1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1653 { 1654 return true; 1655 } 1656 1657 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1658 { 1659 /* 1660 * When running in MTTCG we don't generate jumps to the yield and 1661 * WFE helpers as it won't affect the scheduling of other vCPUs. 1662 * If we wanted to more completely model WFE/SEV so we don't busy 1663 * spin unnecessarily we would need to do something more involved. 1664 */ 1665 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1666 s->base.is_jmp = DISAS_YIELD; 1667 } 1668 return true; 1669 } 1670 1671 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1672 { 1673 s->base.is_jmp = DISAS_WFI; 1674 return true; 1675 } 1676 1677 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1678 { 1679 /* 1680 * When running in MTTCG we don't generate jumps to the yield and 1681 * WFE helpers as it won't affect the scheduling of other vCPUs. 1682 * If we wanted to more completely model WFE/SEV so we don't busy 1683 * spin unnecessarily we would need to do something more involved. 1684 */ 1685 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1686 s->base.is_jmp = DISAS_WFE; 1687 } 1688 return true; 1689 } 1690 1691 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1692 { 1693 if (s->pauth_active) { 1694 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1695 } 1696 return true; 1697 } 1698 1699 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1700 { 1701 if (s->pauth_active) { 1702 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1703 } 1704 return true; 1705 } 1706 1707 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1708 { 1709 if (s->pauth_active) { 1710 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1711 } 1712 return true; 1713 } 1714 1715 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1716 { 1717 if (s->pauth_active) { 1718 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1719 } 1720 return true; 1721 } 1722 1723 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1724 { 1725 if (s->pauth_active) { 1726 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1727 } 1728 return true; 1729 } 1730 1731 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1732 { 1733 /* Without RAS, we must implement this as NOP. */ 1734 if (dc_isar_feature(aa64_ras, s)) { 1735 /* 1736 * QEMU does not have a source of physical SErrors, 1737 * so we are only concerned with virtual SErrors. 1738 * The pseudocode in the ARM for this case is 1739 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1740 * AArch64.vESBOperation(); 1741 * Most of the condition can be evaluated at translation time. 1742 * Test for EL2 present, and defer test for SEL2 to runtime. 1743 */ 1744 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1745 gen_helper_vesb(cpu_env); 1746 } 1747 } 1748 return true; 1749 } 1750 1751 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1752 { 1753 if (s->pauth_active) { 1754 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1755 } 1756 return true; 1757 } 1758 1759 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1760 { 1761 if (s->pauth_active) { 1762 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1763 } 1764 return true; 1765 } 1766 1767 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1768 { 1769 if (s->pauth_active) { 1770 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1771 } 1772 return true; 1773 } 1774 1775 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1776 { 1777 if (s->pauth_active) { 1778 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1779 } 1780 return true; 1781 } 1782 1783 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1784 { 1785 if (s->pauth_active) { 1786 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1787 } 1788 return true; 1789 } 1790 1791 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1792 { 1793 if (s->pauth_active) { 1794 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1795 } 1796 return true; 1797 } 1798 1799 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1800 { 1801 if (s->pauth_active) { 1802 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1803 } 1804 return true; 1805 } 1806 1807 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1808 { 1809 if (s->pauth_active) { 1810 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1811 } 1812 return true; 1813 } 1814 1815 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1816 { 1817 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1818 return true; 1819 } 1820 1821 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1822 { 1823 /* We handle DSB and DMB the same way */ 1824 TCGBar bar; 1825 1826 switch (a->types) { 1827 case 1: /* MBReqTypes_Reads */ 1828 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1829 break; 1830 case 2: /* MBReqTypes_Writes */ 1831 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1832 break; 1833 default: /* MBReqTypes_All */ 1834 bar = TCG_BAR_SC | TCG_MO_ALL; 1835 break; 1836 } 1837 tcg_gen_mb(bar); 1838 return true; 1839 } 1840 1841 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1842 { 1843 /* 1844 * We need to break the TB after this insn to execute 1845 * self-modifying code correctly and also to take 1846 * any pending interrupts immediately. 1847 */ 1848 reset_btype(s); 1849 gen_goto_tb(s, 0, 4); 1850 return true; 1851 } 1852 1853 static bool trans_SB(DisasContext *s, arg_SB *a) 1854 { 1855 if (!dc_isar_feature(aa64_sb, s)) { 1856 return false; 1857 } 1858 /* 1859 * TODO: There is no speculation barrier opcode for TCG; 1860 * MB and end the TB instead. 1861 */ 1862 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1863 gen_goto_tb(s, 0, 4); 1864 return true; 1865 } 1866 1867 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1868 { 1869 if (!dc_isar_feature(aa64_condm_4, s)) { 1870 return false; 1871 } 1872 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1873 return true; 1874 } 1875 1876 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1877 { 1878 TCGv_i32 z; 1879 1880 if (!dc_isar_feature(aa64_condm_5, s)) { 1881 return false; 1882 } 1883 1884 z = tcg_temp_new_i32(); 1885 1886 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1887 1888 /* 1889 * (!C & !Z) << 31 1890 * (!(C | Z)) << 31 1891 * ~((C | Z) << 31) 1892 * ~-(C | Z) 1893 * (C | Z) - 1 1894 */ 1895 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1896 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1897 1898 /* !(Z & C) */ 1899 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1900 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1901 1902 /* (!C & Z) << 31 -> -(Z & ~C) */ 1903 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1904 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1905 1906 /* C | Z */ 1907 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1908 1909 return true; 1910 } 1911 1912 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1913 { 1914 if (!dc_isar_feature(aa64_condm_5, s)) { 1915 return false; 1916 } 1917 1918 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1919 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1920 1921 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1922 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1923 1924 tcg_gen_movi_i32(cpu_NF, 0); 1925 tcg_gen_movi_i32(cpu_VF, 0); 1926 1927 return true; 1928 } 1929 1930 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1931 { 1932 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1933 return false; 1934 } 1935 if (a->imm & 1) { 1936 set_pstate_bits(PSTATE_UAO); 1937 } else { 1938 clear_pstate_bits(PSTATE_UAO); 1939 } 1940 gen_rebuild_hflags(s); 1941 s->base.is_jmp = DISAS_TOO_MANY; 1942 return true; 1943 } 1944 1945 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1946 { 1947 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1948 return false; 1949 } 1950 if (a->imm & 1) { 1951 set_pstate_bits(PSTATE_PAN); 1952 } else { 1953 clear_pstate_bits(PSTATE_PAN); 1954 } 1955 gen_rebuild_hflags(s); 1956 s->base.is_jmp = DISAS_TOO_MANY; 1957 return true; 1958 } 1959 1960 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1961 { 1962 if (s->current_el == 0) { 1963 return false; 1964 } 1965 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1966 s->base.is_jmp = DISAS_TOO_MANY; 1967 return true; 1968 } 1969 1970 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1971 { 1972 if (!dc_isar_feature(aa64_ssbs, s)) { 1973 return false; 1974 } 1975 if (a->imm & 1) { 1976 set_pstate_bits(PSTATE_SSBS); 1977 } else { 1978 clear_pstate_bits(PSTATE_SSBS); 1979 } 1980 /* Don't need to rebuild hflags since SSBS is a nop */ 1981 s->base.is_jmp = DISAS_TOO_MANY; 1982 return true; 1983 } 1984 1985 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1986 { 1987 if (!dc_isar_feature(aa64_dit, s)) { 1988 return false; 1989 } 1990 if (a->imm & 1) { 1991 set_pstate_bits(PSTATE_DIT); 1992 } else { 1993 clear_pstate_bits(PSTATE_DIT); 1994 } 1995 /* There's no need to rebuild hflags because DIT is a nop */ 1996 s->base.is_jmp = DISAS_TOO_MANY; 1997 return true; 1998 } 1999 2000 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2001 { 2002 if (dc_isar_feature(aa64_mte, s)) { 2003 /* Full MTE is enabled -- set the TCO bit as directed. */ 2004 if (a->imm & 1) { 2005 set_pstate_bits(PSTATE_TCO); 2006 } else { 2007 clear_pstate_bits(PSTATE_TCO); 2008 } 2009 gen_rebuild_hflags(s); 2010 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2011 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2012 return true; 2013 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2014 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2015 return true; 2016 } else { 2017 /* Insn not present */ 2018 return false; 2019 } 2020 } 2021 2022 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2023 { 2024 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2025 s->base.is_jmp = DISAS_TOO_MANY; 2026 return true; 2027 } 2028 2029 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2030 { 2031 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2032 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2033 s->base.is_jmp = DISAS_UPDATE_EXIT; 2034 return true; 2035 } 2036 2037 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2038 { 2039 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2040 return false; 2041 } 2042 if (sme_access_check(s)) { 2043 int old = s->pstate_sm | (s->pstate_za << 1); 2044 int new = a->imm * 3; 2045 2046 if ((old ^ new) & a->mask) { 2047 /* At least one bit changes. */ 2048 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2049 tcg_constant_i32(a->mask)); 2050 s->base.is_jmp = DISAS_TOO_MANY; 2051 } 2052 } 2053 return true; 2054 } 2055 2056 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2057 { 2058 TCGv_i32 tmp = tcg_temp_new_i32(); 2059 TCGv_i32 nzcv = tcg_temp_new_i32(); 2060 2061 /* build bit 31, N */ 2062 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2063 /* build bit 30, Z */ 2064 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2065 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2066 /* build bit 29, C */ 2067 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2068 /* build bit 28, V */ 2069 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2070 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2071 /* generate result */ 2072 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2073 } 2074 2075 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2076 { 2077 TCGv_i32 nzcv = tcg_temp_new_i32(); 2078 2079 /* take NZCV from R[t] */ 2080 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2081 2082 /* bit 31, N */ 2083 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2084 /* bit 30, Z */ 2085 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2087 /* bit 29, C */ 2088 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2089 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2090 /* bit 28, V */ 2091 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2092 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2093 } 2094 2095 static void gen_sysreg_undef(DisasContext *s, bool isread, 2096 uint8_t op0, uint8_t op1, uint8_t op2, 2097 uint8_t crn, uint8_t crm, uint8_t rt) 2098 { 2099 /* 2100 * Generate code to emit an UNDEF with correct syndrome 2101 * information for a failed system register access. 2102 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2103 * but if FEAT_IDST is implemented then read accesses to registers 2104 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2105 * syndrome. 2106 */ 2107 uint32_t syndrome; 2108 2109 if (isread && dc_isar_feature(aa64_ids, s) && 2110 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2111 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2112 } else { 2113 syndrome = syn_uncategorized(); 2114 } 2115 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2116 } 2117 2118 /* MRS - move from system register 2119 * MSR (register) - move to system register 2120 * SYS 2121 * SYSL 2122 * These are all essentially the same insn in 'read' and 'write' 2123 * versions, with varying op0 fields. 2124 */ 2125 static void handle_sys(DisasContext *s, bool isread, 2126 unsigned int op0, unsigned int op1, unsigned int op2, 2127 unsigned int crn, unsigned int crm, unsigned int rt) 2128 { 2129 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2130 crn, crm, op0, op1, op2); 2131 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2132 bool need_exit_tb = false; 2133 TCGv_ptr tcg_ri = NULL; 2134 TCGv_i64 tcg_rt; 2135 2136 if (!ri) { 2137 /* Unknown register; this might be a guest error or a QEMU 2138 * unimplemented feature. 2139 */ 2140 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2141 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2142 isread ? "read" : "write", op0, op1, crn, crm, op2); 2143 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2144 return; 2145 } 2146 2147 /* Check access permissions */ 2148 if (!cp_access_ok(s->current_el, ri, isread)) { 2149 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2150 return; 2151 } 2152 2153 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2154 /* Emit code to perform further access permissions checks at 2155 * runtime; this may result in an exception. 2156 */ 2157 uint32_t syndrome; 2158 2159 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2160 gen_a64_update_pc(s, 0); 2161 tcg_ri = tcg_temp_new_ptr(); 2162 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2163 tcg_constant_i32(key), 2164 tcg_constant_i32(syndrome), 2165 tcg_constant_i32(isread)); 2166 } else if (ri->type & ARM_CP_RAISES_EXC) { 2167 /* 2168 * The readfn or writefn might raise an exception; 2169 * synchronize the CPU state in case it does. 2170 */ 2171 gen_a64_update_pc(s, 0); 2172 } 2173 2174 /* Handle special cases first */ 2175 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2176 case 0: 2177 break; 2178 case ARM_CP_NOP: 2179 return; 2180 case ARM_CP_NZCV: 2181 tcg_rt = cpu_reg(s, rt); 2182 if (isread) { 2183 gen_get_nzcv(tcg_rt); 2184 } else { 2185 gen_set_nzcv(tcg_rt); 2186 } 2187 return; 2188 case ARM_CP_CURRENTEL: 2189 /* Reads as current EL value from pstate, which is 2190 * guaranteed to be constant by the tb flags. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2194 return; 2195 case ARM_CP_DC_ZVA: 2196 /* Writes clear the aligned block of memory which rt points into. */ 2197 if (s->mte_active[0]) { 2198 int desc = 0; 2199 2200 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2201 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2202 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2203 2204 tcg_rt = tcg_temp_new_i64(); 2205 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2206 tcg_constant_i32(desc), cpu_reg(s, rt)); 2207 } else { 2208 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2209 } 2210 gen_helper_dc_zva(cpu_env, tcg_rt); 2211 return; 2212 case ARM_CP_DC_GVA: 2213 { 2214 TCGv_i64 clean_addr, tag; 2215 2216 /* 2217 * DC_GVA, like DC_ZVA, requires that we supply the original 2218 * pointer for an invalid page. Probe that address first. 2219 */ 2220 tcg_rt = cpu_reg(s, rt); 2221 clean_addr = clean_data_tbi(s, tcg_rt); 2222 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2223 2224 if (s->ata) { 2225 /* Extract the tag from the register to match STZGM. */ 2226 tag = tcg_temp_new_i64(); 2227 tcg_gen_shri_i64(tag, tcg_rt, 56); 2228 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2229 } 2230 } 2231 return; 2232 case ARM_CP_DC_GZVA: 2233 { 2234 TCGv_i64 clean_addr, tag; 2235 2236 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2237 tcg_rt = cpu_reg(s, rt); 2238 clean_addr = clean_data_tbi(s, tcg_rt); 2239 gen_helper_dc_zva(cpu_env, clean_addr); 2240 2241 if (s->ata) { 2242 /* Extract the tag from the register to match STZGM. */ 2243 tag = tcg_temp_new_i64(); 2244 tcg_gen_shri_i64(tag, tcg_rt, 56); 2245 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2246 } 2247 } 2248 return; 2249 default: 2250 g_assert_not_reached(); 2251 } 2252 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2253 return; 2254 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2255 return; 2256 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2257 return; 2258 } 2259 2260 if (ri->type & ARM_CP_IO) { 2261 /* I/O operations must end the TB here (whether read or write) */ 2262 need_exit_tb = translator_io_start(&s->base); 2263 } 2264 2265 tcg_rt = cpu_reg(s, rt); 2266 2267 if (isread) { 2268 if (ri->type & ARM_CP_CONST) { 2269 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2270 } else if (ri->readfn) { 2271 if (!tcg_ri) { 2272 tcg_ri = gen_lookup_cp_reg(key); 2273 } 2274 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2275 } else { 2276 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2277 } 2278 } else { 2279 if (ri->type & ARM_CP_CONST) { 2280 /* If not forbidden by access permissions, treat as WI */ 2281 return; 2282 } else if (ri->writefn) { 2283 if (!tcg_ri) { 2284 tcg_ri = gen_lookup_cp_reg(key); 2285 } 2286 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2287 } else { 2288 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2289 } 2290 } 2291 2292 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2293 /* 2294 * A write to any coprocessor regiser that ends a TB 2295 * must rebuild the hflags for the next TB. 2296 */ 2297 gen_rebuild_hflags(s); 2298 /* 2299 * We default to ending the TB on a coprocessor register write, 2300 * but allow this to be suppressed by the register definition 2301 * (usually only necessary to work around guest bugs). 2302 */ 2303 need_exit_tb = true; 2304 } 2305 if (need_exit_tb) { 2306 s->base.is_jmp = DISAS_UPDATE_EXIT; 2307 } 2308 } 2309 2310 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2311 { 2312 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2313 return true; 2314 } 2315 2316 /* Exception generation 2317 * 2318 * 31 24 23 21 20 5 4 2 1 0 2319 * +-----------------+-----+------------------------+-----+----+ 2320 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2321 * +-----------------------+------------------------+----------+ 2322 */ 2323 static void disas_exc(DisasContext *s, uint32_t insn) 2324 { 2325 int opc = extract32(insn, 21, 3); 2326 int op2_ll = extract32(insn, 0, 5); 2327 int imm16 = extract32(insn, 5, 16); 2328 uint32_t syndrome; 2329 2330 switch (opc) { 2331 case 0: 2332 /* For SVC, HVC and SMC we advance the single-step state 2333 * machine before taking the exception. This is architecturally 2334 * mandated, to ensure that single-stepping a system call 2335 * instruction works properly. 2336 */ 2337 switch (op2_ll) { 2338 case 1: /* SVC */ 2339 syndrome = syn_aa64_svc(imm16); 2340 if (s->fgt_svc) { 2341 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2342 break; 2343 } 2344 gen_ss_advance(s); 2345 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2346 break; 2347 case 2: /* HVC */ 2348 if (s->current_el == 0) { 2349 unallocated_encoding(s); 2350 break; 2351 } 2352 /* The pre HVC helper handles cases when HVC gets trapped 2353 * as an undefined insn by runtime configuration. 2354 */ 2355 gen_a64_update_pc(s, 0); 2356 gen_helper_pre_hvc(cpu_env); 2357 gen_ss_advance(s); 2358 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2359 break; 2360 case 3: /* SMC */ 2361 if (s->current_el == 0) { 2362 unallocated_encoding(s); 2363 break; 2364 } 2365 gen_a64_update_pc(s, 0); 2366 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2367 gen_ss_advance(s); 2368 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2369 break; 2370 default: 2371 unallocated_encoding(s); 2372 break; 2373 } 2374 break; 2375 case 1: 2376 if (op2_ll != 0) { 2377 unallocated_encoding(s); 2378 break; 2379 } 2380 /* BRK */ 2381 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2382 break; 2383 case 2: 2384 if (op2_ll != 0) { 2385 unallocated_encoding(s); 2386 break; 2387 } 2388 /* HLT. This has two purposes. 2389 * Architecturally, it is an external halting debug instruction. 2390 * Since QEMU doesn't implement external debug, we treat this as 2391 * it is required for halting debug disabled: it will UNDEF. 2392 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2393 */ 2394 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2395 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2396 } else { 2397 unallocated_encoding(s); 2398 } 2399 break; 2400 case 5: 2401 if (op2_ll < 1 || op2_ll > 3) { 2402 unallocated_encoding(s); 2403 break; 2404 } 2405 /* DCPS1, DCPS2, DCPS3 */ 2406 unallocated_encoding(s); 2407 break; 2408 default: 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 } 2413 2414 /* Branches, exception generating and system instructions */ 2415 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2416 { 2417 switch (extract32(insn, 25, 7)) { 2418 case 0x6a: /* Exception generation / System */ 2419 if (insn & (1 << 24)) { 2420 unallocated_encoding(s); 2421 } else { 2422 disas_exc(s, insn); 2423 } 2424 break; 2425 default: 2426 unallocated_encoding(s); 2427 break; 2428 } 2429 } 2430 2431 /* 2432 * Load/Store exclusive instructions are implemented by remembering 2433 * the value/address loaded, and seeing if these are the same 2434 * when the store is performed. This is not actually the architecturally 2435 * mandated semantics, but it works for typical guest code sequences 2436 * and avoids having to monitor regular stores. 2437 * 2438 * The store exclusive uses the atomic cmpxchg primitives to avoid 2439 * races in multi-threaded linux-user and when MTTCG softmmu is 2440 * enabled. 2441 */ 2442 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2443 int size, bool is_pair) 2444 { 2445 int idx = get_mem_index(s); 2446 TCGv_i64 dirty_addr, clean_addr; 2447 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2448 2449 s->is_ldex = true; 2450 dirty_addr = cpu_reg_sp(s, rn); 2451 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2452 2453 g_assert(size <= 3); 2454 if (is_pair) { 2455 g_assert(size >= 2); 2456 if (size == 2) { 2457 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2458 if (s->be_data == MO_LE) { 2459 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2460 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2461 } else { 2462 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2463 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2464 } 2465 } else { 2466 TCGv_i128 t16 = tcg_temp_new_i128(); 2467 2468 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2469 2470 if (s->be_data == MO_LE) { 2471 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2472 cpu_exclusive_high, t16); 2473 } else { 2474 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2475 cpu_exclusive_val, t16); 2476 } 2477 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2478 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2479 } 2480 } else { 2481 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2482 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2483 } 2484 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2485 } 2486 2487 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2488 int rn, int size, int is_pair) 2489 { 2490 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2491 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2492 * [addr] = {Rt}; 2493 * if (is_pair) { 2494 * [addr + datasize] = {Rt2}; 2495 * } 2496 * {Rd} = 0; 2497 * } else { 2498 * {Rd} = 1; 2499 * } 2500 * env->exclusive_addr = -1; 2501 */ 2502 TCGLabel *fail_label = gen_new_label(); 2503 TCGLabel *done_label = gen_new_label(); 2504 TCGv_i64 tmp, clean_addr; 2505 MemOp memop; 2506 2507 /* 2508 * FIXME: We are out of spec here. We have recorded only the address 2509 * from load_exclusive, not the entire range, and we assume that the 2510 * size of the access on both sides match. The architecture allows the 2511 * store to be smaller than the load, so long as the stored bytes are 2512 * within the range recorded by the load. 2513 */ 2514 2515 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2516 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2517 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2518 2519 /* 2520 * The write, and any associated faults, only happen if the virtual 2521 * and physical addresses pass the exclusive monitor check. These 2522 * faults are exceedingly unlikely, because normally the guest uses 2523 * the exact same address register for the load_exclusive, and we 2524 * would have recognized these faults there. 2525 * 2526 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2527 * unaligned 4-byte write within the range of an aligned 8-byte load. 2528 * With LSE2, the store would need to cross a 16-byte boundary when the 2529 * load did not, which would mean the store is outside the range 2530 * recorded for the monitor, which would have failed a corrected monitor 2531 * check above. For now, we assume no size change and retain the 2532 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2533 * 2534 * It is possible to trigger an MTE fault, by performing the load with 2535 * a virtual address with a valid tag and performing the store with the 2536 * same virtual address and a different invalid tag. 2537 */ 2538 memop = size + is_pair; 2539 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2540 memop |= MO_ALIGN; 2541 } 2542 memop = finalize_memop(s, memop); 2543 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2544 2545 tmp = tcg_temp_new_i64(); 2546 if (is_pair) { 2547 if (size == 2) { 2548 if (s->be_data == MO_LE) { 2549 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2550 } else { 2551 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2552 } 2553 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2554 cpu_exclusive_val, tmp, 2555 get_mem_index(s), memop); 2556 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2557 } else { 2558 TCGv_i128 t16 = tcg_temp_new_i128(); 2559 TCGv_i128 c16 = tcg_temp_new_i128(); 2560 TCGv_i64 a, b; 2561 2562 if (s->be_data == MO_LE) { 2563 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2564 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2565 cpu_exclusive_high); 2566 } else { 2567 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2568 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2569 cpu_exclusive_val); 2570 } 2571 2572 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2573 get_mem_index(s), memop); 2574 2575 a = tcg_temp_new_i64(); 2576 b = tcg_temp_new_i64(); 2577 if (s->be_data == MO_LE) { 2578 tcg_gen_extr_i128_i64(a, b, t16); 2579 } else { 2580 tcg_gen_extr_i128_i64(b, a, t16); 2581 } 2582 2583 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2584 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2585 tcg_gen_or_i64(tmp, a, b); 2586 2587 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2588 } 2589 } else { 2590 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2591 cpu_reg(s, rt), get_mem_index(s), memop); 2592 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2593 } 2594 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2595 tcg_gen_br(done_label); 2596 2597 gen_set_label(fail_label); 2598 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2599 gen_set_label(done_label); 2600 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2601 } 2602 2603 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2604 int rn, int size) 2605 { 2606 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2607 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2608 int memidx = get_mem_index(s); 2609 TCGv_i64 clean_addr; 2610 MemOp memop; 2611 2612 if (rn == 31) { 2613 gen_check_sp_alignment(s); 2614 } 2615 memop = check_atomic_align(s, rn, size); 2616 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2617 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2618 memidx, memop); 2619 } 2620 2621 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2622 int rn, int size) 2623 { 2624 TCGv_i64 s1 = cpu_reg(s, rs); 2625 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2626 TCGv_i64 t1 = cpu_reg(s, rt); 2627 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2628 TCGv_i64 clean_addr; 2629 int memidx = get_mem_index(s); 2630 MemOp memop; 2631 2632 if (rn == 31) { 2633 gen_check_sp_alignment(s); 2634 } 2635 2636 /* This is a single atomic access, despite the "pair". */ 2637 memop = check_atomic_align(s, rn, size + 1); 2638 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2639 2640 if (size == 2) { 2641 TCGv_i64 cmp = tcg_temp_new_i64(); 2642 TCGv_i64 val = tcg_temp_new_i64(); 2643 2644 if (s->be_data == MO_LE) { 2645 tcg_gen_concat32_i64(val, t1, t2); 2646 tcg_gen_concat32_i64(cmp, s1, s2); 2647 } else { 2648 tcg_gen_concat32_i64(val, t2, t1); 2649 tcg_gen_concat32_i64(cmp, s2, s1); 2650 } 2651 2652 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2653 2654 if (s->be_data == MO_LE) { 2655 tcg_gen_extr32_i64(s1, s2, cmp); 2656 } else { 2657 tcg_gen_extr32_i64(s2, s1, cmp); 2658 } 2659 } else { 2660 TCGv_i128 cmp = tcg_temp_new_i128(); 2661 TCGv_i128 val = tcg_temp_new_i128(); 2662 2663 if (s->be_data == MO_LE) { 2664 tcg_gen_concat_i64_i128(val, t1, t2); 2665 tcg_gen_concat_i64_i128(cmp, s1, s2); 2666 } else { 2667 tcg_gen_concat_i64_i128(val, t2, t1); 2668 tcg_gen_concat_i64_i128(cmp, s2, s1); 2669 } 2670 2671 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2672 2673 if (s->be_data == MO_LE) { 2674 tcg_gen_extr_i128_i64(s1, s2, cmp); 2675 } else { 2676 tcg_gen_extr_i128_i64(s2, s1, cmp); 2677 } 2678 } 2679 } 2680 2681 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2682 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2683 */ 2684 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2685 { 2686 int opc0 = extract32(opc, 0, 1); 2687 int regsize; 2688 2689 if (is_signed) { 2690 regsize = opc0 ? 32 : 64; 2691 } else { 2692 regsize = size == 3 ? 64 : 32; 2693 } 2694 return regsize == 64; 2695 } 2696 2697 /* Load/store exclusive 2698 * 2699 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2700 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2701 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2702 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2703 * 2704 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2705 * L: 0 -> store, 1 -> load 2706 * o2: 0 -> exclusive, 1 -> not 2707 * o1: 0 -> single register, 1 -> register pair 2708 * o0: 1 -> load-acquire/store-release, 0 -> not 2709 */ 2710 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2711 { 2712 int rt = extract32(insn, 0, 5); 2713 int rn = extract32(insn, 5, 5); 2714 int rt2 = extract32(insn, 10, 5); 2715 int rs = extract32(insn, 16, 5); 2716 int is_lasr = extract32(insn, 15, 1); 2717 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2718 int size = extract32(insn, 30, 2); 2719 TCGv_i64 clean_addr; 2720 MemOp memop; 2721 2722 switch (o2_L_o1_o0) { 2723 case 0x0: /* STXR */ 2724 case 0x1: /* STLXR */ 2725 if (rn == 31) { 2726 gen_check_sp_alignment(s); 2727 } 2728 if (is_lasr) { 2729 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2730 } 2731 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2732 return; 2733 2734 case 0x4: /* LDXR */ 2735 case 0x5: /* LDAXR */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 gen_load_exclusive(s, rt, rt2, rn, size, false); 2740 if (is_lasr) { 2741 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2742 } 2743 return; 2744 2745 case 0x8: /* STLLR */ 2746 if (!dc_isar_feature(aa64_lor, s)) { 2747 break; 2748 } 2749 /* StoreLORelease is the same as Store-Release for QEMU. */ 2750 /* fall through */ 2751 case 0x9: /* STLR */ 2752 /* Generate ISS for non-exclusive accesses including LASR. */ 2753 if (rn == 31) { 2754 gen_check_sp_alignment(s); 2755 } 2756 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2757 memop = check_ordered_align(s, rn, 0, true, size); 2758 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2759 true, rn != 31, memop); 2760 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2761 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2762 return; 2763 2764 case 0xc: /* LDLAR */ 2765 if (!dc_isar_feature(aa64_lor, s)) { 2766 break; 2767 } 2768 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2769 /* fall through */ 2770 case 0xd: /* LDAR */ 2771 /* Generate ISS for non-exclusive accesses including LASR. */ 2772 if (rn == 31) { 2773 gen_check_sp_alignment(s); 2774 } 2775 memop = check_ordered_align(s, rn, 0, false, size); 2776 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2777 false, rn != 31, memop); 2778 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2779 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2780 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2781 return; 2782 2783 case 0x2: case 0x3: /* CASP / STXP */ 2784 if (size & 2) { /* STXP / STLXP */ 2785 if (rn == 31) { 2786 gen_check_sp_alignment(s); 2787 } 2788 if (is_lasr) { 2789 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2790 } 2791 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2792 return; 2793 } 2794 if (rt2 == 31 2795 && ((rt | rs) & 1) == 0 2796 && dc_isar_feature(aa64_atomics, s)) { 2797 /* CASP / CASPL */ 2798 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2799 return; 2800 } 2801 break; 2802 2803 case 0x6: case 0x7: /* CASPA / LDXP */ 2804 if (size & 2) { /* LDXP / LDAXP */ 2805 if (rn == 31) { 2806 gen_check_sp_alignment(s); 2807 } 2808 gen_load_exclusive(s, rt, rt2, rn, size, true); 2809 if (is_lasr) { 2810 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2811 } 2812 return; 2813 } 2814 if (rt2 == 31 2815 && ((rt | rs) & 1) == 0 2816 && dc_isar_feature(aa64_atomics, s)) { 2817 /* CASPA / CASPAL */ 2818 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2819 return; 2820 } 2821 break; 2822 2823 case 0xa: /* CAS */ 2824 case 0xb: /* CASL */ 2825 case 0xe: /* CASA */ 2826 case 0xf: /* CASAL */ 2827 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2828 gen_compare_and_swap(s, rs, rt, rn, size); 2829 return; 2830 } 2831 break; 2832 } 2833 unallocated_encoding(s); 2834 } 2835 2836 /* 2837 * Load register (literal) 2838 * 2839 * 31 30 29 27 26 25 24 23 5 4 0 2840 * +-----+-------+---+-----+-------------------+-------+ 2841 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2842 * +-----+-------+---+-----+-------------------+-------+ 2843 * 2844 * V: 1 -> vector (simd/fp) 2845 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2846 * 10-> 32 bit signed, 11 -> prefetch 2847 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2848 */ 2849 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2850 { 2851 int rt = extract32(insn, 0, 5); 2852 int64_t imm = sextract32(insn, 5, 19) << 2; 2853 bool is_vector = extract32(insn, 26, 1); 2854 int opc = extract32(insn, 30, 2); 2855 bool is_signed = false; 2856 int size = 2; 2857 TCGv_i64 tcg_rt, clean_addr; 2858 MemOp memop; 2859 2860 if (is_vector) { 2861 if (opc == 3) { 2862 unallocated_encoding(s); 2863 return; 2864 } 2865 size = 2 + opc; 2866 if (!fp_access_check(s)) { 2867 return; 2868 } 2869 memop = finalize_memop_asimd(s, size); 2870 } else { 2871 if (opc == 3) { 2872 /* PRFM (literal) : prefetch */ 2873 return; 2874 } 2875 size = 2 + extract32(opc, 0, 1); 2876 is_signed = extract32(opc, 1, 1); 2877 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2878 } 2879 2880 tcg_rt = cpu_reg(s, rt); 2881 2882 clean_addr = tcg_temp_new_i64(); 2883 gen_pc_plus_diff(s, clean_addr, imm); 2884 2885 if (is_vector) { 2886 do_fp_ld(s, rt, clean_addr, memop); 2887 } else { 2888 /* Only unsigned 32bit loads target 32bit registers. */ 2889 bool iss_sf = opc != 0; 2890 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2891 } 2892 } 2893 2894 /* 2895 * LDNP (Load Pair - non-temporal hint) 2896 * LDP (Load Pair - non vector) 2897 * LDPSW (Load Pair Signed Word - non vector) 2898 * STNP (Store Pair - non-temporal hint) 2899 * STP (Store Pair - non vector) 2900 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2901 * LDP (Load Pair of SIMD&FP) 2902 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2903 * STP (Store Pair of SIMD&FP) 2904 * 2905 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2906 * +-----+-------+---+---+-------+---+-----------------------------+ 2907 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2908 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2909 * 2910 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2911 * LDPSW/STGP 01 2912 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2913 * V: 0 -> GPR, 1 -> Vector 2914 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2915 * 10 -> signed offset, 11 -> pre-index 2916 * L: 0 -> Store 1 -> Load 2917 * 2918 * Rt, Rt2 = GPR or SIMD registers to be stored 2919 * Rn = general purpose register containing address 2920 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2921 */ 2922 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2923 { 2924 int rt = extract32(insn, 0, 5); 2925 int rn = extract32(insn, 5, 5); 2926 int rt2 = extract32(insn, 10, 5); 2927 uint64_t offset = sextract64(insn, 15, 7); 2928 int index = extract32(insn, 23, 2); 2929 bool is_vector = extract32(insn, 26, 1); 2930 bool is_load = extract32(insn, 22, 1); 2931 int opc = extract32(insn, 30, 2); 2932 bool is_signed = false; 2933 bool postindex = false; 2934 bool wback = false; 2935 bool set_tag = false; 2936 TCGv_i64 clean_addr, dirty_addr; 2937 MemOp mop; 2938 int size; 2939 2940 if (opc == 3) { 2941 unallocated_encoding(s); 2942 return; 2943 } 2944 2945 if (is_vector) { 2946 size = 2 + opc; 2947 } else if (opc == 1 && !is_load) { 2948 /* STGP */ 2949 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2950 unallocated_encoding(s); 2951 return; 2952 } 2953 size = 3; 2954 set_tag = true; 2955 } else { 2956 size = 2 + extract32(opc, 1, 1); 2957 is_signed = extract32(opc, 0, 1); 2958 if (!is_load && is_signed) { 2959 unallocated_encoding(s); 2960 return; 2961 } 2962 } 2963 2964 switch (index) { 2965 case 1: /* post-index */ 2966 postindex = true; 2967 wback = true; 2968 break; 2969 case 0: 2970 /* signed offset with "non-temporal" hint. Since we don't emulate 2971 * caches we don't care about hints to the cache system about 2972 * data access patterns, and handle this identically to plain 2973 * signed offset. 2974 */ 2975 if (is_signed) { 2976 /* There is no non-temporal-hint version of LDPSW */ 2977 unallocated_encoding(s); 2978 return; 2979 } 2980 postindex = false; 2981 break; 2982 case 2: /* signed offset, rn not updated */ 2983 postindex = false; 2984 break; 2985 case 3: /* pre-index */ 2986 postindex = false; 2987 wback = true; 2988 break; 2989 } 2990 2991 if (is_vector && !fp_access_check(s)) { 2992 return; 2993 } 2994 2995 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2996 2997 if (rn == 31) { 2998 gen_check_sp_alignment(s); 2999 } 3000 3001 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3002 if (!postindex) { 3003 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3004 } 3005 3006 if (set_tag) { 3007 if (!s->ata) { 3008 /* 3009 * TODO: We could rely on the stores below, at least for 3010 * system mode, if we arrange to add MO_ALIGN_16. 3011 */ 3012 gen_helper_stg_stub(cpu_env, dirty_addr); 3013 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3014 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3015 } else { 3016 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3017 } 3018 } 3019 3020 if (is_vector) { 3021 mop = finalize_memop_asimd(s, size); 3022 } else { 3023 mop = finalize_memop(s, size); 3024 } 3025 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3026 (wback || rn != 31) && !set_tag, 3027 2 << size, mop); 3028 3029 if (is_vector) { 3030 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3031 if (is_load) { 3032 do_fp_ld(s, rt, clean_addr, mop); 3033 } else { 3034 do_fp_st(s, rt, clean_addr, mop); 3035 } 3036 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3037 if (is_load) { 3038 do_fp_ld(s, rt2, clean_addr, mop); 3039 } else { 3040 do_fp_st(s, rt2, clean_addr, mop); 3041 } 3042 } else { 3043 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3044 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3045 3046 /* 3047 * We built mop above for the single logical access -- rebuild it 3048 * now for the paired operation. 3049 * 3050 * With LSE2, non-sign-extending pairs are treated atomically if 3051 * aligned, and if unaligned one of the pair will be completely 3052 * within a 16-byte block and that element will be atomic. 3053 * Otherwise each element is separately atomic. 3054 * In all cases, issue one operation with the correct atomicity. 3055 * 3056 * This treats sign-extending loads like zero-extending loads, 3057 * since that reuses the most code below. 3058 */ 3059 mop = size + 1; 3060 if (s->align_mem) { 3061 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3062 } 3063 mop = finalize_memop_pair(s, mop); 3064 3065 if (is_load) { 3066 if (size == 2) { 3067 int o2 = s->be_data == MO_LE ? 32 : 0; 3068 int o1 = o2 ^ 32; 3069 3070 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3071 if (is_signed) { 3072 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3073 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3074 } else { 3075 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3076 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3077 } 3078 } else { 3079 TCGv_i128 tmp = tcg_temp_new_i128(); 3080 3081 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3082 if (s->be_data == MO_LE) { 3083 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3084 } else { 3085 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3086 } 3087 } 3088 } else { 3089 if (size == 2) { 3090 TCGv_i64 tmp = tcg_temp_new_i64(); 3091 3092 if (s->be_data == MO_LE) { 3093 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3094 } else { 3095 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3096 } 3097 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3098 } else { 3099 TCGv_i128 tmp = tcg_temp_new_i128(); 3100 3101 if (s->be_data == MO_LE) { 3102 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3103 } else { 3104 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3105 } 3106 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3107 } 3108 } 3109 } 3110 3111 if (wback) { 3112 if (postindex) { 3113 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3114 } 3115 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3116 } 3117 } 3118 3119 /* 3120 * Load/store (immediate post-indexed) 3121 * Load/store (immediate pre-indexed) 3122 * Load/store (unscaled immediate) 3123 * 3124 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3125 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3126 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3127 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3128 * 3129 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3130 10 -> unprivileged 3131 * V = 0 -> non-vector 3132 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3133 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3134 */ 3135 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3136 int opc, 3137 int size, 3138 int rt, 3139 bool is_vector) 3140 { 3141 int rn = extract32(insn, 5, 5); 3142 int imm9 = sextract32(insn, 12, 9); 3143 int idx = extract32(insn, 10, 2); 3144 bool is_signed = false; 3145 bool is_store = false; 3146 bool is_extended = false; 3147 bool is_unpriv = (idx == 2); 3148 bool iss_valid; 3149 bool post_index; 3150 bool writeback; 3151 int memidx; 3152 MemOp memop; 3153 TCGv_i64 clean_addr, dirty_addr; 3154 3155 if (is_vector) { 3156 size |= (opc & 2) << 1; 3157 if (size > 4 || is_unpriv) { 3158 unallocated_encoding(s); 3159 return; 3160 } 3161 is_store = ((opc & 1) == 0); 3162 if (!fp_access_check(s)) { 3163 return; 3164 } 3165 memop = finalize_memop_asimd(s, size); 3166 } else { 3167 if (size == 3 && opc == 2) { 3168 /* PRFM - prefetch */ 3169 if (idx != 0) { 3170 unallocated_encoding(s); 3171 return; 3172 } 3173 return; 3174 } 3175 if (opc == 3 && size > 1) { 3176 unallocated_encoding(s); 3177 return; 3178 } 3179 is_store = (opc == 0); 3180 is_signed = !is_store && extract32(opc, 1, 1); 3181 is_extended = (size < 3) && extract32(opc, 0, 1); 3182 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3183 } 3184 3185 switch (idx) { 3186 case 0: 3187 case 2: 3188 post_index = false; 3189 writeback = false; 3190 break; 3191 case 1: 3192 post_index = true; 3193 writeback = true; 3194 break; 3195 case 3: 3196 post_index = false; 3197 writeback = true; 3198 break; 3199 default: 3200 g_assert_not_reached(); 3201 } 3202 3203 iss_valid = !is_vector && !writeback; 3204 3205 if (rn == 31) { 3206 gen_check_sp_alignment(s); 3207 } 3208 3209 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3210 if (!post_index) { 3211 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3212 } 3213 3214 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3215 3216 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3217 writeback || rn != 31, 3218 memop, is_unpriv, memidx); 3219 3220 if (is_vector) { 3221 if (is_store) { 3222 do_fp_st(s, rt, clean_addr, memop); 3223 } else { 3224 do_fp_ld(s, rt, clean_addr, memop); 3225 } 3226 } else { 3227 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3228 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3229 3230 if (is_store) { 3231 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3232 iss_valid, rt, iss_sf, false); 3233 } else { 3234 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3235 is_extended, memidx, 3236 iss_valid, rt, iss_sf, false); 3237 } 3238 } 3239 3240 if (writeback) { 3241 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3242 if (post_index) { 3243 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3244 } 3245 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3246 } 3247 } 3248 3249 /* 3250 * Load/store (register offset) 3251 * 3252 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3253 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3254 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3255 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3256 * 3257 * For non-vector: 3258 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3259 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3260 * For vector: 3261 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3262 * opc<0>: 0 -> store, 1 -> load 3263 * V: 1 -> vector/simd 3264 * opt: extend encoding (see DecodeRegExtend) 3265 * S: if S=1 then scale (essentially index by sizeof(size)) 3266 * Rt: register to transfer into/out of 3267 * Rn: address register or SP for base 3268 * Rm: offset register or ZR for offset 3269 */ 3270 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3271 int opc, 3272 int size, 3273 int rt, 3274 bool is_vector) 3275 { 3276 int rn = extract32(insn, 5, 5); 3277 int shift = extract32(insn, 12, 1); 3278 int rm = extract32(insn, 16, 5); 3279 int opt = extract32(insn, 13, 3); 3280 bool is_signed = false; 3281 bool is_store = false; 3282 bool is_extended = false; 3283 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3284 MemOp memop; 3285 3286 if (extract32(opt, 1, 1) == 0) { 3287 unallocated_encoding(s); 3288 return; 3289 } 3290 3291 if (is_vector) { 3292 size |= (opc & 2) << 1; 3293 if (size > 4) { 3294 unallocated_encoding(s); 3295 return; 3296 } 3297 is_store = !extract32(opc, 0, 1); 3298 if (!fp_access_check(s)) { 3299 return; 3300 } 3301 memop = finalize_memop_asimd(s, size); 3302 } else { 3303 if (size == 3 && opc == 2) { 3304 /* PRFM - prefetch */ 3305 return; 3306 } 3307 if (opc == 3 && size > 1) { 3308 unallocated_encoding(s); 3309 return; 3310 } 3311 is_store = (opc == 0); 3312 is_signed = !is_store && extract32(opc, 1, 1); 3313 is_extended = (size < 3) && extract32(opc, 0, 1); 3314 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3315 } 3316 3317 if (rn == 31) { 3318 gen_check_sp_alignment(s); 3319 } 3320 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3321 3322 tcg_rm = read_cpu_reg(s, rm, 1); 3323 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3324 3325 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3326 3327 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3328 3329 if (is_vector) { 3330 if (is_store) { 3331 do_fp_st(s, rt, clean_addr, memop); 3332 } else { 3333 do_fp_ld(s, rt, clean_addr, memop); 3334 } 3335 } else { 3336 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3337 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3338 3339 if (is_store) { 3340 do_gpr_st(s, tcg_rt, clean_addr, memop, 3341 true, rt, iss_sf, false); 3342 } else { 3343 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3344 is_extended, true, rt, iss_sf, false); 3345 } 3346 } 3347 } 3348 3349 /* 3350 * Load/store (unsigned immediate) 3351 * 3352 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3353 * +----+-------+---+-----+-----+------------+-------+------+ 3354 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3355 * +----+-------+---+-----+-----+------------+-------+------+ 3356 * 3357 * For non-vector: 3358 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3359 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3360 * For vector: 3361 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3362 * opc<0>: 0 -> store, 1 -> load 3363 * Rn: base address register (inc SP) 3364 * Rt: target register 3365 */ 3366 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3367 int opc, 3368 int size, 3369 int rt, 3370 bool is_vector) 3371 { 3372 int rn = extract32(insn, 5, 5); 3373 unsigned int imm12 = extract32(insn, 10, 12); 3374 unsigned int offset; 3375 TCGv_i64 clean_addr, dirty_addr; 3376 bool is_store; 3377 bool is_signed = false; 3378 bool is_extended = false; 3379 MemOp memop; 3380 3381 if (is_vector) { 3382 size |= (opc & 2) << 1; 3383 if (size > 4) { 3384 unallocated_encoding(s); 3385 return; 3386 } 3387 is_store = !extract32(opc, 0, 1); 3388 if (!fp_access_check(s)) { 3389 return; 3390 } 3391 memop = finalize_memop_asimd(s, size); 3392 } else { 3393 if (size == 3 && opc == 2) { 3394 /* PRFM - prefetch */ 3395 return; 3396 } 3397 if (opc == 3 && size > 1) { 3398 unallocated_encoding(s); 3399 return; 3400 } 3401 is_store = (opc == 0); 3402 is_signed = !is_store && extract32(opc, 1, 1); 3403 is_extended = (size < 3) && extract32(opc, 0, 1); 3404 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3405 } 3406 3407 if (rn == 31) { 3408 gen_check_sp_alignment(s); 3409 } 3410 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3411 offset = imm12 << size; 3412 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3413 3414 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3415 3416 if (is_vector) { 3417 if (is_store) { 3418 do_fp_st(s, rt, clean_addr, memop); 3419 } else { 3420 do_fp_ld(s, rt, clean_addr, memop); 3421 } 3422 } else { 3423 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3424 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3425 if (is_store) { 3426 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3427 } else { 3428 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3429 is_extended, true, rt, iss_sf, false); 3430 } 3431 } 3432 } 3433 3434 /* Atomic memory operations 3435 * 3436 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3437 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3438 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3439 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3440 * 3441 * Rt: the result register 3442 * Rn: base address or SP 3443 * Rs: the source register for the operation 3444 * V: vector flag (always 0 as of v8.3) 3445 * A: acquire flag 3446 * R: release flag 3447 */ 3448 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3449 int size, int rt, bool is_vector) 3450 { 3451 int rs = extract32(insn, 16, 5); 3452 int rn = extract32(insn, 5, 5); 3453 int o3_opc = extract32(insn, 12, 4); 3454 bool r = extract32(insn, 22, 1); 3455 bool a = extract32(insn, 23, 1); 3456 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3457 AtomicThreeOpFn *fn = NULL; 3458 MemOp mop = size; 3459 3460 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3461 unallocated_encoding(s); 3462 return; 3463 } 3464 switch (o3_opc) { 3465 case 000: /* LDADD */ 3466 fn = tcg_gen_atomic_fetch_add_i64; 3467 break; 3468 case 001: /* LDCLR */ 3469 fn = tcg_gen_atomic_fetch_and_i64; 3470 break; 3471 case 002: /* LDEOR */ 3472 fn = tcg_gen_atomic_fetch_xor_i64; 3473 break; 3474 case 003: /* LDSET */ 3475 fn = tcg_gen_atomic_fetch_or_i64; 3476 break; 3477 case 004: /* LDSMAX */ 3478 fn = tcg_gen_atomic_fetch_smax_i64; 3479 mop |= MO_SIGN; 3480 break; 3481 case 005: /* LDSMIN */ 3482 fn = tcg_gen_atomic_fetch_smin_i64; 3483 mop |= MO_SIGN; 3484 break; 3485 case 006: /* LDUMAX */ 3486 fn = tcg_gen_atomic_fetch_umax_i64; 3487 break; 3488 case 007: /* LDUMIN */ 3489 fn = tcg_gen_atomic_fetch_umin_i64; 3490 break; 3491 case 010: /* SWP */ 3492 fn = tcg_gen_atomic_xchg_i64; 3493 break; 3494 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3495 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3496 rs != 31 || a != 1 || r != 0) { 3497 unallocated_encoding(s); 3498 return; 3499 } 3500 break; 3501 default: 3502 unallocated_encoding(s); 3503 return; 3504 } 3505 3506 if (rn == 31) { 3507 gen_check_sp_alignment(s); 3508 } 3509 3510 mop = check_atomic_align(s, rn, mop); 3511 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3512 3513 if (o3_opc == 014) { 3514 /* 3515 * LDAPR* are a special case because they are a simple load, not a 3516 * fetch-and-do-something op. 3517 * The architectural consistency requirements here are weaker than 3518 * full load-acquire (we only need "load-acquire processor consistent"), 3519 * but we choose to implement them as full LDAQ. 3520 */ 3521 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3522 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3523 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3524 return; 3525 } 3526 3527 tcg_rs = read_cpu_reg(s, rs, true); 3528 tcg_rt = cpu_reg(s, rt); 3529 3530 if (o3_opc == 1) { /* LDCLR */ 3531 tcg_gen_not_i64(tcg_rs, tcg_rs); 3532 } 3533 3534 /* The tcg atomic primitives are all full barriers. Therefore we 3535 * can ignore the Acquire and Release bits of this instruction. 3536 */ 3537 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3538 3539 if (mop & MO_SIGN) { 3540 switch (size) { 3541 case MO_8: 3542 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3543 break; 3544 case MO_16: 3545 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3546 break; 3547 case MO_32: 3548 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3549 break; 3550 case MO_64: 3551 break; 3552 default: 3553 g_assert_not_reached(); 3554 } 3555 } 3556 } 3557 3558 /* 3559 * PAC memory operations 3560 * 3561 * 31 30 27 26 24 22 21 12 11 10 5 0 3562 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3563 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3564 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3565 * 3566 * Rt: the result register 3567 * Rn: base address or SP 3568 * V: vector flag (always 0 as of v8.3) 3569 * M: clear for key DA, set for key DB 3570 * W: pre-indexing flag 3571 * S: sign for imm9. 3572 */ 3573 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3574 int size, int rt, bool is_vector) 3575 { 3576 int rn = extract32(insn, 5, 5); 3577 bool is_wback = extract32(insn, 11, 1); 3578 bool use_key_a = !extract32(insn, 23, 1); 3579 int offset; 3580 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3581 MemOp memop; 3582 3583 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3584 unallocated_encoding(s); 3585 return; 3586 } 3587 3588 if (rn == 31) { 3589 gen_check_sp_alignment(s); 3590 } 3591 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3592 3593 if (s->pauth_active) { 3594 if (use_key_a) { 3595 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3596 tcg_constant_i64(0)); 3597 } else { 3598 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3599 tcg_constant_i64(0)); 3600 } 3601 } 3602 3603 /* Form the 10-bit signed, scaled offset. */ 3604 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3605 offset = sextract32(offset << size, 0, 10 + size); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3607 3608 memop = finalize_memop(s, size); 3609 3610 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3611 clean_addr = gen_mte_check1(s, dirty_addr, false, 3612 is_wback || rn != 31, memop); 3613 3614 tcg_rt = cpu_reg(s, rt); 3615 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3616 /* extend */ false, /* iss_valid */ !is_wback, 3617 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3618 3619 if (is_wback) { 3620 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3621 } 3622 } 3623 3624 /* 3625 * LDAPR/STLR (unscaled immediate) 3626 * 3627 * 31 30 24 22 21 12 10 5 0 3628 * +------+-------------+-----+---+--------+-----+----+-----+ 3629 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3630 * +------+-------------+-----+---+--------+-----+----+-----+ 3631 * 3632 * Rt: source or destination register 3633 * Rn: base register 3634 * imm9: unscaled immediate offset 3635 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3636 * size: size of load/store 3637 */ 3638 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3639 { 3640 int rt = extract32(insn, 0, 5); 3641 int rn = extract32(insn, 5, 5); 3642 int offset = sextract32(insn, 12, 9); 3643 int opc = extract32(insn, 22, 2); 3644 int size = extract32(insn, 30, 2); 3645 TCGv_i64 clean_addr, dirty_addr; 3646 bool is_store = false; 3647 bool extend = false; 3648 bool iss_sf; 3649 MemOp mop = size; 3650 3651 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3652 unallocated_encoding(s); 3653 return; 3654 } 3655 3656 switch (opc) { 3657 case 0: /* STLURB */ 3658 is_store = true; 3659 break; 3660 case 1: /* LDAPUR* */ 3661 break; 3662 case 2: /* LDAPURS* 64-bit variant */ 3663 if (size == 3) { 3664 unallocated_encoding(s); 3665 return; 3666 } 3667 mop |= MO_SIGN; 3668 break; 3669 case 3: /* LDAPURS* 32-bit variant */ 3670 if (size > 1) { 3671 unallocated_encoding(s); 3672 return; 3673 } 3674 mop |= MO_SIGN; 3675 extend = true; /* zero-extend 32->64 after signed load */ 3676 break; 3677 default: 3678 g_assert_not_reached(); 3679 } 3680 3681 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3682 3683 if (rn == 31) { 3684 gen_check_sp_alignment(s); 3685 } 3686 3687 mop = check_ordered_align(s, rn, offset, is_store, mop); 3688 3689 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3690 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3691 clean_addr = clean_data_tbi(s, dirty_addr); 3692 3693 if (is_store) { 3694 /* Store-Release semantics */ 3695 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3696 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3697 } else { 3698 /* 3699 * Load-AcquirePC semantics; we implement as the slightly more 3700 * restrictive Load-Acquire. 3701 */ 3702 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3703 extend, true, rt, iss_sf, true); 3704 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3705 } 3706 } 3707 3708 /* Load/store register (all forms) */ 3709 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3710 { 3711 int rt = extract32(insn, 0, 5); 3712 int opc = extract32(insn, 22, 2); 3713 bool is_vector = extract32(insn, 26, 1); 3714 int size = extract32(insn, 30, 2); 3715 3716 switch (extract32(insn, 24, 2)) { 3717 case 0: 3718 if (extract32(insn, 21, 1) == 0) { 3719 /* Load/store register (unscaled immediate) 3720 * Load/store immediate pre/post-indexed 3721 * Load/store register unprivileged 3722 */ 3723 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3724 return; 3725 } 3726 switch (extract32(insn, 10, 2)) { 3727 case 0: 3728 disas_ldst_atomic(s, insn, size, rt, is_vector); 3729 return; 3730 case 2: 3731 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3732 return; 3733 default: 3734 disas_ldst_pac(s, insn, size, rt, is_vector); 3735 return; 3736 } 3737 break; 3738 case 1: 3739 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3740 return; 3741 } 3742 unallocated_encoding(s); 3743 } 3744 3745 /* AdvSIMD load/store multiple structures 3746 * 3747 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3748 * +---+---+---------------+---+-------------+--------+------+------+------+ 3749 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3750 * +---+---+---------------+---+-------------+--------+------+------+------+ 3751 * 3752 * AdvSIMD load/store multiple structures (post-indexed) 3753 * 3754 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3755 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3756 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3757 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3758 * 3759 * Rt: first (or only) SIMD&FP register to be transferred 3760 * Rn: base address or SP 3761 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3762 */ 3763 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3764 { 3765 int rt = extract32(insn, 0, 5); 3766 int rn = extract32(insn, 5, 5); 3767 int rm = extract32(insn, 16, 5); 3768 int size = extract32(insn, 10, 2); 3769 int opcode = extract32(insn, 12, 4); 3770 bool is_store = !extract32(insn, 22, 1); 3771 bool is_postidx = extract32(insn, 23, 1); 3772 bool is_q = extract32(insn, 30, 1); 3773 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3774 MemOp endian, align, mop; 3775 3776 int total; /* total bytes */ 3777 int elements; /* elements per vector */ 3778 int rpt; /* num iterations */ 3779 int selem; /* structure elements */ 3780 int r; 3781 3782 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3783 unallocated_encoding(s); 3784 return; 3785 } 3786 3787 if (!is_postidx && rm != 0) { 3788 unallocated_encoding(s); 3789 return; 3790 } 3791 3792 /* From the shared decode logic */ 3793 switch (opcode) { 3794 case 0x0: 3795 rpt = 1; 3796 selem = 4; 3797 break; 3798 case 0x2: 3799 rpt = 4; 3800 selem = 1; 3801 break; 3802 case 0x4: 3803 rpt = 1; 3804 selem = 3; 3805 break; 3806 case 0x6: 3807 rpt = 3; 3808 selem = 1; 3809 break; 3810 case 0x7: 3811 rpt = 1; 3812 selem = 1; 3813 break; 3814 case 0x8: 3815 rpt = 1; 3816 selem = 2; 3817 break; 3818 case 0xa: 3819 rpt = 2; 3820 selem = 1; 3821 break; 3822 default: 3823 unallocated_encoding(s); 3824 return; 3825 } 3826 3827 if (size == 3 && !is_q && selem != 1) { 3828 /* reserved */ 3829 unallocated_encoding(s); 3830 return; 3831 } 3832 3833 if (!fp_access_check(s)) { 3834 return; 3835 } 3836 3837 if (rn == 31) { 3838 gen_check_sp_alignment(s); 3839 } 3840 3841 /* For our purposes, bytes are always little-endian. */ 3842 endian = s->be_data; 3843 if (size == 0) { 3844 endian = MO_LE; 3845 } 3846 3847 total = rpt * selem * (is_q ? 16 : 8); 3848 tcg_rn = cpu_reg_sp(s, rn); 3849 3850 /* 3851 * Issue the MTE check vs the logical repeat count, before we 3852 * promote consecutive little-endian elements below. 3853 */ 3854 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3855 total, finalize_memop_asimd(s, size)); 3856 3857 /* 3858 * Consecutive little-endian elements from a single register 3859 * can be promoted to a larger little-endian operation. 3860 */ 3861 align = MO_ALIGN; 3862 if (selem == 1 && endian == MO_LE) { 3863 align = pow2_align(size); 3864 size = 3; 3865 } 3866 if (!s->align_mem) { 3867 align = 0; 3868 } 3869 mop = endian | size | align; 3870 3871 elements = (is_q ? 16 : 8) >> size; 3872 tcg_ebytes = tcg_constant_i64(1 << size); 3873 for (r = 0; r < rpt; r++) { 3874 int e; 3875 for (e = 0; e < elements; e++) { 3876 int xs; 3877 for (xs = 0; xs < selem; xs++) { 3878 int tt = (rt + r + xs) % 32; 3879 if (is_store) { 3880 do_vec_st(s, tt, e, clean_addr, mop); 3881 } else { 3882 do_vec_ld(s, tt, e, clean_addr, mop); 3883 } 3884 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3885 } 3886 } 3887 } 3888 3889 if (!is_store) { 3890 /* For non-quad operations, setting a slice of the low 3891 * 64 bits of the register clears the high 64 bits (in 3892 * the ARM ARM pseudocode this is implicit in the fact 3893 * that 'rval' is a 64 bit wide variable). 3894 * For quad operations, we might still need to zero the 3895 * high bits of SVE. 3896 */ 3897 for (r = 0; r < rpt * selem; r++) { 3898 int tt = (rt + r) % 32; 3899 clear_vec_high(s, is_q, tt); 3900 } 3901 } 3902 3903 if (is_postidx) { 3904 if (rm == 31) { 3905 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3906 } else { 3907 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3908 } 3909 } 3910 } 3911 3912 /* AdvSIMD load/store single structure 3913 * 3914 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3915 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3916 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3917 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3918 * 3919 * AdvSIMD load/store single structure (post-indexed) 3920 * 3921 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3922 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3923 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3924 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3925 * 3926 * Rt: first (or only) SIMD&FP register to be transferred 3927 * Rn: base address or SP 3928 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3929 * index = encoded in Q:S:size dependent on size 3930 * 3931 * lane_size = encoded in R, opc 3932 * transfer width = encoded in opc, S, size 3933 */ 3934 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3935 { 3936 int rt = extract32(insn, 0, 5); 3937 int rn = extract32(insn, 5, 5); 3938 int rm = extract32(insn, 16, 5); 3939 int size = extract32(insn, 10, 2); 3940 int S = extract32(insn, 12, 1); 3941 int opc = extract32(insn, 13, 3); 3942 int R = extract32(insn, 21, 1); 3943 int is_load = extract32(insn, 22, 1); 3944 int is_postidx = extract32(insn, 23, 1); 3945 int is_q = extract32(insn, 30, 1); 3946 3947 int scale = extract32(opc, 1, 2); 3948 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3949 bool replicate = false; 3950 int index = is_q << 3 | S << 2 | size; 3951 int xs, total; 3952 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3953 MemOp mop; 3954 3955 if (extract32(insn, 31, 1)) { 3956 unallocated_encoding(s); 3957 return; 3958 } 3959 if (!is_postidx && rm != 0) { 3960 unallocated_encoding(s); 3961 return; 3962 } 3963 3964 switch (scale) { 3965 case 3: 3966 if (!is_load || S) { 3967 unallocated_encoding(s); 3968 return; 3969 } 3970 scale = size; 3971 replicate = true; 3972 break; 3973 case 0: 3974 break; 3975 case 1: 3976 if (extract32(size, 0, 1)) { 3977 unallocated_encoding(s); 3978 return; 3979 } 3980 index >>= 1; 3981 break; 3982 case 2: 3983 if (extract32(size, 1, 1)) { 3984 unallocated_encoding(s); 3985 return; 3986 } 3987 if (!extract32(size, 0, 1)) { 3988 index >>= 2; 3989 } else { 3990 if (S) { 3991 unallocated_encoding(s); 3992 return; 3993 } 3994 index >>= 3; 3995 scale = 3; 3996 } 3997 break; 3998 default: 3999 g_assert_not_reached(); 4000 } 4001 4002 if (!fp_access_check(s)) { 4003 return; 4004 } 4005 4006 if (rn == 31) { 4007 gen_check_sp_alignment(s); 4008 } 4009 4010 total = selem << scale; 4011 tcg_rn = cpu_reg_sp(s, rn); 4012 4013 mop = finalize_memop_asimd(s, scale); 4014 4015 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4016 total, mop); 4017 4018 tcg_ebytes = tcg_constant_i64(1 << scale); 4019 for (xs = 0; xs < selem; xs++) { 4020 if (replicate) { 4021 /* Load and replicate to all elements */ 4022 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4023 4024 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4025 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4026 (is_q + 1) * 8, vec_full_reg_size(s), 4027 tcg_tmp); 4028 } else { 4029 /* Load/store one element per register */ 4030 if (is_load) { 4031 do_vec_ld(s, rt, index, clean_addr, mop); 4032 } else { 4033 do_vec_st(s, rt, index, clean_addr, mop); 4034 } 4035 } 4036 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4037 rt = (rt + 1) % 32; 4038 } 4039 4040 if (is_postidx) { 4041 if (rm == 31) { 4042 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4043 } else { 4044 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4045 } 4046 } 4047 } 4048 4049 /* 4050 * Load/Store memory tags 4051 * 4052 * 31 30 29 24 22 21 12 10 5 0 4053 * +-----+-------------+-----+---+------+-----+------+------+ 4054 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4055 * +-----+-------------+-----+---+------+-----+------+------+ 4056 */ 4057 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4058 { 4059 int rt = extract32(insn, 0, 5); 4060 int rn = extract32(insn, 5, 5); 4061 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4062 int op2 = extract32(insn, 10, 2); 4063 int op1 = extract32(insn, 22, 2); 4064 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4065 int index = 0; 4066 TCGv_i64 addr, clean_addr, tcg_rt; 4067 4068 /* We checked insn bits [29:24,21] in the caller. */ 4069 if (extract32(insn, 30, 2) != 3) { 4070 goto do_unallocated; 4071 } 4072 4073 /* 4074 * @index is a tri-state variable which has 3 states: 4075 * < 0 : post-index, writeback 4076 * = 0 : signed offset 4077 * > 0 : pre-index, writeback 4078 */ 4079 switch (op1) { 4080 case 0: 4081 if (op2 != 0) { 4082 /* STG */ 4083 index = op2 - 2; 4084 } else { 4085 /* STZGM */ 4086 if (s->current_el == 0 || offset != 0) { 4087 goto do_unallocated; 4088 } 4089 is_mult = is_zero = true; 4090 } 4091 break; 4092 case 1: 4093 if (op2 != 0) { 4094 /* STZG */ 4095 is_zero = true; 4096 index = op2 - 2; 4097 } else { 4098 /* LDG */ 4099 is_load = true; 4100 } 4101 break; 4102 case 2: 4103 if (op2 != 0) { 4104 /* ST2G */ 4105 is_pair = true; 4106 index = op2 - 2; 4107 } else { 4108 /* STGM */ 4109 if (s->current_el == 0 || offset != 0) { 4110 goto do_unallocated; 4111 } 4112 is_mult = true; 4113 } 4114 break; 4115 case 3: 4116 if (op2 != 0) { 4117 /* STZ2G */ 4118 is_pair = is_zero = true; 4119 index = op2 - 2; 4120 } else { 4121 /* LDGM */ 4122 if (s->current_el == 0 || offset != 0) { 4123 goto do_unallocated; 4124 } 4125 is_mult = is_load = true; 4126 } 4127 break; 4128 4129 default: 4130 do_unallocated: 4131 unallocated_encoding(s); 4132 return; 4133 } 4134 4135 if (is_mult 4136 ? !dc_isar_feature(aa64_mte, s) 4137 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4138 goto do_unallocated; 4139 } 4140 4141 if (rn == 31) { 4142 gen_check_sp_alignment(s); 4143 } 4144 4145 addr = read_cpu_reg_sp(s, rn, true); 4146 if (index >= 0) { 4147 /* pre-index or signed offset */ 4148 tcg_gen_addi_i64(addr, addr, offset); 4149 } 4150 4151 if (is_mult) { 4152 tcg_rt = cpu_reg(s, rt); 4153 4154 if (is_zero) { 4155 int size = 4 << s->dcz_blocksize; 4156 4157 if (s->ata) { 4158 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4159 } 4160 /* 4161 * The non-tags portion of STZGM is mostly like DC_ZVA, 4162 * except the alignment happens before the access. 4163 */ 4164 clean_addr = clean_data_tbi(s, addr); 4165 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4166 gen_helper_dc_zva(cpu_env, clean_addr); 4167 } else if (s->ata) { 4168 if (is_load) { 4169 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4170 } else { 4171 gen_helper_stgm(cpu_env, addr, tcg_rt); 4172 } 4173 } else { 4174 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4175 int size = 4 << GMID_EL1_BS; 4176 4177 clean_addr = clean_data_tbi(s, addr); 4178 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4179 gen_probe_access(s, clean_addr, acc, size); 4180 4181 if (is_load) { 4182 /* The result tags are zeros. */ 4183 tcg_gen_movi_i64(tcg_rt, 0); 4184 } 4185 } 4186 return; 4187 } 4188 4189 if (is_load) { 4190 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4191 tcg_rt = cpu_reg(s, rt); 4192 if (s->ata) { 4193 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4194 } else { 4195 /* 4196 * Tag access disabled: we must check for aborts on the load 4197 * load from [rn+offset], and then insert a 0 tag into rt. 4198 */ 4199 clean_addr = clean_data_tbi(s, addr); 4200 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4201 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4202 } 4203 } else { 4204 tcg_rt = cpu_reg_sp(s, rt); 4205 if (!s->ata) { 4206 /* 4207 * For STG and ST2G, we need to check alignment and probe memory. 4208 * TODO: For STZG and STZ2G, we could rely on the stores below, 4209 * at least for system mode; user-only won't enforce alignment. 4210 */ 4211 if (is_pair) { 4212 gen_helper_st2g_stub(cpu_env, addr); 4213 } else { 4214 gen_helper_stg_stub(cpu_env, addr); 4215 } 4216 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4217 if (is_pair) { 4218 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4219 } else { 4220 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4221 } 4222 } else { 4223 if (is_pair) { 4224 gen_helper_st2g(cpu_env, addr, tcg_rt); 4225 } else { 4226 gen_helper_stg(cpu_env, addr, tcg_rt); 4227 } 4228 } 4229 } 4230 4231 if (is_zero) { 4232 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4233 TCGv_i64 zero64 = tcg_constant_i64(0); 4234 TCGv_i128 zero128 = tcg_temp_new_i128(); 4235 int mem_index = get_mem_index(s); 4236 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4237 4238 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4239 4240 /* This is 1 or 2 atomic 16-byte operations. */ 4241 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4242 if (is_pair) { 4243 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4244 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4245 } 4246 } 4247 4248 if (index != 0) { 4249 /* pre-index or post-index */ 4250 if (index < 0) { 4251 /* post-index */ 4252 tcg_gen_addi_i64(addr, addr, offset); 4253 } 4254 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4255 } 4256 } 4257 4258 /* Loads and stores */ 4259 static void disas_ldst(DisasContext *s, uint32_t insn) 4260 { 4261 switch (extract32(insn, 24, 6)) { 4262 case 0x08: /* Load/store exclusive */ 4263 disas_ldst_excl(s, insn); 4264 break; 4265 case 0x18: case 0x1c: /* Load register (literal) */ 4266 disas_ld_lit(s, insn); 4267 break; 4268 case 0x28: case 0x29: 4269 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4270 disas_ldst_pair(s, insn); 4271 break; 4272 case 0x38: case 0x39: 4273 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4274 disas_ldst_reg(s, insn); 4275 break; 4276 case 0x0c: /* AdvSIMD load/store multiple structures */ 4277 disas_ldst_multiple_struct(s, insn); 4278 break; 4279 case 0x0d: /* AdvSIMD load/store single structure */ 4280 disas_ldst_single_struct(s, insn); 4281 break; 4282 case 0x19: 4283 if (extract32(insn, 21, 1) != 0) { 4284 disas_ldst_tag(s, insn); 4285 } else if (extract32(insn, 10, 2) == 0) { 4286 disas_ldst_ldapr_stlr(s, insn); 4287 } else { 4288 unallocated_encoding(s); 4289 } 4290 break; 4291 default: 4292 unallocated_encoding(s); 4293 break; 4294 } 4295 } 4296 4297 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4298 4299 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4300 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4301 { 4302 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4303 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4304 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4305 4306 fn(tcg_rd, tcg_rn, tcg_imm); 4307 if (!a->sf) { 4308 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4309 } 4310 return true; 4311 } 4312 4313 /* 4314 * PC-rel. addressing 4315 */ 4316 4317 static bool trans_ADR(DisasContext *s, arg_ri *a) 4318 { 4319 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4320 return true; 4321 } 4322 4323 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4324 { 4325 int64_t offset = (int64_t)a->imm << 12; 4326 4327 /* The page offset is ok for CF_PCREL. */ 4328 offset -= s->pc_curr & 0xfff; 4329 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4330 return true; 4331 } 4332 4333 /* 4334 * Add/subtract (immediate) 4335 */ 4336 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4337 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4338 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4339 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4340 4341 /* 4342 * Add/subtract (immediate, with tags) 4343 */ 4344 4345 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4346 bool sub_op) 4347 { 4348 TCGv_i64 tcg_rn, tcg_rd; 4349 int imm; 4350 4351 imm = a->uimm6 << LOG2_TAG_GRANULE; 4352 if (sub_op) { 4353 imm = -imm; 4354 } 4355 4356 tcg_rn = cpu_reg_sp(s, a->rn); 4357 tcg_rd = cpu_reg_sp(s, a->rd); 4358 4359 if (s->ata) { 4360 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4361 tcg_constant_i32(imm), 4362 tcg_constant_i32(a->uimm4)); 4363 } else { 4364 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4365 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4366 } 4367 return true; 4368 } 4369 4370 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4371 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4372 4373 /* The input should be a value in the bottom e bits (with higher 4374 * bits zero); returns that value replicated into every element 4375 * of size e in a 64 bit integer. 4376 */ 4377 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4378 { 4379 assert(e != 0); 4380 while (e < 64) { 4381 mask |= mask << e; 4382 e *= 2; 4383 } 4384 return mask; 4385 } 4386 4387 /* 4388 * Logical (immediate) 4389 */ 4390 4391 /* 4392 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4393 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4394 * value (ie should cause a guest UNDEF exception), and true if they are 4395 * valid, in which case the decoded bit pattern is written to result. 4396 */ 4397 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4398 unsigned int imms, unsigned int immr) 4399 { 4400 uint64_t mask; 4401 unsigned e, levels, s, r; 4402 int len; 4403 4404 assert(immn < 2 && imms < 64 && immr < 64); 4405 4406 /* The bit patterns we create here are 64 bit patterns which 4407 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4408 * 64 bits each. Each element contains the same value: a run 4409 * of between 1 and e-1 non-zero bits, rotated within the 4410 * element by between 0 and e-1 bits. 4411 * 4412 * The element size and run length are encoded into immn (1 bit) 4413 * and imms (6 bits) as follows: 4414 * 64 bit elements: immn = 1, imms = <length of run - 1> 4415 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4416 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4417 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4418 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4419 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4420 * Notice that immn = 0, imms = 11111x is the only combination 4421 * not covered by one of the above options; this is reserved. 4422 * Further, <length of run - 1> all-ones is a reserved pattern. 4423 * 4424 * In all cases the rotation is by immr % e (and immr is 6 bits). 4425 */ 4426 4427 /* First determine the element size */ 4428 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4429 if (len < 1) { 4430 /* This is the immn == 0, imms == 0x11111x case */ 4431 return false; 4432 } 4433 e = 1 << len; 4434 4435 levels = e - 1; 4436 s = imms & levels; 4437 r = immr & levels; 4438 4439 if (s == levels) { 4440 /* <length of run - 1> mustn't be all-ones. */ 4441 return false; 4442 } 4443 4444 /* Create the value of one element: s+1 set bits rotated 4445 * by r within the element (which is e bits wide)... 4446 */ 4447 mask = MAKE_64BIT_MASK(0, s + 1); 4448 if (r) { 4449 mask = (mask >> r) | (mask << (e - r)); 4450 mask &= MAKE_64BIT_MASK(0, e); 4451 } 4452 /* ...then replicate the element over the whole 64 bit value */ 4453 mask = bitfield_replicate(mask, e); 4454 *result = mask; 4455 return true; 4456 } 4457 4458 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4459 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4460 { 4461 TCGv_i64 tcg_rd, tcg_rn; 4462 uint64_t imm; 4463 4464 /* Some immediate field values are reserved. */ 4465 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4466 extract32(a->dbm, 0, 6), 4467 extract32(a->dbm, 6, 6))) { 4468 return false; 4469 } 4470 if (!a->sf) { 4471 imm &= 0xffffffffull; 4472 } 4473 4474 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4475 tcg_rn = cpu_reg(s, a->rn); 4476 4477 fn(tcg_rd, tcg_rn, imm); 4478 if (set_cc) { 4479 gen_logic_CC(a->sf, tcg_rd); 4480 } 4481 if (!a->sf) { 4482 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4483 } 4484 return true; 4485 } 4486 4487 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4488 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4489 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4490 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4491 4492 /* 4493 * Move wide (immediate) 4494 */ 4495 4496 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4497 { 4498 int pos = a->hw << 4; 4499 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4500 return true; 4501 } 4502 4503 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4504 { 4505 int pos = a->hw << 4; 4506 uint64_t imm = a->imm; 4507 4508 imm = ~(imm << pos); 4509 if (!a->sf) { 4510 imm = (uint32_t)imm; 4511 } 4512 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4513 return true; 4514 } 4515 4516 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4517 { 4518 int pos = a->hw << 4; 4519 TCGv_i64 tcg_rd, tcg_im; 4520 4521 tcg_rd = cpu_reg(s, a->rd); 4522 tcg_im = tcg_constant_i64(a->imm); 4523 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4524 if (!a->sf) { 4525 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4526 } 4527 return true; 4528 } 4529 4530 /* 4531 * Bitfield 4532 */ 4533 4534 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4535 { 4536 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4537 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4538 unsigned int bitsize = a->sf ? 64 : 32; 4539 unsigned int ri = a->immr; 4540 unsigned int si = a->imms; 4541 unsigned int pos, len; 4542 4543 if (si >= ri) { 4544 /* Wd<s-r:0> = Wn<s:r> */ 4545 len = (si - ri) + 1; 4546 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4547 if (!a->sf) { 4548 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4549 } 4550 } else { 4551 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4552 len = si + 1; 4553 pos = (bitsize - ri) & (bitsize - 1); 4554 4555 if (len < ri) { 4556 /* 4557 * Sign extend the destination field from len to fill the 4558 * balance of the word. Let the deposit below insert all 4559 * of those sign bits. 4560 */ 4561 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4562 len = ri; 4563 } 4564 4565 /* 4566 * We start with zero, and we haven't modified any bits outside 4567 * bitsize, therefore no final zero-extension is unneeded for !sf. 4568 */ 4569 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4570 } 4571 return true; 4572 } 4573 4574 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4575 { 4576 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4577 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4578 unsigned int bitsize = a->sf ? 64 : 32; 4579 unsigned int ri = a->immr; 4580 unsigned int si = a->imms; 4581 unsigned int pos, len; 4582 4583 tcg_rd = cpu_reg(s, a->rd); 4584 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4585 4586 if (si >= ri) { 4587 /* Wd<s-r:0> = Wn<s:r> */ 4588 len = (si - ri) + 1; 4589 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4590 } else { 4591 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4592 len = si + 1; 4593 pos = (bitsize - ri) & (bitsize - 1); 4594 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4595 } 4596 return true; 4597 } 4598 4599 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4600 { 4601 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4602 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4603 unsigned int bitsize = a->sf ? 64 : 32; 4604 unsigned int ri = a->immr; 4605 unsigned int si = a->imms; 4606 unsigned int pos, len; 4607 4608 tcg_rd = cpu_reg(s, a->rd); 4609 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4610 4611 if (si >= ri) { 4612 /* Wd<s-r:0> = Wn<s:r> */ 4613 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4614 len = (si - ri) + 1; 4615 pos = 0; 4616 } else { 4617 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4618 len = si + 1; 4619 pos = (bitsize - ri) & (bitsize - 1); 4620 } 4621 4622 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4623 if (!a->sf) { 4624 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4625 } 4626 return true; 4627 } 4628 4629 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4630 { 4631 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4632 4633 tcg_rd = cpu_reg(s, a->rd); 4634 4635 if (unlikely(a->imm == 0)) { 4636 /* 4637 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4638 * so an extract from bit 0 is a special case. 4639 */ 4640 if (a->sf) { 4641 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4642 } else { 4643 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4644 } 4645 } else { 4646 tcg_rm = cpu_reg(s, a->rm); 4647 tcg_rn = cpu_reg(s, a->rn); 4648 4649 if (a->sf) { 4650 /* Specialization to ROR happens in EXTRACT2. */ 4651 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4652 } else { 4653 TCGv_i32 t0 = tcg_temp_new_i32(); 4654 4655 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4656 if (a->rm == a->rn) { 4657 tcg_gen_rotri_i32(t0, t0, a->imm); 4658 } else { 4659 TCGv_i32 t1 = tcg_temp_new_i32(); 4660 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4661 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4662 } 4663 tcg_gen_extu_i32_i64(tcg_rd, t0); 4664 } 4665 } 4666 return true; 4667 } 4668 4669 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4670 * Note that it is the caller's responsibility to ensure that the 4671 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4672 * mandated semantics for out of range shifts. 4673 */ 4674 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4675 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4676 { 4677 switch (shift_type) { 4678 case A64_SHIFT_TYPE_LSL: 4679 tcg_gen_shl_i64(dst, src, shift_amount); 4680 break; 4681 case A64_SHIFT_TYPE_LSR: 4682 tcg_gen_shr_i64(dst, src, shift_amount); 4683 break; 4684 case A64_SHIFT_TYPE_ASR: 4685 if (!sf) { 4686 tcg_gen_ext32s_i64(dst, src); 4687 } 4688 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4689 break; 4690 case A64_SHIFT_TYPE_ROR: 4691 if (sf) { 4692 tcg_gen_rotr_i64(dst, src, shift_amount); 4693 } else { 4694 TCGv_i32 t0, t1; 4695 t0 = tcg_temp_new_i32(); 4696 t1 = tcg_temp_new_i32(); 4697 tcg_gen_extrl_i64_i32(t0, src); 4698 tcg_gen_extrl_i64_i32(t1, shift_amount); 4699 tcg_gen_rotr_i32(t0, t0, t1); 4700 tcg_gen_extu_i32_i64(dst, t0); 4701 } 4702 break; 4703 default: 4704 assert(FALSE); /* all shift types should be handled */ 4705 break; 4706 } 4707 4708 if (!sf) { /* zero extend final result */ 4709 tcg_gen_ext32u_i64(dst, dst); 4710 } 4711 } 4712 4713 /* Shift a TCGv src by immediate, put result in dst. 4714 * The shift amount must be in range (this should always be true as the 4715 * relevant instructions will UNDEF on bad shift immediates). 4716 */ 4717 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4718 enum a64_shift_type shift_type, unsigned int shift_i) 4719 { 4720 assert(shift_i < (sf ? 64 : 32)); 4721 4722 if (shift_i == 0) { 4723 tcg_gen_mov_i64(dst, src); 4724 } else { 4725 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4726 } 4727 } 4728 4729 /* Logical (shifted register) 4730 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4731 * +----+-----+-----------+-------+---+------+--------+------+------+ 4732 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4733 * +----+-----+-----------+-------+---+------+--------+------+------+ 4734 */ 4735 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4736 { 4737 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4738 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4739 4740 sf = extract32(insn, 31, 1); 4741 opc = extract32(insn, 29, 2); 4742 shift_type = extract32(insn, 22, 2); 4743 invert = extract32(insn, 21, 1); 4744 rm = extract32(insn, 16, 5); 4745 shift_amount = extract32(insn, 10, 6); 4746 rn = extract32(insn, 5, 5); 4747 rd = extract32(insn, 0, 5); 4748 4749 if (!sf && (shift_amount & (1 << 5))) { 4750 unallocated_encoding(s); 4751 return; 4752 } 4753 4754 tcg_rd = cpu_reg(s, rd); 4755 4756 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4757 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4758 * register-register MOV and MVN, so it is worth special casing. 4759 */ 4760 tcg_rm = cpu_reg(s, rm); 4761 if (invert) { 4762 tcg_gen_not_i64(tcg_rd, tcg_rm); 4763 if (!sf) { 4764 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4765 } 4766 } else { 4767 if (sf) { 4768 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4769 } else { 4770 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4771 } 4772 } 4773 return; 4774 } 4775 4776 tcg_rm = read_cpu_reg(s, rm, sf); 4777 4778 if (shift_amount) { 4779 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4780 } 4781 4782 tcg_rn = cpu_reg(s, rn); 4783 4784 switch (opc | (invert << 2)) { 4785 case 0: /* AND */ 4786 case 3: /* ANDS */ 4787 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4788 break; 4789 case 1: /* ORR */ 4790 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4791 break; 4792 case 2: /* EOR */ 4793 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4794 break; 4795 case 4: /* BIC */ 4796 case 7: /* BICS */ 4797 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4798 break; 4799 case 5: /* ORN */ 4800 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4801 break; 4802 case 6: /* EON */ 4803 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4804 break; 4805 default: 4806 assert(FALSE); 4807 break; 4808 } 4809 4810 if (!sf) { 4811 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4812 } 4813 4814 if (opc == 3) { 4815 gen_logic_CC(sf, tcg_rd); 4816 } 4817 } 4818 4819 /* 4820 * Add/subtract (extended register) 4821 * 4822 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4823 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4824 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4825 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4826 * 4827 * sf: 0 -> 32bit, 1 -> 64bit 4828 * op: 0 -> add , 1 -> sub 4829 * S: 1 -> set flags 4830 * opt: 00 4831 * option: extension type (see DecodeRegExtend) 4832 * imm3: optional shift to Rm 4833 * 4834 * Rd = Rn + LSL(extend(Rm), amount) 4835 */ 4836 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4837 { 4838 int rd = extract32(insn, 0, 5); 4839 int rn = extract32(insn, 5, 5); 4840 int imm3 = extract32(insn, 10, 3); 4841 int option = extract32(insn, 13, 3); 4842 int rm = extract32(insn, 16, 5); 4843 int opt = extract32(insn, 22, 2); 4844 bool setflags = extract32(insn, 29, 1); 4845 bool sub_op = extract32(insn, 30, 1); 4846 bool sf = extract32(insn, 31, 1); 4847 4848 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4849 TCGv_i64 tcg_rd; 4850 TCGv_i64 tcg_result; 4851 4852 if (imm3 > 4 || opt != 0) { 4853 unallocated_encoding(s); 4854 return; 4855 } 4856 4857 /* non-flag setting ops may use SP */ 4858 if (!setflags) { 4859 tcg_rd = cpu_reg_sp(s, rd); 4860 } else { 4861 tcg_rd = cpu_reg(s, rd); 4862 } 4863 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4864 4865 tcg_rm = read_cpu_reg(s, rm, sf); 4866 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4867 4868 tcg_result = tcg_temp_new_i64(); 4869 4870 if (!setflags) { 4871 if (sub_op) { 4872 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4873 } else { 4874 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4875 } 4876 } else { 4877 if (sub_op) { 4878 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4879 } else { 4880 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4881 } 4882 } 4883 4884 if (sf) { 4885 tcg_gen_mov_i64(tcg_rd, tcg_result); 4886 } else { 4887 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4888 } 4889 } 4890 4891 /* 4892 * Add/subtract (shifted register) 4893 * 4894 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4895 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4896 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4897 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4898 * 4899 * sf: 0 -> 32bit, 1 -> 64bit 4900 * op: 0 -> add , 1 -> sub 4901 * S: 1 -> set flags 4902 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4903 * imm6: Shift amount to apply to Rm before the add/sub 4904 */ 4905 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4906 { 4907 int rd = extract32(insn, 0, 5); 4908 int rn = extract32(insn, 5, 5); 4909 int imm6 = extract32(insn, 10, 6); 4910 int rm = extract32(insn, 16, 5); 4911 int shift_type = extract32(insn, 22, 2); 4912 bool setflags = extract32(insn, 29, 1); 4913 bool sub_op = extract32(insn, 30, 1); 4914 bool sf = extract32(insn, 31, 1); 4915 4916 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4917 TCGv_i64 tcg_rn, tcg_rm; 4918 TCGv_i64 tcg_result; 4919 4920 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4921 unallocated_encoding(s); 4922 return; 4923 } 4924 4925 tcg_rn = read_cpu_reg(s, rn, sf); 4926 tcg_rm = read_cpu_reg(s, rm, sf); 4927 4928 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4929 4930 tcg_result = tcg_temp_new_i64(); 4931 4932 if (!setflags) { 4933 if (sub_op) { 4934 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4935 } else { 4936 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4937 } 4938 } else { 4939 if (sub_op) { 4940 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4941 } else { 4942 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4943 } 4944 } 4945 4946 if (sf) { 4947 tcg_gen_mov_i64(tcg_rd, tcg_result); 4948 } else { 4949 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4950 } 4951 } 4952 4953 /* Data-processing (3 source) 4954 * 4955 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4956 * +--+------+-----------+------+------+----+------+------+------+ 4957 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4958 * +--+------+-----------+------+------+----+------+------+------+ 4959 */ 4960 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4961 { 4962 int rd = extract32(insn, 0, 5); 4963 int rn = extract32(insn, 5, 5); 4964 int ra = extract32(insn, 10, 5); 4965 int rm = extract32(insn, 16, 5); 4966 int op_id = (extract32(insn, 29, 3) << 4) | 4967 (extract32(insn, 21, 3) << 1) | 4968 extract32(insn, 15, 1); 4969 bool sf = extract32(insn, 31, 1); 4970 bool is_sub = extract32(op_id, 0, 1); 4971 bool is_high = extract32(op_id, 2, 1); 4972 bool is_signed = false; 4973 TCGv_i64 tcg_op1; 4974 TCGv_i64 tcg_op2; 4975 TCGv_i64 tcg_tmp; 4976 4977 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4978 switch (op_id) { 4979 case 0x42: /* SMADDL */ 4980 case 0x43: /* SMSUBL */ 4981 case 0x44: /* SMULH */ 4982 is_signed = true; 4983 break; 4984 case 0x0: /* MADD (32bit) */ 4985 case 0x1: /* MSUB (32bit) */ 4986 case 0x40: /* MADD (64bit) */ 4987 case 0x41: /* MSUB (64bit) */ 4988 case 0x4a: /* UMADDL */ 4989 case 0x4b: /* UMSUBL */ 4990 case 0x4c: /* UMULH */ 4991 break; 4992 default: 4993 unallocated_encoding(s); 4994 return; 4995 } 4996 4997 if (is_high) { 4998 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4999 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5000 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5001 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5002 5003 if (is_signed) { 5004 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5005 } else { 5006 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5007 } 5008 return; 5009 } 5010 5011 tcg_op1 = tcg_temp_new_i64(); 5012 tcg_op2 = tcg_temp_new_i64(); 5013 tcg_tmp = tcg_temp_new_i64(); 5014 5015 if (op_id < 0x42) { 5016 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5017 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5018 } else { 5019 if (is_signed) { 5020 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5021 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5022 } else { 5023 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5024 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5025 } 5026 } 5027 5028 if (ra == 31 && !is_sub) { 5029 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5030 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5031 } else { 5032 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5033 if (is_sub) { 5034 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5035 } else { 5036 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5037 } 5038 } 5039 5040 if (!sf) { 5041 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5042 } 5043 } 5044 5045 /* Add/subtract (with carry) 5046 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5047 * +--+--+--+------------------------+------+-------------+------+-----+ 5048 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5049 * +--+--+--+------------------------+------+-------------+------+-----+ 5050 */ 5051 5052 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5053 { 5054 unsigned int sf, op, setflags, rm, rn, rd; 5055 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5056 5057 sf = extract32(insn, 31, 1); 5058 op = extract32(insn, 30, 1); 5059 setflags = extract32(insn, 29, 1); 5060 rm = extract32(insn, 16, 5); 5061 rn = extract32(insn, 5, 5); 5062 rd = extract32(insn, 0, 5); 5063 5064 tcg_rd = cpu_reg(s, rd); 5065 tcg_rn = cpu_reg(s, rn); 5066 5067 if (op) { 5068 tcg_y = tcg_temp_new_i64(); 5069 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5070 } else { 5071 tcg_y = cpu_reg(s, rm); 5072 } 5073 5074 if (setflags) { 5075 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5076 } else { 5077 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5078 } 5079 } 5080 5081 /* 5082 * Rotate right into flags 5083 * 31 30 29 21 15 10 5 4 0 5084 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5085 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5086 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5087 */ 5088 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5089 { 5090 int mask = extract32(insn, 0, 4); 5091 int o2 = extract32(insn, 4, 1); 5092 int rn = extract32(insn, 5, 5); 5093 int imm6 = extract32(insn, 15, 6); 5094 int sf_op_s = extract32(insn, 29, 3); 5095 TCGv_i64 tcg_rn; 5096 TCGv_i32 nzcv; 5097 5098 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5099 unallocated_encoding(s); 5100 return; 5101 } 5102 5103 tcg_rn = read_cpu_reg(s, rn, 1); 5104 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5105 5106 nzcv = tcg_temp_new_i32(); 5107 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5108 5109 if (mask & 8) { /* N */ 5110 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5111 } 5112 if (mask & 4) { /* Z */ 5113 tcg_gen_not_i32(cpu_ZF, nzcv); 5114 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5115 } 5116 if (mask & 2) { /* C */ 5117 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5118 } 5119 if (mask & 1) { /* V */ 5120 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5121 } 5122 } 5123 5124 /* 5125 * Evaluate into flags 5126 * 31 30 29 21 15 14 10 5 4 0 5127 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5128 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5129 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5130 */ 5131 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5132 { 5133 int o3_mask = extract32(insn, 0, 5); 5134 int rn = extract32(insn, 5, 5); 5135 int o2 = extract32(insn, 15, 6); 5136 int sz = extract32(insn, 14, 1); 5137 int sf_op_s = extract32(insn, 29, 3); 5138 TCGv_i32 tmp; 5139 int shift; 5140 5141 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5142 !dc_isar_feature(aa64_condm_4, s)) { 5143 unallocated_encoding(s); 5144 return; 5145 } 5146 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5147 5148 tmp = tcg_temp_new_i32(); 5149 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5150 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5151 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5152 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5153 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5154 } 5155 5156 /* Conditional compare (immediate / register) 5157 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5158 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5159 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5160 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5161 * [1] y [0] [0] 5162 */ 5163 static void disas_cc(DisasContext *s, uint32_t insn) 5164 { 5165 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5166 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5167 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5168 DisasCompare c; 5169 5170 if (!extract32(insn, 29, 1)) { 5171 unallocated_encoding(s); 5172 return; 5173 } 5174 if (insn & (1 << 10 | 1 << 4)) { 5175 unallocated_encoding(s); 5176 return; 5177 } 5178 sf = extract32(insn, 31, 1); 5179 op = extract32(insn, 30, 1); 5180 is_imm = extract32(insn, 11, 1); 5181 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5182 cond = extract32(insn, 12, 4); 5183 rn = extract32(insn, 5, 5); 5184 nzcv = extract32(insn, 0, 4); 5185 5186 /* Set T0 = !COND. */ 5187 tcg_t0 = tcg_temp_new_i32(); 5188 arm_test_cc(&c, cond); 5189 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5190 5191 /* Load the arguments for the new comparison. */ 5192 if (is_imm) { 5193 tcg_y = tcg_temp_new_i64(); 5194 tcg_gen_movi_i64(tcg_y, y); 5195 } else { 5196 tcg_y = cpu_reg(s, y); 5197 } 5198 tcg_rn = cpu_reg(s, rn); 5199 5200 /* Set the flags for the new comparison. */ 5201 tcg_tmp = tcg_temp_new_i64(); 5202 if (op) { 5203 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5204 } else { 5205 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5206 } 5207 5208 /* If COND was false, force the flags to #nzcv. Compute two masks 5209 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5210 * For tcg hosts that support ANDC, we can make do with just T1. 5211 * In either case, allow the tcg optimizer to delete any unused mask. 5212 */ 5213 tcg_t1 = tcg_temp_new_i32(); 5214 tcg_t2 = tcg_temp_new_i32(); 5215 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5216 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5217 5218 if (nzcv & 8) { /* N */ 5219 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5220 } else { 5221 if (TCG_TARGET_HAS_andc_i32) { 5222 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5223 } else { 5224 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5225 } 5226 } 5227 if (nzcv & 4) { /* Z */ 5228 if (TCG_TARGET_HAS_andc_i32) { 5229 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5230 } else { 5231 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5232 } 5233 } else { 5234 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5235 } 5236 if (nzcv & 2) { /* C */ 5237 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5238 } else { 5239 if (TCG_TARGET_HAS_andc_i32) { 5240 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5241 } else { 5242 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5243 } 5244 } 5245 if (nzcv & 1) { /* V */ 5246 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5247 } else { 5248 if (TCG_TARGET_HAS_andc_i32) { 5249 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5250 } else { 5251 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5252 } 5253 } 5254 } 5255 5256 /* Conditional select 5257 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5258 * +----+----+---+-----------------+------+------+-----+------+------+ 5259 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5260 * +----+----+---+-----------------+------+------+-----+------+------+ 5261 */ 5262 static void disas_cond_select(DisasContext *s, uint32_t insn) 5263 { 5264 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5265 TCGv_i64 tcg_rd, zero; 5266 DisasCompare64 c; 5267 5268 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5269 /* S == 1 or op2<1> == 1 */ 5270 unallocated_encoding(s); 5271 return; 5272 } 5273 sf = extract32(insn, 31, 1); 5274 else_inv = extract32(insn, 30, 1); 5275 rm = extract32(insn, 16, 5); 5276 cond = extract32(insn, 12, 4); 5277 else_inc = extract32(insn, 10, 1); 5278 rn = extract32(insn, 5, 5); 5279 rd = extract32(insn, 0, 5); 5280 5281 tcg_rd = cpu_reg(s, rd); 5282 5283 a64_test_cc(&c, cond); 5284 zero = tcg_constant_i64(0); 5285 5286 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5287 /* CSET & CSETM. */ 5288 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5289 if (else_inv) { 5290 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5291 } 5292 } else { 5293 TCGv_i64 t_true = cpu_reg(s, rn); 5294 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5295 if (else_inv && else_inc) { 5296 tcg_gen_neg_i64(t_false, t_false); 5297 } else if (else_inv) { 5298 tcg_gen_not_i64(t_false, t_false); 5299 } else if (else_inc) { 5300 tcg_gen_addi_i64(t_false, t_false, 1); 5301 } 5302 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5303 } 5304 5305 if (!sf) { 5306 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5307 } 5308 } 5309 5310 static void handle_clz(DisasContext *s, unsigned int sf, 5311 unsigned int rn, unsigned int rd) 5312 { 5313 TCGv_i64 tcg_rd, tcg_rn; 5314 tcg_rd = cpu_reg(s, rd); 5315 tcg_rn = cpu_reg(s, rn); 5316 5317 if (sf) { 5318 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5319 } else { 5320 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5321 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5322 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5323 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5324 } 5325 } 5326 5327 static void handle_cls(DisasContext *s, unsigned int sf, 5328 unsigned int rn, unsigned int rd) 5329 { 5330 TCGv_i64 tcg_rd, tcg_rn; 5331 tcg_rd = cpu_reg(s, rd); 5332 tcg_rn = cpu_reg(s, rn); 5333 5334 if (sf) { 5335 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5336 } else { 5337 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5338 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5339 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5340 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5341 } 5342 } 5343 5344 static void handle_rbit(DisasContext *s, unsigned int sf, 5345 unsigned int rn, unsigned int rd) 5346 { 5347 TCGv_i64 tcg_rd, tcg_rn; 5348 tcg_rd = cpu_reg(s, rd); 5349 tcg_rn = cpu_reg(s, rn); 5350 5351 if (sf) { 5352 gen_helper_rbit64(tcg_rd, tcg_rn); 5353 } else { 5354 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5355 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5356 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5357 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5358 } 5359 } 5360 5361 /* REV with sf==1, opcode==3 ("REV64") */ 5362 static void handle_rev64(DisasContext *s, unsigned int sf, 5363 unsigned int rn, unsigned int rd) 5364 { 5365 if (!sf) { 5366 unallocated_encoding(s); 5367 return; 5368 } 5369 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5370 } 5371 5372 /* REV with sf==0, opcode==2 5373 * REV32 (sf==1, opcode==2) 5374 */ 5375 static void handle_rev32(DisasContext *s, unsigned int sf, 5376 unsigned int rn, unsigned int rd) 5377 { 5378 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5379 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5380 5381 if (sf) { 5382 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5383 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5384 } else { 5385 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5386 } 5387 } 5388 5389 /* REV16 (opcode==1) */ 5390 static void handle_rev16(DisasContext *s, unsigned int sf, 5391 unsigned int rn, unsigned int rd) 5392 { 5393 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5394 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5395 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5396 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5397 5398 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5399 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5400 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5401 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5402 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5403 } 5404 5405 /* Data-processing (1 source) 5406 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5407 * +----+---+---+-----------------+---------+--------+------+------+ 5408 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5409 * +----+---+---+-----------------+---------+--------+------+------+ 5410 */ 5411 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5412 { 5413 unsigned int sf, opcode, opcode2, rn, rd; 5414 TCGv_i64 tcg_rd; 5415 5416 if (extract32(insn, 29, 1)) { 5417 unallocated_encoding(s); 5418 return; 5419 } 5420 5421 sf = extract32(insn, 31, 1); 5422 opcode = extract32(insn, 10, 6); 5423 opcode2 = extract32(insn, 16, 5); 5424 rn = extract32(insn, 5, 5); 5425 rd = extract32(insn, 0, 5); 5426 5427 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5428 5429 switch (MAP(sf, opcode2, opcode)) { 5430 case MAP(0, 0x00, 0x00): /* RBIT */ 5431 case MAP(1, 0x00, 0x00): 5432 handle_rbit(s, sf, rn, rd); 5433 break; 5434 case MAP(0, 0x00, 0x01): /* REV16 */ 5435 case MAP(1, 0x00, 0x01): 5436 handle_rev16(s, sf, rn, rd); 5437 break; 5438 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5439 case MAP(1, 0x00, 0x02): 5440 handle_rev32(s, sf, rn, rd); 5441 break; 5442 case MAP(1, 0x00, 0x03): /* REV64 */ 5443 handle_rev64(s, sf, rn, rd); 5444 break; 5445 case MAP(0, 0x00, 0x04): /* CLZ */ 5446 case MAP(1, 0x00, 0x04): 5447 handle_clz(s, sf, rn, rd); 5448 break; 5449 case MAP(0, 0x00, 0x05): /* CLS */ 5450 case MAP(1, 0x00, 0x05): 5451 handle_cls(s, sf, rn, rd); 5452 break; 5453 case MAP(1, 0x01, 0x00): /* PACIA */ 5454 if (s->pauth_active) { 5455 tcg_rd = cpu_reg(s, rd); 5456 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5457 } else if (!dc_isar_feature(aa64_pauth, s)) { 5458 goto do_unallocated; 5459 } 5460 break; 5461 case MAP(1, 0x01, 0x01): /* PACIB */ 5462 if (s->pauth_active) { 5463 tcg_rd = cpu_reg(s, rd); 5464 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5465 } else if (!dc_isar_feature(aa64_pauth, s)) { 5466 goto do_unallocated; 5467 } 5468 break; 5469 case MAP(1, 0x01, 0x02): /* PACDA */ 5470 if (s->pauth_active) { 5471 tcg_rd = cpu_reg(s, rd); 5472 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5473 } else if (!dc_isar_feature(aa64_pauth, s)) { 5474 goto do_unallocated; 5475 } 5476 break; 5477 case MAP(1, 0x01, 0x03): /* PACDB */ 5478 if (s->pauth_active) { 5479 tcg_rd = cpu_reg(s, rd); 5480 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5481 } else if (!dc_isar_feature(aa64_pauth, s)) { 5482 goto do_unallocated; 5483 } 5484 break; 5485 case MAP(1, 0x01, 0x04): /* AUTIA */ 5486 if (s->pauth_active) { 5487 tcg_rd = cpu_reg(s, rd); 5488 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5489 } else if (!dc_isar_feature(aa64_pauth, s)) { 5490 goto do_unallocated; 5491 } 5492 break; 5493 case MAP(1, 0x01, 0x05): /* AUTIB */ 5494 if (s->pauth_active) { 5495 tcg_rd = cpu_reg(s, rd); 5496 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5497 } else if (!dc_isar_feature(aa64_pauth, s)) { 5498 goto do_unallocated; 5499 } 5500 break; 5501 case MAP(1, 0x01, 0x06): /* AUTDA */ 5502 if (s->pauth_active) { 5503 tcg_rd = cpu_reg(s, rd); 5504 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5505 } else if (!dc_isar_feature(aa64_pauth, s)) { 5506 goto do_unallocated; 5507 } 5508 break; 5509 case MAP(1, 0x01, 0x07): /* AUTDB */ 5510 if (s->pauth_active) { 5511 tcg_rd = cpu_reg(s, rd); 5512 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5513 } else if (!dc_isar_feature(aa64_pauth, s)) { 5514 goto do_unallocated; 5515 } 5516 break; 5517 case MAP(1, 0x01, 0x08): /* PACIZA */ 5518 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5519 goto do_unallocated; 5520 } else if (s->pauth_active) { 5521 tcg_rd = cpu_reg(s, rd); 5522 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5523 } 5524 break; 5525 case MAP(1, 0x01, 0x09): /* PACIZB */ 5526 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5527 goto do_unallocated; 5528 } else if (s->pauth_active) { 5529 tcg_rd = cpu_reg(s, rd); 5530 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5531 } 5532 break; 5533 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5534 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5535 goto do_unallocated; 5536 } else if (s->pauth_active) { 5537 tcg_rd = cpu_reg(s, rd); 5538 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5539 } 5540 break; 5541 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5542 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5543 goto do_unallocated; 5544 } else if (s->pauth_active) { 5545 tcg_rd = cpu_reg(s, rd); 5546 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5547 } 5548 break; 5549 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5550 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5551 goto do_unallocated; 5552 } else if (s->pauth_active) { 5553 tcg_rd = cpu_reg(s, rd); 5554 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5555 } 5556 break; 5557 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5558 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5559 goto do_unallocated; 5560 } else if (s->pauth_active) { 5561 tcg_rd = cpu_reg(s, rd); 5562 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5563 } 5564 break; 5565 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5566 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5567 goto do_unallocated; 5568 } else if (s->pauth_active) { 5569 tcg_rd = cpu_reg(s, rd); 5570 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5571 } 5572 break; 5573 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5574 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5575 goto do_unallocated; 5576 } else if (s->pauth_active) { 5577 tcg_rd = cpu_reg(s, rd); 5578 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5579 } 5580 break; 5581 case MAP(1, 0x01, 0x10): /* XPACI */ 5582 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5583 goto do_unallocated; 5584 } else if (s->pauth_active) { 5585 tcg_rd = cpu_reg(s, rd); 5586 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5587 } 5588 break; 5589 case MAP(1, 0x01, 0x11): /* XPACD */ 5590 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5591 goto do_unallocated; 5592 } else if (s->pauth_active) { 5593 tcg_rd = cpu_reg(s, rd); 5594 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5595 } 5596 break; 5597 default: 5598 do_unallocated: 5599 unallocated_encoding(s); 5600 break; 5601 } 5602 5603 #undef MAP 5604 } 5605 5606 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5607 unsigned int rm, unsigned int rn, unsigned int rd) 5608 { 5609 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5610 tcg_rd = cpu_reg(s, rd); 5611 5612 if (!sf && is_signed) { 5613 tcg_n = tcg_temp_new_i64(); 5614 tcg_m = tcg_temp_new_i64(); 5615 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5616 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5617 } else { 5618 tcg_n = read_cpu_reg(s, rn, sf); 5619 tcg_m = read_cpu_reg(s, rm, sf); 5620 } 5621 5622 if (is_signed) { 5623 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5624 } else { 5625 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5626 } 5627 5628 if (!sf) { /* zero extend final result */ 5629 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5630 } 5631 } 5632 5633 /* LSLV, LSRV, ASRV, RORV */ 5634 static void handle_shift_reg(DisasContext *s, 5635 enum a64_shift_type shift_type, unsigned int sf, 5636 unsigned int rm, unsigned int rn, unsigned int rd) 5637 { 5638 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5639 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5640 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5641 5642 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5643 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5644 } 5645 5646 /* CRC32[BHWX], CRC32C[BHWX] */ 5647 static void handle_crc32(DisasContext *s, 5648 unsigned int sf, unsigned int sz, bool crc32c, 5649 unsigned int rm, unsigned int rn, unsigned int rd) 5650 { 5651 TCGv_i64 tcg_acc, tcg_val; 5652 TCGv_i32 tcg_bytes; 5653 5654 if (!dc_isar_feature(aa64_crc32, s) 5655 || (sf == 1 && sz != 3) 5656 || (sf == 0 && sz == 3)) { 5657 unallocated_encoding(s); 5658 return; 5659 } 5660 5661 if (sz == 3) { 5662 tcg_val = cpu_reg(s, rm); 5663 } else { 5664 uint64_t mask; 5665 switch (sz) { 5666 case 0: 5667 mask = 0xFF; 5668 break; 5669 case 1: 5670 mask = 0xFFFF; 5671 break; 5672 case 2: 5673 mask = 0xFFFFFFFF; 5674 break; 5675 default: 5676 g_assert_not_reached(); 5677 } 5678 tcg_val = tcg_temp_new_i64(); 5679 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5680 } 5681 5682 tcg_acc = cpu_reg(s, rn); 5683 tcg_bytes = tcg_constant_i32(1 << sz); 5684 5685 if (crc32c) { 5686 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5687 } else { 5688 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5689 } 5690 } 5691 5692 /* Data-processing (2 source) 5693 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5694 * +----+---+---+-----------------+------+--------+------+------+ 5695 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5696 * +----+---+---+-----------------+------+--------+------+------+ 5697 */ 5698 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5699 { 5700 unsigned int sf, rm, opcode, rn, rd, setflag; 5701 sf = extract32(insn, 31, 1); 5702 setflag = extract32(insn, 29, 1); 5703 rm = extract32(insn, 16, 5); 5704 opcode = extract32(insn, 10, 6); 5705 rn = extract32(insn, 5, 5); 5706 rd = extract32(insn, 0, 5); 5707 5708 if (setflag && opcode != 0) { 5709 unallocated_encoding(s); 5710 return; 5711 } 5712 5713 switch (opcode) { 5714 case 0: /* SUBP(S) */ 5715 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5716 goto do_unallocated; 5717 } else { 5718 TCGv_i64 tcg_n, tcg_m, tcg_d; 5719 5720 tcg_n = read_cpu_reg_sp(s, rn, true); 5721 tcg_m = read_cpu_reg_sp(s, rm, true); 5722 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5723 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5724 tcg_d = cpu_reg(s, rd); 5725 5726 if (setflag) { 5727 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5728 } else { 5729 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5730 } 5731 } 5732 break; 5733 case 2: /* UDIV */ 5734 handle_div(s, false, sf, rm, rn, rd); 5735 break; 5736 case 3: /* SDIV */ 5737 handle_div(s, true, sf, rm, rn, rd); 5738 break; 5739 case 4: /* IRG */ 5740 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5741 goto do_unallocated; 5742 } 5743 if (s->ata) { 5744 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5745 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5746 } else { 5747 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5748 cpu_reg_sp(s, rn)); 5749 } 5750 break; 5751 case 5: /* GMI */ 5752 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5753 goto do_unallocated; 5754 } else { 5755 TCGv_i64 t = tcg_temp_new_i64(); 5756 5757 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5758 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5759 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5760 } 5761 break; 5762 case 8: /* LSLV */ 5763 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5764 break; 5765 case 9: /* LSRV */ 5766 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5767 break; 5768 case 10: /* ASRV */ 5769 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5770 break; 5771 case 11: /* RORV */ 5772 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5773 break; 5774 case 12: /* PACGA */ 5775 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5776 goto do_unallocated; 5777 } 5778 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5779 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5780 break; 5781 case 16: 5782 case 17: 5783 case 18: 5784 case 19: 5785 case 20: 5786 case 21: 5787 case 22: 5788 case 23: /* CRC32 */ 5789 { 5790 int sz = extract32(opcode, 0, 2); 5791 bool crc32c = extract32(opcode, 2, 1); 5792 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5793 break; 5794 } 5795 default: 5796 do_unallocated: 5797 unallocated_encoding(s); 5798 break; 5799 } 5800 } 5801 5802 /* 5803 * Data processing - register 5804 * 31 30 29 28 25 21 20 16 10 0 5805 * +--+---+--+---+-------+-----+-------+-------+---------+ 5806 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5807 * +--+---+--+---+-------+-----+-------+-------+---------+ 5808 */ 5809 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5810 { 5811 int op0 = extract32(insn, 30, 1); 5812 int op1 = extract32(insn, 28, 1); 5813 int op2 = extract32(insn, 21, 4); 5814 int op3 = extract32(insn, 10, 6); 5815 5816 if (!op1) { 5817 if (op2 & 8) { 5818 if (op2 & 1) { 5819 /* Add/sub (extended register) */ 5820 disas_add_sub_ext_reg(s, insn); 5821 } else { 5822 /* Add/sub (shifted register) */ 5823 disas_add_sub_reg(s, insn); 5824 } 5825 } else { 5826 /* Logical (shifted register) */ 5827 disas_logic_reg(s, insn); 5828 } 5829 return; 5830 } 5831 5832 switch (op2) { 5833 case 0x0: 5834 switch (op3) { 5835 case 0x00: /* Add/subtract (with carry) */ 5836 disas_adc_sbc(s, insn); 5837 break; 5838 5839 case 0x01: /* Rotate right into flags */ 5840 case 0x21: 5841 disas_rotate_right_into_flags(s, insn); 5842 break; 5843 5844 case 0x02: /* Evaluate into flags */ 5845 case 0x12: 5846 case 0x22: 5847 case 0x32: 5848 disas_evaluate_into_flags(s, insn); 5849 break; 5850 5851 default: 5852 goto do_unallocated; 5853 } 5854 break; 5855 5856 case 0x2: /* Conditional compare */ 5857 disas_cc(s, insn); /* both imm and reg forms */ 5858 break; 5859 5860 case 0x4: /* Conditional select */ 5861 disas_cond_select(s, insn); 5862 break; 5863 5864 case 0x6: /* Data-processing */ 5865 if (op0) { /* (1 source) */ 5866 disas_data_proc_1src(s, insn); 5867 } else { /* (2 source) */ 5868 disas_data_proc_2src(s, insn); 5869 } 5870 break; 5871 case 0x8 ... 0xf: /* (3 source) */ 5872 disas_data_proc_3src(s, insn); 5873 break; 5874 5875 default: 5876 do_unallocated: 5877 unallocated_encoding(s); 5878 break; 5879 } 5880 } 5881 5882 static void handle_fp_compare(DisasContext *s, int size, 5883 unsigned int rn, unsigned int rm, 5884 bool cmp_with_zero, bool signal_all_nans) 5885 { 5886 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5887 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5888 5889 if (size == MO_64) { 5890 TCGv_i64 tcg_vn, tcg_vm; 5891 5892 tcg_vn = read_fp_dreg(s, rn); 5893 if (cmp_with_zero) { 5894 tcg_vm = tcg_constant_i64(0); 5895 } else { 5896 tcg_vm = read_fp_dreg(s, rm); 5897 } 5898 if (signal_all_nans) { 5899 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5900 } else { 5901 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5902 } 5903 } else { 5904 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5905 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5906 5907 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5908 if (cmp_with_zero) { 5909 tcg_gen_movi_i32(tcg_vm, 0); 5910 } else { 5911 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5912 } 5913 5914 switch (size) { 5915 case MO_32: 5916 if (signal_all_nans) { 5917 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5918 } else { 5919 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5920 } 5921 break; 5922 case MO_16: 5923 if (signal_all_nans) { 5924 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5925 } else { 5926 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5927 } 5928 break; 5929 default: 5930 g_assert_not_reached(); 5931 } 5932 } 5933 5934 gen_set_nzcv(tcg_flags); 5935 } 5936 5937 /* Floating point compare 5938 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5939 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5940 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5941 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5942 */ 5943 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5944 { 5945 unsigned int mos, type, rm, op, rn, opc, op2r; 5946 int size; 5947 5948 mos = extract32(insn, 29, 3); 5949 type = extract32(insn, 22, 2); 5950 rm = extract32(insn, 16, 5); 5951 op = extract32(insn, 14, 2); 5952 rn = extract32(insn, 5, 5); 5953 opc = extract32(insn, 3, 2); 5954 op2r = extract32(insn, 0, 3); 5955 5956 if (mos || op || op2r) { 5957 unallocated_encoding(s); 5958 return; 5959 } 5960 5961 switch (type) { 5962 case 0: 5963 size = MO_32; 5964 break; 5965 case 1: 5966 size = MO_64; 5967 break; 5968 case 3: 5969 size = MO_16; 5970 if (dc_isar_feature(aa64_fp16, s)) { 5971 break; 5972 } 5973 /* fallthru */ 5974 default: 5975 unallocated_encoding(s); 5976 return; 5977 } 5978 5979 if (!fp_access_check(s)) { 5980 return; 5981 } 5982 5983 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5984 } 5985 5986 /* Floating point conditional compare 5987 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5988 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5989 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5990 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5991 */ 5992 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5993 { 5994 unsigned int mos, type, rm, cond, rn, op, nzcv; 5995 TCGLabel *label_continue = NULL; 5996 int size; 5997 5998 mos = extract32(insn, 29, 3); 5999 type = extract32(insn, 22, 2); 6000 rm = extract32(insn, 16, 5); 6001 cond = extract32(insn, 12, 4); 6002 rn = extract32(insn, 5, 5); 6003 op = extract32(insn, 4, 1); 6004 nzcv = extract32(insn, 0, 4); 6005 6006 if (mos) { 6007 unallocated_encoding(s); 6008 return; 6009 } 6010 6011 switch (type) { 6012 case 0: 6013 size = MO_32; 6014 break; 6015 case 1: 6016 size = MO_64; 6017 break; 6018 case 3: 6019 size = MO_16; 6020 if (dc_isar_feature(aa64_fp16, s)) { 6021 break; 6022 } 6023 /* fallthru */ 6024 default: 6025 unallocated_encoding(s); 6026 return; 6027 } 6028 6029 if (!fp_access_check(s)) { 6030 return; 6031 } 6032 6033 if (cond < 0x0e) { /* not always */ 6034 TCGLabel *label_match = gen_new_label(); 6035 label_continue = gen_new_label(); 6036 arm_gen_test_cc(cond, label_match); 6037 /* nomatch: */ 6038 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6039 tcg_gen_br(label_continue); 6040 gen_set_label(label_match); 6041 } 6042 6043 handle_fp_compare(s, size, rn, rm, false, op); 6044 6045 if (cond < 0x0e) { 6046 gen_set_label(label_continue); 6047 } 6048 } 6049 6050 /* Floating point conditional select 6051 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6052 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6053 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6054 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6055 */ 6056 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6057 { 6058 unsigned int mos, type, rm, cond, rn, rd; 6059 TCGv_i64 t_true, t_false; 6060 DisasCompare64 c; 6061 MemOp sz; 6062 6063 mos = extract32(insn, 29, 3); 6064 type = extract32(insn, 22, 2); 6065 rm = extract32(insn, 16, 5); 6066 cond = extract32(insn, 12, 4); 6067 rn = extract32(insn, 5, 5); 6068 rd = extract32(insn, 0, 5); 6069 6070 if (mos) { 6071 unallocated_encoding(s); 6072 return; 6073 } 6074 6075 switch (type) { 6076 case 0: 6077 sz = MO_32; 6078 break; 6079 case 1: 6080 sz = MO_64; 6081 break; 6082 case 3: 6083 sz = MO_16; 6084 if (dc_isar_feature(aa64_fp16, s)) { 6085 break; 6086 } 6087 /* fallthru */ 6088 default: 6089 unallocated_encoding(s); 6090 return; 6091 } 6092 6093 if (!fp_access_check(s)) { 6094 return; 6095 } 6096 6097 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6098 t_true = tcg_temp_new_i64(); 6099 t_false = tcg_temp_new_i64(); 6100 read_vec_element(s, t_true, rn, 0, sz); 6101 read_vec_element(s, t_false, rm, 0, sz); 6102 6103 a64_test_cc(&c, cond); 6104 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6105 t_true, t_false); 6106 6107 /* Note that sregs & hregs write back zeros to the high bits, 6108 and we've already done the zero-extension. */ 6109 write_fp_dreg(s, rd, t_true); 6110 } 6111 6112 /* Floating-point data-processing (1 source) - half precision */ 6113 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6114 { 6115 TCGv_ptr fpst = NULL; 6116 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6117 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6118 6119 switch (opcode) { 6120 case 0x0: /* FMOV */ 6121 tcg_gen_mov_i32(tcg_res, tcg_op); 6122 break; 6123 case 0x1: /* FABS */ 6124 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6125 break; 6126 case 0x2: /* FNEG */ 6127 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6128 break; 6129 case 0x3: /* FSQRT */ 6130 fpst = fpstatus_ptr(FPST_FPCR_F16); 6131 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6132 break; 6133 case 0x8: /* FRINTN */ 6134 case 0x9: /* FRINTP */ 6135 case 0xa: /* FRINTM */ 6136 case 0xb: /* FRINTZ */ 6137 case 0xc: /* FRINTA */ 6138 { 6139 TCGv_i32 tcg_rmode; 6140 6141 fpst = fpstatus_ptr(FPST_FPCR_F16); 6142 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6143 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6144 gen_restore_rmode(tcg_rmode, fpst); 6145 break; 6146 } 6147 case 0xe: /* FRINTX */ 6148 fpst = fpstatus_ptr(FPST_FPCR_F16); 6149 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6150 break; 6151 case 0xf: /* FRINTI */ 6152 fpst = fpstatus_ptr(FPST_FPCR_F16); 6153 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6154 break; 6155 default: 6156 g_assert_not_reached(); 6157 } 6158 6159 write_fp_sreg(s, rd, tcg_res); 6160 } 6161 6162 /* Floating-point data-processing (1 source) - single precision */ 6163 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6164 { 6165 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6166 TCGv_i32 tcg_op, tcg_res; 6167 TCGv_ptr fpst; 6168 int rmode = -1; 6169 6170 tcg_op = read_fp_sreg(s, rn); 6171 tcg_res = tcg_temp_new_i32(); 6172 6173 switch (opcode) { 6174 case 0x0: /* FMOV */ 6175 tcg_gen_mov_i32(tcg_res, tcg_op); 6176 goto done; 6177 case 0x1: /* FABS */ 6178 gen_helper_vfp_abss(tcg_res, tcg_op); 6179 goto done; 6180 case 0x2: /* FNEG */ 6181 gen_helper_vfp_negs(tcg_res, tcg_op); 6182 goto done; 6183 case 0x3: /* FSQRT */ 6184 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6185 goto done; 6186 case 0x6: /* BFCVT */ 6187 gen_fpst = gen_helper_bfcvt; 6188 break; 6189 case 0x8: /* FRINTN */ 6190 case 0x9: /* FRINTP */ 6191 case 0xa: /* FRINTM */ 6192 case 0xb: /* FRINTZ */ 6193 case 0xc: /* FRINTA */ 6194 rmode = opcode & 7; 6195 gen_fpst = gen_helper_rints; 6196 break; 6197 case 0xe: /* FRINTX */ 6198 gen_fpst = gen_helper_rints_exact; 6199 break; 6200 case 0xf: /* FRINTI */ 6201 gen_fpst = gen_helper_rints; 6202 break; 6203 case 0x10: /* FRINT32Z */ 6204 rmode = FPROUNDING_ZERO; 6205 gen_fpst = gen_helper_frint32_s; 6206 break; 6207 case 0x11: /* FRINT32X */ 6208 gen_fpst = gen_helper_frint32_s; 6209 break; 6210 case 0x12: /* FRINT64Z */ 6211 rmode = FPROUNDING_ZERO; 6212 gen_fpst = gen_helper_frint64_s; 6213 break; 6214 case 0x13: /* FRINT64X */ 6215 gen_fpst = gen_helper_frint64_s; 6216 break; 6217 default: 6218 g_assert_not_reached(); 6219 } 6220 6221 fpst = fpstatus_ptr(FPST_FPCR); 6222 if (rmode >= 0) { 6223 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6224 gen_fpst(tcg_res, tcg_op, fpst); 6225 gen_restore_rmode(tcg_rmode, fpst); 6226 } else { 6227 gen_fpst(tcg_res, tcg_op, fpst); 6228 } 6229 6230 done: 6231 write_fp_sreg(s, rd, tcg_res); 6232 } 6233 6234 /* Floating-point data-processing (1 source) - double precision */ 6235 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6236 { 6237 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6238 TCGv_i64 tcg_op, tcg_res; 6239 TCGv_ptr fpst; 6240 int rmode = -1; 6241 6242 switch (opcode) { 6243 case 0x0: /* FMOV */ 6244 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6245 return; 6246 } 6247 6248 tcg_op = read_fp_dreg(s, rn); 6249 tcg_res = tcg_temp_new_i64(); 6250 6251 switch (opcode) { 6252 case 0x1: /* FABS */ 6253 gen_helper_vfp_absd(tcg_res, tcg_op); 6254 goto done; 6255 case 0x2: /* FNEG */ 6256 gen_helper_vfp_negd(tcg_res, tcg_op); 6257 goto done; 6258 case 0x3: /* FSQRT */ 6259 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6260 goto done; 6261 case 0x8: /* FRINTN */ 6262 case 0x9: /* FRINTP */ 6263 case 0xa: /* FRINTM */ 6264 case 0xb: /* FRINTZ */ 6265 case 0xc: /* FRINTA */ 6266 rmode = opcode & 7; 6267 gen_fpst = gen_helper_rintd; 6268 break; 6269 case 0xe: /* FRINTX */ 6270 gen_fpst = gen_helper_rintd_exact; 6271 break; 6272 case 0xf: /* FRINTI */ 6273 gen_fpst = gen_helper_rintd; 6274 break; 6275 case 0x10: /* FRINT32Z */ 6276 rmode = FPROUNDING_ZERO; 6277 gen_fpst = gen_helper_frint32_d; 6278 break; 6279 case 0x11: /* FRINT32X */ 6280 gen_fpst = gen_helper_frint32_d; 6281 break; 6282 case 0x12: /* FRINT64Z */ 6283 rmode = FPROUNDING_ZERO; 6284 gen_fpst = gen_helper_frint64_d; 6285 break; 6286 case 0x13: /* FRINT64X */ 6287 gen_fpst = gen_helper_frint64_d; 6288 break; 6289 default: 6290 g_assert_not_reached(); 6291 } 6292 6293 fpst = fpstatus_ptr(FPST_FPCR); 6294 if (rmode >= 0) { 6295 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6296 gen_fpst(tcg_res, tcg_op, fpst); 6297 gen_restore_rmode(tcg_rmode, fpst); 6298 } else { 6299 gen_fpst(tcg_res, tcg_op, fpst); 6300 } 6301 6302 done: 6303 write_fp_dreg(s, rd, tcg_res); 6304 } 6305 6306 static void handle_fp_fcvt(DisasContext *s, int opcode, 6307 int rd, int rn, int dtype, int ntype) 6308 { 6309 switch (ntype) { 6310 case 0x0: 6311 { 6312 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6313 if (dtype == 1) { 6314 /* Single to double */ 6315 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6316 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6317 write_fp_dreg(s, rd, tcg_rd); 6318 } else { 6319 /* Single to half */ 6320 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6321 TCGv_i32 ahp = get_ahp_flag(); 6322 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6323 6324 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6325 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6326 write_fp_sreg(s, rd, tcg_rd); 6327 } 6328 break; 6329 } 6330 case 0x1: 6331 { 6332 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6333 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6334 if (dtype == 0) { 6335 /* Double to single */ 6336 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6337 } else { 6338 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6339 TCGv_i32 ahp = get_ahp_flag(); 6340 /* Double to half */ 6341 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6342 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6343 } 6344 write_fp_sreg(s, rd, tcg_rd); 6345 break; 6346 } 6347 case 0x3: 6348 { 6349 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6350 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6351 TCGv_i32 tcg_ahp = get_ahp_flag(); 6352 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6353 if (dtype == 0) { 6354 /* Half to single */ 6355 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6356 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6357 write_fp_sreg(s, rd, tcg_rd); 6358 } else { 6359 /* Half to double */ 6360 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6361 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6362 write_fp_dreg(s, rd, tcg_rd); 6363 } 6364 break; 6365 } 6366 default: 6367 g_assert_not_reached(); 6368 } 6369 } 6370 6371 /* Floating point data-processing (1 source) 6372 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6373 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6374 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6375 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6376 */ 6377 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6378 { 6379 int mos = extract32(insn, 29, 3); 6380 int type = extract32(insn, 22, 2); 6381 int opcode = extract32(insn, 15, 6); 6382 int rn = extract32(insn, 5, 5); 6383 int rd = extract32(insn, 0, 5); 6384 6385 if (mos) { 6386 goto do_unallocated; 6387 } 6388 6389 switch (opcode) { 6390 case 0x4: case 0x5: case 0x7: 6391 { 6392 /* FCVT between half, single and double precision */ 6393 int dtype = extract32(opcode, 0, 2); 6394 if (type == 2 || dtype == type) { 6395 goto do_unallocated; 6396 } 6397 if (!fp_access_check(s)) { 6398 return; 6399 } 6400 6401 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6402 break; 6403 } 6404 6405 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6406 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6407 goto do_unallocated; 6408 } 6409 /* fall through */ 6410 case 0x0 ... 0x3: 6411 case 0x8 ... 0xc: 6412 case 0xe ... 0xf: 6413 /* 32-to-32 and 64-to-64 ops */ 6414 switch (type) { 6415 case 0: 6416 if (!fp_access_check(s)) { 6417 return; 6418 } 6419 handle_fp_1src_single(s, opcode, rd, rn); 6420 break; 6421 case 1: 6422 if (!fp_access_check(s)) { 6423 return; 6424 } 6425 handle_fp_1src_double(s, opcode, rd, rn); 6426 break; 6427 case 3: 6428 if (!dc_isar_feature(aa64_fp16, s)) { 6429 goto do_unallocated; 6430 } 6431 6432 if (!fp_access_check(s)) { 6433 return; 6434 } 6435 handle_fp_1src_half(s, opcode, rd, rn); 6436 break; 6437 default: 6438 goto do_unallocated; 6439 } 6440 break; 6441 6442 case 0x6: 6443 switch (type) { 6444 case 1: /* BFCVT */ 6445 if (!dc_isar_feature(aa64_bf16, s)) { 6446 goto do_unallocated; 6447 } 6448 if (!fp_access_check(s)) { 6449 return; 6450 } 6451 handle_fp_1src_single(s, opcode, rd, rn); 6452 break; 6453 default: 6454 goto do_unallocated; 6455 } 6456 break; 6457 6458 default: 6459 do_unallocated: 6460 unallocated_encoding(s); 6461 break; 6462 } 6463 } 6464 6465 /* Floating-point data-processing (2 source) - single precision */ 6466 static void handle_fp_2src_single(DisasContext *s, int opcode, 6467 int rd, int rn, int rm) 6468 { 6469 TCGv_i32 tcg_op1; 6470 TCGv_i32 tcg_op2; 6471 TCGv_i32 tcg_res; 6472 TCGv_ptr fpst; 6473 6474 tcg_res = tcg_temp_new_i32(); 6475 fpst = fpstatus_ptr(FPST_FPCR); 6476 tcg_op1 = read_fp_sreg(s, rn); 6477 tcg_op2 = read_fp_sreg(s, rm); 6478 6479 switch (opcode) { 6480 case 0x0: /* FMUL */ 6481 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6482 break; 6483 case 0x1: /* FDIV */ 6484 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6485 break; 6486 case 0x2: /* FADD */ 6487 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6488 break; 6489 case 0x3: /* FSUB */ 6490 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6491 break; 6492 case 0x4: /* FMAX */ 6493 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6494 break; 6495 case 0x5: /* FMIN */ 6496 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6497 break; 6498 case 0x6: /* FMAXNM */ 6499 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6500 break; 6501 case 0x7: /* FMINNM */ 6502 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6503 break; 6504 case 0x8: /* FNMUL */ 6505 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6506 gen_helper_vfp_negs(tcg_res, tcg_res); 6507 break; 6508 } 6509 6510 write_fp_sreg(s, rd, tcg_res); 6511 } 6512 6513 /* Floating-point data-processing (2 source) - double precision */ 6514 static void handle_fp_2src_double(DisasContext *s, int opcode, 6515 int rd, int rn, int rm) 6516 { 6517 TCGv_i64 tcg_op1; 6518 TCGv_i64 tcg_op2; 6519 TCGv_i64 tcg_res; 6520 TCGv_ptr fpst; 6521 6522 tcg_res = tcg_temp_new_i64(); 6523 fpst = fpstatus_ptr(FPST_FPCR); 6524 tcg_op1 = read_fp_dreg(s, rn); 6525 tcg_op2 = read_fp_dreg(s, rm); 6526 6527 switch (opcode) { 6528 case 0x0: /* FMUL */ 6529 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6530 break; 6531 case 0x1: /* FDIV */ 6532 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6533 break; 6534 case 0x2: /* FADD */ 6535 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6536 break; 6537 case 0x3: /* FSUB */ 6538 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x4: /* FMAX */ 6541 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x5: /* FMIN */ 6544 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6545 break; 6546 case 0x6: /* FMAXNM */ 6547 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6548 break; 6549 case 0x7: /* FMINNM */ 6550 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6551 break; 6552 case 0x8: /* FNMUL */ 6553 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6554 gen_helper_vfp_negd(tcg_res, tcg_res); 6555 break; 6556 } 6557 6558 write_fp_dreg(s, rd, tcg_res); 6559 } 6560 6561 /* Floating-point data-processing (2 source) - half precision */ 6562 static void handle_fp_2src_half(DisasContext *s, int opcode, 6563 int rd, int rn, int rm) 6564 { 6565 TCGv_i32 tcg_op1; 6566 TCGv_i32 tcg_op2; 6567 TCGv_i32 tcg_res; 6568 TCGv_ptr fpst; 6569 6570 tcg_res = tcg_temp_new_i32(); 6571 fpst = fpstatus_ptr(FPST_FPCR_F16); 6572 tcg_op1 = read_fp_hreg(s, rn); 6573 tcg_op2 = read_fp_hreg(s, rm); 6574 6575 switch (opcode) { 6576 case 0x0: /* FMUL */ 6577 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6578 break; 6579 case 0x1: /* FDIV */ 6580 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6581 break; 6582 case 0x2: /* FADD */ 6583 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6584 break; 6585 case 0x3: /* FSUB */ 6586 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6587 break; 6588 case 0x4: /* FMAX */ 6589 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6590 break; 6591 case 0x5: /* FMIN */ 6592 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6593 break; 6594 case 0x6: /* FMAXNM */ 6595 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6596 break; 6597 case 0x7: /* FMINNM */ 6598 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6599 break; 6600 case 0x8: /* FNMUL */ 6601 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6602 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6603 break; 6604 default: 6605 g_assert_not_reached(); 6606 } 6607 6608 write_fp_sreg(s, rd, tcg_res); 6609 } 6610 6611 /* Floating point data-processing (2 source) 6612 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6613 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6614 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6615 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6616 */ 6617 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6618 { 6619 int mos = extract32(insn, 29, 3); 6620 int type = extract32(insn, 22, 2); 6621 int rd = extract32(insn, 0, 5); 6622 int rn = extract32(insn, 5, 5); 6623 int rm = extract32(insn, 16, 5); 6624 int opcode = extract32(insn, 12, 4); 6625 6626 if (opcode > 8 || mos) { 6627 unallocated_encoding(s); 6628 return; 6629 } 6630 6631 switch (type) { 6632 case 0: 6633 if (!fp_access_check(s)) { 6634 return; 6635 } 6636 handle_fp_2src_single(s, opcode, rd, rn, rm); 6637 break; 6638 case 1: 6639 if (!fp_access_check(s)) { 6640 return; 6641 } 6642 handle_fp_2src_double(s, opcode, rd, rn, rm); 6643 break; 6644 case 3: 6645 if (!dc_isar_feature(aa64_fp16, s)) { 6646 unallocated_encoding(s); 6647 return; 6648 } 6649 if (!fp_access_check(s)) { 6650 return; 6651 } 6652 handle_fp_2src_half(s, opcode, rd, rn, rm); 6653 break; 6654 default: 6655 unallocated_encoding(s); 6656 } 6657 } 6658 6659 /* Floating-point data-processing (3 source) - single precision */ 6660 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6661 int rd, int rn, int rm, int ra) 6662 { 6663 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6664 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6665 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6666 6667 tcg_op1 = read_fp_sreg(s, rn); 6668 tcg_op2 = read_fp_sreg(s, rm); 6669 tcg_op3 = read_fp_sreg(s, ra); 6670 6671 /* These are fused multiply-add, and must be done as one 6672 * floating point operation with no rounding between the 6673 * multiplication and addition steps. 6674 * NB that doing the negations here as separate steps is 6675 * correct : an input NaN should come out with its sign bit 6676 * flipped if it is a negated-input. 6677 */ 6678 if (o1 == true) { 6679 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6680 } 6681 6682 if (o0 != o1) { 6683 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6684 } 6685 6686 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6687 6688 write_fp_sreg(s, rd, tcg_res); 6689 } 6690 6691 /* Floating-point data-processing (3 source) - double precision */ 6692 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6693 int rd, int rn, int rm, int ra) 6694 { 6695 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6696 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6697 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6698 6699 tcg_op1 = read_fp_dreg(s, rn); 6700 tcg_op2 = read_fp_dreg(s, rm); 6701 tcg_op3 = read_fp_dreg(s, ra); 6702 6703 /* These are fused multiply-add, and must be done as one 6704 * floating point operation with no rounding between the 6705 * multiplication and addition steps. 6706 * NB that doing the negations here as separate steps is 6707 * correct : an input NaN should come out with its sign bit 6708 * flipped if it is a negated-input. 6709 */ 6710 if (o1 == true) { 6711 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6712 } 6713 6714 if (o0 != o1) { 6715 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6716 } 6717 6718 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6719 6720 write_fp_dreg(s, rd, tcg_res); 6721 } 6722 6723 /* Floating-point data-processing (3 source) - half precision */ 6724 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6725 int rd, int rn, int rm, int ra) 6726 { 6727 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6728 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6729 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6730 6731 tcg_op1 = read_fp_hreg(s, rn); 6732 tcg_op2 = read_fp_hreg(s, rm); 6733 tcg_op3 = read_fp_hreg(s, ra); 6734 6735 /* These are fused multiply-add, and must be done as one 6736 * floating point operation with no rounding between the 6737 * multiplication and addition steps. 6738 * NB that doing the negations here as separate steps is 6739 * correct : an input NaN should come out with its sign bit 6740 * flipped if it is a negated-input. 6741 */ 6742 if (o1 == true) { 6743 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6744 } 6745 6746 if (o0 != o1) { 6747 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6748 } 6749 6750 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6751 6752 write_fp_sreg(s, rd, tcg_res); 6753 } 6754 6755 /* Floating point data-processing (3 source) 6756 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6757 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6758 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6759 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6760 */ 6761 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6762 { 6763 int mos = extract32(insn, 29, 3); 6764 int type = extract32(insn, 22, 2); 6765 int rd = extract32(insn, 0, 5); 6766 int rn = extract32(insn, 5, 5); 6767 int ra = extract32(insn, 10, 5); 6768 int rm = extract32(insn, 16, 5); 6769 bool o0 = extract32(insn, 15, 1); 6770 bool o1 = extract32(insn, 21, 1); 6771 6772 if (mos) { 6773 unallocated_encoding(s); 6774 return; 6775 } 6776 6777 switch (type) { 6778 case 0: 6779 if (!fp_access_check(s)) { 6780 return; 6781 } 6782 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6783 break; 6784 case 1: 6785 if (!fp_access_check(s)) { 6786 return; 6787 } 6788 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6789 break; 6790 case 3: 6791 if (!dc_isar_feature(aa64_fp16, s)) { 6792 unallocated_encoding(s); 6793 return; 6794 } 6795 if (!fp_access_check(s)) { 6796 return; 6797 } 6798 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6799 break; 6800 default: 6801 unallocated_encoding(s); 6802 } 6803 } 6804 6805 /* Floating point immediate 6806 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6807 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6808 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6809 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6810 */ 6811 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6812 { 6813 int rd = extract32(insn, 0, 5); 6814 int imm5 = extract32(insn, 5, 5); 6815 int imm8 = extract32(insn, 13, 8); 6816 int type = extract32(insn, 22, 2); 6817 int mos = extract32(insn, 29, 3); 6818 uint64_t imm; 6819 MemOp sz; 6820 6821 if (mos || imm5) { 6822 unallocated_encoding(s); 6823 return; 6824 } 6825 6826 switch (type) { 6827 case 0: 6828 sz = MO_32; 6829 break; 6830 case 1: 6831 sz = MO_64; 6832 break; 6833 case 3: 6834 sz = MO_16; 6835 if (dc_isar_feature(aa64_fp16, s)) { 6836 break; 6837 } 6838 /* fallthru */ 6839 default: 6840 unallocated_encoding(s); 6841 return; 6842 } 6843 6844 if (!fp_access_check(s)) { 6845 return; 6846 } 6847 6848 imm = vfp_expand_imm(sz, imm8); 6849 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6850 } 6851 6852 /* Handle floating point <=> fixed point conversions. Note that we can 6853 * also deal with fp <=> integer conversions as a special case (scale == 64) 6854 * OPTME: consider handling that special case specially or at least skipping 6855 * the call to scalbn in the helpers for zero shifts. 6856 */ 6857 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6858 bool itof, int rmode, int scale, int sf, int type) 6859 { 6860 bool is_signed = !(opcode & 1); 6861 TCGv_ptr tcg_fpstatus; 6862 TCGv_i32 tcg_shift, tcg_single; 6863 TCGv_i64 tcg_double; 6864 6865 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6866 6867 tcg_shift = tcg_constant_i32(64 - scale); 6868 6869 if (itof) { 6870 TCGv_i64 tcg_int = cpu_reg(s, rn); 6871 if (!sf) { 6872 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6873 6874 if (is_signed) { 6875 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6876 } else { 6877 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6878 } 6879 6880 tcg_int = tcg_extend; 6881 } 6882 6883 switch (type) { 6884 case 1: /* float64 */ 6885 tcg_double = tcg_temp_new_i64(); 6886 if (is_signed) { 6887 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6888 tcg_shift, tcg_fpstatus); 6889 } else { 6890 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6891 tcg_shift, tcg_fpstatus); 6892 } 6893 write_fp_dreg(s, rd, tcg_double); 6894 break; 6895 6896 case 0: /* float32 */ 6897 tcg_single = tcg_temp_new_i32(); 6898 if (is_signed) { 6899 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6900 tcg_shift, tcg_fpstatus); 6901 } else { 6902 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6903 tcg_shift, tcg_fpstatus); 6904 } 6905 write_fp_sreg(s, rd, tcg_single); 6906 break; 6907 6908 case 3: /* float16 */ 6909 tcg_single = tcg_temp_new_i32(); 6910 if (is_signed) { 6911 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6912 tcg_shift, tcg_fpstatus); 6913 } else { 6914 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6915 tcg_shift, tcg_fpstatus); 6916 } 6917 write_fp_sreg(s, rd, tcg_single); 6918 break; 6919 6920 default: 6921 g_assert_not_reached(); 6922 } 6923 } else { 6924 TCGv_i64 tcg_int = cpu_reg(s, rd); 6925 TCGv_i32 tcg_rmode; 6926 6927 if (extract32(opcode, 2, 1)) { 6928 /* There are too many rounding modes to all fit into rmode, 6929 * so FCVTA[US] is a special case. 6930 */ 6931 rmode = FPROUNDING_TIEAWAY; 6932 } 6933 6934 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6935 6936 switch (type) { 6937 case 1: /* float64 */ 6938 tcg_double = read_fp_dreg(s, rn); 6939 if (is_signed) { 6940 if (!sf) { 6941 gen_helper_vfp_tosld(tcg_int, tcg_double, 6942 tcg_shift, tcg_fpstatus); 6943 } else { 6944 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6945 tcg_shift, tcg_fpstatus); 6946 } 6947 } else { 6948 if (!sf) { 6949 gen_helper_vfp_tould(tcg_int, tcg_double, 6950 tcg_shift, tcg_fpstatus); 6951 } else { 6952 gen_helper_vfp_touqd(tcg_int, tcg_double, 6953 tcg_shift, tcg_fpstatus); 6954 } 6955 } 6956 if (!sf) { 6957 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6958 } 6959 break; 6960 6961 case 0: /* float32 */ 6962 tcg_single = read_fp_sreg(s, rn); 6963 if (sf) { 6964 if (is_signed) { 6965 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6966 tcg_shift, tcg_fpstatus); 6967 } else { 6968 gen_helper_vfp_touqs(tcg_int, tcg_single, 6969 tcg_shift, tcg_fpstatus); 6970 } 6971 } else { 6972 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6973 if (is_signed) { 6974 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6975 tcg_shift, tcg_fpstatus); 6976 } else { 6977 gen_helper_vfp_touls(tcg_dest, tcg_single, 6978 tcg_shift, tcg_fpstatus); 6979 } 6980 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6981 } 6982 break; 6983 6984 case 3: /* float16 */ 6985 tcg_single = read_fp_sreg(s, rn); 6986 if (sf) { 6987 if (is_signed) { 6988 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6989 tcg_shift, tcg_fpstatus); 6990 } else { 6991 gen_helper_vfp_touqh(tcg_int, tcg_single, 6992 tcg_shift, tcg_fpstatus); 6993 } 6994 } else { 6995 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6996 if (is_signed) { 6997 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6998 tcg_shift, tcg_fpstatus); 6999 } else { 7000 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7001 tcg_shift, tcg_fpstatus); 7002 } 7003 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7004 } 7005 break; 7006 7007 default: 7008 g_assert_not_reached(); 7009 } 7010 7011 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7012 } 7013 } 7014 7015 /* Floating point <-> fixed point conversions 7016 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7017 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7018 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7019 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7020 */ 7021 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7022 { 7023 int rd = extract32(insn, 0, 5); 7024 int rn = extract32(insn, 5, 5); 7025 int scale = extract32(insn, 10, 6); 7026 int opcode = extract32(insn, 16, 3); 7027 int rmode = extract32(insn, 19, 2); 7028 int type = extract32(insn, 22, 2); 7029 bool sbit = extract32(insn, 29, 1); 7030 bool sf = extract32(insn, 31, 1); 7031 bool itof; 7032 7033 if (sbit || (!sf && scale < 32)) { 7034 unallocated_encoding(s); 7035 return; 7036 } 7037 7038 switch (type) { 7039 case 0: /* float32 */ 7040 case 1: /* float64 */ 7041 break; 7042 case 3: /* float16 */ 7043 if (dc_isar_feature(aa64_fp16, s)) { 7044 break; 7045 } 7046 /* fallthru */ 7047 default: 7048 unallocated_encoding(s); 7049 return; 7050 } 7051 7052 switch ((rmode << 3) | opcode) { 7053 case 0x2: /* SCVTF */ 7054 case 0x3: /* UCVTF */ 7055 itof = true; 7056 break; 7057 case 0x18: /* FCVTZS */ 7058 case 0x19: /* FCVTZU */ 7059 itof = false; 7060 break; 7061 default: 7062 unallocated_encoding(s); 7063 return; 7064 } 7065 7066 if (!fp_access_check(s)) { 7067 return; 7068 } 7069 7070 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7071 } 7072 7073 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7074 { 7075 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7076 * without conversion. 7077 */ 7078 7079 if (itof) { 7080 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7081 TCGv_i64 tmp; 7082 7083 switch (type) { 7084 case 0: 7085 /* 32 bit */ 7086 tmp = tcg_temp_new_i64(); 7087 tcg_gen_ext32u_i64(tmp, tcg_rn); 7088 write_fp_dreg(s, rd, tmp); 7089 break; 7090 case 1: 7091 /* 64 bit */ 7092 write_fp_dreg(s, rd, tcg_rn); 7093 break; 7094 case 2: 7095 /* 64 bit to top half. */ 7096 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7097 clear_vec_high(s, true, rd); 7098 break; 7099 case 3: 7100 /* 16 bit */ 7101 tmp = tcg_temp_new_i64(); 7102 tcg_gen_ext16u_i64(tmp, tcg_rn); 7103 write_fp_dreg(s, rd, tmp); 7104 break; 7105 default: 7106 g_assert_not_reached(); 7107 } 7108 } else { 7109 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7110 7111 switch (type) { 7112 case 0: 7113 /* 32 bit */ 7114 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7115 break; 7116 case 1: 7117 /* 64 bit */ 7118 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7119 break; 7120 case 2: 7121 /* 64 bits from top half */ 7122 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7123 break; 7124 case 3: 7125 /* 16 bit */ 7126 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7127 break; 7128 default: 7129 g_assert_not_reached(); 7130 } 7131 } 7132 } 7133 7134 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7135 { 7136 TCGv_i64 t = read_fp_dreg(s, rn); 7137 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7138 7139 gen_helper_fjcvtzs(t, t, fpstatus); 7140 7141 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7142 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7143 tcg_gen_movi_i32(cpu_CF, 0); 7144 tcg_gen_movi_i32(cpu_NF, 0); 7145 tcg_gen_movi_i32(cpu_VF, 0); 7146 } 7147 7148 /* Floating point <-> integer conversions 7149 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7150 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7151 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7152 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7153 */ 7154 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7155 { 7156 int rd = extract32(insn, 0, 5); 7157 int rn = extract32(insn, 5, 5); 7158 int opcode = extract32(insn, 16, 3); 7159 int rmode = extract32(insn, 19, 2); 7160 int type = extract32(insn, 22, 2); 7161 bool sbit = extract32(insn, 29, 1); 7162 bool sf = extract32(insn, 31, 1); 7163 bool itof = false; 7164 7165 if (sbit) { 7166 goto do_unallocated; 7167 } 7168 7169 switch (opcode) { 7170 case 2: /* SCVTF */ 7171 case 3: /* UCVTF */ 7172 itof = true; 7173 /* fallthru */ 7174 case 4: /* FCVTAS */ 7175 case 5: /* FCVTAU */ 7176 if (rmode != 0) { 7177 goto do_unallocated; 7178 } 7179 /* fallthru */ 7180 case 0: /* FCVT[NPMZ]S */ 7181 case 1: /* FCVT[NPMZ]U */ 7182 switch (type) { 7183 case 0: /* float32 */ 7184 case 1: /* float64 */ 7185 break; 7186 case 3: /* float16 */ 7187 if (!dc_isar_feature(aa64_fp16, s)) { 7188 goto do_unallocated; 7189 } 7190 break; 7191 default: 7192 goto do_unallocated; 7193 } 7194 if (!fp_access_check(s)) { 7195 return; 7196 } 7197 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7198 break; 7199 7200 default: 7201 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7202 case 0b01100110: /* FMOV half <-> 32-bit int */ 7203 case 0b01100111: 7204 case 0b11100110: /* FMOV half <-> 64-bit int */ 7205 case 0b11100111: 7206 if (!dc_isar_feature(aa64_fp16, s)) { 7207 goto do_unallocated; 7208 } 7209 /* fallthru */ 7210 case 0b00000110: /* FMOV 32-bit */ 7211 case 0b00000111: 7212 case 0b10100110: /* FMOV 64-bit */ 7213 case 0b10100111: 7214 case 0b11001110: /* FMOV top half of 128-bit */ 7215 case 0b11001111: 7216 if (!fp_access_check(s)) { 7217 return; 7218 } 7219 itof = opcode & 1; 7220 handle_fmov(s, rd, rn, type, itof); 7221 break; 7222 7223 case 0b00111110: /* FJCVTZS */ 7224 if (!dc_isar_feature(aa64_jscvt, s)) { 7225 goto do_unallocated; 7226 } else if (fp_access_check(s)) { 7227 handle_fjcvtzs(s, rd, rn); 7228 } 7229 break; 7230 7231 default: 7232 do_unallocated: 7233 unallocated_encoding(s); 7234 return; 7235 } 7236 break; 7237 } 7238 } 7239 7240 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7241 * 31 30 29 28 25 24 0 7242 * +---+---+---+---------+-----------------------------+ 7243 * | | 0 | | 1 1 1 1 | | 7244 * +---+---+---+---------+-----------------------------+ 7245 */ 7246 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7247 { 7248 if (extract32(insn, 24, 1)) { 7249 /* Floating point data-processing (3 source) */ 7250 disas_fp_3src(s, insn); 7251 } else if (extract32(insn, 21, 1) == 0) { 7252 /* Floating point to fixed point conversions */ 7253 disas_fp_fixed_conv(s, insn); 7254 } else { 7255 switch (extract32(insn, 10, 2)) { 7256 case 1: 7257 /* Floating point conditional compare */ 7258 disas_fp_ccomp(s, insn); 7259 break; 7260 case 2: 7261 /* Floating point data-processing (2 source) */ 7262 disas_fp_2src(s, insn); 7263 break; 7264 case 3: 7265 /* Floating point conditional select */ 7266 disas_fp_csel(s, insn); 7267 break; 7268 case 0: 7269 switch (ctz32(extract32(insn, 12, 4))) { 7270 case 0: /* [15:12] == xxx1 */ 7271 /* Floating point immediate */ 7272 disas_fp_imm(s, insn); 7273 break; 7274 case 1: /* [15:12] == xx10 */ 7275 /* Floating point compare */ 7276 disas_fp_compare(s, insn); 7277 break; 7278 case 2: /* [15:12] == x100 */ 7279 /* Floating point data-processing (1 source) */ 7280 disas_fp_1src(s, insn); 7281 break; 7282 case 3: /* [15:12] == 1000 */ 7283 unallocated_encoding(s); 7284 break; 7285 default: /* [15:12] == 0000 */ 7286 /* Floating point <-> integer conversions */ 7287 disas_fp_int_conv(s, insn); 7288 break; 7289 } 7290 break; 7291 } 7292 } 7293 } 7294 7295 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7296 int pos) 7297 { 7298 /* Extract 64 bits from the middle of two concatenated 64 bit 7299 * vector register slices left:right. The extracted bits start 7300 * at 'pos' bits into the right (least significant) side. 7301 * We return the result in tcg_right, and guarantee not to 7302 * trash tcg_left. 7303 */ 7304 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7305 assert(pos > 0 && pos < 64); 7306 7307 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7308 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7309 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7310 } 7311 7312 /* EXT 7313 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7314 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7315 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7316 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7317 */ 7318 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7319 { 7320 int is_q = extract32(insn, 30, 1); 7321 int op2 = extract32(insn, 22, 2); 7322 int imm4 = extract32(insn, 11, 4); 7323 int rm = extract32(insn, 16, 5); 7324 int rn = extract32(insn, 5, 5); 7325 int rd = extract32(insn, 0, 5); 7326 int pos = imm4 << 3; 7327 TCGv_i64 tcg_resl, tcg_resh; 7328 7329 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7330 unallocated_encoding(s); 7331 return; 7332 } 7333 7334 if (!fp_access_check(s)) { 7335 return; 7336 } 7337 7338 tcg_resh = tcg_temp_new_i64(); 7339 tcg_resl = tcg_temp_new_i64(); 7340 7341 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7342 * either extracting 128 bits from a 128:128 concatenation, or 7343 * extracting 64 bits from a 64:64 concatenation. 7344 */ 7345 if (!is_q) { 7346 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7347 if (pos != 0) { 7348 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7349 do_ext64(s, tcg_resh, tcg_resl, pos); 7350 } 7351 } else { 7352 TCGv_i64 tcg_hh; 7353 typedef struct { 7354 int reg; 7355 int elt; 7356 } EltPosns; 7357 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7358 EltPosns *elt = eltposns; 7359 7360 if (pos >= 64) { 7361 elt++; 7362 pos -= 64; 7363 } 7364 7365 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7366 elt++; 7367 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7368 elt++; 7369 if (pos != 0) { 7370 do_ext64(s, tcg_resh, tcg_resl, pos); 7371 tcg_hh = tcg_temp_new_i64(); 7372 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7373 do_ext64(s, tcg_hh, tcg_resh, pos); 7374 } 7375 } 7376 7377 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7378 if (is_q) { 7379 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7380 } 7381 clear_vec_high(s, is_q, rd); 7382 } 7383 7384 /* TBL/TBX 7385 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7386 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7387 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7388 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7389 */ 7390 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7391 { 7392 int op2 = extract32(insn, 22, 2); 7393 int is_q = extract32(insn, 30, 1); 7394 int rm = extract32(insn, 16, 5); 7395 int rn = extract32(insn, 5, 5); 7396 int rd = extract32(insn, 0, 5); 7397 int is_tbx = extract32(insn, 12, 1); 7398 int len = (extract32(insn, 13, 2) + 1) * 16; 7399 7400 if (op2 != 0) { 7401 unallocated_encoding(s); 7402 return; 7403 } 7404 7405 if (!fp_access_check(s)) { 7406 return; 7407 } 7408 7409 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7410 vec_full_reg_offset(s, rm), cpu_env, 7411 is_q ? 16 : 8, vec_full_reg_size(s), 7412 (len << 6) | (is_tbx << 5) | rn, 7413 gen_helper_simd_tblx); 7414 } 7415 7416 /* ZIP/UZP/TRN 7417 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7418 * +---+---+-------------+------+---+------+---+------------------+------+ 7419 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7420 * +---+---+-------------+------+---+------+---+------------------+------+ 7421 */ 7422 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7423 { 7424 int rd = extract32(insn, 0, 5); 7425 int rn = extract32(insn, 5, 5); 7426 int rm = extract32(insn, 16, 5); 7427 int size = extract32(insn, 22, 2); 7428 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7429 * bit 2 indicates 1 vs 2 variant of the insn. 7430 */ 7431 int opcode = extract32(insn, 12, 2); 7432 bool part = extract32(insn, 14, 1); 7433 bool is_q = extract32(insn, 30, 1); 7434 int esize = 8 << size; 7435 int i; 7436 int datasize = is_q ? 128 : 64; 7437 int elements = datasize / esize; 7438 TCGv_i64 tcg_res[2], tcg_ele; 7439 7440 if (opcode == 0 || (size == 3 && !is_q)) { 7441 unallocated_encoding(s); 7442 return; 7443 } 7444 7445 if (!fp_access_check(s)) { 7446 return; 7447 } 7448 7449 tcg_res[0] = tcg_temp_new_i64(); 7450 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7451 tcg_ele = tcg_temp_new_i64(); 7452 7453 for (i = 0; i < elements; i++) { 7454 int o, w; 7455 7456 switch (opcode) { 7457 case 1: /* UZP1/2 */ 7458 { 7459 int midpoint = elements / 2; 7460 if (i < midpoint) { 7461 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7462 } else { 7463 read_vec_element(s, tcg_ele, rm, 7464 2 * (i - midpoint) + part, size); 7465 } 7466 break; 7467 } 7468 case 2: /* TRN1/2 */ 7469 if (i & 1) { 7470 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7471 } else { 7472 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7473 } 7474 break; 7475 case 3: /* ZIP1/2 */ 7476 { 7477 int base = part * elements / 2; 7478 if (i & 1) { 7479 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7480 } else { 7481 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7482 } 7483 break; 7484 } 7485 default: 7486 g_assert_not_reached(); 7487 } 7488 7489 w = (i * esize) / 64; 7490 o = (i * esize) % 64; 7491 if (o == 0) { 7492 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7493 } else { 7494 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7495 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7496 } 7497 } 7498 7499 for (i = 0; i <= is_q; ++i) { 7500 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7501 } 7502 clear_vec_high(s, is_q, rd); 7503 } 7504 7505 /* 7506 * do_reduction_op helper 7507 * 7508 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7509 * important for correct NaN propagation that we do these 7510 * operations in exactly the order specified by the pseudocode. 7511 * 7512 * This is a recursive function, TCG temps should be freed by the 7513 * calling function once it is done with the values. 7514 */ 7515 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7516 int esize, int size, int vmap, TCGv_ptr fpst) 7517 { 7518 if (esize == size) { 7519 int element; 7520 MemOp msize = esize == 16 ? MO_16 : MO_32; 7521 TCGv_i32 tcg_elem; 7522 7523 /* We should have one register left here */ 7524 assert(ctpop8(vmap) == 1); 7525 element = ctz32(vmap); 7526 assert(element < 8); 7527 7528 tcg_elem = tcg_temp_new_i32(); 7529 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7530 return tcg_elem; 7531 } else { 7532 int bits = size / 2; 7533 int shift = ctpop8(vmap) / 2; 7534 int vmap_lo = (vmap >> shift) & vmap; 7535 int vmap_hi = (vmap & ~vmap_lo); 7536 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7537 7538 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7539 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7540 tcg_res = tcg_temp_new_i32(); 7541 7542 switch (fpopcode) { 7543 case 0x0c: /* fmaxnmv half-precision */ 7544 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7545 break; 7546 case 0x0f: /* fmaxv half-precision */ 7547 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7548 break; 7549 case 0x1c: /* fminnmv half-precision */ 7550 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7551 break; 7552 case 0x1f: /* fminv half-precision */ 7553 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7554 break; 7555 case 0x2c: /* fmaxnmv */ 7556 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7557 break; 7558 case 0x2f: /* fmaxv */ 7559 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7560 break; 7561 case 0x3c: /* fminnmv */ 7562 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7563 break; 7564 case 0x3f: /* fminv */ 7565 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7566 break; 7567 default: 7568 g_assert_not_reached(); 7569 } 7570 return tcg_res; 7571 } 7572 } 7573 7574 /* AdvSIMD across lanes 7575 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7576 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7577 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7578 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7579 */ 7580 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7581 { 7582 int rd = extract32(insn, 0, 5); 7583 int rn = extract32(insn, 5, 5); 7584 int size = extract32(insn, 22, 2); 7585 int opcode = extract32(insn, 12, 5); 7586 bool is_q = extract32(insn, 30, 1); 7587 bool is_u = extract32(insn, 29, 1); 7588 bool is_fp = false; 7589 bool is_min = false; 7590 int esize; 7591 int elements; 7592 int i; 7593 TCGv_i64 tcg_res, tcg_elt; 7594 7595 switch (opcode) { 7596 case 0x1b: /* ADDV */ 7597 if (is_u) { 7598 unallocated_encoding(s); 7599 return; 7600 } 7601 /* fall through */ 7602 case 0x3: /* SADDLV, UADDLV */ 7603 case 0xa: /* SMAXV, UMAXV */ 7604 case 0x1a: /* SMINV, UMINV */ 7605 if (size == 3 || (size == 2 && !is_q)) { 7606 unallocated_encoding(s); 7607 return; 7608 } 7609 break; 7610 case 0xc: /* FMAXNMV, FMINNMV */ 7611 case 0xf: /* FMAXV, FMINV */ 7612 /* Bit 1 of size field encodes min vs max and the actual size 7613 * depends on the encoding of the U bit. If not set (and FP16 7614 * enabled) then we do half-precision float instead of single 7615 * precision. 7616 */ 7617 is_min = extract32(size, 1, 1); 7618 is_fp = true; 7619 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7620 size = 1; 7621 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7622 unallocated_encoding(s); 7623 return; 7624 } else { 7625 size = 2; 7626 } 7627 break; 7628 default: 7629 unallocated_encoding(s); 7630 return; 7631 } 7632 7633 if (!fp_access_check(s)) { 7634 return; 7635 } 7636 7637 esize = 8 << size; 7638 elements = (is_q ? 128 : 64) / esize; 7639 7640 tcg_res = tcg_temp_new_i64(); 7641 tcg_elt = tcg_temp_new_i64(); 7642 7643 /* These instructions operate across all lanes of a vector 7644 * to produce a single result. We can guarantee that a 64 7645 * bit intermediate is sufficient: 7646 * + for [US]ADDLV the maximum element size is 32 bits, and 7647 * the result type is 64 bits 7648 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7649 * same as the element size, which is 32 bits at most 7650 * For the integer operations we can choose to work at 64 7651 * or 32 bits and truncate at the end; for simplicity 7652 * we use 64 bits always. The floating point 7653 * ops do require 32 bit intermediates, though. 7654 */ 7655 if (!is_fp) { 7656 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7657 7658 for (i = 1; i < elements; i++) { 7659 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7660 7661 switch (opcode) { 7662 case 0x03: /* SADDLV / UADDLV */ 7663 case 0x1b: /* ADDV */ 7664 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7665 break; 7666 case 0x0a: /* SMAXV / UMAXV */ 7667 if (is_u) { 7668 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7669 } else { 7670 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7671 } 7672 break; 7673 case 0x1a: /* SMINV / UMINV */ 7674 if (is_u) { 7675 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7676 } else { 7677 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7678 } 7679 break; 7680 default: 7681 g_assert_not_reached(); 7682 } 7683 7684 } 7685 } else { 7686 /* Floating point vector reduction ops which work across 32 7687 * bit (single) or 16 bit (half-precision) intermediates. 7688 * Note that correct NaN propagation requires that we do these 7689 * operations in exactly the order specified by the pseudocode. 7690 */ 7691 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7692 int fpopcode = opcode | is_min << 4 | is_u << 5; 7693 int vmap = (1 << elements) - 1; 7694 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7695 (is_q ? 128 : 64), vmap, fpst); 7696 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7697 } 7698 7699 /* Now truncate the result to the width required for the final output */ 7700 if (opcode == 0x03) { 7701 /* SADDLV, UADDLV: result is 2*esize */ 7702 size++; 7703 } 7704 7705 switch (size) { 7706 case 0: 7707 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7708 break; 7709 case 1: 7710 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7711 break; 7712 case 2: 7713 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7714 break; 7715 case 3: 7716 break; 7717 default: 7718 g_assert_not_reached(); 7719 } 7720 7721 write_fp_dreg(s, rd, tcg_res); 7722 } 7723 7724 /* DUP (Element, Vector) 7725 * 7726 * 31 30 29 21 20 16 15 10 9 5 4 0 7727 * +---+---+-------------------+--------+-------------+------+------+ 7728 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7729 * +---+---+-------------------+--------+-------------+------+------+ 7730 * 7731 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7732 */ 7733 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7734 int imm5) 7735 { 7736 int size = ctz32(imm5); 7737 int index; 7738 7739 if (size > 3 || (size == 3 && !is_q)) { 7740 unallocated_encoding(s); 7741 return; 7742 } 7743 7744 if (!fp_access_check(s)) { 7745 return; 7746 } 7747 7748 index = imm5 >> (size + 1); 7749 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7750 vec_reg_offset(s, rn, index, size), 7751 is_q ? 16 : 8, vec_full_reg_size(s)); 7752 } 7753 7754 /* DUP (element, scalar) 7755 * 31 21 20 16 15 10 9 5 4 0 7756 * +-----------------------+--------+-------------+------+------+ 7757 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7758 * +-----------------------+--------+-------------+------+------+ 7759 */ 7760 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7761 int imm5) 7762 { 7763 int size = ctz32(imm5); 7764 int index; 7765 TCGv_i64 tmp; 7766 7767 if (size > 3) { 7768 unallocated_encoding(s); 7769 return; 7770 } 7771 7772 if (!fp_access_check(s)) { 7773 return; 7774 } 7775 7776 index = imm5 >> (size + 1); 7777 7778 /* This instruction just extracts the specified element and 7779 * zero-extends it into the bottom of the destination register. 7780 */ 7781 tmp = tcg_temp_new_i64(); 7782 read_vec_element(s, tmp, rn, index, size); 7783 write_fp_dreg(s, rd, tmp); 7784 } 7785 7786 /* DUP (General) 7787 * 7788 * 31 30 29 21 20 16 15 10 9 5 4 0 7789 * +---+---+-------------------+--------+-------------+------+------+ 7790 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7791 * +---+---+-------------------+--------+-------------+------+------+ 7792 * 7793 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7794 */ 7795 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7796 int imm5) 7797 { 7798 int size = ctz32(imm5); 7799 uint32_t dofs, oprsz, maxsz; 7800 7801 if (size > 3 || ((size == 3) && !is_q)) { 7802 unallocated_encoding(s); 7803 return; 7804 } 7805 7806 if (!fp_access_check(s)) { 7807 return; 7808 } 7809 7810 dofs = vec_full_reg_offset(s, rd); 7811 oprsz = is_q ? 16 : 8; 7812 maxsz = vec_full_reg_size(s); 7813 7814 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7815 } 7816 7817 /* INS (Element) 7818 * 7819 * 31 21 20 16 15 14 11 10 9 5 4 0 7820 * +-----------------------+--------+------------+---+------+------+ 7821 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7822 * +-----------------------+--------+------------+---+------+------+ 7823 * 7824 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7825 * index: encoded in imm5<4:size+1> 7826 */ 7827 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7828 int imm4, int imm5) 7829 { 7830 int size = ctz32(imm5); 7831 int src_index, dst_index; 7832 TCGv_i64 tmp; 7833 7834 if (size > 3) { 7835 unallocated_encoding(s); 7836 return; 7837 } 7838 7839 if (!fp_access_check(s)) { 7840 return; 7841 } 7842 7843 dst_index = extract32(imm5, 1+size, 5); 7844 src_index = extract32(imm4, size, 4); 7845 7846 tmp = tcg_temp_new_i64(); 7847 7848 read_vec_element(s, tmp, rn, src_index, size); 7849 write_vec_element(s, tmp, rd, dst_index, size); 7850 7851 /* INS is considered a 128-bit write for SVE. */ 7852 clear_vec_high(s, true, rd); 7853 } 7854 7855 7856 /* INS (General) 7857 * 7858 * 31 21 20 16 15 10 9 5 4 0 7859 * +-----------------------+--------+-------------+------+------+ 7860 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7861 * +-----------------------+--------+-------------+------+------+ 7862 * 7863 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7864 * index: encoded in imm5<4:size+1> 7865 */ 7866 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7867 { 7868 int size = ctz32(imm5); 7869 int idx; 7870 7871 if (size > 3) { 7872 unallocated_encoding(s); 7873 return; 7874 } 7875 7876 if (!fp_access_check(s)) { 7877 return; 7878 } 7879 7880 idx = extract32(imm5, 1 + size, 4 - size); 7881 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7882 7883 /* INS is considered a 128-bit write for SVE. */ 7884 clear_vec_high(s, true, rd); 7885 } 7886 7887 /* 7888 * UMOV (General) 7889 * SMOV (General) 7890 * 7891 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7892 * +---+---+-------------------+--------+-------------+------+------+ 7893 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7894 * +---+---+-------------------+--------+-------------+------+------+ 7895 * 7896 * U: unsigned when set 7897 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7898 */ 7899 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7900 int rn, int rd, int imm5) 7901 { 7902 int size = ctz32(imm5); 7903 int element; 7904 TCGv_i64 tcg_rd; 7905 7906 /* Check for UnallocatedEncodings */ 7907 if (is_signed) { 7908 if (size > 2 || (size == 2 && !is_q)) { 7909 unallocated_encoding(s); 7910 return; 7911 } 7912 } else { 7913 if (size > 3 7914 || (size < 3 && is_q) 7915 || (size == 3 && !is_q)) { 7916 unallocated_encoding(s); 7917 return; 7918 } 7919 } 7920 7921 if (!fp_access_check(s)) { 7922 return; 7923 } 7924 7925 element = extract32(imm5, 1+size, 4); 7926 7927 tcg_rd = cpu_reg(s, rd); 7928 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7929 if (is_signed && !is_q) { 7930 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7931 } 7932 } 7933 7934 /* AdvSIMD copy 7935 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7936 * +---+---+----+-----------------+------+---+------+---+------+------+ 7937 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7938 * +---+---+----+-----------------+------+---+------+---+------+------+ 7939 */ 7940 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7941 { 7942 int rd = extract32(insn, 0, 5); 7943 int rn = extract32(insn, 5, 5); 7944 int imm4 = extract32(insn, 11, 4); 7945 int op = extract32(insn, 29, 1); 7946 int is_q = extract32(insn, 30, 1); 7947 int imm5 = extract32(insn, 16, 5); 7948 7949 if (op) { 7950 if (is_q) { 7951 /* INS (element) */ 7952 handle_simd_inse(s, rd, rn, imm4, imm5); 7953 } else { 7954 unallocated_encoding(s); 7955 } 7956 } else { 7957 switch (imm4) { 7958 case 0: 7959 /* DUP (element - vector) */ 7960 handle_simd_dupe(s, is_q, rd, rn, imm5); 7961 break; 7962 case 1: 7963 /* DUP (general) */ 7964 handle_simd_dupg(s, is_q, rd, rn, imm5); 7965 break; 7966 case 3: 7967 if (is_q) { 7968 /* INS (general) */ 7969 handle_simd_insg(s, rd, rn, imm5); 7970 } else { 7971 unallocated_encoding(s); 7972 } 7973 break; 7974 case 5: 7975 case 7: 7976 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7977 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7978 break; 7979 default: 7980 unallocated_encoding(s); 7981 break; 7982 } 7983 } 7984 } 7985 7986 /* AdvSIMD modified immediate 7987 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7988 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7989 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7990 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7991 * 7992 * There are a number of operations that can be carried out here: 7993 * MOVI - move (shifted) imm into register 7994 * MVNI - move inverted (shifted) imm into register 7995 * ORR - bitwise OR of (shifted) imm with register 7996 * BIC - bitwise clear of (shifted) imm with register 7997 * With ARMv8.2 we also have: 7998 * FMOV half-precision 7999 */ 8000 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8001 { 8002 int rd = extract32(insn, 0, 5); 8003 int cmode = extract32(insn, 12, 4); 8004 int o2 = extract32(insn, 11, 1); 8005 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8006 bool is_neg = extract32(insn, 29, 1); 8007 bool is_q = extract32(insn, 30, 1); 8008 uint64_t imm = 0; 8009 8010 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8011 /* Check for FMOV (vector, immediate) - half-precision */ 8012 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8013 unallocated_encoding(s); 8014 return; 8015 } 8016 } 8017 8018 if (!fp_access_check(s)) { 8019 return; 8020 } 8021 8022 if (cmode == 15 && o2 && !is_neg) { 8023 /* FMOV (vector, immediate) - half-precision */ 8024 imm = vfp_expand_imm(MO_16, abcdefgh); 8025 /* now duplicate across the lanes */ 8026 imm = dup_const(MO_16, imm); 8027 } else { 8028 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8029 } 8030 8031 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8032 /* MOVI or MVNI, with MVNI negation handled above. */ 8033 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8034 vec_full_reg_size(s), imm); 8035 } else { 8036 /* ORR or BIC, with BIC negation to AND handled above. */ 8037 if (is_neg) { 8038 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8039 } else { 8040 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8041 } 8042 } 8043 } 8044 8045 /* AdvSIMD scalar copy 8046 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8047 * +-----+----+-----------------+------+---+------+---+------+------+ 8048 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8049 * +-----+----+-----------------+------+---+------+---+------+------+ 8050 */ 8051 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8052 { 8053 int rd = extract32(insn, 0, 5); 8054 int rn = extract32(insn, 5, 5); 8055 int imm4 = extract32(insn, 11, 4); 8056 int imm5 = extract32(insn, 16, 5); 8057 int op = extract32(insn, 29, 1); 8058 8059 if (op != 0 || imm4 != 0) { 8060 unallocated_encoding(s); 8061 return; 8062 } 8063 8064 /* DUP (element, scalar) */ 8065 handle_simd_dupes(s, rd, rn, imm5); 8066 } 8067 8068 /* AdvSIMD scalar pairwise 8069 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8070 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8071 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8072 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8073 */ 8074 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8075 { 8076 int u = extract32(insn, 29, 1); 8077 int size = extract32(insn, 22, 2); 8078 int opcode = extract32(insn, 12, 5); 8079 int rn = extract32(insn, 5, 5); 8080 int rd = extract32(insn, 0, 5); 8081 TCGv_ptr fpst; 8082 8083 /* For some ops (the FP ones), size[1] is part of the encoding. 8084 * For ADDP strictly it is not but size[1] is always 1 for valid 8085 * encodings. 8086 */ 8087 opcode |= (extract32(size, 1, 1) << 5); 8088 8089 switch (opcode) { 8090 case 0x3b: /* ADDP */ 8091 if (u || size != 3) { 8092 unallocated_encoding(s); 8093 return; 8094 } 8095 if (!fp_access_check(s)) { 8096 return; 8097 } 8098 8099 fpst = NULL; 8100 break; 8101 case 0xc: /* FMAXNMP */ 8102 case 0xd: /* FADDP */ 8103 case 0xf: /* FMAXP */ 8104 case 0x2c: /* FMINNMP */ 8105 case 0x2f: /* FMINP */ 8106 /* FP op, size[0] is 32 or 64 bit*/ 8107 if (!u) { 8108 if (!dc_isar_feature(aa64_fp16, s)) { 8109 unallocated_encoding(s); 8110 return; 8111 } else { 8112 size = MO_16; 8113 } 8114 } else { 8115 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8116 } 8117 8118 if (!fp_access_check(s)) { 8119 return; 8120 } 8121 8122 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8123 break; 8124 default: 8125 unallocated_encoding(s); 8126 return; 8127 } 8128 8129 if (size == MO_64) { 8130 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8131 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8132 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8133 8134 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8135 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8136 8137 switch (opcode) { 8138 case 0x3b: /* ADDP */ 8139 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8140 break; 8141 case 0xc: /* FMAXNMP */ 8142 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8143 break; 8144 case 0xd: /* FADDP */ 8145 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8146 break; 8147 case 0xf: /* FMAXP */ 8148 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8149 break; 8150 case 0x2c: /* FMINNMP */ 8151 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8152 break; 8153 case 0x2f: /* FMINP */ 8154 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8155 break; 8156 default: 8157 g_assert_not_reached(); 8158 } 8159 8160 write_fp_dreg(s, rd, tcg_res); 8161 } else { 8162 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8163 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8164 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8165 8166 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8167 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8168 8169 if (size == MO_16) { 8170 switch (opcode) { 8171 case 0xc: /* FMAXNMP */ 8172 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8173 break; 8174 case 0xd: /* FADDP */ 8175 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8176 break; 8177 case 0xf: /* FMAXP */ 8178 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8179 break; 8180 case 0x2c: /* FMINNMP */ 8181 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8182 break; 8183 case 0x2f: /* FMINP */ 8184 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8185 break; 8186 default: 8187 g_assert_not_reached(); 8188 } 8189 } else { 8190 switch (opcode) { 8191 case 0xc: /* FMAXNMP */ 8192 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8193 break; 8194 case 0xd: /* FADDP */ 8195 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8196 break; 8197 case 0xf: /* FMAXP */ 8198 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8199 break; 8200 case 0x2c: /* FMINNMP */ 8201 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8202 break; 8203 case 0x2f: /* FMINP */ 8204 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8205 break; 8206 default: 8207 g_assert_not_reached(); 8208 } 8209 } 8210 8211 write_fp_sreg(s, rd, tcg_res); 8212 } 8213 } 8214 8215 /* 8216 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8217 * 8218 * This code is handles the common shifting code and is used by both 8219 * the vector and scalar code. 8220 */ 8221 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8222 TCGv_i64 tcg_rnd, bool accumulate, 8223 bool is_u, int size, int shift) 8224 { 8225 bool extended_result = false; 8226 bool round = tcg_rnd != NULL; 8227 int ext_lshift = 0; 8228 TCGv_i64 tcg_src_hi; 8229 8230 if (round && size == 3) { 8231 extended_result = true; 8232 ext_lshift = 64 - shift; 8233 tcg_src_hi = tcg_temp_new_i64(); 8234 } else if (shift == 64) { 8235 if (!accumulate && is_u) { 8236 /* result is zero */ 8237 tcg_gen_movi_i64(tcg_res, 0); 8238 return; 8239 } 8240 } 8241 8242 /* Deal with the rounding step */ 8243 if (round) { 8244 if (extended_result) { 8245 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8246 if (!is_u) { 8247 /* take care of sign extending tcg_res */ 8248 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8249 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8250 tcg_src, tcg_src_hi, 8251 tcg_rnd, tcg_zero); 8252 } else { 8253 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8254 tcg_src, tcg_zero, 8255 tcg_rnd, tcg_zero); 8256 } 8257 } else { 8258 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8259 } 8260 } 8261 8262 /* Now do the shift right */ 8263 if (round && extended_result) { 8264 /* extended case, >64 bit precision required */ 8265 if (ext_lshift == 0) { 8266 /* special case, only high bits matter */ 8267 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8268 } else { 8269 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8270 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8271 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8272 } 8273 } else { 8274 if (is_u) { 8275 if (shift == 64) { 8276 /* essentially shifting in 64 zeros */ 8277 tcg_gen_movi_i64(tcg_src, 0); 8278 } else { 8279 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8280 } 8281 } else { 8282 if (shift == 64) { 8283 /* effectively extending the sign-bit */ 8284 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8285 } else { 8286 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8287 } 8288 } 8289 } 8290 8291 if (accumulate) { 8292 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8293 } else { 8294 tcg_gen_mov_i64(tcg_res, tcg_src); 8295 } 8296 } 8297 8298 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8299 static void handle_scalar_simd_shri(DisasContext *s, 8300 bool is_u, int immh, int immb, 8301 int opcode, int rn, int rd) 8302 { 8303 const int size = 3; 8304 int immhb = immh << 3 | immb; 8305 int shift = 2 * (8 << size) - immhb; 8306 bool accumulate = false; 8307 bool round = false; 8308 bool insert = false; 8309 TCGv_i64 tcg_rn; 8310 TCGv_i64 tcg_rd; 8311 TCGv_i64 tcg_round; 8312 8313 if (!extract32(immh, 3, 1)) { 8314 unallocated_encoding(s); 8315 return; 8316 } 8317 8318 if (!fp_access_check(s)) { 8319 return; 8320 } 8321 8322 switch (opcode) { 8323 case 0x02: /* SSRA / USRA (accumulate) */ 8324 accumulate = true; 8325 break; 8326 case 0x04: /* SRSHR / URSHR (rounding) */ 8327 round = true; 8328 break; 8329 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8330 accumulate = round = true; 8331 break; 8332 case 0x08: /* SRI */ 8333 insert = true; 8334 break; 8335 } 8336 8337 if (round) { 8338 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8339 } else { 8340 tcg_round = NULL; 8341 } 8342 8343 tcg_rn = read_fp_dreg(s, rn); 8344 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8345 8346 if (insert) { 8347 /* shift count same as element size is valid but does nothing; 8348 * special case to avoid potential shift by 64. 8349 */ 8350 int esize = 8 << size; 8351 if (shift != esize) { 8352 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8353 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8354 } 8355 } else { 8356 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8357 accumulate, is_u, size, shift); 8358 } 8359 8360 write_fp_dreg(s, rd, tcg_rd); 8361 } 8362 8363 /* SHL/SLI - Scalar shift left */ 8364 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8365 int immh, int immb, int opcode, 8366 int rn, int rd) 8367 { 8368 int size = 32 - clz32(immh) - 1; 8369 int immhb = immh << 3 | immb; 8370 int shift = immhb - (8 << size); 8371 TCGv_i64 tcg_rn; 8372 TCGv_i64 tcg_rd; 8373 8374 if (!extract32(immh, 3, 1)) { 8375 unallocated_encoding(s); 8376 return; 8377 } 8378 8379 if (!fp_access_check(s)) { 8380 return; 8381 } 8382 8383 tcg_rn = read_fp_dreg(s, rn); 8384 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8385 8386 if (insert) { 8387 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8388 } else { 8389 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8390 } 8391 8392 write_fp_dreg(s, rd, tcg_rd); 8393 } 8394 8395 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8396 * (signed/unsigned) narrowing */ 8397 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8398 bool is_u_shift, bool is_u_narrow, 8399 int immh, int immb, int opcode, 8400 int rn, int rd) 8401 { 8402 int immhb = immh << 3 | immb; 8403 int size = 32 - clz32(immh) - 1; 8404 int esize = 8 << size; 8405 int shift = (2 * esize) - immhb; 8406 int elements = is_scalar ? 1 : (64 / esize); 8407 bool round = extract32(opcode, 0, 1); 8408 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8409 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8410 TCGv_i32 tcg_rd_narrowed; 8411 TCGv_i64 tcg_final; 8412 8413 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8414 { gen_helper_neon_narrow_sat_s8, 8415 gen_helper_neon_unarrow_sat8 }, 8416 { gen_helper_neon_narrow_sat_s16, 8417 gen_helper_neon_unarrow_sat16 }, 8418 { gen_helper_neon_narrow_sat_s32, 8419 gen_helper_neon_unarrow_sat32 }, 8420 { NULL, NULL }, 8421 }; 8422 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8423 gen_helper_neon_narrow_sat_u8, 8424 gen_helper_neon_narrow_sat_u16, 8425 gen_helper_neon_narrow_sat_u32, 8426 NULL 8427 }; 8428 NeonGenNarrowEnvFn *narrowfn; 8429 8430 int i; 8431 8432 assert(size < 4); 8433 8434 if (extract32(immh, 3, 1)) { 8435 unallocated_encoding(s); 8436 return; 8437 } 8438 8439 if (!fp_access_check(s)) { 8440 return; 8441 } 8442 8443 if (is_u_shift) { 8444 narrowfn = unsigned_narrow_fns[size]; 8445 } else { 8446 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8447 } 8448 8449 tcg_rn = tcg_temp_new_i64(); 8450 tcg_rd = tcg_temp_new_i64(); 8451 tcg_rd_narrowed = tcg_temp_new_i32(); 8452 tcg_final = tcg_temp_new_i64(); 8453 8454 if (round) { 8455 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8456 } else { 8457 tcg_round = NULL; 8458 } 8459 8460 for (i = 0; i < elements; i++) { 8461 read_vec_element(s, tcg_rn, rn, i, ldop); 8462 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8463 false, is_u_shift, size+1, shift); 8464 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8465 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8466 if (i == 0) { 8467 tcg_gen_mov_i64(tcg_final, tcg_rd); 8468 } else { 8469 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8470 } 8471 } 8472 8473 if (!is_q) { 8474 write_vec_element(s, tcg_final, rd, 0, MO_64); 8475 } else { 8476 write_vec_element(s, tcg_final, rd, 1, MO_64); 8477 } 8478 clear_vec_high(s, is_q, rd); 8479 } 8480 8481 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8482 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8483 bool src_unsigned, bool dst_unsigned, 8484 int immh, int immb, int rn, int rd) 8485 { 8486 int immhb = immh << 3 | immb; 8487 int size = 32 - clz32(immh) - 1; 8488 int shift = immhb - (8 << size); 8489 int pass; 8490 8491 assert(immh != 0); 8492 assert(!(scalar && is_q)); 8493 8494 if (!scalar) { 8495 if (!is_q && extract32(immh, 3, 1)) { 8496 unallocated_encoding(s); 8497 return; 8498 } 8499 8500 /* Since we use the variable-shift helpers we must 8501 * replicate the shift count into each element of 8502 * the tcg_shift value. 8503 */ 8504 switch (size) { 8505 case 0: 8506 shift |= shift << 8; 8507 /* fall through */ 8508 case 1: 8509 shift |= shift << 16; 8510 break; 8511 case 2: 8512 case 3: 8513 break; 8514 default: 8515 g_assert_not_reached(); 8516 } 8517 } 8518 8519 if (!fp_access_check(s)) { 8520 return; 8521 } 8522 8523 if (size == 3) { 8524 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8525 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8526 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8527 { NULL, gen_helper_neon_qshl_u64 }, 8528 }; 8529 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8530 int maxpass = is_q ? 2 : 1; 8531 8532 for (pass = 0; pass < maxpass; pass++) { 8533 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8534 8535 read_vec_element(s, tcg_op, rn, pass, MO_64); 8536 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8537 write_vec_element(s, tcg_op, rd, pass, MO_64); 8538 } 8539 clear_vec_high(s, is_q, rd); 8540 } else { 8541 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8542 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8543 { 8544 { gen_helper_neon_qshl_s8, 8545 gen_helper_neon_qshl_s16, 8546 gen_helper_neon_qshl_s32 }, 8547 { gen_helper_neon_qshlu_s8, 8548 gen_helper_neon_qshlu_s16, 8549 gen_helper_neon_qshlu_s32 } 8550 }, { 8551 { NULL, NULL, NULL }, 8552 { gen_helper_neon_qshl_u8, 8553 gen_helper_neon_qshl_u16, 8554 gen_helper_neon_qshl_u32 } 8555 } 8556 }; 8557 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8558 MemOp memop = scalar ? size : MO_32; 8559 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8560 8561 for (pass = 0; pass < maxpass; pass++) { 8562 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8563 8564 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8565 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8566 if (scalar) { 8567 switch (size) { 8568 case 0: 8569 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8570 break; 8571 case 1: 8572 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8573 break; 8574 case 2: 8575 break; 8576 default: 8577 g_assert_not_reached(); 8578 } 8579 write_fp_sreg(s, rd, tcg_op); 8580 } else { 8581 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8582 } 8583 } 8584 8585 if (!scalar) { 8586 clear_vec_high(s, is_q, rd); 8587 } 8588 } 8589 } 8590 8591 /* Common vector code for handling integer to FP conversion */ 8592 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8593 int elements, int is_signed, 8594 int fracbits, int size) 8595 { 8596 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8597 TCGv_i32 tcg_shift = NULL; 8598 8599 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8600 int pass; 8601 8602 if (fracbits || size == MO_64) { 8603 tcg_shift = tcg_constant_i32(fracbits); 8604 } 8605 8606 if (size == MO_64) { 8607 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8608 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8609 8610 for (pass = 0; pass < elements; pass++) { 8611 read_vec_element(s, tcg_int64, rn, pass, mop); 8612 8613 if (is_signed) { 8614 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8615 tcg_shift, tcg_fpst); 8616 } else { 8617 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8618 tcg_shift, tcg_fpst); 8619 } 8620 if (elements == 1) { 8621 write_fp_dreg(s, rd, tcg_double); 8622 } else { 8623 write_vec_element(s, tcg_double, rd, pass, MO_64); 8624 } 8625 } 8626 } else { 8627 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8628 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8629 8630 for (pass = 0; pass < elements; pass++) { 8631 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8632 8633 switch (size) { 8634 case MO_32: 8635 if (fracbits) { 8636 if (is_signed) { 8637 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8638 tcg_shift, tcg_fpst); 8639 } else { 8640 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8641 tcg_shift, tcg_fpst); 8642 } 8643 } else { 8644 if (is_signed) { 8645 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8646 } else { 8647 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8648 } 8649 } 8650 break; 8651 case MO_16: 8652 if (fracbits) { 8653 if (is_signed) { 8654 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8655 tcg_shift, tcg_fpst); 8656 } else { 8657 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8658 tcg_shift, tcg_fpst); 8659 } 8660 } else { 8661 if (is_signed) { 8662 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8663 } else { 8664 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8665 } 8666 } 8667 break; 8668 default: 8669 g_assert_not_reached(); 8670 } 8671 8672 if (elements == 1) { 8673 write_fp_sreg(s, rd, tcg_float); 8674 } else { 8675 write_vec_element_i32(s, tcg_float, rd, pass, size); 8676 } 8677 } 8678 } 8679 8680 clear_vec_high(s, elements << size == 16, rd); 8681 } 8682 8683 /* UCVTF/SCVTF - Integer to FP conversion */ 8684 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8685 bool is_q, bool is_u, 8686 int immh, int immb, int opcode, 8687 int rn, int rd) 8688 { 8689 int size, elements, fracbits; 8690 int immhb = immh << 3 | immb; 8691 8692 if (immh & 8) { 8693 size = MO_64; 8694 if (!is_scalar && !is_q) { 8695 unallocated_encoding(s); 8696 return; 8697 } 8698 } else if (immh & 4) { 8699 size = MO_32; 8700 } else if (immh & 2) { 8701 size = MO_16; 8702 if (!dc_isar_feature(aa64_fp16, s)) { 8703 unallocated_encoding(s); 8704 return; 8705 } 8706 } else { 8707 /* immh == 0 would be a failure of the decode logic */ 8708 g_assert(immh == 1); 8709 unallocated_encoding(s); 8710 return; 8711 } 8712 8713 if (is_scalar) { 8714 elements = 1; 8715 } else { 8716 elements = (8 << is_q) >> size; 8717 } 8718 fracbits = (16 << size) - immhb; 8719 8720 if (!fp_access_check(s)) { 8721 return; 8722 } 8723 8724 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8725 } 8726 8727 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8728 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8729 bool is_q, bool is_u, 8730 int immh, int immb, int rn, int rd) 8731 { 8732 int immhb = immh << 3 | immb; 8733 int pass, size, fracbits; 8734 TCGv_ptr tcg_fpstatus; 8735 TCGv_i32 tcg_rmode, tcg_shift; 8736 8737 if (immh & 0x8) { 8738 size = MO_64; 8739 if (!is_scalar && !is_q) { 8740 unallocated_encoding(s); 8741 return; 8742 } 8743 } else if (immh & 0x4) { 8744 size = MO_32; 8745 } else if (immh & 0x2) { 8746 size = MO_16; 8747 if (!dc_isar_feature(aa64_fp16, s)) { 8748 unallocated_encoding(s); 8749 return; 8750 } 8751 } else { 8752 /* Should have split out AdvSIMD modified immediate earlier. */ 8753 assert(immh == 1); 8754 unallocated_encoding(s); 8755 return; 8756 } 8757 8758 if (!fp_access_check(s)) { 8759 return; 8760 } 8761 8762 assert(!(is_scalar && is_q)); 8763 8764 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8765 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8766 fracbits = (16 << size) - immhb; 8767 tcg_shift = tcg_constant_i32(fracbits); 8768 8769 if (size == MO_64) { 8770 int maxpass = is_scalar ? 1 : 2; 8771 8772 for (pass = 0; pass < maxpass; pass++) { 8773 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8774 8775 read_vec_element(s, tcg_op, rn, pass, MO_64); 8776 if (is_u) { 8777 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8778 } else { 8779 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8780 } 8781 write_vec_element(s, tcg_op, rd, pass, MO_64); 8782 } 8783 clear_vec_high(s, is_q, rd); 8784 } else { 8785 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8786 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8787 8788 switch (size) { 8789 case MO_16: 8790 if (is_u) { 8791 fn = gen_helper_vfp_touhh; 8792 } else { 8793 fn = gen_helper_vfp_toshh; 8794 } 8795 break; 8796 case MO_32: 8797 if (is_u) { 8798 fn = gen_helper_vfp_touls; 8799 } else { 8800 fn = gen_helper_vfp_tosls; 8801 } 8802 break; 8803 default: 8804 g_assert_not_reached(); 8805 } 8806 8807 for (pass = 0; pass < maxpass; pass++) { 8808 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8809 8810 read_vec_element_i32(s, tcg_op, rn, pass, size); 8811 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8812 if (is_scalar) { 8813 write_fp_sreg(s, rd, tcg_op); 8814 } else { 8815 write_vec_element_i32(s, tcg_op, rd, pass, size); 8816 } 8817 } 8818 if (!is_scalar) { 8819 clear_vec_high(s, is_q, rd); 8820 } 8821 } 8822 8823 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8824 } 8825 8826 /* AdvSIMD scalar shift by immediate 8827 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8828 * +-----+---+-------------+------+------+--------+---+------+------+ 8829 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8830 * +-----+---+-------------+------+------+--------+---+------+------+ 8831 * 8832 * This is the scalar version so it works on a fixed sized registers 8833 */ 8834 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8835 { 8836 int rd = extract32(insn, 0, 5); 8837 int rn = extract32(insn, 5, 5); 8838 int opcode = extract32(insn, 11, 5); 8839 int immb = extract32(insn, 16, 3); 8840 int immh = extract32(insn, 19, 4); 8841 bool is_u = extract32(insn, 29, 1); 8842 8843 if (immh == 0) { 8844 unallocated_encoding(s); 8845 return; 8846 } 8847 8848 switch (opcode) { 8849 case 0x08: /* SRI */ 8850 if (!is_u) { 8851 unallocated_encoding(s); 8852 return; 8853 } 8854 /* fall through */ 8855 case 0x00: /* SSHR / USHR */ 8856 case 0x02: /* SSRA / USRA */ 8857 case 0x04: /* SRSHR / URSHR */ 8858 case 0x06: /* SRSRA / URSRA */ 8859 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8860 break; 8861 case 0x0a: /* SHL / SLI */ 8862 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8863 break; 8864 case 0x1c: /* SCVTF, UCVTF */ 8865 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8866 opcode, rn, rd); 8867 break; 8868 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8869 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8870 if (!is_u) { 8871 unallocated_encoding(s); 8872 return; 8873 } 8874 handle_vec_simd_sqshrn(s, true, false, false, true, 8875 immh, immb, opcode, rn, rd); 8876 break; 8877 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8878 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8879 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8880 immh, immb, opcode, rn, rd); 8881 break; 8882 case 0xc: /* SQSHLU */ 8883 if (!is_u) { 8884 unallocated_encoding(s); 8885 return; 8886 } 8887 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8888 break; 8889 case 0xe: /* SQSHL, UQSHL */ 8890 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8891 break; 8892 case 0x1f: /* FCVTZS, FCVTZU */ 8893 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8894 break; 8895 default: 8896 unallocated_encoding(s); 8897 break; 8898 } 8899 } 8900 8901 /* AdvSIMD scalar three different 8902 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8903 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8904 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8905 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8906 */ 8907 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8908 { 8909 bool is_u = extract32(insn, 29, 1); 8910 int size = extract32(insn, 22, 2); 8911 int opcode = extract32(insn, 12, 4); 8912 int rm = extract32(insn, 16, 5); 8913 int rn = extract32(insn, 5, 5); 8914 int rd = extract32(insn, 0, 5); 8915 8916 if (is_u) { 8917 unallocated_encoding(s); 8918 return; 8919 } 8920 8921 switch (opcode) { 8922 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8923 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8924 case 0xd: /* SQDMULL, SQDMULL2 */ 8925 if (size == 0 || size == 3) { 8926 unallocated_encoding(s); 8927 return; 8928 } 8929 break; 8930 default: 8931 unallocated_encoding(s); 8932 return; 8933 } 8934 8935 if (!fp_access_check(s)) { 8936 return; 8937 } 8938 8939 if (size == 2) { 8940 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8941 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8942 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8943 8944 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8945 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8946 8947 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8948 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8949 8950 switch (opcode) { 8951 case 0xd: /* SQDMULL, SQDMULL2 */ 8952 break; 8953 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8954 tcg_gen_neg_i64(tcg_res, tcg_res); 8955 /* fall through */ 8956 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8957 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8958 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8959 tcg_res, tcg_op1); 8960 break; 8961 default: 8962 g_assert_not_reached(); 8963 } 8964 8965 write_fp_dreg(s, rd, tcg_res); 8966 } else { 8967 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8968 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8969 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8970 8971 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8972 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8973 8974 switch (opcode) { 8975 case 0xd: /* SQDMULL, SQDMULL2 */ 8976 break; 8977 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8978 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8979 /* fall through */ 8980 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8981 { 8982 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8983 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8984 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8985 tcg_res, tcg_op3); 8986 break; 8987 } 8988 default: 8989 g_assert_not_reached(); 8990 } 8991 8992 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8993 write_fp_dreg(s, rd, tcg_res); 8994 } 8995 } 8996 8997 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8998 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8999 { 9000 /* Handle 64x64->64 opcodes which are shared between the scalar 9001 * and vector 3-same groups. We cover every opcode where size == 3 9002 * is valid in either the three-reg-same (integer, not pairwise) 9003 * or scalar-three-reg-same groups. 9004 */ 9005 TCGCond cond; 9006 9007 switch (opcode) { 9008 case 0x1: /* SQADD */ 9009 if (u) { 9010 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9011 } else { 9012 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9013 } 9014 break; 9015 case 0x5: /* SQSUB */ 9016 if (u) { 9017 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9018 } else { 9019 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9020 } 9021 break; 9022 case 0x6: /* CMGT, CMHI */ 9023 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9024 * We implement this using setcond (test) and then negating. 9025 */ 9026 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9027 do_cmop: 9028 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9029 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9030 break; 9031 case 0x7: /* CMGE, CMHS */ 9032 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9033 goto do_cmop; 9034 case 0x11: /* CMTST, CMEQ */ 9035 if (u) { 9036 cond = TCG_COND_EQ; 9037 goto do_cmop; 9038 } 9039 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9040 break; 9041 case 0x8: /* SSHL, USHL */ 9042 if (u) { 9043 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9044 } else { 9045 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9046 } 9047 break; 9048 case 0x9: /* SQSHL, UQSHL */ 9049 if (u) { 9050 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9051 } else { 9052 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9053 } 9054 break; 9055 case 0xa: /* SRSHL, URSHL */ 9056 if (u) { 9057 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9058 } else { 9059 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9060 } 9061 break; 9062 case 0xb: /* SQRSHL, UQRSHL */ 9063 if (u) { 9064 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9065 } else { 9066 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9067 } 9068 break; 9069 case 0x10: /* ADD, SUB */ 9070 if (u) { 9071 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9072 } else { 9073 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9074 } 9075 break; 9076 default: 9077 g_assert_not_reached(); 9078 } 9079 } 9080 9081 /* Handle the 3-same-operands float operations; shared by the scalar 9082 * and vector encodings. The caller must filter out any encodings 9083 * not allocated for the encoding it is dealing with. 9084 */ 9085 static void handle_3same_float(DisasContext *s, int size, int elements, 9086 int fpopcode, int rd, int rn, int rm) 9087 { 9088 int pass; 9089 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9090 9091 for (pass = 0; pass < elements; pass++) { 9092 if (size) { 9093 /* Double */ 9094 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9095 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9096 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9097 9098 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9099 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9100 9101 switch (fpopcode) { 9102 case 0x39: /* FMLS */ 9103 /* As usual for ARM, separate negation for fused multiply-add */ 9104 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9105 /* fall through */ 9106 case 0x19: /* FMLA */ 9107 read_vec_element(s, tcg_res, rd, pass, MO_64); 9108 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9109 tcg_res, fpst); 9110 break; 9111 case 0x18: /* FMAXNM */ 9112 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x1a: /* FADD */ 9115 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9116 break; 9117 case 0x1b: /* FMULX */ 9118 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x1c: /* FCMEQ */ 9121 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 case 0x1e: /* FMAX */ 9124 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9125 break; 9126 case 0x1f: /* FRECPS */ 9127 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9128 break; 9129 case 0x38: /* FMINNM */ 9130 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9131 break; 9132 case 0x3a: /* FSUB */ 9133 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9134 break; 9135 case 0x3e: /* FMIN */ 9136 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9137 break; 9138 case 0x3f: /* FRSQRTS */ 9139 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9140 break; 9141 case 0x5b: /* FMUL */ 9142 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9143 break; 9144 case 0x5c: /* FCMGE */ 9145 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9146 break; 9147 case 0x5d: /* FACGE */ 9148 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9149 break; 9150 case 0x5f: /* FDIV */ 9151 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9152 break; 9153 case 0x7a: /* FABD */ 9154 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9155 gen_helper_vfp_absd(tcg_res, tcg_res); 9156 break; 9157 case 0x7c: /* FCMGT */ 9158 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x7d: /* FACGT */ 9161 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 default: 9164 g_assert_not_reached(); 9165 } 9166 9167 write_vec_element(s, tcg_res, rd, pass, MO_64); 9168 } else { 9169 /* Single */ 9170 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9171 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9172 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9173 9174 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9175 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9176 9177 switch (fpopcode) { 9178 case 0x39: /* FMLS */ 9179 /* As usual for ARM, separate negation for fused multiply-add */ 9180 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9181 /* fall through */ 9182 case 0x19: /* FMLA */ 9183 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9184 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9185 tcg_res, fpst); 9186 break; 9187 case 0x1a: /* FADD */ 9188 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9189 break; 9190 case 0x1b: /* FMULX */ 9191 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9192 break; 9193 case 0x1c: /* FCMEQ */ 9194 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9195 break; 9196 case 0x1e: /* FMAX */ 9197 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9198 break; 9199 case 0x1f: /* FRECPS */ 9200 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9201 break; 9202 case 0x18: /* FMAXNM */ 9203 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9204 break; 9205 case 0x38: /* FMINNM */ 9206 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9207 break; 9208 case 0x3a: /* FSUB */ 9209 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9210 break; 9211 case 0x3e: /* FMIN */ 9212 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9213 break; 9214 case 0x3f: /* FRSQRTS */ 9215 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9216 break; 9217 case 0x5b: /* FMUL */ 9218 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9219 break; 9220 case 0x5c: /* FCMGE */ 9221 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9222 break; 9223 case 0x5d: /* FACGE */ 9224 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9225 break; 9226 case 0x5f: /* FDIV */ 9227 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9228 break; 9229 case 0x7a: /* FABD */ 9230 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9231 gen_helper_vfp_abss(tcg_res, tcg_res); 9232 break; 9233 case 0x7c: /* FCMGT */ 9234 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x7d: /* FACGT */ 9237 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 default: 9240 g_assert_not_reached(); 9241 } 9242 9243 if (elements == 1) { 9244 /* scalar single so clear high part */ 9245 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9246 9247 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9248 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9249 } else { 9250 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9251 } 9252 } 9253 } 9254 9255 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9256 } 9257 9258 /* AdvSIMD scalar three same 9259 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9260 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9261 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9262 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9263 */ 9264 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9265 { 9266 int rd = extract32(insn, 0, 5); 9267 int rn = extract32(insn, 5, 5); 9268 int opcode = extract32(insn, 11, 5); 9269 int rm = extract32(insn, 16, 5); 9270 int size = extract32(insn, 22, 2); 9271 bool u = extract32(insn, 29, 1); 9272 TCGv_i64 tcg_rd; 9273 9274 if (opcode >= 0x18) { 9275 /* Floating point: U, size[1] and opcode indicate operation */ 9276 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9277 switch (fpopcode) { 9278 case 0x1b: /* FMULX */ 9279 case 0x1f: /* FRECPS */ 9280 case 0x3f: /* FRSQRTS */ 9281 case 0x5d: /* FACGE */ 9282 case 0x7d: /* FACGT */ 9283 case 0x1c: /* FCMEQ */ 9284 case 0x5c: /* FCMGE */ 9285 case 0x7c: /* FCMGT */ 9286 case 0x7a: /* FABD */ 9287 break; 9288 default: 9289 unallocated_encoding(s); 9290 return; 9291 } 9292 9293 if (!fp_access_check(s)) { 9294 return; 9295 } 9296 9297 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9298 return; 9299 } 9300 9301 switch (opcode) { 9302 case 0x1: /* SQADD, UQADD */ 9303 case 0x5: /* SQSUB, UQSUB */ 9304 case 0x9: /* SQSHL, UQSHL */ 9305 case 0xb: /* SQRSHL, UQRSHL */ 9306 break; 9307 case 0x8: /* SSHL, USHL */ 9308 case 0xa: /* SRSHL, URSHL */ 9309 case 0x6: /* CMGT, CMHI */ 9310 case 0x7: /* CMGE, CMHS */ 9311 case 0x11: /* CMTST, CMEQ */ 9312 case 0x10: /* ADD, SUB (vector) */ 9313 if (size != 3) { 9314 unallocated_encoding(s); 9315 return; 9316 } 9317 break; 9318 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9319 if (size != 1 && size != 2) { 9320 unallocated_encoding(s); 9321 return; 9322 } 9323 break; 9324 default: 9325 unallocated_encoding(s); 9326 return; 9327 } 9328 9329 if (!fp_access_check(s)) { 9330 return; 9331 } 9332 9333 tcg_rd = tcg_temp_new_i64(); 9334 9335 if (size == 3) { 9336 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9337 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9338 9339 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9340 } else { 9341 /* Do a single operation on the lowest element in the vector. 9342 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9343 * no side effects for all these operations. 9344 * OPTME: special-purpose helpers would avoid doing some 9345 * unnecessary work in the helper for the 8 and 16 bit cases. 9346 */ 9347 NeonGenTwoOpEnvFn *genenvfn; 9348 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9349 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9350 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9351 9352 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9353 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9354 9355 switch (opcode) { 9356 case 0x1: /* SQADD, UQADD */ 9357 { 9358 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9359 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9360 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9361 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9362 }; 9363 genenvfn = fns[size][u]; 9364 break; 9365 } 9366 case 0x5: /* SQSUB, UQSUB */ 9367 { 9368 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9369 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9370 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9371 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9372 }; 9373 genenvfn = fns[size][u]; 9374 break; 9375 } 9376 case 0x9: /* SQSHL, UQSHL */ 9377 { 9378 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9379 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9380 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9381 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9382 }; 9383 genenvfn = fns[size][u]; 9384 break; 9385 } 9386 case 0xb: /* SQRSHL, UQRSHL */ 9387 { 9388 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9389 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9390 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9391 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9392 }; 9393 genenvfn = fns[size][u]; 9394 break; 9395 } 9396 case 0x16: /* SQDMULH, SQRDMULH */ 9397 { 9398 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9399 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9400 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9401 }; 9402 assert(size == 1 || size == 2); 9403 genenvfn = fns[size - 1][u]; 9404 break; 9405 } 9406 default: 9407 g_assert_not_reached(); 9408 } 9409 9410 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9411 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9412 } 9413 9414 write_fp_dreg(s, rd, tcg_rd); 9415 } 9416 9417 /* AdvSIMD scalar three same FP16 9418 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9419 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9420 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9421 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9422 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9423 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9424 */ 9425 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9426 uint32_t insn) 9427 { 9428 int rd = extract32(insn, 0, 5); 9429 int rn = extract32(insn, 5, 5); 9430 int opcode = extract32(insn, 11, 3); 9431 int rm = extract32(insn, 16, 5); 9432 bool u = extract32(insn, 29, 1); 9433 bool a = extract32(insn, 23, 1); 9434 int fpopcode = opcode | (a << 3) | (u << 4); 9435 TCGv_ptr fpst; 9436 TCGv_i32 tcg_op1; 9437 TCGv_i32 tcg_op2; 9438 TCGv_i32 tcg_res; 9439 9440 switch (fpopcode) { 9441 case 0x03: /* FMULX */ 9442 case 0x04: /* FCMEQ (reg) */ 9443 case 0x07: /* FRECPS */ 9444 case 0x0f: /* FRSQRTS */ 9445 case 0x14: /* FCMGE (reg) */ 9446 case 0x15: /* FACGE */ 9447 case 0x1a: /* FABD */ 9448 case 0x1c: /* FCMGT (reg) */ 9449 case 0x1d: /* FACGT */ 9450 break; 9451 default: 9452 unallocated_encoding(s); 9453 return; 9454 } 9455 9456 if (!dc_isar_feature(aa64_fp16, s)) { 9457 unallocated_encoding(s); 9458 } 9459 9460 if (!fp_access_check(s)) { 9461 return; 9462 } 9463 9464 fpst = fpstatus_ptr(FPST_FPCR_F16); 9465 9466 tcg_op1 = read_fp_hreg(s, rn); 9467 tcg_op2 = read_fp_hreg(s, rm); 9468 tcg_res = tcg_temp_new_i32(); 9469 9470 switch (fpopcode) { 9471 case 0x03: /* FMULX */ 9472 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9473 break; 9474 case 0x04: /* FCMEQ (reg) */ 9475 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9476 break; 9477 case 0x07: /* FRECPS */ 9478 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9479 break; 9480 case 0x0f: /* FRSQRTS */ 9481 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9482 break; 9483 case 0x14: /* FCMGE (reg) */ 9484 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9485 break; 9486 case 0x15: /* FACGE */ 9487 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9488 break; 9489 case 0x1a: /* FABD */ 9490 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9491 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9492 break; 9493 case 0x1c: /* FCMGT (reg) */ 9494 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9495 break; 9496 case 0x1d: /* FACGT */ 9497 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9498 break; 9499 default: 9500 g_assert_not_reached(); 9501 } 9502 9503 write_fp_sreg(s, rd, tcg_res); 9504 } 9505 9506 /* AdvSIMD scalar three same extra 9507 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9508 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9509 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9510 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9511 */ 9512 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9513 uint32_t insn) 9514 { 9515 int rd = extract32(insn, 0, 5); 9516 int rn = extract32(insn, 5, 5); 9517 int opcode = extract32(insn, 11, 4); 9518 int rm = extract32(insn, 16, 5); 9519 int size = extract32(insn, 22, 2); 9520 bool u = extract32(insn, 29, 1); 9521 TCGv_i32 ele1, ele2, ele3; 9522 TCGv_i64 res; 9523 bool feature; 9524 9525 switch (u * 16 + opcode) { 9526 case 0x10: /* SQRDMLAH (vector) */ 9527 case 0x11: /* SQRDMLSH (vector) */ 9528 if (size != 1 && size != 2) { 9529 unallocated_encoding(s); 9530 return; 9531 } 9532 feature = dc_isar_feature(aa64_rdm, s); 9533 break; 9534 default: 9535 unallocated_encoding(s); 9536 return; 9537 } 9538 if (!feature) { 9539 unallocated_encoding(s); 9540 return; 9541 } 9542 if (!fp_access_check(s)) { 9543 return; 9544 } 9545 9546 /* Do a single operation on the lowest element in the vector. 9547 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9548 * with no side effects for all these operations. 9549 * OPTME: special-purpose helpers would avoid doing some 9550 * unnecessary work in the helper for the 16 bit cases. 9551 */ 9552 ele1 = tcg_temp_new_i32(); 9553 ele2 = tcg_temp_new_i32(); 9554 ele3 = tcg_temp_new_i32(); 9555 9556 read_vec_element_i32(s, ele1, rn, 0, size); 9557 read_vec_element_i32(s, ele2, rm, 0, size); 9558 read_vec_element_i32(s, ele3, rd, 0, size); 9559 9560 switch (opcode) { 9561 case 0x0: /* SQRDMLAH */ 9562 if (size == 1) { 9563 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9564 } else { 9565 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9566 } 9567 break; 9568 case 0x1: /* SQRDMLSH */ 9569 if (size == 1) { 9570 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9571 } else { 9572 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9573 } 9574 break; 9575 default: 9576 g_assert_not_reached(); 9577 } 9578 9579 res = tcg_temp_new_i64(); 9580 tcg_gen_extu_i32_i64(res, ele3); 9581 write_fp_dreg(s, rd, res); 9582 } 9583 9584 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9585 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9586 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9587 { 9588 /* Handle 64->64 opcodes which are shared between the scalar and 9589 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9590 * is valid in either group and also the double-precision fp ops. 9591 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9592 * requires them. 9593 */ 9594 TCGCond cond; 9595 9596 switch (opcode) { 9597 case 0x4: /* CLS, CLZ */ 9598 if (u) { 9599 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9600 } else { 9601 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9602 } 9603 break; 9604 case 0x5: /* NOT */ 9605 /* This opcode is shared with CNT and RBIT but we have earlier 9606 * enforced that size == 3 if and only if this is the NOT insn. 9607 */ 9608 tcg_gen_not_i64(tcg_rd, tcg_rn); 9609 break; 9610 case 0x7: /* SQABS, SQNEG */ 9611 if (u) { 9612 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9613 } else { 9614 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9615 } 9616 break; 9617 case 0xa: /* CMLT */ 9618 /* 64 bit integer comparison against zero, result is 9619 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9620 * subtracting 1. 9621 */ 9622 cond = TCG_COND_LT; 9623 do_cmop: 9624 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9625 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9626 break; 9627 case 0x8: /* CMGT, CMGE */ 9628 cond = u ? TCG_COND_GE : TCG_COND_GT; 9629 goto do_cmop; 9630 case 0x9: /* CMEQ, CMLE */ 9631 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9632 goto do_cmop; 9633 case 0xb: /* ABS, NEG */ 9634 if (u) { 9635 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9636 } else { 9637 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9638 } 9639 break; 9640 case 0x2f: /* FABS */ 9641 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9642 break; 9643 case 0x6f: /* FNEG */ 9644 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9645 break; 9646 case 0x7f: /* FSQRT */ 9647 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9648 break; 9649 case 0x1a: /* FCVTNS */ 9650 case 0x1b: /* FCVTMS */ 9651 case 0x1c: /* FCVTAS */ 9652 case 0x3a: /* FCVTPS */ 9653 case 0x3b: /* FCVTZS */ 9654 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9655 break; 9656 case 0x5a: /* FCVTNU */ 9657 case 0x5b: /* FCVTMU */ 9658 case 0x5c: /* FCVTAU */ 9659 case 0x7a: /* FCVTPU */ 9660 case 0x7b: /* FCVTZU */ 9661 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9662 break; 9663 case 0x18: /* FRINTN */ 9664 case 0x19: /* FRINTM */ 9665 case 0x38: /* FRINTP */ 9666 case 0x39: /* FRINTZ */ 9667 case 0x58: /* FRINTA */ 9668 case 0x79: /* FRINTI */ 9669 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9670 break; 9671 case 0x59: /* FRINTX */ 9672 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9673 break; 9674 case 0x1e: /* FRINT32Z */ 9675 case 0x5e: /* FRINT32X */ 9676 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9677 break; 9678 case 0x1f: /* FRINT64Z */ 9679 case 0x5f: /* FRINT64X */ 9680 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9681 break; 9682 default: 9683 g_assert_not_reached(); 9684 } 9685 } 9686 9687 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9688 bool is_scalar, bool is_u, bool is_q, 9689 int size, int rn, int rd) 9690 { 9691 bool is_double = (size == MO_64); 9692 TCGv_ptr fpst; 9693 9694 if (!fp_access_check(s)) { 9695 return; 9696 } 9697 9698 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9699 9700 if (is_double) { 9701 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9702 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9703 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9704 NeonGenTwoDoubleOpFn *genfn; 9705 bool swap = false; 9706 int pass; 9707 9708 switch (opcode) { 9709 case 0x2e: /* FCMLT (zero) */ 9710 swap = true; 9711 /* fallthrough */ 9712 case 0x2c: /* FCMGT (zero) */ 9713 genfn = gen_helper_neon_cgt_f64; 9714 break; 9715 case 0x2d: /* FCMEQ (zero) */ 9716 genfn = gen_helper_neon_ceq_f64; 9717 break; 9718 case 0x6d: /* FCMLE (zero) */ 9719 swap = true; 9720 /* fall through */ 9721 case 0x6c: /* FCMGE (zero) */ 9722 genfn = gen_helper_neon_cge_f64; 9723 break; 9724 default: 9725 g_assert_not_reached(); 9726 } 9727 9728 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9729 read_vec_element(s, tcg_op, rn, pass, MO_64); 9730 if (swap) { 9731 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9732 } else { 9733 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9734 } 9735 write_vec_element(s, tcg_res, rd, pass, MO_64); 9736 } 9737 9738 clear_vec_high(s, !is_scalar, rd); 9739 } else { 9740 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9741 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9742 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9743 NeonGenTwoSingleOpFn *genfn; 9744 bool swap = false; 9745 int pass, maxpasses; 9746 9747 if (size == MO_16) { 9748 switch (opcode) { 9749 case 0x2e: /* FCMLT (zero) */ 9750 swap = true; 9751 /* fall through */ 9752 case 0x2c: /* FCMGT (zero) */ 9753 genfn = gen_helper_advsimd_cgt_f16; 9754 break; 9755 case 0x2d: /* FCMEQ (zero) */ 9756 genfn = gen_helper_advsimd_ceq_f16; 9757 break; 9758 case 0x6d: /* FCMLE (zero) */ 9759 swap = true; 9760 /* fall through */ 9761 case 0x6c: /* FCMGE (zero) */ 9762 genfn = gen_helper_advsimd_cge_f16; 9763 break; 9764 default: 9765 g_assert_not_reached(); 9766 } 9767 } else { 9768 switch (opcode) { 9769 case 0x2e: /* FCMLT (zero) */ 9770 swap = true; 9771 /* fall through */ 9772 case 0x2c: /* FCMGT (zero) */ 9773 genfn = gen_helper_neon_cgt_f32; 9774 break; 9775 case 0x2d: /* FCMEQ (zero) */ 9776 genfn = gen_helper_neon_ceq_f32; 9777 break; 9778 case 0x6d: /* FCMLE (zero) */ 9779 swap = true; 9780 /* fall through */ 9781 case 0x6c: /* FCMGE (zero) */ 9782 genfn = gen_helper_neon_cge_f32; 9783 break; 9784 default: 9785 g_assert_not_reached(); 9786 } 9787 } 9788 9789 if (is_scalar) { 9790 maxpasses = 1; 9791 } else { 9792 int vector_size = 8 << is_q; 9793 maxpasses = vector_size >> size; 9794 } 9795 9796 for (pass = 0; pass < maxpasses; pass++) { 9797 read_vec_element_i32(s, tcg_op, rn, pass, size); 9798 if (swap) { 9799 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9800 } else { 9801 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9802 } 9803 if (is_scalar) { 9804 write_fp_sreg(s, rd, tcg_res); 9805 } else { 9806 write_vec_element_i32(s, tcg_res, rd, pass, size); 9807 } 9808 } 9809 9810 if (!is_scalar) { 9811 clear_vec_high(s, is_q, rd); 9812 } 9813 } 9814 } 9815 9816 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9817 bool is_scalar, bool is_u, bool is_q, 9818 int size, int rn, int rd) 9819 { 9820 bool is_double = (size == 3); 9821 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9822 9823 if (is_double) { 9824 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9825 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9826 int pass; 9827 9828 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9829 read_vec_element(s, tcg_op, rn, pass, MO_64); 9830 switch (opcode) { 9831 case 0x3d: /* FRECPE */ 9832 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9833 break; 9834 case 0x3f: /* FRECPX */ 9835 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9836 break; 9837 case 0x7d: /* FRSQRTE */ 9838 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9839 break; 9840 default: 9841 g_assert_not_reached(); 9842 } 9843 write_vec_element(s, tcg_res, rd, pass, MO_64); 9844 } 9845 clear_vec_high(s, !is_scalar, rd); 9846 } else { 9847 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9848 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9849 int pass, maxpasses; 9850 9851 if (is_scalar) { 9852 maxpasses = 1; 9853 } else { 9854 maxpasses = is_q ? 4 : 2; 9855 } 9856 9857 for (pass = 0; pass < maxpasses; pass++) { 9858 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9859 9860 switch (opcode) { 9861 case 0x3c: /* URECPE */ 9862 gen_helper_recpe_u32(tcg_res, tcg_op); 9863 break; 9864 case 0x3d: /* FRECPE */ 9865 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9866 break; 9867 case 0x3f: /* FRECPX */ 9868 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9869 break; 9870 case 0x7d: /* FRSQRTE */ 9871 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9872 break; 9873 default: 9874 g_assert_not_reached(); 9875 } 9876 9877 if (is_scalar) { 9878 write_fp_sreg(s, rd, tcg_res); 9879 } else { 9880 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9881 } 9882 } 9883 if (!is_scalar) { 9884 clear_vec_high(s, is_q, rd); 9885 } 9886 } 9887 } 9888 9889 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9890 int opcode, bool u, bool is_q, 9891 int size, int rn, int rd) 9892 { 9893 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9894 * in the source becomes a size element in the destination). 9895 */ 9896 int pass; 9897 TCGv_i32 tcg_res[2]; 9898 int destelt = is_q ? 2 : 0; 9899 int passes = scalar ? 1 : 2; 9900 9901 if (scalar) { 9902 tcg_res[1] = tcg_constant_i32(0); 9903 } 9904 9905 for (pass = 0; pass < passes; pass++) { 9906 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9907 NeonGenNarrowFn *genfn = NULL; 9908 NeonGenNarrowEnvFn *genenvfn = NULL; 9909 9910 if (scalar) { 9911 read_vec_element(s, tcg_op, rn, pass, size + 1); 9912 } else { 9913 read_vec_element(s, tcg_op, rn, pass, MO_64); 9914 } 9915 tcg_res[pass] = tcg_temp_new_i32(); 9916 9917 switch (opcode) { 9918 case 0x12: /* XTN, SQXTUN */ 9919 { 9920 static NeonGenNarrowFn * const xtnfns[3] = { 9921 gen_helper_neon_narrow_u8, 9922 gen_helper_neon_narrow_u16, 9923 tcg_gen_extrl_i64_i32, 9924 }; 9925 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9926 gen_helper_neon_unarrow_sat8, 9927 gen_helper_neon_unarrow_sat16, 9928 gen_helper_neon_unarrow_sat32, 9929 }; 9930 if (u) { 9931 genenvfn = sqxtunfns[size]; 9932 } else { 9933 genfn = xtnfns[size]; 9934 } 9935 break; 9936 } 9937 case 0x14: /* SQXTN, UQXTN */ 9938 { 9939 static NeonGenNarrowEnvFn * const fns[3][2] = { 9940 { gen_helper_neon_narrow_sat_s8, 9941 gen_helper_neon_narrow_sat_u8 }, 9942 { gen_helper_neon_narrow_sat_s16, 9943 gen_helper_neon_narrow_sat_u16 }, 9944 { gen_helper_neon_narrow_sat_s32, 9945 gen_helper_neon_narrow_sat_u32 }, 9946 }; 9947 genenvfn = fns[size][u]; 9948 break; 9949 } 9950 case 0x16: /* FCVTN, FCVTN2 */ 9951 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9952 if (size == 2) { 9953 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9954 } else { 9955 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9956 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9957 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9958 TCGv_i32 ahp = get_ahp_flag(); 9959 9960 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9961 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9962 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9963 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9964 } 9965 break; 9966 case 0x36: /* BFCVTN, BFCVTN2 */ 9967 { 9968 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9969 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9970 } 9971 break; 9972 case 0x56: /* FCVTXN, FCVTXN2 */ 9973 /* 64 bit to 32 bit float conversion 9974 * with von Neumann rounding (round to odd) 9975 */ 9976 assert(size == 2); 9977 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9978 break; 9979 default: 9980 g_assert_not_reached(); 9981 } 9982 9983 if (genfn) { 9984 genfn(tcg_res[pass], tcg_op); 9985 } else if (genenvfn) { 9986 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9987 } 9988 } 9989 9990 for (pass = 0; pass < 2; pass++) { 9991 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9992 } 9993 clear_vec_high(s, is_q, rd); 9994 } 9995 9996 /* Remaining saturating accumulating ops */ 9997 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9998 bool is_q, int size, int rn, int rd) 9999 { 10000 bool is_double = (size == 3); 10001 10002 if (is_double) { 10003 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10004 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10005 int pass; 10006 10007 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10008 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10009 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10010 10011 if (is_u) { /* USQADD */ 10012 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10013 } else { /* SUQADD */ 10014 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10015 } 10016 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10017 } 10018 clear_vec_high(s, !is_scalar, rd); 10019 } else { 10020 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10021 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10022 int pass, maxpasses; 10023 10024 if (is_scalar) { 10025 maxpasses = 1; 10026 } else { 10027 maxpasses = is_q ? 4 : 2; 10028 } 10029 10030 for (pass = 0; pass < maxpasses; pass++) { 10031 if (is_scalar) { 10032 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10033 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10034 } else { 10035 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10036 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10037 } 10038 10039 if (is_u) { /* USQADD */ 10040 switch (size) { 10041 case 0: 10042 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10043 break; 10044 case 1: 10045 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10046 break; 10047 case 2: 10048 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10049 break; 10050 default: 10051 g_assert_not_reached(); 10052 } 10053 } else { /* SUQADD */ 10054 switch (size) { 10055 case 0: 10056 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10057 break; 10058 case 1: 10059 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10060 break; 10061 case 2: 10062 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10063 break; 10064 default: 10065 g_assert_not_reached(); 10066 } 10067 } 10068 10069 if (is_scalar) { 10070 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10071 } 10072 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10073 } 10074 clear_vec_high(s, is_q, rd); 10075 } 10076 } 10077 10078 /* AdvSIMD scalar two reg misc 10079 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10080 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10081 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10082 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10083 */ 10084 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10085 { 10086 int rd = extract32(insn, 0, 5); 10087 int rn = extract32(insn, 5, 5); 10088 int opcode = extract32(insn, 12, 5); 10089 int size = extract32(insn, 22, 2); 10090 bool u = extract32(insn, 29, 1); 10091 bool is_fcvt = false; 10092 int rmode; 10093 TCGv_i32 tcg_rmode; 10094 TCGv_ptr tcg_fpstatus; 10095 10096 switch (opcode) { 10097 case 0x3: /* USQADD / SUQADD*/ 10098 if (!fp_access_check(s)) { 10099 return; 10100 } 10101 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10102 return; 10103 case 0x7: /* SQABS / SQNEG */ 10104 break; 10105 case 0xa: /* CMLT */ 10106 if (u) { 10107 unallocated_encoding(s); 10108 return; 10109 } 10110 /* fall through */ 10111 case 0x8: /* CMGT, CMGE */ 10112 case 0x9: /* CMEQ, CMLE */ 10113 case 0xb: /* ABS, NEG */ 10114 if (size != 3) { 10115 unallocated_encoding(s); 10116 return; 10117 } 10118 break; 10119 case 0x12: /* SQXTUN */ 10120 if (!u) { 10121 unallocated_encoding(s); 10122 return; 10123 } 10124 /* fall through */ 10125 case 0x14: /* SQXTN, UQXTN */ 10126 if (size == 3) { 10127 unallocated_encoding(s); 10128 return; 10129 } 10130 if (!fp_access_check(s)) { 10131 return; 10132 } 10133 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10134 return; 10135 case 0xc ... 0xf: 10136 case 0x16 ... 0x1d: 10137 case 0x1f: 10138 /* Floating point: U, size[1] and opcode indicate operation; 10139 * size[0] indicates single or double precision. 10140 */ 10141 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10142 size = extract32(size, 0, 1) ? 3 : 2; 10143 switch (opcode) { 10144 case 0x2c: /* FCMGT (zero) */ 10145 case 0x2d: /* FCMEQ (zero) */ 10146 case 0x2e: /* FCMLT (zero) */ 10147 case 0x6c: /* FCMGE (zero) */ 10148 case 0x6d: /* FCMLE (zero) */ 10149 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10150 return; 10151 case 0x1d: /* SCVTF */ 10152 case 0x5d: /* UCVTF */ 10153 { 10154 bool is_signed = (opcode == 0x1d); 10155 if (!fp_access_check(s)) { 10156 return; 10157 } 10158 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10159 return; 10160 } 10161 case 0x3d: /* FRECPE */ 10162 case 0x3f: /* FRECPX */ 10163 case 0x7d: /* FRSQRTE */ 10164 if (!fp_access_check(s)) { 10165 return; 10166 } 10167 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10168 return; 10169 case 0x1a: /* FCVTNS */ 10170 case 0x1b: /* FCVTMS */ 10171 case 0x3a: /* FCVTPS */ 10172 case 0x3b: /* FCVTZS */ 10173 case 0x5a: /* FCVTNU */ 10174 case 0x5b: /* FCVTMU */ 10175 case 0x7a: /* FCVTPU */ 10176 case 0x7b: /* FCVTZU */ 10177 is_fcvt = true; 10178 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10179 break; 10180 case 0x1c: /* FCVTAS */ 10181 case 0x5c: /* FCVTAU */ 10182 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10183 is_fcvt = true; 10184 rmode = FPROUNDING_TIEAWAY; 10185 break; 10186 case 0x56: /* FCVTXN, FCVTXN2 */ 10187 if (size == 2) { 10188 unallocated_encoding(s); 10189 return; 10190 } 10191 if (!fp_access_check(s)) { 10192 return; 10193 } 10194 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10195 return; 10196 default: 10197 unallocated_encoding(s); 10198 return; 10199 } 10200 break; 10201 default: 10202 unallocated_encoding(s); 10203 return; 10204 } 10205 10206 if (!fp_access_check(s)) { 10207 return; 10208 } 10209 10210 if (is_fcvt) { 10211 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10212 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10213 } else { 10214 tcg_fpstatus = NULL; 10215 tcg_rmode = NULL; 10216 } 10217 10218 if (size == 3) { 10219 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10220 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10221 10222 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10223 write_fp_dreg(s, rd, tcg_rd); 10224 } else { 10225 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10226 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10227 10228 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10229 10230 switch (opcode) { 10231 case 0x7: /* SQABS, SQNEG */ 10232 { 10233 NeonGenOneOpEnvFn *genfn; 10234 static NeonGenOneOpEnvFn * const fns[3][2] = { 10235 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10236 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10237 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10238 }; 10239 genfn = fns[size][u]; 10240 genfn(tcg_rd, cpu_env, tcg_rn); 10241 break; 10242 } 10243 case 0x1a: /* FCVTNS */ 10244 case 0x1b: /* FCVTMS */ 10245 case 0x1c: /* FCVTAS */ 10246 case 0x3a: /* FCVTPS */ 10247 case 0x3b: /* FCVTZS */ 10248 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10249 tcg_fpstatus); 10250 break; 10251 case 0x5a: /* FCVTNU */ 10252 case 0x5b: /* FCVTMU */ 10253 case 0x5c: /* FCVTAU */ 10254 case 0x7a: /* FCVTPU */ 10255 case 0x7b: /* FCVTZU */ 10256 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10257 tcg_fpstatus); 10258 break; 10259 default: 10260 g_assert_not_reached(); 10261 } 10262 10263 write_fp_sreg(s, rd, tcg_rd); 10264 } 10265 10266 if (is_fcvt) { 10267 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10268 } 10269 } 10270 10271 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10272 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10273 int immh, int immb, int opcode, int rn, int rd) 10274 { 10275 int size = 32 - clz32(immh) - 1; 10276 int immhb = immh << 3 | immb; 10277 int shift = 2 * (8 << size) - immhb; 10278 GVecGen2iFn *gvec_fn; 10279 10280 if (extract32(immh, 3, 1) && !is_q) { 10281 unallocated_encoding(s); 10282 return; 10283 } 10284 tcg_debug_assert(size <= 3); 10285 10286 if (!fp_access_check(s)) { 10287 return; 10288 } 10289 10290 switch (opcode) { 10291 case 0x02: /* SSRA / USRA (accumulate) */ 10292 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10293 break; 10294 10295 case 0x08: /* SRI */ 10296 gvec_fn = gen_gvec_sri; 10297 break; 10298 10299 case 0x00: /* SSHR / USHR */ 10300 if (is_u) { 10301 if (shift == 8 << size) { 10302 /* Shift count the same size as element size produces zero. */ 10303 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10304 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10305 return; 10306 } 10307 gvec_fn = tcg_gen_gvec_shri; 10308 } else { 10309 /* Shift count the same size as element size produces all sign. */ 10310 if (shift == 8 << size) { 10311 shift -= 1; 10312 } 10313 gvec_fn = tcg_gen_gvec_sari; 10314 } 10315 break; 10316 10317 case 0x04: /* SRSHR / URSHR (rounding) */ 10318 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10319 break; 10320 10321 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10322 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10323 break; 10324 10325 default: 10326 g_assert_not_reached(); 10327 } 10328 10329 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10330 } 10331 10332 /* SHL/SLI - Vector shift left */ 10333 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10334 int immh, int immb, int opcode, int rn, int rd) 10335 { 10336 int size = 32 - clz32(immh) - 1; 10337 int immhb = immh << 3 | immb; 10338 int shift = immhb - (8 << size); 10339 10340 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10341 assert(size >= 0 && size <= 3); 10342 10343 if (extract32(immh, 3, 1) && !is_q) { 10344 unallocated_encoding(s); 10345 return; 10346 } 10347 10348 if (!fp_access_check(s)) { 10349 return; 10350 } 10351 10352 if (insert) { 10353 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10354 } else { 10355 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10356 } 10357 } 10358 10359 /* USHLL/SHLL - Vector shift left with widening */ 10360 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10361 int immh, int immb, int opcode, int rn, int rd) 10362 { 10363 int size = 32 - clz32(immh) - 1; 10364 int immhb = immh << 3 | immb; 10365 int shift = immhb - (8 << size); 10366 int dsize = 64; 10367 int esize = 8 << size; 10368 int elements = dsize/esize; 10369 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10370 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10371 int i; 10372 10373 if (size >= 3) { 10374 unallocated_encoding(s); 10375 return; 10376 } 10377 10378 if (!fp_access_check(s)) { 10379 return; 10380 } 10381 10382 /* For the LL variants the store is larger than the load, 10383 * so if rd == rn we would overwrite parts of our input. 10384 * So load everything right now and use shifts in the main loop. 10385 */ 10386 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10387 10388 for (i = 0; i < elements; i++) { 10389 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10390 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10391 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10392 write_vec_element(s, tcg_rd, rd, i, size + 1); 10393 } 10394 } 10395 10396 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10397 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10398 int immh, int immb, int opcode, int rn, int rd) 10399 { 10400 int immhb = immh << 3 | immb; 10401 int size = 32 - clz32(immh) - 1; 10402 int dsize = 64; 10403 int esize = 8 << size; 10404 int elements = dsize/esize; 10405 int shift = (2 * esize) - immhb; 10406 bool round = extract32(opcode, 0, 1); 10407 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10408 TCGv_i64 tcg_round; 10409 int i; 10410 10411 if (extract32(immh, 3, 1)) { 10412 unallocated_encoding(s); 10413 return; 10414 } 10415 10416 if (!fp_access_check(s)) { 10417 return; 10418 } 10419 10420 tcg_rn = tcg_temp_new_i64(); 10421 tcg_rd = tcg_temp_new_i64(); 10422 tcg_final = tcg_temp_new_i64(); 10423 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10424 10425 if (round) { 10426 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10427 } else { 10428 tcg_round = NULL; 10429 } 10430 10431 for (i = 0; i < elements; i++) { 10432 read_vec_element(s, tcg_rn, rn, i, size+1); 10433 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10434 false, true, size+1, shift); 10435 10436 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10437 } 10438 10439 if (!is_q) { 10440 write_vec_element(s, tcg_final, rd, 0, MO_64); 10441 } else { 10442 write_vec_element(s, tcg_final, rd, 1, MO_64); 10443 } 10444 10445 clear_vec_high(s, is_q, rd); 10446 } 10447 10448 10449 /* AdvSIMD shift by immediate 10450 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10451 * +---+---+---+-------------+------+------+--------+---+------+------+ 10452 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10453 * +---+---+---+-------------+------+------+--------+---+------+------+ 10454 */ 10455 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10456 { 10457 int rd = extract32(insn, 0, 5); 10458 int rn = extract32(insn, 5, 5); 10459 int opcode = extract32(insn, 11, 5); 10460 int immb = extract32(insn, 16, 3); 10461 int immh = extract32(insn, 19, 4); 10462 bool is_u = extract32(insn, 29, 1); 10463 bool is_q = extract32(insn, 30, 1); 10464 10465 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10466 assert(immh != 0); 10467 10468 switch (opcode) { 10469 case 0x08: /* SRI */ 10470 if (!is_u) { 10471 unallocated_encoding(s); 10472 return; 10473 } 10474 /* fall through */ 10475 case 0x00: /* SSHR / USHR */ 10476 case 0x02: /* SSRA / USRA (accumulate) */ 10477 case 0x04: /* SRSHR / URSHR (rounding) */ 10478 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10479 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10480 break; 10481 case 0x0a: /* SHL / SLI */ 10482 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10483 break; 10484 case 0x10: /* SHRN */ 10485 case 0x11: /* RSHRN / SQRSHRUN */ 10486 if (is_u) { 10487 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10488 opcode, rn, rd); 10489 } else { 10490 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10491 } 10492 break; 10493 case 0x12: /* SQSHRN / UQSHRN */ 10494 case 0x13: /* SQRSHRN / UQRSHRN */ 10495 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10496 opcode, rn, rd); 10497 break; 10498 case 0x14: /* SSHLL / USHLL */ 10499 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10500 break; 10501 case 0x1c: /* SCVTF / UCVTF */ 10502 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10503 opcode, rn, rd); 10504 break; 10505 case 0xc: /* SQSHLU */ 10506 if (!is_u) { 10507 unallocated_encoding(s); 10508 return; 10509 } 10510 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10511 break; 10512 case 0xe: /* SQSHL, UQSHL */ 10513 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10514 break; 10515 case 0x1f: /* FCVTZS/ FCVTZU */ 10516 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10517 return; 10518 default: 10519 unallocated_encoding(s); 10520 return; 10521 } 10522 } 10523 10524 /* Generate code to do a "long" addition or subtraction, ie one done in 10525 * TCGv_i64 on vector lanes twice the width specified by size. 10526 */ 10527 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10528 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10529 { 10530 static NeonGenTwo64OpFn * const fns[3][2] = { 10531 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10532 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10533 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10534 }; 10535 NeonGenTwo64OpFn *genfn; 10536 assert(size < 3); 10537 10538 genfn = fns[size][is_sub]; 10539 genfn(tcg_res, tcg_op1, tcg_op2); 10540 } 10541 10542 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10543 int opcode, int rd, int rn, int rm) 10544 { 10545 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10546 TCGv_i64 tcg_res[2]; 10547 int pass, accop; 10548 10549 tcg_res[0] = tcg_temp_new_i64(); 10550 tcg_res[1] = tcg_temp_new_i64(); 10551 10552 /* Does this op do an adding accumulate, a subtracting accumulate, 10553 * or no accumulate at all? 10554 */ 10555 switch (opcode) { 10556 case 5: 10557 case 8: 10558 case 9: 10559 accop = 1; 10560 break; 10561 case 10: 10562 case 11: 10563 accop = -1; 10564 break; 10565 default: 10566 accop = 0; 10567 break; 10568 } 10569 10570 if (accop != 0) { 10571 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10572 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10573 } 10574 10575 /* size == 2 means two 32x32->64 operations; this is worth special 10576 * casing because we can generally handle it inline. 10577 */ 10578 if (size == 2) { 10579 for (pass = 0; pass < 2; pass++) { 10580 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10581 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10582 TCGv_i64 tcg_passres; 10583 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10584 10585 int elt = pass + is_q * 2; 10586 10587 read_vec_element(s, tcg_op1, rn, elt, memop); 10588 read_vec_element(s, tcg_op2, rm, elt, memop); 10589 10590 if (accop == 0) { 10591 tcg_passres = tcg_res[pass]; 10592 } else { 10593 tcg_passres = tcg_temp_new_i64(); 10594 } 10595 10596 switch (opcode) { 10597 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10598 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10599 break; 10600 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10601 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10602 break; 10603 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10604 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10605 { 10606 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10607 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10608 10609 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10610 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10611 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10612 tcg_passres, 10613 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10614 break; 10615 } 10616 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10617 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10618 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10619 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10620 break; 10621 case 9: /* SQDMLAL, SQDMLAL2 */ 10622 case 11: /* SQDMLSL, SQDMLSL2 */ 10623 case 13: /* SQDMULL, SQDMULL2 */ 10624 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10625 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10626 tcg_passres, tcg_passres); 10627 break; 10628 default: 10629 g_assert_not_reached(); 10630 } 10631 10632 if (opcode == 9 || opcode == 11) { 10633 /* saturating accumulate ops */ 10634 if (accop < 0) { 10635 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10636 } 10637 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10638 tcg_res[pass], tcg_passres); 10639 } else if (accop > 0) { 10640 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10641 } else if (accop < 0) { 10642 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10643 } 10644 } 10645 } else { 10646 /* size 0 or 1, generally helper functions */ 10647 for (pass = 0; pass < 2; pass++) { 10648 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10649 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10650 TCGv_i64 tcg_passres; 10651 int elt = pass + is_q * 2; 10652 10653 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10654 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10655 10656 if (accop == 0) { 10657 tcg_passres = tcg_res[pass]; 10658 } else { 10659 tcg_passres = tcg_temp_new_i64(); 10660 } 10661 10662 switch (opcode) { 10663 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10664 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10665 { 10666 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10667 static NeonGenWidenFn * const widenfns[2][2] = { 10668 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10669 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10670 }; 10671 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10672 10673 widenfn(tcg_op2_64, tcg_op2); 10674 widenfn(tcg_passres, tcg_op1); 10675 gen_neon_addl(size, (opcode == 2), tcg_passres, 10676 tcg_passres, tcg_op2_64); 10677 break; 10678 } 10679 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10680 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10681 if (size == 0) { 10682 if (is_u) { 10683 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10684 } else { 10685 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10686 } 10687 } else { 10688 if (is_u) { 10689 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10690 } else { 10691 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10692 } 10693 } 10694 break; 10695 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10696 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10697 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10698 if (size == 0) { 10699 if (is_u) { 10700 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10701 } else { 10702 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10703 } 10704 } else { 10705 if (is_u) { 10706 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10707 } else { 10708 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10709 } 10710 } 10711 break; 10712 case 9: /* SQDMLAL, SQDMLAL2 */ 10713 case 11: /* SQDMLSL, SQDMLSL2 */ 10714 case 13: /* SQDMULL, SQDMULL2 */ 10715 assert(size == 1); 10716 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10717 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10718 tcg_passres, tcg_passres); 10719 break; 10720 default: 10721 g_assert_not_reached(); 10722 } 10723 10724 if (accop != 0) { 10725 if (opcode == 9 || opcode == 11) { 10726 /* saturating accumulate ops */ 10727 if (accop < 0) { 10728 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10729 } 10730 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10731 tcg_res[pass], 10732 tcg_passres); 10733 } else { 10734 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10735 tcg_res[pass], tcg_passres); 10736 } 10737 } 10738 } 10739 } 10740 10741 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10742 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10743 } 10744 10745 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10746 int opcode, int rd, int rn, int rm) 10747 { 10748 TCGv_i64 tcg_res[2]; 10749 int part = is_q ? 2 : 0; 10750 int pass; 10751 10752 for (pass = 0; pass < 2; pass++) { 10753 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10754 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10755 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10756 static NeonGenWidenFn * const widenfns[3][2] = { 10757 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10758 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10759 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10760 }; 10761 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10762 10763 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10764 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10765 widenfn(tcg_op2_wide, tcg_op2); 10766 tcg_res[pass] = tcg_temp_new_i64(); 10767 gen_neon_addl(size, (opcode == 3), 10768 tcg_res[pass], tcg_op1, tcg_op2_wide); 10769 } 10770 10771 for (pass = 0; pass < 2; pass++) { 10772 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10773 } 10774 } 10775 10776 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10777 { 10778 tcg_gen_addi_i64(in, in, 1U << 31); 10779 tcg_gen_extrh_i64_i32(res, in); 10780 } 10781 10782 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10783 int opcode, int rd, int rn, int rm) 10784 { 10785 TCGv_i32 tcg_res[2]; 10786 int part = is_q ? 2 : 0; 10787 int pass; 10788 10789 for (pass = 0; pass < 2; pass++) { 10790 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10791 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10792 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10793 static NeonGenNarrowFn * const narrowfns[3][2] = { 10794 { gen_helper_neon_narrow_high_u8, 10795 gen_helper_neon_narrow_round_high_u8 }, 10796 { gen_helper_neon_narrow_high_u16, 10797 gen_helper_neon_narrow_round_high_u16 }, 10798 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10799 }; 10800 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10801 10802 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10803 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10804 10805 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10806 10807 tcg_res[pass] = tcg_temp_new_i32(); 10808 gennarrow(tcg_res[pass], tcg_wideres); 10809 } 10810 10811 for (pass = 0; pass < 2; pass++) { 10812 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10813 } 10814 clear_vec_high(s, is_q, rd); 10815 } 10816 10817 /* AdvSIMD three different 10818 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10819 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10820 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10821 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10822 */ 10823 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10824 { 10825 /* Instructions in this group fall into three basic classes 10826 * (in each case with the operation working on each element in 10827 * the input vectors): 10828 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10829 * 128 bit input) 10830 * (2) wide 64 x 128 -> 128 10831 * (3) narrowing 128 x 128 -> 64 10832 * Here we do initial decode, catch unallocated cases and 10833 * dispatch to separate functions for each class. 10834 */ 10835 int is_q = extract32(insn, 30, 1); 10836 int is_u = extract32(insn, 29, 1); 10837 int size = extract32(insn, 22, 2); 10838 int opcode = extract32(insn, 12, 4); 10839 int rm = extract32(insn, 16, 5); 10840 int rn = extract32(insn, 5, 5); 10841 int rd = extract32(insn, 0, 5); 10842 10843 switch (opcode) { 10844 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10845 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10846 /* 64 x 128 -> 128 */ 10847 if (size == 3) { 10848 unallocated_encoding(s); 10849 return; 10850 } 10851 if (!fp_access_check(s)) { 10852 return; 10853 } 10854 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10855 break; 10856 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10857 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10858 /* 128 x 128 -> 64 */ 10859 if (size == 3) { 10860 unallocated_encoding(s); 10861 return; 10862 } 10863 if (!fp_access_check(s)) { 10864 return; 10865 } 10866 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10867 break; 10868 case 14: /* PMULL, PMULL2 */ 10869 if (is_u) { 10870 unallocated_encoding(s); 10871 return; 10872 } 10873 switch (size) { 10874 case 0: /* PMULL.P8 */ 10875 if (!fp_access_check(s)) { 10876 return; 10877 } 10878 /* The Q field specifies lo/hi half input for this insn. */ 10879 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10880 gen_helper_neon_pmull_h); 10881 break; 10882 10883 case 3: /* PMULL.P64 */ 10884 if (!dc_isar_feature(aa64_pmull, s)) { 10885 unallocated_encoding(s); 10886 return; 10887 } 10888 if (!fp_access_check(s)) { 10889 return; 10890 } 10891 /* The Q field specifies lo/hi half input for this insn. */ 10892 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10893 gen_helper_gvec_pmull_q); 10894 break; 10895 10896 default: 10897 unallocated_encoding(s); 10898 break; 10899 } 10900 return; 10901 case 9: /* SQDMLAL, SQDMLAL2 */ 10902 case 11: /* SQDMLSL, SQDMLSL2 */ 10903 case 13: /* SQDMULL, SQDMULL2 */ 10904 if (is_u || size == 0) { 10905 unallocated_encoding(s); 10906 return; 10907 } 10908 /* fall through */ 10909 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10910 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10911 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10912 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10913 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10914 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10915 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10916 /* 64 x 64 -> 128 */ 10917 if (size == 3) { 10918 unallocated_encoding(s); 10919 return; 10920 } 10921 if (!fp_access_check(s)) { 10922 return; 10923 } 10924 10925 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10926 break; 10927 default: 10928 /* opcode 15 not allocated */ 10929 unallocated_encoding(s); 10930 break; 10931 } 10932 } 10933 10934 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10935 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10936 { 10937 int rd = extract32(insn, 0, 5); 10938 int rn = extract32(insn, 5, 5); 10939 int rm = extract32(insn, 16, 5); 10940 int size = extract32(insn, 22, 2); 10941 bool is_u = extract32(insn, 29, 1); 10942 bool is_q = extract32(insn, 30, 1); 10943 10944 if (!fp_access_check(s)) { 10945 return; 10946 } 10947 10948 switch (size + 4 * is_u) { 10949 case 0: /* AND */ 10950 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10951 return; 10952 case 1: /* BIC */ 10953 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10954 return; 10955 case 2: /* ORR */ 10956 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10957 return; 10958 case 3: /* ORN */ 10959 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10960 return; 10961 case 4: /* EOR */ 10962 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10963 return; 10964 10965 case 5: /* BSL bitwise select */ 10966 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10967 return; 10968 case 6: /* BIT, bitwise insert if true */ 10969 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10970 return; 10971 case 7: /* BIF, bitwise insert if false */ 10972 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10973 return; 10974 10975 default: 10976 g_assert_not_reached(); 10977 } 10978 } 10979 10980 /* Pairwise op subgroup of C3.6.16. 10981 * 10982 * This is called directly or via the handle_3same_float for float pairwise 10983 * operations where the opcode and size are calculated differently. 10984 */ 10985 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10986 int size, int rn, int rm, int rd) 10987 { 10988 TCGv_ptr fpst; 10989 int pass; 10990 10991 /* Floating point operations need fpst */ 10992 if (opcode >= 0x58) { 10993 fpst = fpstatus_ptr(FPST_FPCR); 10994 } else { 10995 fpst = NULL; 10996 } 10997 10998 if (!fp_access_check(s)) { 10999 return; 11000 } 11001 11002 /* These operations work on the concatenated rm:rn, with each pair of 11003 * adjacent elements being operated on to produce an element in the result. 11004 */ 11005 if (size == 3) { 11006 TCGv_i64 tcg_res[2]; 11007 11008 for (pass = 0; pass < 2; pass++) { 11009 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11010 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11011 int passreg = (pass == 0) ? rn : rm; 11012 11013 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11014 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11015 tcg_res[pass] = tcg_temp_new_i64(); 11016 11017 switch (opcode) { 11018 case 0x17: /* ADDP */ 11019 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11020 break; 11021 case 0x58: /* FMAXNMP */ 11022 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11023 break; 11024 case 0x5a: /* FADDP */ 11025 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11026 break; 11027 case 0x5e: /* FMAXP */ 11028 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11029 break; 11030 case 0x78: /* FMINNMP */ 11031 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11032 break; 11033 case 0x7e: /* FMINP */ 11034 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11035 break; 11036 default: 11037 g_assert_not_reached(); 11038 } 11039 } 11040 11041 for (pass = 0; pass < 2; pass++) { 11042 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11043 } 11044 } else { 11045 int maxpass = is_q ? 4 : 2; 11046 TCGv_i32 tcg_res[4]; 11047 11048 for (pass = 0; pass < maxpass; pass++) { 11049 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11050 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11051 NeonGenTwoOpFn *genfn = NULL; 11052 int passreg = pass < (maxpass / 2) ? rn : rm; 11053 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11054 11055 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11056 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11057 tcg_res[pass] = tcg_temp_new_i32(); 11058 11059 switch (opcode) { 11060 case 0x17: /* ADDP */ 11061 { 11062 static NeonGenTwoOpFn * const fns[3] = { 11063 gen_helper_neon_padd_u8, 11064 gen_helper_neon_padd_u16, 11065 tcg_gen_add_i32, 11066 }; 11067 genfn = fns[size]; 11068 break; 11069 } 11070 case 0x14: /* SMAXP, UMAXP */ 11071 { 11072 static NeonGenTwoOpFn * const fns[3][2] = { 11073 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11074 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11075 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11076 }; 11077 genfn = fns[size][u]; 11078 break; 11079 } 11080 case 0x15: /* SMINP, UMINP */ 11081 { 11082 static NeonGenTwoOpFn * const fns[3][2] = { 11083 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11084 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11085 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11086 }; 11087 genfn = fns[size][u]; 11088 break; 11089 } 11090 /* The FP operations are all on single floats (32 bit) */ 11091 case 0x58: /* FMAXNMP */ 11092 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11093 break; 11094 case 0x5a: /* FADDP */ 11095 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11096 break; 11097 case 0x5e: /* FMAXP */ 11098 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11099 break; 11100 case 0x78: /* FMINNMP */ 11101 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11102 break; 11103 case 0x7e: /* FMINP */ 11104 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11105 break; 11106 default: 11107 g_assert_not_reached(); 11108 } 11109 11110 /* FP ops called directly, otherwise call now */ 11111 if (genfn) { 11112 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11113 } 11114 } 11115 11116 for (pass = 0; pass < maxpass; pass++) { 11117 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11118 } 11119 clear_vec_high(s, is_q, rd); 11120 } 11121 } 11122 11123 /* Floating point op subgroup of C3.6.16. */ 11124 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11125 { 11126 /* For floating point ops, the U, size[1] and opcode bits 11127 * together indicate the operation. size[0] indicates single 11128 * or double. 11129 */ 11130 int fpopcode = extract32(insn, 11, 5) 11131 | (extract32(insn, 23, 1) << 5) 11132 | (extract32(insn, 29, 1) << 6); 11133 int is_q = extract32(insn, 30, 1); 11134 int size = extract32(insn, 22, 1); 11135 int rm = extract32(insn, 16, 5); 11136 int rn = extract32(insn, 5, 5); 11137 int rd = extract32(insn, 0, 5); 11138 11139 int datasize = is_q ? 128 : 64; 11140 int esize = 32 << size; 11141 int elements = datasize / esize; 11142 11143 if (size == 1 && !is_q) { 11144 unallocated_encoding(s); 11145 return; 11146 } 11147 11148 switch (fpopcode) { 11149 case 0x58: /* FMAXNMP */ 11150 case 0x5a: /* FADDP */ 11151 case 0x5e: /* FMAXP */ 11152 case 0x78: /* FMINNMP */ 11153 case 0x7e: /* FMINP */ 11154 if (size && !is_q) { 11155 unallocated_encoding(s); 11156 return; 11157 } 11158 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11159 rn, rm, rd); 11160 return; 11161 case 0x1b: /* FMULX */ 11162 case 0x1f: /* FRECPS */ 11163 case 0x3f: /* FRSQRTS */ 11164 case 0x5d: /* FACGE */ 11165 case 0x7d: /* FACGT */ 11166 case 0x19: /* FMLA */ 11167 case 0x39: /* FMLS */ 11168 case 0x18: /* FMAXNM */ 11169 case 0x1a: /* FADD */ 11170 case 0x1c: /* FCMEQ */ 11171 case 0x1e: /* FMAX */ 11172 case 0x38: /* FMINNM */ 11173 case 0x3a: /* FSUB */ 11174 case 0x3e: /* FMIN */ 11175 case 0x5b: /* FMUL */ 11176 case 0x5c: /* FCMGE */ 11177 case 0x5f: /* FDIV */ 11178 case 0x7a: /* FABD */ 11179 case 0x7c: /* FCMGT */ 11180 if (!fp_access_check(s)) { 11181 return; 11182 } 11183 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11184 return; 11185 11186 case 0x1d: /* FMLAL */ 11187 case 0x3d: /* FMLSL */ 11188 case 0x59: /* FMLAL2 */ 11189 case 0x79: /* FMLSL2 */ 11190 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11191 unallocated_encoding(s); 11192 return; 11193 } 11194 if (fp_access_check(s)) { 11195 int is_s = extract32(insn, 23, 1); 11196 int is_2 = extract32(insn, 29, 1); 11197 int data = (is_2 << 1) | is_s; 11198 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11199 vec_full_reg_offset(s, rn), 11200 vec_full_reg_offset(s, rm), cpu_env, 11201 is_q ? 16 : 8, vec_full_reg_size(s), 11202 data, gen_helper_gvec_fmlal_a64); 11203 } 11204 return; 11205 11206 default: 11207 unallocated_encoding(s); 11208 return; 11209 } 11210 } 11211 11212 /* Integer op subgroup of C3.6.16. */ 11213 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11214 { 11215 int is_q = extract32(insn, 30, 1); 11216 int u = extract32(insn, 29, 1); 11217 int size = extract32(insn, 22, 2); 11218 int opcode = extract32(insn, 11, 5); 11219 int rm = extract32(insn, 16, 5); 11220 int rn = extract32(insn, 5, 5); 11221 int rd = extract32(insn, 0, 5); 11222 int pass; 11223 TCGCond cond; 11224 11225 switch (opcode) { 11226 case 0x13: /* MUL, PMUL */ 11227 if (u && size != 0) { 11228 unallocated_encoding(s); 11229 return; 11230 } 11231 /* fall through */ 11232 case 0x0: /* SHADD, UHADD */ 11233 case 0x2: /* SRHADD, URHADD */ 11234 case 0x4: /* SHSUB, UHSUB */ 11235 case 0xc: /* SMAX, UMAX */ 11236 case 0xd: /* SMIN, UMIN */ 11237 case 0xe: /* SABD, UABD */ 11238 case 0xf: /* SABA, UABA */ 11239 case 0x12: /* MLA, MLS */ 11240 if (size == 3) { 11241 unallocated_encoding(s); 11242 return; 11243 } 11244 break; 11245 case 0x16: /* SQDMULH, SQRDMULH */ 11246 if (size == 0 || size == 3) { 11247 unallocated_encoding(s); 11248 return; 11249 } 11250 break; 11251 default: 11252 if (size == 3 && !is_q) { 11253 unallocated_encoding(s); 11254 return; 11255 } 11256 break; 11257 } 11258 11259 if (!fp_access_check(s)) { 11260 return; 11261 } 11262 11263 switch (opcode) { 11264 case 0x01: /* SQADD, UQADD */ 11265 if (u) { 11266 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11267 } else { 11268 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11269 } 11270 return; 11271 case 0x05: /* SQSUB, UQSUB */ 11272 if (u) { 11273 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11274 } else { 11275 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11276 } 11277 return; 11278 case 0x08: /* SSHL, USHL */ 11279 if (u) { 11280 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11281 } else { 11282 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11283 } 11284 return; 11285 case 0x0c: /* SMAX, UMAX */ 11286 if (u) { 11287 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11288 } else { 11289 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11290 } 11291 return; 11292 case 0x0d: /* SMIN, UMIN */ 11293 if (u) { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11295 } else { 11296 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11297 } 11298 return; 11299 case 0xe: /* SABD, UABD */ 11300 if (u) { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11302 } else { 11303 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11304 } 11305 return; 11306 case 0xf: /* SABA, UABA */ 11307 if (u) { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11309 } else { 11310 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11311 } 11312 return; 11313 case 0x10: /* ADD, SUB */ 11314 if (u) { 11315 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11316 } else { 11317 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11318 } 11319 return; 11320 case 0x13: /* MUL, PMUL */ 11321 if (!u) { /* MUL */ 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11323 } else { /* PMUL */ 11324 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11325 } 11326 return; 11327 case 0x12: /* MLA, MLS */ 11328 if (u) { 11329 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11330 } else { 11331 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11332 } 11333 return; 11334 case 0x16: /* SQDMULH, SQRDMULH */ 11335 { 11336 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11337 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11338 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11339 }; 11340 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11341 } 11342 return; 11343 case 0x11: 11344 if (!u) { /* CMTST */ 11345 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11346 return; 11347 } 11348 /* else CMEQ */ 11349 cond = TCG_COND_EQ; 11350 goto do_gvec_cmp; 11351 case 0x06: /* CMGT, CMHI */ 11352 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11353 goto do_gvec_cmp; 11354 case 0x07: /* CMGE, CMHS */ 11355 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11356 do_gvec_cmp: 11357 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11358 vec_full_reg_offset(s, rn), 11359 vec_full_reg_offset(s, rm), 11360 is_q ? 16 : 8, vec_full_reg_size(s)); 11361 return; 11362 } 11363 11364 if (size == 3) { 11365 assert(is_q); 11366 for (pass = 0; pass < 2; pass++) { 11367 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11368 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11369 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11370 11371 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11372 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11373 11374 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11375 11376 write_vec_element(s, tcg_res, rd, pass, MO_64); 11377 } 11378 } else { 11379 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11380 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11381 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11382 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11383 NeonGenTwoOpFn *genfn = NULL; 11384 NeonGenTwoOpEnvFn *genenvfn = NULL; 11385 11386 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11387 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11388 11389 switch (opcode) { 11390 case 0x0: /* SHADD, UHADD */ 11391 { 11392 static NeonGenTwoOpFn * const fns[3][2] = { 11393 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11394 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11395 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11396 }; 11397 genfn = fns[size][u]; 11398 break; 11399 } 11400 case 0x2: /* SRHADD, URHADD */ 11401 { 11402 static NeonGenTwoOpFn * const fns[3][2] = { 11403 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11404 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11405 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11406 }; 11407 genfn = fns[size][u]; 11408 break; 11409 } 11410 case 0x4: /* SHSUB, UHSUB */ 11411 { 11412 static NeonGenTwoOpFn * const fns[3][2] = { 11413 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11414 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11415 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11416 }; 11417 genfn = fns[size][u]; 11418 break; 11419 } 11420 case 0x9: /* SQSHL, UQSHL */ 11421 { 11422 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11423 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11424 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11425 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11426 }; 11427 genenvfn = fns[size][u]; 11428 break; 11429 } 11430 case 0xa: /* SRSHL, URSHL */ 11431 { 11432 static NeonGenTwoOpFn * const fns[3][2] = { 11433 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11434 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11435 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11436 }; 11437 genfn = fns[size][u]; 11438 break; 11439 } 11440 case 0xb: /* SQRSHL, UQRSHL */ 11441 { 11442 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11443 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11444 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11445 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11446 }; 11447 genenvfn = fns[size][u]; 11448 break; 11449 } 11450 default: 11451 g_assert_not_reached(); 11452 } 11453 11454 if (genenvfn) { 11455 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11456 } else { 11457 genfn(tcg_res, tcg_op1, tcg_op2); 11458 } 11459 11460 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11461 } 11462 } 11463 clear_vec_high(s, is_q, rd); 11464 } 11465 11466 /* AdvSIMD three same 11467 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11468 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11469 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11470 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11471 */ 11472 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11473 { 11474 int opcode = extract32(insn, 11, 5); 11475 11476 switch (opcode) { 11477 case 0x3: /* logic ops */ 11478 disas_simd_3same_logic(s, insn); 11479 break; 11480 case 0x17: /* ADDP */ 11481 case 0x14: /* SMAXP, UMAXP */ 11482 case 0x15: /* SMINP, UMINP */ 11483 { 11484 /* Pairwise operations */ 11485 int is_q = extract32(insn, 30, 1); 11486 int u = extract32(insn, 29, 1); 11487 int size = extract32(insn, 22, 2); 11488 int rm = extract32(insn, 16, 5); 11489 int rn = extract32(insn, 5, 5); 11490 int rd = extract32(insn, 0, 5); 11491 if (opcode == 0x17) { 11492 if (u || (size == 3 && !is_q)) { 11493 unallocated_encoding(s); 11494 return; 11495 } 11496 } else { 11497 if (size == 3) { 11498 unallocated_encoding(s); 11499 return; 11500 } 11501 } 11502 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11503 break; 11504 } 11505 case 0x18 ... 0x31: 11506 /* floating point ops, sz[1] and U are part of opcode */ 11507 disas_simd_3same_float(s, insn); 11508 break; 11509 default: 11510 disas_simd_3same_int(s, insn); 11511 break; 11512 } 11513 } 11514 11515 /* 11516 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11517 * 11518 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11519 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11520 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11521 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11522 * 11523 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11524 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11525 * 11526 */ 11527 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11528 { 11529 int opcode = extract32(insn, 11, 3); 11530 int u = extract32(insn, 29, 1); 11531 int a = extract32(insn, 23, 1); 11532 int is_q = extract32(insn, 30, 1); 11533 int rm = extract32(insn, 16, 5); 11534 int rn = extract32(insn, 5, 5); 11535 int rd = extract32(insn, 0, 5); 11536 /* 11537 * For these floating point ops, the U, a and opcode bits 11538 * together indicate the operation. 11539 */ 11540 int fpopcode = opcode | (a << 3) | (u << 4); 11541 int datasize = is_q ? 128 : 64; 11542 int elements = datasize / 16; 11543 bool pairwise; 11544 TCGv_ptr fpst; 11545 int pass; 11546 11547 switch (fpopcode) { 11548 case 0x0: /* FMAXNM */ 11549 case 0x1: /* FMLA */ 11550 case 0x2: /* FADD */ 11551 case 0x3: /* FMULX */ 11552 case 0x4: /* FCMEQ */ 11553 case 0x6: /* FMAX */ 11554 case 0x7: /* FRECPS */ 11555 case 0x8: /* FMINNM */ 11556 case 0x9: /* FMLS */ 11557 case 0xa: /* FSUB */ 11558 case 0xe: /* FMIN */ 11559 case 0xf: /* FRSQRTS */ 11560 case 0x13: /* FMUL */ 11561 case 0x14: /* FCMGE */ 11562 case 0x15: /* FACGE */ 11563 case 0x17: /* FDIV */ 11564 case 0x1a: /* FABD */ 11565 case 0x1c: /* FCMGT */ 11566 case 0x1d: /* FACGT */ 11567 pairwise = false; 11568 break; 11569 case 0x10: /* FMAXNMP */ 11570 case 0x12: /* FADDP */ 11571 case 0x16: /* FMAXP */ 11572 case 0x18: /* FMINNMP */ 11573 case 0x1e: /* FMINP */ 11574 pairwise = true; 11575 break; 11576 default: 11577 unallocated_encoding(s); 11578 return; 11579 } 11580 11581 if (!dc_isar_feature(aa64_fp16, s)) { 11582 unallocated_encoding(s); 11583 return; 11584 } 11585 11586 if (!fp_access_check(s)) { 11587 return; 11588 } 11589 11590 fpst = fpstatus_ptr(FPST_FPCR_F16); 11591 11592 if (pairwise) { 11593 int maxpass = is_q ? 8 : 4; 11594 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11595 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11596 TCGv_i32 tcg_res[8]; 11597 11598 for (pass = 0; pass < maxpass; pass++) { 11599 int passreg = pass < (maxpass / 2) ? rn : rm; 11600 int passelt = (pass << 1) & (maxpass - 1); 11601 11602 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11603 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11604 tcg_res[pass] = tcg_temp_new_i32(); 11605 11606 switch (fpopcode) { 11607 case 0x10: /* FMAXNMP */ 11608 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11609 fpst); 11610 break; 11611 case 0x12: /* FADDP */ 11612 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11613 break; 11614 case 0x16: /* FMAXP */ 11615 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11616 break; 11617 case 0x18: /* FMINNMP */ 11618 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11619 fpst); 11620 break; 11621 case 0x1e: /* FMINP */ 11622 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11623 break; 11624 default: 11625 g_assert_not_reached(); 11626 } 11627 } 11628 11629 for (pass = 0; pass < maxpass; pass++) { 11630 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11631 } 11632 } else { 11633 for (pass = 0; pass < elements; pass++) { 11634 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11635 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11636 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11637 11638 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11639 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11640 11641 switch (fpopcode) { 11642 case 0x0: /* FMAXNM */ 11643 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11644 break; 11645 case 0x1: /* FMLA */ 11646 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11647 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11648 fpst); 11649 break; 11650 case 0x2: /* FADD */ 11651 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11652 break; 11653 case 0x3: /* FMULX */ 11654 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11655 break; 11656 case 0x4: /* FCMEQ */ 11657 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11658 break; 11659 case 0x6: /* FMAX */ 11660 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11661 break; 11662 case 0x7: /* FRECPS */ 11663 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11664 break; 11665 case 0x8: /* FMINNM */ 11666 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11667 break; 11668 case 0x9: /* FMLS */ 11669 /* As usual for ARM, separate negation for fused multiply-add */ 11670 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11671 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11672 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11673 fpst); 11674 break; 11675 case 0xa: /* FSUB */ 11676 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11677 break; 11678 case 0xe: /* FMIN */ 11679 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11680 break; 11681 case 0xf: /* FRSQRTS */ 11682 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11683 break; 11684 case 0x13: /* FMUL */ 11685 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0x14: /* FCMGE */ 11688 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11689 break; 11690 case 0x15: /* FACGE */ 11691 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11692 break; 11693 case 0x17: /* FDIV */ 11694 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11695 break; 11696 case 0x1a: /* FABD */ 11697 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11698 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11699 break; 11700 case 0x1c: /* FCMGT */ 11701 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11702 break; 11703 case 0x1d: /* FACGT */ 11704 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11705 break; 11706 default: 11707 g_assert_not_reached(); 11708 } 11709 11710 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11711 } 11712 } 11713 11714 clear_vec_high(s, is_q, rd); 11715 } 11716 11717 /* AdvSIMD three same extra 11718 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11719 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11720 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11721 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11722 */ 11723 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11724 { 11725 int rd = extract32(insn, 0, 5); 11726 int rn = extract32(insn, 5, 5); 11727 int opcode = extract32(insn, 11, 4); 11728 int rm = extract32(insn, 16, 5); 11729 int size = extract32(insn, 22, 2); 11730 bool u = extract32(insn, 29, 1); 11731 bool is_q = extract32(insn, 30, 1); 11732 bool feature; 11733 int rot; 11734 11735 switch (u * 16 + opcode) { 11736 case 0x10: /* SQRDMLAH (vector) */ 11737 case 0x11: /* SQRDMLSH (vector) */ 11738 if (size != 1 && size != 2) { 11739 unallocated_encoding(s); 11740 return; 11741 } 11742 feature = dc_isar_feature(aa64_rdm, s); 11743 break; 11744 case 0x02: /* SDOT (vector) */ 11745 case 0x12: /* UDOT (vector) */ 11746 if (size != MO_32) { 11747 unallocated_encoding(s); 11748 return; 11749 } 11750 feature = dc_isar_feature(aa64_dp, s); 11751 break; 11752 case 0x03: /* USDOT */ 11753 if (size != MO_32) { 11754 unallocated_encoding(s); 11755 return; 11756 } 11757 feature = dc_isar_feature(aa64_i8mm, s); 11758 break; 11759 case 0x04: /* SMMLA */ 11760 case 0x14: /* UMMLA */ 11761 case 0x05: /* USMMLA */ 11762 if (!is_q || size != MO_32) { 11763 unallocated_encoding(s); 11764 return; 11765 } 11766 feature = dc_isar_feature(aa64_i8mm, s); 11767 break; 11768 case 0x18: /* FCMLA, #0 */ 11769 case 0x19: /* FCMLA, #90 */ 11770 case 0x1a: /* FCMLA, #180 */ 11771 case 0x1b: /* FCMLA, #270 */ 11772 case 0x1c: /* FCADD, #90 */ 11773 case 0x1e: /* FCADD, #270 */ 11774 if (size == 0 11775 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11776 || (size == 3 && !is_q)) { 11777 unallocated_encoding(s); 11778 return; 11779 } 11780 feature = dc_isar_feature(aa64_fcma, s); 11781 break; 11782 case 0x1d: /* BFMMLA */ 11783 if (size != MO_16 || !is_q) { 11784 unallocated_encoding(s); 11785 return; 11786 } 11787 feature = dc_isar_feature(aa64_bf16, s); 11788 break; 11789 case 0x1f: 11790 switch (size) { 11791 case 1: /* BFDOT */ 11792 case 3: /* BFMLAL{B,T} */ 11793 feature = dc_isar_feature(aa64_bf16, s); 11794 break; 11795 default: 11796 unallocated_encoding(s); 11797 return; 11798 } 11799 break; 11800 default: 11801 unallocated_encoding(s); 11802 return; 11803 } 11804 if (!feature) { 11805 unallocated_encoding(s); 11806 return; 11807 } 11808 if (!fp_access_check(s)) { 11809 return; 11810 } 11811 11812 switch (opcode) { 11813 case 0x0: /* SQRDMLAH (vector) */ 11814 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11815 return; 11816 11817 case 0x1: /* SQRDMLSH (vector) */ 11818 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11819 return; 11820 11821 case 0x2: /* SDOT / UDOT */ 11822 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11823 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11824 return; 11825 11826 case 0x3: /* USDOT */ 11827 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11828 return; 11829 11830 case 0x04: /* SMMLA, UMMLA */ 11831 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11832 u ? gen_helper_gvec_ummla_b 11833 : gen_helper_gvec_smmla_b); 11834 return; 11835 case 0x05: /* USMMLA */ 11836 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11837 return; 11838 11839 case 0x8: /* FCMLA, #0 */ 11840 case 0x9: /* FCMLA, #90 */ 11841 case 0xa: /* FCMLA, #180 */ 11842 case 0xb: /* FCMLA, #270 */ 11843 rot = extract32(opcode, 0, 2); 11844 switch (size) { 11845 case 1: 11846 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11847 gen_helper_gvec_fcmlah); 11848 break; 11849 case 2: 11850 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11851 gen_helper_gvec_fcmlas); 11852 break; 11853 case 3: 11854 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11855 gen_helper_gvec_fcmlad); 11856 break; 11857 default: 11858 g_assert_not_reached(); 11859 } 11860 return; 11861 11862 case 0xc: /* FCADD, #90 */ 11863 case 0xe: /* FCADD, #270 */ 11864 rot = extract32(opcode, 1, 1); 11865 switch (size) { 11866 case 1: 11867 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11868 gen_helper_gvec_fcaddh); 11869 break; 11870 case 2: 11871 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11872 gen_helper_gvec_fcadds); 11873 break; 11874 case 3: 11875 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11876 gen_helper_gvec_fcaddd); 11877 break; 11878 default: 11879 g_assert_not_reached(); 11880 } 11881 return; 11882 11883 case 0xd: /* BFMMLA */ 11884 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11885 return; 11886 case 0xf: 11887 switch (size) { 11888 case 1: /* BFDOT */ 11889 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11890 break; 11891 case 3: /* BFMLAL{B,T} */ 11892 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11893 gen_helper_gvec_bfmlal); 11894 break; 11895 default: 11896 g_assert_not_reached(); 11897 } 11898 return; 11899 11900 default: 11901 g_assert_not_reached(); 11902 } 11903 } 11904 11905 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11906 int size, int rn, int rd) 11907 { 11908 /* Handle 2-reg-misc ops which are widening (so each size element 11909 * in the source becomes a 2*size element in the destination. 11910 * The only instruction like this is FCVTL. 11911 */ 11912 int pass; 11913 11914 if (size == 3) { 11915 /* 32 -> 64 bit fp conversion */ 11916 TCGv_i64 tcg_res[2]; 11917 int srcelt = is_q ? 2 : 0; 11918 11919 for (pass = 0; pass < 2; pass++) { 11920 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11921 tcg_res[pass] = tcg_temp_new_i64(); 11922 11923 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11924 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11925 } 11926 for (pass = 0; pass < 2; pass++) { 11927 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11928 } 11929 } else { 11930 /* 16 -> 32 bit fp conversion */ 11931 int srcelt = is_q ? 4 : 0; 11932 TCGv_i32 tcg_res[4]; 11933 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11934 TCGv_i32 ahp = get_ahp_flag(); 11935 11936 for (pass = 0; pass < 4; pass++) { 11937 tcg_res[pass] = tcg_temp_new_i32(); 11938 11939 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11940 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11941 fpst, ahp); 11942 } 11943 for (pass = 0; pass < 4; pass++) { 11944 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11945 } 11946 } 11947 } 11948 11949 static void handle_rev(DisasContext *s, int opcode, bool u, 11950 bool is_q, int size, int rn, int rd) 11951 { 11952 int op = (opcode << 1) | u; 11953 int opsz = op + size; 11954 int grp_size = 3 - opsz; 11955 int dsize = is_q ? 128 : 64; 11956 int i; 11957 11958 if (opsz >= 3) { 11959 unallocated_encoding(s); 11960 return; 11961 } 11962 11963 if (!fp_access_check(s)) { 11964 return; 11965 } 11966 11967 if (size == 0) { 11968 /* Special case bytes, use bswap op on each group of elements */ 11969 int groups = dsize / (8 << grp_size); 11970 11971 for (i = 0; i < groups; i++) { 11972 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11973 11974 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11975 switch (grp_size) { 11976 case MO_16: 11977 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11978 break; 11979 case MO_32: 11980 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11981 break; 11982 case MO_64: 11983 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11984 break; 11985 default: 11986 g_assert_not_reached(); 11987 } 11988 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11989 } 11990 clear_vec_high(s, is_q, rd); 11991 } else { 11992 int revmask = (1 << grp_size) - 1; 11993 int esize = 8 << size; 11994 int elements = dsize / esize; 11995 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11996 TCGv_i64 tcg_rd[2]; 11997 11998 for (i = 0; i < 2; i++) { 11999 tcg_rd[i] = tcg_temp_new_i64(); 12000 tcg_gen_movi_i64(tcg_rd[i], 0); 12001 } 12002 12003 for (i = 0; i < elements; i++) { 12004 int e_rev = (i & 0xf) ^ revmask; 12005 int w = (e_rev * esize) / 64; 12006 int o = (e_rev * esize) % 64; 12007 12008 read_vec_element(s, tcg_rn, rn, i, size); 12009 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12010 } 12011 12012 for (i = 0; i < 2; i++) { 12013 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12014 } 12015 clear_vec_high(s, true, rd); 12016 } 12017 } 12018 12019 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12020 bool is_q, int size, int rn, int rd) 12021 { 12022 /* Implement the pairwise operations from 2-misc: 12023 * SADDLP, UADDLP, SADALP, UADALP. 12024 * These all add pairs of elements in the input to produce a 12025 * double-width result element in the output (possibly accumulating). 12026 */ 12027 bool accum = (opcode == 0x6); 12028 int maxpass = is_q ? 2 : 1; 12029 int pass; 12030 TCGv_i64 tcg_res[2]; 12031 12032 if (size == 2) { 12033 /* 32 + 32 -> 64 op */ 12034 MemOp memop = size + (u ? 0 : MO_SIGN); 12035 12036 for (pass = 0; pass < maxpass; pass++) { 12037 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12038 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12039 12040 tcg_res[pass] = tcg_temp_new_i64(); 12041 12042 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12043 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12044 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12045 if (accum) { 12046 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12047 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12048 } 12049 } 12050 } else { 12051 for (pass = 0; pass < maxpass; pass++) { 12052 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12053 NeonGenOne64OpFn *genfn; 12054 static NeonGenOne64OpFn * const fns[2][2] = { 12055 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12056 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12057 }; 12058 12059 genfn = fns[size][u]; 12060 12061 tcg_res[pass] = tcg_temp_new_i64(); 12062 12063 read_vec_element(s, tcg_op, rn, pass, MO_64); 12064 genfn(tcg_res[pass], tcg_op); 12065 12066 if (accum) { 12067 read_vec_element(s, tcg_op, rd, pass, MO_64); 12068 if (size == 0) { 12069 gen_helper_neon_addl_u16(tcg_res[pass], 12070 tcg_res[pass], tcg_op); 12071 } else { 12072 gen_helper_neon_addl_u32(tcg_res[pass], 12073 tcg_res[pass], tcg_op); 12074 } 12075 } 12076 } 12077 } 12078 if (!is_q) { 12079 tcg_res[1] = tcg_constant_i64(0); 12080 } 12081 for (pass = 0; pass < 2; pass++) { 12082 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12083 } 12084 } 12085 12086 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12087 { 12088 /* Implement SHLL and SHLL2 */ 12089 int pass; 12090 int part = is_q ? 2 : 0; 12091 TCGv_i64 tcg_res[2]; 12092 12093 for (pass = 0; pass < 2; pass++) { 12094 static NeonGenWidenFn * const widenfns[3] = { 12095 gen_helper_neon_widen_u8, 12096 gen_helper_neon_widen_u16, 12097 tcg_gen_extu_i32_i64, 12098 }; 12099 NeonGenWidenFn *widenfn = widenfns[size]; 12100 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12101 12102 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12103 tcg_res[pass] = tcg_temp_new_i64(); 12104 widenfn(tcg_res[pass], tcg_op); 12105 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12106 } 12107 12108 for (pass = 0; pass < 2; pass++) { 12109 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12110 } 12111 } 12112 12113 /* AdvSIMD two reg misc 12114 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12115 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12116 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12117 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12118 */ 12119 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12120 { 12121 int size = extract32(insn, 22, 2); 12122 int opcode = extract32(insn, 12, 5); 12123 bool u = extract32(insn, 29, 1); 12124 bool is_q = extract32(insn, 30, 1); 12125 int rn = extract32(insn, 5, 5); 12126 int rd = extract32(insn, 0, 5); 12127 bool need_fpstatus = false; 12128 int rmode = -1; 12129 TCGv_i32 tcg_rmode; 12130 TCGv_ptr tcg_fpstatus; 12131 12132 switch (opcode) { 12133 case 0x0: /* REV64, REV32 */ 12134 case 0x1: /* REV16 */ 12135 handle_rev(s, opcode, u, is_q, size, rn, rd); 12136 return; 12137 case 0x5: /* CNT, NOT, RBIT */ 12138 if (u && size == 0) { 12139 /* NOT */ 12140 break; 12141 } else if (u && size == 1) { 12142 /* RBIT */ 12143 break; 12144 } else if (!u && size == 0) { 12145 /* CNT */ 12146 break; 12147 } 12148 unallocated_encoding(s); 12149 return; 12150 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12151 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12152 if (size == 3) { 12153 unallocated_encoding(s); 12154 return; 12155 } 12156 if (!fp_access_check(s)) { 12157 return; 12158 } 12159 12160 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12161 return; 12162 case 0x4: /* CLS, CLZ */ 12163 if (size == 3) { 12164 unallocated_encoding(s); 12165 return; 12166 } 12167 break; 12168 case 0x2: /* SADDLP, UADDLP */ 12169 case 0x6: /* SADALP, UADALP */ 12170 if (size == 3) { 12171 unallocated_encoding(s); 12172 return; 12173 } 12174 if (!fp_access_check(s)) { 12175 return; 12176 } 12177 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12178 return; 12179 case 0x13: /* SHLL, SHLL2 */ 12180 if (u == 0 || size == 3) { 12181 unallocated_encoding(s); 12182 return; 12183 } 12184 if (!fp_access_check(s)) { 12185 return; 12186 } 12187 handle_shll(s, is_q, size, rn, rd); 12188 return; 12189 case 0xa: /* CMLT */ 12190 if (u == 1) { 12191 unallocated_encoding(s); 12192 return; 12193 } 12194 /* fall through */ 12195 case 0x8: /* CMGT, CMGE */ 12196 case 0x9: /* CMEQ, CMLE */ 12197 case 0xb: /* ABS, NEG */ 12198 if (size == 3 && !is_q) { 12199 unallocated_encoding(s); 12200 return; 12201 } 12202 break; 12203 case 0x3: /* SUQADD, USQADD */ 12204 if (size == 3 && !is_q) { 12205 unallocated_encoding(s); 12206 return; 12207 } 12208 if (!fp_access_check(s)) { 12209 return; 12210 } 12211 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12212 return; 12213 case 0x7: /* SQABS, SQNEG */ 12214 if (size == 3 && !is_q) { 12215 unallocated_encoding(s); 12216 return; 12217 } 12218 break; 12219 case 0xc ... 0xf: 12220 case 0x16 ... 0x1f: 12221 { 12222 /* Floating point: U, size[1] and opcode indicate operation; 12223 * size[0] indicates single or double precision. 12224 */ 12225 int is_double = extract32(size, 0, 1); 12226 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12227 size = is_double ? 3 : 2; 12228 switch (opcode) { 12229 case 0x2f: /* FABS */ 12230 case 0x6f: /* FNEG */ 12231 if (size == 3 && !is_q) { 12232 unallocated_encoding(s); 12233 return; 12234 } 12235 break; 12236 case 0x1d: /* SCVTF */ 12237 case 0x5d: /* UCVTF */ 12238 { 12239 bool is_signed = (opcode == 0x1d) ? true : false; 12240 int elements = is_double ? 2 : is_q ? 4 : 2; 12241 if (is_double && !is_q) { 12242 unallocated_encoding(s); 12243 return; 12244 } 12245 if (!fp_access_check(s)) { 12246 return; 12247 } 12248 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12249 return; 12250 } 12251 case 0x2c: /* FCMGT (zero) */ 12252 case 0x2d: /* FCMEQ (zero) */ 12253 case 0x2e: /* FCMLT (zero) */ 12254 case 0x6c: /* FCMGE (zero) */ 12255 case 0x6d: /* FCMLE (zero) */ 12256 if (size == 3 && !is_q) { 12257 unallocated_encoding(s); 12258 return; 12259 } 12260 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12261 return; 12262 case 0x7f: /* FSQRT */ 12263 if (size == 3 && !is_q) { 12264 unallocated_encoding(s); 12265 return; 12266 } 12267 break; 12268 case 0x1a: /* FCVTNS */ 12269 case 0x1b: /* FCVTMS */ 12270 case 0x3a: /* FCVTPS */ 12271 case 0x3b: /* FCVTZS */ 12272 case 0x5a: /* FCVTNU */ 12273 case 0x5b: /* FCVTMU */ 12274 case 0x7a: /* FCVTPU */ 12275 case 0x7b: /* FCVTZU */ 12276 need_fpstatus = true; 12277 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12278 if (size == 3 && !is_q) { 12279 unallocated_encoding(s); 12280 return; 12281 } 12282 break; 12283 case 0x5c: /* FCVTAU */ 12284 case 0x1c: /* FCVTAS */ 12285 need_fpstatus = true; 12286 rmode = FPROUNDING_TIEAWAY; 12287 if (size == 3 && !is_q) { 12288 unallocated_encoding(s); 12289 return; 12290 } 12291 break; 12292 case 0x3c: /* URECPE */ 12293 if (size == 3) { 12294 unallocated_encoding(s); 12295 return; 12296 } 12297 /* fall through */ 12298 case 0x3d: /* FRECPE */ 12299 case 0x7d: /* FRSQRTE */ 12300 if (size == 3 && !is_q) { 12301 unallocated_encoding(s); 12302 return; 12303 } 12304 if (!fp_access_check(s)) { 12305 return; 12306 } 12307 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12308 return; 12309 case 0x56: /* FCVTXN, FCVTXN2 */ 12310 if (size == 2) { 12311 unallocated_encoding(s); 12312 return; 12313 } 12314 /* fall through */ 12315 case 0x16: /* FCVTN, FCVTN2 */ 12316 /* handle_2misc_narrow does a 2*size -> size operation, but these 12317 * instructions encode the source size rather than dest size. 12318 */ 12319 if (!fp_access_check(s)) { 12320 return; 12321 } 12322 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12323 return; 12324 case 0x36: /* BFCVTN, BFCVTN2 */ 12325 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12326 unallocated_encoding(s); 12327 return; 12328 } 12329 if (!fp_access_check(s)) { 12330 return; 12331 } 12332 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12333 return; 12334 case 0x17: /* FCVTL, FCVTL2 */ 12335 if (!fp_access_check(s)) { 12336 return; 12337 } 12338 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12339 return; 12340 case 0x18: /* FRINTN */ 12341 case 0x19: /* FRINTM */ 12342 case 0x38: /* FRINTP */ 12343 case 0x39: /* FRINTZ */ 12344 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12345 /* fall through */ 12346 case 0x59: /* FRINTX */ 12347 case 0x79: /* FRINTI */ 12348 need_fpstatus = true; 12349 if (size == 3 && !is_q) { 12350 unallocated_encoding(s); 12351 return; 12352 } 12353 break; 12354 case 0x58: /* FRINTA */ 12355 rmode = FPROUNDING_TIEAWAY; 12356 need_fpstatus = true; 12357 if (size == 3 && !is_q) { 12358 unallocated_encoding(s); 12359 return; 12360 } 12361 break; 12362 case 0x7c: /* URSQRTE */ 12363 if (size == 3) { 12364 unallocated_encoding(s); 12365 return; 12366 } 12367 break; 12368 case 0x1e: /* FRINT32Z */ 12369 case 0x1f: /* FRINT64Z */ 12370 rmode = FPROUNDING_ZERO; 12371 /* fall through */ 12372 case 0x5e: /* FRINT32X */ 12373 case 0x5f: /* FRINT64X */ 12374 need_fpstatus = true; 12375 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12376 unallocated_encoding(s); 12377 return; 12378 } 12379 break; 12380 default: 12381 unallocated_encoding(s); 12382 return; 12383 } 12384 break; 12385 } 12386 default: 12387 unallocated_encoding(s); 12388 return; 12389 } 12390 12391 if (!fp_access_check(s)) { 12392 return; 12393 } 12394 12395 if (need_fpstatus || rmode >= 0) { 12396 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12397 } else { 12398 tcg_fpstatus = NULL; 12399 } 12400 if (rmode >= 0) { 12401 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12402 } else { 12403 tcg_rmode = NULL; 12404 } 12405 12406 switch (opcode) { 12407 case 0x5: 12408 if (u && size == 0) { /* NOT */ 12409 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12410 return; 12411 } 12412 break; 12413 case 0x8: /* CMGT, CMGE */ 12414 if (u) { 12415 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12416 } else { 12417 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12418 } 12419 return; 12420 case 0x9: /* CMEQ, CMLE */ 12421 if (u) { 12422 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12423 } else { 12424 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12425 } 12426 return; 12427 case 0xa: /* CMLT */ 12428 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12429 return; 12430 case 0xb: 12431 if (u) { /* ABS, NEG */ 12432 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12433 } else { 12434 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12435 } 12436 return; 12437 } 12438 12439 if (size == 3) { 12440 /* All 64-bit element operations can be shared with scalar 2misc */ 12441 int pass; 12442 12443 /* Coverity claims (size == 3 && !is_q) has been eliminated 12444 * from all paths leading to here. 12445 */ 12446 tcg_debug_assert(is_q); 12447 for (pass = 0; pass < 2; pass++) { 12448 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12449 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12450 12451 read_vec_element(s, tcg_op, rn, pass, MO_64); 12452 12453 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12454 tcg_rmode, tcg_fpstatus); 12455 12456 write_vec_element(s, tcg_res, rd, pass, MO_64); 12457 } 12458 } else { 12459 int pass; 12460 12461 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12462 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12463 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12464 12465 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12466 12467 if (size == 2) { 12468 /* Special cases for 32 bit elements */ 12469 switch (opcode) { 12470 case 0x4: /* CLS */ 12471 if (u) { 12472 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12473 } else { 12474 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12475 } 12476 break; 12477 case 0x7: /* SQABS, SQNEG */ 12478 if (u) { 12479 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12480 } else { 12481 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12482 } 12483 break; 12484 case 0x2f: /* FABS */ 12485 gen_helper_vfp_abss(tcg_res, tcg_op); 12486 break; 12487 case 0x6f: /* FNEG */ 12488 gen_helper_vfp_negs(tcg_res, tcg_op); 12489 break; 12490 case 0x7f: /* FSQRT */ 12491 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12492 break; 12493 case 0x1a: /* FCVTNS */ 12494 case 0x1b: /* FCVTMS */ 12495 case 0x1c: /* FCVTAS */ 12496 case 0x3a: /* FCVTPS */ 12497 case 0x3b: /* FCVTZS */ 12498 gen_helper_vfp_tosls(tcg_res, tcg_op, 12499 tcg_constant_i32(0), tcg_fpstatus); 12500 break; 12501 case 0x5a: /* FCVTNU */ 12502 case 0x5b: /* FCVTMU */ 12503 case 0x5c: /* FCVTAU */ 12504 case 0x7a: /* FCVTPU */ 12505 case 0x7b: /* FCVTZU */ 12506 gen_helper_vfp_touls(tcg_res, tcg_op, 12507 tcg_constant_i32(0), tcg_fpstatus); 12508 break; 12509 case 0x18: /* FRINTN */ 12510 case 0x19: /* FRINTM */ 12511 case 0x38: /* FRINTP */ 12512 case 0x39: /* FRINTZ */ 12513 case 0x58: /* FRINTA */ 12514 case 0x79: /* FRINTI */ 12515 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12516 break; 12517 case 0x59: /* FRINTX */ 12518 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12519 break; 12520 case 0x7c: /* URSQRTE */ 12521 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12522 break; 12523 case 0x1e: /* FRINT32Z */ 12524 case 0x5e: /* FRINT32X */ 12525 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12526 break; 12527 case 0x1f: /* FRINT64Z */ 12528 case 0x5f: /* FRINT64X */ 12529 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12530 break; 12531 default: 12532 g_assert_not_reached(); 12533 } 12534 } else { 12535 /* Use helpers for 8 and 16 bit elements */ 12536 switch (opcode) { 12537 case 0x5: /* CNT, RBIT */ 12538 /* For these two insns size is part of the opcode specifier 12539 * (handled earlier); they always operate on byte elements. 12540 */ 12541 if (u) { 12542 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12543 } else { 12544 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12545 } 12546 break; 12547 case 0x7: /* SQABS, SQNEG */ 12548 { 12549 NeonGenOneOpEnvFn *genfn; 12550 static NeonGenOneOpEnvFn * const fns[2][2] = { 12551 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12552 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12553 }; 12554 genfn = fns[size][u]; 12555 genfn(tcg_res, cpu_env, tcg_op); 12556 break; 12557 } 12558 case 0x4: /* CLS, CLZ */ 12559 if (u) { 12560 if (size == 0) { 12561 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12562 } else { 12563 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12564 } 12565 } else { 12566 if (size == 0) { 12567 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12568 } else { 12569 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12570 } 12571 } 12572 break; 12573 default: 12574 g_assert_not_reached(); 12575 } 12576 } 12577 12578 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12579 } 12580 } 12581 clear_vec_high(s, is_q, rd); 12582 12583 if (tcg_rmode) { 12584 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12585 } 12586 } 12587 12588 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12589 * 12590 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12591 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12592 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12593 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12594 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12595 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12596 * 12597 * This actually covers two groups where scalar access is governed by 12598 * bit 28. A bunch of the instructions (float to integral) only exist 12599 * in the vector form and are un-allocated for the scalar decode. Also 12600 * in the scalar decode Q is always 1. 12601 */ 12602 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12603 { 12604 int fpop, opcode, a, u; 12605 int rn, rd; 12606 bool is_q; 12607 bool is_scalar; 12608 bool only_in_vector = false; 12609 12610 int pass; 12611 TCGv_i32 tcg_rmode = NULL; 12612 TCGv_ptr tcg_fpstatus = NULL; 12613 bool need_fpst = true; 12614 int rmode = -1; 12615 12616 if (!dc_isar_feature(aa64_fp16, s)) { 12617 unallocated_encoding(s); 12618 return; 12619 } 12620 12621 rd = extract32(insn, 0, 5); 12622 rn = extract32(insn, 5, 5); 12623 12624 a = extract32(insn, 23, 1); 12625 u = extract32(insn, 29, 1); 12626 is_scalar = extract32(insn, 28, 1); 12627 is_q = extract32(insn, 30, 1); 12628 12629 opcode = extract32(insn, 12, 5); 12630 fpop = deposit32(opcode, 5, 1, a); 12631 fpop = deposit32(fpop, 6, 1, u); 12632 12633 switch (fpop) { 12634 case 0x1d: /* SCVTF */ 12635 case 0x5d: /* UCVTF */ 12636 { 12637 int elements; 12638 12639 if (is_scalar) { 12640 elements = 1; 12641 } else { 12642 elements = (is_q ? 8 : 4); 12643 } 12644 12645 if (!fp_access_check(s)) { 12646 return; 12647 } 12648 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12649 return; 12650 } 12651 break; 12652 case 0x2c: /* FCMGT (zero) */ 12653 case 0x2d: /* FCMEQ (zero) */ 12654 case 0x2e: /* FCMLT (zero) */ 12655 case 0x6c: /* FCMGE (zero) */ 12656 case 0x6d: /* FCMLE (zero) */ 12657 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12658 return; 12659 case 0x3d: /* FRECPE */ 12660 case 0x3f: /* FRECPX */ 12661 break; 12662 case 0x18: /* FRINTN */ 12663 only_in_vector = true; 12664 rmode = FPROUNDING_TIEEVEN; 12665 break; 12666 case 0x19: /* FRINTM */ 12667 only_in_vector = true; 12668 rmode = FPROUNDING_NEGINF; 12669 break; 12670 case 0x38: /* FRINTP */ 12671 only_in_vector = true; 12672 rmode = FPROUNDING_POSINF; 12673 break; 12674 case 0x39: /* FRINTZ */ 12675 only_in_vector = true; 12676 rmode = FPROUNDING_ZERO; 12677 break; 12678 case 0x58: /* FRINTA */ 12679 only_in_vector = true; 12680 rmode = FPROUNDING_TIEAWAY; 12681 break; 12682 case 0x59: /* FRINTX */ 12683 case 0x79: /* FRINTI */ 12684 only_in_vector = true; 12685 /* current rounding mode */ 12686 break; 12687 case 0x1a: /* FCVTNS */ 12688 rmode = FPROUNDING_TIEEVEN; 12689 break; 12690 case 0x1b: /* FCVTMS */ 12691 rmode = FPROUNDING_NEGINF; 12692 break; 12693 case 0x1c: /* FCVTAS */ 12694 rmode = FPROUNDING_TIEAWAY; 12695 break; 12696 case 0x3a: /* FCVTPS */ 12697 rmode = FPROUNDING_POSINF; 12698 break; 12699 case 0x3b: /* FCVTZS */ 12700 rmode = FPROUNDING_ZERO; 12701 break; 12702 case 0x5a: /* FCVTNU */ 12703 rmode = FPROUNDING_TIEEVEN; 12704 break; 12705 case 0x5b: /* FCVTMU */ 12706 rmode = FPROUNDING_NEGINF; 12707 break; 12708 case 0x5c: /* FCVTAU */ 12709 rmode = FPROUNDING_TIEAWAY; 12710 break; 12711 case 0x7a: /* FCVTPU */ 12712 rmode = FPROUNDING_POSINF; 12713 break; 12714 case 0x7b: /* FCVTZU */ 12715 rmode = FPROUNDING_ZERO; 12716 break; 12717 case 0x2f: /* FABS */ 12718 case 0x6f: /* FNEG */ 12719 need_fpst = false; 12720 break; 12721 case 0x7d: /* FRSQRTE */ 12722 case 0x7f: /* FSQRT (vector) */ 12723 break; 12724 default: 12725 unallocated_encoding(s); 12726 return; 12727 } 12728 12729 12730 /* Check additional constraints for the scalar encoding */ 12731 if (is_scalar) { 12732 if (!is_q) { 12733 unallocated_encoding(s); 12734 return; 12735 } 12736 /* FRINTxx is only in the vector form */ 12737 if (only_in_vector) { 12738 unallocated_encoding(s); 12739 return; 12740 } 12741 } 12742 12743 if (!fp_access_check(s)) { 12744 return; 12745 } 12746 12747 if (rmode >= 0 || need_fpst) { 12748 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12749 } 12750 12751 if (rmode >= 0) { 12752 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12753 } 12754 12755 if (is_scalar) { 12756 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12757 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12758 12759 switch (fpop) { 12760 case 0x1a: /* FCVTNS */ 12761 case 0x1b: /* FCVTMS */ 12762 case 0x1c: /* FCVTAS */ 12763 case 0x3a: /* FCVTPS */ 12764 case 0x3b: /* FCVTZS */ 12765 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12766 break; 12767 case 0x3d: /* FRECPE */ 12768 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12769 break; 12770 case 0x3f: /* FRECPX */ 12771 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12772 break; 12773 case 0x5a: /* FCVTNU */ 12774 case 0x5b: /* FCVTMU */ 12775 case 0x5c: /* FCVTAU */ 12776 case 0x7a: /* FCVTPU */ 12777 case 0x7b: /* FCVTZU */ 12778 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12779 break; 12780 case 0x6f: /* FNEG */ 12781 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12782 break; 12783 case 0x7d: /* FRSQRTE */ 12784 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12785 break; 12786 default: 12787 g_assert_not_reached(); 12788 } 12789 12790 /* limit any sign extension going on */ 12791 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12792 write_fp_sreg(s, rd, tcg_res); 12793 } else { 12794 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12795 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12796 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12797 12798 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12799 12800 switch (fpop) { 12801 case 0x1a: /* FCVTNS */ 12802 case 0x1b: /* FCVTMS */ 12803 case 0x1c: /* FCVTAS */ 12804 case 0x3a: /* FCVTPS */ 12805 case 0x3b: /* FCVTZS */ 12806 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12807 break; 12808 case 0x3d: /* FRECPE */ 12809 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12810 break; 12811 case 0x5a: /* FCVTNU */ 12812 case 0x5b: /* FCVTMU */ 12813 case 0x5c: /* FCVTAU */ 12814 case 0x7a: /* FCVTPU */ 12815 case 0x7b: /* FCVTZU */ 12816 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12817 break; 12818 case 0x18: /* FRINTN */ 12819 case 0x19: /* FRINTM */ 12820 case 0x38: /* FRINTP */ 12821 case 0x39: /* FRINTZ */ 12822 case 0x58: /* FRINTA */ 12823 case 0x79: /* FRINTI */ 12824 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12825 break; 12826 case 0x59: /* FRINTX */ 12827 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12828 break; 12829 case 0x2f: /* FABS */ 12830 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12831 break; 12832 case 0x6f: /* FNEG */ 12833 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12834 break; 12835 case 0x7d: /* FRSQRTE */ 12836 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12837 break; 12838 case 0x7f: /* FSQRT */ 12839 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12840 break; 12841 default: 12842 g_assert_not_reached(); 12843 } 12844 12845 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12846 } 12847 12848 clear_vec_high(s, is_q, rd); 12849 } 12850 12851 if (tcg_rmode) { 12852 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12853 } 12854 } 12855 12856 /* AdvSIMD scalar x indexed element 12857 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12858 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12859 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12860 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12861 * AdvSIMD vector x indexed element 12862 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12863 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12864 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12865 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12866 */ 12867 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12868 { 12869 /* This encoding has two kinds of instruction: 12870 * normal, where we perform elt x idxelt => elt for each 12871 * element in the vector 12872 * long, where we perform elt x idxelt and generate a result of 12873 * double the width of the input element 12874 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12875 */ 12876 bool is_scalar = extract32(insn, 28, 1); 12877 bool is_q = extract32(insn, 30, 1); 12878 bool u = extract32(insn, 29, 1); 12879 int size = extract32(insn, 22, 2); 12880 int l = extract32(insn, 21, 1); 12881 int m = extract32(insn, 20, 1); 12882 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12883 int rm = extract32(insn, 16, 4); 12884 int opcode = extract32(insn, 12, 4); 12885 int h = extract32(insn, 11, 1); 12886 int rn = extract32(insn, 5, 5); 12887 int rd = extract32(insn, 0, 5); 12888 bool is_long = false; 12889 int is_fp = 0; 12890 bool is_fp16 = false; 12891 int index; 12892 TCGv_ptr fpst; 12893 12894 switch (16 * u + opcode) { 12895 case 0x08: /* MUL */ 12896 case 0x10: /* MLA */ 12897 case 0x14: /* MLS */ 12898 if (is_scalar) { 12899 unallocated_encoding(s); 12900 return; 12901 } 12902 break; 12903 case 0x02: /* SMLAL, SMLAL2 */ 12904 case 0x12: /* UMLAL, UMLAL2 */ 12905 case 0x06: /* SMLSL, SMLSL2 */ 12906 case 0x16: /* UMLSL, UMLSL2 */ 12907 case 0x0a: /* SMULL, SMULL2 */ 12908 case 0x1a: /* UMULL, UMULL2 */ 12909 if (is_scalar) { 12910 unallocated_encoding(s); 12911 return; 12912 } 12913 is_long = true; 12914 break; 12915 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12916 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12917 case 0x0b: /* SQDMULL, SQDMULL2 */ 12918 is_long = true; 12919 break; 12920 case 0x0c: /* SQDMULH */ 12921 case 0x0d: /* SQRDMULH */ 12922 break; 12923 case 0x01: /* FMLA */ 12924 case 0x05: /* FMLS */ 12925 case 0x09: /* FMUL */ 12926 case 0x19: /* FMULX */ 12927 is_fp = 1; 12928 break; 12929 case 0x1d: /* SQRDMLAH */ 12930 case 0x1f: /* SQRDMLSH */ 12931 if (!dc_isar_feature(aa64_rdm, s)) { 12932 unallocated_encoding(s); 12933 return; 12934 } 12935 break; 12936 case 0x0e: /* SDOT */ 12937 case 0x1e: /* UDOT */ 12938 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12939 unallocated_encoding(s); 12940 return; 12941 } 12942 break; 12943 case 0x0f: 12944 switch (size) { 12945 case 0: /* SUDOT */ 12946 case 2: /* USDOT */ 12947 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12948 unallocated_encoding(s); 12949 return; 12950 } 12951 size = MO_32; 12952 break; 12953 case 1: /* BFDOT */ 12954 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12955 unallocated_encoding(s); 12956 return; 12957 } 12958 size = MO_32; 12959 break; 12960 case 3: /* BFMLAL{B,T} */ 12961 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12962 unallocated_encoding(s); 12963 return; 12964 } 12965 /* can't set is_fp without other incorrect size checks */ 12966 size = MO_16; 12967 break; 12968 default: 12969 unallocated_encoding(s); 12970 return; 12971 } 12972 break; 12973 case 0x11: /* FCMLA #0 */ 12974 case 0x13: /* FCMLA #90 */ 12975 case 0x15: /* FCMLA #180 */ 12976 case 0x17: /* FCMLA #270 */ 12977 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12978 unallocated_encoding(s); 12979 return; 12980 } 12981 is_fp = 2; 12982 break; 12983 case 0x00: /* FMLAL */ 12984 case 0x04: /* FMLSL */ 12985 case 0x18: /* FMLAL2 */ 12986 case 0x1c: /* FMLSL2 */ 12987 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12988 unallocated_encoding(s); 12989 return; 12990 } 12991 size = MO_16; 12992 /* is_fp, but we pass cpu_env not fp_status. */ 12993 break; 12994 default: 12995 unallocated_encoding(s); 12996 return; 12997 } 12998 12999 switch (is_fp) { 13000 case 1: /* normal fp */ 13001 /* convert insn encoded size to MemOp size */ 13002 switch (size) { 13003 case 0: /* half-precision */ 13004 size = MO_16; 13005 is_fp16 = true; 13006 break; 13007 case MO_32: /* single precision */ 13008 case MO_64: /* double precision */ 13009 break; 13010 default: 13011 unallocated_encoding(s); 13012 return; 13013 } 13014 break; 13015 13016 case 2: /* complex fp */ 13017 /* Each indexable element is a complex pair. */ 13018 size += 1; 13019 switch (size) { 13020 case MO_32: 13021 if (h && !is_q) { 13022 unallocated_encoding(s); 13023 return; 13024 } 13025 is_fp16 = true; 13026 break; 13027 case MO_64: 13028 break; 13029 default: 13030 unallocated_encoding(s); 13031 return; 13032 } 13033 break; 13034 13035 default: /* integer */ 13036 switch (size) { 13037 case MO_8: 13038 case MO_64: 13039 unallocated_encoding(s); 13040 return; 13041 } 13042 break; 13043 } 13044 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13045 unallocated_encoding(s); 13046 return; 13047 } 13048 13049 /* Given MemOp size, adjust register and indexing. */ 13050 switch (size) { 13051 case MO_16: 13052 index = h << 2 | l << 1 | m; 13053 break; 13054 case MO_32: 13055 index = h << 1 | l; 13056 rm |= m << 4; 13057 break; 13058 case MO_64: 13059 if (l || !is_q) { 13060 unallocated_encoding(s); 13061 return; 13062 } 13063 index = h; 13064 rm |= m << 4; 13065 break; 13066 default: 13067 g_assert_not_reached(); 13068 } 13069 13070 if (!fp_access_check(s)) { 13071 return; 13072 } 13073 13074 if (is_fp) { 13075 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13076 } else { 13077 fpst = NULL; 13078 } 13079 13080 switch (16 * u + opcode) { 13081 case 0x0e: /* SDOT */ 13082 case 0x1e: /* UDOT */ 13083 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13084 u ? gen_helper_gvec_udot_idx_b 13085 : gen_helper_gvec_sdot_idx_b); 13086 return; 13087 case 0x0f: 13088 switch (extract32(insn, 22, 2)) { 13089 case 0: /* SUDOT */ 13090 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13091 gen_helper_gvec_sudot_idx_b); 13092 return; 13093 case 1: /* BFDOT */ 13094 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13095 gen_helper_gvec_bfdot_idx); 13096 return; 13097 case 2: /* USDOT */ 13098 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13099 gen_helper_gvec_usdot_idx_b); 13100 return; 13101 case 3: /* BFMLAL{B,T} */ 13102 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13103 gen_helper_gvec_bfmlal_idx); 13104 return; 13105 } 13106 g_assert_not_reached(); 13107 case 0x11: /* FCMLA #0 */ 13108 case 0x13: /* FCMLA #90 */ 13109 case 0x15: /* FCMLA #180 */ 13110 case 0x17: /* FCMLA #270 */ 13111 { 13112 int rot = extract32(insn, 13, 2); 13113 int data = (index << 2) | rot; 13114 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13115 vec_full_reg_offset(s, rn), 13116 vec_full_reg_offset(s, rm), 13117 vec_full_reg_offset(s, rd), fpst, 13118 is_q ? 16 : 8, vec_full_reg_size(s), data, 13119 size == MO_64 13120 ? gen_helper_gvec_fcmlas_idx 13121 : gen_helper_gvec_fcmlah_idx); 13122 } 13123 return; 13124 13125 case 0x00: /* FMLAL */ 13126 case 0x04: /* FMLSL */ 13127 case 0x18: /* FMLAL2 */ 13128 case 0x1c: /* FMLSL2 */ 13129 { 13130 int is_s = extract32(opcode, 2, 1); 13131 int is_2 = u; 13132 int data = (index << 2) | (is_2 << 1) | is_s; 13133 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13134 vec_full_reg_offset(s, rn), 13135 vec_full_reg_offset(s, rm), cpu_env, 13136 is_q ? 16 : 8, vec_full_reg_size(s), 13137 data, gen_helper_gvec_fmlal_idx_a64); 13138 } 13139 return; 13140 13141 case 0x08: /* MUL */ 13142 if (!is_long && !is_scalar) { 13143 static gen_helper_gvec_3 * const fns[3] = { 13144 gen_helper_gvec_mul_idx_h, 13145 gen_helper_gvec_mul_idx_s, 13146 gen_helper_gvec_mul_idx_d, 13147 }; 13148 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13149 vec_full_reg_offset(s, rn), 13150 vec_full_reg_offset(s, rm), 13151 is_q ? 16 : 8, vec_full_reg_size(s), 13152 index, fns[size - 1]); 13153 return; 13154 } 13155 break; 13156 13157 case 0x10: /* MLA */ 13158 if (!is_long && !is_scalar) { 13159 static gen_helper_gvec_4 * const fns[3] = { 13160 gen_helper_gvec_mla_idx_h, 13161 gen_helper_gvec_mla_idx_s, 13162 gen_helper_gvec_mla_idx_d, 13163 }; 13164 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13165 vec_full_reg_offset(s, rn), 13166 vec_full_reg_offset(s, rm), 13167 vec_full_reg_offset(s, rd), 13168 is_q ? 16 : 8, vec_full_reg_size(s), 13169 index, fns[size - 1]); 13170 return; 13171 } 13172 break; 13173 13174 case 0x14: /* MLS */ 13175 if (!is_long && !is_scalar) { 13176 static gen_helper_gvec_4 * const fns[3] = { 13177 gen_helper_gvec_mls_idx_h, 13178 gen_helper_gvec_mls_idx_s, 13179 gen_helper_gvec_mls_idx_d, 13180 }; 13181 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13182 vec_full_reg_offset(s, rn), 13183 vec_full_reg_offset(s, rm), 13184 vec_full_reg_offset(s, rd), 13185 is_q ? 16 : 8, vec_full_reg_size(s), 13186 index, fns[size - 1]); 13187 return; 13188 } 13189 break; 13190 } 13191 13192 if (size == 3) { 13193 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13194 int pass; 13195 13196 assert(is_fp && is_q && !is_long); 13197 13198 read_vec_element(s, tcg_idx, rm, index, MO_64); 13199 13200 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13201 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13202 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13203 13204 read_vec_element(s, tcg_op, rn, pass, MO_64); 13205 13206 switch (16 * u + opcode) { 13207 case 0x05: /* FMLS */ 13208 /* As usual for ARM, separate negation for fused multiply-add */ 13209 gen_helper_vfp_negd(tcg_op, tcg_op); 13210 /* fall through */ 13211 case 0x01: /* FMLA */ 13212 read_vec_element(s, tcg_res, rd, pass, MO_64); 13213 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13214 break; 13215 case 0x09: /* FMUL */ 13216 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13217 break; 13218 case 0x19: /* FMULX */ 13219 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13220 break; 13221 default: 13222 g_assert_not_reached(); 13223 } 13224 13225 write_vec_element(s, tcg_res, rd, pass, MO_64); 13226 } 13227 13228 clear_vec_high(s, !is_scalar, rd); 13229 } else if (!is_long) { 13230 /* 32 bit floating point, or 16 or 32 bit integer. 13231 * For the 16 bit scalar case we use the usual Neon helpers and 13232 * rely on the fact that 0 op 0 == 0 with no side effects. 13233 */ 13234 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13235 int pass, maxpasses; 13236 13237 if (is_scalar) { 13238 maxpasses = 1; 13239 } else { 13240 maxpasses = is_q ? 4 : 2; 13241 } 13242 13243 read_vec_element_i32(s, tcg_idx, rm, index, size); 13244 13245 if (size == 1 && !is_scalar) { 13246 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13247 * the index into both halves of the 32 bit tcg_idx and then use 13248 * the usual Neon helpers. 13249 */ 13250 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13251 } 13252 13253 for (pass = 0; pass < maxpasses; pass++) { 13254 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13255 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13256 13257 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13258 13259 switch (16 * u + opcode) { 13260 case 0x08: /* MUL */ 13261 case 0x10: /* MLA */ 13262 case 0x14: /* MLS */ 13263 { 13264 static NeonGenTwoOpFn * const fns[2][2] = { 13265 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13266 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13267 }; 13268 NeonGenTwoOpFn *genfn; 13269 bool is_sub = opcode == 0x4; 13270 13271 if (size == 1) { 13272 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13273 } else { 13274 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13275 } 13276 if (opcode == 0x8) { 13277 break; 13278 } 13279 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13280 genfn = fns[size - 1][is_sub]; 13281 genfn(tcg_res, tcg_op, tcg_res); 13282 break; 13283 } 13284 case 0x05: /* FMLS */ 13285 case 0x01: /* FMLA */ 13286 read_vec_element_i32(s, tcg_res, rd, pass, 13287 is_scalar ? size : MO_32); 13288 switch (size) { 13289 case 1: 13290 if (opcode == 0x5) { 13291 /* As usual for ARM, separate negation for fused 13292 * multiply-add */ 13293 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13294 } 13295 if (is_scalar) { 13296 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13297 tcg_res, fpst); 13298 } else { 13299 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13300 tcg_res, fpst); 13301 } 13302 break; 13303 case 2: 13304 if (opcode == 0x5) { 13305 /* As usual for ARM, separate negation for 13306 * fused multiply-add */ 13307 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13308 } 13309 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13310 tcg_res, fpst); 13311 break; 13312 default: 13313 g_assert_not_reached(); 13314 } 13315 break; 13316 case 0x09: /* FMUL */ 13317 switch (size) { 13318 case 1: 13319 if (is_scalar) { 13320 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13321 tcg_idx, fpst); 13322 } else { 13323 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13324 tcg_idx, fpst); 13325 } 13326 break; 13327 case 2: 13328 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13329 break; 13330 default: 13331 g_assert_not_reached(); 13332 } 13333 break; 13334 case 0x19: /* FMULX */ 13335 switch (size) { 13336 case 1: 13337 if (is_scalar) { 13338 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13339 tcg_idx, fpst); 13340 } else { 13341 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13342 tcg_idx, fpst); 13343 } 13344 break; 13345 case 2: 13346 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13347 break; 13348 default: 13349 g_assert_not_reached(); 13350 } 13351 break; 13352 case 0x0c: /* SQDMULH */ 13353 if (size == 1) { 13354 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13355 tcg_op, tcg_idx); 13356 } else { 13357 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13358 tcg_op, tcg_idx); 13359 } 13360 break; 13361 case 0x0d: /* SQRDMULH */ 13362 if (size == 1) { 13363 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13364 tcg_op, tcg_idx); 13365 } else { 13366 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13367 tcg_op, tcg_idx); 13368 } 13369 break; 13370 case 0x1d: /* SQRDMLAH */ 13371 read_vec_element_i32(s, tcg_res, rd, pass, 13372 is_scalar ? size : MO_32); 13373 if (size == 1) { 13374 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13375 tcg_op, tcg_idx, tcg_res); 13376 } else { 13377 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13378 tcg_op, tcg_idx, tcg_res); 13379 } 13380 break; 13381 case 0x1f: /* SQRDMLSH */ 13382 read_vec_element_i32(s, tcg_res, rd, pass, 13383 is_scalar ? size : MO_32); 13384 if (size == 1) { 13385 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13386 tcg_op, tcg_idx, tcg_res); 13387 } else { 13388 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13389 tcg_op, tcg_idx, tcg_res); 13390 } 13391 break; 13392 default: 13393 g_assert_not_reached(); 13394 } 13395 13396 if (is_scalar) { 13397 write_fp_sreg(s, rd, tcg_res); 13398 } else { 13399 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13400 } 13401 } 13402 13403 clear_vec_high(s, is_q, rd); 13404 } else { 13405 /* long ops: 16x16->32 or 32x32->64 */ 13406 TCGv_i64 tcg_res[2]; 13407 int pass; 13408 bool satop = extract32(opcode, 0, 1); 13409 MemOp memop = MO_32; 13410 13411 if (satop || !u) { 13412 memop |= MO_SIGN; 13413 } 13414 13415 if (size == 2) { 13416 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13417 13418 read_vec_element(s, tcg_idx, rm, index, memop); 13419 13420 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13421 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13422 TCGv_i64 tcg_passres; 13423 int passelt; 13424 13425 if (is_scalar) { 13426 passelt = 0; 13427 } else { 13428 passelt = pass + (is_q * 2); 13429 } 13430 13431 read_vec_element(s, tcg_op, rn, passelt, memop); 13432 13433 tcg_res[pass] = tcg_temp_new_i64(); 13434 13435 if (opcode == 0xa || opcode == 0xb) { 13436 /* Non-accumulating ops */ 13437 tcg_passres = tcg_res[pass]; 13438 } else { 13439 tcg_passres = tcg_temp_new_i64(); 13440 } 13441 13442 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13443 13444 if (satop) { 13445 /* saturating, doubling */ 13446 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13447 tcg_passres, tcg_passres); 13448 } 13449 13450 if (opcode == 0xa || opcode == 0xb) { 13451 continue; 13452 } 13453 13454 /* Accumulating op: handle accumulate step */ 13455 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13456 13457 switch (opcode) { 13458 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13459 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13460 break; 13461 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13462 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13463 break; 13464 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13465 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13466 /* fall through */ 13467 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13468 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13469 tcg_res[pass], 13470 tcg_passres); 13471 break; 13472 default: 13473 g_assert_not_reached(); 13474 } 13475 } 13476 13477 clear_vec_high(s, !is_scalar, rd); 13478 } else { 13479 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13480 13481 assert(size == 1); 13482 read_vec_element_i32(s, tcg_idx, rm, index, size); 13483 13484 if (!is_scalar) { 13485 /* The simplest way to handle the 16x16 indexed ops is to 13486 * duplicate the index into both halves of the 32 bit tcg_idx 13487 * and then use the usual Neon helpers. 13488 */ 13489 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13490 } 13491 13492 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13493 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13494 TCGv_i64 tcg_passres; 13495 13496 if (is_scalar) { 13497 read_vec_element_i32(s, tcg_op, rn, pass, size); 13498 } else { 13499 read_vec_element_i32(s, tcg_op, rn, 13500 pass + (is_q * 2), MO_32); 13501 } 13502 13503 tcg_res[pass] = tcg_temp_new_i64(); 13504 13505 if (opcode == 0xa || opcode == 0xb) { 13506 /* Non-accumulating ops */ 13507 tcg_passres = tcg_res[pass]; 13508 } else { 13509 tcg_passres = tcg_temp_new_i64(); 13510 } 13511 13512 if (memop & MO_SIGN) { 13513 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13514 } else { 13515 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13516 } 13517 if (satop) { 13518 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13519 tcg_passres, tcg_passres); 13520 } 13521 13522 if (opcode == 0xa || opcode == 0xb) { 13523 continue; 13524 } 13525 13526 /* Accumulating op: handle accumulate step */ 13527 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13528 13529 switch (opcode) { 13530 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13531 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13532 tcg_passres); 13533 break; 13534 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13535 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13536 tcg_passres); 13537 break; 13538 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13539 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13540 /* fall through */ 13541 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13542 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13543 tcg_res[pass], 13544 tcg_passres); 13545 break; 13546 default: 13547 g_assert_not_reached(); 13548 } 13549 } 13550 13551 if (is_scalar) { 13552 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13553 } 13554 } 13555 13556 if (is_scalar) { 13557 tcg_res[1] = tcg_constant_i64(0); 13558 } 13559 13560 for (pass = 0; pass < 2; pass++) { 13561 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13562 } 13563 } 13564 } 13565 13566 /* Crypto AES 13567 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13568 * +-----------------+------+-----------+--------+-----+------+------+ 13569 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13570 * +-----------------+------+-----------+--------+-----+------+------+ 13571 */ 13572 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13573 { 13574 int size = extract32(insn, 22, 2); 13575 int opcode = extract32(insn, 12, 5); 13576 int rn = extract32(insn, 5, 5); 13577 int rd = extract32(insn, 0, 5); 13578 int decrypt; 13579 gen_helper_gvec_2 *genfn2 = NULL; 13580 gen_helper_gvec_3 *genfn3 = NULL; 13581 13582 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13583 unallocated_encoding(s); 13584 return; 13585 } 13586 13587 switch (opcode) { 13588 case 0x4: /* AESE */ 13589 decrypt = 0; 13590 genfn3 = gen_helper_crypto_aese; 13591 break; 13592 case 0x6: /* AESMC */ 13593 decrypt = 0; 13594 genfn2 = gen_helper_crypto_aesmc; 13595 break; 13596 case 0x5: /* AESD */ 13597 decrypt = 1; 13598 genfn3 = gen_helper_crypto_aese; 13599 break; 13600 case 0x7: /* AESIMC */ 13601 decrypt = 1; 13602 genfn2 = gen_helper_crypto_aesmc; 13603 break; 13604 default: 13605 unallocated_encoding(s); 13606 return; 13607 } 13608 13609 if (!fp_access_check(s)) { 13610 return; 13611 } 13612 if (genfn2) { 13613 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13614 } else { 13615 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13616 } 13617 } 13618 13619 /* Crypto three-reg SHA 13620 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13621 * +-----------------+------+---+------+---+--------+-----+------+------+ 13622 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13623 * +-----------------+------+---+------+---+--------+-----+------+------+ 13624 */ 13625 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13626 { 13627 int size = extract32(insn, 22, 2); 13628 int opcode = extract32(insn, 12, 3); 13629 int rm = extract32(insn, 16, 5); 13630 int rn = extract32(insn, 5, 5); 13631 int rd = extract32(insn, 0, 5); 13632 gen_helper_gvec_3 *genfn; 13633 bool feature; 13634 13635 if (size != 0) { 13636 unallocated_encoding(s); 13637 return; 13638 } 13639 13640 switch (opcode) { 13641 case 0: /* SHA1C */ 13642 genfn = gen_helper_crypto_sha1c; 13643 feature = dc_isar_feature(aa64_sha1, s); 13644 break; 13645 case 1: /* SHA1P */ 13646 genfn = gen_helper_crypto_sha1p; 13647 feature = dc_isar_feature(aa64_sha1, s); 13648 break; 13649 case 2: /* SHA1M */ 13650 genfn = gen_helper_crypto_sha1m; 13651 feature = dc_isar_feature(aa64_sha1, s); 13652 break; 13653 case 3: /* SHA1SU0 */ 13654 genfn = gen_helper_crypto_sha1su0; 13655 feature = dc_isar_feature(aa64_sha1, s); 13656 break; 13657 case 4: /* SHA256H */ 13658 genfn = gen_helper_crypto_sha256h; 13659 feature = dc_isar_feature(aa64_sha256, s); 13660 break; 13661 case 5: /* SHA256H2 */ 13662 genfn = gen_helper_crypto_sha256h2; 13663 feature = dc_isar_feature(aa64_sha256, s); 13664 break; 13665 case 6: /* SHA256SU1 */ 13666 genfn = gen_helper_crypto_sha256su1; 13667 feature = dc_isar_feature(aa64_sha256, s); 13668 break; 13669 default: 13670 unallocated_encoding(s); 13671 return; 13672 } 13673 13674 if (!feature) { 13675 unallocated_encoding(s); 13676 return; 13677 } 13678 13679 if (!fp_access_check(s)) { 13680 return; 13681 } 13682 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13683 } 13684 13685 /* Crypto two-reg SHA 13686 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13687 * +-----------------+------+-----------+--------+-----+------+------+ 13688 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13689 * +-----------------+------+-----------+--------+-----+------+------+ 13690 */ 13691 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13692 { 13693 int size = extract32(insn, 22, 2); 13694 int opcode = extract32(insn, 12, 5); 13695 int rn = extract32(insn, 5, 5); 13696 int rd = extract32(insn, 0, 5); 13697 gen_helper_gvec_2 *genfn; 13698 bool feature; 13699 13700 if (size != 0) { 13701 unallocated_encoding(s); 13702 return; 13703 } 13704 13705 switch (opcode) { 13706 case 0: /* SHA1H */ 13707 feature = dc_isar_feature(aa64_sha1, s); 13708 genfn = gen_helper_crypto_sha1h; 13709 break; 13710 case 1: /* SHA1SU1 */ 13711 feature = dc_isar_feature(aa64_sha1, s); 13712 genfn = gen_helper_crypto_sha1su1; 13713 break; 13714 case 2: /* SHA256SU0 */ 13715 feature = dc_isar_feature(aa64_sha256, s); 13716 genfn = gen_helper_crypto_sha256su0; 13717 break; 13718 default: 13719 unallocated_encoding(s); 13720 return; 13721 } 13722 13723 if (!feature) { 13724 unallocated_encoding(s); 13725 return; 13726 } 13727 13728 if (!fp_access_check(s)) { 13729 return; 13730 } 13731 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13732 } 13733 13734 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13735 { 13736 tcg_gen_rotli_i64(d, m, 1); 13737 tcg_gen_xor_i64(d, d, n); 13738 } 13739 13740 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13741 { 13742 tcg_gen_rotli_vec(vece, d, m, 1); 13743 tcg_gen_xor_vec(vece, d, d, n); 13744 } 13745 13746 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13747 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13748 { 13749 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13750 static const GVecGen3 op = { 13751 .fni8 = gen_rax1_i64, 13752 .fniv = gen_rax1_vec, 13753 .opt_opc = vecop_list, 13754 .fno = gen_helper_crypto_rax1, 13755 .vece = MO_64, 13756 }; 13757 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13758 } 13759 13760 /* Crypto three-reg SHA512 13761 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13762 * +-----------------------+------+---+---+-----+--------+------+------+ 13763 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13764 * +-----------------------+------+---+---+-----+--------+------+------+ 13765 */ 13766 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13767 { 13768 int opcode = extract32(insn, 10, 2); 13769 int o = extract32(insn, 14, 1); 13770 int rm = extract32(insn, 16, 5); 13771 int rn = extract32(insn, 5, 5); 13772 int rd = extract32(insn, 0, 5); 13773 bool feature; 13774 gen_helper_gvec_3 *oolfn = NULL; 13775 GVecGen3Fn *gvecfn = NULL; 13776 13777 if (o == 0) { 13778 switch (opcode) { 13779 case 0: /* SHA512H */ 13780 feature = dc_isar_feature(aa64_sha512, s); 13781 oolfn = gen_helper_crypto_sha512h; 13782 break; 13783 case 1: /* SHA512H2 */ 13784 feature = dc_isar_feature(aa64_sha512, s); 13785 oolfn = gen_helper_crypto_sha512h2; 13786 break; 13787 case 2: /* SHA512SU1 */ 13788 feature = dc_isar_feature(aa64_sha512, s); 13789 oolfn = gen_helper_crypto_sha512su1; 13790 break; 13791 case 3: /* RAX1 */ 13792 feature = dc_isar_feature(aa64_sha3, s); 13793 gvecfn = gen_gvec_rax1; 13794 break; 13795 default: 13796 g_assert_not_reached(); 13797 } 13798 } else { 13799 switch (opcode) { 13800 case 0: /* SM3PARTW1 */ 13801 feature = dc_isar_feature(aa64_sm3, s); 13802 oolfn = gen_helper_crypto_sm3partw1; 13803 break; 13804 case 1: /* SM3PARTW2 */ 13805 feature = dc_isar_feature(aa64_sm3, s); 13806 oolfn = gen_helper_crypto_sm3partw2; 13807 break; 13808 case 2: /* SM4EKEY */ 13809 feature = dc_isar_feature(aa64_sm4, s); 13810 oolfn = gen_helper_crypto_sm4ekey; 13811 break; 13812 default: 13813 unallocated_encoding(s); 13814 return; 13815 } 13816 } 13817 13818 if (!feature) { 13819 unallocated_encoding(s); 13820 return; 13821 } 13822 13823 if (!fp_access_check(s)) { 13824 return; 13825 } 13826 13827 if (oolfn) { 13828 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13829 } else { 13830 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13831 } 13832 } 13833 13834 /* Crypto two-reg SHA512 13835 * 31 12 11 10 9 5 4 0 13836 * +-----------------------------------------+--------+------+------+ 13837 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13838 * +-----------------------------------------+--------+------+------+ 13839 */ 13840 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13841 { 13842 int opcode = extract32(insn, 10, 2); 13843 int rn = extract32(insn, 5, 5); 13844 int rd = extract32(insn, 0, 5); 13845 bool feature; 13846 13847 switch (opcode) { 13848 case 0: /* SHA512SU0 */ 13849 feature = dc_isar_feature(aa64_sha512, s); 13850 break; 13851 case 1: /* SM4E */ 13852 feature = dc_isar_feature(aa64_sm4, s); 13853 break; 13854 default: 13855 unallocated_encoding(s); 13856 return; 13857 } 13858 13859 if (!feature) { 13860 unallocated_encoding(s); 13861 return; 13862 } 13863 13864 if (!fp_access_check(s)) { 13865 return; 13866 } 13867 13868 switch (opcode) { 13869 case 0: /* SHA512SU0 */ 13870 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13871 break; 13872 case 1: /* SM4E */ 13873 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13874 break; 13875 default: 13876 g_assert_not_reached(); 13877 } 13878 } 13879 13880 /* Crypto four-register 13881 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13882 * +-------------------+-----+------+---+------+------+------+ 13883 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13884 * +-------------------+-----+------+---+------+------+------+ 13885 */ 13886 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13887 { 13888 int op0 = extract32(insn, 21, 2); 13889 int rm = extract32(insn, 16, 5); 13890 int ra = extract32(insn, 10, 5); 13891 int rn = extract32(insn, 5, 5); 13892 int rd = extract32(insn, 0, 5); 13893 bool feature; 13894 13895 switch (op0) { 13896 case 0: /* EOR3 */ 13897 case 1: /* BCAX */ 13898 feature = dc_isar_feature(aa64_sha3, s); 13899 break; 13900 case 2: /* SM3SS1 */ 13901 feature = dc_isar_feature(aa64_sm3, s); 13902 break; 13903 default: 13904 unallocated_encoding(s); 13905 return; 13906 } 13907 13908 if (!feature) { 13909 unallocated_encoding(s); 13910 return; 13911 } 13912 13913 if (!fp_access_check(s)) { 13914 return; 13915 } 13916 13917 if (op0 < 2) { 13918 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13919 int pass; 13920 13921 tcg_op1 = tcg_temp_new_i64(); 13922 tcg_op2 = tcg_temp_new_i64(); 13923 tcg_op3 = tcg_temp_new_i64(); 13924 tcg_res[0] = tcg_temp_new_i64(); 13925 tcg_res[1] = tcg_temp_new_i64(); 13926 13927 for (pass = 0; pass < 2; pass++) { 13928 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13929 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13930 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13931 13932 if (op0 == 0) { 13933 /* EOR3 */ 13934 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13935 } else { 13936 /* BCAX */ 13937 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13938 } 13939 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13940 } 13941 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13942 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13943 } else { 13944 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13945 13946 tcg_op1 = tcg_temp_new_i32(); 13947 tcg_op2 = tcg_temp_new_i32(); 13948 tcg_op3 = tcg_temp_new_i32(); 13949 tcg_res = tcg_temp_new_i32(); 13950 tcg_zero = tcg_constant_i32(0); 13951 13952 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13953 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13954 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13955 13956 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13957 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13958 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13959 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13960 13961 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13962 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13963 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13964 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13965 } 13966 } 13967 13968 /* Crypto XAR 13969 * 31 21 20 16 15 10 9 5 4 0 13970 * +-----------------------+------+--------+------+------+ 13971 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13972 * +-----------------------+------+--------+------+------+ 13973 */ 13974 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13975 { 13976 int rm = extract32(insn, 16, 5); 13977 int imm6 = extract32(insn, 10, 6); 13978 int rn = extract32(insn, 5, 5); 13979 int rd = extract32(insn, 0, 5); 13980 13981 if (!dc_isar_feature(aa64_sha3, s)) { 13982 unallocated_encoding(s); 13983 return; 13984 } 13985 13986 if (!fp_access_check(s)) { 13987 return; 13988 } 13989 13990 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13991 vec_full_reg_offset(s, rn), 13992 vec_full_reg_offset(s, rm), imm6, 16, 13993 vec_full_reg_size(s)); 13994 } 13995 13996 /* Crypto three-reg imm2 13997 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13998 * +-----------------------+------+-----+------+--------+------+------+ 13999 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14000 * +-----------------------+------+-----+------+--------+------+------+ 14001 */ 14002 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14003 { 14004 static gen_helper_gvec_3 * const fns[4] = { 14005 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14006 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14007 }; 14008 int opcode = extract32(insn, 10, 2); 14009 int imm2 = extract32(insn, 12, 2); 14010 int rm = extract32(insn, 16, 5); 14011 int rn = extract32(insn, 5, 5); 14012 int rd = extract32(insn, 0, 5); 14013 14014 if (!dc_isar_feature(aa64_sm3, s)) { 14015 unallocated_encoding(s); 14016 return; 14017 } 14018 14019 if (!fp_access_check(s)) { 14020 return; 14021 } 14022 14023 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14024 } 14025 14026 /* C3.6 Data processing - SIMD, inc Crypto 14027 * 14028 * As the decode gets a little complex we are using a table based 14029 * approach for this part of the decode. 14030 */ 14031 static const AArch64DecodeTable data_proc_simd[] = { 14032 /* pattern , mask , fn */ 14033 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14034 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14035 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14036 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14037 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14038 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14039 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14040 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14041 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14042 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14043 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14044 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14045 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14046 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14047 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14048 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14049 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14050 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14051 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14052 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14053 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14054 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14055 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14056 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14057 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14058 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14059 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14060 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14061 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14062 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14063 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14064 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14065 { 0x00000000, 0x00000000, NULL } 14066 }; 14067 14068 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14069 { 14070 /* Note that this is called with all non-FP cases from 14071 * table C3-6 so it must UNDEF for entries not specifically 14072 * allocated to instructions in that table. 14073 */ 14074 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14075 if (fn) { 14076 fn(s, insn); 14077 } else { 14078 unallocated_encoding(s); 14079 } 14080 } 14081 14082 /* C3.6 Data processing - SIMD and floating point */ 14083 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14084 { 14085 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14086 disas_data_proc_fp(s, insn); 14087 } else { 14088 /* SIMD, including crypto */ 14089 disas_data_proc_simd(s, insn); 14090 } 14091 } 14092 14093 static bool trans_OK(DisasContext *s, arg_OK *a) 14094 { 14095 return true; 14096 } 14097 14098 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14099 { 14100 s->is_nonstreaming = true; 14101 return true; 14102 } 14103 14104 /** 14105 * is_guarded_page: 14106 * @env: The cpu environment 14107 * @s: The DisasContext 14108 * 14109 * Return true if the page is guarded. 14110 */ 14111 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14112 { 14113 uint64_t addr = s->base.pc_first; 14114 #ifdef CONFIG_USER_ONLY 14115 return page_get_flags(addr) & PAGE_BTI; 14116 #else 14117 CPUTLBEntryFull *full; 14118 void *host; 14119 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14120 int flags; 14121 14122 /* 14123 * We test this immediately after reading an insn, which means 14124 * that the TLB entry must be present and valid, and thus this 14125 * access will never raise an exception. 14126 */ 14127 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14128 false, &host, &full, 0); 14129 assert(!(flags & TLB_INVALID_MASK)); 14130 14131 return full->guarded; 14132 #endif 14133 } 14134 14135 /** 14136 * btype_destination_ok: 14137 * @insn: The instruction at the branch destination 14138 * @bt: SCTLR_ELx.BT 14139 * @btype: PSTATE.BTYPE, and is non-zero 14140 * 14141 * On a guarded page, there are a limited number of insns 14142 * that may be present at the branch target: 14143 * - branch target identifiers, 14144 * - paciasp, pacibsp, 14145 * - BRK insn 14146 * - HLT insn 14147 * Anything else causes a Branch Target Exception. 14148 * 14149 * Return true if the branch is compatible, false to raise BTITRAP. 14150 */ 14151 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14152 { 14153 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14154 /* HINT space */ 14155 switch (extract32(insn, 5, 7)) { 14156 case 0b011001: /* PACIASP */ 14157 case 0b011011: /* PACIBSP */ 14158 /* 14159 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14160 * with btype == 3. Otherwise all btype are ok. 14161 */ 14162 return !bt || btype != 3; 14163 case 0b100000: /* BTI */ 14164 /* Not compatible with any btype. */ 14165 return false; 14166 case 0b100010: /* BTI c */ 14167 /* Not compatible with btype == 3 */ 14168 return btype != 3; 14169 case 0b100100: /* BTI j */ 14170 /* Not compatible with btype == 2 */ 14171 return btype != 2; 14172 case 0b100110: /* BTI jc */ 14173 /* Compatible with any btype. */ 14174 return true; 14175 } 14176 } else { 14177 switch (insn & 0xffe0001fu) { 14178 case 0xd4200000u: /* BRK */ 14179 case 0xd4400000u: /* HLT */ 14180 /* Give priority to the breakpoint exception. */ 14181 return true; 14182 } 14183 } 14184 return false; 14185 } 14186 14187 /* C3.1 A64 instruction index by encoding */ 14188 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14189 { 14190 switch (extract32(insn, 25, 4)) { 14191 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14192 disas_b_exc_sys(s, insn); 14193 break; 14194 case 0x4: 14195 case 0x6: 14196 case 0xc: 14197 case 0xe: /* Loads and stores */ 14198 disas_ldst(s, insn); 14199 break; 14200 case 0x5: 14201 case 0xd: /* Data processing - register */ 14202 disas_data_proc_reg(s, insn); 14203 break; 14204 case 0x7: 14205 case 0xf: /* Data processing - SIMD and floating point */ 14206 disas_data_proc_simd_fp(s, insn); 14207 break; 14208 default: 14209 unallocated_encoding(s); 14210 break; 14211 } 14212 } 14213 14214 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14215 CPUState *cpu) 14216 { 14217 DisasContext *dc = container_of(dcbase, DisasContext, base); 14218 CPUARMState *env = cpu->env_ptr; 14219 ARMCPU *arm_cpu = env_archcpu(env); 14220 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14221 int bound, core_mmu_idx; 14222 14223 dc->isar = &arm_cpu->isar; 14224 dc->condjmp = 0; 14225 dc->pc_save = dc->base.pc_first; 14226 dc->aarch64 = true; 14227 dc->thumb = false; 14228 dc->sctlr_b = 0; 14229 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14230 dc->condexec_mask = 0; 14231 dc->condexec_cond = 0; 14232 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14233 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14234 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14235 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14236 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14237 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14238 #if !defined(CONFIG_USER_ONLY) 14239 dc->user = (dc->current_el == 0); 14240 #endif 14241 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14242 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14243 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14244 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14245 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14246 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14247 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14248 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14249 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14250 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14251 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14252 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14253 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14254 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14255 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14256 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14257 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14258 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14259 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14260 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14261 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14262 dc->vec_len = 0; 14263 dc->vec_stride = 0; 14264 dc->cp_regs = arm_cpu->cp_regs; 14265 dc->features = env->features; 14266 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14267 14268 #ifdef CONFIG_USER_ONLY 14269 /* In sve_probe_page, we assume TBI is enabled. */ 14270 tcg_debug_assert(dc->tbid & 1); 14271 #endif 14272 14273 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14274 14275 /* Single step state. The code-generation logic here is: 14276 * SS_ACTIVE == 0: 14277 * generate code with no special handling for single-stepping (except 14278 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14279 * this happens anyway because those changes are all system register or 14280 * PSTATE writes). 14281 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14282 * emit code for one insn 14283 * emit code to clear PSTATE.SS 14284 * emit code to generate software step exception for completed step 14285 * end TB (as usual for having generated an exception) 14286 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14287 * emit code to generate a software step exception 14288 * end the TB 14289 */ 14290 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14291 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14292 dc->is_ldex = false; 14293 14294 /* Bound the number of insns to execute to those left on the page. */ 14295 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14296 14297 /* If architectural single step active, limit to 1. */ 14298 if (dc->ss_active) { 14299 bound = 1; 14300 } 14301 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14302 } 14303 14304 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14305 { 14306 } 14307 14308 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14309 { 14310 DisasContext *dc = container_of(dcbase, DisasContext, base); 14311 target_ulong pc_arg = dc->base.pc_next; 14312 14313 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14314 pc_arg &= ~TARGET_PAGE_MASK; 14315 } 14316 tcg_gen_insn_start(pc_arg, 0, 0); 14317 dc->insn_start = tcg_last_op(); 14318 } 14319 14320 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14321 { 14322 DisasContext *s = container_of(dcbase, DisasContext, base); 14323 CPUARMState *env = cpu->env_ptr; 14324 uint64_t pc = s->base.pc_next; 14325 uint32_t insn; 14326 14327 /* Singlestep exceptions have the highest priority. */ 14328 if (s->ss_active && !s->pstate_ss) { 14329 /* Singlestep state is Active-pending. 14330 * If we're in this state at the start of a TB then either 14331 * a) we just took an exception to an EL which is being debugged 14332 * and this is the first insn in the exception handler 14333 * b) debug exceptions were masked and we just unmasked them 14334 * without changing EL (eg by clearing PSTATE.D) 14335 * In either case we're going to take a swstep exception in the 14336 * "did not step an insn" case, and so the syndrome ISV and EX 14337 * bits should be zero. 14338 */ 14339 assert(s->base.num_insns == 1); 14340 gen_swstep_exception(s, 0, 0); 14341 s->base.is_jmp = DISAS_NORETURN; 14342 s->base.pc_next = pc + 4; 14343 return; 14344 } 14345 14346 if (pc & 3) { 14347 /* 14348 * PC alignment fault. This has priority over the instruction abort 14349 * that we would receive from a translation fault via arm_ldl_code. 14350 * This should only be possible after an indirect branch, at the 14351 * start of the TB. 14352 */ 14353 assert(s->base.num_insns == 1); 14354 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14355 s->base.is_jmp = DISAS_NORETURN; 14356 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14357 return; 14358 } 14359 14360 s->pc_curr = pc; 14361 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14362 s->insn = insn; 14363 s->base.pc_next = pc + 4; 14364 14365 s->fp_access_checked = false; 14366 s->sve_access_checked = false; 14367 14368 if (s->pstate_il) { 14369 /* 14370 * Illegal execution state. This has priority over BTI 14371 * exceptions, but comes after instruction abort exceptions. 14372 */ 14373 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14374 return; 14375 } 14376 14377 if (dc_isar_feature(aa64_bti, s)) { 14378 if (s->base.num_insns == 1) { 14379 /* 14380 * At the first insn of the TB, compute s->guarded_page. 14381 * We delayed computing this until successfully reading 14382 * the first insn of the TB, above. This (mostly) ensures 14383 * that the softmmu tlb entry has been populated, and the 14384 * page table GP bit is available. 14385 * 14386 * Note that we need to compute this even if btype == 0, 14387 * because this value is used for BR instructions later 14388 * where ENV is not available. 14389 */ 14390 s->guarded_page = is_guarded_page(env, s); 14391 14392 /* First insn can have btype set to non-zero. */ 14393 tcg_debug_assert(s->btype >= 0); 14394 14395 /* 14396 * Note that the Branch Target Exception has fairly high 14397 * priority -- below debugging exceptions but above most 14398 * everything else. This allows us to handle this now 14399 * instead of waiting until the insn is otherwise decoded. 14400 */ 14401 if (s->btype != 0 14402 && s->guarded_page 14403 && !btype_destination_ok(insn, s->bt, s->btype)) { 14404 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14405 return; 14406 } 14407 } else { 14408 /* Not the first insn: btype must be 0. */ 14409 tcg_debug_assert(s->btype == 0); 14410 } 14411 } 14412 14413 s->is_nonstreaming = false; 14414 if (s->sme_trap_nonstreaming) { 14415 disas_sme_fa64(s, insn); 14416 } 14417 14418 if (!disas_a64(s, insn) && 14419 !disas_sme(s, insn) && 14420 !disas_sve(s, insn)) { 14421 disas_a64_legacy(s, insn); 14422 } 14423 14424 /* 14425 * After execution of most insns, btype is reset to 0. 14426 * Note that we set btype == -1 when the insn sets btype. 14427 */ 14428 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14429 reset_btype(s); 14430 } 14431 } 14432 14433 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14434 { 14435 DisasContext *dc = container_of(dcbase, DisasContext, base); 14436 14437 if (unlikely(dc->ss_active)) { 14438 /* Note that this means single stepping WFI doesn't halt the CPU. 14439 * For conditional branch insns this is harmless unreachable code as 14440 * gen_goto_tb() has already handled emitting the debug exception 14441 * (and thus a tb-jump is not possible when singlestepping). 14442 */ 14443 switch (dc->base.is_jmp) { 14444 default: 14445 gen_a64_update_pc(dc, 4); 14446 /* fall through */ 14447 case DISAS_EXIT: 14448 case DISAS_JUMP: 14449 gen_step_complete_exception(dc); 14450 break; 14451 case DISAS_NORETURN: 14452 break; 14453 } 14454 } else { 14455 switch (dc->base.is_jmp) { 14456 case DISAS_NEXT: 14457 case DISAS_TOO_MANY: 14458 gen_goto_tb(dc, 1, 4); 14459 break; 14460 default: 14461 case DISAS_UPDATE_EXIT: 14462 gen_a64_update_pc(dc, 4); 14463 /* fall through */ 14464 case DISAS_EXIT: 14465 tcg_gen_exit_tb(NULL, 0); 14466 break; 14467 case DISAS_UPDATE_NOCHAIN: 14468 gen_a64_update_pc(dc, 4); 14469 /* fall through */ 14470 case DISAS_JUMP: 14471 tcg_gen_lookup_and_goto_ptr(); 14472 break; 14473 case DISAS_NORETURN: 14474 case DISAS_SWI: 14475 break; 14476 case DISAS_WFE: 14477 gen_a64_update_pc(dc, 4); 14478 gen_helper_wfe(cpu_env); 14479 break; 14480 case DISAS_YIELD: 14481 gen_a64_update_pc(dc, 4); 14482 gen_helper_yield(cpu_env); 14483 break; 14484 case DISAS_WFI: 14485 /* 14486 * This is a special case because we don't want to just halt 14487 * the CPU if trying to debug across a WFI. 14488 */ 14489 gen_a64_update_pc(dc, 4); 14490 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14491 /* 14492 * The helper doesn't necessarily throw an exception, but we 14493 * must go back to the main loop to check for interrupts anyway. 14494 */ 14495 tcg_gen_exit_tb(NULL, 0); 14496 break; 14497 } 14498 } 14499 } 14500 14501 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14502 CPUState *cpu, FILE *logfile) 14503 { 14504 DisasContext *dc = container_of(dcbase, DisasContext, base); 14505 14506 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14507 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14508 } 14509 14510 const TranslatorOps aarch64_translator_ops = { 14511 .init_disas_context = aarch64_tr_init_disas_context, 14512 .tb_start = aarch64_tr_tb_start, 14513 .insn_start = aarch64_tr_insn_start, 14514 .translate_insn = aarch64_tr_translate_insn, 14515 .tb_stop = aarch64_tr_tb_stop, 14516 .disas_log = aarch64_tr_disas_log, 14517 }; 14518