1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * This utility function is for doing register extension with an 1318 * optional shift. You will likely want to pass a temporary for the 1319 * destination register. See DecodeRegExtend() in the ARM ARM. 1320 */ 1321 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1322 int option, unsigned int shift) 1323 { 1324 int extsize = extract32(option, 0, 2); 1325 bool is_signed = extract32(option, 2, 1); 1326 1327 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1328 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1329 } 1330 1331 static inline void gen_check_sp_alignment(DisasContext *s) 1332 { 1333 /* The AArch64 architecture mandates that (if enabled via PSTATE 1334 * or SCTLR bits) there is a check that SP is 16-aligned on every 1335 * SP-relative load or store (with an exception generated if it is not). 1336 * In line with general QEMU practice regarding misaligned accesses, 1337 * we omit these checks for the sake of guest program performance. 1338 * This function is provided as a hook so we can more easily add these 1339 * checks in future (possibly as a "favour catching guest program bugs 1340 * over speed" user selectable option). 1341 */ 1342 } 1343 1344 /* 1345 * This provides a simple table based table lookup decoder. It is 1346 * intended to be used when the relevant bits for decode are too 1347 * awkwardly placed and switch/if based logic would be confusing and 1348 * deeply nested. Since it's a linear search through the table, tables 1349 * should be kept small. 1350 * 1351 * It returns the first handler where insn & mask == pattern, or 1352 * NULL if there is no match. 1353 * The table is terminated by an empty mask (i.e. 0) 1354 */ 1355 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1356 uint32_t insn) 1357 { 1358 const AArch64DecodeTable *tptr = table; 1359 1360 while (tptr->mask) { 1361 if ((insn & tptr->mask) == tptr->pattern) { 1362 return tptr->disas_fn; 1363 } 1364 tptr++; 1365 } 1366 return NULL; 1367 } 1368 1369 /* 1370 * The instruction disassembly implemented here matches 1371 * the instruction encoding classifications in chapter C4 1372 * of the ARM Architecture Reference Manual (DDI0487B_a); 1373 * classification names and decode diagrams here should generally 1374 * match up with those in the manual. 1375 */ 1376 1377 static bool trans_B(DisasContext *s, arg_i *a) 1378 { 1379 reset_btype(s); 1380 gen_goto_tb(s, 0, a->imm); 1381 return true; 1382 } 1383 1384 static bool trans_BL(DisasContext *s, arg_i *a) 1385 { 1386 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1387 reset_btype(s); 1388 gen_goto_tb(s, 0, a->imm); 1389 return true; 1390 } 1391 1392 1393 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1394 { 1395 DisasLabel match; 1396 TCGv_i64 tcg_cmp; 1397 1398 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1399 reset_btype(s); 1400 1401 match = gen_disas_label(s); 1402 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1403 tcg_cmp, 0, match.label); 1404 gen_goto_tb(s, 0, 4); 1405 set_disas_label(s, match); 1406 gen_goto_tb(s, 1, a->imm); 1407 return true; 1408 } 1409 1410 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1411 { 1412 DisasLabel match; 1413 TCGv_i64 tcg_cmp; 1414 1415 tcg_cmp = tcg_temp_new_i64(); 1416 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1417 1418 reset_btype(s); 1419 1420 match = gen_disas_label(s); 1421 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1422 tcg_cmp, 0, match.label); 1423 gen_goto_tb(s, 0, 4); 1424 set_disas_label(s, match); 1425 gen_goto_tb(s, 1, a->imm); 1426 return true; 1427 } 1428 1429 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1430 { 1431 /* BC.cond is only present with FEAT_HBC */ 1432 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1433 return false; 1434 } 1435 reset_btype(s); 1436 if (a->cond < 0x0e) { 1437 /* genuinely conditional branches */ 1438 DisasLabel match = gen_disas_label(s); 1439 arm_gen_test_cc(a->cond, match.label); 1440 gen_goto_tb(s, 0, 4); 1441 set_disas_label(s, match); 1442 gen_goto_tb(s, 1, a->imm); 1443 } else { 1444 /* 0xe and 0xf are both "always" conditions */ 1445 gen_goto_tb(s, 0, a->imm); 1446 } 1447 return true; 1448 } 1449 1450 static void set_btype_for_br(DisasContext *s, int rn) 1451 { 1452 if (dc_isar_feature(aa64_bti, s)) { 1453 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1454 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1455 } 1456 } 1457 1458 static void set_btype_for_blr(DisasContext *s) 1459 { 1460 if (dc_isar_feature(aa64_bti, s)) { 1461 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1462 set_btype(s, 2); 1463 } 1464 } 1465 1466 static bool trans_BR(DisasContext *s, arg_r *a) 1467 { 1468 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1469 set_btype_for_br(s, a->rn); 1470 s->base.is_jmp = DISAS_JUMP; 1471 return true; 1472 } 1473 1474 static bool trans_BLR(DisasContext *s, arg_r *a) 1475 { 1476 TCGv_i64 dst = cpu_reg(s, a->rn); 1477 TCGv_i64 lr = cpu_reg(s, 30); 1478 if (dst == lr) { 1479 TCGv_i64 tmp = tcg_temp_new_i64(); 1480 tcg_gen_mov_i64(tmp, dst); 1481 dst = tmp; 1482 } 1483 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1484 gen_a64_set_pc(s, dst); 1485 set_btype_for_blr(s); 1486 s->base.is_jmp = DISAS_JUMP; 1487 return true; 1488 } 1489 1490 static bool trans_RET(DisasContext *s, arg_r *a) 1491 { 1492 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1493 s->base.is_jmp = DISAS_JUMP; 1494 return true; 1495 } 1496 1497 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1498 TCGv_i64 modifier, bool use_key_a) 1499 { 1500 TCGv_i64 truedst; 1501 /* 1502 * Return the branch target for a BRAA/RETA/etc, which is either 1503 * just the destination dst, or that value with the pauth check 1504 * done and the code removed from the high bits. 1505 */ 1506 if (!s->pauth_active) { 1507 return dst; 1508 } 1509 1510 truedst = tcg_temp_new_i64(); 1511 if (use_key_a) { 1512 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1513 } else { 1514 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1515 } 1516 return truedst; 1517 } 1518 1519 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1520 { 1521 TCGv_i64 dst; 1522 1523 if (!dc_isar_feature(aa64_pauth, s)) { 1524 return false; 1525 } 1526 1527 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1528 gen_a64_set_pc(s, dst); 1529 set_btype_for_br(s, a->rn); 1530 s->base.is_jmp = DISAS_JUMP; 1531 return true; 1532 } 1533 1534 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1535 { 1536 TCGv_i64 dst, lr; 1537 1538 if (!dc_isar_feature(aa64_pauth, s)) { 1539 return false; 1540 } 1541 1542 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1543 lr = cpu_reg(s, 30); 1544 if (dst == lr) { 1545 TCGv_i64 tmp = tcg_temp_new_i64(); 1546 tcg_gen_mov_i64(tmp, dst); 1547 dst = tmp; 1548 } 1549 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1550 gen_a64_set_pc(s, dst); 1551 set_btype_for_blr(s); 1552 s->base.is_jmp = DISAS_JUMP; 1553 return true; 1554 } 1555 1556 static bool trans_RETA(DisasContext *s, arg_reta *a) 1557 { 1558 TCGv_i64 dst; 1559 1560 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1561 gen_a64_set_pc(s, dst); 1562 s->base.is_jmp = DISAS_JUMP; 1563 return true; 1564 } 1565 1566 static bool trans_BRA(DisasContext *s, arg_bra *a) 1567 { 1568 TCGv_i64 dst; 1569 1570 if (!dc_isar_feature(aa64_pauth, s)) { 1571 return false; 1572 } 1573 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1574 gen_a64_set_pc(s, dst); 1575 set_btype_for_br(s, a->rn); 1576 s->base.is_jmp = DISAS_JUMP; 1577 return true; 1578 } 1579 1580 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1581 { 1582 TCGv_i64 dst, lr; 1583 1584 if (!dc_isar_feature(aa64_pauth, s)) { 1585 return false; 1586 } 1587 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1588 lr = cpu_reg(s, 30); 1589 if (dst == lr) { 1590 TCGv_i64 tmp = tcg_temp_new_i64(); 1591 tcg_gen_mov_i64(tmp, dst); 1592 dst = tmp; 1593 } 1594 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1595 gen_a64_set_pc(s, dst); 1596 set_btype_for_blr(s); 1597 s->base.is_jmp = DISAS_JUMP; 1598 return true; 1599 } 1600 1601 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1602 { 1603 TCGv_i64 dst; 1604 1605 if (s->current_el == 0) { 1606 return false; 1607 } 1608 if (s->fgt_eret) { 1609 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1610 return true; 1611 } 1612 dst = tcg_temp_new_i64(); 1613 tcg_gen_ld_i64(dst, tcg_env, 1614 offsetof(CPUARMState, elr_el[s->current_el])); 1615 1616 translator_io_start(&s->base); 1617 1618 gen_helper_exception_return(tcg_env, dst); 1619 /* Must exit loop to check un-masked IRQs */ 1620 s->base.is_jmp = DISAS_EXIT; 1621 return true; 1622 } 1623 1624 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1625 { 1626 TCGv_i64 dst; 1627 1628 if (!dc_isar_feature(aa64_pauth, s)) { 1629 return false; 1630 } 1631 if (s->current_el == 0) { 1632 return false; 1633 } 1634 /* The FGT trap takes precedence over an auth trap. */ 1635 if (s->fgt_eret) { 1636 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1637 return true; 1638 } 1639 dst = tcg_temp_new_i64(); 1640 tcg_gen_ld_i64(dst, tcg_env, 1641 offsetof(CPUARMState, elr_el[s->current_el])); 1642 1643 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1644 1645 translator_io_start(&s->base); 1646 1647 gen_helper_exception_return(tcg_env, dst); 1648 /* Must exit loop to check un-masked IRQs */ 1649 s->base.is_jmp = DISAS_EXIT; 1650 return true; 1651 } 1652 1653 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1654 { 1655 return true; 1656 } 1657 1658 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1659 { 1660 /* 1661 * When running in MTTCG we don't generate jumps to the yield and 1662 * WFE helpers as it won't affect the scheduling of other vCPUs. 1663 * If we wanted to more completely model WFE/SEV so we don't busy 1664 * spin unnecessarily we would need to do something more involved. 1665 */ 1666 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1667 s->base.is_jmp = DISAS_YIELD; 1668 } 1669 return true; 1670 } 1671 1672 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1673 { 1674 s->base.is_jmp = DISAS_WFI; 1675 return true; 1676 } 1677 1678 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1679 { 1680 /* 1681 * When running in MTTCG we don't generate jumps to the yield and 1682 * WFE helpers as it won't affect the scheduling of other vCPUs. 1683 * If we wanted to more completely model WFE/SEV so we don't busy 1684 * spin unnecessarily we would need to do something more involved. 1685 */ 1686 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1687 s->base.is_jmp = DISAS_WFE; 1688 } 1689 return true; 1690 } 1691 1692 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1693 { 1694 if (s->pauth_active) { 1695 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1696 } 1697 return true; 1698 } 1699 1700 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1701 { 1702 if (s->pauth_active) { 1703 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1704 } 1705 return true; 1706 } 1707 1708 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1709 { 1710 if (s->pauth_active) { 1711 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1712 } 1713 return true; 1714 } 1715 1716 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1717 { 1718 if (s->pauth_active) { 1719 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1720 } 1721 return true; 1722 } 1723 1724 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1725 { 1726 if (s->pauth_active) { 1727 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1728 } 1729 return true; 1730 } 1731 1732 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1733 { 1734 /* Without RAS, we must implement this as NOP. */ 1735 if (dc_isar_feature(aa64_ras, s)) { 1736 /* 1737 * QEMU does not have a source of physical SErrors, 1738 * so we are only concerned with virtual SErrors. 1739 * The pseudocode in the ARM for this case is 1740 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1741 * AArch64.vESBOperation(); 1742 * Most of the condition can be evaluated at translation time. 1743 * Test for EL2 present, and defer test for SEL2 to runtime. 1744 */ 1745 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1746 gen_helper_vesb(tcg_env); 1747 } 1748 } 1749 return true; 1750 } 1751 1752 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1753 { 1754 if (s->pauth_active) { 1755 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1756 } 1757 return true; 1758 } 1759 1760 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1761 { 1762 if (s->pauth_active) { 1763 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1764 } 1765 return true; 1766 } 1767 1768 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1769 { 1770 if (s->pauth_active) { 1771 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1772 } 1773 return true; 1774 } 1775 1776 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1777 { 1778 if (s->pauth_active) { 1779 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1780 } 1781 return true; 1782 } 1783 1784 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1785 { 1786 if (s->pauth_active) { 1787 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1788 } 1789 return true; 1790 } 1791 1792 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1793 { 1794 if (s->pauth_active) { 1795 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1796 } 1797 return true; 1798 } 1799 1800 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1801 { 1802 if (s->pauth_active) { 1803 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1804 } 1805 return true; 1806 } 1807 1808 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1809 { 1810 if (s->pauth_active) { 1811 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1812 } 1813 return true; 1814 } 1815 1816 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1817 { 1818 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1819 return true; 1820 } 1821 1822 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1823 { 1824 /* We handle DSB and DMB the same way */ 1825 TCGBar bar; 1826 1827 switch (a->types) { 1828 case 1: /* MBReqTypes_Reads */ 1829 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1830 break; 1831 case 2: /* MBReqTypes_Writes */ 1832 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1833 break; 1834 default: /* MBReqTypes_All */ 1835 bar = TCG_BAR_SC | TCG_MO_ALL; 1836 break; 1837 } 1838 tcg_gen_mb(bar); 1839 return true; 1840 } 1841 1842 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1843 { 1844 /* 1845 * We need to break the TB after this insn to execute 1846 * self-modifying code correctly and also to take 1847 * any pending interrupts immediately. 1848 */ 1849 reset_btype(s); 1850 gen_goto_tb(s, 0, 4); 1851 return true; 1852 } 1853 1854 static bool trans_SB(DisasContext *s, arg_SB *a) 1855 { 1856 if (!dc_isar_feature(aa64_sb, s)) { 1857 return false; 1858 } 1859 /* 1860 * TODO: There is no speculation barrier opcode for TCG; 1861 * MB and end the TB instead. 1862 */ 1863 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1864 gen_goto_tb(s, 0, 4); 1865 return true; 1866 } 1867 1868 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1869 { 1870 if (!dc_isar_feature(aa64_condm_4, s)) { 1871 return false; 1872 } 1873 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1874 return true; 1875 } 1876 1877 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1878 { 1879 TCGv_i32 z; 1880 1881 if (!dc_isar_feature(aa64_condm_5, s)) { 1882 return false; 1883 } 1884 1885 z = tcg_temp_new_i32(); 1886 1887 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1888 1889 /* 1890 * (!C & !Z) << 31 1891 * (!(C | Z)) << 31 1892 * ~((C | Z) << 31) 1893 * ~-(C | Z) 1894 * (C | Z) - 1 1895 */ 1896 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1897 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1898 1899 /* !(Z & C) */ 1900 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1901 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1902 1903 /* (!C & Z) << 31 -> -(Z & ~C) */ 1904 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1905 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1906 1907 /* C | Z */ 1908 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1909 1910 return true; 1911 } 1912 1913 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1914 { 1915 if (!dc_isar_feature(aa64_condm_5, s)) { 1916 return false; 1917 } 1918 1919 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1920 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1921 1922 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1923 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1924 1925 tcg_gen_movi_i32(cpu_NF, 0); 1926 tcg_gen_movi_i32(cpu_VF, 0); 1927 1928 return true; 1929 } 1930 1931 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1932 { 1933 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1934 return false; 1935 } 1936 if (a->imm & 1) { 1937 set_pstate_bits(PSTATE_UAO); 1938 } else { 1939 clear_pstate_bits(PSTATE_UAO); 1940 } 1941 gen_rebuild_hflags(s); 1942 s->base.is_jmp = DISAS_TOO_MANY; 1943 return true; 1944 } 1945 1946 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1947 { 1948 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1949 return false; 1950 } 1951 if (a->imm & 1) { 1952 set_pstate_bits(PSTATE_PAN); 1953 } else { 1954 clear_pstate_bits(PSTATE_PAN); 1955 } 1956 gen_rebuild_hflags(s); 1957 s->base.is_jmp = DISAS_TOO_MANY; 1958 return true; 1959 } 1960 1961 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1962 { 1963 if (s->current_el == 0) { 1964 return false; 1965 } 1966 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1967 s->base.is_jmp = DISAS_TOO_MANY; 1968 return true; 1969 } 1970 1971 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1972 { 1973 if (!dc_isar_feature(aa64_ssbs, s)) { 1974 return false; 1975 } 1976 if (a->imm & 1) { 1977 set_pstate_bits(PSTATE_SSBS); 1978 } else { 1979 clear_pstate_bits(PSTATE_SSBS); 1980 } 1981 /* Don't need to rebuild hflags since SSBS is a nop */ 1982 s->base.is_jmp = DISAS_TOO_MANY; 1983 return true; 1984 } 1985 1986 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1987 { 1988 if (!dc_isar_feature(aa64_dit, s)) { 1989 return false; 1990 } 1991 if (a->imm & 1) { 1992 set_pstate_bits(PSTATE_DIT); 1993 } else { 1994 clear_pstate_bits(PSTATE_DIT); 1995 } 1996 /* There's no need to rebuild hflags because DIT is a nop */ 1997 s->base.is_jmp = DISAS_TOO_MANY; 1998 return true; 1999 } 2000 2001 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2002 { 2003 if (dc_isar_feature(aa64_mte, s)) { 2004 /* Full MTE is enabled -- set the TCO bit as directed. */ 2005 if (a->imm & 1) { 2006 set_pstate_bits(PSTATE_TCO); 2007 } else { 2008 clear_pstate_bits(PSTATE_TCO); 2009 } 2010 gen_rebuild_hflags(s); 2011 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2012 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2013 return true; 2014 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2015 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2016 return true; 2017 } else { 2018 /* Insn not present */ 2019 return false; 2020 } 2021 } 2022 2023 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2024 { 2025 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2026 s->base.is_jmp = DISAS_TOO_MANY; 2027 return true; 2028 } 2029 2030 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2031 { 2032 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2033 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2034 s->base.is_jmp = DISAS_UPDATE_EXIT; 2035 return true; 2036 } 2037 2038 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2039 { 2040 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2041 return false; 2042 } 2043 if (sme_access_check(s)) { 2044 int old = s->pstate_sm | (s->pstate_za << 1); 2045 int new = a->imm * 3; 2046 2047 if ((old ^ new) & a->mask) { 2048 /* At least one bit changes. */ 2049 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2050 tcg_constant_i32(a->mask)); 2051 s->base.is_jmp = DISAS_TOO_MANY; 2052 } 2053 } 2054 return true; 2055 } 2056 2057 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2058 { 2059 TCGv_i32 tmp = tcg_temp_new_i32(); 2060 TCGv_i32 nzcv = tcg_temp_new_i32(); 2061 2062 /* build bit 31, N */ 2063 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2064 /* build bit 30, Z */ 2065 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2066 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2067 /* build bit 29, C */ 2068 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2069 /* build bit 28, V */ 2070 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2071 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2072 /* generate result */ 2073 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2074 } 2075 2076 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2077 { 2078 TCGv_i32 nzcv = tcg_temp_new_i32(); 2079 2080 /* take NZCV from R[t] */ 2081 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2082 2083 /* bit 31, N */ 2084 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2085 /* bit 30, Z */ 2086 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2087 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2088 /* bit 29, C */ 2089 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2090 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2091 /* bit 28, V */ 2092 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2093 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2094 } 2095 2096 static void gen_sysreg_undef(DisasContext *s, bool isread, 2097 uint8_t op0, uint8_t op1, uint8_t op2, 2098 uint8_t crn, uint8_t crm, uint8_t rt) 2099 { 2100 /* 2101 * Generate code to emit an UNDEF with correct syndrome 2102 * information for a failed system register access. 2103 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2104 * but if FEAT_IDST is implemented then read accesses to registers 2105 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2106 * syndrome. 2107 */ 2108 uint32_t syndrome; 2109 2110 if (isread && dc_isar_feature(aa64_ids, s) && 2111 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2112 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2113 } else { 2114 syndrome = syn_uncategorized(); 2115 } 2116 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2117 } 2118 2119 /* MRS - move from system register 2120 * MSR (register) - move to system register 2121 * SYS 2122 * SYSL 2123 * These are all essentially the same insn in 'read' and 'write' 2124 * versions, with varying op0 fields. 2125 */ 2126 static void handle_sys(DisasContext *s, bool isread, 2127 unsigned int op0, unsigned int op1, unsigned int op2, 2128 unsigned int crn, unsigned int crm, unsigned int rt) 2129 { 2130 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2131 crn, crm, op0, op1, op2); 2132 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2133 bool need_exit_tb = false; 2134 TCGv_ptr tcg_ri = NULL; 2135 TCGv_i64 tcg_rt; 2136 uint32_t syndrome; 2137 2138 if (crn == 11 || crn == 15) { 2139 /* 2140 * Check for TIDCP trap, which must take precedence over 2141 * the UNDEF for "no such register" etc. 2142 */ 2143 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2144 switch (s->current_el) { 2145 case 0: 2146 if (dc_isar_feature(aa64_tidcp1, s)) { 2147 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2148 } 2149 break; 2150 case 1: 2151 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2152 break; 2153 } 2154 } 2155 2156 if (!ri) { 2157 /* Unknown register; this might be a guest error or a QEMU 2158 * unimplemented feature. 2159 */ 2160 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2161 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2162 isread ? "read" : "write", op0, op1, crn, crm, op2); 2163 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2164 return; 2165 } 2166 2167 /* Check access permissions */ 2168 if (!cp_access_ok(s->current_el, ri, isread)) { 2169 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2170 return; 2171 } 2172 2173 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2174 /* Emit code to perform further access permissions checks at 2175 * runtime; this may result in an exception. 2176 */ 2177 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2178 gen_a64_update_pc(s, 0); 2179 tcg_ri = tcg_temp_new_ptr(); 2180 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2181 tcg_constant_i32(key), 2182 tcg_constant_i32(syndrome), 2183 tcg_constant_i32(isread)); 2184 } else if (ri->type & ARM_CP_RAISES_EXC) { 2185 /* 2186 * The readfn or writefn might raise an exception; 2187 * synchronize the CPU state in case it does. 2188 */ 2189 gen_a64_update_pc(s, 0); 2190 } 2191 2192 /* Handle special cases first */ 2193 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2194 case 0: 2195 break; 2196 case ARM_CP_NOP: 2197 return; 2198 case ARM_CP_NZCV: 2199 tcg_rt = cpu_reg(s, rt); 2200 if (isread) { 2201 gen_get_nzcv(tcg_rt); 2202 } else { 2203 gen_set_nzcv(tcg_rt); 2204 } 2205 return; 2206 case ARM_CP_CURRENTEL: 2207 /* Reads as current EL value from pstate, which is 2208 * guaranteed to be constant by the tb flags. 2209 */ 2210 tcg_rt = cpu_reg(s, rt); 2211 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2212 return; 2213 case ARM_CP_DC_ZVA: 2214 /* Writes clear the aligned block of memory which rt points into. */ 2215 if (s->mte_active[0]) { 2216 int desc = 0; 2217 2218 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2219 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2220 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2221 2222 tcg_rt = tcg_temp_new_i64(); 2223 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2224 tcg_constant_i32(desc), cpu_reg(s, rt)); 2225 } else { 2226 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2227 } 2228 gen_helper_dc_zva(tcg_env, tcg_rt); 2229 return; 2230 case ARM_CP_DC_GVA: 2231 { 2232 TCGv_i64 clean_addr, tag; 2233 2234 /* 2235 * DC_GVA, like DC_ZVA, requires that we supply the original 2236 * pointer for an invalid page. Probe that address first. 2237 */ 2238 tcg_rt = cpu_reg(s, rt); 2239 clean_addr = clean_data_tbi(s, tcg_rt); 2240 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2241 2242 if (s->ata[0]) { 2243 /* Extract the tag from the register to match STZGM. */ 2244 tag = tcg_temp_new_i64(); 2245 tcg_gen_shri_i64(tag, tcg_rt, 56); 2246 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2247 } 2248 } 2249 return; 2250 case ARM_CP_DC_GZVA: 2251 { 2252 TCGv_i64 clean_addr, tag; 2253 2254 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2255 tcg_rt = cpu_reg(s, rt); 2256 clean_addr = clean_data_tbi(s, tcg_rt); 2257 gen_helper_dc_zva(tcg_env, clean_addr); 2258 2259 if (s->ata[0]) { 2260 /* Extract the tag from the register to match STZGM. */ 2261 tag = tcg_temp_new_i64(); 2262 tcg_gen_shri_i64(tag, tcg_rt, 56); 2263 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2264 } 2265 } 2266 return; 2267 default: 2268 g_assert_not_reached(); 2269 } 2270 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2271 return; 2272 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2273 return; 2274 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2275 return; 2276 } 2277 2278 if (ri->type & ARM_CP_IO) { 2279 /* I/O operations must end the TB here (whether read or write) */ 2280 need_exit_tb = translator_io_start(&s->base); 2281 } 2282 2283 tcg_rt = cpu_reg(s, rt); 2284 2285 if (isread) { 2286 if (ri->type & ARM_CP_CONST) { 2287 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2288 } else if (ri->readfn) { 2289 if (!tcg_ri) { 2290 tcg_ri = gen_lookup_cp_reg(key); 2291 } 2292 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2293 } else { 2294 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2295 } 2296 } else { 2297 if (ri->type & ARM_CP_CONST) { 2298 /* If not forbidden by access permissions, treat as WI */ 2299 return; 2300 } else if (ri->writefn) { 2301 if (!tcg_ri) { 2302 tcg_ri = gen_lookup_cp_reg(key); 2303 } 2304 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2305 } else { 2306 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2307 } 2308 } 2309 2310 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2311 /* 2312 * A write to any coprocessor register that ends a TB 2313 * must rebuild the hflags for the next TB. 2314 */ 2315 gen_rebuild_hflags(s); 2316 /* 2317 * We default to ending the TB on a coprocessor register write, 2318 * but allow this to be suppressed by the register definition 2319 * (usually only necessary to work around guest bugs). 2320 */ 2321 need_exit_tb = true; 2322 } 2323 if (need_exit_tb) { 2324 s->base.is_jmp = DISAS_UPDATE_EXIT; 2325 } 2326 } 2327 2328 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2329 { 2330 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2331 return true; 2332 } 2333 2334 static bool trans_SVC(DisasContext *s, arg_i *a) 2335 { 2336 /* 2337 * For SVC, HVC and SMC we advance the single-step state 2338 * machine before taking the exception. This is architecturally 2339 * mandated, to ensure that single-stepping a system call 2340 * instruction works properly. 2341 */ 2342 uint32_t syndrome = syn_aa64_svc(a->imm); 2343 if (s->fgt_svc) { 2344 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2345 return true; 2346 } 2347 gen_ss_advance(s); 2348 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2349 return true; 2350 } 2351 2352 static bool trans_HVC(DisasContext *s, arg_i *a) 2353 { 2354 int target_el = s->current_el == 3 ? 3 : 2; 2355 2356 if (s->current_el == 0) { 2357 unallocated_encoding(s); 2358 return true; 2359 } 2360 /* 2361 * The pre HVC helper handles cases when HVC gets trapped 2362 * as an undefined insn by runtime configuration. 2363 */ 2364 gen_a64_update_pc(s, 0); 2365 gen_helper_pre_hvc(tcg_env); 2366 /* Architecture requires ss advance before we do the actual work */ 2367 gen_ss_advance(s); 2368 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2369 return true; 2370 } 2371 2372 static bool trans_SMC(DisasContext *s, arg_i *a) 2373 { 2374 if (s->current_el == 0) { 2375 unallocated_encoding(s); 2376 return true; 2377 } 2378 gen_a64_update_pc(s, 0); 2379 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2380 /* Architecture requires ss advance before we do the actual work */ 2381 gen_ss_advance(s); 2382 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2383 return true; 2384 } 2385 2386 static bool trans_BRK(DisasContext *s, arg_i *a) 2387 { 2388 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2389 return true; 2390 } 2391 2392 static bool trans_HLT(DisasContext *s, arg_i *a) 2393 { 2394 /* 2395 * HLT. This has two purposes. 2396 * Architecturally, it is an external halting debug instruction. 2397 * Since QEMU doesn't implement external debug, we treat this as 2398 * it is required for halting debug disabled: it will UNDEF. 2399 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2400 */ 2401 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2402 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2403 } else { 2404 unallocated_encoding(s); 2405 } 2406 return true; 2407 } 2408 2409 /* 2410 * Load/Store exclusive instructions are implemented by remembering 2411 * the value/address loaded, and seeing if these are the same 2412 * when the store is performed. This is not actually the architecturally 2413 * mandated semantics, but it works for typical guest code sequences 2414 * and avoids having to monitor regular stores. 2415 * 2416 * The store exclusive uses the atomic cmpxchg primitives to avoid 2417 * races in multi-threaded linux-user and when MTTCG softmmu is 2418 * enabled. 2419 */ 2420 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2421 int size, bool is_pair) 2422 { 2423 int idx = get_mem_index(s); 2424 TCGv_i64 dirty_addr, clean_addr; 2425 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2426 2427 s->is_ldex = true; 2428 dirty_addr = cpu_reg_sp(s, rn); 2429 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2430 2431 g_assert(size <= 3); 2432 if (is_pair) { 2433 g_assert(size >= 2); 2434 if (size == 2) { 2435 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2436 if (s->be_data == MO_LE) { 2437 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2438 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2439 } else { 2440 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2441 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2442 } 2443 } else { 2444 TCGv_i128 t16 = tcg_temp_new_i128(); 2445 2446 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2447 2448 if (s->be_data == MO_LE) { 2449 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2450 cpu_exclusive_high, t16); 2451 } else { 2452 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2453 cpu_exclusive_val, t16); 2454 } 2455 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2456 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2457 } 2458 } else { 2459 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2460 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2461 } 2462 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2463 } 2464 2465 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2466 int rn, int size, int is_pair) 2467 { 2468 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2469 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2470 * [addr] = {Rt}; 2471 * if (is_pair) { 2472 * [addr + datasize] = {Rt2}; 2473 * } 2474 * {Rd} = 0; 2475 * } else { 2476 * {Rd} = 1; 2477 * } 2478 * env->exclusive_addr = -1; 2479 */ 2480 TCGLabel *fail_label = gen_new_label(); 2481 TCGLabel *done_label = gen_new_label(); 2482 TCGv_i64 tmp, clean_addr; 2483 MemOp memop; 2484 2485 /* 2486 * FIXME: We are out of spec here. We have recorded only the address 2487 * from load_exclusive, not the entire range, and we assume that the 2488 * size of the access on both sides match. The architecture allows the 2489 * store to be smaller than the load, so long as the stored bytes are 2490 * within the range recorded by the load. 2491 */ 2492 2493 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2494 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2495 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2496 2497 /* 2498 * The write, and any associated faults, only happen if the virtual 2499 * and physical addresses pass the exclusive monitor check. These 2500 * faults are exceedingly unlikely, because normally the guest uses 2501 * the exact same address register for the load_exclusive, and we 2502 * would have recognized these faults there. 2503 * 2504 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2505 * unaligned 4-byte write within the range of an aligned 8-byte load. 2506 * With LSE2, the store would need to cross a 16-byte boundary when the 2507 * load did not, which would mean the store is outside the range 2508 * recorded for the monitor, which would have failed a corrected monitor 2509 * check above. For now, we assume no size change and retain the 2510 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2511 * 2512 * It is possible to trigger an MTE fault, by performing the load with 2513 * a virtual address with a valid tag and performing the store with the 2514 * same virtual address and a different invalid tag. 2515 */ 2516 memop = size + is_pair; 2517 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2518 memop |= MO_ALIGN; 2519 } 2520 memop = finalize_memop(s, memop); 2521 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2522 2523 tmp = tcg_temp_new_i64(); 2524 if (is_pair) { 2525 if (size == 2) { 2526 if (s->be_data == MO_LE) { 2527 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2528 } else { 2529 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2530 } 2531 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2532 cpu_exclusive_val, tmp, 2533 get_mem_index(s), memop); 2534 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2535 } else { 2536 TCGv_i128 t16 = tcg_temp_new_i128(); 2537 TCGv_i128 c16 = tcg_temp_new_i128(); 2538 TCGv_i64 a, b; 2539 2540 if (s->be_data == MO_LE) { 2541 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2542 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2543 cpu_exclusive_high); 2544 } else { 2545 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2546 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2547 cpu_exclusive_val); 2548 } 2549 2550 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2551 get_mem_index(s), memop); 2552 2553 a = tcg_temp_new_i64(); 2554 b = tcg_temp_new_i64(); 2555 if (s->be_data == MO_LE) { 2556 tcg_gen_extr_i128_i64(a, b, t16); 2557 } else { 2558 tcg_gen_extr_i128_i64(b, a, t16); 2559 } 2560 2561 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2562 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2563 tcg_gen_or_i64(tmp, a, b); 2564 2565 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2566 } 2567 } else { 2568 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2569 cpu_reg(s, rt), get_mem_index(s), memop); 2570 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2571 } 2572 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2573 tcg_gen_br(done_label); 2574 2575 gen_set_label(fail_label); 2576 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2577 gen_set_label(done_label); 2578 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2579 } 2580 2581 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2582 int rn, int size) 2583 { 2584 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2585 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2586 int memidx = get_mem_index(s); 2587 TCGv_i64 clean_addr; 2588 MemOp memop; 2589 2590 if (rn == 31) { 2591 gen_check_sp_alignment(s); 2592 } 2593 memop = check_atomic_align(s, rn, size); 2594 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2595 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2596 memidx, memop); 2597 } 2598 2599 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2600 int rn, int size) 2601 { 2602 TCGv_i64 s1 = cpu_reg(s, rs); 2603 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2604 TCGv_i64 t1 = cpu_reg(s, rt); 2605 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2606 TCGv_i64 clean_addr; 2607 int memidx = get_mem_index(s); 2608 MemOp memop; 2609 2610 if (rn == 31) { 2611 gen_check_sp_alignment(s); 2612 } 2613 2614 /* This is a single atomic access, despite the "pair". */ 2615 memop = check_atomic_align(s, rn, size + 1); 2616 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2617 2618 if (size == 2) { 2619 TCGv_i64 cmp = tcg_temp_new_i64(); 2620 TCGv_i64 val = tcg_temp_new_i64(); 2621 2622 if (s->be_data == MO_LE) { 2623 tcg_gen_concat32_i64(val, t1, t2); 2624 tcg_gen_concat32_i64(cmp, s1, s2); 2625 } else { 2626 tcg_gen_concat32_i64(val, t2, t1); 2627 tcg_gen_concat32_i64(cmp, s2, s1); 2628 } 2629 2630 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2631 2632 if (s->be_data == MO_LE) { 2633 tcg_gen_extr32_i64(s1, s2, cmp); 2634 } else { 2635 tcg_gen_extr32_i64(s2, s1, cmp); 2636 } 2637 } else { 2638 TCGv_i128 cmp = tcg_temp_new_i128(); 2639 TCGv_i128 val = tcg_temp_new_i128(); 2640 2641 if (s->be_data == MO_LE) { 2642 tcg_gen_concat_i64_i128(val, t1, t2); 2643 tcg_gen_concat_i64_i128(cmp, s1, s2); 2644 } else { 2645 tcg_gen_concat_i64_i128(val, t2, t1); 2646 tcg_gen_concat_i64_i128(cmp, s2, s1); 2647 } 2648 2649 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2650 2651 if (s->be_data == MO_LE) { 2652 tcg_gen_extr_i128_i64(s1, s2, cmp); 2653 } else { 2654 tcg_gen_extr_i128_i64(s2, s1, cmp); 2655 } 2656 } 2657 } 2658 2659 /* 2660 * Compute the ISS.SF bit for syndrome information if an exception 2661 * is taken on a load or store. This indicates whether the instruction 2662 * is accessing a 32-bit or 64-bit register. This logic is derived 2663 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2664 */ 2665 static bool ldst_iss_sf(int size, bool sign, bool ext) 2666 { 2667 2668 if (sign) { 2669 /* 2670 * Signed loads are 64 bit results if we are not going to 2671 * do a zero-extend from 32 to 64 after the load. 2672 * (For a store, sign and ext are always false.) 2673 */ 2674 return !ext; 2675 } else { 2676 /* Unsigned loads/stores work at the specified size */ 2677 return size == MO_64; 2678 } 2679 } 2680 2681 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2682 { 2683 if (a->rn == 31) { 2684 gen_check_sp_alignment(s); 2685 } 2686 if (a->lasr) { 2687 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2688 } 2689 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2690 return true; 2691 } 2692 2693 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2694 { 2695 if (a->rn == 31) { 2696 gen_check_sp_alignment(s); 2697 } 2698 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2699 if (a->lasr) { 2700 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2701 } 2702 return true; 2703 } 2704 2705 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2706 { 2707 TCGv_i64 clean_addr; 2708 MemOp memop; 2709 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2710 2711 /* 2712 * StoreLORelease is the same as Store-Release for QEMU, but 2713 * needs the feature-test. 2714 */ 2715 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2716 return false; 2717 } 2718 /* Generate ISS for non-exclusive accesses including LASR. */ 2719 if (a->rn == 31) { 2720 gen_check_sp_alignment(s); 2721 } 2722 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2723 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2724 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2725 true, a->rn != 31, memop); 2726 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2727 iss_sf, a->lasr); 2728 return true; 2729 } 2730 2731 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2732 { 2733 TCGv_i64 clean_addr; 2734 MemOp memop; 2735 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2736 2737 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2738 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2739 return false; 2740 } 2741 /* Generate ISS for non-exclusive accesses including LASR. */ 2742 if (a->rn == 31) { 2743 gen_check_sp_alignment(s); 2744 } 2745 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2746 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2747 false, a->rn != 31, memop); 2748 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2749 a->rt, iss_sf, a->lasr); 2750 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2751 return true; 2752 } 2753 2754 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2755 { 2756 if (a->rn == 31) { 2757 gen_check_sp_alignment(s); 2758 } 2759 if (a->lasr) { 2760 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2761 } 2762 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2763 return true; 2764 } 2765 2766 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2767 { 2768 if (a->rn == 31) { 2769 gen_check_sp_alignment(s); 2770 } 2771 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2772 if (a->lasr) { 2773 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2774 } 2775 return true; 2776 } 2777 2778 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2779 { 2780 if (!dc_isar_feature(aa64_atomics, s)) { 2781 return false; 2782 } 2783 if (((a->rt | a->rs) & 1) != 0) { 2784 return false; 2785 } 2786 2787 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2788 return true; 2789 } 2790 2791 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2792 { 2793 if (!dc_isar_feature(aa64_atomics, s)) { 2794 return false; 2795 } 2796 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2797 return true; 2798 } 2799 2800 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2801 { 2802 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2803 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2804 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2805 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2806 2807 gen_pc_plus_diff(s, clean_addr, a->imm); 2808 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2809 false, true, a->rt, iss_sf, false); 2810 return true; 2811 } 2812 2813 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2814 { 2815 /* Load register (literal), vector version */ 2816 TCGv_i64 clean_addr; 2817 MemOp memop; 2818 2819 if (!fp_access_check(s)) { 2820 return true; 2821 } 2822 memop = finalize_memop_asimd(s, a->sz); 2823 clean_addr = tcg_temp_new_i64(); 2824 gen_pc_plus_diff(s, clean_addr, a->imm); 2825 do_fp_ld(s, a->rt, clean_addr, memop); 2826 return true; 2827 } 2828 2829 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2830 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2831 uint64_t offset, bool is_store, MemOp mop) 2832 { 2833 if (a->rn == 31) { 2834 gen_check_sp_alignment(s); 2835 } 2836 2837 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2838 if (!a->p) { 2839 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2840 } 2841 2842 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2843 (a->w || a->rn != 31), 2 << a->sz, mop); 2844 } 2845 2846 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2847 TCGv_i64 dirty_addr, uint64_t offset) 2848 { 2849 if (a->w) { 2850 if (a->p) { 2851 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2852 } 2853 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2854 } 2855 } 2856 2857 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2858 { 2859 uint64_t offset = a->imm << a->sz; 2860 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2861 MemOp mop = finalize_memop(s, a->sz); 2862 2863 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2864 tcg_rt = cpu_reg(s, a->rt); 2865 tcg_rt2 = cpu_reg(s, a->rt2); 2866 /* 2867 * We built mop above for the single logical access -- rebuild it 2868 * now for the paired operation. 2869 * 2870 * With LSE2, non-sign-extending pairs are treated atomically if 2871 * aligned, and if unaligned one of the pair will be completely 2872 * within a 16-byte block and that element will be atomic. 2873 * Otherwise each element is separately atomic. 2874 * In all cases, issue one operation with the correct atomicity. 2875 */ 2876 mop = a->sz + 1; 2877 if (s->align_mem) { 2878 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2879 } 2880 mop = finalize_memop_pair(s, mop); 2881 if (a->sz == 2) { 2882 TCGv_i64 tmp = tcg_temp_new_i64(); 2883 2884 if (s->be_data == MO_LE) { 2885 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2886 } else { 2887 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2888 } 2889 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2890 } else { 2891 TCGv_i128 tmp = tcg_temp_new_i128(); 2892 2893 if (s->be_data == MO_LE) { 2894 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2895 } else { 2896 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2897 } 2898 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2899 } 2900 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2901 return true; 2902 } 2903 2904 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2905 { 2906 uint64_t offset = a->imm << a->sz; 2907 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2908 MemOp mop = finalize_memop(s, a->sz); 2909 2910 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2911 tcg_rt = cpu_reg(s, a->rt); 2912 tcg_rt2 = cpu_reg(s, a->rt2); 2913 2914 /* 2915 * We built mop above for the single logical access -- rebuild it 2916 * now for the paired operation. 2917 * 2918 * With LSE2, non-sign-extending pairs are treated atomically if 2919 * aligned, and if unaligned one of the pair will be completely 2920 * within a 16-byte block and that element will be atomic. 2921 * Otherwise each element is separately atomic. 2922 * In all cases, issue one operation with the correct atomicity. 2923 * 2924 * This treats sign-extending loads like zero-extending loads, 2925 * since that reuses the most code below. 2926 */ 2927 mop = a->sz + 1; 2928 if (s->align_mem) { 2929 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2930 } 2931 mop = finalize_memop_pair(s, mop); 2932 if (a->sz == 2) { 2933 int o2 = s->be_data == MO_LE ? 32 : 0; 2934 int o1 = o2 ^ 32; 2935 2936 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2937 if (a->sign) { 2938 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2939 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2940 } else { 2941 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2942 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2943 } 2944 } else { 2945 TCGv_i128 tmp = tcg_temp_new_i128(); 2946 2947 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2948 if (s->be_data == MO_LE) { 2949 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2950 } else { 2951 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2952 } 2953 } 2954 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2955 return true; 2956 } 2957 2958 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2959 { 2960 uint64_t offset = a->imm << a->sz; 2961 TCGv_i64 clean_addr, dirty_addr; 2962 MemOp mop; 2963 2964 if (!fp_access_check(s)) { 2965 return true; 2966 } 2967 2968 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2969 mop = finalize_memop_asimd(s, a->sz); 2970 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2971 do_fp_st(s, a->rt, clean_addr, mop); 2972 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2973 do_fp_st(s, a->rt2, clean_addr, mop); 2974 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2975 return true; 2976 } 2977 2978 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 2979 { 2980 uint64_t offset = a->imm << a->sz; 2981 TCGv_i64 clean_addr, dirty_addr; 2982 MemOp mop; 2983 2984 if (!fp_access_check(s)) { 2985 return true; 2986 } 2987 2988 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2989 mop = finalize_memop_asimd(s, a->sz); 2990 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2991 do_fp_ld(s, a->rt, clean_addr, mop); 2992 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2993 do_fp_ld(s, a->rt2, clean_addr, mop); 2994 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2995 return true; 2996 } 2997 2998 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 2999 { 3000 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3001 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3002 MemOp mop; 3003 TCGv_i128 tmp; 3004 3005 /* STGP only comes in one size. */ 3006 tcg_debug_assert(a->sz == MO_64); 3007 3008 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3009 return false; 3010 } 3011 3012 if (a->rn == 31) { 3013 gen_check_sp_alignment(s); 3014 } 3015 3016 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3017 if (!a->p) { 3018 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3019 } 3020 3021 clean_addr = clean_data_tbi(s, dirty_addr); 3022 tcg_rt = cpu_reg(s, a->rt); 3023 tcg_rt2 = cpu_reg(s, a->rt2); 3024 3025 /* 3026 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3027 * and one tag operation. We implement it as one single aligned 16-byte 3028 * memory operation for convenience. Note that the alignment ensures 3029 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3030 */ 3031 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3032 3033 tmp = tcg_temp_new_i128(); 3034 if (s->be_data == MO_LE) { 3035 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3036 } else { 3037 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3038 } 3039 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3040 3041 /* Perform the tag store, if tag access enabled. */ 3042 if (s->ata[0]) { 3043 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3044 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3045 } else { 3046 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3047 } 3048 } 3049 3050 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3051 return true; 3052 } 3053 3054 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3055 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3056 uint64_t offset, bool is_store, MemOp mop) 3057 { 3058 int memidx; 3059 3060 if (a->rn == 31) { 3061 gen_check_sp_alignment(s); 3062 } 3063 3064 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3065 if (!a->p) { 3066 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3067 } 3068 memidx = get_a64_user_mem_index(s, a->unpriv); 3069 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3070 a->w || a->rn != 31, 3071 mop, a->unpriv, memidx); 3072 } 3073 3074 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3075 TCGv_i64 dirty_addr, uint64_t offset) 3076 { 3077 if (a->w) { 3078 if (a->p) { 3079 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3080 } 3081 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3082 } 3083 } 3084 3085 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3086 { 3087 bool iss_sf, iss_valid = !a->w; 3088 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3089 int memidx = get_a64_user_mem_index(s, a->unpriv); 3090 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3091 3092 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3093 3094 tcg_rt = cpu_reg(s, a->rt); 3095 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3096 3097 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3098 iss_valid, a->rt, iss_sf, false); 3099 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3100 return true; 3101 } 3102 3103 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3104 { 3105 bool iss_sf, iss_valid = !a->w; 3106 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3107 int memidx = get_a64_user_mem_index(s, a->unpriv); 3108 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3109 3110 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3111 3112 tcg_rt = cpu_reg(s, a->rt); 3113 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3114 3115 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3116 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3117 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3118 return true; 3119 } 3120 3121 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3122 { 3123 TCGv_i64 clean_addr, dirty_addr; 3124 MemOp mop; 3125 3126 if (!fp_access_check(s)) { 3127 return true; 3128 } 3129 mop = finalize_memop_asimd(s, a->sz); 3130 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3131 do_fp_st(s, a->rt, clean_addr, mop); 3132 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3133 return true; 3134 } 3135 3136 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3137 { 3138 TCGv_i64 clean_addr, dirty_addr; 3139 MemOp mop; 3140 3141 if (!fp_access_check(s)) { 3142 return true; 3143 } 3144 mop = finalize_memop_asimd(s, a->sz); 3145 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3146 do_fp_ld(s, a->rt, clean_addr, mop); 3147 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3148 return true; 3149 } 3150 3151 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3152 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3153 bool is_store, MemOp memop) 3154 { 3155 TCGv_i64 tcg_rm; 3156 3157 if (a->rn == 31) { 3158 gen_check_sp_alignment(s); 3159 } 3160 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3161 3162 tcg_rm = read_cpu_reg(s, a->rm, 1); 3163 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3164 3165 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3166 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3167 } 3168 3169 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3170 { 3171 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3172 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3173 MemOp memop; 3174 3175 if (extract32(a->opt, 1, 1) == 0) { 3176 return false; 3177 } 3178 3179 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3180 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3181 tcg_rt = cpu_reg(s, a->rt); 3182 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3183 a->ext, true, a->rt, iss_sf, false); 3184 return true; 3185 } 3186 3187 static bool trans_STR(DisasContext *s, arg_ldst *a) 3188 { 3189 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3190 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3191 MemOp memop; 3192 3193 if (extract32(a->opt, 1, 1) == 0) { 3194 return false; 3195 } 3196 3197 memop = finalize_memop(s, a->sz); 3198 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3199 tcg_rt = cpu_reg(s, a->rt); 3200 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3201 return true; 3202 } 3203 3204 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3205 { 3206 TCGv_i64 clean_addr, dirty_addr; 3207 MemOp memop; 3208 3209 if (extract32(a->opt, 1, 1) == 0) { 3210 return false; 3211 } 3212 3213 if (!fp_access_check(s)) { 3214 return true; 3215 } 3216 3217 memop = finalize_memop_asimd(s, a->sz); 3218 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3219 do_fp_ld(s, a->rt, clean_addr, memop); 3220 return true; 3221 } 3222 3223 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3224 { 3225 TCGv_i64 clean_addr, dirty_addr; 3226 MemOp memop; 3227 3228 if (extract32(a->opt, 1, 1) == 0) { 3229 return false; 3230 } 3231 3232 if (!fp_access_check(s)) { 3233 return true; 3234 } 3235 3236 memop = finalize_memop_asimd(s, a->sz); 3237 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3238 do_fp_st(s, a->rt, clean_addr, memop); 3239 return true; 3240 } 3241 3242 3243 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3244 int sign, bool invert) 3245 { 3246 MemOp mop = a->sz | sign; 3247 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3248 3249 if (a->rn == 31) { 3250 gen_check_sp_alignment(s); 3251 } 3252 mop = check_atomic_align(s, a->rn, mop); 3253 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3254 a->rn != 31, mop); 3255 tcg_rs = read_cpu_reg(s, a->rs, true); 3256 tcg_rt = cpu_reg(s, a->rt); 3257 if (invert) { 3258 tcg_gen_not_i64(tcg_rs, tcg_rs); 3259 } 3260 /* 3261 * The tcg atomic primitives are all full barriers. Therefore we 3262 * can ignore the Acquire and Release bits of this instruction. 3263 */ 3264 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3265 3266 if (mop & MO_SIGN) { 3267 switch (a->sz) { 3268 case MO_8: 3269 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3270 break; 3271 case MO_16: 3272 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3273 break; 3274 case MO_32: 3275 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3276 break; 3277 case MO_64: 3278 break; 3279 default: 3280 g_assert_not_reached(); 3281 } 3282 } 3283 return true; 3284 } 3285 3286 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3287 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3288 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3289 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3290 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3291 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3292 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3293 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3294 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3295 3296 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3297 { 3298 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3299 TCGv_i64 clean_addr; 3300 MemOp mop; 3301 3302 if (!dc_isar_feature(aa64_atomics, s) || 3303 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3304 return false; 3305 } 3306 if (a->rn == 31) { 3307 gen_check_sp_alignment(s); 3308 } 3309 mop = check_atomic_align(s, a->rn, a->sz); 3310 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3311 a->rn != 31, mop); 3312 /* 3313 * LDAPR* are a special case because they are a simple load, not a 3314 * fetch-and-do-something op. 3315 * The architectural consistency requirements here are weaker than 3316 * full load-acquire (we only need "load-acquire processor consistent"), 3317 * but we choose to implement them as full LDAQ. 3318 */ 3319 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3320 true, a->rt, iss_sf, true); 3321 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3322 return true; 3323 } 3324 3325 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3326 { 3327 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3328 MemOp memop; 3329 3330 /* Load with pointer authentication */ 3331 if (!dc_isar_feature(aa64_pauth, s)) { 3332 return false; 3333 } 3334 3335 if (a->rn == 31) { 3336 gen_check_sp_alignment(s); 3337 } 3338 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3339 3340 if (s->pauth_active) { 3341 if (!a->m) { 3342 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3343 tcg_constant_i64(0)); 3344 } else { 3345 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3346 tcg_constant_i64(0)); 3347 } 3348 } 3349 3350 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3351 3352 memop = finalize_memop(s, MO_64); 3353 3354 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3355 clean_addr = gen_mte_check1(s, dirty_addr, false, 3356 a->w || a->rn != 31, memop); 3357 3358 tcg_rt = cpu_reg(s, a->rt); 3359 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3360 /* extend */ false, /* iss_valid */ !a->w, 3361 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3362 3363 if (a->w) { 3364 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3365 } 3366 return true; 3367 } 3368 3369 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3370 { 3371 TCGv_i64 clean_addr, dirty_addr; 3372 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3373 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3374 3375 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3376 return false; 3377 } 3378 3379 if (a->rn == 31) { 3380 gen_check_sp_alignment(s); 3381 } 3382 3383 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3384 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3385 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3386 clean_addr = clean_data_tbi(s, dirty_addr); 3387 3388 /* 3389 * Load-AcquirePC semantics; we implement as the slightly more 3390 * restrictive Load-Acquire. 3391 */ 3392 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3393 a->rt, iss_sf, true); 3394 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3395 return true; 3396 } 3397 3398 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3399 { 3400 TCGv_i64 clean_addr, dirty_addr; 3401 MemOp mop = a->sz; 3402 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3403 3404 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3405 return false; 3406 } 3407 3408 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3409 3410 if (a->rn == 31) { 3411 gen_check_sp_alignment(s); 3412 } 3413 3414 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3415 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3416 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3417 clean_addr = clean_data_tbi(s, dirty_addr); 3418 3419 /* Store-Release semantics */ 3420 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3421 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3422 return true; 3423 } 3424 3425 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3426 { 3427 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3428 MemOp endian, align, mop; 3429 3430 int total; /* total bytes */ 3431 int elements; /* elements per vector */ 3432 int r; 3433 int size = a->sz; 3434 3435 if (!a->p && a->rm != 0) { 3436 /* For non-postindexed accesses the Rm field must be 0 */ 3437 return false; 3438 } 3439 if (size == 3 && !a->q && a->selem != 1) { 3440 return false; 3441 } 3442 if (!fp_access_check(s)) { 3443 return true; 3444 } 3445 3446 if (a->rn == 31) { 3447 gen_check_sp_alignment(s); 3448 } 3449 3450 /* For our purposes, bytes are always little-endian. */ 3451 endian = s->be_data; 3452 if (size == 0) { 3453 endian = MO_LE; 3454 } 3455 3456 total = a->rpt * a->selem * (a->q ? 16 : 8); 3457 tcg_rn = cpu_reg_sp(s, a->rn); 3458 3459 /* 3460 * Issue the MTE check vs the logical repeat count, before we 3461 * promote consecutive little-endian elements below. 3462 */ 3463 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3464 finalize_memop_asimd(s, size)); 3465 3466 /* 3467 * Consecutive little-endian elements from a single register 3468 * can be promoted to a larger little-endian operation. 3469 */ 3470 align = MO_ALIGN; 3471 if (a->selem == 1 && endian == MO_LE) { 3472 align = pow2_align(size); 3473 size = 3; 3474 } 3475 if (!s->align_mem) { 3476 align = 0; 3477 } 3478 mop = endian | size | align; 3479 3480 elements = (a->q ? 16 : 8) >> size; 3481 tcg_ebytes = tcg_constant_i64(1 << size); 3482 for (r = 0; r < a->rpt; r++) { 3483 int e; 3484 for (e = 0; e < elements; e++) { 3485 int xs; 3486 for (xs = 0; xs < a->selem; xs++) { 3487 int tt = (a->rt + r + xs) % 32; 3488 do_vec_ld(s, tt, e, clean_addr, mop); 3489 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3490 } 3491 } 3492 } 3493 3494 /* 3495 * For non-quad operations, setting a slice of the low 64 bits of 3496 * the register clears the high 64 bits (in the ARM ARM pseudocode 3497 * this is implicit in the fact that 'rval' is a 64 bit wide 3498 * variable). For quad operations, we might still need to zero 3499 * the high bits of SVE. 3500 */ 3501 for (r = 0; r < a->rpt * a->selem; r++) { 3502 int tt = (a->rt + r) % 32; 3503 clear_vec_high(s, a->q, tt); 3504 } 3505 3506 if (a->p) { 3507 if (a->rm == 31) { 3508 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3509 } else { 3510 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3511 } 3512 } 3513 return true; 3514 } 3515 3516 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3517 { 3518 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3519 MemOp endian, align, mop; 3520 3521 int total; /* total bytes */ 3522 int elements; /* elements per vector */ 3523 int r; 3524 int size = a->sz; 3525 3526 if (!a->p && a->rm != 0) { 3527 /* For non-postindexed accesses the Rm field must be 0 */ 3528 return false; 3529 } 3530 if (size == 3 && !a->q && a->selem != 1) { 3531 return false; 3532 } 3533 if (!fp_access_check(s)) { 3534 return true; 3535 } 3536 3537 if (a->rn == 31) { 3538 gen_check_sp_alignment(s); 3539 } 3540 3541 /* For our purposes, bytes are always little-endian. */ 3542 endian = s->be_data; 3543 if (size == 0) { 3544 endian = MO_LE; 3545 } 3546 3547 total = a->rpt * a->selem * (a->q ? 16 : 8); 3548 tcg_rn = cpu_reg_sp(s, a->rn); 3549 3550 /* 3551 * Issue the MTE check vs the logical repeat count, before we 3552 * promote consecutive little-endian elements below. 3553 */ 3554 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3555 finalize_memop_asimd(s, size)); 3556 3557 /* 3558 * Consecutive little-endian elements from a single register 3559 * can be promoted to a larger little-endian operation. 3560 */ 3561 align = MO_ALIGN; 3562 if (a->selem == 1 && endian == MO_LE) { 3563 align = pow2_align(size); 3564 size = 3; 3565 } 3566 if (!s->align_mem) { 3567 align = 0; 3568 } 3569 mop = endian | size | align; 3570 3571 elements = (a->q ? 16 : 8) >> size; 3572 tcg_ebytes = tcg_constant_i64(1 << size); 3573 for (r = 0; r < a->rpt; r++) { 3574 int e; 3575 for (e = 0; e < elements; e++) { 3576 int xs; 3577 for (xs = 0; xs < a->selem; xs++) { 3578 int tt = (a->rt + r + xs) % 32; 3579 do_vec_st(s, tt, e, clean_addr, mop); 3580 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3581 } 3582 } 3583 } 3584 3585 if (a->p) { 3586 if (a->rm == 31) { 3587 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3588 } else { 3589 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3590 } 3591 } 3592 return true; 3593 } 3594 3595 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3596 { 3597 int xs, total, rt; 3598 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3599 MemOp mop; 3600 3601 if (!a->p && a->rm != 0) { 3602 return false; 3603 } 3604 if (!fp_access_check(s)) { 3605 return true; 3606 } 3607 3608 if (a->rn == 31) { 3609 gen_check_sp_alignment(s); 3610 } 3611 3612 total = a->selem << a->scale; 3613 tcg_rn = cpu_reg_sp(s, a->rn); 3614 3615 mop = finalize_memop_asimd(s, a->scale); 3616 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3617 total, mop); 3618 3619 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3620 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3621 do_vec_st(s, rt, a->index, clean_addr, mop); 3622 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3623 } 3624 3625 if (a->p) { 3626 if (a->rm == 31) { 3627 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3628 } else { 3629 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3630 } 3631 } 3632 return true; 3633 } 3634 3635 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3636 { 3637 int xs, total, rt; 3638 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3639 MemOp mop; 3640 3641 if (!a->p && a->rm != 0) { 3642 return false; 3643 } 3644 if (!fp_access_check(s)) { 3645 return true; 3646 } 3647 3648 if (a->rn == 31) { 3649 gen_check_sp_alignment(s); 3650 } 3651 3652 total = a->selem << a->scale; 3653 tcg_rn = cpu_reg_sp(s, a->rn); 3654 3655 mop = finalize_memop_asimd(s, a->scale); 3656 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3657 total, mop); 3658 3659 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3660 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3661 do_vec_ld(s, rt, a->index, clean_addr, mop); 3662 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3663 } 3664 3665 if (a->p) { 3666 if (a->rm == 31) { 3667 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3668 } else { 3669 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3670 } 3671 } 3672 return true; 3673 } 3674 3675 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3676 { 3677 int xs, total, rt; 3678 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3679 MemOp mop; 3680 3681 if (!a->p && a->rm != 0) { 3682 return false; 3683 } 3684 if (!fp_access_check(s)) { 3685 return true; 3686 } 3687 3688 if (a->rn == 31) { 3689 gen_check_sp_alignment(s); 3690 } 3691 3692 total = a->selem << a->scale; 3693 tcg_rn = cpu_reg_sp(s, a->rn); 3694 3695 mop = finalize_memop_asimd(s, a->scale); 3696 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3697 total, mop); 3698 3699 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3700 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3701 /* Load and replicate to all elements */ 3702 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3703 3704 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3705 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3706 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3707 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3708 } 3709 3710 if (a->p) { 3711 if (a->rm == 31) { 3712 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3713 } else { 3714 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3715 } 3716 } 3717 return true; 3718 } 3719 3720 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3721 { 3722 TCGv_i64 addr, clean_addr, tcg_rt; 3723 int size = 4 << s->dcz_blocksize; 3724 3725 if (!dc_isar_feature(aa64_mte, s)) { 3726 return false; 3727 } 3728 if (s->current_el == 0) { 3729 return false; 3730 } 3731 3732 if (a->rn == 31) { 3733 gen_check_sp_alignment(s); 3734 } 3735 3736 addr = read_cpu_reg_sp(s, a->rn, true); 3737 tcg_gen_addi_i64(addr, addr, a->imm); 3738 tcg_rt = cpu_reg(s, a->rt); 3739 3740 if (s->ata[0]) { 3741 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3742 } 3743 /* 3744 * The non-tags portion of STZGM is mostly like DC_ZVA, 3745 * except the alignment happens before the access. 3746 */ 3747 clean_addr = clean_data_tbi(s, addr); 3748 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3749 gen_helper_dc_zva(tcg_env, clean_addr); 3750 return true; 3751 } 3752 3753 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3754 { 3755 TCGv_i64 addr, clean_addr, tcg_rt; 3756 3757 if (!dc_isar_feature(aa64_mte, s)) { 3758 return false; 3759 } 3760 if (s->current_el == 0) { 3761 return false; 3762 } 3763 3764 if (a->rn == 31) { 3765 gen_check_sp_alignment(s); 3766 } 3767 3768 addr = read_cpu_reg_sp(s, a->rn, true); 3769 tcg_gen_addi_i64(addr, addr, a->imm); 3770 tcg_rt = cpu_reg(s, a->rt); 3771 3772 if (s->ata[0]) { 3773 gen_helper_stgm(tcg_env, addr, tcg_rt); 3774 } else { 3775 MMUAccessType acc = MMU_DATA_STORE; 3776 int size = 4 << s->gm_blocksize; 3777 3778 clean_addr = clean_data_tbi(s, addr); 3779 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3780 gen_probe_access(s, clean_addr, acc, size); 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3786 { 3787 TCGv_i64 addr, clean_addr, tcg_rt; 3788 3789 if (!dc_isar_feature(aa64_mte, s)) { 3790 return false; 3791 } 3792 if (s->current_el == 0) { 3793 return false; 3794 } 3795 3796 if (a->rn == 31) { 3797 gen_check_sp_alignment(s); 3798 } 3799 3800 addr = read_cpu_reg_sp(s, a->rn, true); 3801 tcg_gen_addi_i64(addr, addr, a->imm); 3802 tcg_rt = cpu_reg(s, a->rt); 3803 3804 if (s->ata[0]) { 3805 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3806 } else { 3807 MMUAccessType acc = MMU_DATA_LOAD; 3808 int size = 4 << s->gm_blocksize; 3809 3810 clean_addr = clean_data_tbi(s, addr); 3811 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3812 gen_probe_access(s, clean_addr, acc, size); 3813 /* The result tags are zeros. */ 3814 tcg_gen_movi_i64(tcg_rt, 0); 3815 } 3816 return true; 3817 } 3818 3819 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3820 { 3821 TCGv_i64 addr, clean_addr, tcg_rt; 3822 3823 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3824 return false; 3825 } 3826 3827 if (a->rn == 31) { 3828 gen_check_sp_alignment(s); 3829 } 3830 3831 addr = read_cpu_reg_sp(s, a->rn, true); 3832 if (!a->p) { 3833 /* pre-index or signed offset */ 3834 tcg_gen_addi_i64(addr, addr, a->imm); 3835 } 3836 3837 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3838 tcg_rt = cpu_reg(s, a->rt); 3839 if (s->ata[0]) { 3840 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3841 } else { 3842 /* 3843 * Tag access disabled: we must check for aborts on the load 3844 * load from [rn+offset], and then insert a 0 tag into rt. 3845 */ 3846 clean_addr = clean_data_tbi(s, addr); 3847 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3848 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3849 } 3850 3851 if (a->w) { 3852 /* pre-index or post-index */ 3853 if (a->p) { 3854 /* post-index */ 3855 tcg_gen_addi_i64(addr, addr, a->imm); 3856 } 3857 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3858 } 3859 return true; 3860 } 3861 3862 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3863 { 3864 TCGv_i64 addr, tcg_rt; 3865 3866 if (a->rn == 31) { 3867 gen_check_sp_alignment(s); 3868 } 3869 3870 addr = read_cpu_reg_sp(s, a->rn, true); 3871 if (!a->p) { 3872 /* pre-index or signed offset */ 3873 tcg_gen_addi_i64(addr, addr, a->imm); 3874 } 3875 tcg_rt = cpu_reg_sp(s, a->rt); 3876 if (!s->ata[0]) { 3877 /* 3878 * For STG and ST2G, we need to check alignment and probe memory. 3879 * TODO: For STZG and STZ2G, we could rely on the stores below, 3880 * at least for system mode; user-only won't enforce alignment. 3881 */ 3882 if (is_pair) { 3883 gen_helper_st2g_stub(tcg_env, addr); 3884 } else { 3885 gen_helper_stg_stub(tcg_env, addr); 3886 } 3887 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3888 if (is_pair) { 3889 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 3890 } else { 3891 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 3892 } 3893 } else { 3894 if (is_pair) { 3895 gen_helper_st2g(tcg_env, addr, tcg_rt); 3896 } else { 3897 gen_helper_stg(tcg_env, addr, tcg_rt); 3898 } 3899 } 3900 3901 if (is_zero) { 3902 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3903 TCGv_i64 zero64 = tcg_constant_i64(0); 3904 TCGv_i128 zero128 = tcg_temp_new_i128(); 3905 int mem_index = get_mem_index(s); 3906 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3907 3908 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3909 3910 /* This is 1 or 2 atomic 16-byte operations. */ 3911 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3912 if (is_pair) { 3913 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3914 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3915 } 3916 } 3917 3918 if (a->w) { 3919 /* pre-index or post-index */ 3920 if (a->p) { 3921 /* post-index */ 3922 tcg_gen_addi_i64(addr, addr, a->imm); 3923 } 3924 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3925 } 3926 return true; 3927 } 3928 3929 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3930 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3931 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3932 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3933 3934 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 3935 3936 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 3937 bool is_setg, SetFn fn) 3938 { 3939 int memidx; 3940 uint32_t syndrome, desc = 0; 3941 3942 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 3943 return false; 3944 } 3945 3946 /* 3947 * UNPREDICTABLE cases: we choose to UNDEF, which allows 3948 * us to pull this check before the CheckMOPSEnabled() test 3949 * (which we do in the helper function) 3950 */ 3951 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 3952 a->rd == 31 || a->rn == 31) { 3953 return false; 3954 } 3955 3956 memidx = get_a64_user_mem_index(s, a->unpriv); 3957 3958 /* 3959 * We pass option_a == true, matching our implementation; 3960 * we pass wrong_option == false: helper function may set that bit. 3961 */ 3962 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 3963 is_epilogue, false, true, a->rd, a->rs, a->rn); 3964 3965 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 3966 /* We may need to do MTE tag checking, so assemble the descriptor */ 3967 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 3968 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 3969 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 3970 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 3971 } 3972 /* The helper function always needs the memidx even with MTE disabled */ 3973 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 3974 3975 /* 3976 * The helper needs the register numbers, but since they're in 3977 * the syndrome anyway, we let it extract them from there rather 3978 * than passing in an extra three integer arguments. 3979 */ 3980 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 3981 return true; 3982 } 3983 3984 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 3985 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 3986 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 3987 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 3988 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 3989 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 3990 3991 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 3992 3993 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 3994 { 3995 int rmemidx, wmemidx; 3996 uint32_t syndrome, rdesc = 0, wdesc = 0; 3997 bool wunpriv = extract32(a->options, 0, 1); 3998 bool runpriv = extract32(a->options, 1, 1); 3999 4000 /* 4001 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4002 * us to pull this check before the CheckMOPSEnabled() test 4003 * (which we do in the helper function) 4004 */ 4005 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4006 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4007 return false; 4008 } 4009 4010 rmemidx = get_a64_user_mem_index(s, runpriv); 4011 wmemidx = get_a64_user_mem_index(s, wunpriv); 4012 4013 /* 4014 * We pass option_a == true, matching our implementation; 4015 * we pass wrong_option == false: helper function may set that bit. 4016 */ 4017 syndrome = syn_mop(false, false, a->options, is_epilogue, 4018 false, true, a->rd, a->rs, a->rn); 4019 4020 /* If we need to do MTE tag checking, assemble the descriptors */ 4021 if (s->mte_active[runpriv]) { 4022 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4023 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4024 } 4025 if (s->mte_active[wunpriv]) { 4026 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4027 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4028 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4029 } 4030 /* The helper function needs these parts of the descriptor regardless */ 4031 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4032 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4033 4034 /* 4035 * The helper needs the register numbers, but since they're in 4036 * the syndrome anyway, we let it extract them from there rather 4037 * than passing in an extra three integer arguments. 4038 */ 4039 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4040 tcg_constant_i32(rdesc)); 4041 return true; 4042 } 4043 4044 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4045 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4046 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4047 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4048 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4049 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4050 4051 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4052 4053 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4054 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4055 { 4056 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4057 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4058 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4059 4060 fn(tcg_rd, tcg_rn, tcg_imm); 4061 if (!a->sf) { 4062 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4063 } 4064 return true; 4065 } 4066 4067 /* 4068 * PC-rel. addressing 4069 */ 4070 4071 static bool trans_ADR(DisasContext *s, arg_ri *a) 4072 { 4073 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4074 return true; 4075 } 4076 4077 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4078 { 4079 int64_t offset = (int64_t)a->imm << 12; 4080 4081 /* The page offset is ok for CF_PCREL. */ 4082 offset -= s->pc_curr & 0xfff; 4083 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4084 return true; 4085 } 4086 4087 /* 4088 * Add/subtract (immediate) 4089 */ 4090 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4091 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4092 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4093 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4094 4095 /* 4096 * Add/subtract (immediate, with tags) 4097 */ 4098 4099 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4100 bool sub_op) 4101 { 4102 TCGv_i64 tcg_rn, tcg_rd; 4103 int imm; 4104 4105 imm = a->uimm6 << LOG2_TAG_GRANULE; 4106 if (sub_op) { 4107 imm = -imm; 4108 } 4109 4110 tcg_rn = cpu_reg_sp(s, a->rn); 4111 tcg_rd = cpu_reg_sp(s, a->rd); 4112 4113 if (s->ata[0]) { 4114 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4115 tcg_constant_i32(imm), 4116 tcg_constant_i32(a->uimm4)); 4117 } else { 4118 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4119 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4120 } 4121 return true; 4122 } 4123 4124 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4125 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4126 4127 /* The input should be a value in the bottom e bits (with higher 4128 * bits zero); returns that value replicated into every element 4129 * of size e in a 64 bit integer. 4130 */ 4131 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4132 { 4133 assert(e != 0); 4134 while (e < 64) { 4135 mask |= mask << e; 4136 e *= 2; 4137 } 4138 return mask; 4139 } 4140 4141 /* 4142 * Logical (immediate) 4143 */ 4144 4145 /* 4146 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4147 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4148 * value (ie should cause a guest UNDEF exception), and true if they are 4149 * valid, in which case the decoded bit pattern is written to result. 4150 */ 4151 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4152 unsigned int imms, unsigned int immr) 4153 { 4154 uint64_t mask; 4155 unsigned e, levels, s, r; 4156 int len; 4157 4158 assert(immn < 2 && imms < 64 && immr < 64); 4159 4160 /* The bit patterns we create here are 64 bit patterns which 4161 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4162 * 64 bits each. Each element contains the same value: a run 4163 * of between 1 and e-1 non-zero bits, rotated within the 4164 * element by between 0 and e-1 bits. 4165 * 4166 * The element size and run length are encoded into immn (1 bit) 4167 * and imms (6 bits) as follows: 4168 * 64 bit elements: immn = 1, imms = <length of run - 1> 4169 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4170 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4171 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4172 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4173 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4174 * Notice that immn = 0, imms = 11111x is the only combination 4175 * not covered by one of the above options; this is reserved. 4176 * Further, <length of run - 1> all-ones is a reserved pattern. 4177 * 4178 * In all cases the rotation is by immr % e (and immr is 6 bits). 4179 */ 4180 4181 /* First determine the element size */ 4182 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4183 if (len < 1) { 4184 /* This is the immn == 0, imms == 0x11111x case */ 4185 return false; 4186 } 4187 e = 1 << len; 4188 4189 levels = e - 1; 4190 s = imms & levels; 4191 r = immr & levels; 4192 4193 if (s == levels) { 4194 /* <length of run - 1> mustn't be all-ones. */ 4195 return false; 4196 } 4197 4198 /* Create the value of one element: s+1 set bits rotated 4199 * by r within the element (which is e bits wide)... 4200 */ 4201 mask = MAKE_64BIT_MASK(0, s + 1); 4202 if (r) { 4203 mask = (mask >> r) | (mask << (e - r)); 4204 mask &= MAKE_64BIT_MASK(0, e); 4205 } 4206 /* ...then replicate the element over the whole 64 bit value */ 4207 mask = bitfield_replicate(mask, e); 4208 *result = mask; 4209 return true; 4210 } 4211 4212 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4213 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4214 { 4215 TCGv_i64 tcg_rd, tcg_rn; 4216 uint64_t imm; 4217 4218 /* Some immediate field values are reserved. */ 4219 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4220 extract32(a->dbm, 0, 6), 4221 extract32(a->dbm, 6, 6))) { 4222 return false; 4223 } 4224 if (!a->sf) { 4225 imm &= 0xffffffffull; 4226 } 4227 4228 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4229 tcg_rn = cpu_reg(s, a->rn); 4230 4231 fn(tcg_rd, tcg_rn, imm); 4232 if (set_cc) { 4233 gen_logic_CC(a->sf, tcg_rd); 4234 } 4235 if (!a->sf) { 4236 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4237 } 4238 return true; 4239 } 4240 4241 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4242 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4243 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4244 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4245 4246 /* 4247 * Move wide (immediate) 4248 */ 4249 4250 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4251 { 4252 int pos = a->hw << 4; 4253 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4254 return true; 4255 } 4256 4257 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4258 { 4259 int pos = a->hw << 4; 4260 uint64_t imm = a->imm; 4261 4262 imm = ~(imm << pos); 4263 if (!a->sf) { 4264 imm = (uint32_t)imm; 4265 } 4266 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4267 return true; 4268 } 4269 4270 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4271 { 4272 int pos = a->hw << 4; 4273 TCGv_i64 tcg_rd, tcg_im; 4274 4275 tcg_rd = cpu_reg(s, a->rd); 4276 tcg_im = tcg_constant_i64(a->imm); 4277 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4278 if (!a->sf) { 4279 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4280 } 4281 return true; 4282 } 4283 4284 /* 4285 * Bitfield 4286 */ 4287 4288 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4289 { 4290 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4291 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4292 unsigned int bitsize = a->sf ? 64 : 32; 4293 unsigned int ri = a->immr; 4294 unsigned int si = a->imms; 4295 unsigned int pos, len; 4296 4297 if (si >= ri) { 4298 /* Wd<s-r:0> = Wn<s:r> */ 4299 len = (si - ri) + 1; 4300 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4301 if (!a->sf) { 4302 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4303 } 4304 } else { 4305 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4306 len = si + 1; 4307 pos = (bitsize - ri) & (bitsize - 1); 4308 4309 if (len < ri) { 4310 /* 4311 * Sign extend the destination field from len to fill the 4312 * balance of the word. Let the deposit below insert all 4313 * of those sign bits. 4314 */ 4315 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4316 len = ri; 4317 } 4318 4319 /* 4320 * We start with zero, and we haven't modified any bits outside 4321 * bitsize, therefore no final zero-extension is unneeded for !sf. 4322 */ 4323 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4324 } 4325 return true; 4326 } 4327 4328 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4329 { 4330 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4331 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4332 unsigned int bitsize = a->sf ? 64 : 32; 4333 unsigned int ri = a->immr; 4334 unsigned int si = a->imms; 4335 unsigned int pos, len; 4336 4337 tcg_rd = cpu_reg(s, a->rd); 4338 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4339 4340 if (si >= ri) { 4341 /* Wd<s-r:0> = Wn<s:r> */ 4342 len = (si - ri) + 1; 4343 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4344 } else { 4345 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4346 len = si + 1; 4347 pos = (bitsize - ri) & (bitsize - 1); 4348 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4349 } 4350 return true; 4351 } 4352 4353 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4354 { 4355 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4356 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4357 unsigned int bitsize = a->sf ? 64 : 32; 4358 unsigned int ri = a->immr; 4359 unsigned int si = a->imms; 4360 unsigned int pos, len; 4361 4362 tcg_rd = cpu_reg(s, a->rd); 4363 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4364 4365 if (si >= ri) { 4366 /* Wd<s-r:0> = Wn<s:r> */ 4367 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4368 len = (si - ri) + 1; 4369 pos = 0; 4370 } else { 4371 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4372 len = si + 1; 4373 pos = (bitsize - ri) & (bitsize - 1); 4374 } 4375 4376 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4377 if (!a->sf) { 4378 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4379 } 4380 return true; 4381 } 4382 4383 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4384 { 4385 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4386 4387 tcg_rd = cpu_reg(s, a->rd); 4388 4389 if (unlikely(a->imm == 0)) { 4390 /* 4391 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4392 * so an extract from bit 0 is a special case. 4393 */ 4394 if (a->sf) { 4395 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4396 } else { 4397 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4398 } 4399 } else { 4400 tcg_rm = cpu_reg(s, a->rm); 4401 tcg_rn = cpu_reg(s, a->rn); 4402 4403 if (a->sf) { 4404 /* Specialization to ROR happens in EXTRACT2. */ 4405 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4406 } else { 4407 TCGv_i32 t0 = tcg_temp_new_i32(); 4408 4409 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4410 if (a->rm == a->rn) { 4411 tcg_gen_rotri_i32(t0, t0, a->imm); 4412 } else { 4413 TCGv_i32 t1 = tcg_temp_new_i32(); 4414 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4415 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4416 } 4417 tcg_gen_extu_i32_i64(tcg_rd, t0); 4418 } 4419 } 4420 return true; 4421 } 4422 4423 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4424 * Note that it is the caller's responsibility to ensure that the 4425 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4426 * mandated semantics for out of range shifts. 4427 */ 4428 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4429 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4430 { 4431 switch (shift_type) { 4432 case A64_SHIFT_TYPE_LSL: 4433 tcg_gen_shl_i64(dst, src, shift_amount); 4434 break; 4435 case A64_SHIFT_TYPE_LSR: 4436 tcg_gen_shr_i64(dst, src, shift_amount); 4437 break; 4438 case A64_SHIFT_TYPE_ASR: 4439 if (!sf) { 4440 tcg_gen_ext32s_i64(dst, src); 4441 } 4442 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4443 break; 4444 case A64_SHIFT_TYPE_ROR: 4445 if (sf) { 4446 tcg_gen_rotr_i64(dst, src, shift_amount); 4447 } else { 4448 TCGv_i32 t0, t1; 4449 t0 = tcg_temp_new_i32(); 4450 t1 = tcg_temp_new_i32(); 4451 tcg_gen_extrl_i64_i32(t0, src); 4452 tcg_gen_extrl_i64_i32(t1, shift_amount); 4453 tcg_gen_rotr_i32(t0, t0, t1); 4454 tcg_gen_extu_i32_i64(dst, t0); 4455 } 4456 break; 4457 default: 4458 assert(FALSE); /* all shift types should be handled */ 4459 break; 4460 } 4461 4462 if (!sf) { /* zero extend final result */ 4463 tcg_gen_ext32u_i64(dst, dst); 4464 } 4465 } 4466 4467 /* Shift a TCGv src by immediate, put result in dst. 4468 * The shift amount must be in range (this should always be true as the 4469 * relevant instructions will UNDEF on bad shift immediates). 4470 */ 4471 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4472 enum a64_shift_type shift_type, unsigned int shift_i) 4473 { 4474 assert(shift_i < (sf ? 64 : 32)); 4475 4476 if (shift_i == 0) { 4477 tcg_gen_mov_i64(dst, src); 4478 } else { 4479 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4480 } 4481 } 4482 4483 /* Logical (shifted register) 4484 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4485 * +----+-----+-----------+-------+---+------+--------+------+------+ 4486 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4487 * +----+-----+-----------+-------+---+------+--------+------+------+ 4488 */ 4489 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4490 { 4491 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4492 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4493 4494 sf = extract32(insn, 31, 1); 4495 opc = extract32(insn, 29, 2); 4496 shift_type = extract32(insn, 22, 2); 4497 invert = extract32(insn, 21, 1); 4498 rm = extract32(insn, 16, 5); 4499 shift_amount = extract32(insn, 10, 6); 4500 rn = extract32(insn, 5, 5); 4501 rd = extract32(insn, 0, 5); 4502 4503 if (!sf && (shift_amount & (1 << 5))) { 4504 unallocated_encoding(s); 4505 return; 4506 } 4507 4508 tcg_rd = cpu_reg(s, rd); 4509 4510 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4511 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4512 * register-register MOV and MVN, so it is worth special casing. 4513 */ 4514 tcg_rm = cpu_reg(s, rm); 4515 if (invert) { 4516 tcg_gen_not_i64(tcg_rd, tcg_rm); 4517 if (!sf) { 4518 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4519 } 4520 } else { 4521 if (sf) { 4522 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4523 } else { 4524 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4525 } 4526 } 4527 return; 4528 } 4529 4530 tcg_rm = read_cpu_reg(s, rm, sf); 4531 4532 if (shift_amount) { 4533 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4534 } 4535 4536 tcg_rn = cpu_reg(s, rn); 4537 4538 switch (opc | (invert << 2)) { 4539 case 0: /* AND */ 4540 case 3: /* ANDS */ 4541 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4542 break; 4543 case 1: /* ORR */ 4544 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4545 break; 4546 case 2: /* EOR */ 4547 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4548 break; 4549 case 4: /* BIC */ 4550 case 7: /* BICS */ 4551 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4552 break; 4553 case 5: /* ORN */ 4554 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4555 break; 4556 case 6: /* EON */ 4557 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4558 break; 4559 default: 4560 assert(FALSE); 4561 break; 4562 } 4563 4564 if (!sf) { 4565 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4566 } 4567 4568 if (opc == 3) { 4569 gen_logic_CC(sf, tcg_rd); 4570 } 4571 } 4572 4573 /* 4574 * Add/subtract (extended register) 4575 * 4576 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4577 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4578 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4579 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4580 * 4581 * sf: 0 -> 32bit, 1 -> 64bit 4582 * op: 0 -> add , 1 -> sub 4583 * S: 1 -> set flags 4584 * opt: 00 4585 * option: extension type (see DecodeRegExtend) 4586 * imm3: optional shift to Rm 4587 * 4588 * Rd = Rn + LSL(extend(Rm), amount) 4589 */ 4590 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4591 { 4592 int rd = extract32(insn, 0, 5); 4593 int rn = extract32(insn, 5, 5); 4594 int imm3 = extract32(insn, 10, 3); 4595 int option = extract32(insn, 13, 3); 4596 int rm = extract32(insn, 16, 5); 4597 int opt = extract32(insn, 22, 2); 4598 bool setflags = extract32(insn, 29, 1); 4599 bool sub_op = extract32(insn, 30, 1); 4600 bool sf = extract32(insn, 31, 1); 4601 4602 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4603 TCGv_i64 tcg_rd; 4604 TCGv_i64 tcg_result; 4605 4606 if (imm3 > 4 || opt != 0) { 4607 unallocated_encoding(s); 4608 return; 4609 } 4610 4611 /* non-flag setting ops may use SP */ 4612 if (!setflags) { 4613 tcg_rd = cpu_reg_sp(s, rd); 4614 } else { 4615 tcg_rd = cpu_reg(s, rd); 4616 } 4617 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4618 4619 tcg_rm = read_cpu_reg(s, rm, sf); 4620 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4621 4622 tcg_result = tcg_temp_new_i64(); 4623 4624 if (!setflags) { 4625 if (sub_op) { 4626 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4627 } else { 4628 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4629 } 4630 } else { 4631 if (sub_op) { 4632 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4633 } else { 4634 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4635 } 4636 } 4637 4638 if (sf) { 4639 tcg_gen_mov_i64(tcg_rd, tcg_result); 4640 } else { 4641 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4642 } 4643 } 4644 4645 /* 4646 * Add/subtract (shifted register) 4647 * 4648 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4649 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4650 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4651 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4652 * 4653 * sf: 0 -> 32bit, 1 -> 64bit 4654 * op: 0 -> add , 1 -> sub 4655 * S: 1 -> set flags 4656 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4657 * imm6: Shift amount to apply to Rm before the add/sub 4658 */ 4659 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4660 { 4661 int rd = extract32(insn, 0, 5); 4662 int rn = extract32(insn, 5, 5); 4663 int imm6 = extract32(insn, 10, 6); 4664 int rm = extract32(insn, 16, 5); 4665 int shift_type = extract32(insn, 22, 2); 4666 bool setflags = extract32(insn, 29, 1); 4667 bool sub_op = extract32(insn, 30, 1); 4668 bool sf = extract32(insn, 31, 1); 4669 4670 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4671 TCGv_i64 tcg_rn, tcg_rm; 4672 TCGv_i64 tcg_result; 4673 4674 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4675 unallocated_encoding(s); 4676 return; 4677 } 4678 4679 tcg_rn = read_cpu_reg(s, rn, sf); 4680 tcg_rm = read_cpu_reg(s, rm, sf); 4681 4682 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4683 4684 tcg_result = tcg_temp_new_i64(); 4685 4686 if (!setflags) { 4687 if (sub_op) { 4688 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4689 } else { 4690 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4691 } 4692 } else { 4693 if (sub_op) { 4694 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4695 } else { 4696 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4697 } 4698 } 4699 4700 if (sf) { 4701 tcg_gen_mov_i64(tcg_rd, tcg_result); 4702 } else { 4703 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4704 } 4705 } 4706 4707 /* Data-processing (3 source) 4708 * 4709 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4710 * +--+------+-----------+------+------+----+------+------+------+ 4711 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4712 * +--+------+-----------+------+------+----+------+------+------+ 4713 */ 4714 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4715 { 4716 int rd = extract32(insn, 0, 5); 4717 int rn = extract32(insn, 5, 5); 4718 int ra = extract32(insn, 10, 5); 4719 int rm = extract32(insn, 16, 5); 4720 int op_id = (extract32(insn, 29, 3) << 4) | 4721 (extract32(insn, 21, 3) << 1) | 4722 extract32(insn, 15, 1); 4723 bool sf = extract32(insn, 31, 1); 4724 bool is_sub = extract32(op_id, 0, 1); 4725 bool is_high = extract32(op_id, 2, 1); 4726 bool is_signed = false; 4727 TCGv_i64 tcg_op1; 4728 TCGv_i64 tcg_op2; 4729 TCGv_i64 tcg_tmp; 4730 4731 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4732 switch (op_id) { 4733 case 0x42: /* SMADDL */ 4734 case 0x43: /* SMSUBL */ 4735 case 0x44: /* SMULH */ 4736 is_signed = true; 4737 break; 4738 case 0x0: /* MADD (32bit) */ 4739 case 0x1: /* MSUB (32bit) */ 4740 case 0x40: /* MADD (64bit) */ 4741 case 0x41: /* MSUB (64bit) */ 4742 case 0x4a: /* UMADDL */ 4743 case 0x4b: /* UMSUBL */ 4744 case 0x4c: /* UMULH */ 4745 break; 4746 default: 4747 unallocated_encoding(s); 4748 return; 4749 } 4750 4751 if (is_high) { 4752 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4753 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4754 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4755 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4756 4757 if (is_signed) { 4758 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4759 } else { 4760 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4761 } 4762 return; 4763 } 4764 4765 tcg_op1 = tcg_temp_new_i64(); 4766 tcg_op2 = tcg_temp_new_i64(); 4767 tcg_tmp = tcg_temp_new_i64(); 4768 4769 if (op_id < 0x42) { 4770 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4771 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4772 } else { 4773 if (is_signed) { 4774 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4775 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4776 } else { 4777 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4778 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4779 } 4780 } 4781 4782 if (ra == 31 && !is_sub) { 4783 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4784 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4785 } else { 4786 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4787 if (is_sub) { 4788 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4789 } else { 4790 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4791 } 4792 } 4793 4794 if (!sf) { 4795 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4796 } 4797 } 4798 4799 /* Add/subtract (with carry) 4800 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4801 * +--+--+--+------------------------+------+-------------+------+-----+ 4802 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4803 * +--+--+--+------------------------+------+-------------+------+-----+ 4804 */ 4805 4806 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4807 { 4808 unsigned int sf, op, setflags, rm, rn, rd; 4809 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4810 4811 sf = extract32(insn, 31, 1); 4812 op = extract32(insn, 30, 1); 4813 setflags = extract32(insn, 29, 1); 4814 rm = extract32(insn, 16, 5); 4815 rn = extract32(insn, 5, 5); 4816 rd = extract32(insn, 0, 5); 4817 4818 tcg_rd = cpu_reg(s, rd); 4819 tcg_rn = cpu_reg(s, rn); 4820 4821 if (op) { 4822 tcg_y = tcg_temp_new_i64(); 4823 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4824 } else { 4825 tcg_y = cpu_reg(s, rm); 4826 } 4827 4828 if (setflags) { 4829 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4830 } else { 4831 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4832 } 4833 } 4834 4835 /* 4836 * Rotate right into flags 4837 * 31 30 29 21 15 10 5 4 0 4838 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4839 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4840 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4841 */ 4842 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4843 { 4844 int mask = extract32(insn, 0, 4); 4845 int o2 = extract32(insn, 4, 1); 4846 int rn = extract32(insn, 5, 5); 4847 int imm6 = extract32(insn, 15, 6); 4848 int sf_op_s = extract32(insn, 29, 3); 4849 TCGv_i64 tcg_rn; 4850 TCGv_i32 nzcv; 4851 4852 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4853 unallocated_encoding(s); 4854 return; 4855 } 4856 4857 tcg_rn = read_cpu_reg(s, rn, 1); 4858 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4859 4860 nzcv = tcg_temp_new_i32(); 4861 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4862 4863 if (mask & 8) { /* N */ 4864 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4865 } 4866 if (mask & 4) { /* Z */ 4867 tcg_gen_not_i32(cpu_ZF, nzcv); 4868 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4869 } 4870 if (mask & 2) { /* C */ 4871 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4872 } 4873 if (mask & 1) { /* V */ 4874 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4875 } 4876 } 4877 4878 /* 4879 * Evaluate into flags 4880 * 31 30 29 21 15 14 10 5 4 0 4881 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4882 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4883 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4884 */ 4885 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4886 { 4887 int o3_mask = extract32(insn, 0, 5); 4888 int rn = extract32(insn, 5, 5); 4889 int o2 = extract32(insn, 15, 6); 4890 int sz = extract32(insn, 14, 1); 4891 int sf_op_s = extract32(insn, 29, 3); 4892 TCGv_i32 tmp; 4893 int shift; 4894 4895 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4896 !dc_isar_feature(aa64_condm_4, s)) { 4897 unallocated_encoding(s); 4898 return; 4899 } 4900 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4901 4902 tmp = tcg_temp_new_i32(); 4903 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4904 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4905 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4906 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4907 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4908 } 4909 4910 /* Conditional compare (immediate / register) 4911 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4912 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4913 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4914 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4915 * [1] y [0] [0] 4916 */ 4917 static void disas_cc(DisasContext *s, uint32_t insn) 4918 { 4919 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4920 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4921 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4922 DisasCompare c; 4923 4924 if (!extract32(insn, 29, 1)) { 4925 unallocated_encoding(s); 4926 return; 4927 } 4928 if (insn & (1 << 10 | 1 << 4)) { 4929 unallocated_encoding(s); 4930 return; 4931 } 4932 sf = extract32(insn, 31, 1); 4933 op = extract32(insn, 30, 1); 4934 is_imm = extract32(insn, 11, 1); 4935 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4936 cond = extract32(insn, 12, 4); 4937 rn = extract32(insn, 5, 5); 4938 nzcv = extract32(insn, 0, 4); 4939 4940 /* Set T0 = !COND. */ 4941 tcg_t0 = tcg_temp_new_i32(); 4942 arm_test_cc(&c, cond); 4943 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4944 4945 /* Load the arguments for the new comparison. */ 4946 if (is_imm) { 4947 tcg_y = tcg_temp_new_i64(); 4948 tcg_gen_movi_i64(tcg_y, y); 4949 } else { 4950 tcg_y = cpu_reg(s, y); 4951 } 4952 tcg_rn = cpu_reg(s, rn); 4953 4954 /* Set the flags for the new comparison. */ 4955 tcg_tmp = tcg_temp_new_i64(); 4956 if (op) { 4957 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4958 } else { 4959 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4960 } 4961 4962 /* If COND was false, force the flags to #nzcv. Compute two masks 4963 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4964 * For tcg hosts that support ANDC, we can make do with just T1. 4965 * In either case, allow the tcg optimizer to delete any unused mask. 4966 */ 4967 tcg_t1 = tcg_temp_new_i32(); 4968 tcg_t2 = tcg_temp_new_i32(); 4969 tcg_gen_neg_i32(tcg_t1, tcg_t0); 4970 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 4971 4972 if (nzcv & 8) { /* N */ 4973 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 4974 } else { 4975 if (TCG_TARGET_HAS_andc_i32) { 4976 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 4977 } else { 4978 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 4979 } 4980 } 4981 if (nzcv & 4) { /* Z */ 4982 if (TCG_TARGET_HAS_andc_i32) { 4983 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 4984 } else { 4985 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 4986 } 4987 } else { 4988 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 4989 } 4990 if (nzcv & 2) { /* C */ 4991 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 4992 } else { 4993 if (TCG_TARGET_HAS_andc_i32) { 4994 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 4995 } else { 4996 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 4997 } 4998 } 4999 if (nzcv & 1) { /* V */ 5000 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5001 } else { 5002 if (TCG_TARGET_HAS_andc_i32) { 5003 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5004 } else { 5005 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5006 } 5007 } 5008 } 5009 5010 /* Conditional select 5011 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5012 * +----+----+---+-----------------+------+------+-----+------+------+ 5013 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5014 * +----+----+---+-----------------+------+------+-----+------+------+ 5015 */ 5016 static void disas_cond_select(DisasContext *s, uint32_t insn) 5017 { 5018 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5019 TCGv_i64 tcg_rd, zero; 5020 DisasCompare64 c; 5021 5022 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5023 /* S == 1 or op2<1> == 1 */ 5024 unallocated_encoding(s); 5025 return; 5026 } 5027 sf = extract32(insn, 31, 1); 5028 else_inv = extract32(insn, 30, 1); 5029 rm = extract32(insn, 16, 5); 5030 cond = extract32(insn, 12, 4); 5031 else_inc = extract32(insn, 10, 1); 5032 rn = extract32(insn, 5, 5); 5033 rd = extract32(insn, 0, 5); 5034 5035 tcg_rd = cpu_reg(s, rd); 5036 5037 a64_test_cc(&c, cond); 5038 zero = tcg_constant_i64(0); 5039 5040 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5041 /* CSET & CSETM. */ 5042 if (else_inv) { 5043 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5044 tcg_rd, c.value, zero); 5045 } else { 5046 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5047 tcg_rd, c.value, zero); 5048 } 5049 } else { 5050 TCGv_i64 t_true = cpu_reg(s, rn); 5051 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5052 if (else_inv && else_inc) { 5053 tcg_gen_neg_i64(t_false, t_false); 5054 } else if (else_inv) { 5055 tcg_gen_not_i64(t_false, t_false); 5056 } else if (else_inc) { 5057 tcg_gen_addi_i64(t_false, t_false, 1); 5058 } 5059 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5060 } 5061 5062 if (!sf) { 5063 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5064 } 5065 } 5066 5067 static void handle_clz(DisasContext *s, unsigned int sf, 5068 unsigned int rn, unsigned int rd) 5069 { 5070 TCGv_i64 tcg_rd, tcg_rn; 5071 tcg_rd = cpu_reg(s, rd); 5072 tcg_rn = cpu_reg(s, rn); 5073 5074 if (sf) { 5075 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5076 } else { 5077 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5078 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5079 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5080 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5081 } 5082 } 5083 5084 static void handle_cls(DisasContext *s, unsigned int sf, 5085 unsigned int rn, unsigned int rd) 5086 { 5087 TCGv_i64 tcg_rd, tcg_rn; 5088 tcg_rd = cpu_reg(s, rd); 5089 tcg_rn = cpu_reg(s, rn); 5090 5091 if (sf) { 5092 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5093 } else { 5094 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5095 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5096 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5097 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5098 } 5099 } 5100 5101 static void handle_rbit(DisasContext *s, unsigned int sf, 5102 unsigned int rn, unsigned int rd) 5103 { 5104 TCGv_i64 tcg_rd, tcg_rn; 5105 tcg_rd = cpu_reg(s, rd); 5106 tcg_rn = cpu_reg(s, rn); 5107 5108 if (sf) { 5109 gen_helper_rbit64(tcg_rd, tcg_rn); 5110 } else { 5111 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5112 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5113 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5114 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5115 } 5116 } 5117 5118 /* REV with sf==1, opcode==3 ("REV64") */ 5119 static void handle_rev64(DisasContext *s, unsigned int sf, 5120 unsigned int rn, unsigned int rd) 5121 { 5122 if (!sf) { 5123 unallocated_encoding(s); 5124 return; 5125 } 5126 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5127 } 5128 5129 /* REV with sf==0, opcode==2 5130 * REV32 (sf==1, opcode==2) 5131 */ 5132 static void handle_rev32(DisasContext *s, unsigned int sf, 5133 unsigned int rn, unsigned int rd) 5134 { 5135 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5136 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5137 5138 if (sf) { 5139 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5140 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5141 } else { 5142 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5143 } 5144 } 5145 5146 /* REV16 (opcode==1) */ 5147 static void handle_rev16(DisasContext *s, unsigned int sf, 5148 unsigned int rn, unsigned int rd) 5149 { 5150 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5151 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5152 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5153 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5154 5155 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5156 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5157 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5158 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5159 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5160 } 5161 5162 /* Data-processing (1 source) 5163 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5164 * +----+---+---+-----------------+---------+--------+------+------+ 5165 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5166 * +----+---+---+-----------------+---------+--------+------+------+ 5167 */ 5168 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5169 { 5170 unsigned int sf, opcode, opcode2, rn, rd; 5171 TCGv_i64 tcg_rd; 5172 5173 if (extract32(insn, 29, 1)) { 5174 unallocated_encoding(s); 5175 return; 5176 } 5177 5178 sf = extract32(insn, 31, 1); 5179 opcode = extract32(insn, 10, 6); 5180 opcode2 = extract32(insn, 16, 5); 5181 rn = extract32(insn, 5, 5); 5182 rd = extract32(insn, 0, 5); 5183 5184 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5185 5186 switch (MAP(sf, opcode2, opcode)) { 5187 case MAP(0, 0x00, 0x00): /* RBIT */ 5188 case MAP(1, 0x00, 0x00): 5189 handle_rbit(s, sf, rn, rd); 5190 break; 5191 case MAP(0, 0x00, 0x01): /* REV16 */ 5192 case MAP(1, 0x00, 0x01): 5193 handle_rev16(s, sf, rn, rd); 5194 break; 5195 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5196 case MAP(1, 0x00, 0x02): 5197 handle_rev32(s, sf, rn, rd); 5198 break; 5199 case MAP(1, 0x00, 0x03): /* REV64 */ 5200 handle_rev64(s, sf, rn, rd); 5201 break; 5202 case MAP(0, 0x00, 0x04): /* CLZ */ 5203 case MAP(1, 0x00, 0x04): 5204 handle_clz(s, sf, rn, rd); 5205 break; 5206 case MAP(0, 0x00, 0x05): /* CLS */ 5207 case MAP(1, 0x00, 0x05): 5208 handle_cls(s, sf, rn, rd); 5209 break; 5210 case MAP(1, 0x01, 0x00): /* PACIA */ 5211 if (s->pauth_active) { 5212 tcg_rd = cpu_reg(s, rd); 5213 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5214 } else if (!dc_isar_feature(aa64_pauth, s)) { 5215 goto do_unallocated; 5216 } 5217 break; 5218 case MAP(1, 0x01, 0x01): /* PACIB */ 5219 if (s->pauth_active) { 5220 tcg_rd = cpu_reg(s, rd); 5221 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5222 } else if (!dc_isar_feature(aa64_pauth, s)) { 5223 goto do_unallocated; 5224 } 5225 break; 5226 case MAP(1, 0x01, 0x02): /* PACDA */ 5227 if (s->pauth_active) { 5228 tcg_rd = cpu_reg(s, rd); 5229 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5230 } else if (!dc_isar_feature(aa64_pauth, s)) { 5231 goto do_unallocated; 5232 } 5233 break; 5234 case MAP(1, 0x01, 0x03): /* PACDB */ 5235 if (s->pauth_active) { 5236 tcg_rd = cpu_reg(s, rd); 5237 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5238 } else if (!dc_isar_feature(aa64_pauth, s)) { 5239 goto do_unallocated; 5240 } 5241 break; 5242 case MAP(1, 0x01, 0x04): /* AUTIA */ 5243 if (s->pauth_active) { 5244 tcg_rd = cpu_reg(s, rd); 5245 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5246 } else if (!dc_isar_feature(aa64_pauth, s)) { 5247 goto do_unallocated; 5248 } 5249 break; 5250 case MAP(1, 0x01, 0x05): /* AUTIB */ 5251 if (s->pauth_active) { 5252 tcg_rd = cpu_reg(s, rd); 5253 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5254 } else if (!dc_isar_feature(aa64_pauth, s)) { 5255 goto do_unallocated; 5256 } 5257 break; 5258 case MAP(1, 0x01, 0x06): /* AUTDA */ 5259 if (s->pauth_active) { 5260 tcg_rd = cpu_reg(s, rd); 5261 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5262 } else if (!dc_isar_feature(aa64_pauth, s)) { 5263 goto do_unallocated; 5264 } 5265 break; 5266 case MAP(1, 0x01, 0x07): /* AUTDB */ 5267 if (s->pauth_active) { 5268 tcg_rd = cpu_reg(s, rd); 5269 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5270 } else if (!dc_isar_feature(aa64_pauth, s)) { 5271 goto do_unallocated; 5272 } 5273 break; 5274 case MAP(1, 0x01, 0x08): /* PACIZA */ 5275 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5276 goto do_unallocated; 5277 } else if (s->pauth_active) { 5278 tcg_rd = cpu_reg(s, rd); 5279 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5280 } 5281 break; 5282 case MAP(1, 0x01, 0x09): /* PACIZB */ 5283 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5284 goto do_unallocated; 5285 } else if (s->pauth_active) { 5286 tcg_rd = cpu_reg(s, rd); 5287 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5288 } 5289 break; 5290 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5291 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5292 goto do_unallocated; 5293 } else if (s->pauth_active) { 5294 tcg_rd = cpu_reg(s, rd); 5295 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5296 } 5297 break; 5298 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5299 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5300 goto do_unallocated; 5301 } else if (s->pauth_active) { 5302 tcg_rd = cpu_reg(s, rd); 5303 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5304 } 5305 break; 5306 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5307 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5308 goto do_unallocated; 5309 } else if (s->pauth_active) { 5310 tcg_rd = cpu_reg(s, rd); 5311 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5312 } 5313 break; 5314 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5315 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5316 goto do_unallocated; 5317 } else if (s->pauth_active) { 5318 tcg_rd = cpu_reg(s, rd); 5319 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5320 } 5321 break; 5322 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5323 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5324 goto do_unallocated; 5325 } else if (s->pauth_active) { 5326 tcg_rd = cpu_reg(s, rd); 5327 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5328 } 5329 break; 5330 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5331 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5332 goto do_unallocated; 5333 } else if (s->pauth_active) { 5334 tcg_rd = cpu_reg(s, rd); 5335 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5336 } 5337 break; 5338 case MAP(1, 0x01, 0x10): /* XPACI */ 5339 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5340 goto do_unallocated; 5341 } else if (s->pauth_active) { 5342 tcg_rd = cpu_reg(s, rd); 5343 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5344 } 5345 break; 5346 case MAP(1, 0x01, 0x11): /* XPACD */ 5347 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5348 goto do_unallocated; 5349 } else if (s->pauth_active) { 5350 tcg_rd = cpu_reg(s, rd); 5351 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5352 } 5353 break; 5354 default: 5355 do_unallocated: 5356 unallocated_encoding(s); 5357 break; 5358 } 5359 5360 #undef MAP 5361 } 5362 5363 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5364 unsigned int rm, unsigned int rn, unsigned int rd) 5365 { 5366 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5367 tcg_rd = cpu_reg(s, rd); 5368 5369 if (!sf && is_signed) { 5370 tcg_n = tcg_temp_new_i64(); 5371 tcg_m = tcg_temp_new_i64(); 5372 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5373 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5374 } else { 5375 tcg_n = read_cpu_reg(s, rn, sf); 5376 tcg_m = read_cpu_reg(s, rm, sf); 5377 } 5378 5379 if (is_signed) { 5380 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5381 } else { 5382 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5383 } 5384 5385 if (!sf) { /* zero extend final result */ 5386 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5387 } 5388 } 5389 5390 /* LSLV, LSRV, ASRV, RORV */ 5391 static void handle_shift_reg(DisasContext *s, 5392 enum a64_shift_type shift_type, unsigned int sf, 5393 unsigned int rm, unsigned int rn, unsigned int rd) 5394 { 5395 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5396 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5397 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5398 5399 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5400 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5401 } 5402 5403 /* CRC32[BHWX], CRC32C[BHWX] */ 5404 static void handle_crc32(DisasContext *s, 5405 unsigned int sf, unsigned int sz, bool crc32c, 5406 unsigned int rm, unsigned int rn, unsigned int rd) 5407 { 5408 TCGv_i64 tcg_acc, tcg_val; 5409 TCGv_i32 tcg_bytes; 5410 5411 if (!dc_isar_feature(aa64_crc32, s) 5412 || (sf == 1 && sz != 3) 5413 || (sf == 0 && sz == 3)) { 5414 unallocated_encoding(s); 5415 return; 5416 } 5417 5418 if (sz == 3) { 5419 tcg_val = cpu_reg(s, rm); 5420 } else { 5421 uint64_t mask; 5422 switch (sz) { 5423 case 0: 5424 mask = 0xFF; 5425 break; 5426 case 1: 5427 mask = 0xFFFF; 5428 break; 5429 case 2: 5430 mask = 0xFFFFFFFF; 5431 break; 5432 default: 5433 g_assert_not_reached(); 5434 } 5435 tcg_val = tcg_temp_new_i64(); 5436 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5437 } 5438 5439 tcg_acc = cpu_reg(s, rn); 5440 tcg_bytes = tcg_constant_i32(1 << sz); 5441 5442 if (crc32c) { 5443 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5444 } else { 5445 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5446 } 5447 } 5448 5449 /* Data-processing (2 source) 5450 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5451 * +----+---+---+-----------------+------+--------+------+------+ 5452 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5453 * +----+---+---+-----------------+------+--------+------+------+ 5454 */ 5455 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5456 { 5457 unsigned int sf, rm, opcode, rn, rd, setflag; 5458 sf = extract32(insn, 31, 1); 5459 setflag = extract32(insn, 29, 1); 5460 rm = extract32(insn, 16, 5); 5461 opcode = extract32(insn, 10, 6); 5462 rn = extract32(insn, 5, 5); 5463 rd = extract32(insn, 0, 5); 5464 5465 if (setflag && opcode != 0) { 5466 unallocated_encoding(s); 5467 return; 5468 } 5469 5470 switch (opcode) { 5471 case 0: /* SUBP(S) */ 5472 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5473 goto do_unallocated; 5474 } else { 5475 TCGv_i64 tcg_n, tcg_m, tcg_d; 5476 5477 tcg_n = read_cpu_reg_sp(s, rn, true); 5478 tcg_m = read_cpu_reg_sp(s, rm, true); 5479 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5480 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5481 tcg_d = cpu_reg(s, rd); 5482 5483 if (setflag) { 5484 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5485 } else { 5486 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5487 } 5488 } 5489 break; 5490 case 2: /* UDIV */ 5491 handle_div(s, false, sf, rm, rn, rd); 5492 break; 5493 case 3: /* SDIV */ 5494 handle_div(s, true, sf, rm, rn, rd); 5495 break; 5496 case 4: /* IRG */ 5497 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5498 goto do_unallocated; 5499 } 5500 if (s->ata[0]) { 5501 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5502 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5503 } else { 5504 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5505 cpu_reg_sp(s, rn)); 5506 } 5507 break; 5508 case 5: /* GMI */ 5509 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5510 goto do_unallocated; 5511 } else { 5512 TCGv_i64 t = tcg_temp_new_i64(); 5513 5514 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5515 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5516 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5517 } 5518 break; 5519 case 8: /* LSLV */ 5520 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5521 break; 5522 case 9: /* LSRV */ 5523 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5524 break; 5525 case 10: /* ASRV */ 5526 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5527 break; 5528 case 11: /* RORV */ 5529 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5530 break; 5531 case 12: /* PACGA */ 5532 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5533 goto do_unallocated; 5534 } 5535 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5536 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5537 break; 5538 case 16: 5539 case 17: 5540 case 18: 5541 case 19: 5542 case 20: 5543 case 21: 5544 case 22: 5545 case 23: /* CRC32 */ 5546 { 5547 int sz = extract32(opcode, 0, 2); 5548 bool crc32c = extract32(opcode, 2, 1); 5549 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5550 break; 5551 } 5552 default: 5553 do_unallocated: 5554 unallocated_encoding(s); 5555 break; 5556 } 5557 } 5558 5559 /* 5560 * Data processing - register 5561 * 31 30 29 28 25 21 20 16 10 0 5562 * +--+---+--+---+-------+-----+-------+-------+---------+ 5563 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5564 * +--+---+--+---+-------+-----+-------+-------+---------+ 5565 */ 5566 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5567 { 5568 int op0 = extract32(insn, 30, 1); 5569 int op1 = extract32(insn, 28, 1); 5570 int op2 = extract32(insn, 21, 4); 5571 int op3 = extract32(insn, 10, 6); 5572 5573 if (!op1) { 5574 if (op2 & 8) { 5575 if (op2 & 1) { 5576 /* Add/sub (extended register) */ 5577 disas_add_sub_ext_reg(s, insn); 5578 } else { 5579 /* Add/sub (shifted register) */ 5580 disas_add_sub_reg(s, insn); 5581 } 5582 } else { 5583 /* Logical (shifted register) */ 5584 disas_logic_reg(s, insn); 5585 } 5586 return; 5587 } 5588 5589 switch (op2) { 5590 case 0x0: 5591 switch (op3) { 5592 case 0x00: /* Add/subtract (with carry) */ 5593 disas_adc_sbc(s, insn); 5594 break; 5595 5596 case 0x01: /* Rotate right into flags */ 5597 case 0x21: 5598 disas_rotate_right_into_flags(s, insn); 5599 break; 5600 5601 case 0x02: /* Evaluate into flags */ 5602 case 0x12: 5603 case 0x22: 5604 case 0x32: 5605 disas_evaluate_into_flags(s, insn); 5606 break; 5607 5608 default: 5609 goto do_unallocated; 5610 } 5611 break; 5612 5613 case 0x2: /* Conditional compare */ 5614 disas_cc(s, insn); /* both imm and reg forms */ 5615 break; 5616 5617 case 0x4: /* Conditional select */ 5618 disas_cond_select(s, insn); 5619 break; 5620 5621 case 0x6: /* Data-processing */ 5622 if (op0) { /* (1 source) */ 5623 disas_data_proc_1src(s, insn); 5624 } else { /* (2 source) */ 5625 disas_data_proc_2src(s, insn); 5626 } 5627 break; 5628 case 0x8 ... 0xf: /* (3 source) */ 5629 disas_data_proc_3src(s, insn); 5630 break; 5631 5632 default: 5633 do_unallocated: 5634 unallocated_encoding(s); 5635 break; 5636 } 5637 } 5638 5639 static void handle_fp_compare(DisasContext *s, int size, 5640 unsigned int rn, unsigned int rm, 5641 bool cmp_with_zero, bool signal_all_nans) 5642 { 5643 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5644 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5645 5646 if (size == MO_64) { 5647 TCGv_i64 tcg_vn, tcg_vm; 5648 5649 tcg_vn = read_fp_dreg(s, rn); 5650 if (cmp_with_zero) { 5651 tcg_vm = tcg_constant_i64(0); 5652 } else { 5653 tcg_vm = read_fp_dreg(s, rm); 5654 } 5655 if (signal_all_nans) { 5656 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5657 } else { 5658 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5659 } 5660 } else { 5661 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5662 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5663 5664 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5665 if (cmp_with_zero) { 5666 tcg_gen_movi_i32(tcg_vm, 0); 5667 } else { 5668 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5669 } 5670 5671 switch (size) { 5672 case MO_32: 5673 if (signal_all_nans) { 5674 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5675 } else { 5676 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5677 } 5678 break; 5679 case MO_16: 5680 if (signal_all_nans) { 5681 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5682 } else { 5683 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5684 } 5685 break; 5686 default: 5687 g_assert_not_reached(); 5688 } 5689 } 5690 5691 gen_set_nzcv(tcg_flags); 5692 } 5693 5694 /* Floating point compare 5695 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5696 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5697 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5698 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5699 */ 5700 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5701 { 5702 unsigned int mos, type, rm, op, rn, opc, op2r; 5703 int size; 5704 5705 mos = extract32(insn, 29, 3); 5706 type = extract32(insn, 22, 2); 5707 rm = extract32(insn, 16, 5); 5708 op = extract32(insn, 14, 2); 5709 rn = extract32(insn, 5, 5); 5710 opc = extract32(insn, 3, 2); 5711 op2r = extract32(insn, 0, 3); 5712 5713 if (mos || op || op2r) { 5714 unallocated_encoding(s); 5715 return; 5716 } 5717 5718 switch (type) { 5719 case 0: 5720 size = MO_32; 5721 break; 5722 case 1: 5723 size = MO_64; 5724 break; 5725 case 3: 5726 size = MO_16; 5727 if (dc_isar_feature(aa64_fp16, s)) { 5728 break; 5729 } 5730 /* fallthru */ 5731 default: 5732 unallocated_encoding(s); 5733 return; 5734 } 5735 5736 if (!fp_access_check(s)) { 5737 return; 5738 } 5739 5740 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5741 } 5742 5743 /* Floating point conditional compare 5744 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5745 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5746 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5747 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5748 */ 5749 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5750 { 5751 unsigned int mos, type, rm, cond, rn, op, nzcv; 5752 TCGLabel *label_continue = NULL; 5753 int size; 5754 5755 mos = extract32(insn, 29, 3); 5756 type = extract32(insn, 22, 2); 5757 rm = extract32(insn, 16, 5); 5758 cond = extract32(insn, 12, 4); 5759 rn = extract32(insn, 5, 5); 5760 op = extract32(insn, 4, 1); 5761 nzcv = extract32(insn, 0, 4); 5762 5763 if (mos) { 5764 unallocated_encoding(s); 5765 return; 5766 } 5767 5768 switch (type) { 5769 case 0: 5770 size = MO_32; 5771 break; 5772 case 1: 5773 size = MO_64; 5774 break; 5775 case 3: 5776 size = MO_16; 5777 if (dc_isar_feature(aa64_fp16, s)) { 5778 break; 5779 } 5780 /* fallthru */ 5781 default: 5782 unallocated_encoding(s); 5783 return; 5784 } 5785 5786 if (!fp_access_check(s)) { 5787 return; 5788 } 5789 5790 if (cond < 0x0e) { /* not always */ 5791 TCGLabel *label_match = gen_new_label(); 5792 label_continue = gen_new_label(); 5793 arm_gen_test_cc(cond, label_match); 5794 /* nomatch: */ 5795 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5796 tcg_gen_br(label_continue); 5797 gen_set_label(label_match); 5798 } 5799 5800 handle_fp_compare(s, size, rn, rm, false, op); 5801 5802 if (cond < 0x0e) { 5803 gen_set_label(label_continue); 5804 } 5805 } 5806 5807 /* Floating point conditional select 5808 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5809 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5810 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5811 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5812 */ 5813 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5814 { 5815 unsigned int mos, type, rm, cond, rn, rd; 5816 TCGv_i64 t_true, t_false; 5817 DisasCompare64 c; 5818 MemOp sz; 5819 5820 mos = extract32(insn, 29, 3); 5821 type = extract32(insn, 22, 2); 5822 rm = extract32(insn, 16, 5); 5823 cond = extract32(insn, 12, 4); 5824 rn = extract32(insn, 5, 5); 5825 rd = extract32(insn, 0, 5); 5826 5827 if (mos) { 5828 unallocated_encoding(s); 5829 return; 5830 } 5831 5832 switch (type) { 5833 case 0: 5834 sz = MO_32; 5835 break; 5836 case 1: 5837 sz = MO_64; 5838 break; 5839 case 3: 5840 sz = MO_16; 5841 if (dc_isar_feature(aa64_fp16, s)) { 5842 break; 5843 } 5844 /* fallthru */ 5845 default: 5846 unallocated_encoding(s); 5847 return; 5848 } 5849 5850 if (!fp_access_check(s)) { 5851 return; 5852 } 5853 5854 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5855 t_true = tcg_temp_new_i64(); 5856 t_false = tcg_temp_new_i64(); 5857 read_vec_element(s, t_true, rn, 0, sz); 5858 read_vec_element(s, t_false, rm, 0, sz); 5859 5860 a64_test_cc(&c, cond); 5861 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5862 t_true, t_false); 5863 5864 /* Note that sregs & hregs write back zeros to the high bits, 5865 and we've already done the zero-extension. */ 5866 write_fp_dreg(s, rd, t_true); 5867 } 5868 5869 /* Floating-point data-processing (1 source) - half precision */ 5870 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5871 { 5872 TCGv_ptr fpst = NULL; 5873 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5874 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5875 5876 switch (opcode) { 5877 case 0x0: /* FMOV */ 5878 tcg_gen_mov_i32(tcg_res, tcg_op); 5879 break; 5880 case 0x1: /* FABS */ 5881 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5882 break; 5883 case 0x2: /* FNEG */ 5884 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5885 break; 5886 case 0x3: /* FSQRT */ 5887 fpst = fpstatus_ptr(FPST_FPCR_F16); 5888 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5889 break; 5890 case 0x8: /* FRINTN */ 5891 case 0x9: /* FRINTP */ 5892 case 0xa: /* FRINTM */ 5893 case 0xb: /* FRINTZ */ 5894 case 0xc: /* FRINTA */ 5895 { 5896 TCGv_i32 tcg_rmode; 5897 5898 fpst = fpstatus_ptr(FPST_FPCR_F16); 5899 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5900 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5901 gen_restore_rmode(tcg_rmode, fpst); 5902 break; 5903 } 5904 case 0xe: /* FRINTX */ 5905 fpst = fpstatus_ptr(FPST_FPCR_F16); 5906 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5907 break; 5908 case 0xf: /* FRINTI */ 5909 fpst = fpstatus_ptr(FPST_FPCR_F16); 5910 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5911 break; 5912 default: 5913 g_assert_not_reached(); 5914 } 5915 5916 write_fp_sreg(s, rd, tcg_res); 5917 } 5918 5919 /* Floating-point data-processing (1 source) - single precision */ 5920 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5921 { 5922 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5923 TCGv_i32 tcg_op, tcg_res; 5924 TCGv_ptr fpst; 5925 int rmode = -1; 5926 5927 tcg_op = read_fp_sreg(s, rn); 5928 tcg_res = tcg_temp_new_i32(); 5929 5930 switch (opcode) { 5931 case 0x0: /* FMOV */ 5932 tcg_gen_mov_i32(tcg_res, tcg_op); 5933 goto done; 5934 case 0x1: /* FABS */ 5935 gen_helper_vfp_abss(tcg_res, tcg_op); 5936 goto done; 5937 case 0x2: /* FNEG */ 5938 gen_helper_vfp_negs(tcg_res, tcg_op); 5939 goto done; 5940 case 0x3: /* FSQRT */ 5941 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 5942 goto done; 5943 case 0x6: /* BFCVT */ 5944 gen_fpst = gen_helper_bfcvt; 5945 break; 5946 case 0x8: /* FRINTN */ 5947 case 0x9: /* FRINTP */ 5948 case 0xa: /* FRINTM */ 5949 case 0xb: /* FRINTZ */ 5950 case 0xc: /* FRINTA */ 5951 rmode = opcode & 7; 5952 gen_fpst = gen_helper_rints; 5953 break; 5954 case 0xe: /* FRINTX */ 5955 gen_fpst = gen_helper_rints_exact; 5956 break; 5957 case 0xf: /* FRINTI */ 5958 gen_fpst = gen_helper_rints; 5959 break; 5960 case 0x10: /* FRINT32Z */ 5961 rmode = FPROUNDING_ZERO; 5962 gen_fpst = gen_helper_frint32_s; 5963 break; 5964 case 0x11: /* FRINT32X */ 5965 gen_fpst = gen_helper_frint32_s; 5966 break; 5967 case 0x12: /* FRINT64Z */ 5968 rmode = FPROUNDING_ZERO; 5969 gen_fpst = gen_helper_frint64_s; 5970 break; 5971 case 0x13: /* FRINT64X */ 5972 gen_fpst = gen_helper_frint64_s; 5973 break; 5974 default: 5975 g_assert_not_reached(); 5976 } 5977 5978 fpst = fpstatus_ptr(FPST_FPCR); 5979 if (rmode >= 0) { 5980 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5981 gen_fpst(tcg_res, tcg_op, fpst); 5982 gen_restore_rmode(tcg_rmode, fpst); 5983 } else { 5984 gen_fpst(tcg_res, tcg_op, fpst); 5985 } 5986 5987 done: 5988 write_fp_sreg(s, rd, tcg_res); 5989 } 5990 5991 /* Floating-point data-processing (1 source) - double precision */ 5992 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 5993 { 5994 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 5995 TCGv_i64 tcg_op, tcg_res; 5996 TCGv_ptr fpst; 5997 int rmode = -1; 5998 5999 switch (opcode) { 6000 case 0x0: /* FMOV */ 6001 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6002 return; 6003 } 6004 6005 tcg_op = read_fp_dreg(s, rn); 6006 tcg_res = tcg_temp_new_i64(); 6007 6008 switch (opcode) { 6009 case 0x1: /* FABS */ 6010 gen_helper_vfp_absd(tcg_res, tcg_op); 6011 goto done; 6012 case 0x2: /* FNEG */ 6013 gen_helper_vfp_negd(tcg_res, tcg_op); 6014 goto done; 6015 case 0x3: /* FSQRT */ 6016 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6017 goto done; 6018 case 0x8: /* FRINTN */ 6019 case 0x9: /* FRINTP */ 6020 case 0xa: /* FRINTM */ 6021 case 0xb: /* FRINTZ */ 6022 case 0xc: /* FRINTA */ 6023 rmode = opcode & 7; 6024 gen_fpst = gen_helper_rintd; 6025 break; 6026 case 0xe: /* FRINTX */ 6027 gen_fpst = gen_helper_rintd_exact; 6028 break; 6029 case 0xf: /* FRINTI */ 6030 gen_fpst = gen_helper_rintd; 6031 break; 6032 case 0x10: /* FRINT32Z */ 6033 rmode = FPROUNDING_ZERO; 6034 gen_fpst = gen_helper_frint32_d; 6035 break; 6036 case 0x11: /* FRINT32X */ 6037 gen_fpst = gen_helper_frint32_d; 6038 break; 6039 case 0x12: /* FRINT64Z */ 6040 rmode = FPROUNDING_ZERO; 6041 gen_fpst = gen_helper_frint64_d; 6042 break; 6043 case 0x13: /* FRINT64X */ 6044 gen_fpst = gen_helper_frint64_d; 6045 break; 6046 default: 6047 g_assert_not_reached(); 6048 } 6049 6050 fpst = fpstatus_ptr(FPST_FPCR); 6051 if (rmode >= 0) { 6052 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6053 gen_fpst(tcg_res, tcg_op, fpst); 6054 gen_restore_rmode(tcg_rmode, fpst); 6055 } else { 6056 gen_fpst(tcg_res, tcg_op, fpst); 6057 } 6058 6059 done: 6060 write_fp_dreg(s, rd, tcg_res); 6061 } 6062 6063 static void handle_fp_fcvt(DisasContext *s, int opcode, 6064 int rd, int rn, int dtype, int ntype) 6065 { 6066 switch (ntype) { 6067 case 0x0: 6068 { 6069 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6070 if (dtype == 1) { 6071 /* Single to double */ 6072 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6073 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6074 write_fp_dreg(s, rd, tcg_rd); 6075 } else { 6076 /* Single to half */ 6077 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6078 TCGv_i32 ahp = get_ahp_flag(); 6079 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6080 6081 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6082 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6083 write_fp_sreg(s, rd, tcg_rd); 6084 } 6085 break; 6086 } 6087 case 0x1: 6088 { 6089 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6090 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6091 if (dtype == 0) { 6092 /* Double to single */ 6093 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6094 } else { 6095 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6096 TCGv_i32 ahp = get_ahp_flag(); 6097 /* Double to half */ 6098 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6099 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6100 } 6101 write_fp_sreg(s, rd, tcg_rd); 6102 break; 6103 } 6104 case 0x3: 6105 { 6106 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6107 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6108 TCGv_i32 tcg_ahp = get_ahp_flag(); 6109 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6110 if (dtype == 0) { 6111 /* Half to single */ 6112 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6113 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6114 write_fp_sreg(s, rd, tcg_rd); 6115 } else { 6116 /* Half to double */ 6117 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6118 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6119 write_fp_dreg(s, rd, tcg_rd); 6120 } 6121 break; 6122 } 6123 default: 6124 g_assert_not_reached(); 6125 } 6126 } 6127 6128 /* Floating point data-processing (1 source) 6129 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6130 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6131 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6132 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6133 */ 6134 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6135 { 6136 int mos = extract32(insn, 29, 3); 6137 int type = extract32(insn, 22, 2); 6138 int opcode = extract32(insn, 15, 6); 6139 int rn = extract32(insn, 5, 5); 6140 int rd = extract32(insn, 0, 5); 6141 6142 if (mos) { 6143 goto do_unallocated; 6144 } 6145 6146 switch (opcode) { 6147 case 0x4: case 0x5: case 0x7: 6148 { 6149 /* FCVT between half, single and double precision */ 6150 int dtype = extract32(opcode, 0, 2); 6151 if (type == 2 || dtype == type) { 6152 goto do_unallocated; 6153 } 6154 if (!fp_access_check(s)) { 6155 return; 6156 } 6157 6158 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6159 break; 6160 } 6161 6162 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6163 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6164 goto do_unallocated; 6165 } 6166 /* fall through */ 6167 case 0x0 ... 0x3: 6168 case 0x8 ... 0xc: 6169 case 0xe ... 0xf: 6170 /* 32-to-32 and 64-to-64 ops */ 6171 switch (type) { 6172 case 0: 6173 if (!fp_access_check(s)) { 6174 return; 6175 } 6176 handle_fp_1src_single(s, opcode, rd, rn); 6177 break; 6178 case 1: 6179 if (!fp_access_check(s)) { 6180 return; 6181 } 6182 handle_fp_1src_double(s, opcode, rd, rn); 6183 break; 6184 case 3: 6185 if (!dc_isar_feature(aa64_fp16, s)) { 6186 goto do_unallocated; 6187 } 6188 6189 if (!fp_access_check(s)) { 6190 return; 6191 } 6192 handle_fp_1src_half(s, opcode, rd, rn); 6193 break; 6194 default: 6195 goto do_unallocated; 6196 } 6197 break; 6198 6199 case 0x6: 6200 switch (type) { 6201 case 1: /* BFCVT */ 6202 if (!dc_isar_feature(aa64_bf16, s)) { 6203 goto do_unallocated; 6204 } 6205 if (!fp_access_check(s)) { 6206 return; 6207 } 6208 handle_fp_1src_single(s, opcode, rd, rn); 6209 break; 6210 default: 6211 goto do_unallocated; 6212 } 6213 break; 6214 6215 default: 6216 do_unallocated: 6217 unallocated_encoding(s); 6218 break; 6219 } 6220 } 6221 6222 /* Floating-point data-processing (2 source) - single precision */ 6223 static void handle_fp_2src_single(DisasContext *s, int opcode, 6224 int rd, int rn, int rm) 6225 { 6226 TCGv_i32 tcg_op1; 6227 TCGv_i32 tcg_op2; 6228 TCGv_i32 tcg_res; 6229 TCGv_ptr fpst; 6230 6231 tcg_res = tcg_temp_new_i32(); 6232 fpst = fpstatus_ptr(FPST_FPCR); 6233 tcg_op1 = read_fp_sreg(s, rn); 6234 tcg_op2 = read_fp_sreg(s, rm); 6235 6236 switch (opcode) { 6237 case 0x0: /* FMUL */ 6238 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6239 break; 6240 case 0x1: /* FDIV */ 6241 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6242 break; 6243 case 0x2: /* FADD */ 6244 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6245 break; 6246 case 0x3: /* FSUB */ 6247 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6248 break; 6249 case 0x4: /* FMAX */ 6250 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6251 break; 6252 case 0x5: /* FMIN */ 6253 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6254 break; 6255 case 0x6: /* FMAXNM */ 6256 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6257 break; 6258 case 0x7: /* FMINNM */ 6259 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6260 break; 6261 case 0x8: /* FNMUL */ 6262 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6263 gen_helper_vfp_negs(tcg_res, tcg_res); 6264 break; 6265 } 6266 6267 write_fp_sreg(s, rd, tcg_res); 6268 } 6269 6270 /* Floating-point data-processing (2 source) - double precision */ 6271 static void handle_fp_2src_double(DisasContext *s, int opcode, 6272 int rd, int rn, int rm) 6273 { 6274 TCGv_i64 tcg_op1; 6275 TCGv_i64 tcg_op2; 6276 TCGv_i64 tcg_res; 6277 TCGv_ptr fpst; 6278 6279 tcg_res = tcg_temp_new_i64(); 6280 fpst = fpstatus_ptr(FPST_FPCR); 6281 tcg_op1 = read_fp_dreg(s, rn); 6282 tcg_op2 = read_fp_dreg(s, rm); 6283 6284 switch (opcode) { 6285 case 0x0: /* FMUL */ 6286 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6287 break; 6288 case 0x1: /* FDIV */ 6289 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6290 break; 6291 case 0x2: /* FADD */ 6292 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6293 break; 6294 case 0x3: /* FSUB */ 6295 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6296 break; 6297 case 0x4: /* FMAX */ 6298 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6299 break; 6300 case 0x5: /* FMIN */ 6301 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6302 break; 6303 case 0x6: /* FMAXNM */ 6304 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6305 break; 6306 case 0x7: /* FMINNM */ 6307 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6308 break; 6309 case 0x8: /* FNMUL */ 6310 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6311 gen_helper_vfp_negd(tcg_res, tcg_res); 6312 break; 6313 } 6314 6315 write_fp_dreg(s, rd, tcg_res); 6316 } 6317 6318 /* Floating-point data-processing (2 source) - half precision */ 6319 static void handle_fp_2src_half(DisasContext *s, int opcode, 6320 int rd, int rn, int rm) 6321 { 6322 TCGv_i32 tcg_op1; 6323 TCGv_i32 tcg_op2; 6324 TCGv_i32 tcg_res; 6325 TCGv_ptr fpst; 6326 6327 tcg_res = tcg_temp_new_i32(); 6328 fpst = fpstatus_ptr(FPST_FPCR_F16); 6329 tcg_op1 = read_fp_hreg(s, rn); 6330 tcg_op2 = read_fp_hreg(s, rm); 6331 6332 switch (opcode) { 6333 case 0x0: /* FMUL */ 6334 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6335 break; 6336 case 0x1: /* FDIV */ 6337 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6338 break; 6339 case 0x2: /* FADD */ 6340 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6341 break; 6342 case 0x3: /* FSUB */ 6343 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6344 break; 6345 case 0x4: /* FMAX */ 6346 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6347 break; 6348 case 0x5: /* FMIN */ 6349 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6350 break; 6351 case 0x6: /* FMAXNM */ 6352 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6353 break; 6354 case 0x7: /* FMINNM */ 6355 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6356 break; 6357 case 0x8: /* FNMUL */ 6358 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6359 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6360 break; 6361 default: 6362 g_assert_not_reached(); 6363 } 6364 6365 write_fp_sreg(s, rd, tcg_res); 6366 } 6367 6368 /* Floating point data-processing (2 source) 6369 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6370 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6371 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6372 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6373 */ 6374 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6375 { 6376 int mos = extract32(insn, 29, 3); 6377 int type = extract32(insn, 22, 2); 6378 int rd = extract32(insn, 0, 5); 6379 int rn = extract32(insn, 5, 5); 6380 int rm = extract32(insn, 16, 5); 6381 int opcode = extract32(insn, 12, 4); 6382 6383 if (opcode > 8 || mos) { 6384 unallocated_encoding(s); 6385 return; 6386 } 6387 6388 switch (type) { 6389 case 0: 6390 if (!fp_access_check(s)) { 6391 return; 6392 } 6393 handle_fp_2src_single(s, opcode, rd, rn, rm); 6394 break; 6395 case 1: 6396 if (!fp_access_check(s)) { 6397 return; 6398 } 6399 handle_fp_2src_double(s, opcode, rd, rn, rm); 6400 break; 6401 case 3: 6402 if (!dc_isar_feature(aa64_fp16, s)) { 6403 unallocated_encoding(s); 6404 return; 6405 } 6406 if (!fp_access_check(s)) { 6407 return; 6408 } 6409 handle_fp_2src_half(s, opcode, rd, rn, rm); 6410 break; 6411 default: 6412 unallocated_encoding(s); 6413 } 6414 } 6415 6416 /* Floating-point data-processing (3 source) - single precision */ 6417 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6418 int rd, int rn, int rm, int ra) 6419 { 6420 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6421 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6422 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6423 6424 tcg_op1 = read_fp_sreg(s, rn); 6425 tcg_op2 = read_fp_sreg(s, rm); 6426 tcg_op3 = read_fp_sreg(s, ra); 6427 6428 /* These are fused multiply-add, and must be done as one 6429 * floating point operation with no rounding between the 6430 * multiplication and addition steps. 6431 * NB that doing the negations here as separate steps is 6432 * correct : an input NaN should come out with its sign bit 6433 * flipped if it is a negated-input. 6434 */ 6435 if (o1 == true) { 6436 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6437 } 6438 6439 if (o0 != o1) { 6440 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6441 } 6442 6443 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6444 6445 write_fp_sreg(s, rd, tcg_res); 6446 } 6447 6448 /* Floating-point data-processing (3 source) - double precision */ 6449 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6450 int rd, int rn, int rm, int ra) 6451 { 6452 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6453 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6454 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6455 6456 tcg_op1 = read_fp_dreg(s, rn); 6457 tcg_op2 = read_fp_dreg(s, rm); 6458 tcg_op3 = read_fp_dreg(s, ra); 6459 6460 /* These are fused multiply-add, and must be done as one 6461 * floating point operation with no rounding between the 6462 * multiplication and addition steps. 6463 * NB that doing the negations here as separate steps is 6464 * correct : an input NaN should come out with its sign bit 6465 * flipped if it is a negated-input. 6466 */ 6467 if (o1 == true) { 6468 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6469 } 6470 6471 if (o0 != o1) { 6472 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6473 } 6474 6475 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6476 6477 write_fp_dreg(s, rd, tcg_res); 6478 } 6479 6480 /* Floating-point data-processing (3 source) - half precision */ 6481 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6482 int rd, int rn, int rm, int ra) 6483 { 6484 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6485 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6486 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6487 6488 tcg_op1 = read_fp_hreg(s, rn); 6489 tcg_op2 = read_fp_hreg(s, rm); 6490 tcg_op3 = read_fp_hreg(s, ra); 6491 6492 /* These are fused multiply-add, and must be done as one 6493 * floating point operation with no rounding between the 6494 * multiplication and addition steps. 6495 * NB that doing the negations here as separate steps is 6496 * correct : an input NaN should come out with its sign bit 6497 * flipped if it is a negated-input. 6498 */ 6499 if (o1 == true) { 6500 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6501 } 6502 6503 if (o0 != o1) { 6504 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6505 } 6506 6507 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6508 6509 write_fp_sreg(s, rd, tcg_res); 6510 } 6511 6512 /* Floating point data-processing (3 source) 6513 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6514 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6515 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6516 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6517 */ 6518 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6519 { 6520 int mos = extract32(insn, 29, 3); 6521 int type = extract32(insn, 22, 2); 6522 int rd = extract32(insn, 0, 5); 6523 int rn = extract32(insn, 5, 5); 6524 int ra = extract32(insn, 10, 5); 6525 int rm = extract32(insn, 16, 5); 6526 bool o0 = extract32(insn, 15, 1); 6527 bool o1 = extract32(insn, 21, 1); 6528 6529 if (mos) { 6530 unallocated_encoding(s); 6531 return; 6532 } 6533 6534 switch (type) { 6535 case 0: 6536 if (!fp_access_check(s)) { 6537 return; 6538 } 6539 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6540 break; 6541 case 1: 6542 if (!fp_access_check(s)) { 6543 return; 6544 } 6545 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6546 break; 6547 case 3: 6548 if (!dc_isar_feature(aa64_fp16, s)) { 6549 unallocated_encoding(s); 6550 return; 6551 } 6552 if (!fp_access_check(s)) { 6553 return; 6554 } 6555 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6556 break; 6557 default: 6558 unallocated_encoding(s); 6559 } 6560 } 6561 6562 /* Floating point immediate 6563 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6564 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6565 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6566 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6567 */ 6568 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6569 { 6570 int rd = extract32(insn, 0, 5); 6571 int imm5 = extract32(insn, 5, 5); 6572 int imm8 = extract32(insn, 13, 8); 6573 int type = extract32(insn, 22, 2); 6574 int mos = extract32(insn, 29, 3); 6575 uint64_t imm; 6576 MemOp sz; 6577 6578 if (mos || imm5) { 6579 unallocated_encoding(s); 6580 return; 6581 } 6582 6583 switch (type) { 6584 case 0: 6585 sz = MO_32; 6586 break; 6587 case 1: 6588 sz = MO_64; 6589 break; 6590 case 3: 6591 sz = MO_16; 6592 if (dc_isar_feature(aa64_fp16, s)) { 6593 break; 6594 } 6595 /* fallthru */ 6596 default: 6597 unallocated_encoding(s); 6598 return; 6599 } 6600 6601 if (!fp_access_check(s)) { 6602 return; 6603 } 6604 6605 imm = vfp_expand_imm(sz, imm8); 6606 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6607 } 6608 6609 /* Handle floating point <=> fixed point conversions. Note that we can 6610 * also deal with fp <=> integer conversions as a special case (scale == 64) 6611 * OPTME: consider handling that special case specially or at least skipping 6612 * the call to scalbn in the helpers for zero shifts. 6613 */ 6614 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6615 bool itof, int rmode, int scale, int sf, int type) 6616 { 6617 bool is_signed = !(opcode & 1); 6618 TCGv_ptr tcg_fpstatus; 6619 TCGv_i32 tcg_shift, tcg_single; 6620 TCGv_i64 tcg_double; 6621 6622 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6623 6624 tcg_shift = tcg_constant_i32(64 - scale); 6625 6626 if (itof) { 6627 TCGv_i64 tcg_int = cpu_reg(s, rn); 6628 if (!sf) { 6629 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6630 6631 if (is_signed) { 6632 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6633 } else { 6634 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6635 } 6636 6637 tcg_int = tcg_extend; 6638 } 6639 6640 switch (type) { 6641 case 1: /* float64 */ 6642 tcg_double = tcg_temp_new_i64(); 6643 if (is_signed) { 6644 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6645 tcg_shift, tcg_fpstatus); 6646 } else { 6647 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6648 tcg_shift, tcg_fpstatus); 6649 } 6650 write_fp_dreg(s, rd, tcg_double); 6651 break; 6652 6653 case 0: /* float32 */ 6654 tcg_single = tcg_temp_new_i32(); 6655 if (is_signed) { 6656 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6657 tcg_shift, tcg_fpstatus); 6658 } else { 6659 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6660 tcg_shift, tcg_fpstatus); 6661 } 6662 write_fp_sreg(s, rd, tcg_single); 6663 break; 6664 6665 case 3: /* float16 */ 6666 tcg_single = tcg_temp_new_i32(); 6667 if (is_signed) { 6668 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6669 tcg_shift, tcg_fpstatus); 6670 } else { 6671 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6672 tcg_shift, tcg_fpstatus); 6673 } 6674 write_fp_sreg(s, rd, tcg_single); 6675 break; 6676 6677 default: 6678 g_assert_not_reached(); 6679 } 6680 } else { 6681 TCGv_i64 tcg_int = cpu_reg(s, rd); 6682 TCGv_i32 tcg_rmode; 6683 6684 if (extract32(opcode, 2, 1)) { 6685 /* There are too many rounding modes to all fit into rmode, 6686 * so FCVTA[US] is a special case. 6687 */ 6688 rmode = FPROUNDING_TIEAWAY; 6689 } 6690 6691 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6692 6693 switch (type) { 6694 case 1: /* float64 */ 6695 tcg_double = read_fp_dreg(s, rn); 6696 if (is_signed) { 6697 if (!sf) { 6698 gen_helper_vfp_tosld(tcg_int, tcg_double, 6699 tcg_shift, tcg_fpstatus); 6700 } else { 6701 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6702 tcg_shift, tcg_fpstatus); 6703 } 6704 } else { 6705 if (!sf) { 6706 gen_helper_vfp_tould(tcg_int, tcg_double, 6707 tcg_shift, tcg_fpstatus); 6708 } else { 6709 gen_helper_vfp_touqd(tcg_int, tcg_double, 6710 tcg_shift, tcg_fpstatus); 6711 } 6712 } 6713 if (!sf) { 6714 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6715 } 6716 break; 6717 6718 case 0: /* float32 */ 6719 tcg_single = read_fp_sreg(s, rn); 6720 if (sf) { 6721 if (is_signed) { 6722 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6723 tcg_shift, tcg_fpstatus); 6724 } else { 6725 gen_helper_vfp_touqs(tcg_int, tcg_single, 6726 tcg_shift, tcg_fpstatus); 6727 } 6728 } else { 6729 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6730 if (is_signed) { 6731 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6732 tcg_shift, tcg_fpstatus); 6733 } else { 6734 gen_helper_vfp_touls(tcg_dest, tcg_single, 6735 tcg_shift, tcg_fpstatus); 6736 } 6737 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6738 } 6739 break; 6740 6741 case 3: /* float16 */ 6742 tcg_single = read_fp_sreg(s, rn); 6743 if (sf) { 6744 if (is_signed) { 6745 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6746 tcg_shift, tcg_fpstatus); 6747 } else { 6748 gen_helper_vfp_touqh(tcg_int, tcg_single, 6749 tcg_shift, tcg_fpstatus); 6750 } 6751 } else { 6752 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6753 if (is_signed) { 6754 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6755 tcg_shift, tcg_fpstatus); 6756 } else { 6757 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6758 tcg_shift, tcg_fpstatus); 6759 } 6760 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6761 } 6762 break; 6763 6764 default: 6765 g_assert_not_reached(); 6766 } 6767 6768 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6769 } 6770 } 6771 6772 /* Floating point <-> fixed point conversions 6773 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6774 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6775 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6776 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6777 */ 6778 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6779 { 6780 int rd = extract32(insn, 0, 5); 6781 int rn = extract32(insn, 5, 5); 6782 int scale = extract32(insn, 10, 6); 6783 int opcode = extract32(insn, 16, 3); 6784 int rmode = extract32(insn, 19, 2); 6785 int type = extract32(insn, 22, 2); 6786 bool sbit = extract32(insn, 29, 1); 6787 bool sf = extract32(insn, 31, 1); 6788 bool itof; 6789 6790 if (sbit || (!sf && scale < 32)) { 6791 unallocated_encoding(s); 6792 return; 6793 } 6794 6795 switch (type) { 6796 case 0: /* float32 */ 6797 case 1: /* float64 */ 6798 break; 6799 case 3: /* float16 */ 6800 if (dc_isar_feature(aa64_fp16, s)) { 6801 break; 6802 } 6803 /* fallthru */ 6804 default: 6805 unallocated_encoding(s); 6806 return; 6807 } 6808 6809 switch ((rmode << 3) | opcode) { 6810 case 0x2: /* SCVTF */ 6811 case 0x3: /* UCVTF */ 6812 itof = true; 6813 break; 6814 case 0x18: /* FCVTZS */ 6815 case 0x19: /* FCVTZU */ 6816 itof = false; 6817 break; 6818 default: 6819 unallocated_encoding(s); 6820 return; 6821 } 6822 6823 if (!fp_access_check(s)) { 6824 return; 6825 } 6826 6827 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6828 } 6829 6830 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6831 { 6832 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6833 * without conversion. 6834 */ 6835 6836 if (itof) { 6837 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6838 TCGv_i64 tmp; 6839 6840 switch (type) { 6841 case 0: 6842 /* 32 bit */ 6843 tmp = tcg_temp_new_i64(); 6844 tcg_gen_ext32u_i64(tmp, tcg_rn); 6845 write_fp_dreg(s, rd, tmp); 6846 break; 6847 case 1: 6848 /* 64 bit */ 6849 write_fp_dreg(s, rd, tcg_rn); 6850 break; 6851 case 2: 6852 /* 64 bit to top half. */ 6853 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6854 clear_vec_high(s, true, rd); 6855 break; 6856 case 3: 6857 /* 16 bit */ 6858 tmp = tcg_temp_new_i64(); 6859 tcg_gen_ext16u_i64(tmp, tcg_rn); 6860 write_fp_dreg(s, rd, tmp); 6861 break; 6862 default: 6863 g_assert_not_reached(); 6864 } 6865 } else { 6866 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6867 6868 switch (type) { 6869 case 0: 6870 /* 32 bit */ 6871 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 6872 break; 6873 case 1: 6874 /* 64 bit */ 6875 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 6876 break; 6877 case 2: 6878 /* 64 bits from top half */ 6879 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 6880 break; 6881 case 3: 6882 /* 16 bit */ 6883 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 6884 break; 6885 default: 6886 g_assert_not_reached(); 6887 } 6888 } 6889 } 6890 6891 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6892 { 6893 TCGv_i64 t = read_fp_dreg(s, rn); 6894 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6895 6896 gen_helper_fjcvtzs(t, t, fpstatus); 6897 6898 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6899 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6900 tcg_gen_movi_i32(cpu_CF, 0); 6901 tcg_gen_movi_i32(cpu_NF, 0); 6902 tcg_gen_movi_i32(cpu_VF, 0); 6903 } 6904 6905 /* Floating point <-> integer conversions 6906 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6907 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6908 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6909 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6910 */ 6911 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6912 { 6913 int rd = extract32(insn, 0, 5); 6914 int rn = extract32(insn, 5, 5); 6915 int opcode = extract32(insn, 16, 3); 6916 int rmode = extract32(insn, 19, 2); 6917 int type = extract32(insn, 22, 2); 6918 bool sbit = extract32(insn, 29, 1); 6919 bool sf = extract32(insn, 31, 1); 6920 bool itof = false; 6921 6922 if (sbit) { 6923 goto do_unallocated; 6924 } 6925 6926 switch (opcode) { 6927 case 2: /* SCVTF */ 6928 case 3: /* UCVTF */ 6929 itof = true; 6930 /* fallthru */ 6931 case 4: /* FCVTAS */ 6932 case 5: /* FCVTAU */ 6933 if (rmode != 0) { 6934 goto do_unallocated; 6935 } 6936 /* fallthru */ 6937 case 0: /* FCVT[NPMZ]S */ 6938 case 1: /* FCVT[NPMZ]U */ 6939 switch (type) { 6940 case 0: /* float32 */ 6941 case 1: /* float64 */ 6942 break; 6943 case 3: /* float16 */ 6944 if (!dc_isar_feature(aa64_fp16, s)) { 6945 goto do_unallocated; 6946 } 6947 break; 6948 default: 6949 goto do_unallocated; 6950 } 6951 if (!fp_access_check(s)) { 6952 return; 6953 } 6954 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6955 break; 6956 6957 default: 6958 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6959 case 0b01100110: /* FMOV half <-> 32-bit int */ 6960 case 0b01100111: 6961 case 0b11100110: /* FMOV half <-> 64-bit int */ 6962 case 0b11100111: 6963 if (!dc_isar_feature(aa64_fp16, s)) { 6964 goto do_unallocated; 6965 } 6966 /* fallthru */ 6967 case 0b00000110: /* FMOV 32-bit */ 6968 case 0b00000111: 6969 case 0b10100110: /* FMOV 64-bit */ 6970 case 0b10100111: 6971 case 0b11001110: /* FMOV top half of 128-bit */ 6972 case 0b11001111: 6973 if (!fp_access_check(s)) { 6974 return; 6975 } 6976 itof = opcode & 1; 6977 handle_fmov(s, rd, rn, type, itof); 6978 break; 6979 6980 case 0b00111110: /* FJCVTZS */ 6981 if (!dc_isar_feature(aa64_jscvt, s)) { 6982 goto do_unallocated; 6983 } else if (fp_access_check(s)) { 6984 handle_fjcvtzs(s, rd, rn); 6985 } 6986 break; 6987 6988 default: 6989 do_unallocated: 6990 unallocated_encoding(s); 6991 return; 6992 } 6993 break; 6994 } 6995 } 6996 6997 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 6998 * 31 30 29 28 25 24 0 6999 * +---+---+---+---------+-----------------------------+ 7000 * | | 0 | | 1 1 1 1 | | 7001 * +---+---+---+---------+-----------------------------+ 7002 */ 7003 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7004 { 7005 if (extract32(insn, 24, 1)) { 7006 /* Floating point data-processing (3 source) */ 7007 disas_fp_3src(s, insn); 7008 } else if (extract32(insn, 21, 1) == 0) { 7009 /* Floating point to fixed point conversions */ 7010 disas_fp_fixed_conv(s, insn); 7011 } else { 7012 switch (extract32(insn, 10, 2)) { 7013 case 1: 7014 /* Floating point conditional compare */ 7015 disas_fp_ccomp(s, insn); 7016 break; 7017 case 2: 7018 /* Floating point data-processing (2 source) */ 7019 disas_fp_2src(s, insn); 7020 break; 7021 case 3: 7022 /* Floating point conditional select */ 7023 disas_fp_csel(s, insn); 7024 break; 7025 case 0: 7026 switch (ctz32(extract32(insn, 12, 4))) { 7027 case 0: /* [15:12] == xxx1 */ 7028 /* Floating point immediate */ 7029 disas_fp_imm(s, insn); 7030 break; 7031 case 1: /* [15:12] == xx10 */ 7032 /* Floating point compare */ 7033 disas_fp_compare(s, insn); 7034 break; 7035 case 2: /* [15:12] == x100 */ 7036 /* Floating point data-processing (1 source) */ 7037 disas_fp_1src(s, insn); 7038 break; 7039 case 3: /* [15:12] == 1000 */ 7040 unallocated_encoding(s); 7041 break; 7042 default: /* [15:12] == 0000 */ 7043 /* Floating point <-> integer conversions */ 7044 disas_fp_int_conv(s, insn); 7045 break; 7046 } 7047 break; 7048 } 7049 } 7050 } 7051 7052 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7053 int pos) 7054 { 7055 /* Extract 64 bits from the middle of two concatenated 64 bit 7056 * vector register slices left:right. The extracted bits start 7057 * at 'pos' bits into the right (least significant) side. 7058 * We return the result in tcg_right, and guarantee not to 7059 * trash tcg_left. 7060 */ 7061 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7062 assert(pos > 0 && pos < 64); 7063 7064 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7065 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7066 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7067 } 7068 7069 /* EXT 7070 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7071 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7072 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7073 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7074 */ 7075 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7076 { 7077 int is_q = extract32(insn, 30, 1); 7078 int op2 = extract32(insn, 22, 2); 7079 int imm4 = extract32(insn, 11, 4); 7080 int rm = extract32(insn, 16, 5); 7081 int rn = extract32(insn, 5, 5); 7082 int rd = extract32(insn, 0, 5); 7083 int pos = imm4 << 3; 7084 TCGv_i64 tcg_resl, tcg_resh; 7085 7086 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7087 unallocated_encoding(s); 7088 return; 7089 } 7090 7091 if (!fp_access_check(s)) { 7092 return; 7093 } 7094 7095 tcg_resh = tcg_temp_new_i64(); 7096 tcg_resl = tcg_temp_new_i64(); 7097 7098 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7099 * either extracting 128 bits from a 128:128 concatenation, or 7100 * extracting 64 bits from a 64:64 concatenation. 7101 */ 7102 if (!is_q) { 7103 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7104 if (pos != 0) { 7105 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7106 do_ext64(s, tcg_resh, tcg_resl, pos); 7107 } 7108 } else { 7109 TCGv_i64 tcg_hh; 7110 typedef struct { 7111 int reg; 7112 int elt; 7113 } EltPosns; 7114 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7115 EltPosns *elt = eltposns; 7116 7117 if (pos >= 64) { 7118 elt++; 7119 pos -= 64; 7120 } 7121 7122 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7123 elt++; 7124 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7125 elt++; 7126 if (pos != 0) { 7127 do_ext64(s, tcg_resh, tcg_resl, pos); 7128 tcg_hh = tcg_temp_new_i64(); 7129 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7130 do_ext64(s, tcg_hh, tcg_resh, pos); 7131 } 7132 } 7133 7134 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7135 if (is_q) { 7136 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7137 } 7138 clear_vec_high(s, is_q, rd); 7139 } 7140 7141 /* TBL/TBX 7142 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7143 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7144 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7145 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7146 */ 7147 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7148 { 7149 int op2 = extract32(insn, 22, 2); 7150 int is_q = extract32(insn, 30, 1); 7151 int rm = extract32(insn, 16, 5); 7152 int rn = extract32(insn, 5, 5); 7153 int rd = extract32(insn, 0, 5); 7154 int is_tbx = extract32(insn, 12, 1); 7155 int len = (extract32(insn, 13, 2) + 1) * 16; 7156 7157 if (op2 != 0) { 7158 unallocated_encoding(s); 7159 return; 7160 } 7161 7162 if (!fp_access_check(s)) { 7163 return; 7164 } 7165 7166 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7167 vec_full_reg_offset(s, rm), tcg_env, 7168 is_q ? 16 : 8, vec_full_reg_size(s), 7169 (len << 6) | (is_tbx << 5) | rn, 7170 gen_helper_simd_tblx); 7171 } 7172 7173 /* ZIP/UZP/TRN 7174 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7175 * +---+---+-------------+------+---+------+---+------------------+------+ 7176 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7177 * +---+---+-------------+------+---+------+---+------------------+------+ 7178 */ 7179 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7180 { 7181 int rd = extract32(insn, 0, 5); 7182 int rn = extract32(insn, 5, 5); 7183 int rm = extract32(insn, 16, 5); 7184 int size = extract32(insn, 22, 2); 7185 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7186 * bit 2 indicates 1 vs 2 variant of the insn. 7187 */ 7188 int opcode = extract32(insn, 12, 2); 7189 bool part = extract32(insn, 14, 1); 7190 bool is_q = extract32(insn, 30, 1); 7191 int esize = 8 << size; 7192 int i; 7193 int datasize = is_q ? 128 : 64; 7194 int elements = datasize / esize; 7195 TCGv_i64 tcg_res[2], tcg_ele; 7196 7197 if (opcode == 0 || (size == 3 && !is_q)) { 7198 unallocated_encoding(s); 7199 return; 7200 } 7201 7202 if (!fp_access_check(s)) { 7203 return; 7204 } 7205 7206 tcg_res[0] = tcg_temp_new_i64(); 7207 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7208 tcg_ele = tcg_temp_new_i64(); 7209 7210 for (i = 0; i < elements; i++) { 7211 int o, w; 7212 7213 switch (opcode) { 7214 case 1: /* UZP1/2 */ 7215 { 7216 int midpoint = elements / 2; 7217 if (i < midpoint) { 7218 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7219 } else { 7220 read_vec_element(s, tcg_ele, rm, 7221 2 * (i - midpoint) + part, size); 7222 } 7223 break; 7224 } 7225 case 2: /* TRN1/2 */ 7226 if (i & 1) { 7227 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7228 } else { 7229 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7230 } 7231 break; 7232 case 3: /* ZIP1/2 */ 7233 { 7234 int base = part * elements / 2; 7235 if (i & 1) { 7236 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7237 } else { 7238 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7239 } 7240 break; 7241 } 7242 default: 7243 g_assert_not_reached(); 7244 } 7245 7246 w = (i * esize) / 64; 7247 o = (i * esize) % 64; 7248 if (o == 0) { 7249 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7250 } else { 7251 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7252 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7253 } 7254 } 7255 7256 for (i = 0; i <= is_q; ++i) { 7257 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7258 } 7259 clear_vec_high(s, is_q, rd); 7260 } 7261 7262 /* 7263 * do_reduction_op helper 7264 * 7265 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7266 * important for correct NaN propagation that we do these 7267 * operations in exactly the order specified by the pseudocode. 7268 * 7269 * This is a recursive function, TCG temps should be freed by the 7270 * calling function once it is done with the values. 7271 */ 7272 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7273 int esize, int size, int vmap, TCGv_ptr fpst) 7274 { 7275 if (esize == size) { 7276 int element; 7277 MemOp msize = esize == 16 ? MO_16 : MO_32; 7278 TCGv_i32 tcg_elem; 7279 7280 /* We should have one register left here */ 7281 assert(ctpop8(vmap) == 1); 7282 element = ctz32(vmap); 7283 assert(element < 8); 7284 7285 tcg_elem = tcg_temp_new_i32(); 7286 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7287 return tcg_elem; 7288 } else { 7289 int bits = size / 2; 7290 int shift = ctpop8(vmap) / 2; 7291 int vmap_lo = (vmap >> shift) & vmap; 7292 int vmap_hi = (vmap & ~vmap_lo); 7293 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7294 7295 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7296 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7297 tcg_res = tcg_temp_new_i32(); 7298 7299 switch (fpopcode) { 7300 case 0x0c: /* fmaxnmv half-precision */ 7301 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7302 break; 7303 case 0x0f: /* fmaxv half-precision */ 7304 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7305 break; 7306 case 0x1c: /* fminnmv half-precision */ 7307 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7308 break; 7309 case 0x1f: /* fminv half-precision */ 7310 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7311 break; 7312 case 0x2c: /* fmaxnmv */ 7313 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7314 break; 7315 case 0x2f: /* fmaxv */ 7316 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7317 break; 7318 case 0x3c: /* fminnmv */ 7319 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7320 break; 7321 case 0x3f: /* fminv */ 7322 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7323 break; 7324 default: 7325 g_assert_not_reached(); 7326 } 7327 return tcg_res; 7328 } 7329 } 7330 7331 /* AdvSIMD across lanes 7332 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7333 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7334 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7335 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7336 */ 7337 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7338 { 7339 int rd = extract32(insn, 0, 5); 7340 int rn = extract32(insn, 5, 5); 7341 int size = extract32(insn, 22, 2); 7342 int opcode = extract32(insn, 12, 5); 7343 bool is_q = extract32(insn, 30, 1); 7344 bool is_u = extract32(insn, 29, 1); 7345 bool is_fp = false; 7346 bool is_min = false; 7347 int esize; 7348 int elements; 7349 int i; 7350 TCGv_i64 tcg_res, tcg_elt; 7351 7352 switch (opcode) { 7353 case 0x1b: /* ADDV */ 7354 if (is_u) { 7355 unallocated_encoding(s); 7356 return; 7357 } 7358 /* fall through */ 7359 case 0x3: /* SADDLV, UADDLV */ 7360 case 0xa: /* SMAXV, UMAXV */ 7361 case 0x1a: /* SMINV, UMINV */ 7362 if (size == 3 || (size == 2 && !is_q)) { 7363 unallocated_encoding(s); 7364 return; 7365 } 7366 break; 7367 case 0xc: /* FMAXNMV, FMINNMV */ 7368 case 0xf: /* FMAXV, FMINV */ 7369 /* Bit 1 of size field encodes min vs max and the actual size 7370 * depends on the encoding of the U bit. If not set (and FP16 7371 * enabled) then we do half-precision float instead of single 7372 * precision. 7373 */ 7374 is_min = extract32(size, 1, 1); 7375 is_fp = true; 7376 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7377 size = 1; 7378 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7379 unallocated_encoding(s); 7380 return; 7381 } else { 7382 size = 2; 7383 } 7384 break; 7385 default: 7386 unallocated_encoding(s); 7387 return; 7388 } 7389 7390 if (!fp_access_check(s)) { 7391 return; 7392 } 7393 7394 esize = 8 << size; 7395 elements = (is_q ? 128 : 64) / esize; 7396 7397 tcg_res = tcg_temp_new_i64(); 7398 tcg_elt = tcg_temp_new_i64(); 7399 7400 /* These instructions operate across all lanes of a vector 7401 * to produce a single result. We can guarantee that a 64 7402 * bit intermediate is sufficient: 7403 * + for [US]ADDLV the maximum element size is 32 bits, and 7404 * the result type is 64 bits 7405 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7406 * same as the element size, which is 32 bits at most 7407 * For the integer operations we can choose to work at 64 7408 * or 32 bits and truncate at the end; for simplicity 7409 * we use 64 bits always. The floating point 7410 * ops do require 32 bit intermediates, though. 7411 */ 7412 if (!is_fp) { 7413 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7414 7415 for (i = 1; i < elements; i++) { 7416 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7417 7418 switch (opcode) { 7419 case 0x03: /* SADDLV / UADDLV */ 7420 case 0x1b: /* ADDV */ 7421 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7422 break; 7423 case 0x0a: /* SMAXV / UMAXV */ 7424 if (is_u) { 7425 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7426 } else { 7427 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7428 } 7429 break; 7430 case 0x1a: /* SMINV / UMINV */ 7431 if (is_u) { 7432 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7433 } else { 7434 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7435 } 7436 break; 7437 default: 7438 g_assert_not_reached(); 7439 } 7440 7441 } 7442 } else { 7443 /* Floating point vector reduction ops which work across 32 7444 * bit (single) or 16 bit (half-precision) intermediates. 7445 * Note that correct NaN propagation requires that we do these 7446 * operations in exactly the order specified by the pseudocode. 7447 */ 7448 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7449 int fpopcode = opcode | is_min << 4 | is_u << 5; 7450 int vmap = (1 << elements) - 1; 7451 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7452 (is_q ? 128 : 64), vmap, fpst); 7453 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7454 } 7455 7456 /* Now truncate the result to the width required for the final output */ 7457 if (opcode == 0x03) { 7458 /* SADDLV, UADDLV: result is 2*esize */ 7459 size++; 7460 } 7461 7462 switch (size) { 7463 case 0: 7464 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7465 break; 7466 case 1: 7467 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7468 break; 7469 case 2: 7470 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7471 break; 7472 case 3: 7473 break; 7474 default: 7475 g_assert_not_reached(); 7476 } 7477 7478 write_fp_dreg(s, rd, tcg_res); 7479 } 7480 7481 /* DUP (Element, Vector) 7482 * 7483 * 31 30 29 21 20 16 15 10 9 5 4 0 7484 * +---+---+-------------------+--------+-------------+------+------+ 7485 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7486 * +---+---+-------------------+--------+-------------+------+------+ 7487 * 7488 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7489 */ 7490 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7491 int imm5) 7492 { 7493 int size = ctz32(imm5); 7494 int index; 7495 7496 if (size > 3 || (size == 3 && !is_q)) { 7497 unallocated_encoding(s); 7498 return; 7499 } 7500 7501 if (!fp_access_check(s)) { 7502 return; 7503 } 7504 7505 index = imm5 >> (size + 1); 7506 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7507 vec_reg_offset(s, rn, index, size), 7508 is_q ? 16 : 8, vec_full_reg_size(s)); 7509 } 7510 7511 /* DUP (element, scalar) 7512 * 31 21 20 16 15 10 9 5 4 0 7513 * +-----------------------+--------+-------------+------+------+ 7514 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7515 * +-----------------------+--------+-------------+------+------+ 7516 */ 7517 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7518 int imm5) 7519 { 7520 int size = ctz32(imm5); 7521 int index; 7522 TCGv_i64 tmp; 7523 7524 if (size > 3) { 7525 unallocated_encoding(s); 7526 return; 7527 } 7528 7529 if (!fp_access_check(s)) { 7530 return; 7531 } 7532 7533 index = imm5 >> (size + 1); 7534 7535 /* This instruction just extracts the specified element and 7536 * zero-extends it into the bottom of the destination register. 7537 */ 7538 tmp = tcg_temp_new_i64(); 7539 read_vec_element(s, tmp, rn, index, size); 7540 write_fp_dreg(s, rd, tmp); 7541 } 7542 7543 /* DUP (General) 7544 * 7545 * 31 30 29 21 20 16 15 10 9 5 4 0 7546 * +---+---+-------------------+--------+-------------+------+------+ 7547 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7548 * +---+---+-------------------+--------+-------------+------+------+ 7549 * 7550 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7551 */ 7552 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7553 int imm5) 7554 { 7555 int size = ctz32(imm5); 7556 uint32_t dofs, oprsz, maxsz; 7557 7558 if (size > 3 || ((size == 3) && !is_q)) { 7559 unallocated_encoding(s); 7560 return; 7561 } 7562 7563 if (!fp_access_check(s)) { 7564 return; 7565 } 7566 7567 dofs = vec_full_reg_offset(s, rd); 7568 oprsz = is_q ? 16 : 8; 7569 maxsz = vec_full_reg_size(s); 7570 7571 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7572 } 7573 7574 /* INS (Element) 7575 * 7576 * 31 21 20 16 15 14 11 10 9 5 4 0 7577 * +-----------------------+--------+------------+---+------+------+ 7578 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7579 * +-----------------------+--------+------------+---+------+------+ 7580 * 7581 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7582 * index: encoded in imm5<4:size+1> 7583 */ 7584 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7585 int imm4, int imm5) 7586 { 7587 int size = ctz32(imm5); 7588 int src_index, dst_index; 7589 TCGv_i64 tmp; 7590 7591 if (size > 3) { 7592 unallocated_encoding(s); 7593 return; 7594 } 7595 7596 if (!fp_access_check(s)) { 7597 return; 7598 } 7599 7600 dst_index = extract32(imm5, 1+size, 5); 7601 src_index = extract32(imm4, size, 4); 7602 7603 tmp = tcg_temp_new_i64(); 7604 7605 read_vec_element(s, tmp, rn, src_index, size); 7606 write_vec_element(s, tmp, rd, dst_index, size); 7607 7608 /* INS is considered a 128-bit write for SVE. */ 7609 clear_vec_high(s, true, rd); 7610 } 7611 7612 7613 /* INS (General) 7614 * 7615 * 31 21 20 16 15 10 9 5 4 0 7616 * +-----------------------+--------+-------------+------+------+ 7617 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7618 * +-----------------------+--------+-------------+------+------+ 7619 * 7620 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7621 * index: encoded in imm5<4:size+1> 7622 */ 7623 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7624 { 7625 int size = ctz32(imm5); 7626 int idx; 7627 7628 if (size > 3) { 7629 unallocated_encoding(s); 7630 return; 7631 } 7632 7633 if (!fp_access_check(s)) { 7634 return; 7635 } 7636 7637 idx = extract32(imm5, 1 + size, 4 - size); 7638 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7639 7640 /* INS is considered a 128-bit write for SVE. */ 7641 clear_vec_high(s, true, rd); 7642 } 7643 7644 /* 7645 * UMOV (General) 7646 * SMOV (General) 7647 * 7648 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7649 * +---+---+-------------------+--------+-------------+------+------+ 7650 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7651 * +---+---+-------------------+--------+-------------+------+------+ 7652 * 7653 * U: unsigned when set 7654 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7655 */ 7656 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7657 int rn, int rd, int imm5) 7658 { 7659 int size = ctz32(imm5); 7660 int element; 7661 TCGv_i64 tcg_rd; 7662 7663 /* Check for UnallocatedEncodings */ 7664 if (is_signed) { 7665 if (size > 2 || (size == 2 && !is_q)) { 7666 unallocated_encoding(s); 7667 return; 7668 } 7669 } else { 7670 if (size > 3 7671 || (size < 3 && is_q) 7672 || (size == 3 && !is_q)) { 7673 unallocated_encoding(s); 7674 return; 7675 } 7676 } 7677 7678 if (!fp_access_check(s)) { 7679 return; 7680 } 7681 7682 element = extract32(imm5, 1+size, 4); 7683 7684 tcg_rd = cpu_reg(s, rd); 7685 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7686 if (is_signed && !is_q) { 7687 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7688 } 7689 } 7690 7691 /* AdvSIMD copy 7692 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7693 * +---+---+----+-----------------+------+---+------+---+------+------+ 7694 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7695 * +---+---+----+-----------------+------+---+------+---+------+------+ 7696 */ 7697 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7698 { 7699 int rd = extract32(insn, 0, 5); 7700 int rn = extract32(insn, 5, 5); 7701 int imm4 = extract32(insn, 11, 4); 7702 int op = extract32(insn, 29, 1); 7703 int is_q = extract32(insn, 30, 1); 7704 int imm5 = extract32(insn, 16, 5); 7705 7706 if (op) { 7707 if (is_q) { 7708 /* INS (element) */ 7709 handle_simd_inse(s, rd, rn, imm4, imm5); 7710 } else { 7711 unallocated_encoding(s); 7712 } 7713 } else { 7714 switch (imm4) { 7715 case 0: 7716 /* DUP (element - vector) */ 7717 handle_simd_dupe(s, is_q, rd, rn, imm5); 7718 break; 7719 case 1: 7720 /* DUP (general) */ 7721 handle_simd_dupg(s, is_q, rd, rn, imm5); 7722 break; 7723 case 3: 7724 if (is_q) { 7725 /* INS (general) */ 7726 handle_simd_insg(s, rd, rn, imm5); 7727 } else { 7728 unallocated_encoding(s); 7729 } 7730 break; 7731 case 5: 7732 case 7: 7733 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7734 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7735 break; 7736 default: 7737 unallocated_encoding(s); 7738 break; 7739 } 7740 } 7741 } 7742 7743 /* AdvSIMD modified immediate 7744 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7745 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7746 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7747 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7748 * 7749 * There are a number of operations that can be carried out here: 7750 * MOVI - move (shifted) imm into register 7751 * MVNI - move inverted (shifted) imm into register 7752 * ORR - bitwise OR of (shifted) imm with register 7753 * BIC - bitwise clear of (shifted) imm with register 7754 * With ARMv8.2 we also have: 7755 * FMOV half-precision 7756 */ 7757 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7758 { 7759 int rd = extract32(insn, 0, 5); 7760 int cmode = extract32(insn, 12, 4); 7761 int o2 = extract32(insn, 11, 1); 7762 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7763 bool is_neg = extract32(insn, 29, 1); 7764 bool is_q = extract32(insn, 30, 1); 7765 uint64_t imm = 0; 7766 7767 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7768 /* Check for FMOV (vector, immediate) - half-precision */ 7769 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7770 unallocated_encoding(s); 7771 return; 7772 } 7773 } 7774 7775 if (!fp_access_check(s)) { 7776 return; 7777 } 7778 7779 if (cmode == 15 && o2 && !is_neg) { 7780 /* FMOV (vector, immediate) - half-precision */ 7781 imm = vfp_expand_imm(MO_16, abcdefgh); 7782 /* now duplicate across the lanes */ 7783 imm = dup_const(MO_16, imm); 7784 } else { 7785 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7786 } 7787 7788 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7789 /* MOVI or MVNI, with MVNI negation handled above. */ 7790 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7791 vec_full_reg_size(s), imm); 7792 } else { 7793 /* ORR or BIC, with BIC negation to AND handled above. */ 7794 if (is_neg) { 7795 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7796 } else { 7797 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7798 } 7799 } 7800 } 7801 7802 /* AdvSIMD scalar copy 7803 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7804 * +-----+----+-----------------+------+---+------+---+------+------+ 7805 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7806 * +-----+----+-----------------+------+---+------+---+------+------+ 7807 */ 7808 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7809 { 7810 int rd = extract32(insn, 0, 5); 7811 int rn = extract32(insn, 5, 5); 7812 int imm4 = extract32(insn, 11, 4); 7813 int imm5 = extract32(insn, 16, 5); 7814 int op = extract32(insn, 29, 1); 7815 7816 if (op != 0 || imm4 != 0) { 7817 unallocated_encoding(s); 7818 return; 7819 } 7820 7821 /* DUP (element, scalar) */ 7822 handle_simd_dupes(s, rd, rn, imm5); 7823 } 7824 7825 /* AdvSIMD scalar pairwise 7826 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7827 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7828 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7829 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7830 */ 7831 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7832 { 7833 int u = extract32(insn, 29, 1); 7834 int size = extract32(insn, 22, 2); 7835 int opcode = extract32(insn, 12, 5); 7836 int rn = extract32(insn, 5, 5); 7837 int rd = extract32(insn, 0, 5); 7838 TCGv_ptr fpst; 7839 7840 /* For some ops (the FP ones), size[1] is part of the encoding. 7841 * For ADDP strictly it is not but size[1] is always 1 for valid 7842 * encodings. 7843 */ 7844 opcode |= (extract32(size, 1, 1) << 5); 7845 7846 switch (opcode) { 7847 case 0x3b: /* ADDP */ 7848 if (u || size != 3) { 7849 unallocated_encoding(s); 7850 return; 7851 } 7852 if (!fp_access_check(s)) { 7853 return; 7854 } 7855 7856 fpst = NULL; 7857 break; 7858 case 0xc: /* FMAXNMP */ 7859 case 0xd: /* FADDP */ 7860 case 0xf: /* FMAXP */ 7861 case 0x2c: /* FMINNMP */ 7862 case 0x2f: /* FMINP */ 7863 /* FP op, size[0] is 32 or 64 bit*/ 7864 if (!u) { 7865 if (!dc_isar_feature(aa64_fp16, s)) { 7866 unallocated_encoding(s); 7867 return; 7868 } else { 7869 size = MO_16; 7870 } 7871 } else { 7872 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7873 } 7874 7875 if (!fp_access_check(s)) { 7876 return; 7877 } 7878 7879 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7880 break; 7881 default: 7882 unallocated_encoding(s); 7883 return; 7884 } 7885 7886 if (size == MO_64) { 7887 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7888 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7889 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7890 7891 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7892 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7893 7894 switch (opcode) { 7895 case 0x3b: /* ADDP */ 7896 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7897 break; 7898 case 0xc: /* FMAXNMP */ 7899 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7900 break; 7901 case 0xd: /* FADDP */ 7902 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7903 break; 7904 case 0xf: /* FMAXP */ 7905 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7906 break; 7907 case 0x2c: /* FMINNMP */ 7908 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7909 break; 7910 case 0x2f: /* FMINP */ 7911 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7912 break; 7913 default: 7914 g_assert_not_reached(); 7915 } 7916 7917 write_fp_dreg(s, rd, tcg_res); 7918 } else { 7919 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7920 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7921 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7922 7923 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7924 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7925 7926 if (size == MO_16) { 7927 switch (opcode) { 7928 case 0xc: /* FMAXNMP */ 7929 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7930 break; 7931 case 0xd: /* FADDP */ 7932 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7933 break; 7934 case 0xf: /* FMAXP */ 7935 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7936 break; 7937 case 0x2c: /* FMINNMP */ 7938 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7939 break; 7940 case 0x2f: /* FMINP */ 7941 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7942 break; 7943 default: 7944 g_assert_not_reached(); 7945 } 7946 } else { 7947 switch (opcode) { 7948 case 0xc: /* FMAXNMP */ 7949 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7950 break; 7951 case 0xd: /* FADDP */ 7952 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7953 break; 7954 case 0xf: /* FMAXP */ 7955 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7956 break; 7957 case 0x2c: /* FMINNMP */ 7958 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7959 break; 7960 case 0x2f: /* FMINP */ 7961 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7962 break; 7963 default: 7964 g_assert_not_reached(); 7965 } 7966 } 7967 7968 write_fp_sreg(s, rd, tcg_res); 7969 } 7970 } 7971 7972 /* 7973 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 7974 * 7975 * This code is handles the common shifting code and is used by both 7976 * the vector and scalar code. 7977 */ 7978 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 7979 TCGv_i64 tcg_rnd, bool accumulate, 7980 bool is_u, int size, int shift) 7981 { 7982 bool extended_result = false; 7983 bool round = tcg_rnd != NULL; 7984 int ext_lshift = 0; 7985 TCGv_i64 tcg_src_hi; 7986 7987 if (round && size == 3) { 7988 extended_result = true; 7989 ext_lshift = 64 - shift; 7990 tcg_src_hi = tcg_temp_new_i64(); 7991 } else if (shift == 64) { 7992 if (!accumulate && is_u) { 7993 /* result is zero */ 7994 tcg_gen_movi_i64(tcg_res, 0); 7995 return; 7996 } 7997 } 7998 7999 /* Deal with the rounding step */ 8000 if (round) { 8001 if (extended_result) { 8002 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8003 if (!is_u) { 8004 /* take care of sign extending tcg_res */ 8005 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8006 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8007 tcg_src, tcg_src_hi, 8008 tcg_rnd, tcg_zero); 8009 } else { 8010 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8011 tcg_src, tcg_zero, 8012 tcg_rnd, tcg_zero); 8013 } 8014 } else { 8015 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8016 } 8017 } 8018 8019 /* Now do the shift right */ 8020 if (round && extended_result) { 8021 /* extended case, >64 bit precision required */ 8022 if (ext_lshift == 0) { 8023 /* special case, only high bits matter */ 8024 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8025 } else { 8026 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8027 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8028 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8029 } 8030 } else { 8031 if (is_u) { 8032 if (shift == 64) { 8033 /* essentially shifting in 64 zeros */ 8034 tcg_gen_movi_i64(tcg_src, 0); 8035 } else { 8036 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8037 } 8038 } else { 8039 if (shift == 64) { 8040 /* effectively extending the sign-bit */ 8041 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8042 } else { 8043 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8044 } 8045 } 8046 } 8047 8048 if (accumulate) { 8049 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8050 } else { 8051 tcg_gen_mov_i64(tcg_res, tcg_src); 8052 } 8053 } 8054 8055 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8056 static void handle_scalar_simd_shri(DisasContext *s, 8057 bool is_u, int immh, int immb, 8058 int opcode, int rn, int rd) 8059 { 8060 const int size = 3; 8061 int immhb = immh << 3 | immb; 8062 int shift = 2 * (8 << size) - immhb; 8063 bool accumulate = false; 8064 bool round = false; 8065 bool insert = false; 8066 TCGv_i64 tcg_rn; 8067 TCGv_i64 tcg_rd; 8068 TCGv_i64 tcg_round; 8069 8070 if (!extract32(immh, 3, 1)) { 8071 unallocated_encoding(s); 8072 return; 8073 } 8074 8075 if (!fp_access_check(s)) { 8076 return; 8077 } 8078 8079 switch (opcode) { 8080 case 0x02: /* SSRA / USRA (accumulate) */ 8081 accumulate = true; 8082 break; 8083 case 0x04: /* SRSHR / URSHR (rounding) */ 8084 round = true; 8085 break; 8086 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8087 accumulate = round = true; 8088 break; 8089 case 0x08: /* SRI */ 8090 insert = true; 8091 break; 8092 } 8093 8094 if (round) { 8095 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8096 } else { 8097 tcg_round = NULL; 8098 } 8099 8100 tcg_rn = read_fp_dreg(s, rn); 8101 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8102 8103 if (insert) { 8104 /* shift count same as element size is valid but does nothing; 8105 * special case to avoid potential shift by 64. 8106 */ 8107 int esize = 8 << size; 8108 if (shift != esize) { 8109 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8110 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8111 } 8112 } else { 8113 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8114 accumulate, is_u, size, shift); 8115 } 8116 8117 write_fp_dreg(s, rd, tcg_rd); 8118 } 8119 8120 /* SHL/SLI - Scalar shift left */ 8121 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8122 int immh, int immb, int opcode, 8123 int rn, int rd) 8124 { 8125 int size = 32 - clz32(immh) - 1; 8126 int immhb = immh << 3 | immb; 8127 int shift = immhb - (8 << size); 8128 TCGv_i64 tcg_rn; 8129 TCGv_i64 tcg_rd; 8130 8131 if (!extract32(immh, 3, 1)) { 8132 unallocated_encoding(s); 8133 return; 8134 } 8135 8136 if (!fp_access_check(s)) { 8137 return; 8138 } 8139 8140 tcg_rn = read_fp_dreg(s, rn); 8141 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8142 8143 if (insert) { 8144 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8145 } else { 8146 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8147 } 8148 8149 write_fp_dreg(s, rd, tcg_rd); 8150 } 8151 8152 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8153 * (signed/unsigned) narrowing */ 8154 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8155 bool is_u_shift, bool is_u_narrow, 8156 int immh, int immb, int opcode, 8157 int rn, int rd) 8158 { 8159 int immhb = immh << 3 | immb; 8160 int size = 32 - clz32(immh) - 1; 8161 int esize = 8 << size; 8162 int shift = (2 * esize) - immhb; 8163 int elements = is_scalar ? 1 : (64 / esize); 8164 bool round = extract32(opcode, 0, 1); 8165 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8166 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8167 TCGv_i32 tcg_rd_narrowed; 8168 TCGv_i64 tcg_final; 8169 8170 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8171 { gen_helper_neon_narrow_sat_s8, 8172 gen_helper_neon_unarrow_sat8 }, 8173 { gen_helper_neon_narrow_sat_s16, 8174 gen_helper_neon_unarrow_sat16 }, 8175 { gen_helper_neon_narrow_sat_s32, 8176 gen_helper_neon_unarrow_sat32 }, 8177 { NULL, NULL }, 8178 }; 8179 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8180 gen_helper_neon_narrow_sat_u8, 8181 gen_helper_neon_narrow_sat_u16, 8182 gen_helper_neon_narrow_sat_u32, 8183 NULL 8184 }; 8185 NeonGenNarrowEnvFn *narrowfn; 8186 8187 int i; 8188 8189 assert(size < 4); 8190 8191 if (extract32(immh, 3, 1)) { 8192 unallocated_encoding(s); 8193 return; 8194 } 8195 8196 if (!fp_access_check(s)) { 8197 return; 8198 } 8199 8200 if (is_u_shift) { 8201 narrowfn = unsigned_narrow_fns[size]; 8202 } else { 8203 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8204 } 8205 8206 tcg_rn = tcg_temp_new_i64(); 8207 tcg_rd = tcg_temp_new_i64(); 8208 tcg_rd_narrowed = tcg_temp_new_i32(); 8209 tcg_final = tcg_temp_new_i64(); 8210 8211 if (round) { 8212 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8213 } else { 8214 tcg_round = NULL; 8215 } 8216 8217 for (i = 0; i < elements; i++) { 8218 read_vec_element(s, tcg_rn, rn, i, ldop); 8219 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8220 false, is_u_shift, size+1, shift); 8221 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8222 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8223 if (i == 0) { 8224 tcg_gen_mov_i64(tcg_final, tcg_rd); 8225 } else { 8226 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8227 } 8228 } 8229 8230 if (!is_q) { 8231 write_vec_element(s, tcg_final, rd, 0, MO_64); 8232 } else { 8233 write_vec_element(s, tcg_final, rd, 1, MO_64); 8234 } 8235 clear_vec_high(s, is_q, rd); 8236 } 8237 8238 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8239 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8240 bool src_unsigned, bool dst_unsigned, 8241 int immh, int immb, int rn, int rd) 8242 { 8243 int immhb = immh << 3 | immb; 8244 int size = 32 - clz32(immh) - 1; 8245 int shift = immhb - (8 << size); 8246 int pass; 8247 8248 assert(immh != 0); 8249 assert(!(scalar && is_q)); 8250 8251 if (!scalar) { 8252 if (!is_q && extract32(immh, 3, 1)) { 8253 unallocated_encoding(s); 8254 return; 8255 } 8256 8257 /* Since we use the variable-shift helpers we must 8258 * replicate the shift count into each element of 8259 * the tcg_shift value. 8260 */ 8261 switch (size) { 8262 case 0: 8263 shift |= shift << 8; 8264 /* fall through */ 8265 case 1: 8266 shift |= shift << 16; 8267 break; 8268 case 2: 8269 case 3: 8270 break; 8271 default: 8272 g_assert_not_reached(); 8273 } 8274 } 8275 8276 if (!fp_access_check(s)) { 8277 return; 8278 } 8279 8280 if (size == 3) { 8281 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8282 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8283 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8284 { NULL, gen_helper_neon_qshl_u64 }, 8285 }; 8286 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8287 int maxpass = is_q ? 2 : 1; 8288 8289 for (pass = 0; pass < maxpass; pass++) { 8290 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8291 8292 read_vec_element(s, tcg_op, rn, pass, MO_64); 8293 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8294 write_vec_element(s, tcg_op, rd, pass, MO_64); 8295 } 8296 clear_vec_high(s, is_q, rd); 8297 } else { 8298 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8299 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8300 { 8301 { gen_helper_neon_qshl_s8, 8302 gen_helper_neon_qshl_s16, 8303 gen_helper_neon_qshl_s32 }, 8304 { gen_helper_neon_qshlu_s8, 8305 gen_helper_neon_qshlu_s16, 8306 gen_helper_neon_qshlu_s32 } 8307 }, { 8308 { NULL, NULL, NULL }, 8309 { gen_helper_neon_qshl_u8, 8310 gen_helper_neon_qshl_u16, 8311 gen_helper_neon_qshl_u32 } 8312 } 8313 }; 8314 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8315 MemOp memop = scalar ? size : MO_32; 8316 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8317 8318 for (pass = 0; pass < maxpass; pass++) { 8319 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8320 8321 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8322 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8323 if (scalar) { 8324 switch (size) { 8325 case 0: 8326 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8327 break; 8328 case 1: 8329 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8330 break; 8331 case 2: 8332 break; 8333 default: 8334 g_assert_not_reached(); 8335 } 8336 write_fp_sreg(s, rd, tcg_op); 8337 } else { 8338 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8339 } 8340 } 8341 8342 if (!scalar) { 8343 clear_vec_high(s, is_q, rd); 8344 } 8345 } 8346 } 8347 8348 /* Common vector code for handling integer to FP conversion */ 8349 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8350 int elements, int is_signed, 8351 int fracbits, int size) 8352 { 8353 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8354 TCGv_i32 tcg_shift = NULL; 8355 8356 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8357 int pass; 8358 8359 if (fracbits || size == MO_64) { 8360 tcg_shift = tcg_constant_i32(fracbits); 8361 } 8362 8363 if (size == MO_64) { 8364 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8365 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8366 8367 for (pass = 0; pass < elements; pass++) { 8368 read_vec_element(s, tcg_int64, rn, pass, mop); 8369 8370 if (is_signed) { 8371 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8372 tcg_shift, tcg_fpst); 8373 } else { 8374 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8375 tcg_shift, tcg_fpst); 8376 } 8377 if (elements == 1) { 8378 write_fp_dreg(s, rd, tcg_double); 8379 } else { 8380 write_vec_element(s, tcg_double, rd, pass, MO_64); 8381 } 8382 } 8383 } else { 8384 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8385 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8386 8387 for (pass = 0; pass < elements; pass++) { 8388 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8389 8390 switch (size) { 8391 case MO_32: 8392 if (fracbits) { 8393 if (is_signed) { 8394 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8395 tcg_shift, tcg_fpst); 8396 } else { 8397 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8398 tcg_shift, tcg_fpst); 8399 } 8400 } else { 8401 if (is_signed) { 8402 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8403 } else { 8404 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8405 } 8406 } 8407 break; 8408 case MO_16: 8409 if (fracbits) { 8410 if (is_signed) { 8411 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8412 tcg_shift, tcg_fpst); 8413 } else { 8414 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8415 tcg_shift, tcg_fpst); 8416 } 8417 } else { 8418 if (is_signed) { 8419 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8420 } else { 8421 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8422 } 8423 } 8424 break; 8425 default: 8426 g_assert_not_reached(); 8427 } 8428 8429 if (elements == 1) { 8430 write_fp_sreg(s, rd, tcg_float); 8431 } else { 8432 write_vec_element_i32(s, tcg_float, rd, pass, size); 8433 } 8434 } 8435 } 8436 8437 clear_vec_high(s, elements << size == 16, rd); 8438 } 8439 8440 /* UCVTF/SCVTF - Integer to FP conversion */ 8441 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8442 bool is_q, bool is_u, 8443 int immh, int immb, int opcode, 8444 int rn, int rd) 8445 { 8446 int size, elements, fracbits; 8447 int immhb = immh << 3 | immb; 8448 8449 if (immh & 8) { 8450 size = MO_64; 8451 if (!is_scalar && !is_q) { 8452 unallocated_encoding(s); 8453 return; 8454 } 8455 } else if (immh & 4) { 8456 size = MO_32; 8457 } else if (immh & 2) { 8458 size = MO_16; 8459 if (!dc_isar_feature(aa64_fp16, s)) { 8460 unallocated_encoding(s); 8461 return; 8462 } 8463 } else { 8464 /* immh == 0 would be a failure of the decode logic */ 8465 g_assert(immh == 1); 8466 unallocated_encoding(s); 8467 return; 8468 } 8469 8470 if (is_scalar) { 8471 elements = 1; 8472 } else { 8473 elements = (8 << is_q) >> size; 8474 } 8475 fracbits = (16 << size) - immhb; 8476 8477 if (!fp_access_check(s)) { 8478 return; 8479 } 8480 8481 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8482 } 8483 8484 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8485 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8486 bool is_q, bool is_u, 8487 int immh, int immb, int rn, int rd) 8488 { 8489 int immhb = immh << 3 | immb; 8490 int pass, size, fracbits; 8491 TCGv_ptr tcg_fpstatus; 8492 TCGv_i32 tcg_rmode, tcg_shift; 8493 8494 if (immh & 0x8) { 8495 size = MO_64; 8496 if (!is_scalar && !is_q) { 8497 unallocated_encoding(s); 8498 return; 8499 } 8500 } else if (immh & 0x4) { 8501 size = MO_32; 8502 } else if (immh & 0x2) { 8503 size = MO_16; 8504 if (!dc_isar_feature(aa64_fp16, s)) { 8505 unallocated_encoding(s); 8506 return; 8507 } 8508 } else { 8509 /* Should have split out AdvSIMD modified immediate earlier. */ 8510 assert(immh == 1); 8511 unallocated_encoding(s); 8512 return; 8513 } 8514 8515 if (!fp_access_check(s)) { 8516 return; 8517 } 8518 8519 assert(!(is_scalar && is_q)); 8520 8521 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8522 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8523 fracbits = (16 << size) - immhb; 8524 tcg_shift = tcg_constant_i32(fracbits); 8525 8526 if (size == MO_64) { 8527 int maxpass = is_scalar ? 1 : 2; 8528 8529 for (pass = 0; pass < maxpass; pass++) { 8530 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8531 8532 read_vec_element(s, tcg_op, rn, pass, MO_64); 8533 if (is_u) { 8534 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8535 } else { 8536 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8537 } 8538 write_vec_element(s, tcg_op, rd, pass, MO_64); 8539 } 8540 clear_vec_high(s, is_q, rd); 8541 } else { 8542 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8543 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8544 8545 switch (size) { 8546 case MO_16: 8547 if (is_u) { 8548 fn = gen_helper_vfp_touhh; 8549 } else { 8550 fn = gen_helper_vfp_toshh; 8551 } 8552 break; 8553 case MO_32: 8554 if (is_u) { 8555 fn = gen_helper_vfp_touls; 8556 } else { 8557 fn = gen_helper_vfp_tosls; 8558 } 8559 break; 8560 default: 8561 g_assert_not_reached(); 8562 } 8563 8564 for (pass = 0; pass < maxpass; pass++) { 8565 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8566 8567 read_vec_element_i32(s, tcg_op, rn, pass, size); 8568 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8569 if (is_scalar) { 8570 write_fp_sreg(s, rd, tcg_op); 8571 } else { 8572 write_vec_element_i32(s, tcg_op, rd, pass, size); 8573 } 8574 } 8575 if (!is_scalar) { 8576 clear_vec_high(s, is_q, rd); 8577 } 8578 } 8579 8580 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8581 } 8582 8583 /* AdvSIMD scalar shift by immediate 8584 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8585 * +-----+---+-------------+------+------+--------+---+------+------+ 8586 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8587 * +-----+---+-------------+------+------+--------+---+------+------+ 8588 * 8589 * This is the scalar version so it works on a fixed sized registers 8590 */ 8591 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8592 { 8593 int rd = extract32(insn, 0, 5); 8594 int rn = extract32(insn, 5, 5); 8595 int opcode = extract32(insn, 11, 5); 8596 int immb = extract32(insn, 16, 3); 8597 int immh = extract32(insn, 19, 4); 8598 bool is_u = extract32(insn, 29, 1); 8599 8600 if (immh == 0) { 8601 unallocated_encoding(s); 8602 return; 8603 } 8604 8605 switch (opcode) { 8606 case 0x08: /* SRI */ 8607 if (!is_u) { 8608 unallocated_encoding(s); 8609 return; 8610 } 8611 /* fall through */ 8612 case 0x00: /* SSHR / USHR */ 8613 case 0x02: /* SSRA / USRA */ 8614 case 0x04: /* SRSHR / URSHR */ 8615 case 0x06: /* SRSRA / URSRA */ 8616 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8617 break; 8618 case 0x0a: /* SHL / SLI */ 8619 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8620 break; 8621 case 0x1c: /* SCVTF, UCVTF */ 8622 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8623 opcode, rn, rd); 8624 break; 8625 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8626 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8627 if (!is_u) { 8628 unallocated_encoding(s); 8629 return; 8630 } 8631 handle_vec_simd_sqshrn(s, true, false, false, true, 8632 immh, immb, opcode, rn, rd); 8633 break; 8634 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8635 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8636 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8637 immh, immb, opcode, rn, rd); 8638 break; 8639 case 0xc: /* SQSHLU */ 8640 if (!is_u) { 8641 unallocated_encoding(s); 8642 return; 8643 } 8644 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8645 break; 8646 case 0xe: /* SQSHL, UQSHL */ 8647 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8648 break; 8649 case 0x1f: /* FCVTZS, FCVTZU */ 8650 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8651 break; 8652 default: 8653 unallocated_encoding(s); 8654 break; 8655 } 8656 } 8657 8658 /* AdvSIMD scalar three different 8659 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8660 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8661 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8662 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8663 */ 8664 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8665 { 8666 bool is_u = extract32(insn, 29, 1); 8667 int size = extract32(insn, 22, 2); 8668 int opcode = extract32(insn, 12, 4); 8669 int rm = extract32(insn, 16, 5); 8670 int rn = extract32(insn, 5, 5); 8671 int rd = extract32(insn, 0, 5); 8672 8673 if (is_u) { 8674 unallocated_encoding(s); 8675 return; 8676 } 8677 8678 switch (opcode) { 8679 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8680 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8681 case 0xd: /* SQDMULL, SQDMULL2 */ 8682 if (size == 0 || size == 3) { 8683 unallocated_encoding(s); 8684 return; 8685 } 8686 break; 8687 default: 8688 unallocated_encoding(s); 8689 return; 8690 } 8691 8692 if (!fp_access_check(s)) { 8693 return; 8694 } 8695 8696 if (size == 2) { 8697 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8698 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8699 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8700 8701 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8702 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8703 8704 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8705 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8706 8707 switch (opcode) { 8708 case 0xd: /* SQDMULL, SQDMULL2 */ 8709 break; 8710 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8711 tcg_gen_neg_i64(tcg_res, tcg_res); 8712 /* fall through */ 8713 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8714 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8715 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8716 tcg_res, tcg_op1); 8717 break; 8718 default: 8719 g_assert_not_reached(); 8720 } 8721 8722 write_fp_dreg(s, rd, tcg_res); 8723 } else { 8724 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8725 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8726 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8727 8728 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8729 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8730 8731 switch (opcode) { 8732 case 0xd: /* SQDMULL, SQDMULL2 */ 8733 break; 8734 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8735 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8736 /* fall through */ 8737 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8738 { 8739 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8740 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8741 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8742 tcg_res, tcg_op3); 8743 break; 8744 } 8745 default: 8746 g_assert_not_reached(); 8747 } 8748 8749 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8750 write_fp_dreg(s, rd, tcg_res); 8751 } 8752 } 8753 8754 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8755 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8756 { 8757 /* Handle 64x64->64 opcodes which are shared between the scalar 8758 * and vector 3-same groups. We cover every opcode where size == 3 8759 * is valid in either the three-reg-same (integer, not pairwise) 8760 * or scalar-three-reg-same groups. 8761 */ 8762 TCGCond cond; 8763 8764 switch (opcode) { 8765 case 0x1: /* SQADD */ 8766 if (u) { 8767 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8768 } else { 8769 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8770 } 8771 break; 8772 case 0x5: /* SQSUB */ 8773 if (u) { 8774 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8775 } else { 8776 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8777 } 8778 break; 8779 case 0x6: /* CMGT, CMHI */ 8780 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8781 do_cmop: 8782 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8783 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8784 break; 8785 case 0x7: /* CMGE, CMHS */ 8786 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8787 goto do_cmop; 8788 case 0x11: /* CMTST, CMEQ */ 8789 if (u) { 8790 cond = TCG_COND_EQ; 8791 goto do_cmop; 8792 } 8793 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8794 break; 8795 case 0x8: /* SSHL, USHL */ 8796 if (u) { 8797 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8798 } else { 8799 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8800 } 8801 break; 8802 case 0x9: /* SQSHL, UQSHL */ 8803 if (u) { 8804 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8805 } else { 8806 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8807 } 8808 break; 8809 case 0xa: /* SRSHL, URSHL */ 8810 if (u) { 8811 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8812 } else { 8813 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8814 } 8815 break; 8816 case 0xb: /* SQRSHL, UQRSHL */ 8817 if (u) { 8818 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8819 } else { 8820 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8821 } 8822 break; 8823 case 0x10: /* ADD, SUB */ 8824 if (u) { 8825 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8826 } else { 8827 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8828 } 8829 break; 8830 default: 8831 g_assert_not_reached(); 8832 } 8833 } 8834 8835 /* Handle the 3-same-operands float operations; shared by the scalar 8836 * and vector encodings. The caller must filter out any encodings 8837 * not allocated for the encoding it is dealing with. 8838 */ 8839 static void handle_3same_float(DisasContext *s, int size, int elements, 8840 int fpopcode, int rd, int rn, int rm) 8841 { 8842 int pass; 8843 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8844 8845 for (pass = 0; pass < elements; pass++) { 8846 if (size) { 8847 /* Double */ 8848 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8849 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8850 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8851 8852 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8853 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8854 8855 switch (fpopcode) { 8856 case 0x39: /* FMLS */ 8857 /* As usual for ARM, separate negation for fused multiply-add */ 8858 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8859 /* fall through */ 8860 case 0x19: /* FMLA */ 8861 read_vec_element(s, tcg_res, rd, pass, MO_64); 8862 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8863 tcg_res, fpst); 8864 break; 8865 case 0x18: /* FMAXNM */ 8866 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8867 break; 8868 case 0x1a: /* FADD */ 8869 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8870 break; 8871 case 0x1b: /* FMULX */ 8872 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8873 break; 8874 case 0x1c: /* FCMEQ */ 8875 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8876 break; 8877 case 0x1e: /* FMAX */ 8878 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8879 break; 8880 case 0x1f: /* FRECPS */ 8881 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8882 break; 8883 case 0x38: /* FMINNM */ 8884 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8885 break; 8886 case 0x3a: /* FSUB */ 8887 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8888 break; 8889 case 0x3e: /* FMIN */ 8890 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8891 break; 8892 case 0x3f: /* FRSQRTS */ 8893 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8894 break; 8895 case 0x5b: /* FMUL */ 8896 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8897 break; 8898 case 0x5c: /* FCMGE */ 8899 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8900 break; 8901 case 0x5d: /* FACGE */ 8902 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8903 break; 8904 case 0x5f: /* FDIV */ 8905 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8906 break; 8907 case 0x7a: /* FABD */ 8908 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8909 gen_helper_vfp_absd(tcg_res, tcg_res); 8910 break; 8911 case 0x7c: /* FCMGT */ 8912 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8913 break; 8914 case 0x7d: /* FACGT */ 8915 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8916 break; 8917 default: 8918 g_assert_not_reached(); 8919 } 8920 8921 write_vec_element(s, tcg_res, rd, pass, MO_64); 8922 } else { 8923 /* Single */ 8924 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8925 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8926 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8927 8928 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8929 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8930 8931 switch (fpopcode) { 8932 case 0x39: /* FMLS */ 8933 /* As usual for ARM, separate negation for fused multiply-add */ 8934 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8935 /* fall through */ 8936 case 0x19: /* FMLA */ 8937 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8938 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8939 tcg_res, fpst); 8940 break; 8941 case 0x1a: /* FADD */ 8942 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8943 break; 8944 case 0x1b: /* FMULX */ 8945 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8946 break; 8947 case 0x1c: /* FCMEQ */ 8948 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8949 break; 8950 case 0x1e: /* FMAX */ 8951 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8952 break; 8953 case 0x1f: /* FRECPS */ 8954 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8955 break; 8956 case 0x18: /* FMAXNM */ 8957 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8958 break; 8959 case 0x38: /* FMINNM */ 8960 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8961 break; 8962 case 0x3a: /* FSUB */ 8963 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8964 break; 8965 case 0x3e: /* FMIN */ 8966 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8967 break; 8968 case 0x3f: /* FRSQRTS */ 8969 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8970 break; 8971 case 0x5b: /* FMUL */ 8972 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 8973 break; 8974 case 0x5c: /* FCMGE */ 8975 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8976 break; 8977 case 0x5d: /* FACGE */ 8978 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8979 break; 8980 case 0x5f: /* FDIV */ 8981 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 8982 break; 8983 case 0x7a: /* FABD */ 8984 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8985 gen_helper_vfp_abss(tcg_res, tcg_res); 8986 break; 8987 case 0x7c: /* FCMGT */ 8988 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8989 break; 8990 case 0x7d: /* FACGT */ 8991 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8992 break; 8993 default: 8994 g_assert_not_reached(); 8995 } 8996 8997 if (elements == 1) { 8998 /* scalar single so clear high part */ 8999 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9000 9001 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9002 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9003 } else { 9004 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9005 } 9006 } 9007 } 9008 9009 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9010 } 9011 9012 /* AdvSIMD scalar three same 9013 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9014 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9015 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9016 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9017 */ 9018 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9019 { 9020 int rd = extract32(insn, 0, 5); 9021 int rn = extract32(insn, 5, 5); 9022 int opcode = extract32(insn, 11, 5); 9023 int rm = extract32(insn, 16, 5); 9024 int size = extract32(insn, 22, 2); 9025 bool u = extract32(insn, 29, 1); 9026 TCGv_i64 tcg_rd; 9027 9028 if (opcode >= 0x18) { 9029 /* Floating point: U, size[1] and opcode indicate operation */ 9030 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9031 switch (fpopcode) { 9032 case 0x1b: /* FMULX */ 9033 case 0x1f: /* FRECPS */ 9034 case 0x3f: /* FRSQRTS */ 9035 case 0x5d: /* FACGE */ 9036 case 0x7d: /* FACGT */ 9037 case 0x1c: /* FCMEQ */ 9038 case 0x5c: /* FCMGE */ 9039 case 0x7c: /* FCMGT */ 9040 case 0x7a: /* FABD */ 9041 break; 9042 default: 9043 unallocated_encoding(s); 9044 return; 9045 } 9046 9047 if (!fp_access_check(s)) { 9048 return; 9049 } 9050 9051 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9052 return; 9053 } 9054 9055 switch (opcode) { 9056 case 0x1: /* SQADD, UQADD */ 9057 case 0x5: /* SQSUB, UQSUB */ 9058 case 0x9: /* SQSHL, UQSHL */ 9059 case 0xb: /* SQRSHL, UQRSHL */ 9060 break; 9061 case 0x8: /* SSHL, USHL */ 9062 case 0xa: /* SRSHL, URSHL */ 9063 case 0x6: /* CMGT, CMHI */ 9064 case 0x7: /* CMGE, CMHS */ 9065 case 0x11: /* CMTST, CMEQ */ 9066 case 0x10: /* ADD, SUB (vector) */ 9067 if (size != 3) { 9068 unallocated_encoding(s); 9069 return; 9070 } 9071 break; 9072 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9073 if (size != 1 && size != 2) { 9074 unallocated_encoding(s); 9075 return; 9076 } 9077 break; 9078 default: 9079 unallocated_encoding(s); 9080 return; 9081 } 9082 9083 if (!fp_access_check(s)) { 9084 return; 9085 } 9086 9087 tcg_rd = tcg_temp_new_i64(); 9088 9089 if (size == 3) { 9090 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9091 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9092 9093 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9094 } else { 9095 /* Do a single operation on the lowest element in the vector. 9096 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9097 * no side effects for all these operations. 9098 * OPTME: special-purpose helpers would avoid doing some 9099 * unnecessary work in the helper for the 8 and 16 bit cases. 9100 */ 9101 NeonGenTwoOpEnvFn *genenvfn; 9102 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9103 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9104 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9105 9106 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9107 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9108 9109 switch (opcode) { 9110 case 0x1: /* SQADD, UQADD */ 9111 { 9112 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9113 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9114 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9115 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9116 }; 9117 genenvfn = fns[size][u]; 9118 break; 9119 } 9120 case 0x5: /* SQSUB, UQSUB */ 9121 { 9122 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9123 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9124 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9125 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9126 }; 9127 genenvfn = fns[size][u]; 9128 break; 9129 } 9130 case 0x9: /* SQSHL, UQSHL */ 9131 { 9132 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9133 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9134 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9135 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9136 }; 9137 genenvfn = fns[size][u]; 9138 break; 9139 } 9140 case 0xb: /* SQRSHL, UQRSHL */ 9141 { 9142 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9143 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9144 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9145 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9146 }; 9147 genenvfn = fns[size][u]; 9148 break; 9149 } 9150 case 0x16: /* SQDMULH, SQRDMULH */ 9151 { 9152 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9153 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9154 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9155 }; 9156 assert(size == 1 || size == 2); 9157 genenvfn = fns[size - 1][u]; 9158 break; 9159 } 9160 default: 9161 g_assert_not_reached(); 9162 } 9163 9164 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9165 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9166 } 9167 9168 write_fp_dreg(s, rd, tcg_rd); 9169 } 9170 9171 /* AdvSIMD scalar three same FP16 9172 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9173 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9174 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9175 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9176 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9177 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9178 */ 9179 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9180 uint32_t insn) 9181 { 9182 int rd = extract32(insn, 0, 5); 9183 int rn = extract32(insn, 5, 5); 9184 int opcode = extract32(insn, 11, 3); 9185 int rm = extract32(insn, 16, 5); 9186 bool u = extract32(insn, 29, 1); 9187 bool a = extract32(insn, 23, 1); 9188 int fpopcode = opcode | (a << 3) | (u << 4); 9189 TCGv_ptr fpst; 9190 TCGv_i32 tcg_op1; 9191 TCGv_i32 tcg_op2; 9192 TCGv_i32 tcg_res; 9193 9194 switch (fpopcode) { 9195 case 0x03: /* FMULX */ 9196 case 0x04: /* FCMEQ (reg) */ 9197 case 0x07: /* FRECPS */ 9198 case 0x0f: /* FRSQRTS */ 9199 case 0x14: /* FCMGE (reg) */ 9200 case 0x15: /* FACGE */ 9201 case 0x1a: /* FABD */ 9202 case 0x1c: /* FCMGT (reg) */ 9203 case 0x1d: /* FACGT */ 9204 break; 9205 default: 9206 unallocated_encoding(s); 9207 return; 9208 } 9209 9210 if (!dc_isar_feature(aa64_fp16, s)) { 9211 unallocated_encoding(s); 9212 } 9213 9214 if (!fp_access_check(s)) { 9215 return; 9216 } 9217 9218 fpst = fpstatus_ptr(FPST_FPCR_F16); 9219 9220 tcg_op1 = read_fp_hreg(s, rn); 9221 tcg_op2 = read_fp_hreg(s, rm); 9222 tcg_res = tcg_temp_new_i32(); 9223 9224 switch (fpopcode) { 9225 case 0x03: /* FMULX */ 9226 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9227 break; 9228 case 0x04: /* FCMEQ (reg) */ 9229 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9230 break; 9231 case 0x07: /* FRECPS */ 9232 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9233 break; 9234 case 0x0f: /* FRSQRTS */ 9235 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9236 break; 9237 case 0x14: /* FCMGE (reg) */ 9238 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9239 break; 9240 case 0x15: /* FACGE */ 9241 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9242 break; 9243 case 0x1a: /* FABD */ 9244 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9245 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9246 break; 9247 case 0x1c: /* FCMGT (reg) */ 9248 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9249 break; 9250 case 0x1d: /* FACGT */ 9251 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9252 break; 9253 default: 9254 g_assert_not_reached(); 9255 } 9256 9257 write_fp_sreg(s, rd, tcg_res); 9258 } 9259 9260 /* AdvSIMD scalar three same extra 9261 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9262 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9263 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9264 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9265 */ 9266 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9267 uint32_t insn) 9268 { 9269 int rd = extract32(insn, 0, 5); 9270 int rn = extract32(insn, 5, 5); 9271 int opcode = extract32(insn, 11, 4); 9272 int rm = extract32(insn, 16, 5); 9273 int size = extract32(insn, 22, 2); 9274 bool u = extract32(insn, 29, 1); 9275 TCGv_i32 ele1, ele2, ele3; 9276 TCGv_i64 res; 9277 bool feature; 9278 9279 switch (u * 16 + opcode) { 9280 case 0x10: /* SQRDMLAH (vector) */ 9281 case 0x11: /* SQRDMLSH (vector) */ 9282 if (size != 1 && size != 2) { 9283 unallocated_encoding(s); 9284 return; 9285 } 9286 feature = dc_isar_feature(aa64_rdm, s); 9287 break; 9288 default: 9289 unallocated_encoding(s); 9290 return; 9291 } 9292 if (!feature) { 9293 unallocated_encoding(s); 9294 return; 9295 } 9296 if (!fp_access_check(s)) { 9297 return; 9298 } 9299 9300 /* Do a single operation on the lowest element in the vector. 9301 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9302 * with no side effects for all these operations. 9303 * OPTME: special-purpose helpers would avoid doing some 9304 * unnecessary work in the helper for the 16 bit cases. 9305 */ 9306 ele1 = tcg_temp_new_i32(); 9307 ele2 = tcg_temp_new_i32(); 9308 ele3 = tcg_temp_new_i32(); 9309 9310 read_vec_element_i32(s, ele1, rn, 0, size); 9311 read_vec_element_i32(s, ele2, rm, 0, size); 9312 read_vec_element_i32(s, ele3, rd, 0, size); 9313 9314 switch (opcode) { 9315 case 0x0: /* SQRDMLAH */ 9316 if (size == 1) { 9317 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9318 } else { 9319 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9320 } 9321 break; 9322 case 0x1: /* SQRDMLSH */ 9323 if (size == 1) { 9324 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9325 } else { 9326 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9327 } 9328 break; 9329 default: 9330 g_assert_not_reached(); 9331 } 9332 9333 res = tcg_temp_new_i64(); 9334 tcg_gen_extu_i32_i64(res, ele3); 9335 write_fp_dreg(s, rd, res); 9336 } 9337 9338 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9339 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9340 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9341 { 9342 /* Handle 64->64 opcodes which are shared between the scalar and 9343 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9344 * is valid in either group and also the double-precision fp ops. 9345 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9346 * requires them. 9347 */ 9348 TCGCond cond; 9349 9350 switch (opcode) { 9351 case 0x4: /* CLS, CLZ */ 9352 if (u) { 9353 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9354 } else { 9355 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9356 } 9357 break; 9358 case 0x5: /* NOT */ 9359 /* This opcode is shared with CNT and RBIT but we have earlier 9360 * enforced that size == 3 if and only if this is the NOT insn. 9361 */ 9362 tcg_gen_not_i64(tcg_rd, tcg_rn); 9363 break; 9364 case 0x7: /* SQABS, SQNEG */ 9365 if (u) { 9366 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9367 } else { 9368 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9369 } 9370 break; 9371 case 0xa: /* CMLT */ 9372 cond = TCG_COND_LT; 9373 do_cmop: 9374 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9375 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9376 break; 9377 case 0x8: /* CMGT, CMGE */ 9378 cond = u ? TCG_COND_GE : TCG_COND_GT; 9379 goto do_cmop; 9380 case 0x9: /* CMEQ, CMLE */ 9381 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9382 goto do_cmop; 9383 case 0xb: /* ABS, NEG */ 9384 if (u) { 9385 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9386 } else { 9387 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9388 } 9389 break; 9390 case 0x2f: /* FABS */ 9391 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9392 break; 9393 case 0x6f: /* FNEG */ 9394 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9395 break; 9396 case 0x7f: /* FSQRT */ 9397 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9398 break; 9399 case 0x1a: /* FCVTNS */ 9400 case 0x1b: /* FCVTMS */ 9401 case 0x1c: /* FCVTAS */ 9402 case 0x3a: /* FCVTPS */ 9403 case 0x3b: /* FCVTZS */ 9404 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9405 break; 9406 case 0x5a: /* FCVTNU */ 9407 case 0x5b: /* FCVTMU */ 9408 case 0x5c: /* FCVTAU */ 9409 case 0x7a: /* FCVTPU */ 9410 case 0x7b: /* FCVTZU */ 9411 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9412 break; 9413 case 0x18: /* FRINTN */ 9414 case 0x19: /* FRINTM */ 9415 case 0x38: /* FRINTP */ 9416 case 0x39: /* FRINTZ */ 9417 case 0x58: /* FRINTA */ 9418 case 0x79: /* FRINTI */ 9419 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9420 break; 9421 case 0x59: /* FRINTX */ 9422 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9423 break; 9424 case 0x1e: /* FRINT32Z */ 9425 case 0x5e: /* FRINT32X */ 9426 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9427 break; 9428 case 0x1f: /* FRINT64Z */ 9429 case 0x5f: /* FRINT64X */ 9430 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9431 break; 9432 default: 9433 g_assert_not_reached(); 9434 } 9435 } 9436 9437 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9438 bool is_scalar, bool is_u, bool is_q, 9439 int size, int rn, int rd) 9440 { 9441 bool is_double = (size == MO_64); 9442 TCGv_ptr fpst; 9443 9444 if (!fp_access_check(s)) { 9445 return; 9446 } 9447 9448 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9449 9450 if (is_double) { 9451 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9452 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9453 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9454 NeonGenTwoDoubleOpFn *genfn; 9455 bool swap = false; 9456 int pass; 9457 9458 switch (opcode) { 9459 case 0x2e: /* FCMLT (zero) */ 9460 swap = true; 9461 /* fallthrough */ 9462 case 0x2c: /* FCMGT (zero) */ 9463 genfn = gen_helper_neon_cgt_f64; 9464 break; 9465 case 0x2d: /* FCMEQ (zero) */ 9466 genfn = gen_helper_neon_ceq_f64; 9467 break; 9468 case 0x6d: /* FCMLE (zero) */ 9469 swap = true; 9470 /* fall through */ 9471 case 0x6c: /* FCMGE (zero) */ 9472 genfn = gen_helper_neon_cge_f64; 9473 break; 9474 default: 9475 g_assert_not_reached(); 9476 } 9477 9478 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9479 read_vec_element(s, tcg_op, rn, pass, MO_64); 9480 if (swap) { 9481 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9482 } else { 9483 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9484 } 9485 write_vec_element(s, tcg_res, rd, pass, MO_64); 9486 } 9487 9488 clear_vec_high(s, !is_scalar, rd); 9489 } else { 9490 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9491 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9492 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9493 NeonGenTwoSingleOpFn *genfn; 9494 bool swap = false; 9495 int pass, maxpasses; 9496 9497 if (size == MO_16) { 9498 switch (opcode) { 9499 case 0x2e: /* FCMLT (zero) */ 9500 swap = true; 9501 /* fall through */ 9502 case 0x2c: /* FCMGT (zero) */ 9503 genfn = gen_helper_advsimd_cgt_f16; 9504 break; 9505 case 0x2d: /* FCMEQ (zero) */ 9506 genfn = gen_helper_advsimd_ceq_f16; 9507 break; 9508 case 0x6d: /* FCMLE (zero) */ 9509 swap = true; 9510 /* fall through */ 9511 case 0x6c: /* FCMGE (zero) */ 9512 genfn = gen_helper_advsimd_cge_f16; 9513 break; 9514 default: 9515 g_assert_not_reached(); 9516 } 9517 } else { 9518 switch (opcode) { 9519 case 0x2e: /* FCMLT (zero) */ 9520 swap = true; 9521 /* fall through */ 9522 case 0x2c: /* FCMGT (zero) */ 9523 genfn = gen_helper_neon_cgt_f32; 9524 break; 9525 case 0x2d: /* FCMEQ (zero) */ 9526 genfn = gen_helper_neon_ceq_f32; 9527 break; 9528 case 0x6d: /* FCMLE (zero) */ 9529 swap = true; 9530 /* fall through */ 9531 case 0x6c: /* FCMGE (zero) */ 9532 genfn = gen_helper_neon_cge_f32; 9533 break; 9534 default: 9535 g_assert_not_reached(); 9536 } 9537 } 9538 9539 if (is_scalar) { 9540 maxpasses = 1; 9541 } else { 9542 int vector_size = 8 << is_q; 9543 maxpasses = vector_size >> size; 9544 } 9545 9546 for (pass = 0; pass < maxpasses; pass++) { 9547 read_vec_element_i32(s, tcg_op, rn, pass, size); 9548 if (swap) { 9549 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9550 } else { 9551 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9552 } 9553 if (is_scalar) { 9554 write_fp_sreg(s, rd, tcg_res); 9555 } else { 9556 write_vec_element_i32(s, tcg_res, rd, pass, size); 9557 } 9558 } 9559 9560 if (!is_scalar) { 9561 clear_vec_high(s, is_q, rd); 9562 } 9563 } 9564 } 9565 9566 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9567 bool is_scalar, bool is_u, bool is_q, 9568 int size, int rn, int rd) 9569 { 9570 bool is_double = (size == 3); 9571 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9572 9573 if (is_double) { 9574 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9575 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9576 int pass; 9577 9578 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9579 read_vec_element(s, tcg_op, rn, pass, MO_64); 9580 switch (opcode) { 9581 case 0x3d: /* FRECPE */ 9582 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9583 break; 9584 case 0x3f: /* FRECPX */ 9585 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9586 break; 9587 case 0x7d: /* FRSQRTE */ 9588 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9589 break; 9590 default: 9591 g_assert_not_reached(); 9592 } 9593 write_vec_element(s, tcg_res, rd, pass, MO_64); 9594 } 9595 clear_vec_high(s, !is_scalar, rd); 9596 } else { 9597 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9598 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9599 int pass, maxpasses; 9600 9601 if (is_scalar) { 9602 maxpasses = 1; 9603 } else { 9604 maxpasses = is_q ? 4 : 2; 9605 } 9606 9607 for (pass = 0; pass < maxpasses; pass++) { 9608 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9609 9610 switch (opcode) { 9611 case 0x3c: /* URECPE */ 9612 gen_helper_recpe_u32(tcg_res, tcg_op); 9613 break; 9614 case 0x3d: /* FRECPE */ 9615 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9616 break; 9617 case 0x3f: /* FRECPX */ 9618 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9619 break; 9620 case 0x7d: /* FRSQRTE */ 9621 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9622 break; 9623 default: 9624 g_assert_not_reached(); 9625 } 9626 9627 if (is_scalar) { 9628 write_fp_sreg(s, rd, tcg_res); 9629 } else { 9630 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9631 } 9632 } 9633 if (!is_scalar) { 9634 clear_vec_high(s, is_q, rd); 9635 } 9636 } 9637 } 9638 9639 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9640 int opcode, bool u, bool is_q, 9641 int size, int rn, int rd) 9642 { 9643 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9644 * in the source becomes a size element in the destination). 9645 */ 9646 int pass; 9647 TCGv_i32 tcg_res[2]; 9648 int destelt = is_q ? 2 : 0; 9649 int passes = scalar ? 1 : 2; 9650 9651 if (scalar) { 9652 tcg_res[1] = tcg_constant_i32(0); 9653 } 9654 9655 for (pass = 0; pass < passes; pass++) { 9656 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9657 NeonGenNarrowFn *genfn = NULL; 9658 NeonGenNarrowEnvFn *genenvfn = NULL; 9659 9660 if (scalar) { 9661 read_vec_element(s, tcg_op, rn, pass, size + 1); 9662 } else { 9663 read_vec_element(s, tcg_op, rn, pass, MO_64); 9664 } 9665 tcg_res[pass] = tcg_temp_new_i32(); 9666 9667 switch (opcode) { 9668 case 0x12: /* XTN, SQXTUN */ 9669 { 9670 static NeonGenNarrowFn * const xtnfns[3] = { 9671 gen_helper_neon_narrow_u8, 9672 gen_helper_neon_narrow_u16, 9673 tcg_gen_extrl_i64_i32, 9674 }; 9675 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9676 gen_helper_neon_unarrow_sat8, 9677 gen_helper_neon_unarrow_sat16, 9678 gen_helper_neon_unarrow_sat32, 9679 }; 9680 if (u) { 9681 genenvfn = sqxtunfns[size]; 9682 } else { 9683 genfn = xtnfns[size]; 9684 } 9685 break; 9686 } 9687 case 0x14: /* SQXTN, UQXTN */ 9688 { 9689 static NeonGenNarrowEnvFn * const fns[3][2] = { 9690 { gen_helper_neon_narrow_sat_s8, 9691 gen_helper_neon_narrow_sat_u8 }, 9692 { gen_helper_neon_narrow_sat_s16, 9693 gen_helper_neon_narrow_sat_u16 }, 9694 { gen_helper_neon_narrow_sat_s32, 9695 gen_helper_neon_narrow_sat_u32 }, 9696 }; 9697 genenvfn = fns[size][u]; 9698 break; 9699 } 9700 case 0x16: /* FCVTN, FCVTN2 */ 9701 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9702 if (size == 2) { 9703 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9704 } else { 9705 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9706 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9707 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9708 TCGv_i32 ahp = get_ahp_flag(); 9709 9710 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9711 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9712 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9713 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9714 } 9715 break; 9716 case 0x36: /* BFCVTN, BFCVTN2 */ 9717 { 9718 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9719 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9720 } 9721 break; 9722 case 0x56: /* FCVTXN, FCVTXN2 */ 9723 /* 64 bit to 32 bit float conversion 9724 * with von Neumann rounding (round to odd) 9725 */ 9726 assert(size == 2); 9727 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9728 break; 9729 default: 9730 g_assert_not_reached(); 9731 } 9732 9733 if (genfn) { 9734 genfn(tcg_res[pass], tcg_op); 9735 } else if (genenvfn) { 9736 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9737 } 9738 } 9739 9740 for (pass = 0; pass < 2; pass++) { 9741 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9742 } 9743 clear_vec_high(s, is_q, rd); 9744 } 9745 9746 /* Remaining saturating accumulating ops */ 9747 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9748 bool is_q, int size, int rn, int rd) 9749 { 9750 bool is_double = (size == 3); 9751 9752 if (is_double) { 9753 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9754 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9755 int pass; 9756 9757 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9758 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9759 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9760 9761 if (is_u) { /* USQADD */ 9762 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9763 } else { /* SUQADD */ 9764 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9765 } 9766 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9767 } 9768 clear_vec_high(s, !is_scalar, rd); 9769 } else { 9770 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9771 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9772 int pass, maxpasses; 9773 9774 if (is_scalar) { 9775 maxpasses = 1; 9776 } else { 9777 maxpasses = is_q ? 4 : 2; 9778 } 9779 9780 for (pass = 0; pass < maxpasses; pass++) { 9781 if (is_scalar) { 9782 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9783 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9784 } else { 9785 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9786 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9787 } 9788 9789 if (is_u) { /* USQADD */ 9790 switch (size) { 9791 case 0: 9792 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9793 break; 9794 case 1: 9795 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9796 break; 9797 case 2: 9798 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9799 break; 9800 default: 9801 g_assert_not_reached(); 9802 } 9803 } else { /* SUQADD */ 9804 switch (size) { 9805 case 0: 9806 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9807 break; 9808 case 1: 9809 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9810 break; 9811 case 2: 9812 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9813 break; 9814 default: 9815 g_assert_not_reached(); 9816 } 9817 } 9818 9819 if (is_scalar) { 9820 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9821 } 9822 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9823 } 9824 clear_vec_high(s, is_q, rd); 9825 } 9826 } 9827 9828 /* AdvSIMD scalar two reg misc 9829 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9830 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9831 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9832 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9833 */ 9834 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9835 { 9836 int rd = extract32(insn, 0, 5); 9837 int rn = extract32(insn, 5, 5); 9838 int opcode = extract32(insn, 12, 5); 9839 int size = extract32(insn, 22, 2); 9840 bool u = extract32(insn, 29, 1); 9841 bool is_fcvt = false; 9842 int rmode; 9843 TCGv_i32 tcg_rmode; 9844 TCGv_ptr tcg_fpstatus; 9845 9846 switch (opcode) { 9847 case 0x3: /* USQADD / SUQADD*/ 9848 if (!fp_access_check(s)) { 9849 return; 9850 } 9851 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9852 return; 9853 case 0x7: /* SQABS / SQNEG */ 9854 break; 9855 case 0xa: /* CMLT */ 9856 if (u) { 9857 unallocated_encoding(s); 9858 return; 9859 } 9860 /* fall through */ 9861 case 0x8: /* CMGT, CMGE */ 9862 case 0x9: /* CMEQ, CMLE */ 9863 case 0xb: /* ABS, NEG */ 9864 if (size != 3) { 9865 unallocated_encoding(s); 9866 return; 9867 } 9868 break; 9869 case 0x12: /* SQXTUN */ 9870 if (!u) { 9871 unallocated_encoding(s); 9872 return; 9873 } 9874 /* fall through */ 9875 case 0x14: /* SQXTN, UQXTN */ 9876 if (size == 3) { 9877 unallocated_encoding(s); 9878 return; 9879 } 9880 if (!fp_access_check(s)) { 9881 return; 9882 } 9883 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9884 return; 9885 case 0xc ... 0xf: 9886 case 0x16 ... 0x1d: 9887 case 0x1f: 9888 /* Floating point: U, size[1] and opcode indicate operation; 9889 * size[0] indicates single or double precision. 9890 */ 9891 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9892 size = extract32(size, 0, 1) ? 3 : 2; 9893 switch (opcode) { 9894 case 0x2c: /* FCMGT (zero) */ 9895 case 0x2d: /* FCMEQ (zero) */ 9896 case 0x2e: /* FCMLT (zero) */ 9897 case 0x6c: /* FCMGE (zero) */ 9898 case 0x6d: /* FCMLE (zero) */ 9899 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9900 return; 9901 case 0x1d: /* SCVTF */ 9902 case 0x5d: /* UCVTF */ 9903 { 9904 bool is_signed = (opcode == 0x1d); 9905 if (!fp_access_check(s)) { 9906 return; 9907 } 9908 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9909 return; 9910 } 9911 case 0x3d: /* FRECPE */ 9912 case 0x3f: /* FRECPX */ 9913 case 0x7d: /* FRSQRTE */ 9914 if (!fp_access_check(s)) { 9915 return; 9916 } 9917 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9918 return; 9919 case 0x1a: /* FCVTNS */ 9920 case 0x1b: /* FCVTMS */ 9921 case 0x3a: /* FCVTPS */ 9922 case 0x3b: /* FCVTZS */ 9923 case 0x5a: /* FCVTNU */ 9924 case 0x5b: /* FCVTMU */ 9925 case 0x7a: /* FCVTPU */ 9926 case 0x7b: /* FCVTZU */ 9927 is_fcvt = true; 9928 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9929 break; 9930 case 0x1c: /* FCVTAS */ 9931 case 0x5c: /* FCVTAU */ 9932 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9933 is_fcvt = true; 9934 rmode = FPROUNDING_TIEAWAY; 9935 break; 9936 case 0x56: /* FCVTXN, FCVTXN2 */ 9937 if (size == 2) { 9938 unallocated_encoding(s); 9939 return; 9940 } 9941 if (!fp_access_check(s)) { 9942 return; 9943 } 9944 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9945 return; 9946 default: 9947 unallocated_encoding(s); 9948 return; 9949 } 9950 break; 9951 default: 9952 unallocated_encoding(s); 9953 return; 9954 } 9955 9956 if (!fp_access_check(s)) { 9957 return; 9958 } 9959 9960 if (is_fcvt) { 9961 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9962 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9963 } else { 9964 tcg_fpstatus = NULL; 9965 tcg_rmode = NULL; 9966 } 9967 9968 if (size == 3) { 9969 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9970 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9971 9972 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 9973 write_fp_dreg(s, rd, tcg_rd); 9974 } else { 9975 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9976 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9977 9978 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9979 9980 switch (opcode) { 9981 case 0x7: /* SQABS, SQNEG */ 9982 { 9983 NeonGenOneOpEnvFn *genfn; 9984 static NeonGenOneOpEnvFn * const fns[3][2] = { 9985 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 9986 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 9987 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 9988 }; 9989 genfn = fns[size][u]; 9990 genfn(tcg_rd, tcg_env, tcg_rn); 9991 break; 9992 } 9993 case 0x1a: /* FCVTNS */ 9994 case 0x1b: /* FCVTMS */ 9995 case 0x1c: /* FCVTAS */ 9996 case 0x3a: /* FCVTPS */ 9997 case 0x3b: /* FCVTZS */ 9998 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9999 tcg_fpstatus); 10000 break; 10001 case 0x5a: /* FCVTNU */ 10002 case 0x5b: /* FCVTMU */ 10003 case 0x5c: /* FCVTAU */ 10004 case 0x7a: /* FCVTPU */ 10005 case 0x7b: /* FCVTZU */ 10006 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10007 tcg_fpstatus); 10008 break; 10009 default: 10010 g_assert_not_reached(); 10011 } 10012 10013 write_fp_sreg(s, rd, tcg_rd); 10014 } 10015 10016 if (is_fcvt) { 10017 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10018 } 10019 } 10020 10021 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10022 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10023 int immh, int immb, int opcode, int rn, int rd) 10024 { 10025 int size = 32 - clz32(immh) - 1; 10026 int immhb = immh << 3 | immb; 10027 int shift = 2 * (8 << size) - immhb; 10028 GVecGen2iFn *gvec_fn; 10029 10030 if (extract32(immh, 3, 1) && !is_q) { 10031 unallocated_encoding(s); 10032 return; 10033 } 10034 tcg_debug_assert(size <= 3); 10035 10036 if (!fp_access_check(s)) { 10037 return; 10038 } 10039 10040 switch (opcode) { 10041 case 0x02: /* SSRA / USRA (accumulate) */ 10042 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10043 break; 10044 10045 case 0x08: /* SRI */ 10046 gvec_fn = gen_gvec_sri; 10047 break; 10048 10049 case 0x00: /* SSHR / USHR */ 10050 if (is_u) { 10051 if (shift == 8 << size) { 10052 /* Shift count the same size as element size produces zero. */ 10053 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10054 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10055 return; 10056 } 10057 gvec_fn = tcg_gen_gvec_shri; 10058 } else { 10059 /* Shift count the same size as element size produces all sign. */ 10060 if (shift == 8 << size) { 10061 shift -= 1; 10062 } 10063 gvec_fn = tcg_gen_gvec_sari; 10064 } 10065 break; 10066 10067 case 0x04: /* SRSHR / URSHR (rounding) */ 10068 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10069 break; 10070 10071 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10072 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10073 break; 10074 10075 default: 10076 g_assert_not_reached(); 10077 } 10078 10079 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10080 } 10081 10082 /* SHL/SLI - Vector shift left */ 10083 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10084 int immh, int immb, int opcode, int rn, int rd) 10085 { 10086 int size = 32 - clz32(immh) - 1; 10087 int immhb = immh << 3 | immb; 10088 int shift = immhb - (8 << size); 10089 10090 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10091 assert(size >= 0 && size <= 3); 10092 10093 if (extract32(immh, 3, 1) && !is_q) { 10094 unallocated_encoding(s); 10095 return; 10096 } 10097 10098 if (!fp_access_check(s)) { 10099 return; 10100 } 10101 10102 if (insert) { 10103 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10104 } else { 10105 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10106 } 10107 } 10108 10109 /* USHLL/SHLL - Vector shift left with widening */ 10110 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10111 int immh, int immb, int opcode, int rn, int rd) 10112 { 10113 int size = 32 - clz32(immh) - 1; 10114 int immhb = immh << 3 | immb; 10115 int shift = immhb - (8 << size); 10116 int dsize = 64; 10117 int esize = 8 << size; 10118 int elements = dsize/esize; 10119 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10120 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10121 int i; 10122 10123 if (size >= 3) { 10124 unallocated_encoding(s); 10125 return; 10126 } 10127 10128 if (!fp_access_check(s)) { 10129 return; 10130 } 10131 10132 /* For the LL variants the store is larger than the load, 10133 * so if rd == rn we would overwrite parts of our input. 10134 * So load everything right now and use shifts in the main loop. 10135 */ 10136 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10137 10138 for (i = 0; i < elements; i++) { 10139 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10140 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10141 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10142 write_vec_element(s, tcg_rd, rd, i, size + 1); 10143 } 10144 } 10145 10146 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10147 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10148 int immh, int immb, int opcode, int rn, int rd) 10149 { 10150 int immhb = immh << 3 | immb; 10151 int size = 32 - clz32(immh) - 1; 10152 int dsize = 64; 10153 int esize = 8 << size; 10154 int elements = dsize/esize; 10155 int shift = (2 * esize) - immhb; 10156 bool round = extract32(opcode, 0, 1); 10157 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10158 TCGv_i64 tcg_round; 10159 int i; 10160 10161 if (extract32(immh, 3, 1)) { 10162 unallocated_encoding(s); 10163 return; 10164 } 10165 10166 if (!fp_access_check(s)) { 10167 return; 10168 } 10169 10170 tcg_rn = tcg_temp_new_i64(); 10171 tcg_rd = tcg_temp_new_i64(); 10172 tcg_final = tcg_temp_new_i64(); 10173 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10174 10175 if (round) { 10176 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10177 } else { 10178 tcg_round = NULL; 10179 } 10180 10181 for (i = 0; i < elements; i++) { 10182 read_vec_element(s, tcg_rn, rn, i, size+1); 10183 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10184 false, true, size+1, shift); 10185 10186 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10187 } 10188 10189 if (!is_q) { 10190 write_vec_element(s, tcg_final, rd, 0, MO_64); 10191 } else { 10192 write_vec_element(s, tcg_final, rd, 1, MO_64); 10193 } 10194 10195 clear_vec_high(s, is_q, rd); 10196 } 10197 10198 10199 /* AdvSIMD shift by immediate 10200 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10201 * +---+---+---+-------------+------+------+--------+---+------+------+ 10202 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10203 * +---+---+---+-------------+------+------+--------+---+------+------+ 10204 */ 10205 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10206 { 10207 int rd = extract32(insn, 0, 5); 10208 int rn = extract32(insn, 5, 5); 10209 int opcode = extract32(insn, 11, 5); 10210 int immb = extract32(insn, 16, 3); 10211 int immh = extract32(insn, 19, 4); 10212 bool is_u = extract32(insn, 29, 1); 10213 bool is_q = extract32(insn, 30, 1); 10214 10215 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10216 assert(immh != 0); 10217 10218 switch (opcode) { 10219 case 0x08: /* SRI */ 10220 if (!is_u) { 10221 unallocated_encoding(s); 10222 return; 10223 } 10224 /* fall through */ 10225 case 0x00: /* SSHR / USHR */ 10226 case 0x02: /* SSRA / USRA (accumulate) */ 10227 case 0x04: /* SRSHR / URSHR (rounding) */ 10228 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10229 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10230 break; 10231 case 0x0a: /* SHL / SLI */ 10232 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10233 break; 10234 case 0x10: /* SHRN */ 10235 case 0x11: /* RSHRN / SQRSHRUN */ 10236 if (is_u) { 10237 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10238 opcode, rn, rd); 10239 } else { 10240 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10241 } 10242 break; 10243 case 0x12: /* SQSHRN / UQSHRN */ 10244 case 0x13: /* SQRSHRN / UQRSHRN */ 10245 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10246 opcode, rn, rd); 10247 break; 10248 case 0x14: /* SSHLL / USHLL */ 10249 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10250 break; 10251 case 0x1c: /* SCVTF / UCVTF */ 10252 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10253 opcode, rn, rd); 10254 break; 10255 case 0xc: /* SQSHLU */ 10256 if (!is_u) { 10257 unallocated_encoding(s); 10258 return; 10259 } 10260 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10261 break; 10262 case 0xe: /* SQSHL, UQSHL */ 10263 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10264 break; 10265 case 0x1f: /* FCVTZS/ FCVTZU */ 10266 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10267 return; 10268 default: 10269 unallocated_encoding(s); 10270 return; 10271 } 10272 } 10273 10274 /* Generate code to do a "long" addition or subtraction, ie one done in 10275 * TCGv_i64 on vector lanes twice the width specified by size. 10276 */ 10277 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10278 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10279 { 10280 static NeonGenTwo64OpFn * const fns[3][2] = { 10281 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10282 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10283 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10284 }; 10285 NeonGenTwo64OpFn *genfn; 10286 assert(size < 3); 10287 10288 genfn = fns[size][is_sub]; 10289 genfn(tcg_res, tcg_op1, tcg_op2); 10290 } 10291 10292 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10293 int opcode, int rd, int rn, int rm) 10294 { 10295 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10296 TCGv_i64 tcg_res[2]; 10297 int pass, accop; 10298 10299 tcg_res[0] = tcg_temp_new_i64(); 10300 tcg_res[1] = tcg_temp_new_i64(); 10301 10302 /* Does this op do an adding accumulate, a subtracting accumulate, 10303 * or no accumulate at all? 10304 */ 10305 switch (opcode) { 10306 case 5: 10307 case 8: 10308 case 9: 10309 accop = 1; 10310 break; 10311 case 10: 10312 case 11: 10313 accop = -1; 10314 break; 10315 default: 10316 accop = 0; 10317 break; 10318 } 10319 10320 if (accop != 0) { 10321 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10322 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10323 } 10324 10325 /* size == 2 means two 32x32->64 operations; this is worth special 10326 * casing because we can generally handle it inline. 10327 */ 10328 if (size == 2) { 10329 for (pass = 0; pass < 2; pass++) { 10330 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10331 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10332 TCGv_i64 tcg_passres; 10333 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10334 10335 int elt = pass + is_q * 2; 10336 10337 read_vec_element(s, tcg_op1, rn, elt, memop); 10338 read_vec_element(s, tcg_op2, rm, elt, memop); 10339 10340 if (accop == 0) { 10341 tcg_passres = tcg_res[pass]; 10342 } else { 10343 tcg_passres = tcg_temp_new_i64(); 10344 } 10345 10346 switch (opcode) { 10347 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10348 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10349 break; 10350 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10351 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10352 break; 10353 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10354 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10355 { 10356 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10357 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10358 10359 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10360 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10361 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10362 tcg_passres, 10363 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10364 break; 10365 } 10366 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10367 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10368 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10369 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10370 break; 10371 case 9: /* SQDMLAL, SQDMLAL2 */ 10372 case 11: /* SQDMLSL, SQDMLSL2 */ 10373 case 13: /* SQDMULL, SQDMULL2 */ 10374 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10375 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10376 tcg_passres, tcg_passres); 10377 break; 10378 default: 10379 g_assert_not_reached(); 10380 } 10381 10382 if (opcode == 9 || opcode == 11) { 10383 /* saturating accumulate ops */ 10384 if (accop < 0) { 10385 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10386 } 10387 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10388 tcg_res[pass], tcg_passres); 10389 } else if (accop > 0) { 10390 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10391 } else if (accop < 0) { 10392 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10393 } 10394 } 10395 } else { 10396 /* size 0 or 1, generally helper functions */ 10397 for (pass = 0; pass < 2; pass++) { 10398 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10399 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10400 TCGv_i64 tcg_passres; 10401 int elt = pass + is_q * 2; 10402 10403 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10404 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10405 10406 if (accop == 0) { 10407 tcg_passres = tcg_res[pass]; 10408 } else { 10409 tcg_passres = tcg_temp_new_i64(); 10410 } 10411 10412 switch (opcode) { 10413 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10414 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10415 { 10416 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10417 static NeonGenWidenFn * const widenfns[2][2] = { 10418 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10419 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10420 }; 10421 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10422 10423 widenfn(tcg_op2_64, tcg_op2); 10424 widenfn(tcg_passres, tcg_op1); 10425 gen_neon_addl(size, (opcode == 2), tcg_passres, 10426 tcg_passres, tcg_op2_64); 10427 break; 10428 } 10429 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10430 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10431 if (size == 0) { 10432 if (is_u) { 10433 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10434 } else { 10435 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10436 } 10437 } else { 10438 if (is_u) { 10439 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10440 } else { 10441 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10442 } 10443 } 10444 break; 10445 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10446 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10447 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10448 if (size == 0) { 10449 if (is_u) { 10450 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10451 } else { 10452 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10453 } 10454 } else { 10455 if (is_u) { 10456 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10457 } else { 10458 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10459 } 10460 } 10461 break; 10462 case 9: /* SQDMLAL, SQDMLAL2 */ 10463 case 11: /* SQDMLSL, SQDMLSL2 */ 10464 case 13: /* SQDMULL, SQDMULL2 */ 10465 assert(size == 1); 10466 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10467 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10468 tcg_passres, tcg_passres); 10469 break; 10470 default: 10471 g_assert_not_reached(); 10472 } 10473 10474 if (accop != 0) { 10475 if (opcode == 9 || opcode == 11) { 10476 /* saturating accumulate ops */ 10477 if (accop < 0) { 10478 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10479 } 10480 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10481 tcg_res[pass], 10482 tcg_passres); 10483 } else { 10484 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10485 tcg_res[pass], tcg_passres); 10486 } 10487 } 10488 } 10489 } 10490 10491 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10492 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10493 } 10494 10495 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10496 int opcode, int rd, int rn, int rm) 10497 { 10498 TCGv_i64 tcg_res[2]; 10499 int part = is_q ? 2 : 0; 10500 int pass; 10501 10502 for (pass = 0; pass < 2; pass++) { 10503 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10504 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10505 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10506 static NeonGenWidenFn * const widenfns[3][2] = { 10507 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10508 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10509 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10510 }; 10511 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10512 10513 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10514 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10515 widenfn(tcg_op2_wide, tcg_op2); 10516 tcg_res[pass] = tcg_temp_new_i64(); 10517 gen_neon_addl(size, (opcode == 3), 10518 tcg_res[pass], tcg_op1, tcg_op2_wide); 10519 } 10520 10521 for (pass = 0; pass < 2; pass++) { 10522 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10523 } 10524 } 10525 10526 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10527 { 10528 tcg_gen_addi_i64(in, in, 1U << 31); 10529 tcg_gen_extrh_i64_i32(res, in); 10530 } 10531 10532 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10533 int opcode, int rd, int rn, int rm) 10534 { 10535 TCGv_i32 tcg_res[2]; 10536 int part = is_q ? 2 : 0; 10537 int pass; 10538 10539 for (pass = 0; pass < 2; pass++) { 10540 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10541 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10542 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10543 static NeonGenNarrowFn * const narrowfns[3][2] = { 10544 { gen_helper_neon_narrow_high_u8, 10545 gen_helper_neon_narrow_round_high_u8 }, 10546 { gen_helper_neon_narrow_high_u16, 10547 gen_helper_neon_narrow_round_high_u16 }, 10548 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10549 }; 10550 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10551 10552 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10553 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10554 10555 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10556 10557 tcg_res[pass] = tcg_temp_new_i32(); 10558 gennarrow(tcg_res[pass], tcg_wideres); 10559 } 10560 10561 for (pass = 0; pass < 2; pass++) { 10562 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10563 } 10564 clear_vec_high(s, is_q, rd); 10565 } 10566 10567 /* AdvSIMD three different 10568 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10569 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10570 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10571 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10572 */ 10573 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10574 { 10575 /* Instructions in this group fall into three basic classes 10576 * (in each case with the operation working on each element in 10577 * the input vectors): 10578 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10579 * 128 bit input) 10580 * (2) wide 64 x 128 -> 128 10581 * (3) narrowing 128 x 128 -> 64 10582 * Here we do initial decode, catch unallocated cases and 10583 * dispatch to separate functions for each class. 10584 */ 10585 int is_q = extract32(insn, 30, 1); 10586 int is_u = extract32(insn, 29, 1); 10587 int size = extract32(insn, 22, 2); 10588 int opcode = extract32(insn, 12, 4); 10589 int rm = extract32(insn, 16, 5); 10590 int rn = extract32(insn, 5, 5); 10591 int rd = extract32(insn, 0, 5); 10592 10593 switch (opcode) { 10594 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10595 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10596 /* 64 x 128 -> 128 */ 10597 if (size == 3) { 10598 unallocated_encoding(s); 10599 return; 10600 } 10601 if (!fp_access_check(s)) { 10602 return; 10603 } 10604 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10605 break; 10606 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10607 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10608 /* 128 x 128 -> 64 */ 10609 if (size == 3) { 10610 unallocated_encoding(s); 10611 return; 10612 } 10613 if (!fp_access_check(s)) { 10614 return; 10615 } 10616 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10617 break; 10618 case 14: /* PMULL, PMULL2 */ 10619 if (is_u) { 10620 unallocated_encoding(s); 10621 return; 10622 } 10623 switch (size) { 10624 case 0: /* PMULL.P8 */ 10625 if (!fp_access_check(s)) { 10626 return; 10627 } 10628 /* The Q field specifies lo/hi half input for this insn. */ 10629 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10630 gen_helper_neon_pmull_h); 10631 break; 10632 10633 case 3: /* PMULL.P64 */ 10634 if (!dc_isar_feature(aa64_pmull, s)) { 10635 unallocated_encoding(s); 10636 return; 10637 } 10638 if (!fp_access_check(s)) { 10639 return; 10640 } 10641 /* The Q field specifies lo/hi half input for this insn. */ 10642 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10643 gen_helper_gvec_pmull_q); 10644 break; 10645 10646 default: 10647 unallocated_encoding(s); 10648 break; 10649 } 10650 return; 10651 case 9: /* SQDMLAL, SQDMLAL2 */ 10652 case 11: /* SQDMLSL, SQDMLSL2 */ 10653 case 13: /* SQDMULL, SQDMULL2 */ 10654 if (is_u || size == 0) { 10655 unallocated_encoding(s); 10656 return; 10657 } 10658 /* fall through */ 10659 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10660 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10661 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10662 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10663 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10664 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10665 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10666 /* 64 x 64 -> 128 */ 10667 if (size == 3) { 10668 unallocated_encoding(s); 10669 return; 10670 } 10671 if (!fp_access_check(s)) { 10672 return; 10673 } 10674 10675 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10676 break; 10677 default: 10678 /* opcode 15 not allocated */ 10679 unallocated_encoding(s); 10680 break; 10681 } 10682 } 10683 10684 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10685 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10686 { 10687 int rd = extract32(insn, 0, 5); 10688 int rn = extract32(insn, 5, 5); 10689 int rm = extract32(insn, 16, 5); 10690 int size = extract32(insn, 22, 2); 10691 bool is_u = extract32(insn, 29, 1); 10692 bool is_q = extract32(insn, 30, 1); 10693 10694 if (!fp_access_check(s)) { 10695 return; 10696 } 10697 10698 switch (size + 4 * is_u) { 10699 case 0: /* AND */ 10700 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10701 return; 10702 case 1: /* BIC */ 10703 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10704 return; 10705 case 2: /* ORR */ 10706 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10707 return; 10708 case 3: /* ORN */ 10709 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10710 return; 10711 case 4: /* EOR */ 10712 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10713 return; 10714 10715 case 5: /* BSL bitwise select */ 10716 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10717 return; 10718 case 6: /* BIT, bitwise insert if true */ 10719 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10720 return; 10721 case 7: /* BIF, bitwise insert if false */ 10722 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10723 return; 10724 10725 default: 10726 g_assert_not_reached(); 10727 } 10728 } 10729 10730 /* Pairwise op subgroup of C3.6.16. 10731 * 10732 * This is called directly or via the handle_3same_float for float pairwise 10733 * operations where the opcode and size are calculated differently. 10734 */ 10735 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10736 int size, int rn, int rm, int rd) 10737 { 10738 TCGv_ptr fpst; 10739 int pass; 10740 10741 /* Floating point operations need fpst */ 10742 if (opcode >= 0x58) { 10743 fpst = fpstatus_ptr(FPST_FPCR); 10744 } else { 10745 fpst = NULL; 10746 } 10747 10748 if (!fp_access_check(s)) { 10749 return; 10750 } 10751 10752 /* These operations work on the concatenated rm:rn, with each pair of 10753 * adjacent elements being operated on to produce an element in the result. 10754 */ 10755 if (size == 3) { 10756 TCGv_i64 tcg_res[2]; 10757 10758 for (pass = 0; pass < 2; pass++) { 10759 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10760 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10761 int passreg = (pass == 0) ? rn : rm; 10762 10763 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10764 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10765 tcg_res[pass] = tcg_temp_new_i64(); 10766 10767 switch (opcode) { 10768 case 0x17: /* ADDP */ 10769 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10770 break; 10771 case 0x58: /* FMAXNMP */ 10772 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10773 break; 10774 case 0x5a: /* FADDP */ 10775 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10776 break; 10777 case 0x5e: /* FMAXP */ 10778 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10779 break; 10780 case 0x78: /* FMINNMP */ 10781 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10782 break; 10783 case 0x7e: /* FMINP */ 10784 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10785 break; 10786 default: 10787 g_assert_not_reached(); 10788 } 10789 } 10790 10791 for (pass = 0; pass < 2; pass++) { 10792 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10793 } 10794 } else { 10795 int maxpass = is_q ? 4 : 2; 10796 TCGv_i32 tcg_res[4]; 10797 10798 for (pass = 0; pass < maxpass; pass++) { 10799 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10800 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10801 NeonGenTwoOpFn *genfn = NULL; 10802 int passreg = pass < (maxpass / 2) ? rn : rm; 10803 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10804 10805 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10806 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10807 tcg_res[pass] = tcg_temp_new_i32(); 10808 10809 switch (opcode) { 10810 case 0x17: /* ADDP */ 10811 { 10812 static NeonGenTwoOpFn * const fns[3] = { 10813 gen_helper_neon_padd_u8, 10814 gen_helper_neon_padd_u16, 10815 tcg_gen_add_i32, 10816 }; 10817 genfn = fns[size]; 10818 break; 10819 } 10820 case 0x14: /* SMAXP, UMAXP */ 10821 { 10822 static NeonGenTwoOpFn * const fns[3][2] = { 10823 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10824 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10825 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10826 }; 10827 genfn = fns[size][u]; 10828 break; 10829 } 10830 case 0x15: /* SMINP, UMINP */ 10831 { 10832 static NeonGenTwoOpFn * const fns[3][2] = { 10833 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10834 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10835 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10836 }; 10837 genfn = fns[size][u]; 10838 break; 10839 } 10840 /* The FP operations are all on single floats (32 bit) */ 10841 case 0x58: /* FMAXNMP */ 10842 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10843 break; 10844 case 0x5a: /* FADDP */ 10845 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10846 break; 10847 case 0x5e: /* FMAXP */ 10848 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10849 break; 10850 case 0x78: /* FMINNMP */ 10851 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10852 break; 10853 case 0x7e: /* FMINP */ 10854 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10855 break; 10856 default: 10857 g_assert_not_reached(); 10858 } 10859 10860 /* FP ops called directly, otherwise call now */ 10861 if (genfn) { 10862 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10863 } 10864 } 10865 10866 for (pass = 0; pass < maxpass; pass++) { 10867 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10868 } 10869 clear_vec_high(s, is_q, rd); 10870 } 10871 } 10872 10873 /* Floating point op subgroup of C3.6.16. */ 10874 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10875 { 10876 /* For floating point ops, the U, size[1] and opcode bits 10877 * together indicate the operation. size[0] indicates single 10878 * or double. 10879 */ 10880 int fpopcode = extract32(insn, 11, 5) 10881 | (extract32(insn, 23, 1) << 5) 10882 | (extract32(insn, 29, 1) << 6); 10883 int is_q = extract32(insn, 30, 1); 10884 int size = extract32(insn, 22, 1); 10885 int rm = extract32(insn, 16, 5); 10886 int rn = extract32(insn, 5, 5); 10887 int rd = extract32(insn, 0, 5); 10888 10889 int datasize = is_q ? 128 : 64; 10890 int esize = 32 << size; 10891 int elements = datasize / esize; 10892 10893 if (size == 1 && !is_q) { 10894 unallocated_encoding(s); 10895 return; 10896 } 10897 10898 switch (fpopcode) { 10899 case 0x58: /* FMAXNMP */ 10900 case 0x5a: /* FADDP */ 10901 case 0x5e: /* FMAXP */ 10902 case 0x78: /* FMINNMP */ 10903 case 0x7e: /* FMINP */ 10904 if (size && !is_q) { 10905 unallocated_encoding(s); 10906 return; 10907 } 10908 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10909 rn, rm, rd); 10910 return; 10911 case 0x1b: /* FMULX */ 10912 case 0x1f: /* FRECPS */ 10913 case 0x3f: /* FRSQRTS */ 10914 case 0x5d: /* FACGE */ 10915 case 0x7d: /* FACGT */ 10916 case 0x19: /* FMLA */ 10917 case 0x39: /* FMLS */ 10918 case 0x18: /* FMAXNM */ 10919 case 0x1a: /* FADD */ 10920 case 0x1c: /* FCMEQ */ 10921 case 0x1e: /* FMAX */ 10922 case 0x38: /* FMINNM */ 10923 case 0x3a: /* FSUB */ 10924 case 0x3e: /* FMIN */ 10925 case 0x5b: /* FMUL */ 10926 case 0x5c: /* FCMGE */ 10927 case 0x5f: /* FDIV */ 10928 case 0x7a: /* FABD */ 10929 case 0x7c: /* FCMGT */ 10930 if (!fp_access_check(s)) { 10931 return; 10932 } 10933 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10934 return; 10935 10936 case 0x1d: /* FMLAL */ 10937 case 0x3d: /* FMLSL */ 10938 case 0x59: /* FMLAL2 */ 10939 case 0x79: /* FMLSL2 */ 10940 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10941 unallocated_encoding(s); 10942 return; 10943 } 10944 if (fp_access_check(s)) { 10945 int is_s = extract32(insn, 23, 1); 10946 int is_2 = extract32(insn, 29, 1); 10947 int data = (is_2 << 1) | is_s; 10948 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10949 vec_full_reg_offset(s, rn), 10950 vec_full_reg_offset(s, rm), tcg_env, 10951 is_q ? 16 : 8, vec_full_reg_size(s), 10952 data, gen_helper_gvec_fmlal_a64); 10953 } 10954 return; 10955 10956 default: 10957 unallocated_encoding(s); 10958 return; 10959 } 10960 } 10961 10962 /* Integer op subgroup of C3.6.16. */ 10963 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10964 { 10965 int is_q = extract32(insn, 30, 1); 10966 int u = extract32(insn, 29, 1); 10967 int size = extract32(insn, 22, 2); 10968 int opcode = extract32(insn, 11, 5); 10969 int rm = extract32(insn, 16, 5); 10970 int rn = extract32(insn, 5, 5); 10971 int rd = extract32(insn, 0, 5); 10972 int pass; 10973 TCGCond cond; 10974 10975 switch (opcode) { 10976 case 0x13: /* MUL, PMUL */ 10977 if (u && size != 0) { 10978 unallocated_encoding(s); 10979 return; 10980 } 10981 /* fall through */ 10982 case 0x0: /* SHADD, UHADD */ 10983 case 0x2: /* SRHADD, URHADD */ 10984 case 0x4: /* SHSUB, UHSUB */ 10985 case 0xc: /* SMAX, UMAX */ 10986 case 0xd: /* SMIN, UMIN */ 10987 case 0xe: /* SABD, UABD */ 10988 case 0xf: /* SABA, UABA */ 10989 case 0x12: /* MLA, MLS */ 10990 if (size == 3) { 10991 unallocated_encoding(s); 10992 return; 10993 } 10994 break; 10995 case 0x16: /* SQDMULH, SQRDMULH */ 10996 if (size == 0 || size == 3) { 10997 unallocated_encoding(s); 10998 return; 10999 } 11000 break; 11001 default: 11002 if (size == 3 && !is_q) { 11003 unallocated_encoding(s); 11004 return; 11005 } 11006 break; 11007 } 11008 11009 if (!fp_access_check(s)) { 11010 return; 11011 } 11012 11013 switch (opcode) { 11014 case 0x01: /* SQADD, UQADD */ 11015 if (u) { 11016 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11017 } else { 11018 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11019 } 11020 return; 11021 case 0x05: /* SQSUB, UQSUB */ 11022 if (u) { 11023 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11024 } else { 11025 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11026 } 11027 return; 11028 case 0x08: /* SSHL, USHL */ 11029 if (u) { 11030 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11031 } else { 11032 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11033 } 11034 return; 11035 case 0x0c: /* SMAX, UMAX */ 11036 if (u) { 11037 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11038 } else { 11039 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11040 } 11041 return; 11042 case 0x0d: /* SMIN, UMIN */ 11043 if (u) { 11044 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11045 } else { 11046 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11047 } 11048 return; 11049 case 0xe: /* SABD, UABD */ 11050 if (u) { 11051 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11052 } else { 11053 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11054 } 11055 return; 11056 case 0xf: /* SABA, UABA */ 11057 if (u) { 11058 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11059 } else { 11060 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11061 } 11062 return; 11063 case 0x10: /* ADD, SUB */ 11064 if (u) { 11065 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11066 } else { 11067 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11068 } 11069 return; 11070 case 0x13: /* MUL, PMUL */ 11071 if (!u) { /* MUL */ 11072 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11073 } else { /* PMUL */ 11074 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11075 } 11076 return; 11077 case 0x12: /* MLA, MLS */ 11078 if (u) { 11079 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11080 } else { 11081 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11082 } 11083 return; 11084 case 0x16: /* SQDMULH, SQRDMULH */ 11085 { 11086 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11087 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11088 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11089 }; 11090 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11091 } 11092 return; 11093 case 0x11: 11094 if (!u) { /* CMTST */ 11095 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11096 return; 11097 } 11098 /* else CMEQ */ 11099 cond = TCG_COND_EQ; 11100 goto do_gvec_cmp; 11101 case 0x06: /* CMGT, CMHI */ 11102 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11103 goto do_gvec_cmp; 11104 case 0x07: /* CMGE, CMHS */ 11105 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11106 do_gvec_cmp: 11107 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11108 vec_full_reg_offset(s, rn), 11109 vec_full_reg_offset(s, rm), 11110 is_q ? 16 : 8, vec_full_reg_size(s)); 11111 return; 11112 } 11113 11114 if (size == 3) { 11115 assert(is_q); 11116 for (pass = 0; pass < 2; pass++) { 11117 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11118 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11119 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11120 11121 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11122 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11123 11124 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11125 11126 write_vec_element(s, tcg_res, rd, pass, MO_64); 11127 } 11128 } else { 11129 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11130 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11131 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11132 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11133 NeonGenTwoOpFn *genfn = NULL; 11134 NeonGenTwoOpEnvFn *genenvfn = NULL; 11135 11136 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11137 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11138 11139 switch (opcode) { 11140 case 0x0: /* SHADD, UHADD */ 11141 { 11142 static NeonGenTwoOpFn * const fns[3][2] = { 11143 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11144 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11145 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11146 }; 11147 genfn = fns[size][u]; 11148 break; 11149 } 11150 case 0x2: /* SRHADD, URHADD */ 11151 { 11152 static NeonGenTwoOpFn * const fns[3][2] = { 11153 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11154 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11155 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11156 }; 11157 genfn = fns[size][u]; 11158 break; 11159 } 11160 case 0x4: /* SHSUB, UHSUB */ 11161 { 11162 static NeonGenTwoOpFn * const fns[3][2] = { 11163 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11164 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11165 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11166 }; 11167 genfn = fns[size][u]; 11168 break; 11169 } 11170 case 0x9: /* SQSHL, UQSHL */ 11171 { 11172 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11173 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11174 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11175 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11176 }; 11177 genenvfn = fns[size][u]; 11178 break; 11179 } 11180 case 0xa: /* SRSHL, URSHL */ 11181 { 11182 static NeonGenTwoOpFn * const fns[3][2] = { 11183 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11184 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11185 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11186 }; 11187 genfn = fns[size][u]; 11188 break; 11189 } 11190 case 0xb: /* SQRSHL, UQRSHL */ 11191 { 11192 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11193 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11194 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11195 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11196 }; 11197 genenvfn = fns[size][u]; 11198 break; 11199 } 11200 default: 11201 g_assert_not_reached(); 11202 } 11203 11204 if (genenvfn) { 11205 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11206 } else { 11207 genfn(tcg_res, tcg_op1, tcg_op2); 11208 } 11209 11210 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11211 } 11212 } 11213 clear_vec_high(s, is_q, rd); 11214 } 11215 11216 /* AdvSIMD three same 11217 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11218 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11219 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11220 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11221 */ 11222 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11223 { 11224 int opcode = extract32(insn, 11, 5); 11225 11226 switch (opcode) { 11227 case 0x3: /* logic ops */ 11228 disas_simd_3same_logic(s, insn); 11229 break; 11230 case 0x17: /* ADDP */ 11231 case 0x14: /* SMAXP, UMAXP */ 11232 case 0x15: /* SMINP, UMINP */ 11233 { 11234 /* Pairwise operations */ 11235 int is_q = extract32(insn, 30, 1); 11236 int u = extract32(insn, 29, 1); 11237 int size = extract32(insn, 22, 2); 11238 int rm = extract32(insn, 16, 5); 11239 int rn = extract32(insn, 5, 5); 11240 int rd = extract32(insn, 0, 5); 11241 if (opcode == 0x17) { 11242 if (u || (size == 3 && !is_q)) { 11243 unallocated_encoding(s); 11244 return; 11245 } 11246 } else { 11247 if (size == 3) { 11248 unallocated_encoding(s); 11249 return; 11250 } 11251 } 11252 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11253 break; 11254 } 11255 case 0x18 ... 0x31: 11256 /* floating point ops, sz[1] and U are part of opcode */ 11257 disas_simd_3same_float(s, insn); 11258 break; 11259 default: 11260 disas_simd_3same_int(s, insn); 11261 break; 11262 } 11263 } 11264 11265 /* 11266 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11267 * 11268 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11269 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11270 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11271 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11272 * 11273 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11274 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11275 * 11276 */ 11277 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11278 { 11279 int opcode = extract32(insn, 11, 3); 11280 int u = extract32(insn, 29, 1); 11281 int a = extract32(insn, 23, 1); 11282 int is_q = extract32(insn, 30, 1); 11283 int rm = extract32(insn, 16, 5); 11284 int rn = extract32(insn, 5, 5); 11285 int rd = extract32(insn, 0, 5); 11286 /* 11287 * For these floating point ops, the U, a and opcode bits 11288 * together indicate the operation. 11289 */ 11290 int fpopcode = opcode | (a << 3) | (u << 4); 11291 int datasize = is_q ? 128 : 64; 11292 int elements = datasize / 16; 11293 bool pairwise; 11294 TCGv_ptr fpst; 11295 int pass; 11296 11297 switch (fpopcode) { 11298 case 0x0: /* FMAXNM */ 11299 case 0x1: /* FMLA */ 11300 case 0x2: /* FADD */ 11301 case 0x3: /* FMULX */ 11302 case 0x4: /* FCMEQ */ 11303 case 0x6: /* FMAX */ 11304 case 0x7: /* FRECPS */ 11305 case 0x8: /* FMINNM */ 11306 case 0x9: /* FMLS */ 11307 case 0xa: /* FSUB */ 11308 case 0xe: /* FMIN */ 11309 case 0xf: /* FRSQRTS */ 11310 case 0x13: /* FMUL */ 11311 case 0x14: /* FCMGE */ 11312 case 0x15: /* FACGE */ 11313 case 0x17: /* FDIV */ 11314 case 0x1a: /* FABD */ 11315 case 0x1c: /* FCMGT */ 11316 case 0x1d: /* FACGT */ 11317 pairwise = false; 11318 break; 11319 case 0x10: /* FMAXNMP */ 11320 case 0x12: /* FADDP */ 11321 case 0x16: /* FMAXP */ 11322 case 0x18: /* FMINNMP */ 11323 case 0x1e: /* FMINP */ 11324 pairwise = true; 11325 break; 11326 default: 11327 unallocated_encoding(s); 11328 return; 11329 } 11330 11331 if (!dc_isar_feature(aa64_fp16, s)) { 11332 unallocated_encoding(s); 11333 return; 11334 } 11335 11336 if (!fp_access_check(s)) { 11337 return; 11338 } 11339 11340 fpst = fpstatus_ptr(FPST_FPCR_F16); 11341 11342 if (pairwise) { 11343 int maxpass = is_q ? 8 : 4; 11344 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11345 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11346 TCGv_i32 tcg_res[8]; 11347 11348 for (pass = 0; pass < maxpass; pass++) { 11349 int passreg = pass < (maxpass / 2) ? rn : rm; 11350 int passelt = (pass << 1) & (maxpass - 1); 11351 11352 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11353 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11354 tcg_res[pass] = tcg_temp_new_i32(); 11355 11356 switch (fpopcode) { 11357 case 0x10: /* FMAXNMP */ 11358 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11359 fpst); 11360 break; 11361 case 0x12: /* FADDP */ 11362 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11363 break; 11364 case 0x16: /* FMAXP */ 11365 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11366 break; 11367 case 0x18: /* FMINNMP */ 11368 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11369 fpst); 11370 break; 11371 case 0x1e: /* FMINP */ 11372 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11373 break; 11374 default: 11375 g_assert_not_reached(); 11376 } 11377 } 11378 11379 for (pass = 0; pass < maxpass; pass++) { 11380 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11381 } 11382 } else { 11383 for (pass = 0; pass < elements; pass++) { 11384 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11385 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11386 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11387 11388 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11389 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11390 11391 switch (fpopcode) { 11392 case 0x0: /* FMAXNM */ 11393 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11394 break; 11395 case 0x1: /* FMLA */ 11396 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11397 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11398 fpst); 11399 break; 11400 case 0x2: /* FADD */ 11401 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11402 break; 11403 case 0x3: /* FMULX */ 11404 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11405 break; 11406 case 0x4: /* FCMEQ */ 11407 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11408 break; 11409 case 0x6: /* FMAX */ 11410 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11411 break; 11412 case 0x7: /* FRECPS */ 11413 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11414 break; 11415 case 0x8: /* FMINNM */ 11416 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11417 break; 11418 case 0x9: /* FMLS */ 11419 /* As usual for ARM, separate negation for fused multiply-add */ 11420 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11421 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11422 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11423 fpst); 11424 break; 11425 case 0xa: /* FSUB */ 11426 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11427 break; 11428 case 0xe: /* FMIN */ 11429 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11430 break; 11431 case 0xf: /* FRSQRTS */ 11432 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11433 break; 11434 case 0x13: /* FMUL */ 11435 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11436 break; 11437 case 0x14: /* FCMGE */ 11438 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11439 break; 11440 case 0x15: /* FACGE */ 11441 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11442 break; 11443 case 0x17: /* FDIV */ 11444 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11445 break; 11446 case 0x1a: /* FABD */ 11447 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11448 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11449 break; 11450 case 0x1c: /* FCMGT */ 11451 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11452 break; 11453 case 0x1d: /* FACGT */ 11454 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11455 break; 11456 default: 11457 g_assert_not_reached(); 11458 } 11459 11460 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11461 } 11462 } 11463 11464 clear_vec_high(s, is_q, rd); 11465 } 11466 11467 /* AdvSIMD three same extra 11468 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11469 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11470 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11471 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11472 */ 11473 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11474 { 11475 int rd = extract32(insn, 0, 5); 11476 int rn = extract32(insn, 5, 5); 11477 int opcode = extract32(insn, 11, 4); 11478 int rm = extract32(insn, 16, 5); 11479 int size = extract32(insn, 22, 2); 11480 bool u = extract32(insn, 29, 1); 11481 bool is_q = extract32(insn, 30, 1); 11482 bool feature; 11483 int rot; 11484 11485 switch (u * 16 + opcode) { 11486 case 0x10: /* SQRDMLAH (vector) */ 11487 case 0x11: /* SQRDMLSH (vector) */ 11488 if (size != 1 && size != 2) { 11489 unallocated_encoding(s); 11490 return; 11491 } 11492 feature = dc_isar_feature(aa64_rdm, s); 11493 break; 11494 case 0x02: /* SDOT (vector) */ 11495 case 0x12: /* UDOT (vector) */ 11496 if (size != MO_32) { 11497 unallocated_encoding(s); 11498 return; 11499 } 11500 feature = dc_isar_feature(aa64_dp, s); 11501 break; 11502 case 0x03: /* USDOT */ 11503 if (size != MO_32) { 11504 unallocated_encoding(s); 11505 return; 11506 } 11507 feature = dc_isar_feature(aa64_i8mm, s); 11508 break; 11509 case 0x04: /* SMMLA */ 11510 case 0x14: /* UMMLA */ 11511 case 0x05: /* USMMLA */ 11512 if (!is_q || size != MO_32) { 11513 unallocated_encoding(s); 11514 return; 11515 } 11516 feature = dc_isar_feature(aa64_i8mm, s); 11517 break; 11518 case 0x18: /* FCMLA, #0 */ 11519 case 0x19: /* FCMLA, #90 */ 11520 case 0x1a: /* FCMLA, #180 */ 11521 case 0x1b: /* FCMLA, #270 */ 11522 case 0x1c: /* FCADD, #90 */ 11523 case 0x1e: /* FCADD, #270 */ 11524 if (size == 0 11525 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11526 || (size == 3 && !is_q)) { 11527 unallocated_encoding(s); 11528 return; 11529 } 11530 feature = dc_isar_feature(aa64_fcma, s); 11531 break; 11532 case 0x1d: /* BFMMLA */ 11533 if (size != MO_16 || !is_q) { 11534 unallocated_encoding(s); 11535 return; 11536 } 11537 feature = dc_isar_feature(aa64_bf16, s); 11538 break; 11539 case 0x1f: 11540 switch (size) { 11541 case 1: /* BFDOT */ 11542 case 3: /* BFMLAL{B,T} */ 11543 feature = dc_isar_feature(aa64_bf16, s); 11544 break; 11545 default: 11546 unallocated_encoding(s); 11547 return; 11548 } 11549 break; 11550 default: 11551 unallocated_encoding(s); 11552 return; 11553 } 11554 if (!feature) { 11555 unallocated_encoding(s); 11556 return; 11557 } 11558 if (!fp_access_check(s)) { 11559 return; 11560 } 11561 11562 switch (opcode) { 11563 case 0x0: /* SQRDMLAH (vector) */ 11564 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11565 return; 11566 11567 case 0x1: /* SQRDMLSH (vector) */ 11568 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11569 return; 11570 11571 case 0x2: /* SDOT / UDOT */ 11572 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11573 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11574 return; 11575 11576 case 0x3: /* USDOT */ 11577 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11578 return; 11579 11580 case 0x04: /* SMMLA, UMMLA */ 11581 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11582 u ? gen_helper_gvec_ummla_b 11583 : gen_helper_gvec_smmla_b); 11584 return; 11585 case 0x05: /* USMMLA */ 11586 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11587 return; 11588 11589 case 0x8: /* FCMLA, #0 */ 11590 case 0x9: /* FCMLA, #90 */ 11591 case 0xa: /* FCMLA, #180 */ 11592 case 0xb: /* FCMLA, #270 */ 11593 rot = extract32(opcode, 0, 2); 11594 switch (size) { 11595 case 1: 11596 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11597 gen_helper_gvec_fcmlah); 11598 break; 11599 case 2: 11600 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11601 gen_helper_gvec_fcmlas); 11602 break; 11603 case 3: 11604 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11605 gen_helper_gvec_fcmlad); 11606 break; 11607 default: 11608 g_assert_not_reached(); 11609 } 11610 return; 11611 11612 case 0xc: /* FCADD, #90 */ 11613 case 0xe: /* FCADD, #270 */ 11614 rot = extract32(opcode, 1, 1); 11615 switch (size) { 11616 case 1: 11617 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11618 gen_helper_gvec_fcaddh); 11619 break; 11620 case 2: 11621 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11622 gen_helper_gvec_fcadds); 11623 break; 11624 case 3: 11625 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11626 gen_helper_gvec_fcaddd); 11627 break; 11628 default: 11629 g_assert_not_reached(); 11630 } 11631 return; 11632 11633 case 0xd: /* BFMMLA */ 11634 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11635 return; 11636 case 0xf: 11637 switch (size) { 11638 case 1: /* BFDOT */ 11639 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11640 break; 11641 case 3: /* BFMLAL{B,T} */ 11642 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11643 gen_helper_gvec_bfmlal); 11644 break; 11645 default: 11646 g_assert_not_reached(); 11647 } 11648 return; 11649 11650 default: 11651 g_assert_not_reached(); 11652 } 11653 } 11654 11655 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11656 int size, int rn, int rd) 11657 { 11658 /* Handle 2-reg-misc ops which are widening (so each size element 11659 * in the source becomes a 2*size element in the destination. 11660 * The only instruction like this is FCVTL. 11661 */ 11662 int pass; 11663 11664 if (size == 3) { 11665 /* 32 -> 64 bit fp conversion */ 11666 TCGv_i64 tcg_res[2]; 11667 int srcelt = is_q ? 2 : 0; 11668 11669 for (pass = 0; pass < 2; pass++) { 11670 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11671 tcg_res[pass] = tcg_temp_new_i64(); 11672 11673 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11674 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11675 } 11676 for (pass = 0; pass < 2; pass++) { 11677 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11678 } 11679 } else { 11680 /* 16 -> 32 bit fp conversion */ 11681 int srcelt = is_q ? 4 : 0; 11682 TCGv_i32 tcg_res[4]; 11683 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11684 TCGv_i32 ahp = get_ahp_flag(); 11685 11686 for (pass = 0; pass < 4; pass++) { 11687 tcg_res[pass] = tcg_temp_new_i32(); 11688 11689 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11690 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11691 fpst, ahp); 11692 } 11693 for (pass = 0; pass < 4; pass++) { 11694 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11695 } 11696 } 11697 } 11698 11699 static void handle_rev(DisasContext *s, int opcode, bool u, 11700 bool is_q, int size, int rn, int rd) 11701 { 11702 int op = (opcode << 1) | u; 11703 int opsz = op + size; 11704 int grp_size = 3 - opsz; 11705 int dsize = is_q ? 128 : 64; 11706 int i; 11707 11708 if (opsz >= 3) { 11709 unallocated_encoding(s); 11710 return; 11711 } 11712 11713 if (!fp_access_check(s)) { 11714 return; 11715 } 11716 11717 if (size == 0) { 11718 /* Special case bytes, use bswap op on each group of elements */ 11719 int groups = dsize / (8 << grp_size); 11720 11721 for (i = 0; i < groups; i++) { 11722 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11723 11724 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11725 switch (grp_size) { 11726 case MO_16: 11727 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11728 break; 11729 case MO_32: 11730 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11731 break; 11732 case MO_64: 11733 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11734 break; 11735 default: 11736 g_assert_not_reached(); 11737 } 11738 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11739 } 11740 clear_vec_high(s, is_q, rd); 11741 } else { 11742 int revmask = (1 << grp_size) - 1; 11743 int esize = 8 << size; 11744 int elements = dsize / esize; 11745 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11746 TCGv_i64 tcg_rd[2]; 11747 11748 for (i = 0; i < 2; i++) { 11749 tcg_rd[i] = tcg_temp_new_i64(); 11750 tcg_gen_movi_i64(tcg_rd[i], 0); 11751 } 11752 11753 for (i = 0; i < elements; i++) { 11754 int e_rev = (i & 0xf) ^ revmask; 11755 int w = (e_rev * esize) / 64; 11756 int o = (e_rev * esize) % 64; 11757 11758 read_vec_element(s, tcg_rn, rn, i, size); 11759 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11760 } 11761 11762 for (i = 0; i < 2; i++) { 11763 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11764 } 11765 clear_vec_high(s, true, rd); 11766 } 11767 } 11768 11769 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11770 bool is_q, int size, int rn, int rd) 11771 { 11772 /* Implement the pairwise operations from 2-misc: 11773 * SADDLP, UADDLP, SADALP, UADALP. 11774 * These all add pairs of elements in the input to produce a 11775 * double-width result element in the output (possibly accumulating). 11776 */ 11777 bool accum = (opcode == 0x6); 11778 int maxpass = is_q ? 2 : 1; 11779 int pass; 11780 TCGv_i64 tcg_res[2]; 11781 11782 if (size == 2) { 11783 /* 32 + 32 -> 64 op */ 11784 MemOp memop = size + (u ? 0 : MO_SIGN); 11785 11786 for (pass = 0; pass < maxpass; pass++) { 11787 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11788 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11789 11790 tcg_res[pass] = tcg_temp_new_i64(); 11791 11792 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11793 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11794 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11795 if (accum) { 11796 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11797 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11798 } 11799 } 11800 } else { 11801 for (pass = 0; pass < maxpass; pass++) { 11802 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11803 NeonGenOne64OpFn *genfn; 11804 static NeonGenOne64OpFn * const fns[2][2] = { 11805 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11806 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11807 }; 11808 11809 genfn = fns[size][u]; 11810 11811 tcg_res[pass] = tcg_temp_new_i64(); 11812 11813 read_vec_element(s, tcg_op, rn, pass, MO_64); 11814 genfn(tcg_res[pass], tcg_op); 11815 11816 if (accum) { 11817 read_vec_element(s, tcg_op, rd, pass, MO_64); 11818 if (size == 0) { 11819 gen_helper_neon_addl_u16(tcg_res[pass], 11820 tcg_res[pass], tcg_op); 11821 } else { 11822 gen_helper_neon_addl_u32(tcg_res[pass], 11823 tcg_res[pass], tcg_op); 11824 } 11825 } 11826 } 11827 } 11828 if (!is_q) { 11829 tcg_res[1] = tcg_constant_i64(0); 11830 } 11831 for (pass = 0; pass < 2; pass++) { 11832 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11833 } 11834 } 11835 11836 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11837 { 11838 /* Implement SHLL and SHLL2 */ 11839 int pass; 11840 int part = is_q ? 2 : 0; 11841 TCGv_i64 tcg_res[2]; 11842 11843 for (pass = 0; pass < 2; pass++) { 11844 static NeonGenWidenFn * const widenfns[3] = { 11845 gen_helper_neon_widen_u8, 11846 gen_helper_neon_widen_u16, 11847 tcg_gen_extu_i32_i64, 11848 }; 11849 NeonGenWidenFn *widenfn = widenfns[size]; 11850 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11851 11852 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11853 tcg_res[pass] = tcg_temp_new_i64(); 11854 widenfn(tcg_res[pass], tcg_op); 11855 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11856 } 11857 11858 for (pass = 0; pass < 2; pass++) { 11859 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11860 } 11861 } 11862 11863 /* AdvSIMD two reg misc 11864 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11865 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11866 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11867 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11868 */ 11869 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11870 { 11871 int size = extract32(insn, 22, 2); 11872 int opcode = extract32(insn, 12, 5); 11873 bool u = extract32(insn, 29, 1); 11874 bool is_q = extract32(insn, 30, 1); 11875 int rn = extract32(insn, 5, 5); 11876 int rd = extract32(insn, 0, 5); 11877 bool need_fpstatus = false; 11878 int rmode = -1; 11879 TCGv_i32 tcg_rmode; 11880 TCGv_ptr tcg_fpstatus; 11881 11882 switch (opcode) { 11883 case 0x0: /* REV64, REV32 */ 11884 case 0x1: /* REV16 */ 11885 handle_rev(s, opcode, u, is_q, size, rn, rd); 11886 return; 11887 case 0x5: /* CNT, NOT, RBIT */ 11888 if (u && size == 0) { 11889 /* NOT */ 11890 break; 11891 } else if (u && size == 1) { 11892 /* RBIT */ 11893 break; 11894 } else if (!u && size == 0) { 11895 /* CNT */ 11896 break; 11897 } 11898 unallocated_encoding(s); 11899 return; 11900 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11901 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11902 if (size == 3) { 11903 unallocated_encoding(s); 11904 return; 11905 } 11906 if (!fp_access_check(s)) { 11907 return; 11908 } 11909 11910 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11911 return; 11912 case 0x4: /* CLS, CLZ */ 11913 if (size == 3) { 11914 unallocated_encoding(s); 11915 return; 11916 } 11917 break; 11918 case 0x2: /* SADDLP, UADDLP */ 11919 case 0x6: /* SADALP, UADALP */ 11920 if (size == 3) { 11921 unallocated_encoding(s); 11922 return; 11923 } 11924 if (!fp_access_check(s)) { 11925 return; 11926 } 11927 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11928 return; 11929 case 0x13: /* SHLL, SHLL2 */ 11930 if (u == 0 || size == 3) { 11931 unallocated_encoding(s); 11932 return; 11933 } 11934 if (!fp_access_check(s)) { 11935 return; 11936 } 11937 handle_shll(s, is_q, size, rn, rd); 11938 return; 11939 case 0xa: /* CMLT */ 11940 if (u == 1) { 11941 unallocated_encoding(s); 11942 return; 11943 } 11944 /* fall through */ 11945 case 0x8: /* CMGT, CMGE */ 11946 case 0x9: /* CMEQ, CMLE */ 11947 case 0xb: /* ABS, NEG */ 11948 if (size == 3 && !is_q) { 11949 unallocated_encoding(s); 11950 return; 11951 } 11952 break; 11953 case 0x3: /* SUQADD, USQADD */ 11954 if (size == 3 && !is_q) { 11955 unallocated_encoding(s); 11956 return; 11957 } 11958 if (!fp_access_check(s)) { 11959 return; 11960 } 11961 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11962 return; 11963 case 0x7: /* SQABS, SQNEG */ 11964 if (size == 3 && !is_q) { 11965 unallocated_encoding(s); 11966 return; 11967 } 11968 break; 11969 case 0xc ... 0xf: 11970 case 0x16 ... 0x1f: 11971 { 11972 /* Floating point: U, size[1] and opcode indicate operation; 11973 * size[0] indicates single or double precision. 11974 */ 11975 int is_double = extract32(size, 0, 1); 11976 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11977 size = is_double ? 3 : 2; 11978 switch (opcode) { 11979 case 0x2f: /* FABS */ 11980 case 0x6f: /* FNEG */ 11981 if (size == 3 && !is_q) { 11982 unallocated_encoding(s); 11983 return; 11984 } 11985 break; 11986 case 0x1d: /* SCVTF */ 11987 case 0x5d: /* UCVTF */ 11988 { 11989 bool is_signed = (opcode == 0x1d) ? true : false; 11990 int elements = is_double ? 2 : is_q ? 4 : 2; 11991 if (is_double && !is_q) { 11992 unallocated_encoding(s); 11993 return; 11994 } 11995 if (!fp_access_check(s)) { 11996 return; 11997 } 11998 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11999 return; 12000 } 12001 case 0x2c: /* FCMGT (zero) */ 12002 case 0x2d: /* FCMEQ (zero) */ 12003 case 0x2e: /* FCMLT (zero) */ 12004 case 0x6c: /* FCMGE (zero) */ 12005 case 0x6d: /* FCMLE (zero) */ 12006 if (size == 3 && !is_q) { 12007 unallocated_encoding(s); 12008 return; 12009 } 12010 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12011 return; 12012 case 0x7f: /* FSQRT */ 12013 if (size == 3 && !is_q) { 12014 unallocated_encoding(s); 12015 return; 12016 } 12017 break; 12018 case 0x1a: /* FCVTNS */ 12019 case 0x1b: /* FCVTMS */ 12020 case 0x3a: /* FCVTPS */ 12021 case 0x3b: /* FCVTZS */ 12022 case 0x5a: /* FCVTNU */ 12023 case 0x5b: /* FCVTMU */ 12024 case 0x7a: /* FCVTPU */ 12025 case 0x7b: /* FCVTZU */ 12026 need_fpstatus = true; 12027 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12028 if (size == 3 && !is_q) { 12029 unallocated_encoding(s); 12030 return; 12031 } 12032 break; 12033 case 0x5c: /* FCVTAU */ 12034 case 0x1c: /* FCVTAS */ 12035 need_fpstatus = true; 12036 rmode = FPROUNDING_TIEAWAY; 12037 if (size == 3 && !is_q) { 12038 unallocated_encoding(s); 12039 return; 12040 } 12041 break; 12042 case 0x3c: /* URECPE */ 12043 if (size == 3) { 12044 unallocated_encoding(s); 12045 return; 12046 } 12047 /* fall through */ 12048 case 0x3d: /* FRECPE */ 12049 case 0x7d: /* FRSQRTE */ 12050 if (size == 3 && !is_q) { 12051 unallocated_encoding(s); 12052 return; 12053 } 12054 if (!fp_access_check(s)) { 12055 return; 12056 } 12057 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12058 return; 12059 case 0x56: /* FCVTXN, FCVTXN2 */ 12060 if (size == 2) { 12061 unallocated_encoding(s); 12062 return; 12063 } 12064 /* fall through */ 12065 case 0x16: /* FCVTN, FCVTN2 */ 12066 /* handle_2misc_narrow does a 2*size -> size operation, but these 12067 * instructions encode the source size rather than dest size. 12068 */ 12069 if (!fp_access_check(s)) { 12070 return; 12071 } 12072 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12073 return; 12074 case 0x36: /* BFCVTN, BFCVTN2 */ 12075 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12076 unallocated_encoding(s); 12077 return; 12078 } 12079 if (!fp_access_check(s)) { 12080 return; 12081 } 12082 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12083 return; 12084 case 0x17: /* FCVTL, FCVTL2 */ 12085 if (!fp_access_check(s)) { 12086 return; 12087 } 12088 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12089 return; 12090 case 0x18: /* FRINTN */ 12091 case 0x19: /* FRINTM */ 12092 case 0x38: /* FRINTP */ 12093 case 0x39: /* FRINTZ */ 12094 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12095 /* fall through */ 12096 case 0x59: /* FRINTX */ 12097 case 0x79: /* FRINTI */ 12098 need_fpstatus = true; 12099 if (size == 3 && !is_q) { 12100 unallocated_encoding(s); 12101 return; 12102 } 12103 break; 12104 case 0x58: /* FRINTA */ 12105 rmode = FPROUNDING_TIEAWAY; 12106 need_fpstatus = true; 12107 if (size == 3 && !is_q) { 12108 unallocated_encoding(s); 12109 return; 12110 } 12111 break; 12112 case 0x7c: /* URSQRTE */ 12113 if (size == 3) { 12114 unallocated_encoding(s); 12115 return; 12116 } 12117 break; 12118 case 0x1e: /* FRINT32Z */ 12119 case 0x1f: /* FRINT64Z */ 12120 rmode = FPROUNDING_ZERO; 12121 /* fall through */ 12122 case 0x5e: /* FRINT32X */ 12123 case 0x5f: /* FRINT64X */ 12124 need_fpstatus = true; 12125 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12126 unallocated_encoding(s); 12127 return; 12128 } 12129 break; 12130 default: 12131 unallocated_encoding(s); 12132 return; 12133 } 12134 break; 12135 } 12136 default: 12137 unallocated_encoding(s); 12138 return; 12139 } 12140 12141 if (!fp_access_check(s)) { 12142 return; 12143 } 12144 12145 if (need_fpstatus || rmode >= 0) { 12146 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12147 } else { 12148 tcg_fpstatus = NULL; 12149 } 12150 if (rmode >= 0) { 12151 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12152 } else { 12153 tcg_rmode = NULL; 12154 } 12155 12156 switch (opcode) { 12157 case 0x5: 12158 if (u && size == 0) { /* NOT */ 12159 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12160 return; 12161 } 12162 break; 12163 case 0x8: /* CMGT, CMGE */ 12164 if (u) { 12165 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12166 } else { 12167 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12168 } 12169 return; 12170 case 0x9: /* CMEQ, CMLE */ 12171 if (u) { 12172 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12173 } else { 12174 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12175 } 12176 return; 12177 case 0xa: /* CMLT */ 12178 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12179 return; 12180 case 0xb: 12181 if (u) { /* ABS, NEG */ 12182 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12183 } else { 12184 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12185 } 12186 return; 12187 } 12188 12189 if (size == 3) { 12190 /* All 64-bit element operations can be shared with scalar 2misc */ 12191 int pass; 12192 12193 /* Coverity claims (size == 3 && !is_q) has been eliminated 12194 * from all paths leading to here. 12195 */ 12196 tcg_debug_assert(is_q); 12197 for (pass = 0; pass < 2; pass++) { 12198 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12199 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12200 12201 read_vec_element(s, tcg_op, rn, pass, MO_64); 12202 12203 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12204 tcg_rmode, tcg_fpstatus); 12205 12206 write_vec_element(s, tcg_res, rd, pass, MO_64); 12207 } 12208 } else { 12209 int pass; 12210 12211 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12212 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12213 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12214 12215 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12216 12217 if (size == 2) { 12218 /* Special cases for 32 bit elements */ 12219 switch (opcode) { 12220 case 0x4: /* CLS */ 12221 if (u) { 12222 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12223 } else { 12224 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12225 } 12226 break; 12227 case 0x7: /* SQABS, SQNEG */ 12228 if (u) { 12229 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12230 } else { 12231 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12232 } 12233 break; 12234 case 0x2f: /* FABS */ 12235 gen_helper_vfp_abss(tcg_res, tcg_op); 12236 break; 12237 case 0x6f: /* FNEG */ 12238 gen_helper_vfp_negs(tcg_res, tcg_op); 12239 break; 12240 case 0x7f: /* FSQRT */ 12241 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12242 break; 12243 case 0x1a: /* FCVTNS */ 12244 case 0x1b: /* FCVTMS */ 12245 case 0x1c: /* FCVTAS */ 12246 case 0x3a: /* FCVTPS */ 12247 case 0x3b: /* FCVTZS */ 12248 gen_helper_vfp_tosls(tcg_res, tcg_op, 12249 tcg_constant_i32(0), tcg_fpstatus); 12250 break; 12251 case 0x5a: /* FCVTNU */ 12252 case 0x5b: /* FCVTMU */ 12253 case 0x5c: /* FCVTAU */ 12254 case 0x7a: /* FCVTPU */ 12255 case 0x7b: /* FCVTZU */ 12256 gen_helper_vfp_touls(tcg_res, tcg_op, 12257 tcg_constant_i32(0), tcg_fpstatus); 12258 break; 12259 case 0x18: /* FRINTN */ 12260 case 0x19: /* FRINTM */ 12261 case 0x38: /* FRINTP */ 12262 case 0x39: /* FRINTZ */ 12263 case 0x58: /* FRINTA */ 12264 case 0x79: /* FRINTI */ 12265 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12266 break; 12267 case 0x59: /* FRINTX */ 12268 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12269 break; 12270 case 0x7c: /* URSQRTE */ 12271 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12272 break; 12273 case 0x1e: /* FRINT32Z */ 12274 case 0x5e: /* FRINT32X */ 12275 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12276 break; 12277 case 0x1f: /* FRINT64Z */ 12278 case 0x5f: /* FRINT64X */ 12279 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12280 break; 12281 default: 12282 g_assert_not_reached(); 12283 } 12284 } else { 12285 /* Use helpers for 8 and 16 bit elements */ 12286 switch (opcode) { 12287 case 0x5: /* CNT, RBIT */ 12288 /* For these two insns size is part of the opcode specifier 12289 * (handled earlier); they always operate on byte elements. 12290 */ 12291 if (u) { 12292 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12293 } else { 12294 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12295 } 12296 break; 12297 case 0x7: /* SQABS, SQNEG */ 12298 { 12299 NeonGenOneOpEnvFn *genfn; 12300 static NeonGenOneOpEnvFn * const fns[2][2] = { 12301 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12302 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12303 }; 12304 genfn = fns[size][u]; 12305 genfn(tcg_res, tcg_env, tcg_op); 12306 break; 12307 } 12308 case 0x4: /* CLS, CLZ */ 12309 if (u) { 12310 if (size == 0) { 12311 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12312 } else { 12313 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12314 } 12315 } else { 12316 if (size == 0) { 12317 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12318 } else { 12319 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12320 } 12321 } 12322 break; 12323 default: 12324 g_assert_not_reached(); 12325 } 12326 } 12327 12328 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12329 } 12330 } 12331 clear_vec_high(s, is_q, rd); 12332 12333 if (tcg_rmode) { 12334 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12335 } 12336 } 12337 12338 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12339 * 12340 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12341 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12342 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12343 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12344 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12345 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12346 * 12347 * This actually covers two groups where scalar access is governed by 12348 * bit 28. A bunch of the instructions (float to integral) only exist 12349 * in the vector form and are un-allocated for the scalar decode. Also 12350 * in the scalar decode Q is always 1. 12351 */ 12352 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12353 { 12354 int fpop, opcode, a, u; 12355 int rn, rd; 12356 bool is_q; 12357 bool is_scalar; 12358 bool only_in_vector = false; 12359 12360 int pass; 12361 TCGv_i32 tcg_rmode = NULL; 12362 TCGv_ptr tcg_fpstatus = NULL; 12363 bool need_fpst = true; 12364 int rmode = -1; 12365 12366 if (!dc_isar_feature(aa64_fp16, s)) { 12367 unallocated_encoding(s); 12368 return; 12369 } 12370 12371 rd = extract32(insn, 0, 5); 12372 rn = extract32(insn, 5, 5); 12373 12374 a = extract32(insn, 23, 1); 12375 u = extract32(insn, 29, 1); 12376 is_scalar = extract32(insn, 28, 1); 12377 is_q = extract32(insn, 30, 1); 12378 12379 opcode = extract32(insn, 12, 5); 12380 fpop = deposit32(opcode, 5, 1, a); 12381 fpop = deposit32(fpop, 6, 1, u); 12382 12383 switch (fpop) { 12384 case 0x1d: /* SCVTF */ 12385 case 0x5d: /* UCVTF */ 12386 { 12387 int elements; 12388 12389 if (is_scalar) { 12390 elements = 1; 12391 } else { 12392 elements = (is_q ? 8 : 4); 12393 } 12394 12395 if (!fp_access_check(s)) { 12396 return; 12397 } 12398 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12399 return; 12400 } 12401 break; 12402 case 0x2c: /* FCMGT (zero) */ 12403 case 0x2d: /* FCMEQ (zero) */ 12404 case 0x2e: /* FCMLT (zero) */ 12405 case 0x6c: /* FCMGE (zero) */ 12406 case 0x6d: /* FCMLE (zero) */ 12407 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12408 return; 12409 case 0x3d: /* FRECPE */ 12410 case 0x3f: /* FRECPX */ 12411 break; 12412 case 0x18: /* FRINTN */ 12413 only_in_vector = true; 12414 rmode = FPROUNDING_TIEEVEN; 12415 break; 12416 case 0x19: /* FRINTM */ 12417 only_in_vector = true; 12418 rmode = FPROUNDING_NEGINF; 12419 break; 12420 case 0x38: /* FRINTP */ 12421 only_in_vector = true; 12422 rmode = FPROUNDING_POSINF; 12423 break; 12424 case 0x39: /* FRINTZ */ 12425 only_in_vector = true; 12426 rmode = FPROUNDING_ZERO; 12427 break; 12428 case 0x58: /* FRINTA */ 12429 only_in_vector = true; 12430 rmode = FPROUNDING_TIEAWAY; 12431 break; 12432 case 0x59: /* FRINTX */ 12433 case 0x79: /* FRINTI */ 12434 only_in_vector = true; 12435 /* current rounding mode */ 12436 break; 12437 case 0x1a: /* FCVTNS */ 12438 rmode = FPROUNDING_TIEEVEN; 12439 break; 12440 case 0x1b: /* FCVTMS */ 12441 rmode = FPROUNDING_NEGINF; 12442 break; 12443 case 0x1c: /* FCVTAS */ 12444 rmode = FPROUNDING_TIEAWAY; 12445 break; 12446 case 0x3a: /* FCVTPS */ 12447 rmode = FPROUNDING_POSINF; 12448 break; 12449 case 0x3b: /* FCVTZS */ 12450 rmode = FPROUNDING_ZERO; 12451 break; 12452 case 0x5a: /* FCVTNU */ 12453 rmode = FPROUNDING_TIEEVEN; 12454 break; 12455 case 0x5b: /* FCVTMU */ 12456 rmode = FPROUNDING_NEGINF; 12457 break; 12458 case 0x5c: /* FCVTAU */ 12459 rmode = FPROUNDING_TIEAWAY; 12460 break; 12461 case 0x7a: /* FCVTPU */ 12462 rmode = FPROUNDING_POSINF; 12463 break; 12464 case 0x7b: /* FCVTZU */ 12465 rmode = FPROUNDING_ZERO; 12466 break; 12467 case 0x2f: /* FABS */ 12468 case 0x6f: /* FNEG */ 12469 need_fpst = false; 12470 break; 12471 case 0x7d: /* FRSQRTE */ 12472 case 0x7f: /* FSQRT (vector) */ 12473 break; 12474 default: 12475 unallocated_encoding(s); 12476 return; 12477 } 12478 12479 12480 /* Check additional constraints for the scalar encoding */ 12481 if (is_scalar) { 12482 if (!is_q) { 12483 unallocated_encoding(s); 12484 return; 12485 } 12486 /* FRINTxx is only in the vector form */ 12487 if (only_in_vector) { 12488 unallocated_encoding(s); 12489 return; 12490 } 12491 } 12492 12493 if (!fp_access_check(s)) { 12494 return; 12495 } 12496 12497 if (rmode >= 0 || need_fpst) { 12498 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12499 } 12500 12501 if (rmode >= 0) { 12502 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12503 } 12504 12505 if (is_scalar) { 12506 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12507 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12508 12509 switch (fpop) { 12510 case 0x1a: /* FCVTNS */ 12511 case 0x1b: /* FCVTMS */ 12512 case 0x1c: /* FCVTAS */ 12513 case 0x3a: /* FCVTPS */ 12514 case 0x3b: /* FCVTZS */ 12515 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12516 break; 12517 case 0x3d: /* FRECPE */ 12518 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12519 break; 12520 case 0x3f: /* FRECPX */ 12521 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12522 break; 12523 case 0x5a: /* FCVTNU */ 12524 case 0x5b: /* FCVTMU */ 12525 case 0x5c: /* FCVTAU */ 12526 case 0x7a: /* FCVTPU */ 12527 case 0x7b: /* FCVTZU */ 12528 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12529 break; 12530 case 0x6f: /* FNEG */ 12531 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12532 break; 12533 case 0x7d: /* FRSQRTE */ 12534 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12535 break; 12536 default: 12537 g_assert_not_reached(); 12538 } 12539 12540 /* limit any sign extension going on */ 12541 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12542 write_fp_sreg(s, rd, tcg_res); 12543 } else { 12544 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12545 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12546 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12547 12548 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12549 12550 switch (fpop) { 12551 case 0x1a: /* FCVTNS */ 12552 case 0x1b: /* FCVTMS */ 12553 case 0x1c: /* FCVTAS */ 12554 case 0x3a: /* FCVTPS */ 12555 case 0x3b: /* FCVTZS */ 12556 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12557 break; 12558 case 0x3d: /* FRECPE */ 12559 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12560 break; 12561 case 0x5a: /* FCVTNU */ 12562 case 0x5b: /* FCVTMU */ 12563 case 0x5c: /* FCVTAU */ 12564 case 0x7a: /* FCVTPU */ 12565 case 0x7b: /* FCVTZU */ 12566 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12567 break; 12568 case 0x18: /* FRINTN */ 12569 case 0x19: /* FRINTM */ 12570 case 0x38: /* FRINTP */ 12571 case 0x39: /* FRINTZ */ 12572 case 0x58: /* FRINTA */ 12573 case 0x79: /* FRINTI */ 12574 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12575 break; 12576 case 0x59: /* FRINTX */ 12577 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12578 break; 12579 case 0x2f: /* FABS */ 12580 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12581 break; 12582 case 0x6f: /* FNEG */ 12583 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12584 break; 12585 case 0x7d: /* FRSQRTE */ 12586 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12587 break; 12588 case 0x7f: /* FSQRT */ 12589 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12590 break; 12591 default: 12592 g_assert_not_reached(); 12593 } 12594 12595 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12596 } 12597 12598 clear_vec_high(s, is_q, rd); 12599 } 12600 12601 if (tcg_rmode) { 12602 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12603 } 12604 } 12605 12606 /* AdvSIMD scalar x indexed element 12607 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12608 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12609 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12610 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12611 * AdvSIMD vector x indexed element 12612 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12613 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12614 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12615 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12616 */ 12617 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12618 { 12619 /* This encoding has two kinds of instruction: 12620 * normal, where we perform elt x idxelt => elt for each 12621 * element in the vector 12622 * long, where we perform elt x idxelt and generate a result of 12623 * double the width of the input element 12624 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12625 */ 12626 bool is_scalar = extract32(insn, 28, 1); 12627 bool is_q = extract32(insn, 30, 1); 12628 bool u = extract32(insn, 29, 1); 12629 int size = extract32(insn, 22, 2); 12630 int l = extract32(insn, 21, 1); 12631 int m = extract32(insn, 20, 1); 12632 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12633 int rm = extract32(insn, 16, 4); 12634 int opcode = extract32(insn, 12, 4); 12635 int h = extract32(insn, 11, 1); 12636 int rn = extract32(insn, 5, 5); 12637 int rd = extract32(insn, 0, 5); 12638 bool is_long = false; 12639 int is_fp = 0; 12640 bool is_fp16 = false; 12641 int index; 12642 TCGv_ptr fpst; 12643 12644 switch (16 * u + opcode) { 12645 case 0x08: /* MUL */ 12646 case 0x10: /* MLA */ 12647 case 0x14: /* MLS */ 12648 if (is_scalar) { 12649 unallocated_encoding(s); 12650 return; 12651 } 12652 break; 12653 case 0x02: /* SMLAL, SMLAL2 */ 12654 case 0x12: /* UMLAL, UMLAL2 */ 12655 case 0x06: /* SMLSL, SMLSL2 */ 12656 case 0x16: /* UMLSL, UMLSL2 */ 12657 case 0x0a: /* SMULL, SMULL2 */ 12658 case 0x1a: /* UMULL, UMULL2 */ 12659 if (is_scalar) { 12660 unallocated_encoding(s); 12661 return; 12662 } 12663 is_long = true; 12664 break; 12665 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12666 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12667 case 0x0b: /* SQDMULL, SQDMULL2 */ 12668 is_long = true; 12669 break; 12670 case 0x0c: /* SQDMULH */ 12671 case 0x0d: /* SQRDMULH */ 12672 break; 12673 case 0x01: /* FMLA */ 12674 case 0x05: /* FMLS */ 12675 case 0x09: /* FMUL */ 12676 case 0x19: /* FMULX */ 12677 is_fp = 1; 12678 break; 12679 case 0x1d: /* SQRDMLAH */ 12680 case 0x1f: /* SQRDMLSH */ 12681 if (!dc_isar_feature(aa64_rdm, s)) { 12682 unallocated_encoding(s); 12683 return; 12684 } 12685 break; 12686 case 0x0e: /* SDOT */ 12687 case 0x1e: /* UDOT */ 12688 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12689 unallocated_encoding(s); 12690 return; 12691 } 12692 break; 12693 case 0x0f: 12694 switch (size) { 12695 case 0: /* SUDOT */ 12696 case 2: /* USDOT */ 12697 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12698 unallocated_encoding(s); 12699 return; 12700 } 12701 size = MO_32; 12702 break; 12703 case 1: /* BFDOT */ 12704 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12705 unallocated_encoding(s); 12706 return; 12707 } 12708 size = MO_32; 12709 break; 12710 case 3: /* BFMLAL{B,T} */ 12711 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12712 unallocated_encoding(s); 12713 return; 12714 } 12715 /* can't set is_fp without other incorrect size checks */ 12716 size = MO_16; 12717 break; 12718 default: 12719 unallocated_encoding(s); 12720 return; 12721 } 12722 break; 12723 case 0x11: /* FCMLA #0 */ 12724 case 0x13: /* FCMLA #90 */ 12725 case 0x15: /* FCMLA #180 */ 12726 case 0x17: /* FCMLA #270 */ 12727 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12728 unallocated_encoding(s); 12729 return; 12730 } 12731 is_fp = 2; 12732 break; 12733 case 0x00: /* FMLAL */ 12734 case 0x04: /* FMLSL */ 12735 case 0x18: /* FMLAL2 */ 12736 case 0x1c: /* FMLSL2 */ 12737 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12738 unallocated_encoding(s); 12739 return; 12740 } 12741 size = MO_16; 12742 /* is_fp, but we pass tcg_env not fp_status. */ 12743 break; 12744 default: 12745 unallocated_encoding(s); 12746 return; 12747 } 12748 12749 switch (is_fp) { 12750 case 1: /* normal fp */ 12751 /* convert insn encoded size to MemOp size */ 12752 switch (size) { 12753 case 0: /* half-precision */ 12754 size = MO_16; 12755 is_fp16 = true; 12756 break; 12757 case MO_32: /* single precision */ 12758 case MO_64: /* double precision */ 12759 break; 12760 default: 12761 unallocated_encoding(s); 12762 return; 12763 } 12764 break; 12765 12766 case 2: /* complex fp */ 12767 /* Each indexable element is a complex pair. */ 12768 size += 1; 12769 switch (size) { 12770 case MO_32: 12771 if (h && !is_q) { 12772 unallocated_encoding(s); 12773 return; 12774 } 12775 is_fp16 = true; 12776 break; 12777 case MO_64: 12778 break; 12779 default: 12780 unallocated_encoding(s); 12781 return; 12782 } 12783 break; 12784 12785 default: /* integer */ 12786 switch (size) { 12787 case MO_8: 12788 case MO_64: 12789 unallocated_encoding(s); 12790 return; 12791 } 12792 break; 12793 } 12794 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12795 unallocated_encoding(s); 12796 return; 12797 } 12798 12799 /* Given MemOp size, adjust register and indexing. */ 12800 switch (size) { 12801 case MO_16: 12802 index = h << 2 | l << 1 | m; 12803 break; 12804 case MO_32: 12805 index = h << 1 | l; 12806 rm |= m << 4; 12807 break; 12808 case MO_64: 12809 if (l || !is_q) { 12810 unallocated_encoding(s); 12811 return; 12812 } 12813 index = h; 12814 rm |= m << 4; 12815 break; 12816 default: 12817 g_assert_not_reached(); 12818 } 12819 12820 if (!fp_access_check(s)) { 12821 return; 12822 } 12823 12824 if (is_fp) { 12825 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12826 } else { 12827 fpst = NULL; 12828 } 12829 12830 switch (16 * u + opcode) { 12831 case 0x0e: /* SDOT */ 12832 case 0x1e: /* UDOT */ 12833 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12834 u ? gen_helper_gvec_udot_idx_b 12835 : gen_helper_gvec_sdot_idx_b); 12836 return; 12837 case 0x0f: 12838 switch (extract32(insn, 22, 2)) { 12839 case 0: /* SUDOT */ 12840 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12841 gen_helper_gvec_sudot_idx_b); 12842 return; 12843 case 1: /* BFDOT */ 12844 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12845 gen_helper_gvec_bfdot_idx); 12846 return; 12847 case 2: /* USDOT */ 12848 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12849 gen_helper_gvec_usdot_idx_b); 12850 return; 12851 case 3: /* BFMLAL{B,T} */ 12852 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12853 gen_helper_gvec_bfmlal_idx); 12854 return; 12855 } 12856 g_assert_not_reached(); 12857 case 0x11: /* FCMLA #0 */ 12858 case 0x13: /* FCMLA #90 */ 12859 case 0x15: /* FCMLA #180 */ 12860 case 0x17: /* FCMLA #270 */ 12861 { 12862 int rot = extract32(insn, 13, 2); 12863 int data = (index << 2) | rot; 12864 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12865 vec_full_reg_offset(s, rn), 12866 vec_full_reg_offset(s, rm), 12867 vec_full_reg_offset(s, rd), fpst, 12868 is_q ? 16 : 8, vec_full_reg_size(s), data, 12869 size == MO_64 12870 ? gen_helper_gvec_fcmlas_idx 12871 : gen_helper_gvec_fcmlah_idx); 12872 } 12873 return; 12874 12875 case 0x00: /* FMLAL */ 12876 case 0x04: /* FMLSL */ 12877 case 0x18: /* FMLAL2 */ 12878 case 0x1c: /* FMLSL2 */ 12879 { 12880 int is_s = extract32(opcode, 2, 1); 12881 int is_2 = u; 12882 int data = (index << 2) | (is_2 << 1) | is_s; 12883 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12884 vec_full_reg_offset(s, rn), 12885 vec_full_reg_offset(s, rm), tcg_env, 12886 is_q ? 16 : 8, vec_full_reg_size(s), 12887 data, gen_helper_gvec_fmlal_idx_a64); 12888 } 12889 return; 12890 12891 case 0x08: /* MUL */ 12892 if (!is_long && !is_scalar) { 12893 static gen_helper_gvec_3 * const fns[3] = { 12894 gen_helper_gvec_mul_idx_h, 12895 gen_helper_gvec_mul_idx_s, 12896 gen_helper_gvec_mul_idx_d, 12897 }; 12898 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12899 vec_full_reg_offset(s, rn), 12900 vec_full_reg_offset(s, rm), 12901 is_q ? 16 : 8, vec_full_reg_size(s), 12902 index, fns[size - 1]); 12903 return; 12904 } 12905 break; 12906 12907 case 0x10: /* MLA */ 12908 if (!is_long && !is_scalar) { 12909 static gen_helper_gvec_4 * const fns[3] = { 12910 gen_helper_gvec_mla_idx_h, 12911 gen_helper_gvec_mla_idx_s, 12912 gen_helper_gvec_mla_idx_d, 12913 }; 12914 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12915 vec_full_reg_offset(s, rn), 12916 vec_full_reg_offset(s, rm), 12917 vec_full_reg_offset(s, rd), 12918 is_q ? 16 : 8, vec_full_reg_size(s), 12919 index, fns[size - 1]); 12920 return; 12921 } 12922 break; 12923 12924 case 0x14: /* MLS */ 12925 if (!is_long && !is_scalar) { 12926 static gen_helper_gvec_4 * const fns[3] = { 12927 gen_helper_gvec_mls_idx_h, 12928 gen_helper_gvec_mls_idx_s, 12929 gen_helper_gvec_mls_idx_d, 12930 }; 12931 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12932 vec_full_reg_offset(s, rn), 12933 vec_full_reg_offset(s, rm), 12934 vec_full_reg_offset(s, rd), 12935 is_q ? 16 : 8, vec_full_reg_size(s), 12936 index, fns[size - 1]); 12937 return; 12938 } 12939 break; 12940 } 12941 12942 if (size == 3) { 12943 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12944 int pass; 12945 12946 assert(is_fp && is_q && !is_long); 12947 12948 read_vec_element(s, tcg_idx, rm, index, MO_64); 12949 12950 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12951 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12952 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12953 12954 read_vec_element(s, tcg_op, rn, pass, MO_64); 12955 12956 switch (16 * u + opcode) { 12957 case 0x05: /* FMLS */ 12958 /* As usual for ARM, separate negation for fused multiply-add */ 12959 gen_helper_vfp_negd(tcg_op, tcg_op); 12960 /* fall through */ 12961 case 0x01: /* FMLA */ 12962 read_vec_element(s, tcg_res, rd, pass, MO_64); 12963 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12964 break; 12965 case 0x09: /* FMUL */ 12966 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12967 break; 12968 case 0x19: /* FMULX */ 12969 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 12970 break; 12971 default: 12972 g_assert_not_reached(); 12973 } 12974 12975 write_vec_element(s, tcg_res, rd, pass, MO_64); 12976 } 12977 12978 clear_vec_high(s, !is_scalar, rd); 12979 } else if (!is_long) { 12980 /* 32 bit floating point, or 16 or 32 bit integer. 12981 * For the 16 bit scalar case we use the usual Neon helpers and 12982 * rely on the fact that 0 op 0 == 0 with no side effects. 12983 */ 12984 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12985 int pass, maxpasses; 12986 12987 if (is_scalar) { 12988 maxpasses = 1; 12989 } else { 12990 maxpasses = is_q ? 4 : 2; 12991 } 12992 12993 read_vec_element_i32(s, tcg_idx, rm, index, size); 12994 12995 if (size == 1 && !is_scalar) { 12996 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12997 * the index into both halves of the 32 bit tcg_idx and then use 12998 * the usual Neon helpers. 12999 */ 13000 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13001 } 13002 13003 for (pass = 0; pass < maxpasses; pass++) { 13004 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13005 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13006 13007 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13008 13009 switch (16 * u + opcode) { 13010 case 0x08: /* MUL */ 13011 case 0x10: /* MLA */ 13012 case 0x14: /* MLS */ 13013 { 13014 static NeonGenTwoOpFn * const fns[2][2] = { 13015 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13016 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13017 }; 13018 NeonGenTwoOpFn *genfn; 13019 bool is_sub = opcode == 0x4; 13020 13021 if (size == 1) { 13022 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13023 } else { 13024 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13025 } 13026 if (opcode == 0x8) { 13027 break; 13028 } 13029 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13030 genfn = fns[size - 1][is_sub]; 13031 genfn(tcg_res, tcg_op, tcg_res); 13032 break; 13033 } 13034 case 0x05: /* FMLS */ 13035 case 0x01: /* FMLA */ 13036 read_vec_element_i32(s, tcg_res, rd, pass, 13037 is_scalar ? size : MO_32); 13038 switch (size) { 13039 case 1: 13040 if (opcode == 0x5) { 13041 /* As usual for ARM, separate negation for fused 13042 * multiply-add */ 13043 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13044 } 13045 if (is_scalar) { 13046 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13047 tcg_res, fpst); 13048 } else { 13049 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13050 tcg_res, fpst); 13051 } 13052 break; 13053 case 2: 13054 if (opcode == 0x5) { 13055 /* As usual for ARM, separate negation for 13056 * fused multiply-add */ 13057 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13058 } 13059 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13060 tcg_res, fpst); 13061 break; 13062 default: 13063 g_assert_not_reached(); 13064 } 13065 break; 13066 case 0x09: /* FMUL */ 13067 switch (size) { 13068 case 1: 13069 if (is_scalar) { 13070 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13071 tcg_idx, fpst); 13072 } else { 13073 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13074 tcg_idx, fpst); 13075 } 13076 break; 13077 case 2: 13078 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13079 break; 13080 default: 13081 g_assert_not_reached(); 13082 } 13083 break; 13084 case 0x19: /* FMULX */ 13085 switch (size) { 13086 case 1: 13087 if (is_scalar) { 13088 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13089 tcg_idx, fpst); 13090 } else { 13091 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13092 tcg_idx, fpst); 13093 } 13094 break; 13095 case 2: 13096 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13097 break; 13098 default: 13099 g_assert_not_reached(); 13100 } 13101 break; 13102 case 0x0c: /* SQDMULH */ 13103 if (size == 1) { 13104 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13105 tcg_op, tcg_idx); 13106 } else { 13107 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13108 tcg_op, tcg_idx); 13109 } 13110 break; 13111 case 0x0d: /* SQRDMULH */ 13112 if (size == 1) { 13113 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13114 tcg_op, tcg_idx); 13115 } else { 13116 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13117 tcg_op, tcg_idx); 13118 } 13119 break; 13120 case 0x1d: /* SQRDMLAH */ 13121 read_vec_element_i32(s, tcg_res, rd, pass, 13122 is_scalar ? size : MO_32); 13123 if (size == 1) { 13124 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13125 tcg_op, tcg_idx, tcg_res); 13126 } else { 13127 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13128 tcg_op, tcg_idx, tcg_res); 13129 } 13130 break; 13131 case 0x1f: /* SQRDMLSH */ 13132 read_vec_element_i32(s, tcg_res, rd, pass, 13133 is_scalar ? size : MO_32); 13134 if (size == 1) { 13135 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13136 tcg_op, tcg_idx, tcg_res); 13137 } else { 13138 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13139 tcg_op, tcg_idx, tcg_res); 13140 } 13141 break; 13142 default: 13143 g_assert_not_reached(); 13144 } 13145 13146 if (is_scalar) { 13147 write_fp_sreg(s, rd, tcg_res); 13148 } else { 13149 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13150 } 13151 } 13152 13153 clear_vec_high(s, is_q, rd); 13154 } else { 13155 /* long ops: 16x16->32 or 32x32->64 */ 13156 TCGv_i64 tcg_res[2]; 13157 int pass; 13158 bool satop = extract32(opcode, 0, 1); 13159 MemOp memop = MO_32; 13160 13161 if (satop || !u) { 13162 memop |= MO_SIGN; 13163 } 13164 13165 if (size == 2) { 13166 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13167 13168 read_vec_element(s, tcg_idx, rm, index, memop); 13169 13170 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13171 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13172 TCGv_i64 tcg_passres; 13173 int passelt; 13174 13175 if (is_scalar) { 13176 passelt = 0; 13177 } else { 13178 passelt = pass + (is_q * 2); 13179 } 13180 13181 read_vec_element(s, tcg_op, rn, passelt, memop); 13182 13183 tcg_res[pass] = tcg_temp_new_i64(); 13184 13185 if (opcode == 0xa || opcode == 0xb) { 13186 /* Non-accumulating ops */ 13187 tcg_passres = tcg_res[pass]; 13188 } else { 13189 tcg_passres = tcg_temp_new_i64(); 13190 } 13191 13192 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13193 13194 if (satop) { 13195 /* saturating, doubling */ 13196 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13197 tcg_passres, tcg_passres); 13198 } 13199 13200 if (opcode == 0xa || opcode == 0xb) { 13201 continue; 13202 } 13203 13204 /* Accumulating op: handle accumulate step */ 13205 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13206 13207 switch (opcode) { 13208 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13209 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13210 break; 13211 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13212 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13213 break; 13214 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13215 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13216 /* fall through */ 13217 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13218 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13219 tcg_res[pass], 13220 tcg_passres); 13221 break; 13222 default: 13223 g_assert_not_reached(); 13224 } 13225 } 13226 13227 clear_vec_high(s, !is_scalar, rd); 13228 } else { 13229 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13230 13231 assert(size == 1); 13232 read_vec_element_i32(s, tcg_idx, rm, index, size); 13233 13234 if (!is_scalar) { 13235 /* The simplest way to handle the 16x16 indexed ops is to 13236 * duplicate the index into both halves of the 32 bit tcg_idx 13237 * and then use the usual Neon helpers. 13238 */ 13239 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13240 } 13241 13242 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13243 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13244 TCGv_i64 tcg_passres; 13245 13246 if (is_scalar) { 13247 read_vec_element_i32(s, tcg_op, rn, pass, size); 13248 } else { 13249 read_vec_element_i32(s, tcg_op, rn, 13250 pass + (is_q * 2), MO_32); 13251 } 13252 13253 tcg_res[pass] = tcg_temp_new_i64(); 13254 13255 if (opcode == 0xa || opcode == 0xb) { 13256 /* Non-accumulating ops */ 13257 tcg_passres = tcg_res[pass]; 13258 } else { 13259 tcg_passres = tcg_temp_new_i64(); 13260 } 13261 13262 if (memop & MO_SIGN) { 13263 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13264 } else { 13265 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13266 } 13267 if (satop) { 13268 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13269 tcg_passres, tcg_passres); 13270 } 13271 13272 if (opcode == 0xa || opcode == 0xb) { 13273 continue; 13274 } 13275 13276 /* Accumulating op: handle accumulate step */ 13277 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13278 13279 switch (opcode) { 13280 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13281 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13282 tcg_passres); 13283 break; 13284 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13285 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13286 tcg_passres); 13287 break; 13288 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13289 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13290 /* fall through */ 13291 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13292 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13293 tcg_res[pass], 13294 tcg_passres); 13295 break; 13296 default: 13297 g_assert_not_reached(); 13298 } 13299 } 13300 13301 if (is_scalar) { 13302 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13303 } 13304 } 13305 13306 if (is_scalar) { 13307 tcg_res[1] = tcg_constant_i64(0); 13308 } 13309 13310 for (pass = 0; pass < 2; pass++) { 13311 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13312 } 13313 } 13314 } 13315 13316 /* Crypto AES 13317 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13318 * +-----------------+------+-----------+--------+-----+------+------+ 13319 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13320 * +-----------------+------+-----------+--------+-----+------+------+ 13321 */ 13322 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13323 { 13324 int size = extract32(insn, 22, 2); 13325 int opcode = extract32(insn, 12, 5); 13326 int rn = extract32(insn, 5, 5); 13327 int rd = extract32(insn, 0, 5); 13328 gen_helper_gvec_2 *genfn2 = NULL; 13329 gen_helper_gvec_3 *genfn3 = NULL; 13330 13331 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13332 unallocated_encoding(s); 13333 return; 13334 } 13335 13336 switch (opcode) { 13337 case 0x4: /* AESE */ 13338 genfn3 = gen_helper_crypto_aese; 13339 break; 13340 case 0x6: /* AESMC */ 13341 genfn2 = gen_helper_crypto_aesmc; 13342 break; 13343 case 0x5: /* AESD */ 13344 genfn3 = gen_helper_crypto_aesd; 13345 break; 13346 case 0x7: /* AESIMC */ 13347 genfn2 = gen_helper_crypto_aesimc; 13348 break; 13349 default: 13350 unallocated_encoding(s); 13351 return; 13352 } 13353 13354 if (!fp_access_check(s)) { 13355 return; 13356 } 13357 if (genfn2) { 13358 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13359 } else { 13360 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13361 } 13362 } 13363 13364 /* Crypto three-reg SHA 13365 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13366 * +-----------------+------+---+------+---+--------+-----+------+------+ 13367 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13368 * +-----------------+------+---+------+---+--------+-----+------+------+ 13369 */ 13370 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13371 { 13372 int size = extract32(insn, 22, 2); 13373 int opcode = extract32(insn, 12, 3); 13374 int rm = extract32(insn, 16, 5); 13375 int rn = extract32(insn, 5, 5); 13376 int rd = extract32(insn, 0, 5); 13377 gen_helper_gvec_3 *genfn; 13378 bool feature; 13379 13380 if (size != 0) { 13381 unallocated_encoding(s); 13382 return; 13383 } 13384 13385 switch (opcode) { 13386 case 0: /* SHA1C */ 13387 genfn = gen_helper_crypto_sha1c; 13388 feature = dc_isar_feature(aa64_sha1, s); 13389 break; 13390 case 1: /* SHA1P */ 13391 genfn = gen_helper_crypto_sha1p; 13392 feature = dc_isar_feature(aa64_sha1, s); 13393 break; 13394 case 2: /* SHA1M */ 13395 genfn = gen_helper_crypto_sha1m; 13396 feature = dc_isar_feature(aa64_sha1, s); 13397 break; 13398 case 3: /* SHA1SU0 */ 13399 genfn = gen_helper_crypto_sha1su0; 13400 feature = dc_isar_feature(aa64_sha1, s); 13401 break; 13402 case 4: /* SHA256H */ 13403 genfn = gen_helper_crypto_sha256h; 13404 feature = dc_isar_feature(aa64_sha256, s); 13405 break; 13406 case 5: /* SHA256H2 */ 13407 genfn = gen_helper_crypto_sha256h2; 13408 feature = dc_isar_feature(aa64_sha256, s); 13409 break; 13410 case 6: /* SHA256SU1 */ 13411 genfn = gen_helper_crypto_sha256su1; 13412 feature = dc_isar_feature(aa64_sha256, s); 13413 break; 13414 default: 13415 unallocated_encoding(s); 13416 return; 13417 } 13418 13419 if (!feature) { 13420 unallocated_encoding(s); 13421 return; 13422 } 13423 13424 if (!fp_access_check(s)) { 13425 return; 13426 } 13427 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13428 } 13429 13430 /* Crypto two-reg SHA 13431 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13432 * +-----------------+------+-----------+--------+-----+------+------+ 13433 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13434 * +-----------------+------+-----------+--------+-----+------+------+ 13435 */ 13436 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13437 { 13438 int size = extract32(insn, 22, 2); 13439 int opcode = extract32(insn, 12, 5); 13440 int rn = extract32(insn, 5, 5); 13441 int rd = extract32(insn, 0, 5); 13442 gen_helper_gvec_2 *genfn; 13443 bool feature; 13444 13445 if (size != 0) { 13446 unallocated_encoding(s); 13447 return; 13448 } 13449 13450 switch (opcode) { 13451 case 0: /* SHA1H */ 13452 feature = dc_isar_feature(aa64_sha1, s); 13453 genfn = gen_helper_crypto_sha1h; 13454 break; 13455 case 1: /* SHA1SU1 */ 13456 feature = dc_isar_feature(aa64_sha1, s); 13457 genfn = gen_helper_crypto_sha1su1; 13458 break; 13459 case 2: /* SHA256SU0 */ 13460 feature = dc_isar_feature(aa64_sha256, s); 13461 genfn = gen_helper_crypto_sha256su0; 13462 break; 13463 default: 13464 unallocated_encoding(s); 13465 return; 13466 } 13467 13468 if (!feature) { 13469 unallocated_encoding(s); 13470 return; 13471 } 13472 13473 if (!fp_access_check(s)) { 13474 return; 13475 } 13476 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13477 } 13478 13479 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13480 { 13481 tcg_gen_rotli_i64(d, m, 1); 13482 tcg_gen_xor_i64(d, d, n); 13483 } 13484 13485 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13486 { 13487 tcg_gen_rotli_vec(vece, d, m, 1); 13488 tcg_gen_xor_vec(vece, d, d, n); 13489 } 13490 13491 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13492 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13493 { 13494 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13495 static const GVecGen3 op = { 13496 .fni8 = gen_rax1_i64, 13497 .fniv = gen_rax1_vec, 13498 .opt_opc = vecop_list, 13499 .fno = gen_helper_crypto_rax1, 13500 .vece = MO_64, 13501 }; 13502 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13503 } 13504 13505 /* Crypto three-reg SHA512 13506 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13507 * +-----------------------+------+---+---+-----+--------+------+------+ 13508 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13509 * +-----------------------+------+---+---+-----+--------+------+------+ 13510 */ 13511 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13512 { 13513 int opcode = extract32(insn, 10, 2); 13514 int o = extract32(insn, 14, 1); 13515 int rm = extract32(insn, 16, 5); 13516 int rn = extract32(insn, 5, 5); 13517 int rd = extract32(insn, 0, 5); 13518 bool feature; 13519 gen_helper_gvec_3 *oolfn = NULL; 13520 GVecGen3Fn *gvecfn = NULL; 13521 13522 if (o == 0) { 13523 switch (opcode) { 13524 case 0: /* SHA512H */ 13525 feature = dc_isar_feature(aa64_sha512, s); 13526 oolfn = gen_helper_crypto_sha512h; 13527 break; 13528 case 1: /* SHA512H2 */ 13529 feature = dc_isar_feature(aa64_sha512, s); 13530 oolfn = gen_helper_crypto_sha512h2; 13531 break; 13532 case 2: /* SHA512SU1 */ 13533 feature = dc_isar_feature(aa64_sha512, s); 13534 oolfn = gen_helper_crypto_sha512su1; 13535 break; 13536 case 3: /* RAX1 */ 13537 feature = dc_isar_feature(aa64_sha3, s); 13538 gvecfn = gen_gvec_rax1; 13539 break; 13540 default: 13541 g_assert_not_reached(); 13542 } 13543 } else { 13544 switch (opcode) { 13545 case 0: /* SM3PARTW1 */ 13546 feature = dc_isar_feature(aa64_sm3, s); 13547 oolfn = gen_helper_crypto_sm3partw1; 13548 break; 13549 case 1: /* SM3PARTW2 */ 13550 feature = dc_isar_feature(aa64_sm3, s); 13551 oolfn = gen_helper_crypto_sm3partw2; 13552 break; 13553 case 2: /* SM4EKEY */ 13554 feature = dc_isar_feature(aa64_sm4, s); 13555 oolfn = gen_helper_crypto_sm4ekey; 13556 break; 13557 default: 13558 unallocated_encoding(s); 13559 return; 13560 } 13561 } 13562 13563 if (!feature) { 13564 unallocated_encoding(s); 13565 return; 13566 } 13567 13568 if (!fp_access_check(s)) { 13569 return; 13570 } 13571 13572 if (oolfn) { 13573 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13574 } else { 13575 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13576 } 13577 } 13578 13579 /* Crypto two-reg SHA512 13580 * 31 12 11 10 9 5 4 0 13581 * +-----------------------------------------+--------+------+------+ 13582 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13583 * +-----------------------------------------+--------+------+------+ 13584 */ 13585 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13586 { 13587 int opcode = extract32(insn, 10, 2); 13588 int rn = extract32(insn, 5, 5); 13589 int rd = extract32(insn, 0, 5); 13590 bool feature; 13591 13592 switch (opcode) { 13593 case 0: /* SHA512SU0 */ 13594 feature = dc_isar_feature(aa64_sha512, s); 13595 break; 13596 case 1: /* SM4E */ 13597 feature = dc_isar_feature(aa64_sm4, s); 13598 break; 13599 default: 13600 unallocated_encoding(s); 13601 return; 13602 } 13603 13604 if (!feature) { 13605 unallocated_encoding(s); 13606 return; 13607 } 13608 13609 if (!fp_access_check(s)) { 13610 return; 13611 } 13612 13613 switch (opcode) { 13614 case 0: /* SHA512SU0 */ 13615 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13616 break; 13617 case 1: /* SM4E */ 13618 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13619 break; 13620 default: 13621 g_assert_not_reached(); 13622 } 13623 } 13624 13625 /* Crypto four-register 13626 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13627 * +-------------------+-----+------+---+------+------+------+ 13628 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13629 * +-------------------+-----+------+---+------+------+------+ 13630 */ 13631 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13632 { 13633 int op0 = extract32(insn, 21, 2); 13634 int rm = extract32(insn, 16, 5); 13635 int ra = extract32(insn, 10, 5); 13636 int rn = extract32(insn, 5, 5); 13637 int rd = extract32(insn, 0, 5); 13638 bool feature; 13639 13640 switch (op0) { 13641 case 0: /* EOR3 */ 13642 case 1: /* BCAX */ 13643 feature = dc_isar_feature(aa64_sha3, s); 13644 break; 13645 case 2: /* SM3SS1 */ 13646 feature = dc_isar_feature(aa64_sm3, s); 13647 break; 13648 default: 13649 unallocated_encoding(s); 13650 return; 13651 } 13652 13653 if (!feature) { 13654 unallocated_encoding(s); 13655 return; 13656 } 13657 13658 if (!fp_access_check(s)) { 13659 return; 13660 } 13661 13662 if (op0 < 2) { 13663 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13664 int pass; 13665 13666 tcg_op1 = tcg_temp_new_i64(); 13667 tcg_op2 = tcg_temp_new_i64(); 13668 tcg_op3 = tcg_temp_new_i64(); 13669 tcg_res[0] = tcg_temp_new_i64(); 13670 tcg_res[1] = tcg_temp_new_i64(); 13671 13672 for (pass = 0; pass < 2; pass++) { 13673 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13674 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13675 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13676 13677 if (op0 == 0) { 13678 /* EOR3 */ 13679 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13680 } else { 13681 /* BCAX */ 13682 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13683 } 13684 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13685 } 13686 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13687 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13688 } else { 13689 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13690 13691 tcg_op1 = tcg_temp_new_i32(); 13692 tcg_op2 = tcg_temp_new_i32(); 13693 tcg_op3 = tcg_temp_new_i32(); 13694 tcg_res = tcg_temp_new_i32(); 13695 tcg_zero = tcg_constant_i32(0); 13696 13697 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13698 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13699 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13700 13701 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13702 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13703 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13704 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13705 13706 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13707 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13708 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13709 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13710 } 13711 } 13712 13713 /* Crypto XAR 13714 * 31 21 20 16 15 10 9 5 4 0 13715 * +-----------------------+------+--------+------+------+ 13716 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13717 * +-----------------------+------+--------+------+------+ 13718 */ 13719 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13720 { 13721 int rm = extract32(insn, 16, 5); 13722 int imm6 = extract32(insn, 10, 6); 13723 int rn = extract32(insn, 5, 5); 13724 int rd = extract32(insn, 0, 5); 13725 13726 if (!dc_isar_feature(aa64_sha3, s)) { 13727 unallocated_encoding(s); 13728 return; 13729 } 13730 13731 if (!fp_access_check(s)) { 13732 return; 13733 } 13734 13735 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13736 vec_full_reg_offset(s, rn), 13737 vec_full_reg_offset(s, rm), imm6, 16, 13738 vec_full_reg_size(s)); 13739 } 13740 13741 /* Crypto three-reg imm2 13742 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13743 * +-----------------------+------+-----+------+--------+------+------+ 13744 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13745 * +-----------------------+------+-----+------+--------+------+------+ 13746 */ 13747 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13748 { 13749 static gen_helper_gvec_3 * const fns[4] = { 13750 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13751 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13752 }; 13753 int opcode = extract32(insn, 10, 2); 13754 int imm2 = extract32(insn, 12, 2); 13755 int rm = extract32(insn, 16, 5); 13756 int rn = extract32(insn, 5, 5); 13757 int rd = extract32(insn, 0, 5); 13758 13759 if (!dc_isar_feature(aa64_sm3, s)) { 13760 unallocated_encoding(s); 13761 return; 13762 } 13763 13764 if (!fp_access_check(s)) { 13765 return; 13766 } 13767 13768 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13769 } 13770 13771 /* C3.6 Data processing - SIMD, inc Crypto 13772 * 13773 * As the decode gets a little complex we are using a table based 13774 * approach for this part of the decode. 13775 */ 13776 static const AArch64DecodeTable data_proc_simd[] = { 13777 /* pattern , mask , fn */ 13778 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13779 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13780 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13781 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13782 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13783 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13784 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13785 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13786 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13787 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13788 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13789 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13790 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13791 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13792 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13793 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13794 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13795 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13796 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13797 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13798 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13799 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13800 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13801 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13802 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13803 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13804 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13805 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13806 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13807 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13808 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13809 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13810 { 0x00000000, 0x00000000, NULL } 13811 }; 13812 13813 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13814 { 13815 /* Note that this is called with all non-FP cases from 13816 * table C3-6 so it must UNDEF for entries not specifically 13817 * allocated to instructions in that table. 13818 */ 13819 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13820 if (fn) { 13821 fn(s, insn); 13822 } else { 13823 unallocated_encoding(s); 13824 } 13825 } 13826 13827 /* C3.6 Data processing - SIMD and floating point */ 13828 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13829 { 13830 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13831 disas_data_proc_fp(s, insn); 13832 } else { 13833 /* SIMD, including crypto */ 13834 disas_data_proc_simd(s, insn); 13835 } 13836 } 13837 13838 static bool trans_OK(DisasContext *s, arg_OK *a) 13839 { 13840 return true; 13841 } 13842 13843 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13844 { 13845 s->is_nonstreaming = true; 13846 return true; 13847 } 13848 13849 /** 13850 * is_guarded_page: 13851 * @env: The cpu environment 13852 * @s: The DisasContext 13853 * 13854 * Return true if the page is guarded. 13855 */ 13856 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13857 { 13858 uint64_t addr = s->base.pc_first; 13859 #ifdef CONFIG_USER_ONLY 13860 return page_get_flags(addr) & PAGE_BTI; 13861 #else 13862 CPUTLBEntryFull *full; 13863 void *host; 13864 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13865 int flags; 13866 13867 /* 13868 * We test this immediately after reading an insn, which means 13869 * that the TLB entry must be present and valid, and thus this 13870 * access will never raise an exception. 13871 */ 13872 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13873 false, &host, &full, 0); 13874 assert(!(flags & TLB_INVALID_MASK)); 13875 13876 return full->extra.arm.guarded; 13877 #endif 13878 } 13879 13880 /** 13881 * btype_destination_ok: 13882 * @insn: The instruction at the branch destination 13883 * @bt: SCTLR_ELx.BT 13884 * @btype: PSTATE.BTYPE, and is non-zero 13885 * 13886 * On a guarded page, there are a limited number of insns 13887 * that may be present at the branch target: 13888 * - branch target identifiers, 13889 * - paciasp, pacibsp, 13890 * - BRK insn 13891 * - HLT insn 13892 * Anything else causes a Branch Target Exception. 13893 * 13894 * Return true if the branch is compatible, false to raise BTITRAP. 13895 */ 13896 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13897 { 13898 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13899 /* HINT space */ 13900 switch (extract32(insn, 5, 7)) { 13901 case 0b011001: /* PACIASP */ 13902 case 0b011011: /* PACIBSP */ 13903 /* 13904 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13905 * with btype == 3. Otherwise all btype are ok. 13906 */ 13907 return !bt || btype != 3; 13908 case 0b100000: /* BTI */ 13909 /* Not compatible with any btype. */ 13910 return false; 13911 case 0b100010: /* BTI c */ 13912 /* Not compatible with btype == 3 */ 13913 return btype != 3; 13914 case 0b100100: /* BTI j */ 13915 /* Not compatible with btype == 2 */ 13916 return btype != 2; 13917 case 0b100110: /* BTI jc */ 13918 /* Compatible with any btype. */ 13919 return true; 13920 } 13921 } else { 13922 switch (insn & 0xffe0001fu) { 13923 case 0xd4200000u: /* BRK */ 13924 case 0xd4400000u: /* HLT */ 13925 /* Give priority to the breakpoint exception. */ 13926 return true; 13927 } 13928 } 13929 return false; 13930 } 13931 13932 /* C3.1 A64 instruction index by encoding */ 13933 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13934 { 13935 switch (extract32(insn, 25, 4)) { 13936 case 0x5: 13937 case 0xd: /* Data processing - register */ 13938 disas_data_proc_reg(s, insn); 13939 break; 13940 case 0x7: 13941 case 0xf: /* Data processing - SIMD and floating point */ 13942 disas_data_proc_simd_fp(s, insn); 13943 break; 13944 default: 13945 unallocated_encoding(s); 13946 break; 13947 } 13948 } 13949 13950 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13951 CPUState *cpu) 13952 { 13953 DisasContext *dc = container_of(dcbase, DisasContext, base); 13954 CPUARMState *env = cpu_env(cpu); 13955 ARMCPU *arm_cpu = env_archcpu(env); 13956 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13957 int bound, core_mmu_idx; 13958 13959 dc->isar = &arm_cpu->isar; 13960 dc->condjmp = 0; 13961 dc->pc_save = dc->base.pc_first; 13962 dc->aarch64 = true; 13963 dc->thumb = false; 13964 dc->sctlr_b = 0; 13965 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13966 dc->condexec_mask = 0; 13967 dc->condexec_cond = 0; 13968 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13969 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13970 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13971 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13972 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13973 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13974 #if !defined(CONFIG_USER_ONLY) 13975 dc->user = (dc->current_el == 0); 13976 #endif 13977 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13978 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13979 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13980 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13981 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13982 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 13983 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13984 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13985 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13986 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13987 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13988 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13989 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13990 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13991 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13992 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13993 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13994 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13995 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13996 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13997 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13998 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13999 dc->vec_len = 0; 14000 dc->vec_stride = 0; 14001 dc->cp_regs = arm_cpu->cp_regs; 14002 dc->features = env->features; 14003 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14004 dc->gm_blocksize = arm_cpu->gm_blocksize; 14005 14006 #ifdef CONFIG_USER_ONLY 14007 /* In sve_probe_page, we assume TBI is enabled. */ 14008 tcg_debug_assert(dc->tbid & 1); 14009 #endif 14010 14011 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14012 14013 /* Single step state. The code-generation logic here is: 14014 * SS_ACTIVE == 0: 14015 * generate code with no special handling for single-stepping (except 14016 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14017 * this happens anyway because those changes are all system register or 14018 * PSTATE writes). 14019 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14020 * emit code for one insn 14021 * emit code to clear PSTATE.SS 14022 * emit code to generate software step exception for completed step 14023 * end TB (as usual for having generated an exception) 14024 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14025 * emit code to generate a software step exception 14026 * end the TB 14027 */ 14028 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14029 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14030 dc->is_ldex = false; 14031 14032 /* Bound the number of insns to execute to those left on the page. */ 14033 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14034 14035 /* If architectural single step active, limit to 1. */ 14036 if (dc->ss_active) { 14037 bound = 1; 14038 } 14039 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14040 } 14041 14042 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14043 { 14044 } 14045 14046 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14047 { 14048 DisasContext *dc = container_of(dcbase, DisasContext, base); 14049 target_ulong pc_arg = dc->base.pc_next; 14050 14051 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14052 pc_arg &= ~TARGET_PAGE_MASK; 14053 } 14054 tcg_gen_insn_start(pc_arg, 0, 0); 14055 dc->insn_start = tcg_last_op(); 14056 } 14057 14058 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14059 { 14060 DisasContext *s = container_of(dcbase, DisasContext, base); 14061 CPUARMState *env = cpu_env(cpu); 14062 uint64_t pc = s->base.pc_next; 14063 uint32_t insn; 14064 14065 /* Singlestep exceptions have the highest priority. */ 14066 if (s->ss_active && !s->pstate_ss) { 14067 /* Singlestep state is Active-pending. 14068 * If we're in this state at the start of a TB then either 14069 * a) we just took an exception to an EL which is being debugged 14070 * and this is the first insn in the exception handler 14071 * b) debug exceptions were masked and we just unmasked them 14072 * without changing EL (eg by clearing PSTATE.D) 14073 * In either case we're going to take a swstep exception in the 14074 * "did not step an insn" case, and so the syndrome ISV and EX 14075 * bits should be zero. 14076 */ 14077 assert(s->base.num_insns == 1); 14078 gen_swstep_exception(s, 0, 0); 14079 s->base.is_jmp = DISAS_NORETURN; 14080 s->base.pc_next = pc + 4; 14081 return; 14082 } 14083 14084 if (pc & 3) { 14085 /* 14086 * PC alignment fault. This has priority over the instruction abort 14087 * that we would receive from a translation fault via arm_ldl_code. 14088 * This should only be possible after an indirect branch, at the 14089 * start of the TB. 14090 */ 14091 assert(s->base.num_insns == 1); 14092 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14093 s->base.is_jmp = DISAS_NORETURN; 14094 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14095 return; 14096 } 14097 14098 s->pc_curr = pc; 14099 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14100 s->insn = insn; 14101 s->base.pc_next = pc + 4; 14102 14103 s->fp_access_checked = false; 14104 s->sve_access_checked = false; 14105 14106 if (s->pstate_il) { 14107 /* 14108 * Illegal execution state. This has priority over BTI 14109 * exceptions, but comes after instruction abort exceptions. 14110 */ 14111 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14112 return; 14113 } 14114 14115 if (dc_isar_feature(aa64_bti, s)) { 14116 if (s->base.num_insns == 1) { 14117 /* 14118 * At the first insn of the TB, compute s->guarded_page. 14119 * We delayed computing this until successfully reading 14120 * the first insn of the TB, above. This (mostly) ensures 14121 * that the softmmu tlb entry has been populated, and the 14122 * page table GP bit is available. 14123 * 14124 * Note that we need to compute this even if btype == 0, 14125 * because this value is used for BR instructions later 14126 * where ENV is not available. 14127 */ 14128 s->guarded_page = is_guarded_page(env, s); 14129 14130 /* First insn can have btype set to non-zero. */ 14131 tcg_debug_assert(s->btype >= 0); 14132 14133 /* 14134 * Note that the Branch Target Exception has fairly high 14135 * priority -- below debugging exceptions but above most 14136 * everything else. This allows us to handle this now 14137 * instead of waiting until the insn is otherwise decoded. 14138 */ 14139 if (s->btype != 0 14140 && s->guarded_page 14141 && !btype_destination_ok(insn, s->bt, s->btype)) { 14142 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14143 return; 14144 } 14145 } else { 14146 /* Not the first insn: btype must be 0. */ 14147 tcg_debug_assert(s->btype == 0); 14148 } 14149 } 14150 14151 s->is_nonstreaming = false; 14152 if (s->sme_trap_nonstreaming) { 14153 disas_sme_fa64(s, insn); 14154 } 14155 14156 if (!disas_a64(s, insn) && 14157 !disas_sme(s, insn) && 14158 !disas_sve(s, insn)) { 14159 disas_a64_legacy(s, insn); 14160 } 14161 14162 /* 14163 * After execution of most insns, btype is reset to 0. 14164 * Note that we set btype == -1 when the insn sets btype. 14165 */ 14166 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14167 reset_btype(s); 14168 } 14169 } 14170 14171 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14172 { 14173 DisasContext *dc = container_of(dcbase, DisasContext, base); 14174 14175 if (unlikely(dc->ss_active)) { 14176 /* Note that this means single stepping WFI doesn't halt the CPU. 14177 * For conditional branch insns this is harmless unreachable code as 14178 * gen_goto_tb() has already handled emitting the debug exception 14179 * (and thus a tb-jump is not possible when singlestepping). 14180 */ 14181 switch (dc->base.is_jmp) { 14182 default: 14183 gen_a64_update_pc(dc, 4); 14184 /* fall through */ 14185 case DISAS_EXIT: 14186 case DISAS_JUMP: 14187 gen_step_complete_exception(dc); 14188 break; 14189 case DISAS_NORETURN: 14190 break; 14191 } 14192 } else { 14193 switch (dc->base.is_jmp) { 14194 case DISAS_NEXT: 14195 case DISAS_TOO_MANY: 14196 gen_goto_tb(dc, 1, 4); 14197 break; 14198 default: 14199 case DISAS_UPDATE_EXIT: 14200 gen_a64_update_pc(dc, 4); 14201 /* fall through */ 14202 case DISAS_EXIT: 14203 tcg_gen_exit_tb(NULL, 0); 14204 break; 14205 case DISAS_UPDATE_NOCHAIN: 14206 gen_a64_update_pc(dc, 4); 14207 /* fall through */ 14208 case DISAS_JUMP: 14209 tcg_gen_lookup_and_goto_ptr(); 14210 break; 14211 case DISAS_NORETURN: 14212 case DISAS_SWI: 14213 break; 14214 case DISAS_WFE: 14215 gen_a64_update_pc(dc, 4); 14216 gen_helper_wfe(tcg_env); 14217 break; 14218 case DISAS_YIELD: 14219 gen_a64_update_pc(dc, 4); 14220 gen_helper_yield(tcg_env); 14221 break; 14222 case DISAS_WFI: 14223 /* 14224 * This is a special case because we don't want to just halt 14225 * the CPU if trying to debug across a WFI. 14226 */ 14227 gen_a64_update_pc(dc, 4); 14228 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14229 /* 14230 * The helper doesn't necessarily throw an exception, but we 14231 * must go back to the main loop to check for interrupts anyway. 14232 */ 14233 tcg_gen_exit_tb(NULL, 0); 14234 break; 14235 } 14236 } 14237 } 14238 14239 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14240 CPUState *cpu, FILE *logfile) 14241 { 14242 DisasContext *dc = container_of(dcbase, DisasContext, base); 14243 14244 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14245 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14246 } 14247 14248 const TranslatorOps aarch64_translator_ops = { 14249 .init_disas_context = aarch64_tr_init_disas_context, 14250 .tb_start = aarch64_tr_tb_start, 14251 .insn_start = aarch64_tr_insn_start, 14252 .translate_insn = aarch64_tr_translate_insn, 14253 .tb_stop = aarch64_tr_tb_stop, 14254 .disas_log = aarch64_tr_disas_log, 14255 }; 14256