1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 memop = finalize_memop(s, memop); 842 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 843 844 if (iss_valid) { 845 uint32_t syn; 846 847 syn = syn_data_abort_with_iss(0, 848 (memop & MO_SIZE), 849 false, 850 iss_srt, 851 iss_sf, 852 iss_ar, 853 0, 0, 0, 0, 0, false); 854 disas_set_insn_syndrome(s, syn); 855 } 856 } 857 858 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 859 TCGv_i64 tcg_addr, MemOp memop, 860 bool iss_valid, 861 unsigned int iss_srt, 862 bool iss_sf, bool iss_ar) 863 { 864 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 865 iss_valid, iss_srt, iss_sf, iss_ar); 866 } 867 868 /* 869 * Load from memory to GPR register 870 */ 871 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 872 MemOp memop, bool extend, int memidx, 873 bool iss_valid, unsigned int iss_srt, 874 bool iss_sf, bool iss_ar) 875 { 876 memop = finalize_memop(s, memop); 877 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 878 879 if (extend && (memop & MO_SIGN)) { 880 g_assert((memop & MO_SIZE) <= MO_32); 881 tcg_gen_ext32u_i64(dest, dest); 882 } 883 884 if (iss_valid) { 885 uint32_t syn; 886 887 syn = syn_data_abort_with_iss(0, 888 (memop & MO_SIZE), 889 (memop & MO_SIGN) != 0, 890 iss_srt, 891 iss_sf, 892 iss_ar, 893 0, 0, 0, 0, 0, false); 894 disas_set_insn_syndrome(s, syn); 895 } 896 } 897 898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 899 MemOp memop, bool extend, 900 bool iss_valid, unsigned int iss_srt, 901 bool iss_sf, bool iss_ar) 902 { 903 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 904 iss_valid, iss_srt, iss_sf, iss_ar); 905 } 906 907 /* 908 * Store from FP register to memory 909 */ 910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 911 { 912 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 913 TCGv_i64 tmplo = tcg_temp_new_i64(); 914 MemOp mop = finalize_memop_asimd(s, size); 915 916 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 917 918 if (size < MO_128) { 919 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 920 } else { 921 TCGv_i64 tmphi = tcg_temp_new_i64(); 922 TCGv_i128 t16 = tcg_temp_new_i128(); 923 924 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 925 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 926 927 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 928 } 929 } 930 931 /* 932 * Load from memory to FP register 933 */ 934 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 935 { 936 /* This always zero-extends and writes to a full 128 bit wide vector */ 937 TCGv_i64 tmplo = tcg_temp_new_i64(); 938 TCGv_i64 tmphi = NULL; 939 MemOp mop = finalize_memop_asimd(s, size); 940 941 if (size < MO_128) { 942 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 943 } else { 944 TCGv_i128 t16 = tcg_temp_new_i128(); 945 946 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 947 948 tmphi = tcg_temp_new_i64(); 949 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 950 } 951 952 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 953 954 if (tmphi) { 955 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 956 } 957 clear_vec_high(s, tmphi != NULL, destidx); 958 } 959 960 /* 961 * Vector load/store helpers. 962 * 963 * The principal difference between this and a FP load is that we don't 964 * zero extend as we are filling a partial chunk of the vector register. 965 * These functions don't support 128 bit loads/stores, which would be 966 * normal load/store operations. 967 * 968 * The _i32 versions are useful when operating on 32 bit quantities 969 * (eg for floating point single or using Neon helper functions). 970 */ 971 972 /* Get value of an element within a vector register */ 973 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 974 int element, MemOp memop) 975 { 976 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 977 switch ((unsigned)memop) { 978 case MO_8: 979 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_16: 982 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_32: 985 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_8|MO_SIGN: 988 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_16|MO_SIGN: 991 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_32|MO_SIGN: 994 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 case MO_64: 997 case MO_64|MO_SIGN: 998 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 999 break; 1000 default: 1001 g_assert_not_reached(); 1002 } 1003 } 1004 1005 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1006 int element, MemOp memop) 1007 { 1008 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1009 switch (memop) { 1010 case MO_8: 1011 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_16: 1014 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_8|MO_SIGN: 1017 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_16|MO_SIGN: 1020 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 case MO_32: 1023 case MO_32|MO_SIGN: 1024 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1025 break; 1026 default: 1027 g_assert_not_reached(); 1028 } 1029 } 1030 1031 /* Set value of an element within a vector register */ 1032 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1033 int element, MemOp memop) 1034 { 1035 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1036 switch (memop) { 1037 case MO_8: 1038 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_16: 1041 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_32: 1044 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 case MO_64: 1047 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1048 break; 1049 default: 1050 g_assert_not_reached(); 1051 } 1052 } 1053 1054 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1055 int destidx, int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1058 switch (memop) { 1059 case MO_8: 1060 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1067 break; 1068 default: 1069 g_assert_not_reached(); 1070 } 1071 } 1072 1073 /* Store from vector register to memory */ 1074 static void do_vec_st(DisasContext *s, int srcidx, int element, 1075 TCGv_i64 tcg_addr, MemOp mop) 1076 { 1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1078 1079 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1080 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1081 } 1082 1083 /* Load from memory to vector register */ 1084 static void do_vec_ld(DisasContext *s, int destidx, int element, 1085 TCGv_i64 tcg_addr, MemOp mop) 1086 { 1087 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1088 1089 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1090 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1091 } 1092 1093 /* Check that FP/Neon access is enabled. If it is, return 1094 * true. If not, emit code to generate an appropriate exception, 1095 * and return false; the caller should not emit any code for 1096 * the instruction. Note that this check must happen after all 1097 * unallocated-encoding checks (otherwise the syndrome information 1098 * for the resulting exception will be incorrect). 1099 */ 1100 static bool fp_access_check_only(DisasContext *s) 1101 { 1102 if (s->fp_excp_el) { 1103 assert(!s->fp_access_checked); 1104 s->fp_access_checked = true; 1105 1106 gen_exception_insn_el(s, 0, EXCP_UDEF, 1107 syn_fp_access_trap(1, 0xe, false, 0), 1108 s->fp_excp_el); 1109 return false; 1110 } 1111 s->fp_access_checked = true; 1112 return true; 1113 } 1114 1115 static bool fp_access_check(DisasContext *s) 1116 { 1117 if (!fp_access_check_only(s)) { 1118 return false; 1119 } 1120 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1121 gen_exception_insn(s, 0, EXCP_UDEF, 1122 syn_smetrap(SME_ET_Streaming, false)); 1123 return false; 1124 } 1125 return true; 1126 } 1127 1128 /* 1129 * Check that SVE access is enabled. If it is, return true. 1130 * If not, emit code to generate an appropriate exception and return false. 1131 * This function corresponds to CheckSVEEnabled(). 1132 */ 1133 bool sve_access_check(DisasContext *s) 1134 { 1135 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1136 assert(dc_isar_feature(aa64_sme, s)); 1137 if (!sme_sm_enabled_check(s)) { 1138 goto fail_exit; 1139 } 1140 } else if (s->sve_excp_el) { 1141 gen_exception_insn_el(s, 0, EXCP_UDEF, 1142 syn_sve_access_trap(), s->sve_excp_el); 1143 goto fail_exit; 1144 } 1145 s->sve_access_checked = true; 1146 return fp_access_check(s); 1147 1148 fail_exit: 1149 /* Assert that we only raise one exception per instruction. */ 1150 assert(!s->sve_access_checked); 1151 s->sve_access_checked = true; 1152 return false; 1153 } 1154 1155 /* 1156 * Check that SME access is enabled, raise an exception if not. 1157 * Note that this function corresponds to CheckSMEAccess and is 1158 * only used directly for cpregs. 1159 */ 1160 static bool sme_access_check(DisasContext *s) 1161 { 1162 if (s->sme_excp_el) { 1163 gen_exception_insn_el(s, 0, EXCP_UDEF, 1164 syn_smetrap(SME_ET_AccessTrap, false), 1165 s->sme_excp_el); 1166 return false; 1167 } 1168 return true; 1169 } 1170 1171 /* This function corresponds to CheckSMEEnabled. */ 1172 bool sme_enabled_check(DisasContext *s) 1173 { 1174 /* 1175 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1176 * to be zero when fp_excp_el has priority. This is because we need 1177 * sme_excp_el by itself for cpregs access checks. 1178 */ 1179 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1180 s->fp_access_checked = true; 1181 return sme_access_check(s); 1182 } 1183 return fp_access_check_only(s); 1184 } 1185 1186 /* Common subroutine for CheckSMEAnd*Enabled. */ 1187 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1188 { 1189 if (!sme_enabled_check(s)) { 1190 return false; 1191 } 1192 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1193 gen_exception_insn(s, 0, EXCP_UDEF, 1194 syn_smetrap(SME_ET_NotStreaming, false)); 1195 return false; 1196 } 1197 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1198 gen_exception_insn(s, 0, EXCP_UDEF, 1199 syn_smetrap(SME_ET_InactiveZA, false)); 1200 return false; 1201 } 1202 return true; 1203 } 1204 1205 /* 1206 * This utility function is for doing register extension with an 1207 * optional shift. You will likely want to pass a temporary for the 1208 * destination register. See DecodeRegExtend() in the ARM ARM. 1209 */ 1210 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1211 int option, unsigned int shift) 1212 { 1213 int extsize = extract32(option, 0, 2); 1214 bool is_signed = extract32(option, 2, 1); 1215 1216 if (is_signed) { 1217 switch (extsize) { 1218 case 0: 1219 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1220 break; 1221 case 1: 1222 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1223 break; 1224 case 2: 1225 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1226 break; 1227 case 3: 1228 tcg_gen_mov_i64(tcg_out, tcg_in); 1229 break; 1230 } 1231 } else { 1232 switch (extsize) { 1233 case 0: 1234 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1235 break; 1236 case 1: 1237 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1238 break; 1239 case 2: 1240 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1241 break; 1242 case 3: 1243 tcg_gen_mov_i64(tcg_out, tcg_in); 1244 break; 1245 } 1246 } 1247 1248 if (shift) { 1249 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1250 } 1251 } 1252 1253 static inline void gen_check_sp_alignment(DisasContext *s) 1254 { 1255 /* The AArch64 architecture mandates that (if enabled via PSTATE 1256 * or SCTLR bits) there is a check that SP is 16-aligned on every 1257 * SP-relative load or store (with an exception generated if it is not). 1258 * In line with general QEMU practice regarding misaligned accesses, 1259 * we omit these checks for the sake of guest program performance. 1260 * This function is provided as a hook so we can more easily add these 1261 * checks in future (possibly as a "favour catching guest program bugs 1262 * over speed" user selectable option). 1263 */ 1264 } 1265 1266 /* 1267 * This provides a simple table based table lookup decoder. It is 1268 * intended to be used when the relevant bits for decode are too 1269 * awkwardly placed and switch/if based logic would be confusing and 1270 * deeply nested. Since it's a linear search through the table, tables 1271 * should be kept small. 1272 * 1273 * It returns the first handler where insn & mask == pattern, or 1274 * NULL if there is no match. 1275 * The table is terminated by an empty mask (i.e. 0) 1276 */ 1277 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1278 uint32_t insn) 1279 { 1280 const AArch64DecodeTable *tptr = table; 1281 1282 while (tptr->mask) { 1283 if ((insn & tptr->mask) == tptr->pattern) { 1284 return tptr->disas_fn; 1285 } 1286 tptr++; 1287 } 1288 return NULL; 1289 } 1290 1291 /* 1292 * The instruction disassembly implemented here matches 1293 * the instruction encoding classifications in chapter C4 1294 * of the ARM Architecture Reference Manual (DDI0487B_a); 1295 * classification names and decode diagrams here should generally 1296 * match up with those in the manual. 1297 */ 1298 1299 static bool trans_B(DisasContext *s, arg_i *a) 1300 { 1301 reset_btype(s); 1302 gen_goto_tb(s, 0, a->imm); 1303 return true; 1304 } 1305 1306 static bool trans_BL(DisasContext *s, arg_i *a) 1307 { 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 reset_btype(s); 1310 gen_goto_tb(s, 0, a->imm); 1311 return true; 1312 } 1313 1314 1315 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1316 { 1317 DisasLabel match; 1318 TCGv_i64 tcg_cmp; 1319 1320 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1321 reset_btype(s); 1322 1323 match = gen_disas_label(s); 1324 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1325 tcg_cmp, 0, match.label); 1326 gen_goto_tb(s, 0, 4); 1327 set_disas_label(s, match); 1328 gen_goto_tb(s, 1, a->imm); 1329 return true; 1330 } 1331 1332 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1333 { 1334 DisasLabel match; 1335 TCGv_i64 tcg_cmp; 1336 1337 tcg_cmp = tcg_temp_new_i64(); 1338 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1339 1340 reset_btype(s); 1341 1342 match = gen_disas_label(s); 1343 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1344 tcg_cmp, 0, match.label); 1345 gen_goto_tb(s, 0, 4); 1346 set_disas_label(s, match); 1347 gen_goto_tb(s, 1, a->imm); 1348 return true; 1349 } 1350 1351 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1352 { 1353 reset_btype(s); 1354 if (a->cond < 0x0e) { 1355 /* genuinely conditional branches */ 1356 DisasLabel match = gen_disas_label(s); 1357 arm_gen_test_cc(a->cond, match.label); 1358 gen_goto_tb(s, 0, 4); 1359 set_disas_label(s, match); 1360 gen_goto_tb(s, 1, a->imm); 1361 } else { 1362 /* 0xe and 0xf are both "always" conditions */ 1363 gen_goto_tb(s, 0, a->imm); 1364 } 1365 return true; 1366 } 1367 1368 static void set_btype_for_br(DisasContext *s, int rn) 1369 { 1370 if (dc_isar_feature(aa64_bti, s)) { 1371 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1372 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1373 } 1374 } 1375 1376 static void set_btype_for_blr(DisasContext *s) 1377 { 1378 if (dc_isar_feature(aa64_bti, s)) { 1379 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1380 set_btype(s, 2); 1381 } 1382 } 1383 1384 static bool trans_BR(DisasContext *s, arg_r *a) 1385 { 1386 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1387 set_btype_for_br(s, a->rn); 1388 s->base.is_jmp = DISAS_JUMP; 1389 return true; 1390 } 1391 1392 static bool trans_BLR(DisasContext *s, arg_r *a) 1393 { 1394 TCGv_i64 dst = cpu_reg(s, a->rn); 1395 TCGv_i64 lr = cpu_reg(s, 30); 1396 if (dst == lr) { 1397 TCGv_i64 tmp = tcg_temp_new_i64(); 1398 tcg_gen_mov_i64(tmp, dst); 1399 dst = tmp; 1400 } 1401 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1402 gen_a64_set_pc(s, dst); 1403 set_btype_for_blr(s); 1404 s->base.is_jmp = DISAS_JUMP; 1405 return true; 1406 } 1407 1408 static bool trans_RET(DisasContext *s, arg_r *a) 1409 { 1410 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1411 s->base.is_jmp = DISAS_JUMP; 1412 return true; 1413 } 1414 1415 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1416 TCGv_i64 modifier, bool use_key_a) 1417 { 1418 TCGv_i64 truedst; 1419 /* 1420 * Return the branch target for a BRAA/RETA/etc, which is either 1421 * just the destination dst, or that value with the pauth check 1422 * done and the code removed from the high bits. 1423 */ 1424 if (!s->pauth_active) { 1425 return dst; 1426 } 1427 1428 truedst = tcg_temp_new_i64(); 1429 if (use_key_a) { 1430 gen_helper_autia(truedst, cpu_env, dst, modifier); 1431 } else { 1432 gen_helper_autib(truedst, cpu_env, dst, modifier); 1433 } 1434 return truedst; 1435 } 1436 1437 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1438 { 1439 TCGv_i64 dst; 1440 1441 if (!dc_isar_feature(aa64_pauth, s)) { 1442 return false; 1443 } 1444 1445 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1446 gen_a64_set_pc(s, dst); 1447 set_btype_for_br(s, a->rn); 1448 s->base.is_jmp = DISAS_JUMP; 1449 return true; 1450 } 1451 1452 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1453 { 1454 TCGv_i64 dst, lr; 1455 1456 if (!dc_isar_feature(aa64_pauth, s)) { 1457 return false; 1458 } 1459 1460 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1461 lr = cpu_reg(s, 30); 1462 if (dst == lr) { 1463 TCGv_i64 tmp = tcg_temp_new_i64(); 1464 tcg_gen_mov_i64(tmp, dst); 1465 dst = tmp; 1466 } 1467 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1468 gen_a64_set_pc(s, dst); 1469 set_btype_for_blr(s); 1470 s->base.is_jmp = DISAS_JUMP; 1471 return true; 1472 } 1473 1474 static bool trans_RETA(DisasContext *s, arg_reta *a) 1475 { 1476 TCGv_i64 dst; 1477 1478 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1479 gen_a64_set_pc(s, dst); 1480 s->base.is_jmp = DISAS_JUMP; 1481 return true; 1482 } 1483 1484 static bool trans_BRA(DisasContext *s, arg_bra *a) 1485 { 1486 TCGv_i64 dst; 1487 1488 if (!dc_isar_feature(aa64_pauth, s)) { 1489 return false; 1490 } 1491 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1492 gen_a64_set_pc(s, dst); 1493 set_btype_for_br(s, a->rn); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1499 { 1500 TCGv_i64 dst, lr; 1501 1502 if (!dc_isar_feature(aa64_pauth, s)) { 1503 return false; 1504 } 1505 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1506 lr = cpu_reg(s, 30); 1507 if (dst == lr) { 1508 TCGv_i64 tmp = tcg_temp_new_i64(); 1509 tcg_gen_mov_i64(tmp, dst); 1510 dst = tmp; 1511 } 1512 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1513 gen_a64_set_pc(s, dst); 1514 set_btype_for_blr(s); 1515 s->base.is_jmp = DISAS_JUMP; 1516 return true; 1517 } 1518 1519 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1520 { 1521 TCGv_i64 dst; 1522 1523 if (s->current_el == 0) { 1524 return false; 1525 } 1526 if (s->fgt_eret) { 1527 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1528 return true; 1529 } 1530 dst = tcg_temp_new_i64(); 1531 tcg_gen_ld_i64(dst, cpu_env, 1532 offsetof(CPUARMState, elr_el[s->current_el])); 1533 1534 translator_io_start(&s->base); 1535 1536 gen_helper_exception_return(cpu_env, dst); 1537 /* Must exit loop to check un-masked IRQs */ 1538 s->base.is_jmp = DISAS_EXIT; 1539 return true; 1540 } 1541 1542 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1543 { 1544 TCGv_i64 dst; 1545 1546 if (!dc_isar_feature(aa64_pauth, s)) { 1547 return false; 1548 } 1549 if (s->current_el == 0) { 1550 return false; 1551 } 1552 /* The FGT trap takes precedence over an auth trap. */ 1553 if (s->fgt_eret) { 1554 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1555 return true; 1556 } 1557 dst = tcg_temp_new_i64(); 1558 tcg_gen_ld_i64(dst, cpu_env, 1559 offsetof(CPUARMState, elr_el[s->current_el])); 1560 1561 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1562 1563 translator_io_start(&s->base); 1564 1565 gen_helper_exception_return(cpu_env, dst); 1566 /* Must exit loop to check un-masked IRQs */ 1567 s->base.is_jmp = DISAS_EXIT; 1568 return true; 1569 } 1570 1571 /* HINT instruction group, including various allocated HINTs */ 1572 static void handle_hint(DisasContext *s, uint32_t insn, 1573 unsigned int op1, unsigned int op2, unsigned int crm) 1574 { 1575 unsigned int selector = crm << 3 | op2; 1576 1577 if (op1 != 3) { 1578 unallocated_encoding(s); 1579 return; 1580 } 1581 1582 switch (selector) { 1583 case 0b00000: /* NOP */ 1584 break; 1585 case 0b00011: /* WFI */ 1586 s->base.is_jmp = DISAS_WFI; 1587 break; 1588 case 0b00001: /* YIELD */ 1589 /* When running in MTTCG we don't generate jumps to the yield and 1590 * WFE helpers as it won't affect the scheduling of other vCPUs. 1591 * If we wanted to more completely model WFE/SEV so we don't busy 1592 * spin unnecessarily we would need to do something more involved. 1593 */ 1594 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1595 s->base.is_jmp = DISAS_YIELD; 1596 } 1597 break; 1598 case 0b00010: /* WFE */ 1599 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1600 s->base.is_jmp = DISAS_WFE; 1601 } 1602 break; 1603 case 0b00100: /* SEV */ 1604 case 0b00101: /* SEVL */ 1605 case 0b00110: /* DGH */ 1606 /* we treat all as NOP at least for now */ 1607 break; 1608 case 0b00111: /* XPACLRI */ 1609 if (s->pauth_active) { 1610 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1611 } 1612 break; 1613 case 0b01000: /* PACIA1716 */ 1614 if (s->pauth_active) { 1615 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1616 } 1617 break; 1618 case 0b01010: /* PACIB1716 */ 1619 if (s->pauth_active) { 1620 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1621 } 1622 break; 1623 case 0b01100: /* AUTIA1716 */ 1624 if (s->pauth_active) { 1625 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1626 } 1627 break; 1628 case 0b01110: /* AUTIB1716 */ 1629 if (s->pauth_active) { 1630 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1631 } 1632 break; 1633 case 0b10000: /* ESB */ 1634 /* Without RAS, we must implement this as NOP. */ 1635 if (dc_isar_feature(aa64_ras, s)) { 1636 /* 1637 * QEMU does not have a source of physical SErrors, 1638 * so we are only concerned with virtual SErrors. 1639 * The pseudocode in the ARM for this case is 1640 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1641 * AArch64.vESBOperation(); 1642 * Most of the condition can be evaluated at translation time. 1643 * Test for EL2 present, and defer test for SEL2 to runtime. 1644 */ 1645 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1646 gen_helper_vesb(cpu_env); 1647 } 1648 } 1649 break; 1650 case 0b11000: /* PACIAZ */ 1651 if (s->pauth_active) { 1652 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1653 tcg_constant_i64(0)); 1654 } 1655 break; 1656 case 0b11001: /* PACIASP */ 1657 if (s->pauth_active) { 1658 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1659 } 1660 break; 1661 case 0b11010: /* PACIBZ */ 1662 if (s->pauth_active) { 1663 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1664 tcg_constant_i64(0)); 1665 } 1666 break; 1667 case 0b11011: /* PACIBSP */ 1668 if (s->pauth_active) { 1669 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1670 } 1671 break; 1672 case 0b11100: /* AUTIAZ */ 1673 if (s->pauth_active) { 1674 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1675 tcg_constant_i64(0)); 1676 } 1677 break; 1678 case 0b11101: /* AUTIASP */ 1679 if (s->pauth_active) { 1680 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1681 } 1682 break; 1683 case 0b11110: /* AUTIBZ */ 1684 if (s->pauth_active) { 1685 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1686 tcg_constant_i64(0)); 1687 } 1688 break; 1689 case 0b11111: /* AUTIBSP */ 1690 if (s->pauth_active) { 1691 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1692 } 1693 break; 1694 default: 1695 /* default specified as NOP equivalent */ 1696 break; 1697 } 1698 } 1699 1700 static void gen_clrex(DisasContext *s, uint32_t insn) 1701 { 1702 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1703 } 1704 1705 /* CLREX, DSB, DMB, ISB */ 1706 static void handle_sync(DisasContext *s, uint32_t insn, 1707 unsigned int op1, unsigned int op2, unsigned int crm) 1708 { 1709 TCGBar bar; 1710 1711 if (op1 != 3) { 1712 unallocated_encoding(s); 1713 return; 1714 } 1715 1716 switch (op2) { 1717 case 2: /* CLREX */ 1718 gen_clrex(s, insn); 1719 return; 1720 case 4: /* DSB */ 1721 case 5: /* DMB */ 1722 switch (crm & 3) { 1723 case 1: /* MBReqTypes_Reads */ 1724 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1725 break; 1726 case 2: /* MBReqTypes_Writes */ 1727 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1728 break; 1729 default: /* MBReqTypes_All */ 1730 bar = TCG_BAR_SC | TCG_MO_ALL; 1731 break; 1732 } 1733 tcg_gen_mb(bar); 1734 return; 1735 case 6: /* ISB */ 1736 /* We need to break the TB after this insn to execute 1737 * a self-modified code correctly and also to take 1738 * any pending interrupts immediately. 1739 */ 1740 reset_btype(s); 1741 gen_goto_tb(s, 0, 4); 1742 return; 1743 1744 case 7: /* SB */ 1745 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1746 goto do_unallocated; 1747 } 1748 /* 1749 * TODO: There is no speculation barrier opcode for TCG; 1750 * MB and end the TB instead. 1751 */ 1752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1753 gen_goto_tb(s, 0, 4); 1754 return; 1755 1756 default: 1757 do_unallocated: 1758 unallocated_encoding(s); 1759 return; 1760 } 1761 } 1762 1763 static void gen_xaflag(void) 1764 { 1765 TCGv_i32 z = tcg_temp_new_i32(); 1766 1767 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1768 1769 /* 1770 * (!C & !Z) << 31 1771 * (!(C | Z)) << 31 1772 * ~((C | Z) << 31) 1773 * ~-(C | Z) 1774 * (C | Z) - 1 1775 */ 1776 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1777 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1778 1779 /* !(Z & C) */ 1780 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1781 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1782 1783 /* (!C & Z) << 31 -> -(Z & ~C) */ 1784 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1785 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1786 1787 /* C | Z */ 1788 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1789 } 1790 1791 static void gen_axflag(void) 1792 { 1793 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1794 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1795 1796 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1797 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1798 1799 tcg_gen_movi_i32(cpu_NF, 0); 1800 tcg_gen_movi_i32(cpu_VF, 0); 1801 } 1802 1803 /* MSR (immediate) - move immediate to processor state field */ 1804 static void handle_msr_i(DisasContext *s, uint32_t insn, 1805 unsigned int op1, unsigned int op2, unsigned int crm) 1806 { 1807 int op = op1 << 3 | op2; 1808 1809 /* End the TB by default, chaining is ok. */ 1810 s->base.is_jmp = DISAS_TOO_MANY; 1811 1812 switch (op) { 1813 case 0x00: /* CFINV */ 1814 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1815 goto do_unallocated; 1816 } 1817 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1818 s->base.is_jmp = DISAS_NEXT; 1819 break; 1820 1821 case 0x01: /* XAFlag */ 1822 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1823 goto do_unallocated; 1824 } 1825 gen_xaflag(); 1826 s->base.is_jmp = DISAS_NEXT; 1827 break; 1828 1829 case 0x02: /* AXFlag */ 1830 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1831 goto do_unallocated; 1832 } 1833 gen_axflag(); 1834 s->base.is_jmp = DISAS_NEXT; 1835 break; 1836 1837 case 0x03: /* UAO */ 1838 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1839 goto do_unallocated; 1840 } 1841 if (crm & 1) { 1842 set_pstate_bits(PSTATE_UAO); 1843 } else { 1844 clear_pstate_bits(PSTATE_UAO); 1845 } 1846 gen_rebuild_hflags(s); 1847 break; 1848 1849 case 0x04: /* PAN */ 1850 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1851 goto do_unallocated; 1852 } 1853 if (crm & 1) { 1854 set_pstate_bits(PSTATE_PAN); 1855 } else { 1856 clear_pstate_bits(PSTATE_PAN); 1857 } 1858 gen_rebuild_hflags(s); 1859 break; 1860 1861 case 0x05: /* SPSel */ 1862 if (s->current_el == 0) { 1863 goto do_unallocated; 1864 } 1865 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1866 break; 1867 1868 case 0x19: /* SSBS */ 1869 if (!dc_isar_feature(aa64_ssbs, s)) { 1870 goto do_unallocated; 1871 } 1872 if (crm & 1) { 1873 set_pstate_bits(PSTATE_SSBS); 1874 } else { 1875 clear_pstate_bits(PSTATE_SSBS); 1876 } 1877 /* Don't need to rebuild hflags since SSBS is a nop */ 1878 break; 1879 1880 case 0x1a: /* DIT */ 1881 if (!dc_isar_feature(aa64_dit, s)) { 1882 goto do_unallocated; 1883 } 1884 if (crm & 1) { 1885 set_pstate_bits(PSTATE_DIT); 1886 } else { 1887 clear_pstate_bits(PSTATE_DIT); 1888 } 1889 /* There's no need to rebuild hflags because DIT is a nop */ 1890 break; 1891 1892 case 0x1e: /* DAIFSet */ 1893 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1894 break; 1895 1896 case 0x1f: /* DAIFClear */ 1897 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1898 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1899 s->base.is_jmp = DISAS_UPDATE_EXIT; 1900 break; 1901 1902 case 0x1c: /* TCO */ 1903 if (dc_isar_feature(aa64_mte, s)) { 1904 /* Full MTE is enabled -- set the TCO bit as directed. */ 1905 if (crm & 1) { 1906 set_pstate_bits(PSTATE_TCO); 1907 } else { 1908 clear_pstate_bits(PSTATE_TCO); 1909 } 1910 gen_rebuild_hflags(s); 1911 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1912 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1913 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1914 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1915 s->base.is_jmp = DISAS_NEXT; 1916 } else { 1917 goto do_unallocated; 1918 } 1919 break; 1920 1921 case 0x1b: /* SVCR* */ 1922 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1923 goto do_unallocated; 1924 } 1925 if (sme_access_check(s)) { 1926 int old = s->pstate_sm | (s->pstate_za << 1); 1927 int new = (crm & 1) * 3; 1928 int msk = (crm >> 1) & 3; 1929 1930 if ((old ^ new) & msk) { 1931 /* At least one bit changes. */ 1932 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1933 tcg_constant_i32(msk)); 1934 } else { 1935 s->base.is_jmp = DISAS_NEXT; 1936 } 1937 } 1938 break; 1939 1940 default: 1941 do_unallocated: 1942 unallocated_encoding(s); 1943 return; 1944 } 1945 } 1946 1947 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1948 { 1949 TCGv_i32 tmp = tcg_temp_new_i32(); 1950 TCGv_i32 nzcv = tcg_temp_new_i32(); 1951 1952 /* build bit 31, N */ 1953 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1954 /* build bit 30, Z */ 1955 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1956 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1957 /* build bit 29, C */ 1958 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1959 /* build bit 28, V */ 1960 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1961 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1962 /* generate result */ 1963 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1964 } 1965 1966 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1967 { 1968 TCGv_i32 nzcv = tcg_temp_new_i32(); 1969 1970 /* take NZCV from R[t] */ 1971 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1972 1973 /* bit 31, N */ 1974 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1975 /* bit 30, Z */ 1976 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1977 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1978 /* bit 29, C */ 1979 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1980 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1981 /* bit 28, V */ 1982 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1983 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1984 } 1985 1986 static void gen_sysreg_undef(DisasContext *s, bool isread, 1987 uint8_t op0, uint8_t op1, uint8_t op2, 1988 uint8_t crn, uint8_t crm, uint8_t rt) 1989 { 1990 /* 1991 * Generate code to emit an UNDEF with correct syndrome 1992 * information for a failed system register access. 1993 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1994 * but if FEAT_IDST is implemented then read accesses to registers 1995 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1996 * syndrome. 1997 */ 1998 uint32_t syndrome; 1999 2000 if (isread && dc_isar_feature(aa64_ids, s) && 2001 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2002 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2003 } else { 2004 syndrome = syn_uncategorized(); 2005 } 2006 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2007 } 2008 2009 /* MRS - move from system register 2010 * MSR (register) - move to system register 2011 * SYS 2012 * SYSL 2013 * These are all essentially the same insn in 'read' and 'write' 2014 * versions, with varying op0 fields. 2015 */ 2016 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2017 unsigned int op0, unsigned int op1, unsigned int op2, 2018 unsigned int crn, unsigned int crm, unsigned int rt) 2019 { 2020 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2021 crn, crm, op0, op1, op2); 2022 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2023 bool need_exit_tb = false; 2024 TCGv_ptr tcg_ri = NULL; 2025 TCGv_i64 tcg_rt; 2026 2027 if (!ri) { 2028 /* Unknown register; this might be a guest error or a QEMU 2029 * unimplemented feature. 2030 */ 2031 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2032 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2033 isread ? "read" : "write", op0, op1, crn, crm, op2); 2034 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2035 return; 2036 } 2037 2038 /* Check access permissions */ 2039 if (!cp_access_ok(s->current_el, ri, isread)) { 2040 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2041 return; 2042 } 2043 2044 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2045 /* Emit code to perform further access permissions checks at 2046 * runtime; this may result in an exception. 2047 */ 2048 uint32_t syndrome; 2049 2050 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2051 gen_a64_update_pc(s, 0); 2052 tcg_ri = tcg_temp_new_ptr(); 2053 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2054 tcg_constant_i32(key), 2055 tcg_constant_i32(syndrome), 2056 tcg_constant_i32(isread)); 2057 } else if (ri->type & ARM_CP_RAISES_EXC) { 2058 /* 2059 * The readfn or writefn might raise an exception; 2060 * synchronize the CPU state in case it does. 2061 */ 2062 gen_a64_update_pc(s, 0); 2063 } 2064 2065 /* Handle special cases first */ 2066 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2067 case 0: 2068 break; 2069 case ARM_CP_NOP: 2070 return; 2071 case ARM_CP_NZCV: 2072 tcg_rt = cpu_reg(s, rt); 2073 if (isread) { 2074 gen_get_nzcv(tcg_rt); 2075 } else { 2076 gen_set_nzcv(tcg_rt); 2077 } 2078 return; 2079 case ARM_CP_CURRENTEL: 2080 /* Reads as current EL value from pstate, which is 2081 * guaranteed to be constant by the tb flags. 2082 */ 2083 tcg_rt = cpu_reg(s, rt); 2084 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2085 return; 2086 case ARM_CP_DC_ZVA: 2087 /* Writes clear the aligned block of memory which rt points into. */ 2088 if (s->mte_active[0]) { 2089 int desc = 0; 2090 2091 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2092 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2093 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2094 2095 tcg_rt = tcg_temp_new_i64(); 2096 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2097 tcg_constant_i32(desc), cpu_reg(s, rt)); 2098 } else { 2099 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2100 } 2101 gen_helper_dc_zva(cpu_env, tcg_rt); 2102 return; 2103 case ARM_CP_DC_GVA: 2104 { 2105 TCGv_i64 clean_addr, tag; 2106 2107 /* 2108 * DC_GVA, like DC_ZVA, requires that we supply the original 2109 * pointer for an invalid page. Probe that address first. 2110 */ 2111 tcg_rt = cpu_reg(s, rt); 2112 clean_addr = clean_data_tbi(s, tcg_rt); 2113 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2114 2115 if (s->ata) { 2116 /* Extract the tag from the register to match STZGM. */ 2117 tag = tcg_temp_new_i64(); 2118 tcg_gen_shri_i64(tag, tcg_rt, 56); 2119 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2120 } 2121 } 2122 return; 2123 case ARM_CP_DC_GZVA: 2124 { 2125 TCGv_i64 clean_addr, tag; 2126 2127 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2128 tcg_rt = cpu_reg(s, rt); 2129 clean_addr = clean_data_tbi(s, tcg_rt); 2130 gen_helper_dc_zva(cpu_env, clean_addr); 2131 2132 if (s->ata) { 2133 /* Extract the tag from the register to match STZGM. */ 2134 tag = tcg_temp_new_i64(); 2135 tcg_gen_shri_i64(tag, tcg_rt, 56); 2136 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2137 } 2138 } 2139 return; 2140 default: 2141 g_assert_not_reached(); 2142 } 2143 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2144 return; 2145 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2146 return; 2147 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2148 return; 2149 } 2150 2151 if (ri->type & ARM_CP_IO) { 2152 /* I/O operations must end the TB here (whether read or write) */ 2153 need_exit_tb = translator_io_start(&s->base); 2154 } 2155 2156 tcg_rt = cpu_reg(s, rt); 2157 2158 if (isread) { 2159 if (ri->type & ARM_CP_CONST) { 2160 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2161 } else if (ri->readfn) { 2162 if (!tcg_ri) { 2163 tcg_ri = gen_lookup_cp_reg(key); 2164 } 2165 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2166 } else { 2167 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2168 } 2169 } else { 2170 if (ri->type & ARM_CP_CONST) { 2171 /* If not forbidden by access permissions, treat as WI */ 2172 return; 2173 } else if (ri->writefn) { 2174 if (!tcg_ri) { 2175 tcg_ri = gen_lookup_cp_reg(key); 2176 } 2177 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2178 } else { 2179 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2180 } 2181 } 2182 2183 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2184 /* 2185 * A write to any coprocessor regiser that ends a TB 2186 * must rebuild the hflags for the next TB. 2187 */ 2188 gen_rebuild_hflags(s); 2189 /* 2190 * We default to ending the TB on a coprocessor register write, 2191 * but allow this to be suppressed by the register definition 2192 * (usually only necessary to work around guest bugs). 2193 */ 2194 need_exit_tb = true; 2195 } 2196 if (need_exit_tb) { 2197 s->base.is_jmp = DISAS_UPDATE_EXIT; 2198 } 2199 } 2200 2201 /* System 2202 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2203 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2204 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2205 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2206 */ 2207 static void disas_system(DisasContext *s, uint32_t insn) 2208 { 2209 unsigned int l, op0, op1, crn, crm, op2, rt; 2210 l = extract32(insn, 21, 1); 2211 op0 = extract32(insn, 19, 2); 2212 op1 = extract32(insn, 16, 3); 2213 crn = extract32(insn, 12, 4); 2214 crm = extract32(insn, 8, 4); 2215 op2 = extract32(insn, 5, 3); 2216 rt = extract32(insn, 0, 5); 2217 2218 if (op0 == 0) { 2219 if (l || rt != 31) { 2220 unallocated_encoding(s); 2221 return; 2222 } 2223 switch (crn) { 2224 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2225 handle_hint(s, insn, op1, op2, crm); 2226 break; 2227 case 3: /* CLREX, DSB, DMB, ISB */ 2228 handle_sync(s, insn, op1, op2, crm); 2229 break; 2230 case 4: /* MSR (immediate) */ 2231 handle_msr_i(s, insn, op1, op2, crm); 2232 break; 2233 default: 2234 unallocated_encoding(s); 2235 break; 2236 } 2237 return; 2238 } 2239 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2240 } 2241 2242 /* Exception generation 2243 * 2244 * 31 24 23 21 20 5 4 2 1 0 2245 * +-----------------+-----+------------------------+-----+----+ 2246 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2247 * +-----------------------+------------------------+----------+ 2248 */ 2249 static void disas_exc(DisasContext *s, uint32_t insn) 2250 { 2251 int opc = extract32(insn, 21, 3); 2252 int op2_ll = extract32(insn, 0, 5); 2253 int imm16 = extract32(insn, 5, 16); 2254 uint32_t syndrome; 2255 2256 switch (opc) { 2257 case 0: 2258 /* For SVC, HVC and SMC we advance the single-step state 2259 * machine before taking the exception. This is architecturally 2260 * mandated, to ensure that single-stepping a system call 2261 * instruction works properly. 2262 */ 2263 switch (op2_ll) { 2264 case 1: /* SVC */ 2265 syndrome = syn_aa64_svc(imm16); 2266 if (s->fgt_svc) { 2267 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2268 break; 2269 } 2270 gen_ss_advance(s); 2271 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2272 break; 2273 case 2: /* HVC */ 2274 if (s->current_el == 0) { 2275 unallocated_encoding(s); 2276 break; 2277 } 2278 /* The pre HVC helper handles cases when HVC gets trapped 2279 * as an undefined insn by runtime configuration. 2280 */ 2281 gen_a64_update_pc(s, 0); 2282 gen_helper_pre_hvc(cpu_env); 2283 gen_ss_advance(s); 2284 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2285 break; 2286 case 3: /* SMC */ 2287 if (s->current_el == 0) { 2288 unallocated_encoding(s); 2289 break; 2290 } 2291 gen_a64_update_pc(s, 0); 2292 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2293 gen_ss_advance(s); 2294 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2295 break; 2296 default: 2297 unallocated_encoding(s); 2298 break; 2299 } 2300 break; 2301 case 1: 2302 if (op2_ll != 0) { 2303 unallocated_encoding(s); 2304 break; 2305 } 2306 /* BRK */ 2307 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2308 break; 2309 case 2: 2310 if (op2_ll != 0) { 2311 unallocated_encoding(s); 2312 break; 2313 } 2314 /* HLT. This has two purposes. 2315 * Architecturally, it is an external halting debug instruction. 2316 * Since QEMU doesn't implement external debug, we treat this as 2317 * it is required for halting debug disabled: it will UNDEF. 2318 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2319 */ 2320 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2321 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2322 } else { 2323 unallocated_encoding(s); 2324 } 2325 break; 2326 case 5: 2327 if (op2_ll < 1 || op2_ll > 3) { 2328 unallocated_encoding(s); 2329 break; 2330 } 2331 /* DCPS1, DCPS2, DCPS3 */ 2332 unallocated_encoding(s); 2333 break; 2334 default: 2335 unallocated_encoding(s); 2336 break; 2337 } 2338 } 2339 2340 /* Branches, exception generating and system instructions */ 2341 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2342 { 2343 switch (extract32(insn, 25, 7)) { 2344 case 0x6a: /* Exception generation / System */ 2345 if (insn & (1 << 24)) { 2346 if (extract32(insn, 22, 2) == 0) { 2347 disas_system(s, insn); 2348 } else { 2349 unallocated_encoding(s); 2350 } 2351 } else { 2352 disas_exc(s, insn); 2353 } 2354 break; 2355 default: 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 } 2360 2361 /* 2362 * Load/Store exclusive instructions are implemented by remembering 2363 * the value/address loaded, and seeing if these are the same 2364 * when the store is performed. This is not actually the architecturally 2365 * mandated semantics, but it works for typical guest code sequences 2366 * and avoids having to monitor regular stores. 2367 * 2368 * The store exclusive uses the atomic cmpxchg primitives to avoid 2369 * races in multi-threaded linux-user and when MTTCG softmmu is 2370 * enabled. 2371 */ 2372 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2373 int size, bool is_pair) 2374 { 2375 int idx = get_mem_index(s); 2376 MemOp memop; 2377 TCGv_i64 dirty_addr, clean_addr; 2378 2379 s->is_ldex = true; 2380 dirty_addr = cpu_reg_sp(s, rn); 2381 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, size); 2382 2383 g_assert(size <= 3); 2384 if (is_pair) { 2385 g_assert(size >= 2); 2386 if (size == 2) { 2387 /* The pair must be single-copy atomic for the doubleword. */ 2388 memop = finalize_memop(s, MO_64 | MO_ALIGN); 2389 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2390 if (s->be_data == MO_LE) { 2391 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2392 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2393 } else { 2394 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2395 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2396 } 2397 } else { 2398 /* 2399 * The pair must be single-copy atomic for *each* doubleword, not 2400 * the entire quadword, however it must be quadword aligned. 2401 * Expose the complete load to tcg, for ease of tlb lookup, 2402 * but indicate that only 8-byte atomicity is required. 2403 */ 2404 TCGv_i128 t16 = tcg_temp_new_i128(); 2405 2406 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16, 2407 MO_ATOM_IFALIGN_PAIR); 2408 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2409 2410 if (s->be_data == MO_LE) { 2411 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2412 cpu_exclusive_high, t16); 2413 } else { 2414 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2415 cpu_exclusive_val, t16); 2416 } 2417 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2418 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2419 } 2420 } else { 2421 memop = finalize_memop(s, size | MO_ALIGN); 2422 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2423 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2424 } 2425 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2426 } 2427 2428 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2429 int rn, int size, int is_pair) 2430 { 2431 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2432 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2433 * [addr] = {Rt}; 2434 * if (is_pair) { 2435 * [addr + datasize] = {Rt2}; 2436 * } 2437 * {Rd} = 0; 2438 * } else { 2439 * {Rd} = 1; 2440 * } 2441 * env->exclusive_addr = -1; 2442 */ 2443 TCGLabel *fail_label = gen_new_label(); 2444 TCGLabel *done_label = gen_new_label(); 2445 TCGv_i64 tmp, dirty_addr, clean_addr; 2446 2447 dirty_addr = cpu_reg_sp(s, rn); 2448 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, size); 2449 2450 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2451 2452 tmp = tcg_temp_new_i64(); 2453 if (is_pair) { 2454 if (size == 2) { 2455 if (s->be_data == MO_LE) { 2456 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2457 } else { 2458 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2459 } 2460 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2461 cpu_exclusive_val, tmp, 2462 get_mem_index(s), 2463 MO_64 | MO_ALIGN | s->be_data); 2464 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2465 } else { 2466 TCGv_i128 t16 = tcg_temp_new_i128(); 2467 TCGv_i128 c16 = tcg_temp_new_i128(); 2468 TCGv_i64 a, b; 2469 2470 if (s->be_data == MO_LE) { 2471 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2472 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2473 cpu_exclusive_high); 2474 } else { 2475 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2476 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2477 cpu_exclusive_val); 2478 } 2479 2480 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2481 get_mem_index(s), 2482 MO_128 | MO_ALIGN | s->be_data); 2483 2484 a = tcg_temp_new_i64(); 2485 b = tcg_temp_new_i64(); 2486 if (s->be_data == MO_LE) { 2487 tcg_gen_extr_i128_i64(a, b, t16); 2488 } else { 2489 tcg_gen_extr_i128_i64(b, a, t16); 2490 } 2491 2492 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2493 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2494 tcg_gen_or_i64(tmp, a, b); 2495 2496 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2497 } 2498 } else { 2499 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2500 cpu_reg(s, rt), get_mem_index(s), 2501 size | MO_ALIGN | s->be_data); 2502 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2503 } 2504 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2505 tcg_gen_br(done_label); 2506 2507 gen_set_label(fail_label); 2508 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2509 gen_set_label(done_label); 2510 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2511 } 2512 2513 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2514 int rn, int size) 2515 { 2516 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2517 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2518 int memidx = get_mem_index(s); 2519 TCGv_i64 clean_addr; 2520 2521 if (rn == 31) { 2522 gen_check_sp_alignment(s); 2523 } 2524 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2525 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2526 size | MO_ALIGN | s->be_data); 2527 } 2528 2529 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2530 int rn, int size) 2531 { 2532 TCGv_i64 s1 = cpu_reg(s, rs); 2533 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2534 TCGv_i64 t1 = cpu_reg(s, rt); 2535 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2536 TCGv_i64 clean_addr; 2537 int memidx = get_mem_index(s); 2538 2539 if (rn == 31) { 2540 gen_check_sp_alignment(s); 2541 } 2542 2543 /* This is a single atomic access, despite the "pair". */ 2544 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2545 2546 if (size == 2) { 2547 TCGv_i64 cmp = tcg_temp_new_i64(); 2548 TCGv_i64 val = tcg_temp_new_i64(); 2549 2550 if (s->be_data == MO_LE) { 2551 tcg_gen_concat32_i64(val, t1, t2); 2552 tcg_gen_concat32_i64(cmp, s1, s2); 2553 } else { 2554 tcg_gen_concat32_i64(val, t2, t1); 2555 tcg_gen_concat32_i64(cmp, s2, s1); 2556 } 2557 2558 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2559 MO_64 | MO_ALIGN | s->be_data); 2560 2561 if (s->be_data == MO_LE) { 2562 tcg_gen_extr32_i64(s1, s2, cmp); 2563 } else { 2564 tcg_gen_extr32_i64(s2, s1, cmp); 2565 } 2566 } else { 2567 TCGv_i128 cmp = tcg_temp_new_i128(); 2568 TCGv_i128 val = tcg_temp_new_i128(); 2569 2570 if (s->be_data == MO_LE) { 2571 tcg_gen_concat_i64_i128(val, t1, t2); 2572 tcg_gen_concat_i64_i128(cmp, s1, s2); 2573 } else { 2574 tcg_gen_concat_i64_i128(val, t2, t1); 2575 tcg_gen_concat_i64_i128(cmp, s2, s1); 2576 } 2577 2578 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2579 MO_128 | MO_ALIGN | s->be_data); 2580 2581 if (s->be_data == MO_LE) { 2582 tcg_gen_extr_i128_i64(s1, s2, cmp); 2583 } else { 2584 tcg_gen_extr_i128_i64(s2, s1, cmp); 2585 } 2586 } 2587 } 2588 2589 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2590 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2591 */ 2592 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2593 { 2594 int opc0 = extract32(opc, 0, 1); 2595 int regsize; 2596 2597 if (is_signed) { 2598 regsize = opc0 ? 32 : 64; 2599 } else { 2600 regsize = size == 3 ? 64 : 32; 2601 } 2602 return regsize == 64; 2603 } 2604 2605 /* Load/store exclusive 2606 * 2607 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2608 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2609 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2610 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2611 * 2612 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2613 * L: 0 -> store, 1 -> load 2614 * o2: 0 -> exclusive, 1 -> not 2615 * o1: 0 -> single register, 1 -> register pair 2616 * o0: 1 -> load-acquire/store-release, 0 -> not 2617 */ 2618 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2619 { 2620 int rt = extract32(insn, 0, 5); 2621 int rn = extract32(insn, 5, 5); 2622 int rt2 = extract32(insn, 10, 5); 2623 int rs = extract32(insn, 16, 5); 2624 int is_lasr = extract32(insn, 15, 1); 2625 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2626 int size = extract32(insn, 30, 2); 2627 TCGv_i64 clean_addr; 2628 2629 switch (o2_L_o1_o0) { 2630 case 0x0: /* STXR */ 2631 case 0x1: /* STLXR */ 2632 if (rn == 31) { 2633 gen_check_sp_alignment(s); 2634 } 2635 if (is_lasr) { 2636 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2637 } 2638 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2639 return; 2640 2641 case 0x4: /* LDXR */ 2642 case 0x5: /* LDAXR */ 2643 if (rn == 31) { 2644 gen_check_sp_alignment(s); 2645 } 2646 gen_load_exclusive(s, rt, rt2, rn, size, false); 2647 if (is_lasr) { 2648 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2649 } 2650 return; 2651 2652 case 0x8: /* STLLR */ 2653 if (!dc_isar_feature(aa64_lor, s)) { 2654 break; 2655 } 2656 /* StoreLORelease is the same as Store-Release for QEMU. */ 2657 /* fall through */ 2658 case 0x9: /* STLR */ 2659 /* Generate ISS for non-exclusive accesses including LASR. */ 2660 if (rn == 31) { 2661 gen_check_sp_alignment(s); 2662 } 2663 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2664 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2665 true, rn != 31, size); 2666 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2667 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2668 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2669 return; 2670 2671 case 0xc: /* LDLAR */ 2672 if (!dc_isar_feature(aa64_lor, s)) { 2673 break; 2674 } 2675 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2676 /* fall through */ 2677 case 0xd: /* LDAR */ 2678 /* Generate ISS for non-exclusive accesses including LASR. */ 2679 if (rn == 31) { 2680 gen_check_sp_alignment(s); 2681 } 2682 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2683 false, rn != 31, size); 2684 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2685 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2686 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2687 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2688 return; 2689 2690 case 0x2: case 0x3: /* CASP / STXP */ 2691 if (size & 2) { /* STXP / STLXP */ 2692 if (rn == 31) { 2693 gen_check_sp_alignment(s); 2694 } 2695 if (is_lasr) { 2696 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2697 } 2698 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2699 return; 2700 } 2701 if (rt2 == 31 2702 && ((rt | rs) & 1) == 0 2703 && dc_isar_feature(aa64_atomics, s)) { 2704 /* CASP / CASPL */ 2705 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2706 return; 2707 } 2708 break; 2709 2710 case 0x6: case 0x7: /* CASPA / LDXP */ 2711 if (size & 2) { /* LDXP / LDAXP */ 2712 if (rn == 31) { 2713 gen_check_sp_alignment(s); 2714 } 2715 gen_load_exclusive(s, rt, rt2, rn, size, true); 2716 if (is_lasr) { 2717 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2718 } 2719 return; 2720 } 2721 if (rt2 == 31 2722 && ((rt | rs) & 1) == 0 2723 && dc_isar_feature(aa64_atomics, s)) { 2724 /* CASPA / CASPAL */ 2725 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2726 return; 2727 } 2728 break; 2729 2730 case 0xa: /* CAS */ 2731 case 0xb: /* CASL */ 2732 case 0xe: /* CASA */ 2733 case 0xf: /* CASAL */ 2734 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2735 gen_compare_and_swap(s, rs, rt, rn, size); 2736 return; 2737 } 2738 break; 2739 } 2740 unallocated_encoding(s); 2741 } 2742 2743 /* 2744 * Load register (literal) 2745 * 2746 * 31 30 29 27 26 25 24 23 5 4 0 2747 * +-----+-------+---+-----+-------------------+-------+ 2748 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2749 * +-----+-------+---+-----+-------------------+-------+ 2750 * 2751 * V: 1 -> vector (simd/fp) 2752 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2753 * 10-> 32 bit signed, 11 -> prefetch 2754 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2755 */ 2756 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2757 { 2758 int rt = extract32(insn, 0, 5); 2759 int64_t imm = sextract32(insn, 5, 19) << 2; 2760 bool is_vector = extract32(insn, 26, 1); 2761 int opc = extract32(insn, 30, 2); 2762 bool is_signed = false; 2763 int size = 2; 2764 TCGv_i64 tcg_rt, clean_addr; 2765 2766 if (is_vector) { 2767 if (opc == 3) { 2768 unallocated_encoding(s); 2769 return; 2770 } 2771 size = 2 + opc; 2772 if (!fp_access_check(s)) { 2773 return; 2774 } 2775 } else { 2776 if (opc == 3) { 2777 /* PRFM (literal) : prefetch */ 2778 return; 2779 } 2780 size = 2 + extract32(opc, 0, 1); 2781 is_signed = extract32(opc, 1, 1); 2782 } 2783 2784 tcg_rt = cpu_reg(s, rt); 2785 2786 clean_addr = tcg_temp_new_i64(); 2787 gen_pc_plus_diff(s, clean_addr, imm); 2788 if (is_vector) { 2789 do_fp_ld(s, rt, clean_addr, size); 2790 } else { 2791 /* Only unsigned 32bit loads target 32bit registers. */ 2792 bool iss_sf = opc != 0; 2793 2794 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2795 false, true, rt, iss_sf, false); 2796 } 2797 } 2798 2799 /* 2800 * LDNP (Load Pair - non-temporal hint) 2801 * LDP (Load Pair - non vector) 2802 * LDPSW (Load Pair Signed Word - non vector) 2803 * STNP (Store Pair - non-temporal hint) 2804 * STP (Store Pair - non vector) 2805 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2806 * LDP (Load Pair of SIMD&FP) 2807 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2808 * STP (Store Pair of SIMD&FP) 2809 * 2810 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2811 * +-----+-------+---+---+-------+---+-----------------------------+ 2812 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2813 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2814 * 2815 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2816 * LDPSW/STGP 01 2817 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2818 * V: 0 -> GPR, 1 -> Vector 2819 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2820 * 10 -> signed offset, 11 -> pre-index 2821 * L: 0 -> Store 1 -> Load 2822 * 2823 * Rt, Rt2 = GPR or SIMD registers to be stored 2824 * Rn = general purpose register containing address 2825 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2826 */ 2827 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2828 { 2829 int rt = extract32(insn, 0, 5); 2830 int rn = extract32(insn, 5, 5); 2831 int rt2 = extract32(insn, 10, 5); 2832 uint64_t offset = sextract64(insn, 15, 7); 2833 int index = extract32(insn, 23, 2); 2834 bool is_vector = extract32(insn, 26, 1); 2835 bool is_load = extract32(insn, 22, 1); 2836 int opc = extract32(insn, 30, 2); 2837 2838 bool is_signed = false; 2839 bool postindex = false; 2840 bool wback = false; 2841 bool set_tag = false; 2842 2843 TCGv_i64 clean_addr, dirty_addr; 2844 2845 int size; 2846 2847 if (opc == 3) { 2848 unallocated_encoding(s); 2849 return; 2850 } 2851 2852 if (is_vector) { 2853 size = 2 + opc; 2854 } else if (opc == 1 && !is_load) { 2855 /* STGP */ 2856 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2857 unallocated_encoding(s); 2858 return; 2859 } 2860 size = 3; 2861 set_tag = true; 2862 } else { 2863 size = 2 + extract32(opc, 1, 1); 2864 is_signed = extract32(opc, 0, 1); 2865 if (!is_load && is_signed) { 2866 unallocated_encoding(s); 2867 return; 2868 } 2869 } 2870 2871 switch (index) { 2872 case 1: /* post-index */ 2873 postindex = true; 2874 wback = true; 2875 break; 2876 case 0: 2877 /* signed offset with "non-temporal" hint. Since we don't emulate 2878 * caches we don't care about hints to the cache system about 2879 * data access patterns, and handle this identically to plain 2880 * signed offset. 2881 */ 2882 if (is_signed) { 2883 /* There is no non-temporal-hint version of LDPSW */ 2884 unallocated_encoding(s); 2885 return; 2886 } 2887 postindex = false; 2888 break; 2889 case 2: /* signed offset, rn not updated */ 2890 postindex = false; 2891 break; 2892 case 3: /* pre-index */ 2893 postindex = false; 2894 wback = true; 2895 break; 2896 } 2897 2898 if (is_vector && !fp_access_check(s)) { 2899 return; 2900 } 2901 2902 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2903 2904 if (rn == 31) { 2905 gen_check_sp_alignment(s); 2906 } 2907 2908 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2909 if (!postindex) { 2910 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2911 } 2912 2913 if (set_tag) { 2914 if (!s->ata) { 2915 /* 2916 * TODO: We could rely on the stores below, at least for 2917 * system mode, if we arrange to add MO_ALIGN_16. 2918 */ 2919 gen_helper_stg_stub(cpu_env, dirty_addr); 2920 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2921 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2922 } else { 2923 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2924 } 2925 } 2926 2927 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2928 (wback || rn != 31) && !set_tag, 2 << size); 2929 2930 if (is_vector) { 2931 if (is_load) { 2932 do_fp_ld(s, rt, clean_addr, size); 2933 } else { 2934 do_fp_st(s, rt, clean_addr, size); 2935 } 2936 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2937 if (is_load) { 2938 do_fp_ld(s, rt2, clean_addr, size); 2939 } else { 2940 do_fp_st(s, rt2, clean_addr, size); 2941 } 2942 } else { 2943 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2944 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2945 MemOp mop = size + 1; 2946 2947 /* 2948 * With LSE2, non-sign-extending pairs are treated atomically if 2949 * aligned, and if unaligned one of the pair will be completely 2950 * within a 16-byte block and that element will be atomic. 2951 * Otherwise each element is separately atomic. 2952 * In all cases, issue one operation with the correct atomicity. 2953 * 2954 * This treats sign-extending loads like zero-extending loads, 2955 * since that reuses the most code below. 2956 */ 2957 if (s->align_mem) { 2958 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2959 } 2960 mop = finalize_memop_pair(s, mop); 2961 2962 if (is_load) { 2963 if (size == 2) { 2964 int o2 = s->be_data == MO_LE ? 32 : 0; 2965 int o1 = o2 ^ 32; 2966 2967 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2968 if (is_signed) { 2969 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2970 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2971 } else { 2972 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2973 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2974 } 2975 } else { 2976 TCGv_i128 tmp = tcg_temp_new_i128(); 2977 2978 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2979 if (s->be_data == MO_LE) { 2980 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2981 } else { 2982 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2983 } 2984 } 2985 } else { 2986 if (size == 2) { 2987 TCGv_i64 tmp = tcg_temp_new_i64(); 2988 2989 if (s->be_data == MO_LE) { 2990 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2991 } else { 2992 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2993 } 2994 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2995 } else { 2996 TCGv_i128 tmp = tcg_temp_new_i128(); 2997 2998 if (s->be_data == MO_LE) { 2999 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3000 } else { 3001 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3002 } 3003 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3004 } 3005 } 3006 } 3007 3008 if (wback) { 3009 if (postindex) { 3010 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3011 } 3012 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3013 } 3014 } 3015 3016 /* 3017 * Load/store (immediate post-indexed) 3018 * Load/store (immediate pre-indexed) 3019 * Load/store (unscaled immediate) 3020 * 3021 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3022 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3023 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3024 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3025 * 3026 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3027 10 -> unprivileged 3028 * V = 0 -> non-vector 3029 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3030 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3031 */ 3032 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3033 int opc, 3034 int size, 3035 int rt, 3036 bool is_vector) 3037 { 3038 int rn = extract32(insn, 5, 5); 3039 int imm9 = sextract32(insn, 12, 9); 3040 int idx = extract32(insn, 10, 2); 3041 bool is_signed = false; 3042 bool is_store = false; 3043 bool is_extended = false; 3044 bool is_unpriv = (idx == 2); 3045 bool iss_valid; 3046 bool post_index; 3047 bool writeback; 3048 int memidx; 3049 3050 TCGv_i64 clean_addr, dirty_addr; 3051 3052 if (is_vector) { 3053 size |= (opc & 2) << 1; 3054 if (size > 4 || is_unpriv) { 3055 unallocated_encoding(s); 3056 return; 3057 } 3058 is_store = ((opc & 1) == 0); 3059 if (!fp_access_check(s)) { 3060 return; 3061 } 3062 } else { 3063 if (size == 3 && opc == 2) { 3064 /* PRFM - prefetch */ 3065 if (idx != 0) { 3066 unallocated_encoding(s); 3067 return; 3068 } 3069 return; 3070 } 3071 if (opc == 3 && size > 1) { 3072 unallocated_encoding(s); 3073 return; 3074 } 3075 is_store = (opc == 0); 3076 is_signed = extract32(opc, 1, 1); 3077 is_extended = (size < 3) && extract32(opc, 0, 1); 3078 } 3079 3080 switch (idx) { 3081 case 0: 3082 case 2: 3083 post_index = false; 3084 writeback = false; 3085 break; 3086 case 1: 3087 post_index = true; 3088 writeback = true; 3089 break; 3090 case 3: 3091 post_index = false; 3092 writeback = true; 3093 break; 3094 default: 3095 g_assert_not_reached(); 3096 } 3097 3098 iss_valid = !is_vector && !writeback; 3099 3100 if (rn == 31) { 3101 gen_check_sp_alignment(s); 3102 } 3103 3104 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3105 if (!post_index) { 3106 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3107 } 3108 3109 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3110 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3111 writeback || rn != 31, 3112 size, is_unpriv, memidx); 3113 3114 if (is_vector) { 3115 if (is_store) { 3116 do_fp_st(s, rt, clean_addr, size); 3117 } else { 3118 do_fp_ld(s, rt, clean_addr, size); 3119 } 3120 } else { 3121 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3122 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3123 3124 if (is_store) { 3125 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3126 iss_valid, rt, iss_sf, false); 3127 } else { 3128 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3129 is_extended, memidx, 3130 iss_valid, rt, iss_sf, false); 3131 } 3132 } 3133 3134 if (writeback) { 3135 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3136 if (post_index) { 3137 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3138 } 3139 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3140 } 3141 } 3142 3143 /* 3144 * Load/store (register offset) 3145 * 3146 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3147 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3148 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3149 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3150 * 3151 * For non-vector: 3152 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3153 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3154 * For vector: 3155 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3156 * opc<0>: 0 -> store, 1 -> load 3157 * V: 1 -> vector/simd 3158 * opt: extend encoding (see DecodeRegExtend) 3159 * S: if S=1 then scale (essentially index by sizeof(size)) 3160 * Rt: register to transfer into/out of 3161 * Rn: address register or SP for base 3162 * Rm: offset register or ZR for offset 3163 */ 3164 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3165 int opc, 3166 int size, 3167 int rt, 3168 bool is_vector) 3169 { 3170 int rn = extract32(insn, 5, 5); 3171 int shift = extract32(insn, 12, 1); 3172 int rm = extract32(insn, 16, 5); 3173 int opt = extract32(insn, 13, 3); 3174 bool is_signed = false; 3175 bool is_store = false; 3176 bool is_extended = false; 3177 3178 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3179 3180 if (extract32(opt, 1, 1) == 0) { 3181 unallocated_encoding(s); 3182 return; 3183 } 3184 3185 if (is_vector) { 3186 size |= (opc & 2) << 1; 3187 if (size > 4) { 3188 unallocated_encoding(s); 3189 return; 3190 } 3191 is_store = !extract32(opc, 0, 1); 3192 if (!fp_access_check(s)) { 3193 return; 3194 } 3195 } else { 3196 if (size == 3 && opc == 2) { 3197 /* PRFM - prefetch */ 3198 return; 3199 } 3200 if (opc == 3 && size > 1) { 3201 unallocated_encoding(s); 3202 return; 3203 } 3204 is_store = (opc == 0); 3205 is_signed = extract32(opc, 1, 1); 3206 is_extended = (size < 3) && extract32(opc, 0, 1); 3207 } 3208 3209 if (rn == 31) { 3210 gen_check_sp_alignment(s); 3211 } 3212 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3213 3214 tcg_rm = read_cpu_reg(s, rm, 1); 3215 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3216 3217 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3218 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3219 3220 if (is_vector) { 3221 if (is_store) { 3222 do_fp_st(s, rt, clean_addr, size); 3223 } else { 3224 do_fp_ld(s, rt, clean_addr, size); 3225 } 3226 } else { 3227 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3228 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3229 if (is_store) { 3230 do_gpr_st(s, tcg_rt, clean_addr, size, 3231 true, rt, iss_sf, false); 3232 } else { 3233 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3234 is_extended, true, rt, iss_sf, false); 3235 } 3236 } 3237 } 3238 3239 /* 3240 * Load/store (unsigned immediate) 3241 * 3242 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3243 * +----+-------+---+-----+-----+------------+-------+------+ 3244 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3245 * +----+-------+---+-----+-----+------------+-------+------+ 3246 * 3247 * For non-vector: 3248 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3249 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3250 * For vector: 3251 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3252 * opc<0>: 0 -> store, 1 -> load 3253 * Rn: base address register (inc SP) 3254 * Rt: target register 3255 */ 3256 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3257 int opc, 3258 int size, 3259 int rt, 3260 bool is_vector) 3261 { 3262 int rn = extract32(insn, 5, 5); 3263 unsigned int imm12 = extract32(insn, 10, 12); 3264 unsigned int offset; 3265 3266 TCGv_i64 clean_addr, dirty_addr; 3267 3268 bool is_store; 3269 bool is_signed = false; 3270 bool is_extended = false; 3271 3272 if (is_vector) { 3273 size |= (opc & 2) << 1; 3274 if (size > 4) { 3275 unallocated_encoding(s); 3276 return; 3277 } 3278 is_store = !extract32(opc, 0, 1); 3279 if (!fp_access_check(s)) { 3280 return; 3281 } 3282 } else { 3283 if (size == 3 && opc == 2) { 3284 /* PRFM - prefetch */ 3285 return; 3286 } 3287 if (opc == 3 && size > 1) { 3288 unallocated_encoding(s); 3289 return; 3290 } 3291 is_store = (opc == 0); 3292 is_signed = extract32(opc, 1, 1); 3293 is_extended = (size < 3) && extract32(opc, 0, 1); 3294 } 3295 3296 if (rn == 31) { 3297 gen_check_sp_alignment(s); 3298 } 3299 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3300 offset = imm12 << size; 3301 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3302 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3303 3304 if (is_vector) { 3305 if (is_store) { 3306 do_fp_st(s, rt, clean_addr, size); 3307 } else { 3308 do_fp_ld(s, rt, clean_addr, size); 3309 } 3310 } else { 3311 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3312 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3313 if (is_store) { 3314 do_gpr_st(s, tcg_rt, clean_addr, size, 3315 true, rt, iss_sf, false); 3316 } else { 3317 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3318 is_extended, true, rt, iss_sf, false); 3319 } 3320 } 3321 } 3322 3323 /* Atomic memory operations 3324 * 3325 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3326 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3327 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3328 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3329 * 3330 * Rt: the result register 3331 * Rn: base address or SP 3332 * Rs: the source register for the operation 3333 * V: vector flag (always 0 as of v8.3) 3334 * A: acquire flag 3335 * R: release flag 3336 */ 3337 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3338 int size, int rt, bool is_vector) 3339 { 3340 int rs = extract32(insn, 16, 5); 3341 int rn = extract32(insn, 5, 5); 3342 int o3_opc = extract32(insn, 12, 4); 3343 bool r = extract32(insn, 22, 1); 3344 bool a = extract32(insn, 23, 1); 3345 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3346 AtomicThreeOpFn *fn = NULL; 3347 MemOp mop = s->be_data | size | MO_ALIGN; 3348 3349 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3350 unallocated_encoding(s); 3351 return; 3352 } 3353 switch (o3_opc) { 3354 case 000: /* LDADD */ 3355 fn = tcg_gen_atomic_fetch_add_i64; 3356 break; 3357 case 001: /* LDCLR */ 3358 fn = tcg_gen_atomic_fetch_and_i64; 3359 break; 3360 case 002: /* LDEOR */ 3361 fn = tcg_gen_atomic_fetch_xor_i64; 3362 break; 3363 case 003: /* LDSET */ 3364 fn = tcg_gen_atomic_fetch_or_i64; 3365 break; 3366 case 004: /* LDSMAX */ 3367 fn = tcg_gen_atomic_fetch_smax_i64; 3368 mop |= MO_SIGN; 3369 break; 3370 case 005: /* LDSMIN */ 3371 fn = tcg_gen_atomic_fetch_smin_i64; 3372 mop |= MO_SIGN; 3373 break; 3374 case 006: /* LDUMAX */ 3375 fn = tcg_gen_atomic_fetch_umax_i64; 3376 break; 3377 case 007: /* LDUMIN */ 3378 fn = tcg_gen_atomic_fetch_umin_i64; 3379 break; 3380 case 010: /* SWP */ 3381 fn = tcg_gen_atomic_xchg_i64; 3382 break; 3383 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3384 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3385 rs != 31 || a != 1 || r != 0) { 3386 unallocated_encoding(s); 3387 return; 3388 } 3389 break; 3390 default: 3391 unallocated_encoding(s); 3392 return; 3393 } 3394 3395 if (rn == 31) { 3396 gen_check_sp_alignment(s); 3397 } 3398 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3399 3400 if (o3_opc == 014) { 3401 /* 3402 * LDAPR* are a special case because they are a simple load, not a 3403 * fetch-and-do-something op. 3404 * The architectural consistency requirements here are weaker than 3405 * full load-acquire (we only need "load-acquire processor consistent"), 3406 * but we choose to implement them as full LDAQ. 3407 */ 3408 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3409 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3410 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3411 return; 3412 } 3413 3414 tcg_rs = read_cpu_reg(s, rs, true); 3415 tcg_rt = cpu_reg(s, rt); 3416 3417 if (o3_opc == 1) { /* LDCLR */ 3418 tcg_gen_not_i64(tcg_rs, tcg_rs); 3419 } 3420 3421 /* The tcg atomic primitives are all full barriers. Therefore we 3422 * can ignore the Acquire and Release bits of this instruction. 3423 */ 3424 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3425 3426 if ((mop & MO_SIGN) && size != MO_64) { 3427 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3428 } 3429 } 3430 3431 /* 3432 * PAC memory operations 3433 * 3434 * 31 30 27 26 24 22 21 12 11 10 5 0 3435 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3436 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3437 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3438 * 3439 * Rt: the result register 3440 * Rn: base address or SP 3441 * V: vector flag (always 0 as of v8.3) 3442 * M: clear for key DA, set for key DB 3443 * W: pre-indexing flag 3444 * S: sign for imm9. 3445 */ 3446 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3447 int size, int rt, bool is_vector) 3448 { 3449 int rn = extract32(insn, 5, 5); 3450 bool is_wback = extract32(insn, 11, 1); 3451 bool use_key_a = !extract32(insn, 23, 1); 3452 int offset; 3453 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3454 3455 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3456 unallocated_encoding(s); 3457 return; 3458 } 3459 3460 if (rn == 31) { 3461 gen_check_sp_alignment(s); 3462 } 3463 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3464 3465 if (s->pauth_active) { 3466 if (use_key_a) { 3467 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3468 tcg_constant_i64(0)); 3469 } else { 3470 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3471 tcg_constant_i64(0)); 3472 } 3473 } 3474 3475 /* Form the 10-bit signed, scaled offset. */ 3476 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3477 offset = sextract32(offset << size, 0, 10 + size); 3478 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3479 3480 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3481 clean_addr = gen_mte_check1(s, dirty_addr, false, 3482 is_wback || rn != 31, size); 3483 3484 tcg_rt = cpu_reg(s, rt); 3485 do_gpr_ld(s, tcg_rt, clean_addr, size, 3486 /* extend */ false, /* iss_valid */ !is_wback, 3487 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3488 3489 if (is_wback) { 3490 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3491 } 3492 } 3493 3494 /* 3495 * LDAPR/STLR (unscaled immediate) 3496 * 3497 * 31 30 24 22 21 12 10 5 0 3498 * +------+-------------+-----+---+--------+-----+----+-----+ 3499 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3500 * +------+-------------+-----+---+--------+-----+----+-----+ 3501 * 3502 * Rt: source or destination register 3503 * Rn: base register 3504 * imm9: unscaled immediate offset 3505 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3506 * size: size of load/store 3507 */ 3508 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3509 { 3510 int rt = extract32(insn, 0, 5); 3511 int rn = extract32(insn, 5, 5); 3512 int offset = sextract32(insn, 12, 9); 3513 int opc = extract32(insn, 22, 2); 3514 int size = extract32(insn, 30, 2); 3515 TCGv_i64 clean_addr, dirty_addr; 3516 bool is_store = false; 3517 bool extend = false; 3518 bool iss_sf; 3519 MemOp mop; 3520 3521 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3522 unallocated_encoding(s); 3523 return; 3524 } 3525 3526 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3527 mop = size | MO_ALIGN; 3528 3529 switch (opc) { 3530 case 0: /* STLURB */ 3531 is_store = true; 3532 break; 3533 case 1: /* LDAPUR* */ 3534 break; 3535 case 2: /* LDAPURS* 64-bit variant */ 3536 if (size == 3) { 3537 unallocated_encoding(s); 3538 return; 3539 } 3540 mop |= MO_SIGN; 3541 break; 3542 case 3: /* LDAPURS* 32-bit variant */ 3543 if (size > 1) { 3544 unallocated_encoding(s); 3545 return; 3546 } 3547 mop |= MO_SIGN; 3548 extend = true; /* zero-extend 32->64 after signed load */ 3549 break; 3550 default: 3551 g_assert_not_reached(); 3552 } 3553 3554 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3555 3556 if (rn == 31) { 3557 gen_check_sp_alignment(s); 3558 } 3559 3560 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3561 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3562 clean_addr = clean_data_tbi(s, dirty_addr); 3563 3564 if (is_store) { 3565 /* Store-Release semantics */ 3566 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3567 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3568 } else { 3569 /* 3570 * Load-AcquirePC semantics; we implement as the slightly more 3571 * restrictive Load-Acquire. 3572 */ 3573 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3574 extend, true, rt, iss_sf, true); 3575 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3576 } 3577 } 3578 3579 /* Load/store register (all forms) */ 3580 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3581 { 3582 int rt = extract32(insn, 0, 5); 3583 int opc = extract32(insn, 22, 2); 3584 bool is_vector = extract32(insn, 26, 1); 3585 int size = extract32(insn, 30, 2); 3586 3587 switch (extract32(insn, 24, 2)) { 3588 case 0: 3589 if (extract32(insn, 21, 1) == 0) { 3590 /* Load/store register (unscaled immediate) 3591 * Load/store immediate pre/post-indexed 3592 * Load/store register unprivileged 3593 */ 3594 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3595 return; 3596 } 3597 switch (extract32(insn, 10, 2)) { 3598 case 0: 3599 disas_ldst_atomic(s, insn, size, rt, is_vector); 3600 return; 3601 case 2: 3602 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3603 return; 3604 default: 3605 disas_ldst_pac(s, insn, size, rt, is_vector); 3606 return; 3607 } 3608 break; 3609 case 1: 3610 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3611 return; 3612 } 3613 unallocated_encoding(s); 3614 } 3615 3616 /* AdvSIMD load/store multiple structures 3617 * 3618 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3619 * +---+---+---------------+---+-------------+--------+------+------+------+ 3620 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3621 * +---+---+---------------+---+-------------+--------+------+------+------+ 3622 * 3623 * AdvSIMD load/store multiple structures (post-indexed) 3624 * 3625 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3626 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3627 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3628 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3629 * 3630 * Rt: first (or only) SIMD&FP register to be transferred 3631 * Rn: base address or SP 3632 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3633 */ 3634 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3635 { 3636 int rt = extract32(insn, 0, 5); 3637 int rn = extract32(insn, 5, 5); 3638 int rm = extract32(insn, 16, 5); 3639 int size = extract32(insn, 10, 2); 3640 int opcode = extract32(insn, 12, 4); 3641 bool is_store = !extract32(insn, 22, 1); 3642 bool is_postidx = extract32(insn, 23, 1); 3643 bool is_q = extract32(insn, 30, 1); 3644 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3645 MemOp endian, align, mop; 3646 3647 int total; /* total bytes */ 3648 int elements; /* elements per vector */ 3649 int rpt; /* num iterations */ 3650 int selem; /* structure elements */ 3651 int r; 3652 3653 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3654 unallocated_encoding(s); 3655 return; 3656 } 3657 3658 if (!is_postidx && rm != 0) { 3659 unallocated_encoding(s); 3660 return; 3661 } 3662 3663 /* From the shared decode logic */ 3664 switch (opcode) { 3665 case 0x0: 3666 rpt = 1; 3667 selem = 4; 3668 break; 3669 case 0x2: 3670 rpt = 4; 3671 selem = 1; 3672 break; 3673 case 0x4: 3674 rpt = 1; 3675 selem = 3; 3676 break; 3677 case 0x6: 3678 rpt = 3; 3679 selem = 1; 3680 break; 3681 case 0x7: 3682 rpt = 1; 3683 selem = 1; 3684 break; 3685 case 0x8: 3686 rpt = 1; 3687 selem = 2; 3688 break; 3689 case 0xa: 3690 rpt = 2; 3691 selem = 1; 3692 break; 3693 default: 3694 unallocated_encoding(s); 3695 return; 3696 } 3697 3698 if (size == 3 && !is_q && selem != 1) { 3699 /* reserved */ 3700 unallocated_encoding(s); 3701 return; 3702 } 3703 3704 if (!fp_access_check(s)) { 3705 return; 3706 } 3707 3708 if (rn == 31) { 3709 gen_check_sp_alignment(s); 3710 } 3711 3712 /* For our purposes, bytes are always little-endian. */ 3713 endian = s->be_data; 3714 if (size == 0) { 3715 endian = MO_LE; 3716 } 3717 3718 total = rpt * selem * (is_q ? 16 : 8); 3719 tcg_rn = cpu_reg_sp(s, rn); 3720 3721 /* 3722 * Issue the MTE check vs the logical repeat count, before we 3723 * promote consecutive little-endian elements below. 3724 */ 3725 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3726 total); 3727 3728 /* 3729 * Consecutive little-endian elements from a single register 3730 * can be promoted to a larger little-endian operation. 3731 */ 3732 align = MO_ALIGN; 3733 if (selem == 1 && endian == MO_LE) { 3734 align = pow2_align(size); 3735 size = 3; 3736 } 3737 if (!s->align_mem) { 3738 align = 0; 3739 } 3740 mop = endian | size | align; 3741 3742 elements = (is_q ? 16 : 8) >> size; 3743 tcg_ebytes = tcg_constant_i64(1 << size); 3744 for (r = 0; r < rpt; r++) { 3745 int e; 3746 for (e = 0; e < elements; e++) { 3747 int xs; 3748 for (xs = 0; xs < selem; xs++) { 3749 int tt = (rt + r + xs) % 32; 3750 if (is_store) { 3751 do_vec_st(s, tt, e, clean_addr, mop); 3752 } else { 3753 do_vec_ld(s, tt, e, clean_addr, mop); 3754 } 3755 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3756 } 3757 } 3758 } 3759 3760 if (!is_store) { 3761 /* For non-quad operations, setting a slice of the low 3762 * 64 bits of the register clears the high 64 bits (in 3763 * the ARM ARM pseudocode this is implicit in the fact 3764 * that 'rval' is a 64 bit wide variable). 3765 * For quad operations, we might still need to zero the 3766 * high bits of SVE. 3767 */ 3768 for (r = 0; r < rpt * selem; r++) { 3769 int tt = (rt + r) % 32; 3770 clear_vec_high(s, is_q, tt); 3771 } 3772 } 3773 3774 if (is_postidx) { 3775 if (rm == 31) { 3776 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3777 } else { 3778 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3779 } 3780 } 3781 } 3782 3783 /* AdvSIMD load/store single structure 3784 * 3785 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3786 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3787 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3788 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3789 * 3790 * AdvSIMD load/store single structure (post-indexed) 3791 * 3792 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3793 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3794 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3795 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3796 * 3797 * Rt: first (or only) SIMD&FP register to be transferred 3798 * Rn: base address or SP 3799 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3800 * index = encoded in Q:S:size dependent on size 3801 * 3802 * lane_size = encoded in R, opc 3803 * transfer width = encoded in opc, S, size 3804 */ 3805 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3806 { 3807 int rt = extract32(insn, 0, 5); 3808 int rn = extract32(insn, 5, 5); 3809 int rm = extract32(insn, 16, 5); 3810 int size = extract32(insn, 10, 2); 3811 int S = extract32(insn, 12, 1); 3812 int opc = extract32(insn, 13, 3); 3813 int R = extract32(insn, 21, 1); 3814 int is_load = extract32(insn, 22, 1); 3815 int is_postidx = extract32(insn, 23, 1); 3816 int is_q = extract32(insn, 30, 1); 3817 3818 int scale = extract32(opc, 1, 2); 3819 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3820 bool replicate = false; 3821 int index = is_q << 3 | S << 2 | size; 3822 int xs, total; 3823 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3824 MemOp mop; 3825 3826 if (extract32(insn, 31, 1)) { 3827 unallocated_encoding(s); 3828 return; 3829 } 3830 if (!is_postidx && rm != 0) { 3831 unallocated_encoding(s); 3832 return; 3833 } 3834 3835 switch (scale) { 3836 case 3: 3837 if (!is_load || S) { 3838 unallocated_encoding(s); 3839 return; 3840 } 3841 scale = size; 3842 replicate = true; 3843 break; 3844 case 0: 3845 break; 3846 case 1: 3847 if (extract32(size, 0, 1)) { 3848 unallocated_encoding(s); 3849 return; 3850 } 3851 index >>= 1; 3852 break; 3853 case 2: 3854 if (extract32(size, 1, 1)) { 3855 unallocated_encoding(s); 3856 return; 3857 } 3858 if (!extract32(size, 0, 1)) { 3859 index >>= 2; 3860 } else { 3861 if (S) { 3862 unallocated_encoding(s); 3863 return; 3864 } 3865 index >>= 3; 3866 scale = 3; 3867 } 3868 break; 3869 default: 3870 g_assert_not_reached(); 3871 } 3872 3873 if (!fp_access_check(s)) { 3874 return; 3875 } 3876 3877 if (rn == 31) { 3878 gen_check_sp_alignment(s); 3879 } 3880 3881 total = selem << scale; 3882 tcg_rn = cpu_reg_sp(s, rn); 3883 3884 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3885 total); 3886 mop = finalize_memop(s, scale); 3887 3888 tcg_ebytes = tcg_constant_i64(1 << scale); 3889 for (xs = 0; xs < selem; xs++) { 3890 if (replicate) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3896 (is_q + 1) * 8, vec_full_reg_size(s), 3897 tcg_tmp); 3898 } else { 3899 /* Load/store one element per register */ 3900 if (is_load) { 3901 do_vec_ld(s, rt, index, clean_addr, mop); 3902 } else { 3903 do_vec_st(s, rt, index, clean_addr, mop); 3904 } 3905 } 3906 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3907 rt = (rt + 1) % 32; 3908 } 3909 3910 if (is_postidx) { 3911 if (rm == 31) { 3912 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3913 } else { 3914 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3915 } 3916 } 3917 } 3918 3919 /* 3920 * Load/Store memory tags 3921 * 3922 * 31 30 29 24 22 21 12 10 5 0 3923 * +-----+-------------+-----+---+------+-----+------+------+ 3924 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3925 * +-----+-------------+-----+---+------+-----+------+------+ 3926 */ 3927 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3928 { 3929 int rt = extract32(insn, 0, 5); 3930 int rn = extract32(insn, 5, 5); 3931 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3932 int op2 = extract32(insn, 10, 2); 3933 int op1 = extract32(insn, 22, 2); 3934 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3935 int index = 0; 3936 TCGv_i64 addr, clean_addr, tcg_rt; 3937 3938 /* We checked insn bits [29:24,21] in the caller. */ 3939 if (extract32(insn, 30, 2) != 3) { 3940 goto do_unallocated; 3941 } 3942 3943 /* 3944 * @index is a tri-state variable which has 3 states: 3945 * < 0 : post-index, writeback 3946 * = 0 : signed offset 3947 * > 0 : pre-index, writeback 3948 */ 3949 switch (op1) { 3950 case 0: 3951 if (op2 != 0) { 3952 /* STG */ 3953 index = op2 - 2; 3954 } else { 3955 /* STZGM */ 3956 if (s->current_el == 0 || offset != 0) { 3957 goto do_unallocated; 3958 } 3959 is_mult = is_zero = true; 3960 } 3961 break; 3962 case 1: 3963 if (op2 != 0) { 3964 /* STZG */ 3965 is_zero = true; 3966 index = op2 - 2; 3967 } else { 3968 /* LDG */ 3969 is_load = true; 3970 } 3971 break; 3972 case 2: 3973 if (op2 != 0) { 3974 /* ST2G */ 3975 is_pair = true; 3976 index = op2 - 2; 3977 } else { 3978 /* STGM */ 3979 if (s->current_el == 0 || offset != 0) { 3980 goto do_unallocated; 3981 } 3982 is_mult = true; 3983 } 3984 break; 3985 case 3: 3986 if (op2 != 0) { 3987 /* STZ2G */ 3988 is_pair = is_zero = true; 3989 index = op2 - 2; 3990 } else { 3991 /* LDGM */ 3992 if (s->current_el == 0 || offset != 0) { 3993 goto do_unallocated; 3994 } 3995 is_mult = is_load = true; 3996 } 3997 break; 3998 3999 default: 4000 do_unallocated: 4001 unallocated_encoding(s); 4002 return; 4003 } 4004 4005 if (is_mult 4006 ? !dc_isar_feature(aa64_mte, s) 4007 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4008 goto do_unallocated; 4009 } 4010 4011 if (rn == 31) { 4012 gen_check_sp_alignment(s); 4013 } 4014 4015 addr = read_cpu_reg_sp(s, rn, true); 4016 if (index >= 0) { 4017 /* pre-index or signed offset */ 4018 tcg_gen_addi_i64(addr, addr, offset); 4019 } 4020 4021 if (is_mult) { 4022 tcg_rt = cpu_reg(s, rt); 4023 4024 if (is_zero) { 4025 int size = 4 << s->dcz_blocksize; 4026 4027 if (s->ata) { 4028 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4029 } 4030 /* 4031 * The non-tags portion of STZGM is mostly like DC_ZVA, 4032 * except the alignment happens before the access. 4033 */ 4034 clean_addr = clean_data_tbi(s, addr); 4035 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4036 gen_helper_dc_zva(cpu_env, clean_addr); 4037 } else if (s->ata) { 4038 if (is_load) { 4039 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4040 } else { 4041 gen_helper_stgm(cpu_env, addr, tcg_rt); 4042 } 4043 } else { 4044 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4045 int size = 4 << GMID_EL1_BS; 4046 4047 clean_addr = clean_data_tbi(s, addr); 4048 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4049 gen_probe_access(s, clean_addr, acc, size); 4050 4051 if (is_load) { 4052 /* The result tags are zeros. */ 4053 tcg_gen_movi_i64(tcg_rt, 0); 4054 } 4055 } 4056 return; 4057 } 4058 4059 if (is_load) { 4060 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4061 tcg_rt = cpu_reg(s, rt); 4062 if (s->ata) { 4063 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4064 } else { 4065 clean_addr = clean_data_tbi(s, addr); 4066 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4067 gen_address_with_allocation_tag0(tcg_rt, addr); 4068 } 4069 } else { 4070 tcg_rt = cpu_reg_sp(s, rt); 4071 if (!s->ata) { 4072 /* 4073 * For STG and ST2G, we need to check alignment and probe memory. 4074 * TODO: For STZG and STZ2G, we could rely on the stores below, 4075 * at least for system mode; user-only won't enforce alignment. 4076 */ 4077 if (is_pair) { 4078 gen_helper_st2g_stub(cpu_env, addr); 4079 } else { 4080 gen_helper_stg_stub(cpu_env, addr); 4081 } 4082 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4083 if (is_pair) { 4084 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4085 } else { 4086 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4087 } 4088 } else { 4089 if (is_pair) { 4090 gen_helper_st2g(cpu_env, addr, tcg_rt); 4091 } else { 4092 gen_helper_stg(cpu_env, addr, tcg_rt); 4093 } 4094 } 4095 } 4096 4097 if (is_zero) { 4098 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4099 TCGv_i64 zero64 = tcg_constant_i64(0); 4100 TCGv_i128 zero128 = tcg_temp_new_i128(); 4101 int mem_index = get_mem_index(s); 4102 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4103 4104 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4105 4106 /* This is 1 or 2 atomic 16-byte operations. */ 4107 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4108 if (is_pair) { 4109 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4110 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4111 } 4112 } 4113 4114 if (index != 0) { 4115 /* pre-index or post-index */ 4116 if (index < 0) { 4117 /* post-index */ 4118 tcg_gen_addi_i64(addr, addr, offset); 4119 } 4120 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4121 } 4122 } 4123 4124 /* Loads and stores */ 4125 static void disas_ldst(DisasContext *s, uint32_t insn) 4126 { 4127 switch (extract32(insn, 24, 6)) { 4128 case 0x08: /* Load/store exclusive */ 4129 disas_ldst_excl(s, insn); 4130 break; 4131 case 0x18: case 0x1c: /* Load register (literal) */ 4132 disas_ld_lit(s, insn); 4133 break; 4134 case 0x28: case 0x29: 4135 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4136 disas_ldst_pair(s, insn); 4137 break; 4138 case 0x38: case 0x39: 4139 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4140 disas_ldst_reg(s, insn); 4141 break; 4142 case 0x0c: /* AdvSIMD load/store multiple structures */ 4143 disas_ldst_multiple_struct(s, insn); 4144 break; 4145 case 0x0d: /* AdvSIMD load/store single structure */ 4146 disas_ldst_single_struct(s, insn); 4147 break; 4148 case 0x19: 4149 if (extract32(insn, 21, 1) != 0) { 4150 disas_ldst_tag(s, insn); 4151 } else if (extract32(insn, 10, 2) == 0) { 4152 disas_ldst_ldapr_stlr(s, insn); 4153 } else { 4154 unallocated_encoding(s); 4155 } 4156 break; 4157 default: 4158 unallocated_encoding(s); 4159 break; 4160 } 4161 } 4162 4163 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4164 4165 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4166 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4167 { 4168 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4169 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4170 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4171 4172 fn(tcg_rd, tcg_rn, tcg_imm); 4173 if (!a->sf) { 4174 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4175 } 4176 return true; 4177 } 4178 4179 /* 4180 * PC-rel. addressing 4181 */ 4182 4183 static bool trans_ADR(DisasContext *s, arg_ri *a) 4184 { 4185 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4186 return true; 4187 } 4188 4189 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4190 { 4191 int64_t offset = (int64_t)a->imm << 12; 4192 4193 /* The page offset is ok for CF_PCREL. */ 4194 offset -= s->pc_curr & 0xfff; 4195 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4196 return true; 4197 } 4198 4199 /* 4200 * Add/subtract (immediate) 4201 */ 4202 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4203 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4204 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4205 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4206 4207 /* 4208 * Add/subtract (immediate, with tags) 4209 */ 4210 4211 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4212 bool sub_op) 4213 { 4214 TCGv_i64 tcg_rn, tcg_rd; 4215 int imm; 4216 4217 imm = a->uimm6 << LOG2_TAG_GRANULE; 4218 if (sub_op) { 4219 imm = -imm; 4220 } 4221 4222 tcg_rn = cpu_reg_sp(s, a->rn); 4223 tcg_rd = cpu_reg_sp(s, a->rd); 4224 4225 if (s->ata) { 4226 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4227 tcg_constant_i32(imm), 4228 tcg_constant_i32(a->uimm4)); 4229 } else { 4230 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4231 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4232 } 4233 return true; 4234 } 4235 4236 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4237 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4238 4239 /* The input should be a value in the bottom e bits (with higher 4240 * bits zero); returns that value replicated into every element 4241 * of size e in a 64 bit integer. 4242 */ 4243 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4244 { 4245 assert(e != 0); 4246 while (e < 64) { 4247 mask |= mask << e; 4248 e *= 2; 4249 } 4250 return mask; 4251 } 4252 4253 /* 4254 * Logical (immediate) 4255 */ 4256 4257 /* 4258 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4259 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4260 * value (ie should cause a guest UNDEF exception), and true if they are 4261 * valid, in which case the decoded bit pattern is written to result. 4262 */ 4263 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4264 unsigned int imms, unsigned int immr) 4265 { 4266 uint64_t mask; 4267 unsigned e, levels, s, r; 4268 int len; 4269 4270 assert(immn < 2 && imms < 64 && immr < 64); 4271 4272 /* The bit patterns we create here are 64 bit patterns which 4273 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4274 * 64 bits each. Each element contains the same value: a run 4275 * of between 1 and e-1 non-zero bits, rotated within the 4276 * element by between 0 and e-1 bits. 4277 * 4278 * The element size and run length are encoded into immn (1 bit) 4279 * and imms (6 bits) as follows: 4280 * 64 bit elements: immn = 1, imms = <length of run - 1> 4281 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4282 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4283 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4284 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4285 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4286 * Notice that immn = 0, imms = 11111x is the only combination 4287 * not covered by one of the above options; this is reserved. 4288 * Further, <length of run - 1> all-ones is a reserved pattern. 4289 * 4290 * In all cases the rotation is by immr % e (and immr is 6 bits). 4291 */ 4292 4293 /* First determine the element size */ 4294 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4295 if (len < 1) { 4296 /* This is the immn == 0, imms == 0x11111x case */ 4297 return false; 4298 } 4299 e = 1 << len; 4300 4301 levels = e - 1; 4302 s = imms & levels; 4303 r = immr & levels; 4304 4305 if (s == levels) { 4306 /* <length of run - 1> mustn't be all-ones. */ 4307 return false; 4308 } 4309 4310 /* Create the value of one element: s+1 set bits rotated 4311 * by r within the element (which is e bits wide)... 4312 */ 4313 mask = MAKE_64BIT_MASK(0, s + 1); 4314 if (r) { 4315 mask = (mask >> r) | (mask << (e - r)); 4316 mask &= MAKE_64BIT_MASK(0, e); 4317 } 4318 /* ...then replicate the element over the whole 64 bit value */ 4319 mask = bitfield_replicate(mask, e); 4320 *result = mask; 4321 return true; 4322 } 4323 4324 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4325 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4326 { 4327 TCGv_i64 tcg_rd, tcg_rn; 4328 uint64_t imm; 4329 4330 /* Some immediate field values are reserved. */ 4331 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4332 extract32(a->dbm, 0, 6), 4333 extract32(a->dbm, 6, 6))) { 4334 return false; 4335 } 4336 if (!a->sf) { 4337 imm &= 0xffffffffull; 4338 } 4339 4340 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4341 tcg_rn = cpu_reg(s, a->rn); 4342 4343 fn(tcg_rd, tcg_rn, imm); 4344 if (set_cc) { 4345 gen_logic_CC(a->sf, tcg_rd); 4346 } 4347 if (!a->sf) { 4348 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4349 } 4350 return true; 4351 } 4352 4353 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4354 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4355 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4356 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4357 4358 /* 4359 * Move wide (immediate) 4360 */ 4361 4362 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4363 { 4364 int pos = a->hw << 4; 4365 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4366 return true; 4367 } 4368 4369 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4370 { 4371 int pos = a->hw << 4; 4372 uint64_t imm = a->imm; 4373 4374 imm = ~(imm << pos); 4375 if (!a->sf) { 4376 imm = (uint32_t)imm; 4377 } 4378 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4379 return true; 4380 } 4381 4382 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4383 { 4384 int pos = a->hw << 4; 4385 TCGv_i64 tcg_rd, tcg_im; 4386 4387 tcg_rd = cpu_reg(s, a->rd); 4388 tcg_im = tcg_constant_i64(a->imm); 4389 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4390 if (!a->sf) { 4391 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4392 } 4393 return true; 4394 } 4395 4396 /* 4397 * Bitfield 4398 */ 4399 4400 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4401 { 4402 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4403 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4404 unsigned int bitsize = a->sf ? 64 : 32; 4405 unsigned int ri = a->immr; 4406 unsigned int si = a->imms; 4407 unsigned int pos, len; 4408 4409 if (si >= ri) { 4410 /* Wd<s-r:0> = Wn<s:r> */ 4411 len = (si - ri) + 1; 4412 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4413 if (!a->sf) { 4414 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4415 } 4416 } else { 4417 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4418 len = si + 1; 4419 pos = (bitsize - ri) & (bitsize - 1); 4420 4421 if (len < ri) { 4422 /* 4423 * Sign extend the destination field from len to fill the 4424 * balance of the word. Let the deposit below insert all 4425 * of those sign bits. 4426 */ 4427 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4428 len = ri; 4429 } 4430 4431 /* 4432 * We start with zero, and we haven't modified any bits outside 4433 * bitsize, therefore no final zero-extension is unneeded for !sf. 4434 */ 4435 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4436 } 4437 return true; 4438 } 4439 4440 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4441 { 4442 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4443 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4444 unsigned int bitsize = a->sf ? 64 : 32; 4445 unsigned int ri = a->immr; 4446 unsigned int si = a->imms; 4447 unsigned int pos, len; 4448 4449 tcg_rd = cpu_reg(s, a->rd); 4450 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4451 4452 if (si >= ri) { 4453 /* Wd<s-r:0> = Wn<s:r> */ 4454 len = (si - ri) + 1; 4455 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4456 } else { 4457 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4458 len = si + 1; 4459 pos = (bitsize - ri) & (bitsize - 1); 4460 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4461 } 4462 return true; 4463 } 4464 4465 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4466 { 4467 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4468 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4469 unsigned int bitsize = a->sf ? 64 : 32; 4470 unsigned int ri = a->immr; 4471 unsigned int si = a->imms; 4472 unsigned int pos, len; 4473 4474 tcg_rd = cpu_reg(s, a->rd); 4475 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4476 4477 if (si >= ri) { 4478 /* Wd<s-r:0> = Wn<s:r> */ 4479 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4480 len = (si - ri) + 1; 4481 pos = 0; 4482 } else { 4483 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4484 len = si + 1; 4485 pos = (bitsize - ri) & (bitsize - 1); 4486 } 4487 4488 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4489 if (!a->sf) { 4490 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4491 } 4492 return true; 4493 } 4494 4495 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4496 { 4497 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4498 4499 tcg_rd = cpu_reg(s, a->rd); 4500 4501 if (unlikely(a->imm == 0)) { 4502 /* 4503 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4504 * so an extract from bit 0 is a special case. 4505 */ 4506 if (a->sf) { 4507 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4508 } else { 4509 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4510 } 4511 } else { 4512 tcg_rm = cpu_reg(s, a->rm); 4513 tcg_rn = cpu_reg(s, a->rn); 4514 4515 if (a->sf) { 4516 /* Specialization to ROR happens in EXTRACT2. */ 4517 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4518 } else { 4519 TCGv_i32 t0 = tcg_temp_new_i32(); 4520 4521 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4522 if (a->rm == a->rn) { 4523 tcg_gen_rotri_i32(t0, t0, a->imm); 4524 } else { 4525 TCGv_i32 t1 = tcg_temp_new_i32(); 4526 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4527 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4528 } 4529 tcg_gen_extu_i32_i64(tcg_rd, t0); 4530 } 4531 } 4532 return true; 4533 } 4534 4535 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4536 * Note that it is the caller's responsibility to ensure that the 4537 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4538 * mandated semantics for out of range shifts. 4539 */ 4540 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4541 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4542 { 4543 switch (shift_type) { 4544 case A64_SHIFT_TYPE_LSL: 4545 tcg_gen_shl_i64(dst, src, shift_amount); 4546 break; 4547 case A64_SHIFT_TYPE_LSR: 4548 tcg_gen_shr_i64(dst, src, shift_amount); 4549 break; 4550 case A64_SHIFT_TYPE_ASR: 4551 if (!sf) { 4552 tcg_gen_ext32s_i64(dst, src); 4553 } 4554 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4555 break; 4556 case A64_SHIFT_TYPE_ROR: 4557 if (sf) { 4558 tcg_gen_rotr_i64(dst, src, shift_amount); 4559 } else { 4560 TCGv_i32 t0, t1; 4561 t0 = tcg_temp_new_i32(); 4562 t1 = tcg_temp_new_i32(); 4563 tcg_gen_extrl_i64_i32(t0, src); 4564 tcg_gen_extrl_i64_i32(t1, shift_amount); 4565 tcg_gen_rotr_i32(t0, t0, t1); 4566 tcg_gen_extu_i32_i64(dst, t0); 4567 } 4568 break; 4569 default: 4570 assert(FALSE); /* all shift types should be handled */ 4571 break; 4572 } 4573 4574 if (!sf) { /* zero extend final result */ 4575 tcg_gen_ext32u_i64(dst, dst); 4576 } 4577 } 4578 4579 /* Shift a TCGv src by immediate, put result in dst. 4580 * The shift amount must be in range (this should always be true as the 4581 * relevant instructions will UNDEF on bad shift immediates). 4582 */ 4583 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4584 enum a64_shift_type shift_type, unsigned int shift_i) 4585 { 4586 assert(shift_i < (sf ? 64 : 32)); 4587 4588 if (shift_i == 0) { 4589 tcg_gen_mov_i64(dst, src); 4590 } else { 4591 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4592 } 4593 } 4594 4595 /* Logical (shifted register) 4596 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4597 * +----+-----+-----------+-------+---+------+--------+------+------+ 4598 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4599 * +----+-----+-----------+-------+---+------+--------+------+------+ 4600 */ 4601 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4602 { 4603 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4604 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4605 4606 sf = extract32(insn, 31, 1); 4607 opc = extract32(insn, 29, 2); 4608 shift_type = extract32(insn, 22, 2); 4609 invert = extract32(insn, 21, 1); 4610 rm = extract32(insn, 16, 5); 4611 shift_amount = extract32(insn, 10, 6); 4612 rn = extract32(insn, 5, 5); 4613 rd = extract32(insn, 0, 5); 4614 4615 if (!sf && (shift_amount & (1 << 5))) { 4616 unallocated_encoding(s); 4617 return; 4618 } 4619 4620 tcg_rd = cpu_reg(s, rd); 4621 4622 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4623 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4624 * register-register MOV and MVN, so it is worth special casing. 4625 */ 4626 tcg_rm = cpu_reg(s, rm); 4627 if (invert) { 4628 tcg_gen_not_i64(tcg_rd, tcg_rm); 4629 if (!sf) { 4630 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4631 } 4632 } else { 4633 if (sf) { 4634 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4635 } else { 4636 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4637 } 4638 } 4639 return; 4640 } 4641 4642 tcg_rm = read_cpu_reg(s, rm, sf); 4643 4644 if (shift_amount) { 4645 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4646 } 4647 4648 tcg_rn = cpu_reg(s, rn); 4649 4650 switch (opc | (invert << 2)) { 4651 case 0: /* AND */ 4652 case 3: /* ANDS */ 4653 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4654 break; 4655 case 1: /* ORR */ 4656 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4657 break; 4658 case 2: /* EOR */ 4659 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4660 break; 4661 case 4: /* BIC */ 4662 case 7: /* BICS */ 4663 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4664 break; 4665 case 5: /* ORN */ 4666 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4667 break; 4668 case 6: /* EON */ 4669 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4670 break; 4671 default: 4672 assert(FALSE); 4673 break; 4674 } 4675 4676 if (!sf) { 4677 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4678 } 4679 4680 if (opc == 3) { 4681 gen_logic_CC(sf, tcg_rd); 4682 } 4683 } 4684 4685 /* 4686 * Add/subtract (extended register) 4687 * 4688 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4689 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4690 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4691 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4692 * 4693 * sf: 0 -> 32bit, 1 -> 64bit 4694 * op: 0 -> add , 1 -> sub 4695 * S: 1 -> set flags 4696 * opt: 00 4697 * option: extension type (see DecodeRegExtend) 4698 * imm3: optional shift to Rm 4699 * 4700 * Rd = Rn + LSL(extend(Rm), amount) 4701 */ 4702 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4703 { 4704 int rd = extract32(insn, 0, 5); 4705 int rn = extract32(insn, 5, 5); 4706 int imm3 = extract32(insn, 10, 3); 4707 int option = extract32(insn, 13, 3); 4708 int rm = extract32(insn, 16, 5); 4709 int opt = extract32(insn, 22, 2); 4710 bool setflags = extract32(insn, 29, 1); 4711 bool sub_op = extract32(insn, 30, 1); 4712 bool sf = extract32(insn, 31, 1); 4713 4714 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4715 TCGv_i64 tcg_rd; 4716 TCGv_i64 tcg_result; 4717 4718 if (imm3 > 4 || opt != 0) { 4719 unallocated_encoding(s); 4720 return; 4721 } 4722 4723 /* non-flag setting ops may use SP */ 4724 if (!setflags) { 4725 tcg_rd = cpu_reg_sp(s, rd); 4726 } else { 4727 tcg_rd = cpu_reg(s, rd); 4728 } 4729 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4730 4731 tcg_rm = read_cpu_reg(s, rm, sf); 4732 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4733 4734 tcg_result = tcg_temp_new_i64(); 4735 4736 if (!setflags) { 4737 if (sub_op) { 4738 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4739 } else { 4740 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4741 } 4742 } else { 4743 if (sub_op) { 4744 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4745 } else { 4746 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4747 } 4748 } 4749 4750 if (sf) { 4751 tcg_gen_mov_i64(tcg_rd, tcg_result); 4752 } else { 4753 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4754 } 4755 } 4756 4757 /* 4758 * Add/subtract (shifted register) 4759 * 4760 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4761 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4762 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4763 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4764 * 4765 * sf: 0 -> 32bit, 1 -> 64bit 4766 * op: 0 -> add , 1 -> sub 4767 * S: 1 -> set flags 4768 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4769 * imm6: Shift amount to apply to Rm before the add/sub 4770 */ 4771 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4772 { 4773 int rd = extract32(insn, 0, 5); 4774 int rn = extract32(insn, 5, 5); 4775 int imm6 = extract32(insn, 10, 6); 4776 int rm = extract32(insn, 16, 5); 4777 int shift_type = extract32(insn, 22, 2); 4778 bool setflags = extract32(insn, 29, 1); 4779 bool sub_op = extract32(insn, 30, 1); 4780 bool sf = extract32(insn, 31, 1); 4781 4782 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4783 TCGv_i64 tcg_rn, tcg_rm; 4784 TCGv_i64 tcg_result; 4785 4786 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4787 unallocated_encoding(s); 4788 return; 4789 } 4790 4791 tcg_rn = read_cpu_reg(s, rn, sf); 4792 tcg_rm = read_cpu_reg(s, rm, sf); 4793 4794 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4795 4796 tcg_result = tcg_temp_new_i64(); 4797 4798 if (!setflags) { 4799 if (sub_op) { 4800 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4801 } else { 4802 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4803 } 4804 } else { 4805 if (sub_op) { 4806 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4807 } else { 4808 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4809 } 4810 } 4811 4812 if (sf) { 4813 tcg_gen_mov_i64(tcg_rd, tcg_result); 4814 } else { 4815 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4816 } 4817 } 4818 4819 /* Data-processing (3 source) 4820 * 4821 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4822 * +--+------+-----------+------+------+----+------+------+------+ 4823 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4824 * +--+------+-----------+------+------+----+------+------+------+ 4825 */ 4826 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4827 { 4828 int rd = extract32(insn, 0, 5); 4829 int rn = extract32(insn, 5, 5); 4830 int ra = extract32(insn, 10, 5); 4831 int rm = extract32(insn, 16, 5); 4832 int op_id = (extract32(insn, 29, 3) << 4) | 4833 (extract32(insn, 21, 3) << 1) | 4834 extract32(insn, 15, 1); 4835 bool sf = extract32(insn, 31, 1); 4836 bool is_sub = extract32(op_id, 0, 1); 4837 bool is_high = extract32(op_id, 2, 1); 4838 bool is_signed = false; 4839 TCGv_i64 tcg_op1; 4840 TCGv_i64 tcg_op2; 4841 TCGv_i64 tcg_tmp; 4842 4843 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4844 switch (op_id) { 4845 case 0x42: /* SMADDL */ 4846 case 0x43: /* SMSUBL */ 4847 case 0x44: /* SMULH */ 4848 is_signed = true; 4849 break; 4850 case 0x0: /* MADD (32bit) */ 4851 case 0x1: /* MSUB (32bit) */ 4852 case 0x40: /* MADD (64bit) */ 4853 case 0x41: /* MSUB (64bit) */ 4854 case 0x4a: /* UMADDL */ 4855 case 0x4b: /* UMSUBL */ 4856 case 0x4c: /* UMULH */ 4857 break; 4858 default: 4859 unallocated_encoding(s); 4860 return; 4861 } 4862 4863 if (is_high) { 4864 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4865 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4866 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4867 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4868 4869 if (is_signed) { 4870 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4871 } else { 4872 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4873 } 4874 return; 4875 } 4876 4877 tcg_op1 = tcg_temp_new_i64(); 4878 tcg_op2 = tcg_temp_new_i64(); 4879 tcg_tmp = tcg_temp_new_i64(); 4880 4881 if (op_id < 0x42) { 4882 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4883 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4884 } else { 4885 if (is_signed) { 4886 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4887 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4888 } else { 4889 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4890 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4891 } 4892 } 4893 4894 if (ra == 31 && !is_sub) { 4895 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4896 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4897 } else { 4898 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4899 if (is_sub) { 4900 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4901 } else { 4902 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4903 } 4904 } 4905 4906 if (!sf) { 4907 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4908 } 4909 } 4910 4911 /* Add/subtract (with carry) 4912 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4913 * +--+--+--+------------------------+------+-------------+------+-----+ 4914 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4915 * +--+--+--+------------------------+------+-------------+------+-----+ 4916 */ 4917 4918 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4919 { 4920 unsigned int sf, op, setflags, rm, rn, rd; 4921 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4922 4923 sf = extract32(insn, 31, 1); 4924 op = extract32(insn, 30, 1); 4925 setflags = extract32(insn, 29, 1); 4926 rm = extract32(insn, 16, 5); 4927 rn = extract32(insn, 5, 5); 4928 rd = extract32(insn, 0, 5); 4929 4930 tcg_rd = cpu_reg(s, rd); 4931 tcg_rn = cpu_reg(s, rn); 4932 4933 if (op) { 4934 tcg_y = tcg_temp_new_i64(); 4935 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4936 } else { 4937 tcg_y = cpu_reg(s, rm); 4938 } 4939 4940 if (setflags) { 4941 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4942 } else { 4943 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4944 } 4945 } 4946 4947 /* 4948 * Rotate right into flags 4949 * 31 30 29 21 15 10 5 4 0 4950 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4951 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4952 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4953 */ 4954 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4955 { 4956 int mask = extract32(insn, 0, 4); 4957 int o2 = extract32(insn, 4, 1); 4958 int rn = extract32(insn, 5, 5); 4959 int imm6 = extract32(insn, 15, 6); 4960 int sf_op_s = extract32(insn, 29, 3); 4961 TCGv_i64 tcg_rn; 4962 TCGv_i32 nzcv; 4963 4964 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4965 unallocated_encoding(s); 4966 return; 4967 } 4968 4969 tcg_rn = read_cpu_reg(s, rn, 1); 4970 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4971 4972 nzcv = tcg_temp_new_i32(); 4973 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4974 4975 if (mask & 8) { /* N */ 4976 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4977 } 4978 if (mask & 4) { /* Z */ 4979 tcg_gen_not_i32(cpu_ZF, nzcv); 4980 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4981 } 4982 if (mask & 2) { /* C */ 4983 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4984 } 4985 if (mask & 1) { /* V */ 4986 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4987 } 4988 } 4989 4990 /* 4991 * Evaluate into flags 4992 * 31 30 29 21 15 14 10 5 4 0 4993 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4994 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4995 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4996 */ 4997 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4998 { 4999 int o3_mask = extract32(insn, 0, 5); 5000 int rn = extract32(insn, 5, 5); 5001 int o2 = extract32(insn, 15, 6); 5002 int sz = extract32(insn, 14, 1); 5003 int sf_op_s = extract32(insn, 29, 3); 5004 TCGv_i32 tmp; 5005 int shift; 5006 5007 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5008 !dc_isar_feature(aa64_condm_4, s)) { 5009 unallocated_encoding(s); 5010 return; 5011 } 5012 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5013 5014 tmp = tcg_temp_new_i32(); 5015 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5016 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5017 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5018 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5019 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5020 } 5021 5022 /* Conditional compare (immediate / register) 5023 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5024 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5025 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5026 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5027 * [1] y [0] [0] 5028 */ 5029 static void disas_cc(DisasContext *s, uint32_t insn) 5030 { 5031 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5032 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5033 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5034 DisasCompare c; 5035 5036 if (!extract32(insn, 29, 1)) { 5037 unallocated_encoding(s); 5038 return; 5039 } 5040 if (insn & (1 << 10 | 1 << 4)) { 5041 unallocated_encoding(s); 5042 return; 5043 } 5044 sf = extract32(insn, 31, 1); 5045 op = extract32(insn, 30, 1); 5046 is_imm = extract32(insn, 11, 1); 5047 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5048 cond = extract32(insn, 12, 4); 5049 rn = extract32(insn, 5, 5); 5050 nzcv = extract32(insn, 0, 4); 5051 5052 /* Set T0 = !COND. */ 5053 tcg_t0 = tcg_temp_new_i32(); 5054 arm_test_cc(&c, cond); 5055 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5056 5057 /* Load the arguments for the new comparison. */ 5058 if (is_imm) { 5059 tcg_y = tcg_temp_new_i64(); 5060 tcg_gen_movi_i64(tcg_y, y); 5061 } else { 5062 tcg_y = cpu_reg(s, y); 5063 } 5064 tcg_rn = cpu_reg(s, rn); 5065 5066 /* Set the flags for the new comparison. */ 5067 tcg_tmp = tcg_temp_new_i64(); 5068 if (op) { 5069 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5070 } else { 5071 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5072 } 5073 5074 /* If COND was false, force the flags to #nzcv. Compute two masks 5075 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5076 * For tcg hosts that support ANDC, we can make do with just T1. 5077 * In either case, allow the tcg optimizer to delete any unused mask. 5078 */ 5079 tcg_t1 = tcg_temp_new_i32(); 5080 tcg_t2 = tcg_temp_new_i32(); 5081 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5082 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5083 5084 if (nzcv & 8) { /* N */ 5085 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5086 } else { 5087 if (TCG_TARGET_HAS_andc_i32) { 5088 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5089 } else { 5090 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5091 } 5092 } 5093 if (nzcv & 4) { /* Z */ 5094 if (TCG_TARGET_HAS_andc_i32) { 5095 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5096 } else { 5097 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5098 } 5099 } else { 5100 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5101 } 5102 if (nzcv & 2) { /* C */ 5103 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5104 } else { 5105 if (TCG_TARGET_HAS_andc_i32) { 5106 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5107 } else { 5108 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5109 } 5110 } 5111 if (nzcv & 1) { /* V */ 5112 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5113 } else { 5114 if (TCG_TARGET_HAS_andc_i32) { 5115 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5116 } else { 5117 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5118 } 5119 } 5120 } 5121 5122 /* Conditional select 5123 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5124 * +----+----+---+-----------------+------+------+-----+------+------+ 5125 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5126 * +----+----+---+-----------------+------+------+-----+------+------+ 5127 */ 5128 static void disas_cond_select(DisasContext *s, uint32_t insn) 5129 { 5130 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5131 TCGv_i64 tcg_rd, zero; 5132 DisasCompare64 c; 5133 5134 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5135 /* S == 1 or op2<1> == 1 */ 5136 unallocated_encoding(s); 5137 return; 5138 } 5139 sf = extract32(insn, 31, 1); 5140 else_inv = extract32(insn, 30, 1); 5141 rm = extract32(insn, 16, 5); 5142 cond = extract32(insn, 12, 4); 5143 else_inc = extract32(insn, 10, 1); 5144 rn = extract32(insn, 5, 5); 5145 rd = extract32(insn, 0, 5); 5146 5147 tcg_rd = cpu_reg(s, rd); 5148 5149 a64_test_cc(&c, cond); 5150 zero = tcg_constant_i64(0); 5151 5152 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5153 /* CSET & CSETM. */ 5154 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5155 if (else_inv) { 5156 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5157 } 5158 } else { 5159 TCGv_i64 t_true = cpu_reg(s, rn); 5160 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5161 if (else_inv && else_inc) { 5162 tcg_gen_neg_i64(t_false, t_false); 5163 } else if (else_inv) { 5164 tcg_gen_not_i64(t_false, t_false); 5165 } else if (else_inc) { 5166 tcg_gen_addi_i64(t_false, t_false, 1); 5167 } 5168 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5169 } 5170 5171 if (!sf) { 5172 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5173 } 5174 } 5175 5176 static void handle_clz(DisasContext *s, unsigned int sf, 5177 unsigned int rn, unsigned int rd) 5178 { 5179 TCGv_i64 tcg_rd, tcg_rn; 5180 tcg_rd = cpu_reg(s, rd); 5181 tcg_rn = cpu_reg(s, rn); 5182 5183 if (sf) { 5184 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5185 } else { 5186 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5187 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5188 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5189 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5190 } 5191 } 5192 5193 static void handle_cls(DisasContext *s, unsigned int sf, 5194 unsigned int rn, unsigned int rd) 5195 { 5196 TCGv_i64 tcg_rd, tcg_rn; 5197 tcg_rd = cpu_reg(s, rd); 5198 tcg_rn = cpu_reg(s, rn); 5199 5200 if (sf) { 5201 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5202 } else { 5203 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5204 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5205 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5206 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5207 } 5208 } 5209 5210 static void handle_rbit(DisasContext *s, unsigned int sf, 5211 unsigned int rn, unsigned int rd) 5212 { 5213 TCGv_i64 tcg_rd, tcg_rn; 5214 tcg_rd = cpu_reg(s, rd); 5215 tcg_rn = cpu_reg(s, rn); 5216 5217 if (sf) { 5218 gen_helper_rbit64(tcg_rd, tcg_rn); 5219 } else { 5220 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5221 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5222 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5223 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5224 } 5225 } 5226 5227 /* REV with sf==1, opcode==3 ("REV64") */ 5228 static void handle_rev64(DisasContext *s, unsigned int sf, 5229 unsigned int rn, unsigned int rd) 5230 { 5231 if (!sf) { 5232 unallocated_encoding(s); 5233 return; 5234 } 5235 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5236 } 5237 5238 /* REV with sf==0, opcode==2 5239 * REV32 (sf==1, opcode==2) 5240 */ 5241 static void handle_rev32(DisasContext *s, unsigned int sf, 5242 unsigned int rn, unsigned int rd) 5243 { 5244 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5245 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5246 5247 if (sf) { 5248 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5249 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5250 } else { 5251 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5252 } 5253 } 5254 5255 /* REV16 (opcode==1) */ 5256 static void handle_rev16(DisasContext *s, unsigned int sf, 5257 unsigned int rn, unsigned int rd) 5258 { 5259 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5260 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5261 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5262 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5263 5264 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5265 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5266 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5267 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5268 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5269 } 5270 5271 /* Data-processing (1 source) 5272 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5273 * +----+---+---+-----------------+---------+--------+------+------+ 5274 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5275 * +----+---+---+-----------------+---------+--------+------+------+ 5276 */ 5277 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5278 { 5279 unsigned int sf, opcode, opcode2, rn, rd; 5280 TCGv_i64 tcg_rd; 5281 5282 if (extract32(insn, 29, 1)) { 5283 unallocated_encoding(s); 5284 return; 5285 } 5286 5287 sf = extract32(insn, 31, 1); 5288 opcode = extract32(insn, 10, 6); 5289 opcode2 = extract32(insn, 16, 5); 5290 rn = extract32(insn, 5, 5); 5291 rd = extract32(insn, 0, 5); 5292 5293 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5294 5295 switch (MAP(sf, opcode2, opcode)) { 5296 case MAP(0, 0x00, 0x00): /* RBIT */ 5297 case MAP(1, 0x00, 0x00): 5298 handle_rbit(s, sf, rn, rd); 5299 break; 5300 case MAP(0, 0x00, 0x01): /* REV16 */ 5301 case MAP(1, 0x00, 0x01): 5302 handle_rev16(s, sf, rn, rd); 5303 break; 5304 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5305 case MAP(1, 0x00, 0x02): 5306 handle_rev32(s, sf, rn, rd); 5307 break; 5308 case MAP(1, 0x00, 0x03): /* REV64 */ 5309 handle_rev64(s, sf, rn, rd); 5310 break; 5311 case MAP(0, 0x00, 0x04): /* CLZ */ 5312 case MAP(1, 0x00, 0x04): 5313 handle_clz(s, sf, rn, rd); 5314 break; 5315 case MAP(0, 0x00, 0x05): /* CLS */ 5316 case MAP(1, 0x00, 0x05): 5317 handle_cls(s, sf, rn, rd); 5318 break; 5319 case MAP(1, 0x01, 0x00): /* PACIA */ 5320 if (s->pauth_active) { 5321 tcg_rd = cpu_reg(s, rd); 5322 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5323 } else if (!dc_isar_feature(aa64_pauth, s)) { 5324 goto do_unallocated; 5325 } 5326 break; 5327 case MAP(1, 0x01, 0x01): /* PACIB */ 5328 if (s->pauth_active) { 5329 tcg_rd = cpu_reg(s, rd); 5330 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5331 } else if (!dc_isar_feature(aa64_pauth, s)) { 5332 goto do_unallocated; 5333 } 5334 break; 5335 case MAP(1, 0x01, 0x02): /* PACDA */ 5336 if (s->pauth_active) { 5337 tcg_rd = cpu_reg(s, rd); 5338 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5339 } else if (!dc_isar_feature(aa64_pauth, s)) { 5340 goto do_unallocated; 5341 } 5342 break; 5343 case MAP(1, 0x01, 0x03): /* PACDB */ 5344 if (s->pauth_active) { 5345 tcg_rd = cpu_reg(s, rd); 5346 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5347 } else if (!dc_isar_feature(aa64_pauth, s)) { 5348 goto do_unallocated; 5349 } 5350 break; 5351 case MAP(1, 0x01, 0x04): /* AUTIA */ 5352 if (s->pauth_active) { 5353 tcg_rd = cpu_reg(s, rd); 5354 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5355 } else if (!dc_isar_feature(aa64_pauth, s)) { 5356 goto do_unallocated; 5357 } 5358 break; 5359 case MAP(1, 0x01, 0x05): /* AUTIB */ 5360 if (s->pauth_active) { 5361 tcg_rd = cpu_reg(s, rd); 5362 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5363 } else if (!dc_isar_feature(aa64_pauth, s)) { 5364 goto do_unallocated; 5365 } 5366 break; 5367 case MAP(1, 0x01, 0x06): /* AUTDA */ 5368 if (s->pauth_active) { 5369 tcg_rd = cpu_reg(s, rd); 5370 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5371 } else if (!dc_isar_feature(aa64_pauth, s)) { 5372 goto do_unallocated; 5373 } 5374 break; 5375 case MAP(1, 0x01, 0x07): /* AUTDB */ 5376 if (s->pauth_active) { 5377 tcg_rd = cpu_reg(s, rd); 5378 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5379 } else if (!dc_isar_feature(aa64_pauth, s)) { 5380 goto do_unallocated; 5381 } 5382 break; 5383 case MAP(1, 0x01, 0x08): /* PACIZA */ 5384 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5385 goto do_unallocated; 5386 } else if (s->pauth_active) { 5387 tcg_rd = cpu_reg(s, rd); 5388 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5389 } 5390 break; 5391 case MAP(1, 0x01, 0x09): /* PACIZB */ 5392 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5393 goto do_unallocated; 5394 } else if (s->pauth_active) { 5395 tcg_rd = cpu_reg(s, rd); 5396 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5397 } 5398 break; 5399 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5400 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5401 goto do_unallocated; 5402 } else if (s->pauth_active) { 5403 tcg_rd = cpu_reg(s, rd); 5404 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5405 } 5406 break; 5407 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5408 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5409 goto do_unallocated; 5410 } else if (s->pauth_active) { 5411 tcg_rd = cpu_reg(s, rd); 5412 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5413 } 5414 break; 5415 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5416 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5417 goto do_unallocated; 5418 } else if (s->pauth_active) { 5419 tcg_rd = cpu_reg(s, rd); 5420 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5421 } 5422 break; 5423 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5424 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5425 goto do_unallocated; 5426 } else if (s->pauth_active) { 5427 tcg_rd = cpu_reg(s, rd); 5428 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5429 } 5430 break; 5431 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5432 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5433 goto do_unallocated; 5434 } else if (s->pauth_active) { 5435 tcg_rd = cpu_reg(s, rd); 5436 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5437 } 5438 break; 5439 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5440 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5441 goto do_unallocated; 5442 } else if (s->pauth_active) { 5443 tcg_rd = cpu_reg(s, rd); 5444 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5445 } 5446 break; 5447 case MAP(1, 0x01, 0x10): /* XPACI */ 5448 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5449 goto do_unallocated; 5450 } else if (s->pauth_active) { 5451 tcg_rd = cpu_reg(s, rd); 5452 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5453 } 5454 break; 5455 case MAP(1, 0x01, 0x11): /* XPACD */ 5456 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5457 goto do_unallocated; 5458 } else if (s->pauth_active) { 5459 tcg_rd = cpu_reg(s, rd); 5460 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5461 } 5462 break; 5463 default: 5464 do_unallocated: 5465 unallocated_encoding(s); 5466 break; 5467 } 5468 5469 #undef MAP 5470 } 5471 5472 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5473 unsigned int rm, unsigned int rn, unsigned int rd) 5474 { 5475 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5476 tcg_rd = cpu_reg(s, rd); 5477 5478 if (!sf && is_signed) { 5479 tcg_n = tcg_temp_new_i64(); 5480 tcg_m = tcg_temp_new_i64(); 5481 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5482 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5483 } else { 5484 tcg_n = read_cpu_reg(s, rn, sf); 5485 tcg_m = read_cpu_reg(s, rm, sf); 5486 } 5487 5488 if (is_signed) { 5489 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5490 } else { 5491 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5492 } 5493 5494 if (!sf) { /* zero extend final result */ 5495 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5496 } 5497 } 5498 5499 /* LSLV, LSRV, ASRV, RORV */ 5500 static void handle_shift_reg(DisasContext *s, 5501 enum a64_shift_type shift_type, unsigned int sf, 5502 unsigned int rm, unsigned int rn, unsigned int rd) 5503 { 5504 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5505 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5506 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5507 5508 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5509 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5510 } 5511 5512 /* CRC32[BHWX], CRC32C[BHWX] */ 5513 static void handle_crc32(DisasContext *s, 5514 unsigned int sf, unsigned int sz, bool crc32c, 5515 unsigned int rm, unsigned int rn, unsigned int rd) 5516 { 5517 TCGv_i64 tcg_acc, tcg_val; 5518 TCGv_i32 tcg_bytes; 5519 5520 if (!dc_isar_feature(aa64_crc32, s) 5521 || (sf == 1 && sz != 3) 5522 || (sf == 0 && sz == 3)) { 5523 unallocated_encoding(s); 5524 return; 5525 } 5526 5527 if (sz == 3) { 5528 tcg_val = cpu_reg(s, rm); 5529 } else { 5530 uint64_t mask; 5531 switch (sz) { 5532 case 0: 5533 mask = 0xFF; 5534 break; 5535 case 1: 5536 mask = 0xFFFF; 5537 break; 5538 case 2: 5539 mask = 0xFFFFFFFF; 5540 break; 5541 default: 5542 g_assert_not_reached(); 5543 } 5544 tcg_val = tcg_temp_new_i64(); 5545 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5546 } 5547 5548 tcg_acc = cpu_reg(s, rn); 5549 tcg_bytes = tcg_constant_i32(1 << sz); 5550 5551 if (crc32c) { 5552 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5553 } else { 5554 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5555 } 5556 } 5557 5558 /* Data-processing (2 source) 5559 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5560 * +----+---+---+-----------------+------+--------+------+------+ 5561 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5562 * +----+---+---+-----------------+------+--------+------+------+ 5563 */ 5564 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5565 { 5566 unsigned int sf, rm, opcode, rn, rd, setflag; 5567 sf = extract32(insn, 31, 1); 5568 setflag = extract32(insn, 29, 1); 5569 rm = extract32(insn, 16, 5); 5570 opcode = extract32(insn, 10, 6); 5571 rn = extract32(insn, 5, 5); 5572 rd = extract32(insn, 0, 5); 5573 5574 if (setflag && opcode != 0) { 5575 unallocated_encoding(s); 5576 return; 5577 } 5578 5579 switch (opcode) { 5580 case 0: /* SUBP(S) */ 5581 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5582 goto do_unallocated; 5583 } else { 5584 TCGv_i64 tcg_n, tcg_m, tcg_d; 5585 5586 tcg_n = read_cpu_reg_sp(s, rn, true); 5587 tcg_m = read_cpu_reg_sp(s, rm, true); 5588 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5589 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5590 tcg_d = cpu_reg(s, rd); 5591 5592 if (setflag) { 5593 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5594 } else { 5595 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5596 } 5597 } 5598 break; 5599 case 2: /* UDIV */ 5600 handle_div(s, false, sf, rm, rn, rd); 5601 break; 5602 case 3: /* SDIV */ 5603 handle_div(s, true, sf, rm, rn, rd); 5604 break; 5605 case 4: /* IRG */ 5606 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5607 goto do_unallocated; 5608 } 5609 if (s->ata) { 5610 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5611 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5612 } else { 5613 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5614 cpu_reg_sp(s, rn)); 5615 } 5616 break; 5617 case 5: /* GMI */ 5618 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5619 goto do_unallocated; 5620 } else { 5621 TCGv_i64 t = tcg_temp_new_i64(); 5622 5623 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5624 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5625 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5626 } 5627 break; 5628 case 8: /* LSLV */ 5629 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5630 break; 5631 case 9: /* LSRV */ 5632 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5633 break; 5634 case 10: /* ASRV */ 5635 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5636 break; 5637 case 11: /* RORV */ 5638 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5639 break; 5640 case 12: /* PACGA */ 5641 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5642 goto do_unallocated; 5643 } 5644 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5645 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5646 break; 5647 case 16: 5648 case 17: 5649 case 18: 5650 case 19: 5651 case 20: 5652 case 21: 5653 case 22: 5654 case 23: /* CRC32 */ 5655 { 5656 int sz = extract32(opcode, 0, 2); 5657 bool crc32c = extract32(opcode, 2, 1); 5658 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5659 break; 5660 } 5661 default: 5662 do_unallocated: 5663 unallocated_encoding(s); 5664 break; 5665 } 5666 } 5667 5668 /* 5669 * Data processing - register 5670 * 31 30 29 28 25 21 20 16 10 0 5671 * +--+---+--+---+-------+-----+-------+-------+---------+ 5672 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5673 * +--+---+--+---+-------+-----+-------+-------+---------+ 5674 */ 5675 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5676 { 5677 int op0 = extract32(insn, 30, 1); 5678 int op1 = extract32(insn, 28, 1); 5679 int op2 = extract32(insn, 21, 4); 5680 int op3 = extract32(insn, 10, 6); 5681 5682 if (!op1) { 5683 if (op2 & 8) { 5684 if (op2 & 1) { 5685 /* Add/sub (extended register) */ 5686 disas_add_sub_ext_reg(s, insn); 5687 } else { 5688 /* Add/sub (shifted register) */ 5689 disas_add_sub_reg(s, insn); 5690 } 5691 } else { 5692 /* Logical (shifted register) */ 5693 disas_logic_reg(s, insn); 5694 } 5695 return; 5696 } 5697 5698 switch (op2) { 5699 case 0x0: 5700 switch (op3) { 5701 case 0x00: /* Add/subtract (with carry) */ 5702 disas_adc_sbc(s, insn); 5703 break; 5704 5705 case 0x01: /* Rotate right into flags */ 5706 case 0x21: 5707 disas_rotate_right_into_flags(s, insn); 5708 break; 5709 5710 case 0x02: /* Evaluate into flags */ 5711 case 0x12: 5712 case 0x22: 5713 case 0x32: 5714 disas_evaluate_into_flags(s, insn); 5715 break; 5716 5717 default: 5718 goto do_unallocated; 5719 } 5720 break; 5721 5722 case 0x2: /* Conditional compare */ 5723 disas_cc(s, insn); /* both imm and reg forms */ 5724 break; 5725 5726 case 0x4: /* Conditional select */ 5727 disas_cond_select(s, insn); 5728 break; 5729 5730 case 0x6: /* Data-processing */ 5731 if (op0) { /* (1 source) */ 5732 disas_data_proc_1src(s, insn); 5733 } else { /* (2 source) */ 5734 disas_data_proc_2src(s, insn); 5735 } 5736 break; 5737 case 0x8 ... 0xf: /* (3 source) */ 5738 disas_data_proc_3src(s, insn); 5739 break; 5740 5741 default: 5742 do_unallocated: 5743 unallocated_encoding(s); 5744 break; 5745 } 5746 } 5747 5748 static void handle_fp_compare(DisasContext *s, int size, 5749 unsigned int rn, unsigned int rm, 5750 bool cmp_with_zero, bool signal_all_nans) 5751 { 5752 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5753 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5754 5755 if (size == MO_64) { 5756 TCGv_i64 tcg_vn, tcg_vm; 5757 5758 tcg_vn = read_fp_dreg(s, rn); 5759 if (cmp_with_zero) { 5760 tcg_vm = tcg_constant_i64(0); 5761 } else { 5762 tcg_vm = read_fp_dreg(s, rm); 5763 } 5764 if (signal_all_nans) { 5765 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5766 } else { 5767 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5768 } 5769 } else { 5770 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5771 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5772 5773 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5774 if (cmp_with_zero) { 5775 tcg_gen_movi_i32(tcg_vm, 0); 5776 } else { 5777 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5778 } 5779 5780 switch (size) { 5781 case MO_32: 5782 if (signal_all_nans) { 5783 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5784 } else { 5785 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5786 } 5787 break; 5788 case MO_16: 5789 if (signal_all_nans) { 5790 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5791 } else { 5792 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5793 } 5794 break; 5795 default: 5796 g_assert_not_reached(); 5797 } 5798 } 5799 5800 gen_set_nzcv(tcg_flags); 5801 } 5802 5803 /* Floating point compare 5804 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5805 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5806 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5807 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5808 */ 5809 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5810 { 5811 unsigned int mos, type, rm, op, rn, opc, op2r; 5812 int size; 5813 5814 mos = extract32(insn, 29, 3); 5815 type = extract32(insn, 22, 2); 5816 rm = extract32(insn, 16, 5); 5817 op = extract32(insn, 14, 2); 5818 rn = extract32(insn, 5, 5); 5819 opc = extract32(insn, 3, 2); 5820 op2r = extract32(insn, 0, 3); 5821 5822 if (mos || op || op2r) { 5823 unallocated_encoding(s); 5824 return; 5825 } 5826 5827 switch (type) { 5828 case 0: 5829 size = MO_32; 5830 break; 5831 case 1: 5832 size = MO_64; 5833 break; 5834 case 3: 5835 size = MO_16; 5836 if (dc_isar_feature(aa64_fp16, s)) { 5837 break; 5838 } 5839 /* fallthru */ 5840 default: 5841 unallocated_encoding(s); 5842 return; 5843 } 5844 5845 if (!fp_access_check(s)) { 5846 return; 5847 } 5848 5849 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5850 } 5851 5852 /* Floating point conditional compare 5853 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5854 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5855 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5856 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5857 */ 5858 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5859 { 5860 unsigned int mos, type, rm, cond, rn, op, nzcv; 5861 TCGLabel *label_continue = NULL; 5862 int size; 5863 5864 mos = extract32(insn, 29, 3); 5865 type = extract32(insn, 22, 2); 5866 rm = extract32(insn, 16, 5); 5867 cond = extract32(insn, 12, 4); 5868 rn = extract32(insn, 5, 5); 5869 op = extract32(insn, 4, 1); 5870 nzcv = extract32(insn, 0, 4); 5871 5872 if (mos) { 5873 unallocated_encoding(s); 5874 return; 5875 } 5876 5877 switch (type) { 5878 case 0: 5879 size = MO_32; 5880 break; 5881 case 1: 5882 size = MO_64; 5883 break; 5884 case 3: 5885 size = MO_16; 5886 if (dc_isar_feature(aa64_fp16, s)) { 5887 break; 5888 } 5889 /* fallthru */ 5890 default: 5891 unallocated_encoding(s); 5892 return; 5893 } 5894 5895 if (!fp_access_check(s)) { 5896 return; 5897 } 5898 5899 if (cond < 0x0e) { /* not always */ 5900 TCGLabel *label_match = gen_new_label(); 5901 label_continue = gen_new_label(); 5902 arm_gen_test_cc(cond, label_match); 5903 /* nomatch: */ 5904 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5905 tcg_gen_br(label_continue); 5906 gen_set_label(label_match); 5907 } 5908 5909 handle_fp_compare(s, size, rn, rm, false, op); 5910 5911 if (cond < 0x0e) { 5912 gen_set_label(label_continue); 5913 } 5914 } 5915 5916 /* Floating point conditional select 5917 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5918 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5919 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5920 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5921 */ 5922 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5923 { 5924 unsigned int mos, type, rm, cond, rn, rd; 5925 TCGv_i64 t_true, t_false; 5926 DisasCompare64 c; 5927 MemOp sz; 5928 5929 mos = extract32(insn, 29, 3); 5930 type = extract32(insn, 22, 2); 5931 rm = extract32(insn, 16, 5); 5932 cond = extract32(insn, 12, 4); 5933 rn = extract32(insn, 5, 5); 5934 rd = extract32(insn, 0, 5); 5935 5936 if (mos) { 5937 unallocated_encoding(s); 5938 return; 5939 } 5940 5941 switch (type) { 5942 case 0: 5943 sz = MO_32; 5944 break; 5945 case 1: 5946 sz = MO_64; 5947 break; 5948 case 3: 5949 sz = MO_16; 5950 if (dc_isar_feature(aa64_fp16, s)) { 5951 break; 5952 } 5953 /* fallthru */ 5954 default: 5955 unallocated_encoding(s); 5956 return; 5957 } 5958 5959 if (!fp_access_check(s)) { 5960 return; 5961 } 5962 5963 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5964 t_true = tcg_temp_new_i64(); 5965 t_false = tcg_temp_new_i64(); 5966 read_vec_element(s, t_true, rn, 0, sz); 5967 read_vec_element(s, t_false, rm, 0, sz); 5968 5969 a64_test_cc(&c, cond); 5970 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5971 t_true, t_false); 5972 5973 /* Note that sregs & hregs write back zeros to the high bits, 5974 and we've already done the zero-extension. */ 5975 write_fp_dreg(s, rd, t_true); 5976 } 5977 5978 /* Floating-point data-processing (1 source) - half precision */ 5979 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5980 { 5981 TCGv_ptr fpst = NULL; 5982 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5983 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5984 5985 switch (opcode) { 5986 case 0x0: /* FMOV */ 5987 tcg_gen_mov_i32(tcg_res, tcg_op); 5988 break; 5989 case 0x1: /* FABS */ 5990 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5991 break; 5992 case 0x2: /* FNEG */ 5993 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5994 break; 5995 case 0x3: /* FSQRT */ 5996 fpst = fpstatus_ptr(FPST_FPCR_F16); 5997 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5998 break; 5999 case 0x8: /* FRINTN */ 6000 case 0x9: /* FRINTP */ 6001 case 0xa: /* FRINTM */ 6002 case 0xb: /* FRINTZ */ 6003 case 0xc: /* FRINTA */ 6004 { 6005 TCGv_i32 tcg_rmode; 6006 6007 fpst = fpstatus_ptr(FPST_FPCR_F16); 6008 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6009 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6010 gen_restore_rmode(tcg_rmode, fpst); 6011 break; 6012 } 6013 case 0xe: /* FRINTX */ 6014 fpst = fpstatus_ptr(FPST_FPCR_F16); 6015 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6016 break; 6017 case 0xf: /* FRINTI */ 6018 fpst = fpstatus_ptr(FPST_FPCR_F16); 6019 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6020 break; 6021 default: 6022 g_assert_not_reached(); 6023 } 6024 6025 write_fp_sreg(s, rd, tcg_res); 6026 } 6027 6028 /* Floating-point data-processing (1 source) - single precision */ 6029 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6030 { 6031 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6032 TCGv_i32 tcg_op, tcg_res; 6033 TCGv_ptr fpst; 6034 int rmode = -1; 6035 6036 tcg_op = read_fp_sreg(s, rn); 6037 tcg_res = tcg_temp_new_i32(); 6038 6039 switch (opcode) { 6040 case 0x0: /* FMOV */ 6041 tcg_gen_mov_i32(tcg_res, tcg_op); 6042 goto done; 6043 case 0x1: /* FABS */ 6044 gen_helper_vfp_abss(tcg_res, tcg_op); 6045 goto done; 6046 case 0x2: /* FNEG */ 6047 gen_helper_vfp_negs(tcg_res, tcg_op); 6048 goto done; 6049 case 0x3: /* FSQRT */ 6050 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6051 goto done; 6052 case 0x6: /* BFCVT */ 6053 gen_fpst = gen_helper_bfcvt; 6054 break; 6055 case 0x8: /* FRINTN */ 6056 case 0x9: /* FRINTP */ 6057 case 0xa: /* FRINTM */ 6058 case 0xb: /* FRINTZ */ 6059 case 0xc: /* FRINTA */ 6060 rmode = opcode & 7; 6061 gen_fpst = gen_helper_rints; 6062 break; 6063 case 0xe: /* FRINTX */ 6064 gen_fpst = gen_helper_rints_exact; 6065 break; 6066 case 0xf: /* FRINTI */ 6067 gen_fpst = gen_helper_rints; 6068 break; 6069 case 0x10: /* FRINT32Z */ 6070 rmode = FPROUNDING_ZERO; 6071 gen_fpst = gen_helper_frint32_s; 6072 break; 6073 case 0x11: /* FRINT32X */ 6074 gen_fpst = gen_helper_frint32_s; 6075 break; 6076 case 0x12: /* FRINT64Z */ 6077 rmode = FPROUNDING_ZERO; 6078 gen_fpst = gen_helper_frint64_s; 6079 break; 6080 case 0x13: /* FRINT64X */ 6081 gen_fpst = gen_helper_frint64_s; 6082 break; 6083 default: 6084 g_assert_not_reached(); 6085 } 6086 6087 fpst = fpstatus_ptr(FPST_FPCR); 6088 if (rmode >= 0) { 6089 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6090 gen_fpst(tcg_res, tcg_op, fpst); 6091 gen_restore_rmode(tcg_rmode, fpst); 6092 } else { 6093 gen_fpst(tcg_res, tcg_op, fpst); 6094 } 6095 6096 done: 6097 write_fp_sreg(s, rd, tcg_res); 6098 } 6099 6100 /* Floating-point data-processing (1 source) - double precision */ 6101 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6102 { 6103 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6104 TCGv_i64 tcg_op, tcg_res; 6105 TCGv_ptr fpst; 6106 int rmode = -1; 6107 6108 switch (opcode) { 6109 case 0x0: /* FMOV */ 6110 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6111 return; 6112 } 6113 6114 tcg_op = read_fp_dreg(s, rn); 6115 tcg_res = tcg_temp_new_i64(); 6116 6117 switch (opcode) { 6118 case 0x1: /* FABS */ 6119 gen_helper_vfp_absd(tcg_res, tcg_op); 6120 goto done; 6121 case 0x2: /* FNEG */ 6122 gen_helper_vfp_negd(tcg_res, tcg_op); 6123 goto done; 6124 case 0x3: /* FSQRT */ 6125 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6126 goto done; 6127 case 0x8: /* FRINTN */ 6128 case 0x9: /* FRINTP */ 6129 case 0xa: /* FRINTM */ 6130 case 0xb: /* FRINTZ */ 6131 case 0xc: /* FRINTA */ 6132 rmode = opcode & 7; 6133 gen_fpst = gen_helper_rintd; 6134 break; 6135 case 0xe: /* FRINTX */ 6136 gen_fpst = gen_helper_rintd_exact; 6137 break; 6138 case 0xf: /* FRINTI */ 6139 gen_fpst = gen_helper_rintd; 6140 break; 6141 case 0x10: /* FRINT32Z */ 6142 rmode = FPROUNDING_ZERO; 6143 gen_fpst = gen_helper_frint32_d; 6144 break; 6145 case 0x11: /* FRINT32X */ 6146 gen_fpst = gen_helper_frint32_d; 6147 break; 6148 case 0x12: /* FRINT64Z */ 6149 rmode = FPROUNDING_ZERO; 6150 gen_fpst = gen_helper_frint64_d; 6151 break; 6152 case 0x13: /* FRINT64X */ 6153 gen_fpst = gen_helper_frint64_d; 6154 break; 6155 default: 6156 g_assert_not_reached(); 6157 } 6158 6159 fpst = fpstatus_ptr(FPST_FPCR); 6160 if (rmode >= 0) { 6161 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6162 gen_fpst(tcg_res, tcg_op, fpst); 6163 gen_restore_rmode(tcg_rmode, fpst); 6164 } else { 6165 gen_fpst(tcg_res, tcg_op, fpst); 6166 } 6167 6168 done: 6169 write_fp_dreg(s, rd, tcg_res); 6170 } 6171 6172 static void handle_fp_fcvt(DisasContext *s, int opcode, 6173 int rd, int rn, int dtype, int ntype) 6174 { 6175 switch (ntype) { 6176 case 0x0: 6177 { 6178 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6179 if (dtype == 1) { 6180 /* Single to double */ 6181 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6182 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6183 write_fp_dreg(s, rd, tcg_rd); 6184 } else { 6185 /* Single to half */ 6186 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6187 TCGv_i32 ahp = get_ahp_flag(); 6188 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6189 6190 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6191 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6192 write_fp_sreg(s, rd, tcg_rd); 6193 } 6194 break; 6195 } 6196 case 0x1: 6197 { 6198 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6199 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6200 if (dtype == 0) { 6201 /* Double to single */ 6202 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6203 } else { 6204 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6205 TCGv_i32 ahp = get_ahp_flag(); 6206 /* Double to half */ 6207 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6208 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6209 } 6210 write_fp_sreg(s, rd, tcg_rd); 6211 break; 6212 } 6213 case 0x3: 6214 { 6215 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6216 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6217 TCGv_i32 tcg_ahp = get_ahp_flag(); 6218 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6219 if (dtype == 0) { 6220 /* Half to single */ 6221 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6222 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6223 write_fp_sreg(s, rd, tcg_rd); 6224 } else { 6225 /* Half to double */ 6226 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6227 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6228 write_fp_dreg(s, rd, tcg_rd); 6229 } 6230 break; 6231 } 6232 default: 6233 g_assert_not_reached(); 6234 } 6235 } 6236 6237 /* Floating point data-processing (1 source) 6238 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6239 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6240 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6241 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6242 */ 6243 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6244 { 6245 int mos = extract32(insn, 29, 3); 6246 int type = extract32(insn, 22, 2); 6247 int opcode = extract32(insn, 15, 6); 6248 int rn = extract32(insn, 5, 5); 6249 int rd = extract32(insn, 0, 5); 6250 6251 if (mos) { 6252 goto do_unallocated; 6253 } 6254 6255 switch (opcode) { 6256 case 0x4: case 0x5: case 0x7: 6257 { 6258 /* FCVT between half, single and double precision */ 6259 int dtype = extract32(opcode, 0, 2); 6260 if (type == 2 || dtype == type) { 6261 goto do_unallocated; 6262 } 6263 if (!fp_access_check(s)) { 6264 return; 6265 } 6266 6267 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6268 break; 6269 } 6270 6271 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6272 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6273 goto do_unallocated; 6274 } 6275 /* fall through */ 6276 case 0x0 ... 0x3: 6277 case 0x8 ... 0xc: 6278 case 0xe ... 0xf: 6279 /* 32-to-32 and 64-to-64 ops */ 6280 switch (type) { 6281 case 0: 6282 if (!fp_access_check(s)) { 6283 return; 6284 } 6285 handle_fp_1src_single(s, opcode, rd, rn); 6286 break; 6287 case 1: 6288 if (!fp_access_check(s)) { 6289 return; 6290 } 6291 handle_fp_1src_double(s, opcode, rd, rn); 6292 break; 6293 case 3: 6294 if (!dc_isar_feature(aa64_fp16, s)) { 6295 goto do_unallocated; 6296 } 6297 6298 if (!fp_access_check(s)) { 6299 return; 6300 } 6301 handle_fp_1src_half(s, opcode, rd, rn); 6302 break; 6303 default: 6304 goto do_unallocated; 6305 } 6306 break; 6307 6308 case 0x6: 6309 switch (type) { 6310 case 1: /* BFCVT */ 6311 if (!dc_isar_feature(aa64_bf16, s)) { 6312 goto do_unallocated; 6313 } 6314 if (!fp_access_check(s)) { 6315 return; 6316 } 6317 handle_fp_1src_single(s, opcode, rd, rn); 6318 break; 6319 default: 6320 goto do_unallocated; 6321 } 6322 break; 6323 6324 default: 6325 do_unallocated: 6326 unallocated_encoding(s); 6327 break; 6328 } 6329 } 6330 6331 /* Floating-point data-processing (2 source) - single precision */ 6332 static void handle_fp_2src_single(DisasContext *s, int opcode, 6333 int rd, int rn, int rm) 6334 { 6335 TCGv_i32 tcg_op1; 6336 TCGv_i32 tcg_op2; 6337 TCGv_i32 tcg_res; 6338 TCGv_ptr fpst; 6339 6340 tcg_res = tcg_temp_new_i32(); 6341 fpst = fpstatus_ptr(FPST_FPCR); 6342 tcg_op1 = read_fp_sreg(s, rn); 6343 tcg_op2 = read_fp_sreg(s, rm); 6344 6345 switch (opcode) { 6346 case 0x0: /* FMUL */ 6347 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6348 break; 6349 case 0x1: /* FDIV */ 6350 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6351 break; 6352 case 0x2: /* FADD */ 6353 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6354 break; 6355 case 0x3: /* FSUB */ 6356 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6357 break; 6358 case 0x4: /* FMAX */ 6359 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6360 break; 6361 case 0x5: /* FMIN */ 6362 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6363 break; 6364 case 0x6: /* FMAXNM */ 6365 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6366 break; 6367 case 0x7: /* FMINNM */ 6368 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6369 break; 6370 case 0x8: /* FNMUL */ 6371 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6372 gen_helper_vfp_negs(tcg_res, tcg_res); 6373 break; 6374 } 6375 6376 write_fp_sreg(s, rd, tcg_res); 6377 } 6378 6379 /* Floating-point data-processing (2 source) - double precision */ 6380 static void handle_fp_2src_double(DisasContext *s, int opcode, 6381 int rd, int rn, int rm) 6382 { 6383 TCGv_i64 tcg_op1; 6384 TCGv_i64 tcg_op2; 6385 TCGv_i64 tcg_res; 6386 TCGv_ptr fpst; 6387 6388 tcg_res = tcg_temp_new_i64(); 6389 fpst = fpstatus_ptr(FPST_FPCR); 6390 tcg_op1 = read_fp_dreg(s, rn); 6391 tcg_op2 = read_fp_dreg(s, rm); 6392 6393 switch (opcode) { 6394 case 0x0: /* FMUL */ 6395 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6396 break; 6397 case 0x1: /* FDIV */ 6398 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6399 break; 6400 case 0x2: /* FADD */ 6401 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6402 break; 6403 case 0x3: /* FSUB */ 6404 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6405 break; 6406 case 0x4: /* FMAX */ 6407 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6408 break; 6409 case 0x5: /* FMIN */ 6410 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6411 break; 6412 case 0x6: /* FMAXNM */ 6413 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6414 break; 6415 case 0x7: /* FMINNM */ 6416 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6417 break; 6418 case 0x8: /* FNMUL */ 6419 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6420 gen_helper_vfp_negd(tcg_res, tcg_res); 6421 break; 6422 } 6423 6424 write_fp_dreg(s, rd, tcg_res); 6425 } 6426 6427 /* Floating-point data-processing (2 source) - half precision */ 6428 static void handle_fp_2src_half(DisasContext *s, int opcode, 6429 int rd, int rn, int rm) 6430 { 6431 TCGv_i32 tcg_op1; 6432 TCGv_i32 tcg_op2; 6433 TCGv_i32 tcg_res; 6434 TCGv_ptr fpst; 6435 6436 tcg_res = tcg_temp_new_i32(); 6437 fpst = fpstatus_ptr(FPST_FPCR_F16); 6438 tcg_op1 = read_fp_hreg(s, rn); 6439 tcg_op2 = read_fp_hreg(s, rm); 6440 6441 switch (opcode) { 6442 case 0x0: /* FMUL */ 6443 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6444 break; 6445 case 0x1: /* FDIV */ 6446 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6447 break; 6448 case 0x2: /* FADD */ 6449 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6450 break; 6451 case 0x3: /* FSUB */ 6452 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6453 break; 6454 case 0x4: /* FMAX */ 6455 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6456 break; 6457 case 0x5: /* FMIN */ 6458 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6459 break; 6460 case 0x6: /* FMAXNM */ 6461 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6462 break; 6463 case 0x7: /* FMINNM */ 6464 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6465 break; 6466 case 0x8: /* FNMUL */ 6467 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6468 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6469 break; 6470 default: 6471 g_assert_not_reached(); 6472 } 6473 6474 write_fp_sreg(s, rd, tcg_res); 6475 } 6476 6477 /* Floating point data-processing (2 source) 6478 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6479 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6480 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6481 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6482 */ 6483 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6484 { 6485 int mos = extract32(insn, 29, 3); 6486 int type = extract32(insn, 22, 2); 6487 int rd = extract32(insn, 0, 5); 6488 int rn = extract32(insn, 5, 5); 6489 int rm = extract32(insn, 16, 5); 6490 int opcode = extract32(insn, 12, 4); 6491 6492 if (opcode > 8 || mos) { 6493 unallocated_encoding(s); 6494 return; 6495 } 6496 6497 switch (type) { 6498 case 0: 6499 if (!fp_access_check(s)) { 6500 return; 6501 } 6502 handle_fp_2src_single(s, opcode, rd, rn, rm); 6503 break; 6504 case 1: 6505 if (!fp_access_check(s)) { 6506 return; 6507 } 6508 handle_fp_2src_double(s, opcode, rd, rn, rm); 6509 break; 6510 case 3: 6511 if (!dc_isar_feature(aa64_fp16, s)) { 6512 unallocated_encoding(s); 6513 return; 6514 } 6515 if (!fp_access_check(s)) { 6516 return; 6517 } 6518 handle_fp_2src_half(s, opcode, rd, rn, rm); 6519 break; 6520 default: 6521 unallocated_encoding(s); 6522 } 6523 } 6524 6525 /* Floating-point data-processing (3 source) - single precision */ 6526 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6527 int rd, int rn, int rm, int ra) 6528 { 6529 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6530 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6531 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6532 6533 tcg_op1 = read_fp_sreg(s, rn); 6534 tcg_op2 = read_fp_sreg(s, rm); 6535 tcg_op3 = read_fp_sreg(s, ra); 6536 6537 /* These are fused multiply-add, and must be done as one 6538 * floating point operation with no rounding between the 6539 * multiplication and addition steps. 6540 * NB that doing the negations here as separate steps is 6541 * correct : an input NaN should come out with its sign bit 6542 * flipped if it is a negated-input. 6543 */ 6544 if (o1 == true) { 6545 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6546 } 6547 6548 if (o0 != o1) { 6549 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6550 } 6551 6552 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6553 6554 write_fp_sreg(s, rd, tcg_res); 6555 } 6556 6557 /* Floating-point data-processing (3 source) - double precision */ 6558 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6559 int rd, int rn, int rm, int ra) 6560 { 6561 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6562 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6563 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6564 6565 tcg_op1 = read_fp_dreg(s, rn); 6566 tcg_op2 = read_fp_dreg(s, rm); 6567 tcg_op3 = read_fp_dreg(s, ra); 6568 6569 /* These are fused multiply-add, and must be done as one 6570 * floating point operation with no rounding between the 6571 * multiplication and addition steps. 6572 * NB that doing the negations here as separate steps is 6573 * correct : an input NaN should come out with its sign bit 6574 * flipped if it is a negated-input. 6575 */ 6576 if (o1 == true) { 6577 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6578 } 6579 6580 if (o0 != o1) { 6581 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6582 } 6583 6584 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6585 6586 write_fp_dreg(s, rd, tcg_res); 6587 } 6588 6589 /* Floating-point data-processing (3 source) - half precision */ 6590 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6591 int rd, int rn, int rm, int ra) 6592 { 6593 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6594 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6595 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6596 6597 tcg_op1 = read_fp_hreg(s, rn); 6598 tcg_op2 = read_fp_hreg(s, rm); 6599 tcg_op3 = read_fp_hreg(s, ra); 6600 6601 /* These are fused multiply-add, and must be done as one 6602 * floating point operation with no rounding between the 6603 * multiplication and addition steps. 6604 * NB that doing the negations here as separate steps is 6605 * correct : an input NaN should come out with its sign bit 6606 * flipped if it is a negated-input. 6607 */ 6608 if (o1 == true) { 6609 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6610 } 6611 6612 if (o0 != o1) { 6613 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6614 } 6615 6616 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6617 6618 write_fp_sreg(s, rd, tcg_res); 6619 } 6620 6621 /* Floating point data-processing (3 source) 6622 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6623 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6624 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6625 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6626 */ 6627 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6628 { 6629 int mos = extract32(insn, 29, 3); 6630 int type = extract32(insn, 22, 2); 6631 int rd = extract32(insn, 0, 5); 6632 int rn = extract32(insn, 5, 5); 6633 int ra = extract32(insn, 10, 5); 6634 int rm = extract32(insn, 16, 5); 6635 bool o0 = extract32(insn, 15, 1); 6636 bool o1 = extract32(insn, 21, 1); 6637 6638 if (mos) { 6639 unallocated_encoding(s); 6640 return; 6641 } 6642 6643 switch (type) { 6644 case 0: 6645 if (!fp_access_check(s)) { 6646 return; 6647 } 6648 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6649 break; 6650 case 1: 6651 if (!fp_access_check(s)) { 6652 return; 6653 } 6654 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6655 break; 6656 case 3: 6657 if (!dc_isar_feature(aa64_fp16, s)) { 6658 unallocated_encoding(s); 6659 return; 6660 } 6661 if (!fp_access_check(s)) { 6662 return; 6663 } 6664 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6665 break; 6666 default: 6667 unallocated_encoding(s); 6668 } 6669 } 6670 6671 /* Floating point immediate 6672 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6673 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6674 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6675 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6676 */ 6677 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6678 { 6679 int rd = extract32(insn, 0, 5); 6680 int imm5 = extract32(insn, 5, 5); 6681 int imm8 = extract32(insn, 13, 8); 6682 int type = extract32(insn, 22, 2); 6683 int mos = extract32(insn, 29, 3); 6684 uint64_t imm; 6685 MemOp sz; 6686 6687 if (mos || imm5) { 6688 unallocated_encoding(s); 6689 return; 6690 } 6691 6692 switch (type) { 6693 case 0: 6694 sz = MO_32; 6695 break; 6696 case 1: 6697 sz = MO_64; 6698 break; 6699 case 3: 6700 sz = MO_16; 6701 if (dc_isar_feature(aa64_fp16, s)) { 6702 break; 6703 } 6704 /* fallthru */ 6705 default: 6706 unallocated_encoding(s); 6707 return; 6708 } 6709 6710 if (!fp_access_check(s)) { 6711 return; 6712 } 6713 6714 imm = vfp_expand_imm(sz, imm8); 6715 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6716 } 6717 6718 /* Handle floating point <=> fixed point conversions. Note that we can 6719 * also deal with fp <=> integer conversions as a special case (scale == 64) 6720 * OPTME: consider handling that special case specially or at least skipping 6721 * the call to scalbn in the helpers for zero shifts. 6722 */ 6723 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6724 bool itof, int rmode, int scale, int sf, int type) 6725 { 6726 bool is_signed = !(opcode & 1); 6727 TCGv_ptr tcg_fpstatus; 6728 TCGv_i32 tcg_shift, tcg_single; 6729 TCGv_i64 tcg_double; 6730 6731 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6732 6733 tcg_shift = tcg_constant_i32(64 - scale); 6734 6735 if (itof) { 6736 TCGv_i64 tcg_int = cpu_reg(s, rn); 6737 if (!sf) { 6738 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6739 6740 if (is_signed) { 6741 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6742 } else { 6743 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6744 } 6745 6746 tcg_int = tcg_extend; 6747 } 6748 6749 switch (type) { 6750 case 1: /* float64 */ 6751 tcg_double = tcg_temp_new_i64(); 6752 if (is_signed) { 6753 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6754 tcg_shift, tcg_fpstatus); 6755 } else { 6756 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6757 tcg_shift, tcg_fpstatus); 6758 } 6759 write_fp_dreg(s, rd, tcg_double); 6760 break; 6761 6762 case 0: /* float32 */ 6763 tcg_single = tcg_temp_new_i32(); 6764 if (is_signed) { 6765 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6766 tcg_shift, tcg_fpstatus); 6767 } else { 6768 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6769 tcg_shift, tcg_fpstatus); 6770 } 6771 write_fp_sreg(s, rd, tcg_single); 6772 break; 6773 6774 case 3: /* float16 */ 6775 tcg_single = tcg_temp_new_i32(); 6776 if (is_signed) { 6777 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6778 tcg_shift, tcg_fpstatus); 6779 } else { 6780 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6781 tcg_shift, tcg_fpstatus); 6782 } 6783 write_fp_sreg(s, rd, tcg_single); 6784 break; 6785 6786 default: 6787 g_assert_not_reached(); 6788 } 6789 } else { 6790 TCGv_i64 tcg_int = cpu_reg(s, rd); 6791 TCGv_i32 tcg_rmode; 6792 6793 if (extract32(opcode, 2, 1)) { 6794 /* There are too many rounding modes to all fit into rmode, 6795 * so FCVTA[US] is a special case. 6796 */ 6797 rmode = FPROUNDING_TIEAWAY; 6798 } 6799 6800 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6801 6802 switch (type) { 6803 case 1: /* float64 */ 6804 tcg_double = read_fp_dreg(s, rn); 6805 if (is_signed) { 6806 if (!sf) { 6807 gen_helper_vfp_tosld(tcg_int, tcg_double, 6808 tcg_shift, tcg_fpstatus); 6809 } else { 6810 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6811 tcg_shift, tcg_fpstatus); 6812 } 6813 } else { 6814 if (!sf) { 6815 gen_helper_vfp_tould(tcg_int, tcg_double, 6816 tcg_shift, tcg_fpstatus); 6817 } else { 6818 gen_helper_vfp_touqd(tcg_int, tcg_double, 6819 tcg_shift, tcg_fpstatus); 6820 } 6821 } 6822 if (!sf) { 6823 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6824 } 6825 break; 6826 6827 case 0: /* float32 */ 6828 tcg_single = read_fp_sreg(s, rn); 6829 if (sf) { 6830 if (is_signed) { 6831 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6832 tcg_shift, tcg_fpstatus); 6833 } else { 6834 gen_helper_vfp_touqs(tcg_int, tcg_single, 6835 tcg_shift, tcg_fpstatus); 6836 } 6837 } else { 6838 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6839 if (is_signed) { 6840 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6841 tcg_shift, tcg_fpstatus); 6842 } else { 6843 gen_helper_vfp_touls(tcg_dest, tcg_single, 6844 tcg_shift, tcg_fpstatus); 6845 } 6846 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6847 } 6848 break; 6849 6850 case 3: /* float16 */ 6851 tcg_single = read_fp_sreg(s, rn); 6852 if (sf) { 6853 if (is_signed) { 6854 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6855 tcg_shift, tcg_fpstatus); 6856 } else { 6857 gen_helper_vfp_touqh(tcg_int, tcg_single, 6858 tcg_shift, tcg_fpstatus); 6859 } 6860 } else { 6861 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6862 if (is_signed) { 6863 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6864 tcg_shift, tcg_fpstatus); 6865 } else { 6866 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6867 tcg_shift, tcg_fpstatus); 6868 } 6869 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6870 } 6871 break; 6872 6873 default: 6874 g_assert_not_reached(); 6875 } 6876 6877 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6878 } 6879 } 6880 6881 /* Floating point <-> fixed point conversions 6882 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6883 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6884 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6885 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6886 */ 6887 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6888 { 6889 int rd = extract32(insn, 0, 5); 6890 int rn = extract32(insn, 5, 5); 6891 int scale = extract32(insn, 10, 6); 6892 int opcode = extract32(insn, 16, 3); 6893 int rmode = extract32(insn, 19, 2); 6894 int type = extract32(insn, 22, 2); 6895 bool sbit = extract32(insn, 29, 1); 6896 bool sf = extract32(insn, 31, 1); 6897 bool itof; 6898 6899 if (sbit || (!sf && scale < 32)) { 6900 unallocated_encoding(s); 6901 return; 6902 } 6903 6904 switch (type) { 6905 case 0: /* float32 */ 6906 case 1: /* float64 */ 6907 break; 6908 case 3: /* float16 */ 6909 if (dc_isar_feature(aa64_fp16, s)) { 6910 break; 6911 } 6912 /* fallthru */ 6913 default: 6914 unallocated_encoding(s); 6915 return; 6916 } 6917 6918 switch ((rmode << 3) | opcode) { 6919 case 0x2: /* SCVTF */ 6920 case 0x3: /* UCVTF */ 6921 itof = true; 6922 break; 6923 case 0x18: /* FCVTZS */ 6924 case 0x19: /* FCVTZU */ 6925 itof = false; 6926 break; 6927 default: 6928 unallocated_encoding(s); 6929 return; 6930 } 6931 6932 if (!fp_access_check(s)) { 6933 return; 6934 } 6935 6936 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6937 } 6938 6939 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6940 { 6941 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6942 * without conversion. 6943 */ 6944 6945 if (itof) { 6946 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6947 TCGv_i64 tmp; 6948 6949 switch (type) { 6950 case 0: 6951 /* 32 bit */ 6952 tmp = tcg_temp_new_i64(); 6953 tcg_gen_ext32u_i64(tmp, tcg_rn); 6954 write_fp_dreg(s, rd, tmp); 6955 break; 6956 case 1: 6957 /* 64 bit */ 6958 write_fp_dreg(s, rd, tcg_rn); 6959 break; 6960 case 2: 6961 /* 64 bit to top half. */ 6962 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6963 clear_vec_high(s, true, rd); 6964 break; 6965 case 3: 6966 /* 16 bit */ 6967 tmp = tcg_temp_new_i64(); 6968 tcg_gen_ext16u_i64(tmp, tcg_rn); 6969 write_fp_dreg(s, rd, tmp); 6970 break; 6971 default: 6972 g_assert_not_reached(); 6973 } 6974 } else { 6975 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6976 6977 switch (type) { 6978 case 0: 6979 /* 32 bit */ 6980 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6981 break; 6982 case 1: 6983 /* 64 bit */ 6984 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6985 break; 6986 case 2: 6987 /* 64 bits from top half */ 6988 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6989 break; 6990 case 3: 6991 /* 16 bit */ 6992 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6993 break; 6994 default: 6995 g_assert_not_reached(); 6996 } 6997 } 6998 } 6999 7000 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7001 { 7002 TCGv_i64 t = read_fp_dreg(s, rn); 7003 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7004 7005 gen_helper_fjcvtzs(t, t, fpstatus); 7006 7007 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7008 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7009 tcg_gen_movi_i32(cpu_CF, 0); 7010 tcg_gen_movi_i32(cpu_NF, 0); 7011 tcg_gen_movi_i32(cpu_VF, 0); 7012 } 7013 7014 /* Floating point <-> integer conversions 7015 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7016 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7017 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7018 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7019 */ 7020 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7021 { 7022 int rd = extract32(insn, 0, 5); 7023 int rn = extract32(insn, 5, 5); 7024 int opcode = extract32(insn, 16, 3); 7025 int rmode = extract32(insn, 19, 2); 7026 int type = extract32(insn, 22, 2); 7027 bool sbit = extract32(insn, 29, 1); 7028 bool sf = extract32(insn, 31, 1); 7029 bool itof = false; 7030 7031 if (sbit) { 7032 goto do_unallocated; 7033 } 7034 7035 switch (opcode) { 7036 case 2: /* SCVTF */ 7037 case 3: /* UCVTF */ 7038 itof = true; 7039 /* fallthru */ 7040 case 4: /* FCVTAS */ 7041 case 5: /* FCVTAU */ 7042 if (rmode != 0) { 7043 goto do_unallocated; 7044 } 7045 /* fallthru */ 7046 case 0: /* FCVT[NPMZ]S */ 7047 case 1: /* FCVT[NPMZ]U */ 7048 switch (type) { 7049 case 0: /* float32 */ 7050 case 1: /* float64 */ 7051 break; 7052 case 3: /* float16 */ 7053 if (!dc_isar_feature(aa64_fp16, s)) { 7054 goto do_unallocated; 7055 } 7056 break; 7057 default: 7058 goto do_unallocated; 7059 } 7060 if (!fp_access_check(s)) { 7061 return; 7062 } 7063 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7064 break; 7065 7066 default: 7067 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7068 case 0b01100110: /* FMOV half <-> 32-bit int */ 7069 case 0b01100111: 7070 case 0b11100110: /* FMOV half <-> 64-bit int */ 7071 case 0b11100111: 7072 if (!dc_isar_feature(aa64_fp16, s)) { 7073 goto do_unallocated; 7074 } 7075 /* fallthru */ 7076 case 0b00000110: /* FMOV 32-bit */ 7077 case 0b00000111: 7078 case 0b10100110: /* FMOV 64-bit */ 7079 case 0b10100111: 7080 case 0b11001110: /* FMOV top half of 128-bit */ 7081 case 0b11001111: 7082 if (!fp_access_check(s)) { 7083 return; 7084 } 7085 itof = opcode & 1; 7086 handle_fmov(s, rd, rn, type, itof); 7087 break; 7088 7089 case 0b00111110: /* FJCVTZS */ 7090 if (!dc_isar_feature(aa64_jscvt, s)) { 7091 goto do_unallocated; 7092 } else if (fp_access_check(s)) { 7093 handle_fjcvtzs(s, rd, rn); 7094 } 7095 break; 7096 7097 default: 7098 do_unallocated: 7099 unallocated_encoding(s); 7100 return; 7101 } 7102 break; 7103 } 7104 } 7105 7106 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7107 * 31 30 29 28 25 24 0 7108 * +---+---+---+---------+-----------------------------+ 7109 * | | 0 | | 1 1 1 1 | | 7110 * +---+---+---+---------+-----------------------------+ 7111 */ 7112 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7113 { 7114 if (extract32(insn, 24, 1)) { 7115 /* Floating point data-processing (3 source) */ 7116 disas_fp_3src(s, insn); 7117 } else if (extract32(insn, 21, 1) == 0) { 7118 /* Floating point to fixed point conversions */ 7119 disas_fp_fixed_conv(s, insn); 7120 } else { 7121 switch (extract32(insn, 10, 2)) { 7122 case 1: 7123 /* Floating point conditional compare */ 7124 disas_fp_ccomp(s, insn); 7125 break; 7126 case 2: 7127 /* Floating point data-processing (2 source) */ 7128 disas_fp_2src(s, insn); 7129 break; 7130 case 3: 7131 /* Floating point conditional select */ 7132 disas_fp_csel(s, insn); 7133 break; 7134 case 0: 7135 switch (ctz32(extract32(insn, 12, 4))) { 7136 case 0: /* [15:12] == xxx1 */ 7137 /* Floating point immediate */ 7138 disas_fp_imm(s, insn); 7139 break; 7140 case 1: /* [15:12] == xx10 */ 7141 /* Floating point compare */ 7142 disas_fp_compare(s, insn); 7143 break; 7144 case 2: /* [15:12] == x100 */ 7145 /* Floating point data-processing (1 source) */ 7146 disas_fp_1src(s, insn); 7147 break; 7148 case 3: /* [15:12] == 1000 */ 7149 unallocated_encoding(s); 7150 break; 7151 default: /* [15:12] == 0000 */ 7152 /* Floating point <-> integer conversions */ 7153 disas_fp_int_conv(s, insn); 7154 break; 7155 } 7156 break; 7157 } 7158 } 7159 } 7160 7161 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7162 int pos) 7163 { 7164 /* Extract 64 bits from the middle of two concatenated 64 bit 7165 * vector register slices left:right. The extracted bits start 7166 * at 'pos' bits into the right (least significant) side. 7167 * We return the result in tcg_right, and guarantee not to 7168 * trash tcg_left. 7169 */ 7170 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7171 assert(pos > 0 && pos < 64); 7172 7173 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7174 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7175 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7176 } 7177 7178 /* EXT 7179 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7180 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7181 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7182 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7183 */ 7184 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7185 { 7186 int is_q = extract32(insn, 30, 1); 7187 int op2 = extract32(insn, 22, 2); 7188 int imm4 = extract32(insn, 11, 4); 7189 int rm = extract32(insn, 16, 5); 7190 int rn = extract32(insn, 5, 5); 7191 int rd = extract32(insn, 0, 5); 7192 int pos = imm4 << 3; 7193 TCGv_i64 tcg_resl, tcg_resh; 7194 7195 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7196 unallocated_encoding(s); 7197 return; 7198 } 7199 7200 if (!fp_access_check(s)) { 7201 return; 7202 } 7203 7204 tcg_resh = tcg_temp_new_i64(); 7205 tcg_resl = tcg_temp_new_i64(); 7206 7207 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7208 * either extracting 128 bits from a 128:128 concatenation, or 7209 * extracting 64 bits from a 64:64 concatenation. 7210 */ 7211 if (!is_q) { 7212 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7213 if (pos != 0) { 7214 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7215 do_ext64(s, tcg_resh, tcg_resl, pos); 7216 } 7217 } else { 7218 TCGv_i64 tcg_hh; 7219 typedef struct { 7220 int reg; 7221 int elt; 7222 } EltPosns; 7223 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7224 EltPosns *elt = eltposns; 7225 7226 if (pos >= 64) { 7227 elt++; 7228 pos -= 64; 7229 } 7230 7231 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7232 elt++; 7233 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7234 elt++; 7235 if (pos != 0) { 7236 do_ext64(s, tcg_resh, tcg_resl, pos); 7237 tcg_hh = tcg_temp_new_i64(); 7238 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7239 do_ext64(s, tcg_hh, tcg_resh, pos); 7240 } 7241 } 7242 7243 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7244 if (is_q) { 7245 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7246 } 7247 clear_vec_high(s, is_q, rd); 7248 } 7249 7250 /* TBL/TBX 7251 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7252 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7253 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7254 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7255 */ 7256 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7257 { 7258 int op2 = extract32(insn, 22, 2); 7259 int is_q = extract32(insn, 30, 1); 7260 int rm = extract32(insn, 16, 5); 7261 int rn = extract32(insn, 5, 5); 7262 int rd = extract32(insn, 0, 5); 7263 int is_tbx = extract32(insn, 12, 1); 7264 int len = (extract32(insn, 13, 2) + 1) * 16; 7265 7266 if (op2 != 0) { 7267 unallocated_encoding(s); 7268 return; 7269 } 7270 7271 if (!fp_access_check(s)) { 7272 return; 7273 } 7274 7275 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7276 vec_full_reg_offset(s, rm), cpu_env, 7277 is_q ? 16 : 8, vec_full_reg_size(s), 7278 (len << 6) | (is_tbx << 5) | rn, 7279 gen_helper_simd_tblx); 7280 } 7281 7282 /* ZIP/UZP/TRN 7283 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7284 * +---+---+-------------+------+---+------+---+------------------+------+ 7285 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7286 * +---+---+-------------+------+---+------+---+------------------+------+ 7287 */ 7288 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7289 { 7290 int rd = extract32(insn, 0, 5); 7291 int rn = extract32(insn, 5, 5); 7292 int rm = extract32(insn, 16, 5); 7293 int size = extract32(insn, 22, 2); 7294 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7295 * bit 2 indicates 1 vs 2 variant of the insn. 7296 */ 7297 int opcode = extract32(insn, 12, 2); 7298 bool part = extract32(insn, 14, 1); 7299 bool is_q = extract32(insn, 30, 1); 7300 int esize = 8 << size; 7301 int i; 7302 int datasize = is_q ? 128 : 64; 7303 int elements = datasize / esize; 7304 TCGv_i64 tcg_res[2], tcg_ele; 7305 7306 if (opcode == 0 || (size == 3 && !is_q)) { 7307 unallocated_encoding(s); 7308 return; 7309 } 7310 7311 if (!fp_access_check(s)) { 7312 return; 7313 } 7314 7315 tcg_res[0] = tcg_temp_new_i64(); 7316 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7317 tcg_ele = tcg_temp_new_i64(); 7318 7319 for (i = 0; i < elements; i++) { 7320 int o, w; 7321 7322 switch (opcode) { 7323 case 1: /* UZP1/2 */ 7324 { 7325 int midpoint = elements / 2; 7326 if (i < midpoint) { 7327 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7328 } else { 7329 read_vec_element(s, tcg_ele, rm, 7330 2 * (i - midpoint) + part, size); 7331 } 7332 break; 7333 } 7334 case 2: /* TRN1/2 */ 7335 if (i & 1) { 7336 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7337 } else { 7338 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7339 } 7340 break; 7341 case 3: /* ZIP1/2 */ 7342 { 7343 int base = part * elements / 2; 7344 if (i & 1) { 7345 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7346 } else { 7347 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7348 } 7349 break; 7350 } 7351 default: 7352 g_assert_not_reached(); 7353 } 7354 7355 w = (i * esize) / 64; 7356 o = (i * esize) % 64; 7357 if (o == 0) { 7358 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7359 } else { 7360 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7361 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7362 } 7363 } 7364 7365 for (i = 0; i <= is_q; ++i) { 7366 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7367 } 7368 clear_vec_high(s, is_q, rd); 7369 } 7370 7371 /* 7372 * do_reduction_op helper 7373 * 7374 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7375 * important for correct NaN propagation that we do these 7376 * operations in exactly the order specified by the pseudocode. 7377 * 7378 * This is a recursive function, TCG temps should be freed by the 7379 * calling function once it is done with the values. 7380 */ 7381 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7382 int esize, int size, int vmap, TCGv_ptr fpst) 7383 { 7384 if (esize == size) { 7385 int element; 7386 MemOp msize = esize == 16 ? MO_16 : MO_32; 7387 TCGv_i32 tcg_elem; 7388 7389 /* We should have one register left here */ 7390 assert(ctpop8(vmap) == 1); 7391 element = ctz32(vmap); 7392 assert(element < 8); 7393 7394 tcg_elem = tcg_temp_new_i32(); 7395 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7396 return tcg_elem; 7397 } else { 7398 int bits = size / 2; 7399 int shift = ctpop8(vmap) / 2; 7400 int vmap_lo = (vmap >> shift) & vmap; 7401 int vmap_hi = (vmap & ~vmap_lo); 7402 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7403 7404 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7405 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7406 tcg_res = tcg_temp_new_i32(); 7407 7408 switch (fpopcode) { 7409 case 0x0c: /* fmaxnmv half-precision */ 7410 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7411 break; 7412 case 0x0f: /* fmaxv half-precision */ 7413 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7414 break; 7415 case 0x1c: /* fminnmv half-precision */ 7416 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7417 break; 7418 case 0x1f: /* fminv half-precision */ 7419 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7420 break; 7421 case 0x2c: /* fmaxnmv */ 7422 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7423 break; 7424 case 0x2f: /* fmaxv */ 7425 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7426 break; 7427 case 0x3c: /* fminnmv */ 7428 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7429 break; 7430 case 0x3f: /* fminv */ 7431 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7432 break; 7433 default: 7434 g_assert_not_reached(); 7435 } 7436 return tcg_res; 7437 } 7438 } 7439 7440 /* AdvSIMD across lanes 7441 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7442 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7443 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7444 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7445 */ 7446 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7447 { 7448 int rd = extract32(insn, 0, 5); 7449 int rn = extract32(insn, 5, 5); 7450 int size = extract32(insn, 22, 2); 7451 int opcode = extract32(insn, 12, 5); 7452 bool is_q = extract32(insn, 30, 1); 7453 bool is_u = extract32(insn, 29, 1); 7454 bool is_fp = false; 7455 bool is_min = false; 7456 int esize; 7457 int elements; 7458 int i; 7459 TCGv_i64 tcg_res, tcg_elt; 7460 7461 switch (opcode) { 7462 case 0x1b: /* ADDV */ 7463 if (is_u) { 7464 unallocated_encoding(s); 7465 return; 7466 } 7467 /* fall through */ 7468 case 0x3: /* SADDLV, UADDLV */ 7469 case 0xa: /* SMAXV, UMAXV */ 7470 case 0x1a: /* SMINV, UMINV */ 7471 if (size == 3 || (size == 2 && !is_q)) { 7472 unallocated_encoding(s); 7473 return; 7474 } 7475 break; 7476 case 0xc: /* FMAXNMV, FMINNMV */ 7477 case 0xf: /* FMAXV, FMINV */ 7478 /* Bit 1 of size field encodes min vs max and the actual size 7479 * depends on the encoding of the U bit. If not set (and FP16 7480 * enabled) then we do half-precision float instead of single 7481 * precision. 7482 */ 7483 is_min = extract32(size, 1, 1); 7484 is_fp = true; 7485 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7486 size = 1; 7487 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7488 unallocated_encoding(s); 7489 return; 7490 } else { 7491 size = 2; 7492 } 7493 break; 7494 default: 7495 unallocated_encoding(s); 7496 return; 7497 } 7498 7499 if (!fp_access_check(s)) { 7500 return; 7501 } 7502 7503 esize = 8 << size; 7504 elements = (is_q ? 128 : 64) / esize; 7505 7506 tcg_res = tcg_temp_new_i64(); 7507 tcg_elt = tcg_temp_new_i64(); 7508 7509 /* These instructions operate across all lanes of a vector 7510 * to produce a single result. We can guarantee that a 64 7511 * bit intermediate is sufficient: 7512 * + for [US]ADDLV the maximum element size is 32 bits, and 7513 * the result type is 64 bits 7514 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7515 * same as the element size, which is 32 bits at most 7516 * For the integer operations we can choose to work at 64 7517 * or 32 bits and truncate at the end; for simplicity 7518 * we use 64 bits always. The floating point 7519 * ops do require 32 bit intermediates, though. 7520 */ 7521 if (!is_fp) { 7522 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7523 7524 for (i = 1; i < elements; i++) { 7525 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7526 7527 switch (opcode) { 7528 case 0x03: /* SADDLV / UADDLV */ 7529 case 0x1b: /* ADDV */ 7530 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7531 break; 7532 case 0x0a: /* SMAXV / UMAXV */ 7533 if (is_u) { 7534 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7535 } else { 7536 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7537 } 7538 break; 7539 case 0x1a: /* SMINV / UMINV */ 7540 if (is_u) { 7541 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7542 } else { 7543 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7544 } 7545 break; 7546 default: 7547 g_assert_not_reached(); 7548 } 7549 7550 } 7551 } else { 7552 /* Floating point vector reduction ops which work across 32 7553 * bit (single) or 16 bit (half-precision) intermediates. 7554 * Note that correct NaN propagation requires that we do these 7555 * operations in exactly the order specified by the pseudocode. 7556 */ 7557 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7558 int fpopcode = opcode | is_min << 4 | is_u << 5; 7559 int vmap = (1 << elements) - 1; 7560 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7561 (is_q ? 128 : 64), vmap, fpst); 7562 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7563 } 7564 7565 /* Now truncate the result to the width required for the final output */ 7566 if (opcode == 0x03) { 7567 /* SADDLV, UADDLV: result is 2*esize */ 7568 size++; 7569 } 7570 7571 switch (size) { 7572 case 0: 7573 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7574 break; 7575 case 1: 7576 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7577 break; 7578 case 2: 7579 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7580 break; 7581 case 3: 7582 break; 7583 default: 7584 g_assert_not_reached(); 7585 } 7586 7587 write_fp_dreg(s, rd, tcg_res); 7588 } 7589 7590 /* DUP (Element, Vector) 7591 * 7592 * 31 30 29 21 20 16 15 10 9 5 4 0 7593 * +---+---+-------------------+--------+-------------+------+------+ 7594 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7595 * +---+---+-------------------+--------+-------------+------+------+ 7596 * 7597 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7598 */ 7599 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7600 int imm5) 7601 { 7602 int size = ctz32(imm5); 7603 int index; 7604 7605 if (size > 3 || (size == 3 && !is_q)) { 7606 unallocated_encoding(s); 7607 return; 7608 } 7609 7610 if (!fp_access_check(s)) { 7611 return; 7612 } 7613 7614 index = imm5 >> (size + 1); 7615 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7616 vec_reg_offset(s, rn, index, size), 7617 is_q ? 16 : 8, vec_full_reg_size(s)); 7618 } 7619 7620 /* DUP (element, scalar) 7621 * 31 21 20 16 15 10 9 5 4 0 7622 * +-----------------------+--------+-------------+------+------+ 7623 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7624 * +-----------------------+--------+-------------+------+------+ 7625 */ 7626 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7627 int imm5) 7628 { 7629 int size = ctz32(imm5); 7630 int index; 7631 TCGv_i64 tmp; 7632 7633 if (size > 3) { 7634 unallocated_encoding(s); 7635 return; 7636 } 7637 7638 if (!fp_access_check(s)) { 7639 return; 7640 } 7641 7642 index = imm5 >> (size + 1); 7643 7644 /* This instruction just extracts the specified element and 7645 * zero-extends it into the bottom of the destination register. 7646 */ 7647 tmp = tcg_temp_new_i64(); 7648 read_vec_element(s, tmp, rn, index, size); 7649 write_fp_dreg(s, rd, tmp); 7650 } 7651 7652 /* DUP (General) 7653 * 7654 * 31 30 29 21 20 16 15 10 9 5 4 0 7655 * +---+---+-------------------+--------+-------------+------+------+ 7656 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7657 * +---+---+-------------------+--------+-------------+------+------+ 7658 * 7659 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7660 */ 7661 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7662 int imm5) 7663 { 7664 int size = ctz32(imm5); 7665 uint32_t dofs, oprsz, maxsz; 7666 7667 if (size > 3 || ((size == 3) && !is_q)) { 7668 unallocated_encoding(s); 7669 return; 7670 } 7671 7672 if (!fp_access_check(s)) { 7673 return; 7674 } 7675 7676 dofs = vec_full_reg_offset(s, rd); 7677 oprsz = is_q ? 16 : 8; 7678 maxsz = vec_full_reg_size(s); 7679 7680 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7681 } 7682 7683 /* INS (Element) 7684 * 7685 * 31 21 20 16 15 14 11 10 9 5 4 0 7686 * +-----------------------+--------+------------+---+------+------+ 7687 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7688 * +-----------------------+--------+------------+---+------+------+ 7689 * 7690 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7691 * index: encoded in imm5<4:size+1> 7692 */ 7693 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7694 int imm4, int imm5) 7695 { 7696 int size = ctz32(imm5); 7697 int src_index, dst_index; 7698 TCGv_i64 tmp; 7699 7700 if (size > 3) { 7701 unallocated_encoding(s); 7702 return; 7703 } 7704 7705 if (!fp_access_check(s)) { 7706 return; 7707 } 7708 7709 dst_index = extract32(imm5, 1+size, 5); 7710 src_index = extract32(imm4, size, 4); 7711 7712 tmp = tcg_temp_new_i64(); 7713 7714 read_vec_element(s, tmp, rn, src_index, size); 7715 write_vec_element(s, tmp, rd, dst_index, size); 7716 7717 /* INS is considered a 128-bit write for SVE. */ 7718 clear_vec_high(s, true, rd); 7719 } 7720 7721 7722 /* INS (General) 7723 * 7724 * 31 21 20 16 15 10 9 5 4 0 7725 * +-----------------------+--------+-------------+------+------+ 7726 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7727 * +-----------------------+--------+-------------+------+------+ 7728 * 7729 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7730 * index: encoded in imm5<4:size+1> 7731 */ 7732 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7733 { 7734 int size = ctz32(imm5); 7735 int idx; 7736 7737 if (size > 3) { 7738 unallocated_encoding(s); 7739 return; 7740 } 7741 7742 if (!fp_access_check(s)) { 7743 return; 7744 } 7745 7746 idx = extract32(imm5, 1 + size, 4 - size); 7747 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7748 7749 /* INS is considered a 128-bit write for SVE. */ 7750 clear_vec_high(s, true, rd); 7751 } 7752 7753 /* 7754 * UMOV (General) 7755 * SMOV (General) 7756 * 7757 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7758 * +---+---+-------------------+--------+-------------+------+------+ 7759 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7760 * +---+---+-------------------+--------+-------------+------+------+ 7761 * 7762 * U: unsigned when set 7763 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7764 */ 7765 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7766 int rn, int rd, int imm5) 7767 { 7768 int size = ctz32(imm5); 7769 int element; 7770 TCGv_i64 tcg_rd; 7771 7772 /* Check for UnallocatedEncodings */ 7773 if (is_signed) { 7774 if (size > 2 || (size == 2 && !is_q)) { 7775 unallocated_encoding(s); 7776 return; 7777 } 7778 } else { 7779 if (size > 3 7780 || (size < 3 && is_q) 7781 || (size == 3 && !is_q)) { 7782 unallocated_encoding(s); 7783 return; 7784 } 7785 } 7786 7787 if (!fp_access_check(s)) { 7788 return; 7789 } 7790 7791 element = extract32(imm5, 1+size, 4); 7792 7793 tcg_rd = cpu_reg(s, rd); 7794 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7795 if (is_signed && !is_q) { 7796 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7797 } 7798 } 7799 7800 /* AdvSIMD copy 7801 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7802 * +---+---+----+-----------------+------+---+------+---+------+------+ 7803 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7804 * +---+---+----+-----------------+------+---+------+---+------+------+ 7805 */ 7806 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7807 { 7808 int rd = extract32(insn, 0, 5); 7809 int rn = extract32(insn, 5, 5); 7810 int imm4 = extract32(insn, 11, 4); 7811 int op = extract32(insn, 29, 1); 7812 int is_q = extract32(insn, 30, 1); 7813 int imm5 = extract32(insn, 16, 5); 7814 7815 if (op) { 7816 if (is_q) { 7817 /* INS (element) */ 7818 handle_simd_inse(s, rd, rn, imm4, imm5); 7819 } else { 7820 unallocated_encoding(s); 7821 } 7822 } else { 7823 switch (imm4) { 7824 case 0: 7825 /* DUP (element - vector) */ 7826 handle_simd_dupe(s, is_q, rd, rn, imm5); 7827 break; 7828 case 1: 7829 /* DUP (general) */ 7830 handle_simd_dupg(s, is_q, rd, rn, imm5); 7831 break; 7832 case 3: 7833 if (is_q) { 7834 /* INS (general) */ 7835 handle_simd_insg(s, rd, rn, imm5); 7836 } else { 7837 unallocated_encoding(s); 7838 } 7839 break; 7840 case 5: 7841 case 7: 7842 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7843 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7844 break; 7845 default: 7846 unallocated_encoding(s); 7847 break; 7848 } 7849 } 7850 } 7851 7852 /* AdvSIMD modified immediate 7853 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7854 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7855 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7856 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7857 * 7858 * There are a number of operations that can be carried out here: 7859 * MOVI - move (shifted) imm into register 7860 * MVNI - move inverted (shifted) imm into register 7861 * ORR - bitwise OR of (shifted) imm with register 7862 * BIC - bitwise clear of (shifted) imm with register 7863 * With ARMv8.2 we also have: 7864 * FMOV half-precision 7865 */ 7866 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7867 { 7868 int rd = extract32(insn, 0, 5); 7869 int cmode = extract32(insn, 12, 4); 7870 int o2 = extract32(insn, 11, 1); 7871 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7872 bool is_neg = extract32(insn, 29, 1); 7873 bool is_q = extract32(insn, 30, 1); 7874 uint64_t imm = 0; 7875 7876 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7877 /* Check for FMOV (vector, immediate) - half-precision */ 7878 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7879 unallocated_encoding(s); 7880 return; 7881 } 7882 } 7883 7884 if (!fp_access_check(s)) { 7885 return; 7886 } 7887 7888 if (cmode == 15 && o2 && !is_neg) { 7889 /* FMOV (vector, immediate) - half-precision */ 7890 imm = vfp_expand_imm(MO_16, abcdefgh); 7891 /* now duplicate across the lanes */ 7892 imm = dup_const(MO_16, imm); 7893 } else { 7894 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7895 } 7896 7897 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7898 /* MOVI or MVNI, with MVNI negation handled above. */ 7899 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7900 vec_full_reg_size(s), imm); 7901 } else { 7902 /* ORR or BIC, with BIC negation to AND handled above. */ 7903 if (is_neg) { 7904 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7905 } else { 7906 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7907 } 7908 } 7909 } 7910 7911 /* AdvSIMD scalar copy 7912 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7913 * +-----+----+-----------------+------+---+------+---+------+------+ 7914 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7915 * +-----+----+-----------------+------+---+------+---+------+------+ 7916 */ 7917 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7918 { 7919 int rd = extract32(insn, 0, 5); 7920 int rn = extract32(insn, 5, 5); 7921 int imm4 = extract32(insn, 11, 4); 7922 int imm5 = extract32(insn, 16, 5); 7923 int op = extract32(insn, 29, 1); 7924 7925 if (op != 0 || imm4 != 0) { 7926 unallocated_encoding(s); 7927 return; 7928 } 7929 7930 /* DUP (element, scalar) */ 7931 handle_simd_dupes(s, rd, rn, imm5); 7932 } 7933 7934 /* AdvSIMD scalar pairwise 7935 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7936 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7937 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7938 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7939 */ 7940 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7941 { 7942 int u = extract32(insn, 29, 1); 7943 int size = extract32(insn, 22, 2); 7944 int opcode = extract32(insn, 12, 5); 7945 int rn = extract32(insn, 5, 5); 7946 int rd = extract32(insn, 0, 5); 7947 TCGv_ptr fpst; 7948 7949 /* For some ops (the FP ones), size[1] is part of the encoding. 7950 * For ADDP strictly it is not but size[1] is always 1 for valid 7951 * encodings. 7952 */ 7953 opcode |= (extract32(size, 1, 1) << 5); 7954 7955 switch (opcode) { 7956 case 0x3b: /* ADDP */ 7957 if (u || size != 3) { 7958 unallocated_encoding(s); 7959 return; 7960 } 7961 if (!fp_access_check(s)) { 7962 return; 7963 } 7964 7965 fpst = NULL; 7966 break; 7967 case 0xc: /* FMAXNMP */ 7968 case 0xd: /* FADDP */ 7969 case 0xf: /* FMAXP */ 7970 case 0x2c: /* FMINNMP */ 7971 case 0x2f: /* FMINP */ 7972 /* FP op, size[0] is 32 or 64 bit*/ 7973 if (!u) { 7974 if (!dc_isar_feature(aa64_fp16, s)) { 7975 unallocated_encoding(s); 7976 return; 7977 } else { 7978 size = MO_16; 7979 } 7980 } else { 7981 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7982 } 7983 7984 if (!fp_access_check(s)) { 7985 return; 7986 } 7987 7988 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7989 break; 7990 default: 7991 unallocated_encoding(s); 7992 return; 7993 } 7994 7995 if (size == MO_64) { 7996 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7997 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7998 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7999 8000 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8001 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8002 8003 switch (opcode) { 8004 case 0x3b: /* ADDP */ 8005 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8006 break; 8007 case 0xc: /* FMAXNMP */ 8008 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8009 break; 8010 case 0xd: /* FADDP */ 8011 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8012 break; 8013 case 0xf: /* FMAXP */ 8014 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8015 break; 8016 case 0x2c: /* FMINNMP */ 8017 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8018 break; 8019 case 0x2f: /* FMINP */ 8020 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8021 break; 8022 default: 8023 g_assert_not_reached(); 8024 } 8025 8026 write_fp_dreg(s, rd, tcg_res); 8027 } else { 8028 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8029 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8030 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8031 8032 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8033 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8034 8035 if (size == MO_16) { 8036 switch (opcode) { 8037 case 0xc: /* FMAXNMP */ 8038 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8039 break; 8040 case 0xd: /* FADDP */ 8041 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8042 break; 8043 case 0xf: /* FMAXP */ 8044 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8045 break; 8046 case 0x2c: /* FMINNMP */ 8047 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8048 break; 8049 case 0x2f: /* FMINP */ 8050 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8051 break; 8052 default: 8053 g_assert_not_reached(); 8054 } 8055 } else { 8056 switch (opcode) { 8057 case 0xc: /* FMAXNMP */ 8058 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8059 break; 8060 case 0xd: /* FADDP */ 8061 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8062 break; 8063 case 0xf: /* FMAXP */ 8064 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8065 break; 8066 case 0x2c: /* FMINNMP */ 8067 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8068 break; 8069 case 0x2f: /* FMINP */ 8070 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8071 break; 8072 default: 8073 g_assert_not_reached(); 8074 } 8075 } 8076 8077 write_fp_sreg(s, rd, tcg_res); 8078 } 8079 } 8080 8081 /* 8082 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8083 * 8084 * This code is handles the common shifting code and is used by both 8085 * the vector and scalar code. 8086 */ 8087 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8088 TCGv_i64 tcg_rnd, bool accumulate, 8089 bool is_u, int size, int shift) 8090 { 8091 bool extended_result = false; 8092 bool round = tcg_rnd != NULL; 8093 int ext_lshift = 0; 8094 TCGv_i64 tcg_src_hi; 8095 8096 if (round && size == 3) { 8097 extended_result = true; 8098 ext_lshift = 64 - shift; 8099 tcg_src_hi = tcg_temp_new_i64(); 8100 } else if (shift == 64) { 8101 if (!accumulate && is_u) { 8102 /* result is zero */ 8103 tcg_gen_movi_i64(tcg_res, 0); 8104 return; 8105 } 8106 } 8107 8108 /* Deal with the rounding step */ 8109 if (round) { 8110 if (extended_result) { 8111 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8112 if (!is_u) { 8113 /* take care of sign extending tcg_res */ 8114 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8115 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8116 tcg_src, tcg_src_hi, 8117 tcg_rnd, tcg_zero); 8118 } else { 8119 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8120 tcg_src, tcg_zero, 8121 tcg_rnd, tcg_zero); 8122 } 8123 } else { 8124 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8125 } 8126 } 8127 8128 /* Now do the shift right */ 8129 if (round && extended_result) { 8130 /* extended case, >64 bit precision required */ 8131 if (ext_lshift == 0) { 8132 /* special case, only high bits matter */ 8133 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8134 } else { 8135 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8136 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8137 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8138 } 8139 } else { 8140 if (is_u) { 8141 if (shift == 64) { 8142 /* essentially shifting in 64 zeros */ 8143 tcg_gen_movi_i64(tcg_src, 0); 8144 } else { 8145 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8146 } 8147 } else { 8148 if (shift == 64) { 8149 /* effectively extending the sign-bit */ 8150 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8151 } else { 8152 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8153 } 8154 } 8155 } 8156 8157 if (accumulate) { 8158 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8159 } else { 8160 tcg_gen_mov_i64(tcg_res, tcg_src); 8161 } 8162 } 8163 8164 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8165 static void handle_scalar_simd_shri(DisasContext *s, 8166 bool is_u, int immh, int immb, 8167 int opcode, int rn, int rd) 8168 { 8169 const int size = 3; 8170 int immhb = immh << 3 | immb; 8171 int shift = 2 * (8 << size) - immhb; 8172 bool accumulate = false; 8173 bool round = false; 8174 bool insert = false; 8175 TCGv_i64 tcg_rn; 8176 TCGv_i64 tcg_rd; 8177 TCGv_i64 tcg_round; 8178 8179 if (!extract32(immh, 3, 1)) { 8180 unallocated_encoding(s); 8181 return; 8182 } 8183 8184 if (!fp_access_check(s)) { 8185 return; 8186 } 8187 8188 switch (opcode) { 8189 case 0x02: /* SSRA / USRA (accumulate) */ 8190 accumulate = true; 8191 break; 8192 case 0x04: /* SRSHR / URSHR (rounding) */ 8193 round = true; 8194 break; 8195 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8196 accumulate = round = true; 8197 break; 8198 case 0x08: /* SRI */ 8199 insert = true; 8200 break; 8201 } 8202 8203 if (round) { 8204 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8205 } else { 8206 tcg_round = NULL; 8207 } 8208 8209 tcg_rn = read_fp_dreg(s, rn); 8210 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8211 8212 if (insert) { 8213 /* shift count same as element size is valid but does nothing; 8214 * special case to avoid potential shift by 64. 8215 */ 8216 int esize = 8 << size; 8217 if (shift != esize) { 8218 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8219 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8220 } 8221 } else { 8222 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8223 accumulate, is_u, size, shift); 8224 } 8225 8226 write_fp_dreg(s, rd, tcg_rd); 8227 } 8228 8229 /* SHL/SLI - Scalar shift left */ 8230 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8231 int immh, int immb, int opcode, 8232 int rn, int rd) 8233 { 8234 int size = 32 - clz32(immh) - 1; 8235 int immhb = immh << 3 | immb; 8236 int shift = immhb - (8 << size); 8237 TCGv_i64 tcg_rn; 8238 TCGv_i64 tcg_rd; 8239 8240 if (!extract32(immh, 3, 1)) { 8241 unallocated_encoding(s); 8242 return; 8243 } 8244 8245 if (!fp_access_check(s)) { 8246 return; 8247 } 8248 8249 tcg_rn = read_fp_dreg(s, rn); 8250 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8251 8252 if (insert) { 8253 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8254 } else { 8255 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8256 } 8257 8258 write_fp_dreg(s, rd, tcg_rd); 8259 } 8260 8261 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8262 * (signed/unsigned) narrowing */ 8263 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8264 bool is_u_shift, bool is_u_narrow, 8265 int immh, int immb, int opcode, 8266 int rn, int rd) 8267 { 8268 int immhb = immh << 3 | immb; 8269 int size = 32 - clz32(immh) - 1; 8270 int esize = 8 << size; 8271 int shift = (2 * esize) - immhb; 8272 int elements = is_scalar ? 1 : (64 / esize); 8273 bool round = extract32(opcode, 0, 1); 8274 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8275 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8276 TCGv_i32 tcg_rd_narrowed; 8277 TCGv_i64 tcg_final; 8278 8279 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8280 { gen_helper_neon_narrow_sat_s8, 8281 gen_helper_neon_unarrow_sat8 }, 8282 { gen_helper_neon_narrow_sat_s16, 8283 gen_helper_neon_unarrow_sat16 }, 8284 { gen_helper_neon_narrow_sat_s32, 8285 gen_helper_neon_unarrow_sat32 }, 8286 { NULL, NULL }, 8287 }; 8288 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8289 gen_helper_neon_narrow_sat_u8, 8290 gen_helper_neon_narrow_sat_u16, 8291 gen_helper_neon_narrow_sat_u32, 8292 NULL 8293 }; 8294 NeonGenNarrowEnvFn *narrowfn; 8295 8296 int i; 8297 8298 assert(size < 4); 8299 8300 if (extract32(immh, 3, 1)) { 8301 unallocated_encoding(s); 8302 return; 8303 } 8304 8305 if (!fp_access_check(s)) { 8306 return; 8307 } 8308 8309 if (is_u_shift) { 8310 narrowfn = unsigned_narrow_fns[size]; 8311 } else { 8312 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8313 } 8314 8315 tcg_rn = tcg_temp_new_i64(); 8316 tcg_rd = tcg_temp_new_i64(); 8317 tcg_rd_narrowed = tcg_temp_new_i32(); 8318 tcg_final = tcg_temp_new_i64(); 8319 8320 if (round) { 8321 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8322 } else { 8323 tcg_round = NULL; 8324 } 8325 8326 for (i = 0; i < elements; i++) { 8327 read_vec_element(s, tcg_rn, rn, i, ldop); 8328 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8329 false, is_u_shift, size+1, shift); 8330 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8331 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8332 if (i == 0) { 8333 tcg_gen_mov_i64(tcg_final, tcg_rd); 8334 } else { 8335 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8336 } 8337 } 8338 8339 if (!is_q) { 8340 write_vec_element(s, tcg_final, rd, 0, MO_64); 8341 } else { 8342 write_vec_element(s, tcg_final, rd, 1, MO_64); 8343 } 8344 clear_vec_high(s, is_q, rd); 8345 } 8346 8347 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8348 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8349 bool src_unsigned, bool dst_unsigned, 8350 int immh, int immb, int rn, int rd) 8351 { 8352 int immhb = immh << 3 | immb; 8353 int size = 32 - clz32(immh) - 1; 8354 int shift = immhb - (8 << size); 8355 int pass; 8356 8357 assert(immh != 0); 8358 assert(!(scalar && is_q)); 8359 8360 if (!scalar) { 8361 if (!is_q && extract32(immh, 3, 1)) { 8362 unallocated_encoding(s); 8363 return; 8364 } 8365 8366 /* Since we use the variable-shift helpers we must 8367 * replicate the shift count into each element of 8368 * the tcg_shift value. 8369 */ 8370 switch (size) { 8371 case 0: 8372 shift |= shift << 8; 8373 /* fall through */ 8374 case 1: 8375 shift |= shift << 16; 8376 break; 8377 case 2: 8378 case 3: 8379 break; 8380 default: 8381 g_assert_not_reached(); 8382 } 8383 } 8384 8385 if (!fp_access_check(s)) { 8386 return; 8387 } 8388 8389 if (size == 3) { 8390 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8391 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8392 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8393 { NULL, gen_helper_neon_qshl_u64 }, 8394 }; 8395 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8396 int maxpass = is_q ? 2 : 1; 8397 8398 for (pass = 0; pass < maxpass; pass++) { 8399 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8400 8401 read_vec_element(s, tcg_op, rn, pass, MO_64); 8402 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8403 write_vec_element(s, tcg_op, rd, pass, MO_64); 8404 } 8405 clear_vec_high(s, is_q, rd); 8406 } else { 8407 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8408 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8409 { 8410 { gen_helper_neon_qshl_s8, 8411 gen_helper_neon_qshl_s16, 8412 gen_helper_neon_qshl_s32 }, 8413 { gen_helper_neon_qshlu_s8, 8414 gen_helper_neon_qshlu_s16, 8415 gen_helper_neon_qshlu_s32 } 8416 }, { 8417 { NULL, NULL, NULL }, 8418 { gen_helper_neon_qshl_u8, 8419 gen_helper_neon_qshl_u16, 8420 gen_helper_neon_qshl_u32 } 8421 } 8422 }; 8423 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8424 MemOp memop = scalar ? size : MO_32; 8425 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8426 8427 for (pass = 0; pass < maxpass; pass++) { 8428 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8429 8430 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8431 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8432 if (scalar) { 8433 switch (size) { 8434 case 0: 8435 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8436 break; 8437 case 1: 8438 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8439 break; 8440 case 2: 8441 break; 8442 default: 8443 g_assert_not_reached(); 8444 } 8445 write_fp_sreg(s, rd, tcg_op); 8446 } else { 8447 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8448 } 8449 } 8450 8451 if (!scalar) { 8452 clear_vec_high(s, is_q, rd); 8453 } 8454 } 8455 } 8456 8457 /* Common vector code for handling integer to FP conversion */ 8458 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8459 int elements, int is_signed, 8460 int fracbits, int size) 8461 { 8462 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8463 TCGv_i32 tcg_shift = NULL; 8464 8465 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8466 int pass; 8467 8468 if (fracbits || size == MO_64) { 8469 tcg_shift = tcg_constant_i32(fracbits); 8470 } 8471 8472 if (size == MO_64) { 8473 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8474 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8475 8476 for (pass = 0; pass < elements; pass++) { 8477 read_vec_element(s, tcg_int64, rn, pass, mop); 8478 8479 if (is_signed) { 8480 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8481 tcg_shift, tcg_fpst); 8482 } else { 8483 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8484 tcg_shift, tcg_fpst); 8485 } 8486 if (elements == 1) { 8487 write_fp_dreg(s, rd, tcg_double); 8488 } else { 8489 write_vec_element(s, tcg_double, rd, pass, MO_64); 8490 } 8491 } 8492 } else { 8493 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8494 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8495 8496 for (pass = 0; pass < elements; pass++) { 8497 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8498 8499 switch (size) { 8500 case MO_32: 8501 if (fracbits) { 8502 if (is_signed) { 8503 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8504 tcg_shift, tcg_fpst); 8505 } else { 8506 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8507 tcg_shift, tcg_fpst); 8508 } 8509 } else { 8510 if (is_signed) { 8511 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8512 } else { 8513 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8514 } 8515 } 8516 break; 8517 case MO_16: 8518 if (fracbits) { 8519 if (is_signed) { 8520 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8521 tcg_shift, tcg_fpst); 8522 } else { 8523 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8524 tcg_shift, tcg_fpst); 8525 } 8526 } else { 8527 if (is_signed) { 8528 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8529 } else { 8530 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8531 } 8532 } 8533 break; 8534 default: 8535 g_assert_not_reached(); 8536 } 8537 8538 if (elements == 1) { 8539 write_fp_sreg(s, rd, tcg_float); 8540 } else { 8541 write_vec_element_i32(s, tcg_float, rd, pass, size); 8542 } 8543 } 8544 } 8545 8546 clear_vec_high(s, elements << size == 16, rd); 8547 } 8548 8549 /* UCVTF/SCVTF - Integer to FP conversion */ 8550 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8551 bool is_q, bool is_u, 8552 int immh, int immb, int opcode, 8553 int rn, int rd) 8554 { 8555 int size, elements, fracbits; 8556 int immhb = immh << 3 | immb; 8557 8558 if (immh & 8) { 8559 size = MO_64; 8560 if (!is_scalar && !is_q) { 8561 unallocated_encoding(s); 8562 return; 8563 } 8564 } else if (immh & 4) { 8565 size = MO_32; 8566 } else if (immh & 2) { 8567 size = MO_16; 8568 if (!dc_isar_feature(aa64_fp16, s)) { 8569 unallocated_encoding(s); 8570 return; 8571 } 8572 } else { 8573 /* immh == 0 would be a failure of the decode logic */ 8574 g_assert(immh == 1); 8575 unallocated_encoding(s); 8576 return; 8577 } 8578 8579 if (is_scalar) { 8580 elements = 1; 8581 } else { 8582 elements = (8 << is_q) >> size; 8583 } 8584 fracbits = (16 << size) - immhb; 8585 8586 if (!fp_access_check(s)) { 8587 return; 8588 } 8589 8590 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8591 } 8592 8593 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8594 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8595 bool is_q, bool is_u, 8596 int immh, int immb, int rn, int rd) 8597 { 8598 int immhb = immh << 3 | immb; 8599 int pass, size, fracbits; 8600 TCGv_ptr tcg_fpstatus; 8601 TCGv_i32 tcg_rmode, tcg_shift; 8602 8603 if (immh & 0x8) { 8604 size = MO_64; 8605 if (!is_scalar && !is_q) { 8606 unallocated_encoding(s); 8607 return; 8608 } 8609 } else if (immh & 0x4) { 8610 size = MO_32; 8611 } else if (immh & 0x2) { 8612 size = MO_16; 8613 if (!dc_isar_feature(aa64_fp16, s)) { 8614 unallocated_encoding(s); 8615 return; 8616 } 8617 } else { 8618 /* Should have split out AdvSIMD modified immediate earlier. */ 8619 assert(immh == 1); 8620 unallocated_encoding(s); 8621 return; 8622 } 8623 8624 if (!fp_access_check(s)) { 8625 return; 8626 } 8627 8628 assert(!(is_scalar && is_q)); 8629 8630 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8631 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8632 fracbits = (16 << size) - immhb; 8633 tcg_shift = tcg_constant_i32(fracbits); 8634 8635 if (size == MO_64) { 8636 int maxpass = is_scalar ? 1 : 2; 8637 8638 for (pass = 0; pass < maxpass; pass++) { 8639 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8640 8641 read_vec_element(s, tcg_op, rn, pass, MO_64); 8642 if (is_u) { 8643 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8644 } else { 8645 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8646 } 8647 write_vec_element(s, tcg_op, rd, pass, MO_64); 8648 } 8649 clear_vec_high(s, is_q, rd); 8650 } else { 8651 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8652 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8653 8654 switch (size) { 8655 case MO_16: 8656 if (is_u) { 8657 fn = gen_helper_vfp_touhh; 8658 } else { 8659 fn = gen_helper_vfp_toshh; 8660 } 8661 break; 8662 case MO_32: 8663 if (is_u) { 8664 fn = gen_helper_vfp_touls; 8665 } else { 8666 fn = gen_helper_vfp_tosls; 8667 } 8668 break; 8669 default: 8670 g_assert_not_reached(); 8671 } 8672 8673 for (pass = 0; pass < maxpass; pass++) { 8674 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8675 8676 read_vec_element_i32(s, tcg_op, rn, pass, size); 8677 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8678 if (is_scalar) { 8679 write_fp_sreg(s, rd, tcg_op); 8680 } else { 8681 write_vec_element_i32(s, tcg_op, rd, pass, size); 8682 } 8683 } 8684 if (!is_scalar) { 8685 clear_vec_high(s, is_q, rd); 8686 } 8687 } 8688 8689 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8690 } 8691 8692 /* AdvSIMD scalar shift by immediate 8693 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8694 * +-----+---+-------------+------+------+--------+---+------+------+ 8695 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8696 * +-----+---+-------------+------+------+--------+---+------+------+ 8697 * 8698 * This is the scalar version so it works on a fixed sized registers 8699 */ 8700 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8701 { 8702 int rd = extract32(insn, 0, 5); 8703 int rn = extract32(insn, 5, 5); 8704 int opcode = extract32(insn, 11, 5); 8705 int immb = extract32(insn, 16, 3); 8706 int immh = extract32(insn, 19, 4); 8707 bool is_u = extract32(insn, 29, 1); 8708 8709 if (immh == 0) { 8710 unallocated_encoding(s); 8711 return; 8712 } 8713 8714 switch (opcode) { 8715 case 0x08: /* SRI */ 8716 if (!is_u) { 8717 unallocated_encoding(s); 8718 return; 8719 } 8720 /* fall through */ 8721 case 0x00: /* SSHR / USHR */ 8722 case 0x02: /* SSRA / USRA */ 8723 case 0x04: /* SRSHR / URSHR */ 8724 case 0x06: /* SRSRA / URSRA */ 8725 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8726 break; 8727 case 0x0a: /* SHL / SLI */ 8728 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8729 break; 8730 case 0x1c: /* SCVTF, UCVTF */ 8731 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8732 opcode, rn, rd); 8733 break; 8734 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8735 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8736 if (!is_u) { 8737 unallocated_encoding(s); 8738 return; 8739 } 8740 handle_vec_simd_sqshrn(s, true, false, false, true, 8741 immh, immb, opcode, rn, rd); 8742 break; 8743 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8744 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8745 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8746 immh, immb, opcode, rn, rd); 8747 break; 8748 case 0xc: /* SQSHLU */ 8749 if (!is_u) { 8750 unallocated_encoding(s); 8751 return; 8752 } 8753 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8754 break; 8755 case 0xe: /* SQSHL, UQSHL */ 8756 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8757 break; 8758 case 0x1f: /* FCVTZS, FCVTZU */ 8759 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8760 break; 8761 default: 8762 unallocated_encoding(s); 8763 break; 8764 } 8765 } 8766 8767 /* AdvSIMD scalar three different 8768 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8769 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8770 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8771 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8772 */ 8773 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8774 { 8775 bool is_u = extract32(insn, 29, 1); 8776 int size = extract32(insn, 22, 2); 8777 int opcode = extract32(insn, 12, 4); 8778 int rm = extract32(insn, 16, 5); 8779 int rn = extract32(insn, 5, 5); 8780 int rd = extract32(insn, 0, 5); 8781 8782 if (is_u) { 8783 unallocated_encoding(s); 8784 return; 8785 } 8786 8787 switch (opcode) { 8788 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8789 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8790 case 0xd: /* SQDMULL, SQDMULL2 */ 8791 if (size == 0 || size == 3) { 8792 unallocated_encoding(s); 8793 return; 8794 } 8795 break; 8796 default: 8797 unallocated_encoding(s); 8798 return; 8799 } 8800 8801 if (!fp_access_check(s)) { 8802 return; 8803 } 8804 8805 if (size == 2) { 8806 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8807 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8808 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8809 8810 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8811 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8812 8813 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8814 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8815 8816 switch (opcode) { 8817 case 0xd: /* SQDMULL, SQDMULL2 */ 8818 break; 8819 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8820 tcg_gen_neg_i64(tcg_res, tcg_res); 8821 /* fall through */ 8822 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8823 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8824 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8825 tcg_res, tcg_op1); 8826 break; 8827 default: 8828 g_assert_not_reached(); 8829 } 8830 8831 write_fp_dreg(s, rd, tcg_res); 8832 } else { 8833 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8834 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8835 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8836 8837 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8838 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8839 8840 switch (opcode) { 8841 case 0xd: /* SQDMULL, SQDMULL2 */ 8842 break; 8843 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8844 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8845 /* fall through */ 8846 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8847 { 8848 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8849 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8850 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8851 tcg_res, tcg_op3); 8852 break; 8853 } 8854 default: 8855 g_assert_not_reached(); 8856 } 8857 8858 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8859 write_fp_dreg(s, rd, tcg_res); 8860 } 8861 } 8862 8863 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8864 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8865 { 8866 /* Handle 64x64->64 opcodes which are shared between the scalar 8867 * and vector 3-same groups. We cover every opcode where size == 3 8868 * is valid in either the three-reg-same (integer, not pairwise) 8869 * or scalar-three-reg-same groups. 8870 */ 8871 TCGCond cond; 8872 8873 switch (opcode) { 8874 case 0x1: /* SQADD */ 8875 if (u) { 8876 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8877 } else { 8878 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8879 } 8880 break; 8881 case 0x5: /* SQSUB */ 8882 if (u) { 8883 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8884 } else { 8885 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8886 } 8887 break; 8888 case 0x6: /* CMGT, CMHI */ 8889 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8890 * We implement this using setcond (test) and then negating. 8891 */ 8892 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8893 do_cmop: 8894 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8895 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8896 break; 8897 case 0x7: /* CMGE, CMHS */ 8898 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8899 goto do_cmop; 8900 case 0x11: /* CMTST, CMEQ */ 8901 if (u) { 8902 cond = TCG_COND_EQ; 8903 goto do_cmop; 8904 } 8905 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8906 break; 8907 case 0x8: /* SSHL, USHL */ 8908 if (u) { 8909 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8910 } else { 8911 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8912 } 8913 break; 8914 case 0x9: /* SQSHL, UQSHL */ 8915 if (u) { 8916 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8917 } else { 8918 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8919 } 8920 break; 8921 case 0xa: /* SRSHL, URSHL */ 8922 if (u) { 8923 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8924 } else { 8925 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8926 } 8927 break; 8928 case 0xb: /* SQRSHL, UQRSHL */ 8929 if (u) { 8930 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8931 } else { 8932 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8933 } 8934 break; 8935 case 0x10: /* ADD, SUB */ 8936 if (u) { 8937 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8938 } else { 8939 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8940 } 8941 break; 8942 default: 8943 g_assert_not_reached(); 8944 } 8945 } 8946 8947 /* Handle the 3-same-operands float operations; shared by the scalar 8948 * and vector encodings. The caller must filter out any encodings 8949 * not allocated for the encoding it is dealing with. 8950 */ 8951 static void handle_3same_float(DisasContext *s, int size, int elements, 8952 int fpopcode, int rd, int rn, int rm) 8953 { 8954 int pass; 8955 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8956 8957 for (pass = 0; pass < elements; pass++) { 8958 if (size) { 8959 /* Double */ 8960 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8961 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8962 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8963 8964 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8965 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8966 8967 switch (fpopcode) { 8968 case 0x39: /* FMLS */ 8969 /* As usual for ARM, separate negation for fused multiply-add */ 8970 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8971 /* fall through */ 8972 case 0x19: /* FMLA */ 8973 read_vec_element(s, tcg_res, rd, pass, MO_64); 8974 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8975 tcg_res, fpst); 8976 break; 8977 case 0x18: /* FMAXNM */ 8978 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8979 break; 8980 case 0x1a: /* FADD */ 8981 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8982 break; 8983 case 0x1b: /* FMULX */ 8984 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8985 break; 8986 case 0x1c: /* FCMEQ */ 8987 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8988 break; 8989 case 0x1e: /* FMAX */ 8990 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8991 break; 8992 case 0x1f: /* FRECPS */ 8993 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8994 break; 8995 case 0x38: /* FMINNM */ 8996 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8997 break; 8998 case 0x3a: /* FSUB */ 8999 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x3e: /* FMIN */ 9002 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 case 0x3f: /* FRSQRTS */ 9005 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x5b: /* FMUL */ 9008 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x5c: /* FCMGE */ 9011 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x5d: /* FACGE */ 9014 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x5f: /* FDIV */ 9017 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x7a: /* FABD */ 9020 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9021 gen_helper_vfp_absd(tcg_res, tcg_res); 9022 break; 9023 case 0x7c: /* FCMGT */ 9024 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9025 break; 9026 case 0x7d: /* FACGT */ 9027 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9028 break; 9029 default: 9030 g_assert_not_reached(); 9031 } 9032 9033 write_vec_element(s, tcg_res, rd, pass, MO_64); 9034 } else { 9035 /* Single */ 9036 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9037 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9038 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9039 9040 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9041 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9042 9043 switch (fpopcode) { 9044 case 0x39: /* FMLS */ 9045 /* As usual for ARM, separate negation for fused multiply-add */ 9046 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9047 /* fall through */ 9048 case 0x19: /* FMLA */ 9049 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9050 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9051 tcg_res, fpst); 9052 break; 9053 case 0x1a: /* FADD */ 9054 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9055 break; 9056 case 0x1b: /* FMULX */ 9057 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9058 break; 9059 case 0x1c: /* FCMEQ */ 9060 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9061 break; 9062 case 0x1e: /* FMAX */ 9063 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9064 break; 9065 case 0x1f: /* FRECPS */ 9066 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9067 break; 9068 case 0x18: /* FMAXNM */ 9069 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9070 break; 9071 case 0x38: /* FMINNM */ 9072 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9073 break; 9074 case 0x3a: /* FSUB */ 9075 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9076 break; 9077 case 0x3e: /* FMIN */ 9078 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9079 break; 9080 case 0x3f: /* FRSQRTS */ 9081 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9082 break; 9083 case 0x5b: /* FMUL */ 9084 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9085 break; 9086 case 0x5c: /* FCMGE */ 9087 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9088 break; 9089 case 0x5d: /* FACGE */ 9090 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9091 break; 9092 case 0x5f: /* FDIV */ 9093 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9094 break; 9095 case 0x7a: /* FABD */ 9096 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9097 gen_helper_vfp_abss(tcg_res, tcg_res); 9098 break; 9099 case 0x7c: /* FCMGT */ 9100 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9101 break; 9102 case 0x7d: /* FACGT */ 9103 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 default: 9106 g_assert_not_reached(); 9107 } 9108 9109 if (elements == 1) { 9110 /* scalar single so clear high part */ 9111 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9112 9113 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9114 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9115 } else { 9116 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9117 } 9118 } 9119 } 9120 9121 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9122 } 9123 9124 /* AdvSIMD scalar three same 9125 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9126 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9127 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9128 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9129 */ 9130 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9131 { 9132 int rd = extract32(insn, 0, 5); 9133 int rn = extract32(insn, 5, 5); 9134 int opcode = extract32(insn, 11, 5); 9135 int rm = extract32(insn, 16, 5); 9136 int size = extract32(insn, 22, 2); 9137 bool u = extract32(insn, 29, 1); 9138 TCGv_i64 tcg_rd; 9139 9140 if (opcode >= 0x18) { 9141 /* Floating point: U, size[1] and opcode indicate operation */ 9142 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9143 switch (fpopcode) { 9144 case 0x1b: /* FMULX */ 9145 case 0x1f: /* FRECPS */ 9146 case 0x3f: /* FRSQRTS */ 9147 case 0x5d: /* FACGE */ 9148 case 0x7d: /* FACGT */ 9149 case 0x1c: /* FCMEQ */ 9150 case 0x5c: /* FCMGE */ 9151 case 0x7c: /* FCMGT */ 9152 case 0x7a: /* FABD */ 9153 break; 9154 default: 9155 unallocated_encoding(s); 9156 return; 9157 } 9158 9159 if (!fp_access_check(s)) { 9160 return; 9161 } 9162 9163 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9164 return; 9165 } 9166 9167 switch (opcode) { 9168 case 0x1: /* SQADD, UQADD */ 9169 case 0x5: /* SQSUB, UQSUB */ 9170 case 0x9: /* SQSHL, UQSHL */ 9171 case 0xb: /* SQRSHL, UQRSHL */ 9172 break; 9173 case 0x8: /* SSHL, USHL */ 9174 case 0xa: /* SRSHL, URSHL */ 9175 case 0x6: /* CMGT, CMHI */ 9176 case 0x7: /* CMGE, CMHS */ 9177 case 0x11: /* CMTST, CMEQ */ 9178 case 0x10: /* ADD, SUB (vector) */ 9179 if (size != 3) { 9180 unallocated_encoding(s); 9181 return; 9182 } 9183 break; 9184 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9185 if (size != 1 && size != 2) { 9186 unallocated_encoding(s); 9187 return; 9188 } 9189 break; 9190 default: 9191 unallocated_encoding(s); 9192 return; 9193 } 9194 9195 if (!fp_access_check(s)) { 9196 return; 9197 } 9198 9199 tcg_rd = tcg_temp_new_i64(); 9200 9201 if (size == 3) { 9202 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9203 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9204 9205 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9206 } else { 9207 /* Do a single operation on the lowest element in the vector. 9208 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9209 * no side effects for all these operations. 9210 * OPTME: special-purpose helpers would avoid doing some 9211 * unnecessary work in the helper for the 8 and 16 bit cases. 9212 */ 9213 NeonGenTwoOpEnvFn *genenvfn; 9214 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9215 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9216 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9217 9218 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9219 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9220 9221 switch (opcode) { 9222 case 0x1: /* SQADD, UQADD */ 9223 { 9224 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9225 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9226 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9227 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9228 }; 9229 genenvfn = fns[size][u]; 9230 break; 9231 } 9232 case 0x5: /* SQSUB, UQSUB */ 9233 { 9234 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9235 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9236 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9237 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9238 }; 9239 genenvfn = fns[size][u]; 9240 break; 9241 } 9242 case 0x9: /* SQSHL, UQSHL */ 9243 { 9244 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9245 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9246 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9247 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9248 }; 9249 genenvfn = fns[size][u]; 9250 break; 9251 } 9252 case 0xb: /* SQRSHL, UQRSHL */ 9253 { 9254 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9255 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9256 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9257 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9258 }; 9259 genenvfn = fns[size][u]; 9260 break; 9261 } 9262 case 0x16: /* SQDMULH, SQRDMULH */ 9263 { 9264 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9265 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9266 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9267 }; 9268 assert(size == 1 || size == 2); 9269 genenvfn = fns[size - 1][u]; 9270 break; 9271 } 9272 default: 9273 g_assert_not_reached(); 9274 } 9275 9276 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9277 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9278 } 9279 9280 write_fp_dreg(s, rd, tcg_rd); 9281 } 9282 9283 /* AdvSIMD scalar three same FP16 9284 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9285 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9286 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9287 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9288 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9289 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9290 */ 9291 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9292 uint32_t insn) 9293 { 9294 int rd = extract32(insn, 0, 5); 9295 int rn = extract32(insn, 5, 5); 9296 int opcode = extract32(insn, 11, 3); 9297 int rm = extract32(insn, 16, 5); 9298 bool u = extract32(insn, 29, 1); 9299 bool a = extract32(insn, 23, 1); 9300 int fpopcode = opcode | (a << 3) | (u << 4); 9301 TCGv_ptr fpst; 9302 TCGv_i32 tcg_op1; 9303 TCGv_i32 tcg_op2; 9304 TCGv_i32 tcg_res; 9305 9306 switch (fpopcode) { 9307 case 0x03: /* FMULX */ 9308 case 0x04: /* FCMEQ (reg) */ 9309 case 0x07: /* FRECPS */ 9310 case 0x0f: /* FRSQRTS */ 9311 case 0x14: /* FCMGE (reg) */ 9312 case 0x15: /* FACGE */ 9313 case 0x1a: /* FABD */ 9314 case 0x1c: /* FCMGT (reg) */ 9315 case 0x1d: /* FACGT */ 9316 break; 9317 default: 9318 unallocated_encoding(s); 9319 return; 9320 } 9321 9322 if (!dc_isar_feature(aa64_fp16, s)) { 9323 unallocated_encoding(s); 9324 } 9325 9326 if (!fp_access_check(s)) { 9327 return; 9328 } 9329 9330 fpst = fpstatus_ptr(FPST_FPCR_F16); 9331 9332 tcg_op1 = read_fp_hreg(s, rn); 9333 tcg_op2 = read_fp_hreg(s, rm); 9334 tcg_res = tcg_temp_new_i32(); 9335 9336 switch (fpopcode) { 9337 case 0x03: /* FMULX */ 9338 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9339 break; 9340 case 0x04: /* FCMEQ (reg) */ 9341 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9342 break; 9343 case 0x07: /* FRECPS */ 9344 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9345 break; 9346 case 0x0f: /* FRSQRTS */ 9347 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9348 break; 9349 case 0x14: /* FCMGE (reg) */ 9350 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9351 break; 9352 case 0x15: /* FACGE */ 9353 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9354 break; 9355 case 0x1a: /* FABD */ 9356 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9357 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9358 break; 9359 case 0x1c: /* FCMGT (reg) */ 9360 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9361 break; 9362 case 0x1d: /* FACGT */ 9363 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9364 break; 9365 default: 9366 g_assert_not_reached(); 9367 } 9368 9369 write_fp_sreg(s, rd, tcg_res); 9370 } 9371 9372 /* AdvSIMD scalar three same extra 9373 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9374 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9375 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9376 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9377 */ 9378 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9379 uint32_t insn) 9380 { 9381 int rd = extract32(insn, 0, 5); 9382 int rn = extract32(insn, 5, 5); 9383 int opcode = extract32(insn, 11, 4); 9384 int rm = extract32(insn, 16, 5); 9385 int size = extract32(insn, 22, 2); 9386 bool u = extract32(insn, 29, 1); 9387 TCGv_i32 ele1, ele2, ele3; 9388 TCGv_i64 res; 9389 bool feature; 9390 9391 switch (u * 16 + opcode) { 9392 case 0x10: /* SQRDMLAH (vector) */ 9393 case 0x11: /* SQRDMLSH (vector) */ 9394 if (size != 1 && size != 2) { 9395 unallocated_encoding(s); 9396 return; 9397 } 9398 feature = dc_isar_feature(aa64_rdm, s); 9399 break; 9400 default: 9401 unallocated_encoding(s); 9402 return; 9403 } 9404 if (!feature) { 9405 unallocated_encoding(s); 9406 return; 9407 } 9408 if (!fp_access_check(s)) { 9409 return; 9410 } 9411 9412 /* Do a single operation on the lowest element in the vector. 9413 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9414 * with no side effects for all these operations. 9415 * OPTME: special-purpose helpers would avoid doing some 9416 * unnecessary work in the helper for the 16 bit cases. 9417 */ 9418 ele1 = tcg_temp_new_i32(); 9419 ele2 = tcg_temp_new_i32(); 9420 ele3 = tcg_temp_new_i32(); 9421 9422 read_vec_element_i32(s, ele1, rn, 0, size); 9423 read_vec_element_i32(s, ele2, rm, 0, size); 9424 read_vec_element_i32(s, ele3, rd, 0, size); 9425 9426 switch (opcode) { 9427 case 0x0: /* SQRDMLAH */ 9428 if (size == 1) { 9429 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9430 } else { 9431 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9432 } 9433 break; 9434 case 0x1: /* SQRDMLSH */ 9435 if (size == 1) { 9436 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9437 } else { 9438 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9439 } 9440 break; 9441 default: 9442 g_assert_not_reached(); 9443 } 9444 9445 res = tcg_temp_new_i64(); 9446 tcg_gen_extu_i32_i64(res, ele3); 9447 write_fp_dreg(s, rd, res); 9448 } 9449 9450 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9451 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9452 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9453 { 9454 /* Handle 64->64 opcodes which are shared between the scalar and 9455 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9456 * is valid in either group and also the double-precision fp ops. 9457 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9458 * requires them. 9459 */ 9460 TCGCond cond; 9461 9462 switch (opcode) { 9463 case 0x4: /* CLS, CLZ */ 9464 if (u) { 9465 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9466 } else { 9467 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9468 } 9469 break; 9470 case 0x5: /* NOT */ 9471 /* This opcode is shared with CNT and RBIT but we have earlier 9472 * enforced that size == 3 if and only if this is the NOT insn. 9473 */ 9474 tcg_gen_not_i64(tcg_rd, tcg_rn); 9475 break; 9476 case 0x7: /* SQABS, SQNEG */ 9477 if (u) { 9478 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9479 } else { 9480 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9481 } 9482 break; 9483 case 0xa: /* CMLT */ 9484 /* 64 bit integer comparison against zero, result is 9485 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9486 * subtracting 1. 9487 */ 9488 cond = TCG_COND_LT; 9489 do_cmop: 9490 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9491 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9492 break; 9493 case 0x8: /* CMGT, CMGE */ 9494 cond = u ? TCG_COND_GE : TCG_COND_GT; 9495 goto do_cmop; 9496 case 0x9: /* CMEQ, CMLE */ 9497 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9498 goto do_cmop; 9499 case 0xb: /* ABS, NEG */ 9500 if (u) { 9501 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9502 } else { 9503 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9504 } 9505 break; 9506 case 0x2f: /* FABS */ 9507 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9508 break; 9509 case 0x6f: /* FNEG */ 9510 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9511 break; 9512 case 0x7f: /* FSQRT */ 9513 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9514 break; 9515 case 0x1a: /* FCVTNS */ 9516 case 0x1b: /* FCVTMS */ 9517 case 0x1c: /* FCVTAS */ 9518 case 0x3a: /* FCVTPS */ 9519 case 0x3b: /* FCVTZS */ 9520 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9521 break; 9522 case 0x5a: /* FCVTNU */ 9523 case 0x5b: /* FCVTMU */ 9524 case 0x5c: /* FCVTAU */ 9525 case 0x7a: /* FCVTPU */ 9526 case 0x7b: /* FCVTZU */ 9527 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9528 break; 9529 case 0x18: /* FRINTN */ 9530 case 0x19: /* FRINTM */ 9531 case 0x38: /* FRINTP */ 9532 case 0x39: /* FRINTZ */ 9533 case 0x58: /* FRINTA */ 9534 case 0x79: /* FRINTI */ 9535 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9536 break; 9537 case 0x59: /* FRINTX */ 9538 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9539 break; 9540 case 0x1e: /* FRINT32Z */ 9541 case 0x5e: /* FRINT32X */ 9542 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9543 break; 9544 case 0x1f: /* FRINT64Z */ 9545 case 0x5f: /* FRINT64X */ 9546 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9547 break; 9548 default: 9549 g_assert_not_reached(); 9550 } 9551 } 9552 9553 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9554 bool is_scalar, bool is_u, bool is_q, 9555 int size, int rn, int rd) 9556 { 9557 bool is_double = (size == MO_64); 9558 TCGv_ptr fpst; 9559 9560 if (!fp_access_check(s)) { 9561 return; 9562 } 9563 9564 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9565 9566 if (is_double) { 9567 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9568 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9569 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9570 NeonGenTwoDoubleOpFn *genfn; 9571 bool swap = false; 9572 int pass; 9573 9574 switch (opcode) { 9575 case 0x2e: /* FCMLT (zero) */ 9576 swap = true; 9577 /* fallthrough */ 9578 case 0x2c: /* FCMGT (zero) */ 9579 genfn = gen_helper_neon_cgt_f64; 9580 break; 9581 case 0x2d: /* FCMEQ (zero) */ 9582 genfn = gen_helper_neon_ceq_f64; 9583 break; 9584 case 0x6d: /* FCMLE (zero) */ 9585 swap = true; 9586 /* fall through */ 9587 case 0x6c: /* FCMGE (zero) */ 9588 genfn = gen_helper_neon_cge_f64; 9589 break; 9590 default: 9591 g_assert_not_reached(); 9592 } 9593 9594 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9595 read_vec_element(s, tcg_op, rn, pass, MO_64); 9596 if (swap) { 9597 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9598 } else { 9599 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9600 } 9601 write_vec_element(s, tcg_res, rd, pass, MO_64); 9602 } 9603 9604 clear_vec_high(s, !is_scalar, rd); 9605 } else { 9606 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9607 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9608 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9609 NeonGenTwoSingleOpFn *genfn; 9610 bool swap = false; 9611 int pass, maxpasses; 9612 9613 if (size == MO_16) { 9614 switch (opcode) { 9615 case 0x2e: /* FCMLT (zero) */ 9616 swap = true; 9617 /* fall through */ 9618 case 0x2c: /* FCMGT (zero) */ 9619 genfn = gen_helper_advsimd_cgt_f16; 9620 break; 9621 case 0x2d: /* FCMEQ (zero) */ 9622 genfn = gen_helper_advsimd_ceq_f16; 9623 break; 9624 case 0x6d: /* FCMLE (zero) */ 9625 swap = true; 9626 /* fall through */ 9627 case 0x6c: /* FCMGE (zero) */ 9628 genfn = gen_helper_advsimd_cge_f16; 9629 break; 9630 default: 9631 g_assert_not_reached(); 9632 } 9633 } else { 9634 switch (opcode) { 9635 case 0x2e: /* FCMLT (zero) */ 9636 swap = true; 9637 /* fall through */ 9638 case 0x2c: /* FCMGT (zero) */ 9639 genfn = gen_helper_neon_cgt_f32; 9640 break; 9641 case 0x2d: /* FCMEQ (zero) */ 9642 genfn = gen_helper_neon_ceq_f32; 9643 break; 9644 case 0x6d: /* FCMLE (zero) */ 9645 swap = true; 9646 /* fall through */ 9647 case 0x6c: /* FCMGE (zero) */ 9648 genfn = gen_helper_neon_cge_f32; 9649 break; 9650 default: 9651 g_assert_not_reached(); 9652 } 9653 } 9654 9655 if (is_scalar) { 9656 maxpasses = 1; 9657 } else { 9658 int vector_size = 8 << is_q; 9659 maxpasses = vector_size >> size; 9660 } 9661 9662 for (pass = 0; pass < maxpasses; pass++) { 9663 read_vec_element_i32(s, tcg_op, rn, pass, size); 9664 if (swap) { 9665 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9666 } else { 9667 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9668 } 9669 if (is_scalar) { 9670 write_fp_sreg(s, rd, tcg_res); 9671 } else { 9672 write_vec_element_i32(s, tcg_res, rd, pass, size); 9673 } 9674 } 9675 9676 if (!is_scalar) { 9677 clear_vec_high(s, is_q, rd); 9678 } 9679 } 9680 } 9681 9682 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9683 bool is_scalar, bool is_u, bool is_q, 9684 int size, int rn, int rd) 9685 { 9686 bool is_double = (size == 3); 9687 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9688 9689 if (is_double) { 9690 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9691 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9692 int pass; 9693 9694 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9695 read_vec_element(s, tcg_op, rn, pass, MO_64); 9696 switch (opcode) { 9697 case 0x3d: /* FRECPE */ 9698 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9699 break; 9700 case 0x3f: /* FRECPX */ 9701 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9702 break; 9703 case 0x7d: /* FRSQRTE */ 9704 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9705 break; 9706 default: 9707 g_assert_not_reached(); 9708 } 9709 write_vec_element(s, tcg_res, rd, pass, MO_64); 9710 } 9711 clear_vec_high(s, !is_scalar, rd); 9712 } else { 9713 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9714 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9715 int pass, maxpasses; 9716 9717 if (is_scalar) { 9718 maxpasses = 1; 9719 } else { 9720 maxpasses = is_q ? 4 : 2; 9721 } 9722 9723 for (pass = 0; pass < maxpasses; pass++) { 9724 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9725 9726 switch (opcode) { 9727 case 0x3c: /* URECPE */ 9728 gen_helper_recpe_u32(tcg_res, tcg_op); 9729 break; 9730 case 0x3d: /* FRECPE */ 9731 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9732 break; 9733 case 0x3f: /* FRECPX */ 9734 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9735 break; 9736 case 0x7d: /* FRSQRTE */ 9737 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9738 break; 9739 default: 9740 g_assert_not_reached(); 9741 } 9742 9743 if (is_scalar) { 9744 write_fp_sreg(s, rd, tcg_res); 9745 } else { 9746 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9747 } 9748 } 9749 if (!is_scalar) { 9750 clear_vec_high(s, is_q, rd); 9751 } 9752 } 9753 } 9754 9755 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9756 int opcode, bool u, bool is_q, 9757 int size, int rn, int rd) 9758 { 9759 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9760 * in the source becomes a size element in the destination). 9761 */ 9762 int pass; 9763 TCGv_i32 tcg_res[2]; 9764 int destelt = is_q ? 2 : 0; 9765 int passes = scalar ? 1 : 2; 9766 9767 if (scalar) { 9768 tcg_res[1] = tcg_constant_i32(0); 9769 } 9770 9771 for (pass = 0; pass < passes; pass++) { 9772 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9773 NeonGenNarrowFn *genfn = NULL; 9774 NeonGenNarrowEnvFn *genenvfn = NULL; 9775 9776 if (scalar) { 9777 read_vec_element(s, tcg_op, rn, pass, size + 1); 9778 } else { 9779 read_vec_element(s, tcg_op, rn, pass, MO_64); 9780 } 9781 tcg_res[pass] = tcg_temp_new_i32(); 9782 9783 switch (opcode) { 9784 case 0x12: /* XTN, SQXTUN */ 9785 { 9786 static NeonGenNarrowFn * const xtnfns[3] = { 9787 gen_helper_neon_narrow_u8, 9788 gen_helper_neon_narrow_u16, 9789 tcg_gen_extrl_i64_i32, 9790 }; 9791 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9792 gen_helper_neon_unarrow_sat8, 9793 gen_helper_neon_unarrow_sat16, 9794 gen_helper_neon_unarrow_sat32, 9795 }; 9796 if (u) { 9797 genenvfn = sqxtunfns[size]; 9798 } else { 9799 genfn = xtnfns[size]; 9800 } 9801 break; 9802 } 9803 case 0x14: /* SQXTN, UQXTN */ 9804 { 9805 static NeonGenNarrowEnvFn * const fns[3][2] = { 9806 { gen_helper_neon_narrow_sat_s8, 9807 gen_helper_neon_narrow_sat_u8 }, 9808 { gen_helper_neon_narrow_sat_s16, 9809 gen_helper_neon_narrow_sat_u16 }, 9810 { gen_helper_neon_narrow_sat_s32, 9811 gen_helper_neon_narrow_sat_u32 }, 9812 }; 9813 genenvfn = fns[size][u]; 9814 break; 9815 } 9816 case 0x16: /* FCVTN, FCVTN2 */ 9817 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9818 if (size == 2) { 9819 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9820 } else { 9821 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9822 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9823 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9824 TCGv_i32 ahp = get_ahp_flag(); 9825 9826 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9827 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9828 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9829 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9830 } 9831 break; 9832 case 0x36: /* BFCVTN, BFCVTN2 */ 9833 { 9834 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9835 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9836 } 9837 break; 9838 case 0x56: /* FCVTXN, FCVTXN2 */ 9839 /* 64 bit to 32 bit float conversion 9840 * with von Neumann rounding (round to odd) 9841 */ 9842 assert(size == 2); 9843 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9844 break; 9845 default: 9846 g_assert_not_reached(); 9847 } 9848 9849 if (genfn) { 9850 genfn(tcg_res[pass], tcg_op); 9851 } else if (genenvfn) { 9852 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9853 } 9854 } 9855 9856 for (pass = 0; pass < 2; pass++) { 9857 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9858 } 9859 clear_vec_high(s, is_q, rd); 9860 } 9861 9862 /* Remaining saturating accumulating ops */ 9863 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9864 bool is_q, int size, int rn, int rd) 9865 { 9866 bool is_double = (size == 3); 9867 9868 if (is_double) { 9869 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9870 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9871 int pass; 9872 9873 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9874 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9875 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9876 9877 if (is_u) { /* USQADD */ 9878 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9879 } else { /* SUQADD */ 9880 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9881 } 9882 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9883 } 9884 clear_vec_high(s, !is_scalar, rd); 9885 } else { 9886 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9887 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9888 int pass, maxpasses; 9889 9890 if (is_scalar) { 9891 maxpasses = 1; 9892 } else { 9893 maxpasses = is_q ? 4 : 2; 9894 } 9895 9896 for (pass = 0; pass < maxpasses; pass++) { 9897 if (is_scalar) { 9898 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9899 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9900 } else { 9901 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9902 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9903 } 9904 9905 if (is_u) { /* USQADD */ 9906 switch (size) { 9907 case 0: 9908 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9909 break; 9910 case 1: 9911 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9912 break; 9913 case 2: 9914 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9915 break; 9916 default: 9917 g_assert_not_reached(); 9918 } 9919 } else { /* SUQADD */ 9920 switch (size) { 9921 case 0: 9922 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9923 break; 9924 case 1: 9925 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9926 break; 9927 case 2: 9928 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9929 break; 9930 default: 9931 g_assert_not_reached(); 9932 } 9933 } 9934 9935 if (is_scalar) { 9936 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9937 } 9938 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9939 } 9940 clear_vec_high(s, is_q, rd); 9941 } 9942 } 9943 9944 /* AdvSIMD scalar two reg misc 9945 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9946 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9947 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9948 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9949 */ 9950 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9951 { 9952 int rd = extract32(insn, 0, 5); 9953 int rn = extract32(insn, 5, 5); 9954 int opcode = extract32(insn, 12, 5); 9955 int size = extract32(insn, 22, 2); 9956 bool u = extract32(insn, 29, 1); 9957 bool is_fcvt = false; 9958 int rmode; 9959 TCGv_i32 tcg_rmode; 9960 TCGv_ptr tcg_fpstatus; 9961 9962 switch (opcode) { 9963 case 0x3: /* USQADD / SUQADD*/ 9964 if (!fp_access_check(s)) { 9965 return; 9966 } 9967 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9968 return; 9969 case 0x7: /* SQABS / SQNEG */ 9970 break; 9971 case 0xa: /* CMLT */ 9972 if (u) { 9973 unallocated_encoding(s); 9974 return; 9975 } 9976 /* fall through */ 9977 case 0x8: /* CMGT, CMGE */ 9978 case 0x9: /* CMEQ, CMLE */ 9979 case 0xb: /* ABS, NEG */ 9980 if (size != 3) { 9981 unallocated_encoding(s); 9982 return; 9983 } 9984 break; 9985 case 0x12: /* SQXTUN */ 9986 if (!u) { 9987 unallocated_encoding(s); 9988 return; 9989 } 9990 /* fall through */ 9991 case 0x14: /* SQXTN, UQXTN */ 9992 if (size == 3) { 9993 unallocated_encoding(s); 9994 return; 9995 } 9996 if (!fp_access_check(s)) { 9997 return; 9998 } 9999 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10000 return; 10001 case 0xc ... 0xf: 10002 case 0x16 ... 0x1d: 10003 case 0x1f: 10004 /* Floating point: U, size[1] and opcode indicate operation; 10005 * size[0] indicates single or double precision. 10006 */ 10007 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10008 size = extract32(size, 0, 1) ? 3 : 2; 10009 switch (opcode) { 10010 case 0x2c: /* FCMGT (zero) */ 10011 case 0x2d: /* FCMEQ (zero) */ 10012 case 0x2e: /* FCMLT (zero) */ 10013 case 0x6c: /* FCMGE (zero) */ 10014 case 0x6d: /* FCMLE (zero) */ 10015 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10016 return; 10017 case 0x1d: /* SCVTF */ 10018 case 0x5d: /* UCVTF */ 10019 { 10020 bool is_signed = (opcode == 0x1d); 10021 if (!fp_access_check(s)) { 10022 return; 10023 } 10024 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10025 return; 10026 } 10027 case 0x3d: /* FRECPE */ 10028 case 0x3f: /* FRECPX */ 10029 case 0x7d: /* FRSQRTE */ 10030 if (!fp_access_check(s)) { 10031 return; 10032 } 10033 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10034 return; 10035 case 0x1a: /* FCVTNS */ 10036 case 0x1b: /* FCVTMS */ 10037 case 0x3a: /* FCVTPS */ 10038 case 0x3b: /* FCVTZS */ 10039 case 0x5a: /* FCVTNU */ 10040 case 0x5b: /* FCVTMU */ 10041 case 0x7a: /* FCVTPU */ 10042 case 0x7b: /* FCVTZU */ 10043 is_fcvt = true; 10044 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10045 break; 10046 case 0x1c: /* FCVTAS */ 10047 case 0x5c: /* FCVTAU */ 10048 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10049 is_fcvt = true; 10050 rmode = FPROUNDING_TIEAWAY; 10051 break; 10052 case 0x56: /* FCVTXN, FCVTXN2 */ 10053 if (size == 2) { 10054 unallocated_encoding(s); 10055 return; 10056 } 10057 if (!fp_access_check(s)) { 10058 return; 10059 } 10060 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10061 return; 10062 default: 10063 unallocated_encoding(s); 10064 return; 10065 } 10066 break; 10067 default: 10068 unallocated_encoding(s); 10069 return; 10070 } 10071 10072 if (!fp_access_check(s)) { 10073 return; 10074 } 10075 10076 if (is_fcvt) { 10077 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10078 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10079 } else { 10080 tcg_fpstatus = NULL; 10081 tcg_rmode = NULL; 10082 } 10083 10084 if (size == 3) { 10085 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10086 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10087 10088 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10089 write_fp_dreg(s, rd, tcg_rd); 10090 } else { 10091 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10092 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10093 10094 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10095 10096 switch (opcode) { 10097 case 0x7: /* SQABS, SQNEG */ 10098 { 10099 NeonGenOneOpEnvFn *genfn; 10100 static NeonGenOneOpEnvFn * const fns[3][2] = { 10101 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10102 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10103 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10104 }; 10105 genfn = fns[size][u]; 10106 genfn(tcg_rd, cpu_env, tcg_rn); 10107 break; 10108 } 10109 case 0x1a: /* FCVTNS */ 10110 case 0x1b: /* FCVTMS */ 10111 case 0x1c: /* FCVTAS */ 10112 case 0x3a: /* FCVTPS */ 10113 case 0x3b: /* FCVTZS */ 10114 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10115 tcg_fpstatus); 10116 break; 10117 case 0x5a: /* FCVTNU */ 10118 case 0x5b: /* FCVTMU */ 10119 case 0x5c: /* FCVTAU */ 10120 case 0x7a: /* FCVTPU */ 10121 case 0x7b: /* FCVTZU */ 10122 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10123 tcg_fpstatus); 10124 break; 10125 default: 10126 g_assert_not_reached(); 10127 } 10128 10129 write_fp_sreg(s, rd, tcg_rd); 10130 } 10131 10132 if (is_fcvt) { 10133 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10134 } 10135 } 10136 10137 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10138 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10139 int immh, int immb, int opcode, int rn, int rd) 10140 { 10141 int size = 32 - clz32(immh) - 1; 10142 int immhb = immh << 3 | immb; 10143 int shift = 2 * (8 << size) - immhb; 10144 GVecGen2iFn *gvec_fn; 10145 10146 if (extract32(immh, 3, 1) && !is_q) { 10147 unallocated_encoding(s); 10148 return; 10149 } 10150 tcg_debug_assert(size <= 3); 10151 10152 if (!fp_access_check(s)) { 10153 return; 10154 } 10155 10156 switch (opcode) { 10157 case 0x02: /* SSRA / USRA (accumulate) */ 10158 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10159 break; 10160 10161 case 0x08: /* SRI */ 10162 gvec_fn = gen_gvec_sri; 10163 break; 10164 10165 case 0x00: /* SSHR / USHR */ 10166 if (is_u) { 10167 if (shift == 8 << size) { 10168 /* Shift count the same size as element size produces zero. */ 10169 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10170 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10171 return; 10172 } 10173 gvec_fn = tcg_gen_gvec_shri; 10174 } else { 10175 /* Shift count the same size as element size produces all sign. */ 10176 if (shift == 8 << size) { 10177 shift -= 1; 10178 } 10179 gvec_fn = tcg_gen_gvec_sari; 10180 } 10181 break; 10182 10183 case 0x04: /* SRSHR / URSHR (rounding) */ 10184 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10185 break; 10186 10187 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10188 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10189 break; 10190 10191 default: 10192 g_assert_not_reached(); 10193 } 10194 10195 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10196 } 10197 10198 /* SHL/SLI - Vector shift left */ 10199 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10200 int immh, int immb, int opcode, int rn, int rd) 10201 { 10202 int size = 32 - clz32(immh) - 1; 10203 int immhb = immh << 3 | immb; 10204 int shift = immhb - (8 << size); 10205 10206 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10207 assert(size >= 0 && size <= 3); 10208 10209 if (extract32(immh, 3, 1) && !is_q) { 10210 unallocated_encoding(s); 10211 return; 10212 } 10213 10214 if (!fp_access_check(s)) { 10215 return; 10216 } 10217 10218 if (insert) { 10219 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10220 } else { 10221 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10222 } 10223 } 10224 10225 /* USHLL/SHLL - Vector shift left with widening */ 10226 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10227 int immh, int immb, int opcode, int rn, int rd) 10228 { 10229 int size = 32 - clz32(immh) - 1; 10230 int immhb = immh << 3 | immb; 10231 int shift = immhb - (8 << size); 10232 int dsize = 64; 10233 int esize = 8 << size; 10234 int elements = dsize/esize; 10235 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10236 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10237 int i; 10238 10239 if (size >= 3) { 10240 unallocated_encoding(s); 10241 return; 10242 } 10243 10244 if (!fp_access_check(s)) { 10245 return; 10246 } 10247 10248 /* For the LL variants the store is larger than the load, 10249 * so if rd == rn we would overwrite parts of our input. 10250 * So load everything right now and use shifts in the main loop. 10251 */ 10252 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10253 10254 for (i = 0; i < elements; i++) { 10255 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10256 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10257 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10258 write_vec_element(s, tcg_rd, rd, i, size + 1); 10259 } 10260 } 10261 10262 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10263 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10264 int immh, int immb, int opcode, int rn, int rd) 10265 { 10266 int immhb = immh << 3 | immb; 10267 int size = 32 - clz32(immh) - 1; 10268 int dsize = 64; 10269 int esize = 8 << size; 10270 int elements = dsize/esize; 10271 int shift = (2 * esize) - immhb; 10272 bool round = extract32(opcode, 0, 1); 10273 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10274 TCGv_i64 tcg_round; 10275 int i; 10276 10277 if (extract32(immh, 3, 1)) { 10278 unallocated_encoding(s); 10279 return; 10280 } 10281 10282 if (!fp_access_check(s)) { 10283 return; 10284 } 10285 10286 tcg_rn = tcg_temp_new_i64(); 10287 tcg_rd = tcg_temp_new_i64(); 10288 tcg_final = tcg_temp_new_i64(); 10289 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10290 10291 if (round) { 10292 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10293 } else { 10294 tcg_round = NULL; 10295 } 10296 10297 for (i = 0; i < elements; i++) { 10298 read_vec_element(s, tcg_rn, rn, i, size+1); 10299 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10300 false, true, size+1, shift); 10301 10302 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10303 } 10304 10305 if (!is_q) { 10306 write_vec_element(s, tcg_final, rd, 0, MO_64); 10307 } else { 10308 write_vec_element(s, tcg_final, rd, 1, MO_64); 10309 } 10310 10311 clear_vec_high(s, is_q, rd); 10312 } 10313 10314 10315 /* AdvSIMD shift by immediate 10316 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10317 * +---+---+---+-------------+------+------+--------+---+------+------+ 10318 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10319 * +---+---+---+-------------+------+------+--------+---+------+------+ 10320 */ 10321 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10322 { 10323 int rd = extract32(insn, 0, 5); 10324 int rn = extract32(insn, 5, 5); 10325 int opcode = extract32(insn, 11, 5); 10326 int immb = extract32(insn, 16, 3); 10327 int immh = extract32(insn, 19, 4); 10328 bool is_u = extract32(insn, 29, 1); 10329 bool is_q = extract32(insn, 30, 1); 10330 10331 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10332 assert(immh != 0); 10333 10334 switch (opcode) { 10335 case 0x08: /* SRI */ 10336 if (!is_u) { 10337 unallocated_encoding(s); 10338 return; 10339 } 10340 /* fall through */ 10341 case 0x00: /* SSHR / USHR */ 10342 case 0x02: /* SSRA / USRA (accumulate) */ 10343 case 0x04: /* SRSHR / URSHR (rounding) */ 10344 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10345 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10346 break; 10347 case 0x0a: /* SHL / SLI */ 10348 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10349 break; 10350 case 0x10: /* SHRN */ 10351 case 0x11: /* RSHRN / SQRSHRUN */ 10352 if (is_u) { 10353 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10354 opcode, rn, rd); 10355 } else { 10356 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10357 } 10358 break; 10359 case 0x12: /* SQSHRN / UQSHRN */ 10360 case 0x13: /* SQRSHRN / UQRSHRN */ 10361 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10362 opcode, rn, rd); 10363 break; 10364 case 0x14: /* SSHLL / USHLL */ 10365 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10366 break; 10367 case 0x1c: /* SCVTF / UCVTF */ 10368 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10369 opcode, rn, rd); 10370 break; 10371 case 0xc: /* SQSHLU */ 10372 if (!is_u) { 10373 unallocated_encoding(s); 10374 return; 10375 } 10376 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10377 break; 10378 case 0xe: /* SQSHL, UQSHL */ 10379 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10380 break; 10381 case 0x1f: /* FCVTZS/ FCVTZU */ 10382 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10383 return; 10384 default: 10385 unallocated_encoding(s); 10386 return; 10387 } 10388 } 10389 10390 /* Generate code to do a "long" addition or subtraction, ie one done in 10391 * TCGv_i64 on vector lanes twice the width specified by size. 10392 */ 10393 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10394 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10395 { 10396 static NeonGenTwo64OpFn * const fns[3][2] = { 10397 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10398 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10399 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10400 }; 10401 NeonGenTwo64OpFn *genfn; 10402 assert(size < 3); 10403 10404 genfn = fns[size][is_sub]; 10405 genfn(tcg_res, tcg_op1, tcg_op2); 10406 } 10407 10408 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10409 int opcode, int rd, int rn, int rm) 10410 { 10411 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10412 TCGv_i64 tcg_res[2]; 10413 int pass, accop; 10414 10415 tcg_res[0] = tcg_temp_new_i64(); 10416 tcg_res[1] = tcg_temp_new_i64(); 10417 10418 /* Does this op do an adding accumulate, a subtracting accumulate, 10419 * or no accumulate at all? 10420 */ 10421 switch (opcode) { 10422 case 5: 10423 case 8: 10424 case 9: 10425 accop = 1; 10426 break; 10427 case 10: 10428 case 11: 10429 accop = -1; 10430 break; 10431 default: 10432 accop = 0; 10433 break; 10434 } 10435 10436 if (accop != 0) { 10437 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10438 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10439 } 10440 10441 /* size == 2 means two 32x32->64 operations; this is worth special 10442 * casing because we can generally handle it inline. 10443 */ 10444 if (size == 2) { 10445 for (pass = 0; pass < 2; pass++) { 10446 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10447 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10448 TCGv_i64 tcg_passres; 10449 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10450 10451 int elt = pass + is_q * 2; 10452 10453 read_vec_element(s, tcg_op1, rn, elt, memop); 10454 read_vec_element(s, tcg_op2, rm, elt, memop); 10455 10456 if (accop == 0) { 10457 tcg_passres = tcg_res[pass]; 10458 } else { 10459 tcg_passres = tcg_temp_new_i64(); 10460 } 10461 10462 switch (opcode) { 10463 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10464 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10465 break; 10466 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10467 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10468 break; 10469 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10470 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10471 { 10472 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10473 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10474 10475 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10476 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10477 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10478 tcg_passres, 10479 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10480 break; 10481 } 10482 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10483 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10484 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10485 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10486 break; 10487 case 9: /* SQDMLAL, SQDMLAL2 */ 10488 case 11: /* SQDMLSL, SQDMLSL2 */ 10489 case 13: /* SQDMULL, SQDMULL2 */ 10490 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10491 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10492 tcg_passres, tcg_passres); 10493 break; 10494 default: 10495 g_assert_not_reached(); 10496 } 10497 10498 if (opcode == 9 || opcode == 11) { 10499 /* saturating accumulate ops */ 10500 if (accop < 0) { 10501 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10502 } 10503 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10504 tcg_res[pass], tcg_passres); 10505 } else if (accop > 0) { 10506 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10507 } else if (accop < 0) { 10508 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10509 } 10510 } 10511 } else { 10512 /* size 0 or 1, generally helper functions */ 10513 for (pass = 0; pass < 2; pass++) { 10514 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10515 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10516 TCGv_i64 tcg_passres; 10517 int elt = pass + is_q * 2; 10518 10519 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10520 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10521 10522 if (accop == 0) { 10523 tcg_passres = tcg_res[pass]; 10524 } else { 10525 tcg_passres = tcg_temp_new_i64(); 10526 } 10527 10528 switch (opcode) { 10529 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10530 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10531 { 10532 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10533 static NeonGenWidenFn * const widenfns[2][2] = { 10534 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10535 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10536 }; 10537 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10538 10539 widenfn(tcg_op2_64, tcg_op2); 10540 widenfn(tcg_passres, tcg_op1); 10541 gen_neon_addl(size, (opcode == 2), tcg_passres, 10542 tcg_passres, tcg_op2_64); 10543 break; 10544 } 10545 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10546 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10547 if (size == 0) { 10548 if (is_u) { 10549 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10550 } else { 10551 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10552 } 10553 } else { 10554 if (is_u) { 10555 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10556 } else { 10557 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10558 } 10559 } 10560 break; 10561 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10562 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10563 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10564 if (size == 0) { 10565 if (is_u) { 10566 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10567 } else { 10568 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10569 } 10570 } else { 10571 if (is_u) { 10572 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10573 } else { 10574 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10575 } 10576 } 10577 break; 10578 case 9: /* SQDMLAL, SQDMLAL2 */ 10579 case 11: /* SQDMLSL, SQDMLSL2 */ 10580 case 13: /* SQDMULL, SQDMULL2 */ 10581 assert(size == 1); 10582 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10583 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10584 tcg_passres, tcg_passres); 10585 break; 10586 default: 10587 g_assert_not_reached(); 10588 } 10589 10590 if (accop != 0) { 10591 if (opcode == 9 || opcode == 11) { 10592 /* saturating accumulate ops */ 10593 if (accop < 0) { 10594 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10595 } 10596 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10597 tcg_res[pass], 10598 tcg_passres); 10599 } else { 10600 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10601 tcg_res[pass], tcg_passres); 10602 } 10603 } 10604 } 10605 } 10606 10607 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10608 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10609 } 10610 10611 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10612 int opcode, int rd, int rn, int rm) 10613 { 10614 TCGv_i64 tcg_res[2]; 10615 int part = is_q ? 2 : 0; 10616 int pass; 10617 10618 for (pass = 0; pass < 2; pass++) { 10619 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10620 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10621 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10622 static NeonGenWidenFn * const widenfns[3][2] = { 10623 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10624 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10625 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10626 }; 10627 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10628 10629 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10630 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10631 widenfn(tcg_op2_wide, tcg_op2); 10632 tcg_res[pass] = tcg_temp_new_i64(); 10633 gen_neon_addl(size, (opcode == 3), 10634 tcg_res[pass], tcg_op1, tcg_op2_wide); 10635 } 10636 10637 for (pass = 0; pass < 2; pass++) { 10638 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10639 } 10640 } 10641 10642 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10643 { 10644 tcg_gen_addi_i64(in, in, 1U << 31); 10645 tcg_gen_extrh_i64_i32(res, in); 10646 } 10647 10648 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10649 int opcode, int rd, int rn, int rm) 10650 { 10651 TCGv_i32 tcg_res[2]; 10652 int part = is_q ? 2 : 0; 10653 int pass; 10654 10655 for (pass = 0; pass < 2; pass++) { 10656 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10657 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10658 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10659 static NeonGenNarrowFn * const narrowfns[3][2] = { 10660 { gen_helper_neon_narrow_high_u8, 10661 gen_helper_neon_narrow_round_high_u8 }, 10662 { gen_helper_neon_narrow_high_u16, 10663 gen_helper_neon_narrow_round_high_u16 }, 10664 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10665 }; 10666 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10667 10668 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10669 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10670 10671 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10672 10673 tcg_res[pass] = tcg_temp_new_i32(); 10674 gennarrow(tcg_res[pass], tcg_wideres); 10675 } 10676 10677 for (pass = 0; pass < 2; pass++) { 10678 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10679 } 10680 clear_vec_high(s, is_q, rd); 10681 } 10682 10683 /* AdvSIMD three different 10684 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10685 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10686 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10687 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10688 */ 10689 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10690 { 10691 /* Instructions in this group fall into three basic classes 10692 * (in each case with the operation working on each element in 10693 * the input vectors): 10694 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10695 * 128 bit input) 10696 * (2) wide 64 x 128 -> 128 10697 * (3) narrowing 128 x 128 -> 64 10698 * Here we do initial decode, catch unallocated cases and 10699 * dispatch to separate functions for each class. 10700 */ 10701 int is_q = extract32(insn, 30, 1); 10702 int is_u = extract32(insn, 29, 1); 10703 int size = extract32(insn, 22, 2); 10704 int opcode = extract32(insn, 12, 4); 10705 int rm = extract32(insn, 16, 5); 10706 int rn = extract32(insn, 5, 5); 10707 int rd = extract32(insn, 0, 5); 10708 10709 switch (opcode) { 10710 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10711 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10712 /* 64 x 128 -> 128 */ 10713 if (size == 3) { 10714 unallocated_encoding(s); 10715 return; 10716 } 10717 if (!fp_access_check(s)) { 10718 return; 10719 } 10720 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10721 break; 10722 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10723 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10724 /* 128 x 128 -> 64 */ 10725 if (size == 3) { 10726 unallocated_encoding(s); 10727 return; 10728 } 10729 if (!fp_access_check(s)) { 10730 return; 10731 } 10732 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10733 break; 10734 case 14: /* PMULL, PMULL2 */ 10735 if (is_u) { 10736 unallocated_encoding(s); 10737 return; 10738 } 10739 switch (size) { 10740 case 0: /* PMULL.P8 */ 10741 if (!fp_access_check(s)) { 10742 return; 10743 } 10744 /* The Q field specifies lo/hi half input for this insn. */ 10745 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10746 gen_helper_neon_pmull_h); 10747 break; 10748 10749 case 3: /* PMULL.P64 */ 10750 if (!dc_isar_feature(aa64_pmull, s)) { 10751 unallocated_encoding(s); 10752 return; 10753 } 10754 if (!fp_access_check(s)) { 10755 return; 10756 } 10757 /* The Q field specifies lo/hi half input for this insn. */ 10758 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10759 gen_helper_gvec_pmull_q); 10760 break; 10761 10762 default: 10763 unallocated_encoding(s); 10764 break; 10765 } 10766 return; 10767 case 9: /* SQDMLAL, SQDMLAL2 */ 10768 case 11: /* SQDMLSL, SQDMLSL2 */ 10769 case 13: /* SQDMULL, SQDMULL2 */ 10770 if (is_u || size == 0) { 10771 unallocated_encoding(s); 10772 return; 10773 } 10774 /* fall through */ 10775 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10776 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10777 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10778 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10779 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10780 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10781 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10782 /* 64 x 64 -> 128 */ 10783 if (size == 3) { 10784 unallocated_encoding(s); 10785 return; 10786 } 10787 if (!fp_access_check(s)) { 10788 return; 10789 } 10790 10791 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10792 break; 10793 default: 10794 /* opcode 15 not allocated */ 10795 unallocated_encoding(s); 10796 break; 10797 } 10798 } 10799 10800 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10801 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10802 { 10803 int rd = extract32(insn, 0, 5); 10804 int rn = extract32(insn, 5, 5); 10805 int rm = extract32(insn, 16, 5); 10806 int size = extract32(insn, 22, 2); 10807 bool is_u = extract32(insn, 29, 1); 10808 bool is_q = extract32(insn, 30, 1); 10809 10810 if (!fp_access_check(s)) { 10811 return; 10812 } 10813 10814 switch (size + 4 * is_u) { 10815 case 0: /* AND */ 10816 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10817 return; 10818 case 1: /* BIC */ 10819 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10820 return; 10821 case 2: /* ORR */ 10822 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10823 return; 10824 case 3: /* ORN */ 10825 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10826 return; 10827 case 4: /* EOR */ 10828 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10829 return; 10830 10831 case 5: /* BSL bitwise select */ 10832 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10833 return; 10834 case 6: /* BIT, bitwise insert if true */ 10835 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10836 return; 10837 case 7: /* BIF, bitwise insert if false */ 10838 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10839 return; 10840 10841 default: 10842 g_assert_not_reached(); 10843 } 10844 } 10845 10846 /* Pairwise op subgroup of C3.6.16. 10847 * 10848 * This is called directly or via the handle_3same_float for float pairwise 10849 * operations where the opcode and size are calculated differently. 10850 */ 10851 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10852 int size, int rn, int rm, int rd) 10853 { 10854 TCGv_ptr fpst; 10855 int pass; 10856 10857 /* Floating point operations need fpst */ 10858 if (opcode >= 0x58) { 10859 fpst = fpstatus_ptr(FPST_FPCR); 10860 } else { 10861 fpst = NULL; 10862 } 10863 10864 if (!fp_access_check(s)) { 10865 return; 10866 } 10867 10868 /* These operations work on the concatenated rm:rn, with each pair of 10869 * adjacent elements being operated on to produce an element in the result. 10870 */ 10871 if (size == 3) { 10872 TCGv_i64 tcg_res[2]; 10873 10874 for (pass = 0; pass < 2; pass++) { 10875 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10876 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10877 int passreg = (pass == 0) ? rn : rm; 10878 10879 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10880 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10881 tcg_res[pass] = tcg_temp_new_i64(); 10882 10883 switch (opcode) { 10884 case 0x17: /* ADDP */ 10885 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10886 break; 10887 case 0x58: /* FMAXNMP */ 10888 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10889 break; 10890 case 0x5a: /* FADDP */ 10891 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10892 break; 10893 case 0x5e: /* FMAXP */ 10894 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10895 break; 10896 case 0x78: /* FMINNMP */ 10897 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10898 break; 10899 case 0x7e: /* FMINP */ 10900 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10901 break; 10902 default: 10903 g_assert_not_reached(); 10904 } 10905 } 10906 10907 for (pass = 0; pass < 2; pass++) { 10908 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10909 } 10910 } else { 10911 int maxpass = is_q ? 4 : 2; 10912 TCGv_i32 tcg_res[4]; 10913 10914 for (pass = 0; pass < maxpass; pass++) { 10915 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10916 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10917 NeonGenTwoOpFn *genfn = NULL; 10918 int passreg = pass < (maxpass / 2) ? rn : rm; 10919 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10920 10921 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10922 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10923 tcg_res[pass] = tcg_temp_new_i32(); 10924 10925 switch (opcode) { 10926 case 0x17: /* ADDP */ 10927 { 10928 static NeonGenTwoOpFn * const fns[3] = { 10929 gen_helper_neon_padd_u8, 10930 gen_helper_neon_padd_u16, 10931 tcg_gen_add_i32, 10932 }; 10933 genfn = fns[size]; 10934 break; 10935 } 10936 case 0x14: /* SMAXP, UMAXP */ 10937 { 10938 static NeonGenTwoOpFn * const fns[3][2] = { 10939 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10940 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10941 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10942 }; 10943 genfn = fns[size][u]; 10944 break; 10945 } 10946 case 0x15: /* SMINP, UMINP */ 10947 { 10948 static NeonGenTwoOpFn * const fns[3][2] = { 10949 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10950 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10951 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10952 }; 10953 genfn = fns[size][u]; 10954 break; 10955 } 10956 /* The FP operations are all on single floats (32 bit) */ 10957 case 0x58: /* FMAXNMP */ 10958 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10959 break; 10960 case 0x5a: /* FADDP */ 10961 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10962 break; 10963 case 0x5e: /* FMAXP */ 10964 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10965 break; 10966 case 0x78: /* FMINNMP */ 10967 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10968 break; 10969 case 0x7e: /* FMINP */ 10970 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10971 break; 10972 default: 10973 g_assert_not_reached(); 10974 } 10975 10976 /* FP ops called directly, otherwise call now */ 10977 if (genfn) { 10978 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10979 } 10980 } 10981 10982 for (pass = 0; pass < maxpass; pass++) { 10983 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10984 } 10985 clear_vec_high(s, is_q, rd); 10986 } 10987 } 10988 10989 /* Floating point op subgroup of C3.6.16. */ 10990 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10991 { 10992 /* For floating point ops, the U, size[1] and opcode bits 10993 * together indicate the operation. size[0] indicates single 10994 * or double. 10995 */ 10996 int fpopcode = extract32(insn, 11, 5) 10997 | (extract32(insn, 23, 1) << 5) 10998 | (extract32(insn, 29, 1) << 6); 10999 int is_q = extract32(insn, 30, 1); 11000 int size = extract32(insn, 22, 1); 11001 int rm = extract32(insn, 16, 5); 11002 int rn = extract32(insn, 5, 5); 11003 int rd = extract32(insn, 0, 5); 11004 11005 int datasize = is_q ? 128 : 64; 11006 int esize = 32 << size; 11007 int elements = datasize / esize; 11008 11009 if (size == 1 && !is_q) { 11010 unallocated_encoding(s); 11011 return; 11012 } 11013 11014 switch (fpopcode) { 11015 case 0x58: /* FMAXNMP */ 11016 case 0x5a: /* FADDP */ 11017 case 0x5e: /* FMAXP */ 11018 case 0x78: /* FMINNMP */ 11019 case 0x7e: /* FMINP */ 11020 if (size && !is_q) { 11021 unallocated_encoding(s); 11022 return; 11023 } 11024 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11025 rn, rm, rd); 11026 return; 11027 case 0x1b: /* FMULX */ 11028 case 0x1f: /* FRECPS */ 11029 case 0x3f: /* FRSQRTS */ 11030 case 0x5d: /* FACGE */ 11031 case 0x7d: /* FACGT */ 11032 case 0x19: /* FMLA */ 11033 case 0x39: /* FMLS */ 11034 case 0x18: /* FMAXNM */ 11035 case 0x1a: /* FADD */ 11036 case 0x1c: /* FCMEQ */ 11037 case 0x1e: /* FMAX */ 11038 case 0x38: /* FMINNM */ 11039 case 0x3a: /* FSUB */ 11040 case 0x3e: /* FMIN */ 11041 case 0x5b: /* FMUL */ 11042 case 0x5c: /* FCMGE */ 11043 case 0x5f: /* FDIV */ 11044 case 0x7a: /* FABD */ 11045 case 0x7c: /* FCMGT */ 11046 if (!fp_access_check(s)) { 11047 return; 11048 } 11049 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11050 return; 11051 11052 case 0x1d: /* FMLAL */ 11053 case 0x3d: /* FMLSL */ 11054 case 0x59: /* FMLAL2 */ 11055 case 0x79: /* FMLSL2 */ 11056 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11057 unallocated_encoding(s); 11058 return; 11059 } 11060 if (fp_access_check(s)) { 11061 int is_s = extract32(insn, 23, 1); 11062 int is_2 = extract32(insn, 29, 1); 11063 int data = (is_2 << 1) | is_s; 11064 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11065 vec_full_reg_offset(s, rn), 11066 vec_full_reg_offset(s, rm), cpu_env, 11067 is_q ? 16 : 8, vec_full_reg_size(s), 11068 data, gen_helper_gvec_fmlal_a64); 11069 } 11070 return; 11071 11072 default: 11073 unallocated_encoding(s); 11074 return; 11075 } 11076 } 11077 11078 /* Integer op subgroup of C3.6.16. */ 11079 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11080 { 11081 int is_q = extract32(insn, 30, 1); 11082 int u = extract32(insn, 29, 1); 11083 int size = extract32(insn, 22, 2); 11084 int opcode = extract32(insn, 11, 5); 11085 int rm = extract32(insn, 16, 5); 11086 int rn = extract32(insn, 5, 5); 11087 int rd = extract32(insn, 0, 5); 11088 int pass; 11089 TCGCond cond; 11090 11091 switch (opcode) { 11092 case 0x13: /* MUL, PMUL */ 11093 if (u && size != 0) { 11094 unallocated_encoding(s); 11095 return; 11096 } 11097 /* fall through */ 11098 case 0x0: /* SHADD, UHADD */ 11099 case 0x2: /* SRHADD, URHADD */ 11100 case 0x4: /* SHSUB, UHSUB */ 11101 case 0xc: /* SMAX, UMAX */ 11102 case 0xd: /* SMIN, UMIN */ 11103 case 0xe: /* SABD, UABD */ 11104 case 0xf: /* SABA, UABA */ 11105 case 0x12: /* MLA, MLS */ 11106 if (size == 3) { 11107 unallocated_encoding(s); 11108 return; 11109 } 11110 break; 11111 case 0x16: /* SQDMULH, SQRDMULH */ 11112 if (size == 0 || size == 3) { 11113 unallocated_encoding(s); 11114 return; 11115 } 11116 break; 11117 default: 11118 if (size == 3 && !is_q) { 11119 unallocated_encoding(s); 11120 return; 11121 } 11122 break; 11123 } 11124 11125 if (!fp_access_check(s)) { 11126 return; 11127 } 11128 11129 switch (opcode) { 11130 case 0x01: /* SQADD, UQADD */ 11131 if (u) { 11132 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11133 } else { 11134 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11135 } 11136 return; 11137 case 0x05: /* SQSUB, UQSUB */ 11138 if (u) { 11139 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11140 } else { 11141 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11142 } 11143 return; 11144 case 0x08: /* SSHL, USHL */ 11145 if (u) { 11146 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11147 } else { 11148 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11149 } 11150 return; 11151 case 0x0c: /* SMAX, UMAX */ 11152 if (u) { 11153 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11154 } else { 11155 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11156 } 11157 return; 11158 case 0x0d: /* SMIN, UMIN */ 11159 if (u) { 11160 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11161 } else { 11162 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11163 } 11164 return; 11165 case 0xe: /* SABD, UABD */ 11166 if (u) { 11167 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11168 } else { 11169 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11170 } 11171 return; 11172 case 0xf: /* SABA, UABA */ 11173 if (u) { 11174 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11175 } else { 11176 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11177 } 11178 return; 11179 case 0x10: /* ADD, SUB */ 11180 if (u) { 11181 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11182 } else { 11183 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11184 } 11185 return; 11186 case 0x13: /* MUL, PMUL */ 11187 if (!u) { /* MUL */ 11188 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11189 } else { /* PMUL */ 11190 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11191 } 11192 return; 11193 case 0x12: /* MLA, MLS */ 11194 if (u) { 11195 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11196 } else { 11197 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11198 } 11199 return; 11200 case 0x16: /* SQDMULH, SQRDMULH */ 11201 { 11202 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11203 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11204 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11205 }; 11206 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11207 } 11208 return; 11209 case 0x11: 11210 if (!u) { /* CMTST */ 11211 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11212 return; 11213 } 11214 /* else CMEQ */ 11215 cond = TCG_COND_EQ; 11216 goto do_gvec_cmp; 11217 case 0x06: /* CMGT, CMHI */ 11218 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11219 goto do_gvec_cmp; 11220 case 0x07: /* CMGE, CMHS */ 11221 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11222 do_gvec_cmp: 11223 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11224 vec_full_reg_offset(s, rn), 11225 vec_full_reg_offset(s, rm), 11226 is_q ? 16 : 8, vec_full_reg_size(s)); 11227 return; 11228 } 11229 11230 if (size == 3) { 11231 assert(is_q); 11232 for (pass = 0; pass < 2; pass++) { 11233 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11234 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11235 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11236 11237 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11238 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11239 11240 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11241 11242 write_vec_element(s, tcg_res, rd, pass, MO_64); 11243 } 11244 } else { 11245 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11246 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11247 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11248 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11249 NeonGenTwoOpFn *genfn = NULL; 11250 NeonGenTwoOpEnvFn *genenvfn = NULL; 11251 11252 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11253 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11254 11255 switch (opcode) { 11256 case 0x0: /* SHADD, UHADD */ 11257 { 11258 static NeonGenTwoOpFn * const fns[3][2] = { 11259 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11260 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11261 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11262 }; 11263 genfn = fns[size][u]; 11264 break; 11265 } 11266 case 0x2: /* SRHADD, URHADD */ 11267 { 11268 static NeonGenTwoOpFn * const fns[3][2] = { 11269 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11270 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11271 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11272 }; 11273 genfn = fns[size][u]; 11274 break; 11275 } 11276 case 0x4: /* SHSUB, UHSUB */ 11277 { 11278 static NeonGenTwoOpFn * const fns[3][2] = { 11279 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11280 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11281 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11282 }; 11283 genfn = fns[size][u]; 11284 break; 11285 } 11286 case 0x9: /* SQSHL, UQSHL */ 11287 { 11288 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11289 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11290 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11291 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11292 }; 11293 genenvfn = fns[size][u]; 11294 break; 11295 } 11296 case 0xa: /* SRSHL, URSHL */ 11297 { 11298 static NeonGenTwoOpFn * const fns[3][2] = { 11299 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11300 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11301 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11302 }; 11303 genfn = fns[size][u]; 11304 break; 11305 } 11306 case 0xb: /* SQRSHL, UQRSHL */ 11307 { 11308 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11309 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11310 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11311 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11312 }; 11313 genenvfn = fns[size][u]; 11314 break; 11315 } 11316 default: 11317 g_assert_not_reached(); 11318 } 11319 11320 if (genenvfn) { 11321 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11322 } else { 11323 genfn(tcg_res, tcg_op1, tcg_op2); 11324 } 11325 11326 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11327 } 11328 } 11329 clear_vec_high(s, is_q, rd); 11330 } 11331 11332 /* AdvSIMD three same 11333 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11334 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11335 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11336 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11337 */ 11338 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11339 { 11340 int opcode = extract32(insn, 11, 5); 11341 11342 switch (opcode) { 11343 case 0x3: /* logic ops */ 11344 disas_simd_3same_logic(s, insn); 11345 break; 11346 case 0x17: /* ADDP */ 11347 case 0x14: /* SMAXP, UMAXP */ 11348 case 0x15: /* SMINP, UMINP */ 11349 { 11350 /* Pairwise operations */ 11351 int is_q = extract32(insn, 30, 1); 11352 int u = extract32(insn, 29, 1); 11353 int size = extract32(insn, 22, 2); 11354 int rm = extract32(insn, 16, 5); 11355 int rn = extract32(insn, 5, 5); 11356 int rd = extract32(insn, 0, 5); 11357 if (opcode == 0x17) { 11358 if (u || (size == 3 && !is_q)) { 11359 unallocated_encoding(s); 11360 return; 11361 } 11362 } else { 11363 if (size == 3) { 11364 unallocated_encoding(s); 11365 return; 11366 } 11367 } 11368 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11369 break; 11370 } 11371 case 0x18 ... 0x31: 11372 /* floating point ops, sz[1] and U are part of opcode */ 11373 disas_simd_3same_float(s, insn); 11374 break; 11375 default: 11376 disas_simd_3same_int(s, insn); 11377 break; 11378 } 11379 } 11380 11381 /* 11382 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11383 * 11384 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11385 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11386 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11387 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11388 * 11389 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11390 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11391 * 11392 */ 11393 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11394 { 11395 int opcode = extract32(insn, 11, 3); 11396 int u = extract32(insn, 29, 1); 11397 int a = extract32(insn, 23, 1); 11398 int is_q = extract32(insn, 30, 1); 11399 int rm = extract32(insn, 16, 5); 11400 int rn = extract32(insn, 5, 5); 11401 int rd = extract32(insn, 0, 5); 11402 /* 11403 * For these floating point ops, the U, a and opcode bits 11404 * together indicate the operation. 11405 */ 11406 int fpopcode = opcode | (a << 3) | (u << 4); 11407 int datasize = is_q ? 128 : 64; 11408 int elements = datasize / 16; 11409 bool pairwise; 11410 TCGv_ptr fpst; 11411 int pass; 11412 11413 switch (fpopcode) { 11414 case 0x0: /* FMAXNM */ 11415 case 0x1: /* FMLA */ 11416 case 0x2: /* FADD */ 11417 case 0x3: /* FMULX */ 11418 case 0x4: /* FCMEQ */ 11419 case 0x6: /* FMAX */ 11420 case 0x7: /* FRECPS */ 11421 case 0x8: /* FMINNM */ 11422 case 0x9: /* FMLS */ 11423 case 0xa: /* FSUB */ 11424 case 0xe: /* FMIN */ 11425 case 0xf: /* FRSQRTS */ 11426 case 0x13: /* FMUL */ 11427 case 0x14: /* FCMGE */ 11428 case 0x15: /* FACGE */ 11429 case 0x17: /* FDIV */ 11430 case 0x1a: /* FABD */ 11431 case 0x1c: /* FCMGT */ 11432 case 0x1d: /* FACGT */ 11433 pairwise = false; 11434 break; 11435 case 0x10: /* FMAXNMP */ 11436 case 0x12: /* FADDP */ 11437 case 0x16: /* FMAXP */ 11438 case 0x18: /* FMINNMP */ 11439 case 0x1e: /* FMINP */ 11440 pairwise = true; 11441 break; 11442 default: 11443 unallocated_encoding(s); 11444 return; 11445 } 11446 11447 if (!dc_isar_feature(aa64_fp16, s)) { 11448 unallocated_encoding(s); 11449 return; 11450 } 11451 11452 if (!fp_access_check(s)) { 11453 return; 11454 } 11455 11456 fpst = fpstatus_ptr(FPST_FPCR_F16); 11457 11458 if (pairwise) { 11459 int maxpass = is_q ? 8 : 4; 11460 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11461 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11462 TCGv_i32 tcg_res[8]; 11463 11464 for (pass = 0; pass < maxpass; pass++) { 11465 int passreg = pass < (maxpass / 2) ? rn : rm; 11466 int passelt = (pass << 1) & (maxpass - 1); 11467 11468 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11469 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11470 tcg_res[pass] = tcg_temp_new_i32(); 11471 11472 switch (fpopcode) { 11473 case 0x10: /* FMAXNMP */ 11474 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11475 fpst); 11476 break; 11477 case 0x12: /* FADDP */ 11478 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11479 break; 11480 case 0x16: /* FMAXP */ 11481 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11482 break; 11483 case 0x18: /* FMINNMP */ 11484 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11485 fpst); 11486 break; 11487 case 0x1e: /* FMINP */ 11488 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11489 break; 11490 default: 11491 g_assert_not_reached(); 11492 } 11493 } 11494 11495 for (pass = 0; pass < maxpass; pass++) { 11496 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11497 } 11498 } else { 11499 for (pass = 0; pass < elements; pass++) { 11500 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11501 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11502 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11503 11504 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11505 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11506 11507 switch (fpopcode) { 11508 case 0x0: /* FMAXNM */ 11509 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11510 break; 11511 case 0x1: /* FMLA */ 11512 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11513 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11514 fpst); 11515 break; 11516 case 0x2: /* FADD */ 11517 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11518 break; 11519 case 0x3: /* FMULX */ 11520 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11521 break; 11522 case 0x4: /* FCMEQ */ 11523 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11524 break; 11525 case 0x6: /* FMAX */ 11526 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11527 break; 11528 case 0x7: /* FRECPS */ 11529 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11530 break; 11531 case 0x8: /* FMINNM */ 11532 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11533 break; 11534 case 0x9: /* FMLS */ 11535 /* As usual for ARM, separate negation for fused multiply-add */ 11536 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11537 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11538 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11539 fpst); 11540 break; 11541 case 0xa: /* FSUB */ 11542 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11543 break; 11544 case 0xe: /* FMIN */ 11545 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11546 break; 11547 case 0xf: /* FRSQRTS */ 11548 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11549 break; 11550 case 0x13: /* FMUL */ 11551 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11552 break; 11553 case 0x14: /* FCMGE */ 11554 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11555 break; 11556 case 0x15: /* FACGE */ 11557 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11558 break; 11559 case 0x17: /* FDIV */ 11560 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11561 break; 11562 case 0x1a: /* FABD */ 11563 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11564 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11565 break; 11566 case 0x1c: /* FCMGT */ 11567 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11568 break; 11569 case 0x1d: /* FACGT */ 11570 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11571 break; 11572 default: 11573 g_assert_not_reached(); 11574 } 11575 11576 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11577 } 11578 } 11579 11580 clear_vec_high(s, is_q, rd); 11581 } 11582 11583 /* AdvSIMD three same extra 11584 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11585 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11586 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11587 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11588 */ 11589 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11590 { 11591 int rd = extract32(insn, 0, 5); 11592 int rn = extract32(insn, 5, 5); 11593 int opcode = extract32(insn, 11, 4); 11594 int rm = extract32(insn, 16, 5); 11595 int size = extract32(insn, 22, 2); 11596 bool u = extract32(insn, 29, 1); 11597 bool is_q = extract32(insn, 30, 1); 11598 bool feature; 11599 int rot; 11600 11601 switch (u * 16 + opcode) { 11602 case 0x10: /* SQRDMLAH (vector) */ 11603 case 0x11: /* SQRDMLSH (vector) */ 11604 if (size != 1 && size != 2) { 11605 unallocated_encoding(s); 11606 return; 11607 } 11608 feature = dc_isar_feature(aa64_rdm, s); 11609 break; 11610 case 0x02: /* SDOT (vector) */ 11611 case 0x12: /* UDOT (vector) */ 11612 if (size != MO_32) { 11613 unallocated_encoding(s); 11614 return; 11615 } 11616 feature = dc_isar_feature(aa64_dp, s); 11617 break; 11618 case 0x03: /* USDOT */ 11619 if (size != MO_32) { 11620 unallocated_encoding(s); 11621 return; 11622 } 11623 feature = dc_isar_feature(aa64_i8mm, s); 11624 break; 11625 case 0x04: /* SMMLA */ 11626 case 0x14: /* UMMLA */ 11627 case 0x05: /* USMMLA */ 11628 if (!is_q || size != MO_32) { 11629 unallocated_encoding(s); 11630 return; 11631 } 11632 feature = dc_isar_feature(aa64_i8mm, s); 11633 break; 11634 case 0x18: /* FCMLA, #0 */ 11635 case 0x19: /* FCMLA, #90 */ 11636 case 0x1a: /* FCMLA, #180 */ 11637 case 0x1b: /* FCMLA, #270 */ 11638 case 0x1c: /* FCADD, #90 */ 11639 case 0x1e: /* FCADD, #270 */ 11640 if (size == 0 11641 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11642 || (size == 3 && !is_q)) { 11643 unallocated_encoding(s); 11644 return; 11645 } 11646 feature = dc_isar_feature(aa64_fcma, s); 11647 break; 11648 case 0x1d: /* BFMMLA */ 11649 if (size != MO_16 || !is_q) { 11650 unallocated_encoding(s); 11651 return; 11652 } 11653 feature = dc_isar_feature(aa64_bf16, s); 11654 break; 11655 case 0x1f: 11656 switch (size) { 11657 case 1: /* BFDOT */ 11658 case 3: /* BFMLAL{B,T} */ 11659 feature = dc_isar_feature(aa64_bf16, s); 11660 break; 11661 default: 11662 unallocated_encoding(s); 11663 return; 11664 } 11665 break; 11666 default: 11667 unallocated_encoding(s); 11668 return; 11669 } 11670 if (!feature) { 11671 unallocated_encoding(s); 11672 return; 11673 } 11674 if (!fp_access_check(s)) { 11675 return; 11676 } 11677 11678 switch (opcode) { 11679 case 0x0: /* SQRDMLAH (vector) */ 11680 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11681 return; 11682 11683 case 0x1: /* SQRDMLSH (vector) */ 11684 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11685 return; 11686 11687 case 0x2: /* SDOT / UDOT */ 11688 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11689 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11690 return; 11691 11692 case 0x3: /* USDOT */ 11693 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11694 return; 11695 11696 case 0x04: /* SMMLA, UMMLA */ 11697 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11698 u ? gen_helper_gvec_ummla_b 11699 : gen_helper_gvec_smmla_b); 11700 return; 11701 case 0x05: /* USMMLA */ 11702 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11703 return; 11704 11705 case 0x8: /* FCMLA, #0 */ 11706 case 0x9: /* FCMLA, #90 */ 11707 case 0xa: /* FCMLA, #180 */ 11708 case 0xb: /* FCMLA, #270 */ 11709 rot = extract32(opcode, 0, 2); 11710 switch (size) { 11711 case 1: 11712 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11713 gen_helper_gvec_fcmlah); 11714 break; 11715 case 2: 11716 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11717 gen_helper_gvec_fcmlas); 11718 break; 11719 case 3: 11720 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11721 gen_helper_gvec_fcmlad); 11722 break; 11723 default: 11724 g_assert_not_reached(); 11725 } 11726 return; 11727 11728 case 0xc: /* FCADD, #90 */ 11729 case 0xe: /* FCADD, #270 */ 11730 rot = extract32(opcode, 1, 1); 11731 switch (size) { 11732 case 1: 11733 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11734 gen_helper_gvec_fcaddh); 11735 break; 11736 case 2: 11737 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11738 gen_helper_gvec_fcadds); 11739 break; 11740 case 3: 11741 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11742 gen_helper_gvec_fcaddd); 11743 break; 11744 default: 11745 g_assert_not_reached(); 11746 } 11747 return; 11748 11749 case 0xd: /* BFMMLA */ 11750 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11751 return; 11752 case 0xf: 11753 switch (size) { 11754 case 1: /* BFDOT */ 11755 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11756 break; 11757 case 3: /* BFMLAL{B,T} */ 11758 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11759 gen_helper_gvec_bfmlal); 11760 break; 11761 default: 11762 g_assert_not_reached(); 11763 } 11764 return; 11765 11766 default: 11767 g_assert_not_reached(); 11768 } 11769 } 11770 11771 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11772 int size, int rn, int rd) 11773 { 11774 /* Handle 2-reg-misc ops which are widening (so each size element 11775 * in the source becomes a 2*size element in the destination. 11776 * The only instruction like this is FCVTL. 11777 */ 11778 int pass; 11779 11780 if (size == 3) { 11781 /* 32 -> 64 bit fp conversion */ 11782 TCGv_i64 tcg_res[2]; 11783 int srcelt = is_q ? 2 : 0; 11784 11785 for (pass = 0; pass < 2; pass++) { 11786 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11787 tcg_res[pass] = tcg_temp_new_i64(); 11788 11789 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11790 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11791 } 11792 for (pass = 0; pass < 2; pass++) { 11793 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11794 } 11795 } else { 11796 /* 16 -> 32 bit fp conversion */ 11797 int srcelt = is_q ? 4 : 0; 11798 TCGv_i32 tcg_res[4]; 11799 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11800 TCGv_i32 ahp = get_ahp_flag(); 11801 11802 for (pass = 0; pass < 4; pass++) { 11803 tcg_res[pass] = tcg_temp_new_i32(); 11804 11805 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11806 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11807 fpst, ahp); 11808 } 11809 for (pass = 0; pass < 4; pass++) { 11810 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11811 } 11812 } 11813 } 11814 11815 static void handle_rev(DisasContext *s, int opcode, bool u, 11816 bool is_q, int size, int rn, int rd) 11817 { 11818 int op = (opcode << 1) | u; 11819 int opsz = op + size; 11820 int grp_size = 3 - opsz; 11821 int dsize = is_q ? 128 : 64; 11822 int i; 11823 11824 if (opsz >= 3) { 11825 unallocated_encoding(s); 11826 return; 11827 } 11828 11829 if (!fp_access_check(s)) { 11830 return; 11831 } 11832 11833 if (size == 0) { 11834 /* Special case bytes, use bswap op on each group of elements */ 11835 int groups = dsize / (8 << grp_size); 11836 11837 for (i = 0; i < groups; i++) { 11838 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11839 11840 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11841 switch (grp_size) { 11842 case MO_16: 11843 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11844 break; 11845 case MO_32: 11846 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11847 break; 11848 case MO_64: 11849 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11850 break; 11851 default: 11852 g_assert_not_reached(); 11853 } 11854 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11855 } 11856 clear_vec_high(s, is_q, rd); 11857 } else { 11858 int revmask = (1 << grp_size) - 1; 11859 int esize = 8 << size; 11860 int elements = dsize / esize; 11861 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11862 TCGv_i64 tcg_rd[2]; 11863 11864 for (i = 0; i < 2; i++) { 11865 tcg_rd[i] = tcg_temp_new_i64(); 11866 tcg_gen_movi_i64(tcg_rd[i], 0); 11867 } 11868 11869 for (i = 0; i < elements; i++) { 11870 int e_rev = (i & 0xf) ^ revmask; 11871 int w = (e_rev * esize) / 64; 11872 int o = (e_rev * esize) % 64; 11873 11874 read_vec_element(s, tcg_rn, rn, i, size); 11875 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11876 } 11877 11878 for (i = 0; i < 2; i++) { 11879 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11880 } 11881 clear_vec_high(s, true, rd); 11882 } 11883 } 11884 11885 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11886 bool is_q, int size, int rn, int rd) 11887 { 11888 /* Implement the pairwise operations from 2-misc: 11889 * SADDLP, UADDLP, SADALP, UADALP. 11890 * These all add pairs of elements in the input to produce a 11891 * double-width result element in the output (possibly accumulating). 11892 */ 11893 bool accum = (opcode == 0x6); 11894 int maxpass = is_q ? 2 : 1; 11895 int pass; 11896 TCGv_i64 tcg_res[2]; 11897 11898 if (size == 2) { 11899 /* 32 + 32 -> 64 op */ 11900 MemOp memop = size + (u ? 0 : MO_SIGN); 11901 11902 for (pass = 0; pass < maxpass; pass++) { 11903 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11904 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11905 11906 tcg_res[pass] = tcg_temp_new_i64(); 11907 11908 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11909 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11910 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11911 if (accum) { 11912 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11913 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11914 } 11915 } 11916 } else { 11917 for (pass = 0; pass < maxpass; pass++) { 11918 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11919 NeonGenOne64OpFn *genfn; 11920 static NeonGenOne64OpFn * const fns[2][2] = { 11921 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11922 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11923 }; 11924 11925 genfn = fns[size][u]; 11926 11927 tcg_res[pass] = tcg_temp_new_i64(); 11928 11929 read_vec_element(s, tcg_op, rn, pass, MO_64); 11930 genfn(tcg_res[pass], tcg_op); 11931 11932 if (accum) { 11933 read_vec_element(s, tcg_op, rd, pass, MO_64); 11934 if (size == 0) { 11935 gen_helper_neon_addl_u16(tcg_res[pass], 11936 tcg_res[pass], tcg_op); 11937 } else { 11938 gen_helper_neon_addl_u32(tcg_res[pass], 11939 tcg_res[pass], tcg_op); 11940 } 11941 } 11942 } 11943 } 11944 if (!is_q) { 11945 tcg_res[1] = tcg_constant_i64(0); 11946 } 11947 for (pass = 0; pass < 2; pass++) { 11948 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11949 } 11950 } 11951 11952 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11953 { 11954 /* Implement SHLL and SHLL2 */ 11955 int pass; 11956 int part = is_q ? 2 : 0; 11957 TCGv_i64 tcg_res[2]; 11958 11959 for (pass = 0; pass < 2; pass++) { 11960 static NeonGenWidenFn * const widenfns[3] = { 11961 gen_helper_neon_widen_u8, 11962 gen_helper_neon_widen_u16, 11963 tcg_gen_extu_i32_i64, 11964 }; 11965 NeonGenWidenFn *widenfn = widenfns[size]; 11966 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11967 11968 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11969 tcg_res[pass] = tcg_temp_new_i64(); 11970 widenfn(tcg_res[pass], tcg_op); 11971 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11972 } 11973 11974 for (pass = 0; pass < 2; pass++) { 11975 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11976 } 11977 } 11978 11979 /* AdvSIMD two reg misc 11980 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11981 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11982 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11983 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11984 */ 11985 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11986 { 11987 int size = extract32(insn, 22, 2); 11988 int opcode = extract32(insn, 12, 5); 11989 bool u = extract32(insn, 29, 1); 11990 bool is_q = extract32(insn, 30, 1); 11991 int rn = extract32(insn, 5, 5); 11992 int rd = extract32(insn, 0, 5); 11993 bool need_fpstatus = false; 11994 int rmode = -1; 11995 TCGv_i32 tcg_rmode; 11996 TCGv_ptr tcg_fpstatus; 11997 11998 switch (opcode) { 11999 case 0x0: /* REV64, REV32 */ 12000 case 0x1: /* REV16 */ 12001 handle_rev(s, opcode, u, is_q, size, rn, rd); 12002 return; 12003 case 0x5: /* CNT, NOT, RBIT */ 12004 if (u && size == 0) { 12005 /* NOT */ 12006 break; 12007 } else if (u && size == 1) { 12008 /* RBIT */ 12009 break; 12010 } else if (!u && size == 0) { 12011 /* CNT */ 12012 break; 12013 } 12014 unallocated_encoding(s); 12015 return; 12016 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12017 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12018 if (size == 3) { 12019 unallocated_encoding(s); 12020 return; 12021 } 12022 if (!fp_access_check(s)) { 12023 return; 12024 } 12025 12026 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12027 return; 12028 case 0x4: /* CLS, CLZ */ 12029 if (size == 3) { 12030 unallocated_encoding(s); 12031 return; 12032 } 12033 break; 12034 case 0x2: /* SADDLP, UADDLP */ 12035 case 0x6: /* SADALP, UADALP */ 12036 if (size == 3) { 12037 unallocated_encoding(s); 12038 return; 12039 } 12040 if (!fp_access_check(s)) { 12041 return; 12042 } 12043 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12044 return; 12045 case 0x13: /* SHLL, SHLL2 */ 12046 if (u == 0 || size == 3) { 12047 unallocated_encoding(s); 12048 return; 12049 } 12050 if (!fp_access_check(s)) { 12051 return; 12052 } 12053 handle_shll(s, is_q, size, rn, rd); 12054 return; 12055 case 0xa: /* CMLT */ 12056 if (u == 1) { 12057 unallocated_encoding(s); 12058 return; 12059 } 12060 /* fall through */ 12061 case 0x8: /* CMGT, CMGE */ 12062 case 0x9: /* CMEQ, CMLE */ 12063 case 0xb: /* ABS, NEG */ 12064 if (size == 3 && !is_q) { 12065 unallocated_encoding(s); 12066 return; 12067 } 12068 break; 12069 case 0x3: /* SUQADD, USQADD */ 12070 if (size == 3 && !is_q) { 12071 unallocated_encoding(s); 12072 return; 12073 } 12074 if (!fp_access_check(s)) { 12075 return; 12076 } 12077 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12078 return; 12079 case 0x7: /* SQABS, SQNEG */ 12080 if (size == 3 && !is_q) { 12081 unallocated_encoding(s); 12082 return; 12083 } 12084 break; 12085 case 0xc ... 0xf: 12086 case 0x16 ... 0x1f: 12087 { 12088 /* Floating point: U, size[1] and opcode indicate operation; 12089 * size[0] indicates single or double precision. 12090 */ 12091 int is_double = extract32(size, 0, 1); 12092 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12093 size = is_double ? 3 : 2; 12094 switch (opcode) { 12095 case 0x2f: /* FABS */ 12096 case 0x6f: /* FNEG */ 12097 if (size == 3 && !is_q) { 12098 unallocated_encoding(s); 12099 return; 12100 } 12101 break; 12102 case 0x1d: /* SCVTF */ 12103 case 0x5d: /* UCVTF */ 12104 { 12105 bool is_signed = (opcode == 0x1d) ? true : false; 12106 int elements = is_double ? 2 : is_q ? 4 : 2; 12107 if (is_double && !is_q) { 12108 unallocated_encoding(s); 12109 return; 12110 } 12111 if (!fp_access_check(s)) { 12112 return; 12113 } 12114 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12115 return; 12116 } 12117 case 0x2c: /* FCMGT (zero) */ 12118 case 0x2d: /* FCMEQ (zero) */ 12119 case 0x2e: /* FCMLT (zero) */ 12120 case 0x6c: /* FCMGE (zero) */ 12121 case 0x6d: /* FCMLE (zero) */ 12122 if (size == 3 && !is_q) { 12123 unallocated_encoding(s); 12124 return; 12125 } 12126 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12127 return; 12128 case 0x7f: /* FSQRT */ 12129 if (size == 3 && !is_q) { 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 break; 12134 case 0x1a: /* FCVTNS */ 12135 case 0x1b: /* FCVTMS */ 12136 case 0x3a: /* FCVTPS */ 12137 case 0x3b: /* FCVTZS */ 12138 case 0x5a: /* FCVTNU */ 12139 case 0x5b: /* FCVTMU */ 12140 case 0x7a: /* FCVTPU */ 12141 case 0x7b: /* FCVTZU */ 12142 need_fpstatus = true; 12143 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12144 if (size == 3 && !is_q) { 12145 unallocated_encoding(s); 12146 return; 12147 } 12148 break; 12149 case 0x5c: /* FCVTAU */ 12150 case 0x1c: /* FCVTAS */ 12151 need_fpstatus = true; 12152 rmode = FPROUNDING_TIEAWAY; 12153 if (size == 3 && !is_q) { 12154 unallocated_encoding(s); 12155 return; 12156 } 12157 break; 12158 case 0x3c: /* URECPE */ 12159 if (size == 3) { 12160 unallocated_encoding(s); 12161 return; 12162 } 12163 /* fall through */ 12164 case 0x3d: /* FRECPE */ 12165 case 0x7d: /* FRSQRTE */ 12166 if (size == 3 && !is_q) { 12167 unallocated_encoding(s); 12168 return; 12169 } 12170 if (!fp_access_check(s)) { 12171 return; 12172 } 12173 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12174 return; 12175 case 0x56: /* FCVTXN, FCVTXN2 */ 12176 if (size == 2) { 12177 unallocated_encoding(s); 12178 return; 12179 } 12180 /* fall through */ 12181 case 0x16: /* FCVTN, FCVTN2 */ 12182 /* handle_2misc_narrow does a 2*size -> size operation, but these 12183 * instructions encode the source size rather than dest size. 12184 */ 12185 if (!fp_access_check(s)) { 12186 return; 12187 } 12188 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12189 return; 12190 case 0x36: /* BFCVTN, BFCVTN2 */ 12191 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 if (!fp_access_check(s)) { 12196 return; 12197 } 12198 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12199 return; 12200 case 0x17: /* FCVTL, FCVTL2 */ 12201 if (!fp_access_check(s)) { 12202 return; 12203 } 12204 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12205 return; 12206 case 0x18: /* FRINTN */ 12207 case 0x19: /* FRINTM */ 12208 case 0x38: /* FRINTP */ 12209 case 0x39: /* FRINTZ */ 12210 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12211 /* fall through */ 12212 case 0x59: /* FRINTX */ 12213 case 0x79: /* FRINTI */ 12214 need_fpstatus = true; 12215 if (size == 3 && !is_q) { 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 break; 12220 case 0x58: /* FRINTA */ 12221 rmode = FPROUNDING_TIEAWAY; 12222 need_fpstatus = true; 12223 if (size == 3 && !is_q) { 12224 unallocated_encoding(s); 12225 return; 12226 } 12227 break; 12228 case 0x7c: /* URSQRTE */ 12229 if (size == 3) { 12230 unallocated_encoding(s); 12231 return; 12232 } 12233 break; 12234 case 0x1e: /* FRINT32Z */ 12235 case 0x1f: /* FRINT64Z */ 12236 rmode = FPROUNDING_ZERO; 12237 /* fall through */ 12238 case 0x5e: /* FRINT32X */ 12239 case 0x5f: /* FRINT64X */ 12240 need_fpstatus = true; 12241 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12242 unallocated_encoding(s); 12243 return; 12244 } 12245 break; 12246 default: 12247 unallocated_encoding(s); 12248 return; 12249 } 12250 break; 12251 } 12252 default: 12253 unallocated_encoding(s); 12254 return; 12255 } 12256 12257 if (!fp_access_check(s)) { 12258 return; 12259 } 12260 12261 if (need_fpstatus || rmode >= 0) { 12262 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12263 } else { 12264 tcg_fpstatus = NULL; 12265 } 12266 if (rmode >= 0) { 12267 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12268 } else { 12269 tcg_rmode = NULL; 12270 } 12271 12272 switch (opcode) { 12273 case 0x5: 12274 if (u && size == 0) { /* NOT */ 12275 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12276 return; 12277 } 12278 break; 12279 case 0x8: /* CMGT, CMGE */ 12280 if (u) { 12281 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12282 } else { 12283 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12284 } 12285 return; 12286 case 0x9: /* CMEQ, CMLE */ 12287 if (u) { 12288 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12289 } else { 12290 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12291 } 12292 return; 12293 case 0xa: /* CMLT */ 12294 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12295 return; 12296 case 0xb: 12297 if (u) { /* ABS, NEG */ 12298 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12299 } else { 12300 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12301 } 12302 return; 12303 } 12304 12305 if (size == 3) { 12306 /* All 64-bit element operations can be shared with scalar 2misc */ 12307 int pass; 12308 12309 /* Coverity claims (size == 3 && !is_q) has been eliminated 12310 * from all paths leading to here. 12311 */ 12312 tcg_debug_assert(is_q); 12313 for (pass = 0; pass < 2; pass++) { 12314 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12315 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12316 12317 read_vec_element(s, tcg_op, rn, pass, MO_64); 12318 12319 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12320 tcg_rmode, tcg_fpstatus); 12321 12322 write_vec_element(s, tcg_res, rd, pass, MO_64); 12323 } 12324 } else { 12325 int pass; 12326 12327 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12328 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12329 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12330 12331 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12332 12333 if (size == 2) { 12334 /* Special cases for 32 bit elements */ 12335 switch (opcode) { 12336 case 0x4: /* CLS */ 12337 if (u) { 12338 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12339 } else { 12340 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12341 } 12342 break; 12343 case 0x7: /* SQABS, SQNEG */ 12344 if (u) { 12345 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12346 } else { 12347 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12348 } 12349 break; 12350 case 0x2f: /* FABS */ 12351 gen_helper_vfp_abss(tcg_res, tcg_op); 12352 break; 12353 case 0x6f: /* FNEG */ 12354 gen_helper_vfp_negs(tcg_res, tcg_op); 12355 break; 12356 case 0x7f: /* FSQRT */ 12357 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12358 break; 12359 case 0x1a: /* FCVTNS */ 12360 case 0x1b: /* FCVTMS */ 12361 case 0x1c: /* FCVTAS */ 12362 case 0x3a: /* FCVTPS */ 12363 case 0x3b: /* FCVTZS */ 12364 gen_helper_vfp_tosls(tcg_res, tcg_op, 12365 tcg_constant_i32(0), tcg_fpstatus); 12366 break; 12367 case 0x5a: /* FCVTNU */ 12368 case 0x5b: /* FCVTMU */ 12369 case 0x5c: /* FCVTAU */ 12370 case 0x7a: /* FCVTPU */ 12371 case 0x7b: /* FCVTZU */ 12372 gen_helper_vfp_touls(tcg_res, tcg_op, 12373 tcg_constant_i32(0), tcg_fpstatus); 12374 break; 12375 case 0x18: /* FRINTN */ 12376 case 0x19: /* FRINTM */ 12377 case 0x38: /* FRINTP */ 12378 case 0x39: /* FRINTZ */ 12379 case 0x58: /* FRINTA */ 12380 case 0x79: /* FRINTI */ 12381 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12382 break; 12383 case 0x59: /* FRINTX */ 12384 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12385 break; 12386 case 0x7c: /* URSQRTE */ 12387 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12388 break; 12389 case 0x1e: /* FRINT32Z */ 12390 case 0x5e: /* FRINT32X */ 12391 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12392 break; 12393 case 0x1f: /* FRINT64Z */ 12394 case 0x5f: /* FRINT64X */ 12395 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12396 break; 12397 default: 12398 g_assert_not_reached(); 12399 } 12400 } else { 12401 /* Use helpers for 8 and 16 bit elements */ 12402 switch (opcode) { 12403 case 0x5: /* CNT, RBIT */ 12404 /* For these two insns size is part of the opcode specifier 12405 * (handled earlier); they always operate on byte elements. 12406 */ 12407 if (u) { 12408 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12409 } else { 12410 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12411 } 12412 break; 12413 case 0x7: /* SQABS, SQNEG */ 12414 { 12415 NeonGenOneOpEnvFn *genfn; 12416 static NeonGenOneOpEnvFn * const fns[2][2] = { 12417 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12418 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12419 }; 12420 genfn = fns[size][u]; 12421 genfn(tcg_res, cpu_env, tcg_op); 12422 break; 12423 } 12424 case 0x4: /* CLS, CLZ */ 12425 if (u) { 12426 if (size == 0) { 12427 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12428 } else { 12429 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12430 } 12431 } else { 12432 if (size == 0) { 12433 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12434 } else { 12435 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12436 } 12437 } 12438 break; 12439 default: 12440 g_assert_not_reached(); 12441 } 12442 } 12443 12444 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12445 } 12446 } 12447 clear_vec_high(s, is_q, rd); 12448 12449 if (tcg_rmode) { 12450 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12451 } 12452 } 12453 12454 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12455 * 12456 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12457 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12458 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12459 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12460 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12461 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12462 * 12463 * This actually covers two groups where scalar access is governed by 12464 * bit 28. A bunch of the instructions (float to integral) only exist 12465 * in the vector form and are un-allocated for the scalar decode. Also 12466 * in the scalar decode Q is always 1. 12467 */ 12468 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12469 { 12470 int fpop, opcode, a, u; 12471 int rn, rd; 12472 bool is_q; 12473 bool is_scalar; 12474 bool only_in_vector = false; 12475 12476 int pass; 12477 TCGv_i32 tcg_rmode = NULL; 12478 TCGv_ptr tcg_fpstatus = NULL; 12479 bool need_fpst = true; 12480 int rmode = -1; 12481 12482 if (!dc_isar_feature(aa64_fp16, s)) { 12483 unallocated_encoding(s); 12484 return; 12485 } 12486 12487 rd = extract32(insn, 0, 5); 12488 rn = extract32(insn, 5, 5); 12489 12490 a = extract32(insn, 23, 1); 12491 u = extract32(insn, 29, 1); 12492 is_scalar = extract32(insn, 28, 1); 12493 is_q = extract32(insn, 30, 1); 12494 12495 opcode = extract32(insn, 12, 5); 12496 fpop = deposit32(opcode, 5, 1, a); 12497 fpop = deposit32(fpop, 6, 1, u); 12498 12499 switch (fpop) { 12500 case 0x1d: /* SCVTF */ 12501 case 0x5d: /* UCVTF */ 12502 { 12503 int elements; 12504 12505 if (is_scalar) { 12506 elements = 1; 12507 } else { 12508 elements = (is_q ? 8 : 4); 12509 } 12510 12511 if (!fp_access_check(s)) { 12512 return; 12513 } 12514 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12515 return; 12516 } 12517 break; 12518 case 0x2c: /* FCMGT (zero) */ 12519 case 0x2d: /* FCMEQ (zero) */ 12520 case 0x2e: /* FCMLT (zero) */ 12521 case 0x6c: /* FCMGE (zero) */ 12522 case 0x6d: /* FCMLE (zero) */ 12523 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12524 return; 12525 case 0x3d: /* FRECPE */ 12526 case 0x3f: /* FRECPX */ 12527 break; 12528 case 0x18: /* FRINTN */ 12529 only_in_vector = true; 12530 rmode = FPROUNDING_TIEEVEN; 12531 break; 12532 case 0x19: /* FRINTM */ 12533 only_in_vector = true; 12534 rmode = FPROUNDING_NEGINF; 12535 break; 12536 case 0x38: /* FRINTP */ 12537 only_in_vector = true; 12538 rmode = FPROUNDING_POSINF; 12539 break; 12540 case 0x39: /* FRINTZ */ 12541 only_in_vector = true; 12542 rmode = FPROUNDING_ZERO; 12543 break; 12544 case 0x58: /* FRINTA */ 12545 only_in_vector = true; 12546 rmode = FPROUNDING_TIEAWAY; 12547 break; 12548 case 0x59: /* FRINTX */ 12549 case 0x79: /* FRINTI */ 12550 only_in_vector = true; 12551 /* current rounding mode */ 12552 break; 12553 case 0x1a: /* FCVTNS */ 12554 rmode = FPROUNDING_TIEEVEN; 12555 break; 12556 case 0x1b: /* FCVTMS */ 12557 rmode = FPROUNDING_NEGINF; 12558 break; 12559 case 0x1c: /* FCVTAS */ 12560 rmode = FPROUNDING_TIEAWAY; 12561 break; 12562 case 0x3a: /* FCVTPS */ 12563 rmode = FPROUNDING_POSINF; 12564 break; 12565 case 0x3b: /* FCVTZS */ 12566 rmode = FPROUNDING_ZERO; 12567 break; 12568 case 0x5a: /* FCVTNU */ 12569 rmode = FPROUNDING_TIEEVEN; 12570 break; 12571 case 0x5b: /* FCVTMU */ 12572 rmode = FPROUNDING_NEGINF; 12573 break; 12574 case 0x5c: /* FCVTAU */ 12575 rmode = FPROUNDING_TIEAWAY; 12576 break; 12577 case 0x7a: /* FCVTPU */ 12578 rmode = FPROUNDING_POSINF; 12579 break; 12580 case 0x7b: /* FCVTZU */ 12581 rmode = FPROUNDING_ZERO; 12582 break; 12583 case 0x2f: /* FABS */ 12584 case 0x6f: /* FNEG */ 12585 need_fpst = false; 12586 break; 12587 case 0x7d: /* FRSQRTE */ 12588 case 0x7f: /* FSQRT (vector) */ 12589 break; 12590 default: 12591 unallocated_encoding(s); 12592 return; 12593 } 12594 12595 12596 /* Check additional constraints for the scalar encoding */ 12597 if (is_scalar) { 12598 if (!is_q) { 12599 unallocated_encoding(s); 12600 return; 12601 } 12602 /* FRINTxx is only in the vector form */ 12603 if (only_in_vector) { 12604 unallocated_encoding(s); 12605 return; 12606 } 12607 } 12608 12609 if (!fp_access_check(s)) { 12610 return; 12611 } 12612 12613 if (rmode >= 0 || need_fpst) { 12614 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12615 } 12616 12617 if (rmode >= 0) { 12618 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12619 } 12620 12621 if (is_scalar) { 12622 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12623 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12624 12625 switch (fpop) { 12626 case 0x1a: /* FCVTNS */ 12627 case 0x1b: /* FCVTMS */ 12628 case 0x1c: /* FCVTAS */ 12629 case 0x3a: /* FCVTPS */ 12630 case 0x3b: /* FCVTZS */ 12631 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12632 break; 12633 case 0x3d: /* FRECPE */ 12634 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12635 break; 12636 case 0x3f: /* FRECPX */ 12637 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12638 break; 12639 case 0x5a: /* FCVTNU */ 12640 case 0x5b: /* FCVTMU */ 12641 case 0x5c: /* FCVTAU */ 12642 case 0x7a: /* FCVTPU */ 12643 case 0x7b: /* FCVTZU */ 12644 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12645 break; 12646 case 0x6f: /* FNEG */ 12647 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12648 break; 12649 case 0x7d: /* FRSQRTE */ 12650 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12651 break; 12652 default: 12653 g_assert_not_reached(); 12654 } 12655 12656 /* limit any sign extension going on */ 12657 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12658 write_fp_sreg(s, rd, tcg_res); 12659 } else { 12660 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12661 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12662 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12663 12664 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12665 12666 switch (fpop) { 12667 case 0x1a: /* FCVTNS */ 12668 case 0x1b: /* FCVTMS */ 12669 case 0x1c: /* FCVTAS */ 12670 case 0x3a: /* FCVTPS */ 12671 case 0x3b: /* FCVTZS */ 12672 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12673 break; 12674 case 0x3d: /* FRECPE */ 12675 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12676 break; 12677 case 0x5a: /* FCVTNU */ 12678 case 0x5b: /* FCVTMU */ 12679 case 0x5c: /* FCVTAU */ 12680 case 0x7a: /* FCVTPU */ 12681 case 0x7b: /* FCVTZU */ 12682 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12683 break; 12684 case 0x18: /* FRINTN */ 12685 case 0x19: /* FRINTM */ 12686 case 0x38: /* FRINTP */ 12687 case 0x39: /* FRINTZ */ 12688 case 0x58: /* FRINTA */ 12689 case 0x79: /* FRINTI */ 12690 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12691 break; 12692 case 0x59: /* FRINTX */ 12693 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12694 break; 12695 case 0x2f: /* FABS */ 12696 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12697 break; 12698 case 0x6f: /* FNEG */ 12699 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12700 break; 12701 case 0x7d: /* FRSQRTE */ 12702 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12703 break; 12704 case 0x7f: /* FSQRT */ 12705 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12706 break; 12707 default: 12708 g_assert_not_reached(); 12709 } 12710 12711 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12712 } 12713 12714 clear_vec_high(s, is_q, rd); 12715 } 12716 12717 if (tcg_rmode) { 12718 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12719 } 12720 } 12721 12722 /* AdvSIMD scalar x indexed element 12723 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12724 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12725 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12726 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12727 * AdvSIMD vector x indexed element 12728 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12729 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12730 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12731 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12732 */ 12733 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12734 { 12735 /* This encoding has two kinds of instruction: 12736 * normal, where we perform elt x idxelt => elt for each 12737 * element in the vector 12738 * long, where we perform elt x idxelt and generate a result of 12739 * double the width of the input element 12740 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12741 */ 12742 bool is_scalar = extract32(insn, 28, 1); 12743 bool is_q = extract32(insn, 30, 1); 12744 bool u = extract32(insn, 29, 1); 12745 int size = extract32(insn, 22, 2); 12746 int l = extract32(insn, 21, 1); 12747 int m = extract32(insn, 20, 1); 12748 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12749 int rm = extract32(insn, 16, 4); 12750 int opcode = extract32(insn, 12, 4); 12751 int h = extract32(insn, 11, 1); 12752 int rn = extract32(insn, 5, 5); 12753 int rd = extract32(insn, 0, 5); 12754 bool is_long = false; 12755 int is_fp = 0; 12756 bool is_fp16 = false; 12757 int index; 12758 TCGv_ptr fpst; 12759 12760 switch (16 * u + opcode) { 12761 case 0x08: /* MUL */ 12762 case 0x10: /* MLA */ 12763 case 0x14: /* MLS */ 12764 if (is_scalar) { 12765 unallocated_encoding(s); 12766 return; 12767 } 12768 break; 12769 case 0x02: /* SMLAL, SMLAL2 */ 12770 case 0x12: /* UMLAL, UMLAL2 */ 12771 case 0x06: /* SMLSL, SMLSL2 */ 12772 case 0x16: /* UMLSL, UMLSL2 */ 12773 case 0x0a: /* SMULL, SMULL2 */ 12774 case 0x1a: /* UMULL, UMULL2 */ 12775 if (is_scalar) { 12776 unallocated_encoding(s); 12777 return; 12778 } 12779 is_long = true; 12780 break; 12781 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12782 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12783 case 0x0b: /* SQDMULL, SQDMULL2 */ 12784 is_long = true; 12785 break; 12786 case 0x0c: /* SQDMULH */ 12787 case 0x0d: /* SQRDMULH */ 12788 break; 12789 case 0x01: /* FMLA */ 12790 case 0x05: /* FMLS */ 12791 case 0x09: /* FMUL */ 12792 case 0x19: /* FMULX */ 12793 is_fp = 1; 12794 break; 12795 case 0x1d: /* SQRDMLAH */ 12796 case 0x1f: /* SQRDMLSH */ 12797 if (!dc_isar_feature(aa64_rdm, s)) { 12798 unallocated_encoding(s); 12799 return; 12800 } 12801 break; 12802 case 0x0e: /* SDOT */ 12803 case 0x1e: /* UDOT */ 12804 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12805 unallocated_encoding(s); 12806 return; 12807 } 12808 break; 12809 case 0x0f: 12810 switch (size) { 12811 case 0: /* SUDOT */ 12812 case 2: /* USDOT */ 12813 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12814 unallocated_encoding(s); 12815 return; 12816 } 12817 size = MO_32; 12818 break; 12819 case 1: /* BFDOT */ 12820 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12821 unallocated_encoding(s); 12822 return; 12823 } 12824 size = MO_32; 12825 break; 12826 case 3: /* BFMLAL{B,T} */ 12827 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12828 unallocated_encoding(s); 12829 return; 12830 } 12831 /* can't set is_fp without other incorrect size checks */ 12832 size = MO_16; 12833 break; 12834 default: 12835 unallocated_encoding(s); 12836 return; 12837 } 12838 break; 12839 case 0x11: /* FCMLA #0 */ 12840 case 0x13: /* FCMLA #90 */ 12841 case 0x15: /* FCMLA #180 */ 12842 case 0x17: /* FCMLA #270 */ 12843 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12844 unallocated_encoding(s); 12845 return; 12846 } 12847 is_fp = 2; 12848 break; 12849 case 0x00: /* FMLAL */ 12850 case 0x04: /* FMLSL */ 12851 case 0x18: /* FMLAL2 */ 12852 case 0x1c: /* FMLSL2 */ 12853 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12854 unallocated_encoding(s); 12855 return; 12856 } 12857 size = MO_16; 12858 /* is_fp, but we pass cpu_env not fp_status. */ 12859 break; 12860 default: 12861 unallocated_encoding(s); 12862 return; 12863 } 12864 12865 switch (is_fp) { 12866 case 1: /* normal fp */ 12867 /* convert insn encoded size to MemOp size */ 12868 switch (size) { 12869 case 0: /* half-precision */ 12870 size = MO_16; 12871 is_fp16 = true; 12872 break; 12873 case MO_32: /* single precision */ 12874 case MO_64: /* double precision */ 12875 break; 12876 default: 12877 unallocated_encoding(s); 12878 return; 12879 } 12880 break; 12881 12882 case 2: /* complex fp */ 12883 /* Each indexable element is a complex pair. */ 12884 size += 1; 12885 switch (size) { 12886 case MO_32: 12887 if (h && !is_q) { 12888 unallocated_encoding(s); 12889 return; 12890 } 12891 is_fp16 = true; 12892 break; 12893 case MO_64: 12894 break; 12895 default: 12896 unallocated_encoding(s); 12897 return; 12898 } 12899 break; 12900 12901 default: /* integer */ 12902 switch (size) { 12903 case MO_8: 12904 case MO_64: 12905 unallocated_encoding(s); 12906 return; 12907 } 12908 break; 12909 } 12910 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12911 unallocated_encoding(s); 12912 return; 12913 } 12914 12915 /* Given MemOp size, adjust register and indexing. */ 12916 switch (size) { 12917 case MO_16: 12918 index = h << 2 | l << 1 | m; 12919 break; 12920 case MO_32: 12921 index = h << 1 | l; 12922 rm |= m << 4; 12923 break; 12924 case MO_64: 12925 if (l || !is_q) { 12926 unallocated_encoding(s); 12927 return; 12928 } 12929 index = h; 12930 rm |= m << 4; 12931 break; 12932 default: 12933 g_assert_not_reached(); 12934 } 12935 12936 if (!fp_access_check(s)) { 12937 return; 12938 } 12939 12940 if (is_fp) { 12941 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12942 } else { 12943 fpst = NULL; 12944 } 12945 12946 switch (16 * u + opcode) { 12947 case 0x0e: /* SDOT */ 12948 case 0x1e: /* UDOT */ 12949 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12950 u ? gen_helper_gvec_udot_idx_b 12951 : gen_helper_gvec_sdot_idx_b); 12952 return; 12953 case 0x0f: 12954 switch (extract32(insn, 22, 2)) { 12955 case 0: /* SUDOT */ 12956 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12957 gen_helper_gvec_sudot_idx_b); 12958 return; 12959 case 1: /* BFDOT */ 12960 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12961 gen_helper_gvec_bfdot_idx); 12962 return; 12963 case 2: /* USDOT */ 12964 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12965 gen_helper_gvec_usdot_idx_b); 12966 return; 12967 case 3: /* BFMLAL{B,T} */ 12968 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12969 gen_helper_gvec_bfmlal_idx); 12970 return; 12971 } 12972 g_assert_not_reached(); 12973 case 0x11: /* FCMLA #0 */ 12974 case 0x13: /* FCMLA #90 */ 12975 case 0x15: /* FCMLA #180 */ 12976 case 0x17: /* FCMLA #270 */ 12977 { 12978 int rot = extract32(insn, 13, 2); 12979 int data = (index << 2) | rot; 12980 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12981 vec_full_reg_offset(s, rn), 12982 vec_full_reg_offset(s, rm), 12983 vec_full_reg_offset(s, rd), fpst, 12984 is_q ? 16 : 8, vec_full_reg_size(s), data, 12985 size == MO_64 12986 ? gen_helper_gvec_fcmlas_idx 12987 : gen_helper_gvec_fcmlah_idx); 12988 } 12989 return; 12990 12991 case 0x00: /* FMLAL */ 12992 case 0x04: /* FMLSL */ 12993 case 0x18: /* FMLAL2 */ 12994 case 0x1c: /* FMLSL2 */ 12995 { 12996 int is_s = extract32(opcode, 2, 1); 12997 int is_2 = u; 12998 int data = (index << 2) | (is_2 << 1) | is_s; 12999 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13000 vec_full_reg_offset(s, rn), 13001 vec_full_reg_offset(s, rm), cpu_env, 13002 is_q ? 16 : 8, vec_full_reg_size(s), 13003 data, gen_helper_gvec_fmlal_idx_a64); 13004 } 13005 return; 13006 13007 case 0x08: /* MUL */ 13008 if (!is_long && !is_scalar) { 13009 static gen_helper_gvec_3 * const fns[3] = { 13010 gen_helper_gvec_mul_idx_h, 13011 gen_helper_gvec_mul_idx_s, 13012 gen_helper_gvec_mul_idx_d, 13013 }; 13014 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13015 vec_full_reg_offset(s, rn), 13016 vec_full_reg_offset(s, rm), 13017 is_q ? 16 : 8, vec_full_reg_size(s), 13018 index, fns[size - 1]); 13019 return; 13020 } 13021 break; 13022 13023 case 0x10: /* MLA */ 13024 if (!is_long && !is_scalar) { 13025 static gen_helper_gvec_4 * const fns[3] = { 13026 gen_helper_gvec_mla_idx_h, 13027 gen_helper_gvec_mla_idx_s, 13028 gen_helper_gvec_mla_idx_d, 13029 }; 13030 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13031 vec_full_reg_offset(s, rn), 13032 vec_full_reg_offset(s, rm), 13033 vec_full_reg_offset(s, rd), 13034 is_q ? 16 : 8, vec_full_reg_size(s), 13035 index, fns[size - 1]); 13036 return; 13037 } 13038 break; 13039 13040 case 0x14: /* MLS */ 13041 if (!is_long && !is_scalar) { 13042 static gen_helper_gvec_4 * const fns[3] = { 13043 gen_helper_gvec_mls_idx_h, 13044 gen_helper_gvec_mls_idx_s, 13045 gen_helper_gvec_mls_idx_d, 13046 }; 13047 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13048 vec_full_reg_offset(s, rn), 13049 vec_full_reg_offset(s, rm), 13050 vec_full_reg_offset(s, rd), 13051 is_q ? 16 : 8, vec_full_reg_size(s), 13052 index, fns[size - 1]); 13053 return; 13054 } 13055 break; 13056 } 13057 13058 if (size == 3) { 13059 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13060 int pass; 13061 13062 assert(is_fp && is_q && !is_long); 13063 13064 read_vec_element(s, tcg_idx, rm, index, MO_64); 13065 13066 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13067 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13068 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13069 13070 read_vec_element(s, tcg_op, rn, pass, MO_64); 13071 13072 switch (16 * u + opcode) { 13073 case 0x05: /* FMLS */ 13074 /* As usual for ARM, separate negation for fused multiply-add */ 13075 gen_helper_vfp_negd(tcg_op, tcg_op); 13076 /* fall through */ 13077 case 0x01: /* FMLA */ 13078 read_vec_element(s, tcg_res, rd, pass, MO_64); 13079 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13080 break; 13081 case 0x09: /* FMUL */ 13082 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13083 break; 13084 case 0x19: /* FMULX */ 13085 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13086 break; 13087 default: 13088 g_assert_not_reached(); 13089 } 13090 13091 write_vec_element(s, tcg_res, rd, pass, MO_64); 13092 } 13093 13094 clear_vec_high(s, !is_scalar, rd); 13095 } else if (!is_long) { 13096 /* 32 bit floating point, or 16 or 32 bit integer. 13097 * For the 16 bit scalar case we use the usual Neon helpers and 13098 * rely on the fact that 0 op 0 == 0 with no side effects. 13099 */ 13100 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13101 int pass, maxpasses; 13102 13103 if (is_scalar) { 13104 maxpasses = 1; 13105 } else { 13106 maxpasses = is_q ? 4 : 2; 13107 } 13108 13109 read_vec_element_i32(s, tcg_idx, rm, index, size); 13110 13111 if (size == 1 && !is_scalar) { 13112 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13113 * the index into both halves of the 32 bit tcg_idx and then use 13114 * the usual Neon helpers. 13115 */ 13116 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13117 } 13118 13119 for (pass = 0; pass < maxpasses; pass++) { 13120 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13121 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13122 13123 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13124 13125 switch (16 * u + opcode) { 13126 case 0x08: /* MUL */ 13127 case 0x10: /* MLA */ 13128 case 0x14: /* MLS */ 13129 { 13130 static NeonGenTwoOpFn * const fns[2][2] = { 13131 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13132 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13133 }; 13134 NeonGenTwoOpFn *genfn; 13135 bool is_sub = opcode == 0x4; 13136 13137 if (size == 1) { 13138 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13139 } else { 13140 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13141 } 13142 if (opcode == 0x8) { 13143 break; 13144 } 13145 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13146 genfn = fns[size - 1][is_sub]; 13147 genfn(tcg_res, tcg_op, tcg_res); 13148 break; 13149 } 13150 case 0x05: /* FMLS */ 13151 case 0x01: /* FMLA */ 13152 read_vec_element_i32(s, tcg_res, rd, pass, 13153 is_scalar ? size : MO_32); 13154 switch (size) { 13155 case 1: 13156 if (opcode == 0x5) { 13157 /* As usual for ARM, separate negation for fused 13158 * multiply-add */ 13159 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13160 } 13161 if (is_scalar) { 13162 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13163 tcg_res, fpst); 13164 } else { 13165 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13166 tcg_res, fpst); 13167 } 13168 break; 13169 case 2: 13170 if (opcode == 0x5) { 13171 /* As usual for ARM, separate negation for 13172 * fused multiply-add */ 13173 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13174 } 13175 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13176 tcg_res, fpst); 13177 break; 13178 default: 13179 g_assert_not_reached(); 13180 } 13181 break; 13182 case 0x09: /* FMUL */ 13183 switch (size) { 13184 case 1: 13185 if (is_scalar) { 13186 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13187 tcg_idx, fpst); 13188 } else { 13189 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13190 tcg_idx, fpst); 13191 } 13192 break; 13193 case 2: 13194 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13195 break; 13196 default: 13197 g_assert_not_reached(); 13198 } 13199 break; 13200 case 0x19: /* FMULX */ 13201 switch (size) { 13202 case 1: 13203 if (is_scalar) { 13204 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13205 tcg_idx, fpst); 13206 } else { 13207 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13208 tcg_idx, fpst); 13209 } 13210 break; 13211 case 2: 13212 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13213 break; 13214 default: 13215 g_assert_not_reached(); 13216 } 13217 break; 13218 case 0x0c: /* SQDMULH */ 13219 if (size == 1) { 13220 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13221 tcg_op, tcg_idx); 13222 } else { 13223 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13224 tcg_op, tcg_idx); 13225 } 13226 break; 13227 case 0x0d: /* SQRDMULH */ 13228 if (size == 1) { 13229 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13230 tcg_op, tcg_idx); 13231 } else { 13232 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13233 tcg_op, tcg_idx); 13234 } 13235 break; 13236 case 0x1d: /* SQRDMLAH */ 13237 read_vec_element_i32(s, tcg_res, rd, pass, 13238 is_scalar ? size : MO_32); 13239 if (size == 1) { 13240 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13241 tcg_op, tcg_idx, tcg_res); 13242 } else { 13243 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13244 tcg_op, tcg_idx, tcg_res); 13245 } 13246 break; 13247 case 0x1f: /* SQRDMLSH */ 13248 read_vec_element_i32(s, tcg_res, rd, pass, 13249 is_scalar ? size : MO_32); 13250 if (size == 1) { 13251 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13252 tcg_op, tcg_idx, tcg_res); 13253 } else { 13254 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13255 tcg_op, tcg_idx, tcg_res); 13256 } 13257 break; 13258 default: 13259 g_assert_not_reached(); 13260 } 13261 13262 if (is_scalar) { 13263 write_fp_sreg(s, rd, tcg_res); 13264 } else { 13265 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13266 } 13267 } 13268 13269 clear_vec_high(s, is_q, rd); 13270 } else { 13271 /* long ops: 16x16->32 or 32x32->64 */ 13272 TCGv_i64 tcg_res[2]; 13273 int pass; 13274 bool satop = extract32(opcode, 0, 1); 13275 MemOp memop = MO_32; 13276 13277 if (satop || !u) { 13278 memop |= MO_SIGN; 13279 } 13280 13281 if (size == 2) { 13282 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13283 13284 read_vec_element(s, tcg_idx, rm, index, memop); 13285 13286 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13287 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13288 TCGv_i64 tcg_passres; 13289 int passelt; 13290 13291 if (is_scalar) { 13292 passelt = 0; 13293 } else { 13294 passelt = pass + (is_q * 2); 13295 } 13296 13297 read_vec_element(s, tcg_op, rn, passelt, memop); 13298 13299 tcg_res[pass] = tcg_temp_new_i64(); 13300 13301 if (opcode == 0xa || opcode == 0xb) { 13302 /* Non-accumulating ops */ 13303 tcg_passres = tcg_res[pass]; 13304 } else { 13305 tcg_passres = tcg_temp_new_i64(); 13306 } 13307 13308 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13309 13310 if (satop) { 13311 /* saturating, doubling */ 13312 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13313 tcg_passres, tcg_passres); 13314 } 13315 13316 if (opcode == 0xa || opcode == 0xb) { 13317 continue; 13318 } 13319 13320 /* Accumulating op: handle accumulate step */ 13321 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13322 13323 switch (opcode) { 13324 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13325 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13326 break; 13327 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13328 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13329 break; 13330 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13331 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13332 /* fall through */ 13333 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13334 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13335 tcg_res[pass], 13336 tcg_passres); 13337 break; 13338 default: 13339 g_assert_not_reached(); 13340 } 13341 } 13342 13343 clear_vec_high(s, !is_scalar, rd); 13344 } else { 13345 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13346 13347 assert(size == 1); 13348 read_vec_element_i32(s, tcg_idx, rm, index, size); 13349 13350 if (!is_scalar) { 13351 /* The simplest way to handle the 16x16 indexed ops is to 13352 * duplicate the index into both halves of the 32 bit tcg_idx 13353 * and then use the usual Neon helpers. 13354 */ 13355 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13356 } 13357 13358 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13359 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13360 TCGv_i64 tcg_passres; 13361 13362 if (is_scalar) { 13363 read_vec_element_i32(s, tcg_op, rn, pass, size); 13364 } else { 13365 read_vec_element_i32(s, tcg_op, rn, 13366 pass + (is_q * 2), MO_32); 13367 } 13368 13369 tcg_res[pass] = tcg_temp_new_i64(); 13370 13371 if (opcode == 0xa || opcode == 0xb) { 13372 /* Non-accumulating ops */ 13373 tcg_passres = tcg_res[pass]; 13374 } else { 13375 tcg_passres = tcg_temp_new_i64(); 13376 } 13377 13378 if (memop & MO_SIGN) { 13379 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13380 } else { 13381 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13382 } 13383 if (satop) { 13384 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13385 tcg_passres, tcg_passres); 13386 } 13387 13388 if (opcode == 0xa || opcode == 0xb) { 13389 continue; 13390 } 13391 13392 /* Accumulating op: handle accumulate step */ 13393 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13394 13395 switch (opcode) { 13396 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13397 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13398 tcg_passres); 13399 break; 13400 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13401 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13402 tcg_passres); 13403 break; 13404 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13405 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13406 /* fall through */ 13407 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13408 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13409 tcg_res[pass], 13410 tcg_passres); 13411 break; 13412 default: 13413 g_assert_not_reached(); 13414 } 13415 } 13416 13417 if (is_scalar) { 13418 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13419 } 13420 } 13421 13422 if (is_scalar) { 13423 tcg_res[1] = tcg_constant_i64(0); 13424 } 13425 13426 for (pass = 0; pass < 2; pass++) { 13427 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13428 } 13429 } 13430 } 13431 13432 /* Crypto AES 13433 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13434 * +-----------------+------+-----------+--------+-----+------+------+ 13435 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13436 * +-----------------+------+-----------+--------+-----+------+------+ 13437 */ 13438 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13439 { 13440 int size = extract32(insn, 22, 2); 13441 int opcode = extract32(insn, 12, 5); 13442 int rn = extract32(insn, 5, 5); 13443 int rd = extract32(insn, 0, 5); 13444 int decrypt; 13445 gen_helper_gvec_2 *genfn2 = NULL; 13446 gen_helper_gvec_3 *genfn3 = NULL; 13447 13448 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13449 unallocated_encoding(s); 13450 return; 13451 } 13452 13453 switch (opcode) { 13454 case 0x4: /* AESE */ 13455 decrypt = 0; 13456 genfn3 = gen_helper_crypto_aese; 13457 break; 13458 case 0x6: /* AESMC */ 13459 decrypt = 0; 13460 genfn2 = gen_helper_crypto_aesmc; 13461 break; 13462 case 0x5: /* AESD */ 13463 decrypt = 1; 13464 genfn3 = gen_helper_crypto_aese; 13465 break; 13466 case 0x7: /* AESIMC */ 13467 decrypt = 1; 13468 genfn2 = gen_helper_crypto_aesmc; 13469 break; 13470 default: 13471 unallocated_encoding(s); 13472 return; 13473 } 13474 13475 if (!fp_access_check(s)) { 13476 return; 13477 } 13478 if (genfn2) { 13479 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13480 } else { 13481 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13482 } 13483 } 13484 13485 /* Crypto three-reg SHA 13486 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13487 * +-----------------+------+---+------+---+--------+-----+------+------+ 13488 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13489 * +-----------------+------+---+------+---+--------+-----+------+------+ 13490 */ 13491 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13492 { 13493 int size = extract32(insn, 22, 2); 13494 int opcode = extract32(insn, 12, 3); 13495 int rm = extract32(insn, 16, 5); 13496 int rn = extract32(insn, 5, 5); 13497 int rd = extract32(insn, 0, 5); 13498 gen_helper_gvec_3 *genfn; 13499 bool feature; 13500 13501 if (size != 0) { 13502 unallocated_encoding(s); 13503 return; 13504 } 13505 13506 switch (opcode) { 13507 case 0: /* SHA1C */ 13508 genfn = gen_helper_crypto_sha1c; 13509 feature = dc_isar_feature(aa64_sha1, s); 13510 break; 13511 case 1: /* SHA1P */ 13512 genfn = gen_helper_crypto_sha1p; 13513 feature = dc_isar_feature(aa64_sha1, s); 13514 break; 13515 case 2: /* SHA1M */ 13516 genfn = gen_helper_crypto_sha1m; 13517 feature = dc_isar_feature(aa64_sha1, s); 13518 break; 13519 case 3: /* SHA1SU0 */ 13520 genfn = gen_helper_crypto_sha1su0; 13521 feature = dc_isar_feature(aa64_sha1, s); 13522 break; 13523 case 4: /* SHA256H */ 13524 genfn = gen_helper_crypto_sha256h; 13525 feature = dc_isar_feature(aa64_sha256, s); 13526 break; 13527 case 5: /* SHA256H2 */ 13528 genfn = gen_helper_crypto_sha256h2; 13529 feature = dc_isar_feature(aa64_sha256, s); 13530 break; 13531 case 6: /* SHA256SU1 */ 13532 genfn = gen_helper_crypto_sha256su1; 13533 feature = dc_isar_feature(aa64_sha256, s); 13534 break; 13535 default: 13536 unallocated_encoding(s); 13537 return; 13538 } 13539 13540 if (!feature) { 13541 unallocated_encoding(s); 13542 return; 13543 } 13544 13545 if (!fp_access_check(s)) { 13546 return; 13547 } 13548 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13549 } 13550 13551 /* Crypto two-reg SHA 13552 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13553 * +-----------------+------+-----------+--------+-----+------+------+ 13554 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13555 * +-----------------+------+-----------+--------+-----+------+------+ 13556 */ 13557 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13558 { 13559 int size = extract32(insn, 22, 2); 13560 int opcode = extract32(insn, 12, 5); 13561 int rn = extract32(insn, 5, 5); 13562 int rd = extract32(insn, 0, 5); 13563 gen_helper_gvec_2 *genfn; 13564 bool feature; 13565 13566 if (size != 0) { 13567 unallocated_encoding(s); 13568 return; 13569 } 13570 13571 switch (opcode) { 13572 case 0: /* SHA1H */ 13573 feature = dc_isar_feature(aa64_sha1, s); 13574 genfn = gen_helper_crypto_sha1h; 13575 break; 13576 case 1: /* SHA1SU1 */ 13577 feature = dc_isar_feature(aa64_sha1, s); 13578 genfn = gen_helper_crypto_sha1su1; 13579 break; 13580 case 2: /* SHA256SU0 */ 13581 feature = dc_isar_feature(aa64_sha256, s); 13582 genfn = gen_helper_crypto_sha256su0; 13583 break; 13584 default: 13585 unallocated_encoding(s); 13586 return; 13587 } 13588 13589 if (!feature) { 13590 unallocated_encoding(s); 13591 return; 13592 } 13593 13594 if (!fp_access_check(s)) { 13595 return; 13596 } 13597 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13598 } 13599 13600 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13601 { 13602 tcg_gen_rotli_i64(d, m, 1); 13603 tcg_gen_xor_i64(d, d, n); 13604 } 13605 13606 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13607 { 13608 tcg_gen_rotli_vec(vece, d, m, 1); 13609 tcg_gen_xor_vec(vece, d, d, n); 13610 } 13611 13612 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13613 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13614 { 13615 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13616 static const GVecGen3 op = { 13617 .fni8 = gen_rax1_i64, 13618 .fniv = gen_rax1_vec, 13619 .opt_opc = vecop_list, 13620 .fno = gen_helper_crypto_rax1, 13621 .vece = MO_64, 13622 }; 13623 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13624 } 13625 13626 /* Crypto three-reg SHA512 13627 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13628 * +-----------------------+------+---+---+-----+--------+------+------+ 13629 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13630 * +-----------------------+------+---+---+-----+--------+------+------+ 13631 */ 13632 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13633 { 13634 int opcode = extract32(insn, 10, 2); 13635 int o = extract32(insn, 14, 1); 13636 int rm = extract32(insn, 16, 5); 13637 int rn = extract32(insn, 5, 5); 13638 int rd = extract32(insn, 0, 5); 13639 bool feature; 13640 gen_helper_gvec_3 *oolfn = NULL; 13641 GVecGen3Fn *gvecfn = NULL; 13642 13643 if (o == 0) { 13644 switch (opcode) { 13645 case 0: /* SHA512H */ 13646 feature = dc_isar_feature(aa64_sha512, s); 13647 oolfn = gen_helper_crypto_sha512h; 13648 break; 13649 case 1: /* SHA512H2 */ 13650 feature = dc_isar_feature(aa64_sha512, s); 13651 oolfn = gen_helper_crypto_sha512h2; 13652 break; 13653 case 2: /* SHA512SU1 */ 13654 feature = dc_isar_feature(aa64_sha512, s); 13655 oolfn = gen_helper_crypto_sha512su1; 13656 break; 13657 case 3: /* RAX1 */ 13658 feature = dc_isar_feature(aa64_sha3, s); 13659 gvecfn = gen_gvec_rax1; 13660 break; 13661 default: 13662 g_assert_not_reached(); 13663 } 13664 } else { 13665 switch (opcode) { 13666 case 0: /* SM3PARTW1 */ 13667 feature = dc_isar_feature(aa64_sm3, s); 13668 oolfn = gen_helper_crypto_sm3partw1; 13669 break; 13670 case 1: /* SM3PARTW2 */ 13671 feature = dc_isar_feature(aa64_sm3, s); 13672 oolfn = gen_helper_crypto_sm3partw2; 13673 break; 13674 case 2: /* SM4EKEY */ 13675 feature = dc_isar_feature(aa64_sm4, s); 13676 oolfn = gen_helper_crypto_sm4ekey; 13677 break; 13678 default: 13679 unallocated_encoding(s); 13680 return; 13681 } 13682 } 13683 13684 if (!feature) { 13685 unallocated_encoding(s); 13686 return; 13687 } 13688 13689 if (!fp_access_check(s)) { 13690 return; 13691 } 13692 13693 if (oolfn) { 13694 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13695 } else { 13696 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13697 } 13698 } 13699 13700 /* Crypto two-reg SHA512 13701 * 31 12 11 10 9 5 4 0 13702 * +-----------------------------------------+--------+------+------+ 13703 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13704 * +-----------------------------------------+--------+------+------+ 13705 */ 13706 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13707 { 13708 int opcode = extract32(insn, 10, 2); 13709 int rn = extract32(insn, 5, 5); 13710 int rd = extract32(insn, 0, 5); 13711 bool feature; 13712 13713 switch (opcode) { 13714 case 0: /* SHA512SU0 */ 13715 feature = dc_isar_feature(aa64_sha512, s); 13716 break; 13717 case 1: /* SM4E */ 13718 feature = dc_isar_feature(aa64_sm4, s); 13719 break; 13720 default: 13721 unallocated_encoding(s); 13722 return; 13723 } 13724 13725 if (!feature) { 13726 unallocated_encoding(s); 13727 return; 13728 } 13729 13730 if (!fp_access_check(s)) { 13731 return; 13732 } 13733 13734 switch (opcode) { 13735 case 0: /* SHA512SU0 */ 13736 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13737 break; 13738 case 1: /* SM4E */ 13739 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13740 break; 13741 default: 13742 g_assert_not_reached(); 13743 } 13744 } 13745 13746 /* Crypto four-register 13747 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13748 * +-------------------+-----+------+---+------+------+------+ 13749 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13750 * +-------------------+-----+------+---+------+------+------+ 13751 */ 13752 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13753 { 13754 int op0 = extract32(insn, 21, 2); 13755 int rm = extract32(insn, 16, 5); 13756 int ra = extract32(insn, 10, 5); 13757 int rn = extract32(insn, 5, 5); 13758 int rd = extract32(insn, 0, 5); 13759 bool feature; 13760 13761 switch (op0) { 13762 case 0: /* EOR3 */ 13763 case 1: /* BCAX */ 13764 feature = dc_isar_feature(aa64_sha3, s); 13765 break; 13766 case 2: /* SM3SS1 */ 13767 feature = dc_isar_feature(aa64_sm3, s); 13768 break; 13769 default: 13770 unallocated_encoding(s); 13771 return; 13772 } 13773 13774 if (!feature) { 13775 unallocated_encoding(s); 13776 return; 13777 } 13778 13779 if (!fp_access_check(s)) { 13780 return; 13781 } 13782 13783 if (op0 < 2) { 13784 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13785 int pass; 13786 13787 tcg_op1 = tcg_temp_new_i64(); 13788 tcg_op2 = tcg_temp_new_i64(); 13789 tcg_op3 = tcg_temp_new_i64(); 13790 tcg_res[0] = tcg_temp_new_i64(); 13791 tcg_res[1] = tcg_temp_new_i64(); 13792 13793 for (pass = 0; pass < 2; pass++) { 13794 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13795 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13796 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13797 13798 if (op0 == 0) { 13799 /* EOR3 */ 13800 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13801 } else { 13802 /* BCAX */ 13803 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13804 } 13805 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13806 } 13807 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13808 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13809 } else { 13810 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13811 13812 tcg_op1 = tcg_temp_new_i32(); 13813 tcg_op2 = tcg_temp_new_i32(); 13814 tcg_op3 = tcg_temp_new_i32(); 13815 tcg_res = tcg_temp_new_i32(); 13816 tcg_zero = tcg_constant_i32(0); 13817 13818 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13819 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13820 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13821 13822 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13823 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13824 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13825 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13826 13827 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13828 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13829 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13830 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13831 } 13832 } 13833 13834 /* Crypto XAR 13835 * 31 21 20 16 15 10 9 5 4 0 13836 * +-----------------------+------+--------+------+------+ 13837 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13838 * +-----------------------+------+--------+------+------+ 13839 */ 13840 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13841 { 13842 int rm = extract32(insn, 16, 5); 13843 int imm6 = extract32(insn, 10, 6); 13844 int rn = extract32(insn, 5, 5); 13845 int rd = extract32(insn, 0, 5); 13846 13847 if (!dc_isar_feature(aa64_sha3, s)) { 13848 unallocated_encoding(s); 13849 return; 13850 } 13851 13852 if (!fp_access_check(s)) { 13853 return; 13854 } 13855 13856 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13857 vec_full_reg_offset(s, rn), 13858 vec_full_reg_offset(s, rm), imm6, 16, 13859 vec_full_reg_size(s)); 13860 } 13861 13862 /* Crypto three-reg imm2 13863 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13864 * +-----------------------+------+-----+------+--------+------+------+ 13865 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13866 * +-----------------------+------+-----+------+--------+------+------+ 13867 */ 13868 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13869 { 13870 static gen_helper_gvec_3 * const fns[4] = { 13871 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13872 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13873 }; 13874 int opcode = extract32(insn, 10, 2); 13875 int imm2 = extract32(insn, 12, 2); 13876 int rm = extract32(insn, 16, 5); 13877 int rn = extract32(insn, 5, 5); 13878 int rd = extract32(insn, 0, 5); 13879 13880 if (!dc_isar_feature(aa64_sm3, s)) { 13881 unallocated_encoding(s); 13882 return; 13883 } 13884 13885 if (!fp_access_check(s)) { 13886 return; 13887 } 13888 13889 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13890 } 13891 13892 /* C3.6 Data processing - SIMD, inc Crypto 13893 * 13894 * As the decode gets a little complex we are using a table based 13895 * approach for this part of the decode. 13896 */ 13897 static const AArch64DecodeTable data_proc_simd[] = { 13898 /* pattern , mask , fn */ 13899 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13900 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13901 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13902 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13903 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13904 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13905 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13906 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13907 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13908 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13909 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13910 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13911 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13912 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13913 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13914 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13915 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13916 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13917 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13918 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13919 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13920 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13921 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13922 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13923 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13924 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13925 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13926 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13927 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13928 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13929 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13930 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13931 { 0x00000000, 0x00000000, NULL } 13932 }; 13933 13934 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13935 { 13936 /* Note that this is called with all non-FP cases from 13937 * table C3-6 so it must UNDEF for entries not specifically 13938 * allocated to instructions in that table. 13939 */ 13940 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13941 if (fn) { 13942 fn(s, insn); 13943 } else { 13944 unallocated_encoding(s); 13945 } 13946 } 13947 13948 /* C3.6 Data processing - SIMD and floating point */ 13949 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13950 { 13951 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13952 disas_data_proc_fp(s, insn); 13953 } else { 13954 /* SIMD, including crypto */ 13955 disas_data_proc_simd(s, insn); 13956 } 13957 } 13958 13959 static bool trans_OK(DisasContext *s, arg_OK *a) 13960 { 13961 return true; 13962 } 13963 13964 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13965 { 13966 s->is_nonstreaming = true; 13967 return true; 13968 } 13969 13970 /** 13971 * is_guarded_page: 13972 * @env: The cpu environment 13973 * @s: The DisasContext 13974 * 13975 * Return true if the page is guarded. 13976 */ 13977 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13978 { 13979 uint64_t addr = s->base.pc_first; 13980 #ifdef CONFIG_USER_ONLY 13981 return page_get_flags(addr) & PAGE_BTI; 13982 #else 13983 CPUTLBEntryFull *full; 13984 void *host; 13985 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13986 int flags; 13987 13988 /* 13989 * We test this immediately after reading an insn, which means 13990 * that the TLB entry must be present and valid, and thus this 13991 * access will never raise an exception. 13992 */ 13993 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13994 false, &host, &full, 0); 13995 assert(!(flags & TLB_INVALID_MASK)); 13996 13997 return full->guarded; 13998 #endif 13999 } 14000 14001 /** 14002 * btype_destination_ok: 14003 * @insn: The instruction at the branch destination 14004 * @bt: SCTLR_ELx.BT 14005 * @btype: PSTATE.BTYPE, and is non-zero 14006 * 14007 * On a guarded page, there are a limited number of insns 14008 * that may be present at the branch target: 14009 * - branch target identifiers, 14010 * - paciasp, pacibsp, 14011 * - BRK insn 14012 * - HLT insn 14013 * Anything else causes a Branch Target Exception. 14014 * 14015 * Return true if the branch is compatible, false to raise BTITRAP. 14016 */ 14017 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14018 { 14019 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14020 /* HINT space */ 14021 switch (extract32(insn, 5, 7)) { 14022 case 0b011001: /* PACIASP */ 14023 case 0b011011: /* PACIBSP */ 14024 /* 14025 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14026 * with btype == 3. Otherwise all btype are ok. 14027 */ 14028 return !bt || btype != 3; 14029 case 0b100000: /* BTI */ 14030 /* Not compatible with any btype. */ 14031 return false; 14032 case 0b100010: /* BTI c */ 14033 /* Not compatible with btype == 3 */ 14034 return btype != 3; 14035 case 0b100100: /* BTI j */ 14036 /* Not compatible with btype == 2 */ 14037 return btype != 2; 14038 case 0b100110: /* BTI jc */ 14039 /* Compatible with any btype. */ 14040 return true; 14041 } 14042 } else { 14043 switch (insn & 0xffe0001fu) { 14044 case 0xd4200000u: /* BRK */ 14045 case 0xd4400000u: /* HLT */ 14046 /* Give priority to the breakpoint exception. */ 14047 return true; 14048 } 14049 } 14050 return false; 14051 } 14052 14053 /* C3.1 A64 instruction index by encoding */ 14054 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14055 { 14056 switch (extract32(insn, 25, 4)) { 14057 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14058 disas_b_exc_sys(s, insn); 14059 break; 14060 case 0x4: 14061 case 0x6: 14062 case 0xc: 14063 case 0xe: /* Loads and stores */ 14064 disas_ldst(s, insn); 14065 break; 14066 case 0x5: 14067 case 0xd: /* Data processing - register */ 14068 disas_data_proc_reg(s, insn); 14069 break; 14070 case 0x7: 14071 case 0xf: /* Data processing - SIMD and floating point */ 14072 disas_data_proc_simd_fp(s, insn); 14073 break; 14074 default: 14075 unallocated_encoding(s); 14076 break; 14077 } 14078 } 14079 14080 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14081 CPUState *cpu) 14082 { 14083 DisasContext *dc = container_of(dcbase, DisasContext, base); 14084 CPUARMState *env = cpu->env_ptr; 14085 ARMCPU *arm_cpu = env_archcpu(env); 14086 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14087 int bound, core_mmu_idx; 14088 14089 dc->isar = &arm_cpu->isar; 14090 dc->condjmp = 0; 14091 dc->pc_save = dc->base.pc_first; 14092 dc->aarch64 = true; 14093 dc->thumb = false; 14094 dc->sctlr_b = 0; 14095 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14096 dc->condexec_mask = 0; 14097 dc->condexec_cond = 0; 14098 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14099 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14100 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14101 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14102 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14103 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14104 #if !defined(CONFIG_USER_ONLY) 14105 dc->user = (dc->current_el == 0); 14106 #endif 14107 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14108 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14109 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14110 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14111 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14112 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14113 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14114 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14115 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14116 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14117 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14118 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14119 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14120 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14121 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14122 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14123 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14124 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14125 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14126 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14127 dc->vec_len = 0; 14128 dc->vec_stride = 0; 14129 dc->cp_regs = arm_cpu->cp_regs; 14130 dc->features = env->features; 14131 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14132 14133 #ifdef CONFIG_USER_ONLY 14134 /* In sve_probe_page, we assume TBI is enabled. */ 14135 tcg_debug_assert(dc->tbid & 1); 14136 #endif 14137 14138 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14139 14140 /* Single step state. The code-generation logic here is: 14141 * SS_ACTIVE == 0: 14142 * generate code with no special handling for single-stepping (except 14143 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14144 * this happens anyway because those changes are all system register or 14145 * PSTATE writes). 14146 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14147 * emit code for one insn 14148 * emit code to clear PSTATE.SS 14149 * emit code to generate software step exception for completed step 14150 * end TB (as usual for having generated an exception) 14151 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14152 * emit code to generate a software step exception 14153 * end the TB 14154 */ 14155 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14156 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14157 dc->is_ldex = false; 14158 14159 /* Bound the number of insns to execute to those left on the page. */ 14160 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14161 14162 /* If architectural single step active, limit to 1. */ 14163 if (dc->ss_active) { 14164 bound = 1; 14165 } 14166 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14167 } 14168 14169 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14170 { 14171 } 14172 14173 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14174 { 14175 DisasContext *dc = container_of(dcbase, DisasContext, base); 14176 target_ulong pc_arg = dc->base.pc_next; 14177 14178 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14179 pc_arg &= ~TARGET_PAGE_MASK; 14180 } 14181 tcg_gen_insn_start(pc_arg, 0, 0); 14182 dc->insn_start = tcg_last_op(); 14183 } 14184 14185 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14186 { 14187 DisasContext *s = container_of(dcbase, DisasContext, base); 14188 CPUARMState *env = cpu->env_ptr; 14189 uint64_t pc = s->base.pc_next; 14190 uint32_t insn; 14191 14192 /* Singlestep exceptions have the highest priority. */ 14193 if (s->ss_active && !s->pstate_ss) { 14194 /* Singlestep state is Active-pending. 14195 * If we're in this state at the start of a TB then either 14196 * a) we just took an exception to an EL which is being debugged 14197 * and this is the first insn in the exception handler 14198 * b) debug exceptions were masked and we just unmasked them 14199 * without changing EL (eg by clearing PSTATE.D) 14200 * In either case we're going to take a swstep exception in the 14201 * "did not step an insn" case, and so the syndrome ISV and EX 14202 * bits should be zero. 14203 */ 14204 assert(s->base.num_insns == 1); 14205 gen_swstep_exception(s, 0, 0); 14206 s->base.is_jmp = DISAS_NORETURN; 14207 s->base.pc_next = pc + 4; 14208 return; 14209 } 14210 14211 if (pc & 3) { 14212 /* 14213 * PC alignment fault. This has priority over the instruction abort 14214 * that we would receive from a translation fault via arm_ldl_code. 14215 * This should only be possible after an indirect branch, at the 14216 * start of the TB. 14217 */ 14218 assert(s->base.num_insns == 1); 14219 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14220 s->base.is_jmp = DISAS_NORETURN; 14221 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14222 return; 14223 } 14224 14225 s->pc_curr = pc; 14226 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14227 s->insn = insn; 14228 s->base.pc_next = pc + 4; 14229 14230 s->fp_access_checked = false; 14231 s->sve_access_checked = false; 14232 14233 if (s->pstate_il) { 14234 /* 14235 * Illegal execution state. This has priority over BTI 14236 * exceptions, but comes after instruction abort exceptions. 14237 */ 14238 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14239 return; 14240 } 14241 14242 if (dc_isar_feature(aa64_bti, s)) { 14243 if (s->base.num_insns == 1) { 14244 /* 14245 * At the first insn of the TB, compute s->guarded_page. 14246 * We delayed computing this until successfully reading 14247 * the first insn of the TB, above. This (mostly) ensures 14248 * that the softmmu tlb entry has been populated, and the 14249 * page table GP bit is available. 14250 * 14251 * Note that we need to compute this even if btype == 0, 14252 * because this value is used for BR instructions later 14253 * where ENV is not available. 14254 */ 14255 s->guarded_page = is_guarded_page(env, s); 14256 14257 /* First insn can have btype set to non-zero. */ 14258 tcg_debug_assert(s->btype >= 0); 14259 14260 /* 14261 * Note that the Branch Target Exception has fairly high 14262 * priority -- below debugging exceptions but above most 14263 * everything else. This allows us to handle this now 14264 * instead of waiting until the insn is otherwise decoded. 14265 */ 14266 if (s->btype != 0 14267 && s->guarded_page 14268 && !btype_destination_ok(insn, s->bt, s->btype)) { 14269 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14270 return; 14271 } 14272 } else { 14273 /* Not the first insn: btype must be 0. */ 14274 tcg_debug_assert(s->btype == 0); 14275 } 14276 } 14277 14278 s->is_nonstreaming = false; 14279 if (s->sme_trap_nonstreaming) { 14280 disas_sme_fa64(s, insn); 14281 } 14282 14283 if (!disas_a64(s, insn) && 14284 !disas_sme(s, insn) && 14285 !disas_sve(s, insn)) { 14286 disas_a64_legacy(s, insn); 14287 } 14288 14289 /* 14290 * After execution of most insns, btype is reset to 0. 14291 * Note that we set btype == -1 when the insn sets btype. 14292 */ 14293 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14294 reset_btype(s); 14295 } 14296 } 14297 14298 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14299 { 14300 DisasContext *dc = container_of(dcbase, DisasContext, base); 14301 14302 if (unlikely(dc->ss_active)) { 14303 /* Note that this means single stepping WFI doesn't halt the CPU. 14304 * For conditional branch insns this is harmless unreachable code as 14305 * gen_goto_tb() has already handled emitting the debug exception 14306 * (and thus a tb-jump is not possible when singlestepping). 14307 */ 14308 switch (dc->base.is_jmp) { 14309 default: 14310 gen_a64_update_pc(dc, 4); 14311 /* fall through */ 14312 case DISAS_EXIT: 14313 case DISAS_JUMP: 14314 gen_step_complete_exception(dc); 14315 break; 14316 case DISAS_NORETURN: 14317 break; 14318 } 14319 } else { 14320 switch (dc->base.is_jmp) { 14321 case DISAS_NEXT: 14322 case DISAS_TOO_MANY: 14323 gen_goto_tb(dc, 1, 4); 14324 break; 14325 default: 14326 case DISAS_UPDATE_EXIT: 14327 gen_a64_update_pc(dc, 4); 14328 /* fall through */ 14329 case DISAS_EXIT: 14330 tcg_gen_exit_tb(NULL, 0); 14331 break; 14332 case DISAS_UPDATE_NOCHAIN: 14333 gen_a64_update_pc(dc, 4); 14334 /* fall through */ 14335 case DISAS_JUMP: 14336 tcg_gen_lookup_and_goto_ptr(); 14337 break; 14338 case DISAS_NORETURN: 14339 case DISAS_SWI: 14340 break; 14341 case DISAS_WFE: 14342 gen_a64_update_pc(dc, 4); 14343 gen_helper_wfe(cpu_env); 14344 break; 14345 case DISAS_YIELD: 14346 gen_a64_update_pc(dc, 4); 14347 gen_helper_yield(cpu_env); 14348 break; 14349 case DISAS_WFI: 14350 /* 14351 * This is a special case because we don't want to just halt 14352 * the CPU if trying to debug across a WFI. 14353 */ 14354 gen_a64_update_pc(dc, 4); 14355 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14356 /* 14357 * The helper doesn't necessarily throw an exception, but we 14358 * must go back to the main loop to check for interrupts anyway. 14359 */ 14360 tcg_gen_exit_tb(NULL, 0); 14361 break; 14362 } 14363 } 14364 } 14365 14366 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14367 CPUState *cpu, FILE *logfile) 14368 { 14369 DisasContext *dc = container_of(dcbase, DisasContext, base); 14370 14371 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14372 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14373 } 14374 14375 const TranslatorOps aarch64_translator_ops = { 14376 .init_disas_context = aarch64_tr_init_disas_context, 14377 .tb_start = aarch64_tr_tb_start, 14378 .insn_start = aarch64_tr_insn_start, 14379 .translate_insn = aarch64_tr_translate_insn, 14380 .tb_stop = aarch64_tr_tb_stop, 14381 .disas_log = aarch64_tr_disas_log, 14382 }; 14383