 13094 { 13095 int elements; 13096 13097 if (is_scalar) { 13098 elements = 1; 13099 } else { 13100 elements = (is_q ? 8 : 4); 13101 } 13102 13103 if (!fp_access_check(s)) { 13104 return; 13105 } 13106 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 13107 return; 13108 } 13109 break; 13110 case 0x2c: /* FCMGT (zero) */ 13111 case 0x2d: /* FCMEQ (zero) */ 13112 case 0x2e: /* FCMLT (zero) */ 13113 case 0x6c: /* FCMGE (zero) */ 13114 case 0x6d: /* FCMLE (zero) */ 13115 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 13116 return; 13117 case 0x3d: /* FRECPE */ 13118 case 0x3f: /* FRECPX */ 13119 break; 13120 case 0x18: /* FRINTN */ 13121 need_rmode = true; 13122 only_in_vector = true; 13123 rmode = FPROUNDING_TIEEVEN; 13124 break; 13125 case 0x19: /* FRINTM */ 13126 need_rmode = true; 13127 only_in_vector = true; 13128 rmode = FPROUNDING_NEGINF; 13129 break; 13130 case 0x38: /* FRINTP */ 13131 need_rmode = true; 13132 only_in_vector = true; 13133 rmode = FPROUNDING_POSINF; 13134 break; 13135 case 0x39: /* FRINTZ */ 13136 need_rmode = true; 13137 only_in_vector = true; 13138 rmode = FPROUNDING_ZERO; 13139 break; 13140 case 0x58: /* FRINTA */ 13141 need_rmode = true; 13142 only_in_vector = true; 13143 rmode = FPROUNDING_TIEAWAY; 13144 break; 13145 case 0x59: /* FRINTX */ 13146 case 0x79: /* FRINTI */ 13147 only_in_vector = true; 13148 /* current rounding mode */ 13149 break; 13150 case 0x1a: /* FCVTNS */ 13151 need_rmode = true; 13152 rmode = FPROUNDING_TIEEVEN; 13153 break; 13154 case 0x1b: /* FCVTMS */ 13155 need_rmode = true; 13156 rmode = FPROUNDING_NEGINF; 13157 break; 13158 case 0x1c: /* FCVTAS */ 13159 need_rmode = true; 13160 rmode = FPROUNDING_TIEAWAY; 13161 break; 13162 case 0x3a: /* FCVTPS */ 13163 need_rmode = true; 13164 rmode = FPROUNDING_POSINF; 13165 break; 13166 case 0x3b: /* FCVTZS */ 13167 need_rmode = true; 13168 rmode = FPROUNDING_ZERO; 13169 break; 13170 case 0x5a: /* FCVTNU */ 13171 need_rmode = true; 13172 rmode = FPROUNDING_TIEEVEN; 13173 break; 13174 case 0x5b: /* FCVTMU */ 13175 need_rmode = true; 13176 rmode = FPROUNDING_NEGINF; 13177 break; 13178 case 0x5c: /* FCVTAU */ 13179 need_rmode = true; 13180 rmode = FPROUNDING_TIEAWAY; 13181 break; 13182 case 0x7a: /* FCVTPU */ 13183 need_rmode = true; 13184 rmode = FPROUNDING_POSINF; 13185 break; 13186 case 0x7b: /* FCVTZU */ 13187 need_rmode = true; 13188 rmode = FPROUNDING_ZERO; 13189 break; 13190 case 0x2f: /* FABS */ 13191 case 0x6f: /* FNEG */ 13192 need_fpst = false; 13193 break; 13194 case 0x7d: /* FRSQRTE */ 13195 case 0x7f: /* FSQRT (vector) */ 13196 break; 13197 default: 13198 unallocated_encoding(s); 13199 return; 13200 } 13201 13202 13203 /* Check additional constraints for the scalar encoding */ 13204 if (is_scalar) { 13205 if (!is_q) { 13206 unallocated_encoding(s); 13207 return; 13208 } 13209 /* FRINTxx is only in the vector form */ 13210 if (only_in_vector) { 13211 unallocated_encoding(s); 13212 return; 13213 } 13214 } 13215 13216 if (!fp_access_check(s)) { 13217 return; 13218 } 13219 13220 if (need_rmode || need_fpst) { 13221 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 13222 } 13223 13224 if (need_rmode) { 13225 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); 13226 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 13227 } 13228 13229 if (is_scalar) { 13230 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 13231 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13232 13233 switch (fpop) { 13234 case 0x1a: /* FCVTNS */ 13235 case 0x1b: /* FCVTMS */ 13236 case 0x1c: /* FCVTAS */ 13237 case 0x3a: /* FCVTPS */ 13238 case 0x3b: /* FCVTZS */ 13239 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 13240 break; 13241 case 0x3d: /* FRECPE */ 13242 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 13243 break; 13244 case 0x3f: /* FRECPX */ 13245 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 13246 break; 13247 case 0x5a: /* FCVTNU */ 13248 case 0x5b: /* FCVTMU */ 13249 case 0x5c: /* FCVTAU */ 13250 case 0x7a: /* FCVTPU */ 13251 case 0x7b: /* FCVTZU */ 13252 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 13253 break; 13254 case 0x6f: /* FNEG */ 13255 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 13256 break; 13257 case 0x7d: /* FRSQRTE */ 13258 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 13259 break; 13260 default: 13261 g_assert_not_reached(); 13262 } 13263 13264 /* limit any sign extension going on */ 13265 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 13266 write_fp_sreg(s, rd, tcg_res); 13267 13268 tcg_temp_free_i32(tcg_res); 13269 tcg_temp_free_i32(tcg_op); 13270 } else { 13271 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 13272 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13273 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13274 13275 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 13276 13277 switch (fpop) { 13278 case 0x1a: /* FCVTNS */ 13279 case 0x1b: /* FCVTMS */ 13280 case 0x1c: /* FCVTAS */ 13281 case 0x3a: /* FCVTPS */ 13282 case 0x3b: /* FCVTZS */ 13283 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 13284 break; 13285 case 0x3d: /* FRECPE */ 13286 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 13287 break; 13288 case 0x5a: /* FCVTNU */ 13289 case 0x5b: /* FCVTMU */ 13290 case 0x5c: /* FCVTAU */ 13291 case 0x7a: /* FCVTPU */ 13292 case 0x7b: /* FCVTZU */ 13293 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 13294 break; 13295 case 0x18: /* FRINTN */ 13296 case 0x19: /* FRINTM */ 13297 case 0x38: /* FRINTP */ 13298 case 0x39: /* FRINTZ */ 13299 case 0x58: /* FRINTA */ 13300 case 0x79: /* FRINTI */ 13301 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 13302 break; 13303 case 0x59: /* FRINTX */ 13304 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 13305 break; 13306 case 0x2f: /* FABS */ 13307 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 13308 break; 13309 case 0x6f: /* FNEG */ 13310 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 13311 break; 13312 case 0x7d: /* FRSQRTE */ 13313 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 13314 break; 13315 case 0x7f: /* FSQRT */ 13316 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 13317 break; 13318 default: 13319 g_assert_not_reached(); 13320 } 13321 13322 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 13323 13324 tcg_temp_free_i32(tcg_res); 13325 tcg_temp_free_i32(tcg_op); 13326 } 13327 13328 clear_vec_high(s, is_q, rd); 13329 } 13330 13331 if (tcg_rmode) { 13332 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); 13333 tcg_temp_free_i32(tcg_rmode); 13334 } 13335 13336 if (tcg_fpstatus) { 13337 tcg_temp_free_ptr(tcg_fpstatus); 13338 } 13339 } 13340 13341 /* AdvSIMD scalar x indexed element 13342 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 13343 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 13344 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 13345 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 13346 * AdvSIMD vector x indexed element 13347 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 13348 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 13349 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 13350 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 13351 */ 13352 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 13353 { 13354 /* This encoding has two kinds of instruction: 13355 * normal, where we perform elt x idxelt => elt for each 13356 * element in the vector 13357 * long, where we perform elt x idxelt and generate a result of 13358 * double the width of the input element 13359 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 13360 */ 13361 bool is_scalar = extract32(insn, 28, 1); 13362 bool is_q = extract32(insn, 30, 1); 13363 bool u = extract32(insn, 29, 1); 13364 int size = extract32(insn, 22, 2); 13365 int l = extract32(insn, 21, 1); 13366 int m = extract32(insn, 20, 1); 13367 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 13368 int rm = extract32(insn, 16, 4); 13369 int opcode = extract32(insn, 12, 4); 13370 int h = extract32(insn, 11, 1); 13371 int rn = extract32(insn, 5, 5); 13372 int rd = extract32(insn, 0, 5); 13373 bool is_long = false; 13374 int is_fp = 0; 13375 bool is_fp16 = false; 13376 int index; 13377 TCGv_ptr fpst; 13378 13379 switch (16 * u + opcode) { 13380 case 0x08: /* MUL */ 13381 case 0x10: /* MLA */ 13382 case 0x14: /* MLS */ 13383 if (is_scalar) { 13384 unallocated_encoding(s); 13385 return; 13386 } 13387 break; 13388 case 0x02: /* SMLAL, SMLAL2 */ 13389 case 0x12: /* UMLAL, UMLAL2 */ 13390 case 0x06: /* SMLSL, SMLSL2 */ 13391 case 0x16: /* UMLSL, UMLSL2 */ 13392 case 0x0a: /* SMULL, SMULL2 */ 13393 case 0x1a: /* UMULL, UMULL2 */ 13394 if (is_scalar) { 13395 unallocated_encoding(s); 13396 return; 13397 } 13398 is_long = true; 13399 break; 13400 case 0x03: /* SQDMLAL, SQDMLAL2 */ 13401 case 0x07: /* SQDMLSL, SQDMLSL2 */ 13402 case 0x0b: /* SQDMULL, SQDMULL2 */ 13403 is_long = true; 13404 break; 13405 case 0x0c: /* SQDMULH */ 13406 case 0x0d: /* SQRDMULH */ 13407 break; 13408 case 0x01: /* FMLA */ 13409 case 0x05: /* FMLS */ 13410 case 0x09: /* FMUL */ 13411 case 0x19: /* FMULX */ 13412 is_fp = 1; 13413 break; 13414 case 0x1d: /* SQRDMLAH */ 13415 case 0x1f: /* SQRDMLSH */ 13416 if (!dc_isar_feature(aa64_rdm, s)) { 13417 unallocated_encoding(s); 13418 return; 13419 } 13420 break; 13421 case 0x0e: /* SDOT */ 13422 case 0x1e: /* UDOT */ 13423 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 13424 unallocated_encoding(s); 13425 return; 13426 } 13427 break; 13428 case 0x0f: 13429 switch (size) { 13430 case 0: /* SUDOT */ 13431 case 2: /* USDOT */ 13432 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 13433 unallocated_encoding(s); 13434 return; 13435 } 13436 size = MO_32; 13437 break; 13438 case 1: /* BFDOT */ 13439 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13440 unallocated_encoding(s); 13441 return; 13442 } 13443 size = MO_32; 13444 break; 13445 case 3: /* BFMLAL{B,T} */ 13446 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13447 unallocated_encoding(s); 13448 return; 13449 } 13450 /* can't set is_fp without other incorrect size checks */ 13451 size = MO_16; 13452 break; 13453 default: 13454 unallocated_encoding(s); 13455 return; 13456 } 13457 break; 13458 case 0x11: /* FCMLA #0 */ 13459 case 0x13: /* FCMLA #90 */ 13460 case 0x15: /* FCMLA #180 */ 13461 case 0x17: /* FCMLA #270 */ 13462 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13463 unallocated_encoding(s); 13464 return; 13465 } 13466 is_fp = 2; 13467 break; 13468 case 0x00: /* FMLAL */ 13469 case 0x04: /* FMLSL */ 13470 case 0x18: /* FMLAL2 */ 13471 case 0x1c: /* FMLSL2 */ 13472 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13473 unallocated_encoding(s); 13474 return; 13475 } 13476 size = MO_16; 13477 /* is_fp, but we pass cpu_env not fp_status. */ 13478 break; 13479 default: 13480 unallocated_encoding(s); 13481 return; 13482 } 13483 13484 switch (is_fp) { 13485 case 1: /* normal fp */ 13486 /* convert insn encoded size to MemOp size */ 13487 switch (size) { 13488 case 0: /* half-precision */ 13489 size = MO_16; 13490 is_fp16 = true; 13491 break; 13492 case MO_32: /* single precision */ 13493 case MO_64: /* double precision */ 13494 break; 13495 default: 13496 unallocated_encoding(s); 13497 return; 13498 } 13499 break; 13500 13501 case 2: /* complex fp */ 13502 /* Each indexable element is a complex pair. */ 13503 size += 1; 13504 switch (size) { 13505 case MO_32: 13506 if (h && !is_q) { 13507 unallocated_encoding(s); 13508 return; 13509 } 13510 is_fp16 = true; 13511 break; 13512 case MO_64: 13513 break; 13514 default: 13515 unallocated_encoding(s); 13516 return; 13517 } 13518 break; 13519 13520 default: /* integer */ 13521 switch (size) { 13522 case MO_8: 13523 case MO_64: 13524 unallocated_encoding(s); 13525 return; 13526 } 13527 break; 13528 } 13529 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13530 unallocated_encoding(s); 13531 return; 13532 } 13533 13534 /* Given MemOp size, adjust register and indexing. */ 13535 switch (size) { 13536 case MO_16: 13537 index = h << 2 | l << 1 | m; 13538 break; 13539 case MO_32: 13540 index = h << 1 | l; 13541 rm |= m << 4; 13542 break; 13543 case MO_64: 13544 if (l || !is_q) { 13545 unallocated_encoding(s); 13546 return; 13547 } 13548 index = h; 13549 rm |= m << 4; 13550 break; 13551 default: 13552 g_assert_not_reached(); 13553 } 13554 13555 if (!fp_access_check(s)) { 13556 return; 13557 } 13558 13559 if (is_fp) { 13560 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13561 } else { 13562 fpst = NULL; 13563 } 13564 13565 switch (16 * u + opcode) { 13566 case 0x0e: /* SDOT */ 13567 case 0x1e: /* UDOT */ 13568 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13569 u ? gen_helper_gvec_udot_idx_b 13570 : gen_helper_gvec_sdot_idx_b); 13571 return; 13572 case 0x0f: 13573 switch (extract32(insn, 22, 2)) { 13574 case 0: /* SUDOT */ 13575 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13576 gen_helper_gvec_sudot_idx_b); 13577 return; 13578 case 1: /* BFDOT */ 13579 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13580 gen_helper_gvec_bfdot_idx); 13581 return; 13582 case 2: /* USDOT */ 13583 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13584 gen_helper_gvec_usdot_idx_b); 13585 return; 13586 case 3: /* BFMLAL{B,T} */ 13587 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13588 gen_helper_gvec_bfmlal_idx); 13589 return; 13590 } 13591 g_assert_not_reached(); 13592 case 0x11: /* FCMLA #0 */ 13593 case 0x13: /* FCMLA #90 */ 13594 case 0x15: /* FCMLA #180 */ 13595 case 0x17: /* FCMLA #270 */ 13596 { 13597 int rot = extract32(insn, 13, 2); 13598 int data = (index << 2) | rot; 13599 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13600 vec_full_reg_offset(s, rn), 13601 vec_full_reg_offset(s, rm), 13602 vec_full_reg_offset(s, rd), fpst, 13603 is_q ? 16 : 8, vec_full_reg_size(s), data, 13604 size == MO_64 13605 ? gen_helper_gvec_fcmlas_idx 13606 : gen_helper_gvec_fcmlah_idx); 13607 tcg_temp_free_ptr(fpst); 13608 } 13609 return; 13610 13611 case 0x00: /* FMLAL */ 13612 case 0x04: /* FMLSL */ 13613 case 0x18: /* FMLAL2 */ 13614 case 0x1c: /* FMLSL2 */ 13615 { 13616 int is_s = extract32(opcode, 2, 1); 13617 int is_2 = u; 13618 int data = (index << 2) | (is_2 << 1) | is_s; 13619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13620 vec_full_reg_offset(s, rn), 13621 vec_full_reg_offset(s, rm), cpu_env, 13622 is_q ? 16 : 8, vec_full_reg_size(s), 13623 data, gen_helper_gvec_fmlal_idx_a64); 13624 } 13625 return; 13626 13627 case 0x08: /* MUL */ 13628 if (!is_long && !is_scalar) { 13629 static gen_helper_gvec_3 * const fns[3] = { 13630 gen_helper_gvec_mul_idx_h, 13631 gen_helper_gvec_mul_idx_s, 13632 gen_helper_gvec_mul_idx_d, 13633 }; 13634 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13635 vec_full_reg_offset(s, rn), 13636 vec_full_reg_offset(s, rm), 13637 is_q ? 16 : 8, vec_full_reg_size(s), 13638 index, fns[size - 1]); 13639 return; 13640 } 13641 break; 13642 13643 case 0x10: /* MLA */ 13644 if (!is_long && !is_scalar) { 13645 static gen_helper_gvec_4 * const fns[3] = { 13646 gen_helper_gvec_mla_idx_h, 13647 gen_helper_gvec_mla_idx_s, 13648 gen_helper_gvec_mla_idx_d, 13649 }; 13650 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13651 vec_full_reg_offset(s, rn), 13652 vec_full_reg_offset(s, rm), 13653 vec_full_reg_offset(s, rd), 13654 is_q ? 16 : 8, vec_full_reg_size(s), 13655 index, fns[size - 1]); 13656 return; 13657 } 13658 break; 13659 13660 case 0x14: /* MLS */ 13661 if (!is_long && !is_scalar) { 13662 static gen_helper_gvec_4 * const fns[3] = { 13663 gen_helper_gvec_mls_idx_h, 13664 gen_helper_gvec_mls_idx_s, 13665 gen_helper_gvec_mls_idx_d, 13666 }; 13667 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13668 vec_full_reg_offset(s, rn), 13669 vec_full_reg_offset(s, rm), 13670 vec_full_reg_offset(s, rd), 13671 is_q ? 16 : 8, vec_full_reg_size(s), 13672 index, fns[size - 1]); 13673 return; 13674 } 13675 break; 13676 } 13677 13678 if (size == 3) { 13679 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13680 int pass; 13681 13682 assert(is_fp && is_q && !is_long); 13683 13684 read_vec_element(s, tcg_idx, rm, index, MO_64); 13685 13686 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13687 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13688 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13689 13690 read_vec_element(s, tcg_op, rn, pass, MO_64); 13691 13692 switch (16 * u + opcode) { 13693 case 0x05: /* FMLS */ 13694 /* As usual for ARM, separate negation for fused multiply-add */ 13695 gen_helper_vfp_negd(tcg_op, tcg_op); 13696 /* fall through */ 13697 case 0x01: /* FMLA */ 13698 read_vec_element(s, tcg_res, rd, pass, MO_64); 13699 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13700 break; 13701 case 0x09: /* FMUL */ 13702 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13703 break; 13704 case 0x19: /* FMULX */ 13705 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13706 break; 13707 default: 13708 g_assert_not_reached(); 13709 } 13710 13711 write_vec_element(s, tcg_res, rd, pass, MO_64); 13712 tcg_temp_free_i64(tcg_op); 13713 tcg_temp_free_i64(tcg_res); 13714 } 13715 13716 tcg_temp_free_i64(tcg_idx); 13717 clear_vec_high(s, !is_scalar, rd); 13718 } else if (!is_long) { 13719 /* 32 bit floating point, or 16 or 32 bit integer. 13720 * For the 16 bit scalar case we use the usual Neon helpers and 13721 * rely on the fact that 0 op 0 == 0 with no side effects. 13722 */ 13723 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13724 int pass, maxpasses; 13725 13726 if (is_scalar) { 13727 maxpasses = 1; 13728 } else { 13729 maxpasses = is_q ? 4 : 2; 13730 } 13731 13732 read_vec_element_i32(s, tcg_idx, rm, index, size); 13733 13734 if (size == 1 && !is_scalar) { 13735 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13736 * the index into both halves of the 32 bit tcg_idx and then use 13737 * the usual Neon helpers. 13738 */ 13739 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13740 } 13741 13742 for (pass = 0; pass < maxpasses; pass++) { 13743 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13744 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13745 13746 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13747 13748 switch (16 * u + opcode) { 13749 case 0x08: /* MUL */ 13750 case 0x10: /* MLA */ 13751 case 0x14: /* MLS */ 13752 { 13753 static NeonGenTwoOpFn * const fns[2][2] = { 13754 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13755 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13756 }; 13757 NeonGenTwoOpFn *genfn; 13758 bool is_sub = opcode == 0x4; 13759 13760 if (size == 1) { 13761 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13762 } else { 13763 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13764 } 13765 if (opcode == 0x8) { 13766 break; 13767 } 13768 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13769 genfn = fns[size - 1][is_sub]; 13770 genfn(tcg_res, tcg_op, tcg_res); 13771 break; 13772 } 13773 case 0x05: /* FMLS */ 13774 case 0x01: /* FMLA */ 13775 read_vec_element_i32(s, tcg_res, rd, pass, 13776 is_scalar ? size : MO_32); 13777 switch (size) { 13778 case 1: 13779 if (opcode == 0x5) { 13780 /* As usual for ARM, separate negation for fused 13781 * multiply-add */ 13782 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13783 } 13784 if (is_scalar) { 13785 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13786 tcg_res, fpst); 13787 } else { 13788 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13789 tcg_res, fpst); 13790 } 13791 break; 13792 case 2: 13793 if (opcode == 0x5) { 13794 /* As usual for ARM, separate negation for 13795 * fused multiply-add */ 13796 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13797 } 13798 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13799 tcg_res, fpst); 13800 break; 13801 default: 13802 g_assert_not_reached(); 13803 } 13804 break; 13805 case 0x09: /* FMUL */ 13806 switch (size) { 13807 case 1: 13808 if (is_scalar) { 13809 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13810 tcg_idx, fpst); 13811 } else { 13812 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13813 tcg_idx, fpst); 13814 } 13815 break; 13816 case 2: 13817 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13818 break; 13819 default: 13820 g_assert_not_reached(); 13821 } 13822 break; 13823 case 0x19: /* FMULX */ 13824 switch (size) { 13825 case 1: 13826 if (is_scalar) { 13827 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13828 tcg_idx, fpst); 13829 } else { 13830 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13831 tcg_idx, fpst); 13832 } 13833 break; 13834 case 2: 13835 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13836 break; 13837 default: 13838 g_assert_not_reached(); 13839 } 13840 break; 13841 case 0x0c: /* SQDMULH */ 13842 if (size == 1) { 13843 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13844 tcg_op, tcg_idx); 13845 } else { 13846 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13847 tcg_op, tcg_idx); 13848 } 13849 break; 13850 case 0x0d: /* SQRDMULH */ 13851 if (size == 1) { 13852 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13853 tcg_op, tcg_idx); 13854 } else { 13855 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13856 tcg_op, tcg_idx); 13857 } 13858 break; 13859 case 0x1d: /* SQRDMLAH */ 13860 read_vec_element_i32(s, tcg_res, rd, pass, 13861 is_scalar ? size : MO_32); 13862 if (size == 1) { 13863 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13864 tcg_op, tcg_idx, tcg_res); 13865 } else { 13866 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13867 tcg_op, tcg_idx, tcg_res); 13868 } 13869 break; 13870 case 0x1f: /* SQRDMLSH */ 13871 read_vec_element_i32(s, tcg_res, rd, pass, 13872 is_scalar ? size : MO_32); 13873 if (size == 1) { 13874 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13875 tcg_op, tcg_idx, tcg_res); 13876 } else { 13877 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13878 tcg_op, tcg_idx, tcg_res); 13879 } 13880 break; 13881 default: 13882 g_assert_not_reached(); 13883 } 13884 13885 if (is_scalar) { 13886 write_fp_sreg(s, rd, tcg_res); 13887 } else { 13888 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13889 } 13890 13891 tcg_temp_free_i32(tcg_op); 13892 tcg_temp_free_i32(tcg_res); 13893 } 13894 13895 tcg_temp_free_i32(tcg_idx); 13896 clear_vec_high(s, is_q, rd); 13897 } else { 13898 /* long ops: 16x16->32 or 32x32->64 */ 13899 TCGv_i64 tcg_res[2]; 13900 int pass; 13901 bool satop = extract32(opcode, 0, 1); 13902 MemOp memop = MO_32; 13903 13904 if (satop || !u) { 13905 memop |= MO_SIGN; 13906 } 13907 13908 if (size == 2) { 13909 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13910 13911 read_vec_element(s, tcg_idx, rm, index, memop); 13912 13913 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13914 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13915 TCGv_i64 tcg_passres; 13916 int passelt; 13917 13918 if (is_scalar) { 13919 passelt = 0; 13920 } else { 13921 passelt = pass + (is_q * 2); 13922 } 13923 13924 read_vec_element(s, tcg_op, rn, passelt, memop); 13925 13926 tcg_res[pass] = tcg_temp_new_i64(); 13927 13928 if (opcode == 0xa || opcode == 0xb) { 13929 /* Non-accumulating ops */ 13930 tcg_passres = tcg_res[pass]; 13931 } else { 13932 tcg_passres = tcg_temp_new_i64(); 13933 } 13934 13935 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13936 tcg_temp_free_i64(tcg_op); 13937 13938 if (satop) { 13939 /* saturating, doubling */ 13940 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13941 tcg_passres, tcg_passres); 13942 } 13943 13944 if (opcode == 0xa || opcode == 0xb) { 13945 continue; 13946 } 13947 13948 /* Accumulating op: handle accumulate step */ 13949 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13950 13951 switch (opcode) { 13952 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13953 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13954 break; 13955 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13956 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13957 break; 13958 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13959 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13960 /* fall through */ 13961 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13962 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13963 tcg_res[pass], 13964 tcg_passres); 13965 break; 13966 default: 13967 g_assert_not_reached(); 13968 } 13969 tcg_temp_free_i64(tcg_passres); 13970 } 13971 tcg_temp_free_i64(tcg_idx); 13972 13973 clear_vec_high(s, !is_scalar, rd); 13974 } else { 13975 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13976 13977 assert(size == 1); 13978 read_vec_element_i32(s, tcg_idx, rm, index, size); 13979 13980 if (!is_scalar) { 13981 /* The simplest way to handle the 16x16 indexed ops is to 13982 * duplicate the index into both halves of the 32 bit tcg_idx 13983 * and then use the usual Neon helpers. 13984 */ 13985 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13986 } 13987 13988 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13989 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13990 TCGv_i64 tcg_passres; 13991 13992 if (is_scalar) { 13993 read_vec_element_i32(s, tcg_op, rn, pass, size); 13994 } else { 13995 read_vec_element_i32(s, tcg_op, rn, 13996 pass + (is_q * 2), MO_32); 13997 } 13998 13999 tcg_res[pass] = tcg_temp_new_i64(); 14000 14001 if (opcode == 0xa || opcode == 0xb) { 14002 /* Non-accumulating ops */ 14003 tcg_passres = tcg_res[pass]; 14004 } else { 14005 tcg_passres = tcg_temp_new_i64(); 14006 } 14007 14008 if (memop & MO_SIGN) { 14009 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 14010 } else { 14011 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 14012 } 14013 if (satop) { 14014 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 14015 tcg_passres, tcg_passres); 14016 } 14017 tcg_temp_free_i32(tcg_op); 14018 14019 if (opcode == 0xa || opcode == 0xb) { 14020 continue; 14021 } 14022 14023 /* Accumulating op: handle accumulate step */ 14024 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 14025 14026 switch (opcode) { 14027 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 14028 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 14029 tcg_passres); 14030 break; 14031 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 14032 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 14033 tcg_passres); 14034 break; 14035 case 0x7: /* SQDMLSL, SQDMLSL2 */ 14036 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 14037 /* fall through */ 14038 case 0x3: /* SQDMLAL, SQDMLAL2 */ 14039 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 14040 tcg_res[pass], 14041 tcg_passres); 14042 break; 14043 default: 14044 g_assert_not_reached(); 14045 } 14046 tcg_temp_free_i64(tcg_passres); 14047 } 14048 tcg_temp_free_i32(tcg_idx); 14049 14050 if (is_scalar) { 14051 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 14052 } 14053 } 14054 14055 if (is_scalar) { 14056 tcg_res[1] = tcg_constant_i64(0); 14057 } 14058 14059 for (pass = 0; pass < 2; pass++) { 14060 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 14061 tcg_temp_free_i64(tcg_res[pass]); 14062 } 14063 } 14064 14065 if (fpst) { 14066 tcg_temp_free_ptr(fpst); 14067 } 14068 } 14069 14070 /* Crypto AES 14071 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 14072 * +-----------------+------+-----------+--------+-----+------+------+ 14073 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 14074 * +-----------------+------+-----------+--------+-----+------+------+ 14075 */ 14076 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 14077 { 14078 int size = extract32(insn, 22, 2); 14079 int opcode = extract32(insn, 12, 5); 14080 int rn = extract32(insn, 5, 5); 14081 int rd = extract32(insn, 0, 5); 14082 int decrypt; 14083 gen_helper_gvec_2 *genfn2 = NULL; 14084 gen_helper_gvec_3 *genfn3 = NULL; 14085 14086 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 14087 unallocated_encoding(s); 14088 return; 14089 } 14090 14091 switch (opcode) { 14092 case 0x4: /* AESE */ 14093 decrypt = 0; 14094 genfn3 = gen_helper_crypto_aese; 14095 break; 14096 case 0x6: /* AESMC */ 14097 decrypt = 0; 14098 genfn2 = gen_helper_crypto_aesmc; 14099 break; 14100 case 0x5: /* AESD */ 14101 decrypt = 1; 14102 genfn3 = gen_helper_crypto_aese; 14103 break; 14104 case 0x7: /* AESIMC */ 14105 decrypt = 1; 14106 genfn2 = gen_helper_crypto_aesmc; 14107 break; 14108 default: 14109 unallocated_encoding(s); 14110 return; 14111 } 14112 14113 if (!fp_access_check(s)) { 14114 return; 14115 } 14116 if (genfn2) { 14117 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 14118 } else { 14119 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 14120 } 14121 } 14122 14123 /* Crypto three-reg SHA 14124 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 14125 * +-----------------+------+---+------+---+--------+-----+------+------+ 14126 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 14127 * +-----------------+------+---+------+---+--------+-----+------+------+ 14128 */ 14129 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 14130 { 14131 int size = extract32(insn, 22, 2); 14132 int opcode = extract32(insn, 12, 3); 14133 int rm = extract32(insn, 16, 5); 14134 int rn = extract32(insn, 5, 5); 14135 int rd = extract32(insn, 0, 5); 14136 gen_helper_gvec_3 *genfn; 14137 bool feature; 14138 14139 if (size != 0) { 14140 unallocated_encoding(s); 14141 return; 14142 } 14143 14144 switch (opcode) { 14145 case 0: /* SHA1C */ 14146 genfn = gen_helper_crypto_sha1c; 14147 feature = dc_isar_feature(aa64_sha1, s); 14148 break; 14149 case 1: /* SHA1P */ 14150 genfn = gen_helper_crypto_sha1p; 14151 feature = dc_isar_feature(aa64_sha1, s); 14152 break; 14153 case 2: /* SHA1M */ 14154 genfn = gen_helper_crypto_sha1m; 14155 feature = dc_isar_feature(aa64_sha1, s); 14156 break; 14157 case 3: /* SHA1SU0 */ 14158 genfn = gen_helper_crypto_sha1su0; 14159 feature = dc_isar_feature(aa64_sha1, s); 14160 break; 14161 case 4: /* SHA256H */ 14162 genfn = gen_helper_crypto_sha256h; 14163 feature = dc_isar_feature(aa64_sha256, s); 14164 break; 14165 case 5: /* SHA256H2 */ 14166 genfn = gen_helper_crypto_sha256h2; 14167 feature = dc_isar_feature(aa64_sha256, s); 14168 break; 14169 case 6: /* SHA256SU1 */ 14170 genfn = gen_helper_crypto_sha256su1; 14171 feature = dc_isar_feature(aa64_sha256, s); 14172 break; 14173 default: 14174 unallocated_encoding(s); 14175 return; 14176 } 14177 14178 if (!feature) { 14179 unallocated_encoding(s); 14180 return; 14181 } 14182 14183 if (!fp_access_check(s)) { 14184 return; 14185 } 14186 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 14187 } 14188 14189 /* Crypto two-reg SHA 14190 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 14191 * +-----------------+------+-----------+--------+-----+------+------+ 14192 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 14193 * +-----------------+------+-----------+--------+-----+------+------+ 14194 */ 14195 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 14196 { 14197 int size = extract32(insn, 22, 2); 14198 int opcode = extract32(insn, 12, 5); 14199 int rn = extract32(insn, 5, 5); 14200 int rd = extract32(insn, 0, 5); 14201 gen_helper_gvec_2 *genfn; 14202 bool feature; 14203 14204 if (size != 0) { 14205 unallocated_encoding(s); 14206 return; 14207 } 14208 14209 switch (opcode) { 14210 case 0: /* SHA1H */ 14211 feature = dc_isar_feature(aa64_sha1, s); 14212 genfn = gen_helper_crypto_sha1h; 14213 break; 14214 case 1: /* SHA1SU1 */ 14215 feature = dc_isar_feature(aa64_sha1, s); 14216 genfn = gen_helper_crypto_sha1su1; 14217 break; 14218 case 2: /* SHA256SU0 */ 14219 feature = dc_isar_feature(aa64_sha256, s); 14220 genfn = gen_helper_crypto_sha256su0; 14221 break; 14222 default: 14223 unallocated_encoding(s); 14224 return; 14225 } 14226 14227 if (!feature) { 14228 unallocated_encoding(s); 14229 return; 14230 } 14231 14232 if (!fp_access_check(s)) { 14233 return; 14234 } 14235 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 14236 } 14237 14238 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 14239 { 14240 tcg_gen_rotli_i64(d, m, 1); 14241 tcg_gen_xor_i64(d, d, n); 14242 } 14243 14244 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 14245 { 14246 tcg_gen_rotli_vec(vece, d, m, 1); 14247 tcg_gen_xor_vec(vece, d, d, n); 14248 } 14249 14250 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 14251 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 14252 { 14253 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 14254 static const GVecGen3 op = { 14255 .fni8 = gen_rax1_i64, 14256 .fniv = gen_rax1_vec, 14257 .opt_opc = vecop_list, 14258 .fno = gen_helper_crypto_rax1, 14259 .vece = MO_64, 14260 }; 14261 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 14262 } 14263 14264 /* Crypto three-reg SHA512 14265 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14266 * +-----------------------+------+---+---+-----+--------+------+------+ 14267 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 14268 * +-----------------------+------+---+---+-----+--------+------+------+ 14269 */ 14270 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 14271 { 14272 int opcode = extract32(insn, 10, 2); 14273 int o = extract32(insn, 14, 1); 14274 int rm = extract32(insn, 16, 5); 14275 int rn = extract32(insn, 5, 5); 14276 int rd = extract32(insn, 0, 5); 14277 bool feature; 14278 gen_helper_gvec_3 *oolfn = NULL; 14279 GVecGen3Fn *gvecfn = NULL; 14280 14281 if (o == 0) { 14282 switch (opcode) { 14283 case 0: /* SHA512H */ 14284 feature = dc_isar_feature(aa64_sha512, s); 14285 oolfn = gen_helper_crypto_sha512h; 14286 break; 14287 case 1: /* SHA512H2 */ 14288 feature = dc_isar_feature(aa64_sha512, s); 14289 oolfn = gen_helper_crypto_sha512h2; 14290 break; 14291 case 2: /* SHA512SU1 */ 14292 feature = dc_isar_feature(aa64_sha512, s); 14293 oolfn = gen_helper_crypto_sha512su1; 14294 break; 14295 case 3: /* RAX1 */ 14296 feature = dc_isar_feature(aa64_sha3, s); 14297 gvecfn = gen_gvec_rax1; 14298 break; 14299 default: 14300 g_assert_not_reached(); 14301 } 14302 } else { 14303 switch (opcode) { 14304 case 0: /* SM3PARTW1 */ 14305 feature = dc_isar_feature(aa64_sm3, s); 14306 oolfn = gen_helper_crypto_sm3partw1; 14307 break; 14308 case 1: /* SM3PARTW2 */ 14309 feature = dc_isar_feature(aa64_sm3, s); 14310 oolfn = gen_helper_crypto_sm3partw2; 14311 break; 14312 case 2: /* SM4EKEY */ 14313 feature = dc_isar_feature(aa64_sm4, s); 14314 oolfn = gen_helper_crypto_sm4ekey; 14315 break; 14316 default: 14317 unallocated_encoding(s); 14318 return; 14319 } 14320 } 14321 14322 if (!feature) { 14323 unallocated_encoding(s); 14324 return; 14325 } 14326 14327 if (!fp_access_check(s)) { 14328 return; 14329 } 14330 14331 if (oolfn) { 14332 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 14333 } else { 14334 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 14335 } 14336 } 14337 14338 /* Crypto two-reg SHA512 14339 * 31 12 11 10 9 5 4 0 14340 * +-----------------------------------------+--------+------+------+ 14341 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 14342 * +-----------------------------------------+--------+------+------+ 14343 */ 14344 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 14345 { 14346 int opcode = extract32(insn, 10, 2); 14347 int rn = extract32(insn, 5, 5); 14348 int rd = extract32(insn, 0, 5); 14349 bool feature; 14350 14351 switch (opcode) { 14352 case 0: /* SHA512SU0 */ 14353 feature = dc_isar_feature(aa64_sha512, s); 14354 break; 14355 case 1: /* SM4E */ 14356 feature = dc_isar_feature(aa64_sm4, s); 14357 break; 14358 default: 14359 unallocated_encoding(s); 14360 return; 14361 } 14362 14363 if (!feature) { 14364 unallocated_encoding(s); 14365 return; 14366 } 14367 14368 if (!fp_access_check(s)) { 14369 return; 14370 } 14371 14372 switch (opcode) { 14373 case 0: /* SHA512SU0 */ 14374 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 14375 break; 14376 case 1: /* SM4E */ 14377 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 14378 break; 14379 default: 14380 g_assert_not_reached(); 14381 } 14382 } 14383 14384 /* Crypto four-register 14385 * 31 23 22 21 20 16 15 14 10 9 5 4 0 14386 * +-------------------+-----+------+---+------+------+------+ 14387 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 14388 * +-------------------+-----+------+---+------+------+------+ 14389 */ 14390 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 14391 { 14392 int op0 = extract32(insn, 21, 2); 14393 int rm = extract32(insn, 16, 5); 14394 int ra = extract32(insn, 10, 5); 14395 int rn = extract32(insn, 5, 5); 14396 int rd = extract32(insn, 0, 5); 14397 bool feature; 14398 14399 switch (op0) { 14400 case 0: /* EOR3 */ 14401 case 1: /* BCAX */ 14402 feature = dc_isar_feature(aa64_sha3, s); 14403 break; 14404 case 2: /* SM3SS1 */ 14405 feature = dc_isar_feature(aa64_sm3, s); 14406 break; 14407 default: 14408 unallocated_encoding(s); 14409 return; 14410 } 14411 14412 if (!feature) { 14413 unallocated_encoding(s); 14414 return; 14415 } 14416 14417 if (!fp_access_check(s)) { 14418 return; 14419 } 14420 14421 if (op0 < 2) { 14422 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 14423 int pass; 14424 14425 tcg_op1 = tcg_temp_new_i64(); 14426 tcg_op2 = tcg_temp_new_i64(); 14427 tcg_op3 = tcg_temp_new_i64(); 14428 tcg_res[0] = tcg_temp_new_i64(); 14429 tcg_res[1] = tcg_temp_new_i64(); 14430 14431 for (pass = 0; pass < 2; pass++) { 14432 read_vec_element(s, tcg_op1, rn, pass, MO_64); 14433 read_vec_element(s, tcg_op2, rm, pass, MO_64); 14434 read_vec_element(s, tcg_op3, ra, pass, MO_64); 14435 14436 if (op0 == 0) { 14437 /* EOR3 */ 14438 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 14439 } else { 14440 /* BCAX */ 14441 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 14442 } 14443 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 14444 } 14445 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 14446 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 14447 14448 tcg_temp_free_i64(tcg_op1); 14449 tcg_temp_free_i64(tcg_op2); 14450 tcg_temp_free_i64(tcg_op3); 14451 tcg_temp_free_i64(tcg_res[0]); 14452 tcg_temp_free_i64(tcg_res[1]); 14453 } else { 14454 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 14455 14456 tcg_op1 = tcg_temp_new_i32(); 14457 tcg_op2 = tcg_temp_new_i32(); 14458 tcg_op3 = tcg_temp_new_i32(); 14459 tcg_res = tcg_temp_new_i32(); 14460 tcg_zero = tcg_constant_i32(0); 14461 14462 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 14463 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 14464 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 14465 14466 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 14467 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 14468 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 14469 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 14470 14471 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 14472 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 14473 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 14474 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 14475 14476 tcg_temp_free_i32(tcg_op1); 14477 tcg_temp_free_i32(tcg_op2); 14478 tcg_temp_free_i32(tcg_op3); 14479 tcg_temp_free_i32(tcg_res); 14480 } 14481 } 14482 14483 /* Crypto XAR 14484 * 31 21 20 16 15 10 9 5 4 0 14485 * +-----------------------+------+--------+------+------+ 14486 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 14487 * +-----------------------+------+--------+------+------+ 14488 */ 14489 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 14490 { 14491 int rm = extract32(insn, 16, 5); 14492 int imm6 = extract32(insn, 10, 6); 14493 int rn = extract32(insn, 5, 5); 14494 int rd = extract32(insn, 0, 5); 14495 14496 if (!dc_isar_feature(aa64_sha3, s)) { 14497 unallocated_encoding(s); 14498 return; 14499 } 14500 14501 if (!fp_access_check(s)) { 14502 return; 14503 } 14504 14505 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14506 vec_full_reg_offset(s, rn), 14507 vec_full_reg_offset(s, rm), imm6, 16, 14508 vec_full_reg_size(s)); 14509 } 14510 14511 /* Crypto three-reg imm2 14512 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14513 * +-----------------------+------+-----+------+--------+------+------+ 14514 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14515 * +-----------------------+------+-----+------+--------+------+------+ 14516 */ 14517 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14518 { 14519 static gen_helper_gvec_3 * const fns[4] = { 14520 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14521 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14522 }; 14523 int opcode = extract32(insn, 10, 2); 14524 int imm2 = extract32(insn, 12, 2); 14525 int rm = extract32(insn, 16, 5); 14526 int rn = extract32(insn, 5, 5); 14527 int rd = extract32(insn, 0, 5); 14528 14529 if (!dc_isar_feature(aa64_sm3, s)) { 14530 unallocated_encoding(s); 14531 return; 14532 } 14533 14534 if (!fp_access_check(s)) { 14535 return; 14536 } 14537 14538 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14539 } 14540 14541 /* C3.6 Data processing - SIMD, inc Crypto 14542 * 14543 * As the decode gets a little complex we are using a table based 14544 * approach for this part of the decode. 14545 */ 14546 static const AArch64DecodeTable data_proc_simd[] = { 14547 /* pattern , mask , fn */ 14548 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14549 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14550 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14551 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14552 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14553 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14554 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14555 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14556 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14557 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14558 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14559 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14560 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14561 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14562 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14563 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14564 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14565 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14566 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14567 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14568 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14569 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14570 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14571 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14572 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14573 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14574 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14575 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14576 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14577 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14578 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14579 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14580 { 0x00000000, 0x00000000, NULL } 14581 }; 14582 14583 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14584 { 14585 /* Note that this is called with all non-FP cases from 14586 * table C3-6 so it must UNDEF for entries not specifically 14587 * allocated to instructions in that table. 14588 */ 14589 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14590 if (fn) { 14591 fn(s, insn); 14592 } else { 14593 unallocated_encoding(s); 14594 } 14595 } 14596 14597 /* C3.6 Data processing - SIMD and floating point */ 14598 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14599 { 14600 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14601 disas_data_proc_fp(s, insn); 14602 } else { 14603 /* SIMD, including crypto */ 14604 disas_data_proc_simd(s, insn); 14605 } 14606 } 14607 14608 /* 14609 * Include the generated SME FA64 decoder. 14610 */ 14611 14612 #include "decode-sme-fa64.c.inc" 14613 14614 static bool trans_OK(DisasContext *s, arg_OK *a) 14615 { 14616 return true; 14617 } 14618 14619 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14620 { 14621 s->is_nonstreaming = true; 14622 return true; 14623 } 14624 14625 /** 14626 * is_guarded_page: 14627 * @env: The cpu environment 14628 * @s: The DisasContext 14629 * 14630 * Return true if the page is guarded. 14631 */ 14632 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14633 { 14634 uint64_t addr = s->base.pc_first; 14635 #ifdef CONFIG_USER_ONLY 14636 return page_get_flags(addr) & PAGE_BTI; 14637 #else 14638 CPUTLBEntryFull *full; 14639 void *host; 14640 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14641 int flags; 14642 14643 /* 14644 * We test this immediately after reading an insn, which means 14645 * that the TLB entry must be present and valid, and thus this 14646 * access will never raise an exception. 14647 */ 14648 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14649 false, &host, &full, 0); 14650 assert(!(flags & TLB_INVALID_MASK)); 14651 14652 return full->guarded; 14653 #endif 14654 } 14655 14656 /** 14657 * btype_destination_ok: 14658 * @insn: The instruction at the branch destination 14659 * @bt: SCTLR_ELx.BT 14660 * @btype: PSTATE.BTYPE, and is non-zero 14661 * 14662 * On a guarded page, there are a limited number of insns 14663 * that may be present at the branch target: 14664 * - branch target identifiers, 14665 * - paciasp, pacibsp, 14666 * - BRK insn 14667 * - HLT insn 14668 * Anything else causes a Branch Target Exception. 14669 * 14670 * Return true if the branch is compatible, false to raise BTITRAP. 14671 */ 14672 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14673 { 14674 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14675 /* HINT space */ 14676 switch (extract32(insn, 5, 7)) { 14677 case 0b011001: /* PACIASP */ 14678 case 0b011011: /* PACIBSP */ 14679 /* 14680 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14681 * with btype == 3. Otherwise all btype are ok. 14682 */ 14683 return !bt || btype != 3; 14684 case 0b100000: /* BTI */ 14685 /* Not compatible with any btype. */ 14686 return false; 14687 case 0b100010: /* BTI c */ 14688 /* Not compatible with btype == 3 */ 14689 return btype != 3; 14690 case 0b100100: /* BTI j */ 14691 /* Not compatible with btype == 2 */ 14692 return btype != 2; 14693 case 0b100110: /* BTI jc */ 14694 /* Compatible with any btype. */ 14695 return true; 14696 } 14697 } else { 14698 switch (insn & 0xffe0001fu) { 14699 case 0xd4200000u: /* BRK */ 14700 case 0xd4400000u: /* HLT */ 14701 /* Give priority to the breakpoint exception. */ 14702 return true; 14703 } 14704 } 14705 return false; 14706 } 14707 14708 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14709 CPUState *cpu) 14710 { 14711 DisasContext *dc = container_of(dcbase, DisasContext, base); 14712 CPUARMState *env = cpu->env_ptr; 14713 ARMCPU *arm_cpu = env_archcpu(env); 14714 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14715 int bound, core_mmu_idx; 14716 14717 dc->isar = &arm_cpu->isar; 14718 dc->condjmp = 0; 14719 dc->pc_save = dc->base.pc_first; 14720 dc->aarch64 = true; 14721 dc->thumb = false; 14722 dc->sctlr_b = 0; 14723 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14724 dc->condexec_mask = 0; 14725 dc->condexec_cond = 0; 14726 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14727 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14728 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14729 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14730 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14731 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14732 #if !defined(CONFIG_USER_ONLY) 14733 dc->user = (dc->current_el == 0); 14734 #endif 14735 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14736 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14737 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14738 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14739 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14740 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14741 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14742 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14743 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14744 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14745 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14746 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14747 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14748 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14749 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14750 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14751 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14752 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14753 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14754 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14755 dc->vec_len = 0; 14756 dc->vec_stride = 0; 14757 dc->cp_regs = arm_cpu->cp_regs; 14758 dc->features = env->features; 14759 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14760 14761 #ifdef CONFIG_USER_ONLY 14762 /* In sve_probe_page, we assume TBI is enabled. */ 14763 tcg_debug_assert(dc->tbid & 1); 14764 #endif 14765 14766 /* Single step state. The code-generation logic here is: 14767 * SS_ACTIVE == 0: 14768 * generate code with no special handling for single-stepping (except 14769 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14770 * this happens anyway because those changes are all system register or 14771 * PSTATE writes). 14772 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14773 * emit code for one insn 14774 * emit code to clear PSTATE.SS 14775 * emit code to generate software step exception for completed step 14776 * end TB (as usual for having generated an exception) 14777 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14778 * emit code to generate a software step exception 14779 * end the TB 14780 */ 14781 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14782 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14783 dc->is_ldex = false; 14784 14785 /* Bound the number of insns to execute to those left on the page. */ 14786 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14787 14788 /* If architectural single step active, limit to 1. */ 14789 if (dc->ss_active) { 14790 bound = 1; 14791 } 14792 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14793 14794 init_tmp_a64_array(dc); 14795 } 14796 14797 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14798 { 14799 } 14800 14801 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14802 { 14803 DisasContext *dc = container_of(dcbase, DisasContext, base); 14804 target_ulong pc_arg = dc->base.pc_next; 14805 14806 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14807 pc_arg &= ~TARGET_PAGE_MASK; 14808 } 14809 tcg_gen_insn_start(pc_arg, 0, 0); 14810 dc->insn_start = tcg_last_op(); 14811 } 14812 14813 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14814 { 14815 DisasContext *s = container_of(dcbase, DisasContext, base); 14816 CPUARMState *env = cpu->env_ptr; 14817 uint64_t pc = s->base.pc_next; 14818 uint32_t insn; 14819 14820 /* Singlestep exceptions have the highest priority. */ 14821 if (s->ss_active && !s->pstate_ss) { 14822 /* Singlestep state is Active-pending. 14823 * If we're in this state at the start of a TB then either 14824 * a) we just took an exception to an EL which is being debugged 14825 * and this is the first insn in the exception handler 14826 * b) debug exceptions were masked and we just unmasked them 14827 * without changing EL (eg by clearing PSTATE.D) 14828 * In either case we're going to take a swstep exception in the 14829 * "did not step an insn" case, and so the syndrome ISV and EX 14830 * bits should be zero. 14831 */ 14832 assert(s->base.num_insns == 1); 14833 gen_swstep_exception(s, 0, 0); 14834 s->base.is_jmp = DISAS_NORETURN; 14835 s->base.pc_next = pc + 4; 14836 return; 14837 } 14838 14839 if (pc & 3) { 14840 /* 14841 * PC alignment fault. This has priority over the instruction abort 14842 * that we would receive from a translation fault via arm_ldl_code. 14843 * This should only be possible after an indirect branch, at the 14844 * start of the TB. 14845 */ 14846 assert(s->base.num_insns == 1); 14847 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14848 s->base.is_jmp = DISAS_NORETURN; 14849 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14850 return; 14851 } 14852 14853 s->pc_curr = pc; 14854 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14855 s->insn = insn; 14856 s->base.pc_next = pc + 4; 14857 14858 s->fp_access_checked = false; 14859 s->sve_access_checked = false; 14860 14861 if (s->pstate_il) { 14862 /* 14863 * Illegal execution state. This has priority over BTI 14864 * exceptions, but comes after instruction abort exceptions. 14865 */ 14866 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14867 return; 14868 } 14869 14870 if (dc_isar_feature(aa64_bti, s)) { 14871 if (s->base.num_insns == 1) { 14872 /* 14873 * At the first insn of the TB, compute s->guarded_page. 14874 * We delayed computing this until successfully reading 14875 * the first insn of the TB, above. This (mostly) ensures 14876 * that the softmmu tlb entry has been populated, and the 14877 * page table GP bit is available. 14878 * 14879 * Note that we need to compute this even if btype == 0, 14880 * because this value is used for BR instructions later 14881 * where ENV is not available. 14882 */ 14883 s->guarded_page = is_guarded_page(env, s); 14884 14885 /* First insn can have btype set to non-zero. */ 14886 tcg_debug_assert(s->btype >= 0); 14887 14888 /* 14889 * Note that the Branch Target Exception has fairly high 14890 * priority -- below debugging exceptions but above most 14891 * everything else. This allows us to handle this now 14892 * instead of waiting until the insn is otherwise decoded. 14893 */ 14894 if (s->btype != 0 14895 && s->guarded_page 14896 && !btype_destination_ok(insn, s->bt, s->btype)) { 14897 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14898 return; 14899 } 14900 } else { 14901 /* Not the first insn: btype must be 0. */ 14902 tcg_debug_assert(s->btype == 0); 14903 } 14904 } 14905 14906 s->is_nonstreaming = false; 14907 if (s->sme_trap_nonstreaming) { 14908 disas_sme_fa64(s, insn); 14909 } 14910 14911 switch (extract32(insn, 25, 4)) { 14912 case 0x0: 14913 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) { 14914 unallocated_encoding(s); 14915 } 14916 break; 14917 case 0x1: case 0x3: /* UNALLOCATED */ 14918 unallocated_encoding(s); 14919 break; 14920 case 0x2: 14921 if (!disas_sve(s, insn)) { 14922 unallocated_encoding(s); 14923 } 14924 break; 14925 case 0x8: case 0x9: /* Data processing - immediate */ 14926 disas_data_proc_imm(s, insn); 14927 break; 14928 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14929 disas_b_exc_sys(s, insn); 14930 break; 14931 case 0x4: 14932 case 0x6: 14933 case 0xc: 14934 case 0xe: /* Loads and stores */ 14935 disas_ldst(s, insn); 14936 break; 14937 case 0x5: 14938 case 0xd: /* Data processing - register */ 14939 disas_data_proc_reg(s, insn); 14940 break; 14941 case 0x7: 14942 case 0xf: /* Data processing - SIMD and floating point */ 14943 disas_data_proc_simd_fp(s, insn); 14944 break; 14945 default: 14946 assert(FALSE); /* all 15 cases should be handled above */ 14947 break; 14948 } 14949 14950 /* if we allocated any temporaries, free them here */ 14951 free_tmp_a64(s); 14952 14953 /* 14954 * After execution of most insns, btype is reset to 0. 14955 * Note that we set btype == -1 when the insn sets btype. 14956 */ 14957 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14958 reset_btype(s); 14959 } 14960 14961 translator_loop_temp_check(&s->base); 14962 } 14963 14964 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14965 { 14966 DisasContext *dc = container_of(dcbase, DisasContext, base); 14967 14968 if (unlikely(dc->ss_active)) { 14969 /* Note that this means single stepping WFI doesn't halt the CPU. 14970 * For conditional branch insns this is harmless unreachable code as 14971 * gen_goto_tb() has already handled emitting the debug exception 14972 * (and thus a tb-jump is not possible when singlestepping). 14973 */ 14974 switch (dc->base.is_jmp) { 14975 default: 14976 gen_a64_update_pc(dc, 4); 14977 /* fall through */ 14978 case DISAS_EXIT: 14979 case DISAS_JUMP: 14980 gen_step_complete_exception(dc); 14981 break; 14982 case DISAS_NORETURN: 14983 break; 14984 } 14985 } else { 14986 switch (dc->base.is_jmp) { 14987 case DISAS_NEXT: 14988 case DISAS_TOO_MANY: 14989 gen_goto_tb(dc, 1, 4); 14990 break; 14991 default: 14992 case DISAS_UPDATE_EXIT: 14993 gen_a64_update_pc(dc, 4); 14994 /* fall through */ 14995 case DISAS_EXIT: 14996 tcg_gen_exit_tb(NULL, 0); 14997 break; 14998 case DISAS_UPDATE_NOCHAIN: 14999 gen_a64_update_pc(dc, 4); 15000 /* fall through */ 15001 case DISAS_JUMP: 15002 tcg_gen_lookup_and_goto_ptr(); 15003 break; 15004 case DISAS_NORETURN: 15005 case DISAS_SWI: 15006 break; 15007 case DISAS_WFE: 15008 gen_a64_update_pc(dc, 4); 15009 gen_helper_wfe(cpu_env); 15010 break; 15011 case DISAS_YIELD: 15012 gen_a64_update_pc(dc, 4); 15013 gen_helper_yield(cpu_env); 15014 break; 15015 case DISAS_WFI: 15016 /* 15017 * This is a special case because we don't want to just halt 15018 * the CPU if trying to debug across a WFI. 15019 */ 15020 gen_a64_update_pc(dc, 4); 15021 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 15022 /* 15023 * The helper doesn't necessarily throw an exception, but we 15024 * must go back to the main loop to check for interrupts anyway. 15025 */ 15026 tcg_gen_exit_tb(NULL, 0); 15027 break; 15028 } 15029 } 15030 } 15031 15032 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 15033 CPUState *cpu, FILE *logfile) 15034 { 15035 DisasContext *dc = container_of(dcbase, DisasContext, base); 15036 15037 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 15038 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 15039 } 15040 15041 const TranslatorOps aarch64_translator_ops = { 15042 .init_disas_context = aarch64_tr_init_disas_context, 15043 .tb_start = aarch64_tr_tb_start, 15044 .insn_start = aarch64_tr_insn_start, 15045 .translate_insn = aarch64_tr_translate_insn, 15046 .tb_stop = aarch64_tr_tb_stop, 15047 .disas_log = aarch64_tr_disas_log, 15048 }; 15049