1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 4979 gen_helper_gvec_3_ptr * const fns[3]) 4980 { 4981 MemOp esz = a->esz; 4982 4983 switch (esz) { 4984 case MO_64: 4985 if (!a->q) { 4986 return false; 4987 } 4988 break; 4989 case MO_32: 4990 break; 4991 case MO_16: 4992 if (!dc_isar_feature(aa64_fp16, s)) { 4993 return false; 4994 } 4995 break; 4996 default: 4997 return false; 4998 } 4999 if (fp_access_check(s)) { 5000 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5001 esz == MO_16, 0, fns[esz - 1]); 5002 } 5003 return true; 5004 } 5005 5006 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5007 gen_helper_gvec_fadd_h, 5008 gen_helper_gvec_fadd_s, 5009 gen_helper_gvec_fadd_d, 5010 }; 5011 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5012 5013 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5014 gen_helper_gvec_fsub_h, 5015 gen_helper_gvec_fsub_s, 5016 gen_helper_gvec_fsub_d, 5017 }; 5018 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5019 5020 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5021 gen_helper_gvec_fdiv_h, 5022 gen_helper_gvec_fdiv_s, 5023 gen_helper_gvec_fdiv_d, 5024 }; 5025 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5026 5027 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5028 gen_helper_gvec_fmul_h, 5029 gen_helper_gvec_fmul_s, 5030 gen_helper_gvec_fmul_d, 5031 }; 5032 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5033 5034 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5035 gen_helper_gvec_fmax_h, 5036 gen_helper_gvec_fmax_s, 5037 gen_helper_gvec_fmax_d, 5038 }; 5039 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5040 5041 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5042 gen_helper_gvec_fmin_h, 5043 gen_helper_gvec_fmin_s, 5044 gen_helper_gvec_fmin_d, 5045 }; 5046 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5047 5048 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5049 gen_helper_gvec_fmaxnum_h, 5050 gen_helper_gvec_fmaxnum_s, 5051 gen_helper_gvec_fmaxnum_d, 5052 }; 5053 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5054 5055 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5056 gen_helper_gvec_fminnum_h, 5057 gen_helper_gvec_fminnum_s, 5058 gen_helper_gvec_fminnum_d, 5059 }; 5060 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5061 5062 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5063 gen_helper_gvec_fmulx_h, 5064 gen_helper_gvec_fmulx_s, 5065 gen_helper_gvec_fmulx_d, 5066 }; 5067 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5068 5069 /* 5070 * Advanced SIMD scalar/vector x indexed element 5071 */ 5072 5073 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5074 { 5075 switch (a->esz) { 5076 case MO_64: 5077 if (fp_access_check(s)) { 5078 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5079 TCGv_i64 t1 = tcg_temp_new_i64(); 5080 5081 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5082 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5083 write_fp_dreg(s, a->rd, t0); 5084 } 5085 break; 5086 case MO_32: 5087 if (fp_access_check(s)) { 5088 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5089 TCGv_i32 t1 = tcg_temp_new_i32(); 5090 5091 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5092 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5093 write_fp_sreg(s, a->rd, t0); 5094 } 5095 break; 5096 case MO_16: 5097 if (!dc_isar_feature(aa64_fp16, s)) { 5098 return false; 5099 } 5100 if (fp_access_check(s)) { 5101 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5102 TCGv_i32 t1 = tcg_temp_new_i32(); 5103 5104 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5105 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5106 write_fp_sreg(s, a->rd, t0); 5107 } 5108 break; 5109 default: 5110 g_assert_not_reached(); 5111 } 5112 return true; 5113 } 5114 5115 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5116 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5117 5118 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5119 gen_helper_gvec_3_ptr * const fns[3]) 5120 { 5121 MemOp esz = a->esz; 5122 5123 switch (esz) { 5124 case MO_64: 5125 if (!a->q) { 5126 return false; 5127 } 5128 break; 5129 case MO_32: 5130 break; 5131 case MO_16: 5132 if (!dc_isar_feature(aa64_fp16, s)) { 5133 return false; 5134 } 5135 break; 5136 default: 5137 g_assert_not_reached(); 5138 } 5139 if (fp_access_check(s)) { 5140 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5141 esz == MO_16, a->idx, fns[esz - 1]); 5142 } 5143 return true; 5144 } 5145 5146 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5147 gen_helper_gvec_fmul_idx_h, 5148 gen_helper_gvec_fmul_idx_s, 5149 gen_helper_gvec_fmul_idx_d, 5150 }; 5151 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5152 5153 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5154 gen_helper_gvec_fmulx_idx_h, 5155 gen_helper_gvec_fmulx_idx_s, 5156 gen_helper_gvec_fmulx_idx_d, 5157 }; 5158 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5159 5160 5161 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5162 * Note that it is the caller's responsibility to ensure that the 5163 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5164 * mandated semantics for out of range shifts. 5165 */ 5166 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5167 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5168 { 5169 switch (shift_type) { 5170 case A64_SHIFT_TYPE_LSL: 5171 tcg_gen_shl_i64(dst, src, shift_amount); 5172 break; 5173 case A64_SHIFT_TYPE_LSR: 5174 tcg_gen_shr_i64(dst, src, shift_amount); 5175 break; 5176 case A64_SHIFT_TYPE_ASR: 5177 if (!sf) { 5178 tcg_gen_ext32s_i64(dst, src); 5179 } 5180 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5181 break; 5182 case A64_SHIFT_TYPE_ROR: 5183 if (sf) { 5184 tcg_gen_rotr_i64(dst, src, shift_amount); 5185 } else { 5186 TCGv_i32 t0, t1; 5187 t0 = tcg_temp_new_i32(); 5188 t1 = tcg_temp_new_i32(); 5189 tcg_gen_extrl_i64_i32(t0, src); 5190 tcg_gen_extrl_i64_i32(t1, shift_amount); 5191 tcg_gen_rotr_i32(t0, t0, t1); 5192 tcg_gen_extu_i32_i64(dst, t0); 5193 } 5194 break; 5195 default: 5196 assert(FALSE); /* all shift types should be handled */ 5197 break; 5198 } 5199 5200 if (!sf) { /* zero extend final result */ 5201 tcg_gen_ext32u_i64(dst, dst); 5202 } 5203 } 5204 5205 /* Shift a TCGv src by immediate, put result in dst. 5206 * The shift amount must be in range (this should always be true as the 5207 * relevant instructions will UNDEF on bad shift immediates). 5208 */ 5209 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5210 enum a64_shift_type shift_type, unsigned int shift_i) 5211 { 5212 assert(shift_i < (sf ? 64 : 32)); 5213 5214 if (shift_i == 0) { 5215 tcg_gen_mov_i64(dst, src); 5216 } else { 5217 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5218 } 5219 } 5220 5221 /* Logical (shifted register) 5222 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5223 * +----+-----+-----------+-------+---+------+--------+------+------+ 5224 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5225 * +----+-----+-----------+-------+---+------+--------+------+------+ 5226 */ 5227 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5228 { 5229 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5230 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5231 5232 sf = extract32(insn, 31, 1); 5233 opc = extract32(insn, 29, 2); 5234 shift_type = extract32(insn, 22, 2); 5235 invert = extract32(insn, 21, 1); 5236 rm = extract32(insn, 16, 5); 5237 shift_amount = extract32(insn, 10, 6); 5238 rn = extract32(insn, 5, 5); 5239 rd = extract32(insn, 0, 5); 5240 5241 if (!sf && (shift_amount & (1 << 5))) { 5242 unallocated_encoding(s); 5243 return; 5244 } 5245 5246 tcg_rd = cpu_reg(s, rd); 5247 5248 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5249 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5250 * register-register MOV and MVN, so it is worth special casing. 5251 */ 5252 tcg_rm = cpu_reg(s, rm); 5253 if (invert) { 5254 tcg_gen_not_i64(tcg_rd, tcg_rm); 5255 if (!sf) { 5256 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5257 } 5258 } else { 5259 if (sf) { 5260 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5261 } else { 5262 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5263 } 5264 } 5265 return; 5266 } 5267 5268 tcg_rm = read_cpu_reg(s, rm, sf); 5269 5270 if (shift_amount) { 5271 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5272 } 5273 5274 tcg_rn = cpu_reg(s, rn); 5275 5276 switch (opc | (invert << 2)) { 5277 case 0: /* AND */ 5278 case 3: /* ANDS */ 5279 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5280 break; 5281 case 1: /* ORR */ 5282 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5283 break; 5284 case 2: /* EOR */ 5285 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5286 break; 5287 case 4: /* BIC */ 5288 case 7: /* BICS */ 5289 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5290 break; 5291 case 5: /* ORN */ 5292 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5293 break; 5294 case 6: /* EON */ 5295 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5296 break; 5297 default: 5298 assert(FALSE); 5299 break; 5300 } 5301 5302 if (!sf) { 5303 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5304 } 5305 5306 if (opc == 3) { 5307 gen_logic_CC(sf, tcg_rd); 5308 } 5309 } 5310 5311 /* 5312 * Add/subtract (extended register) 5313 * 5314 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5315 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5316 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5317 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5318 * 5319 * sf: 0 -> 32bit, 1 -> 64bit 5320 * op: 0 -> add , 1 -> sub 5321 * S: 1 -> set flags 5322 * opt: 00 5323 * option: extension type (see DecodeRegExtend) 5324 * imm3: optional shift to Rm 5325 * 5326 * Rd = Rn + LSL(extend(Rm), amount) 5327 */ 5328 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5329 { 5330 int rd = extract32(insn, 0, 5); 5331 int rn = extract32(insn, 5, 5); 5332 int imm3 = extract32(insn, 10, 3); 5333 int option = extract32(insn, 13, 3); 5334 int rm = extract32(insn, 16, 5); 5335 int opt = extract32(insn, 22, 2); 5336 bool setflags = extract32(insn, 29, 1); 5337 bool sub_op = extract32(insn, 30, 1); 5338 bool sf = extract32(insn, 31, 1); 5339 5340 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5341 TCGv_i64 tcg_rd; 5342 TCGv_i64 tcg_result; 5343 5344 if (imm3 > 4 || opt != 0) { 5345 unallocated_encoding(s); 5346 return; 5347 } 5348 5349 /* non-flag setting ops may use SP */ 5350 if (!setflags) { 5351 tcg_rd = cpu_reg_sp(s, rd); 5352 } else { 5353 tcg_rd = cpu_reg(s, rd); 5354 } 5355 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5356 5357 tcg_rm = read_cpu_reg(s, rm, sf); 5358 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5359 5360 tcg_result = tcg_temp_new_i64(); 5361 5362 if (!setflags) { 5363 if (sub_op) { 5364 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5365 } else { 5366 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5367 } 5368 } else { 5369 if (sub_op) { 5370 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5371 } else { 5372 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5373 } 5374 } 5375 5376 if (sf) { 5377 tcg_gen_mov_i64(tcg_rd, tcg_result); 5378 } else { 5379 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5380 } 5381 } 5382 5383 /* 5384 * Add/subtract (shifted register) 5385 * 5386 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5387 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5388 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5389 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5390 * 5391 * sf: 0 -> 32bit, 1 -> 64bit 5392 * op: 0 -> add , 1 -> sub 5393 * S: 1 -> set flags 5394 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5395 * imm6: Shift amount to apply to Rm before the add/sub 5396 */ 5397 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5398 { 5399 int rd = extract32(insn, 0, 5); 5400 int rn = extract32(insn, 5, 5); 5401 int imm6 = extract32(insn, 10, 6); 5402 int rm = extract32(insn, 16, 5); 5403 int shift_type = extract32(insn, 22, 2); 5404 bool setflags = extract32(insn, 29, 1); 5405 bool sub_op = extract32(insn, 30, 1); 5406 bool sf = extract32(insn, 31, 1); 5407 5408 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5409 TCGv_i64 tcg_rn, tcg_rm; 5410 TCGv_i64 tcg_result; 5411 5412 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5413 unallocated_encoding(s); 5414 return; 5415 } 5416 5417 tcg_rn = read_cpu_reg(s, rn, sf); 5418 tcg_rm = read_cpu_reg(s, rm, sf); 5419 5420 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5421 5422 tcg_result = tcg_temp_new_i64(); 5423 5424 if (!setflags) { 5425 if (sub_op) { 5426 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5427 } else { 5428 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5429 } 5430 } else { 5431 if (sub_op) { 5432 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5433 } else { 5434 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5435 } 5436 } 5437 5438 if (sf) { 5439 tcg_gen_mov_i64(tcg_rd, tcg_result); 5440 } else { 5441 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5442 } 5443 } 5444 5445 /* Data-processing (3 source) 5446 * 5447 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5448 * +--+------+-----------+------+------+----+------+------+------+ 5449 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5450 * +--+------+-----------+------+------+----+------+------+------+ 5451 */ 5452 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5453 { 5454 int rd = extract32(insn, 0, 5); 5455 int rn = extract32(insn, 5, 5); 5456 int ra = extract32(insn, 10, 5); 5457 int rm = extract32(insn, 16, 5); 5458 int op_id = (extract32(insn, 29, 3) << 4) | 5459 (extract32(insn, 21, 3) << 1) | 5460 extract32(insn, 15, 1); 5461 bool sf = extract32(insn, 31, 1); 5462 bool is_sub = extract32(op_id, 0, 1); 5463 bool is_high = extract32(op_id, 2, 1); 5464 bool is_signed = false; 5465 TCGv_i64 tcg_op1; 5466 TCGv_i64 tcg_op2; 5467 TCGv_i64 tcg_tmp; 5468 5469 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5470 switch (op_id) { 5471 case 0x42: /* SMADDL */ 5472 case 0x43: /* SMSUBL */ 5473 case 0x44: /* SMULH */ 5474 is_signed = true; 5475 break; 5476 case 0x0: /* MADD (32bit) */ 5477 case 0x1: /* MSUB (32bit) */ 5478 case 0x40: /* MADD (64bit) */ 5479 case 0x41: /* MSUB (64bit) */ 5480 case 0x4a: /* UMADDL */ 5481 case 0x4b: /* UMSUBL */ 5482 case 0x4c: /* UMULH */ 5483 break; 5484 default: 5485 unallocated_encoding(s); 5486 return; 5487 } 5488 5489 if (is_high) { 5490 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5491 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5492 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5493 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5494 5495 if (is_signed) { 5496 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5497 } else { 5498 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5499 } 5500 return; 5501 } 5502 5503 tcg_op1 = tcg_temp_new_i64(); 5504 tcg_op2 = tcg_temp_new_i64(); 5505 tcg_tmp = tcg_temp_new_i64(); 5506 5507 if (op_id < 0x42) { 5508 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5509 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5510 } else { 5511 if (is_signed) { 5512 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5513 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5514 } else { 5515 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5516 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5517 } 5518 } 5519 5520 if (ra == 31 && !is_sub) { 5521 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5522 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5523 } else { 5524 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5525 if (is_sub) { 5526 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5527 } else { 5528 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5529 } 5530 } 5531 5532 if (!sf) { 5533 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5534 } 5535 } 5536 5537 /* Add/subtract (with carry) 5538 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5539 * +--+--+--+------------------------+------+-------------+------+-----+ 5540 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5541 * +--+--+--+------------------------+------+-------------+------+-----+ 5542 */ 5543 5544 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5545 { 5546 unsigned int sf, op, setflags, rm, rn, rd; 5547 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5548 5549 sf = extract32(insn, 31, 1); 5550 op = extract32(insn, 30, 1); 5551 setflags = extract32(insn, 29, 1); 5552 rm = extract32(insn, 16, 5); 5553 rn = extract32(insn, 5, 5); 5554 rd = extract32(insn, 0, 5); 5555 5556 tcg_rd = cpu_reg(s, rd); 5557 tcg_rn = cpu_reg(s, rn); 5558 5559 if (op) { 5560 tcg_y = tcg_temp_new_i64(); 5561 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5562 } else { 5563 tcg_y = cpu_reg(s, rm); 5564 } 5565 5566 if (setflags) { 5567 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5568 } else { 5569 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5570 } 5571 } 5572 5573 /* 5574 * Rotate right into flags 5575 * 31 30 29 21 15 10 5 4 0 5576 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5577 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5578 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5579 */ 5580 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5581 { 5582 int mask = extract32(insn, 0, 4); 5583 int o2 = extract32(insn, 4, 1); 5584 int rn = extract32(insn, 5, 5); 5585 int imm6 = extract32(insn, 15, 6); 5586 int sf_op_s = extract32(insn, 29, 3); 5587 TCGv_i64 tcg_rn; 5588 TCGv_i32 nzcv; 5589 5590 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5591 unallocated_encoding(s); 5592 return; 5593 } 5594 5595 tcg_rn = read_cpu_reg(s, rn, 1); 5596 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5597 5598 nzcv = tcg_temp_new_i32(); 5599 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5600 5601 if (mask & 8) { /* N */ 5602 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5603 } 5604 if (mask & 4) { /* Z */ 5605 tcg_gen_not_i32(cpu_ZF, nzcv); 5606 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5607 } 5608 if (mask & 2) { /* C */ 5609 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5610 } 5611 if (mask & 1) { /* V */ 5612 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5613 } 5614 } 5615 5616 /* 5617 * Evaluate into flags 5618 * 31 30 29 21 15 14 10 5 4 0 5619 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5620 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5621 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5622 */ 5623 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5624 { 5625 int o3_mask = extract32(insn, 0, 5); 5626 int rn = extract32(insn, 5, 5); 5627 int o2 = extract32(insn, 15, 6); 5628 int sz = extract32(insn, 14, 1); 5629 int sf_op_s = extract32(insn, 29, 3); 5630 TCGv_i32 tmp; 5631 int shift; 5632 5633 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5634 !dc_isar_feature(aa64_condm_4, s)) { 5635 unallocated_encoding(s); 5636 return; 5637 } 5638 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5639 5640 tmp = tcg_temp_new_i32(); 5641 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5642 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5643 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5644 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5645 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5646 } 5647 5648 /* Conditional compare (immediate / register) 5649 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5650 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5651 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5652 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5653 * [1] y [0] [0] 5654 */ 5655 static void disas_cc(DisasContext *s, uint32_t insn) 5656 { 5657 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5658 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5659 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5660 DisasCompare c; 5661 5662 if (!extract32(insn, 29, 1)) { 5663 unallocated_encoding(s); 5664 return; 5665 } 5666 if (insn & (1 << 10 | 1 << 4)) { 5667 unallocated_encoding(s); 5668 return; 5669 } 5670 sf = extract32(insn, 31, 1); 5671 op = extract32(insn, 30, 1); 5672 is_imm = extract32(insn, 11, 1); 5673 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5674 cond = extract32(insn, 12, 4); 5675 rn = extract32(insn, 5, 5); 5676 nzcv = extract32(insn, 0, 4); 5677 5678 /* Set T0 = !COND. */ 5679 tcg_t0 = tcg_temp_new_i32(); 5680 arm_test_cc(&c, cond); 5681 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5682 5683 /* Load the arguments for the new comparison. */ 5684 if (is_imm) { 5685 tcg_y = tcg_temp_new_i64(); 5686 tcg_gen_movi_i64(tcg_y, y); 5687 } else { 5688 tcg_y = cpu_reg(s, y); 5689 } 5690 tcg_rn = cpu_reg(s, rn); 5691 5692 /* Set the flags for the new comparison. */ 5693 tcg_tmp = tcg_temp_new_i64(); 5694 if (op) { 5695 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5696 } else { 5697 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5698 } 5699 5700 /* If COND was false, force the flags to #nzcv. Compute two masks 5701 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5702 * For tcg hosts that support ANDC, we can make do with just T1. 5703 * In either case, allow the tcg optimizer to delete any unused mask. 5704 */ 5705 tcg_t1 = tcg_temp_new_i32(); 5706 tcg_t2 = tcg_temp_new_i32(); 5707 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5708 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5709 5710 if (nzcv & 8) { /* N */ 5711 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5712 } else { 5713 if (TCG_TARGET_HAS_andc_i32) { 5714 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5715 } else { 5716 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5717 } 5718 } 5719 if (nzcv & 4) { /* Z */ 5720 if (TCG_TARGET_HAS_andc_i32) { 5721 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5722 } else { 5723 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5724 } 5725 } else { 5726 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5727 } 5728 if (nzcv & 2) { /* C */ 5729 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5730 } else { 5731 if (TCG_TARGET_HAS_andc_i32) { 5732 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5733 } else { 5734 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5735 } 5736 } 5737 if (nzcv & 1) { /* V */ 5738 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5739 } else { 5740 if (TCG_TARGET_HAS_andc_i32) { 5741 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5742 } else { 5743 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5744 } 5745 } 5746 } 5747 5748 /* Conditional select 5749 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5750 * +----+----+---+-----------------+------+------+-----+------+------+ 5751 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5752 * +----+----+---+-----------------+------+------+-----+------+------+ 5753 */ 5754 static void disas_cond_select(DisasContext *s, uint32_t insn) 5755 { 5756 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5757 TCGv_i64 tcg_rd, zero; 5758 DisasCompare64 c; 5759 5760 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5761 /* S == 1 or op2<1> == 1 */ 5762 unallocated_encoding(s); 5763 return; 5764 } 5765 sf = extract32(insn, 31, 1); 5766 else_inv = extract32(insn, 30, 1); 5767 rm = extract32(insn, 16, 5); 5768 cond = extract32(insn, 12, 4); 5769 else_inc = extract32(insn, 10, 1); 5770 rn = extract32(insn, 5, 5); 5771 rd = extract32(insn, 0, 5); 5772 5773 tcg_rd = cpu_reg(s, rd); 5774 5775 a64_test_cc(&c, cond); 5776 zero = tcg_constant_i64(0); 5777 5778 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5779 /* CSET & CSETM. */ 5780 if (else_inv) { 5781 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5782 tcg_rd, c.value, zero); 5783 } else { 5784 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5785 tcg_rd, c.value, zero); 5786 } 5787 } else { 5788 TCGv_i64 t_true = cpu_reg(s, rn); 5789 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5790 if (else_inv && else_inc) { 5791 tcg_gen_neg_i64(t_false, t_false); 5792 } else if (else_inv) { 5793 tcg_gen_not_i64(t_false, t_false); 5794 } else if (else_inc) { 5795 tcg_gen_addi_i64(t_false, t_false, 1); 5796 } 5797 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5798 } 5799 5800 if (!sf) { 5801 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5802 } 5803 } 5804 5805 static void handle_clz(DisasContext *s, unsigned int sf, 5806 unsigned int rn, unsigned int rd) 5807 { 5808 TCGv_i64 tcg_rd, tcg_rn; 5809 tcg_rd = cpu_reg(s, rd); 5810 tcg_rn = cpu_reg(s, rn); 5811 5812 if (sf) { 5813 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5814 } else { 5815 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5816 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5817 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5818 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5819 } 5820 } 5821 5822 static void handle_cls(DisasContext *s, unsigned int sf, 5823 unsigned int rn, unsigned int rd) 5824 { 5825 TCGv_i64 tcg_rd, tcg_rn; 5826 tcg_rd = cpu_reg(s, rd); 5827 tcg_rn = cpu_reg(s, rn); 5828 5829 if (sf) { 5830 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5831 } else { 5832 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5833 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5834 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5835 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5836 } 5837 } 5838 5839 static void handle_rbit(DisasContext *s, unsigned int sf, 5840 unsigned int rn, unsigned int rd) 5841 { 5842 TCGv_i64 tcg_rd, tcg_rn; 5843 tcg_rd = cpu_reg(s, rd); 5844 tcg_rn = cpu_reg(s, rn); 5845 5846 if (sf) { 5847 gen_helper_rbit64(tcg_rd, tcg_rn); 5848 } else { 5849 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5850 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5851 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5852 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5853 } 5854 } 5855 5856 /* REV with sf==1, opcode==3 ("REV64") */ 5857 static void handle_rev64(DisasContext *s, unsigned int sf, 5858 unsigned int rn, unsigned int rd) 5859 { 5860 if (!sf) { 5861 unallocated_encoding(s); 5862 return; 5863 } 5864 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5865 } 5866 5867 /* REV with sf==0, opcode==2 5868 * REV32 (sf==1, opcode==2) 5869 */ 5870 static void handle_rev32(DisasContext *s, unsigned int sf, 5871 unsigned int rn, unsigned int rd) 5872 { 5873 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5874 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5875 5876 if (sf) { 5877 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5878 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5879 } else { 5880 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5881 } 5882 } 5883 5884 /* REV16 (opcode==1) */ 5885 static void handle_rev16(DisasContext *s, unsigned int sf, 5886 unsigned int rn, unsigned int rd) 5887 { 5888 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5889 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5890 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5891 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5892 5893 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5894 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5895 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5896 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5897 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5898 } 5899 5900 /* Data-processing (1 source) 5901 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5902 * +----+---+---+-----------------+---------+--------+------+------+ 5903 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5904 * +----+---+---+-----------------+---------+--------+------+------+ 5905 */ 5906 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5907 { 5908 unsigned int sf, opcode, opcode2, rn, rd; 5909 TCGv_i64 tcg_rd; 5910 5911 if (extract32(insn, 29, 1)) { 5912 unallocated_encoding(s); 5913 return; 5914 } 5915 5916 sf = extract32(insn, 31, 1); 5917 opcode = extract32(insn, 10, 6); 5918 opcode2 = extract32(insn, 16, 5); 5919 rn = extract32(insn, 5, 5); 5920 rd = extract32(insn, 0, 5); 5921 5922 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5923 5924 switch (MAP(sf, opcode2, opcode)) { 5925 case MAP(0, 0x00, 0x00): /* RBIT */ 5926 case MAP(1, 0x00, 0x00): 5927 handle_rbit(s, sf, rn, rd); 5928 break; 5929 case MAP(0, 0x00, 0x01): /* REV16 */ 5930 case MAP(1, 0x00, 0x01): 5931 handle_rev16(s, sf, rn, rd); 5932 break; 5933 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5934 case MAP(1, 0x00, 0x02): 5935 handle_rev32(s, sf, rn, rd); 5936 break; 5937 case MAP(1, 0x00, 0x03): /* REV64 */ 5938 handle_rev64(s, sf, rn, rd); 5939 break; 5940 case MAP(0, 0x00, 0x04): /* CLZ */ 5941 case MAP(1, 0x00, 0x04): 5942 handle_clz(s, sf, rn, rd); 5943 break; 5944 case MAP(0, 0x00, 0x05): /* CLS */ 5945 case MAP(1, 0x00, 0x05): 5946 handle_cls(s, sf, rn, rd); 5947 break; 5948 case MAP(1, 0x01, 0x00): /* PACIA */ 5949 if (s->pauth_active) { 5950 tcg_rd = cpu_reg(s, rd); 5951 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5952 } else if (!dc_isar_feature(aa64_pauth, s)) { 5953 goto do_unallocated; 5954 } 5955 break; 5956 case MAP(1, 0x01, 0x01): /* PACIB */ 5957 if (s->pauth_active) { 5958 tcg_rd = cpu_reg(s, rd); 5959 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5960 } else if (!dc_isar_feature(aa64_pauth, s)) { 5961 goto do_unallocated; 5962 } 5963 break; 5964 case MAP(1, 0x01, 0x02): /* PACDA */ 5965 if (s->pauth_active) { 5966 tcg_rd = cpu_reg(s, rd); 5967 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5968 } else if (!dc_isar_feature(aa64_pauth, s)) { 5969 goto do_unallocated; 5970 } 5971 break; 5972 case MAP(1, 0x01, 0x03): /* PACDB */ 5973 if (s->pauth_active) { 5974 tcg_rd = cpu_reg(s, rd); 5975 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5976 } else if (!dc_isar_feature(aa64_pauth, s)) { 5977 goto do_unallocated; 5978 } 5979 break; 5980 case MAP(1, 0x01, 0x04): /* AUTIA */ 5981 if (s->pauth_active) { 5982 tcg_rd = cpu_reg(s, rd); 5983 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5984 } else if (!dc_isar_feature(aa64_pauth, s)) { 5985 goto do_unallocated; 5986 } 5987 break; 5988 case MAP(1, 0x01, 0x05): /* AUTIB */ 5989 if (s->pauth_active) { 5990 tcg_rd = cpu_reg(s, rd); 5991 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5992 } else if (!dc_isar_feature(aa64_pauth, s)) { 5993 goto do_unallocated; 5994 } 5995 break; 5996 case MAP(1, 0x01, 0x06): /* AUTDA */ 5997 if (s->pauth_active) { 5998 tcg_rd = cpu_reg(s, rd); 5999 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6000 } else if (!dc_isar_feature(aa64_pauth, s)) { 6001 goto do_unallocated; 6002 } 6003 break; 6004 case MAP(1, 0x01, 0x07): /* AUTDB */ 6005 if (s->pauth_active) { 6006 tcg_rd = cpu_reg(s, rd); 6007 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6008 } else if (!dc_isar_feature(aa64_pauth, s)) { 6009 goto do_unallocated; 6010 } 6011 break; 6012 case MAP(1, 0x01, 0x08): /* PACIZA */ 6013 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6014 goto do_unallocated; 6015 } else if (s->pauth_active) { 6016 tcg_rd = cpu_reg(s, rd); 6017 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6018 } 6019 break; 6020 case MAP(1, 0x01, 0x09): /* PACIZB */ 6021 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6022 goto do_unallocated; 6023 } else if (s->pauth_active) { 6024 tcg_rd = cpu_reg(s, rd); 6025 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6026 } 6027 break; 6028 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6029 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6030 goto do_unallocated; 6031 } else if (s->pauth_active) { 6032 tcg_rd = cpu_reg(s, rd); 6033 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6034 } 6035 break; 6036 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6037 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6038 goto do_unallocated; 6039 } else if (s->pauth_active) { 6040 tcg_rd = cpu_reg(s, rd); 6041 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6042 } 6043 break; 6044 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6045 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6046 goto do_unallocated; 6047 } else if (s->pauth_active) { 6048 tcg_rd = cpu_reg(s, rd); 6049 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6050 } 6051 break; 6052 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6053 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6054 goto do_unallocated; 6055 } else if (s->pauth_active) { 6056 tcg_rd = cpu_reg(s, rd); 6057 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6058 } 6059 break; 6060 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6061 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6062 goto do_unallocated; 6063 } else if (s->pauth_active) { 6064 tcg_rd = cpu_reg(s, rd); 6065 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6066 } 6067 break; 6068 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6069 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6070 goto do_unallocated; 6071 } else if (s->pauth_active) { 6072 tcg_rd = cpu_reg(s, rd); 6073 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6074 } 6075 break; 6076 case MAP(1, 0x01, 0x10): /* XPACI */ 6077 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6078 goto do_unallocated; 6079 } else if (s->pauth_active) { 6080 tcg_rd = cpu_reg(s, rd); 6081 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6082 } 6083 break; 6084 case MAP(1, 0x01, 0x11): /* XPACD */ 6085 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6086 goto do_unallocated; 6087 } else if (s->pauth_active) { 6088 tcg_rd = cpu_reg(s, rd); 6089 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6090 } 6091 break; 6092 default: 6093 do_unallocated: 6094 unallocated_encoding(s); 6095 break; 6096 } 6097 6098 #undef MAP 6099 } 6100 6101 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6102 unsigned int rm, unsigned int rn, unsigned int rd) 6103 { 6104 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6105 tcg_rd = cpu_reg(s, rd); 6106 6107 if (!sf && is_signed) { 6108 tcg_n = tcg_temp_new_i64(); 6109 tcg_m = tcg_temp_new_i64(); 6110 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6111 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6112 } else { 6113 tcg_n = read_cpu_reg(s, rn, sf); 6114 tcg_m = read_cpu_reg(s, rm, sf); 6115 } 6116 6117 if (is_signed) { 6118 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6119 } else { 6120 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6121 } 6122 6123 if (!sf) { /* zero extend final result */ 6124 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6125 } 6126 } 6127 6128 /* LSLV, LSRV, ASRV, RORV */ 6129 static void handle_shift_reg(DisasContext *s, 6130 enum a64_shift_type shift_type, unsigned int sf, 6131 unsigned int rm, unsigned int rn, unsigned int rd) 6132 { 6133 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6134 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6135 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6136 6137 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6138 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6139 } 6140 6141 /* CRC32[BHWX], CRC32C[BHWX] */ 6142 static void handle_crc32(DisasContext *s, 6143 unsigned int sf, unsigned int sz, bool crc32c, 6144 unsigned int rm, unsigned int rn, unsigned int rd) 6145 { 6146 TCGv_i64 tcg_acc, tcg_val; 6147 TCGv_i32 tcg_bytes; 6148 6149 if (!dc_isar_feature(aa64_crc32, s) 6150 || (sf == 1 && sz != 3) 6151 || (sf == 0 && sz == 3)) { 6152 unallocated_encoding(s); 6153 return; 6154 } 6155 6156 if (sz == 3) { 6157 tcg_val = cpu_reg(s, rm); 6158 } else { 6159 uint64_t mask; 6160 switch (sz) { 6161 case 0: 6162 mask = 0xFF; 6163 break; 6164 case 1: 6165 mask = 0xFFFF; 6166 break; 6167 case 2: 6168 mask = 0xFFFFFFFF; 6169 break; 6170 default: 6171 g_assert_not_reached(); 6172 } 6173 tcg_val = tcg_temp_new_i64(); 6174 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6175 } 6176 6177 tcg_acc = cpu_reg(s, rn); 6178 tcg_bytes = tcg_constant_i32(1 << sz); 6179 6180 if (crc32c) { 6181 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6182 } else { 6183 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6184 } 6185 } 6186 6187 /* Data-processing (2 source) 6188 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6189 * +----+---+---+-----------------+------+--------+------+------+ 6190 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6191 * +----+---+---+-----------------+------+--------+------+------+ 6192 */ 6193 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6194 { 6195 unsigned int sf, rm, opcode, rn, rd, setflag; 6196 sf = extract32(insn, 31, 1); 6197 setflag = extract32(insn, 29, 1); 6198 rm = extract32(insn, 16, 5); 6199 opcode = extract32(insn, 10, 6); 6200 rn = extract32(insn, 5, 5); 6201 rd = extract32(insn, 0, 5); 6202 6203 if (setflag && opcode != 0) { 6204 unallocated_encoding(s); 6205 return; 6206 } 6207 6208 switch (opcode) { 6209 case 0: /* SUBP(S) */ 6210 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6211 goto do_unallocated; 6212 } else { 6213 TCGv_i64 tcg_n, tcg_m, tcg_d; 6214 6215 tcg_n = read_cpu_reg_sp(s, rn, true); 6216 tcg_m = read_cpu_reg_sp(s, rm, true); 6217 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6218 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6219 tcg_d = cpu_reg(s, rd); 6220 6221 if (setflag) { 6222 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6223 } else { 6224 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6225 } 6226 } 6227 break; 6228 case 2: /* UDIV */ 6229 handle_div(s, false, sf, rm, rn, rd); 6230 break; 6231 case 3: /* SDIV */ 6232 handle_div(s, true, sf, rm, rn, rd); 6233 break; 6234 case 4: /* IRG */ 6235 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6236 goto do_unallocated; 6237 } 6238 if (s->ata[0]) { 6239 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6240 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6241 } else { 6242 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6243 cpu_reg_sp(s, rn)); 6244 } 6245 break; 6246 case 5: /* GMI */ 6247 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6248 goto do_unallocated; 6249 } else { 6250 TCGv_i64 t = tcg_temp_new_i64(); 6251 6252 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6253 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6254 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6255 } 6256 break; 6257 case 8: /* LSLV */ 6258 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6259 break; 6260 case 9: /* LSRV */ 6261 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6262 break; 6263 case 10: /* ASRV */ 6264 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6265 break; 6266 case 11: /* RORV */ 6267 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6268 break; 6269 case 12: /* PACGA */ 6270 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6271 goto do_unallocated; 6272 } 6273 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6274 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6275 break; 6276 case 16: 6277 case 17: 6278 case 18: 6279 case 19: 6280 case 20: 6281 case 21: 6282 case 22: 6283 case 23: /* CRC32 */ 6284 { 6285 int sz = extract32(opcode, 0, 2); 6286 bool crc32c = extract32(opcode, 2, 1); 6287 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6288 break; 6289 } 6290 default: 6291 do_unallocated: 6292 unallocated_encoding(s); 6293 break; 6294 } 6295 } 6296 6297 /* 6298 * Data processing - register 6299 * 31 30 29 28 25 21 20 16 10 0 6300 * +--+---+--+---+-------+-----+-------+-------+---------+ 6301 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6302 * +--+---+--+---+-------+-----+-------+-------+---------+ 6303 */ 6304 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6305 { 6306 int op0 = extract32(insn, 30, 1); 6307 int op1 = extract32(insn, 28, 1); 6308 int op2 = extract32(insn, 21, 4); 6309 int op3 = extract32(insn, 10, 6); 6310 6311 if (!op1) { 6312 if (op2 & 8) { 6313 if (op2 & 1) { 6314 /* Add/sub (extended register) */ 6315 disas_add_sub_ext_reg(s, insn); 6316 } else { 6317 /* Add/sub (shifted register) */ 6318 disas_add_sub_reg(s, insn); 6319 } 6320 } else { 6321 /* Logical (shifted register) */ 6322 disas_logic_reg(s, insn); 6323 } 6324 return; 6325 } 6326 6327 switch (op2) { 6328 case 0x0: 6329 switch (op3) { 6330 case 0x00: /* Add/subtract (with carry) */ 6331 disas_adc_sbc(s, insn); 6332 break; 6333 6334 case 0x01: /* Rotate right into flags */ 6335 case 0x21: 6336 disas_rotate_right_into_flags(s, insn); 6337 break; 6338 6339 case 0x02: /* Evaluate into flags */ 6340 case 0x12: 6341 case 0x22: 6342 case 0x32: 6343 disas_evaluate_into_flags(s, insn); 6344 break; 6345 6346 default: 6347 goto do_unallocated; 6348 } 6349 break; 6350 6351 case 0x2: /* Conditional compare */ 6352 disas_cc(s, insn); /* both imm and reg forms */ 6353 break; 6354 6355 case 0x4: /* Conditional select */ 6356 disas_cond_select(s, insn); 6357 break; 6358 6359 case 0x6: /* Data-processing */ 6360 if (op0) { /* (1 source) */ 6361 disas_data_proc_1src(s, insn); 6362 } else { /* (2 source) */ 6363 disas_data_proc_2src(s, insn); 6364 } 6365 break; 6366 case 0x8 ... 0xf: /* (3 source) */ 6367 disas_data_proc_3src(s, insn); 6368 break; 6369 6370 default: 6371 do_unallocated: 6372 unallocated_encoding(s); 6373 break; 6374 } 6375 } 6376 6377 static void handle_fp_compare(DisasContext *s, int size, 6378 unsigned int rn, unsigned int rm, 6379 bool cmp_with_zero, bool signal_all_nans) 6380 { 6381 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6382 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6383 6384 if (size == MO_64) { 6385 TCGv_i64 tcg_vn, tcg_vm; 6386 6387 tcg_vn = read_fp_dreg(s, rn); 6388 if (cmp_with_zero) { 6389 tcg_vm = tcg_constant_i64(0); 6390 } else { 6391 tcg_vm = read_fp_dreg(s, rm); 6392 } 6393 if (signal_all_nans) { 6394 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6395 } else { 6396 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6397 } 6398 } else { 6399 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6400 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6401 6402 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6403 if (cmp_with_zero) { 6404 tcg_gen_movi_i32(tcg_vm, 0); 6405 } else { 6406 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6407 } 6408 6409 switch (size) { 6410 case MO_32: 6411 if (signal_all_nans) { 6412 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6413 } else { 6414 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6415 } 6416 break; 6417 case MO_16: 6418 if (signal_all_nans) { 6419 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6420 } else { 6421 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6422 } 6423 break; 6424 default: 6425 g_assert_not_reached(); 6426 } 6427 } 6428 6429 gen_set_nzcv(tcg_flags); 6430 } 6431 6432 /* Floating point compare 6433 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6434 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6435 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6436 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6437 */ 6438 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6439 { 6440 unsigned int mos, type, rm, op, rn, opc, op2r; 6441 int size; 6442 6443 mos = extract32(insn, 29, 3); 6444 type = extract32(insn, 22, 2); 6445 rm = extract32(insn, 16, 5); 6446 op = extract32(insn, 14, 2); 6447 rn = extract32(insn, 5, 5); 6448 opc = extract32(insn, 3, 2); 6449 op2r = extract32(insn, 0, 3); 6450 6451 if (mos || op || op2r) { 6452 unallocated_encoding(s); 6453 return; 6454 } 6455 6456 switch (type) { 6457 case 0: 6458 size = MO_32; 6459 break; 6460 case 1: 6461 size = MO_64; 6462 break; 6463 case 3: 6464 size = MO_16; 6465 if (dc_isar_feature(aa64_fp16, s)) { 6466 break; 6467 } 6468 /* fallthru */ 6469 default: 6470 unallocated_encoding(s); 6471 return; 6472 } 6473 6474 if (!fp_access_check(s)) { 6475 return; 6476 } 6477 6478 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6479 } 6480 6481 /* Floating point conditional compare 6482 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6483 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6484 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6485 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6486 */ 6487 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6488 { 6489 unsigned int mos, type, rm, cond, rn, op, nzcv; 6490 TCGLabel *label_continue = NULL; 6491 int size; 6492 6493 mos = extract32(insn, 29, 3); 6494 type = extract32(insn, 22, 2); 6495 rm = extract32(insn, 16, 5); 6496 cond = extract32(insn, 12, 4); 6497 rn = extract32(insn, 5, 5); 6498 op = extract32(insn, 4, 1); 6499 nzcv = extract32(insn, 0, 4); 6500 6501 if (mos) { 6502 unallocated_encoding(s); 6503 return; 6504 } 6505 6506 switch (type) { 6507 case 0: 6508 size = MO_32; 6509 break; 6510 case 1: 6511 size = MO_64; 6512 break; 6513 case 3: 6514 size = MO_16; 6515 if (dc_isar_feature(aa64_fp16, s)) { 6516 break; 6517 } 6518 /* fallthru */ 6519 default: 6520 unallocated_encoding(s); 6521 return; 6522 } 6523 6524 if (!fp_access_check(s)) { 6525 return; 6526 } 6527 6528 if (cond < 0x0e) { /* not always */ 6529 TCGLabel *label_match = gen_new_label(); 6530 label_continue = gen_new_label(); 6531 arm_gen_test_cc(cond, label_match); 6532 /* nomatch: */ 6533 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6534 tcg_gen_br(label_continue); 6535 gen_set_label(label_match); 6536 } 6537 6538 handle_fp_compare(s, size, rn, rm, false, op); 6539 6540 if (cond < 0x0e) { 6541 gen_set_label(label_continue); 6542 } 6543 } 6544 6545 /* Floating point conditional select 6546 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6547 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6548 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6549 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6550 */ 6551 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6552 { 6553 unsigned int mos, type, rm, cond, rn, rd; 6554 TCGv_i64 t_true, t_false; 6555 DisasCompare64 c; 6556 MemOp sz; 6557 6558 mos = extract32(insn, 29, 3); 6559 type = extract32(insn, 22, 2); 6560 rm = extract32(insn, 16, 5); 6561 cond = extract32(insn, 12, 4); 6562 rn = extract32(insn, 5, 5); 6563 rd = extract32(insn, 0, 5); 6564 6565 if (mos) { 6566 unallocated_encoding(s); 6567 return; 6568 } 6569 6570 switch (type) { 6571 case 0: 6572 sz = MO_32; 6573 break; 6574 case 1: 6575 sz = MO_64; 6576 break; 6577 case 3: 6578 sz = MO_16; 6579 if (dc_isar_feature(aa64_fp16, s)) { 6580 break; 6581 } 6582 /* fallthru */ 6583 default: 6584 unallocated_encoding(s); 6585 return; 6586 } 6587 6588 if (!fp_access_check(s)) { 6589 return; 6590 } 6591 6592 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6593 t_true = tcg_temp_new_i64(); 6594 t_false = tcg_temp_new_i64(); 6595 read_vec_element(s, t_true, rn, 0, sz); 6596 read_vec_element(s, t_false, rm, 0, sz); 6597 6598 a64_test_cc(&c, cond); 6599 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6600 t_true, t_false); 6601 6602 /* Note that sregs & hregs write back zeros to the high bits, 6603 and we've already done the zero-extension. */ 6604 write_fp_dreg(s, rd, t_true); 6605 } 6606 6607 /* Floating-point data-processing (1 source) - half precision */ 6608 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6609 { 6610 TCGv_ptr fpst = NULL; 6611 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6612 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6613 6614 switch (opcode) { 6615 case 0x0: /* FMOV */ 6616 tcg_gen_mov_i32(tcg_res, tcg_op); 6617 break; 6618 case 0x1: /* FABS */ 6619 gen_vfp_absh(tcg_res, tcg_op); 6620 break; 6621 case 0x2: /* FNEG */ 6622 gen_vfp_negh(tcg_res, tcg_op); 6623 break; 6624 case 0x3: /* FSQRT */ 6625 fpst = fpstatus_ptr(FPST_FPCR_F16); 6626 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6627 break; 6628 case 0x8: /* FRINTN */ 6629 case 0x9: /* FRINTP */ 6630 case 0xa: /* FRINTM */ 6631 case 0xb: /* FRINTZ */ 6632 case 0xc: /* FRINTA */ 6633 { 6634 TCGv_i32 tcg_rmode; 6635 6636 fpst = fpstatus_ptr(FPST_FPCR_F16); 6637 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6638 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6639 gen_restore_rmode(tcg_rmode, fpst); 6640 break; 6641 } 6642 case 0xe: /* FRINTX */ 6643 fpst = fpstatus_ptr(FPST_FPCR_F16); 6644 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6645 break; 6646 case 0xf: /* FRINTI */ 6647 fpst = fpstatus_ptr(FPST_FPCR_F16); 6648 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6649 break; 6650 default: 6651 g_assert_not_reached(); 6652 } 6653 6654 write_fp_sreg(s, rd, tcg_res); 6655 } 6656 6657 /* Floating-point data-processing (1 source) - single precision */ 6658 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6659 { 6660 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6661 TCGv_i32 tcg_op, tcg_res; 6662 TCGv_ptr fpst; 6663 int rmode = -1; 6664 6665 tcg_op = read_fp_sreg(s, rn); 6666 tcg_res = tcg_temp_new_i32(); 6667 6668 switch (opcode) { 6669 case 0x0: /* FMOV */ 6670 tcg_gen_mov_i32(tcg_res, tcg_op); 6671 goto done; 6672 case 0x1: /* FABS */ 6673 gen_vfp_abss(tcg_res, tcg_op); 6674 goto done; 6675 case 0x2: /* FNEG */ 6676 gen_vfp_negs(tcg_res, tcg_op); 6677 goto done; 6678 case 0x3: /* FSQRT */ 6679 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6680 goto done; 6681 case 0x6: /* BFCVT */ 6682 gen_fpst = gen_helper_bfcvt; 6683 break; 6684 case 0x8: /* FRINTN */ 6685 case 0x9: /* FRINTP */ 6686 case 0xa: /* FRINTM */ 6687 case 0xb: /* FRINTZ */ 6688 case 0xc: /* FRINTA */ 6689 rmode = opcode & 7; 6690 gen_fpst = gen_helper_rints; 6691 break; 6692 case 0xe: /* FRINTX */ 6693 gen_fpst = gen_helper_rints_exact; 6694 break; 6695 case 0xf: /* FRINTI */ 6696 gen_fpst = gen_helper_rints; 6697 break; 6698 case 0x10: /* FRINT32Z */ 6699 rmode = FPROUNDING_ZERO; 6700 gen_fpst = gen_helper_frint32_s; 6701 break; 6702 case 0x11: /* FRINT32X */ 6703 gen_fpst = gen_helper_frint32_s; 6704 break; 6705 case 0x12: /* FRINT64Z */ 6706 rmode = FPROUNDING_ZERO; 6707 gen_fpst = gen_helper_frint64_s; 6708 break; 6709 case 0x13: /* FRINT64X */ 6710 gen_fpst = gen_helper_frint64_s; 6711 break; 6712 default: 6713 g_assert_not_reached(); 6714 } 6715 6716 fpst = fpstatus_ptr(FPST_FPCR); 6717 if (rmode >= 0) { 6718 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6719 gen_fpst(tcg_res, tcg_op, fpst); 6720 gen_restore_rmode(tcg_rmode, fpst); 6721 } else { 6722 gen_fpst(tcg_res, tcg_op, fpst); 6723 } 6724 6725 done: 6726 write_fp_sreg(s, rd, tcg_res); 6727 } 6728 6729 /* Floating-point data-processing (1 source) - double precision */ 6730 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6731 { 6732 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6733 TCGv_i64 tcg_op, tcg_res; 6734 TCGv_ptr fpst; 6735 int rmode = -1; 6736 6737 switch (opcode) { 6738 case 0x0: /* FMOV */ 6739 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6740 return; 6741 } 6742 6743 tcg_op = read_fp_dreg(s, rn); 6744 tcg_res = tcg_temp_new_i64(); 6745 6746 switch (opcode) { 6747 case 0x1: /* FABS */ 6748 gen_vfp_absd(tcg_res, tcg_op); 6749 goto done; 6750 case 0x2: /* FNEG */ 6751 gen_vfp_negd(tcg_res, tcg_op); 6752 goto done; 6753 case 0x3: /* FSQRT */ 6754 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6755 goto done; 6756 case 0x8: /* FRINTN */ 6757 case 0x9: /* FRINTP */ 6758 case 0xa: /* FRINTM */ 6759 case 0xb: /* FRINTZ */ 6760 case 0xc: /* FRINTA */ 6761 rmode = opcode & 7; 6762 gen_fpst = gen_helper_rintd; 6763 break; 6764 case 0xe: /* FRINTX */ 6765 gen_fpst = gen_helper_rintd_exact; 6766 break; 6767 case 0xf: /* FRINTI */ 6768 gen_fpst = gen_helper_rintd; 6769 break; 6770 case 0x10: /* FRINT32Z */ 6771 rmode = FPROUNDING_ZERO; 6772 gen_fpst = gen_helper_frint32_d; 6773 break; 6774 case 0x11: /* FRINT32X */ 6775 gen_fpst = gen_helper_frint32_d; 6776 break; 6777 case 0x12: /* FRINT64Z */ 6778 rmode = FPROUNDING_ZERO; 6779 gen_fpst = gen_helper_frint64_d; 6780 break; 6781 case 0x13: /* FRINT64X */ 6782 gen_fpst = gen_helper_frint64_d; 6783 break; 6784 default: 6785 g_assert_not_reached(); 6786 } 6787 6788 fpst = fpstatus_ptr(FPST_FPCR); 6789 if (rmode >= 0) { 6790 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6791 gen_fpst(tcg_res, tcg_op, fpst); 6792 gen_restore_rmode(tcg_rmode, fpst); 6793 } else { 6794 gen_fpst(tcg_res, tcg_op, fpst); 6795 } 6796 6797 done: 6798 write_fp_dreg(s, rd, tcg_res); 6799 } 6800 6801 static void handle_fp_fcvt(DisasContext *s, int opcode, 6802 int rd, int rn, int dtype, int ntype) 6803 { 6804 switch (ntype) { 6805 case 0x0: 6806 { 6807 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6808 if (dtype == 1) { 6809 /* Single to double */ 6810 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6811 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6812 write_fp_dreg(s, rd, tcg_rd); 6813 } else { 6814 /* Single to half */ 6815 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6816 TCGv_i32 ahp = get_ahp_flag(); 6817 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6818 6819 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6820 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6821 write_fp_sreg(s, rd, tcg_rd); 6822 } 6823 break; 6824 } 6825 case 0x1: 6826 { 6827 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6828 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6829 if (dtype == 0) { 6830 /* Double to single */ 6831 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6832 } else { 6833 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6834 TCGv_i32 ahp = get_ahp_flag(); 6835 /* Double to half */ 6836 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6837 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6838 } 6839 write_fp_sreg(s, rd, tcg_rd); 6840 break; 6841 } 6842 case 0x3: 6843 { 6844 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6845 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6846 TCGv_i32 tcg_ahp = get_ahp_flag(); 6847 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6848 if (dtype == 0) { 6849 /* Half to single */ 6850 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6851 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6852 write_fp_sreg(s, rd, tcg_rd); 6853 } else { 6854 /* Half to double */ 6855 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6856 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6857 write_fp_dreg(s, rd, tcg_rd); 6858 } 6859 break; 6860 } 6861 default: 6862 g_assert_not_reached(); 6863 } 6864 } 6865 6866 /* Floating point data-processing (1 source) 6867 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6868 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6869 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6870 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6871 */ 6872 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6873 { 6874 int mos = extract32(insn, 29, 3); 6875 int type = extract32(insn, 22, 2); 6876 int opcode = extract32(insn, 15, 6); 6877 int rn = extract32(insn, 5, 5); 6878 int rd = extract32(insn, 0, 5); 6879 6880 if (mos) { 6881 goto do_unallocated; 6882 } 6883 6884 switch (opcode) { 6885 case 0x4: case 0x5: case 0x7: 6886 { 6887 /* FCVT between half, single and double precision */ 6888 int dtype = extract32(opcode, 0, 2); 6889 if (type == 2 || dtype == type) { 6890 goto do_unallocated; 6891 } 6892 if (!fp_access_check(s)) { 6893 return; 6894 } 6895 6896 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6897 break; 6898 } 6899 6900 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6901 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6902 goto do_unallocated; 6903 } 6904 /* fall through */ 6905 case 0x0 ... 0x3: 6906 case 0x8 ... 0xc: 6907 case 0xe ... 0xf: 6908 /* 32-to-32 and 64-to-64 ops */ 6909 switch (type) { 6910 case 0: 6911 if (!fp_access_check(s)) { 6912 return; 6913 } 6914 handle_fp_1src_single(s, opcode, rd, rn); 6915 break; 6916 case 1: 6917 if (!fp_access_check(s)) { 6918 return; 6919 } 6920 handle_fp_1src_double(s, opcode, rd, rn); 6921 break; 6922 case 3: 6923 if (!dc_isar_feature(aa64_fp16, s)) { 6924 goto do_unallocated; 6925 } 6926 6927 if (!fp_access_check(s)) { 6928 return; 6929 } 6930 handle_fp_1src_half(s, opcode, rd, rn); 6931 break; 6932 default: 6933 goto do_unallocated; 6934 } 6935 break; 6936 6937 case 0x6: 6938 switch (type) { 6939 case 1: /* BFCVT */ 6940 if (!dc_isar_feature(aa64_bf16, s)) { 6941 goto do_unallocated; 6942 } 6943 if (!fp_access_check(s)) { 6944 return; 6945 } 6946 handle_fp_1src_single(s, opcode, rd, rn); 6947 break; 6948 default: 6949 goto do_unallocated; 6950 } 6951 break; 6952 6953 default: 6954 do_unallocated: 6955 unallocated_encoding(s); 6956 break; 6957 } 6958 } 6959 6960 /* Floating-point data-processing (3 source) - single precision */ 6961 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6962 int rd, int rn, int rm, int ra) 6963 { 6964 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6965 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6966 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6967 6968 tcg_op1 = read_fp_sreg(s, rn); 6969 tcg_op2 = read_fp_sreg(s, rm); 6970 tcg_op3 = read_fp_sreg(s, ra); 6971 6972 /* These are fused multiply-add, and must be done as one 6973 * floating point operation with no rounding between the 6974 * multiplication and addition steps. 6975 * NB that doing the negations here as separate steps is 6976 * correct : an input NaN should come out with its sign bit 6977 * flipped if it is a negated-input. 6978 */ 6979 if (o1 == true) { 6980 gen_vfp_negs(tcg_op3, tcg_op3); 6981 } 6982 6983 if (o0 != o1) { 6984 gen_vfp_negs(tcg_op1, tcg_op1); 6985 } 6986 6987 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6988 6989 write_fp_sreg(s, rd, tcg_res); 6990 } 6991 6992 /* Floating-point data-processing (3 source) - double precision */ 6993 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6994 int rd, int rn, int rm, int ra) 6995 { 6996 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6997 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6998 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6999 7000 tcg_op1 = read_fp_dreg(s, rn); 7001 tcg_op2 = read_fp_dreg(s, rm); 7002 tcg_op3 = read_fp_dreg(s, ra); 7003 7004 /* These are fused multiply-add, and must be done as one 7005 * floating point operation with no rounding between the 7006 * multiplication and addition steps. 7007 * NB that doing the negations here as separate steps is 7008 * correct : an input NaN should come out with its sign bit 7009 * flipped if it is a negated-input. 7010 */ 7011 if (o1 == true) { 7012 gen_vfp_negd(tcg_op3, tcg_op3); 7013 } 7014 7015 if (o0 != o1) { 7016 gen_vfp_negd(tcg_op1, tcg_op1); 7017 } 7018 7019 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7020 7021 write_fp_dreg(s, rd, tcg_res); 7022 } 7023 7024 /* Floating-point data-processing (3 source) - half precision */ 7025 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7026 int rd, int rn, int rm, int ra) 7027 { 7028 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7029 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7030 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7031 7032 tcg_op1 = read_fp_hreg(s, rn); 7033 tcg_op2 = read_fp_hreg(s, rm); 7034 tcg_op3 = read_fp_hreg(s, ra); 7035 7036 /* These are fused multiply-add, and must be done as one 7037 * floating point operation with no rounding between the 7038 * multiplication and addition steps. 7039 * NB that doing the negations here as separate steps is 7040 * correct : an input NaN should come out with its sign bit 7041 * flipped if it is a negated-input. 7042 */ 7043 if (o1 == true) { 7044 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7045 } 7046 7047 if (o0 != o1) { 7048 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7049 } 7050 7051 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7052 7053 write_fp_sreg(s, rd, tcg_res); 7054 } 7055 7056 /* Floating point data-processing (3 source) 7057 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7058 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7059 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7060 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7061 */ 7062 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7063 { 7064 int mos = extract32(insn, 29, 3); 7065 int type = extract32(insn, 22, 2); 7066 int rd = extract32(insn, 0, 5); 7067 int rn = extract32(insn, 5, 5); 7068 int ra = extract32(insn, 10, 5); 7069 int rm = extract32(insn, 16, 5); 7070 bool o0 = extract32(insn, 15, 1); 7071 bool o1 = extract32(insn, 21, 1); 7072 7073 if (mos) { 7074 unallocated_encoding(s); 7075 return; 7076 } 7077 7078 switch (type) { 7079 case 0: 7080 if (!fp_access_check(s)) { 7081 return; 7082 } 7083 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7084 break; 7085 case 1: 7086 if (!fp_access_check(s)) { 7087 return; 7088 } 7089 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7090 break; 7091 case 3: 7092 if (!dc_isar_feature(aa64_fp16, s)) { 7093 unallocated_encoding(s); 7094 return; 7095 } 7096 if (!fp_access_check(s)) { 7097 return; 7098 } 7099 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7100 break; 7101 default: 7102 unallocated_encoding(s); 7103 } 7104 } 7105 7106 /* Floating point immediate 7107 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7108 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7109 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7110 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7111 */ 7112 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7113 { 7114 int rd = extract32(insn, 0, 5); 7115 int imm5 = extract32(insn, 5, 5); 7116 int imm8 = extract32(insn, 13, 8); 7117 int type = extract32(insn, 22, 2); 7118 int mos = extract32(insn, 29, 3); 7119 uint64_t imm; 7120 MemOp sz; 7121 7122 if (mos || imm5) { 7123 unallocated_encoding(s); 7124 return; 7125 } 7126 7127 switch (type) { 7128 case 0: 7129 sz = MO_32; 7130 break; 7131 case 1: 7132 sz = MO_64; 7133 break; 7134 case 3: 7135 sz = MO_16; 7136 if (dc_isar_feature(aa64_fp16, s)) { 7137 break; 7138 } 7139 /* fallthru */ 7140 default: 7141 unallocated_encoding(s); 7142 return; 7143 } 7144 7145 if (!fp_access_check(s)) { 7146 return; 7147 } 7148 7149 imm = vfp_expand_imm(sz, imm8); 7150 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7151 } 7152 7153 /* Handle floating point <=> fixed point conversions. Note that we can 7154 * also deal with fp <=> integer conversions as a special case (scale == 64) 7155 * OPTME: consider handling that special case specially or at least skipping 7156 * the call to scalbn in the helpers for zero shifts. 7157 */ 7158 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7159 bool itof, int rmode, int scale, int sf, int type) 7160 { 7161 bool is_signed = !(opcode & 1); 7162 TCGv_ptr tcg_fpstatus; 7163 TCGv_i32 tcg_shift, tcg_single; 7164 TCGv_i64 tcg_double; 7165 7166 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7167 7168 tcg_shift = tcg_constant_i32(64 - scale); 7169 7170 if (itof) { 7171 TCGv_i64 tcg_int = cpu_reg(s, rn); 7172 if (!sf) { 7173 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7174 7175 if (is_signed) { 7176 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7177 } else { 7178 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7179 } 7180 7181 tcg_int = tcg_extend; 7182 } 7183 7184 switch (type) { 7185 case 1: /* float64 */ 7186 tcg_double = tcg_temp_new_i64(); 7187 if (is_signed) { 7188 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7189 tcg_shift, tcg_fpstatus); 7190 } else { 7191 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7192 tcg_shift, tcg_fpstatus); 7193 } 7194 write_fp_dreg(s, rd, tcg_double); 7195 break; 7196 7197 case 0: /* float32 */ 7198 tcg_single = tcg_temp_new_i32(); 7199 if (is_signed) { 7200 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7201 tcg_shift, tcg_fpstatus); 7202 } else { 7203 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7204 tcg_shift, tcg_fpstatus); 7205 } 7206 write_fp_sreg(s, rd, tcg_single); 7207 break; 7208 7209 case 3: /* float16 */ 7210 tcg_single = tcg_temp_new_i32(); 7211 if (is_signed) { 7212 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7213 tcg_shift, tcg_fpstatus); 7214 } else { 7215 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7216 tcg_shift, tcg_fpstatus); 7217 } 7218 write_fp_sreg(s, rd, tcg_single); 7219 break; 7220 7221 default: 7222 g_assert_not_reached(); 7223 } 7224 } else { 7225 TCGv_i64 tcg_int = cpu_reg(s, rd); 7226 TCGv_i32 tcg_rmode; 7227 7228 if (extract32(opcode, 2, 1)) { 7229 /* There are too many rounding modes to all fit into rmode, 7230 * so FCVTA[US] is a special case. 7231 */ 7232 rmode = FPROUNDING_TIEAWAY; 7233 } 7234 7235 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7236 7237 switch (type) { 7238 case 1: /* float64 */ 7239 tcg_double = read_fp_dreg(s, rn); 7240 if (is_signed) { 7241 if (!sf) { 7242 gen_helper_vfp_tosld(tcg_int, tcg_double, 7243 tcg_shift, tcg_fpstatus); 7244 } else { 7245 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7246 tcg_shift, tcg_fpstatus); 7247 } 7248 } else { 7249 if (!sf) { 7250 gen_helper_vfp_tould(tcg_int, tcg_double, 7251 tcg_shift, tcg_fpstatus); 7252 } else { 7253 gen_helper_vfp_touqd(tcg_int, tcg_double, 7254 tcg_shift, tcg_fpstatus); 7255 } 7256 } 7257 if (!sf) { 7258 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7259 } 7260 break; 7261 7262 case 0: /* float32 */ 7263 tcg_single = read_fp_sreg(s, rn); 7264 if (sf) { 7265 if (is_signed) { 7266 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7267 tcg_shift, tcg_fpstatus); 7268 } else { 7269 gen_helper_vfp_touqs(tcg_int, tcg_single, 7270 tcg_shift, tcg_fpstatus); 7271 } 7272 } else { 7273 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7274 if (is_signed) { 7275 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7276 tcg_shift, tcg_fpstatus); 7277 } else { 7278 gen_helper_vfp_touls(tcg_dest, tcg_single, 7279 tcg_shift, tcg_fpstatus); 7280 } 7281 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7282 } 7283 break; 7284 7285 case 3: /* float16 */ 7286 tcg_single = read_fp_sreg(s, rn); 7287 if (sf) { 7288 if (is_signed) { 7289 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7290 tcg_shift, tcg_fpstatus); 7291 } else { 7292 gen_helper_vfp_touqh(tcg_int, tcg_single, 7293 tcg_shift, tcg_fpstatus); 7294 } 7295 } else { 7296 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7297 if (is_signed) { 7298 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7299 tcg_shift, tcg_fpstatus); 7300 } else { 7301 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7302 tcg_shift, tcg_fpstatus); 7303 } 7304 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7305 } 7306 break; 7307 7308 default: 7309 g_assert_not_reached(); 7310 } 7311 7312 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7313 } 7314 } 7315 7316 /* Floating point <-> fixed point conversions 7317 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7318 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7319 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7320 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7321 */ 7322 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7323 { 7324 int rd = extract32(insn, 0, 5); 7325 int rn = extract32(insn, 5, 5); 7326 int scale = extract32(insn, 10, 6); 7327 int opcode = extract32(insn, 16, 3); 7328 int rmode = extract32(insn, 19, 2); 7329 int type = extract32(insn, 22, 2); 7330 bool sbit = extract32(insn, 29, 1); 7331 bool sf = extract32(insn, 31, 1); 7332 bool itof; 7333 7334 if (sbit || (!sf && scale < 32)) { 7335 unallocated_encoding(s); 7336 return; 7337 } 7338 7339 switch (type) { 7340 case 0: /* float32 */ 7341 case 1: /* float64 */ 7342 break; 7343 case 3: /* float16 */ 7344 if (dc_isar_feature(aa64_fp16, s)) { 7345 break; 7346 } 7347 /* fallthru */ 7348 default: 7349 unallocated_encoding(s); 7350 return; 7351 } 7352 7353 switch ((rmode << 3) | opcode) { 7354 case 0x2: /* SCVTF */ 7355 case 0x3: /* UCVTF */ 7356 itof = true; 7357 break; 7358 case 0x18: /* FCVTZS */ 7359 case 0x19: /* FCVTZU */ 7360 itof = false; 7361 break; 7362 default: 7363 unallocated_encoding(s); 7364 return; 7365 } 7366 7367 if (!fp_access_check(s)) { 7368 return; 7369 } 7370 7371 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7372 } 7373 7374 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7375 { 7376 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7377 * without conversion. 7378 */ 7379 7380 if (itof) { 7381 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7382 TCGv_i64 tmp; 7383 7384 switch (type) { 7385 case 0: 7386 /* 32 bit */ 7387 tmp = tcg_temp_new_i64(); 7388 tcg_gen_ext32u_i64(tmp, tcg_rn); 7389 write_fp_dreg(s, rd, tmp); 7390 break; 7391 case 1: 7392 /* 64 bit */ 7393 write_fp_dreg(s, rd, tcg_rn); 7394 break; 7395 case 2: 7396 /* 64 bit to top half. */ 7397 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7398 clear_vec_high(s, true, rd); 7399 break; 7400 case 3: 7401 /* 16 bit */ 7402 tmp = tcg_temp_new_i64(); 7403 tcg_gen_ext16u_i64(tmp, tcg_rn); 7404 write_fp_dreg(s, rd, tmp); 7405 break; 7406 default: 7407 g_assert_not_reached(); 7408 } 7409 } else { 7410 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7411 7412 switch (type) { 7413 case 0: 7414 /* 32 bit */ 7415 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7416 break; 7417 case 1: 7418 /* 64 bit */ 7419 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7420 break; 7421 case 2: 7422 /* 64 bits from top half */ 7423 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7424 break; 7425 case 3: 7426 /* 16 bit */ 7427 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7428 break; 7429 default: 7430 g_assert_not_reached(); 7431 } 7432 } 7433 } 7434 7435 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7436 { 7437 TCGv_i64 t = read_fp_dreg(s, rn); 7438 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7439 7440 gen_helper_fjcvtzs(t, t, fpstatus); 7441 7442 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7443 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7444 tcg_gen_movi_i32(cpu_CF, 0); 7445 tcg_gen_movi_i32(cpu_NF, 0); 7446 tcg_gen_movi_i32(cpu_VF, 0); 7447 } 7448 7449 /* Floating point <-> integer conversions 7450 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7451 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7452 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7453 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7454 */ 7455 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7456 { 7457 int rd = extract32(insn, 0, 5); 7458 int rn = extract32(insn, 5, 5); 7459 int opcode = extract32(insn, 16, 3); 7460 int rmode = extract32(insn, 19, 2); 7461 int type = extract32(insn, 22, 2); 7462 bool sbit = extract32(insn, 29, 1); 7463 bool sf = extract32(insn, 31, 1); 7464 bool itof = false; 7465 7466 if (sbit) { 7467 goto do_unallocated; 7468 } 7469 7470 switch (opcode) { 7471 case 2: /* SCVTF */ 7472 case 3: /* UCVTF */ 7473 itof = true; 7474 /* fallthru */ 7475 case 4: /* FCVTAS */ 7476 case 5: /* FCVTAU */ 7477 if (rmode != 0) { 7478 goto do_unallocated; 7479 } 7480 /* fallthru */ 7481 case 0: /* FCVT[NPMZ]S */ 7482 case 1: /* FCVT[NPMZ]U */ 7483 switch (type) { 7484 case 0: /* float32 */ 7485 case 1: /* float64 */ 7486 break; 7487 case 3: /* float16 */ 7488 if (!dc_isar_feature(aa64_fp16, s)) { 7489 goto do_unallocated; 7490 } 7491 break; 7492 default: 7493 goto do_unallocated; 7494 } 7495 if (!fp_access_check(s)) { 7496 return; 7497 } 7498 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7499 break; 7500 7501 default: 7502 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7503 case 0b01100110: /* FMOV half <-> 32-bit int */ 7504 case 0b01100111: 7505 case 0b11100110: /* FMOV half <-> 64-bit int */ 7506 case 0b11100111: 7507 if (!dc_isar_feature(aa64_fp16, s)) { 7508 goto do_unallocated; 7509 } 7510 /* fallthru */ 7511 case 0b00000110: /* FMOV 32-bit */ 7512 case 0b00000111: 7513 case 0b10100110: /* FMOV 64-bit */ 7514 case 0b10100111: 7515 case 0b11001110: /* FMOV top half of 128-bit */ 7516 case 0b11001111: 7517 if (!fp_access_check(s)) { 7518 return; 7519 } 7520 itof = opcode & 1; 7521 handle_fmov(s, rd, rn, type, itof); 7522 break; 7523 7524 case 0b00111110: /* FJCVTZS */ 7525 if (!dc_isar_feature(aa64_jscvt, s)) { 7526 goto do_unallocated; 7527 } else if (fp_access_check(s)) { 7528 handle_fjcvtzs(s, rd, rn); 7529 } 7530 break; 7531 7532 default: 7533 do_unallocated: 7534 unallocated_encoding(s); 7535 return; 7536 } 7537 break; 7538 } 7539 } 7540 7541 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7542 * 31 30 29 28 25 24 0 7543 * +---+---+---+---------+-----------------------------+ 7544 * | | 0 | | 1 1 1 1 | | 7545 * +---+---+---+---------+-----------------------------+ 7546 */ 7547 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7548 { 7549 if (extract32(insn, 24, 1)) { 7550 /* Floating point data-processing (3 source) */ 7551 disas_fp_3src(s, insn); 7552 } else if (extract32(insn, 21, 1) == 0) { 7553 /* Floating point to fixed point conversions */ 7554 disas_fp_fixed_conv(s, insn); 7555 } else { 7556 switch (extract32(insn, 10, 2)) { 7557 case 1: 7558 /* Floating point conditional compare */ 7559 disas_fp_ccomp(s, insn); 7560 break; 7561 case 2: 7562 /* Floating point data-processing (2 source) */ 7563 unallocated_encoding(s); /* in decodetree */ 7564 break; 7565 case 3: 7566 /* Floating point conditional select */ 7567 disas_fp_csel(s, insn); 7568 break; 7569 case 0: 7570 switch (ctz32(extract32(insn, 12, 4))) { 7571 case 0: /* [15:12] == xxx1 */ 7572 /* Floating point immediate */ 7573 disas_fp_imm(s, insn); 7574 break; 7575 case 1: /* [15:12] == xx10 */ 7576 /* Floating point compare */ 7577 disas_fp_compare(s, insn); 7578 break; 7579 case 2: /* [15:12] == x100 */ 7580 /* Floating point data-processing (1 source) */ 7581 disas_fp_1src(s, insn); 7582 break; 7583 case 3: /* [15:12] == 1000 */ 7584 unallocated_encoding(s); 7585 break; 7586 default: /* [15:12] == 0000 */ 7587 /* Floating point <-> integer conversions */ 7588 disas_fp_int_conv(s, insn); 7589 break; 7590 } 7591 break; 7592 } 7593 } 7594 } 7595 7596 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7597 int pos) 7598 { 7599 /* Extract 64 bits from the middle of two concatenated 64 bit 7600 * vector register slices left:right. The extracted bits start 7601 * at 'pos' bits into the right (least significant) side. 7602 * We return the result in tcg_right, and guarantee not to 7603 * trash tcg_left. 7604 */ 7605 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7606 assert(pos > 0 && pos < 64); 7607 7608 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7609 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7610 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7611 } 7612 7613 /* EXT 7614 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7615 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7616 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7617 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7618 */ 7619 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7620 { 7621 int is_q = extract32(insn, 30, 1); 7622 int op2 = extract32(insn, 22, 2); 7623 int imm4 = extract32(insn, 11, 4); 7624 int rm = extract32(insn, 16, 5); 7625 int rn = extract32(insn, 5, 5); 7626 int rd = extract32(insn, 0, 5); 7627 int pos = imm4 << 3; 7628 TCGv_i64 tcg_resl, tcg_resh; 7629 7630 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7631 unallocated_encoding(s); 7632 return; 7633 } 7634 7635 if (!fp_access_check(s)) { 7636 return; 7637 } 7638 7639 tcg_resh = tcg_temp_new_i64(); 7640 tcg_resl = tcg_temp_new_i64(); 7641 7642 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7643 * either extracting 128 bits from a 128:128 concatenation, or 7644 * extracting 64 bits from a 64:64 concatenation. 7645 */ 7646 if (!is_q) { 7647 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7648 if (pos != 0) { 7649 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7650 do_ext64(s, tcg_resh, tcg_resl, pos); 7651 } 7652 } else { 7653 TCGv_i64 tcg_hh; 7654 typedef struct { 7655 int reg; 7656 int elt; 7657 } EltPosns; 7658 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7659 EltPosns *elt = eltposns; 7660 7661 if (pos >= 64) { 7662 elt++; 7663 pos -= 64; 7664 } 7665 7666 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7667 elt++; 7668 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7669 elt++; 7670 if (pos != 0) { 7671 do_ext64(s, tcg_resh, tcg_resl, pos); 7672 tcg_hh = tcg_temp_new_i64(); 7673 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7674 do_ext64(s, tcg_hh, tcg_resh, pos); 7675 } 7676 } 7677 7678 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7679 if (is_q) { 7680 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7681 } 7682 clear_vec_high(s, is_q, rd); 7683 } 7684 7685 /* TBL/TBX 7686 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7687 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7688 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7689 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7690 */ 7691 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7692 { 7693 int op2 = extract32(insn, 22, 2); 7694 int is_q = extract32(insn, 30, 1); 7695 int rm = extract32(insn, 16, 5); 7696 int rn = extract32(insn, 5, 5); 7697 int rd = extract32(insn, 0, 5); 7698 int is_tbx = extract32(insn, 12, 1); 7699 int len = (extract32(insn, 13, 2) + 1) * 16; 7700 7701 if (op2 != 0) { 7702 unallocated_encoding(s); 7703 return; 7704 } 7705 7706 if (!fp_access_check(s)) { 7707 return; 7708 } 7709 7710 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7711 vec_full_reg_offset(s, rm), tcg_env, 7712 is_q ? 16 : 8, vec_full_reg_size(s), 7713 (len << 6) | (is_tbx << 5) | rn, 7714 gen_helper_simd_tblx); 7715 } 7716 7717 /* ZIP/UZP/TRN 7718 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7719 * +---+---+-------------+------+---+------+---+------------------+------+ 7720 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7721 * +---+---+-------------+------+---+------+---+------------------+------+ 7722 */ 7723 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7724 { 7725 int rd = extract32(insn, 0, 5); 7726 int rn = extract32(insn, 5, 5); 7727 int rm = extract32(insn, 16, 5); 7728 int size = extract32(insn, 22, 2); 7729 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7730 * bit 2 indicates 1 vs 2 variant of the insn. 7731 */ 7732 int opcode = extract32(insn, 12, 2); 7733 bool part = extract32(insn, 14, 1); 7734 bool is_q = extract32(insn, 30, 1); 7735 int esize = 8 << size; 7736 int i; 7737 int datasize = is_q ? 128 : 64; 7738 int elements = datasize / esize; 7739 TCGv_i64 tcg_res[2], tcg_ele; 7740 7741 if (opcode == 0 || (size == 3 && !is_q)) { 7742 unallocated_encoding(s); 7743 return; 7744 } 7745 7746 if (!fp_access_check(s)) { 7747 return; 7748 } 7749 7750 tcg_res[0] = tcg_temp_new_i64(); 7751 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7752 tcg_ele = tcg_temp_new_i64(); 7753 7754 for (i = 0; i < elements; i++) { 7755 int o, w; 7756 7757 switch (opcode) { 7758 case 1: /* UZP1/2 */ 7759 { 7760 int midpoint = elements / 2; 7761 if (i < midpoint) { 7762 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7763 } else { 7764 read_vec_element(s, tcg_ele, rm, 7765 2 * (i - midpoint) + part, size); 7766 } 7767 break; 7768 } 7769 case 2: /* TRN1/2 */ 7770 if (i & 1) { 7771 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7772 } else { 7773 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7774 } 7775 break; 7776 case 3: /* ZIP1/2 */ 7777 { 7778 int base = part * elements / 2; 7779 if (i & 1) { 7780 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7781 } else { 7782 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7783 } 7784 break; 7785 } 7786 default: 7787 g_assert_not_reached(); 7788 } 7789 7790 w = (i * esize) / 64; 7791 o = (i * esize) % 64; 7792 if (o == 0) { 7793 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7794 } else { 7795 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7796 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7797 } 7798 } 7799 7800 for (i = 0; i <= is_q; ++i) { 7801 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7802 } 7803 clear_vec_high(s, is_q, rd); 7804 } 7805 7806 /* 7807 * do_reduction_op helper 7808 * 7809 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7810 * important for correct NaN propagation that we do these 7811 * operations in exactly the order specified by the pseudocode. 7812 * 7813 * This is a recursive function, TCG temps should be freed by the 7814 * calling function once it is done with the values. 7815 */ 7816 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7817 int esize, int size, int vmap, TCGv_ptr fpst) 7818 { 7819 if (esize == size) { 7820 int element; 7821 MemOp msize = esize == 16 ? MO_16 : MO_32; 7822 TCGv_i32 tcg_elem; 7823 7824 /* We should have one register left here */ 7825 assert(ctpop8(vmap) == 1); 7826 element = ctz32(vmap); 7827 assert(element < 8); 7828 7829 tcg_elem = tcg_temp_new_i32(); 7830 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7831 return tcg_elem; 7832 } else { 7833 int bits = size / 2; 7834 int shift = ctpop8(vmap) / 2; 7835 int vmap_lo = (vmap >> shift) & vmap; 7836 int vmap_hi = (vmap & ~vmap_lo); 7837 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7838 7839 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7840 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7841 tcg_res = tcg_temp_new_i32(); 7842 7843 switch (fpopcode) { 7844 case 0x0c: /* fmaxnmv half-precision */ 7845 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7846 break; 7847 case 0x0f: /* fmaxv half-precision */ 7848 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7849 break; 7850 case 0x1c: /* fminnmv half-precision */ 7851 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7852 break; 7853 case 0x1f: /* fminv half-precision */ 7854 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7855 break; 7856 case 0x2c: /* fmaxnmv */ 7857 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7858 break; 7859 case 0x2f: /* fmaxv */ 7860 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7861 break; 7862 case 0x3c: /* fminnmv */ 7863 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7864 break; 7865 case 0x3f: /* fminv */ 7866 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7867 break; 7868 default: 7869 g_assert_not_reached(); 7870 } 7871 return tcg_res; 7872 } 7873 } 7874 7875 /* AdvSIMD across lanes 7876 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7877 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7878 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7879 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7880 */ 7881 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7882 { 7883 int rd = extract32(insn, 0, 5); 7884 int rn = extract32(insn, 5, 5); 7885 int size = extract32(insn, 22, 2); 7886 int opcode = extract32(insn, 12, 5); 7887 bool is_q = extract32(insn, 30, 1); 7888 bool is_u = extract32(insn, 29, 1); 7889 bool is_fp = false; 7890 bool is_min = false; 7891 int esize; 7892 int elements; 7893 int i; 7894 TCGv_i64 tcg_res, tcg_elt; 7895 7896 switch (opcode) { 7897 case 0x1b: /* ADDV */ 7898 if (is_u) { 7899 unallocated_encoding(s); 7900 return; 7901 } 7902 /* fall through */ 7903 case 0x3: /* SADDLV, UADDLV */ 7904 case 0xa: /* SMAXV, UMAXV */ 7905 case 0x1a: /* SMINV, UMINV */ 7906 if (size == 3 || (size == 2 && !is_q)) { 7907 unallocated_encoding(s); 7908 return; 7909 } 7910 break; 7911 case 0xc: /* FMAXNMV, FMINNMV */ 7912 case 0xf: /* FMAXV, FMINV */ 7913 /* Bit 1 of size field encodes min vs max and the actual size 7914 * depends on the encoding of the U bit. If not set (and FP16 7915 * enabled) then we do half-precision float instead of single 7916 * precision. 7917 */ 7918 is_min = extract32(size, 1, 1); 7919 is_fp = true; 7920 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7921 size = 1; 7922 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7923 unallocated_encoding(s); 7924 return; 7925 } else { 7926 size = 2; 7927 } 7928 break; 7929 default: 7930 unallocated_encoding(s); 7931 return; 7932 } 7933 7934 if (!fp_access_check(s)) { 7935 return; 7936 } 7937 7938 esize = 8 << size; 7939 elements = (is_q ? 128 : 64) / esize; 7940 7941 tcg_res = tcg_temp_new_i64(); 7942 tcg_elt = tcg_temp_new_i64(); 7943 7944 /* These instructions operate across all lanes of a vector 7945 * to produce a single result. We can guarantee that a 64 7946 * bit intermediate is sufficient: 7947 * + for [US]ADDLV the maximum element size is 32 bits, and 7948 * the result type is 64 bits 7949 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7950 * same as the element size, which is 32 bits at most 7951 * For the integer operations we can choose to work at 64 7952 * or 32 bits and truncate at the end; for simplicity 7953 * we use 64 bits always. The floating point 7954 * ops do require 32 bit intermediates, though. 7955 */ 7956 if (!is_fp) { 7957 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7958 7959 for (i = 1; i < elements; i++) { 7960 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7961 7962 switch (opcode) { 7963 case 0x03: /* SADDLV / UADDLV */ 7964 case 0x1b: /* ADDV */ 7965 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7966 break; 7967 case 0x0a: /* SMAXV / UMAXV */ 7968 if (is_u) { 7969 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7970 } else { 7971 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7972 } 7973 break; 7974 case 0x1a: /* SMINV / UMINV */ 7975 if (is_u) { 7976 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7977 } else { 7978 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7979 } 7980 break; 7981 default: 7982 g_assert_not_reached(); 7983 } 7984 7985 } 7986 } else { 7987 /* Floating point vector reduction ops which work across 32 7988 * bit (single) or 16 bit (half-precision) intermediates. 7989 * Note that correct NaN propagation requires that we do these 7990 * operations in exactly the order specified by the pseudocode. 7991 */ 7992 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7993 int fpopcode = opcode | is_min << 4 | is_u << 5; 7994 int vmap = (1 << elements) - 1; 7995 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7996 (is_q ? 128 : 64), vmap, fpst); 7997 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7998 } 7999 8000 /* Now truncate the result to the width required for the final output */ 8001 if (opcode == 0x03) { 8002 /* SADDLV, UADDLV: result is 2*esize */ 8003 size++; 8004 } 8005 8006 switch (size) { 8007 case 0: 8008 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8009 break; 8010 case 1: 8011 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8012 break; 8013 case 2: 8014 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8015 break; 8016 case 3: 8017 break; 8018 default: 8019 g_assert_not_reached(); 8020 } 8021 8022 write_fp_dreg(s, rd, tcg_res); 8023 } 8024 8025 /* AdvSIMD modified immediate 8026 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8027 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8028 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8029 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8030 * 8031 * There are a number of operations that can be carried out here: 8032 * MOVI - move (shifted) imm into register 8033 * MVNI - move inverted (shifted) imm into register 8034 * ORR - bitwise OR of (shifted) imm with register 8035 * BIC - bitwise clear of (shifted) imm with register 8036 * With ARMv8.2 we also have: 8037 * FMOV half-precision 8038 */ 8039 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8040 { 8041 int rd = extract32(insn, 0, 5); 8042 int cmode = extract32(insn, 12, 4); 8043 int o2 = extract32(insn, 11, 1); 8044 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8045 bool is_neg = extract32(insn, 29, 1); 8046 bool is_q = extract32(insn, 30, 1); 8047 uint64_t imm = 0; 8048 8049 if (o2) { 8050 if (cmode != 0xf || is_neg) { 8051 unallocated_encoding(s); 8052 return; 8053 } 8054 /* FMOV (vector, immediate) - half-precision */ 8055 if (!dc_isar_feature(aa64_fp16, s)) { 8056 unallocated_encoding(s); 8057 return; 8058 } 8059 imm = vfp_expand_imm(MO_16, abcdefgh); 8060 /* now duplicate across the lanes */ 8061 imm = dup_const(MO_16, imm); 8062 } else { 8063 if (cmode == 0xf && is_neg && !is_q) { 8064 unallocated_encoding(s); 8065 return; 8066 } 8067 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8068 } 8069 8070 if (!fp_access_check(s)) { 8071 return; 8072 } 8073 8074 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8075 /* MOVI or MVNI, with MVNI negation handled above. */ 8076 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8077 vec_full_reg_size(s), imm); 8078 } else { 8079 /* ORR or BIC, with BIC negation to AND handled above. */ 8080 if (is_neg) { 8081 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8082 } else { 8083 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8084 } 8085 } 8086 } 8087 8088 /* AdvSIMD scalar pairwise 8089 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8090 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8091 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8092 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8093 */ 8094 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8095 { 8096 int u = extract32(insn, 29, 1); 8097 int size = extract32(insn, 22, 2); 8098 int opcode = extract32(insn, 12, 5); 8099 int rn = extract32(insn, 5, 5); 8100 int rd = extract32(insn, 0, 5); 8101 TCGv_ptr fpst; 8102 8103 /* For some ops (the FP ones), size[1] is part of the encoding. 8104 * For ADDP strictly it is not but size[1] is always 1 for valid 8105 * encodings. 8106 */ 8107 opcode |= (extract32(size, 1, 1) << 5); 8108 8109 switch (opcode) { 8110 case 0x3b: /* ADDP */ 8111 if (u || size != 3) { 8112 unallocated_encoding(s); 8113 return; 8114 } 8115 if (!fp_access_check(s)) { 8116 return; 8117 } 8118 8119 fpst = NULL; 8120 break; 8121 case 0xc: /* FMAXNMP */ 8122 case 0xd: /* FADDP */ 8123 case 0xf: /* FMAXP */ 8124 case 0x2c: /* FMINNMP */ 8125 case 0x2f: /* FMINP */ 8126 /* FP op, size[0] is 32 or 64 bit*/ 8127 if (!u) { 8128 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8129 unallocated_encoding(s); 8130 return; 8131 } else { 8132 size = MO_16; 8133 } 8134 } else { 8135 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8136 } 8137 8138 if (!fp_access_check(s)) { 8139 return; 8140 } 8141 8142 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8143 break; 8144 default: 8145 unallocated_encoding(s); 8146 return; 8147 } 8148 8149 if (size == MO_64) { 8150 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8151 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8152 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8153 8154 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8155 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8156 8157 switch (opcode) { 8158 case 0x3b: /* ADDP */ 8159 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8160 break; 8161 case 0xc: /* FMAXNMP */ 8162 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8163 break; 8164 case 0xd: /* FADDP */ 8165 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8166 break; 8167 case 0xf: /* FMAXP */ 8168 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8169 break; 8170 case 0x2c: /* FMINNMP */ 8171 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8172 break; 8173 case 0x2f: /* FMINP */ 8174 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8175 break; 8176 default: 8177 g_assert_not_reached(); 8178 } 8179 8180 write_fp_dreg(s, rd, tcg_res); 8181 } else { 8182 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8183 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8184 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8185 8186 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8187 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8188 8189 if (size == MO_16) { 8190 switch (opcode) { 8191 case 0xc: /* FMAXNMP */ 8192 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8193 break; 8194 case 0xd: /* FADDP */ 8195 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8196 break; 8197 case 0xf: /* FMAXP */ 8198 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8199 break; 8200 case 0x2c: /* FMINNMP */ 8201 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8202 break; 8203 case 0x2f: /* FMINP */ 8204 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8205 break; 8206 default: 8207 g_assert_not_reached(); 8208 } 8209 } else { 8210 switch (opcode) { 8211 case 0xc: /* FMAXNMP */ 8212 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8213 break; 8214 case 0xd: /* FADDP */ 8215 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8216 break; 8217 case 0xf: /* FMAXP */ 8218 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8219 break; 8220 case 0x2c: /* FMINNMP */ 8221 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8222 break; 8223 case 0x2f: /* FMINP */ 8224 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8225 break; 8226 default: 8227 g_assert_not_reached(); 8228 } 8229 } 8230 8231 write_fp_sreg(s, rd, tcg_res); 8232 } 8233 } 8234 8235 /* 8236 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8237 * 8238 * This code is handles the common shifting code and is used by both 8239 * the vector and scalar code. 8240 */ 8241 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8242 TCGv_i64 tcg_rnd, bool accumulate, 8243 bool is_u, int size, int shift) 8244 { 8245 bool extended_result = false; 8246 bool round = tcg_rnd != NULL; 8247 int ext_lshift = 0; 8248 TCGv_i64 tcg_src_hi; 8249 8250 if (round && size == 3) { 8251 extended_result = true; 8252 ext_lshift = 64 - shift; 8253 tcg_src_hi = tcg_temp_new_i64(); 8254 } else if (shift == 64) { 8255 if (!accumulate && is_u) { 8256 /* result is zero */ 8257 tcg_gen_movi_i64(tcg_res, 0); 8258 return; 8259 } 8260 } 8261 8262 /* Deal with the rounding step */ 8263 if (round) { 8264 if (extended_result) { 8265 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8266 if (!is_u) { 8267 /* take care of sign extending tcg_res */ 8268 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8269 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8270 tcg_src, tcg_src_hi, 8271 tcg_rnd, tcg_zero); 8272 } else { 8273 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8274 tcg_src, tcg_zero, 8275 tcg_rnd, tcg_zero); 8276 } 8277 } else { 8278 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8279 } 8280 } 8281 8282 /* Now do the shift right */ 8283 if (round && extended_result) { 8284 /* extended case, >64 bit precision required */ 8285 if (ext_lshift == 0) { 8286 /* special case, only high bits matter */ 8287 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8288 } else { 8289 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8290 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8291 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8292 } 8293 } else { 8294 if (is_u) { 8295 if (shift == 64) { 8296 /* essentially shifting in 64 zeros */ 8297 tcg_gen_movi_i64(tcg_src, 0); 8298 } else { 8299 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8300 } 8301 } else { 8302 if (shift == 64) { 8303 /* effectively extending the sign-bit */ 8304 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8305 } else { 8306 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8307 } 8308 } 8309 } 8310 8311 if (accumulate) { 8312 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8313 } else { 8314 tcg_gen_mov_i64(tcg_res, tcg_src); 8315 } 8316 } 8317 8318 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8319 static void handle_scalar_simd_shri(DisasContext *s, 8320 bool is_u, int immh, int immb, 8321 int opcode, int rn, int rd) 8322 { 8323 const int size = 3; 8324 int immhb = immh << 3 | immb; 8325 int shift = 2 * (8 << size) - immhb; 8326 bool accumulate = false; 8327 bool round = false; 8328 bool insert = false; 8329 TCGv_i64 tcg_rn; 8330 TCGv_i64 tcg_rd; 8331 TCGv_i64 tcg_round; 8332 8333 if (!extract32(immh, 3, 1)) { 8334 unallocated_encoding(s); 8335 return; 8336 } 8337 8338 if (!fp_access_check(s)) { 8339 return; 8340 } 8341 8342 switch (opcode) { 8343 case 0x02: /* SSRA / USRA (accumulate) */ 8344 accumulate = true; 8345 break; 8346 case 0x04: /* SRSHR / URSHR (rounding) */ 8347 round = true; 8348 break; 8349 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8350 accumulate = round = true; 8351 break; 8352 case 0x08: /* SRI */ 8353 insert = true; 8354 break; 8355 } 8356 8357 if (round) { 8358 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8359 } else { 8360 tcg_round = NULL; 8361 } 8362 8363 tcg_rn = read_fp_dreg(s, rn); 8364 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8365 8366 if (insert) { 8367 /* shift count same as element size is valid but does nothing; 8368 * special case to avoid potential shift by 64. 8369 */ 8370 int esize = 8 << size; 8371 if (shift != esize) { 8372 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8373 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8374 } 8375 } else { 8376 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8377 accumulate, is_u, size, shift); 8378 } 8379 8380 write_fp_dreg(s, rd, tcg_rd); 8381 } 8382 8383 /* SHL/SLI - Scalar shift left */ 8384 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8385 int immh, int immb, int opcode, 8386 int rn, int rd) 8387 { 8388 int size = 32 - clz32(immh) - 1; 8389 int immhb = immh << 3 | immb; 8390 int shift = immhb - (8 << size); 8391 TCGv_i64 tcg_rn; 8392 TCGv_i64 tcg_rd; 8393 8394 if (!extract32(immh, 3, 1)) { 8395 unallocated_encoding(s); 8396 return; 8397 } 8398 8399 if (!fp_access_check(s)) { 8400 return; 8401 } 8402 8403 tcg_rn = read_fp_dreg(s, rn); 8404 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8405 8406 if (insert) { 8407 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8408 } else { 8409 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8410 } 8411 8412 write_fp_dreg(s, rd, tcg_rd); 8413 } 8414 8415 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8416 * (signed/unsigned) narrowing */ 8417 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8418 bool is_u_shift, bool is_u_narrow, 8419 int immh, int immb, int opcode, 8420 int rn, int rd) 8421 { 8422 int immhb = immh << 3 | immb; 8423 int size = 32 - clz32(immh) - 1; 8424 int esize = 8 << size; 8425 int shift = (2 * esize) - immhb; 8426 int elements = is_scalar ? 1 : (64 / esize); 8427 bool round = extract32(opcode, 0, 1); 8428 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8429 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8430 TCGv_i32 tcg_rd_narrowed; 8431 TCGv_i64 tcg_final; 8432 8433 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8434 { gen_helper_neon_narrow_sat_s8, 8435 gen_helper_neon_unarrow_sat8 }, 8436 { gen_helper_neon_narrow_sat_s16, 8437 gen_helper_neon_unarrow_sat16 }, 8438 { gen_helper_neon_narrow_sat_s32, 8439 gen_helper_neon_unarrow_sat32 }, 8440 { NULL, NULL }, 8441 }; 8442 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8443 gen_helper_neon_narrow_sat_u8, 8444 gen_helper_neon_narrow_sat_u16, 8445 gen_helper_neon_narrow_sat_u32, 8446 NULL 8447 }; 8448 NeonGenNarrowEnvFn *narrowfn; 8449 8450 int i; 8451 8452 assert(size < 4); 8453 8454 if (extract32(immh, 3, 1)) { 8455 unallocated_encoding(s); 8456 return; 8457 } 8458 8459 if (!fp_access_check(s)) { 8460 return; 8461 } 8462 8463 if (is_u_shift) { 8464 narrowfn = unsigned_narrow_fns[size]; 8465 } else { 8466 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8467 } 8468 8469 tcg_rn = tcg_temp_new_i64(); 8470 tcg_rd = tcg_temp_new_i64(); 8471 tcg_rd_narrowed = tcg_temp_new_i32(); 8472 tcg_final = tcg_temp_new_i64(); 8473 8474 if (round) { 8475 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8476 } else { 8477 tcg_round = NULL; 8478 } 8479 8480 for (i = 0; i < elements; i++) { 8481 read_vec_element(s, tcg_rn, rn, i, ldop); 8482 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8483 false, is_u_shift, size+1, shift); 8484 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8485 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8486 if (i == 0) { 8487 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8488 } else { 8489 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8490 } 8491 } 8492 8493 if (!is_q) { 8494 write_vec_element(s, tcg_final, rd, 0, MO_64); 8495 } else { 8496 write_vec_element(s, tcg_final, rd, 1, MO_64); 8497 } 8498 clear_vec_high(s, is_q, rd); 8499 } 8500 8501 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8502 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8503 bool src_unsigned, bool dst_unsigned, 8504 int immh, int immb, int rn, int rd) 8505 { 8506 int immhb = immh << 3 | immb; 8507 int size = 32 - clz32(immh) - 1; 8508 int shift = immhb - (8 << size); 8509 int pass; 8510 8511 assert(immh != 0); 8512 assert(!(scalar && is_q)); 8513 8514 if (!scalar) { 8515 if (!is_q && extract32(immh, 3, 1)) { 8516 unallocated_encoding(s); 8517 return; 8518 } 8519 8520 /* Since we use the variable-shift helpers we must 8521 * replicate the shift count into each element of 8522 * the tcg_shift value. 8523 */ 8524 switch (size) { 8525 case 0: 8526 shift |= shift << 8; 8527 /* fall through */ 8528 case 1: 8529 shift |= shift << 16; 8530 break; 8531 case 2: 8532 case 3: 8533 break; 8534 default: 8535 g_assert_not_reached(); 8536 } 8537 } 8538 8539 if (!fp_access_check(s)) { 8540 return; 8541 } 8542 8543 if (size == 3) { 8544 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8545 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8546 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8547 { NULL, gen_helper_neon_qshl_u64 }, 8548 }; 8549 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8550 int maxpass = is_q ? 2 : 1; 8551 8552 for (pass = 0; pass < maxpass; pass++) { 8553 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8554 8555 read_vec_element(s, tcg_op, rn, pass, MO_64); 8556 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8557 write_vec_element(s, tcg_op, rd, pass, MO_64); 8558 } 8559 clear_vec_high(s, is_q, rd); 8560 } else { 8561 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8562 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8563 { 8564 { gen_helper_neon_qshl_s8, 8565 gen_helper_neon_qshl_s16, 8566 gen_helper_neon_qshl_s32 }, 8567 { gen_helper_neon_qshlu_s8, 8568 gen_helper_neon_qshlu_s16, 8569 gen_helper_neon_qshlu_s32 } 8570 }, { 8571 { NULL, NULL, NULL }, 8572 { gen_helper_neon_qshl_u8, 8573 gen_helper_neon_qshl_u16, 8574 gen_helper_neon_qshl_u32 } 8575 } 8576 }; 8577 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8578 MemOp memop = scalar ? size : MO_32; 8579 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8580 8581 for (pass = 0; pass < maxpass; pass++) { 8582 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8583 8584 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8585 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8586 if (scalar) { 8587 switch (size) { 8588 case 0: 8589 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8590 break; 8591 case 1: 8592 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8593 break; 8594 case 2: 8595 break; 8596 default: 8597 g_assert_not_reached(); 8598 } 8599 write_fp_sreg(s, rd, tcg_op); 8600 } else { 8601 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8602 } 8603 } 8604 8605 if (!scalar) { 8606 clear_vec_high(s, is_q, rd); 8607 } 8608 } 8609 } 8610 8611 /* Common vector code for handling integer to FP conversion */ 8612 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8613 int elements, int is_signed, 8614 int fracbits, int size) 8615 { 8616 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8617 TCGv_i32 tcg_shift = NULL; 8618 8619 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8620 int pass; 8621 8622 if (fracbits || size == MO_64) { 8623 tcg_shift = tcg_constant_i32(fracbits); 8624 } 8625 8626 if (size == MO_64) { 8627 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8628 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8629 8630 for (pass = 0; pass < elements; pass++) { 8631 read_vec_element(s, tcg_int64, rn, pass, mop); 8632 8633 if (is_signed) { 8634 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8635 tcg_shift, tcg_fpst); 8636 } else { 8637 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8638 tcg_shift, tcg_fpst); 8639 } 8640 if (elements == 1) { 8641 write_fp_dreg(s, rd, tcg_double); 8642 } else { 8643 write_vec_element(s, tcg_double, rd, pass, MO_64); 8644 } 8645 } 8646 } else { 8647 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8648 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8649 8650 for (pass = 0; pass < elements; pass++) { 8651 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8652 8653 switch (size) { 8654 case MO_32: 8655 if (fracbits) { 8656 if (is_signed) { 8657 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8658 tcg_shift, tcg_fpst); 8659 } else { 8660 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8661 tcg_shift, tcg_fpst); 8662 } 8663 } else { 8664 if (is_signed) { 8665 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8666 } else { 8667 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8668 } 8669 } 8670 break; 8671 case MO_16: 8672 if (fracbits) { 8673 if (is_signed) { 8674 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8675 tcg_shift, tcg_fpst); 8676 } else { 8677 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8678 tcg_shift, tcg_fpst); 8679 } 8680 } else { 8681 if (is_signed) { 8682 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8683 } else { 8684 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8685 } 8686 } 8687 break; 8688 default: 8689 g_assert_not_reached(); 8690 } 8691 8692 if (elements == 1) { 8693 write_fp_sreg(s, rd, tcg_float); 8694 } else { 8695 write_vec_element_i32(s, tcg_float, rd, pass, size); 8696 } 8697 } 8698 } 8699 8700 clear_vec_high(s, elements << size == 16, rd); 8701 } 8702 8703 /* UCVTF/SCVTF - Integer to FP conversion */ 8704 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8705 bool is_q, bool is_u, 8706 int immh, int immb, int opcode, 8707 int rn, int rd) 8708 { 8709 int size, elements, fracbits; 8710 int immhb = immh << 3 | immb; 8711 8712 if (immh & 8) { 8713 size = MO_64; 8714 if (!is_scalar && !is_q) { 8715 unallocated_encoding(s); 8716 return; 8717 } 8718 } else if (immh & 4) { 8719 size = MO_32; 8720 } else if (immh & 2) { 8721 size = MO_16; 8722 if (!dc_isar_feature(aa64_fp16, s)) { 8723 unallocated_encoding(s); 8724 return; 8725 } 8726 } else { 8727 /* immh == 0 would be a failure of the decode logic */ 8728 g_assert(immh == 1); 8729 unallocated_encoding(s); 8730 return; 8731 } 8732 8733 if (is_scalar) { 8734 elements = 1; 8735 } else { 8736 elements = (8 << is_q) >> size; 8737 } 8738 fracbits = (16 << size) - immhb; 8739 8740 if (!fp_access_check(s)) { 8741 return; 8742 } 8743 8744 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8745 } 8746 8747 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8748 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8749 bool is_q, bool is_u, 8750 int immh, int immb, int rn, int rd) 8751 { 8752 int immhb = immh << 3 | immb; 8753 int pass, size, fracbits; 8754 TCGv_ptr tcg_fpstatus; 8755 TCGv_i32 tcg_rmode, tcg_shift; 8756 8757 if (immh & 0x8) { 8758 size = MO_64; 8759 if (!is_scalar && !is_q) { 8760 unallocated_encoding(s); 8761 return; 8762 } 8763 } else if (immh & 0x4) { 8764 size = MO_32; 8765 } else if (immh & 0x2) { 8766 size = MO_16; 8767 if (!dc_isar_feature(aa64_fp16, s)) { 8768 unallocated_encoding(s); 8769 return; 8770 } 8771 } else { 8772 /* Should have split out AdvSIMD modified immediate earlier. */ 8773 assert(immh == 1); 8774 unallocated_encoding(s); 8775 return; 8776 } 8777 8778 if (!fp_access_check(s)) { 8779 return; 8780 } 8781 8782 assert(!(is_scalar && is_q)); 8783 8784 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8785 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8786 fracbits = (16 << size) - immhb; 8787 tcg_shift = tcg_constant_i32(fracbits); 8788 8789 if (size == MO_64) { 8790 int maxpass = is_scalar ? 1 : 2; 8791 8792 for (pass = 0; pass < maxpass; pass++) { 8793 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8794 8795 read_vec_element(s, tcg_op, rn, pass, MO_64); 8796 if (is_u) { 8797 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8798 } else { 8799 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8800 } 8801 write_vec_element(s, tcg_op, rd, pass, MO_64); 8802 } 8803 clear_vec_high(s, is_q, rd); 8804 } else { 8805 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8806 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8807 8808 switch (size) { 8809 case MO_16: 8810 if (is_u) { 8811 fn = gen_helper_vfp_touhh; 8812 } else { 8813 fn = gen_helper_vfp_toshh; 8814 } 8815 break; 8816 case MO_32: 8817 if (is_u) { 8818 fn = gen_helper_vfp_touls; 8819 } else { 8820 fn = gen_helper_vfp_tosls; 8821 } 8822 break; 8823 default: 8824 g_assert_not_reached(); 8825 } 8826 8827 for (pass = 0; pass < maxpass; pass++) { 8828 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8829 8830 read_vec_element_i32(s, tcg_op, rn, pass, size); 8831 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8832 if (is_scalar) { 8833 if (size == MO_16 && !is_u) { 8834 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8835 } 8836 write_fp_sreg(s, rd, tcg_op); 8837 } else { 8838 write_vec_element_i32(s, tcg_op, rd, pass, size); 8839 } 8840 } 8841 if (!is_scalar) { 8842 clear_vec_high(s, is_q, rd); 8843 } 8844 } 8845 8846 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8847 } 8848 8849 /* AdvSIMD scalar shift by immediate 8850 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8851 * +-----+---+-------------+------+------+--------+---+------+------+ 8852 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8853 * +-----+---+-------------+------+------+--------+---+------+------+ 8854 * 8855 * This is the scalar version so it works on a fixed sized registers 8856 */ 8857 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8858 { 8859 int rd = extract32(insn, 0, 5); 8860 int rn = extract32(insn, 5, 5); 8861 int opcode = extract32(insn, 11, 5); 8862 int immb = extract32(insn, 16, 3); 8863 int immh = extract32(insn, 19, 4); 8864 bool is_u = extract32(insn, 29, 1); 8865 8866 if (immh == 0) { 8867 unallocated_encoding(s); 8868 return; 8869 } 8870 8871 switch (opcode) { 8872 case 0x08: /* SRI */ 8873 if (!is_u) { 8874 unallocated_encoding(s); 8875 return; 8876 } 8877 /* fall through */ 8878 case 0x00: /* SSHR / USHR */ 8879 case 0x02: /* SSRA / USRA */ 8880 case 0x04: /* SRSHR / URSHR */ 8881 case 0x06: /* SRSRA / URSRA */ 8882 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8883 break; 8884 case 0x0a: /* SHL / SLI */ 8885 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8886 break; 8887 case 0x1c: /* SCVTF, UCVTF */ 8888 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8889 opcode, rn, rd); 8890 break; 8891 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8892 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8893 if (!is_u) { 8894 unallocated_encoding(s); 8895 return; 8896 } 8897 handle_vec_simd_sqshrn(s, true, false, false, true, 8898 immh, immb, opcode, rn, rd); 8899 break; 8900 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8901 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8902 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8903 immh, immb, opcode, rn, rd); 8904 break; 8905 case 0xc: /* SQSHLU */ 8906 if (!is_u) { 8907 unallocated_encoding(s); 8908 return; 8909 } 8910 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8911 break; 8912 case 0xe: /* SQSHL, UQSHL */ 8913 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8914 break; 8915 case 0x1f: /* FCVTZS, FCVTZU */ 8916 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8917 break; 8918 default: 8919 unallocated_encoding(s); 8920 break; 8921 } 8922 } 8923 8924 /* AdvSIMD scalar three different 8925 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8926 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8927 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8928 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8929 */ 8930 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8931 { 8932 bool is_u = extract32(insn, 29, 1); 8933 int size = extract32(insn, 22, 2); 8934 int opcode = extract32(insn, 12, 4); 8935 int rm = extract32(insn, 16, 5); 8936 int rn = extract32(insn, 5, 5); 8937 int rd = extract32(insn, 0, 5); 8938 8939 if (is_u) { 8940 unallocated_encoding(s); 8941 return; 8942 } 8943 8944 switch (opcode) { 8945 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8946 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8947 case 0xd: /* SQDMULL, SQDMULL2 */ 8948 if (size == 0 || size == 3) { 8949 unallocated_encoding(s); 8950 return; 8951 } 8952 break; 8953 default: 8954 unallocated_encoding(s); 8955 return; 8956 } 8957 8958 if (!fp_access_check(s)) { 8959 return; 8960 } 8961 8962 if (size == 2) { 8963 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8964 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8965 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8966 8967 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8968 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8969 8970 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8971 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8972 8973 switch (opcode) { 8974 case 0xd: /* SQDMULL, SQDMULL2 */ 8975 break; 8976 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8977 tcg_gen_neg_i64(tcg_res, tcg_res); 8978 /* fall through */ 8979 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8980 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8981 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8982 tcg_res, tcg_op1); 8983 break; 8984 default: 8985 g_assert_not_reached(); 8986 } 8987 8988 write_fp_dreg(s, rd, tcg_res); 8989 } else { 8990 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8991 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8992 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8993 8994 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8995 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8996 8997 switch (opcode) { 8998 case 0xd: /* SQDMULL, SQDMULL2 */ 8999 break; 9000 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9001 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9002 /* fall through */ 9003 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9004 { 9005 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9006 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9007 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9008 tcg_res, tcg_op3); 9009 break; 9010 } 9011 default: 9012 g_assert_not_reached(); 9013 } 9014 9015 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9016 write_fp_dreg(s, rd, tcg_res); 9017 } 9018 } 9019 9020 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9021 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9022 { 9023 /* Handle 64x64->64 opcodes which are shared between the scalar 9024 * and vector 3-same groups. We cover every opcode where size == 3 9025 * is valid in either the three-reg-same (integer, not pairwise) 9026 * or scalar-three-reg-same groups. 9027 */ 9028 TCGCond cond; 9029 9030 switch (opcode) { 9031 case 0x1: /* SQADD */ 9032 if (u) { 9033 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9034 } else { 9035 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9036 } 9037 break; 9038 case 0x5: /* SQSUB */ 9039 if (u) { 9040 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9041 } else { 9042 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9043 } 9044 break; 9045 case 0x6: /* CMGT, CMHI */ 9046 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9047 do_cmop: 9048 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9049 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9050 break; 9051 case 0x7: /* CMGE, CMHS */ 9052 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9053 goto do_cmop; 9054 case 0x11: /* CMTST, CMEQ */ 9055 if (u) { 9056 cond = TCG_COND_EQ; 9057 goto do_cmop; 9058 } 9059 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9060 break; 9061 case 0x8: /* SSHL, USHL */ 9062 if (u) { 9063 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9064 } else { 9065 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9066 } 9067 break; 9068 case 0x9: /* SQSHL, UQSHL */ 9069 if (u) { 9070 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9071 } else { 9072 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9073 } 9074 break; 9075 case 0xa: /* SRSHL, URSHL */ 9076 if (u) { 9077 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9078 } else { 9079 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9080 } 9081 break; 9082 case 0xb: /* SQRSHL, UQRSHL */ 9083 if (u) { 9084 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9085 } else { 9086 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9087 } 9088 break; 9089 case 0x10: /* ADD, SUB */ 9090 if (u) { 9091 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9092 } else { 9093 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9094 } 9095 break; 9096 default: 9097 g_assert_not_reached(); 9098 } 9099 } 9100 9101 /* Handle the 3-same-operands float operations; shared by the scalar 9102 * and vector encodings. The caller must filter out any encodings 9103 * not allocated for the encoding it is dealing with. 9104 */ 9105 static void handle_3same_float(DisasContext *s, int size, int elements, 9106 int fpopcode, int rd, int rn, int rm) 9107 { 9108 int pass; 9109 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9110 9111 for (pass = 0; pass < elements; pass++) { 9112 if (size) { 9113 /* Double */ 9114 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9115 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9116 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9117 9118 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9119 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9120 9121 switch (fpopcode) { 9122 case 0x39: /* FMLS */ 9123 /* As usual for ARM, separate negation for fused multiply-add */ 9124 gen_vfp_negd(tcg_op1, tcg_op1); 9125 /* fall through */ 9126 case 0x19: /* FMLA */ 9127 read_vec_element(s, tcg_res, rd, pass, MO_64); 9128 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9129 tcg_res, fpst); 9130 break; 9131 case 0x1c: /* FCMEQ */ 9132 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9133 break; 9134 case 0x1f: /* FRECPS */ 9135 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9136 break; 9137 case 0x3f: /* FRSQRTS */ 9138 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9139 break; 9140 case 0x5c: /* FCMGE */ 9141 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9142 break; 9143 case 0x5d: /* FACGE */ 9144 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x7a: /* FABD */ 9147 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9148 gen_vfp_absd(tcg_res, tcg_res); 9149 break; 9150 case 0x7c: /* FCMGT */ 9151 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9152 break; 9153 case 0x7d: /* FACGT */ 9154 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9155 break; 9156 default: 9157 case 0x18: /* FMAXNM */ 9158 case 0x1a: /* FADD */ 9159 case 0x1b: /* FMULX */ 9160 case 0x1e: /* FMAX */ 9161 case 0x38: /* FMINNM */ 9162 case 0x3a: /* FSUB */ 9163 case 0x3e: /* FMIN */ 9164 case 0x5b: /* FMUL */ 9165 case 0x5f: /* FDIV */ 9166 g_assert_not_reached(); 9167 } 9168 9169 write_vec_element(s, tcg_res, rd, pass, MO_64); 9170 } else { 9171 /* Single */ 9172 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9173 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9174 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9175 9176 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9177 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9178 9179 switch (fpopcode) { 9180 case 0x39: /* FMLS */ 9181 /* As usual for ARM, separate negation for fused multiply-add */ 9182 gen_vfp_negs(tcg_op1, tcg_op1); 9183 /* fall through */ 9184 case 0x19: /* FMLA */ 9185 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9186 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9187 tcg_res, fpst); 9188 break; 9189 case 0x1c: /* FCMEQ */ 9190 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9191 break; 9192 case 0x1f: /* FRECPS */ 9193 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9194 break; 9195 case 0x3f: /* FRSQRTS */ 9196 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9197 break; 9198 case 0x5c: /* FCMGE */ 9199 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9200 break; 9201 case 0x5d: /* FACGE */ 9202 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9203 break; 9204 case 0x7a: /* FABD */ 9205 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9206 gen_vfp_abss(tcg_res, tcg_res); 9207 break; 9208 case 0x7c: /* FCMGT */ 9209 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9210 break; 9211 case 0x7d: /* FACGT */ 9212 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9213 break; 9214 default: 9215 case 0x18: /* FMAXNM */ 9216 case 0x1a: /* FADD */ 9217 case 0x1b: /* FMULX */ 9218 case 0x1e: /* FMAX */ 9219 case 0x38: /* FMINNM */ 9220 case 0x3a: /* FSUB */ 9221 case 0x3e: /* FMIN */ 9222 case 0x5b: /* FMUL */ 9223 case 0x5f: /* FDIV */ 9224 g_assert_not_reached(); 9225 } 9226 9227 if (elements == 1) { 9228 /* scalar single so clear high part */ 9229 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9230 9231 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9232 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9233 } else { 9234 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9235 } 9236 } 9237 } 9238 9239 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9240 } 9241 9242 /* AdvSIMD scalar three same 9243 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9244 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9245 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9246 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9247 */ 9248 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9249 { 9250 int rd = extract32(insn, 0, 5); 9251 int rn = extract32(insn, 5, 5); 9252 int opcode = extract32(insn, 11, 5); 9253 int rm = extract32(insn, 16, 5); 9254 int size = extract32(insn, 22, 2); 9255 bool u = extract32(insn, 29, 1); 9256 TCGv_i64 tcg_rd; 9257 9258 if (opcode >= 0x18) { 9259 /* Floating point: U, size[1] and opcode indicate operation */ 9260 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9261 switch (fpopcode) { 9262 case 0x1f: /* FRECPS */ 9263 case 0x3f: /* FRSQRTS */ 9264 case 0x5d: /* FACGE */ 9265 case 0x7d: /* FACGT */ 9266 case 0x1c: /* FCMEQ */ 9267 case 0x5c: /* FCMGE */ 9268 case 0x7c: /* FCMGT */ 9269 case 0x7a: /* FABD */ 9270 break; 9271 default: 9272 case 0x1b: /* FMULX */ 9273 unallocated_encoding(s); 9274 return; 9275 } 9276 9277 if (!fp_access_check(s)) { 9278 return; 9279 } 9280 9281 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9282 return; 9283 } 9284 9285 switch (opcode) { 9286 case 0x1: /* SQADD, UQADD */ 9287 case 0x5: /* SQSUB, UQSUB */ 9288 case 0x9: /* SQSHL, UQSHL */ 9289 case 0xb: /* SQRSHL, UQRSHL */ 9290 break; 9291 case 0x8: /* SSHL, USHL */ 9292 case 0xa: /* SRSHL, URSHL */ 9293 case 0x6: /* CMGT, CMHI */ 9294 case 0x7: /* CMGE, CMHS */ 9295 case 0x11: /* CMTST, CMEQ */ 9296 case 0x10: /* ADD, SUB (vector) */ 9297 if (size != 3) { 9298 unallocated_encoding(s); 9299 return; 9300 } 9301 break; 9302 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9303 if (size != 1 && size != 2) { 9304 unallocated_encoding(s); 9305 return; 9306 } 9307 break; 9308 default: 9309 unallocated_encoding(s); 9310 return; 9311 } 9312 9313 if (!fp_access_check(s)) { 9314 return; 9315 } 9316 9317 tcg_rd = tcg_temp_new_i64(); 9318 9319 if (size == 3) { 9320 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9321 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9322 9323 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9324 } else { 9325 /* Do a single operation on the lowest element in the vector. 9326 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9327 * no side effects for all these operations. 9328 * OPTME: special-purpose helpers would avoid doing some 9329 * unnecessary work in the helper for the 8 and 16 bit cases. 9330 */ 9331 NeonGenTwoOpEnvFn *genenvfn; 9332 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9333 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9334 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9335 9336 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9337 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9338 9339 switch (opcode) { 9340 case 0x1: /* SQADD, UQADD */ 9341 { 9342 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9343 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9344 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9345 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9346 }; 9347 genenvfn = fns[size][u]; 9348 break; 9349 } 9350 case 0x5: /* SQSUB, UQSUB */ 9351 { 9352 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9353 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9354 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9355 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9356 }; 9357 genenvfn = fns[size][u]; 9358 break; 9359 } 9360 case 0x9: /* SQSHL, UQSHL */ 9361 { 9362 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9363 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9364 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9365 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9366 }; 9367 genenvfn = fns[size][u]; 9368 break; 9369 } 9370 case 0xb: /* SQRSHL, UQRSHL */ 9371 { 9372 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9373 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9374 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9375 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9376 }; 9377 genenvfn = fns[size][u]; 9378 break; 9379 } 9380 case 0x16: /* SQDMULH, SQRDMULH */ 9381 { 9382 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9383 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9384 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9385 }; 9386 assert(size == 1 || size == 2); 9387 genenvfn = fns[size - 1][u]; 9388 break; 9389 } 9390 default: 9391 g_assert_not_reached(); 9392 } 9393 9394 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9395 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9396 } 9397 9398 write_fp_dreg(s, rd, tcg_rd); 9399 } 9400 9401 /* AdvSIMD scalar three same FP16 9402 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9403 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9404 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9405 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9406 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9407 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9408 */ 9409 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9410 uint32_t insn) 9411 { 9412 int rd = extract32(insn, 0, 5); 9413 int rn = extract32(insn, 5, 5); 9414 int opcode = extract32(insn, 11, 3); 9415 int rm = extract32(insn, 16, 5); 9416 bool u = extract32(insn, 29, 1); 9417 bool a = extract32(insn, 23, 1); 9418 int fpopcode = opcode | (a << 3) | (u << 4); 9419 TCGv_ptr fpst; 9420 TCGv_i32 tcg_op1; 9421 TCGv_i32 tcg_op2; 9422 TCGv_i32 tcg_res; 9423 9424 switch (fpopcode) { 9425 case 0x04: /* FCMEQ (reg) */ 9426 case 0x07: /* FRECPS */ 9427 case 0x0f: /* FRSQRTS */ 9428 case 0x14: /* FCMGE (reg) */ 9429 case 0x15: /* FACGE */ 9430 case 0x1a: /* FABD */ 9431 case 0x1c: /* FCMGT (reg) */ 9432 case 0x1d: /* FACGT */ 9433 break; 9434 default: 9435 case 0x03: /* FMULX */ 9436 unallocated_encoding(s); 9437 return; 9438 } 9439 9440 if (!dc_isar_feature(aa64_fp16, s)) { 9441 unallocated_encoding(s); 9442 } 9443 9444 if (!fp_access_check(s)) { 9445 return; 9446 } 9447 9448 fpst = fpstatus_ptr(FPST_FPCR_F16); 9449 9450 tcg_op1 = read_fp_hreg(s, rn); 9451 tcg_op2 = read_fp_hreg(s, rm); 9452 tcg_res = tcg_temp_new_i32(); 9453 9454 switch (fpopcode) { 9455 case 0x04: /* FCMEQ (reg) */ 9456 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9457 break; 9458 case 0x07: /* FRECPS */ 9459 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9460 break; 9461 case 0x0f: /* FRSQRTS */ 9462 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9463 break; 9464 case 0x14: /* FCMGE (reg) */ 9465 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9466 break; 9467 case 0x15: /* FACGE */ 9468 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9469 break; 9470 case 0x1a: /* FABD */ 9471 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9472 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9473 break; 9474 case 0x1c: /* FCMGT (reg) */ 9475 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9476 break; 9477 case 0x1d: /* FACGT */ 9478 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9479 break; 9480 default: 9481 case 0x03: /* FMULX */ 9482 g_assert_not_reached(); 9483 } 9484 9485 write_fp_sreg(s, rd, tcg_res); 9486 } 9487 9488 /* AdvSIMD scalar three same extra 9489 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9490 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9491 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9492 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9493 */ 9494 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9495 uint32_t insn) 9496 { 9497 int rd = extract32(insn, 0, 5); 9498 int rn = extract32(insn, 5, 5); 9499 int opcode = extract32(insn, 11, 4); 9500 int rm = extract32(insn, 16, 5); 9501 int size = extract32(insn, 22, 2); 9502 bool u = extract32(insn, 29, 1); 9503 TCGv_i32 ele1, ele2, ele3; 9504 TCGv_i64 res; 9505 bool feature; 9506 9507 switch (u * 16 + opcode) { 9508 case 0x10: /* SQRDMLAH (vector) */ 9509 case 0x11: /* SQRDMLSH (vector) */ 9510 if (size != 1 && size != 2) { 9511 unallocated_encoding(s); 9512 return; 9513 } 9514 feature = dc_isar_feature(aa64_rdm, s); 9515 break; 9516 default: 9517 unallocated_encoding(s); 9518 return; 9519 } 9520 if (!feature) { 9521 unallocated_encoding(s); 9522 return; 9523 } 9524 if (!fp_access_check(s)) { 9525 return; 9526 } 9527 9528 /* Do a single operation on the lowest element in the vector. 9529 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9530 * with no side effects for all these operations. 9531 * OPTME: special-purpose helpers would avoid doing some 9532 * unnecessary work in the helper for the 16 bit cases. 9533 */ 9534 ele1 = tcg_temp_new_i32(); 9535 ele2 = tcg_temp_new_i32(); 9536 ele3 = tcg_temp_new_i32(); 9537 9538 read_vec_element_i32(s, ele1, rn, 0, size); 9539 read_vec_element_i32(s, ele2, rm, 0, size); 9540 read_vec_element_i32(s, ele3, rd, 0, size); 9541 9542 switch (opcode) { 9543 case 0x0: /* SQRDMLAH */ 9544 if (size == 1) { 9545 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9546 } else { 9547 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9548 } 9549 break; 9550 case 0x1: /* SQRDMLSH */ 9551 if (size == 1) { 9552 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9553 } else { 9554 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9555 } 9556 break; 9557 default: 9558 g_assert_not_reached(); 9559 } 9560 9561 res = tcg_temp_new_i64(); 9562 tcg_gen_extu_i32_i64(res, ele3); 9563 write_fp_dreg(s, rd, res); 9564 } 9565 9566 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9567 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9568 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9569 { 9570 /* Handle 64->64 opcodes which are shared between the scalar and 9571 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9572 * is valid in either group and also the double-precision fp ops. 9573 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9574 * requires them. 9575 */ 9576 TCGCond cond; 9577 9578 switch (opcode) { 9579 case 0x4: /* CLS, CLZ */ 9580 if (u) { 9581 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9582 } else { 9583 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9584 } 9585 break; 9586 case 0x5: /* NOT */ 9587 /* This opcode is shared with CNT and RBIT but we have earlier 9588 * enforced that size == 3 if and only if this is the NOT insn. 9589 */ 9590 tcg_gen_not_i64(tcg_rd, tcg_rn); 9591 break; 9592 case 0x7: /* SQABS, SQNEG */ 9593 if (u) { 9594 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9595 } else { 9596 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9597 } 9598 break; 9599 case 0xa: /* CMLT */ 9600 cond = TCG_COND_LT; 9601 do_cmop: 9602 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9603 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9604 break; 9605 case 0x8: /* CMGT, CMGE */ 9606 cond = u ? TCG_COND_GE : TCG_COND_GT; 9607 goto do_cmop; 9608 case 0x9: /* CMEQ, CMLE */ 9609 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9610 goto do_cmop; 9611 case 0xb: /* ABS, NEG */ 9612 if (u) { 9613 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9614 } else { 9615 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9616 } 9617 break; 9618 case 0x2f: /* FABS */ 9619 gen_vfp_absd(tcg_rd, tcg_rn); 9620 break; 9621 case 0x6f: /* FNEG */ 9622 gen_vfp_negd(tcg_rd, tcg_rn); 9623 break; 9624 case 0x7f: /* FSQRT */ 9625 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9626 break; 9627 case 0x1a: /* FCVTNS */ 9628 case 0x1b: /* FCVTMS */ 9629 case 0x1c: /* FCVTAS */ 9630 case 0x3a: /* FCVTPS */ 9631 case 0x3b: /* FCVTZS */ 9632 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9633 break; 9634 case 0x5a: /* FCVTNU */ 9635 case 0x5b: /* FCVTMU */ 9636 case 0x5c: /* FCVTAU */ 9637 case 0x7a: /* FCVTPU */ 9638 case 0x7b: /* FCVTZU */ 9639 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9640 break; 9641 case 0x18: /* FRINTN */ 9642 case 0x19: /* FRINTM */ 9643 case 0x38: /* FRINTP */ 9644 case 0x39: /* FRINTZ */ 9645 case 0x58: /* FRINTA */ 9646 case 0x79: /* FRINTI */ 9647 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9648 break; 9649 case 0x59: /* FRINTX */ 9650 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9651 break; 9652 case 0x1e: /* FRINT32Z */ 9653 case 0x5e: /* FRINT32X */ 9654 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9655 break; 9656 case 0x1f: /* FRINT64Z */ 9657 case 0x5f: /* FRINT64X */ 9658 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9659 break; 9660 default: 9661 g_assert_not_reached(); 9662 } 9663 } 9664 9665 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9666 bool is_scalar, bool is_u, bool is_q, 9667 int size, int rn, int rd) 9668 { 9669 bool is_double = (size == MO_64); 9670 TCGv_ptr fpst; 9671 9672 if (!fp_access_check(s)) { 9673 return; 9674 } 9675 9676 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9677 9678 if (is_double) { 9679 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9680 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9681 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9682 NeonGenTwoDoubleOpFn *genfn; 9683 bool swap = false; 9684 int pass; 9685 9686 switch (opcode) { 9687 case 0x2e: /* FCMLT (zero) */ 9688 swap = true; 9689 /* fallthrough */ 9690 case 0x2c: /* FCMGT (zero) */ 9691 genfn = gen_helper_neon_cgt_f64; 9692 break; 9693 case 0x2d: /* FCMEQ (zero) */ 9694 genfn = gen_helper_neon_ceq_f64; 9695 break; 9696 case 0x6d: /* FCMLE (zero) */ 9697 swap = true; 9698 /* fall through */ 9699 case 0x6c: /* FCMGE (zero) */ 9700 genfn = gen_helper_neon_cge_f64; 9701 break; 9702 default: 9703 g_assert_not_reached(); 9704 } 9705 9706 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9707 read_vec_element(s, tcg_op, rn, pass, MO_64); 9708 if (swap) { 9709 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9710 } else { 9711 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9712 } 9713 write_vec_element(s, tcg_res, rd, pass, MO_64); 9714 } 9715 9716 clear_vec_high(s, !is_scalar, rd); 9717 } else { 9718 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9719 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9720 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9721 NeonGenTwoSingleOpFn *genfn; 9722 bool swap = false; 9723 int pass, maxpasses; 9724 9725 if (size == MO_16) { 9726 switch (opcode) { 9727 case 0x2e: /* FCMLT (zero) */ 9728 swap = true; 9729 /* fall through */ 9730 case 0x2c: /* FCMGT (zero) */ 9731 genfn = gen_helper_advsimd_cgt_f16; 9732 break; 9733 case 0x2d: /* FCMEQ (zero) */ 9734 genfn = gen_helper_advsimd_ceq_f16; 9735 break; 9736 case 0x6d: /* FCMLE (zero) */ 9737 swap = true; 9738 /* fall through */ 9739 case 0x6c: /* FCMGE (zero) */ 9740 genfn = gen_helper_advsimd_cge_f16; 9741 break; 9742 default: 9743 g_assert_not_reached(); 9744 } 9745 } else { 9746 switch (opcode) { 9747 case 0x2e: /* FCMLT (zero) */ 9748 swap = true; 9749 /* fall through */ 9750 case 0x2c: /* FCMGT (zero) */ 9751 genfn = gen_helper_neon_cgt_f32; 9752 break; 9753 case 0x2d: /* FCMEQ (zero) */ 9754 genfn = gen_helper_neon_ceq_f32; 9755 break; 9756 case 0x6d: /* FCMLE (zero) */ 9757 swap = true; 9758 /* fall through */ 9759 case 0x6c: /* FCMGE (zero) */ 9760 genfn = gen_helper_neon_cge_f32; 9761 break; 9762 default: 9763 g_assert_not_reached(); 9764 } 9765 } 9766 9767 if (is_scalar) { 9768 maxpasses = 1; 9769 } else { 9770 int vector_size = 8 << is_q; 9771 maxpasses = vector_size >> size; 9772 } 9773 9774 for (pass = 0; pass < maxpasses; pass++) { 9775 read_vec_element_i32(s, tcg_op, rn, pass, size); 9776 if (swap) { 9777 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9778 } else { 9779 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9780 } 9781 if (is_scalar) { 9782 write_fp_sreg(s, rd, tcg_res); 9783 } else { 9784 write_vec_element_i32(s, tcg_res, rd, pass, size); 9785 } 9786 } 9787 9788 if (!is_scalar) { 9789 clear_vec_high(s, is_q, rd); 9790 } 9791 } 9792 } 9793 9794 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9795 bool is_scalar, bool is_u, bool is_q, 9796 int size, int rn, int rd) 9797 { 9798 bool is_double = (size == 3); 9799 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9800 9801 if (is_double) { 9802 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9803 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9804 int pass; 9805 9806 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9807 read_vec_element(s, tcg_op, rn, pass, MO_64); 9808 switch (opcode) { 9809 case 0x3d: /* FRECPE */ 9810 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9811 break; 9812 case 0x3f: /* FRECPX */ 9813 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9814 break; 9815 case 0x7d: /* FRSQRTE */ 9816 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9817 break; 9818 default: 9819 g_assert_not_reached(); 9820 } 9821 write_vec_element(s, tcg_res, rd, pass, MO_64); 9822 } 9823 clear_vec_high(s, !is_scalar, rd); 9824 } else { 9825 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9826 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9827 int pass, maxpasses; 9828 9829 if (is_scalar) { 9830 maxpasses = 1; 9831 } else { 9832 maxpasses = is_q ? 4 : 2; 9833 } 9834 9835 for (pass = 0; pass < maxpasses; pass++) { 9836 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9837 9838 switch (opcode) { 9839 case 0x3c: /* URECPE */ 9840 gen_helper_recpe_u32(tcg_res, tcg_op); 9841 break; 9842 case 0x3d: /* FRECPE */ 9843 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9844 break; 9845 case 0x3f: /* FRECPX */ 9846 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9847 break; 9848 case 0x7d: /* FRSQRTE */ 9849 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9850 break; 9851 default: 9852 g_assert_not_reached(); 9853 } 9854 9855 if (is_scalar) { 9856 write_fp_sreg(s, rd, tcg_res); 9857 } else { 9858 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9859 } 9860 } 9861 if (!is_scalar) { 9862 clear_vec_high(s, is_q, rd); 9863 } 9864 } 9865 } 9866 9867 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9868 int opcode, bool u, bool is_q, 9869 int size, int rn, int rd) 9870 { 9871 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9872 * in the source becomes a size element in the destination). 9873 */ 9874 int pass; 9875 TCGv_i32 tcg_res[2]; 9876 int destelt = is_q ? 2 : 0; 9877 int passes = scalar ? 1 : 2; 9878 9879 if (scalar) { 9880 tcg_res[1] = tcg_constant_i32(0); 9881 } 9882 9883 for (pass = 0; pass < passes; pass++) { 9884 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9885 NeonGenNarrowFn *genfn = NULL; 9886 NeonGenNarrowEnvFn *genenvfn = NULL; 9887 9888 if (scalar) { 9889 read_vec_element(s, tcg_op, rn, pass, size + 1); 9890 } else { 9891 read_vec_element(s, tcg_op, rn, pass, MO_64); 9892 } 9893 tcg_res[pass] = tcg_temp_new_i32(); 9894 9895 switch (opcode) { 9896 case 0x12: /* XTN, SQXTUN */ 9897 { 9898 static NeonGenNarrowFn * const xtnfns[3] = { 9899 gen_helper_neon_narrow_u8, 9900 gen_helper_neon_narrow_u16, 9901 tcg_gen_extrl_i64_i32, 9902 }; 9903 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9904 gen_helper_neon_unarrow_sat8, 9905 gen_helper_neon_unarrow_sat16, 9906 gen_helper_neon_unarrow_sat32, 9907 }; 9908 if (u) { 9909 genenvfn = sqxtunfns[size]; 9910 } else { 9911 genfn = xtnfns[size]; 9912 } 9913 break; 9914 } 9915 case 0x14: /* SQXTN, UQXTN */ 9916 { 9917 static NeonGenNarrowEnvFn * const fns[3][2] = { 9918 { gen_helper_neon_narrow_sat_s8, 9919 gen_helper_neon_narrow_sat_u8 }, 9920 { gen_helper_neon_narrow_sat_s16, 9921 gen_helper_neon_narrow_sat_u16 }, 9922 { gen_helper_neon_narrow_sat_s32, 9923 gen_helper_neon_narrow_sat_u32 }, 9924 }; 9925 genenvfn = fns[size][u]; 9926 break; 9927 } 9928 case 0x16: /* FCVTN, FCVTN2 */ 9929 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9930 if (size == 2) { 9931 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9932 } else { 9933 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9934 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9935 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9936 TCGv_i32 ahp = get_ahp_flag(); 9937 9938 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9939 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9940 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9941 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9942 } 9943 break; 9944 case 0x36: /* BFCVTN, BFCVTN2 */ 9945 { 9946 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9947 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9948 } 9949 break; 9950 case 0x56: /* FCVTXN, FCVTXN2 */ 9951 /* 64 bit to 32 bit float conversion 9952 * with von Neumann rounding (round to odd) 9953 */ 9954 assert(size == 2); 9955 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9956 break; 9957 default: 9958 g_assert_not_reached(); 9959 } 9960 9961 if (genfn) { 9962 genfn(tcg_res[pass], tcg_op); 9963 } else if (genenvfn) { 9964 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9965 } 9966 } 9967 9968 for (pass = 0; pass < 2; pass++) { 9969 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9970 } 9971 clear_vec_high(s, is_q, rd); 9972 } 9973 9974 /* Remaining saturating accumulating ops */ 9975 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9976 bool is_q, int size, int rn, int rd) 9977 { 9978 bool is_double = (size == 3); 9979 9980 if (is_double) { 9981 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9982 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9983 int pass; 9984 9985 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9986 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9987 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9988 9989 if (is_u) { /* USQADD */ 9990 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9991 } else { /* SUQADD */ 9992 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9993 } 9994 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9995 } 9996 clear_vec_high(s, !is_scalar, rd); 9997 } else { 9998 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9999 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10000 int pass, maxpasses; 10001 10002 if (is_scalar) { 10003 maxpasses = 1; 10004 } else { 10005 maxpasses = is_q ? 4 : 2; 10006 } 10007 10008 for (pass = 0; pass < maxpasses; pass++) { 10009 if (is_scalar) { 10010 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10011 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10012 } else { 10013 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10014 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10015 } 10016 10017 if (is_u) { /* USQADD */ 10018 switch (size) { 10019 case 0: 10020 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10021 break; 10022 case 1: 10023 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10024 break; 10025 case 2: 10026 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10027 break; 10028 default: 10029 g_assert_not_reached(); 10030 } 10031 } else { /* SUQADD */ 10032 switch (size) { 10033 case 0: 10034 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10035 break; 10036 case 1: 10037 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10038 break; 10039 case 2: 10040 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10041 break; 10042 default: 10043 g_assert_not_reached(); 10044 } 10045 } 10046 10047 if (is_scalar) { 10048 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10049 } 10050 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10051 } 10052 clear_vec_high(s, is_q, rd); 10053 } 10054 } 10055 10056 /* AdvSIMD scalar two reg misc 10057 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10058 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10059 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10060 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10061 */ 10062 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10063 { 10064 int rd = extract32(insn, 0, 5); 10065 int rn = extract32(insn, 5, 5); 10066 int opcode = extract32(insn, 12, 5); 10067 int size = extract32(insn, 22, 2); 10068 bool u = extract32(insn, 29, 1); 10069 bool is_fcvt = false; 10070 int rmode; 10071 TCGv_i32 tcg_rmode; 10072 TCGv_ptr tcg_fpstatus; 10073 10074 switch (opcode) { 10075 case 0x3: /* USQADD / SUQADD*/ 10076 if (!fp_access_check(s)) { 10077 return; 10078 } 10079 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10080 return; 10081 case 0x7: /* SQABS / SQNEG */ 10082 break; 10083 case 0xa: /* CMLT */ 10084 if (u) { 10085 unallocated_encoding(s); 10086 return; 10087 } 10088 /* fall through */ 10089 case 0x8: /* CMGT, CMGE */ 10090 case 0x9: /* CMEQ, CMLE */ 10091 case 0xb: /* ABS, NEG */ 10092 if (size != 3) { 10093 unallocated_encoding(s); 10094 return; 10095 } 10096 break; 10097 case 0x12: /* SQXTUN */ 10098 if (!u) { 10099 unallocated_encoding(s); 10100 return; 10101 } 10102 /* fall through */ 10103 case 0x14: /* SQXTN, UQXTN */ 10104 if (size == 3) { 10105 unallocated_encoding(s); 10106 return; 10107 } 10108 if (!fp_access_check(s)) { 10109 return; 10110 } 10111 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10112 return; 10113 case 0xc ... 0xf: 10114 case 0x16 ... 0x1d: 10115 case 0x1f: 10116 /* Floating point: U, size[1] and opcode indicate operation; 10117 * size[0] indicates single or double precision. 10118 */ 10119 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10120 size = extract32(size, 0, 1) ? 3 : 2; 10121 switch (opcode) { 10122 case 0x2c: /* FCMGT (zero) */ 10123 case 0x2d: /* FCMEQ (zero) */ 10124 case 0x2e: /* FCMLT (zero) */ 10125 case 0x6c: /* FCMGE (zero) */ 10126 case 0x6d: /* FCMLE (zero) */ 10127 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10128 return; 10129 case 0x1d: /* SCVTF */ 10130 case 0x5d: /* UCVTF */ 10131 { 10132 bool is_signed = (opcode == 0x1d); 10133 if (!fp_access_check(s)) { 10134 return; 10135 } 10136 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10137 return; 10138 } 10139 case 0x3d: /* FRECPE */ 10140 case 0x3f: /* FRECPX */ 10141 case 0x7d: /* FRSQRTE */ 10142 if (!fp_access_check(s)) { 10143 return; 10144 } 10145 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10146 return; 10147 case 0x1a: /* FCVTNS */ 10148 case 0x1b: /* FCVTMS */ 10149 case 0x3a: /* FCVTPS */ 10150 case 0x3b: /* FCVTZS */ 10151 case 0x5a: /* FCVTNU */ 10152 case 0x5b: /* FCVTMU */ 10153 case 0x7a: /* FCVTPU */ 10154 case 0x7b: /* FCVTZU */ 10155 is_fcvt = true; 10156 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10157 break; 10158 case 0x1c: /* FCVTAS */ 10159 case 0x5c: /* FCVTAU */ 10160 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10161 is_fcvt = true; 10162 rmode = FPROUNDING_TIEAWAY; 10163 break; 10164 case 0x56: /* FCVTXN, FCVTXN2 */ 10165 if (size == 2) { 10166 unallocated_encoding(s); 10167 return; 10168 } 10169 if (!fp_access_check(s)) { 10170 return; 10171 } 10172 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10173 return; 10174 default: 10175 unallocated_encoding(s); 10176 return; 10177 } 10178 break; 10179 default: 10180 unallocated_encoding(s); 10181 return; 10182 } 10183 10184 if (!fp_access_check(s)) { 10185 return; 10186 } 10187 10188 if (is_fcvt) { 10189 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10190 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10191 } else { 10192 tcg_fpstatus = NULL; 10193 tcg_rmode = NULL; 10194 } 10195 10196 if (size == 3) { 10197 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10198 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10199 10200 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10201 write_fp_dreg(s, rd, tcg_rd); 10202 } else { 10203 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10204 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10205 10206 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10207 10208 switch (opcode) { 10209 case 0x7: /* SQABS, SQNEG */ 10210 { 10211 NeonGenOneOpEnvFn *genfn; 10212 static NeonGenOneOpEnvFn * const fns[3][2] = { 10213 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10214 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10215 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10216 }; 10217 genfn = fns[size][u]; 10218 genfn(tcg_rd, tcg_env, tcg_rn); 10219 break; 10220 } 10221 case 0x1a: /* FCVTNS */ 10222 case 0x1b: /* FCVTMS */ 10223 case 0x1c: /* FCVTAS */ 10224 case 0x3a: /* FCVTPS */ 10225 case 0x3b: /* FCVTZS */ 10226 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10227 tcg_fpstatus); 10228 break; 10229 case 0x5a: /* FCVTNU */ 10230 case 0x5b: /* FCVTMU */ 10231 case 0x5c: /* FCVTAU */ 10232 case 0x7a: /* FCVTPU */ 10233 case 0x7b: /* FCVTZU */ 10234 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10235 tcg_fpstatus); 10236 break; 10237 default: 10238 g_assert_not_reached(); 10239 } 10240 10241 write_fp_sreg(s, rd, tcg_rd); 10242 } 10243 10244 if (is_fcvt) { 10245 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10246 } 10247 } 10248 10249 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10250 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10251 int immh, int immb, int opcode, int rn, int rd) 10252 { 10253 int size = 32 - clz32(immh) - 1; 10254 int immhb = immh << 3 | immb; 10255 int shift = 2 * (8 << size) - immhb; 10256 GVecGen2iFn *gvec_fn; 10257 10258 if (extract32(immh, 3, 1) && !is_q) { 10259 unallocated_encoding(s); 10260 return; 10261 } 10262 tcg_debug_assert(size <= 3); 10263 10264 if (!fp_access_check(s)) { 10265 return; 10266 } 10267 10268 switch (opcode) { 10269 case 0x02: /* SSRA / USRA (accumulate) */ 10270 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10271 break; 10272 10273 case 0x08: /* SRI */ 10274 gvec_fn = gen_gvec_sri; 10275 break; 10276 10277 case 0x00: /* SSHR / USHR */ 10278 if (is_u) { 10279 if (shift == 8 << size) { 10280 /* Shift count the same size as element size produces zero. */ 10281 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10282 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10283 return; 10284 } 10285 gvec_fn = tcg_gen_gvec_shri; 10286 } else { 10287 /* Shift count the same size as element size produces all sign. */ 10288 if (shift == 8 << size) { 10289 shift -= 1; 10290 } 10291 gvec_fn = tcg_gen_gvec_sari; 10292 } 10293 break; 10294 10295 case 0x04: /* SRSHR / URSHR (rounding) */ 10296 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10297 break; 10298 10299 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10300 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10301 break; 10302 10303 default: 10304 g_assert_not_reached(); 10305 } 10306 10307 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10308 } 10309 10310 /* SHL/SLI - Vector shift left */ 10311 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10312 int immh, int immb, int opcode, int rn, int rd) 10313 { 10314 int size = 32 - clz32(immh) - 1; 10315 int immhb = immh << 3 | immb; 10316 int shift = immhb - (8 << size); 10317 10318 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10319 assert(size >= 0 && size <= 3); 10320 10321 if (extract32(immh, 3, 1) && !is_q) { 10322 unallocated_encoding(s); 10323 return; 10324 } 10325 10326 if (!fp_access_check(s)) { 10327 return; 10328 } 10329 10330 if (insert) { 10331 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10332 } else { 10333 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10334 } 10335 } 10336 10337 /* USHLL/SHLL - Vector shift left with widening */ 10338 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10339 int immh, int immb, int opcode, int rn, int rd) 10340 { 10341 int size = 32 - clz32(immh) - 1; 10342 int immhb = immh << 3 | immb; 10343 int shift = immhb - (8 << size); 10344 int dsize = 64; 10345 int esize = 8 << size; 10346 int elements = dsize/esize; 10347 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10348 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10349 int i; 10350 10351 if (size >= 3) { 10352 unallocated_encoding(s); 10353 return; 10354 } 10355 10356 if (!fp_access_check(s)) { 10357 return; 10358 } 10359 10360 /* For the LL variants the store is larger than the load, 10361 * so if rd == rn we would overwrite parts of our input. 10362 * So load everything right now and use shifts in the main loop. 10363 */ 10364 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10365 10366 for (i = 0; i < elements; i++) { 10367 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10368 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10369 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10370 write_vec_element(s, tcg_rd, rd, i, size + 1); 10371 } 10372 } 10373 10374 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10375 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10376 int immh, int immb, int opcode, int rn, int rd) 10377 { 10378 int immhb = immh << 3 | immb; 10379 int size = 32 - clz32(immh) - 1; 10380 int dsize = 64; 10381 int esize = 8 << size; 10382 int elements = dsize/esize; 10383 int shift = (2 * esize) - immhb; 10384 bool round = extract32(opcode, 0, 1); 10385 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10386 TCGv_i64 tcg_round; 10387 int i; 10388 10389 if (extract32(immh, 3, 1)) { 10390 unallocated_encoding(s); 10391 return; 10392 } 10393 10394 if (!fp_access_check(s)) { 10395 return; 10396 } 10397 10398 tcg_rn = tcg_temp_new_i64(); 10399 tcg_rd = tcg_temp_new_i64(); 10400 tcg_final = tcg_temp_new_i64(); 10401 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10402 10403 if (round) { 10404 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10405 } else { 10406 tcg_round = NULL; 10407 } 10408 10409 for (i = 0; i < elements; i++) { 10410 read_vec_element(s, tcg_rn, rn, i, size+1); 10411 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10412 false, true, size+1, shift); 10413 10414 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10415 } 10416 10417 if (!is_q) { 10418 write_vec_element(s, tcg_final, rd, 0, MO_64); 10419 } else { 10420 write_vec_element(s, tcg_final, rd, 1, MO_64); 10421 } 10422 10423 clear_vec_high(s, is_q, rd); 10424 } 10425 10426 10427 /* AdvSIMD shift by immediate 10428 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10429 * +---+---+---+-------------+------+------+--------+---+------+------+ 10430 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10431 * +---+---+---+-------------+------+------+--------+---+------+------+ 10432 */ 10433 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10434 { 10435 int rd = extract32(insn, 0, 5); 10436 int rn = extract32(insn, 5, 5); 10437 int opcode = extract32(insn, 11, 5); 10438 int immb = extract32(insn, 16, 3); 10439 int immh = extract32(insn, 19, 4); 10440 bool is_u = extract32(insn, 29, 1); 10441 bool is_q = extract32(insn, 30, 1); 10442 10443 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10444 assert(immh != 0); 10445 10446 switch (opcode) { 10447 case 0x08: /* SRI */ 10448 if (!is_u) { 10449 unallocated_encoding(s); 10450 return; 10451 } 10452 /* fall through */ 10453 case 0x00: /* SSHR / USHR */ 10454 case 0x02: /* SSRA / USRA (accumulate) */ 10455 case 0x04: /* SRSHR / URSHR (rounding) */ 10456 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10457 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10458 break; 10459 case 0x0a: /* SHL / SLI */ 10460 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10461 break; 10462 case 0x10: /* SHRN */ 10463 case 0x11: /* RSHRN / SQRSHRUN */ 10464 if (is_u) { 10465 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10466 opcode, rn, rd); 10467 } else { 10468 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10469 } 10470 break; 10471 case 0x12: /* SQSHRN / UQSHRN */ 10472 case 0x13: /* SQRSHRN / UQRSHRN */ 10473 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10474 opcode, rn, rd); 10475 break; 10476 case 0x14: /* SSHLL / USHLL */ 10477 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10478 break; 10479 case 0x1c: /* SCVTF / UCVTF */ 10480 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10481 opcode, rn, rd); 10482 break; 10483 case 0xc: /* SQSHLU */ 10484 if (!is_u) { 10485 unallocated_encoding(s); 10486 return; 10487 } 10488 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10489 break; 10490 case 0xe: /* SQSHL, UQSHL */ 10491 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10492 break; 10493 case 0x1f: /* FCVTZS/ FCVTZU */ 10494 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10495 return; 10496 default: 10497 unallocated_encoding(s); 10498 return; 10499 } 10500 } 10501 10502 /* Generate code to do a "long" addition or subtraction, ie one done in 10503 * TCGv_i64 on vector lanes twice the width specified by size. 10504 */ 10505 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10506 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10507 { 10508 static NeonGenTwo64OpFn * const fns[3][2] = { 10509 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10510 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10511 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10512 }; 10513 NeonGenTwo64OpFn *genfn; 10514 assert(size < 3); 10515 10516 genfn = fns[size][is_sub]; 10517 genfn(tcg_res, tcg_op1, tcg_op2); 10518 } 10519 10520 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10521 int opcode, int rd, int rn, int rm) 10522 { 10523 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10524 TCGv_i64 tcg_res[2]; 10525 int pass, accop; 10526 10527 tcg_res[0] = tcg_temp_new_i64(); 10528 tcg_res[1] = tcg_temp_new_i64(); 10529 10530 /* Does this op do an adding accumulate, a subtracting accumulate, 10531 * or no accumulate at all? 10532 */ 10533 switch (opcode) { 10534 case 5: 10535 case 8: 10536 case 9: 10537 accop = 1; 10538 break; 10539 case 10: 10540 case 11: 10541 accop = -1; 10542 break; 10543 default: 10544 accop = 0; 10545 break; 10546 } 10547 10548 if (accop != 0) { 10549 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10550 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10551 } 10552 10553 /* size == 2 means two 32x32->64 operations; this is worth special 10554 * casing because we can generally handle it inline. 10555 */ 10556 if (size == 2) { 10557 for (pass = 0; pass < 2; pass++) { 10558 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10559 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10560 TCGv_i64 tcg_passres; 10561 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10562 10563 int elt = pass + is_q * 2; 10564 10565 read_vec_element(s, tcg_op1, rn, elt, memop); 10566 read_vec_element(s, tcg_op2, rm, elt, memop); 10567 10568 if (accop == 0) { 10569 tcg_passres = tcg_res[pass]; 10570 } else { 10571 tcg_passres = tcg_temp_new_i64(); 10572 } 10573 10574 switch (opcode) { 10575 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10576 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10577 break; 10578 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10579 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10580 break; 10581 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10582 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10583 { 10584 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10585 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10586 10587 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10588 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10589 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10590 tcg_passres, 10591 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10592 break; 10593 } 10594 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10595 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10596 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10597 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10598 break; 10599 case 9: /* SQDMLAL, SQDMLAL2 */ 10600 case 11: /* SQDMLSL, SQDMLSL2 */ 10601 case 13: /* SQDMULL, SQDMULL2 */ 10602 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10603 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10604 tcg_passres, tcg_passres); 10605 break; 10606 default: 10607 g_assert_not_reached(); 10608 } 10609 10610 if (opcode == 9 || opcode == 11) { 10611 /* saturating accumulate ops */ 10612 if (accop < 0) { 10613 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10614 } 10615 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10616 tcg_res[pass], tcg_passres); 10617 } else if (accop > 0) { 10618 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10619 } else if (accop < 0) { 10620 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10621 } 10622 } 10623 } else { 10624 /* size 0 or 1, generally helper functions */ 10625 for (pass = 0; pass < 2; pass++) { 10626 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10627 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10628 TCGv_i64 tcg_passres; 10629 int elt = pass + is_q * 2; 10630 10631 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10632 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10633 10634 if (accop == 0) { 10635 tcg_passres = tcg_res[pass]; 10636 } else { 10637 tcg_passres = tcg_temp_new_i64(); 10638 } 10639 10640 switch (opcode) { 10641 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10642 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10643 { 10644 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10645 static NeonGenWidenFn * const widenfns[2][2] = { 10646 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10647 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10648 }; 10649 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10650 10651 widenfn(tcg_op2_64, tcg_op2); 10652 widenfn(tcg_passres, tcg_op1); 10653 gen_neon_addl(size, (opcode == 2), tcg_passres, 10654 tcg_passres, tcg_op2_64); 10655 break; 10656 } 10657 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10658 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10659 if (size == 0) { 10660 if (is_u) { 10661 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10662 } else { 10663 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10664 } 10665 } else { 10666 if (is_u) { 10667 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10668 } else { 10669 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10670 } 10671 } 10672 break; 10673 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10674 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10675 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10676 if (size == 0) { 10677 if (is_u) { 10678 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10679 } else { 10680 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10681 } 10682 } else { 10683 if (is_u) { 10684 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10685 } else { 10686 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10687 } 10688 } 10689 break; 10690 case 9: /* SQDMLAL, SQDMLAL2 */ 10691 case 11: /* SQDMLSL, SQDMLSL2 */ 10692 case 13: /* SQDMULL, SQDMULL2 */ 10693 assert(size == 1); 10694 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10695 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10696 tcg_passres, tcg_passres); 10697 break; 10698 default: 10699 g_assert_not_reached(); 10700 } 10701 10702 if (accop != 0) { 10703 if (opcode == 9 || opcode == 11) { 10704 /* saturating accumulate ops */ 10705 if (accop < 0) { 10706 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10707 } 10708 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10709 tcg_res[pass], 10710 tcg_passres); 10711 } else { 10712 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10713 tcg_res[pass], tcg_passres); 10714 } 10715 } 10716 } 10717 } 10718 10719 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10720 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10721 } 10722 10723 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10724 int opcode, int rd, int rn, int rm) 10725 { 10726 TCGv_i64 tcg_res[2]; 10727 int part = is_q ? 2 : 0; 10728 int pass; 10729 10730 for (pass = 0; pass < 2; pass++) { 10731 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10732 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10733 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10734 static NeonGenWidenFn * const widenfns[3][2] = { 10735 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10736 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10737 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10738 }; 10739 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10740 10741 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10742 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10743 widenfn(tcg_op2_wide, tcg_op2); 10744 tcg_res[pass] = tcg_temp_new_i64(); 10745 gen_neon_addl(size, (opcode == 3), 10746 tcg_res[pass], tcg_op1, tcg_op2_wide); 10747 } 10748 10749 for (pass = 0; pass < 2; pass++) { 10750 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10751 } 10752 } 10753 10754 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10755 { 10756 tcg_gen_addi_i64(in, in, 1U << 31); 10757 tcg_gen_extrh_i64_i32(res, in); 10758 } 10759 10760 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10761 int opcode, int rd, int rn, int rm) 10762 { 10763 TCGv_i32 tcg_res[2]; 10764 int part = is_q ? 2 : 0; 10765 int pass; 10766 10767 for (pass = 0; pass < 2; pass++) { 10768 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10769 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10770 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10771 static NeonGenNarrowFn * const narrowfns[3][2] = { 10772 { gen_helper_neon_narrow_high_u8, 10773 gen_helper_neon_narrow_round_high_u8 }, 10774 { gen_helper_neon_narrow_high_u16, 10775 gen_helper_neon_narrow_round_high_u16 }, 10776 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10777 }; 10778 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10779 10780 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10781 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10782 10783 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10784 10785 tcg_res[pass] = tcg_temp_new_i32(); 10786 gennarrow(tcg_res[pass], tcg_wideres); 10787 } 10788 10789 for (pass = 0; pass < 2; pass++) { 10790 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10791 } 10792 clear_vec_high(s, is_q, rd); 10793 } 10794 10795 /* AdvSIMD three different 10796 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10797 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10798 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10799 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10800 */ 10801 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10802 { 10803 /* Instructions in this group fall into three basic classes 10804 * (in each case with the operation working on each element in 10805 * the input vectors): 10806 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10807 * 128 bit input) 10808 * (2) wide 64 x 128 -> 128 10809 * (3) narrowing 128 x 128 -> 64 10810 * Here we do initial decode, catch unallocated cases and 10811 * dispatch to separate functions for each class. 10812 */ 10813 int is_q = extract32(insn, 30, 1); 10814 int is_u = extract32(insn, 29, 1); 10815 int size = extract32(insn, 22, 2); 10816 int opcode = extract32(insn, 12, 4); 10817 int rm = extract32(insn, 16, 5); 10818 int rn = extract32(insn, 5, 5); 10819 int rd = extract32(insn, 0, 5); 10820 10821 switch (opcode) { 10822 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10823 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10824 /* 64 x 128 -> 128 */ 10825 if (size == 3) { 10826 unallocated_encoding(s); 10827 return; 10828 } 10829 if (!fp_access_check(s)) { 10830 return; 10831 } 10832 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10833 break; 10834 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10835 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10836 /* 128 x 128 -> 64 */ 10837 if (size == 3) { 10838 unallocated_encoding(s); 10839 return; 10840 } 10841 if (!fp_access_check(s)) { 10842 return; 10843 } 10844 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10845 break; 10846 case 14: /* PMULL, PMULL2 */ 10847 if (is_u) { 10848 unallocated_encoding(s); 10849 return; 10850 } 10851 switch (size) { 10852 case 0: /* PMULL.P8 */ 10853 if (!fp_access_check(s)) { 10854 return; 10855 } 10856 /* The Q field specifies lo/hi half input for this insn. */ 10857 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10858 gen_helper_neon_pmull_h); 10859 break; 10860 10861 case 3: /* PMULL.P64 */ 10862 if (!dc_isar_feature(aa64_pmull, s)) { 10863 unallocated_encoding(s); 10864 return; 10865 } 10866 if (!fp_access_check(s)) { 10867 return; 10868 } 10869 /* The Q field specifies lo/hi half input for this insn. */ 10870 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10871 gen_helper_gvec_pmull_q); 10872 break; 10873 10874 default: 10875 unallocated_encoding(s); 10876 break; 10877 } 10878 return; 10879 case 9: /* SQDMLAL, SQDMLAL2 */ 10880 case 11: /* SQDMLSL, SQDMLSL2 */ 10881 case 13: /* SQDMULL, SQDMULL2 */ 10882 if (is_u || size == 0) { 10883 unallocated_encoding(s); 10884 return; 10885 } 10886 /* fall through */ 10887 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10888 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10889 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10890 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10891 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10892 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10893 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10894 /* 64 x 64 -> 128 */ 10895 if (size == 3) { 10896 unallocated_encoding(s); 10897 return; 10898 } 10899 if (!fp_access_check(s)) { 10900 return; 10901 } 10902 10903 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10904 break; 10905 default: 10906 /* opcode 15 not allocated */ 10907 unallocated_encoding(s); 10908 break; 10909 } 10910 } 10911 10912 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10913 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10914 { 10915 int rd = extract32(insn, 0, 5); 10916 int rn = extract32(insn, 5, 5); 10917 int rm = extract32(insn, 16, 5); 10918 int size = extract32(insn, 22, 2); 10919 bool is_u = extract32(insn, 29, 1); 10920 bool is_q = extract32(insn, 30, 1); 10921 10922 if (!fp_access_check(s)) { 10923 return; 10924 } 10925 10926 switch (size + 4 * is_u) { 10927 case 0: /* AND */ 10928 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10929 return; 10930 case 1: /* BIC */ 10931 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10932 return; 10933 case 2: /* ORR */ 10934 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10935 return; 10936 case 3: /* ORN */ 10937 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10938 return; 10939 case 4: /* EOR */ 10940 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10941 return; 10942 10943 case 5: /* BSL bitwise select */ 10944 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10945 return; 10946 case 6: /* BIT, bitwise insert if true */ 10947 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10948 return; 10949 case 7: /* BIF, bitwise insert if false */ 10950 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10951 return; 10952 10953 default: 10954 g_assert_not_reached(); 10955 } 10956 } 10957 10958 /* Pairwise op subgroup of C3.6.16. 10959 * 10960 * This is called directly or via the handle_3same_float for float pairwise 10961 * operations where the opcode and size are calculated differently. 10962 */ 10963 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10964 int size, int rn, int rm, int rd) 10965 { 10966 TCGv_ptr fpst; 10967 int pass; 10968 10969 /* Floating point operations need fpst */ 10970 if (opcode >= 0x58) { 10971 fpst = fpstatus_ptr(FPST_FPCR); 10972 } else { 10973 fpst = NULL; 10974 } 10975 10976 if (!fp_access_check(s)) { 10977 return; 10978 } 10979 10980 /* These operations work on the concatenated rm:rn, with each pair of 10981 * adjacent elements being operated on to produce an element in the result. 10982 */ 10983 if (size == 3) { 10984 TCGv_i64 tcg_res[2]; 10985 10986 for (pass = 0; pass < 2; pass++) { 10987 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10988 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10989 int passreg = (pass == 0) ? rn : rm; 10990 10991 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10992 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10993 tcg_res[pass] = tcg_temp_new_i64(); 10994 10995 switch (opcode) { 10996 case 0x17: /* ADDP */ 10997 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10998 break; 10999 case 0x58: /* FMAXNMP */ 11000 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11001 break; 11002 case 0x5a: /* FADDP */ 11003 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11004 break; 11005 case 0x5e: /* FMAXP */ 11006 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11007 break; 11008 case 0x78: /* FMINNMP */ 11009 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11010 break; 11011 case 0x7e: /* FMINP */ 11012 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11013 break; 11014 default: 11015 g_assert_not_reached(); 11016 } 11017 } 11018 11019 for (pass = 0; pass < 2; pass++) { 11020 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11021 } 11022 } else { 11023 int maxpass = is_q ? 4 : 2; 11024 TCGv_i32 tcg_res[4]; 11025 11026 for (pass = 0; pass < maxpass; pass++) { 11027 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11028 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11029 NeonGenTwoOpFn *genfn = NULL; 11030 int passreg = pass < (maxpass / 2) ? rn : rm; 11031 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11032 11033 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11034 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11035 tcg_res[pass] = tcg_temp_new_i32(); 11036 11037 switch (opcode) { 11038 case 0x17: /* ADDP */ 11039 { 11040 static NeonGenTwoOpFn * const fns[3] = { 11041 gen_helper_neon_padd_u8, 11042 gen_helper_neon_padd_u16, 11043 tcg_gen_add_i32, 11044 }; 11045 genfn = fns[size]; 11046 break; 11047 } 11048 case 0x14: /* SMAXP, UMAXP */ 11049 { 11050 static NeonGenTwoOpFn * const fns[3][2] = { 11051 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11052 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11053 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11054 }; 11055 genfn = fns[size][u]; 11056 break; 11057 } 11058 case 0x15: /* SMINP, UMINP */ 11059 { 11060 static NeonGenTwoOpFn * const fns[3][2] = { 11061 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11062 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11063 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11064 }; 11065 genfn = fns[size][u]; 11066 break; 11067 } 11068 /* The FP operations are all on single floats (32 bit) */ 11069 case 0x58: /* FMAXNMP */ 11070 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11071 break; 11072 case 0x5a: /* FADDP */ 11073 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11074 break; 11075 case 0x5e: /* FMAXP */ 11076 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11077 break; 11078 case 0x78: /* FMINNMP */ 11079 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11080 break; 11081 case 0x7e: /* FMINP */ 11082 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11083 break; 11084 default: 11085 g_assert_not_reached(); 11086 } 11087 11088 /* FP ops called directly, otherwise call now */ 11089 if (genfn) { 11090 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11091 } 11092 } 11093 11094 for (pass = 0; pass < maxpass; pass++) { 11095 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11096 } 11097 clear_vec_high(s, is_q, rd); 11098 } 11099 } 11100 11101 /* Floating point op subgroup of C3.6.16. */ 11102 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11103 { 11104 /* For floating point ops, the U, size[1] and opcode bits 11105 * together indicate the operation. size[0] indicates single 11106 * or double. 11107 */ 11108 int fpopcode = extract32(insn, 11, 5) 11109 | (extract32(insn, 23, 1) << 5) 11110 | (extract32(insn, 29, 1) << 6); 11111 int is_q = extract32(insn, 30, 1); 11112 int size = extract32(insn, 22, 1); 11113 int rm = extract32(insn, 16, 5); 11114 int rn = extract32(insn, 5, 5); 11115 int rd = extract32(insn, 0, 5); 11116 11117 int datasize = is_q ? 128 : 64; 11118 int esize = 32 << size; 11119 int elements = datasize / esize; 11120 11121 if (size == 1 && !is_q) { 11122 unallocated_encoding(s); 11123 return; 11124 } 11125 11126 switch (fpopcode) { 11127 case 0x58: /* FMAXNMP */ 11128 case 0x5a: /* FADDP */ 11129 case 0x5e: /* FMAXP */ 11130 case 0x78: /* FMINNMP */ 11131 case 0x7e: /* FMINP */ 11132 if (size && !is_q) { 11133 unallocated_encoding(s); 11134 return; 11135 } 11136 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11137 rn, rm, rd); 11138 return; 11139 case 0x1f: /* FRECPS */ 11140 case 0x3f: /* FRSQRTS */ 11141 case 0x5d: /* FACGE */ 11142 case 0x7d: /* FACGT */ 11143 case 0x19: /* FMLA */ 11144 case 0x39: /* FMLS */ 11145 case 0x1c: /* FCMEQ */ 11146 case 0x5c: /* FCMGE */ 11147 case 0x7a: /* FABD */ 11148 case 0x7c: /* FCMGT */ 11149 if (!fp_access_check(s)) { 11150 return; 11151 } 11152 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11153 return; 11154 11155 case 0x1d: /* FMLAL */ 11156 case 0x3d: /* FMLSL */ 11157 case 0x59: /* FMLAL2 */ 11158 case 0x79: /* FMLSL2 */ 11159 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11160 unallocated_encoding(s); 11161 return; 11162 } 11163 if (fp_access_check(s)) { 11164 int is_s = extract32(insn, 23, 1); 11165 int is_2 = extract32(insn, 29, 1); 11166 int data = (is_2 << 1) | is_s; 11167 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11168 vec_full_reg_offset(s, rn), 11169 vec_full_reg_offset(s, rm), tcg_env, 11170 is_q ? 16 : 8, vec_full_reg_size(s), 11171 data, gen_helper_gvec_fmlal_a64); 11172 } 11173 return; 11174 11175 default: 11176 case 0x18: /* FMAXNM */ 11177 case 0x1a: /* FADD */ 11178 case 0x1b: /* FMULX */ 11179 case 0x1e: /* FMAX */ 11180 case 0x38: /* FMINNM */ 11181 case 0x3a: /* FSUB */ 11182 case 0x3e: /* FMIN */ 11183 case 0x5b: /* FMUL */ 11184 case 0x5f: /* FDIV */ 11185 unallocated_encoding(s); 11186 return; 11187 } 11188 } 11189 11190 /* Integer op subgroup of C3.6.16. */ 11191 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11192 { 11193 int is_q = extract32(insn, 30, 1); 11194 int u = extract32(insn, 29, 1); 11195 int size = extract32(insn, 22, 2); 11196 int opcode = extract32(insn, 11, 5); 11197 int rm = extract32(insn, 16, 5); 11198 int rn = extract32(insn, 5, 5); 11199 int rd = extract32(insn, 0, 5); 11200 int pass; 11201 TCGCond cond; 11202 11203 switch (opcode) { 11204 case 0x13: /* MUL, PMUL */ 11205 if (u && size != 0) { 11206 unallocated_encoding(s); 11207 return; 11208 } 11209 /* fall through */ 11210 case 0x0: /* SHADD, UHADD */ 11211 case 0x2: /* SRHADD, URHADD */ 11212 case 0x4: /* SHSUB, UHSUB */ 11213 case 0xc: /* SMAX, UMAX */ 11214 case 0xd: /* SMIN, UMIN */ 11215 case 0xe: /* SABD, UABD */ 11216 case 0xf: /* SABA, UABA */ 11217 case 0x12: /* MLA, MLS */ 11218 if (size == 3) { 11219 unallocated_encoding(s); 11220 return; 11221 } 11222 break; 11223 case 0x16: /* SQDMULH, SQRDMULH */ 11224 if (size == 0 || size == 3) { 11225 unallocated_encoding(s); 11226 return; 11227 } 11228 break; 11229 default: 11230 if (size == 3 && !is_q) { 11231 unallocated_encoding(s); 11232 return; 11233 } 11234 break; 11235 } 11236 11237 if (!fp_access_check(s)) { 11238 return; 11239 } 11240 11241 switch (opcode) { 11242 case 0x01: /* SQADD, UQADD */ 11243 if (u) { 11244 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11245 } else { 11246 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11247 } 11248 return; 11249 case 0x05: /* SQSUB, UQSUB */ 11250 if (u) { 11251 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11252 } else { 11253 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11254 } 11255 return; 11256 case 0x08: /* SSHL, USHL */ 11257 if (u) { 11258 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11259 } else { 11260 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11261 } 11262 return; 11263 case 0x0c: /* SMAX, UMAX */ 11264 if (u) { 11265 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11266 } else { 11267 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11268 } 11269 return; 11270 case 0x0d: /* SMIN, UMIN */ 11271 if (u) { 11272 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11273 } else { 11274 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11275 } 11276 return; 11277 case 0xe: /* SABD, UABD */ 11278 if (u) { 11279 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11280 } else { 11281 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11282 } 11283 return; 11284 case 0xf: /* SABA, UABA */ 11285 if (u) { 11286 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11287 } else { 11288 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11289 } 11290 return; 11291 case 0x10: /* ADD, SUB */ 11292 if (u) { 11293 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11294 } else { 11295 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11296 } 11297 return; 11298 case 0x13: /* MUL, PMUL */ 11299 if (!u) { /* MUL */ 11300 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11301 } else { /* PMUL */ 11302 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11303 } 11304 return; 11305 case 0x12: /* MLA, MLS */ 11306 if (u) { 11307 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11308 } else { 11309 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11310 } 11311 return; 11312 case 0x16: /* SQDMULH, SQRDMULH */ 11313 { 11314 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11315 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11316 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11317 }; 11318 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11319 } 11320 return; 11321 case 0x11: 11322 if (!u) { /* CMTST */ 11323 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11324 return; 11325 } 11326 /* else CMEQ */ 11327 cond = TCG_COND_EQ; 11328 goto do_gvec_cmp; 11329 case 0x06: /* CMGT, CMHI */ 11330 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11331 goto do_gvec_cmp; 11332 case 0x07: /* CMGE, CMHS */ 11333 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11334 do_gvec_cmp: 11335 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11336 vec_full_reg_offset(s, rn), 11337 vec_full_reg_offset(s, rm), 11338 is_q ? 16 : 8, vec_full_reg_size(s)); 11339 return; 11340 } 11341 11342 if (size == 3) { 11343 assert(is_q); 11344 for (pass = 0; pass < 2; pass++) { 11345 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11346 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11347 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11348 11349 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11350 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11351 11352 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11353 11354 write_vec_element(s, tcg_res, rd, pass, MO_64); 11355 } 11356 } else { 11357 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11358 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11359 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11360 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11361 NeonGenTwoOpFn *genfn = NULL; 11362 NeonGenTwoOpEnvFn *genenvfn = NULL; 11363 11364 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11365 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11366 11367 switch (opcode) { 11368 case 0x0: /* SHADD, UHADD */ 11369 { 11370 static NeonGenTwoOpFn * const fns[3][2] = { 11371 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11372 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11373 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11374 }; 11375 genfn = fns[size][u]; 11376 break; 11377 } 11378 case 0x2: /* SRHADD, URHADD */ 11379 { 11380 static NeonGenTwoOpFn * const fns[3][2] = { 11381 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11382 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11383 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11384 }; 11385 genfn = fns[size][u]; 11386 break; 11387 } 11388 case 0x4: /* SHSUB, UHSUB */ 11389 { 11390 static NeonGenTwoOpFn * const fns[3][2] = { 11391 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11392 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11393 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11394 }; 11395 genfn = fns[size][u]; 11396 break; 11397 } 11398 case 0x9: /* SQSHL, UQSHL */ 11399 { 11400 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11401 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11402 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11403 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11404 }; 11405 genenvfn = fns[size][u]; 11406 break; 11407 } 11408 case 0xa: /* SRSHL, URSHL */ 11409 { 11410 static NeonGenTwoOpFn * const fns[3][2] = { 11411 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11412 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11413 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11414 }; 11415 genfn = fns[size][u]; 11416 break; 11417 } 11418 case 0xb: /* SQRSHL, UQRSHL */ 11419 { 11420 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11421 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11422 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11423 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11424 }; 11425 genenvfn = fns[size][u]; 11426 break; 11427 } 11428 default: 11429 g_assert_not_reached(); 11430 } 11431 11432 if (genenvfn) { 11433 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11434 } else { 11435 genfn(tcg_res, tcg_op1, tcg_op2); 11436 } 11437 11438 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11439 } 11440 } 11441 clear_vec_high(s, is_q, rd); 11442 } 11443 11444 /* AdvSIMD three same 11445 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11446 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11447 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11448 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11449 */ 11450 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11451 { 11452 int opcode = extract32(insn, 11, 5); 11453 11454 switch (opcode) { 11455 case 0x3: /* logic ops */ 11456 disas_simd_3same_logic(s, insn); 11457 break; 11458 case 0x17: /* ADDP */ 11459 case 0x14: /* SMAXP, UMAXP */ 11460 case 0x15: /* SMINP, UMINP */ 11461 { 11462 /* Pairwise operations */ 11463 int is_q = extract32(insn, 30, 1); 11464 int u = extract32(insn, 29, 1); 11465 int size = extract32(insn, 22, 2); 11466 int rm = extract32(insn, 16, 5); 11467 int rn = extract32(insn, 5, 5); 11468 int rd = extract32(insn, 0, 5); 11469 if (opcode == 0x17) { 11470 if (u || (size == 3 && !is_q)) { 11471 unallocated_encoding(s); 11472 return; 11473 } 11474 } else { 11475 if (size == 3) { 11476 unallocated_encoding(s); 11477 return; 11478 } 11479 } 11480 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11481 break; 11482 } 11483 case 0x18 ... 0x31: 11484 /* floating point ops, sz[1] and U are part of opcode */ 11485 disas_simd_3same_float(s, insn); 11486 break; 11487 default: 11488 disas_simd_3same_int(s, insn); 11489 break; 11490 } 11491 } 11492 11493 /* 11494 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11495 * 11496 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11497 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11498 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11499 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11500 * 11501 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11502 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11503 * 11504 */ 11505 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11506 { 11507 int opcode = extract32(insn, 11, 3); 11508 int u = extract32(insn, 29, 1); 11509 int a = extract32(insn, 23, 1); 11510 int is_q = extract32(insn, 30, 1); 11511 int rm = extract32(insn, 16, 5); 11512 int rn = extract32(insn, 5, 5); 11513 int rd = extract32(insn, 0, 5); 11514 /* 11515 * For these floating point ops, the U, a and opcode bits 11516 * together indicate the operation. 11517 */ 11518 int fpopcode = opcode | (a << 3) | (u << 4); 11519 int datasize = is_q ? 128 : 64; 11520 int elements = datasize / 16; 11521 bool pairwise; 11522 TCGv_ptr fpst; 11523 int pass; 11524 11525 switch (fpopcode) { 11526 case 0x1: /* FMLA */ 11527 case 0x4: /* FCMEQ */ 11528 case 0x7: /* FRECPS */ 11529 case 0x9: /* FMLS */ 11530 case 0xf: /* FRSQRTS */ 11531 case 0x14: /* FCMGE */ 11532 case 0x15: /* FACGE */ 11533 case 0x1a: /* FABD */ 11534 case 0x1c: /* FCMGT */ 11535 case 0x1d: /* FACGT */ 11536 pairwise = false; 11537 break; 11538 case 0x10: /* FMAXNMP */ 11539 case 0x12: /* FADDP */ 11540 case 0x16: /* FMAXP */ 11541 case 0x18: /* FMINNMP */ 11542 case 0x1e: /* FMINP */ 11543 pairwise = true; 11544 break; 11545 default: 11546 case 0x0: /* FMAXNM */ 11547 case 0x2: /* FADD */ 11548 case 0x3: /* FMULX */ 11549 case 0x6: /* FMAX */ 11550 case 0x8: /* FMINNM */ 11551 case 0xa: /* FSUB */ 11552 case 0xe: /* FMIN */ 11553 case 0x13: /* FMUL */ 11554 case 0x17: /* FDIV */ 11555 unallocated_encoding(s); 11556 return; 11557 } 11558 11559 if (!dc_isar_feature(aa64_fp16, s)) { 11560 unallocated_encoding(s); 11561 return; 11562 } 11563 11564 if (!fp_access_check(s)) { 11565 return; 11566 } 11567 11568 fpst = fpstatus_ptr(FPST_FPCR_F16); 11569 11570 if (pairwise) { 11571 int maxpass = is_q ? 8 : 4; 11572 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11573 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11574 TCGv_i32 tcg_res[8]; 11575 11576 for (pass = 0; pass < maxpass; pass++) { 11577 int passreg = pass < (maxpass / 2) ? rn : rm; 11578 int passelt = (pass << 1) & (maxpass - 1); 11579 11580 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11581 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11582 tcg_res[pass] = tcg_temp_new_i32(); 11583 11584 switch (fpopcode) { 11585 case 0x10: /* FMAXNMP */ 11586 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11587 fpst); 11588 break; 11589 case 0x12: /* FADDP */ 11590 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11591 break; 11592 case 0x16: /* FMAXP */ 11593 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11594 break; 11595 case 0x18: /* FMINNMP */ 11596 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11597 fpst); 11598 break; 11599 case 0x1e: /* FMINP */ 11600 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11601 break; 11602 default: 11603 g_assert_not_reached(); 11604 } 11605 } 11606 11607 for (pass = 0; pass < maxpass; pass++) { 11608 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11609 } 11610 } else { 11611 for (pass = 0; pass < elements; pass++) { 11612 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11613 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11614 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11615 11616 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11617 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11618 11619 switch (fpopcode) { 11620 case 0x1: /* FMLA */ 11621 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11622 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11623 fpst); 11624 break; 11625 case 0x4: /* FCMEQ */ 11626 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11627 break; 11628 case 0x7: /* FRECPS */ 11629 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11630 break; 11631 case 0x9: /* FMLS */ 11632 /* As usual for ARM, separate negation for fused multiply-add */ 11633 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11634 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11635 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11636 fpst); 11637 break; 11638 case 0xf: /* FRSQRTS */ 11639 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11640 break; 11641 case 0x14: /* FCMGE */ 11642 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11643 break; 11644 case 0x15: /* FACGE */ 11645 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11646 break; 11647 case 0x1a: /* FABD */ 11648 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11649 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11650 break; 11651 case 0x1c: /* FCMGT */ 11652 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11653 break; 11654 case 0x1d: /* FACGT */ 11655 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11656 break; 11657 default: 11658 case 0x0: /* FMAXNM */ 11659 case 0x2: /* FADD */ 11660 case 0x3: /* FMULX */ 11661 case 0x6: /* FMAX */ 11662 case 0x8: /* FMINNM */ 11663 case 0xa: /* FSUB */ 11664 case 0xe: /* FMIN */ 11665 case 0x13: /* FMUL */ 11666 case 0x17: /* FDIV */ 11667 g_assert_not_reached(); 11668 } 11669 11670 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11671 } 11672 } 11673 11674 clear_vec_high(s, is_q, rd); 11675 } 11676 11677 /* AdvSIMD three same extra 11678 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11679 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11680 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11681 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11682 */ 11683 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11684 { 11685 int rd = extract32(insn, 0, 5); 11686 int rn = extract32(insn, 5, 5); 11687 int opcode = extract32(insn, 11, 4); 11688 int rm = extract32(insn, 16, 5); 11689 int size = extract32(insn, 22, 2); 11690 bool u = extract32(insn, 29, 1); 11691 bool is_q = extract32(insn, 30, 1); 11692 bool feature; 11693 int rot; 11694 11695 switch (u * 16 + opcode) { 11696 case 0x10: /* SQRDMLAH (vector) */ 11697 case 0x11: /* SQRDMLSH (vector) */ 11698 if (size != 1 && size != 2) { 11699 unallocated_encoding(s); 11700 return; 11701 } 11702 feature = dc_isar_feature(aa64_rdm, s); 11703 break; 11704 case 0x02: /* SDOT (vector) */ 11705 case 0x12: /* UDOT (vector) */ 11706 if (size != MO_32) { 11707 unallocated_encoding(s); 11708 return; 11709 } 11710 feature = dc_isar_feature(aa64_dp, s); 11711 break; 11712 case 0x03: /* USDOT */ 11713 if (size != MO_32) { 11714 unallocated_encoding(s); 11715 return; 11716 } 11717 feature = dc_isar_feature(aa64_i8mm, s); 11718 break; 11719 case 0x04: /* SMMLA */ 11720 case 0x14: /* UMMLA */ 11721 case 0x05: /* USMMLA */ 11722 if (!is_q || size != MO_32) { 11723 unallocated_encoding(s); 11724 return; 11725 } 11726 feature = dc_isar_feature(aa64_i8mm, s); 11727 break; 11728 case 0x18: /* FCMLA, #0 */ 11729 case 0x19: /* FCMLA, #90 */ 11730 case 0x1a: /* FCMLA, #180 */ 11731 case 0x1b: /* FCMLA, #270 */ 11732 case 0x1c: /* FCADD, #90 */ 11733 case 0x1e: /* FCADD, #270 */ 11734 if (size == 0 11735 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11736 || (size == 3 && !is_q)) { 11737 unallocated_encoding(s); 11738 return; 11739 } 11740 feature = dc_isar_feature(aa64_fcma, s); 11741 break; 11742 case 0x1d: /* BFMMLA */ 11743 if (size != MO_16 || !is_q) { 11744 unallocated_encoding(s); 11745 return; 11746 } 11747 feature = dc_isar_feature(aa64_bf16, s); 11748 break; 11749 case 0x1f: 11750 switch (size) { 11751 case 1: /* BFDOT */ 11752 case 3: /* BFMLAL{B,T} */ 11753 feature = dc_isar_feature(aa64_bf16, s); 11754 break; 11755 default: 11756 unallocated_encoding(s); 11757 return; 11758 } 11759 break; 11760 default: 11761 unallocated_encoding(s); 11762 return; 11763 } 11764 if (!feature) { 11765 unallocated_encoding(s); 11766 return; 11767 } 11768 if (!fp_access_check(s)) { 11769 return; 11770 } 11771 11772 switch (opcode) { 11773 case 0x0: /* SQRDMLAH (vector) */ 11774 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11775 return; 11776 11777 case 0x1: /* SQRDMLSH (vector) */ 11778 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11779 return; 11780 11781 case 0x2: /* SDOT / UDOT */ 11782 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11783 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11784 return; 11785 11786 case 0x3: /* USDOT */ 11787 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11788 return; 11789 11790 case 0x04: /* SMMLA, UMMLA */ 11791 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11792 u ? gen_helper_gvec_ummla_b 11793 : gen_helper_gvec_smmla_b); 11794 return; 11795 case 0x05: /* USMMLA */ 11796 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11797 return; 11798 11799 case 0x8: /* FCMLA, #0 */ 11800 case 0x9: /* FCMLA, #90 */ 11801 case 0xa: /* FCMLA, #180 */ 11802 case 0xb: /* FCMLA, #270 */ 11803 rot = extract32(opcode, 0, 2); 11804 switch (size) { 11805 case 1: 11806 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11807 gen_helper_gvec_fcmlah); 11808 break; 11809 case 2: 11810 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11811 gen_helper_gvec_fcmlas); 11812 break; 11813 case 3: 11814 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11815 gen_helper_gvec_fcmlad); 11816 break; 11817 default: 11818 g_assert_not_reached(); 11819 } 11820 return; 11821 11822 case 0xc: /* FCADD, #90 */ 11823 case 0xe: /* FCADD, #270 */ 11824 rot = extract32(opcode, 1, 1); 11825 switch (size) { 11826 case 1: 11827 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11828 gen_helper_gvec_fcaddh); 11829 break; 11830 case 2: 11831 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11832 gen_helper_gvec_fcadds); 11833 break; 11834 case 3: 11835 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11836 gen_helper_gvec_fcaddd); 11837 break; 11838 default: 11839 g_assert_not_reached(); 11840 } 11841 return; 11842 11843 case 0xd: /* BFMMLA */ 11844 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11845 return; 11846 case 0xf: 11847 switch (size) { 11848 case 1: /* BFDOT */ 11849 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11850 break; 11851 case 3: /* BFMLAL{B,T} */ 11852 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11853 gen_helper_gvec_bfmlal); 11854 break; 11855 default: 11856 g_assert_not_reached(); 11857 } 11858 return; 11859 11860 default: 11861 g_assert_not_reached(); 11862 } 11863 } 11864 11865 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11866 int size, int rn, int rd) 11867 { 11868 /* Handle 2-reg-misc ops which are widening (so each size element 11869 * in the source becomes a 2*size element in the destination. 11870 * The only instruction like this is FCVTL. 11871 */ 11872 int pass; 11873 11874 if (size == 3) { 11875 /* 32 -> 64 bit fp conversion */ 11876 TCGv_i64 tcg_res[2]; 11877 int srcelt = is_q ? 2 : 0; 11878 11879 for (pass = 0; pass < 2; pass++) { 11880 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11881 tcg_res[pass] = tcg_temp_new_i64(); 11882 11883 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11884 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11885 } 11886 for (pass = 0; pass < 2; pass++) { 11887 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11888 } 11889 } else { 11890 /* 16 -> 32 bit fp conversion */ 11891 int srcelt = is_q ? 4 : 0; 11892 TCGv_i32 tcg_res[4]; 11893 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11894 TCGv_i32 ahp = get_ahp_flag(); 11895 11896 for (pass = 0; pass < 4; pass++) { 11897 tcg_res[pass] = tcg_temp_new_i32(); 11898 11899 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11900 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11901 fpst, ahp); 11902 } 11903 for (pass = 0; pass < 4; pass++) { 11904 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11905 } 11906 } 11907 } 11908 11909 static void handle_rev(DisasContext *s, int opcode, bool u, 11910 bool is_q, int size, int rn, int rd) 11911 { 11912 int op = (opcode << 1) | u; 11913 int opsz = op + size; 11914 int grp_size = 3 - opsz; 11915 int dsize = is_q ? 128 : 64; 11916 int i; 11917 11918 if (opsz >= 3) { 11919 unallocated_encoding(s); 11920 return; 11921 } 11922 11923 if (!fp_access_check(s)) { 11924 return; 11925 } 11926 11927 if (size == 0) { 11928 /* Special case bytes, use bswap op on each group of elements */ 11929 int groups = dsize / (8 << grp_size); 11930 11931 for (i = 0; i < groups; i++) { 11932 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11933 11934 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11935 switch (grp_size) { 11936 case MO_16: 11937 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11938 break; 11939 case MO_32: 11940 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11941 break; 11942 case MO_64: 11943 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11944 break; 11945 default: 11946 g_assert_not_reached(); 11947 } 11948 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11949 } 11950 clear_vec_high(s, is_q, rd); 11951 } else { 11952 int revmask = (1 << grp_size) - 1; 11953 int esize = 8 << size; 11954 int elements = dsize / esize; 11955 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11956 TCGv_i64 tcg_rd[2]; 11957 11958 for (i = 0; i < 2; i++) { 11959 tcg_rd[i] = tcg_temp_new_i64(); 11960 tcg_gen_movi_i64(tcg_rd[i], 0); 11961 } 11962 11963 for (i = 0; i < elements; i++) { 11964 int e_rev = (i & 0xf) ^ revmask; 11965 int w = (e_rev * esize) / 64; 11966 int o = (e_rev * esize) % 64; 11967 11968 read_vec_element(s, tcg_rn, rn, i, size); 11969 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11970 } 11971 11972 for (i = 0; i < 2; i++) { 11973 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11974 } 11975 clear_vec_high(s, true, rd); 11976 } 11977 } 11978 11979 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11980 bool is_q, int size, int rn, int rd) 11981 { 11982 /* Implement the pairwise operations from 2-misc: 11983 * SADDLP, UADDLP, SADALP, UADALP. 11984 * These all add pairs of elements in the input to produce a 11985 * double-width result element in the output (possibly accumulating). 11986 */ 11987 bool accum = (opcode == 0x6); 11988 int maxpass = is_q ? 2 : 1; 11989 int pass; 11990 TCGv_i64 tcg_res[2]; 11991 11992 if (size == 2) { 11993 /* 32 + 32 -> 64 op */ 11994 MemOp memop = size + (u ? 0 : MO_SIGN); 11995 11996 for (pass = 0; pass < maxpass; pass++) { 11997 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11998 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11999 12000 tcg_res[pass] = tcg_temp_new_i64(); 12001 12002 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12003 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12004 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12005 if (accum) { 12006 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12007 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12008 } 12009 } 12010 } else { 12011 for (pass = 0; pass < maxpass; pass++) { 12012 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12013 NeonGenOne64OpFn *genfn; 12014 static NeonGenOne64OpFn * const fns[2][2] = { 12015 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12016 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12017 }; 12018 12019 genfn = fns[size][u]; 12020 12021 tcg_res[pass] = tcg_temp_new_i64(); 12022 12023 read_vec_element(s, tcg_op, rn, pass, MO_64); 12024 genfn(tcg_res[pass], tcg_op); 12025 12026 if (accum) { 12027 read_vec_element(s, tcg_op, rd, pass, MO_64); 12028 if (size == 0) { 12029 gen_helper_neon_addl_u16(tcg_res[pass], 12030 tcg_res[pass], tcg_op); 12031 } else { 12032 gen_helper_neon_addl_u32(tcg_res[pass], 12033 tcg_res[pass], tcg_op); 12034 } 12035 } 12036 } 12037 } 12038 if (!is_q) { 12039 tcg_res[1] = tcg_constant_i64(0); 12040 } 12041 for (pass = 0; pass < 2; pass++) { 12042 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12043 } 12044 } 12045 12046 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12047 { 12048 /* Implement SHLL and SHLL2 */ 12049 int pass; 12050 int part = is_q ? 2 : 0; 12051 TCGv_i64 tcg_res[2]; 12052 12053 for (pass = 0; pass < 2; pass++) { 12054 static NeonGenWidenFn * const widenfns[3] = { 12055 gen_helper_neon_widen_u8, 12056 gen_helper_neon_widen_u16, 12057 tcg_gen_extu_i32_i64, 12058 }; 12059 NeonGenWidenFn *widenfn = widenfns[size]; 12060 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12061 12062 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12063 tcg_res[pass] = tcg_temp_new_i64(); 12064 widenfn(tcg_res[pass], tcg_op); 12065 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12066 } 12067 12068 for (pass = 0; pass < 2; pass++) { 12069 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12070 } 12071 } 12072 12073 /* AdvSIMD two reg misc 12074 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12075 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12076 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12077 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12078 */ 12079 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12080 { 12081 int size = extract32(insn, 22, 2); 12082 int opcode = extract32(insn, 12, 5); 12083 bool u = extract32(insn, 29, 1); 12084 bool is_q = extract32(insn, 30, 1); 12085 int rn = extract32(insn, 5, 5); 12086 int rd = extract32(insn, 0, 5); 12087 bool need_fpstatus = false; 12088 int rmode = -1; 12089 TCGv_i32 tcg_rmode; 12090 TCGv_ptr tcg_fpstatus; 12091 12092 switch (opcode) { 12093 case 0x0: /* REV64, REV32 */ 12094 case 0x1: /* REV16 */ 12095 handle_rev(s, opcode, u, is_q, size, rn, rd); 12096 return; 12097 case 0x5: /* CNT, NOT, RBIT */ 12098 if (u && size == 0) { 12099 /* NOT */ 12100 break; 12101 } else if (u && size == 1) { 12102 /* RBIT */ 12103 break; 12104 } else if (!u && size == 0) { 12105 /* CNT */ 12106 break; 12107 } 12108 unallocated_encoding(s); 12109 return; 12110 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12111 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12112 if (size == 3) { 12113 unallocated_encoding(s); 12114 return; 12115 } 12116 if (!fp_access_check(s)) { 12117 return; 12118 } 12119 12120 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12121 return; 12122 case 0x4: /* CLS, CLZ */ 12123 if (size == 3) { 12124 unallocated_encoding(s); 12125 return; 12126 } 12127 break; 12128 case 0x2: /* SADDLP, UADDLP */ 12129 case 0x6: /* SADALP, UADALP */ 12130 if (size == 3) { 12131 unallocated_encoding(s); 12132 return; 12133 } 12134 if (!fp_access_check(s)) { 12135 return; 12136 } 12137 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12138 return; 12139 case 0x13: /* SHLL, SHLL2 */ 12140 if (u == 0 || size == 3) { 12141 unallocated_encoding(s); 12142 return; 12143 } 12144 if (!fp_access_check(s)) { 12145 return; 12146 } 12147 handle_shll(s, is_q, size, rn, rd); 12148 return; 12149 case 0xa: /* CMLT */ 12150 if (u == 1) { 12151 unallocated_encoding(s); 12152 return; 12153 } 12154 /* fall through */ 12155 case 0x8: /* CMGT, CMGE */ 12156 case 0x9: /* CMEQ, CMLE */ 12157 case 0xb: /* ABS, NEG */ 12158 if (size == 3 && !is_q) { 12159 unallocated_encoding(s); 12160 return; 12161 } 12162 break; 12163 case 0x3: /* SUQADD, USQADD */ 12164 if (size == 3 && !is_q) { 12165 unallocated_encoding(s); 12166 return; 12167 } 12168 if (!fp_access_check(s)) { 12169 return; 12170 } 12171 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12172 return; 12173 case 0x7: /* SQABS, SQNEG */ 12174 if (size == 3 && !is_q) { 12175 unallocated_encoding(s); 12176 return; 12177 } 12178 break; 12179 case 0xc ... 0xf: 12180 case 0x16 ... 0x1f: 12181 { 12182 /* Floating point: U, size[1] and opcode indicate operation; 12183 * size[0] indicates single or double precision. 12184 */ 12185 int is_double = extract32(size, 0, 1); 12186 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12187 size = is_double ? 3 : 2; 12188 switch (opcode) { 12189 case 0x2f: /* FABS */ 12190 case 0x6f: /* FNEG */ 12191 if (size == 3 && !is_q) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 break; 12196 case 0x1d: /* SCVTF */ 12197 case 0x5d: /* UCVTF */ 12198 { 12199 bool is_signed = (opcode == 0x1d) ? true : false; 12200 int elements = is_double ? 2 : is_q ? 4 : 2; 12201 if (is_double && !is_q) { 12202 unallocated_encoding(s); 12203 return; 12204 } 12205 if (!fp_access_check(s)) { 12206 return; 12207 } 12208 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12209 return; 12210 } 12211 case 0x2c: /* FCMGT (zero) */ 12212 case 0x2d: /* FCMEQ (zero) */ 12213 case 0x2e: /* FCMLT (zero) */ 12214 case 0x6c: /* FCMGE (zero) */ 12215 case 0x6d: /* FCMLE (zero) */ 12216 if (size == 3 && !is_q) { 12217 unallocated_encoding(s); 12218 return; 12219 } 12220 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12221 return; 12222 case 0x7f: /* FSQRT */ 12223 if (size == 3 && !is_q) { 12224 unallocated_encoding(s); 12225 return; 12226 } 12227 break; 12228 case 0x1a: /* FCVTNS */ 12229 case 0x1b: /* FCVTMS */ 12230 case 0x3a: /* FCVTPS */ 12231 case 0x3b: /* FCVTZS */ 12232 case 0x5a: /* FCVTNU */ 12233 case 0x5b: /* FCVTMU */ 12234 case 0x7a: /* FCVTPU */ 12235 case 0x7b: /* FCVTZU */ 12236 need_fpstatus = true; 12237 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12238 if (size == 3 && !is_q) { 12239 unallocated_encoding(s); 12240 return; 12241 } 12242 break; 12243 case 0x5c: /* FCVTAU */ 12244 case 0x1c: /* FCVTAS */ 12245 need_fpstatus = true; 12246 rmode = FPROUNDING_TIEAWAY; 12247 if (size == 3 && !is_q) { 12248 unallocated_encoding(s); 12249 return; 12250 } 12251 break; 12252 case 0x3c: /* URECPE */ 12253 if (size == 3) { 12254 unallocated_encoding(s); 12255 return; 12256 } 12257 /* fall through */ 12258 case 0x3d: /* FRECPE */ 12259 case 0x7d: /* FRSQRTE */ 12260 if (size == 3 && !is_q) { 12261 unallocated_encoding(s); 12262 return; 12263 } 12264 if (!fp_access_check(s)) { 12265 return; 12266 } 12267 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12268 return; 12269 case 0x56: /* FCVTXN, FCVTXN2 */ 12270 if (size == 2) { 12271 unallocated_encoding(s); 12272 return; 12273 } 12274 /* fall through */ 12275 case 0x16: /* FCVTN, FCVTN2 */ 12276 /* handle_2misc_narrow does a 2*size -> size operation, but these 12277 * instructions encode the source size rather than dest size. 12278 */ 12279 if (!fp_access_check(s)) { 12280 return; 12281 } 12282 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12283 return; 12284 case 0x36: /* BFCVTN, BFCVTN2 */ 12285 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12286 unallocated_encoding(s); 12287 return; 12288 } 12289 if (!fp_access_check(s)) { 12290 return; 12291 } 12292 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12293 return; 12294 case 0x17: /* FCVTL, FCVTL2 */ 12295 if (!fp_access_check(s)) { 12296 return; 12297 } 12298 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12299 return; 12300 case 0x18: /* FRINTN */ 12301 case 0x19: /* FRINTM */ 12302 case 0x38: /* FRINTP */ 12303 case 0x39: /* FRINTZ */ 12304 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12305 /* fall through */ 12306 case 0x59: /* FRINTX */ 12307 case 0x79: /* FRINTI */ 12308 need_fpstatus = true; 12309 if (size == 3 && !is_q) { 12310 unallocated_encoding(s); 12311 return; 12312 } 12313 break; 12314 case 0x58: /* FRINTA */ 12315 rmode = FPROUNDING_TIEAWAY; 12316 need_fpstatus = true; 12317 if (size == 3 && !is_q) { 12318 unallocated_encoding(s); 12319 return; 12320 } 12321 break; 12322 case 0x7c: /* URSQRTE */ 12323 if (size == 3) { 12324 unallocated_encoding(s); 12325 return; 12326 } 12327 break; 12328 case 0x1e: /* FRINT32Z */ 12329 case 0x1f: /* FRINT64Z */ 12330 rmode = FPROUNDING_ZERO; 12331 /* fall through */ 12332 case 0x5e: /* FRINT32X */ 12333 case 0x5f: /* FRINT64X */ 12334 need_fpstatus = true; 12335 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12336 unallocated_encoding(s); 12337 return; 12338 } 12339 break; 12340 default: 12341 unallocated_encoding(s); 12342 return; 12343 } 12344 break; 12345 } 12346 default: 12347 unallocated_encoding(s); 12348 return; 12349 } 12350 12351 if (!fp_access_check(s)) { 12352 return; 12353 } 12354 12355 if (need_fpstatus || rmode >= 0) { 12356 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12357 } else { 12358 tcg_fpstatus = NULL; 12359 } 12360 if (rmode >= 0) { 12361 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12362 } else { 12363 tcg_rmode = NULL; 12364 } 12365 12366 switch (opcode) { 12367 case 0x5: 12368 if (u && size == 0) { /* NOT */ 12369 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12370 return; 12371 } 12372 break; 12373 case 0x8: /* CMGT, CMGE */ 12374 if (u) { 12375 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12376 } else { 12377 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12378 } 12379 return; 12380 case 0x9: /* CMEQ, CMLE */ 12381 if (u) { 12382 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12383 } else { 12384 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12385 } 12386 return; 12387 case 0xa: /* CMLT */ 12388 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12389 return; 12390 case 0xb: 12391 if (u) { /* ABS, NEG */ 12392 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12393 } else { 12394 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12395 } 12396 return; 12397 } 12398 12399 if (size == 3) { 12400 /* All 64-bit element operations can be shared with scalar 2misc */ 12401 int pass; 12402 12403 /* Coverity claims (size == 3 && !is_q) has been eliminated 12404 * from all paths leading to here. 12405 */ 12406 tcg_debug_assert(is_q); 12407 for (pass = 0; pass < 2; pass++) { 12408 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12409 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12410 12411 read_vec_element(s, tcg_op, rn, pass, MO_64); 12412 12413 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12414 tcg_rmode, tcg_fpstatus); 12415 12416 write_vec_element(s, tcg_res, rd, pass, MO_64); 12417 } 12418 } else { 12419 int pass; 12420 12421 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12422 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12423 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12424 12425 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12426 12427 if (size == 2) { 12428 /* Special cases for 32 bit elements */ 12429 switch (opcode) { 12430 case 0x4: /* CLS */ 12431 if (u) { 12432 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12433 } else { 12434 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12435 } 12436 break; 12437 case 0x7: /* SQABS, SQNEG */ 12438 if (u) { 12439 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12440 } else { 12441 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12442 } 12443 break; 12444 case 0x2f: /* FABS */ 12445 gen_vfp_abss(tcg_res, tcg_op); 12446 break; 12447 case 0x6f: /* FNEG */ 12448 gen_vfp_negs(tcg_res, tcg_op); 12449 break; 12450 case 0x7f: /* FSQRT */ 12451 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12452 break; 12453 case 0x1a: /* FCVTNS */ 12454 case 0x1b: /* FCVTMS */ 12455 case 0x1c: /* FCVTAS */ 12456 case 0x3a: /* FCVTPS */ 12457 case 0x3b: /* FCVTZS */ 12458 gen_helper_vfp_tosls(tcg_res, tcg_op, 12459 tcg_constant_i32(0), tcg_fpstatus); 12460 break; 12461 case 0x5a: /* FCVTNU */ 12462 case 0x5b: /* FCVTMU */ 12463 case 0x5c: /* FCVTAU */ 12464 case 0x7a: /* FCVTPU */ 12465 case 0x7b: /* FCVTZU */ 12466 gen_helper_vfp_touls(tcg_res, tcg_op, 12467 tcg_constant_i32(0), tcg_fpstatus); 12468 break; 12469 case 0x18: /* FRINTN */ 12470 case 0x19: /* FRINTM */ 12471 case 0x38: /* FRINTP */ 12472 case 0x39: /* FRINTZ */ 12473 case 0x58: /* FRINTA */ 12474 case 0x79: /* FRINTI */ 12475 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12476 break; 12477 case 0x59: /* FRINTX */ 12478 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12479 break; 12480 case 0x7c: /* URSQRTE */ 12481 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12482 break; 12483 case 0x1e: /* FRINT32Z */ 12484 case 0x5e: /* FRINT32X */ 12485 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12486 break; 12487 case 0x1f: /* FRINT64Z */ 12488 case 0x5f: /* FRINT64X */ 12489 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12490 break; 12491 default: 12492 g_assert_not_reached(); 12493 } 12494 } else { 12495 /* Use helpers for 8 and 16 bit elements */ 12496 switch (opcode) { 12497 case 0x5: /* CNT, RBIT */ 12498 /* For these two insns size is part of the opcode specifier 12499 * (handled earlier); they always operate on byte elements. 12500 */ 12501 if (u) { 12502 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12503 } else { 12504 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12505 } 12506 break; 12507 case 0x7: /* SQABS, SQNEG */ 12508 { 12509 NeonGenOneOpEnvFn *genfn; 12510 static NeonGenOneOpEnvFn * const fns[2][2] = { 12511 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12512 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12513 }; 12514 genfn = fns[size][u]; 12515 genfn(tcg_res, tcg_env, tcg_op); 12516 break; 12517 } 12518 case 0x4: /* CLS, CLZ */ 12519 if (u) { 12520 if (size == 0) { 12521 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12522 } else { 12523 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12524 } 12525 } else { 12526 if (size == 0) { 12527 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12528 } else { 12529 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12530 } 12531 } 12532 break; 12533 default: 12534 g_assert_not_reached(); 12535 } 12536 } 12537 12538 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12539 } 12540 } 12541 clear_vec_high(s, is_q, rd); 12542 12543 if (tcg_rmode) { 12544 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12545 } 12546 } 12547 12548 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12549 * 12550 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12551 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12552 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12553 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12554 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12555 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12556 * 12557 * This actually covers two groups where scalar access is governed by 12558 * bit 28. A bunch of the instructions (float to integral) only exist 12559 * in the vector form and are un-allocated for the scalar decode. Also 12560 * in the scalar decode Q is always 1. 12561 */ 12562 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12563 { 12564 int fpop, opcode, a, u; 12565 int rn, rd; 12566 bool is_q; 12567 bool is_scalar; 12568 bool only_in_vector = false; 12569 12570 int pass; 12571 TCGv_i32 tcg_rmode = NULL; 12572 TCGv_ptr tcg_fpstatus = NULL; 12573 bool need_fpst = true; 12574 int rmode = -1; 12575 12576 if (!dc_isar_feature(aa64_fp16, s)) { 12577 unallocated_encoding(s); 12578 return; 12579 } 12580 12581 rd = extract32(insn, 0, 5); 12582 rn = extract32(insn, 5, 5); 12583 12584 a = extract32(insn, 23, 1); 12585 u = extract32(insn, 29, 1); 12586 is_scalar = extract32(insn, 28, 1); 12587 is_q = extract32(insn, 30, 1); 12588 12589 opcode = extract32(insn, 12, 5); 12590 fpop = deposit32(opcode, 5, 1, a); 12591 fpop = deposit32(fpop, 6, 1, u); 12592 12593 switch (fpop) { 12594 case 0x1d: /* SCVTF */ 12595 case 0x5d: /* UCVTF */ 12596 { 12597 int elements; 12598 12599 if (is_scalar) { 12600 elements = 1; 12601 } else { 12602 elements = (is_q ? 8 : 4); 12603 } 12604 12605 if (!fp_access_check(s)) { 12606 return; 12607 } 12608 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12609 return; 12610 } 12611 break; 12612 case 0x2c: /* FCMGT (zero) */ 12613 case 0x2d: /* FCMEQ (zero) */ 12614 case 0x2e: /* FCMLT (zero) */ 12615 case 0x6c: /* FCMGE (zero) */ 12616 case 0x6d: /* FCMLE (zero) */ 12617 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12618 return; 12619 case 0x3d: /* FRECPE */ 12620 case 0x3f: /* FRECPX */ 12621 break; 12622 case 0x18: /* FRINTN */ 12623 only_in_vector = true; 12624 rmode = FPROUNDING_TIEEVEN; 12625 break; 12626 case 0x19: /* FRINTM */ 12627 only_in_vector = true; 12628 rmode = FPROUNDING_NEGINF; 12629 break; 12630 case 0x38: /* FRINTP */ 12631 only_in_vector = true; 12632 rmode = FPROUNDING_POSINF; 12633 break; 12634 case 0x39: /* FRINTZ */ 12635 only_in_vector = true; 12636 rmode = FPROUNDING_ZERO; 12637 break; 12638 case 0x58: /* FRINTA */ 12639 only_in_vector = true; 12640 rmode = FPROUNDING_TIEAWAY; 12641 break; 12642 case 0x59: /* FRINTX */ 12643 case 0x79: /* FRINTI */ 12644 only_in_vector = true; 12645 /* current rounding mode */ 12646 break; 12647 case 0x1a: /* FCVTNS */ 12648 rmode = FPROUNDING_TIEEVEN; 12649 break; 12650 case 0x1b: /* FCVTMS */ 12651 rmode = FPROUNDING_NEGINF; 12652 break; 12653 case 0x1c: /* FCVTAS */ 12654 rmode = FPROUNDING_TIEAWAY; 12655 break; 12656 case 0x3a: /* FCVTPS */ 12657 rmode = FPROUNDING_POSINF; 12658 break; 12659 case 0x3b: /* FCVTZS */ 12660 rmode = FPROUNDING_ZERO; 12661 break; 12662 case 0x5a: /* FCVTNU */ 12663 rmode = FPROUNDING_TIEEVEN; 12664 break; 12665 case 0x5b: /* FCVTMU */ 12666 rmode = FPROUNDING_NEGINF; 12667 break; 12668 case 0x5c: /* FCVTAU */ 12669 rmode = FPROUNDING_TIEAWAY; 12670 break; 12671 case 0x7a: /* FCVTPU */ 12672 rmode = FPROUNDING_POSINF; 12673 break; 12674 case 0x7b: /* FCVTZU */ 12675 rmode = FPROUNDING_ZERO; 12676 break; 12677 case 0x2f: /* FABS */ 12678 case 0x6f: /* FNEG */ 12679 need_fpst = false; 12680 break; 12681 case 0x7d: /* FRSQRTE */ 12682 case 0x7f: /* FSQRT (vector) */ 12683 break; 12684 default: 12685 unallocated_encoding(s); 12686 return; 12687 } 12688 12689 12690 /* Check additional constraints for the scalar encoding */ 12691 if (is_scalar) { 12692 if (!is_q) { 12693 unallocated_encoding(s); 12694 return; 12695 } 12696 /* FRINTxx is only in the vector form */ 12697 if (only_in_vector) { 12698 unallocated_encoding(s); 12699 return; 12700 } 12701 } 12702 12703 if (!fp_access_check(s)) { 12704 return; 12705 } 12706 12707 if (rmode >= 0 || need_fpst) { 12708 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12709 } 12710 12711 if (rmode >= 0) { 12712 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12713 } 12714 12715 if (is_scalar) { 12716 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12717 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12718 12719 switch (fpop) { 12720 case 0x1a: /* FCVTNS */ 12721 case 0x1b: /* FCVTMS */ 12722 case 0x1c: /* FCVTAS */ 12723 case 0x3a: /* FCVTPS */ 12724 case 0x3b: /* FCVTZS */ 12725 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12726 break; 12727 case 0x3d: /* FRECPE */ 12728 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12729 break; 12730 case 0x3f: /* FRECPX */ 12731 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12732 break; 12733 case 0x5a: /* FCVTNU */ 12734 case 0x5b: /* FCVTMU */ 12735 case 0x5c: /* FCVTAU */ 12736 case 0x7a: /* FCVTPU */ 12737 case 0x7b: /* FCVTZU */ 12738 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12739 break; 12740 case 0x6f: /* FNEG */ 12741 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12742 break; 12743 case 0x7d: /* FRSQRTE */ 12744 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12745 break; 12746 default: 12747 g_assert_not_reached(); 12748 } 12749 12750 /* limit any sign extension going on */ 12751 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12752 write_fp_sreg(s, rd, tcg_res); 12753 } else { 12754 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12755 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12756 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12757 12758 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12759 12760 switch (fpop) { 12761 case 0x1a: /* FCVTNS */ 12762 case 0x1b: /* FCVTMS */ 12763 case 0x1c: /* FCVTAS */ 12764 case 0x3a: /* FCVTPS */ 12765 case 0x3b: /* FCVTZS */ 12766 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12767 break; 12768 case 0x3d: /* FRECPE */ 12769 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12770 break; 12771 case 0x5a: /* FCVTNU */ 12772 case 0x5b: /* FCVTMU */ 12773 case 0x5c: /* FCVTAU */ 12774 case 0x7a: /* FCVTPU */ 12775 case 0x7b: /* FCVTZU */ 12776 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12777 break; 12778 case 0x18: /* FRINTN */ 12779 case 0x19: /* FRINTM */ 12780 case 0x38: /* FRINTP */ 12781 case 0x39: /* FRINTZ */ 12782 case 0x58: /* FRINTA */ 12783 case 0x79: /* FRINTI */ 12784 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12785 break; 12786 case 0x59: /* FRINTX */ 12787 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12788 break; 12789 case 0x2f: /* FABS */ 12790 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12791 break; 12792 case 0x6f: /* FNEG */ 12793 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12794 break; 12795 case 0x7d: /* FRSQRTE */ 12796 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12797 break; 12798 case 0x7f: /* FSQRT */ 12799 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12800 break; 12801 default: 12802 g_assert_not_reached(); 12803 } 12804 12805 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12806 } 12807 12808 clear_vec_high(s, is_q, rd); 12809 } 12810 12811 if (tcg_rmode) { 12812 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12813 } 12814 } 12815 12816 /* AdvSIMD scalar x indexed element 12817 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12818 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12819 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12820 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12821 * AdvSIMD vector x indexed element 12822 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12823 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12824 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12825 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12826 */ 12827 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12828 { 12829 /* This encoding has two kinds of instruction: 12830 * normal, where we perform elt x idxelt => elt for each 12831 * element in the vector 12832 * long, where we perform elt x idxelt and generate a result of 12833 * double the width of the input element 12834 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12835 */ 12836 bool is_scalar = extract32(insn, 28, 1); 12837 bool is_q = extract32(insn, 30, 1); 12838 bool u = extract32(insn, 29, 1); 12839 int size = extract32(insn, 22, 2); 12840 int l = extract32(insn, 21, 1); 12841 int m = extract32(insn, 20, 1); 12842 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12843 int rm = extract32(insn, 16, 4); 12844 int opcode = extract32(insn, 12, 4); 12845 int h = extract32(insn, 11, 1); 12846 int rn = extract32(insn, 5, 5); 12847 int rd = extract32(insn, 0, 5); 12848 bool is_long = false; 12849 int is_fp = 0; 12850 bool is_fp16 = false; 12851 int index; 12852 TCGv_ptr fpst; 12853 12854 switch (16 * u + opcode) { 12855 case 0x08: /* MUL */ 12856 case 0x10: /* MLA */ 12857 case 0x14: /* MLS */ 12858 if (is_scalar) { 12859 unallocated_encoding(s); 12860 return; 12861 } 12862 break; 12863 case 0x02: /* SMLAL, SMLAL2 */ 12864 case 0x12: /* UMLAL, UMLAL2 */ 12865 case 0x06: /* SMLSL, SMLSL2 */ 12866 case 0x16: /* UMLSL, UMLSL2 */ 12867 case 0x0a: /* SMULL, SMULL2 */ 12868 case 0x1a: /* UMULL, UMULL2 */ 12869 if (is_scalar) { 12870 unallocated_encoding(s); 12871 return; 12872 } 12873 is_long = true; 12874 break; 12875 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12876 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12877 case 0x0b: /* SQDMULL, SQDMULL2 */ 12878 is_long = true; 12879 break; 12880 case 0x0c: /* SQDMULH */ 12881 case 0x0d: /* SQRDMULH */ 12882 break; 12883 case 0x01: /* FMLA */ 12884 case 0x05: /* FMLS */ 12885 is_fp = 1; 12886 break; 12887 case 0x1d: /* SQRDMLAH */ 12888 case 0x1f: /* SQRDMLSH */ 12889 if (!dc_isar_feature(aa64_rdm, s)) { 12890 unallocated_encoding(s); 12891 return; 12892 } 12893 break; 12894 case 0x0e: /* SDOT */ 12895 case 0x1e: /* UDOT */ 12896 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12897 unallocated_encoding(s); 12898 return; 12899 } 12900 break; 12901 case 0x0f: 12902 switch (size) { 12903 case 0: /* SUDOT */ 12904 case 2: /* USDOT */ 12905 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12906 unallocated_encoding(s); 12907 return; 12908 } 12909 size = MO_32; 12910 break; 12911 case 1: /* BFDOT */ 12912 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12913 unallocated_encoding(s); 12914 return; 12915 } 12916 size = MO_32; 12917 break; 12918 case 3: /* BFMLAL{B,T} */ 12919 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12920 unallocated_encoding(s); 12921 return; 12922 } 12923 /* can't set is_fp without other incorrect size checks */ 12924 size = MO_16; 12925 break; 12926 default: 12927 unallocated_encoding(s); 12928 return; 12929 } 12930 break; 12931 case 0x11: /* FCMLA #0 */ 12932 case 0x13: /* FCMLA #90 */ 12933 case 0x15: /* FCMLA #180 */ 12934 case 0x17: /* FCMLA #270 */ 12935 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12936 unallocated_encoding(s); 12937 return; 12938 } 12939 is_fp = 2; 12940 break; 12941 case 0x00: /* FMLAL */ 12942 case 0x04: /* FMLSL */ 12943 case 0x18: /* FMLAL2 */ 12944 case 0x1c: /* FMLSL2 */ 12945 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12946 unallocated_encoding(s); 12947 return; 12948 } 12949 size = MO_16; 12950 /* is_fp, but we pass tcg_env not fp_status. */ 12951 break; 12952 default: 12953 case 0x09: /* FMUL */ 12954 case 0x19: /* FMULX */ 12955 unallocated_encoding(s); 12956 return; 12957 } 12958 12959 switch (is_fp) { 12960 case 1: /* normal fp */ 12961 /* convert insn encoded size to MemOp size */ 12962 switch (size) { 12963 case 0: /* half-precision */ 12964 size = MO_16; 12965 is_fp16 = true; 12966 break; 12967 case MO_32: /* single precision */ 12968 case MO_64: /* double precision */ 12969 break; 12970 default: 12971 unallocated_encoding(s); 12972 return; 12973 } 12974 break; 12975 12976 case 2: /* complex fp */ 12977 /* Each indexable element is a complex pair. */ 12978 size += 1; 12979 switch (size) { 12980 case MO_32: 12981 if (h && !is_q) { 12982 unallocated_encoding(s); 12983 return; 12984 } 12985 is_fp16 = true; 12986 break; 12987 case MO_64: 12988 break; 12989 default: 12990 unallocated_encoding(s); 12991 return; 12992 } 12993 break; 12994 12995 default: /* integer */ 12996 switch (size) { 12997 case MO_8: 12998 case MO_64: 12999 unallocated_encoding(s); 13000 return; 13001 } 13002 break; 13003 } 13004 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13005 unallocated_encoding(s); 13006 return; 13007 } 13008 13009 /* Given MemOp size, adjust register and indexing. */ 13010 switch (size) { 13011 case MO_16: 13012 index = h << 2 | l << 1 | m; 13013 break; 13014 case MO_32: 13015 index = h << 1 | l; 13016 rm |= m << 4; 13017 break; 13018 case MO_64: 13019 if (l || !is_q) { 13020 unallocated_encoding(s); 13021 return; 13022 } 13023 index = h; 13024 rm |= m << 4; 13025 break; 13026 default: 13027 g_assert_not_reached(); 13028 } 13029 13030 if (!fp_access_check(s)) { 13031 return; 13032 } 13033 13034 if (is_fp) { 13035 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13036 } else { 13037 fpst = NULL; 13038 } 13039 13040 switch (16 * u + opcode) { 13041 case 0x0e: /* SDOT */ 13042 case 0x1e: /* UDOT */ 13043 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13044 u ? gen_helper_gvec_udot_idx_b 13045 : gen_helper_gvec_sdot_idx_b); 13046 return; 13047 case 0x0f: 13048 switch (extract32(insn, 22, 2)) { 13049 case 0: /* SUDOT */ 13050 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13051 gen_helper_gvec_sudot_idx_b); 13052 return; 13053 case 1: /* BFDOT */ 13054 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13055 gen_helper_gvec_bfdot_idx); 13056 return; 13057 case 2: /* USDOT */ 13058 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13059 gen_helper_gvec_usdot_idx_b); 13060 return; 13061 case 3: /* BFMLAL{B,T} */ 13062 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13063 gen_helper_gvec_bfmlal_idx); 13064 return; 13065 } 13066 g_assert_not_reached(); 13067 case 0x11: /* FCMLA #0 */ 13068 case 0x13: /* FCMLA #90 */ 13069 case 0x15: /* FCMLA #180 */ 13070 case 0x17: /* FCMLA #270 */ 13071 { 13072 int rot = extract32(insn, 13, 2); 13073 int data = (index << 2) | rot; 13074 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13075 vec_full_reg_offset(s, rn), 13076 vec_full_reg_offset(s, rm), 13077 vec_full_reg_offset(s, rd), fpst, 13078 is_q ? 16 : 8, vec_full_reg_size(s), data, 13079 size == MO_64 13080 ? gen_helper_gvec_fcmlas_idx 13081 : gen_helper_gvec_fcmlah_idx); 13082 } 13083 return; 13084 13085 case 0x00: /* FMLAL */ 13086 case 0x04: /* FMLSL */ 13087 case 0x18: /* FMLAL2 */ 13088 case 0x1c: /* FMLSL2 */ 13089 { 13090 int is_s = extract32(opcode, 2, 1); 13091 int is_2 = u; 13092 int data = (index << 2) | (is_2 << 1) | is_s; 13093 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13094 vec_full_reg_offset(s, rn), 13095 vec_full_reg_offset(s, rm), tcg_env, 13096 is_q ? 16 : 8, vec_full_reg_size(s), 13097 data, gen_helper_gvec_fmlal_idx_a64); 13098 } 13099 return; 13100 13101 case 0x08: /* MUL */ 13102 if (!is_long && !is_scalar) { 13103 static gen_helper_gvec_3 * const fns[3] = { 13104 gen_helper_gvec_mul_idx_h, 13105 gen_helper_gvec_mul_idx_s, 13106 gen_helper_gvec_mul_idx_d, 13107 }; 13108 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13109 vec_full_reg_offset(s, rn), 13110 vec_full_reg_offset(s, rm), 13111 is_q ? 16 : 8, vec_full_reg_size(s), 13112 index, fns[size - 1]); 13113 return; 13114 } 13115 break; 13116 13117 case 0x10: /* MLA */ 13118 if (!is_long && !is_scalar) { 13119 static gen_helper_gvec_4 * const fns[3] = { 13120 gen_helper_gvec_mla_idx_h, 13121 gen_helper_gvec_mla_idx_s, 13122 gen_helper_gvec_mla_idx_d, 13123 }; 13124 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13125 vec_full_reg_offset(s, rn), 13126 vec_full_reg_offset(s, rm), 13127 vec_full_reg_offset(s, rd), 13128 is_q ? 16 : 8, vec_full_reg_size(s), 13129 index, fns[size - 1]); 13130 return; 13131 } 13132 break; 13133 13134 case 0x14: /* MLS */ 13135 if (!is_long && !is_scalar) { 13136 static gen_helper_gvec_4 * const fns[3] = { 13137 gen_helper_gvec_mls_idx_h, 13138 gen_helper_gvec_mls_idx_s, 13139 gen_helper_gvec_mls_idx_d, 13140 }; 13141 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13142 vec_full_reg_offset(s, rn), 13143 vec_full_reg_offset(s, rm), 13144 vec_full_reg_offset(s, rd), 13145 is_q ? 16 : 8, vec_full_reg_size(s), 13146 index, fns[size - 1]); 13147 return; 13148 } 13149 break; 13150 } 13151 13152 if (size == 3) { 13153 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13154 int pass; 13155 13156 assert(is_fp && is_q && !is_long); 13157 13158 read_vec_element(s, tcg_idx, rm, index, MO_64); 13159 13160 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13161 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13162 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13163 13164 read_vec_element(s, tcg_op, rn, pass, MO_64); 13165 13166 switch (16 * u + opcode) { 13167 case 0x05: /* FMLS */ 13168 /* As usual for ARM, separate negation for fused multiply-add */ 13169 gen_vfp_negd(tcg_op, tcg_op); 13170 /* fall through */ 13171 case 0x01: /* FMLA */ 13172 read_vec_element(s, tcg_res, rd, pass, MO_64); 13173 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13174 break; 13175 default: 13176 case 0x09: /* FMUL */ 13177 case 0x19: /* FMULX */ 13178 g_assert_not_reached(); 13179 } 13180 13181 write_vec_element(s, tcg_res, rd, pass, MO_64); 13182 } 13183 13184 clear_vec_high(s, !is_scalar, rd); 13185 } else if (!is_long) { 13186 /* 32 bit floating point, or 16 or 32 bit integer. 13187 * For the 16 bit scalar case we use the usual Neon helpers and 13188 * rely on the fact that 0 op 0 == 0 with no side effects. 13189 */ 13190 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13191 int pass, maxpasses; 13192 13193 if (is_scalar) { 13194 maxpasses = 1; 13195 } else { 13196 maxpasses = is_q ? 4 : 2; 13197 } 13198 13199 read_vec_element_i32(s, tcg_idx, rm, index, size); 13200 13201 if (size == 1 && !is_scalar) { 13202 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13203 * the index into both halves of the 32 bit tcg_idx and then use 13204 * the usual Neon helpers. 13205 */ 13206 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13207 } 13208 13209 for (pass = 0; pass < maxpasses; pass++) { 13210 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13211 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13212 13213 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13214 13215 switch (16 * u + opcode) { 13216 case 0x08: /* MUL */ 13217 case 0x10: /* MLA */ 13218 case 0x14: /* MLS */ 13219 { 13220 static NeonGenTwoOpFn * const fns[2][2] = { 13221 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13222 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13223 }; 13224 NeonGenTwoOpFn *genfn; 13225 bool is_sub = opcode == 0x4; 13226 13227 if (size == 1) { 13228 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13229 } else { 13230 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13231 } 13232 if (opcode == 0x8) { 13233 break; 13234 } 13235 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13236 genfn = fns[size - 1][is_sub]; 13237 genfn(tcg_res, tcg_op, tcg_res); 13238 break; 13239 } 13240 case 0x05: /* FMLS */ 13241 case 0x01: /* FMLA */ 13242 read_vec_element_i32(s, tcg_res, rd, pass, 13243 is_scalar ? size : MO_32); 13244 switch (size) { 13245 case 1: 13246 if (opcode == 0x5) { 13247 /* As usual for ARM, separate negation for fused 13248 * multiply-add */ 13249 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13250 } 13251 if (is_scalar) { 13252 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13253 tcg_res, fpst); 13254 } else { 13255 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13256 tcg_res, fpst); 13257 } 13258 break; 13259 case 2: 13260 if (opcode == 0x5) { 13261 /* As usual for ARM, separate negation for 13262 * fused multiply-add */ 13263 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13264 } 13265 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13266 tcg_res, fpst); 13267 break; 13268 default: 13269 g_assert_not_reached(); 13270 } 13271 break; 13272 case 0x0c: /* SQDMULH */ 13273 if (size == 1) { 13274 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13275 tcg_op, tcg_idx); 13276 } else { 13277 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13278 tcg_op, tcg_idx); 13279 } 13280 break; 13281 case 0x0d: /* SQRDMULH */ 13282 if (size == 1) { 13283 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13284 tcg_op, tcg_idx); 13285 } else { 13286 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13287 tcg_op, tcg_idx); 13288 } 13289 break; 13290 case 0x1d: /* SQRDMLAH */ 13291 read_vec_element_i32(s, tcg_res, rd, pass, 13292 is_scalar ? size : MO_32); 13293 if (size == 1) { 13294 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13295 tcg_op, tcg_idx, tcg_res); 13296 } else { 13297 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13298 tcg_op, tcg_idx, tcg_res); 13299 } 13300 break; 13301 case 0x1f: /* SQRDMLSH */ 13302 read_vec_element_i32(s, tcg_res, rd, pass, 13303 is_scalar ? size : MO_32); 13304 if (size == 1) { 13305 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13306 tcg_op, tcg_idx, tcg_res); 13307 } else { 13308 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13309 tcg_op, tcg_idx, tcg_res); 13310 } 13311 break; 13312 default: 13313 case 0x09: /* FMUL */ 13314 case 0x19: /* FMULX */ 13315 g_assert_not_reached(); 13316 } 13317 13318 if (is_scalar) { 13319 write_fp_sreg(s, rd, tcg_res); 13320 } else { 13321 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13322 } 13323 } 13324 13325 clear_vec_high(s, is_q, rd); 13326 } else { 13327 /* long ops: 16x16->32 or 32x32->64 */ 13328 TCGv_i64 tcg_res[2]; 13329 int pass; 13330 bool satop = extract32(opcode, 0, 1); 13331 MemOp memop = MO_32; 13332 13333 if (satop || !u) { 13334 memop |= MO_SIGN; 13335 } 13336 13337 if (size == 2) { 13338 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13339 13340 read_vec_element(s, tcg_idx, rm, index, memop); 13341 13342 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13343 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13344 TCGv_i64 tcg_passres; 13345 int passelt; 13346 13347 if (is_scalar) { 13348 passelt = 0; 13349 } else { 13350 passelt = pass + (is_q * 2); 13351 } 13352 13353 read_vec_element(s, tcg_op, rn, passelt, memop); 13354 13355 tcg_res[pass] = tcg_temp_new_i64(); 13356 13357 if (opcode == 0xa || opcode == 0xb) { 13358 /* Non-accumulating ops */ 13359 tcg_passres = tcg_res[pass]; 13360 } else { 13361 tcg_passres = tcg_temp_new_i64(); 13362 } 13363 13364 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13365 13366 if (satop) { 13367 /* saturating, doubling */ 13368 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13369 tcg_passres, tcg_passres); 13370 } 13371 13372 if (opcode == 0xa || opcode == 0xb) { 13373 continue; 13374 } 13375 13376 /* Accumulating op: handle accumulate step */ 13377 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13378 13379 switch (opcode) { 13380 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13381 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13382 break; 13383 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13384 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13385 break; 13386 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13387 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13388 /* fall through */ 13389 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13390 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13391 tcg_res[pass], 13392 tcg_passres); 13393 break; 13394 default: 13395 g_assert_not_reached(); 13396 } 13397 } 13398 13399 clear_vec_high(s, !is_scalar, rd); 13400 } else { 13401 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13402 13403 assert(size == 1); 13404 read_vec_element_i32(s, tcg_idx, rm, index, size); 13405 13406 if (!is_scalar) { 13407 /* The simplest way to handle the 16x16 indexed ops is to 13408 * duplicate the index into both halves of the 32 bit tcg_idx 13409 * and then use the usual Neon helpers. 13410 */ 13411 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13412 } 13413 13414 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13415 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13416 TCGv_i64 tcg_passres; 13417 13418 if (is_scalar) { 13419 read_vec_element_i32(s, tcg_op, rn, pass, size); 13420 } else { 13421 read_vec_element_i32(s, tcg_op, rn, 13422 pass + (is_q * 2), MO_32); 13423 } 13424 13425 tcg_res[pass] = tcg_temp_new_i64(); 13426 13427 if (opcode == 0xa || opcode == 0xb) { 13428 /* Non-accumulating ops */ 13429 tcg_passres = tcg_res[pass]; 13430 } else { 13431 tcg_passres = tcg_temp_new_i64(); 13432 } 13433 13434 if (memop & MO_SIGN) { 13435 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13436 } else { 13437 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13438 } 13439 if (satop) { 13440 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13441 tcg_passres, tcg_passres); 13442 } 13443 13444 if (opcode == 0xa || opcode == 0xb) { 13445 continue; 13446 } 13447 13448 /* Accumulating op: handle accumulate step */ 13449 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13450 13451 switch (opcode) { 13452 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13453 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13454 tcg_passres); 13455 break; 13456 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13457 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13458 tcg_passres); 13459 break; 13460 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13461 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13462 /* fall through */ 13463 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13464 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13465 tcg_res[pass], 13466 tcg_passres); 13467 break; 13468 default: 13469 g_assert_not_reached(); 13470 } 13471 } 13472 13473 if (is_scalar) { 13474 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13475 } 13476 } 13477 13478 if (is_scalar) { 13479 tcg_res[1] = tcg_constant_i64(0); 13480 } 13481 13482 for (pass = 0; pass < 2; pass++) { 13483 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13484 } 13485 } 13486 } 13487 13488 /* C3.6 Data processing - SIMD, inc Crypto 13489 * 13490 * As the decode gets a little complex we are using a table based 13491 * approach for this part of the decode. 13492 */ 13493 static const AArch64DecodeTable data_proc_simd[] = { 13494 /* pattern , mask , fn */ 13495 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13496 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13497 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13498 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13499 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13500 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13501 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13502 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13503 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13504 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13505 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13506 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13507 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13508 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13509 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13510 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13511 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13512 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13513 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13514 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13515 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13516 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13517 { 0x00000000, 0x00000000, NULL } 13518 }; 13519 13520 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13521 { 13522 /* Note that this is called with all non-FP cases from 13523 * table C3-6 so it must UNDEF for entries not specifically 13524 * allocated to instructions in that table. 13525 */ 13526 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13527 if (fn) { 13528 fn(s, insn); 13529 } else { 13530 unallocated_encoding(s); 13531 } 13532 } 13533 13534 /* C3.6 Data processing - SIMD and floating point */ 13535 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13536 { 13537 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13538 disas_data_proc_fp(s, insn); 13539 } else { 13540 /* SIMD, including crypto */ 13541 disas_data_proc_simd(s, insn); 13542 } 13543 } 13544 13545 static bool trans_OK(DisasContext *s, arg_OK *a) 13546 { 13547 return true; 13548 } 13549 13550 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13551 { 13552 s->is_nonstreaming = true; 13553 return true; 13554 } 13555 13556 /** 13557 * is_guarded_page: 13558 * @env: The cpu environment 13559 * @s: The DisasContext 13560 * 13561 * Return true if the page is guarded. 13562 */ 13563 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13564 { 13565 uint64_t addr = s->base.pc_first; 13566 #ifdef CONFIG_USER_ONLY 13567 return page_get_flags(addr) & PAGE_BTI; 13568 #else 13569 CPUTLBEntryFull *full; 13570 void *host; 13571 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13572 int flags; 13573 13574 /* 13575 * We test this immediately after reading an insn, which means 13576 * that the TLB entry must be present and valid, and thus this 13577 * access will never raise an exception. 13578 */ 13579 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13580 false, &host, &full, 0); 13581 assert(!(flags & TLB_INVALID_MASK)); 13582 13583 return full->extra.arm.guarded; 13584 #endif 13585 } 13586 13587 /** 13588 * btype_destination_ok: 13589 * @insn: The instruction at the branch destination 13590 * @bt: SCTLR_ELx.BT 13591 * @btype: PSTATE.BTYPE, and is non-zero 13592 * 13593 * On a guarded page, there are a limited number of insns 13594 * that may be present at the branch target: 13595 * - branch target identifiers, 13596 * - paciasp, pacibsp, 13597 * - BRK insn 13598 * - HLT insn 13599 * Anything else causes a Branch Target Exception. 13600 * 13601 * Return true if the branch is compatible, false to raise BTITRAP. 13602 */ 13603 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13604 { 13605 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13606 /* HINT space */ 13607 switch (extract32(insn, 5, 7)) { 13608 case 0b011001: /* PACIASP */ 13609 case 0b011011: /* PACIBSP */ 13610 /* 13611 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13612 * with btype == 3. Otherwise all btype are ok. 13613 */ 13614 return !bt || btype != 3; 13615 case 0b100000: /* BTI */ 13616 /* Not compatible with any btype. */ 13617 return false; 13618 case 0b100010: /* BTI c */ 13619 /* Not compatible with btype == 3 */ 13620 return btype != 3; 13621 case 0b100100: /* BTI j */ 13622 /* Not compatible with btype == 2 */ 13623 return btype != 2; 13624 case 0b100110: /* BTI jc */ 13625 /* Compatible with any btype. */ 13626 return true; 13627 } 13628 } else { 13629 switch (insn & 0xffe0001fu) { 13630 case 0xd4200000u: /* BRK */ 13631 case 0xd4400000u: /* HLT */ 13632 /* Give priority to the breakpoint exception. */ 13633 return true; 13634 } 13635 } 13636 return false; 13637 } 13638 13639 /* C3.1 A64 instruction index by encoding */ 13640 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13641 { 13642 switch (extract32(insn, 25, 4)) { 13643 case 0x5: 13644 case 0xd: /* Data processing - register */ 13645 disas_data_proc_reg(s, insn); 13646 break; 13647 case 0x7: 13648 case 0xf: /* Data processing - SIMD and floating point */ 13649 disas_data_proc_simd_fp(s, insn); 13650 break; 13651 default: 13652 unallocated_encoding(s); 13653 break; 13654 } 13655 } 13656 13657 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13658 CPUState *cpu) 13659 { 13660 DisasContext *dc = container_of(dcbase, DisasContext, base); 13661 CPUARMState *env = cpu_env(cpu); 13662 ARMCPU *arm_cpu = env_archcpu(env); 13663 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13664 int bound, core_mmu_idx; 13665 13666 dc->isar = &arm_cpu->isar; 13667 dc->condjmp = 0; 13668 dc->pc_save = dc->base.pc_first; 13669 dc->aarch64 = true; 13670 dc->thumb = false; 13671 dc->sctlr_b = 0; 13672 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13673 dc->condexec_mask = 0; 13674 dc->condexec_cond = 0; 13675 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13676 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13677 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13678 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13679 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13680 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13681 #if !defined(CONFIG_USER_ONLY) 13682 dc->user = (dc->current_el == 0); 13683 #endif 13684 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13685 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13686 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13687 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13688 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13689 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13690 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13691 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13692 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13693 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13694 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13695 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13696 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13697 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13698 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13699 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13700 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13701 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13702 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13703 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13704 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13705 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13706 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13707 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13708 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13709 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13710 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13711 dc->vec_len = 0; 13712 dc->vec_stride = 0; 13713 dc->cp_regs = arm_cpu->cp_regs; 13714 dc->features = env->features; 13715 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13716 dc->gm_blocksize = arm_cpu->gm_blocksize; 13717 13718 #ifdef CONFIG_USER_ONLY 13719 /* In sve_probe_page, we assume TBI is enabled. */ 13720 tcg_debug_assert(dc->tbid & 1); 13721 #endif 13722 13723 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13724 13725 /* Single step state. The code-generation logic here is: 13726 * SS_ACTIVE == 0: 13727 * generate code with no special handling for single-stepping (except 13728 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13729 * this happens anyway because those changes are all system register or 13730 * PSTATE writes). 13731 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13732 * emit code for one insn 13733 * emit code to clear PSTATE.SS 13734 * emit code to generate software step exception for completed step 13735 * end TB (as usual for having generated an exception) 13736 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13737 * emit code to generate a software step exception 13738 * end the TB 13739 */ 13740 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13741 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13742 dc->is_ldex = false; 13743 13744 /* Bound the number of insns to execute to those left on the page. */ 13745 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13746 13747 /* If architectural single step active, limit to 1. */ 13748 if (dc->ss_active) { 13749 bound = 1; 13750 } 13751 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13752 } 13753 13754 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13755 { 13756 } 13757 13758 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13759 { 13760 DisasContext *dc = container_of(dcbase, DisasContext, base); 13761 target_ulong pc_arg = dc->base.pc_next; 13762 13763 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13764 pc_arg &= ~TARGET_PAGE_MASK; 13765 } 13766 tcg_gen_insn_start(pc_arg, 0, 0); 13767 dc->insn_start_updated = false; 13768 } 13769 13770 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13771 { 13772 DisasContext *s = container_of(dcbase, DisasContext, base); 13773 CPUARMState *env = cpu_env(cpu); 13774 uint64_t pc = s->base.pc_next; 13775 uint32_t insn; 13776 13777 /* Singlestep exceptions have the highest priority. */ 13778 if (s->ss_active && !s->pstate_ss) { 13779 /* Singlestep state is Active-pending. 13780 * If we're in this state at the start of a TB then either 13781 * a) we just took an exception to an EL which is being debugged 13782 * and this is the first insn in the exception handler 13783 * b) debug exceptions were masked and we just unmasked them 13784 * without changing EL (eg by clearing PSTATE.D) 13785 * In either case we're going to take a swstep exception in the 13786 * "did not step an insn" case, and so the syndrome ISV and EX 13787 * bits should be zero. 13788 */ 13789 assert(s->base.num_insns == 1); 13790 gen_swstep_exception(s, 0, 0); 13791 s->base.is_jmp = DISAS_NORETURN; 13792 s->base.pc_next = pc + 4; 13793 return; 13794 } 13795 13796 if (pc & 3) { 13797 /* 13798 * PC alignment fault. This has priority over the instruction abort 13799 * that we would receive from a translation fault via arm_ldl_code. 13800 * This should only be possible after an indirect branch, at the 13801 * start of the TB. 13802 */ 13803 assert(s->base.num_insns == 1); 13804 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13805 s->base.is_jmp = DISAS_NORETURN; 13806 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13807 return; 13808 } 13809 13810 s->pc_curr = pc; 13811 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13812 s->insn = insn; 13813 s->base.pc_next = pc + 4; 13814 13815 s->fp_access_checked = false; 13816 s->sve_access_checked = false; 13817 13818 if (s->pstate_il) { 13819 /* 13820 * Illegal execution state. This has priority over BTI 13821 * exceptions, but comes after instruction abort exceptions. 13822 */ 13823 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13824 return; 13825 } 13826 13827 if (dc_isar_feature(aa64_bti, s)) { 13828 if (s->base.num_insns == 1) { 13829 /* 13830 * At the first insn of the TB, compute s->guarded_page. 13831 * We delayed computing this until successfully reading 13832 * the first insn of the TB, above. This (mostly) ensures 13833 * that the softmmu tlb entry has been populated, and the 13834 * page table GP bit is available. 13835 * 13836 * Note that we need to compute this even if btype == 0, 13837 * because this value is used for BR instructions later 13838 * where ENV is not available. 13839 */ 13840 s->guarded_page = is_guarded_page(env, s); 13841 13842 /* First insn can have btype set to non-zero. */ 13843 tcg_debug_assert(s->btype >= 0); 13844 13845 /* 13846 * Note that the Branch Target Exception has fairly high 13847 * priority -- below debugging exceptions but above most 13848 * everything else. This allows us to handle this now 13849 * instead of waiting until the insn is otherwise decoded. 13850 */ 13851 if (s->btype != 0 13852 && s->guarded_page 13853 && !btype_destination_ok(insn, s->bt, s->btype)) { 13854 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13855 return; 13856 } 13857 } else { 13858 /* Not the first insn: btype must be 0. */ 13859 tcg_debug_assert(s->btype == 0); 13860 } 13861 } 13862 13863 s->is_nonstreaming = false; 13864 if (s->sme_trap_nonstreaming) { 13865 disas_sme_fa64(s, insn); 13866 } 13867 13868 if (!disas_a64(s, insn) && 13869 !disas_sme(s, insn) && 13870 !disas_sve(s, insn)) { 13871 disas_a64_legacy(s, insn); 13872 } 13873 13874 /* 13875 * After execution of most insns, btype is reset to 0. 13876 * Note that we set btype == -1 when the insn sets btype. 13877 */ 13878 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13879 reset_btype(s); 13880 } 13881 } 13882 13883 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13884 { 13885 DisasContext *dc = container_of(dcbase, DisasContext, base); 13886 13887 if (unlikely(dc->ss_active)) { 13888 /* Note that this means single stepping WFI doesn't halt the CPU. 13889 * For conditional branch insns this is harmless unreachable code as 13890 * gen_goto_tb() has already handled emitting the debug exception 13891 * (and thus a tb-jump is not possible when singlestepping). 13892 */ 13893 switch (dc->base.is_jmp) { 13894 default: 13895 gen_a64_update_pc(dc, 4); 13896 /* fall through */ 13897 case DISAS_EXIT: 13898 case DISAS_JUMP: 13899 gen_step_complete_exception(dc); 13900 break; 13901 case DISAS_NORETURN: 13902 break; 13903 } 13904 } else { 13905 switch (dc->base.is_jmp) { 13906 case DISAS_NEXT: 13907 case DISAS_TOO_MANY: 13908 gen_goto_tb(dc, 1, 4); 13909 break; 13910 default: 13911 case DISAS_UPDATE_EXIT: 13912 gen_a64_update_pc(dc, 4); 13913 /* fall through */ 13914 case DISAS_EXIT: 13915 tcg_gen_exit_tb(NULL, 0); 13916 break; 13917 case DISAS_UPDATE_NOCHAIN: 13918 gen_a64_update_pc(dc, 4); 13919 /* fall through */ 13920 case DISAS_JUMP: 13921 tcg_gen_lookup_and_goto_ptr(); 13922 break; 13923 case DISAS_NORETURN: 13924 case DISAS_SWI: 13925 break; 13926 case DISAS_WFE: 13927 gen_a64_update_pc(dc, 4); 13928 gen_helper_wfe(tcg_env); 13929 break; 13930 case DISAS_YIELD: 13931 gen_a64_update_pc(dc, 4); 13932 gen_helper_yield(tcg_env); 13933 break; 13934 case DISAS_WFI: 13935 /* 13936 * This is a special case because we don't want to just halt 13937 * the CPU if trying to debug across a WFI. 13938 */ 13939 gen_a64_update_pc(dc, 4); 13940 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13941 /* 13942 * The helper doesn't necessarily throw an exception, but we 13943 * must go back to the main loop to check for interrupts anyway. 13944 */ 13945 tcg_gen_exit_tb(NULL, 0); 13946 break; 13947 } 13948 } 13949 } 13950 13951 const TranslatorOps aarch64_translator_ops = { 13952 .init_disas_context = aarch64_tr_init_disas_context, 13953 .tb_start = aarch64_tr_tb_start, 13954 .insn_start = aarch64_tr_insn_start, 13955 .translate_insn = aarch64_tr_translate_insn, 13956 .tb_stop = aarch64_tr_tb_stop, 13957 }; 13958