1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* 60 * Include the generated decoders. 61 */ 62 63 #include "decode-sme-fa64.c.inc" 64 #include "decode-a64.c.inc" 65 66 /* Table based decoder typedefs - used when the relevant bits for decode 67 * are too awkwardly scattered across the instruction (eg SIMD). 68 */ 69 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 70 71 typedef struct AArch64DecodeTable { 72 uint32_t pattern; 73 uint32_t mask; 74 AArch64DecodeFn *disas_fn; 75 } AArch64DecodeTable; 76 77 /* initialize TCG globals. */ 78 void a64_translate_init(void) 79 { 80 int i; 81 82 cpu_pc = tcg_global_mem_new_i64(cpu_env, 83 offsetof(CPUARMState, pc), 84 "pc"); 85 for (i = 0; i < 32; i++) { 86 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 87 offsetof(CPUARMState, xregs[i]), 88 regnames[i]); 89 } 90 91 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 92 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 93 } 94 95 /* 96 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 97 */ 98 static int get_a64_user_mem_index(DisasContext *s) 99 { 100 /* 101 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 102 * which is the usual mmu_idx for this cpu state. 103 */ 104 ARMMMUIdx useridx = s->mmu_idx; 105 106 if (s->unpriv) { 107 /* 108 * We have pre-computed the condition for AccType_UNPRIV. 109 * Therefore we should never get here with a mmu_idx for 110 * which we do not know the corresponding user mmu_idx. 111 */ 112 switch (useridx) { 113 case ARMMMUIdx_E10_1: 114 case ARMMMUIdx_E10_1_PAN: 115 useridx = ARMMMUIdx_E10_0; 116 break; 117 case ARMMMUIdx_E20_2: 118 case ARMMMUIdx_E20_2_PAN: 119 useridx = ARMMMUIdx_E20_0; 120 break; 121 default: 122 g_assert_not_reached(); 123 } 124 } 125 return arm_to_core_mmu_idx(useridx); 126 } 127 128 static void set_btype_raw(int val) 129 { 130 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 131 offsetof(CPUARMState, btype)); 132 } 133 134 static void set_btype(DisasContext *s, int val) 135 { 136 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 137 tcg_debug_assert(val >= 1 && val <= 3); 138 set_btype_raw(val); 139 s->btype = -1; 140 } 141 142 static void reset_btype(DisasContext *s) 143 { 144 if (s->btype != 0) { 145 set_btype_raw(0); 146 s->btype = 0; 147 } 148 } 149 150 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 151 { 152 assert(s->pc_save != -1); 153 if (tb_cflags(s->base.tb) & CF_PCREL) { 154 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 155 } else { 156 tcg_gen_movi_i64(dest, s->pc_curr + diff); 157 } 158 } 159 160 void gen_a64_update_pc(DisasContext *s, target_long diff) 161 { 162 gen_pc_plus_diff(s, cpu_pc, diff); 163 s->pc_save = s->pc_curr + diff; 164 } 165 166 /* 167 * Handle Top Byte Ignore (TBI) bits. 168 * 169 * If address tagging is enabled via the TCR TBI bits: 170 * + for EL2 and EL3 there is only one TBI bit, and if it is set 171 * then the address is zero-extended, clearing bits [63:56] 172 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 173 * and TBI1 controls addressses with bit 55 == 1. 174 * If the appropriate TBI bit is set for the address then 175 * the address is sign-extended from bit 55 into bits [63:56] 176 * 177 * Here We have concatenated TBI{1,0} into tbi. 178 */ 179 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 180 TCGv_i64 src, int tbi) 181 { 182 if (tbi == 0) { 183 /* Load unmodified address */ 184 tcg_gen_mov_i64(dst, src); 185 } else if (!regime_has_2_ranges(s->mmu_idx)) { 186 /* Force tag byte to all zero */ 187 tcg_gen_extract_i64(dst, src, 0, 56); 188 } else { 189 /* Sign-extend from bit 55. */ 190 tcg_gen_sextract_i64(dst, src, 0, 56); 191 192 switch (tbi) { 193 case 1: 194 /* tbi0 but !tbi1: only use the extension if positive */ 195 tcg_gen_and_i64(dst, dst, src); 196 break; 197 case 2: 198 /* !tbi0 but tbi1: only use the extension if negative */ 199 tcg_gen_or_i64(dst, dst, src); 200 break; 201 case 3: 202 /* tbi0 and tbi1: always use the extension */ 203 break; 204 default: 205 g_assert_not_reached(); 206 } 207 } 208 } 209 210 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 211 { 212 /* 213 * If address tagging is enabled for instructions via the TCR TBI bits, 214 * then loading an address into the PC will clear out any tag. 215 */ 216 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 217 s->pc_save = -1; 218 } 219 220 /* 221 * Handle MTE and/or TBI. 222 * 223 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 224 * for the tag to be present in the FAR_ELx register. But for user-only 225 * mode we do not have a TLB with which to implement this, so we must 226 * remove the top byte now. 227 * 228 * Always return a fresh temporary that we can increment independently 229 * of the write-back address. 230 */ 231 232 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 233 { 234 TCGv_i64 clean = tcg_temp_new_i64(); 235 #ifdef CONFIG_USER_ONLY 236 gen_top_byte_ignore(s, clean, addr, s->tbid); 237 #else 238 tcg_gen_mov_i64(clean, addr); 239 #endif 240 return clean; 241 } 242 243 /* Insert a zero tag into src, with the result at dst. */ 244 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 245 { 246 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 247 } 248 249 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 250 MMUAccessType acc, int log2_size) 251 { 252 gen_helper_probe_access(cpu_env, ptr, 253 tcg_constant_i32(acc), 254 tcg_constant_i32(get_mem_index(s)), 255 tcg_constant_i32(1 << log2_size)); 256 } 257 258 /* 259 * For MTE, check a single logical or atomic access. This probes a single 260 * address, the exact one specified. The size and alignment of the access 261 * is not relevant to MTE, per se, but watchpoints do require the size, 262 * and we want to recognize those before making any other changes to state. 263 */ 264 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 265 bool is_write, bool tag_checked, 266 int log2_size, bool is_unpriv, 267 int core_idx) 268 { 269 if (tag_checked && s->mte_active[is_unpriv]) { 270 TCGv_i64 ret; 271 int desc = 0; 272 273 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 274 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 275 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 276 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 277 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 278 279 ret = tcg_temp_new_i64(); 280 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 281 282 return ret; 283 } 284 return clean_data_tbi(s, addr); 285 } 286 287 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int log2_size) 289 { 290 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 291 false, get_mem_index(s)); 292 } 293 294 /* 295 * For MTE, check multiple logical sequential accesses. 296 */ 297 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 298 bool tag_checked, int size) 299 { 300 if (tag_checked && s->mte_active[0]) { 301 TCGv_i64 ret; 302 int desc = 0; 303 304 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 305 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 306 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 307 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 308 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 309 310 ret = tcg_temp_new_i64(); 311 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 312 313 return ret; 314 } 315 return clean_data_tbi(s, addr); 316 } 317 318 typedef struct DisasCompare64 { 319 TCGCond cond; 320 TCGv_i64 value; 321 } DisasCompare64; 322 323 static void a64_test_cc(DisasCompare64 *c64, int cc) 324 { 325 DisasCompare c32; 326 327 arm_test_cc(&c32, cc); 328 329 /* 330 * Sign-extend the 32-bit value so that the GE/LT comparisons work 331 * properly. The NE/EQ comparisons are also fine with this choice. 332 */ 333 c64->cond = c32.cond; 334 c64->value = tcg_temp_new_i64(); 335 tcg_gen_ext_i32_i64(c64->value, c32.value); 336 } 337 338 static void gen_rebuild_hflags(DisasContext *s) 339 { 340 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 341 } 342 343 static void gen_exception_internal(int excp) 344 { 345 assert(excp_is_internal(excp)); 346 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 347 } 348 349 static void gen_exception_internal_insn(DisasContext *s, int excp) 350 { 351 gen_a64_update_pc(s, 0); 352 gen_exception_internal(excp); 353 s->base.is_jmp = DISAS_NORETURN; 354 } 355 356 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 357 { 358 gen_a64_update_pc(s, 0); 359 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 360 s->base.is_jmp = DISAS_NORETURN; 361 } 362 363 static void gen_step_complete_exception(DisasContext *s) 364 { 365 /* We just completed step of an insn. Move from Active-not-pending 366 * to Active-pending, and then also take the swstep exception. 367 * This corresponds to making the (IMPDEF) choice to prioritize 368 * swstep exceptions over asynchronous exceptions taken to an exception 369 * level where debug is disabled. This choice has the advantage that 370 * we do not need to maintain internal state corresponding to the 371 * ISV/EX syndrome bits between completion of the step and generation 372 * of the exception, and our syndrome information is always correct. 373 */ 374 gen_ss_advance(s); 375 gen_swstep_exception(s, 1, s->is_ldex); 376 s->base.is_jmp = DISAS_NORETURN; 377 } 378 379 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 380 { 381 if (s->ss_active) { 382 return false; 383 } 384 return translator_use_goto_tb(&s->base, dest); 385 } 386 387 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 388 { 389 if (use_goto_tb(s, s->pc_curr + diff)) { 390 /* 391 * For pcrel, the pc must always be up-to-date on entry to 392 * the linked TB, so that it can use simple additions for all 393 * further adjustments. For !pcrel, the linked TB is compiled 394 * to know its full virtual address, so we can delay the 395 * update to pc to the unlinked path. A long chain of links 396 * can thus avoid many updates to the PC. 397 */ 398 if (tb_cflags(s->base.tb) & CF_PCREL) { 399 gen_a64_update_pc(s, diff); 400 tcg_gen_goto_tb(n); 401 } else { 402 tcg_gen_goto_tb(n); 403 gen_a64_update_pc(s, diff); 404 } 405 tcg_gen_exit_tb(s->base.tb, n); 406 s->base.is_jmp = DISAS_NORETURN; 407 } else { 408 gen_a64_update_pc(s, diff); 409 if (s->ss_active) { 410 gen_step_complete_exception(s); 411 } else { 412 tcg_gen_lookup_and_goto_ptr(); 413 s->base.is_jmp = DISAS_NORETURN; 414 } 415 } 416 } 417 418 /* 419 * Register access functions 420 * 421 * These functions are used for directly accessing a register in where 422 * changes to the final register value are likely to be made. If you 423 * need to use a register for temporary calculation (e.g. index type 424 * operations) use the read_* form. 425 * 426 * B1.2.1 Register mappings 427 * 428 * In instruction register encoding 31 can refer to ZR (zero register) or 429 * the SP (stack pointer) depending on context. In QEMU's case we map SP 430 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 431 * This is the point of the _sp forms. 432 */ 433 TCGv_i64 cpu_reg(DisasContext *s, int reg) 434 { 435 if (reg == 31) { 436 TCGv_i64 t = tcg_temp_new_i64(); 437 tcg_gen_movi_i64(t, 0); 438 return t; 439 } else { 440 return cpu_X[reg]; 441 } 442 } 443 444 /* register access for when 31 == SP */ 445 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 446 { 447 return cpu_X[reg]; 448 } 449 450 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 451 * representing the register contents. This TCGv is an auto-freed 452 * temporary so it need not be explicitly freed, and may be modified. 453 */ 454 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 455 { 456 TCGv_i64 v = tcg_temp_new_i64(); 457 if (reg != 31) { 458 if (sf) { 459 tcg_gen_mov_i64(v, cpu_X[reg]); 460 } else { 461 tcg_gen_ext32u_i64(v, cpu_X[reg]); 462 } 463 } else { 464 tcg_gen_movi_i64(v, 0); 465 } 466 return v; 467 } 468 469 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 470 { 471 TCGv_i64 v = tcg_temp_new_i64(); 472 if (sf) { 473 tcg_gen_mov_i64(v, cpu_X[reg]); 474 } else { 475 tcg_gen_ext32u_i64(v, cpu_X[reg]); 476 } 477 return v; 478 } 479 480 /* Return the offset into CPUARMState of a slice (from 481 * the least significant end) of FP register Qn (ie 482 * Dn, Sn, Hn or Bn). 483 * (Note that this is not the same mapping as for A32; see cpu.h) 484 */ 485 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 486 { 487 return vec_reg_offset(s, regno, 0, size); 488 } 489 490 /* Offset of the high half of the 128 bit vector Qn */ 491 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 492 { 493 return vec_reg_offset(s, regno, 1, MO_64); 494 } 495 496 /* Convenience accessors for reading and writing single and double 497 * FP registers. Writing clears the upper parts of the associated 498 * 128 bit vector register, as required by the architecture. 499 * Note that unlike the GP register accessors, the values returned 500 * by the read functions must be manually freed. 501 */ 502 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 503 { 504 TCGv_i64 v = tcg_temp_new_i64(); 505 506 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 507 return v; 508 } 509 510 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 511 { 512 TCGv_i32 v = tcg_temp_new_i32(); 513 514 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 515 return v; 516 } 517 518 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 519 { 520 TCGv_i32 v = tcg_temp_new_i32(); 521 522 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 523 return v; 524 } 525 526 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 527 * If SVE is not enabled, then there are only 128 bits in the vector. 528 */ 529 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 530 { 531 unsigned ofs = fp_reg_offset(s, rd, MO_64); 532 unsigned vsz = vec_full_reg_size(s); 533 534 /* Nop move, with side effect of clearing the tail. */ 535 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 536 } 537 538 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 539 { 540 unsigned ofs = fp_reg_offset(s, reg, MO_64); 541 542 tcg_gen_st_i64(v, cpu_env, ofs); 543 clear_vec_high(s, false, reg); 544 } 545 546 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 547 { 548 TCGv_i64 tmp = tcg_temp_new_i64(); 549 550 tcg_gen_extu_i32_i64(tmp, v); 551 write_fp_dreg(s, reg, tmp); 552 } 553 554 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 555 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 556 GVecGen2Fn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 2-operand + immediate AdvSIMD vector operation using 563 * an expander function. 564 */ 565 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 566 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 567 { 568 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 569 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 570 } 571 572 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 573 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 574 GVecGen3Fn *gvec_fn, int vece) 575 { 576 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 577 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 578 } 579 580 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 581 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 582 int rx, GVecGen4Fn *gvec_fn, int vece) 583 { 584 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 585 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 586 is_q ? 16 : 8, vec_full_reg_size(s)); 587 } 588 589 /* Expand a 2-operand operation using an out-of-line helper. */ 590 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 591 int rn, int data, gen_helper_gvec_2 *fn) 592 { 593 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 594 vec_full_reg_offset(s, rn), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand operation using an out-of-line helper. */ 599 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 600 int rn, int rm, int data, gen_helper_gvec_3 *fn) 601 { 602 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 603 vec_full_reg_offset(s, rn), 604 vec_full_reg_offset(s, rm), 605 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 606 } 607 608 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 609 * an out-of-line helper. 610 */ 611 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 612 int rm, bool is_fp16, int data, 613 gen_helper_gvec_3_ptr *fn) 614 { 615 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 616 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 617 vec_full_reg_offset(s, rn), 618 vec_full_reg_offset(s, rm), fpst, 619 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 620 } 621 622 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 623 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 624 int rm, gen_helper_gvec_3_ptr *fn) 625 { 626 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 627 628 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 629 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), qc_ptr, 632 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 633 } 634 635 /* Expand a 4-operand operation using an out-of-line helper. */ 636 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 637 int rm, int ra, int data, gen_helper_gvec_4 *fn) 638 { 639 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 640 vec_full_reg_offset(s, rn), 641 vec_full_reg_offset(s, rm), 642 vec_full_reg_offset(s, ra), 643 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 644 } 645 646 /* 647 * Expand a 4-operand + fpstatus pointer + simd data value operation using 648 * an out-of-line helper. 649 */ 650 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 651 int rm, int ra, bool is_fp16, int data, 652 gen_helper_gvec_4_ptr *fn) 653 { 654 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 655 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 656 vec_full_reg_offset(s, rn), 657 vec_full_reg_offset(s, rm), 658 vec_full_reg_offset(s, ra), fpst, 659 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 660 } 661 662 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 663 * than the 32 bit equivalent. 664 */ 665 static inline void gen_set_NZ64(TCGv_i64 result) 666 { 667 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 668 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 669 } 670 671 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 672 static inline void gen_logic_CC(int sf, TCGv_i64 result) 673 { 674 if (sf) { 675 gen_set_NZ64(result); 676 } else { 677 tcg_gen_extrl_i64_i32(cpu_ZF, result); 678 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 679 } 680 tcg_gen_movi_i32(cpu_CF, 0); 681 tcg_gen_movi_i32(cpu_VF, 0); 682 } 683 684 /* dest = T0 + T1; compute C, N, V and Z flags */ 685 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 686 { 687 TCGv_i64 result, flag, tmp; 688 result = tcg_temp_new_i64(); 689 flag = tcg_temp_new_i64(); 690 tmp = tcg_temp_new_i64(); 691 692 tcg_gen_movi_i64(tmp, 0); 693 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 694 695 tcg_gen_extrl_i64_i32(cpu_CF, flag); 696 697 gen_set_NZ64(result); 698 699 tcg_gen_xor_i64(flag, result, t0); 700 tcg_gen_xor_i64(tmp, t0, t1); 701 tcg_gen_andc_i64(flag, flag, tmp); 702 tcg_gen_extrh_i64_i32(cpu_VF, flag); 703 704 tcg_gen_mov_i64(dest, result); 705 } 706 707 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 708 { 709 TCGv_i32 t0_32 = tcg_temp_new_i32(); 710 TCGv_i32 t1_32 = tcg_temp_new_i32(); 711 TCGv_i32 tmp = tcg_temp_new_i32(); 712 713 tcg_gen_movi_i32(tmp, 0); 714 tcg_gen_extrl_i64_i32(t0_32, t0); 715 tcg_gen_extrl_i64_i32(t1_32, t1); 716 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 717 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 718 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 719 tcg_gen_xor_i32(tmp, t0_32, t1_32); 720 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 721 tcg_gen_extu_i32_i64(dest, cpu_NF); 722 } 723 724 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 if (sf) { 727 gen_add64_CC(dest, t0, t1); 728 } else { 729 gen_add32_CC(dest, t0, t1); 730 } 731 } 732 733 /* dest = T0 - T1; compute C, N, V and Z flags */ 734 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 735 { 736 /* 64 bit arithmetic */ 737 TCGv_i64 result, flag, tmp; 738 739 result = tcg_temp_new_i64(); 740 flag = tcg_temp_new_i64(); 741 tcg_gen_sub_i64(result, t0, t1); 742 743 gen_set_NZ64(result); 744 745 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 746 tcg_gen_extrl_i64_i32(cpu_CF, flag); 747 748 tcg_gen_xor_i64(flag, result, t0); 749 tmp = tcg_temp_new_i64(); 750 tcg_gen_xor_i64(tmp, t0, t1); 751 tcg_gen_and_i64(flag, flag, tmp); 752 tcg_gen_extrh_i64_i32(cpu_VF, flag); 753 tcg_gen_mov_i64(dest, result); 754 } 755 756 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 757 { 758 /* 32 bit arithmetic */ 759 TCGv_i32 t0_32 = tcg_temp_new_i32(); 760 TCGv_i32 t1_32 = tcg_temp_new_i32(); 761 TCGv_i32 tmp; 762 763 tcg_gen_extrl_i64_i32(t0_32, t0); 764 tcg_gen_extrl_i64_i32(t1_32, t1); 765 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 766 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 767 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 768 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 769 tmp = tcg_temp_new_i32(); 770 tcg_gen_xor_i32(tmp, t0_32, t1_32); 771 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 772 tcg_gen_extu_i32_i64(dest, cpu_NF); 773 } 774 775 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 if (sf) { 778 gen_sub64_CC(dest, t0, t1); 779 } else { 780 gen_sub32_CC(dest, t0, t1); 781 } 782 } 783 784 /* dest = T0 + T1 + CF; do not compute flags. */ 785 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 786 { 787 TCGv_i64 flag = tcg_temp_new_i64(); 788 tcg_gen_extu_i32_i64(flag, cpu_CF); 789 tcg_gen_add_i64(dest, t0, t1); 790 tcg_gen_add_i64(dest, dest, flag); 791 792 if (!sf) { 793 tcg_gen_ext32u_i64(dest, dest); 794 } 795 } 796 797 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 798 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 799 { 800 if (sf) { 801 TCGv_i64 result = tcg_temp_new_i64(); 802 TCGv_i64 cf_64 = tcg_temp_new_i64(); 803 TCGv_i64 vf_64 = tcg_temp_new_i64(); 804 TCGv_i64 tmp = tcg_temp_new_i64(); 805 TCGv_i64 zero = tcg_constant_i64(0); 806 807 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 808 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 809 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 810 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 811 gen_set_NZ64(result); 812 813 tcg_gen_xor_i64(vf_64, result, t0); 814 tcg_gen_xor_i64(tmp, t0, t1); 815 tcg_gen_andc_i64(vf_64, vf_64, tmp); 816 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 817 818 tcg_gen_mov_i64(dest, result); 819 } else { 820 TCGv_i32 t0_32 = tcg_temp_new_i32(); 821 TCGv_i32 t1_32 = tcg_temp_new_i32(); 822 TCGv_i32 tmp = tcg_temp_new_i32(); 823 TCGv_i32 zero = tcg_constant_i32(0); 824 825 tcg_gen_extrl_i64_i32(t0_32, t0); 826 tcg_gen_extrl_i64_i32(t1_32, t1); 827 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 828 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 829 830 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 831 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 832 tcg_gen_xor_i32(tmp, t0_32, t1_32); 833 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 834 tcg_gen_extu_i32_i64(dest, cpu_NF); 835 } 836 } 837 838 /* 839 * Load/Store generators 840 */ 841 842 /* 843 * Store from GPR register to memory. 844 */ 845 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 846 TCGv_i64 tcg_addr, MemOp memop, int memidx, 847 bool iss_valid, 848 unsigned int iss_srt, 849 bool iss_sf, bool iss_ar) 850 { 851 memop = finalize_memop(s, memop); 852 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 853 854 if (iss_valid) { 855 uint32_t syn; 856 857 syn = syn_data_abort_with_iss(0, 858 (memop & MO_SIZE), 859 false, 860 iss_srt, 861 iss_sf, 862 iss_ar, 863 0, 0, 0, 0, 0, false); 864 disas_set_insn_syndrome(s, syn); 865 } 866 } 867 868 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 869 TCGv_i64 tcg_addr, MemOp memop, 870 bool iss_valid, 871 unsigned int iss_srt, 872 bool iss_sf, bool iss_ar) 873 { 874 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 875 iss_valid, iss_srt, iss_sf, iss_ar); 876 } 877 878 /* 879 * Load from memory to GPR register 880 */ 881 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 882 MemOp memop, bool extend, int memidx, 883 bool iss_valid, unsigned int iss_srt, 884 bool iss_sf, bool iss_ar) 885 { 886 memop = finalize_memop(s, memop); 887 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 888 889 if (extend && (memop & MO_SIGN)) { 890 g_assert((memop & MO_SIZE) <= MO_32); 891 tcg_gen_ext32u_i64(dest, dest); 892 } 893 894 if (iss_valid) { 895 uint32_t syn; 896 897 syn = syn_data_abort_with_iss(0, 898 (memop & MO_SIZE), 899 (memop & MO_SIGN) != 0, 900 iss_srt, 901 iss_sf, 902 iss_ar, 903 0, 0, 0, 0, 0, false); 904 disas_set_insn_syndrome(s, syn); 905 } 906 } 907 908 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 909 MemOp memop, bool extend, 910 bool iss_valid, unsigned int iss_srt, 911 bool iss_sf, bool iss_ar) 912 { 913 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 914 iss_valid, iss_srt, iss_sf, iss_ar); 915 } 916 917 /* 918 * Store from FP register to memory 919 */ 920 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 921 { 922 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 923 TCGv_i64 tmplo = tcg_temp_new_i64(); 924 MemOp mop; 925 926 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 927 928 if (size < 4) { 929 mop = finalize_memop(s, size); 930 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 931 } else { 932 bool be = s->be_data == MO_BE; 933 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 934 TCGv_i64 tmphi = tcg_temp_new_i64(); 935 936 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 937 938 mop = s->be_data | MO_UQ; 939 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 940 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 941 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 942 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 943 get_mem_index(s), mop); 944 } 945 } 946 947 /* 948 * Load from memory to FP register 949 */ 950 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 951 { 952 /* This always zero-extends and writes to a full 128 bit wide vector */ 953 TCGv_i64 tmplo = tcg_temp_new_i64(); 954 TCGv_i64 tmphi = NULL; 955 MemOp mop; 956 957 if (size < 4) { 958 mop = finalize_memop(s, size); 959 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 960 } else { 961 bool be = s->be_data == MO_BE; 962 TCGv_i64 tcg_hiaddr; 963 964 tmphi = tcg_temp_new_i64(); 965 tcg_hiaddr = tcg_temp_new_i64(); 966 967 mop = s->be_data | MO_UQ; 968 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 969 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 970 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 971 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 972 get_mem_index(s), mop); 973 } 974 975 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 976 977 if (tmphi) { 978 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 979 } 980 clear_vec_high(s, tmphi != NULL, destidx); 981 } 982 983 /* 984 * Vector load/store helpers. 985 * 986 * The principal difference between this and a FP load is that we don't 987 * zero extend as we are filling a partial chunk of the vector register. 988 * These functions don't support 128 bit loads/stores, which would be 989 * normal load/store operations. 990 * 991 * The _i32 versions are useful when operating on 32 bit quantities 992 * (eg for floating point single or using Neon helper functions). 993 */ 994 995 /* Get value of an element within a vector register */ 996 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 997 int element, MemOp memop) 998 { 999 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1000 switch ((unsigned)memop) { 1001 case MO_8: 1002 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1003 break; 1004 case MO_16: 1005 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1006 break; 1007 case MO_32: 1008 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1009 break; 1010 case MO_8|MO_SIGN: 1011 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_16|MO_SIGN: 1014 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_32|MO_SIGN: 1017 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_64: 1020 case MO_64|MO_SIGN: 1021 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1022 break; 1023 default: 1024 g_assert_not_reached(); 1025 } 1026 } 1027 1028 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1029 int element, MemOp memop) 1030 { 1031 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1032 switch (memop) { 1033 case MO_8: 1034 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1035 break; 1036 case MO_16: 1037 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1038 break; 1039 case MO_8|MO_SIGN: 1040 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1041 break; 1042 case MO_16|MO_SIGN: 1043 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1044 break; 1045 case MO_32: 1046 case MO_32|MO_SIGN: 1047 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1048 break; 1049 default: 1050 g_assert_not_reached(); 1051 } 1052 } 1053 1054 /* Set value of an element within a vector register */ 1055 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1056 int element, MemOp memop) 1057 { 1058 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1059 switch (memop) { 1060 case MO_8: 1061 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1062 break; 1063 case MO_16: 1064 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1065 break; 1066 case MO_32: 1067 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1068 break; 1069 case MO_64: 1070 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1071 break; 1072 default: 1073 g_assert_not_reached(); 1074 } 1075 } 1076 1077 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1078 int destidx, int element, MemOp memop) 1079 { 1080 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1081 switch (memop) { 1082 case MO_8: 1083 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1084 break; 1085 case MO_16: 1086 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1087 break; 1088 case MO_32: 1089 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1090 break; 1091 default: 1092 g_assert_not_reached(); 1093 } 1094 } 1095 1096 /* Store from vector register to memory */ 1097 static void do_vec_st(DisasContext *s, int srcidx, int element, 1098 TCGv_i64 tcg_addr, MemOp mop) 1099 { 1100 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1101 1102 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1103 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1104 } 1105 1106 /* Load from memory to vector register */ 1107 static void do_vec_ld(DisasContext *s, int destidx, int element, 1108 TCGv_i64 tcg_addr, MemOp mop) 1109 { 1110 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1111 1112 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1113 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1114 } 1115 1116 /* Check that FP/Neon access is enabled. If it is, return 1117 * true. If not, emit code to generate an appropriate exception, 1118 * and return false; the caller should not emit any code for 1119 * the instruction. Note that this check must happen after all 1120 * unallocated-encoding checks (otherwise the syndrome information 1121 * for the resulting exception will be incorrect). 1122 */ 1123 static bool fp_access_check_only(DisasContext *s) 1124 { 1125 if (s->fp_excp_el) { 1126 assert(!s->fp_access_checked); 1127 s->fp_access_checked = true; 1128 1129 gen_exception_insn_el(s, 0, EXCP_UDEF, 1130 syn_fp_access_trap(1, 0xe, false, 0), 1131 s->fp_excp_el); 1132 return false; 1133 } 1134 s->fp_access_checked = true; 1135 return true; 1136 } 1137 1138 static bool fp_access_check(DisasContext *s) 1139 { 1140 if (!fp_access_check_only(s)) { 1141 return false; 1142 } 1143 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1144 gen_exception_insn(s, 0, EXCP_UDEF, 1145 syn_smetrap(SME_ET_Streaming, false)); 1146 return false; 1147 } 1148 return true; 1149 } 1150 1151 /* 1152 * Check that SVE access is enabled. If it is, return true. 1153 * If not, emit code to generate an appropriate exception and return false. 1154 * This function corresponds to CheckSVEEnabled(). 1155 */ 1156 bool sve_access_check(DisasContext *s) 1157 { 1158 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1159 assert(dc_isar_feature(aa64_sme, s)); 1160 if (!sme_sm_enabled_check(s)) { 1161 goto fail_exit; 1162 } 1163 } else if (s->sve_excp_el) { 1164 gen_exception_insn_el(s, 0, EXCP_UDEF, 1165 syn_sve_access_trap(), s->sve_excp_el); 1166 goto fail_exit; 1167 } 1168 s->sve_access_checked = true; 1169 return fp_access_check(s); 1170 1171 fail_exit: 1172 /* Assert that we only raise one exception per instruction. */ 1173 assert(!s->sve_access_checked); 1174 s->sve_access_checked = true; 1175 return false; 1176 } 1177 1178 /* 1179 * Check that SME access is enabled, raise an exception if not. 1180 * Note that this function corresponds to CheckSMEAccess and is 1181 * only used directly for cpregs. 1182 */ 1183 static bool sme_access_check(DisasContext *s) 1184 { 1185 if (s->sme_excp_el) { 1186 gen_exception_insn_el(s, 0, EXCP_UDEF, 1187 syn_smetrap(SME_ET_AccessTrap, false), 1188 s->sme_excp_el); 1189 return false; 1190 } 1191 return true; 1192 } 1193 1194 /* This function corresponds to CheckSMEEnabled. */ 1195 bool sme_enabled_check(DisasContext *s) 1196 { 1197 /* 1198 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1199 * to be zero when fp_excp_el has priority. This is because we need 1200 * sme_excp_el by itself for cpregs access checks. 1201 */ 1202 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1203 s->fp_access_checked = true; 1204 return sme_access_check(s); 1205 } 1206 return fp_access_check_only(s); 1207 } 1208 1209 /* Common subroutine for CheckSMEAnd*Enabled. */ 1210 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1211 { 1212 if (!sme_enabled_check(s)) { 1213 return false; 1214 } 1215 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1216 gen_exception_insn(s, 0, EXCP_UDEF, 1217 syn_smetrap(SME_ET_NotStreaming, false)); 1218 return false; 1219 } 1220 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1221 gen_exception_insn(s, 0, EXCP_UDEF, 1222 syn_smetrap(SME_ET_InactiveZA, false)); 1223 return false; 1224 } 1225 return true; 1226 } 1227 1228 /* 1229 * This utility function is for doing register extension with an 1230 * optional shift. You will likely want to pass a temporary for the 1231 * destination register. See DecodeRegExtend() in the ARM ARM. 1232 */ 1233 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1234 int option, unsigned int shift) 1235 { 1236 int extsize = extract32(option, 0, 2); 1237 bool is_signed = extract32(option, 2, 1); 1238 1239 if (is_signed) { 1240 switch (extsize) { 1241 case 0: 1242 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1243 break; 1244 case 1: 1245 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1246 break; 1247 case 2: 1248 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1249 break; 1250 case 3: 1251 tcg_gen_mov_i64(tcg_out, tcg_in); 1252 break; 1253 } 1254 } else { 1255 switch (extsize) { 1256 case 0: 1257 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1258 break; 1259 case 1: 1260 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1261 break; 1262 case 2: 1263 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1264 break; 1265 case 3: 1266 tcg_gen_mov_i64(tcg_out, tcg_in); 1267 break; 1268 } 1269 } 1270 1271 if (shift) { 1272 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1273 } 1274 } 1275 1276 static inline void gen_check_sp_alignment(DisasContext *s) 1277 { 1278 /* The AArch64 architecture mandates that (if enabled via PSTATE 1279 * or SCTLR bits) there is a check that SP is 16-aligned on every 1280 * SP-relative load or store (with an exception generated if it is not). 1281 * In line with general QEMU practice regarding misaligned accesses, 1282 * we omit these checks for the sake of guest program performance. 1283 * This function is provided as a hook so we can more easily add these 1284 * checks in future (possibly as a "favour catching guest program bugs 1285 * over speed" user selectable option). 1286 */ 1287 } 1288 1289 /* 1290 * This provides a simple table based table lookup decoder. It is 1291 * intended to be used when the relevant bits for decode are too 1292 * awkwardly placed and switch/if based logic would be confusing and 1293 * deeply nested. Since it's a linear search through the table, tables 1294 * should be kept small. 1295 * 1296 * It returns the first handler where insn & mask == pattern, or 1297 * NULL if there is no match. 1298 * The table is terminated by an empty mask (i.e. 0) 1299 */ 1300 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1301 uint32_t insn) 1302 { 1303 const AArch64DecodeTable *tptr = table; 1304 1305 while (tptr->mask) { 1306 if ((insn & tptr->mask) == tptr->pattern) { 1307 return tptr->disas_fn; 1308 } 1309 tptr++; 1310 } 1311 return NULL; 1312 } 1313 1314 /* 1315 * The instruction disassembly implemented here matches 1316 * the instruction encoding classifications in chapter C4 1317 * of the ARM Architecture Reference Manual (DDI0487B_a); 1318 * classification names and decode diagrams here should generally 1319 * match up with those in the manual. 1320 */ 1321 1322 static bool trans_B(DisasContext *s, arg_i *a) 1323 { 1324 reset_btype(s); 1325 gen_goto_tb(s, 0, a->imm); 1326 return true; 1327 } 1328 1329 static bool trans_BL(DisasContext *s, arg_i *a) 1330 { 1331 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1332 reset_btype(s); 1333 gen_goto_tb(s, 0, a->imm); 1334 return true; 1335 } 1336 1337 1338 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1339 { 1340 DisasLabel match; 1341 TCGv_i64 tcg_cmp; 1342 1343 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1344 reset_btype(s); 1345 1346 match = gen_disas_label(s); 1347 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1348 tcg_cmp, 0, match.label); 1349 gen_goto_tb(s, 0, 4); 1350 set_disas_label(s, match); 1351 gen_goto_tb(s, 1, a->imm); 1352 return true; 1353 } 1354 1355 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1356 { 1357 DisasLabel match; 1358 TCGv_i64 tcg_cmp; 1359 1360 tcg_cmp = tcg_temp_new_i64(); 1361 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1362 1363 reset_btype(s); 1364 1365 match = gen_disas_label(s); 1366 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1367 tcg_cmp, 0, match.label); 1368 gen_goto_tb(s, 0, 4); 1369 set_disas_label(s, match); 1370 gen_goto_tb(s, 1, a->imm); 1371 return true; 1372 } 1373 1374 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1375 { 1376 reset_btype(s); 1377 if (a->cond < 0x0e) { 1378 /* genuinely conditional branches */ 1379 DisasLabel match = gen_disas_label(s); 1380 arm_gen_test_cc(a->cond, match.label); 1381 gen_goto_tb(s, 0, 4); 1382 set_disas_label(s, match); 1383 gen_goto_tb(s, 1, a->imm); 1384 } else { 1385 /* 0xe and 0xf are both "always" conditions */ 1386 gen_goto_tb(s, 0, a->imm); 1387 } 1388 return true; 1389 } 1390 1391 static void set_btype_for_br(DisasContext *s, int rn) 1392 { 1393 if (dc_isar_feature(aa64_bti, s)) { 1394 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1395 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1396 } 1397 } 1398 1399 static void set_btype_for_blr(DisasContext *s) 1400 { 1401 if (dc_isar_feature(aa64_bti, s)) { 1402 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1403 set_btype(s, 2); 1404 } 1405 } 1406 1407 static bool trans_BR(DisasContext *s, arg_r *a) 1408 { 1409 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1410 set_btype_for_br(s, a->rn); 1411 s->base.is_jmp = DISAS_JUMP; 1412 return true; 1413 } 1414 1415 static bool trans_BLR(DisasContext *s, arg_r *a) 1416 { 1417 TCGv_i64 dst = cpu_reg(s, a->rn); 1418 TCGv_i64 lr = cpu_reg(s, 30); 1419 if (dst == lr) { 1420 TCGv_i64 tmp = tcg_temp_new_i64(); 1421 tcg_gen_mov_i64(tmp, dst); 1422 dst = tmp; 1423 } 1424 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1425 gen_a64_set_pc(s, dst); 1426 set_btype_for_blr(s); 1427 s->base.is_jmp = DISAS_JUMP; 1428 return true; 1429 } 1430 1431 static bool trans_RET(DisasContext *s, arg_r *a) 1432 { 1433 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1434 s->base.is_jmp = DISAS_JUMP; 1435 return true; 1436 } 1437 1438 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1439 TCGv_i64 modifier, bool use_key_a) 1440 { 1441 TCGv_i64 truedst; 1442 /* 1443 * Return the branch target for a BRAA/RETA/etc, which is either 1444 * just the destination dst, or that value with the pauth check 1445 * done and the code removed from the high bits. 1446 */ 1447 if (!s->pauth_active) { 1448 return dst; 1449 } 1450 1451 truedst = tcg_temp_new_i64(); 1452 if (use_key_a) { 1453 gen_helper_autia(truedst, cpu_env, dst, modifier); 1454 } else { 1455 gen_helper_autib(truedst, cpu_env, dst, modifier); 1456 } 1457 return truedst; 1458 } 1459 1460 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1461 { 1462 TCGv_i64 dst; 1463 1464 if (!dc_isar_feature(aa64_pauth, s)) { 1465 return false; 1466 } 1467 1468 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1469 gen_a64_set_pc(s, dst); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1476 { 1477 TCGv_i64 dst, lr; 1478 1479 if (!dc_isar_feature(aa64_pauth, s)) { 1480 return false; 1481 } 1482 1483 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1484 lr = cpu_reg(s, 30); 1485 if (dst == lr) { 1486 TCGv_i64 tmp = tcg_temp_new_i64(); 1487 tcg_gen_mov_i64(tmp, dst); 1488 dst = tmp; 1489 } 1490 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1491 gen_a64_set_pc(s, dst); 1492 set_btype_for_blr(s); 1493 s->base.is_jmp = DISAS_JUMP; 1494 return true; 1495 } 1496 1497 static bool trans_RETA(DisasContext *s, arg_reta *a) 1498 { 1499 TCGv_i64 dst; 1500 1501 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1502 gen_a64_set_pc(s, dst); 1503 s->base.is_jmp = DISAS_JUMP; 1504 return true; 1505 } 1506 1507 static bool trans_BRA(DisasContext *s, arg_bra *a) 1508 { 1509 TCGv_i64 dst; 1510 1511 if (!dc_isar_feature(aa64_pauth, s)) { 1512 return false; 1513 } 1514 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1515 gen_a64_set_pc(s, dst); 1516 set_btype_for_br(s, a->rn); 1517 s->base.is_jmp = DISAS_JUMP; 1518 return true; 1519 } 1520 1521 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1522 { 1523 TCGv_i64 dst, lr; 1524 1525 if (!dc_isar_feature(aa64_pauth, s)) { 1526 return false; 1527 } 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1529 lr = cpu_reg(s, 30); 1530 if (dst == lr) { 1531 TCGv_i64 tmp = tcg_temp_new_i64(); 1532 tcg_gen_mov_i64(tmp, dst); 1533 dst = tmp; 1534 } 1535 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1536 gen_a64_set_pc(s, dst); 1537 set_btype_for_blr(s); 1538 s->base.is_jmp = DISAS_JUMP; 1539 return true; 1540 } 1541 1542 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1543 { 1544 TCGv_i64 dst; 1545 1546 if (s->current_el == 0) { 1547 return false; 1548 } 1549 if (s->fgt_eret) { 1550 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1551 return true; 1552 } 1553 dst = tcg_temp_new_i64(); 1554 tcg_gen_ld_i64(dst, cpu_env, 1555 offsetof(CPUARMState, elr_el[s->current_el])); 1556 1557 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 1558 gen_io_start(); 1559 } 1560 1561 gen_helper_exception_return(cpu_env, dst); 1562 /* Must exit loop to check un-masked IRQs */ 1563 s->base.is_jmp = DISAS_EXIT; 1564 return true; 1565 } 1566 1567 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 if (s->current_el == 0) { 1575 return false; 1576 } 1577 /* The FGT trap takes precedence over an auth trap. */ 1578 if (s->fgt_eret) { 1579 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1580 return true; 1581 } 1582 dst = tcg_temp_new_i64(); 1583 tcg_gen_ld_i64(dst, cpu_env, 1584 offsetof(CPUARMState, elr_el[s->current_el])); 1585 1586 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1587 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 1588 gen_io_start(); 1589 } 1590 1591 gen_helper_exception_return(cpu_env, dst); 1592 /* Must exit loop to check un-masked IRQs */ 1593 s->base.is_jmp = DISAS_EXIT; 1594 return true; 1595 } 1596 1597 /* HINT instruction group, including various allocated HINTs */ 1598 static void handle_hint(DisasContext *s, uint32_t insn, 1599 unsigned int op1, unsigned int op2, unsigned int crm) 1600 { 1601 unsigned int selector = crm << 3 | op2; 1602 1603 if (op1 != 3) { 1604 unallocated_encoding(s); 1605 return; 1606 } 1607 1608 switch (selector) { 1609 case 0b00000: /* NOP */ 1610 break; 1611 case 0b00011: /* WFI */ 1612 s->base.is_jmp = DISAS_WFI; 1613 break; 1614 case 0b00001: /* YIELD */ 1615 /* When running in MTTCG we don't generate jumps to the yield and 1616 * WFE helpers as it won't affect the scheduling of other vCPUs. 1617 * If we wanted to more completely model WFE/SEV so we don't busy 1618 * spin unnecessarily we would need to do something more involved. 1619 */ 1620 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1621 s->base.is_jmp = DISAS_YIELD; 1622 } 1623 break; 1624 case 0b00010: /* WFE */ 1625 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1626 s->base.is_jmp = DISAS_WFE; 1627 } 1628 break; 1629 case 0b00100: /* SEV */ 1630 case 0b00101: /* SEVL */ 1631 case 0b00110: /* DGH */ 1632 /* we treat all as NOP at least for now */ 1633 break; 1634 case 0b00111: /* XPACLRI */ 1635 if (s->pauth_active) { 1636 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1637 } 1638 break; 1639 case 0b01000: /* PACIA1716 */ 1640 if (s->pauth_active) { 1641 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1642 } 1643 break; 1644 case 0b01010: /* PACIB1716 */ 1645 if (s->pauth_active) { 1646 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1647 } 1648 break; 1649 case 0b01100: /* AUTIA1716 */ 1650 if (s->pauth_active) { 1651 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1652 } 1653 break; 1654 case 0b01110: /* AUTIB1716 */ 1655 if (s->pauth_active) { 1656 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1657 } 1658 break; 1659 case 0b10000: /* ESB */ 1660 /* Without RAS, we must implement this as NOP. */ 1661 if (dc_isar_feature(aa64_ras, s)) { 1662 /* 1663 * QEMU does not have a source of physical SErrors, 1664 * so we are only concerned with virtual SErrors. 1665 * The pseudocode in the ARM for this case is 1666 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1667 * AArch64.vESBOperation(); 1668 * Most of the condition can be evaluated at translation time. 1669 * Test for EL2 present, and defer test for SEL2 to runtime. 1670 */ 1671 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1672 gen_helper_vesb(cpu_env); 1673 } 1674 } 1675 break; 1676 case 0b11000: /* PACIAZ */ 1677 if (s->pauth_active) { 1678 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1679 tcg_constant_i64(0)); 1680 } 1681 break; 1682 case 0b11001: /* PACIASP */ 1683 if (s->pauth_active) { 1684 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1685 } 1686 break; 1687 case 0b11010: /* PACIBZ */ 1688 if (s->pauth_active) { 1689 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1690 tcg_constant_i64(0)); 1691 } 1692 break; 1693 case 0b11011: /* PACIBSP */ 1694 if (s->pauth_active) { 1695 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1696 } 1697 break; 1698 case 0b11100: /* AUTIAZ */ 1699 if (s->pauth_active) { 1700 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1701 tcg_constant_i64(0)); 1702 } 1703 break; 1704 case 0b11101: /* AUTIASP */ 1705 if (s->pauth_active) { 1706 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1707 } 1708 break; 1709 case 0b11110: /* AUTIBZ */ 1710 if (s->pauth_active) { 1711 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1712 tcg_constant_i64(0)); 1713 } 1714 break; 1715 case 0b11111: /* AUTIBSP */ 1716 if (s->pauth_active) { 1717 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1718 } 1719 break; 1720 default: 1721 /* default specified as NOP equivalent */ 1722 break; 1723 } 1724 } 1725 1726 static void gen_clrex(DisasContext *s, uint32_t insn) 1727 { 1728 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1729 } 1730 1731 /* CLREX, DSB, DMB, ISB */ 1732 static void handle_sync(DisasContext *s, uint32_t insn, 1733 unsigned int op1, unsigned int op2, unsigned int crm) 1734 { 1735 TCGBar bar; 1736 1737 if (op1 != 3) { 1738 unallocated_encoding(s); 1739 return; 1740 } 1741 1742 switch (op2) { 1743 case 2: /* CLREX */ 1744 gen_clrex(s, insn); 1745 return; 1746 case 4: /* DSB */ 1747 case 5: /* DMB */ 1748 switch (crm & 3) { 1749 case 1: /* MBReqTypes_Reads */ 1750 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1751 break; 1752 case 2: /* MBReqTypes_Writes */ 1753 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1754 break; 1755 default: /* MBReqTypes_All */ 1756 bar = TCG_BAR_SC | TCG_MO_ALL; 1757 break; 1758 } 1759 tcg_gen_mb(bar); 1760 return; 1761 case 6: /* ISB */ 1762 /* We need to break the TB after this insn to execute 1763 * a self-modified code correctly and also to take 1764 * any pending interrupts immediately. 1765 */ 1766 reset_btype(s); 1767 gen_goto_tb(s, 0, 4); 1768 return; 1769 1770 case 7: /* SB */ 1771 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1772 goto do_unallocated; 1773 } 1774 /* 1775 * TODO: There is no speculation barrier opcode for TCG; 1776 * MB and end the TB instead. 1777 */ 1778 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1779 gen_goto_tb(s, 0, 4); 1780 return; 1781 1782 default: 1783 do_unallocated: 1784 unallocated_encoding(s); 1785 return; 1786 } 1787 } 1788 1789 static void gen_xaflag(void) 1790 { 1791 TCGv_i32 z = tcg_temp_new_i32(); 1792 1793 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1794 1795 /* 1796 * (!C & !Z) << 31 1797 * (!(C | Z)) << 31 1798 * ~((C | Z) << 31) 1799 * ~-(C | Z) 1800 * (C | Z) - 1 1801 */ 1802 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1803 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1804 1805 /* !(Z & C) */ 1806 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1807 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1808 1809 /* (!C & Z) << 31 -> -(Z & ~C) */ 1810 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1811 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1812 1813 /* C | Z */ 1814 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1815 } 1816 1817 static void gen_axflag(void) 1818 { 1819 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1820 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1821 1822 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1823 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1824 1825 tcg_gen_movi_i32(cpu_NF, 0); 1826 tcg_gen_movi_i32(cpu_VF, 0); 1827 } 1828 1829 /* MSR (immediate) - move immediate to processor state field */ 1830 static void handle_msr_i(DisasContext *s, uint32_t insn, 1831 unsigned int op1, unsigned int op2, unsigned int crm) 1832 { 1833 int op = op1 << 3 | op2; 1834 1835 /* End the TB by default, chaining is ok. */ 1836 s->base.is_jmp = DISAS_TOO_MANY; 1837 1838 switch (op) { 1839 case 0x00: /* CFINV */ 1840 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1841 goto do_unallocated; 1842 } 1843 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1844 s->base.is_jmp = DISAS_NEXT; 1845 break; 1846 1847 case 0x01: /* XAFlag */ 1848 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1849 goto do_unallocated; 1850 } 1851 gen_xaflag(); 1852 s->base.is_jmp = DISAS_NEXT; 1853 break; 1854 1855 case 0x02: /* AXFlag */ 1856 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1857 goto do_unallocated; 1858 } 1859 gen_axflag(); 1860 s->base.is_jmp = DISAS_NEXT; 1861 break; 1862 1863 case 0x03: /* UAO */ 1864 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1865 goto do_unallocated; 1866 } 1867 if (crm & 1) { 1868 set_pstate_bits(PSTATE_UAO); 1869 } else { 1870 clear_pstate_bits(PSTATE_UAO); 1871 } 1872 gen_rebuild_hflags(s); 1873 break; 1874 1875 case 0x04: /* PAN */ 1876 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1877 goto do_unallocated; 1878 } 1879 if (crm & 1) { 1880 set_pstate_bits(PSTATE_PAN); 1881 } else { 1882 clear_pstate_bits(PSTATE_PAN); 1883 } 1884 gen_rebuild_hflags(s); 1885 break; 1886 1887 case 0x05: /* SPSel */ 1888 if (s->current_el == 0) { 1889 goto do_unallocated; 1890 } 1891 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1892 break; 1893 1894 case 0x19: /* SSBS */ 1895 if (!dc_isar_feature(aa64_ssbs, s)) { 1896 goto do_unallocated; 1897 } 1898 if (crm & 1) { 1899 set_pstate_bits(PSTATE_SSBS); 1900 } else { 1901 clear_pstate_bits(PSTATE_SSBS); 1902 } 1903 /* Don't need to rebuild hflags since SSBS is a nop */ 1904 break; 1905 1906 case 0x1a: /* DIT */ 1907 if (!dc_isar_feature(aa64_dit, s)) { 1908 goto do_unallocated; 1909 } 1910 if (crm & 1) { 1911 set_pstate_bits(PSTATE_DIT); 1912 } else { 1913 clear_pstate_bits(PSTATE_DIT); 1914 } 1915 /* There's no need to rebuild hflags because DIT is a nop */ 1916 break; 1917 1918 case 0x1e: /* DAIFSet */ 1919 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1920 break; 1921 1922 case 0x1f: /* DAIFClear */ 1923 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1924 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1925 s->base.is_jmp = DISAS_UPDATE_EXIT; 1926 break; 1927 1928 case 0x1c: /* TCO */ 1929 if (dc_isar_feature(aa64_mte, s)) { 1930 /* Full MTE is enabled -- set the TCO bit as directed. */ 1931 if (crm & 1) { 1932 set_pstate_bits(PSTATE_TCO); 1933 } else { 1934 clear_pstate_bits(PSTATE_TCO); 1935 } 1936 gen_rebuild_hflags(s); 1937 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1938 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1939 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1940 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1941 s->base.is_jmp = DISAS_NEXT; 1942 } else { 1943 goto do_unallocated; 1944 } 1945 break; 1946 1947 case 0x1b: /* SVCR* */ 1948 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1949 goto do_unallocated; 1950 } 1951 if (sme_access_check(s)) { 1952 int old = s->pstate_sm | (s->pstate_za << 1); 1953 int new = (crm & 1) * 3; 1954 int msk = (crm >> 1) & 3; 1955 1956 if ((old ^ new) & msk) { 1957 /* At least one bit changes. */ 1958 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1959 tcg_constant_i32(msk)); 1960 } else { 1961 s->base.is_jmp = DISAS_NEXT; 1962 } 1963 } 1964 break; 1965 1966 default: 1967 do_unallocated: 1968 unallocated_encoding(s); 1969 return; 1970 } 1971 } 1972 1973 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1974 { 1975 TCGv_i32 tmp = tcg_temp_new_i32(); 1976 TCGv_i32 nzcv = tcg_temp_new_i32(); 1977 1978 /* build bit 31, N */ 1979 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1980 /* build bit 30, Z */ 1981 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1982 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1983 /* build bit 29, C */ 1984 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1985 /* build bit 28, V */ 1986 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1987 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1988 /* generate result */ 1989 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1990 } 1991 1992 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1993 { 1994 TCGv_i32 nzcv = tcg_temp_new_i32(); 1995 1996 /* take NZCV from R[t] */ 1997 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1998 1999 /* bit 31, N */ 2000 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2001 /* bit 30, Z */ 2002 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2003 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2004 /* bit 29, C */ 2005 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2006 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2007 /* bit 28, V */ 2008 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2009 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2010 } 2011 2012 static void gen_sysreg_undef(DisasContext *s, bool isread, 2013 uint8_t op0, uint8_t op1, uint8_t op2, 2014 uint8_t crn, uint8_t crm, uint8_t rt) 2015 { 2016 /* 2017 * Generate code to emit an UNDEF with correct syndrome 2018 * information for a failed system register access. 2019 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2020 * but if FEAT_IDST is implemented then read accesses to registers 2021 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2022 * syndrome. 2023 */ 2024 uint32_t syndrome; 2025 2026 if (isread && dc_isar_feature(aa64_ids, s) && 2027 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2028 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2029 } else { 2030 syndrome = syn_uncategorized(); 2031 } 2032 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2033 } 2034 2035 /* MRS - move from system register 2036 * MSR (register) - move to system register 2037 * SYS 2038 * SYSL 2039 * These are all essentially the same insn in 'read' and 'write' 2040 * versions, with varying op0 fields. 2041 */ 2042 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2043 unsigned int op0, unsigned int op1, unsigned int op2, 2044 unsigned int crn, unsigned int crm, unsigned int rt) 2045 { 2046 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2047 crn, crm, op0, op1, op2); 2048 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2049 TCGv_ptr tcg_ri = NULL; 2050 TCGv_i64 tcg_rt; 2051 2052 if (!ri) { 2053 /* Unknown register; this might be a guest error or a QEMU 2054 * unimplemented feature. 2055 */ 2056 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2057 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2058 isread ? "read" : "write", op0, op1, crn, crm, op2); 2059 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2060 return; 2061 } 2062 2063 /* Check access permissions */ 2064 if (!cp_access_ok(s->current_el, ri, isread)) { 2065 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2066 return; 2067 } 2068 2069 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2070 /* Emit code to perform further access permissions checks at 2071 * runtime; this may result in an exception. 2072 */ 2073 uint32_t syndrome; 2074 2075 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2076 gen_a64_update_pc(s, 0); 2077 tcg_ri = tcg_temp_new_ptr(); 2078 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2079 tcg_constant_i32(key), 2080 tcg_constant_i32(syndrome), 2081 tcg_constant_i32(isread)); 2082 } else if (ri->type & ARM_CP_RAISES_EXC) { 2083 /* 2084 * The readfn or writefn might raise an exception; 2085 * synchronize the CPU state in case it does. 2086 */ 2087 gen_a64_update_pc(s, 0); 2088 } 2089 2090 /* Handle special cases first */ 2091 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2092 case 0: 2093 break; 2094 case ARM_CP_NOP: 2095 return; 2096 case ARM_CP_NZCV: 2097 tcg_rt = cpu_reg(s, rt); 2098 if (isread) { 2099 gen_get_nzcv(tcg_rt); 2100 } else { 2101 gen_set_nzcv(tcg_rt); 2102 } 2103 return; 2104 case ARM_CP_CURRENTEL: 2105 /* Reads as current EL value from pstate, which is 2106 * guaranteed to be constant by the tb flags. 2107 */ 2108 tcg_rt = cpu_reg(s, rt); 2109 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2110 return; 2111 case ARM_CP_DC_ZVA: 2112 /* Writes clear the aligned block of memory which rt points into. */ 2113 if (s->mte_active[0]) { 2114 int desc = 0; 2115 2116 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2117 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2118 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2119 2120 tcg_rt = tcg_temp_new_i64(); 2121 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2122 tcg_constant_i32(desc), cpu_reg(s, rt)); 2123 } else { 2124 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2125 } 2126 gen_helper_dc_zva(cpu_env, tcg_rt); 2127 return; 2128 case ARM_CP_DC_GVA: 2129 { 2130 TCGv_i64 clean_addr, tag; 2131 2132 /* 2133 * DC_GVA, like DC_ZVA, requires that we supply the original 2134 * pointer for an invalid page. Probe that address first. 2135 */ 2136 tcg_rt = cpu_reg(s, rt); 2137 clean_addr = clean_data_tbi(s, tcg_rt); 2138 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2139 2140 if (s->ata) { 2141 /* Extract the tag from the register to match STZGM. */ 2142 tag = tcg_temp_new_i64(); 2143 tcg_gen_shri_i64(tag, tcg_rt, 56); 2144 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2145 } 2146 } 2147 return; 2148 case ARM_CP_DC_GZVA: 2149 { 2150 TCGv_i64 clean_addr, tag; 2151 2152 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2153 tcg_rt = cpu_reg(s, rt); 2154 clean_addr = clean_data_tbi(s, tcg_rt); 2155 gen_helper_dc_zva(cpu_env, clean_addr); 2156 2157 if (s->ata) { 2158 /* Extract the tag from the register to match STZGM. */ 2159 tag = tcg_temp_new_i64(); 2160 tcg_gen_shri_i64(tag, tcg_rt, 56); 2161 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2162 } 2163 } 2164 return; 2165 default: 2166 g_assert_not_reached(); 2167 } 2168 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2169 return; 2170 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2171 return; 2172 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2173 return; 2174 } 2175 2176 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2177 gen_io_start(); 2178 } 2179 2180 tcg_rt = cpu_reg(s, rt); 2181 2182 if (isread) { 2183 if (ri->type & ARM_CP_CONST) { 2184 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2185 } else if (ri->readfn) { 2186 if (!tcg_ri) { 2187 tcg_ri = gen_lookup_cp_reg(key); 2188 } 2189 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2190 } else { 2191 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2192 } 2193 } else { 2194 if (ri->type & ARM_CP_CONST) { 2195 /* If not forbidden by access permissions, treat as WI */ 2196 return; 2197 } else if (ri->writefn) { 2198 if (!tcg_ri) { 2199 tcg_ri = gen_lookup_cp_reg(key); 2200 } 2201 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2202 } else { 2203 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2204 } 2205 } 2206 2207 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2208 /* I/O operations must end the TB here (whether read or write) */ 2209 s->base.is_jmp = DISAS_UPDATE_EXIT; 2210 } 2211 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2212 /* 2213 * A write to any coprocessor regiser that ends a TB 2214 * must rebuild the hflags for the next TB. 2215 */ 2216 gen_rebuild_hflags(s); 2217 /* 2218 * We default to ending the TB on a coprocessor register write, 2219 * but allow this to be suppressed by the register definition 2220 * (usually only necessary to work around guest bugs). 2221 */ 2222 s->base.is_jmp = DISAS_UPDATE_EXIT; 2223 } 2224 } 2225 2226 /* System 2227 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2228 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2229 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2230 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2231 */ 2232 static void disas_system(DisasContext *s, uint32_t insn) 2233 { 2234 unsigned int l, op0, op1, crn, crm, op2, rt; 2235 l = extract32(insn, 21, 1); 2236 op0 = extract32(insn, 19, 2); 2237 op1 = extract32(insn, 16, 3); 2238 crn = extract32(insn, 12, 4); 2239 crm = extract32(insn, 8, 4); 2240 op2 = extract32(insn, 5, 3); 2241 rt = extract32(insn, 0, 5); 2242 2243 if (op0 == 0) { 2244 if (l || rt != 31) { 2245 unallocated_encoding(s); 2246 return; 2247 } 2248 switch (crn) { 2249 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2250 handle_hint(s, insn, op1, op2, crm); 2251 break; 2252 case 3: /* CLREX, DSB, DMB, ISB */ 2253 handle_sync(s, insn, op1, op2, crm); 2254 break; 2255 case 4: /* MSR (immediate) */ 2256 handle_msr_i(s, insn, op1, op2, crm); 2257 break; 2258 default: 2259 unallocated_encoding(s); 2260 break; 2261 } 2262 return; 2263 } 2264 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2265 } 2266 2267 /* Exception generation 2268 * 2269 * 31 24 23 21 20 5 4 2 1 0 2270 * +-----------------+-----+------------------------+-----+----+ 2271 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2272 * +-----------------------+------------------------+----------+ 2273 */ 2274 static void disas_exc(DisasContext *s, uint32_t insn) 2275 { 2276 int opc = extract32(insn, 21, 3); 2277 int op2_ll = extract32(insn, 0, 5); 2278 int imm16 = extract32(insn, 5, 16); 2279 uint32_t syndrome; 2280 2281 switch (opc) { 2282 case 0: 2283 /* For SVC, HVC and SMC we advance the single-step state 2284 * machine before taking the exception. This is architecturally 2285 * mandated, to ensure that single-stepping a system call 2286 * instruction works properly. 2287 */ 2288 switch (op2_ll) { 2289 case 1: /* SVC */ 2290 syndrome = syn_aa64_svc(imm16); 2291 if (s->fgt_svc) { 2292 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2293 break; 2294 } 2295 gen_ss_advance(s); 2296 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2297 break; 2298 case 2: /* HVC */ 2299 if (s->current_el == 0) { 2300 unallocated_encoding(s); 2301 break; 2302 } 2303 /* The pre HVC helper handles cases when HVC gets trapped 2304 * as an undefined insn by runtime configuration. 2305 */ 2306 gen_a64_update_pc(s, 0); 2307 gen_helper_pre_hvc(cpu_env); 2308 gen_ss_advance(s); 2309 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2310 break; 2311 case 3: /* SMC */ 2312 if (s->current_el == 0) { 2313 unallocated_encoding(s); 2314 break; 2315 } 2316 gen_a64_update_pc(s, 0); 2317 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2318 gen_ss_advance(s); 2319 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2320 break; 2321 default: 2322 unallocated_encoding(s); 2323 break; 2324 } 2325 break; 2326 case 1: 2327 if (op2_ll != 0) { 2328 unallocated_encoding(s); 2329 break; 2330 } 2331 /* BRK */ 2332 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2333 break; 2334 case 2: 2335 if (op2_ll != 0) { 2336 unallocated_encoding(s); 2337 break; 2338 } 2339 /* HLT. This has two purposes. 2340 * Architecturally, it is an external halting debug instruction. 2341 * Since QEMU doesn't implement external debug, we treat this as 2342 * it is required for halting debug disabled: it will UNDEF. 2343 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2344 */ 2345 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2346 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2347 } else { 2348 unallocated_encoding(s); 2349 } 2350 break; 2351 case 5: 2352 if (op2_ll < 1 || op2_ll > 3) { 2353 unallocated_encoding(s); 2354 break; 2355 } 2356 /* DCPS1, DCPS2, DCPS3 */ 2357 unallocated_encoding(s); 2358 break; 2359 default: 2360 unallocated_encoding(s); 2361 break; 2362 } 2363 } 2364 2365 /* Branches, exception generating and system instructions */ 2366 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2367 { 2368 switch (extract32(insn, 25, 7)) { 2369 case 0x6a: /* Exception generation / System */ 2370 if (insn & (1 << 24)) { 2371 if (extract32(insn, 22, 2) == 0) { 2372 disas_system(s, insn); 2373 } else { 2374 unallocated_encoding(s); 2375 } 2376 } else { 2377 disas_exc(s, insn); 2378 } 2379 break; 2380 default: 2381 unallocated_encoding(s); 2382 break; 2383 } 2384 } 2385 2386 /* 2387 * Load/Store exclusive instructions are implemented by remembering 2388 * the value/address loaded, and seeing if these are the same 2389 * when the store is performed. This is not actually the architecturally 2390 * mandated semantics, but it works for typical guest code sequences 2391 * and avoids having to monitor regular stores. 2392 * 2393 * The store exclusive uses the atomic cmpxchg primitives to avoid 2394 * races in multi-threaded linux-user and when MTTCG softmmu is 2395 * enabled. 2396 */ 2397 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2398 TCGv_i64 addr, int size, bool is_pair) 2399 { 2400 int idx = get_mem_index(s); 2401 MemOp memop = s->be_data; 2402 2403 g_assert(size <= 3); 2404 if (is_pair) { 2405 g_assert(size >= 2); 2406 if (size == 2) { 2407 /* The pair must be single-copy atomic for the doubleword. */ 2408 memop |= MO_64 | MO_ALIGN; 2409 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2410 if (s->be_data == MO_LE) { 2411 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2412 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2413 } else { 2414 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2415 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2416 } 2417 } else { 2418 /* The pair must be single-copy atomic for *each* doubleword, not 2419 the entire quadword, however it must be quadword aligned. */ 2420 memop |= MO_64; 2421 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2422 memop | MO_ALIGN_16); 2423 2424 TCGv_i64 addr2 = tcg_temp_new_i64(); 2425 tcg_gen_addi_i64(addr2, addr, 8); 2426 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2427 2428 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2429 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2430 } 2431 } else { 2432 memop |= size | MO_ALIGN; 2433 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2434 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2435 } 2436 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2437 } 2438 2439 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2440 TCGv_i64 addr, int size, int is_pair) 2441 { 2442 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2443 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2444 * [addr] = {Rt}; 2445 * if (is_pair) { 2446 * [addr + datasize] = {Rt2}; 2447 * } 2448 * {Rd} = 0; 2449 * } else { 2450 * {Rd} = 1; 2451 * } 2452 * env->exclusive_addr = -1; 2453 */ 2454 TCGLabel *fail_label = gen_new_label(); 2455 TCGLabel *done_label = gen_new_label(); 2456 TCGv_i64 tmp; 2457 2458 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2459 2460 tmp = tcg_temp_new_i64(); 2461 if (is_pair) { 2462 if (size == 2) { 2463 if (s->be_data == MO_LE) { 2464 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2465 } else { 2466 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2467 } 2468 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2469 cpu_exclusive_val, tmp, 2470 get_mem_index(s), 2471 MO_64 | MO_ALIGN | s->be_data); 2472 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2473 } else { 2474 TCGv_i128 t16 = tcg_temp_new_i128(); 2475 TCGv_i128 c16 = tcg_temp_new_i128(); 2476 TCGv_i64 a, b; 2477 2478 if (s->be_data == MO_LE) { 2479 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2480 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2481 cpu_exclusive_high); 2482 } else { 2483 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2484 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2485 cpu_exclusive_val); 2486 } 2487 2488 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2489 get_mem_index(s), 2490 MO_128 | MO_ALIGN | s->be_data); 2491 2492 a = tcg_temp_new_i64(); 2493 b = tcg_temp_new_i64(); 2494 if (s->be_data == MO_LE) { 2495 tcg_gen_extr_i128_i64(a, b, t16); 2496 } else { 2497 tcg_gen_extr_i128_i64(b, a, t16); 2498 } 2499 2500 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2501 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2502 tcg_gen_or_i64(tmp, a, b); 2503 2504 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2505 } 2506 } else { 2507 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2508 cpu_reg(s, rt), get_mem_index(s), 2509 size | MO_ALIGN | s->be_data); 2510 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2511 } 2512 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2513 tcg_gen_br(done_label); 2514 2515 gen_set_label(fail_label); 2516 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2517 gen_set_label(done_label); 2518 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2519 } 2520 2521 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2522 int rn, int size) 2523 { 2524 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2525 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2526 int memidx = get_mem_index(s); 2527 TCGv_i64 clean_addr; 2528 2529 if (rn == 31) { 2530 gen_check_sp_alignment(s); 2531 } 2532 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2533 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2534 size | MO_ALIGN | s->be_data); 2535 } 2536 2537 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2538 int rn, int size) 2539 { 2540 TCGv_i64 s1 = cpu_reg(s, rs); 2541 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2542 TCGv_i64 t1 = cpu_reg(s, rt); 2543 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2544 TCGv_i64 clean_addr; 2545 int memidx = get_mem_index(s); 2546 2547 if (rn == 31) { 2548 gen_check_sp_alignment(s); 2549 } 2550 2551 /* This is a single atomic access, despite the "pair". */ 2552 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2553 2554 if (size == 2) { 2555 TCGv_i64 cmp = tcg_temp_new_i64(); 2556 TCGv_i64 val = tcg_temp_new_i64(); 2557 2558 if (s->be_data == MO_LE) { 2559 tcg_gen_concat32_i64(val, t1, t2); 2560 tcg_gen_concat32_i64(cmp, s1, s2); 2561 } else { 2562 tcg_gen_concat32_i64(val, t2, t1); 2563 tcg_gen_concat32_i64(cmp, s2, s1); 2564 } 2565 2566 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2567 MO_64 | MO_ALIGN | s->be_data); 2568 2569 if (s->be_data == MO_LE) { 2570 tcg_gen_extr32_i64(s1, s2, cmp); 2571 } else { 2572 tcg_gen_extr32_i64(s2, s1, cmp); 2573 } 2574 } else { 2575 TCGv_i128 cmp = tcg_temp_new_i128(); 2576 TCGv_i128 val = tcg_temp_new_i128(); 2577 2578 if (s->be_data == MO_LE) { 2579 tcg_gen_concat_i64_i128(val, t1, t2); 2580 tcg_gen_concat_i64_i128(cmp, s1, s2); 2581 } else { 2582 tcg_gen_concat_i64_i128(val, t2, t1); 2583 tcg_gen_concat_i64_i128(cmp, s2, s1); 2584 } 2585 2586 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2587 MO_128 | MO_ALIGN | s->be_data); 2588 2589 if (s->be_data == MO_LE) { 2590 tcg_gen_extr_i128_i64(s1, s2, cmp); 2591 } else { 2592 tcg_gen_extr_i128_i64(s2, s1, cmp); 2593 } 2594 } 2595 } 2596 2597 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2598 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2599 */ 2600 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2601 { 2602 int opc0 = extract32(opc, 0, 1); 2603 int regsize; 2604 2605 if (is_signed) { 2606 regsize = opc0 ? 32 : 64; 2607 } else { 2608 regsize = size == 3 ? 64 : 32; 2609 } 2610 return regsize == 64; 2611 } 2612 2613 /* Load/store exclusive 2614 * 2615 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2616 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2617 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2618 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2619 * 2620 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2621 * L: 0 -> store, 1 -> load 2622 * o2: 0 -> exclusive, 1 -> not 2623 * o1: 0 -> single register, 1 -> register pair 2624 * o0: 1 -> load-acquire/store-release, 0 -> not 2625 */ 2626 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2627 { 2628 int rt = extract32(insn, 0, 5); 2629 int rn = extract32(insn, 5, 5); 2630 int rt2 = extract32(insn, 10, 5); 2631 int rs = extract32(insn, 16, 5); 2632 int is_lasr = extract32(insn, 15, 1); 2633 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2634 int size = extract32(insn, 30, 2); 2635 TCGv_i64 clean_addr; 2636 2637 switch (o2_L_o1_o0) { 2638 case 0x0: /* STXR */ 2639 case 0x1: /* STLXR */ 2640 if (rn == 31) { 2641 gen_check_sp_alignment(s); 2642 } 2643 if (is_lasr) { 2644 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2645 } 2646 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2647 true, rn != 31, size); 2648 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2649 return; 2650 2651 case 0x4: /* LDXR */ 2652 case 0x5: /* LDAXR */ 2653 if (rn == 31) { 2654 gen_check_sp_alignment(s); 2655 } 2656 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2657 false, rn != 31, size); 2658 s->is_ldex = true; 2659 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2660 if (is_lasr) { 2661 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2662 } 2663 return; 2664 2665 case 0x8: /* STLLR */ 2666 if (!dc_isar_feature(aa64_lor, s)) { 2667 break; 2668 } 2669 /* StoreLORelease is the same as Store-Release for QEMU. */ 2670 /* fall through */ 2671 case 0x9: /* STLR */ 2672 /* Generate ISS for non-exclusive accesses including LASR. */ 2673 if (rn == 31) { 2674 gen_check_sp_alignment(s); 2675 } 2676 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2677 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2678 true, rn != 31, size); 2679 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2680 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2681 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2682 return; 2683 2684 case 0xc: /* LDLAR */ 2685 if (!dc_isar_feature(aa64_lor, s)) { 2686 break; 2687 } 2688 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2689 /* fall through */ 2690 case 0xd: /* LDAR */ 2691 /* Generate ISS for non-exclusive accesses including LASR. */ 2692 if (rn == 31) { 2693 gen_check_sp_alignment(s); 2694 } 2695 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2696 false, rn != 31, size); 2697 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2698 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2699 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2700 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2701 return; 2702 2703 case 0x2: case 0x3: /* CASP / STXP */ 2704 if (size & 2) { /* STXP / STLXP */ 2705 if (rn == 31) { 2706 gen_check_sp_alignment(s); 2707 } 2708 if (is_lasr) { 2709 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2710 } 2711 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2712 true, rn != 31, size); 2713 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2714 return; 2715 } 2716 if (rt2 == 31 2717 && ((rt | rs) & 1) == 0 2718 && dc_isar_feature(aa64_atomics, s)) { 2719 /* CASP / CASPL */ 2720 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2721 return; 2722 } 2723 break; 2724 2725 case 0x6: case 0x7: /* CASPA / LDXP */ 2726 if (size & 2) { /* LDXP / LDAXP */ 2727 if (rn == 31) { 2728 gen_check_sp_alignment(s); 2729 } 2730 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2731 false, rn != 31, size); 2732 s->is_ldex = true; 2733 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2734 if (is_lasr) { 2735 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2736 } 2737 return; 2738 } 2739 if (rt2 == 31 2740 && ((rt | rs) & 1) == 0 2741 && dc_isar_feature(aa64_atomics, s)) { 2742 /* CASPA / CASPAL */ 2743 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2744 return; 2745 } 2746 break; 2747 2748 case 0xa: /* CAS */ 2749 case 0xb: /* CASL */ 2750 case 0xe: /* CASA */ 2751 case 0xf: /* CASAL */ 2752 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2753 gen_compare_and_swap(s, rs, rt, rn, size); 2754 return; 2755 } 2756 break; 2757 } 2758 unallocated_encoding(s); 2759 } 2760 2761 /* 2762 * Load register (literal) 2763 * 2764 * 31 30 29 27 26 25 24 23 5 4 0 2765 * +-----+-------+---+-----+-------------------+-------+ 2766 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2767 * +-----+-------+---+-----+-------------------+-------+ 2768 * 2769 * V: 1 -> vector (simd/fp) 2770 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2771 * 10-> 32 bit signed, 11 -> prefetch 2772 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2773 */ 2774 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2775 { 2776 int rt = extract32(insn, 0, 5); 2777 int64_t imm = sextract32(insn, 5, 19) << 2; 2778 bool is_vector = extract32(insn, 26, 1); 2779 int opc = extract32(insn, 30, 2); 2780 bool is_signed = false; 2781 int size = 2; 2782 TCGv_i64 tcg_rt, clean_addr; 2783 2784 if (is_vector) { 2785 if (opc == 3) { 2786 unallocated_encoding(s); 2787 return; 2788 } 2789 size = 2 + opc; 2790 if (!fp_access_check(s)) { 2791 return; 2792 } 2793 } else { 2794 if (opc == 3) { 2795 /* PRFM (literal) : prefetch */ 2796 return; 2797 } 2798 size = 2 + extract32(opc, 0, 1); 2799 is_signed = extract32(opc, 1, 1); 2800 } 2801 2802 tcg_rt = cpu_reg(s, rt); 2803 2804 clean_addr = tcg_temp_new_i64(); 2805 gen_pc_plus_diff(s, clean_addr, imm); 2806 if (is_vector) { 2807 do_fp_ld(s, rt, clean_addr, size); 2808 } else { 2809 /* Only unsigned 32bit loads target 32bit registers. */ 2810 bool iss_sf = opc != 0; 2811 2812 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2813 false, true, rt, iss_sf, false); 2814 } 2815 } 2816 2817 /* 2818 * LDNP (Load Pair - non-temporal hint) 2819 * LDP (Load Pair - non vector) 2820 * LDPSW (Load Pair Signed Word - non vector) 2821 * STNP (Store Pair - non-temporal hint) 2822 * STP (Store Pair - non vector) 2823 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2824 * LDP (Load Pair of SIMD&FP) 2825 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2826 * STP (Store Pair of SIMD&FP) 2827 * 2828 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2829 * +-----+-------+---+---+-------+---+-----------------------------+ 2830 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2831 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2832 * 2833 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2834 * LDPSW/STGP 01 2835 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2836 * V: 0 -> GPR, 1 -> Vector 2837 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2838 * 10 -> signed offset, 11 -> pre-index 2839 * L: 0 -> Store 1 -> Load 2840 * 2841 * Rt, Rt2 = GPR or SIMD registers to be stored 2842 * Rn = general purpose register containing address 2843 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2844 */ 2845 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2846 { 2847 int rt = extract32(insn, 0, 5); 2848 int rn = extract32(insn, 5, 5); 2849 int rt2 = extract32(insn, 10, 5); 2850 uint64_t offset = sextract64(insn, 15, 7); 2851 int index = extract32(insn, 23, 2); 2852 bool is_vector = extract32(insn, 26, 1); 2853 bool is_load = extract32(insn, 22, 1); 2854 int opc = extract32(insn, 30, 2); 2855 2856 bool is_signed = false; 2857 bool postindex = false; 2858 bool wback = false; 2859 bool set_tag = false; 2860 2861 TCGv_i64 clean_addr, dirty_addr; 2862 2863 int size; 2864 2865 if (opc == 3) { 2866 unallocated_encoding(s); 2867 return; 2868 } 2869 2870 if (is_vector) { 2871 size = 2 + opc; 2872 } else if (opc == 1 && !is_load) { 2873 /* STGP */ 2874 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2875 unallocated_encoding(s); 2876 return; 2877 } 2878 size = 3; 2879 set_tag = true; 2880 } else { 2881 size = 2 + extract32(opc, 1, 1); 2882 is_signed = extract32(opc, 0, 1); 2883 if (!is_load && is_signed) { 2884 unallocated_encoding(s); 2885 return; 2886 } 2887 } 2888 2889 switch (index) { 2890 case 1: /* post-index */ 2891 postindex = true; 2892 wback = true; 2893 break; 2894 case 0: 2895 /* signed offset with "non-temporal" hint. Since we don't emulate 2896 * caches we don't care about hints to the cache system about 2897 * data access patterns, and handle this identically to plain 2898 * signed offset. 2899 */ 2900 if (is_signed) { 2901 /* There is no non-temporal-hint version of LDPSW */ 2902 unallocated_encoding(s); 2903 return; 2904 } 2905 postindex = false; 2906 break; 2907 case 2: /* signed offset, rn not updated */ 2908 postindex = false; 2909 break; 2910 case 3: /* pre-index */ 2911 postindex = false; 2912 wback = true; 2913 break; 2914 } 2915 2916 if (is_vector && !fp_access_check(s)) { 2917 return; 2918 } 2919 2920 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2921 2922 if (rn == 31) { 2923 gen_check_sp_alignment(s); 2924 } 2925 2926 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2927 if (!postindex) { 2928 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2929 } 2930 2931 if (set_tag) { 2932 if (!s->ata) { 2933 /* 2934 * TODO: We could rely on the stores below, at least for 2935 * system mode, if we arrange to add MO_ALIGN_16. 2936 */ 2937 gen_helper_stg_stub(cpu_env, dirty_addr); 2938 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2939 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2940 } else { 2941 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2942 } 2943 } 2944 2945 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2946 (wback || rn != 31) && !set_tag, 2 << size); 2947 2948 if (is_vector) { 2949 if (is_load) { 2950 do_fp_ld(s, rt, clean_addr, size); 2951 } else { 2952 do_fp_st(s, rt, clean_addr, size); 2953 } 2954 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2955 if (is_load) { 2956 do_fp_ld(s, rt2, clean_addr, size); 2957 } else { 2958 do_fp_st(s, rt2, clean_addr, size); 2959 } 2960 } else { 2961 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2962 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2963 2964 if (is_load) { 2965 TCGv_i64 tmp = tcg_temp_new_i64(); 2966 2967 /* Do not modify tcg_rt before recognizing any exception 2968 * from the second load. 2969 */ 2970 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 2971 false, false, 0, false, false); 2972 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2973 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 2974 false, false, 0, false, false); 2975 2976 tcg_gen_mov_i64(tcg_rt, tmp); 2977 } else { 2978 do_gpr_st(s, tcg_rt, clean_addr, size, 2979 false, 0, false, false); 2980 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2981 do_gpr_st(s, tcg_rt2, clean_addr, size, 2982 false, 0, false, false); 2983 } 2984 } 2985 2986 if (wback) { 2987 if (postindex) { 2988 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2989 } 2990 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 2991 } 2992 } 2993 2994 /* 2995 * Load/store (immediate post-indexed) 2996 * Load/store (immediate pre-indexed) 2997 * Load/store (unscaled immediate) 2998 * 2999 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3000 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3001 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3002 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3003 * 3004 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3005 10 -> unprivileged 3006 * V = 0 -> non-vector 3007 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3008 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3009 */ 3010 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3011 int opc, 3012 int size, 3013 int rt, 3014 bool is_vector) 3015 { 3016 int rn = extract32(insn, 5, 5); 3017 int imm9 = sextract32(insn, 12, 9); 3018 int idx = extract32(insn, 10, 2); 3019 bool is_signed = false; 3020 bool is_store = false; 3021 bool is_extended = false; 3022 bool is_unpriv = (idx == 2); 3023 bool iss_valid; 3024 bool post_index; 3025 bool writeback; 3026 int memidx; 3027 3028 TCGv_i64 clean_addr, dirty_addr; 3029 3030 if (is_vector) { 3031 size |= (opc & 2) << 1; 3032 if (size > 4 || is_unpriv) { 3033 unallocated_encoding(s); 3034 return; 3035 } 3036 is_store = ((opc & 1) == 0); 3037 if (!fp_access_check(s)) { 3038 return; 3039 } 3040 } else { 3041 if (size == 3 && opc == 2) { 3042 /* PRFM - prefetch */ 3043 if (idx != 0) { 3044 unallocated_encoding(s); 3045 return; 3046 } 3047 return; 3048 } 3049 if (opc == 3 && size > 1) { 3050 unallocated_encoding(s); 3051 return; 3052 } 3053 is_store = (opc == 0); 3054 is_signed = extract32(opc, 1, 1); 3055 is_extended = (size < 3) && extract32(opc, 0, 1); 3056 } 3057 3058 switch (idx) { 3059 case 0: 3060 case 2: 3061 post_index = false; 3062 writeback = false; 3063 break; 3064 case 1: 3065 post_index = true; 3066 writeback = true; 3067 break; 3068 case 3: 3069 post_index = false; 3070 writeback = true; 3071 break; 3072 default: 3073 g_assert_not_reached(); 3074 } 3075 3076 iss_valid = !is_vector && !writeback; 3077 3078 if (rn == 31) { 3079 gen_check_sp_alignment(s); 3080 } 3081 3082 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3083 if (!post_index) { 3084 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3085 } 3086 3087 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3088 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3089 writeback || rn != 31, 3090 size, is_unpriv, memidx); 3091 3092 if (is_vector) { 3093 if (is_store) { 3094 do_fp_st(s, rt, clean_addr, size); 3095 } else { 3096 do_fp_ld(s, rt, clean_addr, size); 3097 } 3098 } else { 3099 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3100 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3101 3102 if (is_store) { 3103 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3104 iss_valid, rt, iss_sf, false); 3105 } else { 3106 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3107 is_extended, memidx, 3108 iss_valid, rt, iss_sf, false); 3109 } 3110 } 3111 3112 if (writeback) { 3113 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3114 if (post_index) { 3115 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3116 } 3117 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3118 } 3119 } 3120 3121 /* 3122 * Load/store (register offset) 3123 * 3124 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3125 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3126 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3127 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3128 * 3129 * For non-vector: 3130 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3131 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3132 * For vector: 3133 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3134 * opc<0>: 0 -> store, 1 -> load 3135 * V: 1 -> vector/simd 3136 * opt: extend encoding (see DecodeRegExtend) 3137 * S: if S=1 then scale (essentially index by sizeof(size)) 3138 * Rt: register to transfer into/out of 3139 * Rn: address register or SP for base 3140 * Rm: offset register or ZR for offset 3141 */ 3142 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3143 int opc, 3144 int size, 3145 int rt, 3146 bool is_vector) 3147 { 3148 int rn = extract32(insn, 5, 5); 3149 int shift = extract32(insn, 12, 1); 3150 int rm = extract32(insn, 16, 5); 3151 int opt = extract32(insn, 13, 3); 3152 bool is_signed = false; 3153 bool is_store = false; 3154 bool is_extended = false; 3155 3156 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3157 3158 if (extract32(opt, 1, 1) == 0) { 3159 unallocated_encoding(s); 3160 return; 3161 } 3162 3163 if (is_vector) { 3164 size |= (opc & 2) << 1; 3165 if (size > 4) { 3166 unallocated_encoding(s); 3167 return; 3168 } 3169 is_store = !extract32(opc, 0, 1); 3170 if (!fp_access_check(s)) { 3171 return; 3172 } 3173 } else { 3174 if (size == 3 && opc == 2) { 3175 /* PRFM - prefetch */ 3176 return; 3177 } 3178 if (opc == 3 && size > 1) { 3179 unallocated_encoding(s); 3180 return; 3181 } 3182 is_store = (opc == 0); 3183 is_signed = extract32(opc, 1, 1); 3184 is_extended = (size < 3) && extract32(opc, 0, 1); 3185 } 3186 3187 if (rn == 31) { 3188 gen_check_sp_alignment(s); 3189 } 3190 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3191 3192 tcg_rm = read_cpu_reg(s, rm, 1); 3193 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3194 3195 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3196 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3197 3198 if (is_vector) { 3199 if (is_store) { 3200 do_fp_st(s, rt, clean_addr, size); 3201 } else { 3202 do_fp_ld(s, rt, clean_addr, size); 3203 } 3204 } else { 3205 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3206 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3207 if (is_store) { 3208 do_gpr_st(s, tcg_rt, clean_addr, size, 3209 true, rt, iss_sf, false); 3210 } else { 3211 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3212 is_extended, true, rt, iss_sf, false); 3213 } 3214 } 3215 } 3216 3217 /* 3218 * Load/store (unsigned immediate) 3219 * 3220 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3221 * +----+-------+---+-----+-----+------------+-------+------+ 3222 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3223 * +----+-------+---+-----+-----+------------+-------+------+ 3224 * 3225 * For non-vector: 3226 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3227 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3228 * For vector: 3229 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3230 * opc<0>: 0 -> store, 1 -> load 3231 * Rn: base address register (inc SP) 3232 * Rt: target register 3233 */ 3234 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3235 int opc, 3236 int size, 3237 int rt, 3238 bool is_vector) 3239 { 3240 int rn = extract32(insn, 5, 5); 3241 unsigned int imm12 = extract32(insn, 10, 12); 3242 unsigned int offset; 3243 3244 TCGv_i64 clean_addr, dirty_addr; 3245 3246 bool is_store; 3247 bool is_signed = false; 3248 bool is_extended = false; 3249 3250 if (is_vector) { 3251 size |= (opc & 2) << 1; 3252 if (size > 4) { 3253 unallocated_encoding(s); 3254 return; 3255 } 3256 is_store = !extract32(opc, 0, 1); 3257 if (!fp_access_check(s)) { 3258 return; 3259 } 3260 } else { 3261 if (size == 3 && opc == 2) { 3262 /* PRFM - prefetch */ 3263 return; 3264 } 3265 if (opc == 3 && size > 1) { 3266 unallocated_encoding(s); 3267 return; 3268 } 3269 is_store = (opc == 0); 3270 is_signed = extract32(opc, 1, 1); 3271 is_extended = (size < 3) && extract32(opc, 0, 1); 3272 } 3273 3274 if (rn == 31) { 3275 gen_check_sp_alignment(s); 3276 } 3277 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3278 offset = imm12 << size; 3279 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3280 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3281 3282 if (is_vector) { 3283 if (is_store) { 3284 do_fp_st(s, rt, clean_addr, size); 3285 } else { 3286 do_fp_ld(s, rt, clean_addr, size); 3287 } 3288 } else { 3289 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3290 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3291 if (is_store) { 3292 do_gpr_st(s, tcg_rt, clean_addr, size, 3293 true, rt, iss_sf, false); 3294 } else { 3295 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3296 is_extended, true, rt, iss_sf, false); 3297 } 3298 } 3299 } 3300 3301 /* Atomic memory operations 3302 * 3303 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3304 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3305 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3306 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3307 * 3308 * Rt: the result register 3309 * Rn: base address or SP 3310 * Rs: the source register for the operation 3311 * V: vector flag (always 0 as of v8.3) 3312 * A: acquire flag 3313 * R: release flag 3314 */ 3315 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3316 int size, int rt, bool is_vector) 3317 { 3318 int rs = extract32(insn, 16, 5); 3319 int rn = extract32(insn, 5, 5); 3320 int o3_opc = extract32(insn, 12, 4); 3321 bool r = extract32(insn, 22, 1); 3322 bool a = extract32(insn, 23, 1); 3323 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3324 AtomicThreeOpFn *fn = NULL; 3325 MemOp mop = s->be_data | size | MO_ALIGN; 3326 3327 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3328 unallocated_encoding(s); 3329 return; 3330 } 3331 switch (o3_opc) { 3332 case 000: /* LDADD */ 3333 fn = tcg_gen_atomic_fetch_add_i64; 3334 break; 3335 case 001: /* LDCLR */ 3336 fn = tcg_gen_atomic_fetch_and_i64; 3337 break; 3338 case 002: /* LDEOR */ 3339 fn = tcg_gen_atomic_fetch_xor_i64; 3340 break; 3341 case 003: /* LDSET */ 3342 fn = tcg_gen_atomic_fetch_or_i64; 3343 break; 3344 case 004: /* LDSMAX */ 3345 fn = tcg_gen_atomic_fetch_smax_i64; 3346 mop |= MO_SIGN; 3347 break; 3348 case 005: /* LDSMIN */ 3349 fn = tcg_gen_atomic_fetch_smin_i64; 3350 mop |= MO_SIGN; 3351 break; 3352 case 006: /* LDUMAX */ 3353 fn = tcg_gen_atomic_fetch_umax_i64; 3354 break; 3355 case 007: /* LDUMIN */ 3356 fn = tcg_gen_atomic_fetch_umin_i64; 3357 break; 3358 case 010: /* SWP */ 3359 fn = tcg_gen_atomic_xchg_i64; 3360 break; 3361 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3362 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3363 rs != 31 || a != 1 || r != 0) { 3364 unallocated_encoding(s); 3365 return; 3366 } 3367 break; 3368 default: 3369 unallocated_encoding(s); 3370 return; 3371 } 3372 3373 if (rn == 31) { 3374 gen_check_sp_alignment(s); 3375 } 3376 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3377 3378 if (o3_opc == 014) { 3379 /* 3380 * LDAPR* are a special case because they are a simple load, not a 3381 * fetch-and-do-something op. 3382 * The architectural consistency requirements here are weaker than 3383 * full load-acquire (we only need "load-acquire processor consistent"), 3384 * but we choose to implement them as full LDAQ. 3385 */ 3386 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3387 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3388 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3389 return; 3390 } 3391 3392 tcg_rs = read_cpu_reg(s, rs, true); 3393 tcg_rt = cpu_reg(s, rt); 3394 3395 if (o3_opc == 1) { /* LDCLR */ 3396 tcg_gen_not_i64(tcg_rs, tcg_rs); 3397 } 3398 3399 /* The tcg atomic primitives are all full barriers. Therefore we 3400 * can ignore the Acquire and Release bits of this instruction. 3401 */ 3402 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3403 3404 if ((mop & MO_SIGN) && size != MO_64) { 3405 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3406 } 3407 } 3408 3409 /* 3410 * PAC memory operations 3411 * 3412 * 31 30 27 26 24 22 21 12 11 10 5 0 3413 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3414 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3415 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3416 * 3417 * Rt: the result register 3418 * Rn: base address or SP 3419 * V: vector flag (always 0 as of v8.3) 3420 * M: clear for key DA, set for key DB 3421 * W: pre-indexing flag 3422 * S: sign for imm9. 3423 */ 3424 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3425 int size, int rt, bool is_vector) 3426 { 3427 int rn = extract32(insn, 5, 5); 3428 bool is_wback = extract32(insn, 11, 1); 3429 bool use_key_a = !extract32(insn, 23, 1); 3430 int offset; 3431 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3432 3433 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3434 unallocated_encoding(s); 3435 return; 3436 } 3437 3438 if (rn == 31) { 3439 gen_check_sp_alignment(s); 3440 } 3441 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3442 3443 if (s->pauth_active) { 3444 if (use_key_a) { 3445 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3446 tcg_constant_i64(0)); 3447 } else { 3448 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3449 tcg_constant_i64(0)); 3450 } 3451 } 3452 3453 /* Form the 10-bit signed, scaled offset. */ 3454 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3455 offset = sextract32(offset << size, 0, 10 + size); 3456 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3457 3458 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3459 clean_addr = gen_mte_check1(s, dirty_addr, false, 3460 is_wback || rn != 31, size); 3461 3462 tcg_rt = cpu_reg(s, rt); 3463 do_gpr_ld(s, tcg_rt, clean_addr, size, 3464 /* extend */ false, /* iss_valid */ !is_wback, 3465 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3466 3467 if (is_wback) { 3468 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3469 } 3470 } 3471 3472 /* 3473 * LDAPR/STLR (unscaled immediate) 3474 * 3475 * 31 30 24 22 21 12 10 5 0 3476 * +------+-------------+-----+---+--------+-----+----+-----+ 3477 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3478 * +------+-------------+-----+---+--------+-----+----+-----+ 3479 * 3480 * Rt: source or destination register 3481 * Rn: base register 3482 * imm9: unscaled immediate offset 3483 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3484 * size: size of load/store 3485 */ 3486 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3487 { 3488 int rt = extract32(insn, 0, 5); 3489 int rn = extract32(insn, 5, 5); 3490 int offset = sextract32(insn, 12, 9); 3491 int opc = extract32(insn, 22, 2); 3492 int size = extract32(insn, 30, 2); 3493 TCGv_i64 clean_addr, dirty_addr; 3494 bool is_store = false; 3495 bool extend = false; 3496 bool iss_sf; 3497 MemOp mop; 3498 3499 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3500 unallocated_encoding(s); 3501 return; 3502 } 3503 3504 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3505 mop = size | MO_ALIGN; 3506 3507 switch (opc) { 3508 case 0: /* STLURB */ 3509 is_store = true; 3510 break; 3511 case 1: /* LDAPUR* */ 3512 break; 3513 case 2: /* LDAPURS* 64-bit variant */ 3514 if (size == 3) { 3515 unallocated_encoding(s); 3516 return; 3517 } 3518 mop |= MO_SIGN; 3519 break; 3520 case 3: /* LDAPURS* 32-bit variant */ 3521 if (size > 1) { 3522 unallocated_encoding(s); 3523 return; 3524 } 3525 mop |= MO_SIGN; 3526 extend = true; /* zero-extend 32->64 after signed load */ 3527 break; 3528 default: 3529 g_assert_not_reached(); 3530 } 3531 3532 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3533 3534 if (rn == 31) { 3535 gen_check_sp_alignment(s); 3536 } 3537 3538 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3539 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3540 clean_addr = clean_data_tbi(s, dirty_addr); 3541 3542 if (is_store) { 3543 /* Store-Release semantics */ 3544 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3545 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3546 } else { 3547 /* 3548 * Load-AcquirePC semantics; we implement as the slightly more 3549 * restrictive Load-Acquire. 3550 */ 3551 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3552 extend, true, rt, iss_sf, true); 3553 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3554 } 3555 } 3556 3557 /* Load/store register (all forms) */ 3558 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3559 { 3560 int rt = extract32(insn, 0, 5); 3561 int opc = extract32(insn, 22, 2); 3562 bool is_vector = extract32(insn, 26, 1); 3563 int size = extract32(insn, 30, 2); 3564 3565 switch (extract32(insn, 24, 2)) { 3566 case 0: 3567 if (extract32(insn, 21, 1) == 0) { 3568 /* Load/store register (unscaled immediate) 3569 * Load/store immediate pre/post-indexed 3570 * Load/store register unprivileged 3571 */ 3572 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3573 return; 3574 } 3575 switch (extract32(insn, 10, 2)) { 3576 case 0: 3577 disas_ldst_atomic(s, insn, size, rt, is_vector); 3578 return; 3579 case 2: 3580 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3581 return; 3582 default: 3583 disas_ldst_pac(s, insn, size, rt, is_vector); 3584 return; 3585 } 3586 break; 3587 case 1: 3588 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3589 return; 3590 } 3591 unallocated_encoding(s); 3592 } 3593 3594 /* AdvSIMD load/store multiple structures 3595 * 3596 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3597 * +---+---+---------------+---+-------------+--------+------+------+------+ 3598 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3599 * +---+---+---------------+---+-------------+--------+------+------+------+ 3600 * 3601 * AdvSIMD load/store multiple structures (post-indexed) 3602 * 3603 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3604 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3605 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3606 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3607 * 3608 * Rt: first (or only) SIMD&FP register to be transferred 3609 * Rn: base address or SP 3610 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3611 */ 3612 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3613 { 3614 int rt = extract32(insn, 0, 5); 3615 int rn = extract32(insn, 5, 5); 3616 int rm = extract32(insn, 16, 5); 3617 int size = extract32(insn, 10, 2); 3618 int opcode = extract32(insn, 12, 4); 3619 bool is_store = !extract32(insn, 22, 1); 3620 bool is_postidx = extract32(insn, 23, 1); 3621 bool is_q = extract32(insn, 30, 1); 3622 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3623 MemOp endian, align, mop; 3624 3625 int total; /* total bytes */ 3626 int elements; /* elements per vector */ 3627 int rpt; /* num iterations */ 3628 int selem; /* structure elements */ 3629 int r; 3630 3631 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3632 unallocated_encoding(s); 3633 return; 3634 } 3635 3636 if (!is_postidx && rm != 0) { 3637 unallocated_encoding(s); 3638 return; 3639 } 3640 3641 /* From the shared decode logic */ 3642 switch (opcode) { 3643 case 0x0: 3644 rpt = 1; 3645 selem = 4; 3646 break; 3647 case 0x2: 3648 rpt = 4; 3649 selem = 1; 3650 break; 3651 case 0x4: 3652 rpt = 1; 3653 selem = 3; 3654 break; 3655 case 0x6: 3656 rpt = 3; 3657 selem = 1; 3658 break; 3659 case 0x7: 3660 rpt = 1; 3661 selem = 1; 3662 break; 3663 case 0x8: 3664 rpt = 1; 3665 selem = 2; 3666 break; 3667 case 0xa: 3668 rpt = 2; 3669 selem = 1; 3670 break; 3671 default: 3672 unallocated_encoding(s); 3673 return; 3674 } 3675 3676 if (size == 3 && !is_q && selem != 1) { 3677 /* reserved */ 3678 unallocated_encoding(s); 3679 return; 3680 } 3681 3682 if (!fp_access_check(s)) { 3683 return; 3684 } 3685 3686 if (rn == 31) { 3687 gen_check_sp_alignment(s); 3688 } 3689 3690 /* For our purposes, bytes are always little-endian. */ 3691 endian = s->be_data; 3692 if (size == 0) { 3693 endian = MO_LE; 3694 } 3695 3696 total = rpt * selem * (is_q ? 16 : 8); 3697 tcg_rn = cpu_reg_sp(s, rn); 3698 3699 /* 3700 * Issue the MTE check vs the logical repeat count, before we 3701 * promote consecutive little-endian elements below. 3702 */ 3703 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3704 total); 3705 3706 /* 3707 * Consecutive little-endian elements from a single register 3708 * can be promoted to a larger little-endian operation. 3709 */ 3710 align = MO_ALIGN; 3711 if (selem == 1 && endian == MO_LE) { 3712 align = pow2_align(size); 3713 size = 3; 3714 } 3715 if (!s->align_mem) { 3716 align = 0; 3717 } 3718 mop = endian | size | align; 3719 3720 elements = (is_q ? 16 : 8) >> size; 3721 tcg_ebytes = tcg_constant_i64(1 << size); 3722 for (r = 0; r < rpt; r++) { 3723 int e; 3724 for (e = 0; e < elements; e++) { 3725 int xs; 3726 for (xs = 0; xs < selem; xs++) { 3727 int tt = (rt + r + xs) % 32; 3728 if (is_store) { 3729 do_vec_st(s, tt, e, clean_addr, mop); 3730 } else { 3731 do_vec_ld(s, tt, e, clean_addr, mop); 3732 } 3733 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3734 } 3735 } 3736 } 3737 3738 if (!is_store) { 3739 /* For non-quad operations, setting a slice of the low 3740 * 64 bits of the register clears the high 64 bits (in 3741 * the ARM ARM pseudocode this is implicit in the fact 3742 * that 'rval' is a 64 bit wide variable). 3743 * For quad operations, we might still need to zero the 3744 * high bits of SVE. 3745 */ 3746 for (r = 0; r < rpt * selem; r++) { 3747 int tt = (rt + r) % 32; 3748 clear_vec_high(s, is_q, tt); 3749 } 3750 } 3751 3752 if (is_postidx) { 3753 if (rm == 31) { 3754 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3755 } else { 3756 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3757 } 3758 } 3759 } 3760 3761 /* AdvSIMD load/store single structure 3762 * 3763 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3764 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3765 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3766 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3767 * 3768 * AdvSIMD load/store single structure (post-indexed) 3769 * 3770 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3771 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3772 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3773 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3774 * 3775 * Rt: first (or only) SIMD&FP register to be transferred 3776 * Rn: base address or SP 3777 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3778 * index = encoded in Q:S:size dependent on size 3779 * 3780 * lane_size = encoded in R, opc 3781 * transfer width = encoded in opc, S, size 3782 */ 3783 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3784 { 3785 int rt = extract32(insn, 0, 5); 3786 int rn = extract32(insn, 5, 5); 3787 int rm = extract32(insn, 16, 5); 3788 int size = extract32(insn, 10, 2); 3789 int S = extract32(insn, 12, 1); 3790 int opc = extract32(insn, 13, 3); 3791 int R = extract32(insn, 21, 1); 3792 int is_load = extract32(insn, 22, 1); 3793 int is_postidx = extract32(insn, 23, 1); 3794 int is_q = extract32(insn, 30, 1); 3795 3796 int scale = extract32(opc, 1, 2); 3797 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3798 bool replicate = false; 3799 int index = is_q << 3 | S << 2 | size; 3800 int xs, total; 3801 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3802 MemOp mop; 3803 3804 if (extract32(insn, 31, 1)) { 3805 unallocated_encoding(s); 3806 return; 3807 } 3808 if (!is_postidx && rm != 0) { 3809 unallocated_encoding(s); 3810 return; 3811 } 3812 3813 switch (scale) { 3814 case 3: 3815 if (!is_load || S) { 3816 unallocated_encoding(s); 3817 return; 3818 } 3819 scale = size; 3820 replicate = true; 3821 break; 3822 case 0: 3823 break; 3824 case 1: 3825 if (extract32(size, 0, 1)) { 3826 unallocated_encoding(s); 3827 return; 3828 } 3829 index >>= 1; 3830 break; 3831 case 2: 3832 if (extract32(size, 1, 1)) { 3833 unallocated_encoding(s); 3834 return; 3835 } 3836 if (!extract32(size, 0, 1)) { 3837 index >>= 2; 3838 } else { 3839 if (S) { 3840 unallocated_encoding(s); 3841 return; 3842 } 3843 index >>= 3; 3844 scale = 3; 3845 } 3846 break; 3847 default: 3848 g_assert_not_reached(); 3849 } 3850 3851 if (!fp_access_check(s)) { 3852 return; 3853 } 3854 3855 if (rn == 31) { 3856 gen_check_sp_alignment(s); 3857 } 3858 3859 total = selem << scale; 3860 tcg_rn = cpu_reg_sp(s, rn); 3861 3862 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3863 total); 3864 mop = finalize_memop(s, scale); 3865 3866 tcg_ebytes = tcg_constant_i64(1 << scale); 3867 for (xs = 0; xs < selem; xs++) { 3868 if (replicate) { 3869 /* Load and replicate to all elements */ 3870 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3871 3872 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3873 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3874 (is_q + 1) * 8, vec_full_reg_size(s), 3875 tcg_tmp); 3876 } else { 3877 /* Load/store one element per register */ 3878 if (is_load) { 3879 do_vec_ld(s, rt, index, clean_addr, mop); 3880 } else { 3881 do_vec_st(s, rt, index, clean_addr, mop); 3882 } 3883 } 3884 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3885 rt = (rt + 1) % 32; 3886 } 3887 3888 if (is_postidx) { 3889 if (rm == 31) { 3890 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3891 } else { 3892 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3893 } 3894 } 3895 } 3896 3897 /* 3898 * Load/Store memory tags 3899 * 3900 * 31 30 29 24 22 21 12 10 5 0 3901 * +-----+-------------+-----+---+------+-----+------+------+ 3902 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3903 * +-----+-------------+-----+---+------+-----+------+------+ 3904 */ 3905 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3906 { 3907 int rt = extract32(insn, 0, 5); 3908 int rn = extract32(insn, 5, 5); 3909 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3910 int op2 = extract32(insn, 10, 2); 3911 int op1 = extract32(insn, 22, 2); 3912 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3913 int index = 0; 3914 TCGv_i64 addr, clean_addr, tcg_rt; 3915 3916 /* We checked insn bits [29:24,21] in the caller. */ 3917 if (extract32(insn, 30, 2) != 3) { 3918 goto do_unallocated; 3919 } 3920 3921 /* 3922 * @index is a tri-state variable which has 3 states: 3923 * < 0 : post-index, writeback 3924 * = 0 : signed offset 3925 * > 0 : pre-index, writeback 3926 */ 3927 switch (op1) { 3928 case 0: 3929 if (op2 != 0) { 3930 /* STG */ 3931 index = op2 - 2; 3932 } else { 3933 /* STZGM */ 3934 if (s->current_el == 0 || offset != 0) { 3935 goto do_unallocated; 3936 } 3937 is_mult = is_zero = true; 3938 } 3939 break; 3940 case 1: 3941 if (op2 != 0) { 3942 /* STZG */ 3943 is_zero = true; 3944 index = op2 - 2; 3945 } else { 3946 /* LDG */ 3947 is_load = true; 3948 } 3949 break; 3950 case 2: 3951 if (op2 != 0) { 3952 /* ST2G */ 3953 is_pair = true; 3954 index = op2 - 2; 3955 } else { 3956 /* STGM */ 3957 if (s->current_el == 0 || offset != 0) { 3958 goto do_unallocated; 3959 } 3960 is_mult = true; 3961 } 3962 break; 3963 case 3: 3964 if (op2 != 0) { 3965 /* STZ2G */ 3966 is_pair = is_zero = true; 3967 index = op2 - 2; 3968 } else { 3969 /* LDGM */ 3970 if (s->current_el == 0 || offset != 0) { 3971 goto do_unallocated; 3972 } 3973 is_mult = is_load = true; 3974 } 3975 break; 3976 3977 default: 3978 do_unallocated: 3979 unallocated_encoding(s); 3980 return; 3981 } 3982 3983 if (is_mult 3984 ? !dc_isar_feature(aa64_mte, s) 3985 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 3986 goto do_unallocated; 3987 } 3988 3989 if (rn == 31) { 3990 gen_check_sp_alignment(s); 3991 } 3992 3993 addr = read_cpu_reg_sp(s, rn, true); 3994 if (index >= 0) { 3995 /* pre-index or signed offset */ 3996 tcg_gen_addi_i64(addr, addr, offset); 3997 } 3998 3999 if (is_mult) { 4000 tcg_rt = cpu_reg(s, rt); 4001 4002 if (is_zero) { 4003 int size = 4 << s->dcz_blocksize; 4004 4005 if (s->ata) { 4006 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4007 } 4008 /* 4009 * The non-tags portion of STZGM is mostly like DC_ZVA, 4010 * except the alignment happens before the access. 4011 */ 4012 clean_addr = clean_data_tbi(s, addr); 4013 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4014 gen_helper_dc_zva(cpu_env, clean_addr); 4015 } else if (s->ata) { 4016 if (is_load) { 4017 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4018 } else { 4019 gen_helper_stgm(cpu_env, addr, tcg_rt); 4020 } 4021 } else { 4022 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4023 int size = 4 << GMID_EL1_BS; 4024 4025 clean_addr = clean_data_tbi(s, addr); 4026 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4027 gen_probe_access(s, clean_addr, acc, size); 4028 4029 if (is_load) { 4030 /* The result tags are zeros. */ 4031 tcg_gen_movi_i64(tcg_rt, 0); 4032 } 4033 } 4034 return; 4035 } 4036 4037 if (is_load) { 4038 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4039 tcg_rt = cpu_reg(s, rt); 4040 if (s->ata) { 4041 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4042 } else { 4043 clean_addr = clean_data_tbi(s, addr); 4044 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4045 gen_address_with_allocation_tag0(tcg_rt, addr); 4046 } 4047 } else { 4048 tcg_rt = cpu_reg_sp(s, rt); 4049 if (!s->ata) { 4050 /* 4051 * For STG and ST2G, we need to check alignment and probe memory. 4052 * TODO: For STZG and STZ2G, we could rely on the stores below, 4053 * at least for system mode; user-only won't enforce alignment. 4054 */ 4055 if (is_pair) { 4056 gen_helper_st2g_stub(cpu_env, addr); 4057 } else { 4058 gen_helper_stg_stub(cpu_env, addr); 4059 } 4060 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4061 if (is_pair) { 4062 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4063 } else { 4064 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4065 } 4066 } else { 4067 if (is_pair) { 4068 gen_helper_st2g(cpu_env, addr, tcg_rt); 4069 } else { 4070 gen_helper_stg(cpu_env, addr, tcg_rt); 4071 } 4072 } 4073 } 4074 4075 if (is_zero) { 4076 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4077 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4078 int mem_index = get_mem_index(s); 4079 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4080 4081 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4082 MO_UQ | MO_ALIGN_16); 4083 for (i = 8; i < n; i += 8) { 4084 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4085 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4086 } 4087 } 4088 4089 if (index != 0) { 4090 /* pre-index or post-index */ 4091 if (index < 0) { 4092 /* post-index */ 4093 tcg_gen_addi_i64(addr, addr, offset); 4094 } 4095 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4096 } 4097 } 4098 4099 /* Loads and stores */ 4100 static void disas_ldst(DisasContext *s, uint32_t insn) 4101 { 4102 switch (extract32(insn, 24, 6)) { 4103 case 0x08: /* Load/store exclusive */ 4104 disas_ldst_excl(s, insn); 4105 break; 4106 case 0x18: case 0x1c: /* Load register (literal) */ 4107 disas_ld_lit(s, insn); 4108 break; 4109 case 0x28: case 0x29: 4110 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4111 disas_ldst_pair(s, insn); 4112 break; 4113 case 0x38: case 0x39: 4114 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4115 disas_ldst_reg(s, insn); 4116 break; 4117 case 0x0c: /* AdvSIMD load/store multiple structures */ 4118 disas_ldst_multiple_struct(s, insn); 4119 break; 4120 case 0x0d: /* AdvSIMD load/store single structure */ 4121 disas_ldst_single_struct(s, insn); 4122 break; 4123 case 0x19: 4124 if (extract32(insn, 21, 1) != 0) { 4125 disas_ldst_tag(s, insn); 4126 } else if (extract32(insn, 10, 2) == 0) { 4127 disas_ldst_ldapr_stlr(s, insn); 4128 } else { 4129 unallocated_encoding(s); 4130 } 4131 break; 4132 default: 4133 unallocated_encoding(s); 4134 break; 4135 } 4136 } 4137 4138 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4139 4140 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4141 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4142 { 4143 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4144 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4145 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4146 4147 fn(tcg_rd, tcg_rn, tcg_imm); 4148 if (!a->sf) { 4149 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4150 } 4151 return true; 4152 } 4153 4154 /* 4155 * PC-rel. addressing 4156 */ 4157 4158 static bool trans_ADR(DisasContext *s, arg_ri *a) 4159 { 4160 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4161 return true; 4162 } 4163 4164 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4165 { 4166 int64_t offset = (int64_t)a->imm << 12; 4167 4168 /* The page offset is ok for CF_PCREL. */ 4169 offset -= s->pc_curr & 0xfff; 4170 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4171 return true; 4172 } 4173 4174 /* 4175 * Add/subtract (immediate) 4176 */ 4177 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4178 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4179 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4180 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4181 4182 /* 4183 * Add/subtract (immediate, with tags) 4184 */ 4185 4186 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4187 bool sub_op) 4188 { 4189 TCGv_i64 tcg_rn, tcg_rd; 4190 int imm; 4191 4192 imm = a->uimm6 << LOG2_TAG_GRANULE; 4193 if (sub_op) { 4194 imm = -imm; 4195 } 4196 4197 tcg_rn = cpu_reg_sp(s, a->rn); 4198 tcg_rd = cpu_reg_sp(s, a->rd); 4199 4200 if (s->ata) { 4201 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4202 tcg_constant_i32(imm), 4203 tcg_constant_i32(a->uimm4)); 4204 } else { 4205 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4206 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4207 } 4208 return true; 4209 } 4210 4211 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4212 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4213 4214 /* The input should be a value in the bottom e bits (with higher 4215 * bits zero); returns that value replicated into every element 4216 * of size e in a 64 bit integer. 4217 */ 4218 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4219 { 4220 assert(e != 0); 4221 while (e < 64) { 4222 mask |= mask << e; 4223 e *= 2; 4224 } 4225 return mask; 4226 } 4227 4228 /* 4229 * Logical (immediate) 4230 */ 4231 4232 /* 4233 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4234 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4235 * value (ie should cause a guest UNDEF exception), and true if they are 4236 * valid, in which case the decoded bit pattern is written to result. 4237 */ 4238 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4239 unsigned int imms, unsigned int immr) 4240 { 4241 uint64_t mask; 4242 unsigned e, levels, s, r; 4243 int len; 4244 4245 assert(immn < 2 && imms < 64 && immr < 64); 4246 4247 /* The bit patterns we create here are 64 bit patterns which 4248 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4249 * 64 bits each. Each element contains the same value: a run 4250 * of between 1 and e-1 non-zero bits, rotated within the 4251 * element by between 0 and e-1 bits. 4252 * 4253 * The element size and run length are encoded into immn (1 bit) 4254 * and imms (6 bits) as follows: 4255 * 64 bit elements: immn = 1, imms = <length of run - 1> 4256 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4257 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4258 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4259 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4260 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4261 * Notice that immn = 0, imms = 11111x is the only combination 4262 * not covered by one of the above options; this is reserved. 4263 * Further, <length of run - 1> all-ones is a reserved pattern. 4264 * 4265 * In all cases the rotation is by immr % e (and immr is 6 bits). 4266 */ 4267 4268 /* First determine the element size */ 4269 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4270 if (len < 1) { 4271 /* This is the immn == 0, imms == 0x11111x case */ 4272 return false; 4273 } 4274 e = 1 << len; 4275 4276 levels = e - 1; 4277 s = imms & levels; 4278 r = immr & levels; 4279 4280 if (s == levels) { 4281 /* <length of run - 1> mustn't be all-ones. */ 4282 return false; 4283 } 4284 4285 /* Create the value of one element: s+1 set bits rotated 4286 * by r within the element (which is e bits wide)... 4287 */ 4288 mask = MAKE_64BIT_MASK(0, s + 1); 4289 if (r) { 4290 mask = (mask >> r) | (mask << (e - r)); 4291 mask &= MAKE_64BIT_MASK(0, e); 4292 } 4293 /* ...then replicate the element over the whole 64 bit value */ 4294 mask = bitfield_replicate(mask, e); 4295 *result = mask; 4296 return true; 4297 } 4298 4299 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4300 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4301 { 4302 TCGv_i64 tcg_rd, tcg_rn; 4303 uint64_t imm; 4304 4305 /* Some immediate field values are reserved. */ 4306 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4307 extract32(a->dbm, 0, 6), 4308 extract32(a->dbm, 6, 6))) { 4309 return false; 4310 } 4311 if (!a->sf) { 4312 imm &= 0xffffffffull; 4313 } 4314 4315 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4316 tcg_rn = cpu_reg(s, a->rn); 4317 4318 fn(tcg_rd, tcg_rn, imm); 4319 if (set_cc) { 4320 gen_logic_CC(a->sf, tcg_rd); 4321 } 4322 if (!a->sf) { 4323 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4324 } 4325 return true; 4326 } 4327 4328 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4329 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4330 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4331 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4332 4333 /* 4334 * Move wide (immediate) 4335 */ 4336 4337 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4338 { 4339 int pos = a->hw << 4; 4340 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4341 return true; 4342 } 4343 4344 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4345 { 4346 int pos = a->hw << 4; 4347 uint64_t imm = a->imm; 4348 4349 imm = ~(imm << pos); 4350 if (!a->sf) { 4351 imm = (uint32_t)imm; 4352 } 4353 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4354 return true; 4355 } 4356 4357 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4358 { 4359 int pos = a->hw << 4; 4360 TCGv_i64 tcg_rd, tcg_im; 4361 4362 tcg_rd = cpu_reg(s, a->rd); 4363 tcg_im = tcg_constant_i64(a->imm); 4364 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4365 if (!a->sf) { 4366 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4367 } 4368 return true; 4369 } 4370 4371 /* 4372 * Bitfield 4373 */ 4374 4375 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4376 { 4377 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4378 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4379 unsigned int bitsize = a->sf ? 64 : 32; 4380 unsigned int ri = a->immr; 4381 unsigned int si = a->imms; 4382 unsigned int pos, len; 4383 4384 if (si >= ri) { 4385 /* Wd<s-r:0> = Wn<s:r> */ 4386 len = (si - ri) + 1; 4387 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4388 if (!a->sf) { 4389 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4390 } 4391 } else { 4392 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4393 len = si + 1; 4394 pos = (bitsize - ri) & (bitsize - 1); 4395 4396 if (len < ri) { 4397 /* 4398 * Sign extend the destination field from len to fill the 4399 * balance of the word. Let the deposit below insert all 4400 * of those sign bits. 4401 */ 4402 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4403 len = ri; 4404 } 4405 4406 /* 4407 * We start with zero, and we haven't modified any bits outside 4408 * bitsize, therefore no final zero-extension is unneeded for !sf. 4409 */ 4410 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4411 } 4412 return true; 4413 } 4414 4415 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4416 { 4417 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4418 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4419 unsigned int bitsize = a->sf ? 64 : 32; 4420 unsigned int ri = a->immr; 4421 unsigned int si = a->imms; 4422 unsigned int pos, len; 4423 4424 tcg_rd = cpu_reg(s, a->rd); 4425 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4426 4427 if (si >= ri) { 4428 /* Wd<s-r:0> = Wn<s:r> */ 4429 len = (si - ri) + 1; 4430 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4431 } else { 4432 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4433 len = si + 1; 4434 pos = (bitsize - ri) & (bitsize - 1); 4435 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4436 } 4437 return true; 4438 } 4439 4440 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4441 { 4442 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4443 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4444 unsigned int bitsize = a->sf ? 64 : 32; 4445 unsigned int ri = a->immr; 4446 unsigned int si = a->imms; 4447 unsigned int pos, len; 4448 4449 tcg_rd = cpu_reg(s, a->rd); 4450 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4451 4452 if (si >= ri) { 4453 /* Wd<s-r:0> = Wn<s:r> */ 4454 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4455 len = (si - ri) + 1; 4456 pos = 0; 4457 } else { 4458 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4459 len = si + 1; 4460 pos = (bitsize - ri) & (bitsize - 1); 4461 } 4462 4463 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4464 if (!a->sf) { 4465 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4466 } 4467 return true; 4468 } 4469 4470 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4471 { 4472 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4473 4474 tcg_rd = cpu_reg(s, a->rd); 4475 4476 if (unlikely(a->imm == 0)) { 4477 /* 4478 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4479 * so an extract from bit 0 is a special case. 4480 */ 4481 if (a->sf) { 4482 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4483 } else { 4484 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4485 } 4486 } else { 4487 tcg_rm = cpu_reg(s, a->rm); 4488 tcg_rn = cpu_reg(s, a->rn); 4489 4490 if (a->sf) { 4491 /* Specialization to ROR happens in EXTRACT2. */ 4492 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4493 } else { 4494 TCGv_i32 t0 = tcg_temp_new_i32(); 4495 4496 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4497 if (a->rm == a->rn) { 4498 tcg_gen_rotri_i32(t0, t0, a->imm); 4499 } else { 4500 TCGv_i32 t1 = tcg_temp_new_i32(); 4501 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4502 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4503 } 4504 tcg_gen_extu_i32_i64(tcg_rd, t0); 4505 } 4506 } 4507 return true; 4508 } 4509 4510 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4511 * Note that it is the caller's responsibility to ensure that the 4512 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4513 * mandated semantics for out of range shifts. 4514 */ 4515 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4516 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4517 { 4518 switch (shift_type) { 4519 case A64_SHIFT_TYPE_LSL: 4520 tcg_gen_shl_i64(dst, src, shift_amount); 4521 break; 4522 case A64_SHIFT_TYPE_LSR: 4523 tcg_gen_shr_i64(dst, src, shift_amount); 4524 break; 4525 case A64_SHIFT_TYPE_ASR: 4526 if (!sf) { 4527 tcg_gen_ext32s_i64(dst, src); 4528 } 4529 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4530 break; 4531 case A64_SHIFT_TYPE_ROR: 4532 if (sf) { 4533 tcg_gen_rotr_i64(dst, src, shift_amount); 4534 } else { 4535 TCGv_i32 t0, t1; 4536 t0 = tcg_temp_new_i32(); 4537 t1 = tcg_temp_new_i32(); 4538 tcg_gen_extrl_i64_i32(t0, src); 4539 tcg_gen_extrl_i64_i32(t1, shift_amount); 4540 tcg_gen_rotr_i32(t0, t0, t1); 4541 tcg_gen_extu_i32_i64(dst, t0); 4542 } 4543 break; 4544 default: 4545 assert(FALSE); /* all shift types should be handled */ 4546 break; 4547 } 4548 4549 if (!sf) { /* zero extend final result */ 4550 tcg_gen_ext32u_i64(dst, dst); 4551 } 4552 } 4553 4554 /* Shift a TCGv src by immediate, put result in dst. 4555 * The shift amount must be in range (this should always be true as the 4556 * relevant instructions will UNDEF on bad shift immediates). 4557 */ 4558 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4559 enum a64_shift_type shift_type, unsigned int shift_i) 4560 { 4561 assert(shift_i < (sf ? 64 : 32)); 4562 4563 if (shift_i == 0) { 4564 tcg_gen_mov_i64(dst, src); 4565 } else { 4566 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4567 } 4568 } 4569 4570 /* Logical (shifted register) 4571 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4572 * +----+-----+-----------+-------+---+------+--------+------+------+ 4573 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4574 * +----+-----+-----------+-------+---+------+--------+------+------+ 4575 */ 4576 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4577 { 4578 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4579 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4580 4581 sf = extract32(insn, 31, 1); 4582 opc = extract32(insn, 29, 2); 4583 shift_type = extract32(insn, 22, 2); 4584 invert = extract32(insn, 21, 1); 4585 rm = extract32(insn, 16, 5); 4586 shift_amount = extract32(insn, 10, 6); 4587 rn = extract32(insn, 5, 5); 4588 rd = extract32(insn, 0, 5); 4589 4590 if (!sf && (shift_amount & (1 << 5))) { 4591 unallocated_encoding(s); 4592 return; 4593 } 4594 4595 tcg_rd = cpu_reg(s, rd); 4596 4597 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4598 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4599 * register-register MOV and MVN, so it is worth special casing. 4600 */ 4601 tcg_rm = cpu_reg(s, rm); 4602 if (invert) { 4603 tcg_gen_not_i64(tcg_rd, tcg_rm); 4604 if (!sf) { 4605 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4606 } 4607 } else { 4608 if (sf) { 4609 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4610 } else { 4611 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4612 } 4613 } 4614 return; 4615 } 4616 4617 tcg_rm = read_cpu_reg(s, rm, sf); 4618 4619 if (shift_amount) { 4620 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4621 } 4622 4623 tcg_rn = cpu_reg(s, rn); 4624 4625 switch (opc | (invert << 2)) { 4626 case 0: /* AND */ 4627 case 3: /* ANDS */ 4628 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4629 break; 4630 case 1: /* ORR */ 4631 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4632 break; 4633 case 2: /* EOR */ 4634 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4635 break; 4636 case 4: /* BIC */ 4637 case 7: /* BICS */ 4638 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4639 break; 4640 case 5: /* ORN */ 4641 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4642 break; 4643 case 6: /* EON */ 4644 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4645 break; 4646 default: 4647 assert(FALSE); 4648 break; 4649 } 4650 4651 if (!sf) { 4652 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4653 } 4654 4655 if (opc == 3) { 4656 gen_logic_CC(sf, tcg_rd); 4657 } 4658 } 4659 4660 /* 4661 * Add/subtract (extended register) 4662 * 4663 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4664 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4665 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4666 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4667 * 4668 * sf: 0 -> 32bit, 1 -> 64bit 4669 * op: 0 -> add , 1 -> sub 4670 * S: 1 -> set flags 4671 * opt: 00 4672 * option: extension type (see DecodeRegExtend) 4673 * imm3: optional shift to Rm 4674 * 4675 * Rd = Rn + LSL(extend(Rm), amount) 4676 */ 4677 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4678 { 4679 int rd = extract32(insn, 0, 5); 4680 int rn = extract32(insn, 5, 5); 4681 int imm3 = extract32(insn, 10, 3); 4682 int option = extract32(insn, 13, 3); 4683 int rm = extract32(insn, 16, 5); 4684 int opt = extract32(insn, 22, 2); 4685 bool setflags = extract32(insn, 29, 1); 4686 bool sub_op = extract32(insn, 30, 1); 4687 bool sf = extract32(insn, 31, 1); 4688 4689 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4690 TCGv_i64 tcg_rd; 4691 TCGv_i64 tcg_result; 4692 4693 if (imm3 > 4 || opt != 0) { 4694 unallocated_encoding(s); 4695 return; 4696 } 4697 4698 /* non-flag setting ops may use SP */ 4699 if (!setflags) { 4700 tcg_rd = cpu_reg_sp(s, rd); 4701 } else { 4702 tcg_rd = cpu_reg(s, rd); 4703 } 4704 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4705 4706 tcg_rm = read_cpu_reg(s, rm, sf); 4707 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4708 4709 tcg_result = tcg_temp_new_i64(); 4710 4711 if (!setflags) { 4712 if (sub_op) { 4713 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4714 } else { 4715 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4716 } 4717 } else { 4718 if (sub_op) { 4719 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4720 } else { 4721 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4722 } 4723 } 4724 4725 if (sf) { 4726 tcg_gen_mov_i64(tcg_rd, tcg_result); 4727 } else { 4728 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4729 } 4730 } 4731 4732 /* 4733 * Add/subtract (shifted register) 4734 * 4735 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4736 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4737 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4738 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4739 * 4740 * sf: 0 -> 32bit, 1 -> 64bit 4741 * op: 0 -> add , 1 -> sub 4742 * S: 1 -> set flags 4743 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4744 * imm6: Shift amount to apply to Rm before the add/sub 4745 */ 4746 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4747 { 4748 int rd = extract32(insn, 0, 5); 4749 int rn = extract32(insn, 5, 5); 4750 int imm6 = extract32(insn, 10, 6); 4751 int rm = extract32(insn, 16, 5); 4752 int shift_type = extract32(insn, 22, 2); 4753 bool setflags = extract32(insn, 29, 1); 4754 bool sub_op = extract32(insn, 30, 1); 4755 bool sf = extract32(insn, 31, 1); 4756 4757 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4758 TCGv_i64 tcg_rn, tcg_rm; 4759 TCGv_i64 tcg_result; 4760 4761 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4762 unallocated_encoding(s); 4763 return; 4764 } 4765 4766 tcg_rn = read_cpu_reg(s, rn, sf); 4767 tcg_rm = read_cpu_reg(s, rm, sf); 4768 4769 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4770 4771 tcg_result = tcg_temp_new_i64(); 4772 4773 if (!setflags) { 4774 if (sub_op) { 4775 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4776 } else { 4777 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4778 } 4779 } else { 4780 if (sub_op) { 4781 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4782 } else { 4783 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4784 } 4785 } 4786 4787 if (sf) { 4788 tcg_gen_mov_i64(tcg_rd, tcg_result); 4789 } else { 4790 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4791 } 4792 } 4793 4794 /* Data-processing (3 source) 4795 * 4796 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4797 * +--+------+-----------+------+------+----+------+------+------+ 4798 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4799 * +--+------+-----------+------+------+----+------+------+------+ 4800 */ 4801 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4802 { 4803 int rd = extract32(insn, 0, 5); 4804 int rn = extract32(insn, 5, 5); 4805 int ra = extract32(insn, 10, 5); 4806 int rm = extract32(insn, 16, 5); 4807 int op_id = (extract32(insn, 29, 3) << 4) | 4808 (extract32(insn, 21, 3) << 1) | 4809 extract32(insn, 15, 1); 4810 bool sf = extract32(insn, 31, 1); 4811 bool is_sub = extract32(op_id, 0, 1); 4812 bool is_high = extract32(op_id, 2, 1); 4813 bool is_signed = false; 4814 TCGv_i64 tcg_op1; 4815 TCGv_i64 tcg_op2; 4816 TCGv_i64 tcg_tmp; 4817 4818 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4819 switch (op_id) { 4820 case 0x42: /* SMADDL */ 4821 case 0x43: /* SMSUBL */ 4822 case 0x44: /* SMULH */ 4823 is_signed = true; 4824 break; 4825 case 0x0: /* MADD (32bit) */ 4826 case 0x1: /* MSUB (32bit) */ 4827 case 0x40: /* MADD (64bit) */ 4828 case 0x41: /* MSUB (64bit) */ 4829 case 0x4a: /* UMADDL */ 4830 case 0x4b: /* UMSUBL */ 4831 case 0x4c: /* UMULH */ 4832 break; 4833 default: 4834 unallocated_encoding(s); 4835 return; 4836 } 4837 4838 if (is_high) { 4839 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4840 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4841 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4842 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4843 4844 if (is_signed) { 4845 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4846 } else { 4847 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4848 } 4849 return; 4850 } 4851 4852 tcg_op1 = tcg_temp_new_i64(); 4853 tcg_op2 = tcg_temp_new_i64(); 4854 tcg_tmp = tcg_temp_new_i64(); 4855 4856 if (op_id < 0x42) { 4857 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4858 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4859 } else { 4860 if (is_signed) { 4861 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4862 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4863 } else { 4864 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4865 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4866 } 4867 } 4868 4869 if (ra == 31 && !is_sub) { 4870 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4871 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4872 } else { 4873 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4874 if (is_sub) { 4875 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4876 } else { 4877 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4878 } 4879 } 4880 4881 if (!sf) { 4882 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4883 } 4884 } 4885 4886 /* Add/subtract (with carry) 4887 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4888 * +--+--+--+------------------------+------+-------------+------+-----+ 4889 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4890 * +--+--+--+------------------------+------+-------------+------+-----+ 4891 */ 4892 4893 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4894 { 4895 unsigned int sf, op, setflags, rm, rn, rd; 4896 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4897 4898 sf = extract32(insn, 31, 1); 4899 op = extract32(insn, 30, 1); 4900 setflags = extract32(insn, 29, 1); 4901 rm = extract32(insn, 16, 5); 4902 rn = extract32(insn, 5, 5); 4903 rd = extract32(insn, 0, 5); 4904 4905 tcg_rd = cpu_reg(s, rd); 4906 tcg_rn = cpu_reg(s, rn); 4907 4908 if (op) { 4909 tcg_y = tcg_temp_new_i64(); 4910 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4911 } else { 4912 tcg_y = cpu_reg(s, rm); 4913 } 4914 4915 if (setflags) { 4916 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4917 } else { 4918 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4919 } 4920 } 4921 4922 /* 4923 * Rotate right into flags 4924 * 31 30 29 21 15 10 5 4 0 4925 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4926 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4927 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4928 */ 4929 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4930 { 4931 int mask = extract32(insn, 0, 4); 4932 int o2 = extract32(insn, 4, 1); 4933 int rn = extract32(insn, 5, 5); 4934 int imm6 = extract32(insn, 15, 6); 4935 int sf_op_s = extract32(insn, 29, 3); 4936 TCGv_i64 tcg_rn; 4937 TCGv_i32 nzcv; 4938 4939 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4940 unallocated_encoding(s); 4941 return; 4942 } 4943 4944 tcg_rn = read_cpu_reg(s, rn, 1); 4945 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4946 4947 nzcv = tcg_temp_new_i32(); 4948 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4949 4950 if (mask & 8) { /* N */ 4951 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4952 } 4953 if (mask & 4) { /* Z */ 4954 tcg_gen_not_i32(cpu_ZF, nzcv); 4955 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4956 } 4957 if (mask & 2) { /* C */ 4958 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4959 } 4960 if (mask & 1) { /* V */ 4961 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4962 } 4963 } 4964 4965 /* 4966 * Evaluate into flags 4967 * 31 30 29 21 15 14 10 5 4 0 4968 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4969 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4970 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4971 */ 4972 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4973 { 4974 int o3_mask = extract32(insn, 0, 5); 4975 int rn = extract32(insn, 5, 5); 4976 int o2 = extract32(insn, 15, 6); 4977 int sz = extract32(insn, 14, 1); 4978 int sf_op_s = extract32(insn, 29, 3); 4979 TCGv_i32 tmp; 4980 int shift; 4981 4982 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4983 !dc_isar_feature(aa64_condm_4, s)) { 4984 unallocated_encoding(s); 4985 return; 4986 } 4987 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4988 4989 tmp = tcg_temp_new_i32(); 4990 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4991 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4992 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4993 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4994 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4995 } 4996 4997 /* Conditional compare (immediate / register) 4998 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4999 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5000 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5001 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5002 * [1] y [0] [0] 5003 */ 5004 static void disas_cc(DisasContext *s, uint32_t insn) 5005 { 5006 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5007 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5008 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5009 DisasCompare c; 5010 5011 if (!extract32(insn, 29, 1)) { 5012 unallocated_encoding(s); 5013 return; 5014 } 5015 if (insn & (1 << 10 | 1 << 4)) { 5016 unallocated_encoding(s); 5017 return; 5018 } 5019 sf = extract32(insn, 31, 1); 5020 op = extract32(insn, 30, 1); 5021 is_imm = extract32(insn, 11, 1); 5022 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5023 cond = extract32(insn, 12, 4); 5024 rn = extract32(insn, 5, 5); 5025 nzcv = extract32(insn, 0, 4); 5026 5027 /* Set T0 = !COND. */ 5028 tcg_t0 = tcg_temp_new_i32(); 5029 arm_test_cc(&c, cond); 5030 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5031 5032 /* Load the arguments for the new comparison. */ 5033 if (is_imm) { 5034 tcg_y = tcg_temp_new_i64(); 5035 tcg_gen_movi_i64(tcg_y, y); 5036 } else { 5037 tcg_y = cpu_reg(s, y); 5038 } 5039 tcg_rn = cpu_reg(s, rn); 5040 5041 /* Set the flags for the new comparison. */ 5042 tcg_tmp = tcg_temp_new_i64(); 5043 if (op) { 5044 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5045 } else { 5046 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5047 } 5048 5049 /* If COND was false, force the flags to #nzcv. Compute two masks 5050 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5051 * For tcg hosts that support ANDC, we can make do with just T1. 5052 * In either case, allow the tcg optimizer to delete any unused mask. 5053 */ 5054 tcg_t1 = tcg_temp_new_i32(); 5055 tcg_t2 = tcg_temp_new_i32(); 5056 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5057 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5058 5059 if (nzcv & 8) { /* N */ 5060 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5061 } else { 5062 if (TCG_TARGET_HAS_andc_i32) { 5063 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5064 } else { 5065 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5066 } 5067 } 5068 if (nzcv & 4) { /* Z */ 5069 if (TCG_TARGET_HAS_andc_i32) { 5070 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5071 } else { 5072 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5073 } 5074 } else { 5075 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5076 } 5077 if (nzcv & 2) { /* C */ 5078 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5079 } else { 5080 if (TCG_TARGET_HAS_andc_i32) { 5081 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5082 } else { 5083 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5084 } 5085 } 5086 if (nzcv & 1) { /* V */ 5087 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5088 } else { 5089 if (TCG_TARGET_HAS_andc_i32) { 5090 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5091 } else { 5092 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5093 } 5094 } 5095 } 5096 5097 /* Conditional select 5098 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5099 * +----+----+---+-----------------+------+------+-----+------+------+ 5100 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5101 * +----+----+---+-----------------+------+------+-----+------+------+ 5102 */ 5103 static void disas_cond_select(DisasContext *s, uint32_t insn) 5104 { 5105 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5106 TCGv_i64 tcg_rd, zero; 5107 DisasCompare64 c; 5108 5109 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5110 /* S == 1 or op2<1> == 1 */ 5111 unallocated_encoding(s); 5112 return; 5113 } 5114 sf = extract32(insn, 31, 1); 5115 else_inv = extract32(insn, 30, 1); 5116 rm = extract32(insn, 16, 5); 5117 cond = extract32(insn, 12, 4); 5118 else_inc = extract32(insn, 10, 1); 5119 rn = extract32(insn, 5, 5); 5120 rd = extract32(insn, 0, 5); 5121 5122 tcg_rd = cpu_reg(s, rd); 5123 5124 a64_test_cc(&c, cond); 5125 zero = tcg_constant_i64(0); 5126 5127 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5128 /* CSET & CSETM. */ 5129 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5130 if (else_inv) { 5131 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5132 } 5133 } else { 5134 TCGv_i64 t_true = cpu_reg(s, rn); 5135 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5136 if (else_inv && else_inc) { 5137 tcg_gen_neg_i64(t_false, t_false); 5138 } else if (else_inv) { 5139 tcg_gen_not_i64(t_false, t_false); 5140 } else if (else_inc) { 5141 tcg_gen_addi_i64(t_false, t_false, 1); 5142 } 5143 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5144 } 5145 5146 if (!sf) { 5147 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5148 } 5149 } 5150 5151 static void handle_clz(DisasContext *s, unsigned int sf, 5152 unsigned int rn, unsigned int rd) 5153 { 5154 TCGv_i64 tcg_rd, tcg_rn; 5155 tcg_rd = cpu_reg(s, rd); 5156 tcg_rn = cpu_reg(s, rn); 5157 5158 if (sf) { 5159 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5160 } else { 5161 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5162 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5163 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5164 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5165 } 5166 } 5167 5168 static void handle_cls(DisasContext *s, unsigned int sf, 5169 unsigned int rn, unsigned int rd) 5170 { 5171 TCGv_i64 tcg_rd, tcg_rn; 5172 tcg_rd = cpu_reg(s, rd); 5173 tcg_rn = cpu_reg(s, rn); 5174 5175 if (sf) { 5176 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5177 } else { 5178 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5179 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5180 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5181 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5182 } 5183 } 5184 5185 static void handle_rbit(DisasContext *s, unsigned int sf, 5186 unsigned int rn, unsigned int rd) 5187 { 5188 TCGv_i64 tcg_rd, tcg_rn; 5189 tcg_rd = cpu_reg(s, rd); 5190 tcg_rn = cpu_reg(s, rn); 5191 5192 if (sf) { 5193 gen_helper_rbit64(tcg_rd, tcg_rn); 5194 } else { 5195 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5196 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5197 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5198 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5199 } 5200 } 5201 5202 /* REV with sf==1, opcode==3 ("REV64") */ 5203 static void handle_rev64(DisasContext *s, unsigned int sf, 5204 unsigned int rn, unsigned int rd) 5205 { 5206 if (!sf) { 5207 unallocated_encoding(s); 5208 return; 5209 } 5210 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5211 } 5212 5213 /* REV with sf==0, opcode==2 5214 * REV32 (sf==1, opcode==2) 5215 */ 5216 static void handle_rev32(DisasContext *s, unsigned int sf, 5217 unsigned int rn, unsigned int rd) 5218 { 5219 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5220 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5221 5222 if (sf) { 5223 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5224 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5225 } else { 5226 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5227 } 5228 } 5229 5230 /* REV16 (opcode==1) */ 5231 static void handle_rev16(DisasContext *s, unsigned int sf, 5232 unsigned int rn, unsigned int rd) 5233 { 5234 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5235 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5236 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5237 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5238 5239 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5240 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5241 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5242 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5243 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5244 } 5245 5246 /* Data-processing (1 source) 5247 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5248 * +----+---+---+-----------------+---------+--------+------+------+ 5249 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5250 * +----+---+---+-----------------+---------+--------+------+------+ 5251 */ 5252 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5253 { 5254 unsigned int sf, opcode, opcode2, rn, rd; 5255 TCGv_i64 tcg_rd; 5256 5257 if (extract32(insn, 29, 1)) { 5258 unallocated_encoding(s); 5259 return; 5260 } 5261 5262 sf = extract32(insn, 31, 1); 5263 opcode = extract32(insn, 10, 6); 5264 opcode2 = extract32(insn, 16, 5); 5265 rn = extract32(insn, 5, 5); 5266 rd = extract32(insn, 0, 5); 5267 5268 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5269 5270 switch (MAP(sf, opcode2, opcode)) { 5271 case MAP(0, 0x00, 0x00): /* RBIT */ 5272 case MAP(1, 0x00, 0x00): 5273 handle_rbit(s, sf, rn, rd); 5274 break; 5275 case MAP(0, 0x00, 0x01): /* REV16 */ 5276 case MAP(1, 0x00, 0x01): 5277 handle_rev16(s, sf, rn, rd); 5278 break; 5279 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5280 case MAP(1, 0x00, 0x02): 5281 handle_rev32(s, sf, rn, rd); 5282 break; 5283 case MAP(1, 0x00, 0x03): /* REV64 */ 5284 handle_rev64(s, sf, rn, rd); 5285 break; 5286 case MAP(0, 0x00, 0x04): /* CLZ */ 5287 case MAP(1, 0x00, 0x04): 5288 handle_clz(s, sf, rn, rd); 5289 break; 5290 case MAP(0, 0x00, 0x05): /* CLS */ 5291 case MAP(1, 0x00, 0x05): 5292 handle_cls(s, sf, rn, rd); 5293 break; 5294 case MAP(1, 0x01, 0x00): /* PACIA */ 5295 if (s->pauth_active) { 5296 tcg_rd = cpu_reg(s, rd); 5297 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5298 } else if (!dc_isar_feature(aa64_pauth, s)) { 5299 goto do_unallocated; 5300 } 5301 break; 5302 case MAP(1, 0x01, 0x01): /* PACIB */ 5303 if (s->pauth_active) { 5304 tcg_rd = cpu_reg(s, rd); 5305 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5306 } else if (!dc_isar_feature(aa64_pauth, s)) { 5307 goto do_unallocated; 5308 } 5309 break; 5310 case MAP(1, 0x01, 0x02): /* PACDA */ 5311 if (s->pauth_active) { 5312 tcg_rd = cpu_reg(s, rd); 5313 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5314 } else if (!dc_isar_feature(aa64_pauth, s)) { 5315 goto do_unallocated; 5316 } 5317 break; 5318 case MAP(1, 0x01, 0x03): /* PACDB */ 5319 if (s->pauth_active) { 5320 tcg_rd = cpu_reg(s, rd); 5321 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5322 } else if (!dc_isar_feature(aa64_pauth, s)) { 5323 goto do_unallocated; 5324 } 5325 break; 5326 case MAP(1, 0x01, 0x04): /* AUTIA */ 5327 if (s->pauth_active) { 5328 tcg_rd = cpu_reg(s, rd); 5329 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5330 } else if (!dc_isar_feature(aa64_pauth, s)) { 5331 goto do_unallocated; 5332 } 5333 break; 5334 case MAP(1, 0x01, 0x05): /* AUTIB */ 5335 if (s->pauth_active) { 5336 tcg_rd = cpu_reg(s, rd); 5337 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5338 } else if (!dc_isar_feature(aa64_pauth, s)) { 5339 goto do_unallocated; 5340 } 5341 break; 5342 case MAP(1, 0x01, 0x06): /* AUTDA */ 5343 if (s->pauth_active) { 5344 tcg_rd = cpu_reg(s, rd); 5345 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5346 } else if (!dc_isar_feature(aa64_pauth, s)) { 5347 goto do_unallocated; 5348 } 5349 break; 5350 case MAP(1, 0x01, 0x07): /* AUTDB */ 5351 if (s->pauth_active) { 5352 tcg_rd = cpu_reg(s, rd); 5353 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5354 } else if (!dc_isar_feature(aa64_pauth, s)) { 5355 goto do_unallocated; 5356 } 5357 break; 5358 case MAP(1, 0x01, 0x08): /* PACIZA */ 5359 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5360 goto do_unallocated; 5361 } else if (s->pauth_active) { 5362 tcg_rd = cpu_reg(s, rd); 5363 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5364 } 5365 break; 5366 case MAP(1, 0x01, 0x09): /* PACIZB */ 5367 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5368 goto do_unallocated; 5369 } else if (s->pauth_active) { 5370 tcg_rd = cpu_reg(s, rd); 5371 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5372 } 5373 break; 5374 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5375 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5376 goto do_unallocated; 5377 } else if (s->pauth_active) { 5378 tcg_rd = cpu_reg(s, rd); 5379 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5380 } 5381 break; 5382 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5383 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5384 goto do_unallocated; 5385 } else if (s->pauth_active) { 5386 tcg_rd = cpu_reg(s, rd); 5387 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5388 } 5389 break; 5390 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5391 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5392 goto do_unallocated; 5393 } else if (s->pauth_active) { 5394 tcg_rd = cpu_reg(s, rd); 5395 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5396 } 5397 break; 5398 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5399 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5400 goto do_unallocated; 5401 } else if (s->pauth_active) { 5402 tcg_rd = cpu_reg(s, rd); 5403 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5404 } 5405 break; 5406 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5407 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5408 goto do_unallocated; 5409 } else if (s->pauth_active) { 5410 tcg_rd = cpu_reg(s, rd); 5411 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5412 } 5413 break; 5414 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5415 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5416 goto do_unallocated; 5417 } else if (s->pauth_active) { 5418 tcg_rd = cpu_reg(s, rd); 5419 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5420 } 5421 break; 5422 case MAP(1, 0x01, 0x10): /* XPACI */ 5423 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5424 goto do_unallocated; 5425 } else if (s->pauth_active) { 5426 tcg_rd = cpu_reg(s, rd); 5427 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5428 } 5429 break; 5430 case MAP(1, 0x01, 0x11): /* XPACD */ 5431 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5432 goto do_unallocated; 5433 } else if (s->pauth_active) { 5434 tcg_rd = cpu_reg(s, rd); 5435 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5436 } 5437 break; 5438 default: 5439 do_unallocated: 5440 unallocated_encoding(s); 5441 break; 5442 } 5443 5444 #undef MAP 5445 } 5446 5447 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5448 unsigned int rm, unsigned int rn, unsigned int rd) 5449 { 5450 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5451 tcg_rd = cpu_reg(s, rd); 5452 5453 if (!sf && is_signed) { 5454 tcg_n = tcg_temp_new_i64(); 5455 tcg_m = tcg_temp_new_i64(); 5456 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5457 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5458 } else { 5459 tcg_n = read_cpu_reg(s, rn, sf); 5460 tcg_m = read_cpu_reg(s, rm, sf); 5461 } 5462 5463 if (is_signed) { 5464 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5465 } else { 5466 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5467 } 5468 5469 if (!sf) { /* zero extend final result */ 5470 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5471 } 5472 } 5473 5474 /* LSLV, LSRV, ASRV, RORV */ 5475 static void handle_shift_reg(DisasContext *s, 5476 enum a64_shift_type shift_type, unsigned int sf, 5477 unsigned int rm, unsigned int rn, unsigned int rd) 5478 { 5479 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5480 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5481 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5482 5483 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5484 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5485 } 5486 5487 /* CRC32[BHWX], CRC32C[BHWX] */ 5488 static void handle_crc32(DisasContext *s, 5489 unsigned int sf, unsigned int sz, bool crc32c, 5490 unsigned int rm, unsigned int rn, unsigned int rd) 5491 { 5492 TCGv_i64 tcg_acc, tcg_val; 5493 TCGv_i32 tcg_bytes; 5494 5495 if (!dc_isar_feature(aa64_crc32, s) 5496 || (sf == 1 && sz != 3) 5497 || (sf == 0 && sz == 3)) { 5498 unallocated_encoding(s); 5499 return; 5500 } 5501 5502 if (sz == 3) { 5503 tcg_val = cpu_reg(s, rm); 5504 } else { 5505 uint64_t mask; 5506 switch (sz) { 5507 case 0: 5508 mask = 0xFF; 5509 break; 5510 case 1: 5511 mask = 0xFFFF; 5512 break; 5513 case 2: 5514 mask = 0xFFFFFFFF; 5515 break; 5516 default: 5517 g_assert_not_reached(); 5518 } 5519 tcg_val = tcg_temp_new_i64(); 5520 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5521 } 5522 5523 tcg_acc = cpu_reg(s, rn); 5524 tcg_bytes = tcg_constant_i32(1 << sz); 5525 5526 if (crc32c) { 5527 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5528 } else { 5529 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5530 } 5531 } 5532 5533 /* Data-processing (2 source) 5534 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5535 * +----+---+---+-----------------+------+--------+------+------+ 5536 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5537 * +----+---+---+-----------------+------+--------+------+------+ 5538 */ 5539 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5540 { 5541 unsigned int sf, rm, opcode, rn, rd, setflag; 5542 sf = extract32(insn, 31, 1); 5543 setflag = extract32(insn, 29, 1); 5544 rm = extract32(insn, 16, 5); 5545 opcode = extract32(insn, 10, 6); 5546 rn = extract32(insn, 5, 5); 5547 rd = extract32(insn, 0, 5); 5548 5549 if (setflag && opcode != 0) { 5550 unallocated_encoding(s); 5551 return; 5552 } 5553 5554 switch (opcode) { 5555 case 0: /* SUBP(S) */ 5556 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5557 goto do_unallocated; 5558 } else { 5559 TCGv_i64 tcg_n, tcg_m, tcg_d; 5560 5561 tcg_n = read_cpu_reg_sp(s, rn, true); 5562 tcg_m = read_cpu_reg_sp(s, rm, true); 5563 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5564 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5565 tcg_d = cpu_reg(s, rd); 5566 5567 if (setflag) { 5568 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5569 } else { 5570 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5571 } 5572 } 5573 break; 5574 case 2: /* UDIV */ 5575 handle_div(s, false, sf, rm, rn, rd); 5576 break; 5577 case 3: /* SDIV */ 5578 handle_div(s, true, sf, rm, rn, rd); 5579 break; 5580 case 4: /* IRG */ 5581 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5582 goto do_unallocated; 5583 } 5584 if (s->ata) { 5585 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5586 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5587 } else { 5588 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5589 cpu_reg_sp(s, rn)); 5590 } 5591 break; 5592 case 5: /* GMI */ 5593 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5594 goto do_unallocated; 5595 } else { 5596 TCGv_i64 t = tcg_temp_new_i64(); 5597 5598 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5599 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5600 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5601 } 5602 break; 5603 case 8: /* LSLV */ 5604 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5605 break; 5606 case 9: /* LSRV */ 5607 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5608 break; 5609 case 10: /* ASRV */ 5610 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5611 break; 5612 case 11: /* RORV */ 5613 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5614 break; 5615 case 12: /* PACGA */ 5616 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5617 goto do_unallocated; 5618 } 5619 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5620 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5621 break; 5622 case 16: 5623 case 17: 5624 case 18: 5625 case 19: 5626 case 20: 5627 case 21: 5628 case 22: 5629 case 23: /* CRC32 */ 5630 { 5631 int sz = extract32(opcode, 0, 2); 5632 bool crc32c = extract32(opcode, 2, 1); 5633 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5634 break; 5635 } 5636 default: 5637 do_unallocated: 5638 unallocated_encoding(s); 5639 break; 5640 } 5641 } 5642 5643 /* 5644 * Data processing - register 5645 * 31 30 29 28 25 21 20 16 10 0 5646 * +--+---+--+---+-------+-----+-------+-------+---------+ 5647 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5648 * +--+---+--+---+-------+-----+-------+-------+---------+ 5649 */ 5650 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5651 { 5652 int op0 = extract32(insn, 30, 1); 5653 int op1 = extract32(insn, 28, 1); 5654 int op2 = extract32(insn, 21, 4); 5655 int op3 = extract32(insn, 10, 6); 5656 5657 if (!op1) { 5658 if (op2 & 8) { 5659 if (op2 & 1) { 5660 /* Add/sub (extended register) */ 5661 disas_add_sub_ext_reg(s, insn); 5662 } else { 5663 /* Add/sub (shifted register) */ 5664 disas_add_sub_reg(s, insn); 5665 } 5666 } else { 5667 /* Logical (shifted register) */ 5668 disas_logic_reg(s, insn); 5669 } 5670 return; 5671 } 5672 5673 switch (op2) { 5674 case 0x0: 5675 switch (op3) { 5676 case 0x00: /* Add/subtract (with carry) */ 5677 disas_adc_sbc(s, insn); 5678 break; 5679 5680 case 0x01: /* Rotate right into flags */ 5681 case 0x21: 5682 disas_rotate_right_into_flags(s, insn); 5683 break; 5684 5685 case 0x02: /* Evaluate into flags */ 5686 case 0x12: 5687 case 0x22: 5688 case 0x32: 5689 disas_evaluate_into_flags(s, insn); 5690 break; 5691 5692 default: 5693 goto do_unallocated; 5694 } 5695 break; 5696 5697 case 0x2: /* Conditional compare */ 5698 disas_cc(s, insn); /* both imm and reg forms */ 5699 break; 5700 5701 case 0x4: /* Conditional select */ 5702 disas_cond_select(s, insn); 5703 break; 5704 5705 case 0x6: /* Data-processing */ 5706 if (op0) { /* (1 source) */ 5707 disas_data_proc_1src(s, insn); 5708 } else { /* (2 source) */ 5709 disas_data_proc_2src(s, insn); 5710 } 5711 break; 5712 case 0x8 ... 0xf: /* (3 source) */ 5713 disas_data_proc_3src(s, insn); 5714 break; 5715 5716 default: 5717 do_unallocated: 5718 unallocated_encoding(s); 5719 break; 5720 } 5721 } 5722 5723 static void handle_fp_compare(DisasContext *s, int size, 5724 unsigned int rn, unsigned int rm, 5725 bool cmp_with_zero, bool signal_all_nans) 5726 { 5727 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5728 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5729 5730 if (size == MO_64) { 5731 TCGv_i64 tcg_vn, tcg_vm; 5732 5733 tcg_vn = read_fp_dreg(s, rn); 5734 if (cmp_with_zero) { 5735 tcg_vm = tcg_constant_i64(0); 5736 } else { 5737 tcg_vm = read_fp_dreg(s, rm); 5738 } 5739 if (signal_all_nans) { 5740 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5741 } else { 5742 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5743 } 5744 } else { 5745 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5746 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5747 5748 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5749 if (cmp_with_zero) { 5750 tcg_gen_movi_i32(tcg_vm, 0); 5751 } else { 5752 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5753 } 5754 5755 switch (size) { 5756 case MO_32: 5757 if (signal_all_nans) { 5758 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5759 } else { 5760 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5761 } 5762 break; 5763 case MO_16: 5764 if (signal_all_nans) { 5765 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5766 } else { 5767 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5768 } 5769 break; 5770 default: 5771 g_assert_not_reached(); 5772 } 5773 } 5774 5775 gen_set_nzcv(tcg_flags); 5776 } 5777 5778 /* Floating point compare 5779 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5780 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5781 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5782 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5783 */ 5784 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5785 { 5786 unsigned int mos, type, rm, op, rn, opc, op2r; 5787 int size; 5788 5789 mos = extract32(insn, 29, 3); 5790 type = extract32(insn, 22, 2); 5791 rm = extract32(insn, 16, 5); 5792 op = extract32(insn, 14, 2); 5793 rn = extract32(insn, 5, 5); 5794 opc = extract32(insn, 3, 2); 5795 op2r = extract32(insn, 0, 3); 5796 5797 if (mos || op || op2r) { 5798 unallocated_encoding(s); 5799 return; 5800 } 5801 5802 switch (type) { 5803 case 0: 5804 size = MO_32; 5805 break; 5806 case 1: 5807 size = MO_64; 5808 break; 5809 case 3: 5810 size = MO_16; 5811 if (dc_isar_feature(aa64_fp16, s)) { 5812 break; 5813 } 5814 /* fallthru */ 5815 default: 5816 unallocated_encoding(s); 5817 return; 5818 } 5819 5820 if (!fp_access_check(s)) { 5821 return; 5822 } 5823 5824 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5825 } 5826 5827 /* Floating point conditional compare 5828 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5829 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5830 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5831 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5832 */ 5833 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5834 { 5835 unsigned int mos, type, rm, cond, rn, op, nzcv; 5836 TCGLabel *label_continue = NULL; 5837 int size; 5838 5839 mos = extract32(insn, 29, 3); 5840 type = extract32(insn, 22, 2); 5841 rm = extract32(insn, 16, 5); 5842 cond = extract32(insn, 12, 4); 5843 rn = extract32(insn, 5, 5); 5844 op = extract32(insn, 4, 1); 5845 nzcv = extract32(insn, 0, 4); 5846 5847 if (mos) { 5848 unallocated_encoding(s); 5849 return; 5850 } 5851 5852 switch (type) { 5853 case 0: 5854 size = MO_32; 5855 break; 5856 case 1: 5857 size = MO_64; 5858 break; 5859 case 3: 5860 size = MO_16; 5861 if (dc_isar_feature(aa64_fp16, s)) { 5862 break; 5863 } 5864 /* fallthru */ 5865 default: 5866 unallocated_encoding(s); 5867 return; 5868 } 5869 5870 if (!fp_access_check(s)) { 5871 return; 5872 } 5873 5874 if (cond < 0x0e) { /* not always */ 5875 TCGLabel *label_match = gen_new_label(); 5876 label_continue = gen_new_label(); 5877 arm_gen_test_cc(cond, label_match); 5878 /* nomatch: */ 5879 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5880 tcg_gen_br(label_continue); 5881 gen_set_label(label_match); 5882 } 5883 5884 handle_fp_compare(s, size, rn, rm, false, op); 5885 5886 if (cond < 0x0e) { 5887 gen_set_label(label_continue); 5888 } 5889 } 5890 5891 /* Floating point conditional select 5892 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5893 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5894 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5895 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5896 */ 5897 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5898 { 5899 unsigned int mos, type, rm, cond, rn, rd; 5900 TCGv_i64 t_true, t_false; 5901 DisasCompare64 c; 5902 MemOp sz; 5903 5904 mos = extract32(insn, 29, 3); 5905 type = extract32(insn, 22, 2); 5906 rm = extract32(insn, 16, 5); 5907 cond = extract32(insn, 12, 4); 5908 rn = extract32(insn, 5, 5); 5909 rd = extract32(insn, 0, 5); 5910 5911 if (mos) { 5912 unallocated_encoding(s); 5913 return; 5914 } 5915 5916 switch (type) { 5917 case 0: 5918 sz = MO_32; 5919 break; 5920 case 1: 5921 sz = MO_64; 5922 break; 5923 case 3: 5924 sz = MO_16; 5925 if (dc_isar_feature(aa64_fp16, s)) { 5926 break; 5927 } 5928 /* fallthru */ 5929 default: 5930 unallocated_encoding(s); 5931 return; 5932 } 5933 5934 if (!fp_access_check(s)) { 5935 return; 5936 } 5937 5938 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5939 t_true = tcg_temp_new_i64(); 5940 t_false = tcg_temp_new_i64(); 5941 read_vec_element(s, t_true, rn, 0, sz); 5942 read_vec_element(s, t_false, rm, 0, sz); 5943 5944 a64_test_cc(&c, cond); 5945 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5946 t_true, t_false); 5947 5948 /* Note that sregs & hregs write back zeros to the high bits, 5949 and we've already done the zero-extension. */ 5950 write_fp_dreg(s, rd, t_true); 5951 } 5952 5953 /* Floating-point data-processing (1 source) - half precision */ 5954 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5955 { 5956 TCGv_ptr fpst = NULL; 5957 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5958 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5959 5960 switch (opcode) { 5961 case 0x0: /* FMOV */ 5962 tcg_gen_mov_i32(tcg_res, tcg_op); 5963 break; 5964 case 0x1: /* FABS */ 5965 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5966 break; 5967 case 0x2: /* FNEG */ 5968 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5969 break; 5970 case 0x3: /* FSQRT */ 5971 fpst = fpstatus_ptr(FPST_FPCR_F16); 5972 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5973 break; 5974 case 0x8: /* FRINTN */ 5975 case 0x9: /* FRINTP */ 5976 case 0xa: /* FRINTM */ 5977 case 0xb: /* FRINTZ */ 5978 case 0xc: /* FRINTA */ 5979 { 5980 TCGv_i32 tcg_rmode; 5981 5982 fpst = fpstatus_ptr(FPST_FPCR_F16); 5983 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5984 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5985 gen_restore_rmode(tcg_rmode, fpst); 5986 break; 5987 } 5988 case 0xe: /* FRINTX */ 5989 fpst = fpstatus_ptr(FPST_FPCR_F16); 5990 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5991 break; 5992 case 0xf: /* FRINTI */ 5993 fpst = fpstatus_ptr(FPST_FPCR_F16); 5994 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5995 break; 5996 default: 5997 g_assert_not_reached(); 5998 } 5999 6000 write_fp_sreg(s, rd, tcg_res); 6001 } 6002 6003 /* Floating-point data-processing (1 source) - single precision */ 6004 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6005 { 6006 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6007 TCGv_i32 tcg_op, tcg_res; 6008 TCGv_ptr fpst; 6009 int rmode = -1; 6010 6011 tcg_op = read_fp_sreg(s, rn); 6012 tcg_res = tcg_temp_new_i32(); 6013 6014 switch (opcode) { 6015 case 0x0: /* FMOV */ 6016 tcg_gen_mov_i32(tcg_res, tcg_op); 6017 goto done; 6018 case 0x1: /* FABS */ 6019 gen_helper_vfp_abss(tcg_res, tcg_op); 6020 goto done; 6021 case 0x2: /* FNEG */ 6022 gen_helper_vfp_negs(tcg_res, tcg_op); 6023 goto done; 6024 case 0x3: /* FSQRT */ 6025 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6026 goto done; 6027 case 0x6: /* BFCVT */ 6028 gen_fpst = gen_helper_bfcvt; 6029 break; 6030 case 0x8: /* FRINTN */ 6031 case 0x9: /* FRINTP */ 6032 case 0xa: /* FRINTM */ 6033 case 0xb: /* FRINTZ */ 6034 case 0xc: /* FRINTA */ 6035 rmode = opcode & 7; 6036 gen_fpst = gen_helper_rints; 6037 break; 6038 case 0xe: /* FRINTX */ 6039 gen_fpst = gen_helper_rints_exact; 6040 break; 6041 case 0xf: /* FRINTI */ 6042 gen_fpst = gen_helper_rints; 6043 break; 6044 case 0x10: /* FRINT32Z */ 6045 rmode = FPROUNDING_ZERO; 6046 gen_fpst = gen_helper_frint32_s; 6047 break; 6048 case 0x11: /* FRINT32X */ 6049 gen_fpst = gen_helper_frint32_s; 6050 break; 6051 case 0x12: /* FRINT64Z */ 6052 rmode = FPROUNDING_ZERO; 6053 gen_fpst = gen_helper_frint64_s; 6054 break; 6055 case 0x13: /* FRINT64X */ 6056 gen_fpst = gen_helper_frint64_s; 6057 break; 6058 default: 6059 g_assert_not_reached(); 6060 } 6061 6062 fpst = fpstatus_ptr(FPST_FPCR); 6063 if (rmode >= 0) { 6064 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6065 gen_fpst(tcg_res, tcg_op, fpst); 6066 gen_restore_rmode(tcg_rmode, fpst); 6067 } else { 6068 gen_fpst(tcg_res, tcg_op, fpst); 6069 } 6070 6071 done: 6072 write_fp_sreg(s, rd, tcg_res); 6073 } 6074 6075 /* Floating-point data-processing (1 source) - double precision */ 6076 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6077 { 6078 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6079 TCGv_i64 tcg_op, tcg_res; 6080 TCGv_ptr fpst; 6081 int rmode = -1; 6082 6083 switch (opcode) { 6084 case 0x0: /* FMOV */ 6085 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6086 return; 6087 } 6088 6089 tcg_op = read_fp_dreg(s, rn); 6090 tcg_res = tcg_temp_new_i64(); 6091 6092 switch (opcode) { 6093 case 0x1: /* FABS */ 6094 gen_helper_vfp_absd(tcg_res, tcg_op); 6095 goto done; 6096 case 0x2: /* FNEG */ 6097 gen_helper_vfp_negd(tcg_res, tcg_op); 6098 goto done; 6099 case 0x3: /* FSQRT */ 6100 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6101 goto done; 6102 case 0x8: /* FRINTN */ 6103 case 0x9: /* FRINTP */ 6104 case 0xa: /* FRINTM */ 6105 case 0xb: /* FRINTZ */ 6106 case 0xc: /* FRINTA */ 6107 rmode = opcode & 7; 6108 gen_fpst = gen_helper_rintd; 6109 break; 6110 case 0xe: /* FRINTX */ 6111 gen_fpst = gen_helper_rintd_exact; 6112 break; 6113 case 0xf: /* FRINTI */ 6114 gen_fpst = gen_helper_rintd; 6115 break; 6116 case 0x10: /* FRINT32Z */ 6117 rmode = FPROUNDING_ZERO; 6118 gen_fpst = gen_helper_frint32_d; 6119 break; 6120 case 0x11: /* FRINT32X */ 6121 gen_fpst = gen_helper_frint32_d; 6122 break; 6123 case 0x12: /* FRINT64Z */ 6124 rmode = FPROUNDING_ZERO; 6125 gen_fpst = gen_helper_frint64_d; 6126 break; 6127 case 0x13: /* FRINT64X */ 6128 gen_fpst = gen_helper_frint64_d; 6129 break; 6130 default: 6131 g_assert_not_reached(); 6132 } 6133 6134 fpst = fpstatus_ptr(FPST_FPCR); 6135 if (rmode >= 0) { 6136 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6137 gen_fpst(tcg_res, tcg_op, fpst); 6138 gen_restore_rmode(tcg_rmode, fpst); 6139 } else { 6140 gen_fpst(tcg_res, tcg_op, fpst); 6141 } 6142 6143 done: 6144 write_fp_dreg(s, rd, tcg_res); 6145 } 6146 6147 static void handle_fp_fcvt(DisasContext *s, int opcode, 6148 int rd, int rn, int dtype, int ntype) 6149 { 6150 switch (ntype) { 6151 case 0x0: 6152 { 6153 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6154 if (dtype == 1) { 6155 /* Single to double */ 6156 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6157 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6158 write_fp_dreg(s, rd, tcg_rd); 6159 } else { 6160 /* Single to half */ 6161 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6162 TCGv_i32 ahp = get_ahp_flag(); 6163 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6164 6165 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6166 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6167 write_fp_sreg(s, rd, tcg_rd); 6168 } 6169 break; 6170 } 6171 case 0x1: 6172 { 6173 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6174 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6175 if (dtype == 0) { 6176 /* Double to single */ 6177 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6178 } else { 6179 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6180 TCGv_i32 ahp = get_ahp_flag(); 6181 /* Double to half */ 6182 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6183 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6184 } 6185 write_fp_sreg(s, rd, tcg_rd); 6186 break; 6187 } 6188 case 0x3: 6189 { 6190 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6191 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6192 TCGv_i32 tcg_ahp = get_ahp_flag(); 6193 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6194 if (dtype == 0) { 6195 /* Half to single */ 6196 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6197 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6198 write_fp_sreg(s, rd, tcg_rd); 6199 } else { 6200 /* Half to double */ 6201 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6202 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6203 write_fp_dreg(s, rd, tcg_rd); 6204 } 6205 break; 6206 } 6207 default: 6208 g_assert_not_reached(); 6209 } 6210 } 6211 6212 /* Floating point data-processing (1 source) 6213 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6214 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6215 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6216 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6217 */ 6218 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6219 { 6220 int mos = extract32(insn, 29, 3); 6221 int type = extract32(insn, 22, 2); 6222 int opcode = extract32(insn, 15, 6); 6223 int rn = extract32(insn, 5, 5); 6224 int rd = extract32(insn, 0, 5); 6225 6226 if (mos) { 6227 goto do_unallocated; 6228 } 6229 6230 switch (opcode) { 6231 case 0x4: case 0x5: case 0x7: 6232 { 6233 /* FCVT between half, single and double precision */ 6234 int dtype = extract32(opcode, 0, 2); 6235 if (type == 2 || dtype == type) { 6236 goto do_unallocated; 6237 } 6238 if (!fp_access_check(s)) { 6239 return; 6240 } 6241 6242 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6243 break; 6244 } 6245 6246 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6247 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6248 goto do_unallocated; 6249 } 6250 /* fall through */ 6251 case 0x0 ... 0x3: 6252 case 0x8 ... 0xc: 6253 case 0xe ... 0xf: 6254 /* 32-to-32 and 64-to-64 ops */ 6255 switch (type) { 6256 case 0: 6257 if (!fp_access_check(s)) { 6258 return; 6259 } 6260 handle_fp_1src_single(s, opcode, rd, rn); 6261 break; 6262 case 1: 6263 if (!fp_access_check(s)) { 6264 return; 6265 } 6266 handle_fp_1src_double(s, opcode, rd, rn); 6267 break; 6268 case 3: 6269 if (!dc_isar_feature(aa64_fp16, s)) { 6270 goto do_unallocated; 6271 } 6272 6273 if (!fp_access_check(s)) { 6274 return; 6275 } 6276 handle_fp_1src_half(s, opcode, rd, rn); 6277 break; 6278 default: 6279 goto do_unallocated; 6280 } 6281 break; 6282 6283 case 0x6: 6284 switch (type) { 6285 case 1: /* BFCVT */ 6286 if (!dc_isar_feature(aa64_bf16, s)) { 6287 goto do_unallocated; 6288 } 6289 if (!fp_access_check(s)) { 6290 return; 6291 } 6292 handle_fp_1src_single(s, opcode, rd, rn); 6293 break; 6294 default: 6295 goto do_unallocated; 6296 } 6297 break; 6298 6299 default: 6300 do_unallocated: 6301 unallocated_encoding(s); 6302 break; 6303 } 6304 } 6305 6306 /* Floating-point data-processing (2 source) - single precision */ 6307 static void handle_fp_2src_single(DisasContext *s, int opcode, 6308 int rd, int rn, int rm) 6309 { 6310 TCGv_i32 tcg_op1; 6311 TCGv_i32 tcg_op2; 6312 TCGv_i32 tcg_res; 6313 TCGv_ptr fpst; 6314 6315 tcg_res = tcg_temp_new_i32(); 6316 fpst = fpstatus_ptr(FPST_FPCR); 6317 tcg_op1 = read_fp_sreg(s, rn); 6318 tcg_op2 = read_fp_sreg(s, rm); 6319 6320 switch (opcode) { 6321 case 0x0: /* FMUL */ 6322 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6323 break; 6324 case 0x1: /* FDIV */ 6325 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6326 break; 6327 case 0x2: /* FADD */ 6328 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6329 break; 6330 case 0x3: /* FSUB */ 6331 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6332 break; 6333 case 0x4: /* FMAX */ 6334 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6335 break; 6336 case 0x5: /* FMIN */ 6337 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6338 break; 6339 case 0x6: /* FMAXNM */ 6340 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6341 break; 6342 case 0x7: /* FMINNM */ 6343 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6344 break; 6345 case 0x8: /* FNMUL */ 6346 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6347 gen_helper_vfp_negs(tcg_res, tcg_res); 6348 break; 6349 } 6350 6351 write_fp_sreg(s, rd, tcg_res); 6352 } 6353 6354 /* Floating-point data-processing (2 source) - double precision */ 6355 static void handle_fp_2src_double(DisasContext *s, int opcode, 6356 int rd, int rn, int rm) 6357 { 6358 TCGv_i64 tcg_op1; 6359 TCGv_i64 tcg_op2; 6360 TCGv_i64 tcg_res; 6361 TCGv_ptr fpst; 6362 6363 tcg_res = tcg_temp_new_i64(); 6364 fpst = fpstatus_ptr(FPST_FPCR); 6365 tcg_op1 = read_fp_dreg(s, rn); 6366 tcg_op2 = read_fp_dreg(s, rm); 6367 6368 switch (opcode) { 6369 case 0x0: /* FMUL */ 6370 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6371 break; 6372 case 0x1: /* FDIV */ 6373 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6374 break; 6375 case 0x2: /* FADD */ 6376 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6377 break; 6378 case 0x3: /* FSUB */ 6379 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6380 break; 6381 case 0x4: /* FMAX */ 6382 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6383 break; 6384 case 0x5: /* FMIN */ 6385 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6386 break; 6387 case 0x6: /* FMAXNM */ 6388 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6389 break; 6390 case 0x7: /* FMINNM */ 6391 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6392 break; 6393 case 0x8: /* FNMUL */ 6394 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6395 gen_helper_vfp_negd(tcg_res, tcg_res); 6396 break; 6397 } 6398 6399 write_fp_dreg(s, rd, tcg_res); 6400 } 6401 6402 /* Floating-point data-processing (2 source) - half precision */ 6403 static void handle_fp_2src_half(DisasContext *s, int opcode, 6404 int rd, int rn, int rm) 6405 { 6406 TCGv_i32 tcg_op1; 6407 TCGv_i32 tcg_op2; 6408 TCGv_i32 tcg_res; 6409 TCGv_ptr fpst; 6410 6411 tcg_res = tcg_temp_new_i32(); 6412 fpst = fpstatus_ptr(FPST_FPCR_F16); 6413 tcg_op1 = read_fp_hreg(s, rn); 6414 tcg_op2 = read_fp_hreg(s, rm); 6415 6416 switch (opcode) { 6417 case 0x0: /* FMUL */ 6418 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6419 break; 6420 case 0x1: /* FDIV */ 6421 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6422 break; 6423 case 0x2: /* FADD */ 6424 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6425 break; 6426 case 0x3: /* FSUB */ 6427 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6428 break; 6429 case 0x4: /* FMAX */ 6430 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6431 break; 6432 case 0x5: /* FMIN */ 6433 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6434 break; 6435 case 0x6: /* FMAXNM */ 6436 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6437 break; 6438 case 0x7: /* FMINNM */ 6439 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6440 break; 6441 case 0x8: /* FNMUL */ 6442 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6443 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6444 break; 6445 default: 6446 g_assert_not_reached(); 6447 } 6448 6449 write_fp_sreg(s, rd, tcg_res); 6450 } 6451 6452 /* Floating point data-processing (2 source) 6453 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6454 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6455 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6456 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6457 */ 6458 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6459 { 6460 int mos = extract32(insn, 29, 3); 6461 int type = extract32(insn, 22, 2); 6462 int rd = extract32(insn, 0, 5); 6463 int rn = extract32(insn, 5, 5); 6464 int rm = extract32(insn, 16, 5); 6465 int opcode = extract32(insn, 12, 4); 6466 6467 if (opcode > 8 || mos) { 6468 unallocated_encoding(s); 6469 return; 6470 } 6471 6472 switch (type) { 6473 case 0: 6474 if (!fp_access_check(s)) { 6475 return; 6476 } 6477 handle_fp_2src_single(s, opcode, rd, rn, rm); 6478 break; 6479 case 1: 6480 if (!fp_access_check(s)) { 6481 return; 6482 } 6483 handle_fp_2src_double(s, opcode, rd, rn, rm); 6484 break; 6485 case 3: 6486 if (!dc_isar_feature(aa64_fp16, s)) { 6487 unallocated_encoding(s); 6488 return; 6489 } 6490 if (!fp_access_check(s)) { 6491 return; 6492 } 6493 handle_fp_2src_half(s, opcode, rd, rn, rm); 6494 break; 6495 default: 6496 unallocated_encoding(s); 6497 } 6498 } 6499 6500 /* Floating-point data-processing (3 source) - single precision */ 6501 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6502 int rd, int rn, int rm, int ra) 6503 { 6504 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6505 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6506 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6507 6508 tcg_op1 = read_fp_sreg(s, rn); 6509 tcg_op2 = read_fp_sreg(s, rm); 6510 tcg_op3 = read_fp_sreg(s, ra); 6511 6512 /* These are fused multiply-add, and must be done as one 6513 * floating point operation with no rounding between the 6514 * multiplication and addition steps. 6515 * NB that doing the negations here as separate steps is 6516 * correct : an input NaN should come out with its sign bit 6517 * flipped if it is a negated-input. 6518 */ 6519 if (o1 == true) { 6520 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6521 } 6522 6523 if (o0 != o1) { 6524 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6525 } 6526 6527 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6528 6529 write_fp_sreg(s, rd, tcg_res); 6530 } 6531 6532 /* Floating-point data-processing (3 source) - double precision */ 6533 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6534 int rd, int rn, int rm, int ra) 6535 { 6536 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6537 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6538 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6539 6540 tcg_op1 = read_fp_dreg(s, rn); 6541 tcg_op2 = read_fp_dreg(s, rm); 6542 tcg_op3 = read_fp_dreg(s, ra); 6543 6544 /* These are fused multiply-add, and must be done as one 6545 * floating point operation with no rounding between the 6546 * multiplication and addition steps. 6547 * NB that doing the negations here as separate steps is 6548 * correct : an input NaN should come out with its sign bit 6549 * flipped if it is a negated-input. 6550 */ 6551 if (o1 == true) { 6552 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6553 } 6554 6555 if (o0 != o1) { 6556 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6557 } 6558 6559 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6560 6561 write_fp_dreg(s, rd, tcg_res); 6562 } 6563 6564 /* Floating-point data-processing (3 source) - half precision */ 6565 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6566 int rd, int rn, int rm, int ra) 6567 { 6568 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6569 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6570 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6571 6572 tcg_op1 = read_fp_hreg(s, rn); 6573 tcg_op2 = read_fp_hreg(s, rm); 6574 tcg_op3 = read_fp_hreg(s, ra); 6575 6576 /* These are fused multiply-add, and must be done as one 6577 * floating point operation with no rounding between the 6578 * multiplication and addition steps. 6579 * NB that doing the negations here as separate steps is 6580 * correct : an input NaN should come out with its sign bit 6581 * flipped if it is a negated-input. 6582 */ 6583 if (o1 == true) { 6584 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6585 } 6586 6587 if (o0 != o1) { 6588 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6589 } 6590 6591 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6592 6593 write_fp_sreg(s, rd, tcg_res); 6594 } 6595 6596 /* Floating point data-processing (3 source) 6597 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6598 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6599 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6600 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6601 */ 6602 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6603 { 6604 int mos = extract32(insn, 29, 3); 6605 int type = extract32(insn, 22, 2); 6606 int rd = extract32(insn, 0, 5); 6607 int rn = extract32(insn, 5, 5); 6608 int ra = extract32(insn, 10, 5); 6609 int rm = extract32(insn, 16, 5); 6610 bool o0 = extract32(insn, 15, 1); 6611 bool o1 = extract32(insn, 21, 1); 6612 6613 if (mos) { 6614 unallocated_encoding(s); 6615 return; 6616 } 6617 6618 switch (type) { 6619 case 0: 6620 if (!fp_access_check(s)) { 6621 return; 6622 } 6623 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6624 break; 6625 case 1: 6626 if (!fp_access_check(s)) { 6627 return; 6628 } 6629 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6630 break; 6631 case 3: 6632 if (!dc_isar_feature(aa64_fp16, s)) { 6633 unallocated_encoding(s); 6634 return; 6635 } 6636 if (!fp_access_check(s)) { 6637 return; 6638 } 6639 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6640 break; 6641 default: 6642 unallocated_encoding(s); 6643 } 6644 } 6645 6646 /* Floating point immediate 6647 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6648 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6649 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6650 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6651 */ 6652 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6653 { 6654 int rd = extract32(insn, 0, 5); 6655 int imm5 = extract32(insn, 5, 5); 6656 int imm8 = extract32(insn, 13, 8); 6657 int type = extract32(insn, 22, 2); 6658 int mos = extract32(insn, 29, 3); 6659 uint64_t imm; 6660 MemOp sz; 6661 6662 if (mos || imm5) { 6663 unallocated_encoding(s); 6664 return; 6665 } 6666 6667 switch (type) { 6668 case 0: 6669 sz = MO_32; 6670 break; 6671 case 1: 6672 sz = MO_64; 6673 break; 6674 case 3: 6675 sz = MO_16; 6676 if (dc_isar_feature(aa64_fp16, s)) { 6677 break; 6678 } 6679 /* fallthru */ 6680 default: 6681 unallocated_encoding(s); 6682 return; 6683 } 6684 6685 if (!fp_access_check(s)) { 6686 return; 6687 } 6688 6689 imm = vfp_expand_imm(sz, imm8); 6690 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6691 } 6692 6693 /* Handle floating point <=> fixed point conversions. Note that we can 6694 * also deal with fp <=> integer conversions as a special case (scale == 64) 6695 * OPTME: consider handling that special case specially or at least skipping 6696 * the call to scalbn in the helpers for zero shifts. 6697 */ 6698 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6699 bool itof, int rmode, int scale, int sf, int type) 6700 { 6701 bool is_signed = !(opcode & 1); 6702 TCGv_ptr tcg_fpstatus; 6703 TCGv_i32 tcg_shift, tcg_single; 6704 TCGv_i64 tcg_double; 6705 6706 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6707 6708 tcg_shift = tcg_constant_i32(64 - scale); 6709 6710 if (itof) { 6711 TCGv_i64 tcg_int = cpu_reg(s, rn); 6712 if (!sf) { 6713 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6714 6715 if (is_signed) { 6716 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6717 } else { 6718 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6719 } 6720 6721 tcg_int = tcg_extend; 6722 } 6723 6724 switch (type) { 6725 case 1: /* float64 */ 6726 tcg_double = tcg_temp_new_i64(); 6727 if (is_signed) { 6728 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6729 tcg_shift, tcg_fpstatus); 6730 } else { 6731 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6732 tcg_shift, tcg_fpstatus); 6733 } 6734 write_fp_dreg(s, rd, tcg_double); 6735 break; 6736 6737 case 0: /* float32 */ 6738 tcg_single = tcg_temp_new_i32(); 6739 if (is_signed) { 6740 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6741 tcg_shift, tcg_fpstatus); 6742 } else { 6743 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6744 tcg_shift, tcg_fpstatus); 6745 } 6746 write_fp_sreg(s, rd, tcg_single); 6747 break; 6748 6749 case 3: /* float16 */ 6750 tcg_single = tcg_temp_new_i32(); 6751 if (is_signed) { 6752 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6753 tcg_shift, tcg_fpstatus); 6754 } else { 6755 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6756 tcg_shift, tcg_fpstatus); 6757 } 6758 write_fp_sreg(s, rd, tcg_single); 6759 break; 6760 6761 default: 6762 g_assert_not_reached(); 6763 } 6764 } else { 6765 TCGv_i64 tcg_int = cpu_reg(s, rd); 6766 TCGv_i32 tcg_rmode; 6767 6768 if (extract32(opcode, 2, 1)) { 6769 /* There are too many rounding modes to all fit into rmode, 6770 * so FCVTA[US] is a special case. 6771 */ 6772 rmode = FPROUNDING_TIEAWAY; 6773 } 6774 6775 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6776 6777 switch (type) { 6778 case 1: /* float64 */ 6779 tcg_double = read_fp_dreg(s, rn); 6780 if (is_signed) { 6781 if (!sf) { 6782 gen_helper_vfp_tosld(tcg_int, tcg_double, 6783 tcg_shift, tcg_fpstatus); 6784 } else { 6785 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6786 tcg_shift, tcg_fpstatus); 6787 } 6788 } else { 6789 if (!sf) { 6790 gen_helper_vfp_tould(tcg_int, tcg_double, 6791 tcg_shift, tcg_fpstatus); 6792 } else { 6793 gen_helper_vfp_touqd(tcg_int, tcg_double, 6794 tcg_shift, tcg_fpstatus); 6795 } 6796 } 6797 if (!sf) { 6798 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6799 } 6800 break; 6801 6802 case 0: /* float32 */ 6803 tcg_single = read_fp_sreg(s, rn); 6804 if (sf) { 6805 if (is_signed) { 6806 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6807 tcg_shift, tcg_fpstatus); 6808 } else { 6809 gen_helper_vfp_touqs(tcg_int, tcg_single, 6810 tcg_shift, tcg_fpstatus); 6811 } 6812 } else { 6813 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6814 if (is_signed) { 6815 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6816 tcg_shift, tcg_fpstatus); 6817 } else { 6818 gen_helper_vfp_touls(tcg_dest, tcg_single, 6819 tcg_shift, tcg_fpstatus); 6820 } 6821 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6822 } 6823 break; 6824 6825 case 3: /* float16 */ 6826 tcg_single = read_fp_sreg(s, rn); 6827 if (sf) { 6828 if (is_signed) { 6829 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6830 tcg_shift, tcg_fpstatus); 6831 } else { 6832 gen_helper_vfp_touqh(tcg_int, tcg_single, 6833 tcg_shift, tcg_fpstatus); 6834 } 6835 } else { 6836 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6837 if (is_signed) { 6838 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6839 tcg_shift, tcg_fpstatus); 6840 } else { 6841 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6842 tcg_shift, tcg_fpstatus); 6843 } 6844 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6845 } 6846 break; 6847 6848 default: 6849 g_assert_not_reached(); 6850 } 6851 6852 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6853 } 6854 } 6855 6856 /* Floating point <-> fixed point conversions 6857 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6858 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6859 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6860 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6861 */ 6862 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6863 { 6864 int rd = extract32(insn, 0, 5); 6865 int rn = extract32(insn, 5, 5); 6866 int scale = extract32(insn, 10, 6); 6867 int opcode = extract32(insn, 16, 3); 6868 int rmode = extract32(insn, 19, 2); 6869 int type = extract32(insn, 22, 2); 6870 bool sbit = extract32(insn, 29, 1); 6871 bool sf = extract32(insn, 31, 1); 6872 bool itof; 6873 6874 if (sbit || (!sf && scale < 32)) { 6875 unallocated_encoding(s); 6876 return; 6877 } 6878 6879 switch (type) { 6880 case 0: /* float32 */ 6881 case 1: /* float64 */ 6882 break; 6883 case 3: /* float16 */ 6884 if (dc_isar_feature(aa64_fp16, s)) { 6885 break; 6886 } 6887 /* fallthru */ 6888 default: 6889 unallocated_encoding(s); 6890 return; 6891 } 6892 6893 switch ((rmode << 3) | opcode) { 6894 case 0x2: /* SCVTF */ 6895 case 0x3: /* UCVTF */ 6896 itof = true; 6897 break; 6898 case 0x18: /* FCVTZS */ 6899 case 0x19: /* FCVTZU */ 6900 itof = false; 6901 break; 6902 default: 6903 unallocated_encoding(s); 6904 return; 6905 } 6906 6907 if (!fp_access_check(s)) { 6908 return; 6909 } 6910 6911 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6912 } 6913 6914 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6915 { 6916 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6917 * without conversion. 6918 */ 6919 6920 if (itof) { 6921 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6922 TCGv_i64 tmp; 6923 6924 switch (type) { 6925 case 0: 6926 /* 32 bit */ 6927 tmp = tcg_temp_new_i64(); 6928 tcg_gen_ext32u_i64(tmp, tcg_rn); 6929 write_fp_dreg(s, rd, tmp); 6930 break; 6931 case 1: 6932 /* 64 bit */ 6933 write_fp_dreg(s, rd, tcg_rn); 6934 break; 6935 case 2: 6936 /* 64 bit to top half. */ 6937 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6938 clear_vec_high(s, true, rd); 6939 break; 6940 case 3: 6941 /* 16 bit */ 6942 tmp = tcg_temp_new_i64(); 6943 tcg_gen_ext16u_i64(tmp, tcg_rn); 6944 write_fp_dreg(s, rd, tmp); 6945 break; 6946 default: 6947 g_assert_not_reached(); 6948 } 6949 } else { 6950 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6951 6952 switch (type) { 6953 case 0: 6954 /* 32 bit */ 6955 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6956 break; 6957 case 1: 6958 /* 64 bit */ 6959 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6960 break; 6961 case 2: 6962 /* 64 bits from top half */ 6963 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6964 break; 6965 case 3: 6966 /* 16 bit */ 6967 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6968 break; 6969 default: 6970 g_assert_not_reached(); 6971 } 6972 } 6973 } 6974 6975 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6976 { 6977 TCGv_i64 t = read_fp_dreg(s, rn); 6978 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6979 6980 gen_helper_fjcvtzs(t, t, fpstatus); 6981 6982 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6983 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6984 tcg_gen_movi_i32(cpu_CF, 0); 6985 tcg_gen_movi_i32(cpu_NF, 0); 6986 tcg_gen_movi_i32(cpu_VF, 0); 6987 } 6988 6989 /* Floating point <-> integer conversions 6990 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6991 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6992 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6993 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6994 */ 6995 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6996 { 6997 int rd = extract32(insn, 0, 5); 6998 int rn = extract32(insn, 5, 5); 6999 int opcode = extract32(insn, 16, 3); 7000 int rmode = extract32(insn, 19, 2); 7001 int type = extract32(insn, 22, 2); 7002 bool sbit = extract32(insn, 29, 1); 7003 bool sf = extract32(insn, 31, 1); 7004 bool itof = false; 7005 7006 if (sbit) { 7007 goto do_unallocated; 7008 } 7009 7010 switch (opcode) { 7011 case 2: /* SCVTF */ 7012 case 3: /* UCVTF */ 7013 itof = true; 7014 /* fallthru */ 7015 case 4: /* FCVTAS */ 7016 case 5: /* FCVTAU */ 7017 if (rmode != 0) { 7018 goto do_unallocated; 7019 } 7020 /* fallthru */ 7021 case 0: /* FCVT[NPMZ]S */ 7022 case 1: /* FCVT[NPMZ]U */ 7023 switch (type) { 7024 case 0: /* float32 */ 7025 case 1: /* float64 */ 7026 break; 7027 case 3: /* float16 */ 7028 if (!dc_isar_feature(aa64_fp16, s)) { 7029 goto do_unallocated; 7030 } 7031 break; 7032 default: 7033 goto do_unallocated; 7034 } 7035 if (!fp_access_check(s)) { 7036 return; 7037 } 7038 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7039 break; 7040 7041 default: 7042 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7043 case 0b01100110: /* FMOV half <-> 32-bit int */ 7044 case 0b01100111: 7045 case 0b11100110: /* FMOV half <-> 64-bit int */ 7046 case 0b11100111: 7047 if (!dc_isar_feature(aa64_fp16, s)) { 7048 goto do_unallocated; 7049 } 7050 /* fallthru */ 7051 case 0b00000110: /* FMOV 32-bit */ 7052 case 0b00000111: 7053 case 0b10100110: /* FMOV 64-bit */ 7054 case 0b10100111: 7055 case 0b11001110: /* FMOV top half of 128-bit */ 7056 case 0b11001111: 7057 if (!fp_access_check(s)) { 7058 return; 7059 } 7060 itof = opcode & 1; 7061 handle_fmov(s, rd, rn, type, itof); 7062 break; 7063 7064 case 0b00111110: /* FJCVTZS */ 7065 if (!dc_isar_feature(aa64_jscvt, s)) { 7066 goto do_unallocated; 7067 } else if (fp_access_check(s)) { 7068 handle_fjcvtzs(s, rd, rn); 7069 } 7070 break; 7071 7072 default: 7073 do_unallocated: 7074 unallocated_encoding(s); 7075 return; 7076 } 7077 break; 7078 } 7079 } 7080 7081 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7082 * 31 30 29 28 25 24 0 7083 * +---+---+---+---------+-----------------------------+ 7084 * | | 0 | | 1 1 1 1 | | 7085 * +---+---+---+---------+-----------------------------+ 7086 */ 7087 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7088 { 7089 if (extract32(insn, 24, 1)) { 7090 /* Floating point data-processing (3 source) */ 7091 disas_fp_3src(s, insn); 7092 } else if (extract32(insn, 21, 1) == 0) { 7093 /* Floating point to fixed point conversions */ 7094 disas_fp_fixed_conv(s, insn); 7095 } else { 7096 switch (extract32(insn, 10, 2)) { 7097 case 1: 7098 /* Floating point conditional compare */ 7099 disas_fp_ccomp(s, insn); 7100 break; 7101 case 2: 7102 /* Floating point data-processing (2 source) */ 7103 disas_fp_2src(s, insn); 7104 break; 7105 case 3: 7106 /* Floating point conditional select */ 7107 disas_fp_csel(s, insn); 7108 break; 7109 case 0: 7110 switch (ctz32(extract32(insn, 12, 4))) { 7111 case 0: /* [15:12] == xxx1 */ 7112 /* Floating point immediate */ 7113 disas_fp_imm(s, insn); 7114 break; 7115 case 1: /* [15:12] == xx10 */ 7116 /* Floating point compare */ 7117 disas_fp_compare(s, insn); 7118 break; 7119 case 2: /* [15:12] == x100 */ 7120 /* Floating point data-processing (1 source) */ 7121 disas_fp_1src(s, insn); 7122 break; 7123 case 3: /* [15:12] == 1000 */ 7124 unallocated_encoding(s); 7125 break; 7126 default: /* [15:12] == 0000 */ 7127 /* Floating point <-> integer conversions */ 7128 disas_fp_int_conv(s, insn); 7129 break; 7130 } 7131 break; 7132 } 7133 } 7134 } 7135 7136 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7137 int pos) 7138 { 7139 /* Extract 64 bits from the middle of two concatenated 64 bit 7140 * vector register slices left:right. The extracted bits start 7141 * at 'pos' bits into the right (least significant) side. 7142 * We return the result in tcg_right, and guarantee not to 7143 * trash tcg_left. 7144 */ 7145 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7146 assert(pos > 0 && pos < 64); 7147 7148 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7149 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7150 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7151 } 7152 7153 /* EXT 7154 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7155 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7156 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7157 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7158 */ 7159 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7160 { 7161 int is_q = extract32(insn, 30, 1); 7162 int op2 = extract32(insn, 22, 2); 7163 int imm4 = extract32(insn, 11, 4); 7164 int rm = extract32(insn, 16, 5); 7165 int rn = extract32(insn, 5, 5); 7166 int rd = extract32(insn, 0, 5); 7167 int pos = imm4 << 3; 7168 TCGv_i64 tcg_resl, tcg_resh; 7169 7170 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7171 unallocated_encoding(s); 7172 return; 7173 } 7174 7175 if (!fp_access_check(s)) { 7176 return; 7177 } 7178 7179 tcg_resh = tcg_temp_new_i64(); 7180 tcg_resl = tcg_temp_new_i64(); 7181 7182 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7183 * either extracting 128 bits from a 128:128 concatenation, or 7184 * extracting 64 bits from a 64:64 concatenation. 7185 */ 7186 if (!is_q) { 7187 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7188 if (pos != 0) { 7189 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7190 do_ext64(s, tcg_resh, tcg_resl, pos); 7191 } 7192 } else { 7193 TCGv_i64 tcg_hh; 7194 typedef struct { 7195 int reg; 7196 int elt; 7197 } EltPosns; 7198 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7199 EltPosns *elt = eltposns; 7200 7201 if (pos >= 64) { 7202 elt++; 7203 pos -= 64; 7204 } 7205 7206 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7207 elt++; 7208 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7209 elt++; 7210 if (pos != 0) { 7211 do_ext64(s, tcg_resh, tcg_resl, pos); 7212 tcg_hh = tcg_temp_new_i64(); 7213 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7214 do_ext64(s, tcg_hh, tcg_resh, pos); 7215 } 7216 } 7217 7218 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7219 if (is_q) { 7220 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7221 } 7222 clear_vec_high(s, is_q, rd); 7223 } 7224 7225 /* TBL/TBX 7226 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7227 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7228 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7229 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7230 */ 7231 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7232 { 7233 int op2 = extract32(insn, 22, 2); 7234 int is_q = extract32(insn, 30, 1); 7235 int rm = extract32(insn, 16, 5); 7236 int rn = extract32(insn, 5, 5); 7237 int rd = extract32(insn, 0, 5); 7238 int is_tbx = extract32(insn, 12, 1); 7239 int len = (extract32(insn, 13, 2) + 1) * 16; 7240 7241 if (op2 != 0) { 7242 unallocated_encoding(s); 7243 return; 7244 } 7245 7246 if (!fp_access_check(s)) { 7247 return; 7248 } 7249 7250 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7251 vec_full_reg_offset(s, rm), cpu_env, 7252 is_q ? 16 : 8, vec_full_reg_size(s), 7253 (len << 6) | (is_tbx << 5) | rn, 7254 gen_helper_simd_tblx); 7255 } 7256 7257 /* ZIP/UZP/TRN 7258 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7259 * +---+---+-------------+------+---+------+---+------------------+------+ 7260 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7261 * +---+---+-------------+------+---+------+---+------------------+------+ 7262 */ 7263 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7264 { 7265 int rd = extract32(insn, 0, 5); 7266 int rn = extract32(insn, 5, 5); 7267 int rm = extract32(insn, 16, 5); 7268 int size = extract32(insn, 22, 2); 7269 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7270 * bit 2 indicates 1 vs 2 variant of the insn. 7271 */ 7272 int opcode = extract32(insn, 12, 2); 7273 bool part = extract32(insn, 14, 1); 7274 bool is_q = extract32(insn, 30, 1); 7275 int esize = 8 << size; 7276 int i; 7277 int datasize = is_q ? 128 : 64; 7278 int elements = datasize / esize; 7279 TCGv_i64 tcg_res[2], tcg_ele; 7280 7281 if (opcode == 0 || (size == 3 && !is_q)) { 7282 unallocated_encoding(s); 7283 return; 7284 } 7285 7286 if (!fp_access_check(s)) { 7287 return; 7288 } 7289 7290 tcg_res[0] = tcg_temp_new_i64(); 7291 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7292 tcg_ele = tcg_temp_new_i64(); 7293 7294 for (i = 0; i < elements; i++) { 7295 int o, w; 7296 7297 switch (opcode) { 7298 case 1: /* UZP1/2 */ 7299 { 7300 int midpoint = elements / 2; 7301 if (i < midpoint) { 7302 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7303 } else { 7304 read_vec_element(s, tcg_ele, rm, 7305 2 * (i - midpoint) + part, size); 7306 } 7307 break; 7308 } 7309 case 2: /* TRN1/2 */ 7310 if (i & 1) { 7311 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7312 } else { 7313 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7314 } 7315 break; 7316 case 3: /* ZIP1/2 */ 7317 { 7318 int base = part * elements / 2; 7319 if (i & 1) { 7320 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7321 } else { 7322 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7323 } 7324 break; 7325 } 7326 default: 7327 g_assert_not_reached(); 7328 } 7329 7330 w = (i * esize) / 64; 7331 o = (i * esize) % 64; 7332 if (o == 0) { 7333 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7334 } else { 7335 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7336 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7337 } 7338 } 7339 7340 for (i = 0; i <= is_q; ++i) { 7341 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7342 } 7343 clear_vec_high(s, is_q, rd); 7344 } 7345 7346 /* 7347 * do_reduction_op helper 7348 * 7349 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7350 * important for correct NaN propagation that we do these 7351 * operations in exactly the order specified by the pseudocode. 7352 * 7353 * This is a recursive function, TCG temps should be freed by the 7354 * calling function once it is done with the values. 7355 */ 7356 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7357 int esize, int size, int vmap, TCGv_ptr fpst) 7358 { 7359 if (esize == size) { 7360 int element; 7361 MemOp msize = esize == 16 ? MO_16 : MO_32; 7362 TCGv_i32 tcg_elem; 7363 7364 /* We should have one register left here */ 7365 assert(ctpop8(vmap) == 1); 7366 element = ctz32(vmap); 7367 assert(element < 8); 7368 7369 tcg_elem = tcg_temp_new_i32(); 7370 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7371 return tcg_elem; 7372 } else { 7373 int bits = size / 2; 7374 int shift = ctpop8(vmap) / 2; 7375 int vmap_lo = (vmap >> shift) & vmap; 7376 int vmap_hi = (vmap & ~vmap_lo); 7377 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7378 7379 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7380 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7381 tcg_res = tcg_temp_new_i32(); 7382 7383 switch (fpopcode) { 7384 case 0x0c: /* fmaxnmv half-precision */ 7385 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7386 break; 7387 case 0x0f: /* fmaxv half-precision */ 7388 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7389 break; 7390 case 0x1c: /* fminnmv half-precision */ 7391 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7392 break; 7393 case 0x1f: /* fminv half-precision */ 7394 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7395 break; 7396 case 0x2c: /* fmaxnmv */ 7397 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7398 break; 7399 case 0x2f: /* fmaxv */ 7400 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7401 break; 7402 case 0x3c: /* fminnmv */ 7403 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7404 break; 7405 case 0x3f: /* fminv */ 7406 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7407 break; 7408 default: 7409 g_assert_not_reached(); 7410 } 7411 return tcg_res; 7412 } 7413 } 7414 7415 /* AdvSIMD across lanes 7416 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7417 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7418 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7419 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7420 */ 7421 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7422 { 7423 int rd = extract32(insn, 0, 5); 7424 int rn = extract32(insn, 5, 5); 7425 int size = extract32(insn, 22, 2); 7426 int opcode = extract32(insn, 12, 5); 7427 bool is_q = extract32(insn, 30, 1); 7428 bool is_u = extract32(insn, 29, 1); 7429 bool is_fp = false; 7430 bool is_min = false; 7431 int esize; 7432 int elements; 7433 int i; 7434 TCGv_i64 tcg_res, tcg_elt; 7435 7436 switch (opcode) { 7437 case 0x1b: /* ADDV */ 7438 if (is_u) { 7439 unallocated_encoding(s); 7440 return; 7441 } 7442 /* fall through */ 7443 case 0x3: /* SADDLV, UADDLV */ 7444 case 0xa: /* SMAXV, UMAXV */ 7445 case 0x1a: /* SMINV, UMINV */ 7446 if (size == 3 || (size == 2 && !is_q)) { 7447 unallocated_encoding(s); 7448 return; 7449 } 7450 break; 7451 case 0xc: /* FMAXNMV, FMINNMV */ 7452 case 0xf: /* FMAXV, FMINV */ 7453 /* Bit 1 of size field encodes min vs max and the actual size 7454 * depends on the encoding of the U bit. If not set (and FP16 7455 * enabled) then we do half-precision float instead of single 7456 * precision. 7457 */ 7458 is_min = extract32(size, 1, 1); 7459 is_fp = true; 7460 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7461 size = 1; 7462 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7463 unallocated_encoding(s); 7464 return; 7465 } else { 7466 size = 2; 7467 } 7468 break; 7469 default: 7470 unallocated_encoding(s); 7471 return; 7472 } 7473 7474 if (!fp_access_check(s)) { 7475 return; 7476 } 7477 7478 esize = 8 << size; 7479 elements = (is_q ? 128 : 64) / esize; 7480 7481 tcg_res = tcg_temp_new_i64(); 7482 tcg_elt = tcg_temp_new_i64(); 7483 7484 /* These instructions operate across all lanes of a vector 7485 * to produce a single result. We can guarantee that a 64 7486 * bit intermediate is sufficient: 7487 * + for [US]ADDLV the maximum element size is 32 bits, and 7488 * the result type is 64 bits 7489 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7490 * same as the element size, which is 32 bits at most 7491 * For the integer operations we can choose to work at 64 7492 * or 32 bits and truncate at the end; for simplicity 7493 * we use 64 bits always. The floating point 7494 * ops do require 32 bit intermediates, though. 7495 */ 7496 if (!is_fp) { 7497 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7498 7499 for (i = 1; i < elements; i++) { 7500 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7501 7502 switch (opcode) { 7503 case 0x03: /* SADDLV / UADDLV */ 7504 case 0x1b: /* ADDV */ 7505 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7506 break; 7507 case 0x0a: /* SMAXV / UMAXV */ 7508 if (is_u) { 7509 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7510 } else { 7511 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7512 } 7513 break; 7514 case 0x1a: /* SMINV / UMINV */ 7515 if (is_u) { 7516 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7517 } else { 7518 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7519 } 7520 break; 7521 default: 7522 g_assert_not_reached(); 7523 } 7524 7525 } 7526 } else { 7527 /* Floating point vector reduction ops which work across 32 7528 * bit (single) or 16 bit (half-precision) intermediates. 7529 * Note that correct NaN propagation requires that we do these 7530 * operations in exactly the order specified by the pseudocode. 7531 */ 7532 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7533 int fpopcode = opcode | is_min << 4 | is_u << 5; 7534 int vmap = (1 << elements) - 1; 7535 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7536 (is_q ? 128 : 64), vmap, fpst); 7537 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7538 } 7539 7540 /* Now truncate the result to the width required for the final output */ 7541 if (opcode == 0x03) { 7542 /* SADDLV, UADDLV: result is 2*esize */ 7543 size++; 7544 } 7545 7546 switch (size) { 7547 case 0: 7548 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7549 break; 7550 case 1: 7551 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7552 break; 7553 case 2: 7554 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7555 break; 7556 case 3: 7557 break; 7558 default: 7559 g_assert_not_reached(); 7560 } 7561 7562 write_fp_dreg(s, rd, tcg_res); 7563 } 7564 7565 /* DUP (Element, Vector) 7566 * 7567 * 31 30 29 21 20 16 15 10 9 5 4 0 7568 * +---+---+-------------------+--------+-------------+------+------+ 7569 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7570 * +---+---+-------------------+--------+-------------+------+------+ 7571 * 7572 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7573 */ 7574 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7575 int imm5) 7576 { 7577 int size = ctz32(imm5); 7578 int index; 7579 7580 if (size > 3 || (size == 3 && !is_q)) { 7581 unallocated_encoding(s); 7582 return; 7583 } 7584 7585 if (!fp_access_check(s)) { 7586 return; 7587 } 7588 7589 index = imm5 >> (size + 1); 7590 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7591 vec_reg_offset(s, rn, index, size), 7592 is_q ? 16 : 8, vec_full_reg_size(s)); 7593 } 7594 7595 /* DUP (element, scalar) 7596 * 31 21 20 16 15 10 9 5 4 0 7597 * +-----------------------+--------+-------------+------+------+ 7598 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7599 * +-----------------------+--------+-------------+------+------+ 7600 */ 7601 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7602 int imm5) 7603 { 7604 int size = ctz32(imm5); 7605 int index; 7606 TCGv_i64 tmp; 7607 7608 if (size > 3) { 7609 unallocated_encoding(s); 7610 return; 7611 } 7612 7613 if (!fp_access_check(s)) { 7614 return; 7615 } 7616 7617 index = imm5 >> (size + 1); 7618 7619 /* This instruction just extracts the specified element and 7620 * zero-extends it into the bottom of the destination register. 7621 */ 7622 tmp = tcg_temp_new_i64(); 7623 read_vec_element(s, tmp, rn, index, size); 7624 write_fp_dreg(s, rd, tmp); 7625 } 7626 7627 /* DUP (General) 7628 * 7629 * 31 30 29 21 20 16 15 10 9 5 4 0 7630 * +---+---+-------------------+--------+-------------+------+------+ 7631 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7632 * +---+---+-------------------+--------+-------------+------+------+ 7633 * 7634 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7635 */ 7636 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7637 int imm5) 7638 { 7639 int size = ctz32(imm5); 7640 uint32_t dofs, oprsz, maxsz; 7641 7642 if (size > 3 || ((size == 3) && !is_q)) { 7643 unallocated_encoding(s); 7644 return; 7645 } 7646 7647 if (!fp_access_check(s)) { 7648 return; 7649 } 7650 7651 dofs = vec_full_reg_offset(s, rd); 7652 oprsz = is_q ? 16 : 8; 7653 maxsz = vec_full_reg_size(s); 7654 7655 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7656 } 7657 7658 /* INS (Element) 7659 * 7660 * 31 21 20 16 15 14 11 10 9 5 4 0 7661 * +-----------------------+--------+------------+---+------+------+ 7662 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7663 * +-----------------------+--------+------------+---+------+------+ 7664 * 7665 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7666 * index: encoded in imm5<4:size+1> 7667 */ 7668 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7669 int imm4, int imm5) 7670 { 7671 int size = ctz32(imm5); 7672 int src_index, dst_index; 7673 TCGv_i64 tmp; 7674 7675 if (size > 3) { 7676 unallocated_encoding(s); 7677 return; 7678 } 7679 7680 if (!fp_access_check(s)) { 7681 return; 7682 } 7683 7684 dst_index = extract32(imm5, 1+size, 5); 7685 src_index = extract32(imm4, size, 4); 7686 7687 tmp = tcg_temp_new_i64(); 7688 7689 read_vec_element(s, tmp, rn, src_index, size); 7690 write_vec_element(s, tmp, rd, dst_index, size); 7691 7692 /* INS is considered a 128-bit write for SVE. */ 7693 clear_vec_high(s, true, rd); 7694 } 7695 7696 7697 /* INS (General) 7698 * 7699 * 31 21 20 16 15 10 9 5 4 0 7700 * +-----------------------+--------+-------------+------+------+ 7701 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7702 * +-----------------------+--------+-------------+------+------+ 7703 * 7704 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7705 * index: encoded in imm5<4:size+1> 7706 */ 7707 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7708 { 7709 int size = ctz32(imm5); 7710 int idx; 7711 7712 if (size > 3) { 7713 unallocated_encoding(s); 7714 return; 7715 } 7716 7717 if (!fp_access_check(s)) { 7718 return; 7719 } 7720 7721 idx = extract32(imm5, 1 + size, 4 - size); 7722 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7723 7724 /* INS is considered a 128-bit write for SVE. */ 7725 clear_vec_high(s, true, rd); 7726 } 7727 7728 /* 7729 * UMOV (General) 7730 * SMOV (General) 7731 * 7732 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7733 * +---+---+-------------------+--------+-------------+------+------+ 7734 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7735 * +---+---+-------------------+--------+-------------+------+------+ 7736 * 7737 * U: unsigned when set 7738 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7739 */ 7740 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7741 int rn, int rd, int imm5) 7742 { 7743 int size = ctz32(imm5); 7744 int element; 7745 TCGv_i64 tcg_rd; 7746 7747 /* Check for UnallocatedEncodings */ 7748 if (is_signed) { 7749 if (size > 2 || (size == 2 && !is_q)) { 7750 unallocated_encoding(s); 7751 return; 7752 } 7753 } else { 7754 if (size > 3 7755 || (size < 3 && is_q) 7756 || (size == 3 && !is_q)) { 7757 unallocated_encoding(s); 7758 return; 7759 } 7760 } 7761 7762 if (!fp_access_check(s)) { 7763 return; 7764 } 7765 7766 element = extract32(imm5, 1+size, 4); 7767 7768 tcg_rd = cpu_reg(s, rd); 7769 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7770 if (is_signed && !is_q) { 7771 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7772 } 7773 } 7774 7775 /* AdvSIMD copy 7776 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7777 * +---+---+----+-----------------+------+---+------+---+------+------+ 7778 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7779 * +---+---+----+-----------------+------+---+------+---+------+------+ 7780 */ 7781 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7782 { 7783 int rd = extract32(insn, 0, 5); 7784 int rn = extract32(insn, 5, 5); 7785 int imm4 = extract32(insn, 11, 4); 7786 int op = extract32(insn, 29, 1); 7787 int is_q = extract32(insn, 30, 1); 7788 int imm5 = extract32(insn, 16, 5); 7789 7790 if (op) { 7791 if (is_q) { 7792 /* INS (element) */ 7793 handle_simd_inse(s, rd, rn, imm4, imm5); 7794 } else { 7795 unallocated_encoding(s); 7796 } 7797 } else { 7798 switch (imm4) { 7799 case 0: 7800 /* DUP (element - vector) */ 7801 handle_simd_dupe(s, is_q, rd, rn, imm5); 7802 break; 7803 case 1: 7804 /* DUP (general) */ 7805 handle_simd_dupg(s, is_q, rd, rn, imm5); 7806 break; 7807 case 3: 7808 if (is_q) { 7809 /* INS (general) */ 7810 handle_simd_insg(s, rd, rn, imm5); 7811 } else { 7812 unallocated_encoding(s); 7813 } 7814 break; 7815 case 5: 7816 case 7: 7817 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7818 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7819 break; 7820 default: 7821 unallocated_encoding(s); 7822 break; 7823 } 7824 } 7825 } 7826 7827 /* AdvSIMD modified immediate 7828 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7829 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7830 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7831 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7832 * 7833 * There are a number of operations that can be carried out here: 7834 * MOVI - move (shifted) imm into register 7835 * MVNI - move inverted (shifted) imm into register 7836 * ORR - bitwise OR of (shifted) imm with register 7837 * BIC - bitwise clear of (shifted) imm with register 7838 * With ARMv8.2 we also have: 7839 * FMOV half-precision 7840 */ 7841 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7842 { 7843 int rd = extract32(insn, 0, 5); 7844 int cmode = extract32(insn, 12, 4); 7845 int o2 = extract32(insn, 11, 1); 7846 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7847 bool is_neg = extract32(insn, 29, 1); 7848 bool is_q = extract32(insn, 30, 1); 7849 uint64_t imm = 0; 7850 7851 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7852 /* Check for FMOV (vector, immediate) - half-precision */ 7853 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7854 unallocated_encoding(s); 7855 return; 7856 } 7857 } 7858 7859 if (!fp_access_check(s)) { 7860 return; 7861 } 7862 7863 if (cmode == 15 && o2 && !is_neg) { 7864 /* FMOV (vector, immediate) - half-precision */ 7865 imm = vfp_expand_imm(MO_16, abcdefgh); 7866 /* now duplicate across the lanes */ 7867 imm = dup_const(MO_16, imm); 7868 } else { 7869 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7870 } 7871 7872 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7873 /* MOVI or MVNI, with MVNI negation handled above. */ 7874 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7875 vec_full_reg_size(s), imm); 7876 } else { 7877 /* ORR or BIC, with BIC negation to AND handled above. */ 7878 if (is_neg) { 7879 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7880 } else { 7881 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7882 } 7883 } 7884 } 7885 7886 /* AdvSIMD scalar copy 7887 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7888 * +-----+----+-----------------+------+---+------+---+------+------+ 7889 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7890 * +-----+----+-----------------+------+---+------+---+------+------+ 7891 */ 7892 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7893 { 7894 int rd = extract32(insn, 0, 5); 7895 int rn = extract32(insn, 5, 5); 7896 int imm4 = extract32(insn, 11, 4); 7897 int imm5 = extract32(insn, 16, 5); 7898 int op = extract32(insn, 29, 1); 7899 7900 if (op != 0 || imm4 != 0) { 7901 unallocated_encoding(s); 7902 return; 7903 } 7904 7905 /* DUP (element, scalar) */ 7906 handle_simd_dupes(s, rd, rn, imm5); 7907 } 7908 7909 /* AdvSIMD scalar pairwise 7910 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7911 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7912 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7913 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7914 */ 7915 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7916 { 7917 int u = extract32(insn, 29, 1); 7918 int size = extract32(insn, 22, 2); 7919 int opcode = extract32(insn, 12, 5); 7920 int rn = extract32(insn, 5, 5); 7921 int rd = extract32(insn, 0, 5); 7922 TCGv_ptr fpst; 7923 7924 /* For some ops (the FP ones), size[1] is part of the encoding. 7925 * For ADDP strictly it is not but size[1] is always 1 for valid 7926 * encodings. 7927 */ 7928 opcode |= (extract32(size, 1, 1) << 5); 7929 7930 switch (opcode) { 7931 case 0x3b: /* ADDP */ 7932 if (u || size != 3) { 7933 unallocated_encoding(s); 7934 return; 7935 } 7936 if (!fp_access_check(s)) { 7937 return; 7938 } 7939 7940 fpst = NULL; 7941 break; 7942 case 0xc: /* FMAXNMP */ 7943 case 0xd: /* FADDP */ 7944 case 0xf: /* FMAXP */ 7945 case 0x2c: /* FMINNMP */ 7946 case 0x2f: /* FMINP */ 7947 /* FP op, size[0] is 32 or 64 bit*/ 7948 if (!u) { 7949 if (!dc_isar_feature(aa64_fp16, s)) { 7950 unallocated_encoding(s); 7951 return; 7952 } else { 7953 size = MO_16; 7954 } 7955 } else { 7956 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7957 } 7958 7959 if (!fp_access_check(s)) { 7960 return; 7961 } 7962 7963 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7964 break; 7965 default: 7966 unallocated_encoding(s); 7967 return; 7968 } 7969 7970 if (size == MO_64) { 7971 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7972 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7973 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7974 7975 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7976 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7977 7978 switch (opcode) { 7979 case 0x3b: /* ADDP */ 7980 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7981 break; 7982 case 0xc: /* FMAXNMP */ 7983 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7984 break; 7985 case 0xd: /* FADDP */ 7986 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7987 break; 7988 case 0xf: /* FMAXP */ 7989 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7990 break; 7991 case 0x2c: /* FMINNMP */ 7992 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7993 break; 7994 case 0x2f: /* FMINP */ 7995 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7996 break; 7997 default: 7998 g_assert_not_reached(); 7999 } 8000 8001 write_fp_dreg(s, rd, tcg_res); 8002 } else { 8003 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8004 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8005 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8006 8007 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8008 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8009 8010 if (size == MO_16) { 8011 switch (opcode) { 8012 case 0xc: /* FMAXNMP */ 8013 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8014 break; 8015 case 0xd: /* FADDP */ 8016 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8017 break; 8018 case 0xf: /* FMAXP */ 8019 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8020 break; 8021 case 0x2c: /* FMINNMP */ 8022 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8023 break; 8024 case 0x2f: /* FMINP */ 8025 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8026 break; 8027 default: 8028 g_assert_not_reached(); 8029 } 8030 } else { 8031 switch (opcode) { 8032 case 0xc: /* FMAXNMP */ 8033 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8034 break; 8035 case 0xd: /* FADDP */ 8036 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8037 break; 8038 case 0xf: /* FMAXP */ 8039 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8040 break; 8041 case 0x2c: /* FMINNMP */ 8042 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8043 break; 8044 case 0x2f: /* FMINP */ 8045 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8046 break; 8047 default: 8048 g_assert_not_reached(); 8049 } 8050 } 8051 8052 write_fp_sreg(s, rd, tcg_res); 8053 } 8054 } 8055 8056 /* 8057 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8058 * 8059 * This code is handles the common shifting code and is used by both 8060 * the vector and scalar code. 8061 */ 8062 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8063 TCGv_i64 tcg_rnd, bool accumulate, 8064 bool is_u, int size, int shift) 8065 { 8066 bool extended_result = false; 8067 bool round = tcg_rnd != NULL; 8068 int ext_lshift = 0; 8069 TCGv_i64 tcg_src_hi; 8070 8071 if (round && size == 3) { 8072 extended_result = true; 8073 ext_lshift = 64 - shift; 8074 tcg_src_hi = tcg_temp_new_i64(); 8075 } else if (shift == 64) { 8076 if (!accumulate && is_u) { 8077 /* result is zero */ 8078 tcg_gen_movi_i64(tcg_res, 0); 8079 return; 8080 } 8081 } 8082 8083 /* Deal with the rounding step */ 8084 if (round) { 8085 if (extended_result) { 8086 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8087 if (!is_u) { 8088 /* take care of sign extending tcg_res */ 8089 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8090 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8091 tcg_src, tcg_src_hi, 8092 tcg_rnd, tcg_zero); 8093 } else { 8094 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8095 tcg_src, tcg_zero, 8096 tcg_rnd, tcg_zero); 8097 } 8098 } else { 8099 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8100 } 8101 } 8102 8103 /* Now do the shift right */ 8104 if (round && extended_result) { 8105 /* extended case, >64 bit precision required */ 8106 if (ext_lshift == 0) { 8107 /* special case, only high bits matter */ 8108 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8109 } else { 8110 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8111 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8112 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8113 } 8114 } else { 8115 if (is_u) { 8116 if (shift == 64) { 8117 /* essentially shifting in 64 zeros */ 8118 tcg_gen_movi_i64(tcg_src, 0); 8119 } else { 8120 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8121 } 8122 } else { 8123 if (shift == 64) { 8124 /* effectively extending the sign-bit */ 8125 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8126 } else { 8127 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8128 } 8129 } 8130 } 8131 8132 if (accumulate) { 8133 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8134 } else { 8135 tcg_gen_mov_i64(tcg_res, tcg_src); 8136 } 8137 } 8138 8139 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8140 static void handle_scalar_simd_shri(DisasContext *s, 8141 bool is_u, int immh, int immb, 8142 int opcode, int rn, int rd) 8143 { 8144 const int size = 3; 8145 int immhb = immh << 3 | immb; 8146 int shift = 2 * (8 << size) - immhb; 8147 bool accumulate = false; 8148 bool round = false; 8149 bool insert = false; 8150 TCGv_i64 tcg_rn; 8151 TCGv_i64 tcg_rd; 8152 TCGv_i64 tcg_round; 8153 8154 if (!extract32(immh, 3, 1)) { 8155 unallocated_encoding(s); 8156 return; 8157 } 8158 8159 if (!fp_access_check(s)) { 8160 return; 8161 } 8162 8163 switch (opcode) { 8164 case 0x02: /* SSRA / USRA (accumulate) */ 8165 accumulate = true; 8166 break; 8167 case 0x04: /* SRSHR / URSHR (rounding) */ 8168 round = true; 8169 break; 8170 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8171 accumulate = round = true; 8172 break; 8173 case 0x08: /* SRI */ 8174 insert = true; 8175 break; 8176 } 8177 8178 if (round) { 8179 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8180 } else { 8181 tcg_round = NULL; 8182 } 8183 8184 tcg_rn = read_fp_dreg(s, rn); 8185 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8186 8187 if (insert) { 8188 /* shift count same as element size is valid but does nothing; 8189 * special case to avoid potential shift by 64. 8190 */ 8191 int esize = 8 << size; 8192 if (shift != esize) { 8193 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8194 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8195 } 8196 } else { 8197 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8198 accumulate, is_u, size, shift); 8199 } 8200 8201 write_fp_dreg(s, rd, tcg_rd); 8202 } 8203 8204 /* SHL/SLI - Scalar shift left */ 8205 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8206 int immh, int immb, int opcode, 8207 int rn, int rd) 8208 { 8209 int size = 32 - clz32(immh) - 1; 8210 int immhb = immh << 3 | immb; 8211 int shift = immhb - (8 << size); 8212 TCGv_i64 tcg_rn; 8213 TCGv_i64 tcg_rd; 8214 8215 if (!extract32(immh, 3, 1)) { 8216 unallocated_encoding(s); 8217 return; 8218 } 8219 8220 if (!fp_access_check(s)) { 8221 return; 8222 } 8223 8224 tcg_rn = read_fp_dreg(s, rn); 8225 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8226 8227 if (insert) { 8228 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8229 } else { 8230 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8231 } 8232 8233 write_fp_dreg(s, rd, tcg_rd); 8234 } 8235 8236 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8237 * (signed/unsigned) narrowing */ 8238 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8239 bool is_u_shift, bool is_u_narrow, 8240 int immh, int immb, int opcode, 8241 int rn, int rd) 8242 { 8243 int immhb = immh << 3 | immb; 8244 int size = 32 - clz32(immh) - 1; 8245 int esize = 8 << size; 8246 int shift = (2 * esize) - immhb; 8247 int elements = is_scalar ? 1 : (64 / esize); 8248 bool round = extract32(opcode, 0, 1); 8249 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8250 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8251 TCGv_i32 tcg_rd_narrowed; 8252 TCGv_i64 tcg_final; 8253 8254 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8255 { gen_helper_neon_narrow_sat_s8, 8256 gen_helper_neon_unarrow_sat8 }, 8257 { gen_helper_neon_narrow_sat_s16, 8258 gen_helper_neon_unarrow_sat16 }, 8259 { gen_helper_neon_narrow_sat_s32, 8260 gen_helper_neon_unarrow_sat32 }, 8261 { NULL, NULL }, 8262 }; 8263 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8264 gen_helper_neon_narrow_sat_u8, 8265 gen_helper_neon_narrow_sat_u16, 8266 gen_helper_neon_narrow_sat_u32, 8267 NULL 8268 }; 8269 NeonGenNarrowEnvFn *narrowfn; 8270 8271 int i; 8272 8273 assert(size < 4); 8274 8275 if (extract32(immh, 3, 1)) { 8276 unallocated_encoding(s); 8277 return; 8278 } 8279 8280 if (!fp_access_check(s)) { 8281 return; 8282 } 8283 8284 if (is_u_shift) { 8285 narrowfn = unsigned_narrow_fns[size]; 8286 } else { 8287 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8288 } 8289 8290 tcg_rn = tcg_temp_new_i64(); 8291 tcg_rd = tcg_temp_new_i64(); 8292 tcg_rd_narrowed = tcg_temp_new_i32(); 8293 tcg_final = tcg_temp_new_i64(); 8294 8295 if (round) { 8296 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8297 } else { 8298 tcg_round = NULL; 8299 } 8300 8301 for (i = 0; i < elements; i++) { 8302 read_vec_element(s, tcg_rn, rn, i, ldop); 8303 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8304 false, is_u_shift, size+1, shift); 8305 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8306 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8307 if (i == 0) { 8308 tcg_gen_mov_i64(tcg_final, tcg_rd); 8309 } else { 8310 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8311 } 8312 } 8313 8314 if (!is_q) { 8315 write_vec_element(s, tcg_final, rd, 0, MO_64); 8316 } else { 8317 write_vec_element(s, tcg_final, rd, 1, MO_64); 8318 } 8319 clear_vec_high(s, is_q, rd); 8320 } 8321 8322 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8323 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8324 bool src_unsigned, bool dst_unsigned, 8325 int immh, int immb, int rn, int rd) 8326 { 8327 int immhb = immh << 3 | immb; 8328 int size = 32 - clz32(immh) - 1; 8329 int shift = immhb - (8 << size); 8330 int pass; 8331 8332 assert(immh != 0); 8333 assert(!(scalar && is_q)); 8334 8335 if (!scalar) { 8336 if (!is_q && extract32(immh, 3, 1)) { 8337 unallocated_encoding(s); 8338 return; 8339 } 8340 8341 /* Since we use the variable-shift helpers we must 8342 * replicate the shift count into each element of 8343 * the tcg_shift value. 8344 */ 8345 switch (size) { 8346 case 0: 8347 shift |= shift << 8; 8348 /* fall through */ 8349 case 1: 8350 shift |= shift << 16; 8351 break; 8352 case 2: 8353 case 3: 8354 break; 8355 default: 8356 g_assert_not_reached(); 8357 } 8358 } 8359 8360 if (!fp_access_check(s)) { 8361 return; 8362 } 8363 8364 if (size == 3) { 8365 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8366 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8367 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8368 { NULL, gen_helper_neon_qshl_u64 }, 8369 }; 8370 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8371 int maxpass = is_q ? 2 : 1; 8372 8373 for (pass = 0; pass < maxpass; pass++) { 8374 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8375 8376 read_vec_element(s, tcg_op, rn, pass, MO_64); 8377 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8378 write_vec_element(s, tcg_op, rd, pass, MO_64); 8379 } 8380 clear_vec_high(s, is_q, rd); 8381 } else { 8382 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8383 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8384 { 8385 { gen_helper_neon_qshl_s8, 8386 gen_helper_neon_qshl_s16, 8387 gen_helper_neon_qshl_s32 }, 8388 { gen_helper_neon_qshlu_s8, 8389 gen_helper_neon_qshlu_s16, 8390 gen_helper_neon_qshlu_s32 } 8391 }, { 8392 { NULL, NULL, NULL }, 8393 { gen_helper_neon_qshl_u8, 8394 gen_helper_neon_qshl_u16, 8395 gen_helper_neon_qshl_u32 } 8396 } 8397 }; 8398 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8399 MemOp memop = scalar ? size : MO_32; 8400 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8401 8402 for (pass = 0; pass < maxpass; pass++) { 8403 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8404 8405 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8406 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8407 if (scalar) { 8408 switch (size) { 8409 case 0: 8410 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8411 break; 8412 case 1: 8413 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8414 break; 8415 case 2: 8416 break; 8417 default: 8418 g_assert_not_reached(); 8419 } 8420 write_fp_sreg(s, rd, tcg_op); 8421 } else { 8422 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8423 } 8424 } 8425 8426 if (!scalar) { 8427 clear_vec_high(s, is_q, rd); 8428 } 8429 } 8430 } 8431 8432 /* Common vector code for handling integer to FP conversion */ 8433 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8434 int elements, int is_signed, 8435 int fracbits, int size) 8436 { 8437 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8438 TCGv_i32 tcg_shift = NULL; 8439 8440 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8441 int pass; 8442 8443 if (fracbits || size == MO_64) { 8444 tcg_shift = tcg_constant_i32(fracbits); 8445 } 8446 8447 if (size == MO_64) { 8448 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8449 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8450 8451 for (pass = 0; pass < elements; pass++) { 8452 read_vec_element(s, tcg_int64, rn, pass, mop); 8453 8454 if (is_signed) { 8455 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8456 tcg_shift, tcg_fpst); 8457 } else { 8458 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8459 tcg_shift, tcg_fpst); 8460 } 8461 if (elements == 1) { 8462 write_fp_dreg(s, rd, tcg_double); 8463 } else { 8464 write_vec_element(s, tcg_double, rd, pass, MO_64); 8465 } 8466 } 8467 } else { 8468 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8469 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8470 8471 for (pass = 0; pass < elements; pass++) { 8472 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8473 8474 switch (size) { 8475 case MO_32: 8476 if (fracbits) { 8477 if (is_signed) { 8478 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8479 tcg_shift, tcg_fpst); 8480 } else { 8481 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8482 tcg_shift, tcg_fpst); 8483 } 8484 } else { 8485 if (is_signed) { 8486 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8487 } else { 8488 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8489 } 8490 } 8491 break; 8492 case MO_16: 8493 if (fracbits) { 8494 if (is_signed) { 8495 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8496 tcg_shift, tcg_fpst); 8497 } else { 8498 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8499 tcg_shift, tcg_fpst); 8500 } 8501 } else { 8502 if (is_signed) { 8503 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8504 } else { 8505 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8506 } 8507 } 8508 break; 8509 default: 8510 g_assert_not_reached(); 8511 } 8512 8513 if (elements == 1) { 8514 write_fp_sreg(s, rd, tcg_float); 8515 } else { 8516 write_vec_element_i32(s, tcg_float, rd, pass, size); 8517 } 8518 } 8519 } 8520 8521 clear_vec_high(s, elements << size == 16, rd); 8522 } 8523 8524 /* UCVTF/SCVTF - Integer to FP conversion */ 8525 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8526 bool is_q, bool is_u, 8527 int immh, int immb, int opcode, 8528 int rn, int rd) 8529 { 8530 int size, elements, fracbits; 8531 int immhb = immh << 3 | immb; 8532 8533 if (immh & 8) { 8534 size = MO_64; 8535 if (!is_scalar && !is_q) { 8536 unallocated_encoding(s); 8537 return; 8538 } 8539 } else if (immh & 4) { 8540 size = MO_32; 8541 } else if (immh & 2) { 8542 size = MO_16; 8543 if (!dc_isar_feature(aa64_fp16, s)) { 8544 unallocated_encoding(s); 8545 return; 8546 } 8547 } else { 8548 /* immh == 0 would be a failure of the decode logic */ 8549 g_assert(immh == 1); 8550 unallocated_encoding(s); 8551 return; 8552 } 8553 8554 if (is_scalar) { 8555 elements = 1; 8556 } else { 8557 elements = (8 << is_q) >> size; 8558 } 8559 fracbits = (16 << size) - immhb; 8560 8561 if (!fp_access_check(s)) { 8562 return; 8563 } 8564 8565 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8566 } 8567 8568 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8569 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8570 bool is_q, bool is_u, 8571 int immh, int immb, int rn, int rd) 8572 { 8573 int immhb = immh << 3 | immb; 8574 int pass, size, fracbits; 8575 TCGv_ptr tcg_fpstatus; 8576 TCGv_i32 tcg_rmode, tcg_shift; 8577 8578 if (immh & 0x8) { 8579 size = MO_64; 8580 if (!is_scalar && !is_q) { 8581 unallocated_encoding(s); 8582 return; 8583 } 8584 } else if (immh & 0x4) { 8585 size = MO_32; 8586 } else if (immh & 0x2) { 8587 size = MO_16; 8588 if (!dc_isar_feature(aa64_fp16, s)) { 8589 unallocated_encoding(s); 8590 return; 8591 } 8592 } else { 8593 /* Should have split out AdvSIMD modified immediate earlier. */ 8594 assert(immh == 1); 8595 unallocated_encoding(s); 8596 return; 8597 } 8598 8599 if (!fp_access_check(s)) { 8600 return; 8601 } 8602 8603 assert(!(is_scalar && is_q)); 8604 8605 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8606 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8607 fracbits = (16 << size) - immhb; 8608 tcg_shift = tcg_constant_i32(fracbits); 8609 8610 if (size == MO_64) { 8611 int maxpass = is_scalar ? 1 : 2; 8612 8613 for (pass = 0; pass < maxpass; pass++) { 8614 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8615 8616 read_vec_element(s, tcg_op, rn, pass, MO_64); 8617 if (is_u) { 8618 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8619 } else { 8620 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8621 } 8622 write_vec_element(s, tcg_op, rd, pass, MO_64); 8623 } 8624 clear_vec_high(s, is_q, rd); 8625 } else { 8626 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8627 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8628 8629 switch (size) { 8630 case MO_16: 8631 if (is_u) { 8632 fn = gen_helper_vfp_touhh; 8633 } else { 8634 fn = gen_helper_vfp_toshh; 8635 } 8636 break; 8637 case MO_32: 8638 if (is_u) { 8639 fn = gen_helper_vfp_touls; 8640 } else { 8641 fn = gen_helper_vfp_tosls; 8642 } 8643 break; 8644 default: 8645 g_assert_not_reached(); 8646 } 8647 8648 for (pass = 0; pass < maxpass; pass++) { 8649 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8650 8651 read_vec_element_i32(s, tcg_op, rn, pass, size); 8652 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8653 if (is_scalar) { 8654 write_fp_sreg(s, rd, tcg_op); 8655 } else { 8656 write_vec_element_i32(s, tcg_op, rd, pass, size); 8657 } 8658 } 8659 if (!is_scalar) { 8660 clear_vec_high(s, is_q, rd); 8661 } 8662 } 8663 8664 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8665 } 8666 8667 /* AdvSIMD scalar shift by immediate 8668 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8669 * +-----+---+-------------+------+------+--------+---+------+------+ 8670 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8671 * +-----+---+-------------+------+------+--------+---+------+------+ 8672 * 8673 * This is the scalar version so it works on a fixed sized registers 8674 */ 8675 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8676 { 8677 int rd = extract32(insn, 0, 5); 8678 int rn = extract32(insn, 5, 5); 8679 int opcode = extract32(insn, 11, 5); 8680 int immb = extract32(insn, 16, 3); 8681 int immh = extract32(insn, 19, 4); 8682 bool is_u = extract32(insn, 29, 1); 8683 8684 if (immh == 0) { 8685 unallocated_encoding(s); 8686 return; 8687 } 8688 8689 switch (opcode) { 8690 case 0x08: /* SRI */ 8691 if (!is_u) { 8692 unallocated_encoding(s); 8693 return; 8694 } 8695 /* fall through */ 8696 case 0x00: /* SSHR / USHR */ 8697 case 0x02: /* SSRA / USRA */ 8698 case 0x04: /* SRSHR / URSHR */ 8699 case 0x06: /* SRSRA / URSRA */ 8700 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8701 break; 8702 case 0x0a: /* SHL / SLI */ 8703 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8704 break; 8705 case 0x1c: /* SCVTF, UCVTF */ 8706 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8707 opcode, rn, rd); 8708 break; 8709 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8710 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8711 if (!is_u) { 8712 unallocated_encoding(s); 8713 return; 8714 } 8715 handle_vec_simd_sqshrn(s, true, false, false, true, 8716 immh, immb, opcode, rn, rd); 8717 break; 8718 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8719 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8720 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8721 immh, immb, opcode, rn, rd); 8722 break; 8723 case 0xc: /* SQSHLU */ 8724 if (!is_u) { 8725 unallocated_encoding(s); 8726 return; 8727 } 8728 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8729 break; 8730 case 0xe: /* SQSHL, UQSHL */ 8731 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8732 break; 8733 case 0x1f: /* FCVTZS, FCVTZU */ 8734 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8735 break; 8736 default: 8737 unallocated_encoding(s); 8738 break; 8739 } 8740 } 8741 8742 /* AdvSIMD scalar three different 8743 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8744 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8745 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8746 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8747 */ 8748 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8749 { 8750 bool is_u = extract32(insn, 29, 1); 8751 int size = extract32(insn, 22, 2); 8752 int opcode = extract32(insn, 12, 4); 8753 int rm = extract32(insn, 16, 5); 8754 int rn = extract32(insn, 5, 5); 8755 int rd = extract32(insn, 0, 5); 8756 8757 if (is_u) { 8758 unallocated_encoding(s); 8759 return; 8760 } 8761 8762 switch (opcode) { 8763 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8764 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8765 case 0xd: /* SQDMULL, SQDMULL2 */ 8766 if (size == 0 || size == 3) { 8767 unallocated_encoding(s); 8768 return; 8769 } 8770 break; 8771 default: 8772 unallocated_encoding(s); 8773 return; 8774 } 8775 8776 if (!fp_access_check(s)) { 8777 return; 8778 } 8779 8780 if (size == 2) { 8781 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8782 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8783 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8784 8785 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8786 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8787 8788 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8789 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8790 8791 switch (opcode) { 8792 case 0xd: /* SQDMULL, SQDMULL2 */ 8793 break; 8794 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8795 tcg_gen_neg_i64(tcg_res, tcg_res); 8796 /* fall through */ 8797 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8798 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8799 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8800 tcg_res, tcg_op1); 8801 break; 8802 default: 8803 g_assert_not_reached(); 8804 } 8805 8806 write_fp_dreg(s, rd, tcg_res); 8807 } else { 8808 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8809 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8810 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8811 8812 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8813 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8814 8815 switch (opcode) { 8816 case 0xd: /* SQDMULL, SQDMULL2 */ 8817 break; 8818 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8819 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8820 /* fall through */ 8821 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8822 { 8823 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8824 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8825 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8826 tcg_res, tcg_op3); 8827 break; 8828 } 8829 default: 8830 g_assert_not_reached(); 8831 } 8832 8833 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8834 write_fp_dreg(s, rd, tcg_res); 8835 } 8836 } 8837 8838 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8839 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8840 { 8841 /* Handle 64x64->64 opcodes which are shared between the scalar 8842 * and vector 3-same groups. We cover every opcode where size == 3 8843 * is valid in either the three-reg-same (integer, not pairwise) 8844 * or scalar-three-reg-same groups. 8845 */ 8846 TCGCond cond; 8847 8848 switch (opcode) { 8849 case 0x1: /* SQADD */ 8850 if (u) { 8851 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8852 } else { 8853 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8854 } 8855 break; 8856 case 0x5: /* SQSUB */ 8857 if (u) { 8858 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8859 } else { 8860 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8861 } 8862 break; 8863 case 0x6: /* CMGT, CMHI */ 8864 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8865 * We implement this using setcond (test) and then negating. 8866 */ 8867 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8868 do_cmop: 8869 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8870 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8871 break; 8872 case 0x7: /* CMGE, CMHS */ 8873 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8874 goto do_cmop; 8875 case 0x11: /* CMTST, CMEQ */ 8876 if (u) { 8877 cond = TCG_COND_EQ; 8878 goto do_cmop; 8879 } 8880 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8881 break; 8882 case 0x8: /* SSHL, USHL */ 8883 if (u) { 8884 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8885 } else { 8886 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8887 } 8888 break; 8889 case 0x9: /* SQSHL, UQSHL */ 8890 if (u) { 8891 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8892 } else { 8893 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8894 } 8895 break; 8896 case 0xa: /* SRSHL, URSHL */ 8897 if (u) { 8898 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8899 } else { 8900 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8901 } 8902 break; 8903 case 0xb: /* SQRSHL, UQRSHL */ 8904 if (u) { 8905 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8906 } else { 8907 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8908 } 8909 break; 8910 case 0x10: /* ADD, SUB */ 8911 if (u) { 8912 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8913 } else { 8914 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8915 } 8916 break; 8917 default: 8918 g_assert_not_reached(); 8919 } 8920 } 8921 8922 /* Handle the 3-same-operands float operations; shared by the scalar 8923 * and vector encodings. The caller must filter out any encodings 8924 * not allocated for the encoding it is dealing with. 8925 */ 8926 static void handle_3same_float(DisasContext *s, int size, int elements, 8927 int fpopcode, int rd, int rn, int rm) 8928 { 8929 int pass; 8930 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8931 8932 for (pass = 0; pass < elements; pass++) { 8933 if (size) { 8934 /* Double */ 8935 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8936 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8937 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8938 8939 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8940 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8941 8942 switch (fpopcode) { 8943 case 0x39: /* FMLS */ 8944 /* As usual for ARM, separate negation for fused multiply-add */ 8945 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8946 /* fall through */ 8947 case 0x19: /* FMLA */ 8948 read_vec_element(s, tcg_res, rd, pass, MO_64); 8949 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8950 tcg_res, fpst); 8951 break; 8952 case 0x18: /* FMAXNM */ 8953 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8954 break; 8955 case 0x1a: /* FADD */ 8956 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8957 break; 8958 case 0x1b: /* FMULX */ 8959 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8960 break; 8961 case 0x1c: /* FCMEQ */ 8962 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8963 break; 8964 case 0x1e: /* FMAX */ 8965 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8966 break; 8967 case 0x1f: /* FRECPS */ 8968 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8969 break; 8970 case 0x38: /* FMINNM */ 8971 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8972 break; 8973 case 0x3a: /* FSUB */ 8974 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8975 break; 8976 case 0x3e: /* FMIN */ 8977 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8978 break; 8979 case 0x3f: /* FRSQRTS */ 8980 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8981 break; 8982 case 0x5b: /* FMUL */ 8983 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8984 break; 8985 case 0x5c: /* FCMGE */ 8986 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8987 break; 8988 case 0x5d: /* FACGE */ 8989 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8990 break; 8991 case 0x5f: /* FDIV */ 8992 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8993 break; 8994 case 0x7a: /* FABD */ 8995 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8996 gen_helper_vfp_absd(tcg_res, tcg_res); 8997 break; 8998 case 0x7c: /* FCMGT */ 8999 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x7d: /* FACGT */ 9002 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 default: 9005 g_assert_not_reached(); 9006 } 9007 9008 write_vec_element(s, tcg_res, rd, pass, MO_64); 9009 } else { 9010 /* Single */ 9011 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9012 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9013 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9014 9015 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9016 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9017 9018 switch (fpopcode) { 9019 case 0x39: /* FMLS */ 9020 /* As usual for ARM, separate negation for fused multiply-add */ 9021 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9022 /* fall through */ 9023 case 0x19: /* FMLA */ 9024 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9025 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9026 tcg_res, fpst); 9027 break; 9028 case 0x1a: /* FADD */ 9029 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9030 break; 9031 case 0x1b: /* FMULX */ 9032 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9033 break; 9034 case 0x1c: /* FCMEQ */ 9035 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9036 break; 9037 case 0x1e: /* FMAX */ 9038 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9039 break; 9040 case 0x1f: /* FRECPS */ 9041 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9042 break; 9043 case 0x18: /* FMAXNM */ 9044 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9045 break; 9046 case 0x38: /* FMINNM */ 9047 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9048 break; 9049 case 0x3a: /* FSUB */ 9050 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9051 break; 9052 case 0x3e: /* FMIN */ 9053 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9054 break; 9055 case 0x3f: /* FRSQRTS */ 9056 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9057 break; 9058 case 0x5b: /* FMUL */ 9059 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9060 break; 9061 case 0x5c: /* FCMGE */ 9062 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9063 break; 9064 case 0x5d: /* FACGE */ 9065 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9066 break; 9067 case 0x5f: /* FDIV */ 9068 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9069 break; 9070 case 0x7a: /* FABD */ 9071 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9072 gen_helper_vfp_abss(tcg_res, tcg_res); 9073 break; 9074 case 0x7c: /* FCMGT */ 9075 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9076 break; 9077 case 0x7d: /* FACGT */ 9078 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9079 break; 9080 default: 9081 g_assert_not_reached(); 9082 } 9083 9084 if (elements == 1) { 9085 /* scalar single so clear high part */ 9086 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9087 9088 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9089 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9090 } else { 9091 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9092 } 9093 } 9094 } 9095 9096 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9097 } 9098 9099 /* AdvSIMD scalar three same 9100 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9101 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9102 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9103 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9104 */ 9105 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9106 { 9107 int rd = extract32(insn, 0, 5); 9108 int rn = extract32(insn, 5, 5); 9109 int opcode = extract32(insn, 11, 5); 9110 int rm = extract32(insn, 16, 5); 9111 int size = extract32(insn, 22, 2); 9112 bool u = extract32(insn, 29, 1); 9113 TCGv_i64 tcg_rd; 9114 9115 if (opcode >= 0x18) { 9116 /* Floating point: U, size[1] and opcode indicate operation */ 9117 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9118 switch (fpopcode) { 9119 case 0x1b: /* FMULX */ 9120 case 0x1f: /* FRECPS */ 9121 case 0x3f: /* FRSQRTS */ 9122 case 0x5d: /* FACGE */ 9123 case 0x7d: /* FACGT */ 9124 case 0x1c: /* FCMEQ */ 9125 case 0x5c: /* FCMGE */ 9126 case 0x7c: /* FCMGT */ 9127 case 0x7a: /* FABD */ 9128 break; 9129 default: 9130 unallocated_encoding(s); 9131 return; 9132 } 9133 9134 if (!fp_access_check(s)) { 9135 return; 9136 } 9137 9138 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9139 return; 9140 } 9141 9142 switch (opcode) { 9143 case 0x1: /* SQADD, UQADD */ 9144 case 0x5: /* SQSUB, UQSUB */ 9145 case 0x9: /* SQSHL, UQSHL */ 9146 case 0xb: /* SQRSHL, UQRSHL */ 9147 break; 9148 case 0x8: /* SSHL, USHL */ 9149 case 0xa: /* SRSHL, URSHL */ 9150 case 0x6: /* CMGT, CMHI */ 9151 case 0x7: /* CMGE, CMHS */ 9152 case 0x11: /* CMTST, CMEQ */ 9153 case 0x10: /* ADD, SUB (vector) */ 9154 if (size != 3) { 9155 unallocated_encoding(s); 9156 return; 9157 } 9158 break; 9159 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9160 if (size != 1 && size != 2) { 9161 unallocated_encoding(s); 9162 return; 9163 } 9164 break; 9165 default: 9166 unallocated_encoding(s); 9167 return; 9168 } 9169 9170 if (!fp_access_check(s)) { 9171 return; 9172 } 9173 9174 tcg_rd = tcg_temp_new_i64(); 9175 9176 if (size == 3) { 9177 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9178 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9179 9180 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9181 } else { 9182 /* Do a single operation on the lowest element in the vector. 9183 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9184 * no side effects for all these operations. 9185 * OPTME: special-purpose helpers would avoid doing some 9186 * unnecessary work in the helper for the 8 and 16 bit cases. 9187 */ 9188 NeonGenTwoOpEnvFn *genenvfn; 9189 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9190 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9191 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9192 9193 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9194 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9195 9196 switch (opcode) { 9197 case 0x1: /* SQADD, UQADD */ 9198 { 9199 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9200 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9201 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9202 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9203 }; 9204 genenvfn = fns[size][u]; 9205 break; 9206 } 9207 case 0x5: /* SQSUB, UQSUB */ 9208 { 9209 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9210 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9211 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9212 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9213 }; 9214 genenvfn = fns[size][u]; 9215 break; 9216 } 9217 case 0x9: /* SQSHL, UQSHL */ 9218 { 9219 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9220 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9221 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9222 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9223 }; 9224 genenvfn = fns[size][u]; 9225 break; 9226 } 9227 case 0xb: /* SQRSHL, UQRSHL */ 9228 { 9229 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9230 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9231 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9232 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9233 }; 9234 genenvfn = fns[size][u]; 9235 break; 9236 } 9237 case 0x16: /* SQDMULH, SQRDMULH */ 9238 { 9239 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9240 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9241 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9242 }; 9243 assert(size == 1 || size == 2); 9244 genenvfn = fns[size - 1][u]; 9245 break; 9246 } 9247 default: 9248 g_assert_not_reached(); 9249 } 9250 9251 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9252 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9253 } 9254 9255 write_fp_dreg(s, rd, tcg_rd); 9256 } 9257 9258 /* AdvSIMD scalar three same FP16 9259 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9260 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9261 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9262 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9263 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9264 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9265 */ 9266 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9267 uint32_t insn) 9268 { 9269 int rd = extract32(insn, 0, 5); 9270 int rn = extract32(insn, 5, 5); 9271 int opcode = extract32(insn, 11, 3); 9272 int rm = extract32(insn, 16, 5); 9273 bool u = extract32(insn, 29, 1); 9274 bool a = extract32(insn, 23, 1); 9275 int fpopcode = opcode | (a << 3) | (u << 4); 9276 TCGv_ptr fpst; 9277 TCGv_i32 tcg_op1; 9278 TCGv_i32 tcg_op2; 9279 TCGv_i32 tcg_res; 9280 9281 switch (fpopcode) { 9282 case 0x03: /* FMULX */ 9283 case 0x04: /* FCMEQ (reg) */ 9284 case 0x07: /* FRECPS */ 9285 case 0x0f: /* FRSQRTS */ 9286 case 0x14: /* FCMGE (reg) */ 9287 case 0x15: /* FACGE */ 9288 case 0x1a: /* FABD */ 9289 case 0x1c: /* FCMGT (reg) */ 9290 case 0x1d: /* FACGT */ 9291 break; 9292 default: 9293 unallocated_encoding(s); 9294 return; 9295 } 9296 9297 if (!dc_isar_feature(aa64_fp16, s)) { 9298 unallocated_encoding(s); 9299 } 9300 9301 if (!fp_access_check(s)) { 9302 return; 9303 } 9304 9305 fpst = fpstatus_ptr(FPST_FPCR_F16); 9306 9307 tcg_op1 = read_fp_hreg(s, rn); 9308 tcg_op2 = read_fp_hreg(s, rm); 9309 tcg_res = tcg_temp_new_i32(); 9310 9311 switch (fpopcode) { 9312 case 0x03: /* FMULX */ 9313 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9314 break; 9315 case 0x04: /* FCMEQ (reg) */ 9316 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9317 break; 9318 case 0x07: /* FRECPS */ 9319 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9320 break; 9321 case 0x0f: /* FRSQRTS */ 9322 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9323 break; 9324 case 0x14: /* FCMGE (reg) */ 9325 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9326 break; 9327 case 0x15: /* FACGE */ 9328 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9329 break; 9330 case 0x1a: /* FABD */ 9331 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9332 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9333 break; 9334 case 0x1c: /* FCMGT (reg) */ 9335 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9336 break; 9337 case 0x1d: /* FACGT */ 9338 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9339 break; 9340 default: 9341 g_assert_not_reached(); 9342 } 9343 9344 write_fp_sreg(s, rd, tcg_res); 9345 } 9346 9347 /* AdvSIMD scalar three same extra 9348 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9349 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9350 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9351 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9352 */ 9353 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9354 uint32_t insn) 9355 { 9356 int rd = extract32(insn, 0, 5); 9357 int rn = extract32(insn, 5, 5); 9358 int opcode = extract32(insn, 11, 4); 9359 int rm = extract32(insn, 16, 5); 9360 int size = extract32(insn, 22, 2); 9361 bool u = extract32(insn, 29, 1); 9362 TCGv_i32 ele1, ele2, ele3; 9363 TCGv_i64 res; 9364 bool feature; 9365 9366 switch (u * 16 + opcode) { 9367 case 0x10: /* SQRDMLAH (vector) */ 9368 case 0x11: /* SQRDMLSH (vector) */ 9369 if (size != 1 && size != 2) { 9370 unallocated_encoding(s); 9371 return; 9372 } 9373 feature = dc_isar_feature(aa64_rdm, s); 9374 break; 9375 default: 9376 unallocated_encoding(s); 9377 return; 9378 } 9379 if (!feature) { 9380 unallocated_encoding(s); 9381 return; 9382 } 9383 if (!fp_access_check(s)) { 9384 return; 9385 } 9386 9387 /* Do a single operation on the lowest element in the vector. 9388 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9389 * with no side effects for all these operations. 9390 * OPTME: special-purpose helpers would avoid doing some 9391 * unnecessary work in the helper for the 16 bit cases. 9392 */ 9393 ele1 = tcg_temp_new_i32(); 9394 ele2 = tcg_temp_new_i32(); 9395 ele3 = tcg_temp_new_i32(); 9396 9397 read_vec_element_i32(s, ele1, rn, 0, size); 9398 read_vec_element_i32(s, ele2, rm, 0, size); 9399 read_vec_element_i32(s, ele3, rd, 0, size); 9400 9401 switch (opcode) { 9402 case 0x0: /* SQRDMLAH */ 9403 if (size == 1) { 9404 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9405 } else { 9406 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9407 } 9408 break; 9409 case 0x1: /* SQRDMLSH */ 9410 if (size == 1) { 9411 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9412 } else { 9413 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9414 } 9415 break; 9416 default: 9417 g_assert_not_reached(); 9418 } 9419 9420 res = tcg_temp_new_i64(); 9421 tcg_gen_extu_i32_i64(res, ele3); 9422 write_fp_dreg(s, rd, res); 9423 } 9424 9425 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9426 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9427 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9428 { 9429 /* Handle 64->64 opcodes which are shared between the scalar and 9430 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9431 * is valid in either group and also the double-precision fp ops. 9432 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9433 * requires them. 9434 */ 9435 TCGCond cond; 9436 9437 switch (opcode) { 9438 case 0x4: /* CLS, CLZ */ 9439 if (u) { 9440 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9441 } else { 9442 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9443 } 9444 break; 9445 case 0x5: /* NOT */ 9446 /* This opcode is shared with CNT and RBIT but we have earlier 9447 * enforced that size == 3 if and only if this is the NOT insn. 9448 */ 9449 tcg_gen_not_i64(tcg_rd, tcg_rn); 9450 break; 9451 case 0x7: /* SQABS, SQNEG */ 9452 if (u) { 9453 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9454 } else { 9455 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9456 } 9457 break; 9458 case 0xa: /* CMLT */ 9459 /* 64 bit integer comparison against zero, result is 9460 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9461 * subtracting 1. 9462 */ 9463 cond = TCG_COND_LT; 9464 do_cmop: 9465 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9466 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9467 break; 9468 case 0x8: /* CMGT, CMGE */ 9469 cond = u ? TCG_COND_GE : TCG_COND_GT; 9470 goto do_cmop; 9471 case 0x9: /* CMEQ, CMLE */ 9472 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9473 goto do_cmop; 9474 case 0xb: /* ABS, NEG */ 9475 if (u) { 9476 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9477 } else { 9478 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9479 } 9480 break; 9481 case 0x2f: /* FABS */ 9482 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9483 break; 9484 case 0x6f: /* FNEG */ 9485 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9486 break; 9487 case 0x7f: /* FSQRT */ 9488 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9489 break; 9490 case 0x1a: /* FCVTNS */ 9491 case 0x1b: /* FCVTMS */ 9492 case 0x1c: /* FCVTAS */ 9493 case 0x3a: /* FCVTPS */ 9494 case 0x3b: /* FCVTZS */ 9495 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9496 break; 9497 case 0x5a: /* FCVTNU */ 9498 case 0x5b: /* FCVTMU */ 9499 case 0x5c: /* FCVTAU */ 9500 case 0x7a: /* FCVTPU */ 9501 case 0x7b: /* FCVTZU */ 9502 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9503 break; 9504 case 0x18: /* FRINTN */ 9505 case 0x19: /* FRINTM */ 9506 case 0x38: /* FRINTP */ 9507 case 0x39: /* FRINTZ */ 9508 case 0x58: /* FRINTA */ 9509 case 0x79: /* FRINTI */ 9510 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9511 break; 9512 case 0x59: /* FRINTX */ 9513 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9514 break; 9515 case 0x1e: /* FRINT32Z */ 9516 case 0x5e: /* FRINT32X */ 9517 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9518 break; 9519 case 0x1f: /* FRINT64Z */ 9520 case 0x5f: /* FRINT64X */ 9521 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9522 break; 9523 default: 9524 g_assert_not_reached(); 9525 } 9526 } 9527 9528 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9529 bool is_scalar, bool is_u, bool is_q, 9530 int size, int rn, int rd) 9531 { 9532 bool is_double = (size == MO_64); 9533 TCGv_ptr fpst; 9534 9535 if (!fp_access_check(s)) { 9536 return; 9537 } 9538 9539 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9540 9541 if (is_double) { 9542 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9543 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9544 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9545 NeonGenTwoDoubleOpFn *genfn; 9546 bool swap = false; 9547 int pass; 9548 9549 switch (opcode) { 9550 case 0x2e: /* FCMLT (zero) */ 9551 swap = true; 9552 /* fallthrough */ 9553 case 0x2c: /* FCMGT (zero) */ 9554 genfn = gen_helper_neon_cgt_f64; 9555 break; 9556 case 0x2d: /* FCMEQ (zero) */ 9557 genfn = gen_helper_neon_ceq_f64; 9558 break; 9559 case 0x6d: /* FCMLE (zero) */ 9560 swap = true; 9561 /* fall through */ 9562 case 0x6c: /* FCMGE (zero) */ 9563 genfn = gen_helper_neon_cge_f64; 9564 break; 9565 default: 9566 g_assert_not_reached(); 9567 } 9568 9569 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9570 read_vec_element(s, tcg_op, rn, pass, MO_64); 9571 if (swap) { 9572 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9573 } else { 9574 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9575 } 9576 write_vec_element(s, tcg_res, rd, pass, MO_64); 9577 } 9578 9579 clear_vec_high(s, !is_scalar, rd); 9580 } else { 9581 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9582 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9583 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9584 NeonGenTwoSingleOpFn *genfn; 9585 bool swap = false; 9586 int pass, maxpasses; 9587 9588 if (size == MO_16) { 9589 switch (opcode) { 9590 case 0x2e: /* FCMLT (zero) */ 9591 swap = true; 9592 /* fall through */ 9593 case 0x2c: /* FCMGT (zero) */ 9594 genfn = gen_helper_advsimd_cgt_f16; 9595 break; 9596 case 0x2d: /* FCMEQ (zero) */ 9597 genfn = gen_helper_advsimd_ceq_f16; 9598 break; 9599 case 0x6d: /* FCMLE (zero) */ 9600 swap = true; 9601 /* fall through */ 9602 case 0x6c: /* FCMGE (zero) */ 9603 genfn = gen_helper_advsimd_cge_f16; 9604 break; 9605 default: 9606 g_assert_not_reached(); 9607 } 9608 } else { 9609 switch (opcode) { 9610 case 0x2e: /* FCMLT (zero) */ 9611 swap = true; 9612 /* fall through */ 9613 case 0x2c: /* FCMGT (zero) */ 9614 genfn = gen_helper_neon_cgt_f32; 9615 break; 9616 case 0x2d: /* FCMEQ (zero) */ 9617 genfn = gen_helper_neon_ceq_f32; 9618 break; 9619 case 0x6d: /* FCMLE (zero) */ 9620 swap = true; 9621 /* fall through */ 9622 case 0x6c: /* FCMGE (zero) */ 9623 genfn = gen_helper_neon_cge_f32; 9624 break; 9625 default: 9626 g_assert_not_reached(); 9627 } 9628 } 9629 9630 if (is_scalar) { 9631 maxpasses = 1; 9632 } else { 9633 int vector_size = 8 << is_q; 9634 maxpasses = vector_size >> size; 9635 } 9636 9637 for (pass = 0; pass < maxpasses; pass++) { 9638 read_vec_element_i32(s, tcg_op, rn, pass, size); 9639 if (swap) { 9640 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9641 } else { 9642 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9643 } 9644 if (is_scalar) { 9645 write_fp_sreg(s, rd, tcg_res); 9646 } else { 9647 write_vec_element_i32(s, tcg_res, rd, pass, size); 9648 } 9649 } 9650 9651 if (!is_scalar) { 9652 clear_vec_high(s, is_q, rd); 9653 } 9654 } 9655 } 9656 9657 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9658 bool is_scalar, bool is_u, bool is_q, 9659 int size, int rn, int rd) 9660 { 9661 bool is_double = (size == 3); 9662 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9663 9664 if (is_double) { 9665 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9666 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9667 int pass; 9668 9669 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9670 read_vec_element(s, tcg_op, rn, pass, MO_64); 9671 switch (opcode) { 9672 case 0x3d: /* FRECPE */ 9673 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9674 break; 9675 case 0x3f: /* FRECPX */ 9676 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9677 break; 9678 case 0x7d: /* FRSQRTE */ 9679 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9680 break; 9681 default: 9682 g_assert_not_reached(); 9683 } 9684 write_vec_element(s, tcg_res, rd, pass, MO_64); 9685 } 9686 clear_vec_high(s, !is_scalar, rd); 9687 } else { 9688 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9689 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9690 int pass, maxpasses; 9691 9692 if (is_scalar) { 9693 maxpasses = 1; 9694 } else { 9695 maxpasses = is_q ? 4 : 2; 9696 } 9697 9698 for (pass = 0; pass < maxpasses; pass++) { 9699 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9700 9701 switch (opcode) { 9702 case 0x3c: /* URECPE */ 9703 gen_helper_recpe_u32(tcg_res, tcg_op); 9704 break; 9705 case 0x3d: /* FRECPE */ 9706 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9707 break; 9708 case 0x3f: /* FRECPX */ 9709 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9710 break; 9711 case 0x7d: /* FRSQRTE */ 9712 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9713 break; 9714 default: 9715 g_assert_not_reached(); 9716 } 9717 9718 if (is_scalar) { 9719 write_fp_sreg(s, rd, tcg_res); 9720 } else { 9721 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9722 } 9723 } 9724 if (!is_scalar) { 9725 clear_vec_high(s, is_q, rd); 9726 } 9727 } 9728 } 9729 9730 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9731 int opcode, bool u, bool is_q, 9732 int size, int rn, int rd) 9733 { 9734 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9735 * in the source becomes a size element in the destination). 9736 */ 9737 int pass; 9738 TCGv_i32 tcg_res[2]; 9739 int destelt = is_q ? 2 : 0; 9740 int passes = scalar ? 1 : 2; 9741 9742 if (scalar) { 9743 tcg_res[1] = tcg_constant_i32(0); 9744 } 9745 9746 for (pass = 0; pass < passes; pass++) { 9747 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9748 NeonGenNarrowFn *genfn = NULL; 9749 NeonGenNarrowEnvFn *genenvfn = NULL; 9750 9751 if (scalar) { 9752 read_vec_element(s, tcg_op, rn, pass, size + 1); 9753 } else { 9754 read_vec_element(s, tcg_op, rn, pass, MO_64); 9755 } 9756 tcg_res[pass] = tcg_temp_new_i32(); 9757 9758 switch (opcode) { 9759 case 0x12: /* XTN, SQXTUN */ 9760 { 9761 static NeonGenNarrowFn * const xtnfns[3] = { 9762 gen_helper_neon_narrow_u8, 9763 gen_helper_neon_narrow_u16, 9764 tcg_gen_extrl_i64_i32, 9765 }; 9766 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9767 gen_helper_neon_unarrow_sat8, 9768 gen_helper_neon_unarrow_sat16, 9769 gen_helper_neon_unarrow_sat32, 9770 }; 9771 if (u) { 9772 genenvfn = sqxtunfns[size]; 9773 } else { 9774 genfn = xtnfns[size]; 9775 } 9776 break; 9777 } 9778 case 0x14: /* SQXTN, UQXTN */ 9779 { 9780 static NeonGenNarrowEnvFn * const fns[3][2] = { 9781 { gen_helper_neon_narrow_sat_s8, 9782 gen_helper_neon_narrow_sat_u8 }, 9783 { gen_helper_neon_narrow_sat_s16, 9784 gen_helper_neon_narrow_sat_u16 }, 9785 { gen_helper_neon_narrow_sat_s32, 9786 gen_helper_neon_narrow_sat_u32 }, 9787 }; 9788 genenvfn = fns[size][u]; 9789 break; 9790 } 9791 case 0x16: /* FCVTN, FCVTN2 */ 9792 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9793 if (size == 2) { 9794 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9795 } else { 9796 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9797 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9798 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9799 TCGv_i32 ahp = get_ahp_flag(); 9800 9801 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9802 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9803 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9804 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9805 } 9806 break; 9807 case 0x36: /* BFCVTN, BFCVTN2 */ 9808 { 9809 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9810 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9811 } 9812 break; 9813 case 0x56: /* FCVTXN, FCVTXN2 */ 9814 /* 64 bit to 32 bit float conversion 9815 * with von Neumann rounding (round to odd) 9816 */ 9817 assert(size == 2); 9818 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9819 break; 9820 default: 9821 g_assert_not_reached(); 9822 } 9823 9824 if (genfn) { 9825 genfn(tcg_res[pass], tcg_op); 9826 } else if (genenvfn) { 9827 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9828 } 9829 } 9830 9831 for (pass = 0; pass < 2; pass++) { 9832 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9833 } 9834 clear_vec_high(s, is_q, rd); 9835 } 9836 9837 /* Remaining saturating accumulating ops */ 9838 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9839 bool is_q, int size, int rn, int rd) 9840 { 9841 bool is_double = (size == 3); 9842 9843 if (is_double) { 9844 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9845 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9846 int pass; 9847 9848 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9849 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9850 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9851 9852 if (is_u) { /* USQADD */ 9853 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9854 } else { /* SUQADD */ 9855 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9856 } 9857 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9858 } 9859 clear_vec_high(s, !is_scalar, rd); 9860 } else { 9861 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9862 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9863 int pass, maxpasses; 9864 9865 if (is_scalar) { 9866 maxpasses = 1; 9867 } else { 9868 maxpasses = is_q ? 4 : 2; 9869 } 9870 9871 for (pass = 0; pass < maxpasses; pass++) { 9872 if (is_scalar) { 9873 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9874 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9875 } else { 9876 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9877 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9878 } 9879 9880 if (is_u) { /* USQADD */ 9881 switch (size) { 9882 case 0: 9883 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9884 break; 9885 case 1: 9886 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9887 break; 9888 case 2: 9889 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9890 break; 9891 default: 9892 g_assert_not_reached(); 9893 } 9894 } else { /* SUQADD */ 9895 switch (size) { 9896 case 0: 9897 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9898 break; 9899 case 1: 9900 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9901 break; 9902 case 2: 9903 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9904 break; 9905 default: 9906 g_assert_not_reached(); 9907 } 9908 } 9909 9910 if (is_scalar) { 9911 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9912 } 9913 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9914 } 9915 clear_vec_high(s, is_q, rd); 9916 } 9917 } 9918 9919 /* AdvSIMD scalar two reg misc 9920 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9921 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9922 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9923 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9924 */ 9925 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9926 { 9927 int rd = extract32(insn, 0, 5); 9928 int rn = extract32(insn, 5, 5); 9929 int opcode = extract32(insn, 12, 5); 9930 int size = extract32(insn, 22, 2); 9931 bool u = extract32(insn, 29, 1); 9932 bool is_fcvt = false; 9933 int rmode; 9934 TCGv_i32 tcg_rmode; 9935 TCGv_ptr tcg_fpstatus; 9936 9937 switch (opcode) { 9938 case 0x3: /* USQADD / SUQADD*/ 9939 if (!fp_access_check(s)) { 9940 return; 9941 } 9942 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9943 return; 9944 case 0x7: /* SQABS / SQNEG */ 9945 break; 9946 case 0xa: /* CMLT */ 9947 if (u) { 9948 unallocated_encoding(s); 9949 return; 9950 } 9951 /* fall through */ 9952 case 0x8: /* CMGT, CMGE */ 9953 case 0x9: /* CMEQ, CMLE */ 9954 case 0xb: /* ABS, NEG */ 9955 if (size != 3) { 9956 unallocated_encoding(s); 9957 return; 9958 } 9959 break; 9960 case 0x12: /* SQXTUN */ 9961 if (!u) { 9962 unallocated_encoding(s); 9963 return; 9964 } 9965 /* fall through */ 9966 case 0x14: /* SQXTN, UQXTN */ 9967 if (size == 3) { 9968 unallocated_encoding(s); 9969 return; 9970 } 9971 if (!fp_access_check(s)) { 9972 return; 9973 } 9974 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9975 return; 9976 case 0xc ... 0xf: 9977 case 0x16 ... 0x1d: 9978 case 0x1f: 9979 /* Floating point: U, size[1] and opcode indicate operation; 9980 * size[0] indicates single or double precision. 9981 */ 9982 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9983 size = extract32(size, 0, 1) ? 3 : 2; 9984 switch (opcode) { 9985 case 0x2c: /* FCMGT (zero) */ 9986 case 0x2d: /* FCMEQ (zero) */ 9987 case 0x2e: /* FCMLT (zero) */ 9988 case 0x6c: /* FCMGE (zero) */ 9989 case 0x6d: /* FCMLE (zero) */ 9990 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9991 return; 9992 case 0x1d: /* SCVTF */ 9993 case 0x5d: /* UCVTF */ 9994 { 9995 bool is_signed = (opcode == 0x1d); 9996 if (!fp_access_check(s)) { 9997 return; 9998 } 9999 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10000 return; 10001 } 10002 case 0x3d: /* FRECPE */ 10003 case 0x3f: /* FRECPX */ 10004 case 0x7d: /* FRSQRTE */ 10005 if (!fp_access_check(s)) { 10006 return; 10007 } 10008 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10009 return; 10010 case 0x1a: /* FCVTNS */ 10011 case 0x1b: /* FCVTMS */ 10012 case 0x3a: /* FCVTPS */ 10013 case 0x3b: /* FCVTZS */ 10014 case 0x5a: /* FCVTNU */ 10015 case 0x5b: /* FCVTMU */ 10016 case 0x7a: /* FCVTPU */ 10017 case 0x7b: /* FCVTZU */ 10018 is_fcvt = true; 10019 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10020 break; 10021 case 0x1c: /* FCVTAS */ 10022 case 0x5c: /* FCVTAU */ 10023 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10024 is_fcvt = true; 10025 rmode = FPROUNDING_TIEAWAY; 10026 break; 10027 case 0x56: /* FCVTXN, FCVTXN2 */ 10028 if (size == 2) { 10029 unallocated_encoding(s); 10030 return; 10031 } 10032 if (!fp_access_check(s)) { 10033 return; 10034 } 10035 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10036 return; 10037 default: 10038 unallocated_encoding(s); 10039 return; 10040 } 10041 break; 10042 default: 10043 unallocated_encoding(s); 10044 return; 10045 } 10046 10047 if (!fp_access_check(s)) { 10048 return; 10049 } 10050 10051 if (is_fcvt) { 10052 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10053 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10054 } else { 10055 tcg_fpstatus = NULL; 10056 tcg_rmode = NULL; 10057 } 10058 10059 if (size == 3) { 10060 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10061 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10062 10063 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10064 write_fp_dreg(s, rd, tcg_rd); 10065 } else { 10066 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10067 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10068 10069 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10070 10071 switch (opcode) { 10072 case 0x7: /* SQABS, SQNEG */ 10073 { 10074 NeonGenOneOpEnvFn *genfn; 10075 static NeonGenOneOpEnvFn * const fns[3][2] = { 10076 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10077 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10078 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10079 }; 10080 genfn = fns[size][u]; 10081 genfn(tcg_rd, cpu_env, tcg_rn); 10082 break; 10083 } 10084 case 0x1a: /* FCVTNS */ 10085 case 0x1b: /* FCVTMS */ 10086 case 0x1c: /* FCVTAS */ 10087 case 0x3a: /* FCVTPS */ 10088 case 0x3b: /* FCVTZS */ 10089 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10090 tcg_fpstatus); 10091 break; 10092 case 0x5a: /* FCVTNU */ 10093 case 0x5b: /* FCVTMU */ 10094 case 0x5c: /* FCVTAU */ 10095 case 0x7a: /* FCVTPU */ 10096 case 0x7b: /* FCVTZU */ 10097 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10098 tcg_fpstatus); 10099 break; 10100 default: 10101 g_assert_not_reached(); 10102 } 10103 10104 write_fp_sreg(s, rd, tcg_rd); 10105 } 10106 10107 if (is_fcvt) { 10108 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10109 } 10110 } 10111 10112 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10113 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10114 int immh, int immb, int opcode, int rn, int rd) 10115 { 10116 int size = 32 - clz32(immh) - 1; 10117 int immhb = immh << 3 | immb; 10118 int shift = 2 * (8 << size) - immhb; 10119 GVecGen2iFn *gvec_fn; 10120 10121 if (extract32(immh, 3, 1) && !is_q) { 10122 unallocated_encoding(s); 10123 return; 10124 } 10125 tcg_debug_assert(size <= 3); 10126 10127 if (!fp_access_check(s)) { 10128 return; 10129 } 10130 10131 switch (opcode) { 10132 case 0x02: /* SSRA / USRA (accumulate) */ 10133 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10134 break; 10135 10136 case 0x08: /* SRI */ 10137 gvec_fn = gen_gvec_sri; 10138 break; 10139 10140 case 0x00: /* SSHR / USHR */ 10141 if (is_u) { 10142 if (shift == 8 << size) { 10143 /* Shift count the same size as element size produces zero. */ 10144 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10145 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10146 return; 10147 } 10148 gvec_fn = tcg_gen_gvec_shri; 10149 } else { 10150 /* Shift count the same size as element size produces all sign. */ 10151 if (shift == 8 << size) { 10152 shift -= 1; 10153 } 10154 gvec_fn = tcg_gen_gvec_sari; 10155 } 10156 break; 10157 10158 case 0x04: /* SRSHR / URSHR (rounding) */ 10159 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10160 break; 10161 10162 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10163 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10164 break; 10165 10166 default: 10167 g_assert_not_reached(); 10168 } 10169 10170 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10171 } 10172 10173 /* SHL/SLI - Vector shift left */ 10174 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10175 int immh, int immb, int opcode, int rn, int rd) 10176 { 10177 int size = 32 - clz32(immh) - 1; 10178 int immhb = immh << 3 | immb; 10179 int shift = immhb - (8 << size); 10180 10181 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10182 assert(size >= 0 && size <= 3); 10183 10184 if (extract32(immh, 3, 1) && !is_q) { 10185 unallocated_encoding(s); 10186 return; 10187 } 10188 10189 if (!fp_access_check(s)) { 10190 return; 10191 } 10192 10193 if (insert) { 10194 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10195 } else { 10196 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10197 } 10198 } 10199 10200 /* USHLL/SHLL - Vector shift left with widening */ 10201 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10202 int immh, int immb, int opcode, int rn, int rd) 10203 { 10204 int size = 32 - clz32(immh) - 1; 10205 int immhb = immh << 3 | immb; 10206 int shift = immhb - (8 << size); 10207 int dsize = 64; 10208 int esize = 8 << size; 10209 int elements = dsize/esize; 10210 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10211 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10212 int i; 10213 10214 if (size >= 3) { 10215 unallocated_encoding(s); 10216 return; 10217 } 10218 10219 if (!fp_access_check(s)) { 10220 return; 10221 } 10222 10223 /* For the LL variants the store is larger than the load, 10224 * so if rd == rn we would overwrite parts of our input. 10225 * So load everything right now and use shifts in the main loop. 10226 */ 10227 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10228 10229 for (i = 0; i < elements; i++) { 10230 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10231 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10232 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10233 write_vec_element(s, tcg_rd, rd, i, size + 1); 10234 } 10235 } 10236 10237 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10238 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10239 int immh, int immb, int opcode, int rn, int rd) 10240 { 10241 int immhb = immh << 3 | immb; 10242 int size = 32 - clz32(immh) - 1; 10243 int dsize = 64; 10244 int esize = 8 << size; 10245 int elements = dsize/esize; 10246 int shift = (2 * esize) - immhb; 10247 bool round = extract32(opcode, 0, 1); 10248 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10249 TCGv_i64 tcg_round; 10250 int i; 10251 10252 if (extract32(immh, 3, 1)) { 10253 unallocated_encoding(s); 10254 return; 10255 } 10256 10257 if (!fp_access_check(s)) { 10258 return; 10259 } 10260 10261 tcg_rn = tcg_temp_new_i64(); 10262 tcg_rd = tcg_temp_new_i64(); 10263 tcg_final = tcg_temp_new_i64(); 10264 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10265 10266 if (round) { 10267 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10268 } else { 10269 tcg_round = NULL; 10270 } 10271 10272 for (i = 0; i < elements; i++) { 10273 read_vec_element(s, tcg_rn, rn, i, size+1); 10274 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10275 false, true, size+1, shift); 10276 10277 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10278 } 10279 10280 if (!is_q) { 10281 write_vec_element(s, tcg_final, rd, 0, MO_64); 10282 } else { 10283 write_vec_element(s, tcg_final, rd, 1, MO_64); 10284 } 10285 10286 clear_vec_high(s, is_q, rd); 10287 } 10288 10289 10290 /* AdvSIMD shift by immediate 10291 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10292 * +---+---+---+-------------+------+------+--------+---+------+------+ 10293 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10294 * +---+---+---+-------------+------+------+--------+---+------+------+ 10295 */ 10296 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10297 { 10298 int rd = extract32(insn, 0, 5); 10299 int rn = extract32(insn, 5, 5); 10300 int opcode = extract32(insn, 11, 5); 10301 int immb = extract32(insn, 16, 3); 10302 int immh = extract32(insn, 19, 4); 10303 bool is_u = extract32(insn, 29, 1); 10304 bool is_q = extract32(insn, 30, 1); 10305 10306 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10307 assert(immh != 0); 10308 10309 switch (opcode) { 10310 case 0x08: /* SRI */ 10311 if (!is_u) { 10312 unallocated_encoding(s); 10313 return; 10314 } 10315 /* fall through */ 10316 case 0x00: /* SSHR / USHR */ 10317 case 0x02: /* SSRA / USRA (accumulate) */ 10318 case 0x04: /* SRSHR / URSHR (rounding) */ 10319 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10320 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10321 break; 10322 case 0x0a: /* SHL / SLI */ 10323 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10324 break; 10325 case 0x10: /* SHRN */ 10326 case 0x11: /* RSHRN / SQRSHRUN */ 10327 if (is_u) { 10328 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10329 opcode, rn, rd); 10330 } else { 10331 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10332 } 10333 break; 10334 case 0x12: /* SQSHRN / UQSHRN */ 10335 case 0x13: /* SQRSHRN / UQRSHRN */ 10336 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10337 opcode, rn, rd); 10338 break; 10339 case 0x14: /* SSHLL / USHLL */ 10340 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10341 break; 10342 case 0x1c: /* SCVTF / UCVTF */ 10343 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10344 opcode, rn, rd); 10345 break; 10346 case 0xc: /* SQSHLU */ 10347 if (!is_u) { 10348 unallocated_encoding(s); 10349 return; 10350 } 10351 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10352 break; 10353 case 0xe: /* SQSHL, UQSHL */ 10354 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10355 break; 10356 case 0x1f: /* FCVTZS/ FCVTZU */ 10357 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10358 return; 10359 default: 10360 unallocated_encoding(s); 10361 return; 10362 } 10363 } 10364 10365 /* Generate code to do a "long" addition or subtraction, ie one done in 10366 * TCGv_i64 on vector lanes twice the width specified by size. 10367 */ 10368 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10369 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10370 { 10371 static NeonGenTwo64OpFn * const fns[3][2] = { 10372 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10373 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10374 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10375 }; 10376 NeonGenTwo64OpFn *genfn; 10377 assert(size < 3); 10378 10379 genfn = fns[size][is_sub]; 10380 genfn(tcg_res, tcg_op1, tcg_op2); 10381 } 10382 10383 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10384 int opcode, int rd, int rn, int rm) 10385 { 10386 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10387 TCGv_i64 tcg_res[2]; 10388 int pass, accop; 10389 10390 tcg_res[0] = tcg_temp_new_i64(); 10391 tcg_res[1] = tcg_temp_new_i64(); 10392 10393 /* Does this op do an adding accumulate, a subtracting accumulate, 10394 * or no accumulate at all? 10395 */ 10396 switch (opcode) { 10397 case 5: 10398 case 8: 10399 case 9: 10400 accop = 1; 10401 break; 10402 case 10: 10403 case 11: 10404 accop = -1; 10405 break; 10406 default: 10407 accop = 0; 10408 break; 10409 } 10410 10411 if (accop != 0) { 10412 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10413 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10414 } 10415 10416 /* size == 2 means two 32x32->64 operations; this is worth special 10417 * casing because we can generally handle it inline. 10418 */ 10419 if (size == 2) { 10420 for (pass = 0; pass < 2; pass++) { 10421 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10422 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10423 TCGv_i64 tcg_passres; 10424 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10425 10426 int elt = pass + is_q * 2; 10427 10428 read_vec_element(s, tcg_op1, rn, elt, memop); 10429 read_vec_element(s, tcg_op2, rm, elt, memop); 10430 10431 if (accop == 0) { 10432 tcg_passres = tcg_res[pass]; 10433 } else { 10434 tcg_passres = tcg_temp_new_i64(); 10435 } 10436 10437 switch (opcode) { 10438 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10439 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10440 break; 10441 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10442 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10443 break; 10444 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10445 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10446 { 10447 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10448 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10449 10450 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10451 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10452 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10453 tcg_passres, 10454 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10455 break; 10456 } 10457 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10458 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10459 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10460 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10461 break; 10462 case 9: /* SQDMLAL, SQDMLAL2 */ 10463 case 11: /* SQDMLSL, SQDMLSL2 */ 10464 case 13: /* SQDMULL, SQDMULL2 */ 10465 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10466 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10467 tcg_passres, tcg_passres); 10468 break; 10469 default: 10470 g_assert_not_reached(); 10471 } 10472 10473 if (opcode == 9 || opcode == 11) { 10474 /* saturating accumulate ops */ 10475 if (accop < 0) { 10476 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10477 } 10478 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10479 tcg_res[pass], tcg_passres); 10480 } else if (accop > 0) { 10481 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10482 } else if (accop < 0) { 10483 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10484 } 10485 } 10486 } else { 10487 /* size 0 or 1, generally helper functions */ 10488 for (pass = 0; pass < 2; pass++) { 10489 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10490 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10491 TCGv_i64 tcg_passres; 10492 int elt = pass + is_q * 2; 10493 10494 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10495 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10496 10497 if (accop == 0) { 10498 tcg_passres = tcg_res[pass]; 10499 } else { 10500 tcg_passres = tcg_temp_new_i64(); 10501 } 10502 10503 switch (opcode) { 10504 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10505 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10506 { 10507 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10508 static NeonGenWidenFn * const widenfns[2][2] = { 10509 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10510 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10511 }; 10512 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10513 10514 widenfn(tcg_op2_64, tcg_op2); 10515 widenfn(tcg_passres, tcg_op1); 10516 gen_neon_addl(size, (opcode == 2), tcg_passres, 10517 tcg_passres, tcg_op2_64); 10518 break; 10519 } 10520 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10521 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10522 if (size == 0) { 10523 if (is_u) { 10524 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10525 } else { 10526 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10527 } 10528 } else { 10529 if (is_u) { 10530 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10531 } else { 10532 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10533 } 10534 } 10535 break; 10536 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10537 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10538 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10539 if (size == 0) { 10540 if (is_u) { 10541 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10542 } else { 10543 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10544 } 10545 } else { 10546 if (is_u) { 10547 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10548 } else { 10549 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10550 } 10551 } 10552 break; 10553 case 9: /* SQDMLAL, SQDMLAL2 */ 10554 case 11: /* SQDMLSL, SQDMLSL2 */ 10555 case 13: /* SQDMULL, SQDMULL2 */ 10556 assert(size == 1); 10557 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10558 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10559 tcg_passres, tcg_passres); 10560 break; 10561 default: 10562 g_assert_not_reached(); 10563 } 10564 10565 if (accop != 0) { 10566 if (opcode == 9 || opcode == 11) { 10567 /* saturating accumulate ops */ 10568 if (accop < 0) { 10569 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10570 } 10571 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10572 tcg_res[pass], 10573 tcg_passres); 10574 } else { 10575 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10576 tcg_res[pass], tcg_passres); 10577 } 10578 } 10579 } 10580 } 10581 10582 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10583 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10584 } 10585 10586 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10587 int opcode, int rd, int rn, int rm) 10588 { 10589 TCGv_i64 tcg_res[2]; 10590 int part = is_q ? 2 : 0; 10591 int pass; 10592 10593 for (pass = 0; pass < 2; pass++) { 10594 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10595 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10596 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10597 static NeonGenWidenFn * const widenfns[3][2] = { 10598 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10599 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10600 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10601 }; 10602 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10603 10604 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10605 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10606 widenfn(tcg_op2_wide, tcg_op2); 10607 tcg_res[pass] = tcg_temp_new_i64(); 10608 gen_neon_addl(size, (opcode == 3), 10609 tcg_res[pass], tcg_op1, tcg_op2_wide); 10610 } 10611 10612 for (pass = 0; pass < 2; pass++) { 10613 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10614 } 10615 } 10616 10617 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10618 { 10619 tcg_gen_addi_i64(in, in, 1U << 31); 10620 tcg_gen_extrh_i64_i32(res, in); 10621 } 10622 10623 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10624 int opcode, int rd, int rn, int rm) 10625 { 10626 TCGv_i32 tcg_res[2]; 10627 int part = is_q ? 2 : 0; 10628 int pass; 10629 10630 for (pass = 0; pass < 2; pass++) { 10631 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10632 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10633 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10634 static NeonGenNarrowFn * const narrowfns[3][2] = { 10635 { gen_helper_neon_narrow_high_u8, 10636 gen_helper_neon_narrow_round_high_u8 }, 10637 { gen_helper_neon_narrow_high_u16, 10638 gen_helper_neon_narrow_round_high_u16 }, 10639 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10640 }; 10641 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10642 10643 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10644 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10645 10646 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10647 10648 tcg_res[pass] = tcg_temp_new_i32(); 10649 gennarrow(tcg_res[pass], tcg_wideres); 10650 } 10651 10652 for (pass = 0; pass < 2; pass++) { 10653 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10654 } 10655 clear_vec_high(s, is_q, rd); 10656 } 10657 10658 /* AdvSIMD three different 10659 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10660 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10661 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10662 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10663 */ 10664 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10665 { 10666 /* Instructions in this group fall into three basic classes 10667 * (in each case with the operation working on each element in 10668 * the input vectors): 10669 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10670 * 128 bit input) 10671 * (2) wide 64 x 128 -> 128 10672 * (3) narrowing 128 x 128 -> 64 10673 * Here we do initial decode, catch unallocated cases and 10674 * dispatch to separate functions for each class. 10675 */ 10676 int is_q = extract32(insn, 30, 1); 10677 int is_u = extract32(insn, 29, 1); 10678 int size = extract32(insn, 22, 2); 10679 int opcode = extract32(insn, 12, 4); 10680 int rm = extract32(insn, 16, 5); 10681 int rn = extract32(insn, 5, 5); 10682 int rd = extract32(insn, 0, 5); 10683 10684 switch (opcode) { 10685 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10686 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10687 /* 64 x 128 -> 128 */ 10688 if (size == 3) { 10689 unallocated_encoding(s); 10690 return; 10691 } 10692 if (!fp_access_check(s)) { 10693 return; 10694 } 10695 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10696 break; 10697 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10698 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10699 /* 128 x 128 -> 64 */ 10700 if (size == 3) { 10701 unallocated_encoding(s); 10702 return; 10703 } 10704 if (!fp_access_check(s)) { 10705 return; 10706 } 10707 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10708 break; 10709 case 14: /* PMULL, PMULL2 */ 10710 if (is_u) { 10711 unallocated_encoding(s); 10712 return; 10713 } 10714 switch (size) { 10715 case 0: /* PMULL.P8 */ 10716 if (!fp_access_check(s)) { 10717 return; 10718 } 10719 /* The Q field specifies lo/hi half input for this insn. */ 10720 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10721 gen_helper_neon_pmull_h); 10722 break; 10723 10724 case 3: /* PMULL.P64 */ 10725 if (!dc_isar_feature(aa64_pmull, s)) { 10726 unallocated_encoding(s); 10727 return; 10728 } 10729 if (!fp_access_check(s)) { 10730 return; 10731 } 10732 /* The Q field specifies lo/hi half input for this insn. */ 10733 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10734 gen_helper_gvec_pmull_q); 10735 break; 10736 10737 default: 10738 unallocated_encoding(s); 10739 break; 10740 } 10741 return; 10742 case 9: /* SQDMLAL, SQDMLAL2 */ 10743 case 11: /* SQDMLSL, SQDMLSL2 */ 10744 case 13: /* SQDMULL, SQDMULL2 */ 10745 if (is_u || size == 0) { 10746 unallocated_encoding(s); 10747 return; 10748 } 10749 /* fall through */ 10750 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10751 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10752 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10753 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10754 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10755 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10756 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10757 /* 64 x 64 -> 128 */ 10758 if (size == 3) { 10759 unallocated_encoding(s); 10760 return; 10761 } 10762 if (!fp_access_check(s)) { 10763 return; 10764 } 10765 10766 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10767 break; 10768 default: 10769 /* opcode 15 not allocated */ 10770 unallocated_encoding(s); 10771 break; 10772 } 10773 } 10774 10775 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10776 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10777 { 10778 int rd = extract32(insn, 0, 5); 10779 int rn = extract32(insn, 5, 5); 10780 int rm = extract32(insn, 16, 5); 10781 int size = extract32(insn, 22, 2); 10782 bool is_u = extract32(insn, 29, 1); 10783 bool is_q = extract32(insn, 30, 1); 10784 10785 if (!fp_access_check(s)) { 10786 return; 10787 } 10788 10789 switch (size + 4 * is_u) { 10790 case 0: /* AND */ 10791 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10792 return; 10793 case 1: /* BIC */ 10794 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10795 return; 10796 case 2: /* ORR */ 10797 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10798 return; 10799 case 3: /* ORN */ 10800 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10801 return; 10802 case 4: /* EOR */ 10803 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10804 return; 10805 10806 case 5: /* BSL bitwise select */ 10807 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10808 return; 10809 case 6: /* BIT, bitwise insert if true */ 10810 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10811 return; 10812 case 7: /* BIF, bitwise insert if false */ 10813 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10814 return; 10815 10816 default: 10817 g_assert_not_reached(); 10818 } 10819 } 10820 10821 /* Pairwise op subgroup of C3.6.16. 10822 * 10823 * This is called directly or via the handle_3same_float for float pairwise 10824 * operations where the opcode and size are calculated differently. 10825 */ 10826 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10827 int size, int rn, int rm, int rd) 10828 { 10829 TCGv_ptr fpst; 10830 int pass; 10831 10832 /* Floating point operations need fpst */ 10833 if (opcode >= 0x58) { 10834 fpst = fpstatus_ptr(FPST_FPCR); 10835 } else { 10836 fpst = NULL; 10837 } 10838 10839 if (!fp_access_check(s)) { 10840 return; 10841 } 10842 10843 /* These operations work on the concatenated rm:rn, with each pair of 10844 * adjacent elements being operated on to produce an element in the result. 10845 */ 10846 if (size == 3) { 10847 TCGv_i64 tcg_res[2]; 10848 10849 for (pass = 0; pass < 2; pass++) { 10850 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10851 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10852 int passreg = (pass == 0) ? rn : rm; 10853 10854 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10855 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10856 tcg_res[pass] = tcg_temp_new_i64(); 10857 10858 switch (opcode) { 10859 case 0x17: /* ADDP */ 10860 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10861 break; 10862 case 0x58: /* FMAXNMP */ 10863 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10864 break; 10865 case 0x5a: /* FADDP */ 10866 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10867 break; 10868 case 0x5e: /* FMAXP */ 10869 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10870 break; 10871 case 0x78: /* FMINNMP */ 10872 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10873 break; 10874 case 0x7e: /* FMINP */ 10875 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10876 break; 10877 default: 10878 g_assert_not_reached(); 10879 } 10880 } 10881 10882 for (pass = 0; pass < 2; pass++) { 10883 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10884 } 10885 } else { 10886 int maxpass = is_q ? 4 : 2; 10887 TCGv_i32 tcg_res[4]; 10888 10889 for (pass = 0; pass < maxpass; pass++) { 10890 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10891 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10892 NeonGenTwoOpFn *genfn = NULL; 10893 int passreg = pass < (maxpass / 2) ? rn : rm; 10894 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10895 10896 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10897 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10898 tcg_res[pass] = tcg_temp_new_i32(); 10899 10900 switch (opcode) { 10901 case 0x17: /* ADDP */ 10902 { 10903 static NeonGenTwoOpFn * const fns[3] = { 10904 gen_helper_neon_padd_u8, 10905 gen_helper_neon_padd_u16, 10906 tcg_gen_add_i32, 10907 }; 10908 genfn = fns[size]; 10909 break; 10910 } 10911 case 0x14: /* SMAXP, UMAXP */ 10912 { 10913 static NeonGenTwoOpFn * const fns[3][2] = { 10914 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10915 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10916 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10917 }; 10918 genfn = fns[size][u]; 10919 break; 10920 } 10921 case 0x15: /* SMINP, UMINP */ 10922 { 10923 static NeonGenTwoOpFn * const fns[3][2] = { 10924 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10925 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10926 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10927 }; 10928 genfn = fns[size][u]; 10929 break; 10930 } 10931 /* The FP operations are all on single floats (32 bit) */ 10932 case 0x58: /* FMAXNMP */ 10933 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10934 break; 10935 case 0x5a: /* FADDP */ 10936 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10937 break; 10938 case 0x5e: /* FMAXP */ 10939 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10940 break; 10941 case 0x78: /* FMINNMP */ 10942 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10943 break; 10944 case 0x7e: /* FMINP */ 10945 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10946 break; 10947 default: 10948 g_assert_not_reached(); 10949 } 10950 10951 /* FP ops called directly, otherwise call now */ 10952 if (genfn) { 10953 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10954 } 10955 } 10956 10957 for (pass = 0; pass < maxpass; pass++) { 10958 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10959 } 10960 clear_vec_high(s, is_q, rd); 10961 } 10962 } 10963 10964 /* Floating point op subgroup of C3.6.16. */ 10965 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10966 { 10967 /* For floating point ops, the U, size[1] and opcode bits 10968 * together indicate the operation. size[0] indicates single 10969 * or double. 10970 */ 10971 int fpopcode = extract32(insn, 11, 5) 10972 | (extract32(insn, 23, 1) << 5) 10973 | (extract32(insn, 29, 1) << 6); 10974 int is_q = extract32(insn, 30, 1); 10975 int size = extract32(insn, 22, 1); 10976 int rm = extract32(insn, 16, 5); 10977 int rn = extract32(insn, 5, 5); 10978 int rd = extract32(insn, 0, 5); 10979 10980 int datasize = is_q ? 128 : 64; 10981 int esize = 32 << size; 10982 int elements = datasize / esize; 10983 10984 if (size == 1 && !is_q) { 10985 unallocated_encoding(s); 10986 return; 10987 } 10988 10989 switch (fpopcode) { 10990 case 0x58: /* FMAXNMP */ 10991 case 0x5a: /* FADDP */ 10992 case 0x5e: /* FMAXP */ 10993 case 0x78: /* FMINNMP */ 10994 case 0x7e: /* FMINP */ 10995 if (size && !is_q) { 10996 unallocated_encoding(s); 10997 return; 10998 } 10999 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11000 rn, rm, rd); 11001 return; 11002 case 0x1b: /* FMULX */ 11003 case 0x1f: /* FRECPS */ 11004 case 0x3f: /* FRSQRTS */ 11005 case 0x5d: /* FACGE */ 11006 case 0x7d: /* FACGT */ 11007 case 0x19: /* FMLA */ 11008 case 0x39: /* FMLS */ 11009 case 0x18: /* FMAXNM */ 11010 case 0x1a: /* FADD */ 11011 case 0x1c: /* FCMEQ */ 11012 case 0x1e: /* FMAX */ 11013 case 0x38: /* FMINNM */ 11014 case 0x3a: /* FSUB */ 11015 case 0x3e: /* FMIN */ 11016 case 0x5b: /* FMUL */ 11017 case 0x5c: /* FCMGE */ 11018 case 0x5f: /* FDIV */ 11019 case 0x7a: /* FABD */ 11020 case 0x7c: /* FCMGT */ 11021 if (!fp_access_check(s)) { 11022 return; 11023 } 11024 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11025 return; 11026 11027 case 0x1d: /* FMLAL */ 11028 case 0x3d: /* FMLSL */ 11029 case 0x59: /* FMLAL2 */ 11030 case 0x79: /* FMLSL2 */ 11031 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11032 unallocated_encoding(s); 11033 return; 11034 } 11035 if (fp_access_check(s)) { 11036 int is_s = extract32(insn, 23, 1); 11037 int is_2 = extract32(insn, 29, 1); 11038 int data = (is_2 << 1) | is_s; 11039 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11040 vec_full_reg_offset(s, rn), 11041 vec_full_reg_offset(s, rm), cpu_env, 11042 is_q ? 16 : 8, vec_full_reg_size(s), 11043 data, gen_helper_gvec_fmlal_a64); 11044 } 11045 return; 11046 11047 default: 11048 unallocated_encoding(s); 11049 return; 11050 } 11051 } 11052 11053 /* Integer op subgroup of C3.6.16. */ 11054 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11055 { 11056 int is_q = extract32(insn, 30, 1); 11057 int u = extract32(insn, 29, 1); 11058 int size = extract32(insn, 22, 2); 11059 int opcode = extract32(insn, 11, 5); 11060 int rm = extract32(insn, 16, 5); 11061 int rn = extract32(insn, 5, 5); 11062 int rd = extract32(insn, 0, 5); 11063 int pass; 11064 TCGCond cond; 11065 11066 switch (opcode) { 11067 case 0x13: /* MUL, PMUL */ 11068 if (u && size != 0) { 11069 unallocated_encoding(s); 11070 return; 11071 } 11072 /* fall through */ 11073 case 0x0: /* SHADD, UHADD */ 11074 case 0x2: /* SRHADD, URHADD */ 11075 case 0x4: /* SHSUB, UHSUB */ 11076 case 0xc: /* SMAX, UMAX */ 11077 case 0xd: /* SMIN, UMIN */ 11078 case 0xe: /* SABD, UABD */ 11079 case 0xf: /* SABA, UABA */ 11080 case 0x12: /* MLA, MLS */ 11081 if (size == 3) { 11082 unallocated_encoding(s); 11083 return; 11084 } 11085 break; 11086 case 0x16: /* SQDMULH, SQRDMULH */ 11087 if (size == 0 || size == 3) { 11088 unallocated_encoding(s); 11089 return; 11090 } 11091 break; 11092 default: 11093 if (size == 3 && !is_q) { 11094 unallocated_encoding(s); 11095 return; 11096 } 11097 break; 11098 } 11099 11100 if (!fp_access_check(s)) { 11101 return; 11102 } 11103 11104 switch (opcode) { 11105 case 0x01: /* SQADD, UQADD */ 11106 if (u) { 11107 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11108 } else { 11109 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11110 } 11111 return; 11112 case 0x05: /* SQSUB, UQSUB */ 11113 if (u) { 11114 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11115 } else { 11116 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11117 } 11118 return; 11119 case 0x08: /* SSHL, USHL */ 11120 if (u) { 11121 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11122 } else { 11123 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11124 } 11125 return; 11126 case 0x0c: /* SMAX, UMAX */ 11127 if (u) { 11128 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11129 } else { 11130 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11131 } 11132 return; 11133 case 0x0d: /* SMIN, UMIN */ 11134 if (u) { 11135 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11136 } else { 11137 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11138 } 11139 return; 11140 case 0xe: /* SABD, UABD */ 11141 if (u) { 11142 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11143 } else { 11144 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11145 } 11146 return; 11147 case 0xf: /* SABA, UABA */ 11148 if (u) { 11149 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11150 } else { 11151 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11152 } 11153 return; 11154 case 0x10: /* ADD, SUB */ 11155 if (u) { 11156 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11157 } else { 11158 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11159 } 11160 return; 11161 case 0x13: /* MUL, PMUL */ 11162 if (!u) { /* MUL */ 11163 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11164 } else { /* PMUL */ 11165 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11166 } 11167 return; 11168 case 0x12: /* MLA, MLS */ 11169 if (u) { 11170 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11171 } else { 11172 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11173 } 11174 return; 11175 case 0x16: /* SQDMULH, SQRDMULH */ 11176 { 11177 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11178 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11179 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11180 }; 11181 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11182 } 11183 return; 11184 case 0x11: 11185 if (!u) { /* CMTST */ 11186 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11187 return; 11188 } 11189 /* else CMEQ */ 11190 cond = TCG_COND_EQ; 11191 goto do_gvec_cmp; 11192 case 0x06: /* CMGT, CMHI */ 11193 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11194 goto do_gvec_cmp; 11195 case 0x07: /* CMGE, CMHS */ 11196 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11197 do_gvec_cmp: 11198 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11199 vec_full_reg_offset(s, rn), 11200 vec_full_reg_offset(s, rm), 11201 is_q ? 16 : 8, vec_full_reg_size(s)); 11202 return; 11203 } 11204 11205 if (size == 3) { 11206 assert(is_q); 11207 for (pass = 0; pass < 2; pass++) { 11208 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11209 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11210 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11211 11212 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11213 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11214 11215 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11216 11217 write_vec_element(s, tcg_res, rd, pass, MO_64); 11218 } 11219 } else { 11220 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11221 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11222 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11223 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11224 NeonGenTwoOpFn *genfn = NULL; 11225 NeonGenTwoOpEnvFn *genenvfn = NULL; 11226 11227 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11228 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11229 11230 switch (opcode) { 11231 case 0x0: /* SHADD, UHADD */ 11232 { 11233 static NeonGenTwoOpFn * const fns[3][2] = { 11234 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11235 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11236 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11237 }; 11238 genfn = fns[size][u]; 11239 break; 11240 } 11241 case 0x2: /* SRHADD, URHADD */ 11242 { 11243 static NeonGenTwoOpFn * const fns[3][2] = { 11244 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11245 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11246 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11247 }; 11248 genfn = fns[size][u]; 11249 break; 11250 } 11251 case 0x4: /* SHSUB, UHSUB */ 11252 { 11253 static NeonGenTwoOpFn * const fns[3][2] = { 11254 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11255 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11256 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11257 }; 11258 genfn = fns[size][u]; 11259 break; 11260 } 11261 case 0x9: /* SQSHL, UQSHL */ 11262 { 11263 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11264 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11265 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11266 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11267 }; 11268 genenvfn = fns[size][u]; 11269 break; 11270 } 11271 case 0xa: /* SRSHL, URSHL */ 11272 { 11273 static NeonGenTwoOpFn * const fns[3][2] = { 11274 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11275 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11276 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11277 }; 11278 genfn = fns[size][u]; 11279 break; 11280 } 11281 case 0xb: /* SQRSHL, UQRSHL */ 11282 { 11283 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11284 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11285 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11286 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11287 }; 11288 genenvfn = fns[size][u]; 11289 break; 11290 } 11291 default: 11292 g_assert_not_reached(); 11293 } 11294 11295 if (genenvfn) { 11296 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11297 } else { 11298 genfn(tcg_res, tcg_op1, tcg_op2); 11299 } 11300 11301 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11302 } 11303 } 11304 clear_vec_high(s, is_q, rd); 11305 } 11306 11307 /* AdvSIMD three same 11308 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11309 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11310 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11311 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11312 */ 11313 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11314 { 11315 int opcode = extract32(insn, 11, 5); 11316 11317 switch (opcode) { 11318 case 0x3: /* logic ops */ 11319 disas_simd_3same_logic(s, insn); 11320 break; 11321 case 0x17: /* ADDP */ 11322 case 0x14: /* SMAXP, UMAXP */ 11323 case 0x15: /* SMINP, UMINP */ 11324 { 11325 /* Pairwise operations */ 11326 int is_q = extract32(insn, 30, 1); 11327 int u = extract32(insn, 29, 1); 11328 int size = extract32(insn, 22, 2); 11329 int rm = extract32(insn, 16, 5); 11330 int rn = extract32(insn, 5, 5); 11331 int rd = extract32(insn, 0, 5); 11332 if (opcode == 0x17) { 11333 if (u || (size == 3 && !is_q)) { 11334 unallocated_encoding(s); 11335 return; 11336 } 11337 } else { 11338 if (size == 3) { 11339 unallocated_encoding(s); 11340 return; 11341 } 11342 } 11343 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11344 break; 11345 } 11346 case 0x18 ... 0x31: 11347 /* floating point ops, sz[1] and U are part of opcode */ 11348 disas_simd_3same_float(s, insn); 11349 break; 11350 default: 11351 disas_simd_3same_int(s, insn); 11352 break; 11353 } 11354 } 11355 11356 /* 11357 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11358 * 11359 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11360 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11361 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11362 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11363 * 11364 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11365 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11366 * 11367 */ 11368 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11369 { 11370 int opcode = extract32(insn, 11, 3); 11371 int u = extract32(insn, 29, 1); 11372 int a = extract32(insn, 23, 1); 11373 int is_q = extract32(insn, 30, 1); 11374 int rm = extract32(insn, 16, 5); 11375 int rn = extract32(insn, 5, 5); 11376 int rd = extract32(insn, 0, 5); 11377 /* 11378 * For these floating point ops, the U, a and opcode bits 11379 * together indicate the operation. 11380 */ 11381 int fpopcode = opcode | (a << 3) | (u << 4); 11382 int datasize = is_q ? 128 : 64; 11383 int elements = datasize / 16; 11384 bool pairwise; 11385 TCGv_ptr fpst; 11386 int pass; 11387 11388 switch (fpopcode) { 11389 case 0x0: /* FMAXNM */ 11390 case 0x1: /* FMLA */ 11391 case 0x2: /* FADD */ 11392 case 0x3: /* FMULX */ 11393 case 0x4: /* FCMEQ */ 11394 case 0x6: /* FMAX */ 11395 case 0x7: /* FRECPS */ 11396 case 0x8: /* FMINNM */ 11397 case 0x9: /* FMLS */ 11398 case 0xa: /* FSUB */ 11399 case 0xe: /* FMIN */ 11400 case 0xf: /* FRSQRTS */ 11401 case 0x13: /* FMUL */ 11402 case 0x14: /* FCMGE */ 11403 case 0x15: /* FACGE */ 11404 case 0x17: /* FDIV */ 11405 case 0x1a: /* FABD */ 11406 case 0x1c: /* FCMGT */ 11407 case 0x1d: /* FACGT */ 11408 pairwise = false; 11409 break; 11410 case 0x10: /* FMAXNMP */ 11411 case 0x12: /* FADDP */ 11412 case 0x16: /* FMAXP */ 11413 case 0x18: /* FMINNMP */ 11414 case 0x1e: /* FMINP */ 11415 pairwise = true; 11416 break; 11417 default: 11418 unallocated_encoding(s); 11419 return; 11420 } 11421 11422 if (!dc_isar_feature(aa64_fp16, s)) { 11423 unallocated_encoding(s); 11424 return; 11425 } 11426 11427 if (!fp_access_check(s)) { 11428 return; 11429 } 11430 11431 fpst = fpstatus_ptr(FPST_FPCR_F16); 11432 11433 if (pairwise) { 11434 int maxpass = is_q ? 8 : 4; 11435 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11436 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11437 TCGv_i32 tcg_res[8]; 11438 11439 for (pass = 0; pass < maxpass; pass++) { 11440 int passreg = pass < (maxpass / 2) ? rn : rm; 11441 int passelt = (pass << 1) & (maxpass - 1); 11442 11443 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11444 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11445 tcg_res[pass] = tcg_temp_new_i32(); 11446 11447 switch (fpopcode) { 11448 case 0x10: /* FMAXNMP */ 11449 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11450 fpst); 11451 break; 11452 case 0x12: /* FADDP */ 11453 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11454 break; 11455 case 0x16: /* FMAXP */ 11456 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11457 break; 11458 case 0x18: /* FMINNMP */ 11459 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11460 fpst); 11461 break; 11462 case 0x1e: /* FMINP */ 11463 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11464 break; 11465 default: 11466 g_assert_not_reached(); 11467 } 11468 } 11469 11470 for (pass = 0; pass < maxpass; pass++) { 11471 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11472 } 11473 } else { 11474 for (pass = 0; pass < elements; pass++) { 11475 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11476 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11477 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11478 11479 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11480 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11481 11482 switch (fpopcode) { 11483 case 0x0: /* FMAXNM */ 11484 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11485 break; 11486 case 0x1: /* FMLA */ 11487 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11488 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11489 fpst); 11490 break; 11491 case 0x2: /* FADD */ 11492 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11493 break; 11494 case 0x3: /* FMULX */ 11495 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11496 break; 11497 case 0x4: /* FCMEQ */ 11498 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11499 break; 11500 case 0x6: /* FMAX */ 11501 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11502 break; 11503 case 0x7: /* FRECPS */ 11504 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11505 break; 11506 case 0x8: /* FMINNM */ 11507 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11508 break; 11509 case 0x9: /* FMLS */ 11510 /* As usual for ARM, separate negation for fused multiply-add */ 11511 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11512 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11513 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11514 fpst); 11515 break; 11516 case 0xa: /* FSUB */ 11517 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11518 break; 11519 case 0xe: /* FMIN */ 11520 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11521 break; 11522 case 0xf: /* FRSQRTS */ 11523 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11524 break; 11525 case 0x13: /* FMUL */ 11526 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11527 break; 11528 case 0x14: /* FCMGE */ 11529 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 case 0x15: /* FACGE */ 11532 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11533 break; 11534 case 0x17: /* FDIV */ 11535 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11536 break; 11537 case 0x1a: /* FABD */ 11538 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11539 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11540 break; 11541 case 0x1c: /* FCMGT */ 11542 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11543 break; 11544 case 0x1d: /* FACGT */ 11545 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11546 break; 11547 default: 11548 g_assert_not_reached(); 11549 } 11550 11551 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11552 } 11553 } 11554 11555 clear_vec_high(s, is_q, rd); 11556 } 11557 11558 /* AdvSIMD three same extra 11559 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11560 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11561 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11562 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11563 */ 11564 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11565 { 11566 int rd = extract32(insn, 0, 5); 11567 int rn = extract32(insn, 5, 5); 11568 int opcode = extract32(insn, 11, 4); 11569 int rm = extract32(insn, 16, 5); 11570 int size = extract32(insn, 22, 2); 11571 bool u = extract32(insn, 29, 1); 11572 bool is_q = extract32(insn, 30, 1); 11573 bool feature; 11574 int rot; 11575 11576 switch (u * 16 + opcode) { 11577 case 0x10: /* SQRDMLAH (vector) */ 11578 case 0x11: /* SQRDMLSH (vector) */ 11579 if (size != 1 && size != 2) { 11580 unallocated_encoding(s); 11581 return; 11582 } 11583 feature = dc_isar_feature(aa64_rdm, s); 11584 break; 11585 case 0x02: /* SDOT (vector) */ 11586 case 0x12: /* UDOT (vector) */ 11587 if (size != MO_32) { 11588 unallocated_encoding(s); 11589 return; 11590 } 11591 feature = dc_isar_feature(aa64_dp, s); 11592 break; 11593 case 0x03: /* USDOT */ 11594 if (size != MO_32) { 11595 unallocated_encoding(s); 11596 return; 11597 } 11598 feature = dc_isar_feature(aa64_i8mm, s); 11599 break; 11600 case 0x04: /* SMMLA */ 11601 case 0x14: /* UMMLA */ 11602 case 0x05: /* USMMLA */ 11603 if (!is_q || size != MO_32) { 11604 unallocated_encoding(s); 11605 return; 11606 } 11607 feature = dc_isar_feature(aa64_i8mm, s); 11608 break; 11609 case 0x18: /* FCMLA, #0 */ 11610 case 0x19: /* FCMLA, #90 */ 11611 case 0x1a: /* FCMLA, #180 */ 11612 case 0x1b: /* FCMLA, #270 */ 11613 case 0x1c: /* FCADD, #90 */ 11614 case 0x1e: /* FCADD, #270 */ 11615 if (size == 0 11616 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11617 || (size == 3 && !is_q)) { 11618 unallocated_encoding(s); 11619 return; 11620 } 11621 feature = dc_isar_feature(aa64_fcma, s); 11622 break; 11623 case 0x1d: /* BFMMLA */ 11624 if (size != MO_16 || !is_q) { 11625 unallocated_encoding(s); 11626 return; 11627 } 11628 feature = dc_isar_feature(aa64_bf16, s); 11629 break; 11630 case 0x1f: 11631 switch (size) { 11632 case 1: /* BFDOT */ 11633 case 3: /* BFMLAL{B,T} */ 11634 feature = dc_isar_feature(aa64_bf16, s); 11635 break; 11636 default: 11637 unallocated_encoding(s); 11638 return; 11639 } 11640 break; 11641 default: 11642 unallocated_encoding(s); 11643 return; 11644 } 11645 if (!feature) { 11646 unallocated_encoding(s); 11647 return; 11648 } 11649 if (!fp_access_check(s)) { 11650 return; 11651 } 11652 11653 switch (opcode) { 11654 case 0x0: /* SQRDMLAH (vector) */ 11655 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11656 return; 11657 11658 case 0x1: /* SQRDMLSH (vector) */ 11659 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11660 return; 11661 11662 case 0x2: /* SDOT / UDOT */ 11663 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11664 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11665 return; 11666 11667 case 0x3: /* USDOT */ 11668 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11669 return; 11670 11671 case 0x04: /* SMMLA, UMMLA */ 11672 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11673 u ? gen_helper_gvec_ummla_b 11674 : gen_helper_gvec_smmla_b); 11675 return; 11676 case 0x05: /* USMMLA */ 11677 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11678 return; 11679 11680 case 0x8: /* FCMLA, #0 */ 11681 case 0x9: /* FCMLA, #90 */ 11682 case 0xa: /* FCMLA, #180 */ 11683 case 0xb: /* FCMLA, #270 */ 11684 rot = extract32(opcode, 0, 2); 11685 switch (size) { 11686 case 1: 11687 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11688 gen_helper_gvec_fcmlah); 11689 break; 11690 case 2: 11691 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11692 gen_helper_gvec_fcmlas); 11693 break; 11694 case 3: 11695 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11696 gen_helper_gvec_fcmlad); 11697 break; 11698 default: 11699 g_assert_not_reached(); 11700 } 11701 return; 11702 11703 case 0xc: /* FCADD, #90 */ 11704 case 0xe: /* FCADD, #270 */ 11705 rot = extract32(opcode, 1, 1); 11706 switch (size) { 11707 case 1: 11708 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11709 gen_helper_gvec_fcaddh); 11710 break; 11711 case 2: 11712 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11713 gen_helper_gvec_fcadds); 11714 break; 11715 case 3: 11716 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11717 gen_helper_gvec_fcaddd); 11718 break; 11719 default: 11720 g_assert_not_reached(); 11721 } 11722 return; 11723 11724 case 0xd: /* BFMMLA */ 11725 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11726 return; 11727 case 0xf: 11728 switch (size) { 11729 case 1: /* BFDOT */ 11730 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11731 break; 11732 case 3: /* BFMLAL{B,T} */ 11733 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11734 gen_helper_gvec_bfmlal); 11735 break; 11736 default: 11737 g_assert_not_reached(); 11738 } 11739 return; 11740 11741 default: 11742 g_assert_not_reached(); 11743 } 11744 } 11745 11746 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11747 int size, int rn, int rd) 11748 { 11749 /* Handle 2-reg-misc ops which are widening (so each size element 11750 * in the source becomes a 2*size element in the destination. 11751 * The only instruction like this is FCVTL. 11752 */ 11753 int pass; 11754 11755 if (size == 3) { 11756 /* 32 -> 64 bit fp conversion */ 11757 TCGv_i64 tcg_res[2]; 11758 int srcelt = is_q ? 2 : 0; 11759 11760 for (pass = 0; pass < 2; pass++) { 11761 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11762 tcg_res[pass] = tcg_temp_new_i64(); 11763 11764 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11765 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11766 } 11767 for (pass = 0; pass < 2; pass++) { 11768 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11769 } 11770 } else { 11771 /* 16 -> 32 bit fp conversion */ 11772 int srcelt = is_q ? 4 : 0; 11773 TCGv_i32 tcg_res[4]; 11774 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11775 TCGv_i32 ahp = get_ahp_flag(); 11776 11777 for (pass = 0; pass < 4; pass++) { 11778 tcg_res[pass] = tcg_temp_new_i32(); 11779 11780 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11781 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11782 fpst, ahp); 11783 } 11784 for (pass = 0; pass < 4; pass++) { 11785 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11786 } 11787 } 11788 } 11789 11790 static void handle_rev(DisasContext *s, int opcode, bool u, 11791 bool is_q, int size, int rn, int rd) 11792 { 11793 int op = (opcode << 1) | u; 11794 int opsz = op + size; 11795 int grp_size = 3 - opsz; 11796 int dsize = is_q ? 128 : 64; 11797 int i; 11798 11799 if (opsz >= 3) { 11800 unallocated_encoding(s); 11801 return; 11802 } 11803 11804 if (!fp_access_check(s)) { 11805 return; 11806 } 11807 11808 if (size == 0) { 11809 /* Special case bytes, use bswap op on each group of elements */ 11810 int groups = dsize / (8 << grp_size); 11811 11812 for (i = 0; i < groups; i++) { 11813 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11814 11815 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11816 switch (grp_size) { 11817 case MO_16: 11818 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11819 break; 11820 case MO_32: 11821 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11822 break; 11823 case MO_64: 11824 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11825 break; 11826 default: 11827 g_assert_not_reached(); 11828 } 11829 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11830 } 11831 clear_vec_high(s, is_q, rd); 11832 } else { 11833 int revmask = (1 << grp_size) - 1; 11834 int esize = 8 << size; 11835 int elements = dsize / esize; 11836 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11837 TCGv_i64 tcg_rd[2]; 11838 11839 for (i = 0; i < 2; i++) { 11840 tcg_rd[i] = tcg_temp_new_i64(); 11841 tcg_gen_movi_i64(tcg_rd[i], 0); 11842 } 11843 11844 for (i = 0; i < elements; i++) { 11845 int e_rev = (i & 0xf) ^ revmask; 11846 int w = (e_rev * esize) / 64; 11847 int o = (e_rev * esize) % 64; 11848 11849 read_vec_element(s, tcg_rn, rn, i, size); 11850 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11851 } 11852 11853 for (i = 0; i < 2; i++) { 11854 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11855 } 11856 clear_vec_high(s, true, rd); 11857 } 11858 } 11859 11860 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11861 bool is_q, int size, int rn, int rd) 11862 { 11863 /* Implement the pairwise operations from 2-misc: 11864 * SADDLP, UADDLP, SADALP, UADALP. 11865 * These all add pairs of elements in the input to produce a 11866 * double-width result element in the output (possibly accumulating). 11867 */ 11868 bool accum = (opcode == 0x6); 11869 int maxpass = is_q ? 2 : 1; 11870 int pass; 11871 TCGv_i64 tcg_res[2]; 11872 11873 if (size == 2) { 11874 /* 32 + 32 -> 64 op */ 11875 MemOp memop = size + (u ? 0 : MO_SIGN); 11876 11877 for (pass = 0; pass < maxpass; pass++) { 11878 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11879 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11880 11881 tcg_res[pass] = tcg_temp_new_i64(); 11882 11883 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11884 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11885 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11886 if (accum) { 11887 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11888 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11889 } 11890 } 11891 } else { 11892 for (pass = 0; pass < maxpass; pass++) { 11893 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11894 NeonGenOne64OpFn *genfn; 11895 static NeonGenOne64OpFn * const fns[2][2] = { 11896 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11897 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11898 }; 11899 11900 genfn = fns[size][u]; 11901 11902 tcg_res[pass] = tcg_temp_new_i64(); 11903 11904 read_vec_element(s, tcg_op, rn, pass, MO_64); 11905 genfn(tcg_res[pass], tcg_op); 11906 11907 if (accum) { 11908 read_vec_element(s, tcg_op, rd, pass, MO_64); 11909 if (size == 0) { 11910 gen_helper_neon_addl_u16(tcg_res[pass], 11911 tcg_res[pass], tcg_op); 11912 } else { 11913 gen_helper_neon_addl_u32(tcg_res[pass], 11914 tcg_res[pass], tcg_op); 11915 } 11916 } 11917 } 11918 } 11919 if (!is_q) { 11920 tcg_res[1] = tcg_constant_i64(0); 11921 } 11922 for (pass = 0; pass < 2; pass++) { 11923 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11924 } 11925 } 11926 11927 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11928 { 11929 /* Implement SHLL and SHLL2 */ 11930 int pass; 11931 int part = is_q ? 2 : 0; 11932 TCGv_i64 tcg_res[2]; 11933 11934 for (pass = 0; pass < 2; pass++) { 11935 static NeonGenWidenFn * const widenfns[3] = { 11936 gen_helper_neon_widen_u8, 11937 gen_helper_neon_widen_u16, 11938 tcg_gen_extu_i32_i64, 11939 }; 11940 NeonGenWidenFn *widenfn = widenfns[size]; 11941 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11942 11943 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11944 tcg_res[pass] = tcg_temp_new_i64(); 11945 widenfn(tcg_res[pass], tcg_op); 11946 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11947 } 11948 11949 for (pass = 0; pass < 2; pass++) { 11950 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11951 } 11952 } 11953 11954 /* AdvSIMD two reg misc 11955 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11956 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11957 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11958 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11959 */ 11960 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11961 { 11962 int size = extract32(insn, 22, 2); 11963 int opcode = extract32(insn, 12, 5); 11964 bool u = extract32(insn, 29, 1); 11965 bool is_q = extract32(insn, 30, 1); 11966 int rn = extract32(insn, 5, 5); 11967 int rd = extract32(insn, 0, 5); 11968 bool need_fpstatus = false; 11969 int rmode = -1; 11970 TCGv_i32 tcg_rmode; 11971 TCGv_ptr tcg_fpstatus; 11972 11973 switch (opcode) { 11974 case 0x0: /* REV64, REV32 */ 11975 case 0x1: /* REV16 */ 11976 handle_rev(s, opcode, u, is_q, size, rn, rd); 11977 return; 11978 case 0x5: /* CNT, NOT, RBIT */ 11979 if (u && size == 0) { 11980 /* NOT */ 11981 break; 11982 } else if (u && size == 1) { 11983 /* RBIT */ 11984 break; 11985 } else if (!u && size == 0) { 11986 /* CNT */ 11987 break; 11988 } 11989 unallocated_encoding(s); 11990 return; 11991 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11992 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11993 if (size == 3) { 11994 unallocated_encoding(s); 11995 return; 11996 } 11997 if (!fp_access_check(s)) { 11998 return; 11999 } 12000 12001 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12002 return; 12003 case 0x4: /* CLS, CLZ */ 12004 if (size == 3) { 12005 unallocated_encoding(s); 12006 return; 12007 } 12008 break; 12009 case 0x2: /* SADDLP, UADDLP */ 12010 case 0x6: /* SADALP, UADALP */ 12011 if (size == 3) { 12012 unallocated_encoding(s); 12013 return; 12014 } 12015 if (!fp_access_check(s)) { 12016 return; 12017 } 12018 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12019 return; 12020 case 0x13: /* SHLL, SHLL2 */ 12021 if (u == 0 || size == 3) { 12022 unallocated_encoding(s); 12023 return; 12024 } 12025 if (!fp_access_check(s)) { 12026 return; 12027 } 12028 handle_shll(s, is_q, size, rn, rd); 12029 return; 12030 case 0xa: /* CMLT */ 12031 if (u == 1) { 12032 unallocated_encoding(s); 12033 return; 12034 } 12035 /* fall through */ 12036 case 0x8: /* CMGT, CMGE */ 12037 case 0x9: /* CMEQ, CMLE */ 12038 case 0xb: /* ABS, NEG */ 12039 if (size == 3 && !is_q) { 12040 unallocated_encoding(s); 12041 return; 12042 } 12043 break; 12044 case 0x3: /* SUQADD, USQADD */ 12045 if (size == 3 && !is_q) { 12046 unallocated_encoding(s); 12047 return; 12048 } 12049 if (!fp_access_check(s)) { 12050 return; 12051 } 12052 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12053 return; 12054 case 0x7: /* SQABS, SQNEG */ 12055 if (size == 3 && !is_q) { 12056 unallocated_encoding(s); 12057 return; 12058 } 12059 break; 12060 case 0xc ... 0xf: 12061 case 0x16 ... 0x1f: 12062 { 12063 /* Floating point: U, size[1] and opcode indicate operation; 12064 * size[0] indicates single or double precision. 12065 */ 12066 int is_double = extract32(size, 0, 1); 12067 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12068 size = is_double ? 3 : 2; 12069 switch (opcode) { 12070 case 0x2f: /* FABS */ 12071 case 0x6f: /* FNEG */ 12072 if (size == 3 && !is_q) { 12073 unallocated_encoding(s); 12074 return; 12075 } 12076 break; 12077 case 0x1d: /* SCVTF */ 12078 case 0x5d: /* UCVTF */ 12079 { 12080 bool is_signed = (opcode == 0x1d) ? true : false; 12081 int elements = is_double ? 2 : is_q ? 4 : 2; 12082 if (is_double && !is_q) { 12083 unallocated_encoding(s); 12084 return; 12085 } 12086 if (!fp_access_check(s)) { 12087 return; 12088 } 12089 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12090 return; 12091 } 12092 case 0x2c: /* FCMGT (zero) */ 12093 case 0x2d: /* FCMEQ (zero) */ 12094 case 0x2e: /* FCMLT (zero) */ 12095 case 0x6c: /* FCMGE (zero) */ 12096 case 0x6d: /* FCMLE (zero) */ 12097 if (size == 3 && !is_q) { 12098 unallocated_encoding(s); 12099 return; 12100 } 12101 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12102 return; 12103 case 0x7f: /* FSQRT */ 12104 if (size == 3 && !is_q) { 12105 unallocated_encoding(s); 12106 return; 12107 } 12108 break; 12109 case 0x1a: /* FCVTNS */ 12110 case 0x1b: /* FCVTMS */ 12111 case 0x3a: /* FCVTPS */ 12112 case 0x3b: /* FCVTZS */ 12113 case 0x5a: /* FCVTNU */ 12114 case 0x5b: /* FCVTMU */ 12115 case 0x7a: /* FCVTPU */ 12116 case 0x7b: /* FCVTZU */ 12117 need_fpstatus = true; 12118 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12119 if (size == 3 && !is_q) { 12120 unallocated_encoding(s); 12121 return; 12122 } 12123 break; 12124 case 0x5c: /* FCVTAU */ 12125 case 0x1c: /* FCVTAS */ 12126 need_fpstatus = true; 12127 rmode = FPROUNDING_TIEAWAY; 12128 if (size == 3 && !is_q) { 12129 unallocated_encoding(s); 12130 return; 12131 } 12132 break; 12133 case 0x3c: /* URECPE */ 12134 if (size == 3) { 12135 unallocated_encoding(s); 12136 return; 12137 } 12138 /* fall through */ 12139 case 0x3d: /* FRECPE */ 12140 case 0x7d: /* FRSQRTE */ 12141 if (size == 3 && !is_q) { 12142 unallocated_encoding(s); 12143 return; 12144 } 12145 if (!fp_access_check(s)) { 12146 return; 12147 } 12148 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12149 return; 12150 case 0x56: /* FCVTXN, FCVTXN2 */ 12151 if (size == 2) { 12152 unallocated_encoding(s); 12153 return; 12154 } 12155 /* fall through */ 12156 case 0x16: /* FCVTN, FCVTN2 */ 12157 /* handle_2misc_narrow does a 2*size -> size operation, but these 12158 * instructions encode the source size rather than dest size. 12159 */ 12160 if (!fp_access_check(s)) { 12161 return; 12162 } 12163 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12164 return; 12165 case 0x36: /* BFCVTN, BFCVTN2 */ 12166 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12167 unallocated_encoding(s); 12168 return; 12169 } 12170 if (!fp_access_check(s)) { 12171 return; 12172 } 12173 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12174 return; 12175 case 0x17: /* FCVTL, FCVTL2 */ 12176 if (!fp_access_check(s)) { 12177 return; 12178 } 12179 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12180 return; 12181 case 0x18: /* FRINTN */ 12182 case 0x19: /* FRINTM */ 12183 case 0x38: /* FRINTP */ 12184 case 0x39: /* FRINTZ */ 12185 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12186 /* fall through */ 12187 case 0x59: /* FRINTX */ 12188 case 0x79: /* FRINTI */ 12189 need_fpstatus = true; 12190 if (size == 3 && !is_q) { 12191 unallocated_encoding(s); 12192 return; 12193 } 12194 break; 12195 case 0x58: /* FRINTA */ 12196 rmode = FPROUNDING_TIEAWAY; 12197 need_fpstatus = true; 12198 if (size == 3 && !is_q) { 12199 unallocated_encoding(s); 12200 return; 12201 } 12202 break; 12203 case 0x7c: /* URSQRTE */ 12204 if (size == 3) { 12205 unallocated_encoding(s); 12206 return; 12207 } 12208 break; 12209 case 0x1e: /* FRINT32Z */ 12210 case 0x1f: /* FRINT64Z */ 12211 rmode = FPROUNDING_ZERO; 12212 /* fall through */ 12213 case 0x5e: /* FRINT32X */ 12214 case 0x5f: /* FRINT64X */ 12215 need_fpstatus = true; 12216 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12217 unallocated_encoding(s); 12218 return; 12219 } 12220 break; 12221 default: 12222 unallocated_encoding(s); 12223 return; 12224 } 12225 break; 12226 } 12227 default: 12228 unallocated_encoding(s); 12229 return; 12230 } 12231 12232 if (!fp_access_check(s)) { 12233 return; 12234 } 12235 12236 if (need_fpstatus || rmode >= 0) { 12237 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12238 } else { 12239 tcg_fpstatus = NULL; 12240 } 12241 if (rmode >= 0) { 12242 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12243 } else { 12244 tcg_rmode = NULL; 12245 } 12246 12247 switch (opcode) { 12248 case 0x5: 12249 if (u && size == 0) { /* NOT */ 12250 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12251 return; 12252 } 12253 break; 12254 case 0x8: /* CMGT, CMGE */ 12255 if (u) { 12256 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12257 } else { 12258 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12259 } 12260 return; 12261 case 0x9: /* CMEQ, CMLE */ 12262 if (u) { 12263 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12264 } else { 12265 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12266 } 12267 return; 12268 case 0xa: /* CMLT */ 12269 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12270 return; 12271 case 0xb: 12272 if (u) { /* ABS, NEG */ 12273 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12274 } else { 12275 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12276 } 12277 return; 12278 } 12279 12280 if (size == 3) { 12281 /* All 64-bit element operations can be shared with scalar 2misc */ 12282 int pass; 12283 12284 /* Coverity claims (size == 3 && !is_q) has been eliminated 12285 * from all paths leading to here. 12286 */ 12287 tcg_debug_assert(is_q); 12288 for (pass = 0; pass < 2; pass++) { 12289 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12290 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12291 12292 read_vec_element(s, tcg_op, rn, pass, MO_64); 12293 12294 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12295 tcg_rmode, tcg_fpstatus); 12296 12297 write_vec_element(s, tcg_res, rd, pass, MO_64); 12298 } 12299 } else { 12300 int pass; 12301 12302 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12303 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12304 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12305 12306 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12307 12308 if (size == 2) { 12309 /* Special cases for 32 bit elements */ 12310 switch (opcode) { 12311 case 0x4: /* CLS */ 12312 if (u) { 12313 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12314 } else { 12315 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12316 } 12317 break; 12318 case 0x7: /* SQABS, SQNEG */ 12319 if (u) { 12320 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12321 } else { 12322 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12323 } 12324 break; 12325 case 0x2f: /* FABS */ 12326 gen_helper_vfp_abss(tcg_res, tcg_op); 12327 break; 12328 case 0x6f: /* FNEG */ 12329 gen_helper_vfp_negs(tcg_res, tcg_op); 12330 break; 12331 case 0x7f: /* FSQRT */ 12332 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12333 break; 12334 case 0x1a: /* FCVTNS */ 12335 case 0x1b: /* FCVTMS */ 12336 case 0x1c: /* FCVTAS */ 12337 case 0x3a: /* FCVTPS */ 12338 case 0x3b: /* FCVTZS */ 12339 gen_helper_vfp_tosls(tcg_res, tcg_op, 12340 tcg_constant_i32(0), tcg_fpstatus); 12341 break; 12342 case 0x5a: /* FCVTNU */ 12343 case 0x5b: /* FCVTMU */ 12344 case 0x5c: /* FCVTAU */ 12345 case 0x7a: /* FCVTPU */ 12346 case 0x7b: /* FCVTZU */ 12347 gen_helper_vfp_touls(tcg_res, tcg_op, 12348 tcg_constant_i32(0), tcg_fpstatus); 12349 break; 12350 case 0x18: /* FRINTN */ 12351 case 0x19: /* FRINTM */ 12352 case 0x38: /* FRINTP */ 12353 case 0x39: /* FRINTZ */ 12354 case 0x58: /* FRINTA */ 12355 case 0x79: /* FRINTI */ 12356 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12357 break; 12358 case 0x59: /* FRINTX */ 12359 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12360 break; 12361 case 0x7c: /* URSQRTE */ 12362 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12363 break; 12364 case 0x1e: /* FRINT32Z */ 12365 case 0x5e: /* FRINT32X */ 12366 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12367 break; 12368 case 0x1f: /* FRINT64Z */ 12369 case 0x5f: /* FRINT64X */ 12370 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12371 break; 12372 default: 12373 g_assert_not_reached(); 12374 } 12375 } else { 12376 /* Use helpers for 8 and 16 bit elements */ 12377 switch (opcode) { 12378 case 0x5: /* CNT, RBIT */ 12379 /* For these two insns size is part of the opcode specifier 12380 * (handled earlier); they always operate on byte elements. 12381 */ 12382 if (u) { 12383 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12384 } else { 12385 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12386 } 12387 break; 12388 case 0x7: /* SQABS, SQNEG */ 12389 { 12390 NeonGenOneOpEnvFn *genfn; 12391 static NeonGenOneOpEnvFn * const fns[2][2] = { 12392 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12393 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12394 }; 12395 genfn = fns[size][u]; 12396 genfn(tcg_res, cpu_env, tcg_op); 12397 break; 12398 } 12399 case 0x4: /* CLS, CLZ */ 12400 if (u) { 12401 if (size == 0) { 12402 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12403 } else { 12404 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12405 } 12406 } else { 12407 if (size == 0) { 12408 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12409 } else { 12410 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12411 } 12412 } 12413 break; 12414 default: 12415 g_assert_not_reached(); 12416 } 12417 } 12418 12419 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12420 } 12421 } 12422 clear_vec_high(s, is_q, rd); 12423 12424 if (tcg_rmode) { 12425 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12426 } 12427 } 12428 12429 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12430 * 12431 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12432 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12433 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12434 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12435 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12436 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12437 * 12438 * This actually covers two groups where scalar access is governed by 12439 * bit 28. A bunch of the instructions (float to integral) only exist 12440 * in the vector form and are un-allocated for the scalar decode. Also 12441 * in the scalar decode Q is always 1. 12442 */ 12443 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12444 { 12445 int fpop, opcode, a, u; 12446 int rn, rd; 12447 bool is_q; 12448 bool is_scalar; 12449 bool only_in_vector = false; 12450 12451 int pass; 12452 TCGv_i32 tcg_rmode = NULL; 12453 TCGv_ptr tcg_fpstatus = NULL; 12454 bool need_fpst = true; 12455 int rmode = -1; 12456 12457 if (!dc_isar_feature(aa64_fp16, s)) { 12458 unallocated_encoding(s); 12459 return; 12460 } 12461 12462 rd = extract32(insn, 0, 5); 12463 rn = extract32(insn, 5, 5); 12464 12465 a = extract32(insn, 23, 1); 12466 u = extract32(insn, 29, 1); 12467 is_scalar = extract32(insn, 28, 1); 12468 is_q = extract32(insn, 30, 1); 12469 12470 opcode = extract32(insn, 12, 5); 12471 fpop = deposit32(opcode, 5, 1, a); 12472 fpop = deposit32(fpop, 6, 1, u); 12473 12474 switch (fpop) { 12475 case 0x1d: /* SCVTF */ 12476 case 0x5d: /* UCVTF */ 12477 { 12478 int elements; 12479 12480 if (is_scalar) { 12481 elements = 1; 12482 } else { 12483 elements = (is_q ? 8 : 4); 12484 } 12485 12486 if (!fp_access_check(s)) { 12487 return; 12488 } 12489 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12490 return; 12491 } 12492 break; 12493 case 0x2c: /* FCMGT (zero) */ 12494 case 0x2d: /* FCMEQ (zero) */ 12495 case 0x2e: /* FCMLT (zero) */ 12496 case 0x6c: /* FCMGE (zero) */ 12497 case 0x6d: /* FCMLE (zero) */ 12498 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12499 return; 12500 case 0x3d: /* FRECPE */ 12501 case 0x3f: /* FRECPX */ 12502 break; 12503 case 0x18: /* FRINTN */ 12504 only_in_vector = true; 12505 rmode = FPROUNDING_TIEEVEN; 12506 break; 12507 case 0x19: /* FRINTM */ 12508 only_in_vector = true; 12509 rmode = FPROUNDING_NEGINF; 12510 break; 12511 case 0x38: /* FRINTP */ 12512 only_in_vector = true; 12513 rmode = FPROUNDING_POSINF; 12514 break; 12515 case 0x39: /* FRINTZ */ 12516 only_in_vector = true; 12517 rmode = FPROUNDING_ZERO; 12518 break; 12519 case 0x58: /* FRINTA */ 12520 only_in_vector = true; 12521 rmode = FPROUNDING_TIEAWAY; 12522 break; 12523 case 0x59: /* FRINTX */ 12524 case 0x79: /* FRINTI */ 12525 only_in_vector = true; 12526 /* current rounding mode */ 12527 break; 12528 case 0x1a: /* FCVTNS */ 12529 rmode = FPROUNDING_TIEEVEN; 12530 break; 12531 case 0x1b: /* FCVTMS */ 12532 rmode = FPROUNDING_NEGINF; 12533 break; 12534 case 0x1c: /* FCVTAS */ 12535 rmode = FPROUNDING_TIEAWAY; 12536 break; 12537 case 0x3a: /* FCVTPS */ 12538 rmode = FPROUNDING_POSINF; 12539 break; 12540 case 0x3b: /* FCVTZS */ 12541 rmode = FPROUNDING_ZERO; 12542 break; 12543 case 0x5a: /* FCVTNU */ 12544 rmode = FPROUNDING_TIEEVEN; 12545 break; 12546 case 0x5b: /* FCVTMU */ 12547 rmode = FPROUNDING_NEGINF; 12548 break; 12549 case 0x5c: /* FCVTAU */ 12550 rmode = FPROUNDING_TIEAWAY; 12551 break; 12552 case 0x7a: /* FCVTPU */ 12553 rmode = FPROUNDING_POSINF; 12554 break; 12555 case 0x7b: /* FCVTZU */ 12556 rmode = FPROUNDING_ZERO; 12557 break; 12558 case 0x2f: /* FABS */ 12559 case 0x6f: /* FNEG */ 12560 need_fpst = false; 12561 break; 12562 case 0x7d: /* FRSQRTE */ 12563 case 0x7f: /* FSQRT (vector) */ 12564 break; 12565 default: 12566 unallocated_encoding(s); 12567 return; 12568 } 12569 12570 12571 /* Check additional constraints for the scalar encoding */ 12572 if (is_scalar) { 12573 if (!is_q) { 12574 unallocated_encoding(s); 12575 return; 12576 } 12577 /* FRINTxx is only in the vector form */ 12578 if (only_in_vector) { 12579 unallocated_encoding(s); 12580 return; 12581 } 12582 } 12583 12584 if (!fp_access_check(s)) { 12585 return; 12586 } 12587 12588 if (rmode >= 0 || need_fpst) { 12589 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12590 } 12591 12592 if (rmode >= 0) { 12593 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12594 } 12595 12596 if (is_scalar) { 12597 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12598 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12599 12600 switch (fpop) { 12601 case 0x1a: /* FCVTNS */ 12602 case 0x1b: /* FCVTMS */ 12603 case 0x1c: /* FCVTAS */ 12604 case 0x3a: /* FCVTPS */ 12605 case 0x3b: /* FCVTZS */ 12606 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12607 break; 12608 case 0x3d: /* FRECPE */ 12609 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12610 break; 12611 case 0x3f: /* FRECPX */ 12612 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12613 break; 12614 case 0x5a: /* FCVTNU */ 12615 case 0x5b: /* FCVTMU */ 12616 case 0x5c: /* FCVTAU */ 12617 case 0x7a: /* FCVTPU */ 12618 case 0x7b: /* FCVTZU */ 12619 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12620 break; 12621 case 0x6f: /* FNEG */ 12622 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12623 break; 12624 case 0x7d: /* FRSQRTE */ 12625 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12626 break; 12627 default: 12628 g_assert_not_reached(); 12629 } 12630 12631 /* limit any sign extension going on */ 12632 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12633 write_fp_sreg(s, rd, tcg_res); 12634 } else { 12635 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12636 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12637 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12638 12639 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12640 12641 switch (fpop) { 12642 case 0x1a: /* FCVTNS */ 12643 case 0x1b: /* FCVTMS */ 12644 case 0x1c: /* FCVTAS */ 12645 case 0x3a: /* FCVTPS */ 12646 case 0x3b: /* FCVTZS */ 12647 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12648 break; 12649 case 0x3d: /* FRECPE */ 12650 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12651 break; 12652 case 0x5a: /* FCVTNU */ 12653 case 0x5b: /* FCVTMU */ 12654 case 0x5c: /* FCVTAU */ 12655 case 0x7a: /* FCVTPU */ 12656 case 0x7b: /* FCVTZU */ 12657 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12658 break; 12659 case 0x18: /* FRINTN */ 12660 case 0x19: /* FRINTM */ 12661 case 0x38: /* FRINTP */ 12662 case 0x39: /* FRINTZ */ 12663 case 0x58: /* FRINTA */ 12664 case 0x79: /* FRINTI */ 12665 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12666 break; 12667 case 0x59: /* FRINTX */ 12668 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12669 break; 12670 case 0x2f: /* FABS */ 12671 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12672 break; 12673 case 0x6f: /* FNEG */ 12674 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12675 break; 12676 case 0x7d: /* FRSQRTE */ 12677 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12678 break; 12679 case 0x7f: /* FSQRT */ 12680 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12681 break; 12682 default: 12683 g_assert_not_reached(); 12684 } 12685 12686 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12687 } 12688 12689 clear_vec_high(s, is_q, rd); 12690 } 12691 12692 if (tcg_rmode) { 12693 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12694 } 12695 } 12696 12697 /* AdvSIMD scalar x indexed element 12698 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12699 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12700 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12701 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12702 * AdvSIMD vector x indexed element 12703 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12704 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12705 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12706 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12707 */ 12708 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12709 { 12710 /* This encoding has two kinds of instruction: 12711 * normal, where we perform elt x idxelt => elt for each 12712 * element in the vector 12713 * long, where we perform elt x idxelt and generate a result of 12714 * double the width of the input element 12715 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12716 */ 12717 bool is_scalar = extract32(insn, 28, 1); 12718 bool is_q = extract32(insn, 30, 1); 12719 bool u = extract32(insn, 29, 1); 12720 int size = extract32(insn, 22, 2); 12721 int l = extract32(insn, 21, 1); 12722 int m = extract32(insn, 20, 1); 12723 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12724 int rm = extract32(insn, 16, 4); 12725 int opcode = extract32(insn, 12, 4); 12726 int h = extract32(insn, 11, 1); 12727 int rn = extract32(insn, 5, 5); 12728 int rd = extract32(insn, 0, 5); 12729 bool is_long = false; 12730 int is_fp = 0; 12731 bool is_fp16 = false; 12732 int index; 12733 TCGv_ptr fpst; 12734 12735 switch (16 * u + opcode) { 12736 case 0x08: /* MUL */ 12737 case 0x10: /* MLA */ 12738 case 0x14: /* MLS */ 12739 if (is_scalar) { 12740 unallocated_encoding(s); 12741 return; 12742 } 12743 break; 12744 case 0x02: /* SMLAL, SMLAL2 */ 12745 case 0x12: /* UMLAL, UMLAL2 */ 12746 case 0x06: /* SMLSL, SMLSL2 */ 12747 case 0x16: /* UMLSL, UMLSL2 */ 12748 case 0x0a: /* SMULL, SMULL2 */ 12749 case 0x1a: /* UMULL, UMULL2 */ 12750 if (is_scalar) { 12751 unallocated_encoding(s); 12752 return; 12753 } 12754 is_long = true; 12755 break; 12756 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12757 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12758 case 0x0b: /* SQDMULL, SQDMULL2 */ 12759 is_long = true; 12760 break; 12761 case 0x0c: /* SQDMULH */ 12762 case 0x0d: /* SQRDMULH */ 12763 break; 12764 case 0x01: /* FMLA */ 12765 case 0x05: /* FMLS */ 12766 case 0x09: /* FMUL */ 12767 case 0x19: /* FMULX */ 12768 is_fp = 1; 12769 break; 12770 case 0x1d: /* SQRDMLAH */ 12771 case 0x1f: /* SQRDMLSH */ 12772 if (!dc_isar_feature(aa64_rdm, s)) { 12773 unallocated_encoding(s); 12774 return; 12775 } 12776 break; 12777 case 0x0e: /* SDOT */ 12778 case 0x1e: /* UDOT */ 12779 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12780 unallocated_encoding(s); 12781 return; 12782 } 12783 break; 12784 case 0x0f: 12785 switch (size) { 12786 case 0: /* SUDOT */ 12787 case 2: /* USDOT */ 12788 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12789 unallocated_encoding(s); 12790 return; 12791 } 12792 size = MO_32; 12793 break; 12794 case 1: /* BFDOT */ 12795 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12796 unallocated_encoding(s); 12797 return; 12798 } 12799 size = MO_32; 12800 break; 12801 case 3: /* BFMLAL{B,T} */ 12802 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12803 unallocated_encoding(s); 12804 return; 12805 } 12806 /* can't set is_fp without other incorrect size checks */ 12807 size = MO_16; 12808 break; 12809 default: 12810 unallocated_encoding(s); 12811 return; 12812 } 12813 break; 12814 case 0x11: /* FCMLA #0 */ 12815 case 0x13: /* FCMLA #90 */ 12816 case 0x15: /* FCMLA #180 */ 12817 case 0x17: /* FCMLA #270 */ 12818 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12819 unallocated_encoding(s); 12820 return; 12821 } 12822 is_fp = 2; 12823 break; 12824 case 0x00: /* FMLAL */ 12825 case 0x04: /* FMLSL */ 12826 case 0x18: /* FMLAL2 */ 12827 case 0x1c: /* FMLSL2 */ 12828 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12829 unallocated_encoding(s); 12830 return; 12831 } 12832 size = MO_16; 12833 /* is_fp, but we pass cpu_env not fp_status. */ 12834 break; 12835 default: 12836 unallocated_encoding(s); 12837 return; 12838 } 12839 12840 switch (is_fp) { 12841 case 1: /* normal fp */ 12842 /* convert insn encoded size to MemOp size */ 12843 switch (size) { 12844 case 0: /* half-precision */ 12845 size = MO_16; 12846 is_fp16 = true; 12847 break; 12848 case MO_32: /* single precision */ 12849 case MO_64: /* double precision */ 12850 break; 12851 default: 12852 unallocated_encoding(s); 12853 return; 12854 } 12855 break; 12856 12857 case 2: /* complex fp */ 12858 /* Each indexable element is a complex pair. */ 12859 size += 1; 12860 switch (size) { 12861 case MO_32: 12862 if (h && !is_q) { 12863 unallocated_encoding(s); 12864 return; 12865 } 12866 is_fp16 = true; 12867 break; 12868 case MO_64: 12869 break; 12870 default: 12871 unallocated_encoding(s); 12872 return; 12873 } 12874 break; 12875 12876 default: /* integer */ 12877 switch (size) { 12878 case MO_8: 12879 case MO_64: 12880 unallocated_encoding(s); 12881 return; 12882 } 12883 break; 12884 } 12885 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12886 unallocated_encoding(s); 12887 return; 12888 } 12889 12890 /* Given MemOp size, adjust register and indexing. */ 12891 switch (size) { 12892 case MO_16: 12893 index = h << 2 | l << 1 | m; 12894 break; 12895 case MO_32: 12896 index = h << 1 | l; 12897 rm |= m << 4; 12898 break; 12899 case MO_64: 12900 if (l || !is_q) { 12901 unallocated_encoding(s); 12902 return; 12903 } 12904 index = h; 12905 rm |= m << 4; 12906 break; 12907 default: 12908 g_assert_not_reached(); 12909 } 12910 12911 if (!fp_access_check(s)) { 12912 return; 12913 } 12914 12915 if (is_fp) { 12916 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12917 } else { 12918 fpst = NULL; 12919 } 12920 12921 switch (16 * u + opcode) { 12922 case 0x0e: /* SDOT */ 12923 case 0x1e: /* UDOT */ 12924 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12925 u ? gen_helper_gvec_udot_idx_b 12926 : gen_helper_gvec_sdot_idx_b); 12927 return; 12928 case 0x0f: 12929 switch (extract32(insn, 22, 2)) { 12930 case 0: /* SUDOT */ 12931 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12932 gen_helper_gvec_sudot_idx_b); 12933 return; 12934 case 1: /* BFDOT */ 12935 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12936 gen_helper_gvec_bfdot_idx); 12937 return; 12938 case 2: /* USDOT */ 12939 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12940 gen_helper_gvec_usdot_idx_b); 12941 return; 12942 case 3: /* BFMLAL{B,T} */ 12943 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12944 gen_helper_gvec_bfmlal_idx); 12945 return; 12946 } 12947 g_assert_not_reached(); 12948 case 0x11: /* FCMLA #0 */ 12949 case 0x13: /* FCMLA #90 */ 12950 case 0x15: /* FCMLA #180 */ 12951 case 0x17: /* FCMLA #270 */ 12952 { 12953 int rot = extract32(insn, 13, 2); 12954 int data = (index << 2) | rot; 12955 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12956 vec_full_reg_offset(s, rn), 12957 vec_full_reg_offset(s, rm), 12958 vec_full_reg_offset(s, rd), fpst, 12959 is_q ? 16 : 8, vec_full_reg_size(s), data, 12960 size == MO_64 12961 ? gen_helper_gvec_fcmlas_idx 12962 : gen_helper_gvec_fcmlah_idx); 12963 } 12964 return; 12965 12966 case 0x00: /* FMLAL */ 12967 case 0x04: /* FMLSL */ 12968 case 0x18: /* FMLAL2 */ 12969 case 0x1c: /* FMLSL2 */ 12970 { 12971 int is_s = extract32(opcode, 2, 1); 12972 int is_2 = u; 12973 int data = (index << 2) | (is_2 << 1) | is_s; 12974 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12975 vec_full_reg_offset(s, rn), 12976 vec_full_reg_offset(s, rm), cpu_env, 12977 is_q ? 16 : 8, vec_full_reg_size(s), 12978 data, gen_helper_gvec_fmlal_idx_a64); 12979 } 12980 return; 12981 12982 case 0x08: /* MUL */ 12983 if (!is_long && !is_scalar) { 12984 static gen_helper_gvec_3 * const fns[3] = { 12985 gen_helper_gvec_mul_idx_h, 12986 gen_helper_gvec_mul_idx_s, 12987 gen_helper_gvec_mul_idx_d, 12988 }; 12989 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12990 vec_full_reg_offset(s, rn), 12991 vec_full_reg_offset(s, rm), 12992 is_q ? 16 : 8, vec_full_reg_size(s), 12993 index, fns[size - 1]); 12994 return; 12995 } 12996 break; 12997 12998 case 0x10: /* MLA */ 12999 if (!is_long && !is_scalar) { 13000 static gen_helper_gvec_4 * const fns[3] = { 13001 gen_helper_gvec_mla_idx_h, 13002 gen_helper_gvec_mla_idx_s, 13003 gen_helper_gvec_mla_idx_d, 13004 }; 13005 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13006 vec_full_reg_offset(s, rn), 13007 vec_full_reg_offset(s, rm), 13008 vec_full_reg_offset(s, rd), 13009 is_q ? 16 : 8, vec_full_reg_size(s), 13010 index, fns[size - 1]); 13011 return; 13012 } 13013 break; 13014 13015 case 0x14: /* MLS */ 13016 if (!is_long && !is_scalar) { 13017 static gen_helper_gvec_4 * const fns[3] = { 13018 gen_helper_gvec_mls_idx_h, 13019 gen_helper_gvec_mls_idx_s, 13020 gen_helper_gvec_mls_idx_d, 13021 }; 13022 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13023 vec_full_reg_offset(s, rn), 13024 vec_full_reg_offset(s, rm), 13025 vec_full_reg_offset(s, rd), 13026 is_q ? 16 : 8, vec_full_reg_size(s), 13027 index, fns[size - 1]); 13028 return; 13029 } 13030 break; 13031 } 13032 13033 if (size == 3) { 13034 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13035 int pass; 13036 13037 assert(is_fp && is_q && !is_long); 13038 13039 read_vec_element(s, tcg_idx, rm, index, MO_64); 13040 13041 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13042 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13043 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13044 13045 read_vec_element(s, tcg_op, rn, pass, MO_64); 13046 13047 switch (16 * u + opcode) { 13048 case 0x05: /* FMLS */ 13049 /* As usual for ARM, separate negation for fused multiply-add */ 13050 gen_helper_vfp_negd(tcg_op, tcg_op); 13051 /* fall through */ 13052 case 0x01: /* FMLA */ 13053 read_vec_element(s, tcg_res, rd, pass, MO_64); 13054 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13055 break; 13056 case 0x09: /* FMUL */ 13057 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13058 break; 13059 case 0x19: /* FMULX */ 13060 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13061 break; 13062 default: 13063 g_assert_not_reached(); 13064 } 13065 13066 write_vec_element(s, tcg_res, rd, pass, MO_64); 13067 } 13068 13069 clear_vec_high(s, !is_scalar, rd); 13070 } else if (!is_long) { 13071 /* 32 bit floating point, or 16 or 32 bit integer. 13072 * For the 16 bit scalar case we use the usual Neon helpers and 13073 * rely on the fact that 0 op 0 == 0 with no side effects. 13074 */ 13075 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13076 int pass, maxpasses; 13077 13078 if (is_scalar) { 13079 maxpasses = 1; 13080 } else { 13081 maxpasses = is_q ? 4 : 2; 13082 } 13083 13084 read_vec_element_i32(s, tcg_idx, rm, index, size); 13085 13086 if (size == 1 && !is_scalar) { 13087 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13088 * the index into both halves of the 32 bit tcg_idx and then use 13089 * the usual Neon helpers. 13090 */ 13091 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13092 } 13093 13094 for (pass = 0; pass < maxpasses; pass++) { 13095 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13096 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13097 13098 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13099 13100 switch (16 * u + opcode) { 13101 case 0x08: /* MUL */ 13102 case 0x10: /* MLA */ 13103 case 0x14: /* MLS */ 13104 { 13105 static NeonGenTwoOpFn * const fns[2][2] = { 13106 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13107 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13108 }; 13109 NeonGenTwoOpFn *genfn; 13110 bool is_sub = opcode == 0x4; 13111 13112 if (size == 1) { 13113 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13114 } else { 13115 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13116 } 13117 if (opcode == 0x8) { 13118 break; 13119 } 13120 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13121 genfn = fns[size - 1][is_sub]; 13122 genfn(tcg_res, tcg_op, tcg_res); 13123 break; 13124 } 13125 case 0x05: /* FMLS */ 13126 case 0x01: /* FMLA */ 13127 read_vec_element_i32(s, tcg_res, rd, pass, 13128 is_scalar ? size : MO_32); 13129 switch (size) { 13130 case 1: 13131 if (opcode == 0x5) { 13132 /* As usual for ARM, separate negation for fused 13133 * multiply-add */ 13134 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13135 } 13136 if (is_scalar) { 13137 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13138 tcg_res, fpst); 13139 } else { 13140 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13141 tcg_res, fpst); 13142 } 13143 break; 13144 case 2: 13145 if (opcode == 0x5) { 13146 /* As usual for ARM, separate negation for 13147 * fused multiply-add */ 13148 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13149 } 13150 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13151 tcg_res, fpst); 13152 break; 13153 default: 13154 g_assert_not_reached(); 13155 } 13156 break; 13157 case 0x09: /* FMUL */ 13158 switch (size) { 13159 case 1: 13160 if (is_scalar) { 13161 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13162 tcg_idx, fpst); 13163 } else { 13164 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13165 tcg_idx, fpst); 13166 } 13167 break; 13168 case 2: 13169 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13170 break; 13171 default: 13172 g_assert_not_reached(); 13173 } 13174 break; 13175 case 0x19: /* FMULX */ 13176 switch (size) { 13177 case 1: 13178 if (is_scalar) { 13179 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13180 tcg_idx, fpst); 13181 } else { 13182 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13183 tcg_idx, fpst); 13184 } 13185 break; 13186 case 2: 13187 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13188 break; 13189 default: 13190 g_assert_not_reached(); 13191 } 13192 break; 13193 case 0x0c: /* SQDMULH */ 13194 if (size == 1) { 13195 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13196 tcg_op, tcg_idx); 13197 } else { 13198 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13199 tcg_op, tcg_idx); 13200 } 13201 break; 13202 case 0x0d: /* SQRDMULH */ 13203 if (size == 1) { 13204 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13205 tcg_op, tcg_idx); 13206 } else { 13207 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13208 tcg_op, tcg_idx); 13209 } 13210 break; 13211 case 0x1d: /* SQRDMLAH */ 13212 read_vec_element_i32(s, tcg_res, rd, pass, 13213 is_scalar ? size : MO_32); 13214 if (size == 1) { 13215 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13216 tcg_op, tcg_idx, tcg_res); 13217 } else { 13218 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13219 tcg_op, tcg_idx, tcg_res); 13220 } 13221 break; 13222 case 0x1f: /* SQRDMLSH */ 13223 read_vec_element_i32(s, tcg_res, rd, pass, 13224 is_scalar ? size : MO_32); 13225 if (size == 1) { 13226 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13227 tcg_op, tcg_idx, tcg_res); 13228 } else { 13229 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13230 tcg_op, tcg_idx, tcg_res); 13231 } 13232 break; 13233 default: 13234 g_assert_not_reached(); 13235 } 13236 13237 if (is_scalar) { 13238 write_fp_sreg(s, rd, tcg_res); 13239 } else { 13240 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13241 } 13242 } 13243 13244 clear_vec_high(s, is_q, rd); 13245 } else { 13246 /* long ops: 16x16->32 or 32x32->64 */ 13247 TCGv_i64 tcg_res[2]; 13248 int pass; 13249 bool satop = extract32(opcode, 0, 1); 13250 MemOp memop = MO_32; 13251 13252 if (satop || !u) { 13253 memop |= MO_SIGN; 13254 } 13255 13256 if (size == 2) { 13257 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13258 13259 read_vec_element(s, tcg_idx, rm, index, memop); 13260 13261 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13262 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13263 TCGv_i64 tcg_passres; 13264 int passelt; 13265 13266 if (is_scalar) { 13267 passelt = 0; 13268 } else { 13269 passelt = pass + (is_q * 2); 13270 } 13271 13272 read_vec_element(s, tcg_op, rn, passelt, memop); 13273 13274 tcg_res[pass] = tcg_temp_new_i64(); 13275 13276 if (opcode == 0xa || opcode == 0xb) { 13277 /* Non-accumulating ops */ 13278 tcg_passres = tcg_res[pass]; 13279 } else { 13280 tcg_passres = tcg_temp_new_i64(); 13281 } 13282 13283 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13284 13285 if (satop) { 13286 /* saturating, doubling */ 13287 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13288 tcg_passres, tcg_passres); 13289 } 13290 13291 if (opcode == 0xa || opcode == 0xb) { 13292 continue; 13293 } 13294 13295 /* Accumulating op: handle accumulate step */ 13296 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13297 13298 switch (opcode) { 13299 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13300 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13301 break; 13302 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13303 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13304 break; 13305 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13306 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13307 /* fall through */ 13308 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13309 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13310 tcg_res[pass], 13311 tcg_passres); 13312 break; 13313 default: 13314 g_assert_not_reached(); 13315 } 13316 } 13317 13318 clear_vec_high(s, !is_scalar, rd); 13319 } else { 13320 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13321 13322 assert(size == 1); 13323 read_vec_element_i32(s, tcg_idx, rm, index, size); 13324 13325 if (!is_scalar) { 13326 /* The simplest way to handle the 16x16 indexed ops is to 13327 * duplicate the index into both halves of the 32 bit tcg_idx 13328 * and then use the usual Neon helpers. 13329 */ 13330 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13331 } 13332 13333 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13334 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13335 TCGv_i64 tcg_passres; 13336 13337 if (is_scalar) { 13338 read_vec_element_i32(s, tcg_op, rn, pass, size); 13339 } else { 13340 read_vec_element_i32(s, tcg_op, rn, 13341 pass + (is_q * 2), MO_32); 13342 } 13343 13344 tcg_res[pass] = tcg_temp_new_i64(); 13345 13346 if (opcode == 0xa || opcode == 0xb) { 13347 /* Non-accumulating ops */ 13348 tcg_passres = tcg_res[pass]; 13349 } else { 13350 tcg_passres = tcg_temp_new_i64(); 13351 } 13352 13353 if (memop & MO_SIGN) { 13354 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13355 } else { 13356 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13357 } 13358 if (satop) { 13359 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13360 tcg_passres, tcg_passres); 13361 } 13362 13363 if (opcode == 0xa || opcode == 0xb) { 13364 continue; 13365 } 13366 13367 /* Accumulating op: handle accumulate step */ 13368 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13369 13370 switch (opcode) { 13371 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13372 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13373 tcg_passres); 13374 break; 13375 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13376 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13377 tcg_passres); 13378 break; 13379 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13380 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13381 /* fall through */ 13382 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13383 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13384 tcg_res[pass], 13385 tcg_passres); 13386 break; 13387 default: 13388 g_assert_not_reached(); 13389 } 13390 } 13391 13392 if (is_scalar) { 13393 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13394 } 13395 } 13396 13397 if (is_scalar) { 13398 tcg_res[1] = tcg_constant_i64(0); 13399 } 13400 13401 for (pass = 0; pass < 2; pass++) { 13402 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13403 } 13404 } 13405 } 13406 13407 /* Crypto AES 13408 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13409 * +-----------------+------+-----------+--------+-----+------+------+ 13410 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13411 * +-----------------+------+-----------+--------+-----+------+------+ 13412 */ 13413 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13414 { 13415 int size = extract32(insn, 22, 2); 13416 int opcode = extract32(insn, 12, 5); 13417 int rn = extract32(insn, 5, 5); 13418 int rd = extract32(insn, 0, 5); 13419 int decrypt; 13420 gen_helper_gvec_2 *genfn2 = NULL; 13421 gen_helper_gvec_3 *genfn3 = NULL; 13422 13423 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13424 unallocated_encoding(s); 13425 return; 13426 } 13427 13428 switch (opcode) { 13429 case 0x4: /* AESE */ 13430 decrypt = 0; 13431 genfn3 = gen_helper_crypto_aese; 13432 break; 13433 case 0x6: /* AESMC */ 13434 decrypt = 0; 13435 genfn2 = gen_helper_crypto_aesmc; 13436 break; 13437 case 0x5: /* AESD */ 13438 decrypt = 1; 13439 genfn3 = gen_helper_crypto_aese; 13440 break; 13441 case 0x7: /* AESIMC */ 13442 decrypt = 1; 13443 genfn2 = gen_helper_crypto_aesmc; 13444 break; 13445 default: 13446 unallocated_encoding(s); 13447 return; 13448 } 13449 13450 if (!fp_access_check(s)) { 13451 return; 13452 } 13453 if (genfn2) { 13454 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13455 } else { 13456 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13457 } 13458 } 13459 13460 /* Crypto three-reg SHA 13461 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13462 * +-----------------+------+---+------+---+--------+-----+------+------+ 13463 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13464 * +-----------------+------+---+------+---+--------+-----+------+------+ 13465 */ 13466 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13467 { 13468 int size = extract32(insn, 22, 2); 13469 int opcode = extract32(insn, 12, 3); 13470 int rm = extract32(insn, 16, 5); 13471 int rn = extract32(insn, 5, 5); 13472 int rd = extract32(insn, 0, 5); 13473 gen_helper_gvec_3 *genfn; 13474 bool feature; 13475 13476 if (size != 0) { 13477 unallocated_encoding(s); 13478 return; 13479 } 13480 13481 switch (opcode) { 13482 case 0: /* SHA1C */ 13483 genfn = gen_helper_crypto_sha1c; 13484 feature = dc_isar_feature(aa64_sha1, s); 13485 break; 13486 case 1: /* SHA1P */ 13487 genfn = gen_helper_crypto_sha1p; 13488 feature = dc_isar_feature(aa64_sha1, s); 13489 break; 13490 case 2: /* SHA1M */ 13491 genfn = gen_helper_crypto_sha1m; 13492 feature = dc_isar_feature(aa64_sha1, s); 13493 break; 13494 case 3: /* SHA1SU0 */ 13495 genfn = gen_helper_crypto_sha1su0; 13496 feature = dc_isar_feature(aa64_sha1, s); 13497 break; 13498 case 4: /* SHA256H */ 13499 genfn = gen_helper_crypto_sha256h; 13500 feature = dc_isar_feature(aa64_sha256, s); 13501 break; 13502 case 5: /* SHA256H2 */ 13503 genfn = gen_helper_crypto_sha256h2; 13504 feature = dc_isar_feature(aa64_sha256, s); 13505 break; 13506 case 6: /* SHA256SU1 */ 13507 genfn = gen_helper_crypto_sha256su1; 13508 feature = dc_isar_feature(aa64_sha256, s); 13509 break; 13510 default: 13511 unallocated_encoding(s); 13512 return; 13513 } 13514 13515 if (!feature) { 13516 unallocated_encoding(s); 13517 return; 13518 } 13519 13520 if (!fp_access_check(s)) { 13521 return; 13522 } 13523 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13524 } 13525 13526 /* Crypto two-reg SHA 13527 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13528 * +-----------------+------+-----------+--------+-----+------+------+ 13529 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13530 * +-----------------+------+-----------+--------+-----+------+------+ 13531 */ 13532 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13533 { 13534 int size = extract32(insn, 22, 2); 13535 int opcode = extract32(insn, 12, 5); 13536 int rn = extract32(insn, 5, 5); 13537 int rd = extract32(insn, 0, 5); 13538 gen_helper_gvec_2 *genfn; 13539 bool feature; 13540 13541 if (size != 0) { 13542 unallocated_encoding(s); 13543 return; 13544 } 13545 13546 switch (opcode) { 13547 case 0: /* SHA1H */ 13548 feature = dc_isar_feature(aa64_sha1, s); 13549 genfn = gen_helper_crypto_sha1h; 13550 break; 13551 case 1: /* SHA1SU1 */ 13552 feature = dc_isar_feature(aa64_sha1, s); 13553 genfn = gen_helper_crypto_sha1su1; 13554 break; 13555 case 2: /* SHA256SU0 */ 13556 feature = dc_isar_feature(aa64_sha256, s); 13557 genfn = gen_helper_crypto_sha256su0; 13558 break; 13559 default: 13560 unallocated_encoding(s); 13561 return; 13562 } 13563 13564 if (!feature) { 13565 unallocated_encoding(s); 13566 return; 13567 } 13568 13569 if (!fp_access_check(s)) { 13570 return; 13571 } 13572 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13573 } 13574 13575 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13576 { 13577 tcg_gen_rotli_i64(d, m, 1); 13578 tcg_gen_xor_i64(d, d, n); 13579 } 13580 13581 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13582 { 13583 tcg_gen_rotli_vec(vece, d, m, 1); 13584 tcg_gen_xor_vec(vece, d, d, n); 13585 } 13586 13587 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13588 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13589 { 13590 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13591 static const GVecGen3 op = { 13592 .fni8 = gen_rax1_i64, 13593 .fniv = gen_rax1_vec, 13594 .opt_opc = vecop_list, 13595 .fno = gen_helper_crypto_rax1, 13596 .vece = MO_64, 13597 }; 13598 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13599 } 13600 13601 /* Crypto three-reg SHA512 13602 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13603 * +-----------------------+------+---+---+-----+--------+------+------+ 13604 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13605 * +-----------------------+------+---+---+-----+--------+------+------+ 13606 */ 13607 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13608 { 13609 int opcode = extract32(insn, 10, 2); 13610 int o = extract32(insn, 14, 1); 13611 int rm = extract32(insn, 16, 5); 13612 int rn = extract32(insn, 5, 5); 13613 int rd = extract32(insn, 0, 5); 13614 bool feature; 13615 gen_helper_gvec_3 *oolfn = NULL; 13616 GVecGen3Fn *gvecfn = NULL; 13617 13618 if (o == 0) { 13619 switch (opcode) { 13620 case 0: /* SHA512H */ 13621 feature = dc_isar_feature(aa64_sha512, s); 13622 oolfn = gen_helper_crypto_sha512h; 13623 break; 13624 case 1: /* SHA512H2 */ 13625 feature = dc_isar_feature(aa64_sha512, s); 13626 oolfn = gen_helper_crypto_sha512h2; 13627 break; 13628 case 2: /* SHA512SU1 */ 13629 feature = dc_isar_feature(aa64_sha512, s); 13630 oolfn = gen_helper_crypto_sha512su1; 13631 break; 13632 case 3: /* RAX1 */ 13633 feature = dc_isar_feature(aa64_sha3, s); 13634 gvecfn = gen_gvec_rax1; 13635 break; 13636 default: 13637 g_assert_not_reached(); 13638 } 13639 } else { 13640 switch (opcode) { 13641 case 0: /* SM3PARTW1 */ 13642 feature = dc_isar_feature(aa64_sm3, s); 13643 oolfn = gen_helper_crypto_sm3partw1; 13644 break; 13645 case 1: /* SM3PARTW2 */ 13646 feature = dc_isar_feature(aa64_sm3, s); 13647 oolfn = gen_helper_crypto_sm3partw2; 13648 break; 13649 case 2: /* SM4EKEY */ 13650 feature = dc_isar_feature(aa64_sm4, s); 13651 oolfn = gen_helper_crypto_sm4ekey; 13652 break; 13653 default: 13654 unallocated_encoding(s); 13655 return; 13656 } 13657 } 13658 13659 if (!feature) { 13660 unallocated_encoding(s); 13661 return; 13662 } 13663 13664 if (!fp_access_check(s)) { 13665 return; 13666 } 13667 13668 if (oolfn) { 13669 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13670 } else { 13671 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13672 } 13673 } 13674 13675 /* Crypto two-reg SHA512 13676 * 31 12 11 10 9 5 4 0 13677 * +-----------------------------------------+--------+------+------+ 13678 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13679 * +-----------------------------------------+--------+------+------+ 13680 */ 13681 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13682 { 13683 int opcode = extract32(insn, 10, 2); 13684 int rn = extract32(insn, 5, 5); 13685 int rd = extract32(insn, 0, 5); 13686 bool feature; 13687 13688 switch (opcode) { 13689 case 0: /* SHA512SU0 */ 13690 feature = dc_isar_feature(aa64_sha512, s); 13691 break; 13692 case 1: /* SM4E */ 13693 feature = dc_isar_feature(aa64_sm4, s); 13694 break; 13695 default: 13696 unallocated_encoding(s); 13697 return; 13698 } 13699 13700 if (!feature) { 13701 unallocated_encoding(s); 13702 return; 13703 } 13704 13705 if (!fp_access_check(s)) { 13706 return; 13707 } 13708 13709 switch (opcode) { 13710 case 0: /* SHA512SU0 */ 13711 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13712 break; 13713 case 1: /* SM4E */ 13714 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13715 break; 13716 default: 13717 g_assert_not_reached(); 13718 } 13719 } 13720 13721 /* Crypto four-register 13722 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13723 * +-------------------+-----+------+---+------+------+------+ 13724 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13725 * +-------------------+-----+------+---+------+------+------+ 13726 */ 13727 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13728 { 13729 int op0 = extract32(insn, 21, 2); 13730 int rm = extract32(insn, 16, 5); 13731 int ra = extract32(insn, 10, 5); 13732 int rn = extract32(insn, 5, 5); 13733 int rd = extract32(insn, 0, 5); 13734 bool feature; 13735 13736 switch (op0) { 13737 case 0: /* EOR3 */ 13738 case 1: /* BCAX */ 13739 feature = dc_isar_feature(aa64_sha3, s); 13740 break; 13741 case 2: /* SM3SS1 */ 13742 feature = dc_isar_feature(aa64_sm3, s); 13743 break; 13744 default: 13745 unallocated_encoding(s); 13746 return; 13747 } 13748 13749 if (!feature) { 13750 unallocated_encoding(s); 13751 return; 13752 } 13753 13754 if (!fp_access_check(s)) { 13755 return; 13756 } 13757 13758 if (op0 < 2) { 13759 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13760 int pass; 13761 13762 tcg_op1 = tcg_temp_new_i64(); 13763 tcg_op2 = tcg_temp_new_i64(); 13764 tcg_op3 = tcg_temp_new_i64(); 13765 tcg_res[0] = tcg_temp_new_i64(); 13766 tcg_res[1] = tcg_temp_new_i64(); 13767 13768 for (pass = 0; pass < 2; pass++) { 13769 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13770 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13771 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13772 13773 if (op0 == 0) { 13774 /* EOR3 */ 13775 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13776 } else { 13777 /* BCAX */ 13778 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13779 } 13780 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13781 } 13782 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13783 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13784 } else { 13785 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13786 13787 tcg_op1 = tcg_temp_new_i32(); 13788 tcg_op2 = tcg_temp_new_i32(); 13789 tcg_op3 = tcg_temp_new_i32(); 13790 tcg_res = tcg_temp_new_i32(); 13791 tcg_zero = tcg_constant_i32(0); 13792 13793 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13794 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13795 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13796 13797 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13798 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13799 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13800 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13801 13802 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13803 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13804 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13805 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13806 } 13807 } 13808 13809 /* Crypto XAR 13810 * 31 21 20 16 15 10 9 5 4 0 13811 * +-----------------------+------+--------+------+------+ 13812 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13813 * +-----------------------+------+--------+------+------+ 13814 */ 13815 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13816 { 13817 int rm = extract32(insn, 16, 5); 13818 int imm6 = extract32(insn, 10, 6); 13819 int rn = extract32(insn, 5, 5); 13820 int rd = extract32(insn, 0, 5); 13821 13822 if (!dc_isar_feature(aa64_sha3, s)) { 13823 unallocated_encoding(s); 13824 return; 13825 } 13826 13827 if (!fp_access_check(s)) { 13828 return; 13829 } 13830 13831 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13832 vec_full_reg_offset(s, rn), 13833 vec_full_reg_offset(s, rm), imm6, 16, 13834 vec_full_reg_size(s)); 13835 } 13836 13837 /* Crypto three-reg imm2 13838 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13839 * +-----------------------+------+-----+------+--------+------+------+ 13840 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13841 * +-----------------------+------+-----+------+--------+------+------+ 13842 */ 13843 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13844 { 13845 static gen_helper_gvec_3 * const fns[4] = { 13846 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13847 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13848 }; 13849 int opcode = extract32(insn, 10, 2); 13850 int imm2 = extract32(insn, 12, 2); 13851 int rm = extract32(insn, 16, 5); 13852 int rn = extract32(insn, 5, 5); 13853 int rd = extract32(insn, 0, 5); 13854 13855 if (!dc_isar_feature(aa64_sm3, s)) { 13856 unallocated_encoding(s); 13857 return; 13858 } 13859 13860 if (!fp_access_check(s)) { 13861 return; 13862 } 13863 13864 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13865 } 13866 13867 /* C3.6 Data processing - SIMD, inc Crypto 13868 * 13869 * As the decode gets a little complex we are using a table based 13870 * approach for this part of the decode. 13871 */ 13872 static const AArch64DecodeTable data_proc_simd[] = { 13873 /* pattern , mask , fn */ 13874 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13875 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13876 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13877 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13878 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13879 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13880 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13881 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13882 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13883 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13884 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13885 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13886 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13887 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13888 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13889 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13890 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13891 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13892 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13893 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13894 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13895 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13896 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13897 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13898 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13899 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13900 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13901 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13902 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13903 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13904 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13905 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13906 { 0x00000000, 0x00000000, NULL } 13907 }; 13908 13909 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13910 { 13911 /* Note that this is called with all non-FP cases from 13912 * table C3-6 so it must UNDEF for entries not specifically 13913 * allocated to instructions in that table. 13914 */ 13915 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13916 if (fn) { 13917 fn(s, insn); 13918 } else { 13919 unallocated_encoding(s); 13920 } 13921 } 13922 13923 /* C3.6 Data processing - SIMD and floating point */ 13924 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13925 { 13926 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13927 disas_data_proc_fp(s, insn); 13928 } else { 13929 /* SIMD, including crypto */ 13930 disas_data_proc_simd(s, insn); 13931 } 13932 } 13933 13934 static bool trans_OK(DisasContext *s, arg_OK *a) 13935 { 13936 return true; 13937 } 13938 13939 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13940 { 13941 s->is_nonstreaming = true; 13942 return true; 13943 } 13944 13945 /** 13946 * is_guarded_page: 13947 * @env: The cpu environment 13948 * @s: The DisasContext 13949 * 13950 * Return true if the page is guarded. 13951 */ 13952 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13953 { 13954 uint64_t addr = s->base.pc_first; 13955 #ifdef CONFIG_USER_ONLY 13956 return page_get_flags(addr) & PAGE_BTI; 13957 #else 13958 CPUTLBEntryFull *full; 13959 void *host; 13960 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13961 int flags; 13962 13963 /* 13964 * We test this immediately after reading an insn, which means 13965 * that the TLB entry must be present and valid, and thus this 13966 * access will never raise an exception. 13967 */ 13968 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13969 false, &host, &full, 0); 13970 assert(!(flags & TLB_INVALID_MASK)); 13971 13972 return full->guarded; 13973 #endif 13974 } 13975 13976 /** 13977 * btype_destination_ok: 13978 * @insn: The instruction at the branch destination 13979 * @bt: SCTLR_ELx.BT 13980 * @btype: PSTATE.BTYPE, and is non-zero 13981 * 13982 * On a guarded page, there are a limited number of insns 13983 * that may be present at the branch target: 13984 * - branch target identifiers, 13985 * - paciasp, pacibsp, 13986 * - BRK insn 13987 * - HLT insn 13988 * Anything else causes a Branch Target Exception. 13989 * 13990 * Return true if the branch is compatible, false to raise BTITRAP. 13991 */ 13992 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13993 { 13994 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13995 /* HINT space */ 13996 switch (extract32(insn, 5, 7)) { 13997 case 0b011001: /* PACIASP */ 13998 case 0b011011: /* PACIBSP */ 13999 /* 14000 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14001 * with btype == 3. Otherwise all btype are ok. 14002 */ 14003 return !bt || btype != 3; 14004 case 0b100000: /* BTI */ 14005 /* Not compatible with any btype. */ 14006 return false; 14007 case 0b100010: /* BTI c */ 14008 /* Not compatible with btype == 3 */ 14009 return btype != 3; 14010 case 0b100100: /* BTI j */ 14011 /* Not compatible with btype == 2 */ 14012 return btype != 2; 14013 case 0b100110: /* BTI jc */ 14014 /* Compatible with any btype. */ 14015 return true; 14016 } 14017 } else { 14018 switch (insn & 0xffe0001fu) { 14019 case 0xd4200000u: /* BRK */ 14020 case 0xd4400000u: /* HLT */ 14021 /* Give priority to the breakpoint exception. */ 14022 return true; 14023 } 14024 } 14025 return false; 14026 } 14027 14028 /* C3.1 A64 instruction index by encoding */ 14029 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14030 { 14031 switch (extract32(insn, 25, 4)) { 14032 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14033 disas_b_exc_sys(s, insn); 14034 break; 14035 case 0x4: 14036 case 0x6: 14037 case 0xc: 14038 case 0xe: /* Loads and stores */ 14039 disas_ldst(s, insn); 14040 break; 14041 case 0x5: 14042 case 0xd: /* Data processing - register */ 14043 disas_data_proc_reg(s, insn); 14044 break; 14045 case 0x7: 14046 case 0xf: /* Data processing - SIMD and floating point */ 14047 disas_data_proc_simd_fp(s, insn); 14048 break; 14049 default: 14050 unallocated_encoding(s); 14051 break; 14052 } 14053 } 14054 14055 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14056 CPUState *cpu) 14057 { 14058 DisasContext *dc = container_of(dcbase, DisasContext, base); 14059 CPUARMState *env = cpu->env_ptr; 14060 ARMCPU *arm_cpu = env_archcpu(env); 14061 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14062 int bound, core_mmu_idx; 14063 14064 dc->isar = &arm_cpu->isar; 14065 dc->condjmp = 0; 14066 dc->pc_save = dc->base.pc_first; 14067 dc->aarch64 = true; 14068 dc->thumb = false; 14069 dc->sctlr_b = 0; 14070 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14071 dc->condexec_mask = 0; 14072 dc->condexec_cond = 0; 14073 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14074 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14075 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14076 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14077 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14078 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14079 #if !defined(CONFIG_USER_ONLY) 14080 dc->user = (dc->current_el == 0); 14081 #endif 14082 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14083 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14084 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14085 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14086 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14087 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14088 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14089 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14090 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14091 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14092 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14093 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14094 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14095 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14096 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14097 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14098 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14099 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14100 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14101 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14102 dc->vec_len = 0; 14103 dc->vec_stride = 0; 14104 dc->cp_regs = arm_cpu->cp_regs; 14105 dc->features = env->features; 14106 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14107 14108 #ifdef CONFIG_USER_ONLY 14109 /* In sve_probe_page, we assume TBI is enabled. */ 14110 tcg_debug_assert(dc->tbid & 1); 14111 #endif 14112 14113 /* Single step state. The code-generation logic here is: 14114 * SS_ACTIVE == 0: 14115 * generate code with no special handling for single-stepping (except 14116 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14117 * this happens anyway because those changes are all system register or 14118 * PSTATE writes). 14119 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14120 * emit code for one insn 14121 * emit code to clear PSTATE.SS 14122 * emit code to generate software step exception for completed step 14123 * end TB (as usual for having generated an exception) 14124 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14125 * emit code to generate a software step exception 14126 * end the TB 14127 */ 14128 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14129 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14130 dc->is_ldex = false; 14131 14132 /* Bound the number of insns to execute to those left on the page. */ 14133 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14134 14135 /* If architectural single step active, limit to 1. */ 14136 if (dc->ss_active) { 14137 bound = 1; 14138 } 14139 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14140 } 14141 14142 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14143 { 14144 } 14145 14146 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14147 { 14148 DisasContext *dc = container_of(dcbase, DisasContext, base); 14149 target_ulong pc_arg = dc->base.pc_next; 14150 14151 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14152 pc_arg &= ~TARGET_PAGE_MASK; 14153 } 14154 tcg_gen_insn_start(pc_arg, 0, 0); 14155 dc->insn_start = tcg_last_op(); 14156 } 14157 14158 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14159 { 14160 DisasContext *s = container_of(dcbase, DisasContext, base); 14161 CPUARMState *env = cpu->env_ptr; 14162 uint64_t pc = s->base.pc_next; 14163 uint32_t insn; 14164 14165 /* Singlestep exceptions have the highest priority. */ 14166 if (s->ss_active && !s->pstate_ss) { 14167 /* Singlestep state is Active-pending. 14168 * If we're in this state at the start of a TB then either 14169 * a) we just took an exception to an EL which is being debugged 14170 * and this is the first insn in the exception handler 14171 * b) debug exceptions were masked and we just unmasked them 14172 * without changing EL (eg by clearing PSTATE.D) 14173 * In either case we're going to take a swstep exception in the 14174 * "did not step an insn" case, and so the syndrome ISV and EX 14175 * bits should be zero. 14176 */ 14177 assert(s->base.num_insns == 1); 14178 gen_swstep_exception(s, 0, 0); 14179 s->base.is_jmp = DISAS_NORETURN; 14180 s->base.pc_next = pc + 4; 14181 return; 14182 } 14183 14184 if (pc & 3) { 14185 /* 14186 * PC alignment fault. This has priority over the instruction abort 14187 * that we would receive from a translation fault via arm_ldl_code. 14188 * This should only be possible after an indirect branch, at the 14189 * start of the TB. 14190 */ 14191 assert(s->base.num_insns == 1); 14192 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14193 s->base.is_jmp = DISAS_NORETURN; 14194 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14195 return; 14196 } 14197 14198 s->pc_curr = pc; 14199 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14200 s->insn = insn; 14201 s->base.pc_next = pc + 4; 14202 14203 s->fp_access_checked = false; 14204 s->sve_access_checked = false; 14205 14206 if (s->pstate_il) { 14207 /* 14208 * Illegal execution state. This has priority over BTI 14209 * exceptions, but comes after instruction abort exceptions. 14210 */ 14211 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14212 return; 14213 } 14214 14215 if (dc_isar_feature(aa64_bti, s)) { 14216 if (s->base.num_insns == 1) { 14217 /* 14218 * At the first insn of the TB, compute s->guarded_page. 14219 * We delayed computing this until successfully reading 14220 * the first insn of the TB, above. This (mostly) ensures 14221 * that the softmmu tlb entry has been populated, and the 14222 * page table GP bit is available. 14223 * 14224 * Note that we need to compute this even if btype == 0, 14225 * because this value is used for BR instructions later 14226 * where ENV is not available. 14227 */ 14228 s->guarded_page = is_guarded_page(env, s); 14229 14230 /* First insn can have btype set to non-zero. */ 14231 tcg_debug_assert(s->btype >= 0); 14232 14233 /* 14234 * Note that the Branch Target Exception has fairly high 14235 * priority -- below debugging exceptions but above most 14236 * everything else. This allows us to handle this now 14237 * instead of waiting until the insn is otherwise decoded. 14238 */ 14239 if (s->btype != 0 14240 && s->guarded_page 14241 && !btype_destination_ok(insn, s->bt, s->btype)) { 14242 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14243 return; 14244 } 14245 } else { 14246 /* Not the first insn: btype must be 0. */ 14247 tcg_debug_assert(s->btype == 0); 14248 } 14249 } 14250 14251 s->is_nonstreaming = false; 14252 if (s->sme_trap_nonstreaming) { 14253 disas_sme_fa64(s, insn); 14254 } 14255 14256 if (!disas_a64(s, insn) && 14257 !disas_sme(s, insn) && 14258 !disas_sve(s, insn)) { 14259 disas_a64_legacy(s, insn); 14260 } 14261 14262 /* 14263 * After execution of most insns, btype is reset to 0. 14264 * Note that we set btype == -1 when the insn sets btype. 14265 */ 14266 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14267 reset_btype(s); 14268 } 14269 } 14270 14271 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14272 { 14273 DisasContext *dc = container_of(dcbase, DisasContext, base); 14274 14275 if (unlikely(dc->ss_active)) { 14276 /* Note that this means single stepping WFI doesn't halt the CPU. 14277 * For conditional branch insns this is harmless unreachable code as 14278 * gen_goto_tb() has already handled emitting the debug exception 14279 * (and thus a tb-jump is not possible when singlestepping). 14280 */ 14281 switch (dc->base.is_jmp) { 14282 default: 14283 gen_a64_update_pc(dc, 4); 14284 /* fall through */ 14285 case DISAS_EXIT: 14286 case DISAS_JUMP: 14287 gen_step_complete_exception(dc); 14288 break; 14289 case DISAS_NORETURN: 14290 break; 14291 } 14292 } else { 14293 switch (dc->base.is_jmp) { 14294 case DISAS_NEXT: 14295 case DISAS_TOO_MANY: 14296 gen_goto_tb(dc, 1, 4); 14297 break; 14298 default: 14299 case DISAS_UPDATE_EXIT: 14300 gen_a64_update_pc(dc, 4); 14301 /* fall through */ 14302 case DISAS_EXIT: 14303 tcg_gen_exit_tb(NULL, 0); 14304 break; 14305 case DISAS_UPDATE_NOCHAIN: 14306 gen_a64_update_pc(dc, 4); 14307 /* fall through */ 14308 case DISAS_JUMP: 14309 tcg_gen_lookup_and_goto_ptr(); 14310 break; 14311 case DISAS_NORETURN: 14312 case DISAS_SWI: 14313 break; 14314 case DISAS_WFE: 14315 gen_a64_update_pc(dc, 4); 14316 gen_helper_wfe(cpu_env); 14317 break; 14318 case DISAS_YIELD: 14319 gen_a64_update_pc(dc, 4); 14320 gen_helper_yield(cpu_env); 14321 break; 14322 case DISAS_WFI: 14323 /* 14324 * This is a special case because we don't want to just halt 14325 * the CPU if trying to debug across a WFI. 14326 */ 14327 gen_a64_update_pc(dc, 4); 14328 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14329 /* 14330 * The helper doesn't necessarily throw an exception, but we 14331 * must go back to the main loop to check for interrupts anyway. 14332 */ 14333 tcg_gen_exit_tb(NULL, 0); 14334 break; 14335 } 14336 } 14337 } 14338 14339 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14340 CPUState *cpu, FILE *logfile) 14341 { 14342 DisasContext *dc = container_of(dcbase, DisasContext, base); 14343 14344 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14345 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14346 } 14347 14348 const TranslatorOps aarch64_translator_ops = { 14349 .init_disas_context = aarch64_tr_init_disas_context, 14350 .tb_start = aarch64_tr_tb_start, 14351 .insn_start = aarch64_tr_insn_start, 14352 .translate_insn = aarch64_tr_translate_insn, 14353 .tb_stop = aarch64_tr_tb_stop, 14354 .disas_log = aarch64_tr_disas_log, 14355 }; 14356