xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 6980b80d)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
35 #include "cpregs.h"
36 #include "translate-a64.h"
37 #include "qemu/atomic128.h"
38 
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
41 
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 
45 static const char *regnames[] = {
46     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
47     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
48     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
49     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
50 };
51 
52 enum a64_shift_type {
53     A64_SHIFT_TYPE_LSL = 0,
54     A64_SHIFT_TYPE_LSR = 1,
55     A64_SHIFT_TYPE_ASR = 2,
56     A64_SHIFT_TYPE_ROR = 3
57 };
58 
59 /* Table based decoder typedefs - used when the relevant bits for decode
60  * are too awkwardly scattered across the instruction (eg SIMD).
61  */
62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
63 
64 typedef struct AArch64DecodeTable {
65     uint32_t pattern;
66     uint32_t mask;
67     AArch64DecodeFn *disas_fn;
68 } AArch64DecodeTable;
69 
70 /* initialize TCG globals.  */
71 void a64_translate_init(void)
72 {
73     int i;
74 
75     cpu_pc = tcg_global_mem_new_i64(cpu_env,
76                                     offsetof(CPUARMState, pc),
77                                     "pc");
78     for (i = 0; i < 32; i++) {
79         cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
80                                           offsetof(CPUARMState, xregs[i]),
81                                           regnames[i]);
82     }
83 
84     cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
85         offsetof(CPUARMState, exclusive_high), "exclusive_high");
86 }
87 
88 /*
89  * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
90  */
91 static int get_a64_user_mem_index(DisasContext *s)
92 {
93     /*
94      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
95      * which is the usual mmu_idx for this cpu state.
96      */
97     ARMMMUIdx useridx = s->mmu_idx;
98 
99     if (s->unpriv) {
100         /*
101          * We have pre-computed the condition for AccType_UNPRIV.
102          * Therefore we should never get here with a mmu_idx for
103          * which we do not know the corresponding user mmu_idx.
104          */
105         switch (useridx) {
106         case ARMMMUIdx_E10_1:
107         case ARMMMUIdx_E10_1_PAN:
108             useridx = ARMMMUIdx_E10_0;
109             break;
110         case ARMMMUIdx_E20_2:
111         case ARMMMUIdx_E20_2_PAN:
112             useridx = ARMMMUIdx_E20_0;
113             break;
114         default:
115             g_assert_not_reached();
116         }
117     }
118     return arm_to_core_mmu_idx(useridx);
119 }
120 
121 static void set_btype_raw(int val)
122 {
123     tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
124                    offsetof(CPUARMState, btype));
125 }
126 
127 static void set_btype(DisasContext *s, int val)
128 {
129     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
130     tcg_debug_assert(val >= 1 && val <= 3);
131     set_btype_raw(val);
132     s->btype = -1;
133 }
134 
135 static void reset_btype(DisasContext *s)
136 {
137     if (s->btype != 0) {
138         set_btype_raw(0);
139         s->btype = 0;
140     }
141 }
142 
143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
144 {
145     assert(s->pc_save != -1);
146     if (tb_cflags(s->base.tb) & CF_PCREL) {
147         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
148     } else {
149         tcg_gen_movi_i64(dest, s->pc_curr + diff);
150     }
151 }
152 
153 void gen_a64_update_pc(DisasContext *s, target_long diff)
154 {
155     gen_pc_plus_diff(s, cpu_pc, diff);
156     s->pc_save = s->pc_curr + diff;
157 }
158 
159 /*
160  * Handle Top Byte Ignore (TBI) bits.
161  *
162  * If address tagging is enabled via the TCR TBI bits:
163  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
164  *    then the address is zero-extended, clearing bits [63:56]
165  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166  *    and TBI1 controls addressses with bit 55 == 1.
167  *    If the appropriate TBI bit is set for the address then
168  *    the address is sign-extended from bit 55 into bits [63:56]
169  *
170  * Here We have concatenated TBI{1,0} into tbi.
171  */
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173                                 TCGv_i64 src, int tbi)
174 {
175     if (tbi == 0) {
176         /* Load unmodified address */
177         tcg_gen_mov_i64(dst, src);
178     } else if (!regime_has_2_ranges(s->mmu_idx)) {
179         /* Force tag byte to all zero */
180         tcg_gen_extract_i64(dst, src, 0, 56);
181     } else {
182         /* Sign-extend from bit 55.  */
183         tcg_gen_sextract_i64(dst, src, 0, 56);
184 
185         switch (tbi) {
186         case 1:
187             /* tbi0 but !tbi1: only use the extension if positive */
188             tcg_gen_and_i64(dst, dst, src);
189             break;
190         case 2:
191             /* !tbi0 but tbi1: only use the extension if negative */
192             tcg_gen_or_i64(dst, dst, src);
193             break;
194         case 3:
195             /* tbi0 and tbi1: always use the extension */
196             break;
197         default:
198             g_assert_not_reached();
199         }
200     }
201 }
202 
203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
204 {
205     /*
206      * If address tagging is enabled for instructions via the TCR TBI bits,
207      * then loading an address into the PC will clear out any tag.
208      */
209     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
210     s->pc_save = -1;
211 }
212 
213 /*
214  * Handle MTE and/or TBI.
215  *
216  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
217  * for the tag to be present in the FAR_ELx register.  But for user-only
218  * mode we do not have a TLB with which to implement this, so we must
219  * remove the top byte now.
220  *
221  * Always return a fresh temporary that we can increment independently
222  * of the write-back address.
223  */
224 
225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
226 {
227     TCGv_i64 clean = tcg_temp_new_i64();
228 #ifdef CONFIG_USER_ONLY
229     gen_top_byte_ignore(s, clean, addr, s->tbid);
230 #else
231     tcg_gen_mov_i64(clean, addr);
232 #endif
233     return clean;
234 }
235 
236 /* Insert a zero tag into src, with the result at dst. */
237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
238 {
239     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
240 }
241 
242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
243                              MMUAccessType acc, int log2_size)
244 {
245     gen_helper_probe_access(cpu_env, ptr,
246                             tcg_constant_i32(acc),
247                             tcg_constant_i32(get_mem_index(s)),
248                             tcg_constant_i32(1 << log2_size));
249 }
250 
251 /*
252  * For MTE, check a single logical or atomic access.  This probes a single
253  * address, the exact one specified.  The size and alignment of the access
254  * is not relevant to MTE, per se, but watchpoints do require the size,
255  * and we want to recognize those before making any other changes to state.
256  */
257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
258                                       bool is_write, bool tag_checked,
259                                       int log2_size, bool is_unpriv,
260                                       int core_idx)
261 {
262     if (tag_checked && s->mte_active[is_unpriv]) {
263         TCGv_i64 ret;
264         int desc = 0;
265 
266         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
267         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
268         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
269         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
270         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
271 
272         ret = tcg_temp_new_i64();
273         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
274 
275         return ret;
276     }
277     return clean_data_tbi(s, addr);
278 }
279 
280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
281                         bool tag_checked, int log2_size)
282 {
283     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
284                                  false, get_mem_index(s));
285 }
286 
287 /*
288  * For MTE, check multiple logical sequential accesses.
289  */
290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
291                         bool tag_checked, int size)
292 {
293     if (tag_checked && s->mte_active[0]) {
294         TCGv_i64 ret;
295         int desc = 0;
296 
297         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
298         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
299         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
300         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
301         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
302 
303         ret = tcg_temp_new_i64();
304         gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
305 
306         return ret;
307     }
308     return clean_data_tbi(s, addr);
309 }
310 
311 typedef struct DisasCompare64 {
312     TCGCond cond;
313     TCGv_i64 value;
314 } DisasCompare64;
315 
316 static void a64_test_cc(DisasCompare64 *c64, int cc)
317 {
318     DisasCompare c32;
319 
320     arm_test_cc(&c32, cc);
321 
322     /*
323      * Sign-extend the 32-bit value so that the GE/LT comparisons work
324      * properly.  The NE/EQ comparisons are also fine with this choice.
325       */
326     c64->cond = c32.cond;
327     c64->value = tcg_temp_new_i64();
328     tcg_gen_ext_i32_i64(c64->value, c32.value);
329 }
330 
331 static void gen_rebuild_hflags(DisasContext *s)
332 {
333     gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
334 }
335 
336 static void gen_exception_internal(int excp)
337 {
338     assert(excp_is_internal(excp));
339     gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
340 }
341 
342 static void gen_exception_internal_insn(DisasContext *s, int excp)
343 {
344     gen_a64_update_pc(s, 0);
345     gen_exception_internal(excp);
346     s->base.is_jmp = DISAS_NORETURN;
347 }
348 
349 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
350 {
351     gen_a64_update_pc(s, 0);
352     gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
353     s->base.is_jmp = DISAS_NORETURN;
354 }
355 
356 static void gen_step_complete_exception(DisasContext *s)
357 {
358     /* We just completed step of an insn. Move from Active-not-pending
359      * to Active-pending, and then also take the swstep exception.
360      * This corresponds to making the (IMPDEF) choice to prioritize
361      * swstep exceptions over asynchronous exceptions taken to an exception
362      * level where debug is disabled. This choice has the advantage that
363      * we do not need to maintain internal state corresponding to the
364      * ISV/EX syndrome bits between completion of the step and generation
365      * of the exception, and our syndrome information is always correct.
366      */
367     gen_ss_advance(s);
368     gen_swstep_exception(s, 1, s->is_ldex);
369     s->base.is_jmp = DISAS_NORETURN;
370 }
371 
372 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
373 {
374     if (s->ss_active) {
375         return false;
376     }
377     return translator_use_goto_tb(&s->base, dest);
378 }
379 
380 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
381 {
382     if (use_goto_tb(s, s->pc_curr + diff)) {
383         /*
384          * For pcrel, the pc must always be up-to-date on entry to
385          * the linked TB, so that it can use simple additions for all
386          * further adjustments.  For !pcrel, the linked TB is compiled
387          * to know its full virtual address, so we can delay the
388          * update to pc to the unlinked path.  A long chain of links
389          * can thus avoid many updates to the PC.
390          */
391         if (tb_cflags(s->base.tb) & CF_PCREL) {
392             gen_a64_update_pc(s, diff);
393             tcg_gen_goto_tb(n);
394         } else {
395             tcg_gen_goto_tb(n);
396             gen_a64_update_pc(s, diff);
397         }
398         tcg_gen_exit_tb(s->base.tb, n);
399         s->base.is_jmp = DISAS_NORETURN;
400     } else {
401         gen_a64_update_pc(s, diff);
402         if (s->ss_active) {
403             gen_step_complete_exception(s);
404         } else {
405             tcg_gen_lookup_and_goto_ptr();
406             s->base.is_jmp = DISAS_NORETURN;
407         }
408     }
409 }
410 
411 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
412 {
413     TCGv_i64 t = tcg_temp_new_i64();
414     tcg_gen_movi_i64(t, 0);
415     return t;
416 }
417 
418 /*
419  * Register access functions
420  *
421  * These functions are used for directly accessing a register in where
422  * changes to the final register value are likely to be made. If you
423  * need to use a register for temporary calculation (e.g. index type
424  * operations) use the read_* form.
425  *
426  * B1.2.1 Register mappings
427  *
428  * In instruction register encoding 31 can refer to ZR (zero register) or
429  * the SP (stack pointer) depending on context. In QEMU's case we map SP
430  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
431  * This is the point of the _sp forms.
432  */
433 TCGv_i64 cpu_reg(DisasContext *s, int reg)
434 {
435     if (reg == 31) {
436         return new_tmp_a64_zero(s);
437     } else {
438         return cpu_X[reg];
439     }
440 }
441 
442 /* register access for when 31 == SP */
443 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
444 {
445     return cpu_X[reg];
446 }
447 
448 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
449  * representing the register contents. This TCGv is an auto-freed
450  * temporary so it need not be explicitly freed, and may be modified.
451  */
452 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
453 {
454     TCGv_i64 v = tcg_temp_new_i64();
455     if (reg != 31) {
456         if (sf) {
457             tcg_gen_mov_i64(v, cpu_X[reg]);
458         } else {
459             tcg_gen_ext32u_i64(v, cpu_X[reg]);
460         }
461     } else {
462         tcg_gen_movi_i64(v, 0);
463     }
464     return v;
465 }
466 
467 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
468 {
469     TCGv_i64 v = tcg_temp_new_i64();
470     if (sf) {
471         tcg_gen_mov_i64(v, cpu_X[reg]);
472     } else {
473         tcg_gen_ext32u_i64(v, cpu_X[reg]);
474     }
475     return v;
476 }
477 
478 /* Return the offset into CPUARMState of a slice (from
479  * the least significant end) of FP register Qn (ie
480  * Dn, Sn, Hn or Bn).
481  * (Note that this is not the same mapping as for A32; see cpu.h)
482  */
483 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
484 {
485     return vec_reg_offset(s, regno, 0, size);
486 }
487 
488 /* Offset of the high half of the 128 bit vector Qn */
489 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
490 {
491     return vec_reg_offset(s, regno, 1, MO_64);
492 }
493 
494 /* Convenience accessors for reading and writing single and double
495  * FP registers. Writing clears the upper parts of the associated
496  * 128 bit vector register, as required by the architecture.
497  * Note that unlike the GP register accessors, the values returned
498  * by the read functions must be manually freed.
499  */
500 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
501 {
502     TCGv_i64 v = tcg_temp_new_i64();
503 
504     tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
505     return v;
506 }
507 
508 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
509 {
510     TCGv_i32 v = tcg_temp_new_i32();
511 
512     tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
513     return v;
514 }
515 
516 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
517 {
518     TCGv_i32 v = tcg_temp_new_i32();
519 
520     tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
521     return v;
522 }
523 
524 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
525  * If SVE is not enabled, then there are only 128 bits in the vector.
526  */
527 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
528 {
529     unsigned ofs = fp_reg_offset(s, rd, MO_64);
530     unsigned vsz = vec_full_reg_size(s);
531 
532     /* Nop move, with side effect of clearing the tail. */
533     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
534 }
535 
536 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
537 {
538     unsigned ofs = fp_reg_offset(s, reg, MO_64);
539 
540     tcg_gen_st_i64(v, cpu_env, ofs);
541     clear_vec_high(s, false, reg);
542 }
543 
544 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
545 {
546     TCGv_i64 tmp = tcg_temp_new_i64();
547 
548     tcg_gen_extu_i32_i64(tmp, v);
549     write_fp_dreg(s, reg, tmp);
550     tcg_temp_free_i64(tmp);
551 }
552 
553 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
554 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
555                          GVecGen2Fn *gvec_fn, int vece)
556 {
557     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
558             is_q ? 16 : 8, vec_full_reg_size(s));
559 }
560 
561 /* Expand a 2-operand + immediate AdvSIMD vector operation using
562  * an expander function.
563  */
564 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
565                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
566 {
567     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
568             imm, is_q ? 16 : 8, vec_full_reg_size(s));
569 }
570 
571 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
572 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
573                          GVecGen3Fn *gvec_fn, int vece)
574 {
575     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
576             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
577 }
578 
579 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
580 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
581                          int rx, GVecGen4Fn *gvec_fn, int vece)
582 {
583     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
584             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
585             is_q ? 16 : 8, vec_full_reg_size(s));
586 }
587 
588 /* Expand a 2-operand operation using an out-of-line helper.  */
589 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
590                              int rn, int data, gen_helper_gvec_2 *fn)
591 {
592     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
593                        vec_full_reg_offset(s, rn),
594                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
595 }
596 
597 /* Expand a 3-operand operation using an out-of-line helper.  */
598 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
599                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
600 {
601     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
602                        vec_full_reg_offset(s, rn),
603                        vec_full_reg_offset(s, rm),
604                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
605 }
606 
607 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
608  * an out-of-line helper.
609  */
610 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
611                               int rm, bool is_fp16, int data,
612                               gen_helper_gvec_3_ptr *fn)
613 {
614     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
615     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
616                        vec_full_reg_offset(s, rn),
617                        vec_full_reg_offset(s, rm), fpst,
618                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
619     tcg_temp_free_ptr(fpst);
620 }
621 
622 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
623 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
624                             int rm, gen_helper_gvec_3_ptr *fn)
625 {
626     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
627 
628     tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
629     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
630                        vec_full_reg_offset(s, rn),
631                        vec_full_reg_offset(s, rm), qc_ptr,
632                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
633     tcg_temp_free_ptr(qc_ptr);
634 }
635 
636 /* Expand a 4-operand operation using an out-of-line helper.  */
637 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
638                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
639 {
640     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
641                        vec_full_reg_offset(s, rn),
642                        vec_full_reg_offset(s, rm),
643                        vec_full_reg_offset(s, ra),
644                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
645 }
646 
647 /*
648  * Expand a 4-operand + fpstatus pointer + simd data value operation using
649  * an out-of-line helper.
650  */
651 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
652                               int rm, int ra, bool is_fp16, int data,
653                               gen_helper_gvec_4_ptr *fn)
654 {
655     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
656     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
657                        vec_full_reg_offset(s, rn),
658                        vec_full_reg_offset(s, rm),
659                        vec_full_reg_offset(s, ra), fpst,
660                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
661     tcg_temp_free_ptr(fpst);
662 }
663 
664 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
665  * than the 32 bit equivalent.
666  */
667 static inline void gen_set_NZ64(TCGv_i64 result)
668 {
669     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
670     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
671 }
672 
673 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
674 static inline void gen_logic_CC(int sf, TCGv_i64 result)
675 {
676     if (sf) {
677         gen_set_NZ64(result);
678     } else {
679         tcg_gen_extrl_i64_i32(cpu_ZF, result);
680         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
681     }
682     tcg_gen_movi_i32(cpu_CF, 0);
683     tcg_gen_movi_i32(cpu_VF, 0);
684 }
685 
686 /* dest = T0 + T1; compute C, N, V and Z flags */
687 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
688 {
689     if (sf) {
690         TCGv_i64 result, flag, tmp;
691         result = tcg_temp_new_i64();
692         flag = tcg_temp_new_i64();
693         tmp = tcg_temp_new_i64();
694 
695         tcg_gen_movi_i64(tmp, 0);
696         tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
697 
698         tcg_gen_extrl_i64_i32(cpu_CF, flag);
699 
700         gen_set_NZ64(result);
701 
702         tcg_gen_xor_i64(flag, result, t0);
703         tcg_gen_xor_i64(tmp, t0, t1);
704         tcg_gen_andc_i64(flag, flag, tmp);
705         tcg_temp_free_i64(tmp);
706         tcg_gen_extrh_i64_i32(cpu_VF, flag);
707 
708         tcg_gen_mov_i64(dest, result);
709         tcg_temp_free_i64(result);
710         tcg_temp_free_i64(flag);
711     } else {
712         /* 32 bit arithmetic */
713         TCGv_i32 t0_32 = tcg_temp_new_i32();
714         TCGv_i32 t1_32 = tcg_temp_new_i32();
715         TCGv_i32 tmp = tcg_temp_new_i32();
716 
717         tcg_gen_movi_i32(tmp, 0);
718         tcg_gen_extrl_i64_i32(t0_32, t0);
719         tcg_gen_extrl_i64_i32(t1_32, t1);
720         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
721         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
722         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
723         tcg_gen_xor_i32(tmp, t0_32, t1_32);
724         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
725         tcg_gen_extu_i32_i64(dest, cpu_NF);
726 
727         tcg_temp_free_i32(tmp);
728         tcg_temp_free_i32(t0_32);
729         tcg_temp_free_i32(t1_32);
730     }
731 }
732 
733 /* dest = T0 - T1; compute C, N, V and Z flags */
734 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
735 {
736     if (sf) {
737         /* 64 bit arithmetic */
738         TCGv_i64 result, flag, tmp;
739 
740         result = tcg_temp_new_i64();
741         flag = tcg_temp_new_i64();
742         tcg_gen_sub_i64(result, t0, t1);
743 
744         gen_set_NZ64(result);
745 
746         tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
747         tcg_gen_extrl_i64_i32(cpu_CF, flag);
748 
749         tcg_gen_xor_i64(flag, result, t0);
750         tmp = tcg_temp_new_i64();
751         tcg_gen_xor_i64(tmp, t0, t1);
752         tcg_gen_and_i64(flag, flag, tmp);
753         tcg_temp_free_i64(tmp);
754         tcg_gen_extrh_i64_i32(cpu_VF, flag);
755         tcg_gen_mov_i64(dest, result);
756         tcg_temp_free_i64(flag);
757         tcg_temp_free_i64(result);
758     } else {
759         /* 32 bit arithmetic */
760         TCGv_i32 t0_32 = tcg_temp_new_i32();
761         TCGv_i32 t1_32 = tcg_temp_new_i32();
762         TCGv_i32 tmp;
763 
764         tcg_gen_extrl_i64_i32(t0_32, t0);
765         tcg_gen_extrl_i64_i32(t1_32, t1);
766         tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
767         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
768         tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
769         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
770         tmp = tcg_temp_new_i32();
771         tcg_gen_xor_i32(tmp, t0_32, t1_32);
772         tcg_temp_free_i32(t0_32);
773         tcg_temp_free_i32(t1_32);
774         tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
775         tcg_temp_free_i32(tmp);
776         tcg_gen_extu_i32_i64(dest, cpu_NF);
777     }
778 }
779 
780 /* dest = T0 + T1 + CF; do not compute flags. */
781 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
782 {
783     TCGv_i64 flag = tcg_temp_new_i64();
784     tcg_gen_extu_i32_i64(flag, cpu_CF);
785     tcg_gen_add_i64(dest, t0, t1);
786     tcg_gen_add_i64(dest, dest, flag);
787     tcg_temp_free_i64(flag);
788 
789     if (!sf) {
790         tcg_gen_ext32u_i64(dest, dest);
791     }
792 }
793 
794 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
795 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
796 {
797     if (sf) {
798         TCGv_i64 result = tcg_temp_new_i64();
799         TCGv_i64 cf_64 = tcg_temp_new_i64();
800         TCGv_i64 vf_64 = tcg_temp_new_i64();
801         TCGv_i64 tmp = tcg_temp_new_i64();
802         TCGv_i64 zero = tcg_constant_i64(0);
803 
804         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
805         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
806         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
807         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
808         gen_set_NZ64(result);
809 
810         tcg_gen_xor_i64(vf_64, result, t0);
811         tcg_gen_xor_i64(tmp, t0, t1);
812         tcg_gen_andc_i64(vf_64, vf_64, tmp);
813         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
814 
815         tcg_gen_mov_i64(dest, result);
816 
817         tcg_temp_free_i64(tmp);
818         tcg_temp_free_i64(vf_64);
819         tcg_temp_free_i64(cf_64);
820         tcg_temp_free_i64(result);
821     } else {
822         TCGv_i32 t0_32 = tcg_temp_new_i32();
823         TCGv_i32 t1_32 = tcg_temp_new_i32();
824         TCGv_i32 tmp = tcg_temp_new_i32();
825         TCGv_i32 zero = tcg_constant_i32(0);
826 
827         tcg_gen_extrl_i64_i32(t0_32, t0);
828         tcg_gen_extrl_i64_i32(t1_32, t1);
829         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
830         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
831 
832         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
833         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
834         tcg_gen_xor_i32(tmp, t0_32, t1_32);
835         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
836         tcg_gen_extu_i32_i64(dest, cpu_NF);
837 
838         tcg_temp_free_i32(tmp);
839         tcg_temp_free_i32(t1_32);
840         tcg_temp_free_i32(t0_32);
841     }
842 }
843 
844 /*
845  * Load/Store generators
846  */
847 
848 /*
849  * Store from GPR register to memory.
850  */
851 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
852                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
853                              bool iss_valid,
854                              unsigned int iss_srt,
855                              bool iss_sf, bool iss_ar)
856 {
857     memop = finalize_memop(s, memop);
858     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
859 
860     if (iss_valid) {
861         uint32_t syn;
862 
863         syn = syn_data_abort_with_iss(0,
864                                       (memop & MO_SIZE),
865                                       false,
866                                       iss_srt,
867                                       iss_sf,
868                                       iss_ar,
869                                       0, 0, 0, 0, 0, false);
870         disas_set_insn_syndrome(s, syn);
871     }
872 }
873 
874 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
875                       TCGv_i64 tcg_addr, MemOp memop,
876                       bool iss_valid,
877                       unsigned int iss_srt,
878                       bool iss_sf, bool iss_ar)
879 {
880     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
881                      iss_valid, iss_srt, iss_sf, iss_ar);
882 }
883 
884 /*
885  * Load from memory to GPR register
886  */
887 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
888                              MemOp memop, bool extend, int memidx,
889                              bool iss_valid, unsigned int iss_srt,
890                              bool iss_sf, bool iss_ar)
891 {
892     memop = finalize_memop(s, memop);
893     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
894 
895     if (extend && (memop & MO_SIGN)) {
896         g_assert((memop & MO_SIZE) <= MO_32);
897         tcg_gen_ext32u_i64(dest, dest);
898     }
899 
900     if (iss_valid) {
901         uint32_t syn;
902 
903         syn = syn_data_abort_with_iss(0,
904                                       (memop & MO_SIZE),
905                                       (memop & MO_SIGN) != 0,
906                                       iss_srt,
907                                       iss_sf,
908                                       iss_ar,
909                                       0, 0, 0, 0, 0, false);
910         disas_set_insn_syndrome(s, syn);
911     }
912 }
913 
914 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
915                       MemOp memop, bool extend,
916                       bool iss_valid, unsigned int iss_srt,
917                       bool iss_sf, bool iss_ar)
918 {
919     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
920                      iss_valid, iss_srt, iss_sf, iss_ar);
921 }
922 
923 /*
924  * Store from FP register to memory
925  */
926 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
927 {
928     /* This writes the bottom N bits of a 128 bit wide vector to memory */
929     TCGv_i64 tmplo = tcg_temp_new_i64();
930     MemOp mop;
931 
932     tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
933 
934     if (size < 4) {
935         mop = finalize_memop(s, size);
936         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
937     } else {
938         bool be = s->be_data == MO_BE;
939         TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
940         TCGv_i64 tmphi = tcg_temp_new_i64();
941 
942         tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
943 
944         mop = s->be_data | MO_UQ;
945         tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
946                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
947         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
948         tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
949                             get_mem_index(s), mop);
950 
951         tcg_temp_free_i64(tcg_hiaddr);
952         tcg_temp_free_i64(tmphi);
953     }
954 
955     tcg_temp_free_i64(tmplo);
956 }
957 
958 /*
959  * Load from memory to FP register
960  */
961 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
962 {
963     /* This always zero-extends and writes to a full 128 bit wide vector */
964     TCGv_i64 tmplo = tcg_temp_new_i64();
965     TCGv_i64 tmphi = NULL;
966     MemOp mop;
967 
968     if (size < 4) {
969         mop = finalize_memop(s, size);
970         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
971     } else {
972         bool be = s->be_data == MO_BE;
973         TCGv_i64 tcg_hiaddr;
974 
975         tmphi = tcg_temp_new_i64();
976         tcg_hiaddr = tcg_temp_new_i64();
977 
978         mop = s->be_data | MO_UQ;
979         tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
980                             mop | (s->align_mem ? MO_ALIGN_16 : 0));
981         tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
982         tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
983                             get_mem_index(s), mop);
984         tcg_temp_free_i64(tcg_hiaddr);
985     }
986 
987     tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
988     tcg_temp_free_i64(tmplo);
989 
990     if (tmphi) {
991         tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
992         tcg_temp_free_i64(tmphi);
993     }
994     clear_vec_high(s, tmphi != NULL, destidx);
995 }
996 
997 /*
998  * Vector load/store helpers.
999  *
1000  * The principal difference between this and a FP load is that we don't
1001  * zero extend as we are filling a partial chunk of the vector register.
1002  * These functions don't support 128 bit loads/stores, which would be
1003  * normal load/store operations.
1004  *
1005  * The _i32 versions are useful when operating on 32 bit quantities
1006  * (eg for floating point single or using Neon helper functions).
1007  */
1008 
1009 /* Get value of an element within a vector register */
1010 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1011                              int element, MemOp memop)
1012 {
1013     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1014     switch ((unsigned)memop) {
1015     case MO_8:
1016         tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1017         break;
1018     case MO_16:
1019         tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1020         break;
1021     case MO_32:
1022         tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1023         break;
1024     case MO_8|MO_SIGN:
1025         tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1026         break;
1027     case MO_16|MO_SIGN:
1028         tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1029         break;
1030     case MO_32|MO_SIGN:
1031         tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1032         break;
1033     case MO_64:
1034     case MO_64|MO_SIGN:
1035         tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1036         break;
1037     default:
1038         g_assert_not_reached();
1039     }
1040 }
1041 
1042 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1043                                  int element, MemOp memop)
1044 {
1045     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1046     switch (memop) {
1047     case MO_8:
1048         tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1049         break;
1050     case MO_16:
1051         tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1052         break;
1053     case MO_8|MO_SIGN:
1054         tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1055         break;
1056     case MO_16|MO_SIGN:
1057         tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1058         break;
1059     case MO_32:
1060     case MO_32|MO_SIGN:
1061         tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1062         break;
1063     default:
1064         g_assert_not_reached();
1065     }
1066 }
1067 
1068 /* Set value of an element within a vector register */
1069 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1070                               int element, MemOp memop)
1071 {
1072     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1073     switch (memop) {
1074     case MO_8:
1075         tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1076         break;
1077     case MO_16:
1078         tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1079         break;
1080     case MO_32:
1081         tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1082         break;
1083     case MO_64:
1084         tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1085         break;
1086     default:
1087         g_assert_not_reached();
1088     }
1089 }
1090 
1091 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1092                                   int destidx, int element, MemOp memop)
1093 {
1094     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1095     switch (memop) {
1096     case MO_8:
1097         tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1098         break;
1099     case MO_16:
1100         tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1101         break;
1102     case MO_32:
1103         tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1104         break;
1105     default:
1106         g_assert_not_reached();
1107     }
1108 }
1109 
1110 /* Store from vector register to memory */
1111 static void do_vec_st(DisasContext *s, int srcidx, int element,
1112                       TCGv_i64 tcg_addr, MemOp mop)
1113 {
1114     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1115 
1116     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1117     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1118 
1119     tcg_temp_free_i64(tcg_tmp);
1120 }
1121 
1122 /* Load from memory to vector register */
1123 static void do_vec_ld(DisasContext *s, int destidx, int element,
1124                       TCGv_i64 tcg_addr, MemOp mop)
1125 {
1126     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1127 
1128     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1129     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1130 
1131     tcg_temp_free_i64(tcg_tmp);
1132 }
1133 
1134 /* Check that FP/Neon access is enabled. If it is, return
1135  * true. If not, emit code to generate an appropriate exception,
1136  * and return false; the caller should not emit any code for
1137  * the instruction. Note that this check must happen after all
1138  * unallocated-encoding checks (otherwise the syndrome information
1139  * for the resulting exception will be incorrect).
1140  */
1141 static bool fp_access_check_only(DisasContext *s)
1142 {
1143     if (s->fp_excp_el) {
1144         assert(!s->fp_access_checked);
1145         s->fp_access_checked = true;
1146 
1147         gen_exception_insn_el(s, 0, EXCP_UDEF,
1148                               syn_fp_access_trap(1, 0xe, false, 0),
1149                               s->fp_excp_el);
1150         return false;
1151     }
1152     s->fp_access_checked = true;
1153     return true;
1154 }
1155 
1156 static bool fp_access_check(DisasContext *s)
1157 {
1158     if (!fp_access_check_only(s)) {
1159         return false;
1160     }
1161     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1162         gen_exception_insn(s, 0, EXCP_UDEF,
1163                            syn_smetrap(SME_ET_Streaming, false));
1164         return false;
1165     }
1166     return true;
1167 }
1168 
1169 /*
1170  * Check that SVE access is enabled.  If it is, return true.
1171  * If not, emit code to generate an appropriate exception and return false.
1172  * This function corresponds to CheckSVEEnabled().
1173  */
1174 bool sve_access_check(DisasContext *s)
1175 {
1176     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1177         assert(dc_isar_feature(aa64_sme, s));
1178         if (!sme_sm_enabled_check(s)) {
1179             goto fail_exit;
1180         }
1181     } else if (s->sve_excp_el) {
1182         gen_exception_insn_el(s, 0, EXCP_UDEF,
1183                               syn_sve_access_trap(), s->sve_excp_el);
1184         goto fail_exit;
1185     }
1186     s->sve_access_checked = true;
1187     return fp_access_check(s);
1188 
1189  fail_exit:
1190     /* Assert that we only raise one exception per instruction. */
1191     assert(!s->sve_access_checked);
1192     s->sve_access_checked = true;
1193     return false;
1194 }
1195 
1196 /*
1197  * Check that SME access is enabled, raise an exception if not.
1198  * Note that this function corresponds to CheckSMEAccess and is
1199  * only used directly for cpregs.
1200  */
1201 static bool sme_access_check(DisasContext *s)
1202 {
1203     if (s->sme_excp_el) {
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_smetrap(SME_ET_AccessTrap, false),
1206                               s->sme_excp_el);
1207         return false;
1208     }
1209     return true;
1210 }
1211 
1212 /* This function corresponds to CheckSMEEnabled. */
1213 bool sme_enabled_check(DisasContext *s)
1214 {
1215     /*
1216      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1217      * to be zero when fp_excp_el has priority.  This is because we need
1218      * sme_excp_el by itself for cpregs access checks.
1219      */
1220     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1221         s->fp_access_checked = true;
1222         return sme_access_check(s);
1223     }
1224     return fp_access_check_only(s);
1225 }
1226 
1227 /* Common subroutine for CheckSMEAnd*Enabled. */
1228 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1229 {
1230     if (!sme_enabled_check(s)) {
1231         return false;
1232     }
1233     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1234         gen_exception_insn(s, 0, EXCP_UDEF,
1235                            syn_smetrap(SME_ET_NotStreaming, false));
1236         return false;
1237     }
1238     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1239         gen_exception_insn(s, 0, EXCP_UDEF,
1240                            syn_smetrap(SME_ET_InactiveZA, false));
1241         return false;
1242     }
1243     return true;
1244 }
1245 
1246 /*
1247  * This utility function is for doing register extension with an
1248  * optional shift. You will likely want to pass a temporary for the
1249  * destination register. See DecodeRegExtend() in the ARM ARM.
1250  */
1251 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1252                               int option, unsigned int shift)
1253 {
1254     int extsize = extract32(option, 0, 2);
1255     bool is_signed = extract32(option, 2, 1);
1256 
1257     if (is_signed) {
1258         switch (extsize) {
1259         case 0:
1260             tcg_gen_ext8s_i64(tcg_out, tcg_in);
1261             break;
1262         case 1:
1263             tcg_gen_ext16s_i64(tcg_out, tcg_in);
1264             break;
1265         case 2:
1266             tcg_gen_ext32s_i64(tcg_out, tcg_in);
1267             break;
1268         case 3:
1269             tcg_gen_mov_i64(tcg_out, tcg_in);
1270             break;
1271         }
1272     } else {
1273         switch (extsize) {
1274         case 0:
1275             tcg_gen_ext8u_i64(tcg_out, tcg_in);
1276             break;
1277         case 1:
1278             tcg_gen_ext16u_i64(tcg_out, tcg_in);
1279             break;
1280         case 2:
1281             tcg_gen_ext32u_i64(tcg_out, tcg_in);
1282             break;
1283         case 3:
1284             tcg_gen_mov_i64(tcg_out, tcg_in);
1285             break;
1286         }
1287     }
1288 
1289     if (shift) {
1290         tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1291     }
1292 }
1293 
1294 static inline void gen_check_sp_alignment(DisasContext *s)
1295 {
1296     /* The AArch64 architecture mandates that (if enabled via PSTATE
1297      * or SCTLR bits) there is a check that SP is 16-aligned on every
1298      * SP-relative load or store (with an exception generated if it is not).
1299      * In line with general QEMU practice regarding misaligned accesses,
1300      * we omit these checks for the sake of guest program performance.
1301      * This function is provided as a hook so we can more easily add these
1302      * checks in future (possibly as a "favour catching guest program bugs
1303      * over speed" user selectable option).
1304      */
1305 }
1306 
1307 /*
1308  * This provides a simple table based table lookup decoder. It is
1309  * intended to be used when the relevant bits for decode are too
1310  * awkwardly placed and switch/if based logic would be confusing and
1311  * deeply nested. Since it's a linear search through the table, tables
1312  * should be kept small.
1313  *
1314  * It returns the first handler where insn & mask == pattern, or
1315  * NULL if there is no match.
1316  * The table is terminated by an empty mask (i.e. 0)
1317  */
1318 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1319                                                uint32_t insn)
1320 {
1321     const AArch64DecodeTable *tptr = table;
1322 
1323     while (tptr->mask) {
1324         if ((insn & tptr->mask) == tptr->pattern) {
1325             return tptr->disas_fn;
1326         }
1327         tptr++;
1328     }
1329     return NULL;
1330 }
1331 
1332 /*
1333  * The instruction disassembly implemented here matches
1334  * the instruction encoding classifications in chapter C4
1335  * of the ARM Architecture Reference Manual (DDI0487B_a);
1336  * classification names and decode diagrams here should generally
1337  * match up with those in the manual.
1338  */
1339 
1340 /* Unconditional branch (immediate)
1341  *   31  30       26 25                                  0
1342  * +----+-----------+-------------------------------------+
1343  * | op | 0 0 1 0 1 |                 imm26               |
1344  * +----+-----------+-------------------------------------+
1345  */
1346 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1347 {
1348     int64_t diff = sextract32(insn, 0, 26) * 4;
1349 
1350     if (insn & (1U << 31)) {
1351         /* BL Branch with link */
1352         gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1353     }
1354 
1355     /* B Branch / BL Branch with link */
1356     reset_btype(s);
1357     gen_goto_tb(s, 0, diff);
1358 }
1359 
1360 /* Compare and branch (immediate)
1361  *   31  30         25  24  23                  5 4      0
1362  * +----+-------------+----+---------------------+--------+
1363  * | sf | 0 1 1 0 1 0 | op |         imm19       |   Rt   |
1364  * +----+-------------+----+---------------------+--------+
1365  */
1366 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1367 {
1368     unsigned int sf, op, rt;
1369     int64_t diff;
1370     DisasLabel match;
1371     TCGv_i64 tcg_cmp;
1372 
1373     sf = extract32(insn, 31, 1);
1374     op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1375     rt = extract32(insn, 0, 5);
1376     diff = sextract32(insn, 5, 19) * 4;
1377 
1378     tcg_cmp = read_cpu_reg(s, rt, sf);
1379     reset_btype(s);
1380 
1381     match = gen_disas_label(s);
1382     tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1383                         tcg_cmp, 0, match.label);
1384     gen_goto_tb(s, 0, 4);
1385     set_disas_label(s, match);
1386     gen_goto_tb(s, 1, diff);
1387 }
1388 
1389 /* Test and branch (immediate)
1390  *   31  30         25  24  23   19 18          5 4    0
1391  * +----+-------------+----+-------+-------------+------+
1392  * | b5 | 0 1 1 0 1 1 | op |  b40  |    imm14    |  Rt  |
1393  * +----+-------------+----+-------+-------------+------+
1394  */
1395 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1396 {
1397     unsigned int bit_pos, op, rt;
1398     int64_t diff;
1399     DisasLabel match;
1400     TCGv_i64 tcg_cmp;
1401 
1402     bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1403     op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1404     diff = sextract32(insn, 5, 14) * 4;
1405     rt = extract32(insn, 0, 5);
1406 
1407     tcg_cmp = tcg_temp_new_i64();
1408     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1409 
1410     reset_btype(s);
1411 
1412     match = gen_disas_label(s);
1413     tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1414                         tcg_cmp, 0, match.label);
1415     tcg_temp_free_i64(tcg_cmp);
1416     gen_goto_tb(s, 0, 4);
1417     set_disas_label(s, match);
1418     gen_goto_tb(s, 1, diff);
1419 }
1420 
1421 /* Conditional branch (immediate)
1422  *  31           25  24  23                  5   4  3    0
1423  * +---------------+----+---------------------+----+------+
1424  * | 0 1 0 1 0 1 0 | o1 |         imm19       | o0 | cond |
1425  * +---------------+----+---------------------+----+------+
1426  */
1427 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1428 {
1429     unsigned int cond;
1430     int64_t diff;
1431 
1432     if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1433         unallocated_encoding(s);
1434         return;
1435     }
1436     diff = sextract32(insn, 5, 19) * 4;
1437     cond = extract32(insn, 0, 4);
1438 
1439     reset_btype(s);
1440     if (cond < 0x0e) {
1441         /* genuinely conditional branches */
1442         DisasLabel match = gen_disas_label(s);
1443         arm_gen_test_cc(cond, match.label);
1444         gen_goto_tb(s, 0, 4);
1445         set_disas_label(s, match);
1446         gen_goto_tb(s, 1, diff);
1447     } else {
1448         /* 0xe and 0xf are both "always" conditions */
1449         gen_goto_tb(s, 0, diff);
1450     }
1451 }
1452 
1453 /* HINT instruction group, including various allocated HINTs */
1454 static void handle_hint(DisasContext *s, uint32_t insn,
1455                         unsigned int op1, unsigned int op2, unsigned int crm)
1456 {
1457     unsigned int selector = crm << 3 | op2;
1458 
1459     if (op1 != 3) {
1460         unallocated_encoding(s);
1461         return;
1462     }
1463 
1464     switch (selector) {
1465     case 0b00000: /* NOP */
1466         break;
1467     case 0b00011: /* WFI */
1468         s->base.is_jmp = DISAS_WFI;
1469         break;
1470     case 0b00001: /* YIELD */
1471         /* When running in MTTCG we don't generate jumps to the yield and
1472          * WFE helpers as it won't affect the scheduling of other vCPUs.
1473          * If we wanted to more completely model WFE/SEV so we don't busy
1474          * spin unnecessarily we would need to do something more involved.
1475          */
1476         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1477             s->base.is_jmp = DISAS_YIELD;
1478         }
1479         break;
1480     case 0b00010: /* WFE */
1481         if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1482             s->base.is_jmp = DISAS_WFE;
1483         }
1484         break;
1485     case 0b00100: /* SEV */
1486     case 0b00101: /* SEVL */
1487     case 0b00110: /* DGH */
1488         /* we treat all as NOP at least for now */
1489         break;
1490     case 0b00111: /* XPACLRI */
1491         if (s->pauth_active) {
1492             gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1493         }
1494         break;
1495     case 0b01000: /* PACIA1716 */
1496         if (s->pauth_active) {
1497             gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1498         }
1499         break;
1500     case 0b01010: /* PACIB1716 */
1501         if (s->pauth_active) {
1502             gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1503         }
1504         break;
1505     case 0b01100: /* AUTIA1716 */
1506         if (s->pauth_active) {
1507             gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1508         }
1509         break;
1510     case 0b01110: /* AUTIB1716 */
1511         if (s->pauth_active) {
1512             gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1513         }
1514         break;
1515     case 0b10000: /* ESB */
1516         /* Without RAS, we must implement this as NOP. */
1517         if (dc_isar_feature(aa64_ras, s)) {
1518             /*
1519              * QEMU does not have a source of physical SErrors,
1520              * so we are only concerned with virtual SErrors.
1521              * The pseudocode in the ARM for this case is
1522              *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1523              *      AArch64.vESBOperation();
1524              * Most of the condition can be evaluated at translation time.
1525              * Test for EL2 present, and defer test for SEL2 to runtime.
1526              */
1527             if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1528                 gen_helper_vesb(cpu_env);
1529             }
1530         }
1531         break;
1532     case 0b11000: /* PACIAZ */
1533         if (s->pauth_active) {
1534             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1535                                 new_tmp_a64_zero(s));
1536         }
1537         break;
1538     case 0b11001: /* PACIASP */
1539         if (s->pauth_active) {
1540             gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1541         }
1542         break;
1543     case 0b11010: /* PACIBZ */
1544         if (s->pauth_active) {
1545             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1546                                 new_tmp_a64_zero(s));
1547         }
1548         break;
1549     case 0b11011: /* PACIBSP */
1550         if (s->pauth_active) {
1551             gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1552         }
1553         break;
1554     case 0b11100: /* AUTIAZ */
1555         if (s->pauth_active) {
1556             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1557                               new_tmp_a64_zero(s));
1558         }
1559         break;
1560     case 0b11101: /* AUTIASP */
1561         if (s->pauth_active) {
1562             gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1563         }
1564         break;
1565     case 0b11110: /* AUTIBZ */
1566         if (s->pauth_active) {
1567             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1568                               new_tmp_a64_zero(s));
1569         }
1570         break;
1571     case 0b11111: /* AUTIBSP */
1572         if (s->pauth_active) {
1573             gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1574         }
1575         break;
1576     default:
1577         /* default specified as NOP equivalent */
1578         break;
1579     }
1580 }
1581 
1582 static void gen_clrex(DisasContext *s, uint32_t insn)
1583 {
1584     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1585 }
1586 
1587 /* CLREX, DSB, DMB, ISB */
1588 static void handle_sync(DisasContext *s, uint32_t insn,
1589                         unsigned int op1, unsigned int op2, unsigned int crm)
1590 {
1591     TCGBar bar;
1592 
1593     if (op1 != 3) {
1594         unallocated_encoding(s);
1595         return;
1596     }
1597 
1598     switch (op2) {
1599     case 2: /* CLREX */
1600         gen_clrex(s, insn);
1601         return;
1602     case 4: /* DSB */
1603     case 5: /* DMB */
1604         switch (crm & 3) {
1605         case 1: /* MBReqTypes_Reads */
1606             bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1607             break;
1608         case 2: /* MBReqTypes_Writes */
1609             bar = TCG_BAR_SC | TCG_MO_ST_ST;
1610             break;
1611         default: /* MBReqTypes_All */
1612             bar = TCG_BAR_SC | TCG_MO_ALL;
1613             break;
1614         }
1615         tcg_gen_mb(bar);
1616         return;
1617     case 6: /* ISB */
1618         /* We need to break the TB after this insn to execute
1619          * a self-modified code correctly and also to take
1620          * any pending interrupts immediately.
1621          */
1622         reset_btype(s);
1623         gen_goto_tb(s, 0, 4);
1624         return;
1625 
1626     case 7: /* SB */
1627         if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1628             goto do_unallocated;
1629         }
1630         /*
1631          * TODO: There is no speculation barrier opcode for TCG;
1632          * MB and end the TB instead.
1633          */
1634         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1635         gen_goto_tb(s, 0, 4);
1636         return;
1637 
1638     default:
1639     do_unallocated:
1640         unallocated_encoding(s);
1641         return;
1642     }
1643 }
1644 
1645 static void gen_xaflag(void)
1646 {
1647     TCGv_i32 z = tcg_temp_new_i32();
1648 
1649     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1650 
1651     /*
1652      * (!C & !Z) << 31
1653      * (!(C | Z)) << 31
1654      * ~((C | Z) << 31)
1655      * ~-(C | Z)
1656      * (C | Z) - 1
1657      */
1658     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1659     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1660 
1661     /* !(Z & C) */
1662     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1663     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1664 
1665     /* (!C & Z) << 31 -> -(Z & ~C) */
1666     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1667     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1668 
1669     /* C | Z */
1670     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1671 
1672     tcg_temp_free_i32(z);
1673 }
1674 
1675 static void gen_axflag(void)
1676 {
1677     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1678     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1679 
1680     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1681     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1682 
1683     tcg_gen_movi_i32(cpu_NF, 0);
1684     tcg_gen_movi_i32(cpu_VF, 0);
1685 }
1686 
1687 /* MSR (immediate) - move immediate to processor state field */
1688 static void handle_msr_i(DisasContext *s, uint32_t insn,
1689                          unsigned int op1, unsigned int op2, unsigned int crm)
1690 {
1691     int op = op1 << 3 | op2;
1692 
1693     /* End the TB by default, chaining is ok.  */
1694     s->base.is_jmp = DISAS_TOO_MANY;
1695 
1696     switch (op) {
1697     case 0x00: /* CFINV */
1698         if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1699             goto do_unallocated;
1700         }
1701         tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1702         s->base.is_jmp = DISAS_NEXT;
1703         break;
1704 
1705     case 0x01: /* XAFlag */
1706         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1707             goto do_unallocated;
1708         }
1709         gen_xaflag();
1710         s->base.is_jmp = DISAS_NEXT;
1711         break;
1712 
1713     case 0x02: /* AXFlag */
1714         if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1715             goto do_unallocated;
1716         }
1717         gen_axflag();
1718         s->base.is_jmp = DISAS_NEXT;
1719         break;
1720 
1721     case 0x03: /* UAO */
1722         if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1723             goto do_unallocated;
1724         }
1725         if (crm & 1) {
1726             set_pstate_bits(PSTATE_UAO);
1727         } else {
1728             clear_pstate_bits(PSTATE_UAO);
1729         }
1730         gen_rebuild_hflags(s);
1731         break;
1732 
1733     case 0x04: /* PAN */
1734         if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1735             goto do_unallocated;
1736         }
1737         if (crm & 1) {
1738             set_pstate_bits(PSTATE_PAN);
1739         } else {
1740             clear_pstate_bits(PSTATE_PAN);
1741         }
1742         gen_rebuild_hflags(s);
1743         break;
1744 
1745     case 0x05: /* SPSel */
1746         if (s->current_el == 0) {
1747             goto do_unallocated;
1748         }
1749         gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1750         break;
1751 
1752     case 0x19: /* SSBS */
1753         if (!dc_isar_feature(aa64_ssbs, s)) {
1754             goto do_unallocated;
1755         }
1756         if (crm & 1) {
1757             set_pstate_bits(PSTATE_SSBS);
1758         } else {
1759             clear_pstate_bits(PSTATE_SSBS);
1760         }
1761         /* Don't need to rebuild hflags since SSBS is a nop */
1762         break;
1763 
1764     case 0x1a: /* DIT */
1765         if (!dc_isar_feature(aa64_dit, s)) {
1766             goto do_unallocated;
1767         }
1768         if (crm & 1) {
1769             set_pstate_bits(PSTATE_DIT);
1770         } else {
1771             clear_pstate_bits(PSTATE_DIT);
1772         }
1773         /* There's no need to rebuild hflags because DIT is a nop */
1774         break;
1775 
1776     case 0x1e: /* DAIFSet */
1777         gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1778         break;
1779 
1780     case 0x1f: /* DAIFClear */
1781         gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1782         /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs.  */
1783         s->base.is_jmp = DISAS_UPDATE_EXIT;
1784         break;
1785 
1786     case 0x1c: /* TCO */
1787         if (dc_isar_feature(aa64_mte, s)) {
1788             /* Full MTE is enabled -- set the TCO bit as directed. */
1789             if (crm & 1) {
1790                 set_pstate_bits(PSTATE_TCO);
1791             } else {
1792                 clear_pstate_bits(PSTATE_TCO);
1793             }
1794             gen_rebuild_hflags(s);
1795             /* Many factors, including TCO, go into MTE_ACTIVE. */
1796             s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1797         } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1798             /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
1799             s->base.is_jmp = DISAS_NEXT;
1800         } else {
1801             goto do_unallocated;
1802         }
1803         break;
1804 
1805     case 0x1b: /* SVCR* */
1806         if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1807             goto do_unallocated;
1808         }
1809         if (sme_access_check(s)) {
1810             int old = s->pstate_sm | (s->pstate_za << 1);
1811             int new = (crm & 1) * 3;
1812             int msk = (crm >> 1) & 3;
1813 
1814             if ((old ^ new) & msk) {
1815                 /* At least one bit changes. */
1816                 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1817                                     tcg_constant_i32(msk));
1818             } else {
1819                 s->base.is_jmp = DISAS_NEXT;
1820             }
1821         }
1822         break;
1823 
1824     default:
1825     do_unallocated:
1826         unallocated_encoding(s);
1827         return;
1828     }
1829 }
1830 
1831 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1832 {
1833     TCGv_i32 tmp = tcg_temp_new_i32();
1834     TCGv_i32 nzcv = tcg_temp_new_i32();
1835 
1836     /* build bit 31, N */
1837     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1838     /* build bit 30, Z */
1839     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1840     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1841     /* build bit 29, C */
1842     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1843     /* build bit 28, V */
1844     tcg_gen_shri_i32(tmp, cpu_VF, 31);
1845     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1846     /* generate result */
1847     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1848 
1849     tcg_temp_free_i32(nzcv);
1850     tcg_temp_free_i32(tmp);
1851 }
1852 
1853 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1854 {
1855     TCGv_i32 nzcv = tcg_temp_new_i32();
1856 
1857     /* take NZCV from R[t] */
1858     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1859 
1860     /* bit 31, N */
1861     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1862     /* bit 30, Z */
1863     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1864     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1865     /* bit 29, C */
1866     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1867     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1868     /* bit 28, V */
1869     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1870     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1871     tcg_temp_free_i32(nzcv);
1872 }
1873 
1874 static void gen_sysreg_undef(DisasContext *s, bool isread,
1875                              uint8_t op0, uint8_t op1, uint8_t op2,
1876                              uint8_t crn, uint8_t crm, uint8_t rt)
1877 {
1878     /*
1879      * Generate code to emit an UNDEF with correct syndrome
1880      * information for a failed system register access.
1881      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1882      * but if FEAT_IDST is implemented then read accesses to registers
1883      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1884      * syndrome.
1885      */
1886     uint32_t syndrome;
1887 
1888     if (isread && dc_isar_feature(aa64_ids, s) &&
1889         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1890         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1891     } else {
1892         syndrome = syn_uncategorized();
1893     }
1894     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
1895 }
1896 
1897 /* MRS - move from system register
1898  * MSR (register) - move to system register
1899  * SYS
1900  * SYSL
1901  * These are all essentially the same insn in 'read' and 'write'
1902  * versions, with varying op0 fields.
1903  */
1904 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1905                        unsigned int op0, unsigned int op1, unsigned int op2,
1906                        unsigned int crn, unsigned int crm, unsigned int rt)
1907 {
1908     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1909                                       crn, crm, op0, op1, op2);
1910     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
1911     TCGv_ptr tcg_ri = NULL;
1912     TCGv_i64 tcg_rt;
1913 
1914     if (!ri) {
1915         /* Unknown register; this might be a guest error or a QEMU
1916          * unimplemented feature.
1917          */
1918         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1919                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1920                       isread ? "read" : "write", op0, op1, crn, crm, op2);
1921         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1922         return;
1923     }
1924 
1925     /* Check access permissions */
1926     if (!cp_access_ok(s->current_el, ri, isread)) {
1927         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1928         return;
1929     }
1930 
1931     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
1932         /* Emit code to perform further access permissions checks at
1933          * runtime; this may result in an exception.
1934          */
1935         uint32_t syndrome;
1936 
1937         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1938         gen_a64_update_pc(s, 0);
1939         tcg_ri = tcg_temp_new_ptr();
1940         gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
1941                                        tcg_constant_i32(key),
1942                                        tcg_constant_i32(syndrome),
1943                                        tcg_constant_i32(isread));
1944     } else if (ri->type & ARM_CP_RAISES_EXC) {
1945         /*
1946          * The readfn or writefn might raise an exception;
1947          * synchronize the CPU state in case it does.
1948          */
1949         gen_a64_update_pc(s, 0);
1950     }
1951 
1952     /* Handle special cases first */
1953     switch (ri->type & ARM_CP_SPECIAL_MASK) {
1954     case 0:
1955         break;
1956     case ARM_CP_NOP:
1957         goto exit;
1958     case ARM_CP_NZCV:
1959         tcg_rt = cpu_reg(s, rt);
1960         if (isread) {
1961             gen_get_nzcv(tcg_rt);
1962         } else {
1963             gen_set_nzcv(tcg_rt);
1964         }
1965         goto exit;
1966     case ARM_CP_CURRENTEL:
1967         /* Reads as current EL value from pstate, which is
1968          * guaranteed to be constant by the tb flags.
1969          */
1970         tcg_rt = cpu_reg(s, rt);
1971         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1972         goto exit;
1973     case ARM_CP_DC_ZVA:
1974         /* Writes clear the aligned block of memory which rt points into. */
1975         if (s->mte_active[0]) {
1976             int desc = 0;
1977 
1978             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1979             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1980             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1981 
1982             tcg_rt = tcg_temp_new_i64();
1983             gen_helper_mte_check_zva(tcg_rt, cpu_env,
1984                                      tcg_constant_i32(desc), cpu_reg(s, rt));
1985         } else {
1986             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1987         }
1988         gen_helper_dc_zva(cpu_env, tcg_rt);
1989         goto exit;
1990     case ARM_CP_DC_GVA:
1991         {
1992             TCGv_i64 clean_addr, tag;
1993 
1994             /*
1995              * DC_GVA, like DC_ZVA, requires that we supply the original
1996              * pointer for an invalid page.  Probe that address first.
1997              */
1998             tcg_rt = cpu_reg(s, rt);
1999             clean_addr = clean_data_tbi(s, tcg_rt);
2000             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2001 
2002             if (s->ata) {
2003                 /* Extract the tag from the register to match STZGM.  */
2004                 tag = tcg_temp_new_i64();
2005                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2006                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2007                 tcg_temp_free_i64(tag);
2008             }
2009         }
2010         goto exit;
2011     case ARM_CP_DC_GZVA:
2012         {
2013             TCGv_i64 clean_addr, tag;
2014 
2015             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2016             tcg_rt = cpu_reg(s, rt);
2017             clean_addr = clean_data_tbi(s, tcg_rt);
2018             gen_helper_dc_zva(cpu_env, clean_addr);
2019 
2020             if (s->ata) {
2021                 /* Extract the tag from the register to match STZGM.  */
2022                 tag = tcg_temp_new_i64();
2023                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2024                 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2025                 tcg_temp_free_i64(tag);
2026             }
2027         }
2028         goto exit;
2029     default:
2030         g_assert_not_reached();
2031     }
2032     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2033         goto exit;
2034     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2035         goto exit;
2036     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2037         goto exit;
2038     }
2039 
2040     if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2041         gen_io_start();
2042     }
2043 
2044     tcg_rt = cpu_reg(s, rt);
2045 
2046     if (isread) {
2047         if (ri->type & ARM_CP_CONST) {
2048             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2049         } else if (ri->readfn) {
2050             if (!tcg_ri) {
2051                 tcg_ri = gen_lookup_cp_reg(key);
2052             }
2053             gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2054         } else {
2055             tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2056         }
2057     } else {
2058         if (ri->type & ARM_CP_CONST) {
2059             /* If not forbidden by access permissions, treat as WI */
2060             goto exit;
2061         } else if (ri->writefn) {
2062             if (!tcg_ri) {
2063                 tcg_ri = gen_lookup_cp_reg(key);
2064             }
2065             gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2066         } else {
2067             tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2068         }
2069     }
2070 
2071     if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2072         /* I/O operations must end the TB here (whether read or write) */
2073         s->base.is_jmp = DISAS_UPDATE_EXIT;
2074     }
2075     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2076         /*
2077          * A write to any coprocessor regiser that ends a TB
2078          * must rebuild the hflags for the next TB.
2079          */
2080         gen_rebuild_hflags(s);
2081         /*
2082          * We default to ending the TB on a coprocessor register write,
2083          * but allow this to be suppressed by the register definition
2084          * (usually only necessary to work around guest bugs).
2085          */
2086         s->base.is_jmp = DISAS_UPDATE_EXIT;
2087     }
2088 
2089  exit:
2090     if (tcg_ri) {
2091         tcg_temp_free_ptr(tcg_ri);
2092     }
2093 }
2094 
2095 /* System
2096  *  31                 22 21  20 19 18 16 15   12 11    8 7   5 4    0
2097  * +---------------------+---+-----+-----+-------+-------+-----+------+
2098  * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 |  CRn  |  CRm  | op2 |  Rt  |
2099  * +---------------------+---+-----+-----+-------+-------+-----+------+
2100  */
2101 static void disas_system(DisasContext *s, uint32_t insn)
2102 {
2103     unsigned int l, op0, op1, crn, crm, op2, rt;
2104     l = extract32(insn, 21, 1);
2105     op0 = extract32(insn, 19, 2);
2106     op1 = extract32(insn, 16, 3);
2107     crn = extract32(insn, 12, 4);
2108     crm = extract32(insn, 8, 4);
2109     op2 = extract32(insn, 5, 3);
2110     rt = extract32(insn, 0, 5);
2111 
2112     if (op0 == 0) {
2113         if (l || rt != 31) {
2114             unallocated_encoding(s);
2115             return;
2116         }
2117         switch (crn) {
2118         case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2119             handle_hint(s, insn, op1, op2, crm);
2120             break;
2121         case 3: /* CLREX, DSB, DMB, ISB */
2122             handle_sync(s, insn, op1, op2, crm);
2123             break;
2124         case 4: /* MSR (immediate) */
2125             handle_msr_i(s, insn, op1, op2, crm);
2126             break;
2127         default:
2128             unallocated_encoding(s);
2129             break;
2130         }
2131         return;
2132     }
2133     handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2134 }
2135 
2136 /* Exception generation
2137  *
2138  *  31             24 23 21 20                     5 4   2 1  0
2139  * +-----------------+-----+------------------------+-----+----+
2140  * | 1 1 0 1 0 1 0 0 | opc |          imm16         | op2 | LL |
2141  * +-----------------------+------------------------+----------+
2142  */
2143 static void disas_exc(DisasContext *s, uint32_t insn)
2144 {
2145     int opc = extract32(insn, 21, 3);
2146     int op2_ll = extract32(insn, 0, 5);
2147     int imm16 = extract32(insn, 5, 16);
2148     uint32_t syndrome;
2149 
2150     switch (opc) {
2151     case 0:
2152         /* For SVC, HVC and SMC we advance the single-step state
2153          * machine before taking the exception. This is architecturally
2154          * mandated, to ensure that single-stepping a system call
2155          * instruction works properly.
2156          */
2157         switch (op2_ll) {
2158         case 1:                                                     /* SVC */
2159             syndrome = syn_aa64_svc(imm16);
2160             if (s->fgt_svc) {
2161                 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2162                 break;
2163             }
2164             gen_ss_advance(s);
2165             gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2166             break;
2167         case 2:                                                     /* HVC */
2168             if (s->current_el == 0) {
2169                 unallocated_encoding(s);
2170                 break;
2171             }
2172             /* The pre HVC helper handles cases when HVC gets trapped
2173              * as an undefined insn by runtime configuration.
2174              */
2175             gen_a64_update_pc(s, 0);
2176             gen_helper_pre_hvc(cpu_env);
2177             gen_ss_advance(s);
2178             gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2179             break;
2180         case 3:                                                     /* SMC */
2181             if (s->current_el == 0) {
2182                 unallocated_encoding(s);
2183                 break;
2184             }
2185             gen_a64_update_pc(s, 0);
2186             gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2187             gen_ss_advance(s);
2188             gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2189             break;
2190         default:
2191             unallocated_encoding(s);
2192             break;
2193         }
2194         break;
2195     case 1:
2196         if (op2_ll != 0) {
2197             unallocated_encoding(s);
2198             break;
2199         }
2200         /* BRK */
2201         gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2202         break;
2203     case 2:
2204         if (op2_ll != 0) {
2205             unallocated_encoding(s);
2206             break;
2207         }
2208         /* HLT. This has two purposes.
2209          * Architecturally, it is an external halting debug instruction.
2210          * Since QEMU doesn't implement external debug, we treat this as
2211          * it is required for halting debug disabled: it will UNDEF.
2212          * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2213          */
2214         if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2215             gen_exception_internal_insn(s, EXCP_SEMIHOST);
2216         } else {
2217             unallocated_encoding(s);
2218         }
2219         break;
2220     case 5:
2221         if (op2_ll < 1 || op2_ll > 3) {
2222             unallocated_encoding(s);
2223             break;
2224         }
2225         /* DCPS1, DCPS2, DCPS3 */
2226         unallocated_encoding(s);
2227         break;
2228     default:
2229         unallocated_encoding(s);
2230         break;
2231     }
2232 }
2233 
2234 /* Unconditional branch (register)
2235  *  31           25 24   21 20   16 15   10 9    5 4     0
2236  * +---------------+-------+-------+-------+------+-------+
2237  * | 1 1 0 1 0 1 1 |  opc  |  op2  |  op3  |  Rn  |  op4  |
2238  * +---------------+-------+-------+-------+------+-------+
2239  */
2240 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2241 {
2242     unsigned int opc, op2, op3, rn, op4;
2243     unsigned btype_mod = 2;   /* 0: BR, 1: BLR, 2: other */
2244     TCGv_i64 dst;
2245     TCGv_i64 modifier;
2246 
2247     opc = extract32(insn, 21, 4);
2248     op2 = extract32(insn, 16, 5);
2249     op3 = extract32(insn, 10, 6);
2250     rn = extract32(insn, 5, 5);
2251     op4 = extract32(insn, 0, 5);
2252 
2253     if (op2 != 0x1f) {
2254         goto do_unallocated;
2255     }
2256 
2257     switch (opc) {
2258     case 0: /* BR */
2259     case 1: /* BLR */
2260     case 2: /* RET */
2261         btype_mod = opc;
2262         switch (op3) {
2263         case 0:
2264             /* BR, BLR, RET */
2265             if (op4 != 0) {
2266                 goto do_unallocated;
2267             }
2268             dst = cpu_reg(s, rn);
2269             break;
2270 
2271         case 2:
2272         case 3:
2273             if (!dc_isar_feature(aa64_pauth, s)) {
2274                 goto do_unallocated;
2275             }
2276             if (opc == 2) {
2277                 /* RETAA, RETAB */
2278                 if (rn != 0x1f || op4 != 0x1f) {
2279                     goto do_unallocated;
2280                 }
2281                 rn = 30;
2282                 modifier = cpu_X[31];
2283             } else {
2284                 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2285                 if (op4 != 0x1f) {
2286                     goto do_unallocated;
2287                 }
2288                 modifier = new_tmp_a64_zero(s);
2289             }
2290             if (s->pauth_active) {
2291                 dst = tcg_temp_new_i64();
2292                 if (op3 == 2) {
2293                     gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2294                 } else {
2295                     gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2296                 }
2297             } else {
2298                 dst = cpu_reg(s, rn);
2299             }
2300             break;
2301 
2302         default:
2303             goto do_unallocated;
2304         }
2305         /* BLR also needs to load return address */
2306         if (opc == 1) {
2307             TCGv_i64 lr = cpu_reg(s, 30);
2308             if (dst == lr) {
2309                 TCGv_i64 tmp = tcg_temp_new_i64();
2310                 tcg_gen_mov_i64(tmp, dst);
2311                 dst = tmp;
2312             }
2313             gen_pc_plus_diff(s, lr, curr_insn_len(s));
2314         }
2315         gen_a64_set_pc(s, dst);
2316         break;
2317 
2318     case 8: /* BRAA */
2319     case 9: /* BLRAA */
2320         if (!dc_isar_feature(aa64_pauth, s)) {
2321             goto do_unallocated;
2322         }
2323         if ((op3 & ~1) != 2) {
2324             goto do_unallocated;
2325         }
2326         btype_mod = opc & 1;
2327         if (s->pauth_active) {
2328             dst = tcg_temp_new_i64();
2329             modifier = cpu_reg_sp(s, op4);
2330             if (op3 == 2) {
2331                 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2332             } else {
2333                 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2334             }
2335         } else {
2336             dst = cpu_reg(s, rn);
2337         }
2338         /* BLRAA also needs to load return address */
2339         if (opc == 9) {
2340             TCGv_i64 lr = cpu_reg(s, 30);
2341             if (dst == lr) {
2342                 TCGv_i64 tmp = tcg_temp_new_i64();
2343                 tcg_gen_mov_i64(tmp, dst);
2344                 dst = tmp;
2345             }
2346             gen_pc_plus_diff(s, lr, curr_insn_len(s));
2347         }
2348         gen_a64_set_pc(s, dst);
2349         break;
2350 
2351     case 4: /* ERET */
2352         if (s->current_el == 0) {
2353             goto do_unallocated;
2354         }
2355         switch (op3) {
2356         case 0: /* ERET */
2357             if (op4 != 0) {
2358                 goto do_unallocated;
2359             }
2360             if (s->fgt_eret) {
2361                 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2362                 return;
2363             }
2364             dst = tcg_temp_new_i64();
2365             tcg_gen_ld_i64(dst, cpu_env,
2366                            offsetof(CPUARMState, elr_el[s->current_el]));
2367             break;
2368 
2369         case 2: /* ERETAA */
2370         case 3: /* ERETAB */
2371             if (!dc_isar_feature(aa64_pauth, s)) {
2372                 goto do_unallocated;
2373             }
2374             if (rn != 0x1f || op4 != 0x1f) {
2375                 goto do_unallocated;
2376             }
2377             /* The FGT trap takes precedence over an auth trap. */
2378             if (s->fgt_eret) {
2379                 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2380                 return;
2381             }
2382             dst = tcg_temp_new_i64();
2383             tcg_gen_ld_i64(dst, cpu_env,
2384                            offsetof(CPUARMState, elr_el[s->current_el]));
2385             if (s->pauth_active) {
2386                 modifier = cpu_X[31];
2387                 if (op3 == 2) {
2388                     gen_helper_autia(dst, cpu_env, dst, modifier);
2389                 } else {
2390                     gen_helper_autib(dst, cpu_env, dst, modifier);
2391                 }
2392             }
2393             break;
2394 
2395         default:
2396             goto do_unallocated;
2397         }
2398         if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2399             gen_io_start();
2400         }
2401 
2402         gen_helper_exception_return(cpu_env, dst);
2403         tcg_temp_free_i64(dst);
2404         /* Must exit loop to check un-masked IRQs */
2405         s->base.is_jmp = DISAS_EXIT;
2406         return;
2407 
2408     case 5: /* DRPS */
2409         if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2410             goto do_unallocated;
2411         } else {
2412             unallocated_encoding(s);
2413         }
2414         return;
2415 
2416     default:
2417     do_unallocated:
2418         unallocated_encoding(s);
2419         return;
2420     }
2421 
2422     switch (btype_mod) {
2423     case 0: /* BR */
2424         if (dc_isar_feature(aa64_bti, s)) {
2425             /* BR to {x16,x17} or !guard -> 1, else 3.  */
2426             set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2427         }
2428         break;
2429 
2430     case 1: /* BLR */
2431         if (dc_isar_feature(aa64_bti, s)) {
2432             /* BLR sets BTYPE to 2, regardless of source guarded page.  */
2433             set_btype(s, 2);
2434         }
2435         break;
2436 
2437     default: /* RET or none of the above.  */
2438         /* BTYPE will be set to 0 by normal end-of-insn processing.  */
2439         break;
2440     }
2441 
2442     s->base.is_jmp = DISAS_JUMP;
2443 }
2444 
2445 /* Branches, exception generating and system instructions */
2446 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2447 {
2448     switch (extract32(insn, 25, 7)) {
2449     case 0x0a: case 0x0b:
2450     case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2451         disas_uncond_b_imm(s, insn);
2452         break;
2453     case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2454         disas_comp_b_imm(s, insn);
2455         break;
2456     case 0x1b: case 0x5b: /* Test & branch (immediate) */
2457         disas_test_b_imm(s, insn);
2458         break;
2459     case 0x2a: /* Conditional branch (immediate) */
2460         disas_cond_b_imm(s, insn);
2461         break;
2462     case 0x6a: /* Exception generation / System */
2463         if (insn & (1 << 24)) {
2464             if (extract32(insn, 22, 2) == 0) {
2465                 disas_system(s, insn);
2466             } else {
2467                 unallocated_encoding(s);
2468             }
2469         } else {
2470             disas_exc(s, insn);
2471         }
2472         break;
2473     case 0x6b: /* Unconditional branch (register) */
2474         disas_uncond_b_reg(s, insn);
2475         break;
2476     default:
2477         unallocated_encoding(s);
2478         break;
2479     }
2480 }
2481 
2482 /*
2483  * Load/Store exclusive instructions are implemented by remembering
2484  * the value/address loaded, and seeing if these are the same
2485  * when the store is performed. This is not actually the architecturally
2486  * mandated semantics, but it works for typical guest code sequences
2487  * and avoids having to monitor regular stores.
2488  *
2489  * The store exclusive uses the atomic cmpxchg primitives to avoid
2490  * races in multi-threaded linux-user and when MTTCG softmmu is
2491  * enabled.
2492  */
2493 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2494                                TCGv_i64 addr, int size, bool is_pair)
2495 {
2496     int idx = get_mem_index(s);
2497     MemOp memop = s->be_data;
2498 
2499     g_assert(size <= 3);
2500     if (is_pair) {
2501         g_assert(size >= 2);
2502         if (size == 2) {
2503             /* The pair must be single-copy atomic for the doubleword.  */
2504             memop |= MO_64 | MO_ALIGN;
2505             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2506             if (s->be_data == MO_LE) {
2507                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2508                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2509             } else {
2510                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2511                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2512             }
2513         } else {
2514             /* The pair must be single-copy atomic for *each* doubleword, not
2515                the entire quadword, however it must be quadword aligned.  */
2516             memop |= MO_64;
2517             tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2518                                 memop | MO_ALIGN_16);
2519 
2520             TCGv_i64 addr2 = tcg_temp_new_i64();
2521             tcg_gen_addi_i64(addr2, addr, 8);
2522             tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2523             tcg_temp_free_i64(addr2);
2524 
2525             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2526             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2527         }
2528     } else {
2529         memop |= size | MO_ALIGN;
2530         tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2531         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2532     }
2533     tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2534 }
2535 
2536 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2537                                 TCGv_i64 addr, int size, int is_pair)
2538 {
2539     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2540      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2541      *     [addr] = {Rt};
2542      *     if (is_pair) {
2543      *         [addr + datasize] = {Rt2};
2544      *     }
2545      *     {Rd} = 0;
2546      * } else {
2547      *     {Rd} = 1;
2548      * }
2549      * env->exclusive_addr = -1;
2550      */
2551     TCGLabel *fail_label = gen_new_label();
2552     TCGLabel *done_label = gen_new_label();
2553     TCGv_i64 tmp;
2554 
2555     tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2556 
2557     tmp = tcg_temp_new_i64();
2558     if (is_pair) {
2559         if (size == 2) {
2560             if (s->be_data == MO_LE) {
2561                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2562             } else {
2563                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2564             }
2565             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2566                                        cpu_exclusive_val, tmp,
2567                                        get_mem_index(s),
2568                                        MO_64 | MO_ALIGN | s->be_data);
2569             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2570         } else {
2571             TCGv_i128 t16 = tcg_temp_new_i128();
2572             TCGv_i128 c16 = tcg_temp_new_i128();
2573             TCGv_i64 a, b;
2574 
2575             if (s->be_data == MO_LE) {
2576                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2577                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2578                                         cpu_exclusive_high);
2579             } else {
2580                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2581                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2582                                         cpu_exclusive_val);
2583             }
2584 
2585             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2586                                         get_mem_index(s),
2587                                         MO_128 | MO_ALIGN | s->be_data);
2588             tcg_temp_free_i128(c16);
2589 
2590             a = tcg_temp_new_i64();
2591             b = tcg_temp_new_i64();
2592             if (s->be_data == MO_LE) {
2593                 tcg_gen_extr_i128_i64(a, b, t16);
2594             } else {
2595                 tcg_gen_extr_i128_i64(b, a, t16);
2596             }
2597 
2598             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2599             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2600             tcg_gen_or_i64(tmp, a, b);
2601             tcg_temp_free_i64(a);
2602             tcg_temp_free_i64(b);
2603             tcg_temp_free_i128(t16);
2604 
2605             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2606         }
2607     } else {
2608         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2609                                    cpu_reg(s, rt), get_mem_index(s),
2610                                    size | MO_ALIGN | s->be_data);
2611         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2612     }
2613     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2614     tcg_temp_free_i64(tmp);
2615     tcg_gen_br(done_label);
2616 
2617     gen_set_label(fail_label);
2618     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2619     gen_set_label(done_label);
2620     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2621 }
2622 
2623 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2624                                  int rn, int size)
2625 {
2626     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2627     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2628     int memidx = get_mem_index(s);
2629     TCGv_i64 clean_addr;
2630 
2631     if (rn == 31) {
2632         gen_check_sp_alignment(s);
2633     }
2634     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2635     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2636                                size | MO_ALIGN | s->be_data);
2637 }
2638 
2639 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2640                                       int rn, int size)
2641 {
2642     TCGv_i64 s1 = cpu_reg(s, rs);
2643     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2644     TCGv_i64 t1 = cpu_reg(s, rt);
2645     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2646     TCGv_i64 clean_addr;
2647     int memidx = get_mem_index(s);
2648 
2649     if (rn == 31) {
2650         gen_check_sp_alignment(s);
2651     }
2652 
2653     /* This is a single atomic access, despite the "pair". */
2654     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2655 
2656     if (size == 2) {
2657         TCGv_i64 cmp = tcg_temp_new_i64();
2658         TCGv_i64 val = tcg_temp_new_i64();
2659 
2660         if (s->be_data == MO_LE) {
2661             tcg_gen_concat32_i64(val, t1, t2);
2662             tcg_gen_concat32_i64(cmp, s1, s2);
2663         } else {
2664             tcg_gen_concat32_i64(val, t2, t1);
2665             tcg_gen_concat32_i64(cmp, s2, s1);
2666         }
2667 
2668         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2669                                    MO_64 | MO_ALIGN | s->be_data);
2670         tcg_temp_free_i64(val);
2671 
2672         if (s->be_data == MO_LE) {
2673             tcg_gen_extr32_i64(s1, s2, cmp);
2674         } else {
2675             tcg_gen_extr32_i64(s2, s1, cmp);
2676         }
2677         tcg_temp_free_i64(cmp);
2678     } else {
2679         TCGv_i128 cmp = tcg_temp_new_i128();
2680         TCGv_i128 val = tcg_temp_new_i128();
2681 
2682         if (s->be_data == MO_LE) {
2683             tcg_gen_concat_i64_i128(val, t1, t2);
2684             tcg_gen_concat_i64_i128(cmp, s1, s2);
2685         } else {
2686             tcg_gen_concat_i64_i128(val, t2, t1);
2687             tcg_gen_concat_i64_i128(cmp, s2, s1);
2688         }
2689 
2690         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2691                                     MO_128 | MO_ALIGN | s->be_data);
2692         tcg_temp_free_i128(val);
2693 
2694         if (s->be_data == MO_LE) {
2695             tcg_gen_extr_i128_i64(s1, s2, cmp);
2696         } else {
2697             tcg_gen_extr_i128_i64(s2, s1, cmp);
2698         }
2699         tcg_temp_free_i128(cmp);
2700     }
2701 }
2702 
2703 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2704  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2705  */
2706 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2707 {
2708     int opc0 = extract32(opc, 0, 1);
2709     int regsize;
2710 
2711     if (is_signed) {
2712         regsize = opc0 ? 32 : 64;
2713     } else {
2714         regsize = size == 3 ? 64 : 32;
2715     }
2716     return regsize == 64;
2717 }
2718 
2719 /* Load/store exclusive
2720  *
2721  *  31 30 29         24  23  22   21  20  16  15  14   10 9    5 4    0
2722  * +-----+-------------+----+---+----+------+----+-------+------+------+
2723  * | sz  | 0 0 1 0 0 0 | o2 | L | o1 |  Rs  | o0 |  Rt2  |  Rn  | Rt   |
2724  * +-----+-------------+----+---+----+------+----+-------+------+------+
2725  *
2726  *  sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2727  *   L: 0 -> store, 1 -> load
2728  *  o2: 0 -> exclusive, 1 -> not
2729  *  o1: 0 -> single register, 1 -> register pair
2730  *  o0: 1 -> load-acquire/store-release, 0 -> not
2731  */
2732 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2733 {
2734     int rt = extract32(insn, 0, 5);
2735     int rn = extract32(insn, 5, 5);
2736     int rt2 = extract32(insn, 10, 5);
2737     int rs = extract32(insn, 16, 5);
2738     int is_lasr = extract32(insn, 15, 1);
2739     int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2740     int size = extract32(insn, 30, 2);
2741     TCGv_i64 clean_addr;
2742 
2743     switch (o2_L_o1_o0) {
2744     case 0x0: /* STXR */
2745     case 0x1: /* STLXR */
2746         if (rn == 31) {
2747             gen_check_sp_alignment(s);
2748         }
2749         if (is_lasr) {
2750             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2751         }
2752         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2753                                     true, rn != 31, size);
2754         gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2755         return;
2756 
2757     case 0x4: /* LDXR */
2758     case 0x5: /* LDAXR */
2759         if (rn == 31) {
2760             gen_check_sp_alignment(s);
2761         }
2762         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2763                                     false, rn != 31, size);
2764         s->is_ldex = true;
2765         gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2766         if (is_lasr) {
2767             tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2768         }
2769         return;
2770 
2771     case 0x8: /* STLLR */
2772         if (!dc_isar_feature(aa64_lor, s)) {
2773             break;
2774         }
2775         /* StoreLORelease is the same as Store-Release for QEMU.  */
2776         /* fall through */
2777     case 0x9: /* STLR */
2778         /* Generate ISS for non-exclusive accesses including LASR.  */
2779         if (rn == 31) {
2780             gen_check_sp_alignment(s);
2781         }
2782         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2783         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2784                                     true, rn != 31, size);
2785         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2786         do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2787                   disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2788         return;
2789 
2790     case 0xc: /* LDLAR */
2791         if (!dc_isar_feature(aa64_lor, s)) {
2792             break;
2793         }
2794         /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2795         /* fall through */
2796     case 0xd: /* LDAR */
2797         /* Generate ISS for non-exclusive accesses including LASR.  */
2798         if (rn == 31) {
2799             gen_check_sp_alignment(s);
2800         }
2801         clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2802                                     false, rn != 31, size);
2803         /* TODO: ARMv8.4-LSE SCTLR.nAA */
2804         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2805                   rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2806         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2807         return;
2808 
2809     case 0x2: case 0x3: /* CASP / STXP */
2810         if (size & 2) { /* STXP / STLXP */
2811             if (rn == 31) {
2812                 gen_check_sp_alignment(s);
2813             }
2814             if (is_lasr) {
2815                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2816             }
2817             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2818                                         true, rn != 31, size);
2819             gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2820             return;
2821         }
2822         if (rt2 == 31
2823             && ((rt | rs) & 1) == 0
2824             && dc_isar_feature(aa64_atomics, s)) {
2825             /* CASP / CASPL */
2826             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2827             return;
2828         }
2829         break;
2830 
2831     case 0x6: case 0x7: /* CASPA / LDXP */
2832         if (size & 2) { /* LDXP / LDAXP */
2833             if (rn == 31) {
2834                 gen_check_sp_alignment(s);
2835             }
2836             clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2837                                         false, rn != 31, size);
2838             s->is_ldex = true;
2839             gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2840             if (is_lasr) {
2841                 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2842             }
2843             return;
2844         }
2845         if (rt2 == 31
2846             && ((rt | rs) & 1) == 0
2847             && dc_isar_feature(aa64_atomics, s)) {
2848             /* CASPA / CASPAL */
2849             gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2850             return;
2851         }
2852         break;
2853 
2854     case 0xa: /* CAS */
2855     case 0xb: /* CASL */
2856     case 0xe: /* CASA */
2857     case 0xf: /* CASAL */
2858         if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2859             gen_compare_and_swap(s, rs, rt, rn, size);
2860             return;
2861         }
2862         break;
2863     }
2864     unallocated_encoding(s);
2865 }
2866 
2867 /*
2868  * Load register (literal)
2869  *
2870  *  31 30 29   27  26 25 24 23                5 4     0
2871  * +-----+-------+---+-----+-------------------+-------+
2872  * | opc | 0 1 1 | V | 0 0 |     imm19         |  Rt   |
2873  * +-----+-------+---+-----+-------------------+-------+
2874  *
2875  * V: 1 -> vector (simd/fp)
2876  * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2877  *                   10-> 32 bit signed, 11 -> prefetch
2878  * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2879  */
2880 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2881 {
2882     int rt = extract32(insn, 0, 5);
2883     int64_t imm = sextract32(insn, 5, 19) << 2;
2884     bool is_vector = extract32(insn, 26, 1);
2885     int opc = extract32(insn, 30, 2);
2886     bool is_signed = false;
2887     int size = 2;
2888     TCGv_i64 tcg_rt, clean_addr;
2889 
2890     if (is_vector) {
2891         if (opc == 3) {
2892             unallocated_encoding(s);
2893             return;
2894         }
2895         size = 2 + opc;
2896         if (!fp_access_check(s)) {
2897             return;
2898         }
2899     } else {
2900         if (opc == 3) {
2901             /* PRFM (literal) : prefetch */
2902             return;
2903         }
2904         size = 2 + extract32(opc, 0, 1);
2905         is_signed = extract32(opc, 1, 1);
2906     }
2907 
2908     tcg_rt = cpu_reg(s, rt);
2909 
2910     clean_addr = tcg_temp_new_i64();
2911     gen_pc_plus_diff(s, clean_addr, imm);
2912     if (is_vector) {
2913         do_fp_ld(s, rt, clean_addr, size);
2914     } else {
2915         /* Only unsigned 32bit loads target 32bit registers.  */
2916         bool iss_sf = opc != 0;
2917 
2918         do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2919                   false, true, rt, iss_sf, false);
2920     }
2921 }
2922 
2923 /*
2924  * LDNP (Load Pair - non-temporal hint)
2925  * LDP (Load Pair - non vector)
2926  * LDPSW (Load Pair Signed Word - non vector)
2927  * STNP (Store Pair - non-temporal hint)
2928  * STP (Store Pair - non vector)
2929  * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2930  * LDP (Load Pair of SIMD&FP)
2931  * STNP (Store Pair of SIMD&FP - non-temporal hint)
2932  * STP (Store Pair of SIMD&FP)
2933  *
2934  *  31 30 29   27  26  25 24   23  22 21   15 14   10 9    5 4    0
2935  * +-----+-------+---+---+-------+---+-----------------------------+
2936  * | opc | 1 0 1 | V | 0 | index | L |  imm7 |  Rt2  |  Rn  | Rt   |
2937  * +-----+-------+---+---+-------+---+-------+-------+------+------+
2938  *
2939  * opc: LDP/STP/LDNP/STNP        00 -> 32 bit, 10 -> 64 bit
2940  *      LDPSW/STGP               01
2941  *      LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2942  *   V: 0 -> GPR, 1 -> Vector
2943  * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2944  *      10 -> signed offset, 11 -> pre-index
2945  *   L: 0 -> Store 1 -> Load
2946  *
2947  * Rt, Rt2 = GPR or SIMD registers to be stored
2948  * Rn = general purpose register containing address
2949  * imm7 = signed offset (multiple of 4 or 8 depending on size)
2950  */
2951 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2952 {
2953     int rt = extract32(insn, 0, 5);
2954     int rn = extract32(insn, 5, 5);
2955     int rt2 = extract32(insn, 10, 5);
2956     uint64_t offset = sextract64(insn, 15, 7);
2957     int index = extract32(insn, 23, 2);
2958     bool is_vector = extract32(insn, 26, 1);
2959     bool is_load = extract32(insn, 22, 1);
2960     int opc = extract32(insn, 30, 2);
2961 
2962     bool is_signed = false;
2963     bool postindex = false;
2964     bool wback = false;
2965     bool set_tag = false;
2966 
2967     TCGv_i64 clean_addr, dirty_addr;
2968 
2969     int size;
2970 
2971     if (opc == 3) {
2972         unallocated_encoding(s);
2973         return;
2974     }
2975 
2976     if (is_vector) {
2977         size = 2 + opc;
2978     } else if (opc == 1 && !is_load) {
2979         /* STGP */
2980         if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2981             unallocated_encoding(s);
2982             return;
2983         }
2984         size = 3;
2985         set_tag = true;
2986     } else {
2987         size = 2 + extract32(opc, 1, 1);
2988         is_signed = extract32(opc, 0, 1);
2989         if (!is_load && is_signed) {
2990             unallocated_encoding(s);
2991             return;
2992         }
2993     }
2994 
2995     switch (index) {
2996     case 1: /* post-index */
2997         postindex = true;
2998         wback = true;
2999         break;
3000     case 0:
3001         /* signed offset with "non-temporal" hint. Since we don't emulate
3002          * caches we don't care about hints to the cache system about
3003          * data access patterns, and handle this identically to plain
3004          * signed offset.
3005          */
3006         if (is_signed) {
3007             /* There is no non-temporal-hint version of LDPSW */
3008             unallocated_encoding(s);
3009             return;
3010         }
3011         postindex = false;
3012         break;
3013     case 2: /* signed offset, rn not updated */
3014         postindex = false;
3015         break;
3016     case 3: /* pre-index */
3017         postindex = false;
3018         wback = true;
3019         break;
3020     }
3021 
3022     if (is_vector && !fp_access_check(s)) {
3023         return;
3024     }
3025 
3026     offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
3027 
3028     if (rn == 31) {
3029         gen_check_sp_alignment(s);
3030     }
3031 
3032     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3033     if (!postindex) {
3034         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3035     }
3036 
3037     if (set_tag) {
3038         if (!s->ata) {
3039             /*
3040              * TODO: We could rely on the stores below, at least for
3041              * system mode, if we arrange to add MO_ALIGN_16.
3042              */
3043             gen_helper_stg_stub(cpu_env, dirty_addr);
3044         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3045             gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3046         } else {
3047             gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3048         }
3049     }
3050 
3051     clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
3052                                 (wback || rn != 31) && !set_tag, 2 << size);
3053 
3054     if (is_vector) {
3055         if (is_load) {
3056             do_fp_ld(s, rt, clean_addr, size);
3057         } else {
3058             do_fp_st(s, rt, clean_addr, size);
3059         }
3060         tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3061         if (is_load) {
3062             do_fp_ld(s, rt2, clean_addr, size);
3063         } else {
3064             do_fp_st(s, rt2, clean_addr, size);
3065         }
3066     } else {
3067         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3068         TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3069 
3070         if (is_load) {
3071             TCGv_i64 tmp = tcg_temp_new_i64();
3072 
3073             /* Do not modify tcg_rt before recognizing any exception
3074              * from the second load.
3075              */
3076             do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
3077                       false, false, 0, false, false);
3078             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3079             do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
3080                       false, false, 0, false, false);
3081 
3082             tcg_gen_mov_i64(tcg_rt, tmp);
3083             tcg_temp_free_i64(tmp);
3084         } else {
3085             do_gpr_st(s, tcg_rt, clean_addr, size,
3086                       false, 0, false, false);
3087             tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3088             do_gpr_st(s, tcg_rt2, clean_addr, size,
3089                       false, 0, false, false);
3090         }
3091     }
3092 
3093     if (wback) {
3094         if (postindex) {
3095             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3096         }
3097         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3098     }
3099 }
3100 
3101 /*
3102  * Load/store (immediate post-indexed)
3103  * Load/store (immediate pre-indexed)
3104  * Load/store (unscaled immediate)
3105  *
3106  * 31 30 29   27  26 25 24 23 22 21  20    12 11 10 9    5 4    0
3107  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3108  * |size| 1 1 1 | V | 0 0 | opc | 0 |  imm9  | idx |  Rn  |  Rt  |
3109  * +----+-------+---+-----+-----+---+--------+-----+------+------+
3110  *
3111  * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3112          10 -> unprivileged
3113  * V = 0 -> non-vector
3114  * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3115  * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3116  */
3117 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3118                                 int opc,
3119                                 int size,
3120                                 int rt,
3121                                 bool is_vector)
3122 {
3123     int rn = extract32(insn, 5, 5);
3124     int imm9 = sextract32(insn, 12, 9);
3125     int idx = extract32(insn, 10, 2);
3126     bool is_signed = false;
3127     bool is_store = false;
3128     bool is_extended = false;
3129     bool is_unpriv = (idx == 2);
3130     bool iss_valid;
3131     bool post_index;
3132     bool writeback;
3133     int memidx;
3134 
3135     TCGv_i64 clean_addr, dirty_addr;
3136 
3137     if (is_vector) {
3138         size |= (opc & 2) << 1;
3139         if (size > 4 || is_unpriv) {
3140             unallocated_encoding(s);
3141             return;
3142         }
3143         is_store = ((opc & 1) == 0);
3144         if (!fp_access_check(s)) {
3145             return;
3146         }
3147     } else {
3148         if (size == 3 && opc == 2) {
3149             /* PRFM - prefetch */
3150             if (idx != 0) {
3151                 unallocated_encoding(s);
3152                 return;
3153             }
3154             return;
3155         }
3156         if (opc == 3 && size > 1) {
3157             unallocated_encoding(s);
3158             return;
3159         }
3160         is_store = (opc == 0);
3161         is_signed = extract32(opc, 1, 1);
3162         is_extended = (size < 3) && extract32(opc, 0, 1);
3163     }
3164 
3165     switch (idx) {
3166     case 0:
3167     case 2:
3168         post_index = false;
3169         writeback = false;
3170         break;
3171     case 1:
3172         post_index = true;
3173         writeback = true;
3174         break;
3175     case 3:
3176         post_index = false;
3177         writeback = true;
3178         break;
3179     default:
3180         g_assert_not_reached();
3181     }
3182 
3183     iss_valid = !is_vector && !writeback;
3184 
3185     if (rn == 31) {
3186         gen_check_sp_alignment(s);
3187     }
3188 
3189     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3190     if (!post_index) {
3191         tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3192     }
3193 
3194     memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3195     clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3196                                        writeback || rn != 31,
3197                                        size, is_unpriv, memidx);
3198 
3199     if (is_vector) {
3200         if (is_store) {
3201             do_fp_st(s, rt, clean_addr, size);
3202         } else {
3203             do_fp_ld(s, rt, clean_addr, size);
3204         }
3205     } else {
3206         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3207         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3208 
3209         if (is_store) {
3210             do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3211                              iss_valid, rt, iss_sf, false);
3212         } else {
3213             do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3214                              is_extended, memidx,
3215                              iss_valid, rt, iss_sf, false);
3216         }
3217     }
3218 
3219     if (writeback) {
3220         TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3221         if (post_index) {
3222             tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3223         }
3224         tcg_gen_mov_i64(tcg_rn, dirty_addr);
3225     }
3226 }
3227 
3228 /*
3229  * Load/store (register offset)
3230  *
3231  * 31 30 29   27  26 25 24 23 22 21  20  16 15 13 12 11 10 9  5 4  0
3232  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3233  * |size| 1 1 1 | V | 0 0 | opc | 1 |  Rm  | opt | S| 1 0 | Rn | Rt |
3234  * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3235  *
3236  * For non-vector:
3237  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3238  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3239  * For vector:
3240  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3241  *   opc<0>: 0 -> store, 1 -> load
3242  * V: 1 -> vector/simd
3243  * opt: extend encoding (see DecodeRegExtend)
3244  * S: if S=1 then scale (essentially index by sizeof(size))
3245  * Rt: register to transfer into/out of
3246  * Rn: address register or SP for base
3247  * Rm: offset register or ZR for offset
3248  */
3249 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3250                                    int opc,
3251                                    int size,
3252                                    int rt,
3253                                    bool is_vector)
3254 {
3255     int rn = extract32(insn, 5, 5);
3256     int shift = extract32(insn, 12, 1);
3257     int rm = extract32(insn, 16, 5);
3258     int opt = extract32(insn, 13, 3);
3259     bool is_signed = false;
3260     bool is_store = false;
3261     bool is_extended = false;
3262 
3263     TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3264 
3265     if (extract32(opt, 1, 1) == 0) {
3266         unallocated_encoding(s);
3267         return;
3268     }
3269 
3270     if (is_vector) {
3271         size |= (opc & 2) << 1;
3272         if (size > 4) {
3273             unallocated_encoding(s);
3274             return;
3275         }
3276         is_store = !extract32(opc, 0, 1);
3277         if (!fp_access_check(s)) {
3278             return;
3279         }
3280     } else {
3281         if (size == 3 && opc == 2) {
3282             /* PRFM - prefetch */
3283             return;
3284         }
3285         if (opc == 3 && size > 1) {
3286             unallocated_encoding(s);
3287             return;
3288         }
3289         is_store = (opc == 0);
3290         is_signed = extract32(opc, 1, 1);
3291         is_extended = (size < 3) && extract32(opc, 0, 1);
3292     }
3293 
3294     if (rn == 31) {
3295         gen_check_sp_alignment(s);
3296     }
3297     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3298 
3299     tcg_rm = read_cpu_reg(s, rm, 1);
3300     ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3301 
3302     tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3303     clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3304 
3305     if (is_vector) {
3306         if (is_store) {
3307             do_fp_st(s, rt, clean_addr, size);
3308         } else {
3309             do_fp_ld(s, rt, clean_addr, size);
3310         }
3311     } else {
3312         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3313         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3314         if (is_store) {
3315             do_gpr_st(s, tcg_rt, clean_addr, size,
3316                       true, rt, iss_sf, false);
3317         } else {
3318             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3319                       is_extended, true, rt, iss_sf, false);
3320         }
3321     }
3322 }
3323 
3324 /*
3325  * Load/store (unsigned immediate)
3326  *
3327  * 31 30 29   27  26 25 24 23 22 21        10 9     5
3328  * +----+-------+---+-----+-----+------------+-------+------+
3329  * |size| 1 1 1 | V | 0 1 | opc |   imm12    |  Rn   |  Rt  |
3330  * +----+-------+---+-----+-----+------------+-------+------+
3331  *
3332  * For non-vector:
3333  *   size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3334  *   opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3335  * For vector:
3336  *   size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3337  *   opc<0>: 0 -> store, 1 -> load
3338  * Rn: base address register (inc SP)
3339  * Rt: target register
3340  */
3341 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3342                                         int opc,
3343                                         int size,
3344                                         int rt,
3345                                         bool is_vector)
3346 {
3347     int rn = extract32(insn, 5, 5);
3348     unsigned int imm12 = extract32(insn, 10, 12);
3349     unsigned int offset;
3350 
3351     TCGv_i64 clean_addr, dirty_addr;
3352 
3353     bool is_store;
3354     bool is_signed = false;
3355     bool is_extended = false;
3356 
3357     if (is_vector) {
3358         size |= (opc & 2) << 1;
3359         if (size > 4) {
3360             unallocated_encoding(s);
3361             return;
3362         }
3363         is_store = !extract32(opc, 0, 1);
3364         if (!fp_access_check(s)) {
3365             return;
3366         }
3367     } else {
3368         if (size == 3 && opc == 2) {
3369             /* PRFM - prefetch */
3370             return;
3371         }
3372         if (opc == 3 && size > 1) {
3373             unallocated_encoding(s);
3374             return;
3375         }
3376         is_store = (opc == 0);
3377         is_signed = extract32(opc, 1, 1);
3378         is_extended = (size < 3) && extract32(opc, 0, 1);
3379     }
3380 
3381     if (rn == 31) {
3382         gen_check_sp_alignment(s);
3383     }
3384     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3385     offset = imm12 << size;
3386     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3387     clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3388 
3389     if (is_vector) {
3390         if (is_store) {
3391             do_fp_st(s, rt, clean_addr, size);
3392         } else {
3393             do_fp_ld(s, rt, clean_addr, size);
3394         }
3395     } else {
3396         TCGv_i64 tcg_rt = cpu_reg(s, rt);
3397         bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3398         if (is_store) {
3399             do_gpr_st(s, tcg_rt, clean_addr, size,
3400                       true, rt, iss_sf, false);
3401         } else {
3402             do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3403                       is_extended, true, rt, iss_sf, false);
3404         }
3405     }
3406 }
3407 
3408 /* Atomic memory operations
3409  *
3410  *  31  30      27  26    24    22  21   16   15    12    10    5     0
3411  * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3412  * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn |  Rt |
3413  * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3414  *
3415  * Rt: the result register
3416  * Rn: base address or SP
3417  * Rs: the source register for the operation
3418  * V: vector flag (always 0 as of v8.3)
3419  * A: acquire flag
3420  * R: release flag
3421  */
3422 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3423                               int size, int rt, bool is_vector)
3424 {
3425     int rs = extract32(insn, 16, 5);
3426     int rn = extract32(insn, 5, 5);
3427     int o3_opc = extract32(insn, 12, 4);
3428     bool r = extract32(insn, 22, 1);
3429     bool a = extract32(insn, 23, 1);
3430     TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3431     AtomicThreeOpFn *fn = NULL;
3432     MemOp mop = s->be_data | size | MO_ALIGN;
3433 
3434     if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3435         unallocated_encoding(s);
3436         return;
3437     }
3438     switch (o3_opc) {
3439     case 000: /* LDADD */
3440         fn = tcg_gen_atomic_fetch_add_i64;
3441         break;
3442     case 001: /* LDCLR */
3443         fn = tcg_gen_atomic_fetch_and_i64;
3444         break;
3445     case 002: /* LDEOR */
3446         fn = tcg_gen_atomic_fetch_xor_i64;
3447         break;
3448     case 003: /* LDSET */
3449         fn = tcg_gen_atomic_fetch_or_i64;
3450         break;
3451     case 004: /* LDSMAX */
3452         fn = tcg_gen_atomic_fetch_smax_i64;
3453         mop |= MO_SIGN;
3454         break;
3455     case 005: /* LDSMIN */
3456         fn = tcg_gen_atomic_fetch_smin_i64;
3457         mop |= MO_SIGN;
3458         break;
3459     case 006: /* LDUMAX */
3460         fn = tcg_gen_atomic_fetch_umax_i64;
3461         break;
3462     case 007: /* LDUMIN */
3463         fn = tcg_gen_atomic_fetch_umin_i64;
3464         break;
3465     case 010: /* SWP */
3466         fn = tcg_gen_atomic_xchg_i64;
3467         break;
3468     case 014: /* LDAPR, LDAPRH, LDAPRB */
3469         if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3470             rs != 31 || a != 1 || r != 0) {
3471             unallocated_encoding(s);
3472             return;
3473         }
3474         break;
3475     default:
3476         unallocated_encoding(s);
3477         return;
3478     }
3479 
3480     if (rn == 31) {
3481         gen_check_sp_alignment(s);
3482     }
3483     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3484 
3485     if (o3_opc == 014) {
3486         /*
3487          * LDAPR* are a special case because they are a simple load, not a
3488          * fetch-and-do-something op.
3489          * The architectural consistency requirements here are weaker than
3490          * full load-acquire (we only need "load-acquire processor consistent"),
3491          * but we choose to implement them as full LDAQ.
3492          */
3493         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3494                   true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3495         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3496         return;
3497     }
3498 
3499     tcg_rs = read_cpu_reg(s, rs, true);
3500     tcg_rt = cpu_reg(s, rt);
3501 
3502     if (o3_opc == 1) { /* LDCLR */
3503         tcg_gen_not_i64(tcg_rs, tcg_rs);
3504     }
3505 
3506     /* The tcg atomic primitives are all full barriers.  Therefore we
3507      * can ignore the Acquire and Release bits of this instruction.
3508      */
3509     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3510 
3511     if ((mop & MO_SIGN) && size != MO_64) {
3512         tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513     }
3514 }
3515 
3516 /*
3517  * PAC memory operations
3518  *
3519  *  31  30      27  26    24    22  21       12  11  10    5     0
3520  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3521  * | size | 1 1 1 | V | 0 0 | M S | 1 |  imm9  | W | 1 | Rn |  Rt |
3522  * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3523  *
3524  * Rt: the result register
3525  * Rn: base address or SP
3526  * V: vector flag (always 0 as of v8.3)
3527  * M: clear for key DA, set for key DB
3528  * W: pre-indexing flag
3529  * S: sign for imm9.
3530  */
3531 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3532                            int size, int rt, bool is_vector)
3533 {
3534     int rn = extract32(insn, 5, 5);
3535     bool is_wback = extract32(insn, 11, 1);
3536     bool use_key_a = !extract32(insn, 23, 1);
3537     int offset;
3538     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3539 
3540     if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3541         unallocated_encoding(s);
3542         return;
3543     }
3544 
3545     if (rn == 31) {
3546         gen_check_sp_alignment(s);
3547     }
3548     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3549 
3550     if (s->pauth_active) {
3551         if (use_key_a) {
3552             gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3553                              new_tmp_a64_zero(s));
3554         } else {
3555             gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3556                              new_tmp_a64_zero(s));
3557         }
3558     }
3559 
3560     /* Form the 10-bit signed, scaled offset.  */
3561     offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3562     offset = sextract32(offset << size, 0, 10 + size);
3563     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3564 
3565     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3566     clean_addr = gen_mte_check1(s, dirty_addr, false,
3567                                 is_wback || rn != 31, size);
3568 
3569     tcg_rt = cpu_reg(s, rt);
3570     do_gpr_ld(s, tcg_rt, clean_addr, size,
3571               /* extend */ false, /* iss_valid */ !is_wback,
3572               /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3573 
3574     if (is_wback) {
3575         tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3576     }
3577 }
3578 
3579 /*
3580  * LDAPR/STLR (unscaled immediate)
3581  *
3582  *  31  30            24    22  21       12    10    5     0
3583  * +------+-------------+-----+---+--------+-----+----+-----+
3584  * | size | 0 1 1 0 0 1 | opc | 0 |  imm9  | 0 0 | Rn |  Rt |
3585  * +------+-------------+-----+---+--------+-----+----+-----+
3586  *
3587  * Rt: source or destination register
3588  * Rn: base register
3589  * imm9: unscaled immediate offset
3590  * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3591  * size: size of load/store
3592  */
3593 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3594 {
3595     int rt = extract32(insn, 0, 5);
3596     int rn = extract32(insn, 5, 5);
3597     int offset = sextract32(insn, 12, 9);
3598     int opc = extract32(insn, 22, 2);
3599     int size = extract32(insn, 30, 2);
3600     TCGv_i64 clean_addr, dirty_addr;
3601     bool is_store = false;
3602     bool extend = false;
3603     bool iss_sf;
3604     MemOp mop;
3605 
3606     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3607         unallocated_encoding(s);
3608         return;
3609     }
3610 
3611     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3612     mop = size | MO_ALIGN;
3613 
3614     switch (opc) {
3615     case 0: /* STLURB */
3616         is_store = true;
3617         break;
3618     case 1: /* LDAPUR* */
3619         break;
3620     case 2: /* LDAPURS* 64-bit variant */
3621         if (size == 3) {
3622             unallocated_encoding(s);
3623             return;
3624         }
3625         mop |= MO_SIGN;
3626         break;
3627     case 3: /* LDAPURS* 32-bit variant */
3628         if (size > 1) {
3629             unallocated_encoding(s);
3630             return;
3631         }
3632         mop |= MO_SIGN;
3633         extend = true; /* zero-extend 32->64 after signed load */
3634         break;
3635     default:
3636         g_assert_not_reached();
3637     }
3638 
3639     iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3640 
3641     if (rn == 31) {
3642         gen_check_sp_alignment(s);
3643     }
3644 
3645     dirty_addr = read_cpu_reg_sp(s, rn, 1);
3646     tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3647     clean_addr = clean_data_tbi(s, dirty_addr);
3648 
3649     if (is_store) {
3650         /* Store-Release semantics */
3651         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3652         do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3653     } else {
3654         /*
3655          * Load-AcquirePC semantics; we implement as the slightly more
3656          * restrictive Load-Acquire.
3657          */
3658         do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3659                   extend, true, rt, iss_sf, true);
3660         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3661     }
3662 }
3663 
3664 /* Load/store register (all forms) */
3665 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3666 {
3667     int rt = extract32(insn, 0, 5);
3668     int opc = extract32(insn, 22, 2);
3669     bool is_vector = extract32(insn, 26, 1);
3670     int size = extract32(insn, 30, 2);
3671 
3672     switch (extract32(insn, 24, 2)) {
3673     case 0:
3674         if (extract32(insn, 21, 1) == 0) {
3675             /* Load/store register (unscaled immediate)
3676              * Load/store immediate pre/post-indexed
3677              * Load/store register unprivileged
3678              */
3679             disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3680             return;
3681         }
3682         switch (extract32(insn, 10, 2)) {
3683         case 0:
3684             disas_ldst_atomic(s, insn, size, rt, is_vector);
3685             return;
3686         case 2:
3687             disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3688             return;
3689         default:
3690             disas_ldst_pac(s, insn, size, rt, is_vector);
3691             return;
3692         }
3693         break;
3694     case 1:
3695         disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3696         return;
3697     }
3698     unallocated_encoding(s);
3699 }
3700 
3701 /* AdvSIMD load/store multiple structures
3702  *
3703  *  31  30  29           23 22  21         16 15    12 11  10 9    5 4    0
3704  * +---+---+---------------+---+-------------+--------+------+------+------+
3705  * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size |  Rn  |  Rt  |
3706  * +---+---+---------------+---+-------------+--------+------+------+------+
3707  *
3708  * AdvSIMD load/store multiple structures (post-indexed)
3709  *
3710  *  31  30  29           23 22  21  20     16 15    12 11  10 9    5 4    0
3711  * +---+---+---------------+---+---+---------+--------+------+------+------+
3712  * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 |   Rm    | opcode | size |  Rn  |  Rt  |
3713  * +---+---+---------------+---+---+---------+--------+------+------+------+
3714  *
3715  * Rt: first (or only) SIMD&FP register to be transferred
3716  * Rn: base address or SP
3717  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3718  */
3719 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3720 {
3721     int rt = extract32(insn, 0, 5);
3722     int rn = extract32(insn, 5, 5);
3723     int rm = extract32(insn, 16, 5);
3724     int size = extract32(insn, 10, 2);
3725     int opcode = extract32(insn, 12, 4);
3726     bool is_store = !extract32(insn, 22, 1);
3727     bool is_postidx = extract32(insn, 23, 1);
3728     bool is_q = extract32(insn, 30, 1);
3729     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3730     MemOp endian, align, mop;
3731 
3732     int total;    /* total bytes */
3733     int elements; /* elements per vector */
3734     int rpt;    /* num iterations */
3735     int selem;  /* structure elements */
3736     int r;
3737 
3738     if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3739         unallocated_encoding(s);
3740         return;
3741     }
3742 
3743     if (!is_postidx && rm != 0) {
3744         unallocated_encoding(s);
3745         return;
3746     }
3747 
3748     /* From the shared decode logic */
3749     switch (opcode) {
3750     case 0x0:
3751         rpt = 1;
3752         selem = 4;
3753         break;
3754     case 0x2:
3755         rpt = 4;
3756         selem = 1;
3757         break;
3758     case 0x4:
3759         rpt = 1;
3760         selem = 3;
3761         break;
3762     case 0x6:
3763         rpt = 3;
3764         selem = 1;
3765         break;
3766     case 0x7:
3767         rpt = 1;
3768         selem = 1;
3769         break;
3770     case 0x8:
3771         rpt = 1;
3772         selem = 2;
3773         break;
3774     case 0xa:
3775         rpt = 2;
3776         selem = 1;
3777         break;
3778     default:
3779         unallocated_encoding(s);
3780         return;
3781     }
3782 
3783     if (size == 3 && !is_q && selem != 1) {
3784         /* reserved */
3785         unallocated_encoding(s);
3786         return;
3787     }
3788 
3789     if (!fp_access_check(s)) {
3790         return;
3791     }
3792 
3793     if (rn == 31) {
3794         gen_check_sp_alignment(s);
3795     }
3796 
3797     /* For our purposes, bytes are always little-endian.  */
3798     endian = s->be_data;
3799     if (size == 0) {
3800         endian = MO_LE;
3801     }
3802 
3803     total = rpt * selem * (is_q ? 16 : 8);
3804     tcg_rn = cpu_reg_sp(s, rn);
3805 
3806     /*
3807      * Issue the MTE check vs the logical repeat count, before we
3808      * promote consecutive little-endian elements below.
3809      */
3810     clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3811                                 total);
3812 
3813     /*
3814      * Consecutive little-endian elements from a single register
3815      * can be promoted to a larger little-endian operation.
3816      */
3817     align = MO_ALIGN;
3818     if (selem == 1 && endian == MO_LE) {
3819         align = pow2_align(size);
3820         size = 3;
3821     }
3822     if (!s->align_mem) {
3823         align = 0;
3824     }
3825     mop = endian | size | align;
3826 
3827     elements = (is_q ? 16 : 8) >> size;
3828     tcg_ebytes = tcg_constant_i64(1 << size);
3829     for (r = 0; r < rpt; r++) {
3830         int e;
3831         for (e = 0; e < elements; e++) {
3832             int xs;
3833             for (xs = 0; xs < selem; xs++) {
3834                 int tt = (rt + r + xs) % 32;
3835                 if (is_store) {
3836                     do_vec_st(s, tt, e, clean_addr, mop);
3837                 } else {
3838                     do_vec_ld(s, tt, e, clean_addr, mop);
3839                 }
3840                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3841             }
3842         }
3843     }
3844 
3845     if (!is_store) {
3846         /* For non-quad operations, setting a slice of the low
3847          * 64 bits of the register clears the high 64 bits (in
3848          * the ARM ARM pseudocode this is implicit in the fact
3849          * that 'rval' is a 64 bit wide variable).
3850          * For quad operations, we might still need to zero the
3851          * high bits of SVE.
3852          */
3853         for (r = 0; r < rpt * selem; r++) {
3854             int tt = (rt + r) % 32;
3855             clear_vec_high(s, is_q, tt);
3856         }
3857     }
3858 
3859     if (is_postidx) {
3860         if (rm == 31) {
3861             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3862         } else {
3863             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3864         }
3865     }
3866 }
3867 
3868 /* AdvSIMD load/store single structure
3869  *
3870  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3871  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3872  * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size |  Rn  |  Rt  |
3873  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3874  *
3875  * AdvSIMD load/store single structure (post-indexed)
3876  *
3877  *  31  30  29           23 22 21 20       16 15 13 12  11  10 9    5 4    0
3878  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3879  * | 0 | Q | 0 0 1 1 0 1 1 | L R |     Rm    | opc | S | size |  Rn  |  Rt  |
3880  * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3881  *
3882  * Rt: first (or only) SIMD&FP register to be transferred
3883  * Rn: base address or SP
3884  * Rm (post-index only): post-index register (when !31) or size dependent #imm
3885  * index = encoded in Q:S:size dependent on size
3886  *
3887  * lane_size = encoded in R, opc
3888  * transfer width = encoded in opc, S, size
3889  */
3890 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3891 {
3892     int rt = extract32(insn, 0, 5);
3893     int rn = extract32(insn, 5, 5);
3894     int rm = extract32(insn, 16, 5);
3895     int size = extract32(insn, 10, 2);
3896     int S = extract32(insn, 12, 1);
3897     int opc = extract32(insn, 13, 3);
3898     int R = extract32(insn, 21, 1);
3899     int is_load = extract32(insn, 22, 1);
3900     int is_postidx = extract32(insn, 23, 1);
3901     int is_q = extract32(insn, 30, 1);
3902 
3903     int scale = extract32(opc, 1, 2);
3904     int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3905     bool replicate = false;
3906     int index = is_q << 3 | S << 2 | size;
3907     int xs, total;
3908     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3909     MemOp mop;
3910 
3911     if (extract32(insn, 31, 1)) {
3912         unallocated_encoding(s);
3913         return;
3914     }
3915     if (!is_postidx && rm != 0) {
3916         unallocated_encoding(s);
3917         return;
3918     }
3919 
3920     switch (scale) {
3921     case 3:
3922         if (!is_load || S) {
3923             unallocated_encoding(s);
3924             return;
3925         }
3926         scale = size;
3927         replicate = true;
3928         break;
3929     case 0:
3930         break;
3931     case 1:
3932         if (extract32(size, 0, 1)) {
3933             unallocated_encoding(s);
3934             return;
3935         }
3936         index >>= 1;
3937         break;
3938     case 2:
3939         if (extract32(size, 1, 1)) {
3940             unallocated_encoding(s);
3941             return;
3942         }
3943         if (!extract32(size, 0, 1)) {
3944             index >>= 2;
3945         } else {
3946             if (S) {
3947                 unallocated_encoding(s);
3948                 return;
3949             }
3950             index >>= 3;
3951             scale = 3;
3952         }
3953         break;
3954     default:
3955         g_assert_not_reached();
3956     }
3957 
3958     if (!fp_access_check(s)) {
3959         return;
3960     }
3961 
3962     if (rn == 31) {
3963         gen_check_sp_alignment(s);
3964     }
3965 
3966     total = selem << scale;
3967     tcg_rn = cpu_reg_sp(s, rn);
3968 
3969     clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3970                                 total);
3971     mop = finalize_memop(s, scale);
3972 
3973     tcg_ebytes = tcg_constant_i64(1 << scale);
3974     for (xs = 0; xs < selem; xs++) {
3975         if (replicate) {
3976             /* Load and replicate to all elements */
3977             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3978 
3979             tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3980             tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3981                                  (is_q + 1) * 8, vec_full_reg_size(s),
3982                                  tcg_tmp);
3983             tcg_temp_free_i64(tcg_tmp);
3984         } else {
3985             /* Load/store one element per register */
3986             if (is_load) {
3987                 do_vec_ld(s, rt, index, clean_addr, mop);
3988             } else {
3989                 do_vec_st(s, rt, index, clean_addr, mop);
3990             }
3991         }
3992         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3993         rt = (rt + 1) % 32;
3994     }
3995 
3996     if (is_postidx) {
3997         if (rm == 31) {
3998             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3999         } else {
4000             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
4001         }
4002     }
4003 }
4004 
4005 /*
4006  * Load/Store memory tags
4007  *
4008  *  31 30 29         24     22  21     12    10      5      0
4009  * +-----+-------------+-----+---+------+-----+------+------+
4010  * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 |  Rn  |  Rt  |
4011  * +-----+-------------+-----+---+------+-----+------+------+
4012  */
4013 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
4014 {
4015     int rt = extract32(insn, 0, 5);
4016     int rn = extract32(insn, 5, 5);
4017     uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
4018     int op2 = extract32(insn, 10, 2);
4019     int op1 = extract32(insn, 22, 2);
4020     bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
4021     int index = 0;
4022     TCGv_i64 addr, clean_addr, tcg_rt;
4023 
4024     /* We checked insn bits [29:24,21] in the caller.  */
4025     if (extract32(insn, 30, 2) != 3) {
4026         goto do_unallocated;
4027     }
4028 
4029     /*
4030      * @index is a tri-state variable which has 3 states:
4031      * < 0 : post-index, writeback
4032      * = 0 : signed offset
4033      * > 0 : pre-index, writeback
4034      */
4035     switch (op1) {
4036     case 0:
4037         if (op2 != 0) {
4038             /* STG */
4039             index = op2 - 2;
4040         } else {
4041             /* STZGM */
4042             if (s->current_el == 0 || offset != 0) {
4043                 goto do_unallocated;
4044             }
4045             is_mult = is_zero = true;
4046         }
4047         break;
4048     case 1:
4049         if (op2 != 0) {
4050             /* STZG */
4051             is_zero = true;
4052             index = op2 - 2;
4053         } else {
4054             /* LDG */
4055             is_load = true;
4056         }
4057         break;
4058     case 2:
4059         if (op2 != 0) {
4060             /* ST2G */
4061             is_pair = true;
4062             index = op2 - 2;
4063         } else {
4064             /* STGM */
4065             if (s->current_el == 0 || offset != 0) {
4066                 goto do_unallocated;
4067             }
4068             is_mult = true;
4069         }
4070         break;
4071     case 3:
4072         if (op2 != 0) {
4073             /* STZ2G */
4074             is_pair = is_zero = true;
4075             index = op2 - 2;
4076         } else {
4077             /* LDGM */
4078             if (s->current_el == 0 || offset != 0) {
4079                 goto do_unallocated;
4080             }
4081             is_mult = is_load = true;
4082         }
4083         break;
4084 
4085     default:
4086     do_unallocated:
4087         unallocated_encoding(s);
4088         return;
4089     }
4090 
4091     if (is_mult
4092         ? !dc_isar_feature(aa64_mte, s)
4093         : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4094         goto do_unallocated;
4095     }
4096 
4097     if (rn == 31) {
4098         gen_check_sp_alignment(s);
4099     }
4100 
4101     addr = read_cpu_reg_sp(s, rn, true);
4102     if (index >= 0) {
4103         /* pre-index or signed offset */
4104         tcg_gen_addi_i64(addr, addr, offset);
4105     }
4106 
4107     if (is_mult) {
4108         tcg_rt = cpu_reg(s, rt);
4109 
4110         if (is_zero) {
4111             int size = 4 << s->dcz_blocksize;
4112 
4113             if (s->ata) {
4114                 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4115             }
4116             /*
4117              * The non-tags portion of STZGM is mostly like DC_ZVA,
4118              * except the alignment happens before the access.
4119              */
4120             clean_addr = clean_data_tbi(s, addr);
4121             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4122             gen_helper_dc_zva(cpu_env, clean_addr);
4123         } else if (s->ata) {
4124             if (is_load) {
4125                 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4126             } else {
4127                 gen_helper_stgm(cpu_env, addr, tcg_rt);
4128             }
4129         } else {
4130             MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4131             int size = 4 << GMID_EL1_BS;
4132 
4133             clean_addr = clean_data_tbi(s, addr);
4134             tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4135             gen_probe_access(s, clean_addr, acc, size);
4136 
4137             if (is_load) {
4138                 /* The result tags are zeros.  */
4139                 tcg_gen_movi_i64(tcg_rt, 0);
4140             }
4141         }
4142         return;
4143     }
4144 
4145     if (is_load) {
4146         tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4147         tcg_rt = cpu_reg(s, rt);
4148         if (s->ata) {
4149             gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4150         } else {
4151             clean_addr = clean_data_tbi(s, addr);
4152             gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4153             gen_address_with_allocation_tag0(tcg_rt, addr);
4154         }
4155     } else {
4156         tcg_rt = cpu_reg_sp(s, rt);
4157         if (!s->ata) {
4158             /*
4159              * For STG and ST2G, we need to check alignment and probe memory.
4160              * TODO: For STZG and STZ2G, we could rely on the stores below,
4161              * at least for system mode; user-only won't enforce alignment.
4162              */
4163             if (is_pair) {
4164                 gen_helper_st2g_stub(cpu_env, addr);
4165             } else {
4166                 gen_helper_stg_stub(cpu_env, addr);
4167             }
4168         } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4169             if (is_pair) {
4170                 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4171             } else {
4172                 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4173             }
4174         } else {
4175             if (is_pair) {
4176                 gen_helper_st2g(cpu_env, addr, tcg_rt);
4177             } else {
4178                 gen_helper_stg(cpu_env, addr, tcg_rt);
4179             }
4180         }
4181     }
4182 
4183     if (is_zero) {
4184         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4185         TCGv_i64 tcg_zero = tcg_constant_i64(0);
4186         int mem_index = get_mem_index(s);
4187         int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4188 
4189         tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4190                             MO_UQ | MO_ALIGN_16);
4191         for (i = 8; i < n; i += 8) {
4192             tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4193             tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4194         }
4195     }
4196 
4197     if (index != 0) {
4198         /* pre-index or post-index */
4199         if (index < 0) {
4200             /* post-index */
4201             tcg_gen_addi_i64(addr, addr, offset);
4202         }
4203         tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4204     }
4205 }
4206 
4207 /* Loads and stores */
4208 static void disas_ldst(DisasContext *s, uint32_t insn)
4209 {
4210     switch (extract32(insn, 24, 6)) {
4211     case 0x08: /* Load/store exclusive */
4212         disas_ldst_excl(s, insn);
4213         break;
4214     case 0x18: case 0x1c: /* Load register (literal) */
4215         disas_ld_lit(s, insn);
4216         break;
4217     case 0x28: case 0x29:
4218     case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4219         disas_ldst_pair(s, insn);
4220         break;
4221     case 0x38: case 0x39:
4222     case 0x3c: case 0x3d: /* Load/store register (all forms) */
4223         disas_ldst_reg(s, insn);
4224         break;
4225     case 0x0c: /* AdvSIMD load/store multiple structures */
4226         disas_ldst_multiple_struct(s, insn);
4227         break;
4228     case 0x0d: /* AdvSIMD load/store single structure */
4229         disas_ldst_single_struct(s, insn);
4230         break;
4231     case 0x19:
4232         if (extract32(insn, 21, 1) != 0) {
4233             disas_ldst_tag(s, insn);
4234         } else if (extract32(insn, 10, 2) == 0) {
4235             disas_ldst_ldapr_stlr(s, insn);
4236         } else {
4237             unallocated_encoding(s);
4238         }
4239         break;
4240     default:
4241         unallocated_encoding(s);
4242         break;
4243     }
4244 }
4245 
4246 /* PC-rel. addressing
4247  *   31  30   29 28       24 23                5 4    0
4248  * +----+-------+-----------+-------------------+------+
4249  * | op | immlo | 1 0 0 0 0 |       immhi       |  Rd  |
4250  * +----+-------+-----------+-------------------+------+
4251  */
4252 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4253 {
4254     unsigned int page, rd;
4255     int64_t offset;
4256 
4257     page = extract32(insn, 31, 1);
4258     /* SignExtend(immhi:immlo) -> offset */
4259     offset = sextract64(insn, 5, 19);
4260     offset = offset << 2 | extract32(insn, 29, 2);
4261     rd = extract32(insn, 0, 5);
4262 
4263     if (page) {
4264         /* ADRP (page based) */
4265         offset <<= 12;
4266         /* The page offset is ok for CF_PCREL. */
4267         offset -= s->pc_curr & 0xfff;
4268     }
4269 
4270     gen_pc_plus_diff(s, cpu_reg(s, rd), offset);
4271 }
4272 
4273 /*
4274  * Add/subtract (immediate)
4275  *
4276  *  31 30 29 28         23 22 21         10 9   5 4   0
4277  * +--+--+--+-------------+--+-------------+-----+-----+
4278  * |sf|op| S| 1 0 0 0 1 0 |sh|    imm12    |  Rn | Rd  |
4279  * +--+--+--+-------------+--+-------------+-----+-----+
4280  *
4281  *    sf: 0 -> 32bit, 1 -> 64bit
4282  *    op: 0 -> add  , 1 -> sub
4283  *     S: 1 -> set flags
4284  *    sh: 1 -> LSL imm by 12
4285  */
4286 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4287 {
4288     int rd = extract32(insn, 0, 5);
4289     int rn = extract32(insn, 5, 5);
4290     uint64_t imm = extract32(insn, 10, 12);
4291     bool shift = extract32(insn, 22, 1);
4292     bool setflags = extract32(insn, 29, 1);
4293     bool sub_op = extract32(insn, 30, 1);
4294     bool is_64bit = extract32(insn, 31, 1);
4295 
4296     TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4297     TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4298     TCGv_i64 tcg_result;
4299 
4300     if (shift) {
4301         imm <<= 12;
4302     }
4303 
4304     tcg_result = tcg_temp_new_i64();
4305     if (!setflags) {
4306         if (sub_op) {
4307             tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4308         } else {
4309             tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4310         }
4311     } else {
4312         TCGv_i64 tcg_imm = tcg_constant_i64(imm);
4313         if (sub_op) {
4314             gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4315         } else {
4316             gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4317         }
4318     }
4319 
4320     if (is_64bit) {
4321         tcg_gen_mov_i64(tcg_rd, tcg_result);
4322     } else {
4323         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4324     }
4325 
4326     tcg_temp_free_i64(tcg_result);
4327 }
4328 
4329 /*
4330  * Add/subtract (immediate, with tags)
4331  *
4332  *  31 30 29 28         23 22 21     16 14      10 9   5 4   0
4333  * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4334  * |sf|op| S| 1 0 0 0 1 1 |o2|  uimm6  |o3| uimm4 |  Rn | Rd  |
4335  * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4336  *
4337  *    op: 0 -> add, 1 -> sub
4338  */
4339 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4340 {
4341     int rd = extract32(insn, 0, 5);
4342     int rn = extract32(insn, 5, 5);
4343     int uimm4 = extract32(insn, 10, 4);
4344     int uimm6 = extract32(insn, 16, 6);
4345     bool sub_op = extract32(insn, 30, 1);
4346     TCGv_i64 tcg_rn, tcg_rd;
4347     int imm;
4348 
4349     /* Test all of sf=1, S=0, o2=0, o3=0.  */
4350     if ((insn & 0xa040c000u) != 0x80000000u ||
4351         !dc_isar_feature(aa64_mte_insn_reg, s)) {
4352         unallocated_encoding(s);
4353         return;
4354     }
4355 
4356     imm = uimm6 << LOG2_TAG_GRANULE;
4357     if (sub_op) {
4358         imm = -imm;
4359     }
4360 
4361     tcg_rn = cpu_reg_sp(s, rn);
4362     tcg_rd = cpu_reg_sp(s, rd);
4363 
4364     if (s->ata) {
4365         gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4366                            tcg_constant_i32(imm),
4367                            tcg_constant_i32(uimm4));
4368     } else {
4369         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4370         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4371     }
4372 }
4373 
4374 /* The input should be a value in the bottom e bits (with higher
4375  * bits zero); returns that value replicated into every element
4376  * of size e in a 64 bit integer.
4377  */
4378 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4379 {
4380     assert(e != 0);
4381     while (e < 64) {
4382         mask |= mask << e;
4383         e *= 2;
4384     }
4385     return mask;
4386 }
4387 
4388 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4389 static inline uint64_t bitmask64(unsigned int length)
4390 {
4391     assert(length > 0 && length <= 64);
4392     return ~0ULL >> (64 - length);
4393 }
4394 
4395 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4396  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4397  * value (ie should cause a guest UNDEF exception), and true if they are
4398  * valid, in which case the decoded bit pattern is written to result.
4399  */
4400 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4401                             unsigned int imms, unsigned int immr)
4402 {
4403     uint64_t mask;
4404     unsigned e, levels, s, r;
4405     int len;
4406 
4407     assert(immn < 2 && imms < 64 && immr < 64);
4408 
4409     /* The bit patterns we create here are 64 bit patterns which
4410      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4411      * 64 bits each. Each element contains the same value: a run
4412      * of between 1 and e-1 non-zero bits, rotated within the
4413      * element by between 0 and e-1 bits.
4414      *
4415      * The element size and run length are encoded into immn (1 bit)
4416      * and imms (6 bits) as follows:
4417      * 64 bit elements: immn = 1, imms = <length of run - 1>
4418      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4419      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4420      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4421      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4422      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4423      * Notice that immn = 0, imms = 11111x is the only combination
4424      * not covered by one of the above options; this is reserved.
4425      * Further, <length of run - 1> all-ones is a reserved pattern.
4426      *
4427      * In all cases the rotation is by immr % e (and immr is 6 bits).
4428      */
4429 
4430     /* First determine the element size */
4431     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4432     if (len < 1) {
4433         /* This is the immn == 0, imms == 0x11111x case */
4434         return false;
4435     }
4436     e = 1 << len;
4437 
4438     levels = e - 1;
4439     s = imms & levels;
4440     r = immr & levels;
4441 
4442     if (s == levels) {
4443         /* <length of run - 1> mustn't be all-ones. */
4444         return false;
4445     }
4446 
4447     /* Create the value of one element: s+1 set bits rotated
4448      * by r within the element (which is e bits wide)...
4449      */
4450     mask = bitmask64(s + 1);
4451     if (r) {
4452         mask = (mask >> r) | (mask << (e - r));
4453         mask &= bitmask64(e);
4454     }
4455     /* ...then replicate the element over the whole 64 bit value */
4456     mask = bitfield_replicate(mask, e);
4457     *result = mask;
4458     return true;
4459 }
4460 
4461 /* Logical (immediate)
4462  *   31  30 29 28         23 22  21  16 15  10 9    5 4    0
4463  * +----+-----+-------------+---+------+------+------+------+
4464  * | sf | opc | 1 0 0 1 0 0 | N | immr | imms |  Rn  |  Rd  |
4465  * +----+-----+-------------+---+------+------+------+------+
4466  */
4467 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4468 {
4469     unsigned int sf, opc, is_n, immr, imms, rn, rd;
4470     TCGv_i64 tcg_rd, tcg_rn;
4471     uint64_t wmask;
4472     bool is_and = false;
4473 
4474     sf = extract32(insn, 31, 1);
4475     opc = extract32(insn, 29, 2);
4476     is_n = extract32(insn, 22, 1);
4477     immr = extract32(insn, 16, 6);
4478     imms = extract32(insn, 10, 6);
4479     rn = extract32(insn, 5, 5);
4480     rd = extract32(insn, 0, 5);
4481 
4482     if (!sf && is_n) {
4483         unallocated_encoding(s);
4484         return;
4485     }
4486 
4487     if (opc == 0x3) { /* ANDS */
4488         tcg_rd = cpu_reg(s, rd);
4489     } else {
4490         tcg_rd = cpu_reg_sp(s, rd);
4491     }
4492     tcg_rn = cpu_reg(s, rn);
4493 
4494     if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4495         /* some immediate field values are reserved */
4496         unallocated_encoding(s);
4497         return;
4498     }
4499 
4500     if (!sf) {
4501         wmask &= 0xffffffff;
4502     }
4503 
4504     switch (opc) {
4505     case 0x3: /* ANDS */
4506     case 0x0: /* AND */
4507         tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4508         is_and = true;
4509         break;
4510     case 0x1: /* ORR */
4511         tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4512         break;
4513     case 0x2: /* EOR */
4514         tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4515         break;
4516     default:
4517         assert(FALSE); /* must handle all above */
4518         break;
4519     }
4520 
4521     if (!sf && !is_and) {
4522         /* zero extend final result; we know we can skip this for AND
4523          * since the immediate had the high 32 bits clear.
4524          */
4525         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4526     }
4527 
4528     if (opc == 3) { /* ANDS */
4529         gen_logic_CC(sf, tcg_rd);
4530     }
4531 }
4532 
4533 /*
4534  * Move wide (immediate)
4535  *
4536  *  31 30 29 28         23 22 21 20             5 4    0
4537  * +--+-----+-------------+-----+----------------+------+
4538  * |sf| opc | 1 0 0 1 0 1 |  hw |  imm16         |  Rd  |
4539  * +--+-----+-------------+-----+----------------+------+
4540  *
4541  * sf: 0 -> 32 bit, 1 -> 64 bit
4542  * opc: 00 -> N, 10 -> Z, 11 -> K
4543  * hw: shift/16 (0,16, and sf only 32, 48)
4544  */
4545 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4546 {
4547     int rd = extract32(insn, 0, 5);
4548     uint64_t imm = extract32(insn, 5, 16);
4549     int sf = extract32(insn, 31, 1);
4550     int opc = extract32(insn, 29, 2);
4551     int pos = extract32(insn, 21, 2) << 4;
4552     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4553 
4554     if (!sf && (pos >= 32)) {
4555         unallocated_encoding(s);
4556         return;
4557     }
4558 
4559     switch (opc) {
4560     case 0: /* MOVN */
4561     case 2: /* MOVZ */
4562         imm <<= pos;
4563         if (opc == 0) {
4564             imm = ~imm;
4565         }
4566         if (!sf) {
4567             imm &= 0xffffffffu;
4568         }
4569         tcg_gen_movi_i64(tcg_rd, imm);
4570         break;
4571     case 3: /* MOVK */
4572         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16);
4573         if (!sf) {
4574             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4575         }
4576         break;
4577     default:
4578         unallocated_encoding(s);
4579         break;
4580     }
4581 }
4582 
4583 /* Bitfield
4584  *   31  30 29 28         23 22  21  16 15  10 9    5 4    0
4585  * +----+-----+-------------+---+------+------+------+------+
4586  * | sf | opc | 1 0 0 1 1 0 | N | immr | imms |  Rn  |  Rd  |
4587  * +----+-----+-------------+---+------+------+------+------+
4588  */
4589 static void disas_bitfield(DisasContext *s, uint32_t insn)
4590 {
4591     unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4592     TCGv_i64 tcg_rd, tcg_tmp;
4593 
4594     sf = extract32(insn, 31, 1);
4595     opc = extract32(insn, 29, 2);
4596     n = extract32(insn, 22, 1);
4597     ri = extract32(insn, 16, 6);
4598     si = extract32(insn, 10, 6);
4599     rn = extract32(insn, 5, 5);
4600     rd = extract32(insn, 0, 5);
4601     bitsize = sf ? 64 : 32;
4602 
4603     if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4604         unallocated_encoding(s);
4605         return;
4606     }
4607 
4608     tcg_rd = cpu_reg(s, rd);
4609 
4610     /* Suppress the zero-extend for !sf.  Since RI and SI are constrained
4611        to be smaller than bitsize, we'll never reference data outside the
4612        low 32-bits anyway.  */
4613     tcg_tmp = read_cpu_reg(s, rn, 1);
4614 
4615     /* Recognize simple(r) extractions.  */
4616     if (si >= ri) {
4617         /* Wd<s-r:0> = Wn<s:r> */
4618         len = (si - ri) + 1;
4619         if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4620             tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4621             goto done;
4622         } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4623             tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4624             return;
4625         }
4626         /* opc == 1, BFXIL fall through to deposit */
4627         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4628         pos = 0;
4629     } else {
4630         /* Handle the ri > si case with a deposit
4631          * Wd<32+s-r,32-r> = Wn<s:0>
4632          */
4633         len = si + 1;
4634         pos = (bitsize - ri) & (bitsize - 1);
4635     }
4636 
4637     if (opc == 0 && len < ri) {
4638         /* SBFM: sign extend the destination field from len to fill
4639            the balance of the word.  Let the deposit below insert all
4640            of those sign bits.  */
4641         tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4642         len = ri;
4643     }
4644 
4645     if (opc == 1) { /* BFM, BFXIL */
4646         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4647     } else {
4648         /* SBFM or UBFM: We start with zero, and we haven't modified
4649            any bits outside bitsize, therefore the zero-extension
4650            below is unneeded.  */
4651         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4652         return;
4653     }
4654 
4655  done:
4656     if (!sf) { /* zero extend final result */
4657         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4658     }
4659 }
4660 
4661 /* Extract
4662  *   31  30  29 28         23 22   21  20  16 15    10 9    5 4    0
4663  * +----+------+-------------+---+----+------+--------+------+------+
4664  * | sf | op21 | 1 0 0 1 1 1 | N | o0 |  Rm  |  imms  |  Rn  |  Rd  |
4665  * +----+------+-------------+---+----+------+--------+------+------+
4666  */
4667 static void disas_extract(DisasContext *s, uint32_t insn)
4668 {
4669     unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4670 
4671     sf = extract32(insn, 31, 1);
4672     n = extract32(insn, 22, 1);
4673     rm = extract32(insn, 16, 5);
4674     imm = extract32(insn, 10, 6);
4675     rn = extract32(insn, 5, 5);
4676     rd = extract32(insn, 0, 5);
4677     op21 = extract32(insn, 29, 2);
4678     op0 = extract32(insn, 21, 1);
4679     bitsize = sf ? 64 : 32;
4680 
4681     if (sf != n || op21 || op0 || imm >= bitsize) {
4682         unallocated_encoding(s);
4683     } else {
4684         TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4685 
4686         tcg_rd = cpu_reg(s, rd);
4687 
4688         if (unlikely(imm == 0)) {
4689             /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4690              * so an extract from bit 0 is a special case.
4691              */
4692             if (sf) {
4693                 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4694             } else {
4695                 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4696             }
4697         } else {
4698             tcg_rm = cpu_reg(s, rm);
4699             tcg_rn = cpu_reg(s, rn);
4700 
4701             if (sf) {
4702                 /* Specialization to ROR happens in EXTRACT2.  */
4703                 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4704             } else {
4705                 TCGv_i32 t0 = tcg_temp_new_i32();
4706 
4707                 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4708                 if (rm == rn) {
4709                     tcg_gen_rotri_i32(t0, t0, imm);
4710                 } else {
4711                     TCGv_i32 t1 = tcg_temp_new_i32();
4712                     tcg_gen_extrl_i64_i32(t1, tcg_rn);
4713                     tcg_gen_extract2_i32(t0, t0, t1, imm);
4714                     tcg_temp_free_i32(t1);
4715                 }
4716                 tcg_gen_extu_i32_i64(tcg_rd, t0);
4717                 tcg_temp_free_i32(t0);
4718             }
4719         }
4720     }
4721 }
4722 
4723 /* Data processing - immediate */
4724 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4725 {
4726     switch (extract32(insn, 23, 6)) {
4727     case 0x20: case 0x21: /* PC-rel. addressing */
4728         disas_pc_rel_adr(s, insn);
4729         break;
4730     case 0x22: /* Add/subtract (immediate) */
4731         disas_add_sub_imm(s, insn);
4732         break;
4733     case 0x23: /* Add/subtract (immediate, with tags) */
4734         disas_add_sub_imm_with_tags(s, insn);
4735         break;
4736     case 0x24: /* Logical (immediate) */
4737         disas_logic_imm(s, insn);
4738         break;
4739     case 0x25: /* Move wide (immediate) */
4740         disas_movw_imm(s, insn);
4741         break;
4742     case 0x26: /* Bitfield */
4743         disas_bitfield(s, insn);
4744         break;
4745     case 0x27: /* Extract */
4746         disas_extract(s, insn);
4747         break;
4748     default:
4749         unallocated_encoding(s);
4750         break;
4751     }
4752 }
4753 
4754 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4755  * Note that it is the caller's responsibility to ensure that the
4756  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4757  * mandated semantics for out of range shifts.
4758  */
4759 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4760                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4761 {
4762     switch (shift_type) {
4763     case A64_SHIFT_TYPE_LSL:
4764         tcg_gen_shl_i64(dst, src, shift_amount);
4765         break;
4766     case A64_SHIFT_TYPE_LSR:
4767         tcg_gen_shr_i64(dst, src, shift_amount);
4768         break;
4769     case A64_SHIFT_TYPE_ASR:
4770         if (!sf) {
4771             tcg_gen_ext32s_i64(dst, src);
4772         }
4773         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4774         break;
4775     case A64_SHIFT_TYPE_ROR:
4776         if (sf) {
4777             tcg_gen_rotr_i64(dst, src, shift_amount);
4778         } else {
4779             TCGv_i32 t0, t1;
4780             t0 = tcg_temp_new_i32();
4781             t1 = tcg_temp_new_i32();
4782             tcg_gen_extrl_i64_i32(t0, src);
4783             tcg_gen_extrl_i64_i32(t1, shift_amount);
4784             tcg_gen_rotr_i32(t0, t0, t1);
4785             tcg_gen_extu_i32_i64(dst, t0);
4786             tcg_temp_free_i32(t0);
4787             tcg_temp_free_i32(t1);
4788         }
4789         break;
4790     default:
4791         assert(FALSE); /* all shift types should be handled */
4792         break;
4793     }
4794 
4795     if (!sf) { /* zero extend final result */
4796         tcg_gen_ext32u_i64(dst, dst);
4797     }
4798 }
4799 
4800 /* Shift a TCGv src by immediate, put result in dst.
4801  * The shift amount must be in range (this should always be true as the
4802  * relevant instructions will UNDEF on bad shift immediates).
4803  */
4804 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4805                           enum a64_shift_type shift_type, unsigned int shift_i)
4806 {
4807     assert(shift_i < (sf ? 64 : 32));
4808 
4809     if (shift_i == 0) {
4810         tcg_gen_mov_i64(dst, src);
4811     } else {
4812         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4813     }
4814 }
4815 
4816 /* Logical (shifted register)
4817  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4818  * +----+-----+-----------+-------+---+------+--------+------+------+
4819  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4820  * +----+-----+-----------+-------+---+------+--------+------+------+
4821  */
4822 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4823 {
4824     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4825     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4826 
4827     sf = extract32(insn, 31, 1);
4828     opc = extract32(insn, 29, 2);
4829     shift_type = extract32(insn, 22, 2);
4830     invert = extract32(insn, 21, 1);
4831     rm = extract32(insn, 16, 5);
4832     shift_amount = extract32(insn, 10, 6);
4833     rn = extract32(insn, 5, 5);
4834     rd = extract32(insn, 0, 5);
4835 
4836     if (!sf && (shift_amount & (1 << 5))) {
4837         unallocated_encoding(s);
4838         return;
4839     }
4840 
4841     tcg_rd = cpu_reg(s, rd);
4842 
4843     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4844         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4845          * register-register MOV and MVN, so it is worth special casing.
4846          */
4847         tcg_rm = cpu_reg(s, rm);
4848         if (invert) {
4849             tcg_gen_not_i64(tcg_rd, tcg_rm);
4850             if (!sf) {
4851                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4852             }
4853         } else {
4854             if (sf) {
4855                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4856             } else {
4857                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4858             }
4859         }
4860         return;
4861     }
4862 
4863     tcg_rm = read_cpu_reg(s, rm, sf);
4864 
4865     if (shift_amount) {
4866         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4867     }
4868 
4869     tcg_rn = cpu_reg(s, rn);
4870 
4871     switch (opc | (invert << 2)) {
4872     case 0: /* AND */
4873     case 3: /* ANDS */
4874         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4875         break;
4876     case 1: /* ORR */
4877         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4878         break;
4879     case 2: /* EOR */
4880         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4881         break;
4882     case 4: /* BIC */
4883     case 7: /* BICS */
4884         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4885         break;
4886     case 5: /* ORN */
4887         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4888         break;
4889     case 6: /* EON */
4890         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4891         break;
4892     default:
4893         assert(FALSE);
4894         break;
4895     }
4896 
4897     if (!sf) {
4898         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4899     }
4900 
4901     if (opc == 3) {
4902         gen_logic_CC(sf, tcg_rd);
4903     }
4904 }
4905 
4906 /*
4907  * Add/subtract (extended register)
4908  *
4909  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4910  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4911  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4912  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4913  *
4914  *  sf: 0 -> 32bit, 1 -> 64bit
4915  *  op: 0 -> add  , 1 -> sub
4916  *   S: 1 -> set flags
4917  * opt: 00
4918  * option: extension type (see DecodeRegExtend)
4919  * imm3: optional shift to Rm
4920  *
4921  * Rd = Rn + LSL(extend(Rm), amount)
4922  */
4923 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4924 {
4925     int rd = extract32(insn, 0, 5);
4926     int rn = extract32(insn, 5, 5);
4927     int imm3 = extract32(insn, 10, 3);
4928     int option = extract32(insn, 13, 3);
4929     int rm = extract32(insn, 16, 5);
4930     int opt = extract32(insn, 22, 2);
4931     bool setflags = extract32(insn, 29, 1);
4932     bool sub_op = extract32(insn, 30, 1);
4933     bool sf = extract32(insn, 31, 1);
4934 
4935     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4936     TCGv_i64 tcg_rd;
4937     TCGv_i64 tcg_result;
4938 
4939     if (imm3 > 4 || opt != 0) {
4940         unallocated_encoding(s);
4941         return;
4942     }
4943 
4944     /* non-flag setting ops may use SP */
4945     if (!setflags) {
4946         tcg_rd = cpu_reg_sp(s, rd);
4947     } else {
4948         tcg_rd = cpu_reg(s, rd);
4949     }
4950     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4951 
4952     tcg_rm = read_cpu_reg(s, rm, sf);
4953     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4954 
4955     tcg_result = tcg_temp_new_i64();
4956 
4957     if (!setflags) {
4958         if (sub_op) {
4959             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4960         } else {
4961             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4962         }
4963     } else {
4964         if (sub_op) {
4965             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4966         } else {
4967             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4968         }
4969     }
4970 
4971     if (sf) {
4972         tcg_gen_mov_i64(tcg_rd, tcg_result);
4973     } else {
4974         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4975     }
4976 
4977     tcg_temp_free_i64(tcg_result);
4978 }
4979 
4980 /*
4981  * Add/subtract (shifted register)
4982  *
4983  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4984  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4985  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4986  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4987  *
4988  *    sf: 0 -> 32bit, 1 -> 64bit
4989  *    op: 0 -> add  , 1 -> sub
4990  *     S: 1 -> set flags
4991  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4992  *  imm6: Shift amount to apply to Rm before the add/sub
4993  */
4994 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4995 {
4996     int rd = extract32(insn, 0, 5);
4997     int rn = extract32(insn, 5, 5);
4998     int imm6 = extract32(insn, 10, 6);
4999     int rm = extract32(insn, 16, 5);
5000     int shift_type = extract32(insn, 22, 2);
5001     bool setflags = extract32(insn, 29, 1);
5002     bool sub_op = extract32(insn, 30, 1);
5003     bool sf = extract32(insn, 31, 1);
5004 
5005     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5006     TCGv_i64 tcg_rn, tcg_rm;
5007     TCGv_i64 tcg_result;
5008 
5009     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5010         unallocated_encoding(s);
5011         return;
5012     }
5013 
5014     tcg_rn = read_cpu_reg(s, rn, sf);
5015     tcg_rm = read_cpu_reg(s, rm, sf);
5016 
5017     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5018 
5019     tcg_result = tcg_temp_new_i64();
5020 
5021     if (!setflags) {
5022         if (sub_op) {
5023             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5024         } else {
5025             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5026         }
5027     } else {
5028         if (sub_op) {
5029             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5030         } else {
5031             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5032         }
5033     }
5034 
5035     if (sf) {
5036         tcg_gen_mov_i64(tcg_rd, tcg_result);
5037     } else {
5038         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5039     }
5040 
5041     tcg_temp_free_i64(tcg_result);
5042 }
5043 
5044 /* Data-processing (3 source)
5045  *
5046  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5047  *  +--+------+-----------+------+------+----+------+------+------+
5048  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5049  *  +--+------+-----------+------+------+----+------+------+------+
5050  */
5051 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5052 {
5053     int rd = extract32(insn, 0, 5);
5054     int rn = extract32(insn, 5, 5);
5055     int ra = extract32(insn, 10, 5);
5056     int rm = extract32(insn, 16, 5);
5057     int op_id = (extract32(insn, 29, 3) << 4) |
5058         (extract32(insn, 21, 3) << 1) |
5059         extract32(insn, 15, 1);
5060     bool sf = extract32(insn, 31, 1);
5061     bool is_sub = extract32(op_id, 0, 1);
5062     bool is_high = extract32(op_id, 2, 1);
5063     bool is_signed = false;
5064     TCGv_i64 tcg_op1;
5065     TCGv_i64 tcg_op2;
5066     TCGv_i64 tcg_tmp;
5067 
5068     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5069     switch (op_id) {
5070     case 0x42: /* SMADDL */
5071     case 0x43: /* SMSUBL */
5072     case 0x44: /* SMULH */
5073         is_signed = true;
5074         break;
5075     case 0x0: /* MADD (32bit) */
5076     case 0x1: /* MSUB (32bit) */
5077     case 0x40: /* MADD (64bit) */
5078     case 0x41: /* MSUB (64bit) */
5079     case 0x4a: /* UMADDL */
5080     case 0x4b: /* UMSUBL */
5081     case 0x4c: /* UMULH */
5082         break;
5083     default:
5084         unallocated_encoding(s);
5085         return;
5086     }
5087 
5088     if (is_high) {
5089         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5090         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5091         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5092         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5093 
5094         if (is_signed) {
5095             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5096         } else {
5097             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5098         }
5099 
5100         tcg_temp_free_i64(low_bits);
5101         return;
5102     }
5103 
5104     tcg_op1 = tcg_temp_new_i64();
5105     tcg_op2 = tcg_temp_new_i64();
5106     tcg_tmp = tcg_temp_new_i64();
5107 
5108     if (op_id < 0x42) {
5109         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5110         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5111     } else {
5112         if (is_signed) {
5113             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5114             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5115         } else {
5116             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5117             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5118         }
5119     }
5120 
5121     if (ra == 31 && !is_sub) {
5122         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5123         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5124     } else {
5125         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5126         if (is_sub) {
5127             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5128         } else {
5129             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5130         }
5131     }
5132 
5133     if (!sf) {
5134         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5135     }
5136 
5137     tcg_temp_free_i64(tcg_op1);
5138     tcg_temp_free_i64(tcg_op2);
5139     tcg_temp_free_i64(tcg_tmp);
5140 }
5141 
5142 /* Add/subtract (with carry)
5143  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5144  * +--+--+--+------------------------+------+-------------+------+-----+
5145  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5146  * +--+--+--+------------------------+------+-------------+------+-----+
5147  */
5148 
5149 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5150 {
5151     unsigned int sf, op, setflags, rm, rn, rd;
5152     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5153 
5154     sf = extract32(insn, 31, 1);
5155     op = extract32(insn, 30, 1);
5156     setflags = extract32(insn, 29, 1);
5157     rm = extract32(insn, 16, 5);
5158     rn = extract32(insn, 5, 5);
5159     rd = extract32(insn, 0, 5);
5160 
5161     tcg_rd = cpu_reg(s, rd);
5162     tcg_rn = cpu_reg(s, rn);
5163 
5164     if (op) {
5165         tcg_y = tcg_temp_new_i64();
5166         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5167     } else {
5168         tcg_y = cpu_reg(s, rm);
5169     }
5170 
5171     if (setflags) {
5172         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5173     } else {
5174         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5175     }
5176 }
5177 
5178 /*
5179  * Rotate right into flags
5180  *  31 30 29                21       15          10      5  4      0
5181  * +--+--+--+-----------------+--------+-----------+------+--+------+
5182  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5183  * +--+--+--+-----------------+--------+-----------+------+--+------+
5184  */
5185 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5186 {
5187     int mask = extract32(insn, 0, 4);
5188     int o2 = extract32(insn, 4, 1);
5189     int rn = extract32(insn, 5, 5);
5190     int imm6 = extract32(insn, 15, 6);
5191     int sf_op_s = extract32(insn, 29, 3);
5192     TCGv_i64 tcg_rn;
5193     TCGv_i32 nzcv;
5194 
5195     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5196         unallocated_encoding(s);
5197         return;
5198     }
5199 
5200     tcg_rn = read_cpu_reg(s, rn, 1);
5201     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5202 
5203     nzcv = tcg_temp_new_i32();
5204     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5205 
5206     if (mask & 8) { /* N */
5207         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5208     }
5209     if (mask & 4) { /* Z */
5210         tcg_gen_not_i32(cpu_ZF, nzcv);
5211         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5212     }
5213     if (mask & 2) { /* C */
5214         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5215     }
5216     if (mask & 1) { /* V */
5217         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5218     }
5219 
5220     tcg_temp_free_i32(nzcv);
5221 }
5222 
5223 /*
5224  * Evaluate into flags
5225  *  31 30 29                21        15   14        10      5  4      0
5226  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5227  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5228  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5229  */
5230 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5231 {
5232     int o3_mask = extract32(insn, 0, 5);
5233     int rn = extract32(insn, 5, 5);
5234     int o2 = extract32(insn, 15, 6);
5235     int sz = extract32(insn, 14, 1);
5236     int sf_op_s = extract32(insn, 29, 3);
5237     TCGv_i32 tmp;
5238     int shift;
5239 
5240     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5241         !dc_isar_feature(aa64_condm_4, s)) {
5242         unallocated_encoding(s);
5243         return;
5244     }
5245     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5246 
5247     tmp = tcg_temp_new_i32();
5248     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5249     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5250     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5251     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5252     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5253     tcg_temp_free_i32(tmp);
5254 }
5255 
5256 /* Conditional compare (immediate / register)
5257  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5258  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5259  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5260  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5261  *        [1]                             y                [0]       [0]
5262  */
5263 static void disas_cc(DisasContext *s, uint32_t insn)
5264 {
5265     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5266     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5267     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5268     DisasCompare c;
5269 
5270     if (!extract32(insn, 29, 1)) {
5271         unallocated_encoding(s);
5272         return;
5273     }
5274     if (insn & (1 << 10 | 1 << 4)) {
5275         unallocated_encoding(s);
5276         return;
5277     }
5278     sf = extract32(insn, 31, 1);
5279     op = extract32(insn, 30, 1);
5280     is_imm = extract32(insn, 11, 1);
5281     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5282     cond = extract32(insn, 12, 4);
5283     rn = extract32(insn, 5, 5);
5284     nzcv = extract32(insn, 0, 4);
5285 
5286     /* Set T0 = !COND.  */
5287     tcg_t0 = tcg_temp_new_i32();
5288     arm_test_cc(&c, cond);
5289     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5290 
5291     /* Load the arguments for the new comparison.  */
5292     if (is_imm) {
5293         tcg_y = tcg_temp_new_i64();
5294         tcg_gen_movi_i64(tcg_y, y);
5295     } else {
5296         tcg_y = cpu_reg(s, y);
5297     }
5298     tcg_rn = cpu_reg(s, rn);
5299 
5300     /* Set the flags for the new comparison.  */
5301     tcg_tmp = tcg_temp_new_i64();
5302     if (op) {
5303         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5304     } else {
5305         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5306     }
5307     tcg_temp_free_i64(tcg_tmp);
5308 
5309     /* If COND was false, force the flags to #nzcv.  Compute two masks
5310      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5311      * For tcg hosts that support ANDC, we can make do with just T1.
5312      * In either case, allow the tcg optimizer to delete any unused mask.
5313      */
5314     tcg_t1 = tcg_temp_new_i32();
5315     tcg_t2 = tcg_temp_new_i32();
5316     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5317     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5318 
5319     if (nzcv & 8) { /* N */
5320         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5321     } else {
5322         if (TCG_TARGET_HAS_andc_i32) {
5323             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5324         } else {
5325             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5326         }
5327     }
5328     if (nzcv & 4) { /* Z */
5329         if (TCG_TARGET_HAS_andc_i32) {
5330             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5331         } else {
5332             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5333         }
5334     } else {
5335         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5336     }
5337     if (nzcv & 2) { /* C */
5338         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5339     } else {
5340         if (TCG_TARGET_HAS_andc_i32) {
5341             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5342         } else {
5343             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5344         }
5345     }
5346     if (nzcv & 1) { /* V */
5347         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5348     } else {
5349         if (TCG_TARGET_HAS_andc_i32) {
5350             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5351         } else {
5352             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5353         }
5354     }
5355     tcg_temp_free_i32(tcg_t0);
5356     tcg_temp_free_i32(tcg_t1);
5357     tcg_temp_free_i32(tcg_t2);
5358 }
5359 
5360 /* Conditional select
5361  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5362  * +----+----+---+-----------------+------+------+-----+------+------+
5363  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5364  * +----+----+---+-----------------+------+------+-----+------+------+
5365  */
5366 static void disas_cond_select(DisasContext *s, uint32_t insn)
5367 {
5368     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5369     TCGv_i64 tcg_rd, zero;
5370     DisasCompare64 c;
5371 
5372     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5373         /* S == 1 or op2<1> == 1 */
5374         unallocated_encoding(s);
5375         return;
5376     }
5377     sf = extract32(insn, 31, 1);
5378     else_inv = extract32(insn, 30, 1);
5379     rm = extract32(insn, 16, 5);
5380     cond = extract32(insn, 12, 4);
5381     else_inc = extract32(insn, 10, 1);
5382     rn = extract32(insn, 5, 5);
5383     rd = extract32(insn, 0, 5);
5384 
5385     tcg_rd = cpu_reg(s, rd);
5386 
5387     a64_test_cc(&c, cond);
5388     zero = tcg_constant_i64(0);
5389 
5390     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5391         /* CSET & CSETM.  */
5392         tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5393         if (else_inv) {
5394             tcg_gen_neg_i64(tcg_rd, tcg_rd);
5395         }
5396     } else {
5397         TCGv_i64 t_true = cpu_reg(s, rn);
5398         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5399         if (else_inv && else_inc) {
5400             tcg_gen_neg_i64(t_false, t_false);
5401         } else if (else_inv) {
5402             tcg_gen_not_i64(t_false, t_false);
5403         } else if (else_inc) {
5404             tcg_gen_addi_i64(t_false, t_false, 1);
5405         }
5406         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5407     }
5408 
5409     if (!sf) {
5410         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5411     }
5412 }
5413 
5414 static void handle_clz(DisasContext *s, unsigned int sf,
5415                        unsigned int rn, unsigned int rd)
5416 {
5417     TCGv_i64 tcg_rd, tcg_rn;
5418     tcg_rd = cpu_reg(s, rd);
5419     tcg_rn = cpu_reg(s, rn);
5420 
5421     if (sf) {
5422         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5423     } else {
5424         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5425         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5426         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5427         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5428         tcg_temp_free_i32(tcg_tmp32);
5429     }
5430 }
5431 
5432 static void handle_cls(DisasContext *s, unsigned int sf,
5433                        unsigned int rn, unsigned int rd)
5434 {
5435     TCGv_i64 tcg_rd, tcg_rn;
5436     tcg_rd = cpu_reg(s, rd);
5437     tcg_rn = cpu_reg(s, rn);
5438 
5439     if (sf) {
5440         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5441     } else {
5442         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5443         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5444         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5445         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5446         tcg_temp_free_i32(tcg_tmp32);
5447     }
5448 }
5449 
5450 static void handle_rbit(DisasContext *s, unsigned int sf,
5451                         unsigned int rn, unsigned int rd)
5452 {
5453     TCGv_i64 tcg_rd, tcg_rn;
5454     tcg_rd = cpu_reg(s, rd);
5455     tcg_rn = cpu_reg(s, rn);
5456 
5457     if (sf) {
5458         gen_helper_rbit64(tcg_rd, tcg_rn);
5459     } else {
5460         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5461         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5462         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5463         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5464         tcg_temp_free_i32(tcg_tmp32);
5465     }
5466 }
5467 
5468 /* REV with sf==1, opcode==3 ("REV64") */
5469 static void handle_rev64(DisasContext *s, unsigned int sf,
5470                          unsigned int rn, unsigned int rd)
5471 {
5472     if (!sf) {
5473         unallocated_encoding(s);
5474         return;
5475     }
5476     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5477 }
5478 
5479 /* REV with sf==0, opcode==2
5480  * REV32 (sf==1, opcode==2)
5481  */
5482 static void handle_rev32(DisasContext *s, unsigned int sf,
5483                          unsigned int rn, unsigned int rd)
5484 {
5485     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5486     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5487 
5488     if (sf) {
5489         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5490         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5491     } else {
5492         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5493     }
5494 }
5495 
5496 /* REV16 (opcode==1) */
5497 static void handle_rev16(DisasContext *s, unsigned int sf,
5498                          unsigned int rn, unsigned int rd)
5499 {
5500     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5501     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5502     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5503     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5504 
5505     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5506     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5507     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5508     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5509     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5510 
5511     tcg_temp_free_i64(tcg_tmp);
5512 }
5513 
5514 /* Data-processing (1 source)
5515  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5516  * +----+---+---+-----------------+---------+--------+------+------+
5517  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5518  * +----+---+---+-----------------+---------+--------+------+------+
5519  */
5520 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5521 {
5522     unsigned int sf, opcode, opcode2, rn, rd;
5523     TCGv_i64 tcg_rd;
5524 
5525     if (extract32(insn, 29, 1)) {
5526         unallocated_encoding(s);
5527         return;
5528     }
5529 
5530     sf = extract32(insn, 31, 1);
5531     opcode = extract32(insn, 10, 6);
5532     opcode2 = extract32(insn, 16, 5);
5533     rn = extract32(insn, 5, 5);
5534     rd = extract32(insn, 0, 5);
5535 
5536 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5537 
5538     switch (MAP(sf, opcode2, opcode)) {
5539     case MAP(0, 0x00, 0x00): /* RBIT */
5540     case MAP(1, 0x00, 0x00):
5541         handle_rbit(s, sf, rn, rd);
5542         break;
5543     case MAP(0, 0x00, 0x01): /* REV16 */
5544     case MAP(1, 0x00, 0x01):
5545         handle_rev16(s, sf, rn, rd);
5546         break;
5547     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5548     case MAP(1, 0x00, 0x02):
5549         handle_rev32(s, sf, rn, rd);
5550         break;
5551     case MAP(1, 0x00, 0x03): /* REV64 */
5552         handle_rev64(s, sf, rn, rd);
5553         break;
5554     case MAP(0, 0x00, 0x04): /* CLZ */
5555     case MAP(1, 0x00, 0x04):
5556         handle_clz(s, sf, rn, rd);
5557         break;
5558     case MAP(0, 0x00, 0x05): /* CLS */
5559     case MAP(1, 0x00, 0x05):
5560         handle_cls(s, sf, rn, rd);
5561         break;
5562     case MAP(1, 0x01, 0x00): /* PACIA */
5563         if (s->pauth_active) {
5564             tcg_rd = cpu_reg(s, rd);
5565             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5566         } else if (!dc_isar_feature(aa64_pauth, s)) {
5567             goto do_unallocated;
5568         }
5569         break;
5570     case MAP(1, 0x01, 0x01): /* PACIB */
5571         if (s->pauth_active) {
5572             tcg_rd = cpu_reg(s, rd);
5573             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5574         } else if (!dc_isar_feature(aa64_pauth, s)) {
5575             goto do_unallocated;
5576         }
5577         break;
5578     case MAP(1, 0x01, 0x02): /* PACDA */
5579         if (s->pauth_active) {
5580             tcg_rd = cpu_reg(s, rd);
5581             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5582         } else if (!dc_isar_feature(aa64_pauth, s)) {
5583             goto do_unallocated;
5584         }
5585         break;
5586     case MAP(1, 0x01, 0x03): /* PACDB */
5587         if (s->pauth_active) {
5588             tcg_rd = cpu_reg(s, rd);
5589             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5590         } else if (!dc_isar_feature(aa64_pauth, s)) {
5591             goto do_unallocated;
5592         }
5593         break;
5594     case MAP(1, 0x01, 0x04): /* AUTIA */
5595         if (s->pauth_active) {
5596             tcg_rd = cpu_reg(s, rd);
5597             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5598         } else if (!dc_isar_feature(aa64_pauth, s)) {
5599             goto do_unallocated;
5600         }
5601         break;
5602     case MAP(1, 0x01, 0x05): /* AUTIB */
5603         if (s->pauth_active) {
5604             tcg_rd = cpu_reg(s, rd);
5605             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5606         } else if (!dc_isar_feature(aa64_pauth, s)) {
5607             goto do_unallocated;
5608         }
5609         break;
5610     case MAP(1, 0x01, 0x06): /* AUTDA */
5611         if (s->pauth_active) {
5612             tcg_rd = cpu_reg(s, rd);
5613             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5614         } else if (!dc_isar_feature(aa64_pauth, s)) {
5615             goto do_unallocated;
5616         }
5617         break;
5618     case MAP(1, 0x01, 0x07): /* AUTDB */
5619         if (s->pauth_active) {
5620             tcg_rd = cpu_reg(s, rd);
5621             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5622         } else if (!dc_isar_feature(aa64_pauth, s)) {
5623             goto do_unallocated;
5624         }
5625         break;
5626     case MAP(1, 0x01, 0x08): /* PACIZA */
5627         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5628             goto do_unallocated;
5629         } else if (s->pauth_active) {
5630             tcg_rd = cpu_reg(s, rd);
5631             gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5632         }
5633         break;
5634     case MAP(1, 0x01, 0x09): /* PACIZB */
5635         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5636             goto do_unallocated;
5637         } else if (s->pauth_active) {
5638             tcg_rd = cpu_reg(s, rd);
5639             gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5640         }
5641         break;
5642     case MAP(1, 0x01, 0x0a): /* PACDZA */
5643         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5644             goto do_unallocated;
5645         } else if (s->pauth_active) {
5646             tcg_rd = cpu_reg(s, rd);
5647             gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5648         }
5649         break;
5650     case MAP(1, 0x01, 0x0b): /* PACDZB */
5651         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5652             goto do_unallocated;
5653         } else if (s->pauth_active) {
5654             tcg_rd = cpu_reg(s, rd);
5655             gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5656         }
5657         break;
5658     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5659         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5660             goto do_unallocated;
5661         } else if (s->pauth_active) {
5662             tcg_rd = cpu_reg(s, rd);
5663             gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5664         }
5665         break;
5666     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5667         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5668             goto do_unallocated;
5669         } else if (s->pauth_active) {
5670             tcg_rd = cpu_reg(s, rd);
5671             gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5672         }
5673         break;
5674     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5675         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5676             goto do_unallocated;
5677         } else if (s->pauth_active) {
5678             tcg_rd = cpu_reg(s, rd);
5679             gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5680         }
5681         break;
5682     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5683         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5684             goto do_unallocated;
5685         } else if (s->pauth_active) {
5686             tcg_rd = cpu_reg(s, rd);
5687             gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5688         }
5689         break;
5690     case MAP(1, 0x01, 0x10): /* XPACI */
5691         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5692             goto do_unallocated;
5693         } else if (s->pauth_active) {
5694             tcg_rd = cpu_reg(s, rd);
5695             gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5696         }
5697         break;
5698     case MAP(1, 0x01, 0x11): /* XPACD */
5699         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5700             goto do_unallocated;
5701         } else if (s->pauth_active) {
5702             tcg_rd = cpu_reg(s, rd);
5703             gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5704         }
5705         break;
5706     default:
5707     do_unallocated:
5708         unallocated_encoding(s);
5709         break;
5710     }
5711 
5712 #undef MAP
5713 }
5714 
5715 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5716                        unsigned int rm, unsigned int rn, unsigned int rd)
5717 {
5718     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5719     tcg_rd = cpu_reg(s, rd);
5720 
5721     if (!sf && is_signed) {
5722         tcg_n = tcg_temp_new_i64();
5723         tcg_m = tcg_temp_new_i64();
5724         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5725         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5726     } else {
5727         tcg_n = read_cpu_reg(s, rn, sf);
5728         tcg_m = read_cpu_reg(s, rm, sf);
5729     }
5730 
5731     if (is_signed) {
5732         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5733     } else {
5734         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5735     }
5736 
5737     if (!sf) { /* zero extend final result */
5738         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5739     }
5740 }
5741 
5742 /* LSLV, LSRV, ASRV, RORV */
5743 static void handle_shift_reg(DisasContext *s,
5744                              enum a64_shift_type shift_type, unsigned int sf,
5745                              unsigned int rm, unsigned int rn, unsigned int rd)
5746 {
5747     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5748     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5749     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5750 
5751     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5752     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5753     tcg_temp_free_i64(tcg_shift);
5754 }
5755 
5756 /* CRC32[BHWX], CRC32C[BHWX] */
5757 static void handle_crc32(DisasContext *s,
5758                          unsigned int sf, unsigned int sz, bool crc32c,
5759                          unsigned int rm, unsigned int rn, unsigned int rd)
5760 {
5761     TCGv_i64 tcg_acc, tcg_val;
5762     TCGv_i32 tcg_bytes;
5763 
5764     if (!dc_isar_feature(aa64_crc32, s)
5765         || (sf == 1 && sz != 3)
5766         || (sf == 0 && sz == 3)) {
5767         unallocated_encoding(s);
5768         return;
5769     }
5770 
5771     if (sz == 3) {
5772         tcg_val = cpu_reg(s, rm);
5773     } else {
5774         uint64_t mask;
5775         switch (sz) {
5776         case 0:
5777             mask = 0xFF;
5778             break;
5779         case 1:
5780             mask = 0xFFFF;
5781             break;
5782         case 2:
5783             mask = 0xFFFFFFFF;
5784             break;
5785         default:
5786             g_assert_not_reached();
5787         }
5788         tcg_val = tcg_temp_new_i64();
5789         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5790     }
5791 
5792     tcg_acc = cpu_reg(s, rn);
5793     tcg_bytes = tcg_constant_i32(1 << sz);
5794 
5795     if (crc32c) {
5796         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5797     } else {
5798         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5799     }
5800 }
5801 
5802 /* Data-processing (2 source)
5803  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5804  * +----+---+---+-----------------+------+--------+------+------+
5805  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5806  * +----+---+---+-----------------+------+--------+------+------+
5807  */
5808 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5809 {
5810     unsigned int sf, rm, opcode, rn, rd, setflag;
5811     sf = extract32(insn, 31, 1);
5812     setflag = extract32(insn, 29, 1);
5813     rm = extract32(insn, 16, 5);
5814     opcode = extract32(insn, 10, 6);
5815     rn = extract32(insn, 5, 5);
5816     rd = extract32(insn, 0, 5);
5817 
5818     if (setflag && opcode != 0) {
5819         unallocated_encoding(s);
5820         return;
5821     }
5822 
5823     switch (opcode) {
5824     case 0: /* SUBP(S) */
5825         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5826             goto do_unallocated;
5827         } else {
5828             TCGv_i64 tcg_n, tcg_m, tcg_d;
5829 
5830             tcg_n = read_cpu_reg_sp(s, rn, true);
5831             tcg_m = read_cpu_reg_sp(s, rm, true);
5832             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5833             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5834             tcg_d = cpu_reg(s, rd);
5835 
5836             if (setflag) {
5837                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5838             } else {
5839                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5840             }
5841         }
5842         break;
5843     case 2: /* UDIV */
5844         handle_div(s, false, sf, rm, rn, rd);
5845         break;
5846     case 3: /* SDIV */
5847         handle_div(s, true, sf, rm, rn, rd);
5848         break;
5849     case 4: /* IRG */
5850         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5851             goto do_unallocated;
5852         }
5853         if (s->ata) {
5854             gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5855                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5856         } else {
5857             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5858                                              cpu_reg_sp(s, rn));
5859         }
5860         break;
5861     case 5: /* GMI */
5862         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5863             goto do_unallocated;
5864         } else {
5865             TCGv_i64 t = tcg_temp_new_i64();
5866 
5867             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5868             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5869             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5870 
5871             tcg_temp_free_i64(t);
5872         }
5873         break;
5874     case 8: /* LSLV */
5875         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5876         break;
5877     case 9: /* LSRV */
5878         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5879         break;
5880     case 10: /* ASRV */
5881         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5882         break;
5883     case 11: /* RORV */
5884         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5885         break;
5886     case 12: /* PACGA */
5887         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5888             goto do_unallocated;
5889         }
5890         gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5891                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5892         break;
5893     case 16:
5894     case 17:
5895     case 18:
5896     case 19:
5897     case 20:
5898     case 21:
5899     case 22:
5900     case 23: /* CRC32 */
5901     {
5902         int sz = extract32(opcode, 0, 2);
5903         bool crc32c = extract32(opcode, 2, 1);
5904         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5905         break;
5906     }
5907     default:
5908     do_unallocated:
5909         unallocated_encoding(s);
5910         break;
5911     }
5912 }
5913 
5914 /*
5915  * Data processing - register
5916  *  31  30 29  28      25    21  20  16      10         0
5917  * +--+---+--+---+-------+-----+-------+-------+---------+
5918  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5919  * +--+---+--+---+-------+-----+-------+-------+---------+
5920  */
5921 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5922 {
5923     int op0 = extract32(insn, 30, 1);
5924     int op1 = extract32(insn, 28, 1);
5925     int op2 = extract32(insn, 21, 4);
5926     int op3 = extract32(insn, 10, 6);
5927 
5928     if (!op1) {
5929         if (op2 & 8) {
5930             if (op2 & 1) {
5931                 /* Add/sub (extended register) */
5932                 disas_add_sub_ext_reg(s, insn);
5933             } else {
5934                 /* Add/sub (shifted register) */
5935                 disas_add_sub_reg(s, insn);
5936             }
5937         } else {
5938             /* Logical (shifted register) */
5939             disas_logic_reg(s, insn);
5940         }
5941         return;
5942     }
5943 
5944     switch (op2) {
5945     case 0x0:
5946         switch (op3) {
5947         case 0x00: /* Add/subtract (with carry) */
5948             disas_adc_sbc(s, insn);
5949             break;
5950 
5951         case 0x01: /* Rotate right into flags */
5952         case 0x21:
5953             disas_rotate_right_into_flags(s, insn);
5954             break;
5955 
5956         case 0x02: /* Evaluate into flags */
5957         case 0x12:
5958         case 0x22:
5959         case 0x32:
5960             disas_evaluate_into_flags(s, insn);
5961             break;
5962 
5963         default:
5964             goto do_unallocated;
5965         }
5966         break;
5967 
5968     case 0x2: /* Conditional compare */
5969         disas_cc(s, insn); /* both imm and reg forms */
5970         break;
5971 
5972     case 0x4: /* Conditional select */
5973         disas_cond_select(s, insn);
5974         break;
5975 
5976     case 0x6: /* Data-processing */
5977         if (op0) {    /* (1 source) */
5978             disas_data_proc_1src(s, insn);
5979         } else {      /* (2 source) */
5980             disas_data_proc_2src(s, insn);
5981         }
5982         break;
5983     case 0x8 ... 0xf: /* (3 source) */
5984         disas_data_proc_3src(s, insn);
5985         break;
5986 
5987     default:
5988     do_unallocated:
5989         unallocated_encoding(s);
5990         break;
5991     }
5992 }
5993 
5994 static void handle_fp_compare(DisasContext *s, int size,
5995                               unsigned int rn, unsigned int rm,
5996                               bool cmp_with_zero, bool signal_all_nans)
5997 {
5998     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5999     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6000 
6001     if (size == MO_64) {
6002         TCGv_i64 tcg_vn, tcg_vm;
6003 
6004         tcg_vn = read_fp_dreg(s, rn);
6005         if (cmp_with_zero) {
6006             tcg_vm = tcg_constant_i64(0);
6007         } else {
6008             tcg_vm = read_fp_dreg(s, rm);
6009         }
6010         if (signal_all_nans) {
6011             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6012         } else {
6013             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6014         }
6015         tcg_temp_free_i64(tcg_vn);
6016         tcg_temp_free_i64(tcg_vm);
6017     } else {
6018         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6019         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6020 
6021         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6022         if (cmp_with_zero) {
6023             tcg_gen_movi_i32(tcg_vm, 0);
6024         } else {
6025             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6026         }
6027 
6028         switch (size) {
6029         case MO_32:
6030             if (signal_all_nans) {
6031                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6032             } else {
6033                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6034             }
6035             break;
6036         case MO_16:
6037             if (signal_all_nans) {
6038                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6039             } else {
6040                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6041             }
6042             break;
6043         default:
6044             g_assert_not_reached();
6045         }
6046 
6047         tcg_temp_free_i32(tcg_vn);
6048         tcg_temp_free_i32(tcg_vm);
6049     }
6050 
6051     tcg_temp_free_ptr(fpst);
6052 
6053     gen_set_nzcv(tcg_flags);
6054 
6055     tcg_temp_free_i64(tcg_flags);
6056 }
6057 
6058 /* Floating point compare
6059  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6060  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6061  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6062  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6063  */
6064 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6065 {
6066     unsigned int mos, type, rm, op, rn, opc, op2r;
6067     int size;
6068 
6069     mos = extract32(insn, 29, 3);
6070     type = extract32(insn, 22, 2);
6071     rm = extract32(insn, 16, 5);
6072     op = extract32(insn, 14, 2);
6073     rn = extract32(insn, 5, 5);
6074     opc = extract32(insn, 3, 2);
6075     op2r = extract32(insn, 0, 3);
6076 
6077     if (mos || op || op2r) {
6078         unallocated_encoding(s);
6079         return;
6080     }
6081 
6082     switch (type) {
6083     case 0:
6084         size = MO_32;
6085         break;
6086     case 1:
6087         size = MO_64;
6088         break;
6089     case 3:
6090         size = MO_16;
6091         if (dc_isar_feature(aa64_fp16, s)) {
6092             break;
6093         }
6094         /* fallthru */
6095     default:
6096         unallocated_encoding(s);
6097         return;
6098     }
6099 
6100     if (!fp_access_check(s)) {
6101         return;
6102     }
6103 
6104     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6105 }
6106 
6107 /* Floating point conditional compare
6108  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6109  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6110  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6111  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6112  */
6113 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6114 {
6115     unsigned int mos, type, rm, cond, rn, op, nzcv;
6116     TCGLabel *label_continue = NULL;
6117     int size;
6118 
6119     mos = extract32(insn, 29, 3);
6120     type = extract32(insn, 22, 2);
6121     rm = extract32(insn, 16, 5);
6122     cond = extract32(insn, 12, 4);
6123     rn = extract32(insn, 5, 5);
6124     op = extract32(insn, 4, 1);
6125     nzcv = extract32(insn, 0, 4);
6126 
6127     if (mos) {
6128         unallocated_encoding(s);
6129         return;
6130     }
6131 
6132     switch (type) {
6133     case 0:
6134         size = MO_32;
6135         break;
6136     case 1:
6137         size = MO_64;
6138         break;
6139     case 3:
6140         size = MO_16;
6141         if (dc_isar_feature(aa64_fp16, s)) {
6142             break;
6143         }
6144         /* fallthru */
6145     default:
6146         unallocated_encoding(s);
6147         return;
6148     }
6149 
6150     if (!fp_access_check(s)) {
6151         return;
6152     }
6153 
6154     if (cond < 0x0e) { /* not always */
6155         TCGLabel *label_match = gen_new_label();
6156         label_continue = gen_new_label();
6157         arm_gen_test_cc(cond, label_match);
6158         /* nomatch: */
6159         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6160         tcg_gen_br(label_continue);
6161         gen_set_label(label_match);
6162     }
6163 
6164     handle_fp_compare(s, size, rn, rm, false, op);
6165 
6166     if (cond < 0x0e) {
6167         gen_set_label(label_continue);
6168     }
6169 }
6170 
6171 /* Floating point conditional select
6172  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6173  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6174  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6175  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6176  */
6177 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6178 {
6179     unsigned int mos, type, rm, cond, rn, rd;
6180     TCGv_i64 t_true, t_false;
6181     DisasCompare64 c;
6182     MemOp sz;
6183 
6184     mos = extract32(insn, 29, 3);
6185     type = extract32(insn, 22, 2);
6186     rm = extract32(insn, 16, 5);
6187     cond = extract32(insn, 12, 4);
6188     rn = extract32(insn, 5, 5);
6189     rd = extract32(insn, 0, 5);
6190 
6191     if (mos) {
6192         unallocated_encoding(s);
6193         return;
6194     }
6195 
6196     switch (type) {
6197     case 0:
6198         sz = MO_32;
6199         break;
6200     case 1:
6201         sz = MO_64;
6202         break;
6203     case 3:
6204         sz = MO_16;
6205         if (dc_isar_feature(aa64_fp16, s)) {
6206             break;
6207         }
6208         /* fallthru */
6209     default:
6210         unallocated_encoding(s);
6211         return;
6212     }
6213 
6214     if (!fp_access_check(s)) {
6215         return;
6216     }
6217 
6218     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6219     t_true = tcg_temp_new_i64();
6220     t_false = tcg_temp_new_i64();
6221     read_vec_element(s, t_true, rn, 0, sz);
6222     read_vec_element(s, t_false, rm, 0, sz);
6223 
6224     a64_test_cc(&c, cond);
6225     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6226                         t_true, t_false);
6227     tcg_temp_free_i64(t_false);
6228 
6229     /* Note that sregs & hregs write back zeros to the high bits,
6230        and we've already done the zero-extension.  */
6231     write_fp_dreg(s, rd, t_true);
6232     tcg_temp_free_i64(t_true);
6233 }
6234 
6235 /* Floating-point data-processing (1 source) - half precision */
6236 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6237 {
6238     TCGv_ptr fpst = NULL;
6239     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6240     TCGv_i32 tcg_res = tcg_temp_new_i32();
6241 
6242     switch (opcode) {
6243     case 0x0: /* FMOV */
6244         tcg_gen_mov_i32(tcg_res, tcg_op);
6245         break;
6246     case 0x1: /* FABS */
6247         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6248         break;
6249     case 0x2: /* FNEG */
6250         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6251         break;
6252     case 0x3: /* FSQRT */
6253         fpst = fpstatus_ptr(FPST_FPCR_F16);
6254         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6255         break;
6256     case 0x8: /* FRINTN */
6257     case 0x9: /* FRINTP */
6258     case 0xa: /* FRINTM */
6259     case 0xb: /* FRINTZ */
6260     case 0xc: /* FRINTA */
6261     {
6262         TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6263         fpst = fpstatus_ptr(FPST_FPCR_F16);
6264 
6265         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6266         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6267 
6268         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6269         tcg_temp_free_i32(tcg_rmode);
6270         break;
6271     }
6272     case 0xe: /* FRINTX */
6273         fpst = fpstatus_ptr(FPST_FPCR_F16);
6274         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6275         break;
6276     case 0xf: /* FRINTI */
6277         fpst = fpstatus_ptr(FPST_FPCR_F16);
6278         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6279         break;
6280     default:
6281         g_assert_not_reached();
6282     }
6283 
6284     write_fp_sreg(s, rd, tcg_res);
6285 
6286     if (fpst) {
6287         tcg_temp_free_ptr(fpst);
6288     }
6289     tcg_temp_free_i32(tcg_op);
6290     tcg_temp_free_i32(tcg_res);
6291 }
6292 
6293 /* Floating-point data-processing (1 source) - single precision */
6294 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6295 {
6296     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6297     TCGv_i32 tcg_op, tcg_res;
6298     TCGv_ptr fpst;
6299     int rmode = -1;
6300 
6301     tcg_op = read_fp_sreg(s, rn);
6302     tcg_res = tcg_temp_new_i32();
6303 
6304     switch (opcode) {
6305     case 0x0: /* FMOV */
6306         tcg_gen_mov_i32(tcg_res, tcg_op);
6307         goto done;
6308     case 0x1: /* FABS */
6309         gen_helper_vfp_abss(tcg_res, tcg_op);
6310         goto done;
6311     case 0x2: /* FNEG */
6312         gen_helper_vfp_negs(tcg_res, tcg_op);
6313         goto done;
6314     case 0x3: /* FSQRT */
6315         gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6316         goto done;
6317     case 0x6: /* BFCVT */
6318         gen_fpst = gen_helper_bfcvt;
6319         break;
6320     case 0x8: /* FRINTN */
6321     case 0x9: /* FRINTP */
6322     case 0xa: /* FRINTM */
6323     case 0xb: /* FRINTZ */
6324     case 0xc: /* FRINTA */
6325         rmode = arm_rmode_to_sf(opcode & 7);
6326         gen_fpst = gen_helper_rints;
6327         break;
6328     case 0xe: /* FRINTX */
6329         gen_fpst = gen_helper_rints_exact;
6330         break;
6331     case 0xf: /* FRINTI */
6332         gen_fpst = gen_helper_rints;
6333         break;
6334     case 0x10: /* FRINT32Z */
6335         rmode = float_round_to_zero;
6336         gen_fpst = gen_helper_frint32_s;
6337         break;
6338     case 0x11: /* FRINT32X */
6339         gen_fpst = gen_helper_frint32_s;
6340         break;
6341     case 0x12: /* FRINT64Z */
6342         rmode = float_round_to_zero;
6343         gen_fpst = gen_helper_frint64_s;
6344         break;
6345     case 0x13: /* FRINT64X */
6346         gen_fpst = gen_helper_frint64_s;
6347         break;
6348     default:
6349         g_assert_not_reached();
6350     }
6351 
6352     fpst = fpstatus_ptr(FPST_FPCR);
6353     if (rmode >= 0) {
6354         TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6355         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6356         gen_fpst(tcg_res, tcg_op, fpst);
6357         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6358         tcg_temp_free_i32(tcg_rmode);
6359     } else {
6360         gen_fpst(tcg_res, tcg_op, fpst);
6361     }
6362     tcg_temp_free_ptr(fpst);
6363 
6364  done:
6365     write_fp_sreg(s, rd, tcg_res);
6366     tcg_temp_free_i32(tcg_op);
6367     tcg_temp_free_i32(tcg_res);
6368 }
6369 
6370 /* Floating-point data-processing (1 source) - double precision */
6371 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6372 {
6373     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6374     TCGv_i64 tcg_op, tcg_res;
6375     TCGv_ptr fpst;
6376     int rmode = -1;
6377 
6378     switch (opcode) {
6379     case 0x0: /* FMOV */
6380         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6381         return;
6382     }
6383 
6384     tcg_op = read_fp_dreg(s, rn);
6385     tcg_res = tcg_temp_new_i64();
6386 
6387     switch (opcode) {
6388     case 0x1: /* FABS */
6389         gen_helper_vfp_absd(tcg_res, tcg_op);
6390         goto done;
6391     case 0x2: /* FNEG */
6392         gen_helper_vfp_negd(tcg_res, tcg_op);
6393         goto done;
6394     case 0x3: /* FSQRT */
6395         gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6396         goto done;
6397     case 0x8: /* FRINTN */
6398     case 0x9: /* FRINTP */
6399     case 0xa: /* FRINTM */
6400     case 0xb: /* FRINTZ */
6401     case 0xc: /* FRINTA */
6402         rmode = arm_rmode_to_sf(opcode & 7);
6403         gen_fpst = gen_helper_rintd;
6404         break;
6405     case 0xe: /* FRINTX */
6406         gen_fpst = gen_helper_rintd_exact;
6407         break;
6408     case 0xf: /* FRINTI */
6409         gen_fpst = gen_helper_rintd;
6410         break;
6411     case 0x10: /* FRINT32Z */
6412         rmode = float_round_to_zero;
6413         gen_fpst = gen_helper_frint32_d;
6414         break;
6415     case 0x11: /* FRINT32X */
6416         gen_fpst = gen_helper_frint32_d;
6417         break;
6418     case 0x12: /* FRINT64Z */
6419         rmode = float_round_to_zero;
6420         gen_fpst = gen_helper_frint64_d;
6421         break;
6422     case 0x13: /* FRINT64X */
6423         gen_fpst = gen_helper_frint64_d;
6424         break;
6425     default:
6426         g_assert_not_reached();
6427     }
6428 
6429     fpst = fpstatus_ptr(FPST_FPCR);
6430     if (rmode >= 0) {
6431         TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6432         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6433         gen_fpst(tcg_res, tcg_op, fpst);
6434         gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6435         tcg_temp_free_i32(tcg_rmode);
6436     } else {
6437         gen_fpst(tcg_res, tcg_op, fpst);
6438     }
6439     tcg_temp_free_ptr(fpst);
6440 
6441  done:
6442     write_fp_dreg(s, rd, tcg_res);
6443     tcg_temp_free_i64(tcg_op);
6444     tcg_temp_free_i64(tcg_res);
6445 }
6446 
6447 static void handle_fp_fcvt(DisasContext *s, int opcode,
6448                            int rd, int rn, int dtype, int ntype)
6449 {
6450     switch (ntype) {
6451     case 0x0:
6452     {
6453         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6454         if (dtype == 1) {
6455             /* Single to double */
6456             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6457             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6458             write_fp_dreg(s, rd, tcg_rd);
6459             tcg_temp_free_i64(tcg_rd);
6460         } else {
6461             /* Single to half */
6462             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6463             TCGv_i32 ahp = get_ahp_flag();
6464             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6465 
6466             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6467             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6468             write_fp_sreg(s, rd, tcg_rd);
6469             tcg_temp_free_i32(tcg_rd);
6470             tcg_temp_free_i32(ahp);
6471             tcg_temp_free_ptr(fpst);
6472         }
6473         tcg_temp_free_i32(tcg_rn);
6474         break;
6475     }
6476     case 0x1:
6477     {
6478         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6479         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6480         if (dtype == 0) {
6481             /* Double to single */
6482             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6483         } else {
6484             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6485             TCGv_i32 ahp = get_ahp_flag();
6486             /* Double to half */
6487             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6488             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6489             tcg_temp_free_ptr(fpst);
6490             tcg_temp_free_i32(ahp);
6491         }
6492         write_fp_sreg(s, rd, tcg_rd);
6493         tcg_temp_free_i32(tcg_rd);
6494         tcg_temp_free_i64(tcg_rn);
6495         break;
6496     }
6497     case 0x3:
6498     {
6499         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6500         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6501         TCGv_i32 tcg_ahp = get_ahp_flag();
6502         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6503         if (dtype == 0) {
6504             /* Half to single */
6505             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6506             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6507             write_fp_sreg(s, rd, tcg_rd);
6508             tcg_temp_free_i32(tcg_rd);
6509         } else {
6510             /* Half to double */
6511             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6512             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6513             write_fp_dreg(s, rd, tcg_rd);
6514             tcg_temp_free_i64(tcg_rd);
6515         }
6516         tcg_temp_free_i32(tcg_rn);
6517         tcg_temp_free_ptr(tcg_fpst);
6518         tcg_temp_free_i32(tcg_ahp);
6519         break;
6520     }
6521     default:
6522         g_assert_not_reached();
6523     }
6524 }
6525 
6526 /* Floating point data-processing (1 source)
6527  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6528  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6529  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6530  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6531  */
6532 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6533 {
6534     int mos = extract32(insn, 29, 3);
6535     int type = extract32(insn, 22, 2);
6536     int opcode = extract32(insn, 15, 6);
6537     int rn = extract32(insn, 5, 5);
6538     int rd = extract32(insn, 0, 5);
6539 
6540     if (mos) {
6541         goto do_unallocated;
6542     }
6543 
6544     switch (opcode) {
6545     case 0x4: case 0x5: case 0x7:
6546     {
6547         /* FCVT between half, single and double precision */
6548         int dtype = extract32(opcode, 0, 2);
6549         if (type == 2 || dtype == type) {
6550             goto do_unallocated;
6551         }
6552         if (!fp_access_check(s)) {
6553             return;
6554         }
6555 
6556         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6557         break;
6558     }
6559 
6560     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6561         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6562             goto do_unallocated;
6563         }
6564         /* fall through */
6565     case 0x0 ... 0x3:
6566     case 0x8 ... 0xc:
6567     case 0xe ... 0xf:
6568         /* 32-to-32 and 64-to-64 ops */
6569         switch (type) {
6570         case 0:
6571             if (!fp_access_check(s)) {
6572                 return;
6573             }
6574             handle_fp_1src_single(s, opcode, rd, rn);
6575             break;
6576         case 1:
6577             if (!fp_access_check(s)) {
6578                 return;
6579             }
6580             handle_fp_1src_double(s, opcode, rd, rn);
6581             break;
6582         case 3:
6583             if (!dc_isar_feature(aa64_fp16, s)) {
6584                 goto do_unallocated;
6585             }
6586 
6587             if (!fp_access_check(s)) {
6588                 return;
6589             }
6590             handle_fp_1src_half(s, opcode, rd, rn);
6591             break;
6592         default:
6593             goto do_unallocated;
6594         }
6595         break;
6596 
6597     case 0x6:
6598         switch (type) {
6599         case 1: /* BFCVT */
6600             if (!dc_isar_feature(aa64_bf16, s)) {
6601                 goto do_unallocated;
6602             }
6603             if (!fp_access_check(s)) {
6604                 return;
6605             }
6606             handle_fp_1src_single(s, opcode, rd, rn);
6607             break;
6608         default:
6609             goto do_unallocated;
6610         }
6611         break;
6612 
6613     default:
6614     do_unallocated:
6615         unallocated_encoding(s);
6616         break;
6617     }
6618 }
6619 
6620 /* Floating-point data-processing (2 source) - single precision */
6621 static void handle_fp_2src_single(DisasContext *s, int opcode,
6622                                   int rd, int rn, int rm)
6623 {
6624     TCGv_i32 tcg_op1;
6625     TCGv_i32 tcg_op2;
6626     TCGv_i32 tcg_res;
6627     TCGv_ptr fpst;
6628 
6629     tcg_res = tcg_temp_new_i32();
6630     fpst = fpstatus_ptr(FPST_FPCR);
6631     tcg_op1 = read_fp_sreg(s, rn);
6632     tcg_op2 = read_fp_sreg(s, rm);
6633 
6634     switch (opcode) {
6635     case 0x0: /* FMUL */
6636         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6637         break;
6638     case 0x1: /* FDIV */
6639         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6640         break;
6641     case 0x2: /* FADD */
6642         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6643         break;
6644     case 0x3: /* FSUB */
6645         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6646         break;
6647     case 0x4: /* FMAX */
6648         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6649         break;
6650     case 0x5: /* FMIN */
6651         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6652         break;
6653     case 0x6: /* FMAXNM */
6654         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6655         break;
6656     case 0x7: /* FMINNM */
6657         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6658         break;
6659     case 0x8: /* FNMUL */
6660         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6661         gen_helper_vfp_negs(tcg_res, tcg_res);
6662         break;
6663     }
6664 
6665     write_fp_sreg(s, rd, tcg_res);
6666 
6667     tcg_temp_free_ptr(fpst);
6668     tcg_temp_free_i32(tcg_op1);
6669     tcg_temp_free_i32(tcg_op2);
6670     tcg_temp_free_i32(tcg_res);
6671 }
6672 
6673 /* Floating-point data-processing (2 source) - double precision */
6674 static void handle_fp_2src_double(DisasContext *s, int opcode,
6675                                   int rd, int rn, int rm)
6676 {
6677     TCGv_i64 tcg_op1;
6678     TCGv_i64 tcg_op2;
6679     TCGv_i64 tcg_res;
6680     TCGv_ptr fpst;
6681 
6682     tcg_res = tcg_temp_new_i64();
6683     fpst = fpstatus_ptr(FPST_FPCR);
6684     tcg_op1 = read_fp_dreg(s, rn);
6685     tcg_op2 = read_fp_dreg(s, rm);
6686 
6687     switch (opcode) {
6688     case 0x0: /* FMUL */
6689         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6690         break;
6691     case 0x1: /* FDIV */
6692         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6693         break;
6694     case 0x2: /* FADD */
6695         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6696         break;
6697     case 0x3: /* FSUB */
6698         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6699         break;
6700     case 0x4: /* FMAX */
6701         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6702         break;
6703     case 0x5: /* FMIN */
6704         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6705         break;
6706     case 0x6: /* FMAXNM */
6707         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6708         break;
6709     case 0x7: /* FMINNM */
6710         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6711         break;
6712     case 0x8: /* FNMUL */
6713         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6714         gen_helper_vfp_negd(tcg_res, tcg_res);
6715         break;
6716     }
6717 
6718     write_fp_dreg(s, rd, tcg_res);
6719 
6720     tcg_temp_free_ptr(fpst);
6721     tcg_temp_free_i64(tcg_op1);
6722     tcg_temp_free_i64(tcg_op2);
6723     tcg_temp_free_i64(tcg_res);
6724 }
6725 
6726 /* Floating-point data-processing (2 source) - half precision */
6727 static void handle_fp_2src_half(DisasContext *s, int opcode,
6728                                 int rd, int rn, int rm)
6729 {
6730     TCGv_i32 tcg_op1;
6731     TCGv_i32 tcg_op2;
6732     TCGv_i32 tcg_res;
6733     TCGv_ptr fpst;
6734 
6735     tcg_res = tcg_temp_new_i32();
6736     fpst = fpstatus_ptr(FPST_FPCR_F16);
6737     tcg_op1 = read_fp_hreg(s, rn);
6738     tcg_op2 = read_fp_hreg(s, rm);
6739 
6740     switch (opcode) {
6741     case 0x0: /* FMUL */
6742         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6743         break;
6744     case 0x1: /* FDIV */
6745         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6746         break;
6747     case 0x2: /* FADD */
6748         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6749         break;
6750     case 0x3: /* FSUB */
6751         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6752         break;
6753     case 0x4: /* FMAX */
6754         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6755         break;
6756     case 0x5: /* FMIN */
6757         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6758         break;
6759     case 0x6: /* FMAXNM */
6760         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6761         break;
6762     case 0x7: /* FMINNM */
6763         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6764         break;
6765     case 0x8: /* FNMUL */
6766         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6767         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6768         break;
6769     default:
6770         g_assert_not_reached();
6771     }
6772 
6773     write_fp_sreg(s, rd, tcg_res);
6774 
6775     tcg_temp_free_ptr(fpst);
6776     tcg_temp_free_i32(tcg_op1);
6777     tcg_temp_free_i32(tcg_op2);
6778     tcg_temp_free_i32(tcg_res);
6779 }
6780 
6781 /* Floating point data-processing (2 source)
6782  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6783  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6784  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6785  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6786  */
6787 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6788 {
6789     int mos = extract32(insn, 29, 3);
6790     int type = extract32(insn, 22, 2);
6791     int rd = extract32(insn, 0, 5);
6792     int rn = extract32(insn, 5, 5);
6793     int rm = extract32(insn, 16, 5);
6794     int opcode = extract32(insn, 12, 4);
6795 
6796     if (opcode > 8 || mos) {
6797         unallocated_encoding(s);
6798         return;
6799     }
6800 
6801     switch (type) {
6802     case 0:
6803         if (!fp_access_check(s)) {
6804             return;
6805         }
6806         handle_fp_2src_single(s, opcode, rd, rn, rm);
6807         break;
6808     case 1:
6809         if (!fp_access_check(s)) {
6810             return;
6811         }
6812         handle_fp_2src_double(s, opcode, rd, rn, rm);
6813         break;
6814     case 3:
6815         if (!dc_isar_feature(aa64_fp16, s)) {
6816             unallocated_encoding(s);
6817             return;
6818         }
6819         if (!fp_access_check(s)) {
6820             return;
6821         }
6822         handle_fp_2src_half(s, opcode, rd, rn, rm);
6823         break;
6824     default:
6825         unallocated_encoding(s);
6826     }
6827 }
6828 
6829 /* Floating-point data-processing (3 source) - single precision */
6830 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6831                                   int rd, int rn, int rm, int ra)
6832 {
6833     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6834     TCGv_i32 tcg_res = tcg_temp_new_i32();
6835     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6836 
6837     tcg_op1 = read_fp_sreg(s, rn);
6838     tcg_op2 = read_fp_sreg(s, rm);
6839     tcg_op3 = read_fp_sreg(s, ra);
6840 
6841     /* These are fused multiply-add, and must be done as one
6842      * floating point operation with no rounding between the
6843      * multiplication and addition steps.
6844      * NB that doing the negations here as separate steps is
6845      * correct : an input NaN should come out with its sign bit
6846      * flipped if it is a negated-input.
6847      */
6848     if (o1 == true) {
6849         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6850     }
6851 
6852     if (o0 != o1) {
6853         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6854     }
6855 
6856     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6857 
6858     write_fp_sreg(s, rd, tcg_res);
6859 
6860     tcg_temp_free_ptr(fpst);
6861     tcg_temp_free_i32(tcg_op1);
6862     tcg_temp_free_i32(tcg_op2);
6863     tcg_temp_free_i32(tcg_op3);
6864     tcg_temp_free_i32(tcg_res);
6865 }
6866 
6867 /* Floating-point data-processing (3 source) - double precision */
6868 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6869                                   int rd, int rn, int rm, int ra)
6870 {
6871     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6872     TCGv_i64 tcg_res = tcg_temp_new_i64();
6873     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6874 
6875     tcg_op1 = read_fp_dreg(s, rn);
6876     tcg_op2 = read_fp_dreg(s, rm);
6877     tcg_op3 = read_fp_dreg(s, ra);
6878 
6879     /* These are fused multiply-add, and must be done as one
6880      * floating point operation with no rounding between the
6881      * multiplication and addition steps.
6882      * NB that doing the negations here as separate steps is
6883      * correct : an input NaN should come out with its sign bit
6884      * flipped if it is a negated-input.
6885      */
6886     if (o1 == true) {
6887         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6888     }
6889 
6890     if (o0 != o1) {
6891         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6892     }
6893 
6894     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6895 
6896     write_fp_dreg(s, rd, tcg_res);
6897 
6898     tcg_temp_free_ptr(fpst);
6899     tcg_temp_free_i64(tcg_op1);
6900     tcg_temp_free_i64(tcg_op2);
6901     tcg_temp_free_i64(tcg_op3);
6902     tcg_temp_free_i64(tcg_res);
6903 }
6904 
6905 /* Floating-point data-processing (3 source) - half precision */
6906 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6907                                 int rd, int rn, int rm, int ra)
6908 {
6909     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6910     TCGv_i32 tcg_res = tcg_temp_new_i32();
6911     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6912 
6913     tcg_op1 = read_fp_hreg(s, rn);
6914     tcg_op2 = read_fp_hreg(s, rm);
6915     tcg_op3 = read_fp_hreg(s, ra);
6916 
6917     /* These are fused multiply-add, and must be done as one
6918      * floating point operation with no rounding between the
6919      * multiplication and addition steps.
6920      * NB that doing the negations here as separate steps is
6921      * correct : an input NaN should come out with its sign bit
6922      * flipped if it is a negated-input.
6923      */
6924     if (o1 == true) {
6925         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6926     }
6927 
6928     if (o0 != o1) {
6929         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6930     }
6931 
6932     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6933 
6934     write_fp_sreg(s, rd, tcg_res);
6935 
6936     tcg_temp_free_ptr(fpst);
6937     tcg_temp_free_i32(tcg_op1);
6938     tcg_temp_free_i32(tcg_op2);
6939     tcg_temp_free_i32(tcg_op3);
6940     tcg_temp_free_i32(tcg_res);
6941 }
6942 
6943 /* Floating point data-processing (3 source)
6944  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6945  * +---+---+---+-----------+------+----+------+----+------+------+------+
6946  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6947  * +---+---+---+-----------+------+----+------+----+------+------+------+
6948  */
6949 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6950 {
6951     int mos = extract32(insn, 29, 3);
6952     int type = extract32(insn, 22, 2);
6953     int rd = extract32(insn, 0, 5);
6954     int rn = extract32(insn, 5, 5);
6955     int ra = extract32(insn, 10, 5);
6956     int rm = extract32(insn, 16, 5);
6957     bool o0 = extract32(insn, 15, 1);
6958     bool o1 = extract32(insn, 21, 1);
6959 
6960     if (mos) {
6961         unallocated_encoding(s);
6962         return;
6963     }
6964 
6965     switch (type) {
6966     case 0:
6967         if (!fp_access_check(s)) {
6968             return;
6969         }
6970         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6971         break;
6972     case 1:
6973         if (!fp_access_check(s)) {
6974             return;
6975         }
6976         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6977         break;
6978     case 3:
6979         if (!dc_isar_feature(aa64_fp16, s)) {
6980             unallocated_encoding(s);
6981             return;
6982         }
6983         if (!fp_access_check(s)) {
6984             return;
6985         }
6986         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6987         break;
6988     default:
6989         unallocated_encoding(s);
6990     }
6991 }
6992 
6993 /* Floating point immediate
6994  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6995  * +---+---+---+-----------+------+---+------------+-------+------+------+
6996  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6997  * +---+---+---+-----------+------+---+------------+-------+------+------+
6998  */
6999 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7000 {
7001     int rd = extract32(insn, 0, 5);
7002     int imm5 = extract32(insn, 5, 5);
7003     int imm8 = extract32(insn, 13, 8);
7004     int type = extract32(insn, 22, 2);
7005     int mos = extract32(insn, 29, 3);
7006     uint64_t imm;
7007     MemOp sz;
7008 
7009     if (mos || imm5) {
7010         unallocated_encoding(s);
7011         return;
7012     }
7013 
7014     switch (type) {
7015     case 0:
7016         sz = MO_32;
7017         break;
7018     case 1:
7019         sz = MO_64;
7020         break;
7021     case 3:
7022         sz = MO_16;
7023         if (dc_isar_feature(aa64_fp16, s)) {
7024             break;
7025         }
7026         /* fallthru */
7027     default:
7028         unallocated_encoding(s);
7029         return;
7030     }
7031 
7032     if (!fp_access_check(s)) {
7033         return;
7034     }
7035 
7036     imm = vfp_expand_imm(sz, imm8);
7037     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7038 }
7039 
7040 /* Handle floating point <=> fixed point conversions. Note that we can
7041  * also deal with fp <=> integer conversions as a special case (scale == 64)
7042  * OPTME: consider handling that special case specially or at least skipping
7043  * the call to scalbn in the helpers for zero shifts.
7044  */
7045 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7046                            bool itof, int rmode, int scale, int sf, int type)
7047 {
7048     bool is_signed = !(opcode & 1);
7049     TCGv_ptr tcg_fpstatus;
7050     TCGv_i32 tcg_shift, tcg_single;
7051     TCGv_i64 tcg_double;
7052 
7053     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7054 
7055     tcg_shift = tcg_constant_i32(64 - scale);
7056 
7057     if (itof) {
7058         TCGv_i64 tcg_int = cpu_reg(s, rn);
7059         if (!sf) {
7060             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7061 
7062             if (is_signed) {
7063                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7064             } else {
7065                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7066             }
7067 
7068             tcg_int = tcg_extend;
7069         }
7070 
7071         switch (type) {
7072         case 1: /* float64 */
7073             tcg_double = tcg_temp_new_i64();
7074             if (is_signed) {
7075                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7076                                      tcg_shift, tcg_fpstatus);
7077             } else {
7078                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7079                                      tcg_shift, tcg_fpstatus);
7080             }
7081             write_fp_dreg(s, rd, tcg_double);
7082             tcg_temp_free_i64(tcg_double);
7083             break;
7084 
7085         case 0: /* float32 */
7086             tcg_single = tcg_temp_new_i32();
7087             if (is_signed) {
7088                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7089                                      tcg_shift, tcg_fpstatus);
7090             } else {
7091                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7092                                      tcg_shift, tcg_fpstatus);
7093             }
7094             write_fp_sreg(s, rd, tcg_single);
7095             tcg_temp_free_i32(tcg_single);
7096             break;
7097 
7098         case 3: /* float16 */
7099             tcg_single = tcg_temp_new_i32();
7100             if (is_signed) {
7101                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7102                                      tcg_shift, tcg_fpstatus);
7103             } else {
7104                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7105                                      tcg_shift, tcg_fpstatus);
7106             }
7107             write_fp_sreg(s, rd, tcg_single);
7108             tcg_temp_free_i32(tcg_single);
7109             break;
7110 
7111         default:
7112             g_assert_not_reached();
7113         }
7114     } else {
7115         TCGv_i64 tcg_int = cpu_reg(s, rd);
7116         TCGv_i32 tcg_rmode;
7117 
7118         if (extract32(opcode, 2, 1)) {
7119             /* There are too many rounding modes to all fit into rmode,
7120              * so FCVTA[US] is a special case.
7121              */
7122             rmode = FPROUNDING_TIEAWAY;
7123         }
7124 
7125         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7126 
7127         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7128 
7129         switch (type) {
7130         case 1: /* float64 */
7131             tcg_double = read_fp_dreg(s, rn);
7132             if (is_signed) {
7133                 if (!sf) {
7134                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7135                                          tcg_shift, tcg_fpstatus);
7136                 } else {
7137                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7138                                          tcg_shift, tcg_fpstatus);
7139                 }
7140             } else {
7141                 if (!sf) {
7142                     gen_helper_vfp_tould(tcg_int, tcg_double,
7143                                          tcg_shift, tcg_fpstatus);
7144                 } else {
7145                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7146                                          tcg_shift, tcg_fpstatus);
7147                 }
7148             }
7149             if (!sf) {
7150                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7151             }
7152             tcg_temp_free_i64(tcg_double);
7153             break;
7154 
7155         case 0: /* float32 */
7156             tcg_single = read_fp_sreg(s, rn);
7157             if (sf) {
7158                 if (is_signed) {
7159                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7160                                          tcg_shift, tcg_fpstatus);
7161                 } else {
7162                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7163                                          tcg_shift, tcg_fpstatus);
7164                 }
7165             } else {
7166                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7167                 if (is_signed) {
7168                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7169                                          tcg_shift, tcg_fpstatus);
7170                 } else {
7171                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7172                                          tcg_shift, tcg_fpstatus);
7173                 }
7174                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7175                 tcg_temp_free_i32(tcg_dest);
7176             }
7177             tcg_temp_free_i32(tcg_single);
7178             break;
7179 
7180         case 3: /* float16 */
7181             tcg_single = read_fp_sreg(s, rn);
7182             if (sf) {
7183                 if (is_signed) {
7184                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7185                                          tcg_shift, tcg_fpstatus);
7186                 } else {
7187                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7188                                          tcg_shift, tcg_fpstatus);
7189                 }
7190             } else {
7191                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7192                 if (is_signed) {
7193                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7194                                          tcg_shift, tcg_fpstatus);
7195                 } else {
7196                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7197                                          tcg_shift, tcg_fpstatus);
7198                 }
7199                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7200                 tcg_temp_free_i32(tcg_dest);
7201             }
7202             tcg_temp_free_i32(tcg_single);
7203             break;
7204 
7205         default:
7206             g_assert_not_reached();
7207         }
7208 
7209         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7210         tcg_temp_free_i32(tcg_rmode);
7211     }
7212 
7213     tcg_temp_free_ptr(tcg_fpstatus);
7214 }
7215 
7216 /* Floating point <-> fixed point conversions
7217  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7218  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7219  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7220  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7221  */
7222 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7223 {
7224     int rd = extract32(insn, 0, 5);
7225     int rn = extract32(insn, 5, 5);
7226     int scale = extract32(insn, 10, 6);
7227     int opcode = extract32(insn, 16, 3);
7228     int rmode = extract32(insn, 19, 2);
7229     int type = extract32(insn, 22, 2);
7230     bool sbit = extract32(insn, 29, 1);
7231     bool sf = extract32(insn, 31, 1);
7232     bool itof;
7233 
7234     if (sbit || (!sf && scale < 32)) {
7235         unallocated_encoding(s);
7236         return;
7237     }
7238 
7239     switch (type) {
7240     case 0: /* float32 */
7241     case 1: /* float64 */
7242         break;
7243     case 3: /* float16 */
7244         if (dc_isar_feature(aa64_fp16, s)) {
7245             break;
7246         }
7247         /* fallthru */
7248     default:
7249         unallocated_encoding(s);
7250         return;
7251     }
7252 
7253     switch ((rmode << 3) | opcode) {
7254     case 0x2: /* SCVTF */
7255     case 0x3: /* UCVTF */
7256         itof = true;
7257         break;
7258     case 0x18: /* FCVTZS */
7259     case 0x19: /* FCVTZU */
7260         itof = false;
7261         break;
7262     default:
7263         unallocated_encoding(s);
7264         return;
7265     }
7266 
7267     if (!fp_access_check(s)) {
7268         return;
7269     }
7270 
7271     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7272 }
7273 
7274 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7275 {
7276     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7277      * without conversion.
7278      */
7279 
7280     if (itof) {
7281         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7282         TCGv_i64 tmp;
7283 
7284         switch (type) {
7285         case 0:
7286             /* 32 bit */
7287             tmp = tcg_temp_new_i64();
7288             tcg_gen_ext32u_i64(tmp, tcg_rn);
7289             write_fp_dreg(s, rd, tmp);
7290             tcg_temp_free_i64(tmp);
7291             break;
7292         case 1:
7293             /* 64 bit */
7294             write_fp_dreg(s, rd, tcg_rn);
7295             break;
7296         case 2:
7297             /* 64 bit to top half. */
7298             tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7299             clear_vec_high(s, true, rd);
7300             break;
7301         case 3:
7302             /* 16 bit */
7303             tmp = tcg_temp_new_i64();
7304             tcg_gen_ext16u_i64(tmp, tcg_rn);
7305             write_fp_dreg(s, rd, tmp);
7306             tcg_temp_free_i64(tmp);
7307             break;
7308         default:
7309             g_assert_not_reached();
7310         }
7311     } else {
7312         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7313 
7314         switch (type) {
7315         case 0:
7316             /* 32 bit */
7317             tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7318             break;
7319         case 1:
7320             /* 64 bit */
7321             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7322             break;
7323         case 2:
7324             /* 64 bits from top half */
7325             tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7326             break;
7327         case 3:
7328             /* 16 bit */
7329             tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7330             break;
7331         default:
7332             g_assert_not_reached();
7333         }
7334     }
7335 }
7336 
7337 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7338 {
7339     TCGv_i64 t = read_fp_dreg(s, rn);
7340     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7341 
7342     gen_helper_fjcvtzs(t, t, fpstatus);
7343 
7344     tcg_temp_free_ptr(fpstatus);
7345 
7346     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7347     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7348     tcg_gen_movi_i32(cpu_CF, 0);
7349     tcg_gen_movi_i32(cpu_NF, 0);
7350     tcg_gen_movi_i32(cpu_VF, 0);
7351 
7352     tcg_temp_free_i64(t);
7353 }
7354 
7355 /* Floating point <-> integer conversions
7356  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7357  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7358  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7359  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7360  */
7361 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7362 {
7363     int rd = extract32(insn, 0, 5);
7364     int rn = extract32(insn, 5, 5);
7365     int opcode = extract32(insn, 16, 3);
7366     int rmode = extract32(insn, 19, 2);
7367     int type = extract32(insn, 22, 2);
7368     bool sbit = extract32(insn, 29, 1);
7369     bool sf = extract32(insn, 31, 1);
7370     bool itof = false;
7371 
7372     if (sbit) {
7373         goto do_unallocated;
7374     }
7375 
7376     switch (opcode) {
7377     case 2: /* SCVTF */
7378     case 3: /* UCVTF */
7379         itof = true;
7380         /* fallthru */
7381     case 4: /* FCVTAS */
7382     case 5: /* FCVTAU */
7383         if (rmode != 0) {
7384             goto do_unallocated;
7385         }
7386         /* fallthru */
7387     case 0: /* FCVT[NPMZ]S */
7388     case 1: /* FCVT[NPMZ]U */
7389         switch (type) {
7390         case 0: /* float32 */
7391         case 1: /* float64 */
7392             break;
7393         case 3: /* float16 */
7394             if (!dc_isar_feature(aa64_fp16, s)) {
7395                 goto do_unallocated;
7396             }
7397             break;
7398         default:
7399             goto do_unallocated;
7400         }
7401         if (!fp_access_check(s)) {
7402             return;
7403         }
7404         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7405         break;
7406 
7407     default:
7408         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7409         case 0b01100110: /* FMOV half <-> 32-bit int */
7410         case 0b01100111:
7411         case 0b11100110: /* FMOV half <-> 64-bit int */
7412         case 0b11100111:
7413             if (!dc_isar_feature(aa64_fp16, s)) {
7414                 goto do_unallocated;
7415             }
7416             /* fallthru */
7417         case 0b00000110: /* FMOV 32-bit */
7418         case 0b00000111:
7419         case 0b10100110: /* FMOV 64-bit */
7420         case 0b10100111:
7421         case 0b11001110: /* FMOV top half of 128-bit */
7422         case 0b11001111:
7423             if (!fp_access_check(s)) {
7424                 return;
7425             }
7426             itof = opcode & 1;
7427             handle_fmov(s, rd, rn, type, itof);
7428             break;
7429 
7430         case 0b00111110: /* FJCVTZS */
7431             if (!dc_isar_feature(aa64_jscvt, s)) {
7432                 goto do_unallocated;
7433             } else if (fp_access_check(s)) {
7434                 handle_fjcvtzs(s, rd, rn);
7435             }
7436             break;
7437 
7438         default:
7439         do_unallocated:
7440             unallocated_encoding(s);
7441             return;
7442         }
7443         break;
7444     }
7445 }
7446 
7447 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7448  *   31  30  29 28     25 24                          0
7449  * +---+---+---+---------+-----------------------------+
7450  * |   | 0 |   | 1 1 1 1 |                             |
7451  * +---+---+---+---------+-----------------------------+
7452  */
7453 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7454 {
7455     if (extract32(insn, 24, 1)) {
7456         /* Floating point data-processing (3 source) */
7457         disas_fp_3src(s, insn);
7458     } else if (extract32(insn, 21, 1) == 0) {
7459         /* Floating point to fixed point conversions */
7460         disas_fp_fixed_conv(s, insn);
7461     } else {
7462         switch (extract32(insn, 10, 2)) {
7463         case 1:
7464             /* Floating point conditional compare */
7465             disas_fp_ccomp(s, insn);
7466             break;
7467         case 2:
7468             /* Floating point data-processing (2 source) */
7469             disas_fp_2src(s, insn);
7470             break;
7471         case 3:
7472             /* Floating point conditional select */
7473             disas_fp_csel(s, insn);
7474             break;
7475         case 0:
7476             switch (ctz32(extract32(insn, 12, 4))) {
7477             case 0: /* [15:12] == xxx1 */
7478                 /* Floating point immediate */
7479                 disas_fp_imm(s, insn);
7480                 break;
7481             case 1: /* [15:12] == xx10 */
7482                 /* Floating point compare */
7483                 disas_fp_compare(s, insn);
7484                 break;
7485             case 2: /* [15:12] == x100 */
7486                 /* Floating point data-processing (1 source) */
7487                 disas_fp_1src(s, insn);
7488                 break;
7489             case 3: /* [15:12] == 1000 */
7490                 unallocated_encoding(s);
7491                 break;
7492             default: /* [15:12] == 0000 */
7493                 /* Floating point <-> integer conversions */
7494                 disas_fp_int_conv(s, insn);
7495                 break;
7496             }
7497             break;
7498         }
7499     }
7500 }
7501 
7502 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7503                      int pos)
7504 {
7505     /* Extract 64 bits from the middle of two concatenated 64 bit
7506      * vector register slices left:right. The extracted bits start
7507      * at 'pos' bits into the right (least significant) side.
7508      * We return the result in tcg_right, and guarantee not to
7509      * trash tcg_left.
7510      */
7511     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7512     assert(pos > 0 && pos < 64);
7513 
7514     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7515     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7516     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7517 
7518     tcg_temp_free_i64(tcg_tmp);
7519 }
7520 
7521 /* EXT
7522  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7523  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7524  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7525  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7526  */
7527 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7528 {
7529     int is_q = extract32(insn, 30, 1);
7530     int op2 = extract32(insn, 22, 2);
7531     int imm4 = extract32(insn, 11, 4);
7532     int rm = extract32(insn, 16, 5);
7533     int rn = extract32(insn, 5, 5);
7534     int rd = extract32(insn, 0, 5);
7535     int pos = imm4 << 3;
7536     TCGv_i64 tcg_resl, tcg_resh;
7537 
7538     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7539         unallocated_encoding(s);
7540         return;
7541     }
7542 
7543     if (!fp_access_check(s)) {
7544         return;
7545     }
7546 
7547     tcg_resh = tcg_temp_new_i64();
7548     tcg_resl = tcg_temp_new_i64();
7549 
7550     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7551      * either extracting 128 bits from a 128:128 concatenation, or
7552      * extracting 64 bits from a 64:64 concatenation.
7553      */
7554     if (!is_q) {
7555         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7556         if (pos != 0) {
7557             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7558             do_ext64(s, tcg_resh, tcg_resl, pos);
7559         }
7560     } else {
7561         TCGv_i64 tcg_hh;
7562         typedef struct {
7563             int reg;
7564             int elt;
7565         } EltPosns;
7566         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7567         EltPosns *elt = eltposns;
7568 
7569         if (pos >= 64) {
7570             elt++;
7571             pos -= 64;
7572         }
7573 
7574         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7575         elt++;
7576         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7577         elt++;
7578         if (pos != 0) {
7579             do_ext64(s, tcg_resh, tcg_resl, pos);
7580             tcg_hh = tcg_temp_new_i64();
7581             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7582             do_ext64(s, tcg_hh, tcg_resh, pos);
7583             tcg_temp_free_i64(tcg_hh);
7584         }
7585     }
7586 
7587     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7588     tcg_temp_free_i64(tcg_resl);
7589     if (is_q) {
7590         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7591     }
7592     tcg_temp_free_i64(tcg_resh);
7593     clear_vec_high(s, is_q, rd);
7594 }
7595 
7596 /* TBL/TBX
7597  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7598  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7599  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7600  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7601  */
7602 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7603 {
7604     int op2 = extract32(insn, 22, 2);
7605     int is_q = extract32(insn, 30, 1);
7606     int rm = extract32(insn, 16, 5);
7607     int rn = extract32(insn, 5, 5);
7608     int rd = extract32(insn, 0, 5);
7609     int is_tbx = extract32(insn, 12, 1);
7610     int len = (extract32(insn, 13, 2) + 1) * 16;
7611 
7612     if (op2 != 0) {
7613         unallocated_encoding(s);
7614         return;
7615     }
7616 
7617     if (!fp_access_check(s)) {
7618         return;
7619     }
7620 
7621     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7622                        vec_full_reg_offset(s, rm), cpu_env,
7623                        is_q ? 16 : 8, vec_full_reg_size(s),
7624                        (len << 6) | (is_tbx << 5) | rn,
7625                        gen_helper_simd_tblx);
7626 }
7627 
7628 /* ZIP/UZP/TRN
7629  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7630  * +---+---+-------------+------+---+------+---+------------------+------+
7631  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7632  * +---+---+-------------+------+---+------+---+------------------+------+
7633  */
7634 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7635 {
7636     int rd = extract32(insn, 0, 5);
7637     int rn = extract32(insn, 5, 5);
7638     int rm = extract32(insn, 16, 5);
7639     int size = extract32(insn, 22, 2);
7640     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7641      * bit 2 indicates 1 vs 2 variant of the insn.
7642      */
7643     int opcode = extract32(insn, 12, 2);
7644     bool part = extract32(insn, 14, 1);
7645     bool is_q = extract32(insn, 30, 1);
7646     int esize = 8 << size;
7647     int i, ofs;
7648     int datasize = is_q ? 128 : 64;
7649     int elements = datasize / esize;
7650     TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7651 
7652     if (opcode == 0 || (size == 3 && !is_q)) {
7653         unallocated_encoding(s);
7654         return;
7655     }
7656 
7657     if (!fp_access_check(s)) {
7658         return;
7659     }
7660 
7661     tcg_resl = tcg_const_i64(0);
7662     tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7663     tcg_res = tcg_temp_new_i64();
7664 
7665     for (i = 0; i < elements; i++) {
7666         switch (opcode) {
7667         case 1: /* UZP1/2 */
7668         {
7669             int midpoint = elements / 2;
7670             if (i < midpoint) {
7671                 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7672             } else {
7673                 read_vec_element(s, tcg_res, rm,
7674                                  2 * (i - midpoint) + part, size);
7675             }
7676             break;
7677         }
7678         case 2: /* TRN1/2 */
7679             if (i & 1) {
7680                 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7681             } else {
7682                 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7683             }
7684             break;
7685         case 3: /* ZIP1/2 */
7686         {
7687             int base = part * elements / 2;
7688             if (i & 1) {
7689                 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7690             } else {
7691                 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7692             }
7693             break;
7694         }
7695         default:
7696             g_assert_not_reached();
7697         }
7698 
7699         ofs = i * esize;
7700         if (ofs < 64) {
7701             tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7702             tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7703         } else {
7704             tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7705             tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7706         }
7707     }
7708 
7709     tcg_temp_free_i64(tcg_res);
7710 
7711     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7712     tcg_temp_free_i64(tcg_resl);
7713 
7714     if (is_q) {
7715         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7716         tcg_temp_free_i64(tcg_resh);
7717     }
7718     clear_vec_high(s, is_q, rd);
7719 }
7720 
7721 /*
7722  * do_reduction_op helper
7723  *
7724  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7725  * important for correct NaN propagation that we do these
7726  * operations in exactly the order specified by the pseudocode.
7727  *
7728  * This is a recursive function, TCG temps should be freed by the
7729  * calling function once it is done with the values.
7730  */
7731 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7732                                 int esize, int size, int vmap, TCGv_ptr fpst)
7733 {
7734     if (esize == size) {
7735         int element;
7736         MemOp msize = esize == 16 ? MO_16 : MO_32;
7737         TCGv_i32 tcg_elem;
7738 
7739         /* We should have one register left here */
7740         assert(ctpop8(vmap) == 1);
7741         element = ctz32(vmap);
7742         assert(element < 8);
7743 
7744         tcg_elem = tcg_temp_new_i32();
7745         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7746         return tcg_elem;
7747     } else {
7748         int bits = size / 2;
7749         int shift = ctpop8(vmap) / 2;
7750         int vmap_lo = (vmap >> shift) & vmap;
7751         int vmap_hi = (vmap & ~vmap_lo);
7752         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7753 
7754         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7755         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7756         tcg_res = tcg_temp_new_i32();
7757 
7758         switch (fpopcode) {
7759         case 0x0c: /* fmaxnmv half-precision */
7760             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7761             break;
7762         case 0x0f: /* fmaxv half-precision */
7763             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7764             break;
7765         case 0x1c: /* fminnmv half-precision */
7766             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7767             break;
7768         case 0x1f: /* fminv half-precision */
7769             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7770             break;
7771         case 0x2c: /* fmaxnmv */
7772             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7773             break;
7774         case 0x2f: /* fmaxv */
7775             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7776             break;
7777         case 0x3c: /* fminnmv */
7778             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7779             break;
7780         case 0x3f: /* fminv */
7781             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7782             break;
7783         default:
7784             g_assert_not_reached();
7785         }
7786 
7787         tcg_temp_free_i32(tcg_hi);
7788         tcg_temp_free_i32(tcg_lo);
7789         return tcg_res;
7790     }
7791 }
7792 
7793 /* AdvSIMD across lanes
7794  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7795  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7796  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7797  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7798  */
7799 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7800 {
7801     int rd = extract32(insn, 0, 5);
7802     int rn = extract32(insn, 5, 5);
7803     int size = extract32(insn, 22, 2);
7804     int opcode = extract32(insn, 12, 5);
7805     bool is_q = extract32(insn, 30, 1);
7806     bool is_u = extract32(insn, 29, 1);
7807     bool is_fp = false;
7808     bool is_min = false;
7809     int esize;
7810     int elements;
7811     int i;
7812     TCGv_i64 tcg_res, tcg_elt;
7813 
7814     switch (opcode) {
7815     case 0x1b: /* ADDV */
7816         if (is_u) {
7817             unallocated_encoding(s);
7818             return;
7819         }
7820         /* fall through */
7821     case 0x3: /* SADDLV, UADDLV */
7822     case 0xa: /* SMAXV, UMAXV */
7823     case 0x1a: /* SMINV, UMINV */
7824         if (size == 3 || (size == 2 && !is_q)) {
7825             unallocated_encoding(s);
7826             return;
7827         }
7828         break;
7829     case 0xc: /* FMAXNMV, FMINNMV */
7830     case 0xf: /* FMAXV, FMINV */
7831         /* Bit 1 of size field encodes min vs max and the actual size
7832          * depends on the encoding of the U bit. If not set (and FP16
7833          * enabled) then we do half-precision float instead of single
7834          * precision.
7835          */
7836         is_min = extract32(size, 1, 1);
7837         is_fp = true;
7838         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7839             size = 1;
7840         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7841             unallocated_encoding(s);
7842             return;
7843         } else {
7844             size = 2;
7845         }
7846         break;
7847     default:
7848         unallocated_encoding(s);
7849         return;
7850     }
7851 
7852     if (!fp_access_check(s)) {
7853         return;
7854     }
7855 
7856     esize = 8 << size;
7857     elements = (is_q ? 128 : 64) / esize;
7858 
7859     tcg_res = tcg_temp_new_i64();
7860     tcg_elt = tcg_temp_new_i64();
7861 
7862     /* These instructions operate across all lanes of a vector
7863      * to produce a single result. We can guarantee that a 64
7864      * bit intermediate is sufficient:
7865      *  + for [US]ADDLV the maximum element size is 32 bits, and
7866      *    the result type is 64 bits
7867      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7868      *    same as the element size, which is 32 bits at most
7869      * For the integer operations we can choose to work at 64
7870      * or 32 bits and truncate at the end; for simplicity
7871      * we use 64 bits always. The floating point
7872      * ops do require 32 bit intermediates, though.
7873      */
7874     if (!is_fp) {
7875         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7876 
7877         for (i = 1; i < elements; i++) {
7878             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7879 
7880             switch (opcode) {
7881             case 0x03: /* SADDLV / UADDLV */
7882             case 0x1b: /* ADDV */
7883                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7884                 break;
7885             case 0x0a: /* SMAXV / UMAXV */
7886                 if (is_u) {
7887                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7888                 } else {
7889                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7890                 }
7891                 break;
7892             case 0x1a: /* SMINV / UMINV */
7893                 if (is_u) {
7894                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7895                 } else {
7896                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7897                 }
7898                 break;
7899             default:
7900                 g_assert_not_reached();
7901             }
7902 
7903         }
7904     } else {
7905         /* Floating point vector reduction ops which work across 32
7906          * bit (single) or 16 bit (half-precision) intermediates.
7907          * Note that correct NaN propagation requires that we do these
7908          * operations in exactly the order specified by the pseudocode.
7909          */
7910         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7911         int fpopcode = opcode | is_min << 4 | is_u << 5;
7912         int vmap = (1 << elements) - 1;
7913         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7914                                              (is_q ? 128 : 64), vmap, fpst);
7915         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7916         tcg_temp_free_i32(tcg_res32);
7917         tcg_temp_free_ptr(fpst);
7918     }
7919 
7920     tcg_temp_free_i64(tcg_elt);
7921 
7922     /* Now truncate the result to the width required for the final output */
7923     if (opcode == 0x03) {
7924         /* SADDLV, UADDLV: result is 2*esize */
7925         size++;
7926     }
7927 
7928     switch (size) {
7929     case 0:
7930         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7931         break;
7932     case 1:
7933         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7934         break;
7935     case 2:
7936         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7937         break;
7938     case 3:
7939         break;
7940     default:
7941         g_assert_not_reached();
7942     }
7943 
7944     write_fp_dreg(s, rd, tcg_res);
7945     tcg_temp_free_i64(tcg_res);
7946 }
7947 
7948 /* DUP (Element, Vector)
7949  *
7950  *  31  30   29              21 20    16 15        10  9    5 4    0
7951  * +---+---+-------------------+--------+-------------+------+------+
7952  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7953  * +---+---+-------------------+--------+-------------+------+------+
7954  *
7955  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7956  */
7957 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7958                              int imm5)
7959 {
7960     int size = ctz32(imm5);
7961     int index;
7962 
7963     if (size > 3 || (size == 3 && !is_q)) {
7964         unallocated_encoding(s);
7965         return;
7966     }
7967 
7968     if (!fp_access_check(s)) {
7969         return;
7970     }
7971 
7972     index = imm5 >> (size + 1);
7973     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7974                          vec_reg_offset(s, rn, index, size),
7975                          is_q ? 16 : 8, vec_full_reg_size(s));
7976 }
7977 
7978 /* DUP (element, scalar)
7979  *  31                   21 20    16 15        10  9    5 4    0
7980  * +-----------------------+--------+-------------+------+------+
7981  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7982  * +-----------------------+--------+-------------+------+------+
7983  */
7984 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7985                               int imm5)
7986 {
7987     int size = ctz32(imm5);
7988     int index;
7989     TCGv_i64 tmp;
7990 
7991     if (size > 3) {
7992         unallocated_encoding(s);
7993         return;
7994     }
7995 
7996     if (!fp_access_check(s)) {
7997         return;
7998     }
7999 
8000     index = imm5 >> (size + 1);
8001 
8002     /* This instruction just extracts the specified element and
8003      * zero-extends it into the bottom of the destination register.
8004      */
8005     tmp = tcg_temp_new_i64();
8006     read_vec_element(s, tmp, rn, index, size);
8007     write_fp_dreg(s, rd, tmp);
8008     tcg_temp_free_i64(tmp);
8009 }
8010 
8011 /* DUP (General)
8012  *
8013  *  31  30   29              21 20    16 15        10  9    5 4    0
8014  * +---+---+-------------------+--------+-------------+------+------+
8015  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
8016  * +---+---+-------------------+--------+-------------+------+------+
8017  *
8018  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8019  */
8020 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
8021                              int imm5)
8022 {
8023     int size = ctz32(imm5);
8024     uint32_t dofs, oprsz, maxsz;
8025 
8026     if (size > 3 || ((size == 3) && !is_q)) {
8027         unallocated_encoding(s);
8028         return;
8029     }
8030 
8031     if (!fp_access_check(s)) {
8032         return;
8033     }
8034 
8035     dofs = vec_full_reg_offset(s, rd);
8036     oprsz = is_q ? 16 : 8;
8037     maxsz = vec_full_reg_size(s);
8038 
8039     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
8040 }
8041 
8042 /* INS (Element)
8043  *
8044  *  31                   21 20    16 15  14    11  10 9    5 4    0
8045  * +-----------------------+--------+------------+---+------+------+
8046  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
8047  * +-----------------------+--------+------------+---+------+------+
8048  *
8049  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8050  * index: encoded in imm5<4:size+1>
8051  */
8052 static void handle_simd_inse(DisasContext *s, int rd, int rn,
8053                              int imm4, int imm5)
8054 {
8055     int size = ctz32(imm5);
8056     int src_index, dst_index;
8057     TCGv_i64 tmp;
8058 
8059     if (size > 3) {
8060         unallocated_encoding(s);
8061         return;
8062     }
8063 
8064     if (!fp_access_check(s)) {
8065         return;
8066     }
8067 
8068     dst_index = extract32(imm5, 1+size, 5);
8069     src_index = extract32(imm4, size, 4);
8070 
8071     tmp = tcg_temp_new_i64();
8072 
8073     read_vec_element(s, tmp, rn, src_index, size);
8074     write_vec_element(s, tmp, rd, dst_index, size);
8075 
8076     tcg_temp_free_i64(tmp);
8077 
8078     /* INS is considered a 128-bit write for SVE. */
8079     clear_vec_high(s, true, rd);
8080 }
8081 
8082 
8083 /* INS (General)
8084  *
8085  *  31                   21 20    16 15        10  9    5 4    0
8086  * +-----------------------+--------+-------------+------+------+
8087  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
8088  * +-----------------------+--------+-------------+------+------+
8089  *
8090  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8091  * index: encoded in imm5<4:size+1>
8092  */
8093 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8094 {
8095     int size = ctz32(imm5);
8096     int idx;
8097 
8098     if (size > 3) {
8099         unallocated_encoding(s);
8100         return;
8101     }
8102 
8103     if (!fp_access_check(s)) {
8104         return;
8105     }
8106 
8107     idx = extract32(imm5, 1 + size, 4 - size);
8108     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8109 
8110     /* INS is considered a 128-bit write for SVE. */
8111     clear_vec_high(s, true, rd);
8112 }
8113 
8114 /*
8115  * UMOV (General)
8116  * SMOV (General)
8117  *
8118  *  31  30   29              21 20    16 15    12   10 9    5 4    0
8119  * +---+---+-------------------+--------+-------------+------+------+
8120  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
8121  * +---+---+-------------------+--------+-------------+------+------+
8122  *
8123  * U: unsigned when set
8124  * size: encoded in imm5 (see ARM ARM LowestSetBit())
8125  */
8126 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8127                                   int rn, int rd, int imm5)
8128 {
8129     int size = ctz32(imm5);
8130     int element;
8131     TCGv_i64 tcg_rd;
8132 
8133     /* Check for UnallocatedEncodings */
8134     if (is_signed) {
8135         if (size > 2 || (size == 2 && !is_q)) {
8136             unallocated_encoding(s);
8137             return;
8138         }
8139     } else {
8140         if (size > 3
8141             || (size < 3 && is_q)
8142             || (size == 3 && !is_q)) {
8143             unallocated_encoding(s);
8144             return;
8145         }
8146     }
8147 
8148     if (!fp_access_check(s)) {
8149         return;
8150     }
8151 
8152     element = extract32(imm5, 1+size, 4);
8153 
8154     tcg_rd = cpu_reg(s, rd);
8155     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8156     if (is_signed && !is_q) {
8157         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8158     }
8159 }
8160 
8161 /* AdvSIMD copy
8162  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
8163  * +---+---+----+-----------------+------+---+------+---+------+------+
8164  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8165  * +---+---+----+-----------------+------+---+------+---+------+------+
8166  */
8167 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8168 {
8169     int rd = extract32(insn, 0, 5);
8170     int rn = extract32(insn, 5, 5);
8171     int imm4 = extract32(insn, 11, 4);
8172     int op = extract32(insn, 29, 1);
8173     int is_q = extract32(insn, 30, 1);
8174     int imm5 = extract32(insn, 16, 5);
8175 
8176     if (op) {
8177         if (is_q) {
8178             /* INS (element) */
8179             handle_simd_inse(s, rd, rn, imm4, imm5);
8180         } else {
8181             unallocated_encoding(s);
8182         }
8183     } else {
8184         switch (imm4) {
8185         case 0:
8186             /* DUP (element - vector) */
8187             handle_simd_dupe(s, is_q, rd, rn, imm5);
8188             break;
8189         case 1:
8190             /* DUP (general) */
8191             handle_simd_dupg(s, is_q, rd, rn, imm5);
8192             break;
8193         case 3:
8194             if (is_q) {
8195                 /* INS (general) */
8196                 handle_simd_insg(s, rd, rn, imm5);
8197             } else {
8198                 unallocated_encoding(s);
8199             }
8200             break;
8201         case 5:
8202         case 7:
8203             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8204             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8205             break;
8206         default:
8207             unallocated_encoding(s);
8208             break;
8209         }
8210     }
8211 }
8212 
8213 /* AdvSIMD modified immediate
8214  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8215  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8216  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8217  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8218  *
8219  * There are a number of operations that can be carried out here:
8220  *   MOVI - move (shifted) imm into register
8221  *   MVNI - move inverted (shifted) imm into register
8222  *   ORR  - bitwise OR of (shifted) imm with register
8223  *   BIC  - bitwise clear of (shifted) imm with register
8224  * With ARMv8.2 we also have:
8225  *   FMOV half-precision
8226  */
8227 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8228 {
8229     int rd = extract32(insn, 0, 5);
8230     int cmode = extract32(insn, 12, 4);
8231     int o2 = extract32(insn, 11, 1);
8232     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8233     bool is_neg = extract32(insn, 29, 1);
8234     bool is_q = extract32(insn, 30, 1);
8235     uint64_t imm = 0;
8236 
8237     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8238         /* Check for FMOV (vector, immediate) - half-precision */
8239         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8240             unallocated_encoding(s);
8241             return;
8242         }
8243     }
8244 
8245     if (!fp_access_check(s)) {
8246         return;
8247     }
8248 
8249     if (cmode == 15 && o2 && !is_neg) {
8250         /* FMOV (vector, immediate) - half-precision */
8251         imm = vfp_expand_imm(MO_16, abcdefgh);
8252         /* now duplicate across the lanes */
8253         imm = dup_const(MO_16, imm);
8254     } else {
8255         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8256     }
8257 
8258     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8259         /* MOVI or MVNI, with MVNI negation handled above.  */
8260         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8261                              vec_full_reg_size(s), imm);
8262     } else {
8263         /* ORR or BIC, with BIC negation to AND handled above.  */
8264         if (is_neg) {
8265             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8266         } else {
8267             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8268         }
8269     }
8270 }
8271 
8272 /* AdvSIMD scalar copy
8273  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
8274  * +-----+----+-----------------+------+---+------+---+------+------+
8275  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
8276  * +-----+----+-----------------+------+---+------+---+------+------+
8277  */
8278 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8279 {
8280     int rd = extract32(insn, 0, 5);
8281     int rn = extract32(insn, 5, 5);
8282     int imm4 = extract32(insn, 11, 4);
8283     int imm5 = extract32(insn, 16, 5);
8284     int op = extract32(insn, 29, 1);
8285 
8286     if (op != 0 || imm4 != 0) {
8287         unallocated_encoding(s);
8288         return;
8289     }
8290 
8291     /* DUP (element, scalar) */
8292     handle_simd_dupes(s, rd, rn, imm5);
8293 }
8294 
8295 /* AdvSIMD scalar pairwise
8296  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8297  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8298  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8299  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8300  */
8301 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8302 {
8303     int u = extract32(insn, 29, 1);
8304     int size = extract32(insn, 22, 2);
8305     int opcode = extract32(insn, 12, 5);
8306     int rn = extract32(insn, 5, 5);
8307     int rd = extract32(insn, 0, 5);
8308     TCGv_ptr fpst;
8309 
8310     /* For some ops (the FP ones), size[1] is part of the encoding.
8311      * For ADDP strictly it is not but size[1] is always 1 for valid
8312      * encodings.
8313      */
8314     opcode |= (extract32(size, 1, 1) << 5);
8315 
8316     switch (opcode) {
8317     case 0x3b: /* ADDP */
8318         if (u || size != 3) {
8319             unallocated_encoding(s);
8320             return;
8321         }
8322         if (!fp_access_check(s)) {
8323             return;
8324         }
8325 
8326         fpst = NULL;
8327         break;
8328     case 0xc: /* FMAXNMP */
8329     case 0xd: /* FADDP */
8330     case 0xf: /* FMAXP */
8331     case 0x2c: /* FMINNMP */
8332     case 0x2f: /* FMINP */
8333         /* FP op, size[0] is 32 or 64 bit*/
8334         if (!u) {
8335             if (!dc_isar_feature(aa64_fp16, s)) {
8336                 unallocated_encoding(s);
8337                 return;
8338             } else {
8339                 size = MO_16;
8340             }
8341         } else {
8342             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8343         }
8344 
8345         if (!fp_access_check(s)) {
8346             return;
8347         }
8348 
8349         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8350         break;
8351     default:
8352         unallocated_encoding(s);
8353         return;
8354     }
8355 
8356     if (size == MO_64) {
8357         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8358         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8359         TCGv_i64 tcg_res = tcg_temp_new_i64();
8360 
8361         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8362         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8363 
8364         switch (opcode) {
8365         case 0x3b: /* ADDP */
8366             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8367             break;
8368         case 0xc: /* FMAXNMP */
8369             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8370             break;
8371         case 0xd: /* FADDP */
8372             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8373             break;
8374         case 0xf: /* FMAXP */
8375             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8376             break;
8377         case 0x2c: /* FMINNMP */
8378             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8379             break;
8380         case 0x2f: /* FMINP */
8381             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8382             break;
8383         default:
8384             g_assert_not_reached();
8385         }
8386 
8387         write_fp_dreg(s, rd, tcg_res);
8388 
8389         tcg_temp_free_i64(tcg_op1);
8390         tcg_temp_free_i64(tcg_op2);
8391         tcg_temp_free_i64(tcg_res);
8392     } else {
8393         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8394         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8395         TCGv_i32 tcg_res = tcg_temp_new_i32();
8396 
8397         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8398         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8399 
8400         if (size == MO_16) {
8401             switch (opcode) {
8402             case 0xc: /* FMAXNMP */
8403                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8404                 break;
8405             case 0xd: /* FADDP */
8406                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8407                 break;
8408             case 0xf: /* FMAXP */
8409                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8410                 break;
8411             case 0x2c: /* FMINNMP */
8412                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8413                 break;
8414             case 0x2f: /* FMINP */
8415                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8416                 break;
8417             default:
8418                 g_assert_not_reached();
8419             }
8420         } else {
8421             switch (opcode) {
8422             case 0xc: /* FMAXNMP */
8423                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8424                 break;
8425             case 0xd: /* FADDP */
8426                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8427                 break;
8428             case 0xf: /* FMAXP */
8429                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8430                 break;
8431             case 0x2c: /* FMINNMP */
8432                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8433                 break;
8434             case 0x2f: /* FMINP */
8435                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8436                 break;
8437             default:
8438                 g_assert_not_reached();
8439             }
8440         }
8441 
8442         write_fp_sreg(s, rd, tcg_res);
8443 
8444         tcg_temp_free_i32(tcg_op1);
8445         tcg_temp_free_i32(tcg_op2);
8446         tcg_temp_free_i32(tcg_res);
8447     }
8448 
8449     if (fpst) {
8450         tcg_temp_free_ptr(fpst);
8451     }
8452 }
8453 
8454 /*
8455  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8456  *
8457  * This code is handles the common shifting code and is used by both
8458  * the vector and scalar code.
8459  */
8460 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8461                                     TCGv_i64 tcg_rnd, bool accumulate,
8462                                     bool is_u, int size, int shift)
8463 {
8464     bool extended_result = false;
8465     bool round = tcg_rnd != NULL;
8466     int ext_lshift = 0;
8467     TCGv_i64 tcg_src_hi;
8468 
8469     if (round && size == 3) {
8470         extended_result = true;
8471         ext_lshift = 64 - shift;
8472         tcg_src_hi = tcg_temp_new_i64();
8473     } else if (shift == 64) {
8474         if (!accumulate && is_u) {
8475             /* result is zero */
8476             tcg_gen_movi_i64(tcg_res, 0);
8477             return;
8478         }
8479     }
8480 
8481     /* Deal with the rounding step */
8482     if (round) {
8483         if (extended_result) {
8484             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8485             if (!is_u) {
8486                 /* take care of sign extending tcg_res */
8487                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8488                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8489                                  tcg_src, tcg_src_hi,
8490                                  tcg_rnd, tcg_zero);
8491             } else {
8492                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8493                                  tcg_src, tcg_zero,
8494                                  tcg_rnd, tcg_zero);
8495             }
8496         } else {
8497             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8498         }
8499     }
8500 
8501     /* Now do the shift right */
8502     if (round && extended_result) {
8503         /* extended case, >64 bit precision required */
8504         if (ext_lshift == 0) {
8505             /* special case, only high bits matter */
8506             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8507         } else {
8508             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8509             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8510             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8511         }
8512     } else {
8513         if (is_u) {
8514             if (shift == 64) {
8515                 /* essentially shifting in 64 zeros */
8516                 tcg_gen_movi_i64(tcg_src, 0);
8517             } else {
8518                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8519             }
8520         } else {
8521             if (shift == 64) {
8522                 /* effectively extending the sign-bit */
8523                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8524             } else {
8525                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8526             }
8527         }
8528     }
8529 
8530     if (accumulate) {
8531         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8532     } else {
8533         tcg_gen_mov_i64(tcg_res, tcg_src);
8534     }
8535 
8536     if (extended_result) {
8537         tcg_temp_free_i64(tcg_src_hi);
8538     }
8539 }
8540 
8541 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8542 static void handle_scalar_simd_shri(DisasContext *s,
8543                                     bool is_u, int immh, int immb,
8544                                     int opcode, int rn, int rd)
8545 {
8546     const int size = 3;
8547     int immhb = immh << 3 | immb;
8548     int shift = 2 * (8 << size) - immhb;
8549     bool accumulate = false;
8550     bool round = false;
8551     bool insert = false;
8552     TCGv_i64 tcg_rn;
8553     TCGv_i64 tcg_rd;
8554     TCGv_i64 tcg_round;
8555 
8556     if (!extract32(immh, 3, 1)) {
8557         unallocated_encoding(s);
8558         return;
8559     }
8560 
8561     if (!fp_access_check(s)) {
8562         return;
8563     }
8564 
8565     switch (opcode) {
8566     case 0x02: /* SSRA / USRA (accumulate) */
8567         accumulate = true;
8568         break;
8569     case 0x04: /* SRSHR / URSHR (rounding) */
8570         round = true;
8571         break;
8572     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8573         accumulate = round = true;
8574         break;
8575     case 0x08: /* SRI */
8576         insert = true;
8577         break;
8578     }
8579 
8580     if (round) {
8581         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8582     } else {
8583         tcg_round = NULL;
8584     }
8585 
8586     tcg_rn = read_fp_dreg(s, rn);
8587     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8588 
8589     if (insert) {
8590         /* shift count same as element size is valid but does nothing;
8591          * special case to avoid potential shift by 64.
8592          */
8593         int esize = 8 << size;
8594         if (shift != esize) {
8595             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8596             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8597         }
8598     } else {
8599         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8600                                 accumulate, is_u, size, shift);
8601     }
8602 
8603     write_fp_dreg(s, rd, tcg_rd);
8604 
8605     tcg_temp_free_i64(tcg_rn);
8606     tcg_temp_free_i64(tcg_rd);
8607 }
8608 
8609 /* SHL/SLI - Scalar shift left */
8610 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8611                                     int immh, int immb, int opcode,
8612                                     int rn, int rd)
8613 {
8614     int size = 32 - clz32(immh) - 1;
8615     int immhb = immh << 3 | immb;
8616     int shift = immhb - (8 << size);
8617     TCGv_i64 tcg_rn;
8618     TCGv_i64 tcg_rd;
8619 
8620     if (!extract32(immh, 3, 1)) {
8621         unallocated_encoding(s);
8622         return;
8623     }
8624 
8625     if (!fp_access_check(s)) {
8626         return;
8627     }
8628 
8629     tcg_rn = read_fp_dreg(s, rn);
8630     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8631 
8632     if (insert) {
8633         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8634     } else {
8635         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8636     }
8637 
8638     write_fp_dreg(s, rd, tcg_rd);
8639 
8640     tcg_temp_free_i64(tcg_rn);
8641     tcg_temp_free_i64(tcg_rd);
8642 }
8643 
8644 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8645  * (signed/unsigned) narrowing */
8646 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8647                                    bool is_u_shift, bool is_u_narrow,
8648                                    int immh, int immb, int opcode,
8649                                    int rn, int rd)
8650 {
8651     int immhb = immh << 3 | immb;
8652     int size = 32 - clz32(immh) - 1;
8653     int esize = 8 << size;
8654     int shift = (2 * esize) - immhb;
8655     int elements = is_scalar ? 1 : (64 / esize);
8656     bool round = extract32(opcode, 0, 1);
8657     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8658     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8659     TCGv_i32 tcg_rd_narrowed;
8660     TCGv_i64 tcg_final;
8661 
8662     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8663         { gen_helper_neon_narrow_sat_s8,
8664           gen_helper_neon_unarrow_sat8 },
8665         { gen_helper_neon_narrow_sat_s16,
8666           gen_helper_neon_unarrow_sat16 },
8667         { gen_helper_neon_narrow_sat_s32,
8668           gen_helper_neon_unarrow_sat32 },
8669         { NULL, NULL },
8670     };
8671     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8672         gen_helper_neon_narrow_sat_u8,
8673         gen_helper_neon_narrow_sat_u16,
8674         gen_helper_neon_narrow_sat_u32,
8675         NULL
8676     };
8677     NeonGenNarrowEnvFn *narrowfn;
8678 
8679     int i;
8680 
8681     assert(size < 4);
8682 
8683     if (extract32(immh, 3, 1)) {
8684         unallocated_encoding(s);
8685         return;
8686     }
8687 
8688     if (!fp_access_check(s)) {
8689         return;
8690     }
8691 
8692     if (is_u_shift) {
8693         narrowfn = unsigned_narrow_fns[size];
8694     } else {
8695         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8696     }
8697 
8698     tcg_rn = tcg_temp_new_i64();
8699     tcg_rd = tcg_temp_new_i64();
8700     tcg_rd_narrowed = tcg_temp_new_i32();
8701     tcg_final = tcg_const_i64(0);
8702 
8703     if (round) {
8704         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8705     } else {
8706         tcg_round = NULL;
8707     }
8708 
8709     for (i = 0; i < elements; i++) {
8710         read_vec_element(s, tcg_rn, rn, i, ldop);
8711         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8712                                 false, is_u_shift, size+1, shift);
8713         narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8714         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8715         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8716     }
8717 
8718     if (!is_q) {
8719         write_vec_element(s, tcg_final, rd, 0, MO_64);
8720     } else {
8721         write_vec_element(s, tcg_final, rd, 1, MO_64);
8722     }
8723 
8724     tcg_temp_free_i64(tcg_rn);
8725     tcg_temp_free_i64(tcg_rd);
8726     tcg_temp_free_i32(tcg_rd_narrowed);
8727     tcg_temp_free_i64(tcg_final);
8728 
8729     clear_vec_high(s, is_q, rd);
8730 }
8731 
8732 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8733 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8734                              bool src_unsigned, bool dst_unsigned,
8735                              int immh, int immb, int rn, int rd)
8736 {
8737     int immhb = immh << 3 | immb;
8738     int size = 32 - clz32(immh) - 1;
8739     int shift = immhb - (8 << size);
8740     int pass;
8741 
8742     assert(immh != 0);
8743     assert(!(scalar && is_q));
8744 
8745     if (!scalar) {
8746         if (!is_q && extract32(immh, 3, 1)) {
8747             unallocated_encoding(s);
8748             return;
8749         }
8750 
8751         /* Since we use the variable-shift helpers we must
8752          * replicate the shift count into each element of
8753          * the tcg_shift value.
8754          */
8755         switch (size) {
8756         case 0:
8757             shift |= shift << 8;
8758             /* fall through */
8759         case 1:
8760             shift |= shift << 16;
8761             break;
8762         case 2:
8763         case 3:
8764             break;
8765         default:
8766             g_assert_not_reached();
8767         }
8768     }
8769 
8770     if (!fp_access_check(s)) {
8771         return;
8772     }
8773 
8774     if (size == 3) {
8775         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8776         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8777             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8778             { NULL, gen_helper_neon_qshl_u64 },
8779         };
8780         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8781         int maxpass = is_q ? 2 : 1;
8782 
8783         for (pass = 0; pass < maxpass; pass++) {
8784             TCGv_i64 tcg_op = tcg_temp_new_i64();
8785 
8786             read_vec_element(s, tcg_op, rn, pass, MO_64);
8787             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8788             write_vec_element(s, tcg_op, rd, pass, MO_64);
8789 
8790             tcg_temp_free_i64(tcg_op);
8791         }
8792         clear_vec_high(s, is_q, rd);
8793     } else {
8794         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8795         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8796             {
8797                 { gen_helper_neon_qshl_s8,
8798                   gen_helper_neon_qshl_s16,
8799                   gen_helper_neon_qshl_s32 },
8800                 { gen_helper_neon_qshlu_s8,
8801                   gen_helper_neon_qshlu_s16,
8802                   gen_helper_neon_qshlu_s32 }
8803             }, {
8804                 { NULL, NULL, NULL },
8805                 { gen_helper_neon_qshl_u8,
8806                   gen_helper_neon_qshl_u16,
8807                   gen_helper_neon_qshl_u32 }
8808             }
8809         };
8810         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8811         MemOp memop = scalar ? size : MO_32;
8812         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8813 
8814         for (pass = 0; pass < maxpass; pass++) {
8815             TCGv_i32 tcg_op = tcg_temp_new_i32();
8816 
8817             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8818             genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8819             if (scalar) {
8820                 switch (size) {
8821                 case 0:
8822                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8823                     break;
8824                 case 1:
8825                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8826                     break;
8827                 case 2:
8828                     break;
8829                 default:
8830                     g_assert_not_reached();
8831                 }
8832                 write_fp_sreg(s, rd, tcg_op);
8833             } else {
8834                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8835             }
8836 
8837             tcg_temp_free_i32(tcg_op);
8838         }
8839 
8840         if (!scalar) {
8841             clear_vec_high(s, is_q, rd);
8842         }
8843     }
8844 }
8845 
8846 /* Common vector code for handling integer to FP conversion */
8847 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8848                                    int elements, int is_signed,
8849                                    int fracbits, int size)
8850 {
8851     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8852     TCGv_i32 tcg_shift = NULL;
8853 
8854     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8855     int pass;
8856 
8857     if (fracbits || size == MO_64) {
8858         tcg_shift = tcg_constant_i32(fracbits);
8859     }
8860 
8861     if (size == MO_64) {
8862         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8863         TCGv_i64 tcg_double = tcg_temp_new_i64();
8864 
8865         for (pass = 0; pass < elements; pass++) {
8866             read_vec_element(s, tcg_int64, rn, pass, mop);
8867 
8868             if (is_signed) {
8869                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8870                                      tcg_shift, tcg_fpst);
8871             } else {
8872                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8873                                      tcg_shift, tcg_fpst);
8874             }
8875             if (elements == 1) {
8876                 write_fp_dreg(s, rd, tcg_double);
8877             } else {
8878                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8879             }
8880         }
8881 
8882         tcg_temp_free_i64(tcg_int64);
8883         tcg_temp_free_i64(tcg_double);
8884 
8885     } else {
8886         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8887         TCGv_i32 tcg_float = tcg_temp_new_i32();
8888 
8889         for (pass = 0; pass < elements; pass++) {
8890             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8891 
8892             switch (size) {
8893             case MO_32:
8894                 if (fracbits) {
8895                     if (is_signed) {
8896                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8897                                              tcg_shift, tcg_fpst);
8898                     } else {
8899                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8900                                              tcg_shift, tcg_fpst);
8901                     }
8902                 } else {
8903                     if (is_signed) {
8904                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8905                     } else {
8906                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8907                     }
8908                 }
8909                 break;
8910             case MO_16:
8911                 if (fracbits) {
8912                     if (is_signed) {
8913                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8914                                              tcg_shift, tcg_fpst);
8915                     } else {
8916                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8917                                              tcg_shift, tcg_fpst);
8918                     }
8919                 } else {
8920                     if (is_signed) {
8921                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8922                     } else {
8923                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8924                     }
8925                 }
8926                 break;
8927             default:
8928                 g_assert_not_reached();
8929             }
8930 
8931             if (elements == 1) {
8932                 write_fp_sreg(s, rd, tcg_float);
8933             } else {
8934                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8935             }
8936         }
8937 
8938         tcg_temp_free_i32(tcg_int32);
8939         tcg_temp_free_i32(tcg_float);
8940     }
8941 
8942     tcg_temp_free_ptr(tcg_fpst);
8943 
8944     clear_vec_high(s, elements << size == 16, rd);
8945 }
8946 
8947 /* UCVTF/SCVTF - Integer to FP conversion */
8948 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8949                                          bool is_q, bool is_u,
8950                                          int immh, int immb, int opcode,
8951                                          int rn, int rd)
8952 {
8953     int size, elements, fracbits;
8954     int immhb = immh << 3 | immb;
8955 
8956     if (immh & 8) {
8957         size = MO_64;
8958         if (!is_scalar && !is_q) {
8959             unallocated_encoding(s);
8960             return;
8961         }
8962     } else if (immh & 4) {
8963         size = MO_32;
8964     } else if (immh & 2) {
8965         size = MO_16;
8966         if (!dc_isar_feature(aa64_fp16, s)) {
8967             unallocated_encoding(s);
8968             return;
8969         }
8970     } else {
8971         /* immh == 0 would be a failure of the decode logic */
8972         g_assert(immh == 1);
8973         unallocated_encoding(s);
8974         return;
8975     }
8976 
8977     if (is_scalar) {
8978         elements = 1;
8979     } else {
8980         elements = (8 << is_q) >> size;
8981     }
8982     fracbits = (16 << size) - immhb;
8983 
8984     if (!fp_access_check(s)) {
8985         return;
8986     }
8987 
8988     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8989 }
8990 
8991 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8992 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8993                                          bool is_q, bool is_u,
8994                                          int immh, int immb, int rn, int rd)
8995 {
8996     int immhb = immh << 3 | immb;
8997     int pass, size, fracbits;
8998     TCGv_ptr tcg_fpstatus;
8999     TCGv_i32 tcg_rmode, tcg_shift;
9000 
9001     if (immh & 0x8) {
9002         size = MO_64;
9003         if (!is_scalar && !is_q) {
9004             unallocated_encoding(s);
9005             return;
9006         }
9007     } else if (immh & 0x4) {
9008         size = MO_32;
9009     } else if (immh & 0x2) {
9010         size = MO_16;
9011         if (!dc_isar_feature(aa64_fp16, s)) {
9012             unallocated_encoding(s);
9013             return;
9014         }
9015     } else {
9016         /* Should have split out AdvSIMD modified immediate earlier.  */
9017         assert(immh == 1);
9018         unallocated_encoding(s);
9019         return;
9020     }
9021 
9022     if (!fp_access_check(s)) {
9023         return;
9024     }
9025 
9026     assert(!(is_scalar && is_q));
9027 
9028     tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9029     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9030     gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9031     fracbits = (16 << size) - immhb;
9032     tcg_shift = tcg_constant_i32(fracbits);
9033 
9034     if (size == MO_64) {
9035         int maxpass = is_scalar ? 1 : 2;
9036 
9037         for (pass = 0; pass < maxpass; pass++) {
9038             TCGv_i64 tcg_op = tcg_temp_new_i64();
9039 
9040             read_vec_element(s, tcg_op, rn, pass, MO_64);
9041             if (is_u) {
9042                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9043             } else {
9044                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9045             }
9046             write_vec_element(s, tcg_op, rd, pass, MO_64);
9047             tcg_temp_free_i64(tcg_op);
9048         }
9049         clear_vec_high(s, is_q, rd);
9050     } else {
9051         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9052         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9053 
9054         switch (size) {
9055         case MO_16:
9056             if (is_u) {
9057                 fn = gen_helper_vfp_touhh;
9058             } else {
9059                 fn = gen_helper_vfp_toshh;
9060             }
9061             break;
9062         case MO_32:
9063             if (is_u) {
9064                 fn = gen_helper_vfp_touls;
9065             } else {
9066                 fn = gen_helper_vfp_tosls;
9067             }
9068             break;
9069         default:
9070             g_assert_not_reached();
9071         }
9072 
9073         for (pass = 0; pass < maxpass; pass++) {
9074             TCGv_i32 tcg_op = tcg_temp_new_i32();
9075 
9076             read_vec_element_i32(s, tcg_op, rn, pass, size);
9077             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9078             if (is_scalar) {
9079                 write_fp_sreg(s, rd, tcg_op);
9080             } else {
9081                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9082             }
9083             tcg_temp_free_i32(tcg_op);
9084         }
9085         if (!is_scalar) {
9086             clear_vec_high(s, is_q, rd);
9087         }
9088     }
9089 
9090     gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9091     tcg_temp_free_ptr(tcg_fpstatus);
9092     tcg_temp_free_i32(tcg_rmode);
9093 }
9094 
9095 /* AdvSIMD scalar shift by immediate
9096  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9097  * +-----+---+-------------+------+------+--------+---+------+------+
9098  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9099  * +-----+---+-------------+------+------+--------+---+------+------+
9100  *
9101  * This is the scalar version so it works on a fixed sized registers
9102  */
9103 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9104 {
9105     int rd = extract32(insn, 0, 5);
9106     int rn = extract32(insn, 5, 5);
9107     int opcode = extract32(insn, 11, 5);
9108     int immb = extract32(insn, 16, 3);
9109     int immh = extract32(insn, 19, 4);
9110     bool is_u = extract32(insn, 29, 1);
9111 
9112     if (immh == 0) {
9113         unallocated_encoding(s);
9114         return;
9115     }
9116 
9117     switch (opcode) {
9118     case 0x08: /* SRI */
9119         if (!is_u) {
9120             unallocated_encoding(s);
9121             return;
9122         }
9123         /* fall through */
9124     case 0x00: /* SSHR / USHR */
9125     case 0x02: /* SSRA / USRA */
9126     case 0x04: /* SRSHR / URSHR */
9127     case 0x06: /* SRSRA / URSRA */
9128         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9129         break;
9130     case 0x0a: /* SHL / SLI */
9131         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9132         break;
9133     case 0x1c: /* SCVTF, UCVTF */
9134         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9135                                      opcode, rn, rd);
9136         break;
9137     case 0x10: /* SQSHRUN, SQSHRUN2 */
9138     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9139         if (!is_u) {
9140             unallocated_encoding(s);
9141             return;
9142         }
9143         handle_vec_simd_sqshrn(s, true, false, false, true,
9144                                immh, immb, opcode, rn, rd);
9145         break;
9146     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9147     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9148         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9149                                immh, immb, opcode, rn, rd);
9150         break;
9151     case 0xc: /* SQSHLU */
9152         if (!is_u) {
9153             unallocated_encoding(s);
9154             return;
9155         }
9156         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9157         break;
9158     case 0xe: /* SQSHL, UQSHL */
9159         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9160         break;
9161     case 0x1f: /* FCVTZS, FCVTZU */
9162         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9163         break;
9164     default:
9165         unallocated_encoding(s);
9166         break;
9167     }
9168 }
9169 
9170 /* AdvSIMD scalar three different
9171  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9172  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9173  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9174  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9175  */
9176 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9177 {
9178     bool is_u = extract32(insn, 29, 1);
9179     int size = extract32(insn, 22, 2);
9180     int opcode = extract32(insn, 12, 4);
9181     int rm = extract32(insn, 16, 5);
9182     int rn = extract32(insn, 5, 5);
9183     int rd = extract32(insn, 0, 5);
9184 
9185     if (is_u) {
9186         unallocated_encoding(s);
9187         return;
9188     }
9189 
9190     switch (opcode) {
9191     case 0x9: /* SQDMLAL, SQDMLAL2 */
9192     case 0xb: /* SQDMLSL, SQDMLSL2 */
9193     case 0xd: /* SQDMULL, SQDMULL2 */
9194         if (size == 0 || size == 3) {
9195             unallocated_encoding(s);
9196             return;
9197         }
9198         break;
9199     default:
9200         unallocated_encoding(s);
9201         return;
9202     }
9203 
9204     if (!fp_access_check(s)) {
9205         return;
9206     }
9207 
9208     if (size == 2) {
9209         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9210         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9211         TCGv_i64 tcg_res = tcg_temp_new_i64();
9212 
9213         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9214         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9215 
9216         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9217         gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9218 
9219         switch (opcode) {
9220         case 0xd: /* SQDMULL, SQDMULL2 */
9221             break;
9222         case 0xb: /* SQDMLSL, SQDMLSL2 */
9223             tcg_gen_neg_i64(tcg_res, tcg_res);
9224             /* fall through */
9225         case 0x9: /* SQDMLAL, SQDMLAL2 */
9226             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9227             gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9228                                               tcg_res, tcg_op1);
9229             break;
9230         default:
9231             g_assert_not_reached();
9232         }
9233 
9234         write_fp_dreg(s, rd, tcg_res);
9235 
9236         tcg_temp_free_i64(tcg_op1);
9237         tcg_temp_free_i64(tcg_op2);
9238         tcg_temp_free_i64(tcg_res);
9239     } else {
9240         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9241         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9242         TCGv_i64 tcg_res = tcg_temp_new_i64();
9243 
9244         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9245         gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9246 
9247         switch (opcode) {
9248         case 0xd: /* SQDMULL, SQDMULL2 */
9249             break;
9250         case 0xb: /* SQDMLSL, SQDMLSL2 */
9251             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9252             /* fall through */
9253         case 0x9: /* SQDMLAL, SQDMLAL2 */
9254         {
9255             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9256             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9257             gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9258                                               tcg_res, tcg_op3);
9259             tcg_temp_free_i64(tcg_op3);
9260             break;
9261         }
9262         default:
9263             g_assert_not_reached();
9264         }
9265 
9266         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9267         write_fp_dreg(s, rd, tcg_res);
9268 
9269         tcg_temp_free_i32(tcg_op1);
9270         tcg_temp_free_i32(tcg_op2);
9271         tcg_temp_free_i64(tcg_res);
9272     }
9273 }
9274 
9275 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9276                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9277 {
9278     /* Handle 64x64->64 opcodes which are shared between the scalar
9279      * and vector 3-same groups. We cover every opcode where size == 3
9280      * is valid in either the three-reg-same (integer, not pairwise)
9281      * or scalar-three-reg-same groups.
9282      */
9283     TCGCond cond;
9284 
9285     switch (opcode) {
9286     case 0x1: /* SQADD */
9287         if (u) {
9288             gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9289         } else {
9290             gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9291         }
9292         break;
9293     case 0x5: /* SQSUB */
9294         if (u) {
9295             gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9296         } else {
9297             gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9298         }
9299         break;
9300     case 0x6: /* CMGT, CMHI */
9301         /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9302          * We implement this using setcond (test) and then negating.
9303          */
9304         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9305     do_cmop:
9306         tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9307         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9308         break;
9309     case 0x7: /* CMGE, CMHS */
9310         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9311         goto do_cmop;
9312     case 0x11: /* CMTST, CMEQ */
9313         if (u) {
9314             cond = TCG_COND_EQ;
9315             goto do_cmop;
9316         }
9317         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9318         break;
9319     case 0x8: /* SSHL, USHL */
9320         if (u) {
9321             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9322         } else {
9323             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9324         }
9325         break;
9326     case 0x9: /* SQSHL, UQSHL */
9327         if (u) {
9328             gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9329         } else {
9330             gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9331         }
9332         break;
9333     case 0xa: /* SRSHL, URSHL */
9334         if (u) {
9335             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9336         } else {
9337             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9338         }
9339         break;
9340     case 0xb: /* SQRSHL, UQRSHL */
9341         if (u) {
9342             gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9343         } else {
9344             gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9345         }
9346         break;
9347     case 0x10: /* ADD, SUB */
9348         if (u) {
9349             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9350         } else {
9351             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9352         }
9353         break;
9354     default:
9355         g_assert_not_reached();
9356     }
9357 }
9358 
9359 /* Handle the 3-same-operands float operations; shared by the scalar
9360  * and vector encodings. The caller must filter out any encodings
9361  * not allocated for the encoding it is dealing with.
9362  */
9363 static void handle_3same_float(DisasContext *s, int size, int elements,
9364                                int fpopcode, int rd, int rn, int rm)
9365 {
9366     int pass;
9367     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9368 
9369     for (pass = 0; pass < elements; pass++) {
9370         if (size) {
9371             /* Double */
9372             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9373             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9374             TCGv_i64 tcg_res = tcg_temp_new_i64();
9375 
9376             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9377             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9378 
9379             switch (fpopcode) {
9380             case 0x39: /* FMLS */
9381                 /* As usual for ARM, separate negation for fused multiply-add */
9382                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9383                 /* fall through */
9384             case 0x19: /* FMLA */
9385                 read_vec_element(s, tcg_res, rd, pass, MO_64);
9386                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9387                                        tcg_res, fpst);
9388                 break;
9389             case 0x18: /* FMAXNM */
9390                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9391                 break;
9392             case 0x1a: /* FADD */
9393                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9394                 break;
9395             case 0x1b: /* FMULX */
9396                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9397                 break;
9398             case 0x1c: /* FCMEQ */
9399                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9400                 break;
9401             case 0x1e: /* FMAX */
9402                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9403                 break;
9404             case 0x1f: /* FRECPS */
9405                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9406                 break;
9407             case 0x38: /* FMINNM */
9408                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9409                 break;
9410             case 0x3a: /* FSUB */
9411                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9412                 break;
9413             case 0x3e: /* FMIN */
9414                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9415                 break;
9416             case 0x3f: /* FRSQRTS */
9417                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9418                 break;
9419             case 0x5b: /* FMUL */
9420                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9421                 break;
9422             case 0x5c: /* FCMGE */
9423                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9424                 break;
9425             case 0x5d: /* FACGE */
9426                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9427                 break;
9428             case 0x5f: /* FDIV */
9429                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9430                 break;
9431             case 0x7a: /* FABD */
9432                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9433                 gen_helper_vfp_absd(tcg_res, tcg_res);
9434                 break;
9435             case 0x7c: /* FCMGT */
9436                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9437                 break;
9438             case 0x7d: /* FACGT */
9439                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9440                 break;
9441             default:
9442                 g_assert_not_reached();
9443             }
9444 
9445             write_vec_element(s, tcg_res, rd, pass, MO_64);
9446 
9447             tcg_temp_free_i64(tcg_res);
9448             tcg_temp_free_i64(tcg_op1);
9449             tcg_temp_free_i64(tcg_op2);
9450         } else {
9451             /* Single */
9452             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9453             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9454             TCGv_i32 tcg_res = tcg_temp_new_i32();
9455 
9456             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9457             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9458 
9459             switch (fpopcode) {
9460             case 0x39: /* FMLS */
9461                 /* As usual for ARM, separate negation for fused multiply-add */
9462                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9463                 /* fall through */
9464             case 0x19: /* FMLA */
9465                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9466                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9467                                        tcg_res, fpst);
9468                 break;
9469             case 0x1a: /* FADD */
9470                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9471                 break;
9472             case 0x1b: /* FMULX */
9473                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9474                 break;
9475             case 0x1c: /* FCMEQ */
9476                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9477                 break;
9478             case 0x1e: /* FMAX */
9479                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9480                 break;
9481             case 0x1f: /* FRECPS */
9482                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9483                 break;
9484             case 0x18: /* FMAXNM */
9485                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9486                 break;
9487             case 0x38: /* FMINNM */
9488                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9489                 break;
9490             case 0x3a: /* FSUB */
9491                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9492                 break;
9493             case 0x3e: /* FMIN */
9494                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9495                 break;
9496             case 0x3f: /* FRSQRTS */
9497                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9498                 break;
9499             case 0x5b: /* FMUL */
9500                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9501                 break;
9502             case 0x5c: /* FCMGE */
9503                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9504                 break;
9505             case 0x5d: /* FACGE */
9506                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9507                 break;
9508             case 0x5f: /* FDIV */
9509                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9510                 break;
9511             case 0x7a: /* FABD */
9512                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9513                 gen_helper_vfp_abss(tcg_res, tcg_res);
9514                 break;
9515             case 0x7c: /* FCMGT */
9516                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9517                 break;
9518             case 0x7d: /* FACGT */
9519                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9520                 break;
9521             default:
9522                 g_assert_not_reached();
9523             }
9524 
9525             if (elements == 1) {
9526                 /* scalar single so clear high part */
9527                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9528 
9529                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9530                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9531                 tcg_temp_free_i64(tcg_tmp);
9532             } else {
9533                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9534             }
9535 
9536             tcg_temp_free_i32(tcg_res);
9537             tcg_temp_free_i32(tcg_op1);
9538             tcg_temp_free_i32(tcg_op2);
9539         }
9540     }
9541 
9542     tcg_temp_free_ptr(fpst);
9543 
9544     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9545 }
9546 
9547 /* AdvSIMD scalar three same
9548  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9549  * +-----+---+-----------+------+---+------+--------+---+------+------+
9550  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9551  * +-----+---+-----------+------+---+------+--------+---+------+------+
9552  */
9553 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9554 {
9555     int rd = extract32(insn, 0, 5);
9556     int rn = extract32(insn, 5, 5);
9557     int opcode = extract32(insn, 11, 5);
9558     int rm = extract32(insn, 16, 5);
9559     int size = extract32(insn, 22, 2);
9560     bool u = extract32(insn, 29, 1);
9561     TCGv_i64 tcg_rd;
9562 
9563     if (opcode >= 0x18) {
9564         /* Floating point: U, size[1] and opcode indicate operation */
9565         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9566         switch (fpopcode) {
9567         case 0x1b: /* FMULX */
9568         case 0x1f: /* FRECPS */
9569         case 0x3f: /* FRSQRTS */
9570         case 0x5d: /* FACGE */
9571         case 0x7d: /* FACGT */
9572         case 0x1c: /* FCMEQ */
9573         case 0x5c: /* FCMGE */
9574         case 0x7c: /* FCMGT */
9575         case 0x7a: /* FABD */
9576             break;
9577         default:
9578             unallocated_encoding(s);
9579             return;
9580         }
9581 
9582         if (!fp_access_check(s)) {
9583             return;
9584         }
9585 
9586         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9587         return;
9588     }
9589 
9590     switch (opcode) {
9591     case 0x1: /* SQADD, UQADD */
9592     case 0x5: /* SQSUB, UQSUB */
9593     case 0x9: /* SQSHL, UQSHL */
9594     case 0xb: /* SQRSHL, UQRSHL */
9595         break;
9596     case 0x8: /* SSHL, USHL */
9597     case 0xa: /* SRSHL, URSHL */
9598     case 0x6: /* CMGT, CMHI */
9599     case 0x7: /* CMGE, CMHS */
9600     case 0x11: /* CMTST, CMEQ */
9601     case 0x10: /* ADD, SUB (vector) */
9602         if (size != 3) {
9603             unallocated_encoding(s);
9604             return;
9605         }
9606         break;
9607     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9608         if (size != 1 && size != 2) {
9609             unallocated_encoding(s);
9610             return;
9611         }
9612         break;
9613     default:
9614         unallocated_encoding(s);
9615         return;
9616     }
9617 
9618     if (!fp_access_check(s)) {
9619         return;
9620     }
9621 
9622     tcg_rd = tcg_temp_new_i64();
9623 
9624     if (size == 3) {
9625         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9626         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9627 
9628         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9629         tcg_temp_free_i64(tcg_rn);
9630         tcg_temp_free_i64(tcg_rm);
9631     } else {
9632         /* Do a single operation on the lowest element in the vector.
9633          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9634          * no side effects for all these operations.
9635          * OPTME: special-purpose helpers would avoid doing some
9636          * unnecessary work in the helper for the 8 and 16 bit cases.
9637          */
9638         NeonGenTwoOpEnvFn *genenvfn;
9639         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9640         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9641         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9642 
9643         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9644         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9645 
9646         switch (opcode) {
9647         case 0x1: /* SQADD, UQADD */
9648         {
9649             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9650                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9651                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9652                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9653             };
9654             genenvfn = fns[size][u];
9655             break;
9656         }
9657         case 0x5: /* SQSUB, UQSUB */
9658         {
9659             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9660                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9661                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9662                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9663             };
9664             genenvfn = fns[size][u];
9665             break;
9666         }
9667         case 0x9: /* SQSHL, UQSHL */
9668         {
9669             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9670                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9671                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9672                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9673             };
9674             genenvfn = fns[size][u];
9675             break;
9676         }
9677         case 0xb: /* SQRSHL, UQRSHL */
9678         {
9679             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9680                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9681                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9682                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9683             };
9684             genenvfn = fns[size][u];
9685             break;
9686         }
9687         case 0x16: /* SQDMULH, SQRDMULH */
9688         {
9689             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9690                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9691                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9692             };
9693             assert(size == 1 || size == 2);
9694             genenvfn = fns[size - 1][u];
9695             break;
9696         }
9697         default:
9698             g_assert_not_reached();
9699         }
9700 
9701         genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9702         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9703         tcg_temp_free_i32(tcg_rd32);
9704         tcg_temp_free_i32(tcg_rn);
9705         tcg_temp_free_i32(tcg_rm);
9706     }
9707 
9708     write_fp_dreg(s, rd, tcg_rd);
9709 
9710     tcg_temp_free_i64(tcg_rd);
9711 }
9712 
9713 /* AdvSIMD scalar three same FP16
9714  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9715  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9716  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9717  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9718  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9719  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9720  */
9721 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9722                                                   uint32_t insn)
9723 {
9724     int rd = extract32(insn, 0, 5);
9725     int rn = extract32(insn, 5, 5);
9726     int opcode = extract32(insn, 11, 3);
9727     int rm = extract32(insn, 16, 5);
9728     bool u = extract32(insn, 29, 1);
9729     bool a = extract32(insn, 23, 1);
9730     int fpopcode = opcode | (a << 3) |  (u << 4);
9731     TCGv_ptr fpst;
9732     TCGv_i32 tcg_op1;
9733     TCGv_i32 tcg_op2;
9734     TCGv_i32 tcg_res;
9735 
9736     switch (fpopcode) {
9737     case 0x03: /* FMULX */
9738     case 0x04: /* FCMEQ (reg) */
9739     case 0x07: /* FRECPS */
9740     case 0x0f: /* FRSQRTS */
9741     case 0x14: /* FCMGE (reg) */
9742     case 0x15: /* FACGE */
9743     case 0x1a: /* FABD */
9744     case 0x1c: /* FCMGT (reg) */
9745     case 0x1d: /* FACGT */
9746         break;
9747     default:
9748         unallocated_encoding(s);
9749         return;
9750     }
9751 
9752     if (!dc_isar_feature(aa64_fp16, s)) {
9753         unallocated_encoding(s);
9754     }
9755 
9756     if (!fp_access_check(s)) {
9757         return;
9758     }
9759 
9760     fpst = fpstatus_ptr(FPST_FPCR_F16);
9761 
9762     tcg_op1 = read_fp_hreg(s, rn);
9763     tcg_op2 = read_fp_hreg(s, rm);
9764     tcg_res = tcg_temp_new_i32();
9765 
9766     switch (fpopcode) {
9767     case 0x03: /* FMULX */
9768         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9769         break;
9770     case 0x04: /* FCMEQ (reg) */
9771         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9772         break;
9773     case 0x07: /* FRECPS */
9774         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9775         break;
9776     case 0x0f: /* FRSQRTS */
9777         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9778         break;
9779     case 0x14: /* FCMGE (reg) */
9780         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9781         break;
9782     case 0x15: /* FACGE */
9783         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9784         break;
9785     case 0x1a: /* FABD */
9786         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9787         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9788         break;
9789     case 0x1c: /* FCMGT (reg) */
9790         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9791         break;
9792     case 0x1d: /* FACGT */
9793         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9794         break;
9795     default:
9796         g_assert_not_reached();
9797     }
9798 
9799     write_fp_sreg(s, rd, tcg_res);
9800 
9801 
9802     tcg_temp_free_i32(tcg_res);
9803     tcg_temp_free_i32(tcg_op1);
9804     tcg_temp_free_i32(tcg_op2);
9805     tcg_temp_free_ptr(fpst);
9806 }
9807 
9808 /* AdvSIMD scalar three same extra
9809  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9810  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9811  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9812  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9813  */
9814 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9815                                                    uint32_t insn)
9816 {
9817     int rd = extract32(insn, 0, 5);
9818     int rn = extract32(insn, 5, 5);
9819     int opcode = extract32(insn, 11, 4);
9820     int rm = extract32(insn, 16, 5);
9821     int size = extract32(insn, 22, 2);
9822     bool u = extract32(insn, 29, 1);
9823     TCGv_i32 ele1, ele2, ele3;
9824     TCGv_i64 res;
9825     bool feature;
9826 
9827     switch (u * 16 + opcode) {
9828     case 0x10: /* SQRDMLAH (vector) */
9829     case 0x11: /* SQRDMLSH (vector) */
9830         if (size != 1 && size != 2) {
9831             unallocated_encoding(s);
9832             return;
9833         }
9834         feature = dc_isar_feature(aa64_rdm, s);
9835         break;
9836     default:
9837         unallocated_encoding(s);
9838         return;
9839     }
9840     if (!feature) {
9841         unallocated_encoding(s);
9842         return;
9843     }
9844     if (!fp_access_check(s)) {
9845         return;
9846     }
9847 
9848     /* Do a single operation on the lowest element in the vector.
9849      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9850      * with no side effects for all these operations.
9851      * OPTME: special-purpose helpers would avoid doing some
9852      * unnecessary work in the helper for the 16 bit cases.
9853      */
9854     ele1 = tcg_temp_new_i32();
9855     ele2 = tcg_temp_new_i32();
9856     ele3 = tcg_temp_new_i32();
9857 
9858     read_vec_element_i32(s, ele1, rn, 0, size);
9859     read_vec_element_i32(s, ele2, rm, 0, size);
9860     read_vec_element_i32(s, ele3, rd, 0, size);
9861 
9862     switch (opcode) {
9863     case 0x0: /* SQRDMLAH */
9864         if (size == 1) {
9865             gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9866         } else {
9867             gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9868         }
9869         break;
9870     case 0x1: /* SQRDMLSH */
9871         if (size == 1) {
9872             gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9873         } else {
9874             gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9875         }
9876         break;
9877     default:
9878         g_assert_not_reached();
9879     }
9880     tcg_temp_free_i32(ele1);
9881     tcg_temp_free_i32(ele2);
9882 
9883     res = tcg_temp_new_i64();
9884     tcg_gen_extu_i32_i64(res, ele3);
9885     tcg_temp_free_i32(ele3);
9886 
9887     write_fp_dreg(s, rd, res);
9888     tcg_temp_free_i64(res);
9889 }
9890 
9891 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9892                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9893                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9894 {
9895     /* Handle 64->64 opcodes which are shared between the scalar and
9896      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9897      * is valid in either group and also the double-precision fp ops.
9898      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9899      * requires them.
9900      */
9901     TCGCond cond;
9902 
9903     switch (opcode) {
9904     case 0x4: /* CLS, CLZ */
9905         if (u) {
9906             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9907         } else {
9908             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9909         }
9910         break;
9911     case 0x5: /* NOT */
9912         /* This opcode is shared with CNT and RBIT but we have earlier
9913          * enforced that size == 3 if and only if this is the NOT insn.
9914          */
9915         tcg_gen_not_i64(tcg_rd, tcg_rn);
9916         break;
9917     case 0x7: /* SQABS, SQNEG */
9918         if (u) {
9919             gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9920         } else {
9921             gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9922         }
9923         break;
9924     case 0xa: /* CMLT */
9925         /* 64 bit integer comparison against zero, result is
9926          * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9927          * subtracting 1.
9928          */
9929         cond = TCG_COND_LT;
9930     do_cmop:
9931         tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9932         tcg_gen_neg_i64(tcg_rd, tcg_rd);
9933         break;
9934     case 0x8: /* CMGT, CMGE */
9935         cond = u ? TCG_COND_GE : TCG_COND_GT;
9936         goto do_cmop;
9937     case 0x9: /* CMEQ, CMLE */
9938         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9939         goto do_cmop;
9940     case 0xb: /* ABS, NEG */
9941         if (u) {
9942             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9943         } else {
9944             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9945         }
9946         break;
9947     case 0x2f: /* FABS */
9948         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9949         break;
9950     case 0x6f: /* FNEG */
9951         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9952         break;
9953     case 0x7f: /* FSQRT */
9954         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9955         break;
9956     case 0x1a: /* FCVTNS */
9957     case 0x1b: /* FCVTMS */
9958     case 0x1c: /* FCVTAS */
9959     case 0x3a: /* FCVTPS */
9960     case 0x3b: /* FCVTZS */
9961         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9962         break;
9963     case 0x5a: /* FCVTNU */
9964     case 0x5b: /* FCVTMU */
9965     case 0x5c: /* FCVTAU */
9966     case 0x7a: /* FCVTPU */
9967     case 0x7b: /* FCVTZU */
9968         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9969         break;
9970     case 0x18: /* FRINTN */
9971     case 0x19: /* FRINTM */
9972     case 0x38: /* FRINTP */
9973     case 0x39: /* FRINTZ */
9974     case 0x58: /* FRINTA */
9975     case 0x79: /* FRINTI */
9976         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9977         break;
9978     case 0x59: /* FRINTX */
9979         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9980         break;
9981     case 0x1e: /* FRINT32Z */
9982     case 0x5e: /* FRINT32X */
9983         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9984         break;
9985     case 0x1f: /* FRINT64Z */
9986     case 0x5f: /* FRINT64X */
9987         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9988         break;
9989     default:
9990         g_assert_not_reached();
9991     }
9992 }
9993 
9994 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9995                                    bool is_scalar, bool is_u, bool is_q,
9996                                    int size, int rn, int rd)
9997 {
9998     bool is_double = (size == MO_64);
9999     TCGv_ptr fpst;
10000 
10001     if (!fp_access_check(s)) {
10002         return;
10003     }
10004 
10005     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10006 
10007     if (is_double) {
10008         TCGv_i64 tcg_op = tcg_temp_new_i64();
10009         TCGv_i64 tcg_zero = tcg_constant_i64(0);
10010         TCGv_i64 tcg_res = tcg_temp_new_i64();
10011         NeonGenTwoDoubleOpFn *genfn;
10012         bool swap = false;
10013         int pass;
10014 
10015         switch (opcode) {
10016         case 0x2e: /* FCMLT (zero) */
10017             swap = true;
10018             /* fallthrough */
10019         case 0x2c: /* FCMGT (zero) */
10020             genfn = gen_helper_neon_cgt_f64;
10021             break;
10022         case 0x2d: /* FCMEQ (zero) */
10023             genfn = gen_helper_neon_ceq_f64;
10024             break;
10025         case 0x6d: /* FCMLE (zero) */
10026             swap = true;
10027             /* fall through */
10028         case 0x6c: /* FCMGE (zero) */
10029             genfn = gen_helper_neon_cge_f64;
10030             break;
10031         default:
10032             g_assert_not_reached();
10033         }
10034 
10035         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10036             read_vec_element(s, tcg_op, rn, pass, MO_64);
10037             if (swap) {
10038                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10039             } else {
10040                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10041             }
10042             write_vec_element(s, tcg_res, rd, pass, MO_64);
10043         }
10044         tcg_temp_free_i64(tcg_res);
10045         tcg_temp_free_i64(tcg_op);
10046 
10047         clear_vec_high(s, !is_scalar, rd);
10048     } else {
10049         TCGv_i32 tcg_op = tcg_temp_new_i32();
10050         TCGv_i32 tcg_zero = tcg_constant_i32(0);
10051         TCGv_i32 tcg_res = tcg_temp_new_i32();
10052         NeonGenTwoSingleOpFn *genfn;
10053         bool swap = false;
10054         int pass, maxpasses;
10055 
10056         if (size == MO_16) {
10057             switch (opcode) {
10058             case 0x2e: /* FCMLT (zero) */
10059                 swap = true;
10060                 /* fall through */
10061             case 0x2c: /* FCMGT (zero) */
10062                 genfn = gen_helper_advsimd_cgt_f16;
10063                 break;
10064             case 0x2d: /* FCMEQ (zero) */
10065                 genfn = gen_helper_advsimd_ceq_f16;
10066                 break;
10067             case 0x6d: /* FCMLE (zero) */
10068                 swap = true;
10069                 /* fall through */
10070             case 0x6c: /* FCMGE (zero) */
10071                 genfn = gen_helper_advsimd_cge_f16;
10072                 break;
10073             default:
10074                 g_assert_not_reached();
10075             }
10076         } else {
10077             switch (opcode) {
10078             case 0x2e: /* FCMLT (zero) */
10079                 swap = true;
10080                 /* fall through */
10081             case 0x2c: /* FCMGT (zero) */
10082                 genfn = gen_helper_neon_cgt_f32;
10083                 break;
10084             case 0x2d: /* FCMEQ (zero) */
10085                 genfn = gen_helper_neon_ceq_f32;
10086                 break;
10087             case 0x6d: /* FCMLE (zero) */
10088                 swap = true;
10089                 /* fall through */
10090             case 0x6c: /* FCMGE (zero) */
10091                 genfn = gen_helper_neon_cge_f32;
10092                 break;
10093             default:
10094                 g_assert_not_reached();
10095             }
10096         }
10097 
10098         if (is_scalar) {
10099             maxpasses = 1;
10100         } else {
10101             int vector_size = 8 << is_q;
10102             maxpasses = vector_size >> size;
10103         }
10104 
10105         for (pass = 0; pass < maxpasses; pass++) {
10106             read_vec_element_i32(s, tcg_op, rn, pass, size);
10107             if (swap) {
10108                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10109             } else {
10110                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10111             }
10112             if (is_scalar) {
10113                 write_fp_sreg(s, rd, tcg_res);
10114             } else {
10115                 write_vec_element_i32(s, tcg_res, rd, pass, size);
10116             }
10117         }
10118         tcg_temp_free_i32(tcg_res);
10119         tcg_temp_free_i32(tcg_op);
10120         if (!is_scalar) {
10121             clear_vec_high(s, is_q, rd);
10122         }
10123     }
10124 
10125     tcg_temp_free_ptr(fpst);
10126 }
10127 
10128 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10129                                     bool is_scalar, bool is_u, bool is_q,
10130                                     int size, int rn, int rd)
10131 {
10132     bool is_double = (size == 3);
10133     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10134 
10135     if (is_double) {
10136         TCGv_i64 tcg_op = tcg_temp_new_i64();
10137         TCGv_i64 tcg_res = tcg_temp_new_i64();
10138         int pass;
10139 
10140         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10141             read_vec_element(s, tcg_op, rn, pass, MO_64);
10142             switch (opcode) {
10143             case 0x3d: /* FRECPE */
10144                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10145                 break;
10146             case 0x3f: /* FRECPX */
10147                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10148                 break;
10149             case 0x7d: /* FRSQRTE */
10150                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10151                 break;
10152             default:
10153                 g_assert_not_reached();
10154             }
10155             write_vec_element(s, tcg_res, rd, pass, MO_64);
10156         }
10157         tcg_temp_free_i64(tcg_res);
10158         tcg_temp_free_i64(tcg_op);
10159         clear_vec_high(s, !is_scalar, rd);
10160     } else {
10161         TCGv_i32 tcg_op = tcg_temp_new_i32();
10162         TCGv_i32 tcg_res = tcg_temp_new_i32();
10163         int pass, maxpasses;
10164 
10165         if (is_scalar) {
10166             maxpasses = 1;
10167         } else {
10168             maxpasses = is_q ? 4 : 2;
10169         }
10170 
10171         for (pass = 0; pass < maxpasses; pass++) {
10172             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10173 
10174             switch (opcode) {
10175             case 0x3c: /* URECPE */
10176                 gen_helper_recpe_u32(tcg_res, tcg_op);
10177                 break;
10178             case 0x3d: /* FRECPE */
10179                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10180                 break;
10181             case 0x3f: /* FRECPX */
10182                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10183                 break;
10184             case 0x7d: /* FRSQRTE */
10185                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10186                 break;
10187             default:
10188                 g_assert_not_reached();
10189             }
10190 
10191             if (is_scalar) {
10192                 write_fp_sreg(s, rd, tcg_res);
10193             } else {
10194                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10195             }
10196         }
10197         tcg_temp_free_i32(tcg_res);
10198         tcg_temp_free_i32(tcg_op);
10199         if (!is_scalar) {
10200             clear_vec_high(s, is_q, rd);
10201         }
10202     }
10203     tcg_temp_free_ptr(fpst);
10204 }
10205 
10206 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10207                                 int opcode, bool u, bool is_q,
10208                                 int size, int rn, int rd)
10209 {
10210     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10211      * in the source becomes a size element in the destination).
10212      */
10213     int pass;
10214     TCGv_i32 tcg_res[2];
10215     int destelt = is_q ? 2 : 0;
10216     int passes = scalar ? 1 : 2;
10217 
10218     if (scalar) {
10219         tcg_res[1] = tcg_constant_i32(0);
10220     }
10221 
10222     for (pass = 0; pass < passes; pass++) {
10223         TCGv_i64 tcg_op = tcg_temp_new_i64();
10224         NeonGenNarrowFn *genfn = NULL;
10225         NeonGenNarrowEnvFn *genenvfn = NULL;
10226 
10227         if (scalar) {
10228             read_vec_element(s, tcg_op, rn, pass, size + 1);
10229         } else {
10230             read_vec_element(s, tcg_op, rn, pass, MO_64);
10231         }
10232         tcg_res[pass] = tcg_temp_new_i32();
10233 
10234         switch (opcode) {
10235         case 0x12: /* XTN, SQXTUN */
10236         {
10237             static NeonGenNarrowFn * const xtnfns[3] = {
10238                 gen_helper_neon_narrow_u8,
10239                 gen_helper_neon_narrow_u16,
10240                 tcg_gen_extrl_i64_i32,
10241             };
10242             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10243                 gen_helper_neon_unarrow_sat8,
10244                 gen_helper_neon_unarrow_sat16,
10245                 gen_helper_neon_unarrow_sat32,
10246             };
10247             if (u) {
10248                 genenvfn = sqxtunfns[size];
10249             } else {
10250                 genfn = xtnfns[size];
10251             }
10252             break;
10253         }
10254         case 0x14: /* SQXTN, UQXTN */
10255         {
10256             static NeonGenNarrowEnvFn * const fns[3][2] = {
10257                 { gen_helper_neon_narrow_sat_s8,
10258                   gen_helper_neon_narrow_sat_u8 },
10259                 { gen_helper_neon_narrow_sat_s16,
10260                   gen_helper_neon_narrow_sat_u16 },
10261                 { gen_helper_neon_narrow_sat_s32,
10262                   gen_helper_neon_narrow_sat_u32 },
10263             };
10264             genenvfn = fns[size][u];
10265             break;
10266         }
10267         case 0x16: /* FCVTN, FCVTN2 */
10268             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10269             if (size == 2) {
10270                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10271             } else {
10272                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10273                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10274                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10275                 TCGv_i32 ahp = get_ahp_flag();
10276 
10277                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10278                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10279                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10280                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10281                 tcg_temp_free_i32(tcg_lo);
10282                 tcg_temp_free_i32(tcg_hi);
10283                 tcg_temp_free_ptr(fpst);
10284                 tcg_temp_free_i32(ahp);
10285             }
10286             break;
10287         case 0x36: /* BFCVTN, BFCVTN2 */
10288             {
10289                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10290                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10291                 tcg_temp_free_ptr(fpst);
10292             }
10293             break;
10294         case 0x56:  /* FCVTXN, FCVTXN2 */
10295             /* 64 bit to 32 bit float conversion
10296              * with von Neumann rounding (round to odd)
10297              */
10298             assert(size == 2);
10299             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10300             break;
10301         default:
10302             g_assert_not_reached();
10303         }
10304 
10305         if (genfn) {
10306             genfn(tcg_res[pass], tcg_op);
10307         } else if (genenvfn) {
10308             genenvfn(tcg_res[pass], cpu_env, tcg_op);
10309         }
10310 
10311         tcg_temp_free_i64(tcg_op);
10312     }
10313 
10314     for (pass = 0; pass < 2; pass++) {
10315         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10316         tcg_temp_free_i32(tcg_res[pass]);
10317     }
10318     clear_vec_high(s, is_q, rd);
10319 }
10320 
10321 /* Remaining saturating accumulating ops */
10322 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10323                                 bool is_q, int size, int rn, int rd)
10324 {
10325     bool is_double = (size == 3);
10326 
10327     if (is_double) {
10328         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10329         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10330         int pass;
10331 
10332         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10333             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10334             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10335 
10336             if (is_u) { /* USQADD */
10337                 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10338             } else { /* SUQADD */
10339                 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10340             }
10341             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10342         }
10343         tcg_temp_free_i64(tcg_rd);
10344         tcg_temp_free_i64(tcg_rn);
10345         clear_vec_high(s, !is_scalar, rd);
10346     } else {
10347         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10348         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10349         int pass, maxpasses;
10350 
10351         if (is_scalar) {
10352             maxpasses = 1;
10353         } else {
10354             maxpasses = is_q ? 4 : 2;
10355         }
10356 
10357         for (pass = 0; pass < maxpasses; pass++) {
10358             if (is_scalar) {
10359                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10360                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10361             } else {
10362                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10363                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10364             }
10365 
10366             if (is_u) { /* USQADD */
10367                 switch (size) {
10368                 case 0:
10369                     gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10370                     break;
10371                 case 1:
10372                     gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10373                     break;
10374                 case 2:
10375                     gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10376                     break;
10377                 default:
10378                     g_assert_not_reached();
10379                 }
10380             } else { /* SUQADD */
10381                 switch (size) {
10382                 case 0:
10383                     gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10384                     break;
10385                 case 1:
10386                     gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10387                     break;
10388                 case 2:
10389                     gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10390                     break;
10391                 default:
10392                     g_assert_not_reached();
10393                 }
10394             }
10395 
10396             if (is_scalar) {
10397                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10398             }
10399             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10400         }
10401         tcg_temp_free_i32(tcg_rd);
10402         tcg_temp_free_i32(tcg_rn);
10403         clear_vec_high(s, is_q, rd);
10404     }
10405 }
10406 
10407 /* AdvSIMD scalar two reg misc
10408  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10409  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10410  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10411  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10412  */
10413 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10414 {
10415     int rd = extract32(insn, 0, 5);
10416     int rn = extract32(insn, 5, 5);
10417     int opcode = extract32(insn, 12, 5);
10418     int size = extract32(insn, 22, 2);
10419     bool u = extract32(insn, 29, 1);
10420     bool is_fcvt = false;
10421     int rmode;
10422     TCGv_i32 tcg_rmode;
10423     TCGv_ptr tcg_fpstatus;
10424 
10425     switch (opcode) {
10426     case 0x3: /* USQADD / SUQADD*/
10427         if (!fp_access_check(s)) {
10428             return;
10429         }
10430         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10431         return;
10432     case 0x7: /* SQABS / SQNEG */
10433         break;
10434     case 0xa: /* CMLT */
10435         if (u) {
10436             unallocated_encoding(s);
10437             return;
10438         }
10439         /* fall through */
10440     case 0x8: /* CMGT, CMGE */
10441     case 0x9: /* CMEQ, CMLE */
10442     case 0xb: /* ABS, NEG */
10443         if (size != 3) {
10444             unallocated_encoding(s);
10445             return;
10446         }
10447         break;
10448     case 0x12: /* SQXTUN */
10449         if (!u) {
10450             unallocated_encoding(s);
10451             return;
10452         }
10453         /* fall through */
10454     case 0x14: /* SQXTN, UQXTN */
10455         if (size == 3) {
10456             unallocated_encoding(s);
10457             return;
10458         }
10459         if (!fp_access_check(s)) {
10460             return;
10461         }
10462         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10463         return;
10464     case 0xc ... 0xf:
10465     case 0x16 ... 0x1d:
10466     case 0x1f:
10467         /* Floating point: U, size[1] and opcode indicate operation;
10468          * size[0] indicates single or double precision.
10469          */
10470         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10471         size = extract32(size, 0, 1) ? 3 : 2;
10472         switch (opcode) {
10473         case 0x2c: /* FCMGT (zero) */
10474         case 0x2d: /* FCMEQ (zero) */
10475         case 0x2e: /* FCMLT (zero) */
10476         case 0x6c: /* FCMGE (zero) */
10477         case 0x6d: /* FCMLE (zero) */
10478             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10479             return;
10480         case 0x1d: /* SCVTF */
10481         case 0x5d: /* UCVTF */
10482         {
10483             bool is_signed = (opcode == 0x1d);
10484             if (!fp_access_check(s)) {
10485                 return;
10486             }
10487             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10488             return;
10489         }
10490         case 0x3d: /* FRECPE */
10491         case 0x3f: /* FRECPX */
10492         case 0x7d: /* FRSQRTE */
10493             if (!fp_access_check(s)) {
10494                 return;
10495             }
10496             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10497             return;
10498         case 0x1a: /* FCVTNS */
10499         case 0x1b: /* FCVTMS */
10500         case 0x3a: /* FCVTPS */
10501         case 0x3b: /* FCVTZS */
10502         case 0x5a: /* FCVTNU */
10503         case 0x5b: /* FCVTMU */
10504         case 0x7a: /* FCVTPU */
10505         case 0x7b: /* FCVTZU */
10506             is_fcvt = true;
10507             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10508             break;
10509         case 0x1c: /* FCVTAS */
10510         case 0x5c: /* FCVTAU */
10511             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10512             is_fcvt = true;
10513             rmode = FPROUNDING_TIEAWAY;
10514             break;
10515         case 0x56: /* FCVTXN, FCVTXN2 */
10516             if (size == 2) {
10517                 unallocated_encoding(s);
10518                 return;
10519             }
10520             if (!fp_access_check(s)) {
10521                 return;
10522             }
10523             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10524             return;
10525         default:
10526             unallocated_encoding(s);
10527             return;
10528         }
10529         break;
10530     default:
10531         unallocated_encoding(s);
10532         return;
10533     }
10534 
10535     if (!fp_access_check(s)) {
10536         return;
10537     }
10538 
10539     if (is_fcvt) {
10540         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10541         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10542         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10543     } else {
10544         tcg_rmode = NULL;
10545         tcg_fpstatus = NULL;
10546     }
10547 
10548     if (size == 3) {
10549         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10550         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10551 
10552         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10553         write_fp_dreg(s, rd, tcg_rd);
10554         tcg_temp_free_i64(tcg_rd);
10555         tcg_temp_free_i64(tcg_rn);
10556     } else {
10557         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10558         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10559 
10560         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10561 
10562         switch (opcode) {
10563         case 0x7: /* SQABS, SQNEG */
10564         {
10565             NeonGenOneOpEnvFn *genfn;
10566             static NeonGenOneOpEnvFn * const fns[3][2] = {
10567                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10568                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10569                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10570             };
10571             genfn = fns[size][u];
10572             genfn(tcg_rd, cpu_env, tcg_rn);
10573             break;
10574         }
10575         case 0x1a: /* FCVTNS */
10576         case 0x1b: /* FCVTMS */
10577         case 0x1c: /* FCVTAS */
10578         case 0x3a: /* FCVTPS */
10579         case 0x3b: /* FCVTZS */
10580             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10581                                  tcg_fpstatus);
10582             break;
10583         case 0x5a: /* FCVTNU */
10584         case 0x5b: /* FCVTMU */
10585         case 0x5c: /* FCVTAU */
10586         case 0x7a: /* FCVTPU */
10587         case 0x7b: /* FCVTZU */
10588             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10589                                  tcg_fpstatus);
10590             break;
10591         default:
10592             g_assert_not_reached();
10593         }
10594 
10595         write_fp_sreg(s, rd, tcg_rd);
10596         tcg_temp_free_i32(tcg_rd);
10597         tcg_temp_free_i32(tcg_rn);
10598     }
10599 
10600     if (is_fcvt) {
10601         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10602         tcg_temp_free_i32(tcg_rmode);
10603         tcg_temp_free_ptr(tcg_fpstatus);
10604     }
10605 }
10606 
10607 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10608 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10609                                  int immh, int immb, int opcode, int rn, int rd)
10610 {
10611     int size = 32 - clz32(immh) - 1;
10612     int immhb = immh << 3 | immb;
10613     int shift = 2 * (8 << size) - immhb;
10614     GVecGen2iFn *gvec_fn;
10615 
10616     if (extract32(immh, 3, 1) && !is_q) {
10617         unallocated_encoding(s);
10618         return;
10619     }
10620     tcg_debug_assert(size <= 3);
10621 
10622     if (!fp_access_check(s)) {
10623         return;
10624     }
10625 
10626     switch (opcode) {
10627     case 0x02: /* SSRA / USRA (accumulate) */
10628         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10629         break;
10630 
10631     case 0x08: /* SRI */
10632         gvec_fn = gen_gvec_sri;
10633         break;
10634 
10635     case 0x00: /* SSHR / USHR */
10636         if (is_u) {
10637             if (shift == 8 << size) {
10638                 /* Shift count the same size as element size produces zero.  */
10639                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10640                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10641                 return;
10642             }
10643             gvec_fn = tcg_gen_gvec_shri;
10644         } else {
10645             /* Shift count the same size as element size produces all sign.  */
10646             if (shift == 8 << size) {
10647                 shift -= 1;
10648             }
10649             gvec_fn = tcg_gen_gvec_sari;
10650         }
10651         break;
10652 
10653     case 0x04: /* SRSHR / URSHR (rounding) */
10654         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10655         break;
10656 
10657     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10658         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10659         break;
10660 
10661     default:
10662         g_assert_not_reached();
10663     }
10664 
10665     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10666 }
10667 
10668 /* SHL/SLI - Vector shift left */
10669 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10670                                  int immh, int immb, int opcode, int rn, int rd)
10671 {
10672     int size = 32 - clz32(immh) - 1;
10673     int immhb = immh << 3 | immb;
10674     int shift = immhb - (8 << size);
10675 
10676     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10677     assert(size >= 0 && size <= 3);
10678 
10679     if (extract32(immh, 3, 1) && !is_q) {
10680         unallocated_encoding(s);
10681         return;
10682     }
10683 
10684     if (!fp_access_check(s)) {
10685         return;
10686     }
10687 
10688     if (insert) {
10689         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10690     } else {
10691         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10692     }
10693 }
10694 
10695 /* USHLL/SHLL - Vector shift left with widening */
10696 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10697                                  int immh, int immb, int opcode, int rn, int rd)
10698 {
10699     int size = 32 - clz32(immh) - 1;
10700     int immhb = immh << 3 | immb;
10701     int shift = immhb - (8 << size);
10702     int dsize = 64;
10703     int esize = 8 << size;
10704     int elements = dsize/esize;
10705     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10706     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10707     int i;
10708 
10709     if (size >= 3) {
10710         unallocated_encoding(s);
10711         return;
10712     }
10713 
10714     if (!fp_access_check(s)) {
10715         return;
10716     }
10717 
10718     /* For the LL variants the store is larger than the load,
10719      * so if rd == rn we would overwrite parts of our input.
10720      * So load everything right now and use shifts in the main loop.
10721      */
10722     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10723 
10724     for (i = 0; i < elements; i++) {
10725         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10726         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10727         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10728         write_vec_element(s, tcg_rd, rd, i, size + 1);
10729     }
10730 }
10731 
10732 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10733 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10734                                  int immh, int immb, int opcode, int rn, int rd)
10735 {
10736     int immhb = immh << 3 | immb;
10737     int size = 32 - clz32(immh) - 1;
10738     int dsize = 64;
10739     int esize = 8 << size;
10740     int elements = dsize/esize;
10741     int shift = (2 * esize) - immhb;
10742     bool round = extract32(opcode, 0, 1);
10743     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10744     TCGv_i64 tcg_round;
10745     int i;
10746 
10747     if (extract32(immh, 3, 1)) {
10748         unallocated_encoding(s);
10749         return;
10750     }
10751 
10752     if (!fp_access_check(s)) {
10753         return;
10754     }
10755 
10756     tcg_rn = tcg_temp_new_i64();
10757     tcg_rd = tcg_temp_new_i64();
10758     tcg_final = tcg_temp_new_i64();
10759     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10760 
10761     if (round) {
10762         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10763     } else {
10764         tcg_round = NULL;
10765     }
10766 
10767     for (i = 0; i < elements; i++) {
10768         read_vec_element(s, tcg_rn, rn, i, size+1);
10769         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10770                                 false, true, size+1, shift);
10771 
10772         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10773     }
10774 
10775     if (!is_q) {
10776         write_vec_element(s, tcg_final, rd, 0, MO_64);
10777     } else {
10778         write_vec_element(s, tcg_final, rd, 1, MO_64);
10779     }
10780     tcg_temp_free_i64(tcg_rn);
10781     tcg_temp_free_i64(tcg_rd);
10782     tcg_temp_free_i64(tcg_final);
10783 
10784     clear_vec_high(s, is_q, rd);
10785 }
10786 
10787 
10788 /* AdvSIMD shift by immediate
10789  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10790  * +---+---+---+-------------+------+------+--------+---+------+------+
10791  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10792  * +---+---+---+-------------+------+------+--------+---+------+------+
10793  */
10794 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10795 {
10796     int rd = extract32(insn, 0, 5);
10797     int rn = extract32(insn, 5, 5);
10798     int opcode = extract32(insn, 11, 5);
10799     int immb = extract32(insn, 16, 3);
10800     int immh = extract32(insn, 19, 4);
10801     bool is_u = extract32(insn, 29, 1);
10802     bool is_q = extract32(insn, 30, 1);
10803 
10804     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10805     assert(immh != 0);
10806 
10807     switch (opcode) {
10808     case 0x08: /* SRI */
10809         if (!is_u) {
10810             unallocated_encoding(s);
10811             return;
10812         }
10813         /* fall through */
10814     case 0x00: /* SSHR / USHR */
10815     case 0x02: /* SSRA / USRA (accumulate) */
10816     case 0x04: /* SRSHR / URSHR (rounding) */
10817     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10818         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10819         break;
10820     case 0x0a: /* SHL / SLI */
10821         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10822         break;
10823     case 0x10: /* SHRN */
10824     case 0x11: /* RSHRN / SQRSHRUN */
10825         if (is_u) {
10826             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10827                                    opcode, rn, rd);
10828         } else {
10829             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10830         }
10831         break;
10832     case 0x12: /* SQSHRN / UQSHRN */
10833     case 0x13: /* SQRSHRN / UQRSHRN */
10834         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10835                                opcode, rn, rd);
10836         break;
10837     case 0x14: /* SSHLL / USHLL */
10838         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10839         break;
10840     case 0x1c: /* SCVTF / UCVTF */
10841         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10842                                      opcode, rn, rd);
10843         break;
10844     case 0xc: /* SQSHLU */
10845         if (!is_u) {
10846             unallocated_encoding(s);
10847             return;
10848         }
10849         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10850         break;
10851     case 0xe: /* SQSHL, UQSHL */
10852         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10853         break;
10854     case 0x1f: /* FCVTZS/ FCVTZU */
10855         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10856         return;
10857     default:
10858         unallocated_encoding(s);
10859         return;
10860     }
10861 }
10862 
10863 /* Generate code to do a "long" addition or subtraction, ie one done in
10864  * TCGv_i64 on vector lanes twice the width specified by size.
10865  */
10866 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10867                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10868 {
10869     static NeonGenTwo64OpFn * const fns[3][2] = {
10870         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10871         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10872         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10873     };
10874     NeonGenTwo64OpFn *genfn;
10875     assert(size < 3);
10876 
10877     genfn = fns[size][is_sub];
10878     genfn(tcg_res, tcg_op1, tcg_op2);
10879 }
10880 
10881 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10882                                 int opcode, int rd, int rn, int rm)
10883 {
10884     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10885     TCGv_i64 tcg_res[2];
10886     int pass, accop;
10887 
10888     tcg_res[0] = tcg_temp_new_i64();
10889     tcg_res[1] = tcg_temp_new_i64();
10890 
10891     /* Does this op do an adding accumulate, a subtracting accumulate,
10892      * or no accumulate at all?
10893      */
10894     switch (opcode) {
10895     case 5:
10896     case 8:
10897     case 9:
10898         accop = 1;
10899         break;
10900     case 10:
10901     case 11:
10902         accop = -1;
10903         break;
10904     default:
10905         accop = 0;
10906         break;
10907     }
10908 
10909     if (accop != 0) {
10910         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10911         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10912     }
10913 
10914     /* size == 2 means two 32x32->64 operations; this is worth special
10915      * casing because we can generally handle it inline.
10916      */
10917     if (size == 2) {
10918         for (pass = 0; pass < 2; pass++) {
10919             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10920             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10921             TCGv_i64 tcg_passres;
10922             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10923 
10924             int elt = pass + is_q * 2;
10925 
10926             read_vec_element(s, tcg_op1, rn, elt, memop);
10927             read_vec_element(s, tcg_op2, rm, elt, memop);
10928 
10929             if (accop == 0) {
10930                 tcg_passres = tcg_res[pass];
10931             } else {
10932                 tcg_passres = tcg_temp_new_i64();
10933             }
10934 
10935             switch (opcode) {
10936             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10937                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10938                 break;
10939             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10940                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10941                 break;
10942             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10943             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10944             {
10945                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10946                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10947 
10948                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10949                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10950                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10951                                     tcg_passres,
10952                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10953                 tcg_temp_free_i64(tcg_tmp1);
10954                 tcg_temp_free_i64(tcg_tmp2);
10955                 break;
10956             }
10957             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10958             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10959             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10960                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10961                 break;
10962             case 9: /* SQDMLAL, SQDMLAL2 */
10963             case 11: /* SQDMLSL, SQDMLSL2 */
10964             case 13: /* SQDMULL, SQDMULL2 */
10965                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10966                 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10967                                                   tcg_passres, tcg_passres);
10968                 break;
10969             default:
10970                 g_assert_not_reached();
10971             }
10972 
10973             if (opcode == 9 || opcode == 11) {
10974                 /* saturating accumulate ops */
10975                 if (accop < 0) {
10976                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10977                 }
10978                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10979                                                   tcg_res[pass], tcg_passres);
10980             } else if (accop > 0) {
10981                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10982             } else if (accop < 0) {
10983                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10984             }
10985 
10986             if (accop != 0) {
10987                 tcg_temp_free_i64(tcg_passres);
10988             }
10989 
10990             tcg_temp_free_i64(tcg_op1);
10991             tcg_temp_free_i64(tcg_op2);
10992         }
10993     } else {
10994         /* size 0 or 1, generally helper functions */
10995         for (pass = 0; pass < 2; pass++) {
10996             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10997             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10998             TCGv_i64 tcg_passres;
10999             int elt = pass + is_q * 2;
11000 
11001             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
11002             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
11003 
11004             if (accop == 0) {
11005                 tcg_passres = tcg_res[pass];
11006             } else {
11007                 tcg_passres = tcg_temp_new_i64();
11008             }
11009 
11010             switch (opcode) {
11011             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11012             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11013             {
11014                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11015                 static NeonGenWidenFn * const widenfns[2][2] = {
11016                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11017                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11018                 };
11019                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11020 
11021                 widenfn(tcg_op2_64, tcg_op2);
11022                 widenfn(tcg_passres, tcg_op1);
11023                 gen_neon_addl(size, (opcode == 2), tcg_passres,
11024                               tcg_passres, tcg_op2_64);
11025                 tcg_temp_free_i64(tcg_op2_64);
11026                 break;
11027             }
11028             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11029             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11030                 if (size == 0) {
11031                     if (is_u) {
11032                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11033                     } else {
11034                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11035                     }
11036                 } else {
11037                     if (is_u) {
11038                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11039                     } else {
11040                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11041                     }
11042                 }
11043                 break;
11044             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11045             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11046             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11047                 if (size == 0) {
11048                     if (is_u) {
11049                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11050                     } else {
11051                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11052                     }
11053                 } else {
11054                     if (is_u) {
11055                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11056                     } else {
11057                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11058                     }
11059                 }
11060                 break;
11061             case 9: /* SQDMLAL, SQDMLAL2 */
11062             case 11: /* SQDMLSL, SQDMLSL2 */
11063             case 13: /* SQDMULL, SQDMULL2 */
11064                 assert(size == 1);
11065                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11066                 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11067                                                   tcg_passres, tcg_passres);
11068                 break;
11069             default:
11070                 g_assert_not_reached();
11071             }
11072             tcg_temp_free_i32(tcg_op1);
11073             tcg_temp_free_i32(tcg_op2);
11074 
11075             if (accop != 0) {
11076                 if (opcode == 9 || opcode == 11) {
11077                     /* saturating accumulate ops */
11078                     if (accop < 0) {
11079                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11080                     }
11081                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11082                                                       tcg_res[pass],
11083                                                       tcg_passres);
11084                 } else {
11085                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
11086                                   tcg_res[pass], tcg_passres);
11087                 }
11088                 tcg_temp_free_i64(tcg_passres);
11089             }
11090         }
11091     }
11092 
11093     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11094     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11095     tcg_temp_free_i64(tcg_res[0]);
11096     tcg_temp_free_i64(tcg_res[1]);
11097 }
11098 
11099 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11100                             int opcode, int rd, int rn, int rm)
11101 {
11102     TCGv_i64 tcg_res[2];
11103     int part = is_q ? 2 : 0;
11104     int pass;
11105 
11106     for (pass = 0; pass < 2; pass++) {
11107         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11108         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11109         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11110         static NeonGenWidenFn * const widenfns[3][2] = {
11111             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11112             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11113             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11114         };
11115         NeonGenWidenFn *widenfn = widenfns[size][is_u];
11116 
11117         read_vec_element(s, tcg_op1, rn, pass, MO_64);
11118         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11119         widenfn(tcg_op2_wide, tcg_op2);
11120         tcg_temp_free_i32(tcg_op2);
11121         tcg_res[pass] = tcg_temp_new_i64();
11122         gen_neon_addl(size, (opcode == 3),
11123                       tcg_res[pass], tcg_op1, tcg_op2_wide);
11124         tcg_temp_free_i64(tcg_op1);
11125         tcg_temp_free_i64(tcg_op2_wide);
11126     }
11127 
11128     for (pass = 0; pass < 2; pass++) {
11129         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11130         tcg_temp_free_i64(tcg_res[pass]);
11131     }
11132 }
11133 
11134 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11135 {
11136     tcg_gen_addi_i64(in, in, 1U << 31);
11137     tcg_gen_extrh_i64_i32(res, in);
11138 }
11139 
11140 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11141                                  int opcode, int rd, int rn, int rm)
11142 {
11143     TCGv_i32 tcg_res[2];
11144     int part = is_q ? 2 : 0;
11145     int pass;
11146 
11147     for (pass = 0; pass < 2; pass++) {
11148         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11149         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11150         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11151         static NeonGenNarrowFn * const narrowfns[3][2] = {
11152             { gen_helper_neon_narrow_high_u8,
11153               gen_helper_neon_narrow_round_high_u8 },
11154             { gen_helper_neon_narrow_high_u16,
11155               gen_helper_neon_narrow_round_high_u16 },
11156             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11157         };
11158         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11159 
11160         read_vec_element(s, tcg_op1, rn, pass, MO_64);
11161         read_vec_element(s, tcg_op2, rm, pass, MO_64);
11162 
11163         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11164 
11165         tcg_temp_free_i64(tcg_op1);
11166         tcg_temp_free_i64(tcg_op2);
11167 
11168         tcg_res[pass] = tcg_temp_new_i32();
11169         gennarrow(tcg_res[pass], tcg_wideres);
11170         tcg_temp_free_i64(tcg_wideres);
11171     }
11172 
11173     for (pass = 0; pass < 2; pass++) {
11174         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11175         tcg_temp_free_i32(tcg_res[pass]);
11176     }
11177     clear_vec_high(s, is_q, rd);
11178 }
11179 
11180 /* AdvSIMD three different
11181  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
11182  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11183  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
11184  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11185  */
11186 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11187 {
11188     /* Instructions in this group fall into three basic classes
11189      * (in each case with the operation working on each element in
11190      * the input vectors):
11191      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11192      *     128 bit input)
11193      * (2) wide 64 x 128 -> 128
11194      * (3) narrowing 128 x 128 -> 64
11195      * Here we do initial decode, catch unallocated cases and
11196      * dispatch to separate functions for each class.
11197      */
11198     int is_q = extract32(insn, 30, 1);
11199     int is_u = extract32(insn, 29, 1);
11200     int size = extract32(insn, 22, 2);
11201     int opcode = extract32(insn, 12, 4);
11202     int rm = extract32(insn, 16, 5);
11203     int rn = extract32(insn, 5, 5);
11204     int rd = extract32(insn, 0, 5);
11205 
11206     switch (opcode) {
11207     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11208     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11209         /* 64 x 128 -> 128 */
11210         if (size == 3) {
11211             unallocated_encoding(s);
11212             return;
11213         }
11214         if (!fp_access_check(s)) {
11215             return;
11216         }
11217         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11218         break;
11219     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11220     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11221         /* 128 x 128 -> 64 */
11222         if (size == 3) {
11223             unallocated_encoding(s);
11224             return;
11225         }
11226         if (!fp_access_check(s)) {
11227             return;
11228         }
11229         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11230         break;
11231     case 14: /* PMULL, PMULL2 */
11232         if (is_u) {
11233             unallocated_encoding(s);
11234             return;
11235         }
11236         switch (size) {
11237         case 0: /* PMULL.P8 */
11238             if (!fp_access_check(s)) {
11239                 return;
11240             }
11241             /* The Q field specifies lo/hi half input for this insn.  */
11242             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11243                              gen_helper_neon_pmull_h);
11244             break;
11245 
11246         case 3: /* PMULL.P64 */
11247             if (!dc_isar_feature(aa64_pmull, s)) {
11248                 unallocated_encoding(s);
11249                 return;
11250             }
11251             if (!fp_access_check(s)) {
11252                 return;
11253             }
11254             /* The Q field specifies lo/hi half input for this insn.  */
11255             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11256                              gen_helper_gvec_pmull_q);
11257             break;
11258 
11259         default:
11260             unallocated_encoding(s);
11261             break;
11262         }
11263         return;
11264     case 9: /* SQDMLAL, SQDMLAL2 */
11265     case 11: /* SQDMLSL, SQDMLSL2 */
11266     case 13: /* SQDMULL, SQDMULL2 */
11267         if (is_u || size == 0) {
11268             unallocated_encoding(s);
11269             return;
11270         }
11271         /* fall through */
11272     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11273     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11274     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11275     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11276     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11277     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11278     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11279         /* 64 x 64 -> 128 */
11280         if (size == 3) {
11281             unallocated_encoding(s);
11282             return;
11283         }
11284         if (!fp_access_check(s)) {
11285             return;
11286         }
11287 
11288         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11289         break;
11290     default:
11291         /* opcode 15 not allocated */
11292         unallocated_encoding(s);
11293         break;
11294     }
11295 }
11296 
11297 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11298 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11299 {
11300     int rd = extract32(insn, 0, 5);
11301     int rn = extract32(insn, 5, 5);
11302     int rm = extract32(insn, 16, 5);
11303     int size = extract32(insn, 22, 2);
11304     bool is_u = extract32(insn, 29, 1);
11305     bool is_q = extract32(insn, 30, 1);
11306 
11307     if (!fp_access_check(s)) {
11308         return;
11309     }
11310 
11311     switch (size + 4 * is_u) {
11312     case 0: /* AND */
11313         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11314         return;
11315     case 1: /* BIC */
11316         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11317         return;
11318     case 2: /* ORR */
11319         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11320         return;
11321     case 3: /* ORN */
11322         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11323         return;
11324     case 4: /* EOR */
11325         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11326         return;
11327 
11328     case 5: /* BSL bitwise select */
11329         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11330         return;
11331     case 6: /* BIT, bitwise insert if true */
11332         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11333         return;
11334     case 7: /* BIF, bitwise insert if false */
11335         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11336         return;
11337 
11338     default:
11339         g_assert_not_reached();
11340     }
11341 }
11342 
11343 /* Pairwise op subgroup of C3.6.16.
11344  *
11345  * This is called directly or via the handle_3same_float for float pairwise
11346  * operations where the opcode and size are calculated differently.
11347  */
11348 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11349                                    int size, int rn, int rm, int rd)
11350 {
11351     TCGv_ptr fpst;
11352     int pass;
11353 
11354     /* Floating point operations need fpst */
11355     if (opcode >= 0x58) {
11356         fpst = fpstatus_ptr(FPST_FPCR);
11357     } else {
11358         fpst = NULL;
11359     }
11360 
11361     if (!fp_access_check(s)) {
11362         return;
11363     }
11364 
11365     /* These operations work on the concatenated rm:rn, with each pair of
11366      * adjacent elements being operated on to produce an element in the result.
11367      */
11368     if (size == 3) {
11369         TCGv_i64 tcg_res[2];
11370 
11371         for (pass = 0; pass < 2; pass++) {
11372             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11373             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11374             int passreg = (pass == 0) ? rn : rm;
11375 
11376             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11377             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11378             tcg_res[pass] = tcg_temp_new_i64();
11379 
11380             switch (opcode) {
11381             case 0x17: /* ADDP */
11382                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11383                 break;
11384             case 0x58: /* FMAXNMP */
11385                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11386                 break;
11387             case 0x5a: /* FADDP */
11388                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11389                 break;
11390             case 0x5e: /* FMAXP */
11391                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11392                 break;
11393             case 0x78: /* FMINNMP */
11394                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11395                 break;
11396             case 0x7e: /* FMINP */
11397                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11398                 break;
11399             default:
11400                 g_assert_not_reached();
11401             }
11402 
11403             tcg_temp_free_i64(tcg_op1);
11404             tcg_temp_free_i64(tcg_op2);
11405         }
11406 
11407         for (pass = 0; pass < 2; pass++) {
11408             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11409             tcg_temp_free_i64(tcg_res[pass]);
11410         }
11411     } else {
11412         int maxpass = is_q ? 4 : 2;
11413         TCGv_i32 tcg_res[4];
11414 
11415         for (pass = 0; pass < maxpass; pass++) {
11416             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11417             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11418             NeonGenTwoOpFn *genfn = NULL;
11419             int passreg = pass < (maxpass / 2) ? rn : rm;
11420             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11421 
11422             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11423             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11424             tcg_res[pass] = tcg_temp_new_i32();
11425 
11426             switch (opcode) {
11427             case 0x17: /* ADDP */
11428             {
11429                 static NeonGenTwoOpFn * const fns[3] = {
11430                     gen_helper_neon_padd_u8,
11431                     gen_helper_neon_padd_u16,
11432                     tcg_gen_add_i32,
11433                 };
11434                 genfn = fns[size];
11435                 break;
11436             }
11437             case 0x14: /* SMAXP, UMAXP */
11438             {
11439                 static NeonGenTwoOpFn * const fns[3][2] = {
11440                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11441                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11442                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11443                 };
11444                 genfn = fns[size][u];
11445                 break;
11446             }
11447             case 0x15: /* SMINP, UMINP */
11448             {
11449                 static NeonGenTwoOpFn * const fns[3][2] = {
11450                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11451                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11452                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11453                 };
11454                 genfn = fns[size][u];
11455                 break;
11456             }
11457             /* The FP operations are all on single floats (32 bit) */
11458             case 0x58: /* FMAXNMP */
11459                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11460                 break;
11461             case 0x5a: /* FADDP */
11462                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11463                 break;
11464             case 0x5e: /* FMAXP */
11465                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11466                 break;
11467             case 0x78: /* FMINNMP */
11468                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11469                 break;
11470             case 0x7e: /* FMINP */
11471                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11472                 break;
11473             default:
11474                 g_assert_not_reached();
11475             }
11476 
11477             /* FP ops called directly, otherwise call now */
11478             if (genfn) {
11479                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11480             }
11481 
11482             tcg_temp_free_i32(tcg_op1);
11483             tcg_temp_free_i32(tcg_op2);
11484         }
11485 
11486         for (pass = 0; pass < maxpass; pass++) {
11487             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11488             tcg_temp_free_i32(tcg_res[pass]);
11489         }
11490         clear_vec_high(s, is_q, rd);
11491     }
11492 
11493     if (fpst) {
11494         tcg_temp_free_ptr(fpst);
11495     }
11496 }
11497 
11498 /* Floating point op subgroup of C3.6.16. */
11499 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11500 {
11501     /* For floating point ops, the U, size[1] and opcode bits
11502      * together indicate the operation. size[0] indicates single
11503      * or double.
11504      */
11505     int fpopcode = extract32(insn, 11, 5)
11506         | (extract32(insn, 23, 1) << 5)
11507         | (extract32(insn, 29, 1) << 6);
11508     int is_q = extract32(insn, 30, 1);
11509     int size = extract32(insn, 22, 1);
11510     int rm = extract32(insn, 16, 5);
11511     int rn = extract32(insn, 5, 5);
11512     int rd = extract32(insn, 0, 5);
11513 
11514     int datasize = is_q ? 128 : 64;
11515     int esize = 32 << size;
11516     int elements = datasize / esize;
11517 
11518     if (size == 1 && !is_q) {
11519         unallocated_encoding(s);
11520         return;
11521     }
11522 
11523     switch (fpopcode) {
11524     case 0x58: /* FMAXNMP */
11525     case 0x5a: /* FADDP */
11526     case 0x5e: /* FMAXP */
11527     case 0x78: /* FMINNMP */
11528     case 0x7e: /* FMINP */
11529         if (size && !is_q) {
11530             unallocated_encoding(s);
11531             return;
11532         }
11533         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11534                                rn, rm, rd);
11535         return;
11536     case 0x1b: /* FMULX */
11537     case 0x1f: /* FRECPS */
11538     case 0x3f: /* FRSQRTS */
11539     case 0x5d: /* FACGE */
11540     case 0x7d: /* FACGT */
11541     case 0x19: /* FMLA */
11542     case 0x39: /* FMLS */
11543     case 0x18: /* FMAXNM */
11544     case 0x1a: /* FADD */
11545     case 0x1c: /* FCMEQ */
11546     case 0x1e: /* FMAX */
11547     case 0x38: /* FMINNM */
11548     case 0x3a: /* FSUB */
11549     case 0x3e: /* FMIN */
11550     case 0x5b: /* FMUL */
11551     case 0x5c: /* FCMGE */
11552     case 0x5f: /* FDIV */
11553     case 0x7a: /* FABD */
11554     case 0x7c: /* FCMGT */
11555         if (!fp_access_check(s)) {
11556             return;
11557         }
11558         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11559         return;
11560 
11561     case 0x1d: /* FMLAL  */
11562     case 0x3d: /* FMLSL  */
11563     case 0x59: /* FMLAL2 */
11564     case 0x79: /* FMLSL2 */
11565         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11566             unallocated_encoding(s);
11567             return;
11568         }
11569         if (fp_access_check(s)) {
11570             int is_s = extract32(insn, 23, 1);
11571             int is_2 = extract32(insn, 29, 1);
11572             int data = (is_2 << 1) | is_s;
11573             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11574                                vec_full_reg_offset(s, rn),
11575                                vec_full_reg_offset(s, rm), cpu_env,
11576                                is_q ? 16 : 8, vec_full_reg_size(s),
11577                                data, gen_helper_gvec_fmlal_a64);
11578         }
11579         return;
11580 
11581     default:
11582         unallocated_encoding(s);
11583         return;
11584     }
11585 }
11586 
11587 /* Integer op subgroup of C3.6.16. */
11588 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11589 {
11590     int is_q = extract32(insn, 30, 1);
11591     int u = extract32(insn, 29, 1);
11592     int size = extract32(insn, 22, 2);
11593     int opcode = extract32(insn, 11, 5);
11594     int rm = extract32(insn, 16, 5);
11595     int rn = extract32(insn, 5, 5);
11596     int rd = extract32(insn, 0, 5);
11597     int pass;
11598     TCGCond cond;
11599 
11600     switch (opcode) {
11601     case 0x13: /* MUL, PMUL */
11602         if (u && size != 0) {
11603             unallocated_encoding(s);
11604             return;
11605         }
11606         /* fall through */
11607     case 0x0: /* SHADD, UHADD */
11608     case 0x2: /* SRHADD, URHADD */
11609     case 0x4: /* SHSUB, UHSUB */
11610     case 0xc: /* SMAX, UMAX */
11611     case 0xd: /* SMIN, UMIN */
11612     case 0xe: /* SABD, UABD */
11613     case 0xf: /* SABA, UABA */
11614     case 0x12: /* MLA, MLS */
11615         if (size == 3) {
11616             unallocated_encoding(s);
11617             return;
11618         }
11619         break;
11620     case 0x16: /* SQDMULH, SQRDMULH */
11621         if (size == 0 || size == 3) {
11622             unallocated_encoding(s);
11623             return;
11624         }
11625         break;
11626     default:
11627         if (size == 3 && !is_q) {
11628             unallocated_encoding(s);
11629             return;
11630         }
11631         break;
11632     }
11633 
11634     if (!fp_access_check(s)) {
11635         return;
11636     }
11637 
11638     switch (opcode) {
11639     case 0x01: /* SQADD, UQADD */
11640         if (u) {
11641             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11642         } else {
11643             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11644         }
11645         return;
11646     case 0x05: /* SQSUB, UQSUB */
11647         if (u) {
11648             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11649         } else {
11650             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11651         }
11652         return;
11653     case 0x08: /* SSHL, USHL */
11654         if (u) {
11655             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11656         } else {
11657             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11658         }
11659         return;
11660     case 0x0c: /* SMAX, UMAX */
11661         if (u) {
11662             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11663         } else {
11664             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11665         }
11666         return;
11667     case 0x0d: /* SMIN, UMIN */
11668         if (u) {
11669             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11670         } else {
11671             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11672         }
11673         return;
11674     case 0xe: /* SABD, UABD */
11675         if (u) {
11676             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11677         } else {
11678             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11679         }
11680         return;
11681     case 0xf: /* SABA, UABA */
11682         if (u) {
11683             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11684         } else {
11685             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11686         }
11687         return;
11688     case 0x10: /* ADD, SUB */
11689         if (u) {
11690             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11691         } else {
11692             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11693         }
11694         return;
11695     case 0x13: /* MUL, PMUL */
11696         if (!u) { /* MUL */
11697             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11698         } else {  /* PMUL */
11699             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11700         }
11701         return;
11702     case 0x12: /* MLA, MLS */
11703         if (u) {
11704             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11705         } else {
11706             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11707         }
11708         return;
11709     case 0x16: /* SQDMULH, SQRDMULH */
11710         {
11711             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11712                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11713                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11714             };
11715             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11716         }
11717         return;
11718     case 0x11:
11719         if (!u) { /* CMTST */
11720             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11721             return;
11722         }
11723         /* else CMEQ */
11724         cond = TCG_COND_EQ;
11725         goto do_gvec_cmp;
11726     case 0x06: /* CMGT, CMHI */
11727         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11728         goto do_gvec_cmp;
11729     case 0x07: /* CMGE, CMHS */
11730         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11731     do_gvec_cmp:
11732         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11733                          vec_full_reg_offset(s, rn),
11734                          vec_full_reg_offset(s, rm),
11735                          is_q ? 16 : 8, vec_full_reg_size(s));
11736         return;
11737     }
11738 
11739     if (size == 3) {
11740         assert(is_q);
11741         for (pass = 0; pass < 2; pass++) {
11742             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11743             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11744             TCGv_i64 tcg_res = tcg_temp_new_i64();
11745 
11746             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11747             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11748 
11749             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11750 
11751             write_vec_element(s, tcg_res, rd, pass, MO_64);
11752 
11753             tcg_temp_free_i64(tcg_res);
11754             tcg_temp_free_i64(tcg_op1);
11755             tcg_temp_free_i64(tcg_op2);
11756         }
11757     } else {
11758         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11759             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11760             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11761             TCGv_i32 tcg_res = tcg_temp_new_i32();
11762             NeonGenTwoOpFn *genfn = NULL;
11763             NeonGenTwoOpEnvFn *genenvfn = NULL;
11764 
11765             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11766             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11767 
11768             switch (opcode) {
11769             case 0x0: /* SHADD, UHADD */
11770             {
11771                 static NeonGenTwoOpFn * const fns[3][2] = {
11772                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11773                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11774                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11775                 };
11776                 genfn = fns[size][u];
11777                 break;
11778             }
11779             case 0x2: /* SRHADD, URHADD */
11780             {
11781                 static NeonGenTwoOpFn * const fns[3][2] = {
11782                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11783                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11784                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11785                 };
11786                 genfn = fns[size][u];
11787                 break;
11788             }
11789             case 0x4: /* SHSUB, UHSUB */
11790             {
11791                 static NeonGenTwoOpFn * const fns[3][2] = {
11792                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11793                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11794                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11795                 };
11796                 genfn = fns[size][u];
11797                 break;
11798             }
11799             case 0x9: /* SQSHL, UQSHL */
11800             {
11801                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11802                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11803                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11804                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11805                 };
11806                 genenvfn = fns[size][u];
11807                 break;
11808             }
11809             case 0xa: /* SRSHL, URSHL */
11810             {
11811                 static NeonGenTwoOpFn * const fns[3][2] = {
11812                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11813                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11814                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11815                 };
11816                 genfn = fns[size][u];
11817                 break;
11818             }
11819             case 0xb: /* SQRSHL, UQRSHL */
11820             {
11821                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11822                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11823                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11824                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11825                 };
11826                 genenvfn = fns[size][u];
11827                 break;
11828             }
11829             default:
11830                 g_assert_not_reached();
11831             }
11832 
11833             if (genenvfn) {
11834                 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11835             } else {
11836                 genfn(tcg_res, tcg_op1, tcg_op2);
11837             }
11838 
11839             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11840 
11841             tcg_temp_free_i32(tcg_res);
11842             tcg_temp_free_i32(tcg_op1);
11843             tcg_temp_free_i32(tcg_op2);
11844         }
11845     }
11846     clear_vec_high(s, is_q, rd);
11847 }
11848 
11849 /* AdvSIMD three same
11850  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11851  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11852  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11853  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11854  */
11855 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11856 {
11857     int opcode = extract32(insn, 11, 5);
11858 
11859     switch (opcode) {
11860     case 0x3: /* logic ops */
11861         disas_simd_3same_logic(s, insn);
11862         break;
11863     case 0x17: /* ADDP */
11864     case 0x14: /* SMAXP, UMAXP */
11865     case 0x15: /* SMINP, UMINP */
11866     {
11867         /* Pairwise operations */
11868         int is_q = extract32(insn, 30, 1);
11869         int u = extract32(insn, 29, 1);
11870         int size = extract32(insn, 22, 2);
11871         int rm = extract32(insn, 16, 5);
11872         int rn = extract32(insn, 5, 5);
11873         int rd = extract32(insn, 0, 5);
11874         if (opcode == 0x17) {
11875             if (u || (size == 3 && !is_q)) {
11876                 unallocated_encoding(s);
11877                 return;
11878             }
11879         } else {
11880             if (size == 3) {
11881                 unallocated_encoding(s);
11882                 return;
11883             }
11884         }
11885         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11886         break;
11887     }
11888     case 0x18 ... 0x31:
11889         /* floating point ops, sz[1] and U are part of opcode */
11890         disas_simd_3same_float(s, insn);
11891         break;
11892     default:
11893         disas_simd_3same_int(s, insn);
11894         break;
11895     }
11896 }
11897 
11898 /*
11899  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11900  *
11901  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11902  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11903  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11904  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11905  *
11906  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11907  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11908  *
11909  */
11910 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11911 {
11912     int opcode = extract32(insn, 11, 3);
11913     int u = extract32(insn, 29, 1);
11914     int a = extract32(insn, 23, 1);
11915     int is_q = extract32(insn, 30, 1);
11916     int rm = extract32(insn, 16, 5);
11917     int rn = extract32(insn, 5, 5);
11918     int rd = extract32(insn, 0, 5);
11919     /*
11920      * For these floating point ops, the U, a and opcode bits
11921      * together indicate the operation.
11922      */
11923     int fpopcode = opcode | (a << 3) | (u << 4);
11924     int datasize = is_q ? 128 : 64;
11925     int elements = datasize / 16;
11926     bool pairwise;
11927     TCGv_ptr fpst;
11928     int pass;
11929 
11930     switch (fpopcode) {
11931     case 0x0: /* FMAXNM */
11932     case 0x1: /* FMLA */
11933     case 0x2: /* FADD */
11934     case 0x3: /* FMULX */
11935     case 0x4: /* FCMEQ */
11936     case 0x6: /* FMAX */
11937     case 0x7: /* FRECPS */
11938     case 0x8: /* FMINNM */
11939     case 0x9: /* FMLS */
11940     case 0xa: /* FSUB */
11941     case 0xe: /* FMIN */
11942     case 0xf: /* FRSQRTS */
11943     case 0x13: /* FMUL */
11944     case 0x14: /* FCMGE */
11945     case 0x15: /* FACGE */
11946     case 0x17: /* FDIV */
11947     case 0x1a: /* FABD */
11948     case 0x1c: /* FCMGT */
11949     case 0x1d: /* FACGT */
11950         pairwise = false;
11951         break;
11952     case 0x10: /* FMAXNMP */
11953     case 0x12: /* FADDP */
11954     case 0x16: /* FMAXP */
11955     case 0x18: /* FMINNMP */
11956     case 0x1e: /* FMINP */
11957         pairwise = true;
11958         break;
11959     default:
11960         unallocated_encoding(s);
11961         return;
11962     }
11963 
11964     if (!dc_isar_feature(aa64_fp16, s)) {
11965         unallocated_encoding(s);
11966         return;
11967     }
11968 
11969     if (!fp_access_check(s)) {
11970         return;
11971     }
11972 
11973     fpst = fpstatus_ptr(FPST_FPCR_F16);
11974 
11975     if (pairwise) {
11976         int maxpass = is_q ? 8 : 4;
11977         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11978         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11979         TCGv_i32 tcg_res[8];
11980 
11981         for (pass = 0; pass < maxpass; pass++) {
11982             int passreg = pass < (maxpass / 2) ? rn : rm;
11983             int passelt = (pass << 1) & (maxpass - 1);
11984 
11985             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11986             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11987             tcg_res[pass] = tcg_temp_new_i32();
11988 
11989             switch (fpopcode) {
11990             case 0x10: /* FMAXNMP */
11991                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11992                                            fpst);
11993                 break;
11994             case 0x12: /* FADDP */
11995                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11996                 break;
11997             case 0x16: /* FMAXP */
11998                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11999                 break;
12000             case 0x18: /* FMINNMP */
12001                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
12002                                            fpst);
12003                 break;
12004             case 0x1e: /* FMINP */
12005                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12006                 break;
12007             default:
12008                 g_assert_not_reached();
12009             }
12010         }
12011 
12012         for (pass = 0; pass < maxpass; pass++) {
12013             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
12014             tcg_temp_free_i32(tcg_res[pass]);
12015         }
12016 
12017         tcg_temp_free_i32(tcg_op1);
12018         tcg_temp_free_i32(tcg_op2);
12019 
12020     } else {
12021         for (pass = 0; pass < elements; pass++) {
12022             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12023             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12024             TCGv_i32 tcg_res = tcg_temp_new_i32();
12025 
12026             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12027             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12028 
12029             switch (fpopcode) {
12030             case 0x0: /* FMAXNM */
12031                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12032                 break;
12033             case 0x1: /* FMLA */
12034                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12035                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12036                                            fpst);
12037                 break;
12038             case 0x2: /* FADD */
12039                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12040                 break;
12041             case 0x3: /* FMULX */
12042                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12043                 break;
12044             case 0x4: /* FCMEQ */
12045                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12046                 break;
12047             case 0x6: /* FMAX */
12048                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12049                 break;
12050             case 0x7: /* FRECPS */
12051                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12052                 break;
12053             case 0x8: /* FMINNM */
12054                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12055                 break;
12056             case 0x9: /* FMLS */
12057                 /* As usual for ARM, separate negation for fused multiply-add */
12058                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12059                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12060                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12061                                            fpst);
12062                 break;
12063             case 0xa: /* FSUB */
12064                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12065                 break;
12066             case 0xe: /* FMIN */
12067                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12068                 break;
12069             case 0xf: /* FRSQRTS */
12070                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12071                 break;
12072             case 0x13: /* FMUL */
12073                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12074                 break;
12075             case 0x14: /* FCMGE */
12076                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12077                 break;
12078             case 0x15: /* FACGE */
12079                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12080                 break;
12081             case 0x17: /* FDIV */
12082                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12083                 break;
12084             case 0x1a: /* FABD */
12085                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12086                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12087                 break;
12088             case 0x1c: /* FCMGT */
12089                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12090                 break;
12091             case 0x1d: /* FACGT */
12092                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12093                 break;
12094             default:
12095                 g_assert_not_reached();
12096             }
12097 
12098             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12099             tcg_temp_free_i32(tcg_res);
12100             tcg_temp_free_i32(tcg_op1);
12101             tcg_temp_free_i32(tcg_op2);
12102         }
12103     }
12104 
12105     tcg_temp_free_ptr(fpst);
12106 
12107     clear_vec_high(s, is_q, rd);
12108 }
12109 
12110 /* AdvSIMD three same extra
12111  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
12112  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12113  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
12114  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12115  */
12116 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12117 {
12118     int rd = extract32(insn, 0, 5);
12119     int rn = extract32(insn, 5, 5);
12120     int opcode = extract32(insn, 11, 4);
12121     int rm = extract32(insn, 16, 5);
12122     int size = extract32(insn, 22, 2);
12123     bool u = extract32(insn, 29, 1);
12124     bool is_q = extract32(insn, 30, 1);
12125     bool feature;
12126     int rot;
12127 
12128     switch (u * 16 + opcode) {
12129     case 0x10: /* SQRDMLAH (vector) */
12130     case 0x11: /* SQRDMLSH (vector) */
12131         if (size != 1 && size != 2) {
12132             unallocated_encoding(s);
12133             return;
12134         }
12135         feature = dc_isar_feature(aa64_rdm, s);
12136         break;
12137     case 0x02: /* SDOT (vector) */
12138     case 0x12: /* UDOT (vector) */
12139         if (size != MO_32) {
12140             unallocated_encoding(s);
12141             return;
12142         }
12143         feature = dc_isar_feature(aa64_dp, s);
12144         break;
12145     case 0x03: /* USDOT */
12146         if (size != MO_32) {
12147             unallocated_encoding(s);
12148             return;
12149         }
12150         feature = dc_isar_feature(aa64_i8mm, s);
12151         break;
12152     case 0x04: /* SMMLA */
12153     case 0x14: /* UMMLA */
12154     case 0x05: /* USMMLA */
12155         if (!is_q || size != MO_32) {
12156             unallocated_encoding(s);
12157             return;
12158         }
12159         feature = dc_isar_feature(aa64_i8mm, s);
12160         break;
12161     case 0x18: /* FCMLA, #0 */
12162     case 0x19: /* FCMLA, #90 */
12163     case 0x1a: /* FCMLA, #180 */
12164     case 0x1b: /* FCMLA, #270 */
12165     case 0x1c: /* FCADD, #90 */
12166     case 0x1e: /* FCADD, #270 */
12167         if (size == 0
12168             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12169             || (size == 3 && !is_q)) {
12170             unallocated_encoding(s);
12171             return;
12172         }
12173         feature = dc_isar_feature(aa64_fcma, s);
12174         break;
12175     case 0x1d: /* BFMMLA */
12176         if (size != MO_16 || !is_q) {
12177             unallocated_encoding(s);
12178             return;
12179         }
12180         feature = dc_isar_feature(aa64_bf16, s);
12181         break;
12182     case 0x1f:
12183         switch (size) {
12184         case 1: /* BFDOT */
12185         case 3: /* BFMLAL{B,T} */
12186             feature = dc_isar_feature(aa64_bf16, s);
12187             break;
12188         default:
12189             unallocated_encoding(s);
12190             return;
12191         }
12192         break;
12193     default:
12194         unallocated_encoding(s);
12195         return;
12196     }
12197     if (!feature) {
12198         unallocated_encoding(s);
12199         return;
12200     }
12201     if (!fp_access_check(s)) {
12202         return;
12203     }
12204 
12205     switch (opcode) {
12206     case 0x0: /* SQRDMLAH (vector) */
12207         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12208         return;
12209 
12210     case 0x1: /* SQRDMLSH (vector) */
12211         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12212         return;
12213 
12214     case 0x2: /* SDOT / UDOT */
12215         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
12216                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12217         return;
12218 
12219     case 0x3: /* USDOT */
12220         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
12221         return;
12222 
12223     case 0x04: /* SMMLA, UMMLA */
12224         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
12225                          u ? gen_helper_gvec_ummla_b
12226                          : gen_helper_gvec_smmla_b);
12227         return;
12228     case 0x05: /* USMMLA */
12229         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
12230         return;
12231 
12232     case 0x8: /* FCMLA, #0 */
12233     case 0x9: /* FCMLA, #90 */
12234     case 0xa: /* FCMLA, #180 */
12235     case 0xb: /* FCMLA, #270 */
12236         rot = extract32(opcode, 0, 2);
12237         switch (size) {
12238         case 1:
12239             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
12240                               gen_helper_gvec_fcmlah);
12241             break;
12242         case 2:
12243             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12244                               gen_helper_gvec_fcmlas);
12245             break;
12246         case 3:
12247             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12248                               gen_helper_gvec_fcmlad);
12249             break;
12250         default:
12251             g_assert_not_reached();
12252         }
12253         return;
12254 
12255     case 0xc: /* FCADD, #90 */
12256     case 0xe: /* FCADD, #270 */
12257         rot = extract32(opcode, 1, 1);
12258         switch (size) {
12259         case 1:
12260             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12261                               gen_helper_gvec_fcaddh);
12262             break;
12263         case 2:
12264             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12265                               gen_helper_gvec_fcadds);
12266             break;
12267         case 3:
12268             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12269                               gen_helper_gvec_fcaddd);
12270             break;
12271         default:
12272             g_assert_not_reached();
12273         }
12274         return;
12275 
12276     case 0xd: /* BFMMLA */
12277         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
12278         return;
12279     case 0xf:
12280         switch (size) {
12281         case 1: /* BFDOT */
12282             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
12283             break;
12284         case 3: /* BFMLAL{B,T} */
12285             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
12286                               gen_helper_gvec_bfmlal);
12287             break;
12288         default:
12289             g_assert_not_reached();
12290         }
12291         return;
12292 
12293     default:
12294         g_assert_not_reached();
12295     }
12296 }
12297 
12298 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12299                                   int size, int rn, int rd)
12300 {
12301     /* Handle 2-reg-misc ops which are widening (so each size element
12302      * in the source becomes a 2*size element in the destination.
12303      * The only instruction like this is FCVTL.
12304      */
12305     int pass;
12306 
12307     if (size == 3) {
12308         /* 32 -> 64 bit fp conversion */
12309         TCGv_i64 tcg_res[2];
12310         int srcelt = is_q ? 2 : 0;
12311 
12312         for (pass = 0; pass < 2; pass++) {
12313             TCGv_i32 tcg_op = tcg_temp_new_i32();
12314             tcg_res[pass] = tcg_temp_new_i64();
12315 
12316             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12317             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12318             tcg_temp_free_i32(tcg_op);
12319         }
12320         for (pass = 0; pass < 2; pass++) {
12321             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12322             tcg_temp_free_i64(tcg_res[pass]);
12323         }
12324     } else {
12325         /* 16 -> 32 bit fp conversion */
12326         int srcelt = is_q ? 4 : 0;
12327         TCGv_i32 tcg_res[4];
12328         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12329         TCGv_i32 ahp = get_ahp_flag();
12330 
12331         for (pass = 0; pass < 4; pass++) {
12332             tcg_res[pass] = tcg_temp_new_i32();
12333 
12334             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12335             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12336                                            fpst, ahp);
12337         }
12338         for (pass = 0; pass < 4; pass++) {
12339             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12340             tcg_temp_free_i32(tcg_res[pass]);
12341         }
12342 
12343         tcg_temp_free_ptr(fpst);
12344         tcg_temp_free_i32(ahp);
12345     }
12346 }
12347 
12348 static void handle_rev(DisasContext *s, int opcode, bool u,
12349                        bool is_q, int size, int rn, int rd)
12350 {
12351     int op = (opcode << 1) | u;
12352     int opsz = op + size;
12353     int grp_size = 3 - opsz;
12354     int dsize = is_q ? 128 : 64;
12355     int i;
12356 
12357     if (opsz >= 3) {
12358         unallocated_encoding(s);
12359         return;
12360     }
12361 
12362     if (!fp_access_check(s)) {
12363         return;
12364     }
12365 
12366     if (size == 0) {
12367         /* Special case bytes, use bswap op on each group of elements */
12368         int groups = dsize / (8 << grp_size);
12369 
12370         for (i = 0; i < groups; i++) {
12371             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12372 
12373             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12374             switch (grp_size) {
12375             case MO_16:
12376                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12377                 break;
12378             case MO_32:
12379                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12380                 break;
12381             case MO_64:
12382                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12383                 break;
12384             default:
12385                 g_assert_not_reached();
12386             }
12387             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12388             tcg_temp_free_i64(tcg_tmp);
12389         }
12390         clear_vec_high(s, is_q, rd);
12391     } else {
12392         int revmask = (1 << grp_size) - 1;
12393         int esize = 8 << size;
12394         int elements = dsize / esize;
12395         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12396         TCGv_i64 tcg_rd = tcg_const_i64(0);
12397         TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12398 
12399         for (i = 0; i < elements; i++) {
12400             int e_rev = (i & 0xf) ^ revmask;
12401             int off = e_rev * esize;
12402             read_vec_element(s, tcg_rn, rn, i, size);
12403             if (off >= 64) {
12404                 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12405                                     tcg_rn, off - 64, esize);
12406             } else {
12407                 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12408             }
12409         }
12410         write_vec_element(s, tcg_rd, rd, 0, MO_64);
12411         write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12412 
12413         tcg_temp_free_i64(tcg_rd_hi);
12414         tcg_temp_free_i64(tcg_rd);
12415         tcg_temp_free_i64(tcg_rn);
12416     }
12417 }
12418 
12419 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12420                                   bool is_q, int size, int rn, int rd)
12421 {
12422     /* Implement the pairwise operations from 2-misc:
12423      * SADDLP, UADDLP, SADALP, UADALP.
12424      * These all add pairs of elements in the input to produce a
12425      * double-width result element in the output (possibly accumulating).
12426      */
12427     bool accum = (opcode == 0x6);
12428     int maxpass = is_q ? 2 : 1;
12429     int pass;
12430     TCGv_i64 tcg_res[2];
12431 
12432     if (size == 2) {
12433         /* 32 + 32 -> 64 op */
12434         MemOp memop = size + (u ? 0 : MO_SIGN);
12435 
12436         for (pass = 0; pass < maxpass; pass++) {
12437             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12438             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12439 
12440             tcg_res[pass] = tcg_temp_new_i64();
12441 
12442             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12443             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12444             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12445             if (accum) {
12446                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12447                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12448             }
12449 
12450             tcg_temp_free_i64(tcg_op1);
12451             tcg_temp_free_i64(tcg_op2);
12452         }
12453     } else {
12454         for (pass = 0; pass < maxpass; pass++) {
12455             TCGv_i64 tcg_op = tcg_temp_new_i64();
12456             NeonGenOne64OpFn *genfn;
12457             static NeonGenOne64OpFn * const fns[2][2] = {
12458                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12459                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12460             };
12461 
12462             genfn = fns[size][u];
12463 
12464             tcg_res[pass] = tcg_temp_new_i64();
12465 
12466             read_vec_element(s, tcg_op, rn, pass, MO_64);
12467             genfn(tcg_res[pass], tcg_op);
12468 
12469             if (accum) {
12470                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12471                 if (size == 0) {
12472                     gen_helper_neon_addl_u16(tcg_res[pass],
12473                                              tcg_res[pass], tcg_op);
12474                 } else {
12475                     gen_helper_neon_addl_u32(tcg_res[pass],
12476                                              tcg_res[pass], tcg_op);
12477                 }
12478             }
12479             tcg_temp_free_i64(tcg_op);
12480         }
12481     }
12482     if (!is_q) {
12483         tcg_res[1] = tcg_constant_i64(0);
12484     }
12485     for (pass = 0; pass < 2; pass++) {
12486         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12487         tcg_temp_free_i64(tcg_res[pass]);
12488     }
12489 }
12490 
12491 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12492 {
12493     /* Implement SHLL and SHLL2 */
12494     int pass;
12495     int part = is_q ? 2 : 0;
12496     TCGv_i64 tcg_res[2];
12497 
12498     for (pass = 0; pass < 2; pass++) {
12499         static NeonGenWidenFn * const widenfns[3] = {
12500             gen_helper_neon_widen_u8,
12501             gen_helper_neon_widen_u16,
12502             tcg_gen_extu_i32_i64,
12503         };
12504         NeonGenWidenFn *widenfn = widenfns[size];
12505         TCGv_i32 tcg_op = tcg_temp_new_i32();
12506 
12507         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12508         tcg_res[pass] = tcg_temp_new_i64();
12509         widenfn(tcg_res[pass], tcg_op);
12510         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12511 
12512         tcg_temp_free_i32(tcg_op);
12513     }
12514 
12515     for (pass = 0; pass < 2; pass++) {
12516         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12517         tcg_temp_free_i64(tcg_res[pass]);
12518     }
12519 }
12520 
12521 /* AdvSIMD two reg misc
12522  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12523  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12524  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12525  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12526  */
12527 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12528 {
12529     int size = extract32(insn, 22, 2);
12530     int opcode = extract32(insn, 12, 5);
12531     bool u = extract32(insn, 29, 1);
12532     bool is_q = extract32(insn, 30, 1);
12533     int rn = extract32(insn, 5, 5);
12534     int rd = extract32(insn, 0, 5);
12535     bool need_fpstatus = false;
12536     bool need_rmode = false;
12537     int rmode = -1;
12538     TCGv_i32 tcg_rmode;
12539     TCGv_ptr tcg_fpstatus;
12540 
12541     switch (opcode) {
12542     case 0x0: /* REV64, REV32 */
12543     case 0x1: /* REV16 */
12544         handle_rev(s, opcode, u, is_q, size, rn, rd);
12545         return;
12546     case 0x5: /* CNT, NOT, RBIT */
12547         if (u && size == 0) {
12548             /* NOT */
12549             break;
12550         } else if (u && size == 1) {
12551             /* RBIT */
12552             break;
12553         } else if (!u && size == 0) {
12554             /* CNT */
12555             break;
12556         }
12557         unallocated_encoding(s);
12558         return;
12559     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12560     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12561         if (size == 3) {
12562             unallocated_encoding(s);
12563             return;
12564         }
12565         if (!fp_access_check(s)) {
12566             return;
12567         }
12568 
12569         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12570         return;
12571     case 0x4: /* CLS, CLZ */
12572         if (size == 3) {
12573             unallocated_encoding(s);
12574             return;
12575         }
12576         break;
12577     case 0x2: /* SADDLP, UADDLP */
12578     case 0x6: /* SADALP, UADALP */
12579         if (size == 3) {
12580             unallocated_encoding(s);
12581             return;
12582         }
12583         if (!fp_access_check(s)) {
12584             return;
12585         }
12586         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12587         return;
12588     case 0x13: /* SHLL, SHLL2 */
12589         if (u == 0 || size == 3) {
12590             unallocated_encoding(s);
12591             return;
12592         }
12593         if (!fp_access_check(s)) {
12594             return;
12595         }
12596         handle_shll(s, is_q, size, rn, rd);
12597         return;
12598     case 0xa: /* CMLT */
12599         if (u == 1) {
12600             unallocated_encoding(s);
12601             return;
12602         }
12603         /* fall through */
12604     case 0x8: /* CMGT, CMGE */
12605     case 0x9: /* CMEQ, CMLE */
12606     case 0xb: /* ABS, NEG */
12607         if (size == 3 && !is_q) {
12608             unallocated_encoding(s);
12609             return;
12610         }
12611         break;
12612     case 0x3: /* SUQADD, USQADD */
12613         if (size == 3 && !is_q) {
12614             unallocated_encoding(s);
12615             return;
12616         }
12617         if (!fp_access_check(s)) {
12618             return;
12619         }
12620         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12621         return;
12622     case 0x7: /* SQABS, SQNEG */
12623         if (size == 3 && !is_q) {
12624             unallocated_encoding(s);
12625             return;
12626         }
12627         break;
12628     case 0xc ... 0xf:
12629     case 0x16 ... 0x1f:
12630     {
12631         /* Floating point: U, size[1] and opcode indicate operation;
12632          * size[0] indicates single or double precision.
12633          */
12634         int is_double = extract32(size, 0, 1);
12635         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12636         size = is_double ? 3 : 2;
12637         switch (opcode) {
12638         case 0x2f: /* FABS */
12639         case 0x6f: /* FNEG */
12640             if (size == 3 && !is_q) {
12641                 unallocated_encoding(s);
12642                 return;
12643             }
12644             break;
12645         case 0x1d: /* SCVTF */
12646         case 0x5d: /* UCVTF */
12647         {
12648             bool is_signed = (opcode == 0x1d) ? true : false;
12649             int elements = is_double ? 2 : is_q ? 4 : 2;
12650             if (is_double && !is_q) {
12651                 unallocated_encoding(s);
12652                 return;
12653             }
12654             if (!fp_access_check(s)) {
12655                 return;
12656             }
12657             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12658             return;
12659         }
12660         case 0x2c: /* FCMGT (zero) */
12661         case 0x2d: /* FCMEQ (zero) */
12662         case 0x2e: /* FCMLT (zero) */
12663         case 0x6c: /* FCMGE (zero) */
12664         case 0x6d: /* FCMLE (zero) */
12665             if (size == 3 && !is_q) {
12666                 unallocated_encoding(s);
12667                 return;
12668             }
12669             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12670             return;
12671         case 0x7f: /* FSQRT */
12672             if (size == 3 && !is_q) {
12673                 unallocated_encoding(s);
12674                 return;
12675             }
12676             break;
12677         case 0x1a: /* FCVTNS */
12678         case 0x1b: /* FCVTMS */
12679         case 0x3a: /* FCVTPS */
12680         case 0x3b: /* FCVTZS */
12681         case 0x5a: /* FCVTNU */
12682         case 0x5b: /* FCVTMU */
12683         case 0x7a: /* FCVTPU */
12684         case 0x7b: /* FCVTZU */
12685             need_fpstatus = true;
12686             need_rmode = true;
12687             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12688             if (size == 3 && !is_q) {
12689                 unallocated_encoding(s);
12690                 return;
12691             }
12692             break;
12693         case 0x5c: /* FCVTAU */
12694         case 0x1c: /* FCVTAS */
12695             need_fpstatus = true;
12696             need_rmode = true;
12697             rmode = FPROUNDING_TIEAWAY;
12698             if (size == 3 && !is_q) {
12699                 unallocated_encoding(s);
12700                 return;
12701             }
12702             break;
12703         case 0x3c: /* URECPE */
12704             if (size == 3) {
12705                 unallocated_encoding(s);
12706                 return;
12707             }
12708             /* fall through */
12709         case 0x3d: /* FRECPE */
12710         case 0x7d: /* FRSQRTE */
12711             if (size == 3 && !is_q) {
12712                 unallocated_encoding(s);
12713                 return;
12714             }
12715             if (!fp_access_check(s)) {
12716                 return;
12717             }
12718             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12719             return;
12720         case 0x56: /* FCVTXN, FCVTXN2 */
12721             if (size == 2) {
12722                 unallocated_encoding(s);
12723                 return;
12724             }
12725             /* fall through */
12726         case 0x16: /* FCVTN, FCVTN2 */
12727             /* handle_2misc_narrow does a 2*size -> size operation, but these
12728              * instructions encode the source size rather than dest size.
12729              */
12730             if (!fp_access_check(s)) {
12731                 return;
12732             }
12733             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12734             return;
12735         case 0x36: /* BFCVTN, BFCVTN2 */
12736             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12737                 unallocated_encoding(s);
12738                 return;
12739             }
12740             if (!fp_access_check(s)) {
12741                 return;
12742             }
12743             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12744             return;
12745         case 0x17: /* FCVTL, FCVTL2 */
12746             if (!fp_access_check(s)) {
12747                 return;
12748             }
12749             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12750             return;
12751         case 0x18: /* FRINTN */
12752         case 0x19: /* FRINTM */
12753         case 0x38: /* FRINTP */
12754         case 0x39: /* FRINTZ */
12755             need_rmode = true;
12756             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12757             /* fall through */
12758         case 0x59: /* FRINTX */
12759         case 0x79: /* FRINTI */
12760             need_fpstatus = true;
12761             if (size == 3 && !is_q) {
12762                 unallocated_encoding(s);
12763                 return;
12764             }
12765             break;
12766         case 0x58: /* FRINTA */
12767             need_rmode = true;
12768             rmode = FPROUNDING_TIEAWAY;
12769             need_fpstatus = true;
12770             if (size == 3 && !is_q) {
12771                 unallocated_encoding(s);
12772                 return;
12773             }
12774             break;
12775         case 0x7c: /* URSQRTE */
12776             if (size == 3) {
12777                 unallocated_encoding(s);
12778                 return;
12779             }
12780             break;
12781         case 0x1e: /* FRINT32Z */
12782         case 0x1f: /* FRINT64Z */
12783             need_rmode = true;
12784             rmode = FPROUNDING_ZERO;
12785             /* fall through */
12786         case 0x5e: /* FRINT32X */
12787         case 0x5f: /* FRINT64X */
12788             need_fpstatus = true;
12789             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12790                 unallocated_encoding(s);
12791                 return;
12792             }
12793             break;
12794         default:
12795             unallocated_encoding(s);
12796             return;
12797         }
12798         break;
12799     }
12800     default:
12801         unallocated_encoding(s);
12802         return;
12803     }
12804 
12805     if (!fp_access_check(s)) {
12806         return;
12807     }
12808 
12809     if (need_fpstatus || need_rmode) {
12810         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12811     } else {
12812         tcg_fpstatus = NULL;
12813     }
12814     if (need_rmode) {
12815         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12816         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12817     } else {
12818         tcg_rmode = NULL;
12819     }
12820 
12821     switch (opcode) {
12822     case 0x5:
12823         if (u && size == 0) { /* NOT */
12824             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12825             return;
12826         }
12827         break;
12828     case 0x8: /* CMGT, CMGE */
12829         if (u) {
12830             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12831         } else {
12832             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12833         }
12834         return;
12835     case 0x9: /* CMEQ, CMLE */
12836         if (u) {
12837             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12838         } else {
12839             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12840         }
12841         return;
12842     case 0xa: /* CMLT */
12843         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12844         return;
12845     case 0xb:
12846         if (u) { /* ABS, NEG */
12847             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12848         } else {
12849             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12850         }
12851         return;
12852     }
12853 
12854     if (size == 3) {
12855         /* All 64-bit element operations can be shared with scalar 2misc */
12856         int pass;
12857 
12858         /* Coverity claims (size == 3 && !is_q) has been eliminated
12859          * from all paths leading to here.
12860          */
12861         tcg_debug_assert(is_q);
12862         for (pass = 0; pass < 2; pass++) {
12863             TCGv_i64 tcg_op = tcg_temp_new_i64();
12864             TCGv_i64 tcg_res = tcg_temp_new_i64();
12865 
12866             read_vec_element(s, tcg_op, rn, pass, MO_64);
12867 
12868             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12869                             tcg_rmode, tcg_fpstatus);
12870 
12871             write_vec_element(s, tcg_res, rd, pass, MO_64);
12872 
12873             tcg_temp_free_i64(tcg_res);
12874             tcg_temp_free_i64(tcg_op);
12875         }
12876     } else {
12877         int pass;
12878 
12879         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12880             TCGv_i32 tcg_op = tcg_temp_new_i32();
12881             TCGv_i32 tcg_res = tcg_temp_new_i32();
12882 
12883             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12884 
12885             if (size == 2) {
12886                 /* Special cases for 32 bit elements */
12887                 switch (opcode) {
12888                 case 0x4: /* CLS */
12889                     if (u) {
12890                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12891                     } else {
12892                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12893                     }
12894                     break;
12895                 case 0x7: /* SQABS, SQNEG */
12896                     if (u) {
12897                         gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12898                     } else {
12899                         gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12900                     }
12901                     break;
12902                 case 0x2f: /* FABS */
12903                     gen_helper_vfp_abss(tcg_res, tcg_op);
12904                     break;
12905                 case 0x6f: /* FNEG */
12906                     gen_helper_vfp_negs(tcg_res, tcg_op);
12907                     break;
12908                 case 0x7f: /* FSQRT */
12909                     gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12910                     break;
12911                 case 0x1a: /* FCVTNS */
12912                 case 0x1b: /* FCVTMS */
12913                 case 0x1c: /* FCVTAS */
12914                 case 0x3a: /* FCVTPS */
12915                 case 0x3b: /* FCVTZS */
12916                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12917                                          tcg_constant_i32(0), tcg_fpstatus);
12918                     break;
12919                 case 0x5a: /* FCVTNU */
12920                 case 0x5b: /* FCVTMU */
12921                 case 0x5c: /* FCVTAU */
12922                 case 0x7a: /* FCVTPU */
12923                 case 0x7b: /* FCVTZU */
12924                     gen_helper_vfp_touls(tcg_res, tcg_op,
12925                                          tcg_constant_i32(0), tcg_fpstatus);
12926                     break;
12927                 case 0x18: /* FRINTN */
12928                 case 0x19: /* FRINTM */
12929                 case 0x38: /* FRINTP */
12930                 case 0x39: /* FRINTZ */
12931                 case 0x58: /* FRINTA */
12932                 case 0x79: /* FRINTI */
12933                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12934                     break;
12935                 case 0x59: /* FRINTX */
12936                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12937                     break;
12938                 case 0x7c: /* URSQRTE */
12939                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12940                     break;
12941                 case 0x1e: /* FRINT32Z */
12942                 case 0x5e: /* FRINT32X */
12943                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12944                     break;
12945                 case 0x1f: /* FRINT64Z */
12946                 case 0x5f: /* FRINT64X */
12947                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12948                     break;
12949                 default:
12950                     g_assert_not_reached();
12951                 }
12952             } else {
12953                 /* Use helpers for 8 and 16 bit elements */
12954                 switch (opcode) {
12955                 case 0x5: /* CNT, RBIT */
12956                     /* For these two insns size is part of the opcode specifier
12957                      * (handled earlier); they always operate on byte elements.
12958                      */
12959                     if (u) {
12960                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12961                     } else {
12962                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12963                     }
12964                     break;
12965                 case 0x7: /* SQABS, SQNEG */
12966                 {
12967                     NeonGenOneOpEnvFn *genfn;
12968                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12969                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12970                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12971                     };
12972                     genfn = fns[size][u];
12973                     genfn(tcg_res, cpu_env, tcg_op);
12974                     break;
12975                 }
12976                 case 0x4: /* CLS, CLZ */
12977                     if (u) {
12978                         if (size == 0) {
12979                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12980                         } else {
12981                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12982                         }
12983                     } else {
12984                         if (size == 0) {
12985                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12986                         } else {
12987                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12988                         }
12989                     }
12990                     break;
12991                 default:
12992                     g_assert_not_reached();
12993                 }
12994             }
12995 
12996             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12997 
12998             tcg_temp_free_i32(tcg_res);
12999             tcg_temp_free_i32(tcg_op);
13000         }
13001     }
13002     clear_vec_high(s, is_q, rd);
13003 
13004     if (need_rmode) {
13005         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13006         tcg_temp_free_i32(tcg_rmode);
13007     }
13008     if (need_fpstatus) {
13009         tcg_temp_free_ptr(tcg_fpstatus);
13010     }
13011 }
13012 
13013 /* AdvSIMD [scalar] two register miscellaneous (FP16)
13014  *
13015  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
13016  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13017  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13018  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13019  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
13020  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
13021  *
13022  * This actually covers two groups where scalar access is governed by
13023  * bit 28. A bunch of the instructions (float to integral) only exist
13024  * in the vector form and are un-allocated for the scalar decode. Also
13025  * in the scalar decode Q is always 1.
13026  */
13027 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
13028 {
13029     int fpop, opcode, a, u;
13030     int rn, rd;
13031     bool is_q;
13032     bool is_scalar;
13033     bool only_in_vector = false;
13034 
13035     int pass;
13036     TCGv_i32 tcg_rmode = NULL;
13037     TCGv_ptr tcg_fpstatus = NULL;
13038     bool need_rmode = false;
13039     bool need_fpst = true;
13040     int rmode;
13041 
13042     if (!dc_isar_feature(aa64_fp16, s)) {
13043         unallocated_encoding(s);
13044         return;
13045     }
13046 
13047     rd = extract32(insn, 0, 5);
13048     rn = extract32(insn, 5, 5);
13049 
13050     a = extract32(insn, 23, 1);
13051     u = extract32(insn, 29, 1);
13052     is_scalar = extract32(insn, 28, 1);
13053     is_q = extract32(insn, 30, 1);
13054 
13055     opcode = extract32(insn, 12, 5);
13056     fpop = deposit32(opcode, 5, 1, a);
13057     fpop = deposit32(fpop, 6, 1, u);
13058 
13059     switch (fpop) {
13060     case 0x1d: /* SCVTF */
13061     case 0x5d: /* UCVTF */
13062     {
13063         int elements;
13064 
13065         if (is_scalar) {
13066             elements = 1;
13067         } else {
13068             elements = (is_q ? 8 : 4);
13069         }
13070 
13071         if (!fp_access_check(s)) {
13072             return;
13073         }
13074         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13075         return;
13076     }
13077     break;
13078     case 0x2c: /* FCMGT (zero) */
13079     case 0x2d: /* FCMEQ (zero) */
13080     case 0x2e: /* FCMLT (zero) */
13081     case 0x6c: /* FCMGE (zero) */
13082     case 0x6d: /* FCMLE (zero) */
13083         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13084         return;
13085     case 0x3d: /* FRECPE */
13086     case 0x3f: /* FRECPX */
13087         break;
13088     case 0x18: /* FRINTN */
13089         need_rmode = true;
13090         only_in_vector = true;
13091         rmode = FPROUNDING_TIEEVEN;
13092         break;
13093     case 0x19: /* FRINTM */
13094         need_rmode = true;
13095         only_in_vector = true;
13096         rmode = FPROUNDING_NEGINF;
13097         break;
13098     case 0x38: /* FRINTP */
13099         need_rmode = true;
13100         only_in_vector = true;
13101         rmode = FPROUNDING_POSINF;
13102         break;
13103     case 0x39: /* FRINTZ */
13104         need_rmode = true;
13105         only_in_vector = true;
13106         rmode = FPROUNDING_ZERO;
13107         break;
13108     case 0x58: /* FRINTA */
13109         need_rmode = true;
13110         only_in_vector = true;
13111         rmode = FPROUNDING_TIEAWAY;
13112         break;
13113     case 0x59: /* FRINTX */
13114     case 0x79: /* FRINTI */
13115         only_in_vector = true;
13116         /* current rounding mode */
13117         break;
13118     case 0x1a: /* FCVTNS */
13119         need_rmode = true;
13120         rmode = FPROUNDING_TIEEVEN;
13121         break;
13122     case 0x1b: /* FCVTMS */
13123         need_rmode = true;
13124         rmode = FPROUNDING_NEGINF;
13125         break;
13126     case 0x1c: /* FCVTAS */
13127         need_rmode = true;
13128         rmode = FPROUNDING_TIEAWAY;
13129         break;
13130     case 0x3a: /* FCVTPS */
13131         need_rmode = true;
13132         rmode = FPROUNDING_POSINF;
13133         break;
13134     case 0x3b: /* FCVTZS */
13135         need_rmode = true;
13136         rmode = FPROUNDING_ZERO;
13137         break;
13138     case 0x5a: /* FCVTNU */
13139         need_rmode = true;
13140         rmode = FPROUNDING_TIEEVEN;
13141         break;
13142     case 0x5b: /* FCVTMU */
13143         need_rmode = true;
13144         rmode = FPROUNDING_NEGINF;
13145         break;
13146     case 0x5c: /* FCVTAU */
13147         need_rmode = true;
13148         rmode = FPROUNDING_TIEAWAY;
13149         break;
13150     case 0x7a: /* FCVTPU */
13151         need_rmode = true;
13152         rmode = FPROUNDING_POSINF;
13153         break;
13154     case 0x7b: /* FCVTZU */
13155         need_rmode = true;
13156         rmode = FPROUNDING_ZERO;
13157         break;
13158     case 0x2f: /* FABS */
13159     case 0x6f: /* FNEG */
13160         need_fpst = false;
13161         break;
13162     case 0x7d: /* FRSQRTE */
13163     case 0x7f: /* FSQRT (vector) */
13164         break;
13165     default:
13166         unallocated_encoding(s);
13167         return;
13168     }
13169 
13170 
13171     /* Check additional constraints for the scalar encoding */
13172     if (is_scalar) {
13173         if (!is_q) {
13174             unallocated_encoding(s);
13175             return;
13176         }
13177         /* FRINTxx is only in the vector form */
13178         if (only_in_vector) {
13179             unallocated_encoding(s);
13180             return;
13181         }
13182     }
13183 
13184     if (!fp_access_check(s)) {
13185         return;
13186     }
13187 
13188     if (need_rmode || need_fpst) {
13189         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13190     }
13191 
13192     if (need_rmode) {
13193         tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13194         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13195     }
13196 
13197     if (is_scalar) {
13198         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13199         TCGv_i32 tcg_res = tcg_temp_new_i32();
13200 
13201         switch (fpop) {
13202         case 0x1a: /* FCVTNS */
13203         case 0x1b: /* FCVTMS */
13204         case 0x1c: /* FCVTAS */
13205         case 0x3a: /* FCVTPS */
13206         case 0x3b: /* FCVTZS */
13207             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13208             break;
13209         case 0x3d: /* FRECPE */
13210             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13211             break;
13212         case 0x3f: /* FRECPX */
13213             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13214             break;
13215         case 0x5a: /* FCVTNU */
13216         case 0x5b: /* FCVTMU */
13217         case 0x5c: /* FCVTAU */
13218         case 0x7a: /* FCVTPU */
13219         case 0x7b: /* FCVTZU */
13220             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13221             break;
13222         case 0x6f: /* FNEG */
13223             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13224             break;
13225         case 0x7d: /* FRSQRTE */
13226             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13227             break;
13228         default:
13229             g_assert_not_reached();
13230         }
13231 
13232         /* limit any sign extension going on */
13233         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13234         write_fp_sreg(s, rd, tcg_res);
13235 
13236         tcg_temp_free_i32(tcg_res);
13237         tcg_temp_free_i32(tcg_op);
13238     } else {
13239         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13240             TCGv_i32 tcg_op = tcg_temp_new_i32();
13241             TCGv_i32 tcg_res = tcg_temp_new_i32();
13242 
13243             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13244 
13245             switch (fpop) {
13246             case 0x1a: /* FCVTNS */
13247             case 0x1b: /* FCVTMS */
13248             case 0x1c: /* FCVTAS */
13249             case 0x3a: /* FCVTPS */
13250             case 0x3b: /* FCVTZS */
13251                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13252                 break;
13253             case 0x3d: /* FRECPE */
13254                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13255                 break;
13256             case 0x5a: /* FCVTNU */
13257             case 0x5b: /* FCVTMU */
13258             case 0x5c: /* FCVTAU */
13259             case 0x7a: /* FCVTPU */
13260             case 0x7b: /* FCVTZU */
13261                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13262                 break;
13263             case 0x18: /* FRINTN */
13264             case 0x19: /* FRINTM */
13265             case 0x38: /* FRINTP */
13266             case 0x39: /* FRINTZ */
13267             case 0x58: /* FRINTA */
13268             case 0x79: /* FRINTI */
13269                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13270                 break;
13271             case 0x59: /* FRINTX */
13272                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13273                 break;
13274             case 0x2f: /* FABS */
13275                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13276                 break;
13277             case 0x6f: /* FNEG */
13278                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13279                 break;
13280             case 0x7d: /* FRSQRTE */
13281                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13282                 break;
13283             case 0x7f: /* FSQRT */
13284                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13285                 break;
13286             default:
13287                 g_assert_not_reached();
13288             }
13289 
13290             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13291 
13292             tcg_temp_free_i32(tcg_res);
13293             tcg_temp_free_i32(tcg_op);
13294         }
13295 
13296         clear_vec_high(s, is_q, rd);
13297     }
13298 
13299     if (tcg_rmode) {
13300         gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13301         tcg_temp_free_i32(tcg_rmode);
13302     }
13303 
13304     if (tcg_fpstatus) {
13305         tcg_temp_free_ptr(tcg_fpstatus);
13306     }
13307 }
13308 
13309 /* AdvSIMD scalar x indexed element
13310  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
13311  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13312  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
13313  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13314  * AdvSIMD vector x indexed element
13315  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
13316  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13317  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
13318  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13319  */
13320 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13321 {
13322     /* This encoding has two kinds of instruction:
13323      *  normal, where we perform elt x idxelt => elt for each
13324      *     element in the vector
13325      *  long, where we perform elt x idxelt and generate a result of
13326      *     double the width of the input element
13327      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13328      */
13329     bool is_scalar = extract32(insn, 28, 1);
13330     bool is_q = extract32(insn, 30, 1);
13331     bool u = extract32(insn, 29, 1);
13332     int size = extract32(insn, 22, 2);
13333     int l = extract32(insn, 21, 1);
13334     int m = extract32(insn, 20, 1);
13335     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13336     int rm = extract32(insn, 16, 4);
13337     int opcode = extract32(insn, 12, 4);
13338     int h = extract32(insn, 11, 1);
13339     int rn = extract32(insn, 5, 5);
13340     int rd = extract32(insn, 0, 5);
13341     bool is_long = false;
13342     int is_fp = 0;
13343     bool is_fp16 = false;
13344     int index;
13345     TCGv_ptr fpst;
13346 
13347     switch (16 * u + opcode) {
13348     case 0x08: /* MUL */
13349     case 0x10: /* MLA */
13350     case 0x14: /* MLS */
13351         if (is_scalar) {
13352             unallocated_encoding(s);
13353             return;
13354         }
13355         break;
13356     case 0x02: /* SMLAL, SMLAL2 */
13357     case 0x12: /* UMLAL, UMLAL2 */
13358     case 0x06: /* SMLSL, SMLSL2 */
13359     case 0x16: /* UMLSL, UMLSL2 */
13360     case 0x0a: /* SMULL, SMULL2 */
13361     case 0x1a: /* UMULL, UMULL2 */
13362         if (is_scalar) {
13363             unallocated_encoding(s);
13364             return;
13365         }
13366         is_long = true;
13367         break;
13368     case 0x03: /* SQDMLAL, SQDMLAL2 */
13369     case 0x07: /* SQDMLSL, SQDMLSL2 */
13370     case 0x0b: /* SQDMULL, SQDMULL2 */
13371         is_long = true;
13372         break;
13373     case 0x0c: /* SQDMULH */
13374     case 0x0d: /* SQRDMULH */
13375         break;
13376     case 0x01: /* FMLA */
13377     case 0x05: /* FMLS */
13378     case 0x09: /* FMUL */
13379     case 0x19: /* FMULX */
13380         is_fp = 1;
13381         break;
13382     case 0x1d: /* SQRDMLAH */
13383     case 0x1f: /* SQRDMLSH */
13384         if (!dc_isar_feature(aa64_rdm, s)) {
13385             unallocated_encoding(s);
13386             return;
13387         }
13388         break;
13389     case 0x0e: /* SDOT */
13390     case 0x1e: /* UDOT */
13391         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13392             unallocated_encoding(s);
13393             return;
13394         }
13395         break;
13396     case 0x0f:
13397         switch (size) {
13398         case 0: /* SUDOT */
13399         case 2: /* USDOT */
13400             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13401                 unallocated_encoding(s);
13402                 return;
13403             }
13404             size = MO_32;
13405             break;
13406         case 1: /* BFDOT */
13407             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13408                 unallocated_encoding(s);
13409                 return;
13410             }
13411             size = MO_32;
13412             break;
13413         case 3: /* BFMLAL{B,T} */
13414             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13415                 unallocated_encoding(s);
13416                 return;
13417             }
13418             /* can't set is_fp without other incorrect size checks */
13419             size = MO_16;
13420             break;
13421         default:
13422             unallocated_encoding(s);
13423             return;
13424         }
13425         break;
13426     case 0x11: /* FCMLA #0 */
13427     case 0x13: /* FCMLA #90 */
13428     case 0x15: /* FCMLA #180 */
13429     case 0x17: /* FCMLA #270 */
13430         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13431             unallocated_encoding(s);
13432             return;
13433         }
13434         is_fp = 2;
13435         break;
13436     case 0x00: /* FMLAL */
13437     case 0x04: /* FMLSL */
13438     case 0x18: /* FMLAL2 */
13439     case 0x1c: /* FMLSL2 */
13440         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13441             unallocated_encoding(s);
13442             return;
13443         }
13444         size = MO_16;
13445         /* is_fp, but we pass cpu_env not fp_status.  */
13446         break;
13447     default:
13448         unallocated_encoding(s);
13449         return;
13450     }
13451 
13452     switch (is_fp) {
13453     case 1: /* normal fp */
13454         /* convert insn encoded size to MemOp size */
13455         switch (size) {
13456         case 0: /* half-precision */
13457             size = MO_16;
13458             is_fp16 = true;
13459             break;
13460         case MO_32: /* single precision */
13461         case MO_64: /* double precision */
13462             break;
13463         default:
13464             unallocated_encoding(s);
13465             return;
13466         }
13467         break;
13468 
13469     case 2: /* complex fp */
13470         /* Each indexable element is a complex pair.  */
13471         size += 1;
13472         switch (size) {
13473         case MO_32:
13474             if (h && !is_q) {
13475                 unallocated_encoding(s);
13476                 return;
13477             }
13478             is_fp16 = true;
13479             break;
13480         case MO_64:
13481             break;
13482         default:
13483             unallocated_encoding(s);
13484             return;
13485         }
13486         break;
13487 
13488     default: /* integer */
13489         switch (size) {
13490         case MO_8:
13491         case MO_64:
13492             unallocated_encoding(s);
13493             return;
13494         }
13495         break;
13496     }
13497     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13498         unallocated_encoding(s);
13499         return;
13500     }
13501 
13502     /* Given MemOp size, adjust register and indexing.  */
13503     switch (size) {
13504     case MO_16:
13505         index = h << 2 | l << 1 | m;
13506         break;
13507     case MO_32:
13508         index = h << 1 | l;
13509         rm |= m << 4;
13510         break;
13511     case MO_64:
13512         if (l || !is_q) {
13513             unallocated_encoding(s);
13514             return;
13515         }
13516         index = h;
13517         rm |= m << 4;
13518         break;
13519     default:
13520         g_assert_not_reached();
13521     }
13522 
13523     if (!fp_access_check(s)) {
13524         return;
13525     }
13526 
13527     if (is_fp) {
13528         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13529     } else {
13530         fpst = NULL;
13531     }
13532 
13533     switch (16 * u + opcode) {
13534     case 0x0e: /* SDOT */
13535     case 0x1e: /* UDOT */
13536         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13537                          u ? gen_helper_gvec_udot_idx_b
13538                          : gen_helper_gvec_sdot_idx_b);
13539         return;
13540     case 0x0f:
13541         switch (extract32(insn, 22, 2)) {
13542         case 0: /* SUDOT */
13543             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13544                              gen_helper_gvec_sudot_idx_b);
13545             return;
13546         case 1: /* BFDOT */
13547             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13548                              gen_helper_gvec_bfdot_idx);
13549             return;
13550         case 2: /* USDOT */
13551             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13552                              gen_helper_gvec_usdot_idx_b);
13553             return;
13554         case 3: /* BFMLAL{B,T} */
13555             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13556                               gen_helper_gvec_bfmlal_idx);
13557             return;
13558         }
13559         g_assert_not_reached();
13560     case 0x11: /* FCMLA #0 */
13561     case 0x13: /* FCMLA #90 */
13562     case 0x15: /* FCMLA #180 */
13563     case 0x17: /* FCMLA #270 */
13564         {
13565             int rot = extract32(insn, 13, 2);
13566             int data = (index << 2) | rot;
13567             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13568                                vec_full_reg_offset(s, rn),
13569                                vec_full_reg_offset(s, rm),
13570                                vec_full_reg_offset(s, rd), fpst,
13571                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13572                                size == MO_64
13573                                ? gen_helper_gvec_fcmlas_idx
13574                                : gen_helper_gvec_fcmlah_idx);
13575             tcg_temp_free_ptr(fpst);
13576         }
13577         return;
13578 
13579     case 0x00: /* FMLAL */
13580     case 0x04: /* FMLSL */
13581     case 0x18: /* FMLAL2 */
13582     case 0x1c: /* FMLSL2 */
13583         {
13584             int is_s = extract32(opcode, 2, 1);
13585             int is_2 = u;
13586             int data = (index << 2) | (is_2 << 1) | is_s;
13587             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13588                                vec_full_reg_offset(s, rn),
13589                                vec_full_reg_offset(s, rm), cpu_env,
13590                                is_q ? 16 : 8, vec_full_reg_size(s),
13591                                data, gen_helper_gvec_fmlal_idx_a64);
13592         }
13593         return;
13594 
13595     case 0x08: /* MUL */
13596         if (!is_long && !is_scalar) {
13597             static gen_helper_gvec_3 * const fns[3] = {
13598                 gen_helper_gvec_mul_idx_h,
13599                 gen_helper_gvec_mul_idx_s,
13600                 gen_helper_gvec_mul_idx_d,
13601             };
13602             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13603                                vec_full_reg_offset(s, rn),
13604                                vec_full_reg_offset(s, rm),
13605                                is_q ? 16 : 8, vec_full_reg_size(s),
13606                                index, fns[size - 1]);
13607             return;
13608         }
13609         break;
13610 
13611     case 0x10: /* MLA */
13612         if (!is_long && !is_scalar) {
13613             static gen_helper_gvec_4 * const fns[3] = {
13614                 gen_helper_gvec_mla_idx_h,
13615                 gen_helper_gvec_mla_idx_s,
13616                 gen_helper_gvec_mla_idx_d,
13617             };
13618             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13619                                vec_full_reg_offset(s, rn),
13620                                vec_full_reg_offset(s, rm),
13621                                vec_full_reg_offset(s, rd),
13622                                is_q ? 16 : 8, vec_full_reg_size(s),
13623                                index, fns[size - 1]);
13624             return;
13625         }
13626         break;
13627 
13628     case 0x14: /* MLS */
13629         if (!is_long && !is_scalar) {
13630             static gen_helper_gvec_4 * const fns[3] = {
13631                 gen_helper_gvec_mls_idx_h,
13632                 gen_helper_gvec_mls_idx_s,
13633                 gen_helper_gvec_mls_idx_d,
13634             };
13635             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13636                                vec_full_reg_offset(s, rn),
13637                                vec_full_reg_offset(s, rm),
13638                                vec_full_reg_offset(s, rd),
13639                                is_q ? 16 : 8, vec_full_reg_size(s),
13640                                index, fns[size - 1]);
13641             return;
13642         }
13643         break;
13644     }
13645 
13646     if (size == 3) {
13647         TCGv_i64 tcg_idx = tcg_temp_new_i64();
13648         int pass;
13649 
13650         assert(is_fp && is_q && !is_long);
13651 
13652         read_vec_element(s, tcg_idx, rm, index, MO_64);
13653 
13654         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13655             TCGv_i64 tcg_op = tcg_temp_new_i64();
13656             TCGv_i64 tcg_res = tcg_temp_new_i64();
13657 
13658             read_vec_element(s, tcg_op, rn, pass, MO_64);
13659 
13660             switch (16 * u + opcode) {
13661             case 0x05: /* FMLS */
13662                 /* As usual for ARM, separate negation for fused multiply-add */
13663                 gen_helper_vfp_negd(tcg_op, tcg_op);
13664                 /* fall through */
13665             case 0x01: /* FMLA */
13666                 read_vec_element(s, tcg_res, rd, pass, MO_64);
13667                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13668                 break;
13669             case 0x09: /* FMUL */
13670                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13671                 break;
13672             case 0x19: /* FMULX */
13673                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13674                 break;
13675             default:
13676                 g_assert_not_reached();
13677             }
13678 
13679             write_vec_element(s, tcg_res, rd, pass, MO_64);
13680             tcg_temp_free_i64(tcg_op);
13681             tcg_temp_free_i64(tcg_res);
13682         }
13683 
13684         tcg_temp_free_i64(tcg_idx);
13685         clear_vec_high(s, !is_scalar, rd);
13686     } else if (!is_long) {
13687         /* 32 bit floating point, or 16 or 32 bit integer.
13688          * For the 16 bit scalar case we use the usual Neon helpers and
13689          * rely on the fact that 0 op 0 == 0 with no side effects.
13690          */
13691         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13692         int pass, maxpasses;
13693 
13694         if (is_scalar) {
13695             maxpasses = 1;
13696         } else {
13697             maxpasses = is_q ? 4 : 2;
13698         }
13699 
13700         read_vec_element_i32(s, tcg_idx, rm, index, size);
13701 
13702         if (size == 1 && !is_scalar) {
13703             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13704              * the index into both halves of the 32 bit tcg_idx and then use
13705              * the usual Neon helpers.
13706              */
13707             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13708         }
13709 
13710         for (pass = 0; pass < maxpasses; pass++) {
13711             TCGv_i32 tcg_op = tcg_temp_new_i32();
13712             TCGv_i32 tcg_res = tcg_temp_new_i32();
13713 
13714             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13715 
13716             switch (16 * u + opcode) {
13717             case 0x08: /* MUL */
13718             case 0x10: /* MLA */
13719             case 0x14: /* MLS */
13720             {
13721                 static NeonGenTwoOpFn * const fns[2][2] = {
13722                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13723                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13724                 };
13725                 NeonGenTwoOpFn *genfn;
13726                 bool is_sub = opcode == 0x4;
13727 
13728                 if (size == 1) {
13729                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13730                 } else {
13731                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13732                 }
13733                 if (opcode == 0x8) {
13734                     break;
13735                 }
13736                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13737                 genfn = fns[size - 1][is_sub];
13738                 genfn(tcg_res, tcg_op, tcg_res);
13739                 break;
13740             }
13741             case 0x05: /* FMLS */
13742             case 0x01: /* FMLA */
13743                 read_vec_element_i32(s, tcg_res, rd, pass,
13744                                      is_scalar ? size : MO_32);
13745                 switch (size) {
13746                 case 1:
13747                     if (opcode == 0x5) {
13748                         /* As usual for ARM, separate negation for fused
13749                          * multiply-add */
13750                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13751                     }
13752                     if (is_scalar) {
13753                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13754                                                    tcg_res, fpst);
13755                     } else {
13756                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13757                                                     tcg_res, fpst);
13758                     }
13759                     break;
13760                 case 2:
13761                     if (opcode == 0x5) {
13762                         /* As usual for ARM, separate negation for
13763                          * fused multiply-add */
13764                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13765                     }
13766                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13767                                            tcg_res, fpst);
13768                     break;
13769                 default:
13770                     g_assert_not_reached();
13771                 }
13772                 break;
13773             case 0x09: /* FMUL */
13774                 switch (size) {
13775                 case 1:
13776                     if (is_scalar) {
13777                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13778                                                 tcg_idx, fpst);
13779                     } else {
13780                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13781                                                  tcg_idx, fpst);
13782                     }
13783                     break;
13784                 case 2:
13785                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13786                     break;
13787                 default:
13788                     g_assert_not_reached();
13789                 }
13790                 break;
13791             case 0x19: /* FMULX */
13792                 switch (size) {
13793                 case 1:
13794                     if (is_scalar) {
13795                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13796                                                  tcg_idx, fpst);
13797                     } else {
13798                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13799                                                   tcg_idx, fpst);
13800                     }
13801                     break;
13802                 case 2:
13803                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13804                     break;
13805                 default:
13806                     g_assert_not_reached();
13807                 }
13808                 break;
13809             case 0x0c: /* SQDMULH */
13810                 if (size == 1) {
13811                     gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13812                                                tcg_op, tcg_idx);
13813                 } else {
13814                     gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13815                                                tcg_op, tcg_idx);
13816                 }
13817                 break;
13818             case 0x0d: /* SQRDMULH */
13819                 if (size == 1) {
13820                     gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13821                                                 tcg_op, tcg_idx);
13822                 } else {
13823                     gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13824                                                 tcg_op, tcg_idx);
13825                 }
13826                 break;
13827             case 0x1d: /* SQRDMLAH */
13828                 read_vec_element_i32(s, tcg_res, rd, pass,
13829                                      is_scalar ? size : MO_32);
13830                 if (size == 1) {
13831                     gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13832                                                 tcg_op, tcg_idx, tcg_res);
13833                 } else {
13834                     gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13835                                                 tcg_op, tcg_idx, tcg_res);
13836                 }
13837                 break;
13838             case 0x1f: /* SQRDMLSH */
13839                 read_vec_element_i32(s, tcg_res, rd, pass,
13840                                      is_scalar ? size : MO_32);
13841                 if (size == 1) {
13842                     gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13843                                                 tcg_op, tcg_idx, tcg_res);
13844                 } else {
13845                     gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13846                                                 tcg_op, tcg_idx, tcg_res);
13847                 }
13848                 break;
13849             default:
13850                 g_assert_not_reached();
13851             }
13852 
13853             if (is_scalar) {
13854                 write_fp_sreg(s, rd, tcg_res);
13855             } else {
13856                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13857             }
13858 
13859             tcg_temp_free_i32(tcg_op);
13860             tcg_temp_free_i32(tcg_res);
13861         }
13862 
13863         tcg_temp_free_i32(tcg_idx);
13864         clear_vec_high(s, is_q, rd);
13865     } else {
13866         /* long ops: 16x16->32 or 32x32->64 */
13867         TCGv_i64 tcg_res[2];
13868         int pass;
13869         bool satop = extract32(opcode, 0, 1);
13870         MemOp memop = MO_32;
13871 
13872         if (satop || !u) {
13873             memop |= MO_SIGN;
13874         }
13875 
13876         if (size == 2) {
13877             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13878 
13879             read_vec_element(s, tcg_idx, rm, index, memop);
13880 
13881             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13882                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13883                 TCGv_i64 tcg_passres;
13884                 int passelt;
13885 
13886                 if (is_scalar) {
13887                     passelt = 0;
13888                 } else {
13889                     passelt = pass + (is_q * 2);
13890                 }
13891 
13892                 read_vec_element(s, tcg_op, rn, passelt, memop);
13893 
13894                 tcg_res[pass] = tcg_temp_new_i64();
13895 
13896                 if (opcode == 0xa || opcode == 0xb) {
13897                     /* Non-accumulating ops */
13898                     tcg_passres = tcg_res[pass];
13899                 } else {
13900                     tcg_passres = tcg_temp_new_i64();
13901                 }
13902 
13903                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13904                 tcg_temp_free_i64(tcg_op);
13905 
13906                 if (satop) {
13907                     /* saturating, doubling */
13908                     gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13909                                                       tcg_passres, tcg_passres);
13910                 }
13911 
13912                 if (opcode == 0xa || opcode == 0xb) {
13913                     continue;
13914                 }
13915 
13916                 /* Accumulating op: handle accumulate step */
13917                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13918 
13919                 switch (opcode) {
13920                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13921                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13922                     break;
13923                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13924                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13925                     break;
13926                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13927                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13928                     /* fall through */
13929                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13930                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13931                                                       tcg_res[pass],
13932                                                       tcg_passres);
13933                     break;
13934                 default:
13935                     g_assert_not_reached();
13936                 }
13937                 tcg_temp_free_i64(tcg_passres);
13938             }
13939             tcg_temp_free_i64(tcg_idx);
13940 
13941             clear_vec_high(s, !is_scalar, rd);
13942         } else {
13943             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13944 
13945             assert(size == 1);
13946             read_vec_element_i32(s, tcg_idx, rm, index, size);
13947 
13948             if (!is_scalar) {
13949                 /* The simplest way to handle the 16x16 indexed ops is to
13950                  * duplicate the index into both halves of the 32 bit tcg_idx
13951                  * and then use the usual Neon helpers.
13952                  */
13953                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13954             }
13955 
13956             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13957                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13958                 TCGv_i64 tcg_passres;
13959 
13960                 if (is_scalar) {
13961                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13962                 } else {
13963                     read_vec_element_i32(s, tcg_op, rn,
13964                                          pass + (is_q * 2), MO_32);
13965                 }
13966 
13967                 tcg_res[pass] = tcg_temp_new_i64();
13968 
13969                 if (opcode == 0xa || opcode == 0xb) {
13970                     /* Non-accumulating ops */
13971                     tcg_passres = tcg_res[pass];
13972                 } else {
13973                     tcg_passres = tcg_temp_new_i64();
13974                 }
13975 
13976                 if (memop & MO_SIGN) {
13977                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13978                 } else {
13979                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13980                 }
13981                 if (satop) {
13982                     gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13983                                                       tcg_passres, tcg_passres);
13984                 }
13985                 tcg_temp_free_i32(tcg_op);
13986 
13987                 if (opcode == 0xa || opcode == 0xb) {
13988                     continue;
13989                 }
13990 
13991                 /* Accumulating op: handle accumulate step */
13992                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13993 
13994                 switch (opcode) {
13995                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13996                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13997                                              tcg_passres);
13998                     break;
13999                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
14000                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
14001                                              tcg_passres);
14002                     break;
14003                 case 0x7: /* SQDMLSL, SQDMLSL2 */
14004                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
14005                     /* fall through */
14006                 case 0x3: /* SQDMLAL, SQDMLAL2 */
14007                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
14008                                                       tcg_res[pass],
14009                                                       tcg_passres);
14010                     break;
14011                 default:
14012                     g_assert_not_reached();
14013                 }
14014                 tcg_temp_free_i64(tcg_passres);
14015             }
14016             tcg_temp_free_i32(tcg_idx);
14017 
14018             if (is_scalar) {
14019                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
14020             }
14021         }
14022 
14023         if (is_scalar) {
14024             tcg_res[1] = tcg_constant_i64(0);
14025         }
14026 
14027         for (pass = 0; pass < 2; pass++) {
14028             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14029             tcg_temp_free_i64(tcg_res[pass]);
14030         }
14031     }
14032 
14033     if (fpst) {
14034         tcg_temp_free_ptr(fpst);
14035     }
14036 }
14037 
14038 /* Crypto AES
14039  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
14040  * +-----------------+------+-----------+--------+-----+------+------+
14041  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
14042  * +-----------------+------+-----------+--------+-----+------+------+
14043  */
14044 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
14045 {
14046     int size = extract32(insn, 22, 2);
14047     int opcode = extract32(insn, 12, 5);
14048     int rn = extract32(insn, 5, 5);
14049     int rd = extract32(insn, 0, 5);
14050     int decrypt;
14051     gen_helper_gvec_2 *genfn2 = NULL;
14052     gen_helper_gvec_3 *genfn3 = NULL;
14053 
14054     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
14055         unallocated_encoding(s);
14056         return;
14057     }
14058 
14059     switch (opcode) {
14060     case 0x4: /* AESE */
14061         decrypt = 0;
14062         genfn3 = gen_helper_crypto_aese;
14063         break;
14064     case 0x6: /* AESMC */
14065         decrypt = 0;
14066         genfn2 = gen_helper_crypto_aesmc;
14067         break;
14068     case 0x5: /* AESD */
14069         decrypt = 1;
14070         genfn3 = gen_helper_crypto_aese;
14071         break;
14072     case 0x7: /* AESIMC */
14073         decrypt = 1;
14074         genfn2 = gen_helper_crypto_aesmc;
14075         break;
14076     default:
14077         unallocated_encoding(s);
14078         return;
14079     }
14080 
14081     if (!fp_access_check(s)) {
14082         return;
14083     }
14084     if (genfn2) {
14085         gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
14086     } else {
14087         gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
14088     }
14089 }
14090 
14091 /* Crypto three-reg SHA
14092  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
14093  * +-----------------+------+---+------+---+--------+-----+------+------+
14094  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
14095  * +-----------------+------+---+------+---+--------+-----+------+------+
14096  */
14097 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
14098 {
14099     int size = extract32(insn, 22, 2);
14100     int opcode = extract32(insn, 12, 3);
14101     int rm = extract32(insn, 16, 5);
14102     int rn = extract32(insn, 5, 5);
14103     int rd = extract32(insn, 0, 5);
14104     gen_helper_gvec_3 *genfn;
14105     bool feature;
14106 
14107     if (size != 0) {
14108         unallocated_encoding(s);
14109         return;
14110     }
14111 
14112     switch (opcode) {
14113     case 0: /* SHA1C */
14114         genfn = gen_helper_crypto_sha1c;
14115         feature = dc_isar_feature(aa64_sha1, s);
14116         break;
14117     case 1: /* SHA1P */
14118         genfn = gen_helper_crypto_sha1p;
14119         feature = dc_isar_feature(aa64_sha1, s);
14120         break;
14121     case 2: /* SHA1M */
14122         genfn = gen_helper_crypto_sha1m;
14123         feature = dc_isar_feature(aa64_sha1, s);
14124         break;
14125     case 3: /* SHA1SU0 */
14126         genfn = gen_helper_crypto_sha1su0;
14127         feature = dc_isar_feature(aa64_sha1, s);
14128         break;
14129     case 4: /* SHA256H */
14130         genfn = gen_helper_crypto_sha256h;
14131         feature = dc_isar_feature(aa64_sha256, s);
14132         break;
14133     case 5: /* SHA256H2 */
14134         genfn = gen_helper_crypto_sha256h2;
14135         feature = dc_isar_feature(aa64_sha256, s);
14136         break;
14137     case 6: /* SHA256SU1 */
14138         genfn = gen_helper_crypto_sha256su1;
14139         feature = dc_isar_feature(aa64_sha256, s);
14140         break;
14141     default:
14142         unallocated_encoding(s);
14143         return;
14144     }
14145 
14146     if (!feature) {
14147         unallocated_encoding(s);
14148         return;
14149     }
14150 
14151     if (!fp_access_check(s)) {
14152         return;
14153     }
14154     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14155 }
14156 
14157 /* Crypto two-reg SHA
14158  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
14159  * +-----------------+------+-----------+--------+-----+------+------+
14160  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
14161  * +-----------------+------+-----------+--------+-----+------+------+
14162  */
14163 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14164 {
14165     int size = extract32(insn, 22, 2);
14166     int opcode = extract32(insn, 12, 5);
14167     int rn = extract32(insn, 5, 5);
14168     int rd = extract32(insn, 0, 5);
14169     gen_helper_gvec_2 *genfn;
14170     bool feature;
14171 
14172     if (size != 0) {
14173         unallocated_encoding(s);
14174         return;
14175     }
14176 
14177     switch (opcode) {
14178     case 0: /* SHA1H */
14179         feature = dc_isar_feature(aa64_sha1, s);
14180         genfn = gen_helper_crypto_sha1h;
14181         break;
14182     case 1: /* SHA1SU1 */
14183         feature = dc_isar_feature(aa64_sha1, s);
14184         genfn = gen_helper_crypto_sha1su1;
14185         break;
14186     case 2: /* SHA256SU0 */
14187         feature = dc_isar_feature(aa64_sha256, s);
14188         genfn = gen_helper_crypto_sha256su0;
14189         break;
14190     default:
14191         unallocated_encoding(s);
14192         return;
14193     }
14194 
14195     if (!feature) {
14196         unallocated_encoding(s);
14197         return;
14198     }
14199 
14200     if (!fp_access_check(s)) {
14201         return;
14202     }
14203     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14204 }
14205 
14206 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14207 {
14208     tcg_gen_rotli_i64(d, m, 1);
14209     tcg_gen_xor_i64(d, d, n);
14210 }
14211 
14212 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14213 {
14214     tcg_gen_rotli_vec(vece, d, m, 1);
14215     tcg_gen_xor_vec(vece, d, d, n);
14216 }
14217 
14218 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14219                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14220 {
14221     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14222     static const GVecGen3 op = {
14223         .fni8 = gen_rax1_i64,
14224         .fniv = gen_rax1_vec,
14225         .opt_opc = vecop_list,
14226         .fno = gen_helper_crypto_rax1,
14227         .vece = MO_64,
14228     };
14229     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14230 }
14231 
14232 /* Crypto three-reg SHA512
14233  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
14234  * +-----------------------+------+---+---+-----+--------+------+------+
14235  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
14236  * +-----------------------+------+---+---+-----+--------+------+------+
14237  */
14238 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14239 {
14240     int opcode = extract32(insn, 10, 2);
14241     int o =  extract32(insn, 14, 1);
14242     int rm = extract32(insn, 16, 5);
14243     int rn = extract32(insn, 5, 5);
14244     int rd = extract32(insn, 0, 5);
14245     bool feature;
14246     gen_helper_gvec_3 *oolfn = NULL;
14247     GVecGen3Fn *gvecfn = NULL;
14248 
14249     if (o == 0) {
14250         switch (opcode) {
14251         case 0: /* SHA512H */
14252             feature = dc_isar_feature(aa64_sha512, s);
14253             oolfn = gen_helper_crypto_sha512h;
14254             break;
14255         case 1: /* SHA512H2 */
14256             feature = dc_isar_feature(aa64_sha512, s);
14257             oolfn = gen_helper_crypto_sha512h2;
14258             break;
14259         case 2: /* SHA512SU1 */
14260             feature = dc_isar_feature(aa64_sha512, s);
14261             oolfn = gen_helper_crypto_sha512su1;
14262             break;
14263         case 3: /* RAX1 */
14264             feature = dc_isar_feature(aa64_sha3, s);
14265             gvecfn = gen_gvec_rax1;
14266             break;
14267         default:
14268             g_assert_not_reached();
14269         }
14270     } else {
14271         switch (opcode) {
14272         case 0: /* SM3PARTW1 */
14273             feature = dc_isar_feature(aa64_sm3, s);
14274             oolfn = gen_helper_crypto_sm3partw1;
14275             break;
14276         case 1: /* SM3PARTW2 */
14277             feature = dc_isar_feature(aa64_sm3, s);
14278             oolfn = gen_helper_crypto_sm3partw2;
14279             break;
14280         case 2: /* SM4EKEY */
14281             feature = dc_isar_feature(aa64_sm4, s);
14282             oolfn = gen_helper_crypto_sm4ekey;
14283             break;
14284         default:
14285             unallocated_encoding(s);
14286             return;
14287         }
14288     }
14289 
14290     if (!feature) {
14291         unallocated_encoding(s);
14292         return;
14293     }
14294 
14295     if (!fp_access_check(s)) {
14296         return;
14297     }
14298 
14299     if (oolfn) {
14300         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14301     } else {
14302         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14303     }
14304 }
14305 
14306 /* Crypto two-reg SHA512
14307  *  31                                     12  11  10  9    5 4    0
14308  * +-----------------------------------------+--------+------+------+
14309  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
14310  * +-----------------------------------------+--------+------+------+
14311  */
14312 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14313 {
14314     int opcode = extract32(insn, 10, 2);
14315     int rn = extract32(insn, 5, 5);
14316     int rd = extract32(insn, 0, 5);
14317     bool feature;
14318 
14319     switch (opcode) {
14320     case 0: /* SHA512SU0 */
14321         feature = dc_isar_feature(aa64_sha512, s);
14322         break;
14323     case 1: /* SM4E */
14324         feature = dc_isar_feature(aa64_sm4, s);
14325         break;
14326     default:
14327         unallocated_encoding(s);
14328         return;
14329     }
14330 
14331     if (!feature) {
14332         unallocated_encoding(s);
14333         return;
14334     }
14335 
14336     if (!fp_access_check(s)) {
14337         return;
14338     }
14339 
14340     switch (opcode) {
14341     case 0: /* SHA512SU0 */
14342         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14343         break;
14344     case 1: /* SM4E */
14345         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14346         break;
14347     default:
14348         g_assert_not_reached();
14349     }
14350 }
14351 
14352 /* Crypto four-register
14353  *  31               23 22 21 20  16 15  14  10 9    5 4    0
14354  * +-------------------+-----+------+---+------+------+------+
14355  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
14356  * +-------------------+-----+------+---+------+------+------+
14357  */
14358 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14359 {
14360     int op0 = extract32(insn, 21, 2);
14361     int rm = extract32(insn, 16, 5);
14362     int ra = extract32(insn, 10, 5);
14363     int rn = extract32(insn, 5, 5);
14364     int rd = extract32(insn, 0, 5);
14365     bool feature;
14366 
14367     switch (op0) {
14368     case 0: /* EOR3 */
14369     case 1: /* BCAX */
14370         feature = dc_isar_feature(aa64_sha3, s);
14371         break;
14372     case 2: /* SM3SS1 */
14373         feature = dc_isar_feature(aa64_sm3, s);
14374         break;
14375     default:
14376         unallocated_encoding(s);
14377         return;
14378     }
14379 
14380     if (!feature) {
14381         unallocated_encoding(s);
14382         return;
14383     }
14384 
14385     if (!fp_access_check(s)) {
14386         return;
14387     }
14388 
14389     if (op0 < 2) {
14390         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14391         int pass;
14392 
14393         tcg_op1 = tcg_temp_new_i64();
14394         tcg_op2 = tcg_temp_new_i64();
14395         tcg_op3 = tcg_temp_new_i64();
14396         tcg_res[0] = tcg_temp_new_i64();
14397         tcg_res[1] = tcg_temp_new_i64();
14398 
14399         for (pass = 0; pass < 2; pass++) {
14400             read_vec_element(s, tcg_op1, rn, pass, MO_64);
14401             read_vec_element(s, tcg_op2, rm, pass, MO_64);
14402             read_vec_element(s, tcg_op3, ra, pass, MO_64);
14403 
14404             if (op0 == 0) {
14405                 /* EOR3 */
14406                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14407             } else {
14408                 /* BCAX */
14409                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14410             }
14411             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14412         }
14413         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14414         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14415 
14416         tcg_temp_free_i64(tcg_op1);
14417         tcg_temp_free_i64(tcg_op2);
14418         tcg_temp_free_i64(tcg_op3);
14419         tcg_temp_free_i64(tcg_res[0]);
14420         tcg_temp_free_i64(tcg_res[1]);
14421     } else {
14422         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14423 
14424         tcg_op1 = tcg_temp_new_i32();
14425         tcg_op2 = tcg_temp_new_i32();
14426         tcg_op3 = tcg_temp_new_i32();
14427         tcg_res = tcg_temp_new_i32();
14428         tcg_zero = tcg_constant_i32(0);
14429 
14430         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14431         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14432         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14433 
14434         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14435         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14436         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14437         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14438 
14439         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14440         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14441         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14442         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14443 
14444         tcg_temp_free_i32(tcg_op1);
14445         tcg_temp_free_i32(tcg_op2);
14446         tcg_temp_free_i32(tcg_op3);
14447         tcg_temp_free_i32(tcg_res);
14448     }
14449 }
14450 
14451 /* Crypto XAR
14452  *  31                   21 20  16 15    10 9    5 4    0
14453  * +-----------------------+------+--------+------+------+
14454  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
14455  * +-----------------------+------+--------+------+------+
14456  */
14457 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14458 {
14459     int rm = extract32(insn, 16, 5);
14460     int imm6 = extract32(insn, 10, 6);
14461     int rn = extract32(insn, 5, 5);
14462     int rd = extract32(insn, 0, 5);
14463 
14464     if (!dc_isar_feature(aa64_sha3, s)) {
14465         unallocated_encoding(s);
14466         return;
14467     }
14468 
14469     if (!fp_access_check(s)) {
14470         return;
14471     }
14472 
14473     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14474                  vec_full_reg_offset(s, rn),
14475                  vec_full_reg_offset(s, rm), imm6, 16,
14476                  vec_full_reg_size(s));
14477 }
14478 
14479 /* Crypto three-reg imm2
14480  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
14481  * +-----------------------+------+-----+------+--------+------+------+
14482  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
14483  * +-----------------------+------+-----+------+--------+------+------+
14484  */
14485 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14486 {
14487     static gen_helper_gvec_3 * const fns[4] = {
14488         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14489         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14490     };
14491     int opcode = extract32(insn, 10, 2);
14492     int imm2 = extract32(insn, 12, 2);
14493     int rm = extract32(insn, 16, 5);
14494     int rn = extract32(insn, 5, 5);
14495     int rd = extract32(insn, 0, 5);
14496 
14497     if (!dc_isar_feature(aa64_sm3, s)) {
14498         unallocated_encoding(s);
14499         return;
14500     }
14501 
14502     if (!fp_access_check(s)) {
14503         return;
14504     }
14505 
14506     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14507 }
14508 
14509 /* C3.6 Data processing - SIMD, inc Crypto
14510  *
14511  * As the decode gets a little complex we are using a table based
14512  * approach for this part of the decode.
14513  */
14514 static const AArch64DecodeTable data_proc_simd[] = {
14515     /* pattern  ,  mask     ,  fn                        */
14516     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14517     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14518     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14519     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14520     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14521     { 0x0e000400, 0x9fe08400, disas_simd_copy },
14522     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14523     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14524     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14525     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14526     { 0x0e000000, 0xbf208c00, disas_simd_tb },
14527     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14528     { 0x2e000000, 0xbf208400, disas_simd_ext },
14529     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14530     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14531     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14532     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14533     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14534     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14535     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14536     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14537     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14538     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14539     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14540     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14541     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14542     { 0xce000000, 0xff808000, disas_crypto_four_reg },
14543     { 0xce800000, 0xffe00000, disas_crypto_xar },
14544     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14545     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14546     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14547     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14548     { 0x00000000, 0x00000000, NULL }
14549 };
14550 
14551 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14552 {
14553     /* Note that this is called with all non-FP cases from
14554      * table C3-6 so it must UNDEF for entries not specifically
14555      * allocated to instructions in that table.
14556      */
14557     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14558     if (fn) {
14559         fn(s, insn);
14560     } else {
14561         unallocated_encoding(s);
14562     }
14563 }
14564 
14565 /* C3.6 Data processing - SIMD and floating point */
14566 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14567 {
14568     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14569         disas_data_proc_fp(s, insn);
14570     } else {
14571         /* SIMD, including crypto */
14572         disas_data_proc_simd(s, insn);
14573     }
14574 }
14575 
14576 /*
14577  * Include the generated SME FA64 decoder.
14578  */
14579 
14580 #include "decode-sme-fa64.c.inc"
14581 
14582 static bool trans_OK(DisasContext *s, arg_OK *a)
14583 {
14584     return true;
14585 }
14586 
14587 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14588 {
14589     s->is_nonstreaming = true;
14590     return true;
14591 }
14592 
14593 /**
14594  * is_guarded_page:
14595  * @env: The cpu environment
14596  * @s: The DisasContext
14597  *
14598  * Return true if the page is guarded.
14599  */
14600 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14601 {
14602     uint64_t addr = s->base.pc_first;
14603 #ifdef CONFIG_USER_ONLY
14604     return page_get_flags(addr) & PAGE_BTI;
14605 #else
14606     CPUTLBEntryFull *full;
14607     void *host;
14608     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14609     int flags;
14610 
14611     /*
14612      * We test this immediately after reading an insn, which means
14613      * that the TLB entry must be present and valid, and thus this
14614      * access will never raise an exception.
14615      */
14616     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14617                               false, &host, &full, 0);
14618     assert(!(flags & TLB_INVALID_MASK));
14619 
14620     return full->guarded;
14621 #endif
14622 }
14623 
14624 /**
14625  * btype_destination_ok:
14626  * @insn: The instruction at the branch destination
14627  * @bt: SCTLR_ELx.BT
14628  * @btype: PSTATE.BTYPE, and is non-zero
14629  *
14630  * On a guarded page, there are a limited number of insns
14631  * that may be present at the branch target:
14632  *   - branch target identifiers,
14633  *   - paciasp, pacibsp,
14634  *   - BRK insn
14635  *   - HLT insn
14636  * Anything else causes a Branch Target Exception.
14637  *
14638  * Return true if the branch is compatible, false to raise BTITRAP.
14639  */
14640 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14641 {
14642     if ((insn & 0xfffff01fu) == 0xd503201fu) {
14643         /* HINT space */
14644         switch (extract32(insn, 5, 7)) {
14645         case 0b011001: /* PACIASP */
14646         case 0b011011: /* PACIBSP */
14647             /*
14648              * If SCTLR_ELx.BT, then PACI*SP are not compatible
14649              * with btype == 3.  Otherwise all btype are ok.
14650              */
14651             return !bt || btype != 3;
14652         case 0b100000: /* BTI */
14653             /* Not compatible with any btype.  */
14654             return false;
14655         case 0b100010: /* BTI c */
14656             /* Not compatible with btype == 3 */
14657             return btype != 3;
14658         case 0b100100: /* BTI j */
14659             /* Not compatible with btype == 2 */
14660             return btype != 2;
14661         case 0b100110: /* BTI jc */
14662             /* Compatible with any btype.  */
14663             return true;
14664         }
14665     } else {
14666         switch (insn & 0xffe0001fu) {
14667         case 0xd4200000u: /* BRK */
14668         case 0xd4400000u: /* HLT */
14669             /* Give priority to the breakpoint exception.  */
14670             return true;
14671         }
14672     }
14673     return false;
14674 }
14675 
14676 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14677                                           CPUState *cpu)
14678 {
14679     DisasContext *dc = container_of(dcbase, DisasContext, base);
14680     CPUARMState *env = cpu->env_ptr;
14681     ARMCPU *arm_cpu = env_archcpu(env);
14682     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14683     int bound, core_mmu_idx;
14684 
14685     dc->isar = &arm_cpu->isar;
14686     dc->condjmp = 0;
14687     dc->pc_save = dc->base.pc_first;
14688     dc->aarch64 = true;
14689     dc->thumb = false;
14690     dc->sctlr_b = 0;
14691     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14692     dc->condexec_mask = 0;
14693     dc->condexec_cond = 0;
14694     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14695     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14696     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14697     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14698     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14699     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14700 #if !defined(CONFIG_USER_ONLY)
14701     dc->user = (dc->current_el == 0);
14702 #endif
14703     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14704     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14705     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14706     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14707     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14708     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14709     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14710     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14711     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14712     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14713     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14714     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14715     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14716     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14717     dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14718     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14719     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14720     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14721     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14722     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14723     dc->vec_len = 0;
14724     dc->vec_stride = 0;
14725     dc->cp_regs = arm_cpu->cp_regs;
14726     dc->features = env->features;
14727     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14728 
14729 #ifdef CONFIG_USER_ONLY
14730     /* In sve_probe_page, we assume TBI is enabled. */
14731     tcg_debug_assert(dc->tbid & 1);
14732 #endif
14733 
14734     /* Single step state. The code-generation logic here is:
14735      *  SS_ACTIVE == 0:
14736      *   generate code with no special handling for single-stepping (except
14737      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14738      *   this happens anyway because those changes are all system register or
14739      *   PSTATE writes).
14740      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14741      *   emit code for one insn
14742      *   emit code to clear PSTATE.SS
14743      *   emit code to generate software step exception for completed step
14744      *   end TB (as usual for having generated an exception)
14745      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14746      *   emit code to generate a software step exception
14747      *   end the TB
14748      */
14749     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14750     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14751     dc->is_ldex = false;
14752 
14753     /* Bound the number of insns to execute to those left on the page.  */
14754     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14755 
14756     /* If architectural single step active, limit to 1.  */
14757     if (dc->ss_active) {
14758         bound = 1;
14759     }
14760     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14761 }
14762 
14763 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14764 {
14765 }
14766 
14767 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14768 {
14769     DisasContext *dc = container_of(dcbase, DisasContext, base);
14770     target_ulong pc_arg = dc->base.pc_next;
14771 
14772     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14773         pc_arg &= ~TARGET_PAGE_MASK;
14774     }
14775     tcg_gen_insn_start(pc_arg, 0, 0);
14776     dc->insn_start = tcg_last_op();
14777 }
14778 
14779 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14780 {
14781     DisasContext *s = container_of(dcbase, DisasContext, base);
14782     CPUARMState *env = cpu->env_ptr;
14783     uint64_t pc = s->base.pc_next;
14784     uint32_t insn;
14785 
14786     /* Singlestep exceptions have the highest priority. */
14787     if (s->ss_active && !s->pstate_ss) {
14788         /* Singlestep state is Active-pending.
14789          * If we're in this state at the start of a TB then either
14790          *  a) we just took an exception to an EL which is being debugged
14791          *     and this is the first insn in the exception handler
14792          *  b) debug exceptions were masked and we just unmasked them
14793          *     without changing EL (eg by clearing PSTATE.D)
14794          * In either case we're going to take a swstep exception in the
14795          * "did not step an insn" case, and so the syndrome ISV and EX
14796          * bits should be zero.
14797          */
14798         assert(s->base.num_insns == 1);
14799         gen_swstep_exception(s, 0, 0);
14800         s->base.is_jmp = DISAS_NORETURN;
14801         s->base.pc_next = pc + 4;
14802         return;
14803     }
14804 
14805     if (pc & 3) {
14806         /*
14807          * PC alignment fault.  This has priority over the instruction abort
14808          * that we would receive from a translation fault via arm_ldl_code.
14809          * This should only be possible after an indirect branch, at the
14810          * start of the TB.
14811          */
14812         assert(s->base.num_insns == 1);
14813         gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14814         s->base.is_jmp = DISAS_NORETURN;
14815         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14816         return;
14817     }
14818 
14819     s->pc_curr = pc;
14820     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14821     s->insn = insn;
14822     s->base.pc_next = pc + 4;
14823 
14824     s->fp_access_checked = false;
14825     s->sve_access_checked = false;
14826 
14827     if (s->pstate_il) {
14828         /*
14829          * Illegal execution state. This has priority over BTI
14830          * exceptions, but comes after instruction abort exceptions.
14831          */
14832         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14833         return;
14834     }
14835 
14836     if (dc_isar_feature(aa64_bti, s)) {
14837         if (s->base.num_insns == 1) {
14838             /*
14839              * At the first insn of the TB, compute s->guarded_page.
14840              * We delayed computing this until successfully reading
14841              * the first insn of the TB, above.  This (mostly) ensures
14842              * that the softmmu tlb entry has been populated, and the
14843              * page table GP bit is available.
14844              *
14845              * Note that we need to compute this even if btype == 0,
14846              * because this value is used for BR instructions later
14847              * where ENV is not available.
14848              */
14849             s->guarded_page = is_guarded_page(env, s);
14850 
14851             /* First insn can have btype set to non-zero.  */
14852             tcg_debug_assert(s->btype >= 0);
14853 
14854             /*
14855              * Note that the Branch Target Exception has fairly high
14856              * priority -- below debugging exceptions but above most
14857              * everything else.  This allows us to handle this now
14858              * instead of waiting until the insn is otherwise decoded.
14859              */
14860             if (s->btype != 0
14861                 && s->guarded_page
14862                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14863                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14864                 return;
14865             }
14866         } else {
14867             /* Not the first insn: btype must be 0.  */
14868             tcg_debug_assert(s->btype == 0);
14869         }
14870     }
14871 
14872     s->is_nonstreaming = false;
14873     if (s->sme_trap_nonstreaming) {
14874         disas_sme_fa64(s, insn);
14875     }
14876 
14877     switch (extract32(insn, 25, 4)) {
14878     case 0x0:
14879         if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) {
14880             unallocated_encoding(s);
14881         }
14882         break;
14883     case 0x1: case 0x3: /* UNALLOCATED */
14884         unallocated_encoding(s);
14885         break;
14886     case 0x2:
14887         if (!disas_sve(s, insn)) {
14888             unallocated_encoding(s);
14889         }
14890         break;
14891     case 0x8: case 0x9: /* Data processing - immediate */
14892         disas_data_proc_imm(s, insn);
14893         break;
14894     case 0xa: case 0xb: /* Branch, exception generation and system insns */
14895         disas_b_exc_sys(s, insn);
14896         break;
14897     case 0x4:
14898     case 0x6:
14899     case 0xc:
14900     case 0xe:      /* Loads and stores */
14901         disas_ldst(s, insn);
14902         break;
14903     case 0x5:
14904     case 0xd:      /* Data processing - register */
14905         disas_data_proc_reg(s, insn);
14906         break;
14907     case 0x7:
14908     case 0xf:      /* Data processing - SIMD and floating point */
14909         disas_data_proc_simd_fp(s, insn);
14910         break;
14911     default:
14912         assert(FALSE); /* all 15 cases should be handled above */
14913         break;
14914     }
14915 
14916     /*
14917      * After execution of most insns, btype is reset to 0.
14918      * Note that we set btype == -1 when the insn sets btype.
14919      */
14920     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14921         reset_btype(s);
14922     }
14923 }
14924 
14925 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14926 {
14927     DisasContext *dc = container_of(dcbase, DisasContext, base);
14928 
14929     if (unlikely(dc->ss_active)) {
14930         /* Note that this means single stepping WFI doesn't halt the CPU.
14931          * For conditional branch insns this is harmless unreachable code as
14932          * gen_goto_tb() has already handled emitting the debug exception
14933          * (and thus a tb-jump is not possible when singlestepping).
14934          */
14935         switch (dc->base.is_jmp) {
14936         default:
14937             gen_a64_update_pc(dc, 4);
14938             /* fall through */
14939         case DISAS_EXIT:
14940         case DISAS_JUMP:
14941             gen_step_complete_exception(dc);
14942             break;
14943         case DISAS_NORETURN:
14944             break;
14945         }
14946     } else {
14947         switch (dc->base.is_jmp) {
14948         case DISAS_NEXT:
14949         case DISAS_TOO_MANY:
14950             gen_goto_tb(dc, 1, 4);
14951             break;
14952         default:
14953         case DISAS_UPDATE_EXIT:
14954             gen_a64_update_pc(dc, 4);
14955             /* fall through */
14956         case DISAS_EXIT:
14957             tcg_gen_exit_tb(NULL, 0);
14958             break;
14959         case DISAS_UPDATE_NOCHAIN:
14960             gen_a64_update_pc(dc, 4);
14961             /* fall through */
14962         case DISAS_JUMP:
14963             tcg_gen_lookup_and_goto_ptr();
14964             break;
14965         case DISAS_NORETURN:
14966         case DISAS_SWI:
14967             break;
14968         case DISAS_WFE:
14969             gen_a64_update_pc(dc, 4);
14970             gen_helper_wfe(cpu_env);
14971             break;
14972         case DISAS_YIELD:
14973             gen_a64_update_pc(dc, 4);
14974             gen_helper_yield(cpu_env);
14975             break;
14976         case DISAS_WFI:
14977             /*
14978              * This is a special case because we don't want to just halt
14979              * the CPU if trying to debug across a WFI.
14980              */
14981             gen_a64_update_pc(dc, 4);
14982             gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14983             /*
14984              * The helper doesn't necessarily throw an exception, but we
14985              * must go back to the main loop to check for interrupts anyway.
14986              */
14987             tcg_gen_exit_tb(NULL, 0);
14988             break;
14989         }
14990     }
14991 }
14992 
14993 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14994                                  CPUState *cpu, FILE *logfile)
14995 {
14996     DisasContext *dc = container_of(dcbase, DisasContext, base);
14997 
14998     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14999     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
15000 }
15001 
15002 const TranslatorOps aarch64_translator_ops = {
15003     .init_disas_context = aarch64_tr_init_disas_context,
15004     .tb_start           = aarch64_tr_tb_start,
15005     .insn_start         = aarch64_tr_insn_start,
15006     .translate_insn     = aarch64_tr_translate_insn,
15007     .tb_stop            = aarch64_tr_tb_stop,
15008     .disas_log          = aarch64_tr_disas_log,
15009 };
15010