1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 /* HINT instruction group, including various allocated HINTs */ 1653 static void handle_hint(DisasContext *s, uint32_t insn, 1654 unsigned int op1, unsigned int op2, unsigned int crm) 1655 { 1656 unsigned int selector = crm << 3 | op2; 1657 1658 if (op1 != 3) { 1659 unallocated_encoding(s); 1660 return; 1661 } 1662 1663 switch (selector) { 1664 case 0b00000: /* NOP */ 1665 break; 1666 case 0b00011: /* WFI */ 1667 s->base.is_jmp = DISAS_WFI; 1668 break; 1669 case 0b00001: /* YIELD */ 1670 /* When running in MTTCG we don't generate jumps to the yield and 1671 * WFE helpers as it won't affect the scheduling of other vCPUs. 1672 * If we wanted to more completely model WFE/SEV so we don't busy 1673 * spin unnecessarily we would need to do something more involved. 1674 */ 1675 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1676 s->base.is_jmp = DISAS_YIELD; 1677 } 1678 break; 1679 case 0b00010: /* WFE */ 1680 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1681 s->base.is_jmp = DISAS_WFE; 1682 } 1683 break; 1684 case 0b00100: /* SEV */ 1685 case 0b00101: /* SEVL */ 1686 case 0b00110: /* DGH */ 1687 /* we treat all as NOP at least for now */ 1688 break; 1689 case 0b00111: /* XPACLRI */ 1690 if (s->pauth_active) { 1691 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1692 } 1693 break; 1694 case 0b01000: /* PACIA1716 */ 1695 if (s->pauth_active) { 1696 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1697 } 1698 break; 1699 case 0b01010: /* PACIB1716 */ 1700 if (s->pauth_active) { 1701 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1702 } 1703 break; 1704 case 0b01100: /* AUTIA1716 */ 1705 if (s->pauth_active) { 1706 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1707 } 1708 break; 1709 case 0b01110: /* AUTIB1716 */ 1710 if (s->pauth_active) { 1711 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1712 } 1713 break; 1714 case 0b10000: /* ESB */ 1715 /* Without RAS, we must implement this as NOP. */ 1716 if (dc_isar_feature(aa64_ras, s)) { 1717 /* 1718 * QEMU does not have a source of physical SErrors, 1719 * so we are only concerned with virtual SErrors. 1720 * The pseudocode in the ARM for this case is 1721 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1722 * AArch64.vESBOperation(); 1723 * Most of the condition can be evaluated at translation time. 1724 * Test for EL2 present, and defer test for SEL2 to runtime. 1725 */ 1726 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1727 gen_helper_vesb(cpu_env); 1728 } 1729 } 1730 break; 1731 case 0b11000: /* PACIAZ */ 1732 if (s->pauth_active) { 1733 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1734 tcg_constant_i64(0)); 1735 } 1736 break; 1737 case 0b11001: /* PACIASP */ 1738 if (s->pauth_active) { 1739 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1740 } 1741 break; 1742 case 0b11010: /* PACIBZ */ 1743 if (s->pauth_active) { 1744 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1745 tcg_constant_i64(0)); 1746 } 1747 break; 1748 case 0b11011: /* PACIBSP */ 1749 if (s->pauth_active) { 1750 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1751 } 1752 break; 1753 case 0b11100: /* AUTIAZ */ 1754 if (s->pauth_active) { 1755 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1756 tcg_constant_i64(0)); 1757 } 1758 break; 1759 case 0b11101: /* AUTIASP */ 1760 if (s->pauth_active) { 1761 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1762 } 1763 break; 1764 case 0b11110: /* AUTIBZ */ 1765 if (s->pauth_active) { 1766 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1767 tcg_constant_i64(0)); 1768 } 1769 break; 1770 case 0b11111: /* AUTIBSP */ 1771 if (s->pauth_active) { 1772 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1773 } 1774 break; 1775 default: 1776 /* default specified as NOP equivalent */ 1777 break; 1778 } 1779 } 1780 1781 static void gen_clrex(DisasContext *s, uint32_t insn) 1782 { 1783 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1784 } 1785 1786 /* CLREX, DSB, DMB, ISB */ 1787 static void handle_sync(DisasContext *s, uint32_t insn, 1788 unsigned int op1, unsigned int op2, unsigned int crm) 1789 { 1790 TCGBar bar; 1791 1792 if (op1 != 3) { 1793 unallocated_encoding(s); 1794 return; 1795 } 1796 1797 switch (op2) { 1798 case 2: /* CLREX */ 1799 gen_clrex(s, insn); 1800 return; 1801 case 4: /* DSB */ 1802 case 5: /* DMB */ 1803 switch (crm & 3) { 1804 case 1: /* MBReqTypes_Reads */ 1805 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1806 break; 1807 case 2: /* MBReqTypes_Writes */ 1808 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1809 break; 1810 default: /* MBReqTypes_All */ 1811 bar = TCG_BAR_SC | TCG_MO_ALL; 1812 break; 1813 } 1814 tcg_gen_mb(bar); 1815 return; 1816 case 6: /* ISB */ 1817 /* We need to break the TB after this insn to execute 1818 * a self-modified code correctly and also to take 1819 * any pending interrupts immediately. 1820 */ 1821 reset_btype(s); 1822 gen_goto_tb(s, 0, 4); 1823 return; 1824 1825 case 7: /* SB */ 1826 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1827 goto do_unallocated; 1828 } 1829 /* 1830 * TODO: There is no speculation barrier opcode for TCG; 1831 * MB and end the TB instead. 1832 */ 1833 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1834 gen_goto_tb(s, 0, 4); 1835 return; 1836 1837 default: 1838 do_unallocated: 1839 unallocated_encoding(s); 1840 return; 1841 } 1842 } 1843 1844 static void gen_xaflag(void) 1845 { 1846 TCGv_i32 z = tcg_temp_new_i32(); 1847 1848 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1849 1850 /* 1851 * (!C & !Z) << 31 1852 * (!(C | Z)) << 31 1853 * ~((C | Z) << 31) 1854 * ~-(C | Z) 1855 * (C | Z) - 1 1856 */ 1857 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1858 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1859 1860 /* !(Z & C) */ 1861 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1862 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1863 1864 /* (!C & Z) << 31 -> -(Z & ~C) */ 1865 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1866 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1867 1868 /* C | Z */ 1869 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1870 } 1871 1872 static void gen_axflag(void) 1873 { 1874 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1875 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1876 1877 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1878 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1879 1880 tcg_gen_movi_i32(cpu_NF, 0); 1881 tcg_gen_movi_i32(cpu_VF, 0); 1882 } 1883 1884 /* MSR (immediate) - move immediate to processor state field */ 1885 static void handle_msr_i(DisasContext *s, uint32_t insn, 1886 unsigned int op1, unsigned int op2, unsigned int crm) 1887 { 1888 int op = op1 << 3 | op2; 1889 1890 /* End the TB by default, chaining is ok. */ 1891 s->base.is_jmp = DISAS_TOO_MANY; 1892 1893 switch (op) { 1894 case 0x00: /* CFINV */ 1895 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1896 goto do_unallocated; 1897 } 1898 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1899 s->base.is_jmp = DISAS_NEXT; 1900 break; 1901 1902 case 0x01: /* XAFlag */ 1903 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1904 goto do_unallocated; 1905 } 1906 gen_xaflag(); 1907 s->base.is_jmp = DISAS_NEXT; 1908 break; 1909 1910 case 0x02: /* AXFlag */ 1911 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1912 goto do_unallocated; 1913 } 1914 gen_axflag(); 1915 s->base.is_jmp = DISAS_NEXT; 1916 break; 1917 1918 case 0x03: /* UAO */ 1919 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1920 goto do_unallocated; 1921 } 1922 if (crm & 1) { 1923 set_pstate_bits(PSTATE_UAO); 1924 } else { 1925 clear_pstate_bits(PSTATE_UAO); 1926 } 1927 gen_rebuild_hflags(s); 1928 break; 1929 1930 case 0x04: /* PAN */ 1931 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1932 goto do_unallocated; 1933 } 1934 if (crm & 1) { 1935 set_pstate_bits(PSTATE_PAN); 1936 } else { 1937 clear_pstate_bits(PSTATE_PAN); 1938 } 1939 gen_rebuild_hflags(s); 1940 break; 1941 1942 case 0x05: /* SPSel */ 1943 if (s->current_el == 0) { 1944 goto do_unallocated; 1945 } 1946 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1947 break; 1948 1949 case 0x19: /* SSBS */ 1950 if (!dc_isar_feature(aa64_ssbs, s)) { 1951 goto do_unallocated; 1952 } 1953 if (crm & 1) { 1954 set_pstate_bits(PSTATE_SSBS); 1955 } else { 1956 clear_pstate_bits(PSTATE_SSBS); 1957 } 1958 /* Don't need to rebuild hflags since SSBS is a nop */ 1959 break; 1960 1961 case 0x1a: /* DIT */ 1962 if (!dc_isar_feature(aa64_dit, s)) { 1963 goto do_unallocated; 1964 } 1965 if (crm & 1) { 1966 set_pstate_bits(PSTATE_DIT); 1967 } else { 1968 clear_pstate_bits(PSTATE_DIT); 1969 } 1970 /* There's no need to rebuild hflags because DIT is a nop */ 1971 break; 1972 1973 case 0x1e: /* DAIFSet */ 1974 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1975 break; 1976 1977 case 0x1f: /* DAIFClear */ 1978 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1979 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1980 s->base.is_jmp = DISAS_UPDATE_EXIT; 1981 break; 1982 1983 case 0x1c: /* TCO */ 1984 if (dc_isar_feature(aa64_mte, s)) { 1985 /* Full MTE is enabled -- set the TCO bit as directed. */ 1986 if (crm & 1) { 1987 set_pstate_bits(PSTATE_TCO); 1988 } else { 1989 clear_pstate_bits(PSTATE_TCO); 1990 } 1991 gen_rebuild_hflags(s); 1992 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1993 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1994 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1995 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1996 s->base.is_jmp = DISAS_NEXT; 1997 } else { 1998 goto do_unallocated; 1999 } 2000 break; 2001 2002 case 0x1b: /* SVCR* */ 2003 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2004 goto do_unallocated; 2005 } 2006 if (sme_access_check(s)) { 2007 int old = s->pstate_sm | (s->pstate_za << 1); 2008 int new = (crm & 1) * 3; 2009 int msk = (crm >> 1) & 3; 2010 2011 if ((old ^ new) & msk) { 2012 /* At least one bit changes. */ 2013 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2014 tcg_constant_i32(msk)); 2015 } else { 2016 s->base.is_jmp = DISAS_NEXT; 2017 } 2018 } 2019 break; 2020 2021 default: 2022 do_unallocated: 2023 unallocated_encoding(s); 2024 return; 2025 } 2026 } 2027 2028 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2029 { 2030 TCGv_i32 tmp = tcg_temp_new_i32(); 2031 TCGv_i32 nzcv = tcg_temp_new_i32(); 2032 2033 /* build bit 31, N */ 2034 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2035 /* build bit 30, Z */ 2036 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2037 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2038 /* build bit 29, C */ 2039 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2040 /* build bit 28, V */ 2041 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2042 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2043 /* generate result */ 2044 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2045 } 2046 2047 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2048 { 2049 TCGv_i32 nzcv = tcg_temp_new_i32(); 2050 2051 /* take NZCV from R[t] */ 2052 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2053 2054 /* bit 31, N */ 2055 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2056 /* bit 30, Z */ 2057 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2058 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2059 /* bit 29, C */ 2060 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2061 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2062 /* bit 28, V */ 2063 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2064 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2065 } 2066 2067 static void gen_sysreg_undef(DisasContext *s, bool isread, 2068 uint8_t op0, uint8_t op1, uint8_t op2, 2069 uint8_t crn, uint8_t crm, uint8_t rt) 2070 { 2071 /* 2072 * Generate code to emit an UNDEF with correct syndrome 2073 * information for a failed system register access. 2074 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2075 * but if FEAT_IDST is implemented then read accesses to registers 2076 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2077 * syndrome. 2078 */ 2079 uint32_t syndrome; 2080 2081 if (isread && dc_isar_feature(aa64_ids, s) && 2082 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2083 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2084 } else { 2085 syndrome = syn_uncategorized(); 2086 } 2087 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2088 } 2089 2090 /* MRS - move from system register 2091 * MSR (register) - move to system register 2092 * SYS 2093 * SYSL 2094 * These are all essentially the same insn in 'read' and 'write' 2095 * versions, with varying op0 fields. 2096 */ 2097 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2098 unsigned int op0, unsigned int op1, unsigned int op2, 2099 unsigned int crn, unsigned int crm, unsigned int rt) 2100 { 2101 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2102 crn, crm, op0, op1, op2); 2103 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2104 bool need_exit_tb = false; 2105 TCGv_ptr tcg_ri = NULL; 2106 TCGv_i64 tcg_rt; 2107 2108 if (!ri) { 2109 /* Unknown register; this might be a guest error or a QEMU 2110 * unimplemented feature. 2111 */ 2112 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2113 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2114 isread ? "read" : "write", op0, op1, crn, crm, op2); 2115 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2116 return; 2117 } 2118 2119 /* Check access permissions */ 2120 if (!cp_access_ok(s->current_el, ri, isread)) { 2121 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2122 return; 2123 } 2124 2125 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2126 /* Emit code to perform further access permissions checks at 2127 * runtime; this may result in an exception. 2128 */ 2129 uint32_t syndrome; 2130 2131 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2132 gen_a64_update_pc(s, 0); 2133 tcg_ri = tcg_temp_new_ptr(); 2134 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2135 tcg_constant_i32(key), 2136 tcg_constant_i32(syndrome), 2137 tcg_constant_i32(isread)); 2138 } else if (ri->type & ARM_CP_RAISES_EXC) { 2139 /* 2140 * The readfn or writefn might raise an exception; 2141 * synchronize the CPU state in case it does. 2142 */ 2143 gen_a64_update_pc(s, 0); 2144 } 2145 2146 /* Handle special cases first */ 2147 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2148 case 0: 2149 break; 2150 case ARM_CP_NOP: 2151 return; 2152 case ARM_CP_NZCV: 2153 tcg_rt = cpu_reg(s, rt); 2154 if (isread) { 2155 gen_get_nzcv(tcg_rt); 2156 } else { 2157 gen_set_nzcv(tcg_rt); 2158 } 2159 return; 2160 case ARM_CP_CURRENTEL: 2161 /* Reads as current EL value from pstate, which is 2162 * guaranteed to be constant by the tb flags. 2163 */ 2164 tcg_rt = cpu_reg(s, rt); 2165 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2166 return; 2167 case ARM_CP_DC_ZVA: 2168 /* Writes clear the aligned block of memory which rt points into. */ 2169 if (s->mte_active[0]) { 2170 int desc = 0; 2171 2172 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2173 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2174 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2175 2176 tcg_rt = tcg_temp_new_i64(); 2177 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2178 tcg_constant_i32(desc), cpu_reg(s, rt)); 2179 } else { 2180 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2181 } 2182 gen_helper_dc_zva(cpu_env, tcg_rt); 2183 return; 2184 case ARM_CP_DC_GVA: 2185 { 2186 TCGv_i64 clean_addr, tag; 2187 2188 /* 2189 * DC_GVA, like DC_ZVA, requires that we supply the original 2190 * pointer for an invalid page. Probe that address first. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 clean_addr = clean_data_tbi(s, tcg_rt); 2194 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2195 2196 if (s->ata) { 2197 /* Extract the tag from the register to match STZGM. */ 2198 tag = tcg_temp_new_i64(); 2199 tcg_gen_shri_i64(tag, tcg_rt, 56); 2200 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2201 } 2202 } 2203 return; 2204 case ARM_CP_DC_GZVA: 2205 { 2206 TCGv_i64 clean_addr, tag; 2207 2208 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2209 tcg_rt = cpu_reg(s, rt); 2210 clean_addr = clean_data_tbi(s, tcg_rt); 2211 gen_helper_dc_zva(cpu_env, clean_addr); 2212 2213 if (s->ata) { 2214 /* Extract the tag from the register to match STZGM. */ 2215 tag = tcg_temp_new_i64(); 2216 tcg_gen_shri_i64(tag, tcg_rt, 56); 2217 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2218 } 2219 } 2220 return; 2221 default: 2222 g_assert_not_reached(); 2223 } 2224 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2225 return; 2226 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2227 return; 2228 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2229 return; 2230 } 2231 2232 if (ri->type & ARM_CP_IO) { 2233 /* I/O operations must end the TB here (whether read or write) */ 2234 need_exit_tb = translator_io_start(&s->base); 2235 } 2236 2237 tcg_rt = cpu_reg(s, rt); 2238 2239 if (isread) { 2240 if (ri->type & ARM_CP_CONST) { 2241 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2242 } else if (ri->readfn) { 2243 if (!tcg_ri) { 2244 tcg_ri = gen_lookup_cp_reg(key); 2245 } 2246 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2247 } else { 2248 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2249 } 2250 } else { 2251 if (ri->type & ARM_CP_CONST) { 2252 /* If not forbidden by access permissions, treat as WI */ 2253 return; 2254 } else if (ri->writefn) { 2255 if (!tcg_ri) { 2256 tcg_ri = gen_lookup_cp_reg(key); 2257 } 2258 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2259 } else { 2260 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2261 } 2262 } 2263 2264 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2265 /* 2266 * A write to any coprocessor regiser that ends a TB 2267 * must rebuild the hflags for the next TB. 2268 */ 2269 gen_rebuild_hflags(s); 2270 /* 2271 * We default to ending the TB on a coprocessor register write, 2272 * but allow this to be suppressed by the register definition 2273 * (usually only necessary to work around guest bugs). 2274 */ 2275 need_exit_tb = true; 2276 } 2277 if (need_exit_tb) { 2278 s->base.is_jmp = DISAS_UPDATE_EXIT; 2279 } 2280 } 2281 2282 /* System 2283 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2284 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2285 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2286 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2287 */ 2288 static void disas_system(DisasContext *s, uint32_t insn) 2289 { 2290 unsigned int l, op0, op1, crn, crm, op2, rt; 2291 l = extract32(insn, 21, 1); 2292 op0 = extract32(insn, 19, 2); 2293 op1 = extract32(insn, 16, 3); 2294 crn = extract32(insn, 12, 4); 2295 crm = extract32(insn, 8, 4); 2296 op2 = extract32(insn, 5, 3); 2297 rt = extract32(insn, 0, 5); 2298 2299 if (op0 == 0) { 2300 if (l || rt != 31) { 2301 unallocated_encoding(s); 2302 return; 2303 } 2304 switch (crn) { 2305 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2306 handle_hint(s, insn, op1, op2, crm); 2307 break; 2308 case 3: /* CLREX, DSB, DMB, ISB */ 2309 handle_sync(s, insn, op1, op2, crm); 2310 break; 2311 case 4: /* MSR (immediate) */ 2312 handle_msr_i(s, insn, op1, op2, crm); 2313 break; 2314 default: 2315 unallocated_encoding(s); 2316 break; 2317 } 2318 return; 2319 } 2320 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2321 } 2322 2323 /* Exception generation 2324 * 2325 * 31 24 23 21 20 5 4 2 1 0 2326 * +-----------------+-----+------------------------+-----+----+ 2327 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2328 * +-----------------------+------------------------+----------+ 2329 */ 2330 static void disas_exc(DisasContext *s, uint32_t insn) 2331 { 2332 int opc = extract32(insn, 21, 3); 2333 int op2_ll = extract32(insn, 0, 5); 2334 int imm16 = extract32(insn, 5, 16); 2335 uint32_t syndrome; 2336 2337 switch (opc) { 2338 case 0: 2339 /* For SVC, HVC and SMC we advance the single-step state 2340 * machine before taking the exception. This is architecturally 2341 * mandated, to ensure that single-stepping a system call 2342 * instruction works properly. 2343 */ 2344 switch (op2_ll) { 2345 case 1: /* SVC */ 2346 syndrome = syn_aa64_svc(imm16); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 break; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 break; 2354 case 2: /* HVC */ 2355 if (s->current_el == 0) { 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 /* The pre HVC helper handles cases when HVC gets trapped 2360 * as an undefined insn by runtime configuration. 2361 */ 2362 gen_a64_update_pc(s, 0); 2363 gen_helper_pre_hvc(cpu_env); 2364 gen_ss_advance(s); 2365 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2366 break; 2367 case 3: /* SMC */ 2368 if (s->current_el == 0) { 2369 unallocated_encoding(s); 2370 break; 2371 } 2372 gen_a64_update_pc(s, 0); 2373 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2374 gen_ss_advance(s); 2375 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2376 break; 2377 default: 2378 unallocated_encoding(s); 2379 break; 2380 } 2381 break; 2382 case 1: 2383 if (op2_ll != 0) { 2384 unallocated_encoding(s); 2385 break; 2386 } 2387 /* BRK */ 2388 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2389 break; 2390 case 2: 2391 if (op2_ll != 0) { 2392 unallocated_encoding(s); 2393 break; 2394 } 2395 /* HLT. This has two purposes. 2396 * Architecturally, it is an external halting debug instruction. 2397 * Since QEMU doesn't implement external debug, we treat this as 2398 * it is required for halting debug disabled: it will UNDEF. 2399 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2400 */ 2401 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2402 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2403 } else { 2404 unallocated_encoding(s); 2405 } 2406 break; 2407 case 5: 2408 if (op2_ll < 1 || op2_ll > 3) { 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 /* DCPS1, DCPS2, DCPS3 */ 2413 unallocated_encoding(s); 2414 break; 2415 default: 2416 unallocated_encoding(s); 2417 break; 2418 } 2419 } 2420 2421 /* Branches, exception generating and system instructions */ 2422 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2423 { 2424 switch (extract32(insn, 25, 7)) { 2425 case 0x6a: /* Exception generation / System */ 2426 if (insn & (1 << 24)) { 2427 if (extract32(insn, 22, 2) == 0) { 2428 disas_system(s, insn); 2429 } else { 2430 unallocated_encoding(s); 2431 } 2432 } else { 2433 disas_exc(s, insn); 2434 } 2435 break; 2436 default: 2437 unallocated_encoding(s); 2438 break; 2439 } 2440 } 2441 2442 /* 2443 * Load/Store exclusive instructions are implemented by remembering 2444 * the value/address loaded, and seeing if these are the same 2445 * when the store is performed. This is not actually the architecturally 2446 * mandated semantics, but it works for typical guest code sequences 2447 * and avoids having to monitor regular stores. 2448 * 2449 * The store exclusive uses the atomic cmpxchg primitives to avoid 2450 * races in multi-threaded linux-user and when MTTCG softmmu is 2451 * enabled. 2452 */ 2453 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2454 int size, bool is_pair) 2455 { 2456 int idx = get_mem_index(s); 2457 TCGv_i64 dirty_addr, clean_addr; 2458 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2459 2460 s->is_ldex = true; 2461 dirty_addr = cpu_reg_sp(s, rn); 2462 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2463 2464 g_assert(size <= 3); 2465 if (is_pair) { 2466 g_assert(size >= 2); 2467 if (size == 2) { 2468 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2469 if (s->be_data == MO_LE) { 2470 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2471 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2472 } else { 2473 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2474 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2475 } 2476 } else { 2477 TCGv_i128 t16 = tcg_temp_new_i128(); 2478 2479 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2480 2481 if (s->be_data == MO_LE) { 2482 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2483 cpu_exclusive_high, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2486 cpu_exclusive_val, t16); 2487 } 2488 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2489 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2490 } 2491 } else { 2492 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2493 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2494 } 2495 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2496 } 2497 2498 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2499 int rn, int size, int is_pair) 2500 { 2501 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2502 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2503 * [addr] = {Rt}; 2504 * if (is_pair) { 2505 * [addr + datasize] = {Rt2}; 2506 * } 2507 * {Rd} = 0; 2508 * } else { 2509 * {Rd} = 1; 2510 * } 2511 * env->exclusive_addr = -1; 2512 */ 2513 TCGLabel *fail_label = gen_new_label(); 2514 TCGLabel *done_label = gen_new_label(); 2515 TCGv_i64 tmp, clean_addr; 2516 MemOp memop; 2517 2518 /* 2519 * FIXME: We are out of spec here. We have recorded only the address 2520 * from load_exclusive, not the entire range, and we assume that the 2521 * size of the access on both sides match. The architecture allows the 2522 * store to be smaller than the load, so long as the stored bytes are 2523 * within the range recorded by the load. 2524 */ 2525 2526 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2527 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2528 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2529 2530 /* 2531 * The write, and any associated faults, only happen if the virtual 2532 * and physical addresses pass the exclusive monitor check. These 2533 * faults are exceedingly unlikely, because normally the guest uses 2534 * the exact same address register for the load_exclusive, and we 2535 * would have recognized these faults there. 2536 * 2537 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2538 * unaligned 4-byte write within the range of an aligned 8-byte load. 2539 * With LSE2, the store would need to cross a 16-byte boundary when the 2540 * load did not, which would mean the store is outside the range 2541 * recorded for the monitor, which would have failed a corrected monitor 2542 * check above. For now, we assume no size change and retain the 2543 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2544 * 2545 * It is possible to trigger an MTE fault, by performing the load with 2546 * a virtual address with a valid tag and performing the store with the 2547 * same virtual address and a different invalid tag. 2548 */ 2549 memop = size + is_pair; 2550 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2551 memop |= MO_ALIGN; 2552 } 2553 memop = finalize_memop(s, memop); 2554 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2555 2556 tmp = tcg_temp_new_i64(); 2557 if (is_pair) { 2558 if (size == 2) { 2559 if (s->be_data == MO_LE) { 2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2561 } else { 2562 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2563 } 2564 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2565 cpu_exclusive_val, tmp, 2566 get_mem_index(s), memop); 2567 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2568 } else { 2569 TCGv_i128 t16 = tcg_temp_new_i128(); 2570 TCGv_i128 c16 = tcg_temp_new_i128(); 2571 TCGv_i64 a, b; 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2575 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2576 cpu_exclusive_high); 2577 } else { 2578 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2579 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2580 cpu_exclusive_val); 2581 } 2582 2583 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2584 get_mem_index(s), memop); 2585 2586 a = tcg_temp_new_i64(); 2587 b = tcg_temp_new_i64(); 2588 if (s->be_data == MO_LE) { 2589 tcg_gen_extr_i128_i64(a, b, t16); 2590 } else { 2591 tcg_gen_extr_i128_i64(b, a, t16); 2592 } 2593 2594 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2595 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2596 tcg_gen_or_i64(tmp, a, b); 2597 2598 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2599 } 2600 } else { 2601 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2602 cpu_reg(s, rt), get_mem_index(s), memop); 2603 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2604 } 2605 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2606 tcg_gen_br(done_label); 2607 2608 gen_set_label(fail_label); 2609 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2610 gen_set_label(done_label); 2611 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2612 } 2613 2614 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2615 int rn, int size) 2616 { 2617 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2618 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2619 int memidx = get_mem_index(s); 2620 TCGv_i64 clean_addr; 2621 MemOp memop; 2622 2623 if (rn == 31) { 2624 gen_check_sp_alignment(s); 2625 } 2626 memop = check_atomic_align(s, rn, size); 2627 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2628 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2629 memidx, memop); 2630 } 2631 2632 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2633 int rn, int size) 2634 { 2635 TCGv_i64 s1 = cpu_reg(s, rs); 2636 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2637 TCGv_i64 t1 = cpu_reg(s, rt); 2638 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2639 TCGv_i64 clean_addr; 2640 int memidx = get_mem_index(s); 2641 MemOp memop; 2642 2643 if (rn == 31) { 2644 gen_check_sp_alignment(s); 2645 } 2646 2647 /* This is a single atomic access, despite the "pair". */ 2648 memop = check_atomic_align(s, rn, size + 1); 2649 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2650 2651 if (size == 2) { 2652 TCGv_i64 cmp = tcg_temp_new_i64(); 2653 TCGv_i64 val = tcg_temp_new_i64(); 2654 2655 if (s->be_data == MO_LE) { 2656 tcg_gen_concat32_i64(val, t1, t2); 2657 tcg_gen_concat32_i64(cmp, s1, s2); 2658 } else { 2659 tcg_gen_concat32_i64(val, t2, t1); 2660 tcg_gen_concat32_i64(cmp, s2, s1); 2661 } 2662 2663 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2664 2665 if (s->be_data == MO_LE) { 2666 tcg_gen_extr32_i64(s1, s2, cmp); 2667 } else { 2668 tcg_gen_extr32_i64(s2, s1, cmp); 2669 } 2670 } else { 2671 TCGv_i128 cmp = tcg_temp_new_i128(); 2672 TCGv_i128 val = tcg_temp_new_i128(); 2673 2674 if (s->be_data == MO_LE) { 2675 tcg_gen_concat_i64_i128(val, t1, t2); 2676 tcg_gen_concat_i64_i128(cmp, s1, s2); 2677 } else { 2678 tcg_gen_concat_i64_i128(val, t2, t1); 2679 tcg_gen_concat_i64_i128(cmp, s2, s1); 2680 } 2681 2682 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2683 2684 if (s->be_data == MO_LE) { 2685 tcg_gen_extr_i128_i64(s1, s2, cmp); 2686 } else { 2687 tcg_gen_extr_i128_i64(s2, s1, cmp); 2688 } 2689 } 2690 } 2691 2692 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2693 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2694 */ 2695 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2696 { 2697 int opc0 = extract32(opc, 0, 1); 2698 int regsize; 2699 2700 if (is_signed) { 2701 regsize = opc0 ? 32 : 64; 2702 } else { 2703 regsize = size == 3 ? 64 : 32; 2704 } 2705 return regsize == 64; 2706 } 2707 2708 /* Load/store exclusive 2709 * 2710 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2711 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2712 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2713 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2714 * 2715 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2716 * L: 0 -> store, 1 -> load 2717 * o2: 0 -> exclusive, 1 -> not 2718 * o1: 0 -> single register, 1 -> register pair 2719 * o0: 1 -> load-acquire/store-release, 0 -> not 2720 */ 2721 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2722 { 2723 int rt = extract32(insn, 0, 5); 2724 int rn = extract32(insn, 5, 5); 2725 int rt2 = extract32(insn, 10, 5); 2726 int rs = extract32(insn, 16, 5); 2727 int is_lasr = extract32(insn, 15, 1); 2728 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2729 int size = extract32(insn, 30, 2); 2730 TCGv_i64 clean_addr; 2731 MemOp memop; 2732 2733 switch (o2_L_o1_o0) { 2734 case 0x0: /* STXR */ 2735 case 0x1: /* STLXR */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 if (is_lasr) { 2740 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2741 } 2742 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2743 return; 2744 2745 case 0x4: /* LDXR */ 2746 case 0x5: /* LDAXR */ 2747 if (rn == 31) { 2748 gen_check_sp_alignment(s); 2749 } 2750 gen_load_exclusive(s, rt, rt2, rn, size, false); 2751 if (is_lasr) { 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 } 2754 return; 2755 2756 case 0x8: /* STLLR */ 2757 if (!dc_isar_feature(aa64_lor, s)) { 2758 break; 2759 } 2760 /* StoreLORelease is the same as Store-Release for QEMU. */ 2761 /* fall through */ 2762 case 0x9: /* STLR */ 2763 /* Generate ISS for non-exclusive accesses including LASR. */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2768 memop = check_ordered_align(s, rn, 0, true, size); 2769 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2770 true, rn != 31, memop); 2771 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2772 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2773 return; 2774 2775 case 0xc: /* LDLAR */ 2776 if (!dc_isar_feature(aa64_lor, s)) { 2777 break; 2778 } 2779 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2780 /* fall through */ 2781 case 0xd: /* LDAR */ 2782 /* Generate ISS for non-exclusive accesses including LASR. */ 2783 if (rn == 31) { 2784 gen_check_sp_alignment(s); 2785 } 2786 memop = check_ordered_align(s, rn, 0, false, size); 2787 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2788 false, rn != 31, memop); 2789 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2790 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2792 return; 2793 2794 case 0x2: case 0x3: /* CASP / STXP */ 2795 if (size & 2) { /* STXP / STLXP */ 2796 if (rn == 31) { 2797 gen_check_sp_alignment(s); 2798 } 2799 if (is_lasr) { 2800 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2801 } 2802 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2803 return; 2804 } 2805 if (rt2 == 31 2806 && ((rt | rs) & 1) == 0 2807 && dc_isar_feature(aa64_atomics, s)) { 2808 /* CASP / CASPL */ 2809 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2810 return; 2811 } 2812 break; 2813 2814 case 0x6: case 0x7: /* CASPA / LDXP */ 2815 if (size & 2) { /* LDXP / LDAXP */ 2816 if (rn == 31) { 2817 gen_check_sp_alignment(s); 2818 } 2819 gen_load_exclusive(s, rt, rt2, rn, size, true); 2820 if (is_lasr) { 2821 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2822 } 2823 return; 2824 } 2825 if (rt2 == 31 2826 && ((rt | rs) & 1) == 0 2827 && dc_isar_feature(aa64_atomics, s)) { 2828 /* CASPA / CASPAL */ 2829 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2830 return; 2831 } 2832 break; 2833 2834 case 0xa: /* CAS */ 2835 case 0xb: /* CASL */ 2836 case 0xe: /* CASA */ 2837 case 0xf: /* CASAL */ 2838 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2839 gen_compare_and_swap(s, rs, rt, rn, size); 2840 return; 2841 } 2842 break; 2843 } 2844 unallocated_encoding(s); 2845 } 2846 2847 /* 2848 * Load register (literal) 2849 * 2850 * 31 30 29 27 26 25 24 23 5 4 0 2851 * +-----+-------+---+-----+-------------------+-------+ 2852 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2853 * +-----+-------+---+-----+-------------------+-------+ 2854 * 2855 * V: 1 -> vector (simd/fp) 2856 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2857 * 10-> 32 bit signed, 11 -> prefetch 2858 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2859 */ 2860 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2861 { 2862 int rt = extract32(insn, 0, 5); 2863 int64_t imm = sextract32(insn, 5, 19) << 2; 2864 bool is_vector = extract32(insn, 26, 1); 2865 int opc = extract32(insn, 30, 2); 2866 bool is_signed = false; 2867 int size = 2; 2868 TCGv_i64 tcg_rt, clean_addr; 2869 MemOp memop; 2870 2871 if (is_vector) { 2872 if (opc == 3) { 2873 unallocated_encoding(s); 2874 return; 2875 } 2876 size = 2 + opc; 2877 if (!fp_access_check(s)) { 2878 return; 2879 } 2880 memop = finalize_memop_asimd(s, size); 2881 } else { 2882 if (opc == 3) { 2883 /* PRFM (literal) : prefetch */ 2884 return; 2885 } 2886 size = 2 + extract32(opc, 0, 1); 2887 is_signed = extract32(opc, 1, 1); 2888 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2889 } 2890 2891 tcg_rt = cpu_reg(s, rt); 2892 2893 clean_addr = tcg_temp_new_i64(); 2894 gen_pc_plus_diff(s, clean_addr, imm); 2895 2896 if (is_vector) { 2897 do_fp_ld(s, rt, clean_addr, memop); 2898 } else { 2899 /* Only unsigned 32bit loads target 32bit registers. */ 2900 bool iss_sf = opc != 0; 2901 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2902 } 2903 } 2904 2905 /* 2906 * LDNP (Load Pair - non-temporal hint) 2907 * LDP (Load Pair - non vector) 2908 * LDPSW (Load Pair Signed Word - non vector) 2909 * STNP (Store Pair - non-temporal hint) 2910 * STP (Store Pair - non vector) 2911 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2912 * LDP (Load Pair of SIMD&FP) 2913 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2914 * STP (Store Pair of SIMD&FP) 2915 * 2916 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2917 * +-----+-------+---+---+-------+---+-----------------------------+ 2918 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2919 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2920 * 2921 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2922 * LDPSW/STGP 01 2923 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2924 * V: 0 -> GPR, 1 -> Vector 2925 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2926 * 10 -> signed offset, 11 -> pre-index 2927 * L: 0 -> Store 1 -> Load 2928 * 2929 * Rt, Rt2 = GPR or SIMD registers to be stored 2930 * Rn = general purpose register containing address 2931 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2932 */ 2933 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2934 { 2935 int rt = extract32(insn, 0, 5); 2936 int rn = extract32(insn, 5, 5); 2937 int rt2 = extract32(insn, 10, 5); 2938 uint64_t offset = sextract64(insn, 15, 7); 2939 int index = extract32(insn, 23, 2); 2940 bool is_vector = extract32(insn, 26, 1); 2941 bool is_load = extract32(insn, 22, 1); 2942 int opc = extract32(insn, 30, 2); 2943 bool is_signed = false; 2944 bool postindex = false; 2945 bool wback = false; 2946 bool set_tag = false; 2947 TCGv_i64 clean_addr, dirty_addr; 2948 MemOp mop; 2949 int size; 2950 2951 if (opc == 3) { 2952 unallocated_encoding(s); 2953 return; 2954 } 2955 2956 if (is_vector) { 2957 size = 2 + opc; 2958 } else if (opc == 1 && !is_load) { 2959 /* STGP */ 2960 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2961 unallocated_encoding(s); 2962 return; 2963 } 2964 size = 3; 2965 set_tag = true; 2966 } else { 2967 size = 2 + extract32(opc, 1, 1); 2968 is_signed = extract32(opc, 0, 1); 2969 if (!is_load && is_signed) { 2970 unallocated_encoding(s); 2971 return; 2972 } 2973 } 2974 2975 switch (index) { 2976 case 1: /* post-index */ 2977 postindex = true; 2978 wback = true; 2979 break; 2980 case 0: 2981 /* signed offset with "non-temporal" hint. Since we don't emulate 2982 * caches we don't care about hints to the cache system about 2983 * data access patterns, and handle this identically to plain 2984 * signed offset. 2985 */ 2986 if (is_signed) { 2987 /* There is no non-temporal-hint version of LDPSW */ 2988 unallocated_encoding(s); 2989 return; 2990 } 2991 postindex = false; 2992 break; 2993 case 2: /* signed offset, rn not updated */ 2994 postindex = false; 2995 break; 2996 case 3: /* pre-index */ 2997 postindex = false; 2998 wback = true; 2999 break; 3000 } 3001 3002 if (is_vector && !fp_access_check(s)) { 3003 return; 3004 } 3005 3006 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3007 3008 if (rn == 31) { 3009 gen_check_sp_alignment(s); 3010 } 3011 3012 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3013 if (!postindex) { 3014 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3015 } 3016 3017 if (set_tag) { 3018 if (!s->ata) { 3019 /* 3020 * TODO: We could rely on the stores below, at least for 3021 * system mode, if we arrange to add MO_ALIGN_16. 3022 */ 3023 gen_helper_stg_stub(cpu_env, dirty_addr); 3024 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3025 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3026 } else { 3027 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3028 } 3029 } 3030 3031 if (is_vector) { 3032 mop = finalize_memop_asimd(s, size); 3033 } else { 3034 mop = finalize_memop(s, size); 3035 } 3036 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3037 (wback || rn != 31) && !set_tag, 3038 2 << size, mop); 3039 3040 if (is_vector) { 3041 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3042 if (is_load) { 3043 do_fp_ld(s, rt, clean_addr, mop); 3044 } else { 3045 do_fp_st(s, rt, clean_addr, mop); 3046 } 3047 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3048 if (is_load) { 3049 do_fp_ld(s, rt2, clean_addr, mop); 3050 } else { 3051 do_fp_st(s, rt2, clean_addr, mop); 3052 } 3053 } else { 3054 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3055 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3056 3057 /* 3058 * We built mop above for the single logical access -- rebuild it 3059 * now for the paired operation. 3060 * 3061 * With LSE2, non-sign-extending pairs are treated atomically if 3062 * aligned, and if unaligned one of the pair will be completely 3063 * within a 16-byte block and that element will be atomic. 3064 * Otherwise each element is separately atomic. 3065 * In all cases, issue one operation with the correct atomicity. 3066 * 3067 * This treats sign-extending loads like zero-extending loads, 3068 * since that reuses the most code below. 3069 */ 3070 mop = size + 1; 3071 if (s->align_mem) { 3072 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3073 } 3074 mop = finalize_memop_pair(s, mop); 3075 3076 if (is_load) { 3077 if (size == 2) { 3078 int o2 = s->be_data == MO_LE ? 32 : 0; 3079 int o1 = o2 ^ 32; 3080 3081 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3082 if (is_signed) { 3083 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3084 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3085 } else { 3086 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3087 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3088 } 3089 } else { 3090 TCGv_i128 tmp = tcg_temp_new_i128(); 3091 3092 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3093 if (s->be_data == MO_LE) { 3094 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3095 } else { 3096 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3097 } 3098 } 3099 } else { 3100 if (size == 2) { 3101 TCGv_i64 tmp = tcg_temp_new_i64(); 3102 3103 if (s->be_data == MO_LE) { 3104 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3105 } else { 3106 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3107 } 3108 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3109 } else { 3110 TCGv_i128 tmp = tcg_temp_new_i128(); 3111 3112 if (s->be_data == MO_LE) { 3113 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3114 } else { 3115 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3116 } 3117 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3118 } 3119 } 3120 } 3121 3122 if (wback) { 3123 if (postindex) { 3124 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3125 } 3126 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3127 } 3128 } 3129 3130 /* 3131 * Load/store (immediate post-indexed) 3132 * Load/store (immediate pre-indexed) 3133 * Load/store (unscaled immediate) 3134 * 3135 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3136 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3137 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3138 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3139 * 3140 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3141 10 -> unprivileged 3142 * V = 0 -> non-vector 3143 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3144 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3145 */ 3146 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3147 int opc, 3148 int size, 3149 int rt, 3150 bool is_vector) 3151 { 3152 int rn = extract32(insn, 5, 5); 3153 int imm9 = sextract32(insn, 12, 9); 3154 int idx = extract32(insn, 10, 2); 3155 bool is_signed = false; 3156 bool is_store = false; 3157 bool is_extended = false; 3158 bool is_unpriv = (idx == 2); 3159 bool iss_valid; 3160 bool post_index; 3161 bool writeback; 3162 int memidx; 3163 MemOp memop; 3164 TCGv_i64 clean_addr, dirty_addr; 3165 3166 if (is_vector) { 3167 size |= (opc & 2) << 1; 3168 if (size > 4 || is_unpriv) { 3169 unallocated_encoding(s); 3170 return; 3171 } 3172 is_store = ((opc & 1) == 0); 3173 if (!fp_access_check(s)) { 3174 return; 3175 } 3176 memop = finalize_memop_asimd(s, size); 3177 } else { 3178 if (size == 3 && opc == 2) { 3179 /* PRFM - prefetch */ 3180 if (idx != 0) { 3181 unallocated_encoding(s); 3182 return; 3183 } 3184 return; 3185 } 3186 if (opc == 3 && size > 1) { 3187 unallocated_encoding(s); 3188 return; 3189 } 3190 is_store = (opc == 0); 3191 is_signed = !is_store && extract32(opc, 1, 1); 3192 is_extended = (size < 3) && extract32(opc, 0, 1); 3193 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3194 } 3195 3196 switch (idx) { 3197 case 0: 3198 case 2: 3199 post_index = false; 3200 writeback = false; 3201 break; 3202 case 1: 3203 post_index = true; 3204 writeback = true; 3205 break; 3206 case 3: 3207 post_index = false; 3208 writeback = true; 3209 break; 3210 default: 3211 g_assert_not_reached(); 3212 } 3213 3214 iss_valid = !is_vector && !writeback; 3215 3216 if (rn == 31) { 3217 gen_check_sp_alignment(s); 3218 } 3219 3220 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3221 if (!post_index) { 3222 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3223 } 3224 3225 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3226 3227 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3228 writeback || rn != 31, 3229 memop, is_unpriv, memidx); 3230 3231 if (is_vector) { 3232 if (is_store) { 3233 do_fp_st(s, rt, clean_addr, memop); 3234 } else { 3235 do_fp_ld(s, rt, clean_addr, memop); 3236 } 3237 } else { 3238 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3239 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3240 3241 if (is_store) { 3242 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3243 iss_valid, rt, iss_sf, false); 3244 } else { 3245 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3246 is_extended, memidx, 3247 iss_valid, rt, iss_sf, false); 3248 } 3249 } 3250 3251 if (writeback) { 3252 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3253 if (post_index) { 3254 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3255 } 3256 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3257 } 3258 } 3259 3260 /* 3261 * Load/store (register offset) 3262 * 3263 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3264 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3265 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3266 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3267 * 3268 * For non-vector: 3269 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3270 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3271 * For vector: 3272 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3273 * opc<0>: 0 -> store, 1 -> load 3274 * V: 1 -> vector/simd 3275 * opt: extend encoding (see DecodeRegExtend) 3276 * S: if S=1 then scale (essentially index by sizeof(size)) 3277 * Rt: register to transfer into/out of 3278 * Rn: address register or SP for base 3279 * Rm: offset register or ZR for offset 3280 */ 3281 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3282 int opc, 3283 int size, 3284 int rt, 3285 bool is_vector) 3286 { 3287 int rn = extract32(insn, 5, 5); 3288 int shift = extract32(insn, 12, 1); 3289 int rm = extract32(insn, 16, 5); 3290 int opt = extract32(insn, 13, 3); 3291 bool is_signed = false; 3292 bool is_store = false; 3293 bool is_extended = false; 3294 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3295 MemOp memop; 3296 3297 if (extract32(opt, 1, 1) == 0) { 3298 unallocated_encoding(s); 3299 return; 3300 } 3301 3302 if (is_vector) { 3303 size |= (opc & 2) << 1; 3304 if (size > 4) { 3305 unallocated_encoding(s); 3306 return; 3307 } 3308 is_store = !extract32(opc, 0, 1); 3309 if (!fp_access_check(s)) { 3310 return; 3311 } 3312 memop = finalize_memop_asimd(s, size); 3313 } else { 3314 if (size == 3 && opc == 2) { 3315 /* PRFM - prefetch */ 3316 return; 3317 } 3318 if (opc == 3 && size > 1) { 3319 unallocated_encoding(s); 3320 return; 3321 } 3322 is_store = (opc == 0); 3323 is_signed = !is_store && extract32(opc, 1, 1); 3324 is_extended = (size < 3) && extract32(opc, 0, 1); 3325 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3326 } 3327 3328 if (rn == 31) { 3329 gen_check_sp_alignment(s); 3330 } 3331 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3332 3333 tcg_rm = read_cpu_reg(s, rm, 1); 3334 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3335 3336 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3337 3338 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3339 3340 if (is_vector) { 3341 if (is_store) { 3342 do_fp_st(s, rt, clean_addr, memop); 3343 } else { 3344 do_fp_ld(s, rt, clean_addr, memop); 3345 } 3346 } else { 3347 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3348 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3349 3350 if (is_store) { 3351 do_gpr_st(s, tcg_rt, clean_addr, memop, 3352 true, rt, iss_sf, false); 3353 } else { 3354 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3355 is_extended, true, rt, iss_sf, false); 3356 } 3357 } 3358 } 3359 3360 /* 3361 * Load/store (unsigned immediate) 3362 * 3363 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3364 * +----+-------+---+-----+-----+------------+-------+------+ 3365 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3366 * +----+-------+---+-----+-----+------------+-------+------+ 3367 * 3368 * For non-vector: 3369 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3370 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3371 * For vector: 3372 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3373 * opc<0>: 0 -> store, 1 -> load 3374 * Rn: base address register (inc SP) 3375 * Rt: target register 3376 */ 3377 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3378 int opc, 3379 int size, 3380 int rt, 3381 bool is_vector) 3382 { 3383 int rn = extract32(insn, 5, 5); 3384 unsigned int imm12 = extract32(insn, 10, 12); 3385 unsigned int offset; 3386 TCGv_i64 clean_addr, dirty_addr; 3387 bool is_store; 3388 bool is_signed = false; 3389 bool is_extended = false; 3390 MemOp memop; 3391 3392 if (is_vector) { 3393 size |= (opc & 2) << 1; 3394 if (size > 4) { 3395 unallocated_encoding(s); 3396 return; 3397 } 3398 is_store = !extract32(opc, 0, 1); 3399 if (!fp_access_check(s)) { 3400 return; 3401 } 3402 memop = finalize_memop_asimd(s, size); 3403 } else { 3404 if (size == 3 && opc == 2) { 3405 /* PRFM - prefetch */ 3406 return; 3407 } 3408 if (opc == 3 && size > 1) { 3409 unallocated_encoding(s); 3410 return; 3411 } 3412 is_store = (opc == 0); 3413 is_signed = !is_store && extract32(opc, 1, 1); 3414 is_extended = (size < 3) && extract32(opc, 0, 1); 3415 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3416 } 3417 3418 if (rn == 31) { 3419 gen_check_sp_alignment(s); 3420 } 3421 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3422 offset = imm12 << size; 3423 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3424 3425 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3426 3427 if (is_vector) { 3428 if (is_store) { 3429 do_fp_st(s, rt, clean_addr, memop); 3430 } else { 3431 do_fp_ld(s, rt, clean_addr, memop); 3432 } 3433 } else { 3434 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3435 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3436 if (is_store) { 3437 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3438 } else { 3439 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3440 is_extended, true, rt, iss_sf, false); 3441 } 3442 } 3443 } 3444 3445 /* Atomic memory operations 3446 * 3447 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3448 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3449 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3450 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3451 * 3452 * Rt: the result register 3453 * Rn: base address or SP 3454 * Rs: the source register for the operation 3455 * V: vector flag (always 0 as of v8.3) 3456 * A: acquire flag 3457 * R: release flag 3458 */ 3459 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3460 int size, int rt, bool is_vector) 3461 { 3462 int rs = extract32(insn, 16, 5); 3463 int rn = extract32(insn, 5, 5); 3464 int o3_opc = extract32(insn, 12, 4); 3465 bool r = extract32(insn, 22, 1); 3466 bool a = extract32(insn, 23, 1); 3467 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3468 AtomicThreeOpFn *fn = NULL; 3469 MemOp mop = size; 3470 3471 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3472 unallocated_encoding(s); 3473 return; 3474 } 3475 switch (o3_opc) { 3476 case 000: /* LDADD */ 3477 fn = tcg_gen_atomic_fetch_add_i64; 3478 break; 3479 case 001: /* LDCLR */ 3480 fn = tcg_gen_atomic_fetch_and_i64; 3481 break; 3482 case 002: /* LDEOR */ 3483 fn = tcg_gen_atomic_fetch_xor_i64; 3484 break; 3485 case 003: /* LDSET */ 3486 fn = tcg_gen_atomic_fetch_or_i64; 3487 break; 3488 case 004: /* LDSMAX */ 3489 fn = tcg_gen_atomic_fetch_smax_i64; 3490 mop |= MO_SIGN; 3491 break; 3492 case 005: /* LDSMIN */ 3493 fn = tcg_gen_atomic_fetch_smin_i64; 3494 mop |= MO_SIGN; 3495 break; 3496 case 006: /* LDUMAX */ 3497 fn = tcg_gen_atomic_fetch_umax_i64; 3498 break; 3499 case 007: /* LDUMIN */ 3500 fn = tcg_gen_atomic_fetch_umin_i64; 3501 break; 3502 case 010: /* SWP */ 3503 fn = tcg_gen_atomic_xchg_i64; 3504 break; 3505 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3506 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3507 rs != 31 || a != 1 || r != 0) { 3508 unallocated_encoding(s); 3509 return; 3510 } 3511 break; 3512 default: 3513 unallocated_encoding(s); 3514 return; 3515 } 3516 3517 if (rn == 31) { 3518 gen_check_sp_alignment(s); 3519 } 3520 3521 mop = check_atomic_align(s, rn, mop); 3522 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3523 3524 if (o3_opc == 014) { 3525 /* 3526 * LDAPR* are a special case because they are a simple load, not a 3527 * fetch-and-do-something op. 3528 * The architectural consistency requirements here are weaker than 3529 * full load-acquire (we only need "load-acquire processor consistent"), 3530 * but we choose to implement them as full LDAQ. 3531 */ 3532 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3533 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3534 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3535 return; 3536 } 3537 3538 tcg_rs = read_cpu_reg(s, rs, true); 3539 tcg_rt = cpu_reg(s, rt); 3540 3541 if (o3_opc == 1) { /* LDCLR */ 3542 tcg_gen_not_i64(tcg_rs, tcg_rs); 3543 } 3544 3545 /* The tcg atomic primitives are all full barriers. Therefore we 3546 * can ignore the Acquire and Release bits of this instruction. 3547 */ 3548 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3549 3550 if (mop & MO_SIGN) { 3551 switch (size) { 3552 case MO_8: 3553 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3554 break; 3555 case MO_16: 3556 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3557 break; 3558 case MO_32: 3559 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3560 break; 3561 case MO_64: 3562 break; 3563 default: 3564 g_assert_not_reached(); 3565 } 3566 } 3567 } 3568 3569 /* 3570 * PAC memory operations 3571 * 3572 * 31 30 27 26 24 22 21 12 11 10 5 0 3573 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3574 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3575 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3576 * 3577 * Rt: the result register 3578 * Rn: base address or SP 3579 * V: vector flag (always 0 as of v8.3) 3580 * M: clear for key DA, set for key DB 3581 * W: pre-indexing flag 3582 * S: sign for imm9. 3583 */ 3584 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3585 int size, int rt, bool is_vector) 3586 { 3587 int rn = extract32(insn, 5, 5); 3588 bool is_wback = extract32(insn, 11, 1); 3589 bool use_key_a = !extract32(insn, 23, 1); 3590 int offset; 3591 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3592 MemOp memop; 3593 3594 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3595 unallocated_encoding(s); 3596 return; 3597 } 3598 3599 if (rn == 31) { 3600 gen_check_sp_alignment(s); 3601 } 3602 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3603 3604 if (s->pauth_active) { 3605 if (use_key_a) { 3606 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3607 tcg_constant_i64(0)); 3608 } else { 3609 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3610 tcg_constant_i64(0)); 3611 } 3612 } 3613 3614 /* Form the 10-bit signed, scaled offset. */ 3615 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3616 offset = sextract32(offset << size, 0, 10 + size); 3617 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3618 3619 memop = finalize_memop(s, size); 3620 3621 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3622 clean_addr = gen_mte_check1(s, dirty_addr, false, 3623 is_wback || rn != 31, memop); 3624 3625 tcg_rt = cpu_reg(s, rt); 3626 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3627 /* extend */ false, /* iss_valid */ !is_wback, 3628 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3629 3630 if (is_wback) { 3631 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3632 } 3633 } 3634 3635 /* 3636 * LDAPR/STLR (unscaled immediate) 3637 * 3638 * 31 30 24 22 21 12 10 5 0 3639 * +------+-------------+-----+---+--------+-----+----+-----+ 3640 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3641 * +------+-------------+-----+---+--------+-----+----+-----+ 3642 * 3643 * Rt: source or destination register 3644 * Rn: base register 3645 * imm9: unscaled immediate offset 3646 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3647 * size: size of load/store 3648 */ 3649 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3650 { 3651 int rt = extract32(insn, 0, 5); 3652 int rn = extract32(insn, 5, 5); 3653 int offset = sextract32(insn, 12, 9); 3654 int opc = extract32(insn, 22, 2); 3655 int size = extract32(insn, 30, 2); 3656 TCGv_i64 clean_addr, dirty_addr; 3657 bool is_store = false; 3658 bool extend = false; 3659 bool iss_sf; 3660 MemOp mop = size; 3661 3662 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3663 unallocated_encoding(s); 3664 return; 3665 } 3666 3667 switch (opc) { 3668 case 0: /* STLURB */ 3669 is_store = true; 3670 break; 3671 case 1: /* LDAPUR* */ 3672 break; 3673 case 2: /* LDAPURS* 64-bit variant */ 3674 if (size == 3) { 3675 unallocated_encoding(s); 3676 return; 3677 } 3678 mop |= MO_SIGN; 3679 break; 3680 case 3: /* LDAPURS* 32-bit variant */ 3681 if (size > 1) { 3682 unallocated_encoding(s); 3683 return; 3684 } 3685 mop |= MO_SIGN; 3686 extend = true; /* zero-extend 32->64 after signed load */ 3687 break; 3688 default: 3689 g_assert_not_reached(); 3690 } 3691 3692 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3693 3694 if (rn == 31) { 3695 gen_check_sp_alignment(s); 3696 } 3697 3698 mop = check_ordered_align(s, rn, offset, is_store, mop); 3699 3700 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3701 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3702 clean_addr = clean_data_tbi(s, dirty_addr); 3703 3704 if (is_store) { 3705 /* Store-Release semantics */ 3706 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3707 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3708 } else { 3709 /* 3710 * Load-AcquirePC semantics; we implement as the slightly more 3711 * restrictive Load-Acquire. 3712 */ 3713 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3714 extend, true, rt, iss_sf, true); 3715 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3716 } 3717 } 3718 3719 /* Load/store register (all forms) */ 3720 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3721 { 3722 int rt = extract32(insn, 0, 5); 3723 int opc = extract32(insn, 22, 2); 3724 bool is_vector = extract32(insn, 26, 1); 3725 int size = extract32(insn, 30, 2); 3726 3727 switch (extract32(insn, 24, 2)) { 3728 case 0: 3729 if (extract32(insn, 21, 1) == 0) { 3730 /* Load/store register (unscaled immediate) 3731 * Load/store immediate pre/post-indexed 3732 * Load/store register unprivileged 3733 */ 3734 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3735 return; 3736 } 3737 switch (extract32(insn, 10, 2)) { 3738 case 0: 3739 disas_ldst_atomic(s, insn, size, rt, is_vector); 3740 return; 3741 case 2: 3742 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3743 return; 3744 default: 3745 disas_ldst_pac(s, insn, size, rt, is_vector); 3746 return; 3747 } 3748 break; 3749 case 1: 3750 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3751 return; 3752 } 3753 unallocated_encoding(s); 3754 } 3755 3756 /* AdvSIMD load/store multiple structures 3757 * 3758 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3759 * +---+---+---------------+---+-------------+--------+------+------+------+ 3760 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3761 * +---+---+---------------+---+-------------+--------+------+------+------+ 3762 * 3763 * AdvSIMD load/store multiple structures (post-indexed) 3764 * 3765 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3766 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3767 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3768 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3769 * 3770 * Rt: first (or only) SIMD&FP register to be transferred 3771 * Rn: base address or SP 3772 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3773 */ 3774 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3775 { 3776 int rt = extract32(insn, 0, 5); 3777 int rn = extract32(insn, 5, 5); 3778 int rm = extract32(insn, 16, 5); 3779 int size = extract32(insn, 10, 2); 3780 int opcode = extract32(insn, 12, 4); 3781 bool is_store = !extract32(insn, 22, 1); 3782 bool is_postidx = extract32(insn, 23, 1); 3783 bool is_q = extract32(insn, 30, 1); 3784 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3785 MemOp endian, align, mop; 3786 3787 int total; /* total bytes */ 3788 int elements; /* elements per vector */ 3789 int rpt; /* num iterations */ 3790 int selem; /* structure elements */ 3791 int r; 3792 3793 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3794 unallocated_encoding(s); 3795 return; 3796 } 3797 3798 if (!is_postidx && rm != 0) { 3799 unallocated_encoding(s); 3800 return; 3801 } 3802 3803 /* From the shared decode logic */ 3804 switch (opcode) { 3805 case 0x0: 3806 rpt = 1; 3807 selem = 4; 3808 break; 3809 case 0x2: 3810 rpt = 4; 3811 selem = 1; 3812 break; 3813 case 0x4: 3814 rpt = 1; 3815 selem = 3; 3816 break; 3817 case 0x6: 3818 rpt = 3; 3819 selem = 1; 3820 break; 3821 case 0x7: 3822 rpt = 1; 3823 selem = 1; 3824 break; 3825 case 0x8: 3826 rpt = 1; 3827 selem = 2; 3828 break; 3829 case 0xa: 3830 rpt = 2; 3831 selem = 1; 3832 break; 3833 default: 3834 unallocated_encoding(s); 3835 return; 3836 } 3837 3838 if (size == 3 && !is_q && selem != 1) { 3839 /* reserved */ 3840 unallocated_encoding(s); 3841 return; 3842 } 3843 3844 if (!fp_access_check(s)) { 3845 return; 3846 } 3847 3848 if (rn == 31) { 3849 gen_check_sp_alignment(s); 3850 } 3851 3852 /* For our purposes, bytes are always little-endian. */ 3853 endian = s->be_data; 3854 if (size == 0) { 3855 endian = MO_LE; 3856 } 3857 3858 total = rpt * selem * (is_q ? 16 : 8); 3859 tcg_rn = cpu_reg_sp(s, rn); 3860 3861 /* 3862 * Issue the MTE check vs the logical repeat count, before we 3863 * promote consecutive little-endian elements below. 3864 */ 3865 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3866 total, finalize_memop_asimd(s, size)); 3867 3868 /* 3869 * Consecutive little-endian elements from a single register 3870 * can be promoted to a larger little-endian operation. 3871 */ 3872 align = MO_ALIGN; 3873 if (selem == 1 && endian == MO_LE) { 3874 align = pow2_align(size); 3875 size = 3; 3876 } 3877 if (!s->align_mem) { 3878 align = 0; 3879 } 3880 mop = endian | size | align; 3881 3882 elements = (is_q ? 16 : 8) >> size; 3883 tcg_ebytes = tcg_constant_i64(1 << size); 3884 for (r = 0; r < rpt; r++) { 3885 int e; 3886 for (e = 0; e < elements; e++) { 3887 int xs; 3888 for (xs = 0; xs < selem; xs++) { 3889 int tt = (rt + r + xs) % 32; 3890 if (is_store) { 3891 do_vec_st(s, tt, e, clean_addr, mop); 3892 } else { 3893 do_vec_ld(s, tt, e, clean_addr, mop); 3894 } 3895 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3896 } 3897 } 3898 } 3899 3900 if (!is_store) { 3901 /* For non-quad operations, setting a slice of the low 3902 * 64 bits of the register clears the high 64 bits (in 3903 * the ARM ARM pseudocode this is implicit in the fact 3904 * that 'rval' is a 64 bit wide variable). 3905 * For quad operations, we might still need to zero the 3906 * high bits of SVE. 3907 */ 3908 for (r = 0; r < rpt * selem; r++) { 3909 int tt = (rt + r) % 32; 3910 clear_vec_high(s, is_q, tt); 3911 } 3912 } 3913 3914 if (is_postidx) { 3915 if (rm == 31) { 3916 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3917 } else { 3918 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3919 } 3920 } 3921 } 3922 3923 /* AdvSIMD load/store single structure 3924 * 3925 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3926 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3927 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3928 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3929 * 3930 * AdvSIMD load/store single structure (post-indexed) 3931 * 3932 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3933 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3934 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3935 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3936 * 3937 * Rt: first (or only) SIMD&FP register to be transferred 3938 * Rn: base address or SP 3939 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3940 * index = encoded in Q:S:size dependent on size 3941 * 3942 * lane_size = encoded in R, opc 3943 * transfer width = encoded in opc, S, size 3944 */ 3945 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3946 { 3947 int rt = extract32(insn, 0, 5); 3948 int rn = extract32(insn, 5, 5); 3949 int rm = extract32(insn, 16, 5); 3950 int size = extract32(insn, 10, 2); 3951 int S = extract32(insn, 12, 1); 3952 int opc = extract32(insn, 13, 3); 3953 int R = extract32(insn, 21, 1); 3954 int is_load = extract32(insn, 22, 1); 3955 int is_postidx = extract32(insn, 23, 1); 3956 int is_q = extract32(insn, 30, 1); 3957 3958 int scale = extract32(opc, 1, 2); 3959 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3960 bool replicate = false; 3961 int index = is_q << 3 | S << 2 | size; 3962 int xs, total; 3963 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3964 MemOp mop; 3965 3966 if (extract32(insn, 31, 1)) { 3967 unallocated_encoding(s); 3968 return; 3969 } 3970 if (!is_postidx && rm != 0) { 3971 unallocated_encoding(s); 3972 return; 3973 } 3974 3975 switch (scale) { 3976 case 3: 3977 if (!is_load || S) { 3978 unallocated_encoding(s); 3979 return; 3980 } 3981 scale = size; 3982 replicate = true; 3983 break; 3984 case 0: 3985 break; 3986 case 1: 3987 if (extract32(size, 0, 1)) { 3988 unallocated_encoding(s); 3989 return; 3990 } 3991 index >>= 1; 3992 break; 3993 case 2: 3994 if (extract32(size, 1, 1)) { 3995 unallocated_encoding(s); 3996 return; 3997 } 3998 if (!extract32(size, 0, 1)) { 3999 index >>= 2; 4000 } else { 4001 if (S) { 4002 unallocated_encoding(s); 4003 return; 4004 } 4005 index >>= 3; 4006 scale = 3; 4007 } 4008 break; 4009 default: 4010 g_assert_not_reached(); 4011 } 4012 4013 if (!fp_access_check(s)) { 4014 return; 4015 } 4016 4017 if (rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 total = selem << scale; 4022 tcg_rn = cpu_reg_sp(s, rn); 4023 4024 mop = finalize_memop_asimd(s, scale); 4025 4026 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4027 total, mop); 4028 4029 tcg_ebytes = tcg_constant_i64(1 << scale); 4030 for (xs = 0; xs < selem; xs++) { 4031 if (replicate) { 4032 /* Load and replicate to all elements */ 4033 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4034 4035 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4036 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4037 (is_q + 1) * 8, vec_full_reg_size(s), 4038 tcg_tmp); 4039 } else { 4040 /* Load/store one element per register */ 4041 if (is_load) { 4042 do_vec_ld(s, rt, index, clean_addr, mop); 4043 } else { 4044 do_vec_st(s, rt, index, clean_addr, mop); 4045 } 4046 } 4047 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4048 rt = (rt + 1) % 32; 4049 } 4050 4051 if (is_postidx) { 4052 if (rm == 31) { 4053 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4054 } else { 4055 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4056 } 4057 } 4058 } 4059 4060 /* 4061 * Load/Store memory tags 4062 * 4063 * 31 30 29 24 22 21 12 10 5 0 4064 * +-----+-------------+-----+---+------+-----+------+------+ 4065 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4066 * +-----+-------------+-----+---+------+-----+------+------+ 4067 */ 4068 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4069 { 4070 int rt = extract32(insn, 0, 5); 4071 int rn = extract32(insn, 5, 5); 4072 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4073 int op2 = extract32(insn, 10, 2); 4074 int op1 = extract32(insn, 22, 2); 4075 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4076 int index = 0; 4077 TCGv_i64 addr, clean_addr, tcg_rt; 4078 4079 /* We checked insn bits [29:24,21] in the caller. */ 4080 if (extract32(insn, 30, 2) != 3) { 4081 goto do_unallocated; 4082 } 4083 4084 /* 4085 * @index is a tri-state variable which has 3 states: 4086 * < 0 : post-index, writeback 4087 * = 0 : signed offset 4088 * > 0 : pre-index, writeback 4089 */ 4090 switch (op1) { 4091 case 0: 4092 if (op2 != 0) { 4093 /* STG */ 4094 index = op2 - 2; 4095 } else { 4096 /* STZGM */ 4097 if (s->current_el == 0 || offset != 0) { 4098 goto do_unallocated; 4099 } 4100 is_mult = is_zero = true; 4101 } 4102 break; 4103 case 1: 4104 if (op2 != 0) { 4105 /* STZG */ 4106 is_zero = true; 4107 index = op2 - 2; 4108 } else { 4109 /* LDG */ 4110 is_load = true; 4111 } 4112 break; 4113 case 2: 4114 if (op2 != 0) { 4115 /* ST2G */ 4116 is_pair = true; 4117 index = op2 - 2; 4118 } else { 4119 /* STGM */ 4120 if (s->current_el == 0 || offset != 0) { 4121 goto do_unallocated; 4122 } 4123 is_mult = true; 4124 } 4125 break; 4126 case 3: 4127 if (op2 != 0) { 4128 /* STZ2G */ 4129 is_pair = is_zero = true; 4130 index = op2 - 2; 4131 } else { 4132 /* LDGM */ 4133 if (s->current_el == 0 || offset != 0) { 4134 goto do_unallocated; 4135 } 4136 is_mult = is_load = true; 4137 } 4138 break; 4139 4140 default: 4141 do_unallocated: 4142 unallocated_encoding(s); 4143 return; 4144 } 4145 4146 if (is_mult 4147 ? !dc_isar_feature(aa64_mte, s) 4148 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4149 goto do_unallocated; 4150 } 4151 4152 if (rn == 31) { 4153 gen_check_sp_alignment(s); 4154 } 4155 4156 addr = read_cpu_reg_sp(s, rn, true); 4157 if (index >= 0) { 4158 /* pre-index or signed offset */ 4159 tcg_gen_addi_i64(addr, addr, offset); 4160 } 4161 4162 if (is_mult) { 4163 tcg_rt = cpu_reg(s, rt); 4164 4165 if (is_zero) { 4166 int size = 4 << s->dcz_blocksize; 4167 4168 if (s->ata) { 4169 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4170 } 4171 /* 4172 * The non-tags portion of STZGM is mostly like DC_ZVA, 4173 * except the alignment happens before the access. 4174 */ 4175 clean_addr = clean_data_tbi(s, addr); 4176 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4177 gen_helper_dc_zva(cpu_env, clean_addr); 4178 } else if (s->ata) { 4179 if (is_load) { 4180 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4181 } else { 4182 gen_helper_stgm(cpu_env, addr, tcg_rt); 4183 } 4184 } else { 4185 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4186 int size = 4 << GMID_EL1_BS; 4187 4188 clean_addr = clean_data_tbi(s, addr); 4189 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4190 gen_probe_access(s, clean_addr, acc, size); 4191 4192 if (is_load) { 4193 /* The result tags are zeros. */ 4194 tcg_gen_movi_i64(tcg_rt, 0); 4195 } 4196 } 4197 return; 4198 } 4199 4200 if (is_load) { 4201 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4202 tcg_rt = cpu_reg(s, rt); 4203 if (s->ata) { 4204 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4205 } else { 4206 /* 4207 * Tag access disabled: we must check for aborts on the load 4208 * load from [rn+offset], and then insert a 0 tag into rt. 4209 */ 4210 clean_addr = clean_data_tbi(s, addr); 4211 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4212 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4213 } 4214 } else { 4215 tcg_rt = cpu_reg_sp(s, rt); 4216 if (!s->ata) { 4217 /* 4218 * For STG and ST2G, we need to check alignment and probe memory. 4219 * TODO: For STZG and STZ2G, we could rely on the stores below, 4220 * at least for system mode; user-only won't enforce alignment. 4221 */ 4222 if (is_pair) { 4223 gen_helper_st2g_stub(cpu_env, addr); 4224 } else { 4225 gen_helper_stg_stub(cpu_env, addr); 4226 } 4227 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4228 if (is_pair) { 4229 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4230 } else { 4231 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4232 } 4233 } else { 4234 if (is_pair) { 4235 gen_helper_st2g(cpu_env, addr, tcg_rt); 4236 } else { 4237 gen_helper_stg(cpu_env, addr, tcg_rt); 4238 } 4239 } 4240 } 4241 4242 if (is_zero) { 4243 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4244 TCGv_i64 zero64 = tcg_constant_i64(0); 4245 TCGv_i128 zero128 = tcg_temp_new_i128(); 4246 int mem_index = get_mem_index(s); 4247 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4248 4249 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4250 4251 /* This is 1 or 2 atomic 16-byte operations. */ 4252 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4253 if (is_pair) { 4254 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4255 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4256 } 4257 } 4258 4259 if (index != 0) { 4260 /* pre-index or post-index */ 4261 if (index < 0) { 4262 /* post-index */ 4263 tcg_gen_addi_i64(addr, addr, offset); 4264 } 4265 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4266 } 4267 } 4268 4269 /* Loads and stores */ 4270 static void disas_ldst(DisasContext *s, uint32_t insn) 4271 { 4272 switch (extract32(insn, 24, 6)) { 4273 case 0x08: /* Load/store exclusive */ 4274 disas_ldst_excl(s, insn); 4275 break; 4276 case 0x18: case 0x1c: /* Load register (literal) */ 4277 disas_ld_lit(s, insn); 4278 break; 4279 case 0x28: case 0x29: 4280 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4281 disas_ldst_pair(s, insn); 4282 break; 4283 case 0x38: case 0x39: 4284 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4285 disas_ldst_reg(s, insn); 4286 break; 4287 case 0x0c: /* AdvSIMD load/store multiple structures */ 4288 disas_ldst_multiple_struct(s, insn); 4289 break; 4290 case 0x0d: /* AdvSIMD load/store single structure */ 4291 disas_ldst_single_struct(s, insn); 4292 break; 4293 case 0x19: 4294 if (extract32(insn, 21, 1) != 0) { 4295 disas_ldst_tag(s, insn); 4296 } else if (extract32(insn, 10, 2) == 0) { 4297 disas_ldst_ldapr_stlr(s, insn); 4298 } else { 4299 unallocated_encoding(s); 4300 } 4301 break; 4302 default: 4303 unallocated_encoding(s); 4304 break; 4305 } 4306 } 4307 4308 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4309 4310 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4311 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4312 { 4313 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4314 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4315 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4316 4317 fn(tcg_rd, tcg_rn, tcg_imm); 4318 if (!a->sf) { 4319 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4320 } 4321 return true; 4322 } 4323 4324 /* 4325 * PC-rel. addressing 4326 */ 4327 4328 static bool trans_ADR(DisasContext *s, arg_ri *a) 4329 { 4330 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4331 return true; 4332 } 4333 4334 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4335 { 4336 int64_t offset = (int64_t)a->imm << 12; 4337 4338 /* The page offset is ok for CF_PCREL. */ 4339 offset -= s->pc_curr & 0xfff; 4340 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4341 return true; 4342 } 4343 4344 /* 4345 * Add/subtract (immediate) 4346 */ 4347 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4348 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4349 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4350 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4351 4352 /* 4353 * Add/subtract (immediate, with tags) 4354 */ 4355 4356 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4357 bool sub_op) 4358 { 4359 TCGv_i64 tcg_rn, tcg_rd; 4360 int imm; 4361 4362 imm = a->uimm6 << LOG2_TAG_GRANULE; 4363 if (sub_op) { 4364 imm = -imm; 4365 } 4366 4367 tcg_rn = cpu_reg_sp(s, a->rn); 4368 tcg_rd = cpu_reg_sp(s, a->rd); 4369 4370 if (s->ata) { 4371 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4372 tcg_constant_i32(imm), 4373 tcg_constant_i32(a->uimm4)); 4374 } else { 4375 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4376 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4377 } 4378 return true; 4379 } 4380 4381 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4382 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4383 4384 /* The input should be a value in the bottom e bits (with higher 4385 * bits zero); returns that value replicated into every element 4386 * of size e in a 64 bit integer. 4387 */ 4388 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4389 { 4390 assert(e != 0); 4391 while (e < 64) { 4392 mask |= mask << e; 4393 e *= 2; 4394 } 4395 return mask; 4396 } 4397 4398 /* 4399 * Logical (immediate) 4400 */ 4401 4402 /* 4403 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4404 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4405 * value (ie should cause a guest UNDEF exception), and true if they are 4406 * valid, in which case the decoded bit pattern is written to result. 4407 */ 4408 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4409 unsigned int imms, unsigned int immr) 4410 { 4411 uint64_t mask; 4412 unsigned e, levels, s, r; 4413 int len; 4414 4415 assert(immn < 2 && imms < 64 && immr < 64); 4416 4417 /* The bit patterns we create here are 64 bit patterns which 4418 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4419 * 64 bits each. Each element contains the same value: a run 4420 * of between 1 and e-1 non-zero bits, rotated within the 4421 * element by between 0 and e-1 bits. 4422 * 4423 * The element size and run length are encoded into immn (1 bit) 4424 * and imms (6 bits) as follows: 4425 * 64 bit elements: immn = 1, imms = <length of run - 1> 4426 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4427 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4428 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4429 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4430 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4431 * Notice that immn = 0, imms = 11111x is the only combination 4432 * not covered by one of the above options; this is reserved. 4433 * Further, <length of run - 1> all-ones is a reserved pattern. 4434 * 4435 * In all cases the rotation is by immr % e (and immr is 6 bits). 4436 */ 4437 4438 /* First determine the element size */ 4439 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4440 if (len < 1) { 4441 /* This is the immn == 0, imms == 0x11111x case */ 4442 return false; 4443 } 4444 e = 1 << len; 4445 4446 levels = e - 1; 4447 s = imms & levels; 4448 r = immr & levels; 4449 4450 if (s == levels) { 4451 /* <length of run - 1> mustn't be all-ones. */ 4452 return false; 4453 } 4454 4455 /* Create the value of one element: s+1 set bits rotated 4456 * by r within the element (which is e bits wide)... 4457 */ 4458 mask = MAKE_64BIT_MASK(0, s + 1); 4459 if (r) { 4460 mask = (mask >> r) | (mask << (e - r)); 4461 mask &= MAKE_64BIT_MASK(0, e); 4462 } 4463 /* ...then replicate the element over the whole 64 bit value */ 4464 mask = bitfield_replicate(mask, e); 4465 *result = mask; 4466 return true; 4467 } 4468 4469 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4470 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4471 { 4472 TCGv_i64 tcg_rd, tcg_rn; 4473 uint64_t imm; 4474 4475 /* Some immediate field values are reserved. */ 4476 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4477 extract32(a->dbm, 0, 6), 4478 extract32(a->dbm, 6, 6))) { 4479 return false; 4480 } 4481 if (!a->sf) { 4482 imm &= 0xffffffffull; 4483 } 4484 4485 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4486 tcg_rn = cpu_reg(s, a->rn); 4487 4488 fn(tcg_rd, tcg_rn, imm); 4489 if (set_cc) { 4490 gen_logic_CC(a->sf, tcg_rd); 4491 } 4492 if (!a->sf) { 4493 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4494 } 4495 return true; 4496 } 4497 4498 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4499 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4500 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4501 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4502 4503 /* 4504 * Move wide (immediate) 4505 */ 4506 4507 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4508 { 4509 int pos = a->hw << 4; 4510 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4511 return true; 4512 } 4513 4514 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4515 { 4516 int pos = a->hw << 4; 4517 uint64_t imm = a->imm; 4518 4519 imm = ~(imm << pos); 4520 if (!a->sf) { 4521 imm = (uint32_t)imm; 4522 } 4523 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4524 return true; 4525 } 4526 4527 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4528 { 4529 int pos = a->hw << 4; 4530 TCGv_i64 tcg_rd, tcg_im; 4531 4532 tcg_rd = cpu_reg(s, a->rd); 4533 tcg_im = tcg_constant_i64(a->imm); 4534 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4535 if (!a->sf) { 4536 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4537 } 4538 return true; 4539 } 4540 4541 /* 4542 * Bitfield 4543 */ 4544 4545 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4546 { 4547 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4548 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4549 unsigned int bitsize = a->sf ? 64 : 32; 4550 unsigned int ri = a->immr; 4551 unsigned int si = a->imms; 4552 unsigned int pos, len; 4553 4554 if (si >= ri) { 4555 /* Wd<s-r:0> = Wn<s:r> */ 4556 len = (si - ri) + 1; 4557 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4558 if (!a->sf) { 4559 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4560 } 4561 } else { 4562 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4563 len = si + 1; 4564 pos = (bitsize - ri) & (bitsize - 1); 4565 4566 if (len < ri) { 4567 /* 4568 * Sign extend the destination field from len to fill the 4569 * balance of the word. Let the deposit below insert all 4570 * of those sign bits. 4571 */ 4572 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4573 len = ri; 4574 } 4575 4576 /* 4577 * We start with zero, and we haven't modified any bits outside 4578 * bitsize, therefore no final zero-extension is unneeded for !sf. 4579 */ 4580 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4581 } 4582 return true; 4583 } 4584 4585 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4586 { 4587 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4588 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4589 unsigned int bitsize = a->sf ? 64 : 32; 4590 unsigned int ri = a->immr; 4591 unsigned int si = a->imms; 4592 unsigned int pos, len; 4593 4594 tcg_rd = cpu_reg(s, a->rd); 4595 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4596 4597 if (si >= ri) { 4598 /* Wd<s-r:0> = Wn<s:r> */ 4599 len = (si - ri) + 1; 4600 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4601 } else { 4602 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4603 len = si + 1; 4604 pos = (bitsize - ri) & (bitsize - 1); 4605 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4606 } 4607 return true; 4608 } 4609 4610 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4611 { 4612 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4613 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4614 unsigned int bitsize = a->sf ? 64 : 32; 4615 unsigned int ri = a->immr; 4616 unsigned int si = a->imms; 4617 unsigned int pos, len; 4618 4619 tcg_rd = cpu_reg(s, a->rd); 4620 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4621 4622 if (si >= ri) { 4623 /* Wd<s-r:0> = Wn<s:r> */ 4624 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4625 len = (si - ri) + 1; 4626 pos = 0; 4627 } else { 4628 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4629 len = si + 1; 4630 pos = (bitsize - ri) & (bitsize - 1); 4631 } 4632 4633 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4634 if (!a->sf) { 4635 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4636 } 4637 return true; 4638 } 4639 4640 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4641 { 4642 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4643 4644 tcg_rd = cpu_reg(s, a->rd); 4645 4646 if (unlikely(a->imm == 0)) { 4647 /* 4648 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4649 * so an extract from bit 0 is a special case. 4650 */ 4651 if (a->sf) { 4652 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4653 } else { 4654 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4655 } 4656 } else { 4657 tcg_rm = cpu_reg(s, a->rm); 4658 tcg_rn = cpu_reg(s, a->rn); 4659 4660 if (a->sf) { 4661 /* Specialization to ROR happens in EXTRACT2. */ 4662 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4663 } else { 4664 TCGv_i32 t0 = tcg_temp_new_i32(); 4665 4666 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4667 if (a->rm == a->rn) { 4668 tcg_gen_rotri_i32(t0, t0, a->imm); 4669 } else { 4670 TCGv_i32 t1 = tcg_temp_new_i32(); 4671 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4672 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4673 } 4674 tcg_gen_extu_i32_i64(tcg_rd, t0); 4675 } 4676 } 4677 return true; 4678 } 4679 4680 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4681 * Note that it is the caller's responsibility to ensure that the 4682 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4683 * mandated semantics for out of range shifts. 4684 */ 4685 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4686 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4687 { 4688 switch (shift_type) { 4689 case A64_SHIFT_TYPE_LSL: 4690 tcg_gen_shl_i64(dst, src, shift_amount); 4691 break; 4692 case A64_SHIFT_TYPE_LSR: 4693 tcg_gen_shr_i64(dst, src, shift_amount); 4694 break; 4695 case A64_SHIFT_TYPE_ASR: 4696 if (!sf) { 4697 tcg_gen_ext32s_i64(dst, src); 4698 } 4699 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4700 break; 4701 case A64_SHIFT_TYPE_ROR: 4702 if (sf) { 4703 tcg_gen_rotr_i64(dst, src, shift_amount); 4704 } else { 4705 TCGv_i32 t0, t1; 4706 t0 = tcg_temp_new_i32(); 4707 t1 = tcg_temp_new_i32(); 4708 tcg_gen_extrl_i64_i32(t0, src); 4709 tcg_gen_extrl_i64_i32(t1, shift_amount); 4710 tcg_gen_rotr_i32(t0, t0, t1); 4711 tcg_gen_extu_i32_i64(dst, t0); 4712 } 4713 break; 4714 default: 4715 assert(FALSE); /* all shift types should be handled */ 4716 break; 4717 } 4718 4719 if (!sf) { /* zero extend final result */ 4720 tcg_gen_ext32u_i64(dst, dst); 4721 } 4722 } 4723 4724 /* Shift a TCGv src by immediate, put result in dst. 4725 * The shift amount must be in range (this should always be true as the 4726 * relevant instructions will UNDEF on bad shift immediates). 4727 */ 4728 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4729 enum a64_shift_type shift_type, unsigned int shift_i) 4730 { 4731 assert(shift_i < (sf ? 64 : 32)); 4732 4733 if (shift_i == 0) { 4734 tcg_gen_mov_i64(dst, src); 4735 } else { 4736 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4737 } 4738 } 4739 4740 /* Logical (shifted register) 4741 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4742 * +----+-----+-----------+-------+---+------+--------+------+------+ 4743 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4744 * +----+-----+-----------+-------+---+------+--------+------+------+ 4745 */ 4746 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4747 { 4748 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4749 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4750 4751 sf = extract32(insn, 31, 1); 4752 opc = extract32(insn, 29, 2); 4753 shift_type = extract32(insn, 22, 2); 4754 invert = extract32(insn, 21, 1); 4755 rm = extract32(insn, 16, 5); 4756 shift_amount = extract32(insn, 10, 6); 4757 rn = extract32(insn, 5, 5); 4758 rd = extract32(insn, 0, 5); 4759 4760 if (!sf && (shift_amount & (1 << 5))) { 4761 unallocated_encoding(s); 4762 return; 4763 } 4764 4765 tcg_rd = cpu_reg(s, rd); 4766 4767 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4768 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4769 * register-register MOV and MVN, so it is worth special casing. 4770 */ 4771 tcg_rm = cpu_reg(s, rm); 4772 if (invert) { 4773 tcg_gen_not_i64(tcg_rd, tcg_rm); 4774 if (!sf) { 4775 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4776 } 4777 } else { 4778 if (sf) { 4779 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4780 } else { 4781 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4782 } 4783 } 4784 return; 4785 } 4786 4787 tcg_rm = read_cpu_reg(s, rm, sf); 4788 4789 if (shift_amount) { 4790 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4791 } 4792 4793 tcg_rn = cpu_reg(s, rn); 4794 4795 switch (opc | (invert << 2)) { 4796 case 0: /* AND */ 4797 case 3: /* ANDS */ 4798 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4799 break; 4800 case 1: /* ORR */ 4801 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4802 break; 4803 case 2: /* EOR */ 4804 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4805 break; 4806 case 4: /* BIC */ 4807 case 7: /* BICS */ 4808 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4809 break; 4810 case 5: /* ORN */ 4811 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4812 break; 4813 case 6: /* EON */ 4814 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4815 break; 4816 default: 4817 assert(FALSE); 4818 break; 4819 } 4820 4821 if (!sf) { 4822 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4823 } 4824 4825 if (opc == 3) { 4826 gen_logic_CC(sf, tcg_rd); 4827 } 4828 } 4829 4830 /* 4831 * Add/subtract (extended register) 4832 * 4833 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4834 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4835 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4836 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4837 * 4838 * sf: 0 -> 32bit, 1 -> 64bit 4839 * op: 0 -> add , 1 -> sub 4840 * S: 1 -> set flags 4841 * opt: 00 4842 * option: extension type (see DecodeRegExtend) 4843 * imm3: optional shift to Rm 4844 * 4845 * Rd = Rn + LSL(extend(Rm), amount) 4846 */ 4847 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4848 { 4849 int rd = extract32(insn, 0, 5); 4850 int rn = extract32(insn, 5, 5); 4851 int imm3 = extract32(insn, 10, 3); 4852 int option = extract32(insn, 13, 3); 4853 int rm = extract32(insn, 16, 5); 4854 int opt = extract32(insn, 22, 2); 4855 bool setflags = extract32(insn, 29, 1); 4856 bool sub_op = extract32(insn, 30, 1); 4857 bool sf = extract32(insn, 31, 1); 4858 4859 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4860 TCGv_i64 tcg_rd; 4861 TCGv_i64 tcg_result; 4862 4863 if (imm3 > 4 || opt != 0) { 4864 unallocated_encoding(s); 4865 return; 4866 } 4867 4868 /* non-flag setting ops may use SP */ 4869 if (!setflags) { 4870 tcg_rd = cpu_reg_sp(s, rd); 4871 } else { 4872 tcg_rd = cpu_reg(s, rd); 4873 } 4874 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4875 4876 tcg_rm = read_cpu_reg(s, rm, sf); 4877 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4878 4879 tcg_result = tcg_temp_new_i64(); 4880 4881 if (!setflags) { 4882 if (sub_op) { 4883 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4884 } else { 4885 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4886 } 4887 } else { 4888 if (sub_op) { 4889 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4890 } else { 4891 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4892 } 4893 } 4894 4895 if (sf) { 4896 tcg_gen_mov_i64(tcg_rd, tcg_result); 4897 } else { 4898 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4899 } 4900 } 4901 4902 /* 4903 * Add/subtract (shifted register) 4904 * 4905 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4906 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4907 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4908 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4909 * 4910 * sf: 0 -> 32bit, 1 -> 64bit 4911 * op: 0 -> add , 1 -> sub 4912 * S: 1 -> set flags 4913 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4914 * imm6: Shift amount to apply to Rm before the add/sub 4915 */ 4916 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4917 { 4918 int rd = extract32(insn, 0, 5); 4919 int rn = extract32(insn, 5, 5); 4920 int imm6 = extract32(insn, 10, 6); 4921 int rm = extract32(insn, 16, 5); 4922 int shift_type = extract32(insn, 22, 2); 4923 bool setflags = extract32(insn, 29, 1); 4924 bool sub_op = extract32(insn, 30, 1); 4925 bool sf = extract32(insn, 31, 1); 4926 4927 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4928 TCGv_i64 tcg_rn, tcg_rm; 4929 TCGv_i64 tcg_result; 4930 4931 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4932 unallocated_encoding(s); 4933 return; 4934 } 4935 4936 tcg_rn = read_cpu_reg(s, rn, sf); 4937 tcg_rm = read_cpu_reg(s, rm, sf); 4938 4939 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4940 4941 tcg_result = tcg_temp_new_i64(); 4942 4943 if (!setflags) { 4944 if (sub_op) { 4945 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4946 } else { 4947 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4948 } 4949 } else { 4950 if (sub_op) { 4951 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4952 } else { 4953 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4954 } 4955 } 4956 4957 if (sf) { 4958 tcg_gen_mov_i64(tcg_rd, tcg_result); 4959 } else { 4960 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4961 } 4962 } 4963 4964 /* Data-processing (3 source) 4965 * 4966 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4967 * +--+------+-----------+------+------+----+------+------+------+ 4968 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4969 * +--+------+-----------+------+------+----+------+------+------+ 4970 */ 4971 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4972 { 4973 int rd = extract32(insn, 0, 5); 4974 int rn = extract32(insn, 5, 5); 4975 int ra = extract32(insn, 10, 5); 4976 int rm = extract32(insn, 16, 5); 4977 int op_id = (extract32(insn, 29, 3) << 4) | 4978 (extract32(insn, 21, 3) << 1) | 4979 extract32(insn, 15, 1); 4980 bool sf = extract32(insn, 31, 1); 4981 bool is_sub = extract32(op_id, 0, 1); 4982 bool is_high = extract32(op_id, 2, 1); 4983 bool is_signed = false; 4984 TCGv_i64 tcg_op1; 4985 TCGv_i64 tcg_op2; 4986 TCGv_i64 tcg_tmp; 4987 4988 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4989 switch (op_id) { 4990 case 0x42: /* SMADDL */ 4991 case 0x43: /* SMSUBL */ 4992 case 0x44: /* SMULH */ 4993 is_signed = true; 4994 break; 4995 case 0x0: /* MADD (32bit) */ 4996 case 0x1: /* MSUB (32bit) */ 4997 case 0x40: /* MADD (64bit) */ 4998 case 0x41: /* MSUB (64bit) */ 4999 case 0x4a: /* UMADDL */ 5000 case 0x4b: /* UMSUBL */ 5001 case 0x4c: /* UMULH */ 5002 break; 5003 default: 5004 unallocated_encoding(s); 5005 return; 5006 } 5007 5008 if (is_high) { 5009 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5010 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5011 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5012 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5013 5014 if (is_signed) { 5015 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5016 } else { 5017 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5018 } 5019 return; 5020 } 5021 5022 tcg_op1 = tcg_temp_new_i64(); 5023 tcg_op2 = tcg_temp_new_i64(); 5024 tcg_tmp = tcg_temp_new_i64(); 5025 5026 if (op_id < 0x42) { 5027 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5028 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5029 } else { 5030 if (is_signed) { 5031 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5032 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5033 } else { 5034 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5035 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5036 } 5037 } 5038 5039 if (ra == 31 && !is_sub) { 5040 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5041 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5042 } else { 5043 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5044 if (is_sub) { 5045 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5046 } else { 5047 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5048 } 5049 } 5050 5051 if (!sf) { 5052 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5053 } 5054 } 5055 5056 /* Add/subtract (with carry) 5057 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5058 * +--+--+--+------------------------+------+-------------+------+-----+ 5059 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5060 * +--+--+--+------------------------+------+-------------+------+-----+ 5061 */ 5062 5063 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5064 { 5065 unsigned int sf, op, setflags, rm, rn, rd; 5066 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5067 5068 sf = extract32(insn, 31, 1); 5069 op = extract32(insn, 30, 1); 5070 setflags = extract32(insn, 29, 1); 5071 rm = extract32(insn, 16, 5); 5072 rn = extract32(insn, 5, 5); 5073 rd = extract32(insn, 0, 5); 5074 5075 tcg_rd = cpu_reg(s, rd); 5076 tcg_rn = cpu_reg(s, rn); 5077 5078 if (op) { 5079 tcg_y = tcg_temp_new_i64(); 5080 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5081 } else { 5082 tcg_y = cpu_reg(s, rm); 5083 } 5084 5085 if (setflags) { 5086 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5087 } else { 5088 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5089 } 5090 } 5091 5092 /* 5093 * Rotate right into flags 5094 * 31 30 29 21 15 10 5 4 0 5095 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5096 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5097 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5098 */ 5099 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5100 { 5101 int mask = extract32(insn, 0, 4); 5102 int o2 = extract32(insn, 4, 1); 5103 int rn = extract32(insn, 5, 5); 5104 int imm6 = extract32(insn, 15, 6); 5105 int sf_op_s = extract32(insn, 29, 3); 5106 TCGv_i64 tcg_rn; 5107 TCGv_i32 nzcv; 5108 5109 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5110 unallocated_encoding(s); 5111 return; 5112 } 5113 5114 tcg_rn = read_cpu_reg(s, rn, 1); 5115 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5116 5117 nzcv = tcg_temp_new_i32(); 5118 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5119 5120 if (mask & 8) { /* N */ 5121 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5122 } 5123 if (mask & 4) { /* Z */ 5124 tcg_gen_not_i32(cpu_ZF, nzcv); 5125 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5126 } 5127 if (mask & 2) { /* C */ 5128 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5129 } 5130 if (mask & 1) { /* V */ 5131 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5132 } 5133 } 5134 5135 /* 5136 * Evaluate into flags 5137 * 31 30 29 21 15 14 10 5 4 0 5138 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5139 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5140 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5141 */ 5142 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5143 { 5144 int o3_mask = extract32(insn, 0, 5); 5145 int rn = extract32(insn, 5, 5); 5146 int o2 = extract32(insn, 15, 6); 5147 int sz = extract32(insn, 14, 1); 5148 int sf_op_s = extract32(insn, 29, 3); 5149 TCGv_i32 tmp; 5150 int shift; 5151 5152 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5153 !dc_isar_feature(aa64_condm_4, s)) { 5154 unallocated_encoding(s); 5155 return; 5156 } 5157 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5158 5159 tmp = tcg_temp_new_i32(); 5160 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5161 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5162 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5163 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5164 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5165 } 5166 5167 /* Conditional compare (immediate / register) 5168 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5169 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5170 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5171 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5172 * [1] y [0] [0] 5173 */ 5174 static void disas_cc(DisasContext *s, uint32_t insn) 5175 { 5176 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5177 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5178 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5179 DisasCompare c; 5180 5181 if (!extract32(insn, 29, 1)) { 5182 unallocated_encoding(s); 5183 return; 5184 } 5185 if (insn & (1 << 10 | 1 << 4)) { 5186 unallocated_encoding(s); 5187 return; 5188 } 5189 sf = extract32(insn, 31, 1); 5190 op = extract32(insn, 30, 1); 5191 is_imm = extract32(insn, 11, 1); 5192 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5193 cond = extract32(insn, 12, 4); 5194 rn = extract32(insn, 5, 5); 5195 nzcv = extract32(insn, 0, 4); 5196 5197 /* Set T0 = !COND. */ 5198 tcg_t0 = tcg_temp_new_i32(); 5199 arm_test_cc(&c, cond); 5200 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5201 5202 /* Load the arguments for the new comparison. */ 5203 if (is_imm) { 5204 tcg_y = tcg_temp_new_i64(); 5205 tcg_gen_movi_i64(tcg_y, y); 5206 } else { 5207 tcg_y = cpu_reg(s, y); 5208 } 5209 tcg_rn = cpu_reg(s, rn); 5210 5211 /* Set the flags for the new comparison. */ 5212 tcg_tmp = tcg_temp_new_i64(); 5213 if (op) { 5214 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5215 } else { 5216 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5217 } 5218 5219 /* If COND was false, force the flags to #nzcv. Compute two masks 5220 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5221 * For tcg hosts that support ANDC, we can make do with just T1. 5222 * In either case, allow the tcg optimizer to delete any unused mask. 5223 */ 5224 tcg_t1 = tcg_temp_new_i32(); 5225 tcg_t2 = tcg_temp_new_i32(); 5226 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5227 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5228 5229 if (nzcv & 8) { /* N */ 5230 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5231 } else { 5232 if (TCG_TARGET_HAS_andc_i32) { 5233 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5234 } else { 5235 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5236 } 5237 } 5238 if (nzcv & 4) { /* Z */ 5239 if (TCG_TARGET_HAS_andc_i32) { 5240 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5241 } else { 5242 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5243 } 5244 } else { 5245 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5246 } 5247 if (nzcv & 2) { /* C */ 5248 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5249 } else { 5250 if (TCG_TARGET_HAS_andc_i32) { 5251 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5252 } else { 5253 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5254 } 5255 } 5256 if (nzcv & 1) { /* V */ 5257 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5258 } else { 5259 if (TCG_TARGET_HAS_andc_i32) { 5260 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5261 } else { 5262 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5263 } 5264 } 5265 } 5266 5267 /* Conditional select 5268 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5269 * +----+----+---+-----------------+------+------+-----+------+------+ 5270 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5271 * +----+----+---+-----------------+------+------+-----+------+------+ 5272 */ 5273 static void disas_cond_select(DisasContext *s, uint32_t insn) 5274 { 5275 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5276 TCGv_i64 tcg_rd, zero; 5277 DisasCompare64 c; 5278 5279 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5280 /* S == 1 or op2<1> == 1 */ 5281 unallocated_encoding(s); 5282 return; 5283 } 5284 sf = extract32(insn, 31, 1); 5285 else_inv = extract32(insn, 30, 1); 5286 rm = extract32(insn, 16, 5); 5287 cond = extract32(insn, 12, 4); 5288 else_inc = extract32(insn, 10, 1); 5289 rn = extract32(insn, 5, 5); 5290 rd = extract32(insn, 0, 5); 5291 5292 tcg_rd = cpu_reg(s, rd); 5293 5294 a64_test_cc(&c, cond); 5295 zero = tcg_constant_i64(0); 5296 5297 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5298 /* CSET & CSETM. */ 5299 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5300 if (else_inv) { 5301 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5302 } 5303 } else { 5304 TCGv_i64 t_true = cpu_reg(s, rn); 5305 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5306 if (else_inv && else_inc) { 5307 tcg_gen_neg_i64(t_false, t_false); 5308 } else if (else_inv) { 5309 tcg_gen_not_i64(t_false, t_false); 5310 } else if (else_inc) { 5311 tcg_gen_addi_i64(t_false, t_false, 1); 5312 } 5313 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5314 } 5315 5316 if (!sf) { 5317 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5318 } 5319 } 5320 5321 static void handle_clz(DisasContext *s, unsigned int sf, 5322 unsigned int rn, unsigned int rd) 5323 { 5324 TCGv_i64 tcg_rd, tcg_rn; 5325 tcg_rd = cpu_reg(s, rd); 5326 tcg_rn = cpu_reg(s, rn); 5327 5328 if (sf) { 5329 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5330 } else { 5331 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5332 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5333 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5334 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5335 } 5336 } 5337 5338 static void handle_cls(DisasContext *s, unsigned int sf, 5339 unsigned int rn, unsigned int rd) 5340 { 5341 TCGv_i64 tcg_rd, tcg_rn; 5342 tcg_rd = cpu_reg(s, rd); 5343 tcg_rn = cpu_reg(s, rn); 5344 5345 if (sf) { 5346 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5347 } else { 5348 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5349 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5350 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5351 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5352 } 5353 } 5354 5355 static void handle_rbit(DisasContext *s, unsigned int sf, 5356 unsigned int rn, unsigned int rd) 5357 { 5358 TCGv_i64 tcg_rd, tcg_rn; 5359 tcg_rd = cpu_reg(s, rd); 5360 tcg_rn = cpu_reg(s, rn); 5361 5362 if (sf) { 5363 gen_helper_rbit64(tcg_rd, tcg_rn); 5364 } else { 5365 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5366 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5367 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5368 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5369 } 5370 } 5371 5372 /* REV with sf==1, opcode==3 ("REV64") */ 5373 static void handle_rev64(DisasContext *s, unsigned int sf, 5374 unsigned int rn, unsigned int rd) 5375 { 5376 if (!sf) { 5377 unallocated_encoding(s); 5378 return; 5379 } 5380 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5381 } 5382 5383 /* REV with sf==0, opcode==2 5384 * REV32 (sf==1, opcode==2) 5385 */ 5386 static void handle_rev32(DisasContext *s, unsigned int sf, 5387 unsigned int rn, unsigned int rd) 5388 { 5389 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5390 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5391 5392 if (sf) { 5393 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5394 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5395 } else { 5396 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5397 } 5398 } 5399 5400 /* REV16 (opcode==1) */ 5401 static void handle_rev16(DisasContext *s, unsigned int sf, 5402 unsigned int rn, unsigned int rd) 5403 { 5404 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5405 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5406 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5407 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5408 5409 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5410 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5411 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5412 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5413 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5414 } 5415 5416 /* Data-processing (1 source) 5417 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5418 * +----+---+---+-----------------+---------+--------+------+------+ 5419 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5420 * +----+---+---+-----------------+---------+--------+------+------+ 5421 */ 5422 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5423 { 5424 unsigned int sf, opcode, opcode2, rn, rd; 5425 TCGv_i64 tcg_rd; 5426 5427 if (extract32(insn, 29, 1)) { 5428 unallocated_encoding(s); 5429 return; 5430 } 5431 5432 sf = extract32(insn, 31, 1); 5433 opcode = extract32(insn, 10, 6); 5434 opcode2 = extract32(insn, 16, 5); 5435 rn = extract32(insn, 5, 5); 5436 rd = extract32(insn, 0, 5); 5437 5438 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5439 5440 switch (MAP(sf, opcode2, opcode)) { 5441 case MAP(0, 0x00, 0x00): /* RBIT */ 5442 case MAP(1, 0x00, 0x00): 5443 handle_rbit(s, sf, rn, rd); 5444 break; 5445 case MAP(0, 0x00, 0x01): /* REV16 */ 5446 case MAP(1, 0x00, 0x01): 5447 handle_rev16(s, sf, rn, rd); 5448 break; 5449 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5450 case MAP(1, 0x00, 0x02): 5451 handle_rev32(s, sf, rn, rd); 5452 break; 5453 case MAP(1, 0x00, 0x03): /* REV64 */ 5454 handle_rev64(s, sf, rn, rd); 5455 break; 5456 case MAP(0, 0x00, 0x04): /* CLZ */ 5457 case MAP(1, 0x00, 0x04): 5458 handle_clz(s, sf, rn, rd); 5459 break; 5460 case MAP(0, 0x00, 0x05): /* CLS */ 5461 case MAP(1, 0x00, 0x05): 5462 handle_cls(s, sf, rn, rd); 5463 break; 5464 case MAP(1, 0x01, 0x00): /* PACIA */ 5465 if (s->pauth_active) { 5466 tcg_rd = cpu_reg(s, rd); 5467 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5468 } else if (!dc_isar_feature(aa64_pauth, s)) { 5469 goto do_unallocated; 5470 } 5471 break; 5472 case MAP(1, 0x01, 0x01): /* PACIB */ 5473 if (s->pauth_active) { 5474 tcg_rd = cpu_reg(s, rd); 5475 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5476 } else if (!dc_isar_feature(aa64_pauth, s)) { 5477 goto do_unallocated; 5478 } 5479 break; 5480 case MAP(1, 0x01, 0x02): /* PACDA */ 5481 if (s->pauth_active) { 5482 tcg_rd = cpu_reg(s, rd); 5483 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5484 } else if (!dc_isar_feature(aa64_pauth, s)) { 5485 goto do_unallocated; 5486 } 5487 break; 5488 case MAP(1, 0x01, 0x03): /* PACDB */ 5489 if (s->pauth_active) { 5490 tcg_rd = cpu_reg(s, rd); 5491 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5492 } else if (!dc_isar_feature(aa64_pauth, s)) { 5493 goto do_unallocated; 5494 } 5495 break; 5496 case MAP(1, 0x01, 0x04): /* AUTIA */ 5497 if (s->pauth_active) { 5498 tcg_rd = cpu_reg(s, rd); 5499 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5500 } else if (!dc_isar_feature(aa64_pauth, s)) { 5501 goto do_unallocated; 5502 } 5503 break; 5504 case MAP(1, 0x01, 0x05): /* AUTIB */ 5505 if (s->pauth_active) { 5506 tcg_rd = cpu_reg(s, rd); 5507 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5508 } else if (!dc_isar_feature(aa64_pauth, s)) { 5509 goto do_unallocated; 5510 } 5511 break; 5512 case MAP(1, 0x01, 0x06): /* AUTDA */ 5513 if (s->pauth_active) { 5514 tcg_rd = cpu_reg(s, rd); 5515 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5516 } else if (!dc_isar_feature(aa64_pauth, s)) { 5517 goto do_unallocated; 5518 } 5519 break; 5520 case MAP(1, 0x01, 0x07): /* AUTDB */ 5521 if (s->pauth_active) { 5522 tcg_rd = cpu_reg(s, rd); 5523 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5524 } else if (!dc_isar_feature(aa64_pauth, s)) { 5525 goto do_unallocated; 5526 } 5527 break; 5528 case MAP(1, 0x01, 0x08): /* PACIZA */ 5529 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5530 goto do_unallocated; 5531 } else if (s->pauth_active) { 5532 tcg_rd = cpu_reg(s, rd); 5533 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5534 } 5535 break; 5536 case MAP(1, 0x01, 0x09): /* PACIZB */ 5537 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5538 goto do_unallocated; 5539 } else if (s->pauth_active) { 5540 tcg_rd = cpu_reg(s, rd); 5541 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5542 } 5543 break; 5544 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5545 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5546 goto do_unallocated; 5547 } else if (s->pauth_active) { 5548 tcg_rd = cpu_reg(s, rd); 5549 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5550 } 5551 break; 5552 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5553 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5554 goto do_unallocated; 5555 } else if (s->pauth_active) { 5556 tcg_rd = cpu_reg(s, rd); 5557 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5558 } 5559 break; 5560 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5561 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5562 goto do_unallocated; 5563 } else if (s->pauth_active) { 5564 tcg_rd = cpu_reg(s, rd); 5565 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5566 } 5567 break; 5568 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5569 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5570 goto do_unallocated; 5571 } else if (s->pauth_active) { 5572 tcg_rd = cpu_reg(s, rd); 5573 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5574 } 5575 break; 5576 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5577 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5578 goto do_unallocated; 5579 } else if (s->pauth_active) { 5580 tcg_rd = cpu_reg(s, rd); 5581 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5582 } 5583 break; 5584 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5585 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5586 goto do_unallocated; 5587 } else if (s->pauth_active) { 5588 tcg_rd = cpu_reg(s, rd); 5589 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5590 } 5591 break; 5592 case MAP(1, 0x01, 0x10): /* XPACI */ 5593 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5594 goto do_unallocated; 5595 } else if (s->pauth_active) { 5596 tcg_rd = cpu_reg(s, rd); 5597 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5598 } 5599 break; 5600 case MAP(1, 0x01, 0x11): /* XPACD */ 5601 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5602 goto do_unallocated; 5603 } else if (s->pauth_active) { 5604 tcg_rd = cpu_reg(s, rd); 5605 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5606 } 5607 break; 5608 default: 5609 do_unallocated: 5610 unallocated_encoding(s); 5611 break; 5612 } 5613 5614 #undef MAP 5615 } 5616 5617 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5618 unsigned int rm, unsigned int rn, unsigned int rd) 5619 { 5620 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5621 tcg_rd = cpu_reg(s, rd); 5622 5623 if (!sf && is_signed) { 5624 tcg_n = tcg_temp_new_i64(); 5625 tcg_m = tcg_temp_new_i64(); 5626 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5627 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5628 } else { 5629 tcg_n = read_cpu_reg(s, rn, sf); 5630 tcg_m = read_cpu_reg(s, rm, sf); 5631 } 5632 5633 if (is_signed) { 5634 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5635 } else { 5636 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5637 } 5638 5639 if (!sf) { /* zero extend final result */ 5640 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5641 } 5642 } 5643 5644 /* LSLV, LSRV, ASRV, RORV */ 5645 static void handle_shift_reg(DisasContext *s, 5646 enum a64_shift_type shift_type, unsigned int sf, 5647 unsigned int rm, unsigned int rn, unsigned int rd) 5648 { 5649 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5650 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5651 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5652 5653 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5654 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5655 } 5656 5657 /* CRC32[BHWX], CRC32C[BHWX] */ 5658 static void handle_crc32(DisasContext *s, 5659 unsigned int sf, unsigned int sz, bool crc32c, 5660 unsigned int rm, unsigned int rn, unsigned int rd) 5661 { 5662 TCGv_i64 tcg_acc, tcg_val; 5663 TCGv_i32 tcg_bytes; 5664 5665 if (!dc_isar_feature(aa64_crc32, s) 5666 || (sf == 1 && sz != 3) 5667 || (sf == 0 && sz == 3)) { 5668 unallocated_encoding(s); 5669 return; 5670 } 5671 5672 if (sz == 3) { 5673 tcg_val = cpu_reg(s, rm); 5674 } else { 5675 uint64_t mask; 5676 switch (sz) { 5677 case 0: 5678 mask = 0xFF; 5679 break; 5680 case 1: 5681 mask = 0xFFFF; 5682 break; 5683 case 2: 5684 mask = 0xFFFFFFFF; 5685 break; 5686 default: 5687 g_assert_not_reached(); 5688 } 5689 tcg_val = tcg_temp_new_i64(); 5690 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5691 } 5692 5693 tcg_acc = cpu_reg(s, rn); 5694 tcg_bytes = tcg_constant_i32(1 << sz); 5695 5696 if (crc32c) { 5697 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5698 } else { 5699 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5700 } 5701 } 5702 5703 /* Data-processing (2 source) 5704 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5705 * +----+---+---+-----------------+------+--------+------+------+ 5706 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5707 * +----+---+---+-----------------+------+--------+------+------+ 5708 */ 5709 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5710 { 5711 unsigned int sf, rm, opcode, rn, rd, setflag; 5712 sf = extract32(insn, 31, 1); 5713 setflag = extract32(insn, 29, 1); 5714 rm = extract32(insn, 16, 5); 5715 opcode = extract32(insn, 10, 6); 5716 rn = extract32(insn, 5, 5); 5717 rd = extract32(insn, 0, 5); 5718 5719 if (setflag && opcode != 0) { 5720 unallocated_encoding(s); 5721 return; 5722 } 5723 5724 switch (opcode) { 5725 case 0: /* SUBP(S) */ 5726 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5727 goto do_unallocated; 5728 } else { 5729 TCGv_i64 tcg_n, tcg_m, tcg_d; 5730 5731 tcg_n = read_cpu_reg_sp(s, rn, true); 5732 tcg_m = read_cpu_reg_sp(s, rm, true); 5733 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5734 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5735 tcg_d = cpu_reg(s, rd); 5736 5737 if (setflag) { 5738 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5739 } else { 5740 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5741 } 5742 } 5743 break; 5744 case 2: /* UDIV */ 5745 handle_div(s, false, sf, rm, rn, rd); 5746 break; 5747 case 3: /* SDIV */ 5748 handle_div(s, true, sf, rm, rn, rd); 5749 break; 5750 case 4: /* IRG */ 5751 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5752 goto do_unallocated; 5753 } 5754 if (s->ata) { 5755 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5756 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5757 } else { 5758 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5759 cpu_reg_sp(s, rn)); 5760 } 5761 break; 5762 case 5: /* GMI */ 5763 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5764 goto do_unallocated; 5765 } else { 5766 TCGv_i64 t = tcg_temp_new_i64(); 5767 5768 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5769 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5770 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5771 } 5772 break; 5773 case 8: /* LSLV */ 5774 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5775 break; 5776 case 9: /* LSRV */ 5777 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5778 break; 5779 case 10: /* ASRV */ 5780 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5781 break; 5782 case 11: /* RORV */ 5783 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5784 break; 5785 case 12: /* PACGA */ 5786 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5787 goto do_unallocated; 5788 } 5789 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5790 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5791 break; 5792 case 16: 5793 case 17: 5794 case 18: 5795 case 19: 5796 case 20: 5797 case 21: 5798 case 22: 5799 case 23: /* CRC32 */ 5800 { 5801 int sz = extract32(opcode, 0, 2); 5802 bool crc32c = extract32(opcode, 2, 1); 5803 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5804 break; 5805 } 5806 default: 5807 do_unallocated: 5808 unallocated_encoding(s); 5809 break; 5810 } 5811 } 5812 5813 /* 5814 * Data processing - register 5815 * 31 30 29 28 25 21 20 16 10 0 5816 * +--+---+--+---+-------+-----+-------+-------+---------+ 5817 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5818 * +--+---+--+---+-------+-----+-------+-------+---------+ 5819 */ 5820 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5821 { 5822 int op0 = extract32(insn, 30, 1); 5823 int op1 = extract32(insn, 28, 1); 5824 int op2 = extract32(insn, 21, 4); 5825 int op3 = extract32(insn, 10, 6); 5826 5827 if (!op1) { 5828 if (op2 & 8) { 5829 if (op2 & 1) { 5830 /* Add/sub (extended register) */ 5831 disas_add_sub_ext_reg(s, insn); 5832 } else { 5833 /* Add/sub (shifted register) */ 5834 disas_add_sub_reg(s, insn); 5835 } 5836 } else { 5837 /* Logical (shifted register) */ 5838 disas_logic_reg(s, insn); 5839 } 5840 return; 5841 } 5842 5843 switch (op2) { 5844 case 0x0: 5845 switch (op3) { 5846 case 0x00: /* Add/subtract (with carry) */ 5847 disas_adc_sbc(s, insn); 5848 break; 5849 5850 case 0x01: /* Rotate right into flags */ 5851 case 0x21: 5852 disas_rotate_right_into_flags(s, insn); 5853 break; 5854 5855 case 0x02: /* Evaluate into flags */ 5856 case 0x12: 5857 case 0x22: 5858 case 0x32: 5859 disas_evaluate_into_flags(s, insn); 5860 break; 5861 5862 default: 5863 goto do_unallocated; 5864 } 5865 break; 5866 5867 case 0x2: /* Conditional compare */ 5868 disas_cc(s, insn); /* both imm and reg forms */ 5869 break; 5870 5871 case 0x4: /* Conditional select */ 5872 disas_cond_select(s, insn); 5873 break; 5874 5875 case 0x6: /* Data-processing */ 5876 if (op0) { /* (1 source) */ 5877 disas_data_proc_1src(s, insn); 5878 } else { /* (2 source) */ 5879 disas_data_proc_2src(s, insn); 5880 } 5881 break; 5882 case 0x8 ... 0xf: /* (3 source) */ 5883 disas_data_proc_3src(s, insn); 5884 break; 5885 5886 default: 5887 do_unallocated: 5888 unallocated_encoding(s); 5889 break; 5890 } 5891 } 5892 5893 static void handle_fp_compare(DisasContext *s, int size, 5894 unsigned int rn, unsigned int rm, 5895 bool cmp_with_zero, bool signal_all_nans) 5896 { 5897 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5898 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5899 5900 if (size == MO_64) { 5901 TCGv_i64 tcg_vn, tcg_vm; 5902 5903 tcg_vn = read_fp_dreg(s, rn); 5904 if (cmp_with_zero) { 5905 tcg_vm = tcg_constant_i64(0); 5906 } else { 5907 tcg_vm = read_fp_dreg(s, rm); 5908 } 5909 if (signal_all_nans) { 5910 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5911 } else { 5912 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5913 } 5914 } else { 5915 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5916 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5917 5918 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5919 if (cmp_with_zero) { 5920 tcg_gen_movi_i32(tcg_vm, 0); 5921 } else { 5922 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5923 } 5924 5925 switch (size) { 5926 case MO_32: 5927 if (signal_all_nans) { 5928 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5929 } else { 5930 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5931 } 5932 break; 5933 case MO_16: 5934 if (signal_all_nans) { 5935 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5936 } else { 5937 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5938 } 5939 break; 5940 default: 5941 g_assert_not_reached(); 5942 } 5943 } 5944 5945 gen_set_nzcv(tcg_flags); 5946 } 5947 5948 /* Floating point compare 5949 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5950 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5951 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5952 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5953 */ 5954 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5955 { 5956 unsigned int mos, type, rm, op, rn, opc, op2r; 5957 int size; 5958 5959 mos = extract32(insn, 29, 3); 5960 type = extract32(insn, 22, 2); 5961 rm = extract32(insn, 16, 5); 5962 op = extract32(insn, 14, 2); 5963 rn = extract32(insn, 5, 5); 5964 opc = extract32(insn, 3, 2); 5965 op2r = extract32(insn, 0, 3); 5966 5967 if (mos || op || op2r) { 5968 unallocated_encoding(s); 5969 return; 5970 } 5971 5972 switch (type) { 5973 case 0: 5974 size = MO_32; 5975 break; 5976 case 1: 5977 size = MO_64; 5978 break; 5979 case 3: 5980 size = MO_16; 5981 if (dc_isar_feature(aa64_fp16, s)) { 5982 break; 5983 } 5984 /* fallthru */ 5985 default: 5986 unallocated_encoding(s); 5987 return; 5988 } 5989 5990 if (!fp_access_check(s)) { 5991 return; 5992 } 5993 5994 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5995 } 5996 5997 /* Floating point conditional compare 5998 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5999 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6000 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6001 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6002 */ 6003 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6004 { 6005 unsigned int mos, type, rm, cond, rn, op, nzcv; 6006 TCGLabel *label_continue = NULL; 6007 int size; 6008 6009 mos = extract32(insn, 29, 3); 6010 type = extract32(insn, 22, 2); 6011 rm = extract32(insn, 16, 5); 6012 cond = extract32(insn, 12, 4); 6013 rn = extract32(insn, 5, 5); 6014 op = extract32(insn, 4, 1); 6015 nzcv = extract32(insn, 0, 4); 6016 6017 if (mos) { 6018 unallocated_encoding(s); 6019 return; 6020 } 6021 6022 switch (type) { 6023 case 0: 6024 size = MO_32; 6025 break; 6026 case 1: 6027 size = MO_64; 6028 break; 6029 case 3: 6030 size = MO_16; 6031 if (dc_isar_feature(aa64_fp16, s)) { 6032 break; 6033 } 6034 /* fallthru */ 6035 default: 6036 unallocated_encoding(s); 6037 return; 6038 } 6039 6040 if (!fp_access_check(s)) { 6041 return; 6042 } 6043 6044 if (cond < 0x0e) { /* not always */ 6045 TCGLabel *label_match = gen_new_label(); 6046 label_continue = gen_new_label(); 6047 arm_gen_test_cc(cond, label_match); 6048 /* nomatch: */ 6049 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6050 tcg_gen_br(label_continue); 6051 gen_set_label(label_match); 6052 } 6053 6054 handle_fp_compare(s, size, rn, rm, false, op); 6055 6056 if (cond < 0x0e) { 6057 gen_set_label(label_continue); 6058 } 6059 } 6060 6061 /* Floating point conditional select 6062 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6063 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6064 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6065 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6066 */ 6067 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6068 { 6069 unsigned int mos, type, rm, cond, rn, rd; 6070 TCGv_i64 t_true, t_false; 6071 DisasCompare64 c; 6072 MemOp sz; 6073 6074 mos = extract32(insn, 29, 3); 6075 type = extract32(insn, 22, 2); 6076 rm = extract32(insn, 16, 5); 6077 cond = extract32(insn, 12, 4); 6078 rn = extract32(insn, 5, 5); 6079 rd = extract32(insn, 0, 5); 6080 6081 if (mos) { 6082 unallocated_encoding(s); 6083 return; 6084 } 6085 6086 switch (type) { 6087 case 0: 6088 sz = MO_32; 6089 break; 6090 case 1: 6091 sz = MO_64; 6092 break; 6093 case 3: 6094 sz = MO_16; 6095 if (dc_isar_feature(aa64_fp16, s)) { 6096 break; 6097 } 6098 /* fallthru */ 6099 default: 6100 unallocated_encoding(s); 6101 return; 6102 } 6103 6104 if (!fp_access_check(s)) { 6105 return; 6106 } 6107 6108 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6109 t_true = tcg_temp_new_i64(); 6110 t_false = tcg_temp_new_i64(); 6111 read_vec_element(s, t_true, rn, 0, sz); 6112 read_vec_element(s, t_false, rm, 0, sz); 6113 6114 a64_test_cc(&c, cond); 6115 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6116 t_true, t_false); 6117 6118 /* Note that sregs & hregs write back zeros to the high bits, 6119 and we've already done the zero-extension. */ 6120 write_fp_dreg(s, rd, t_true); 6121 } 6122 6123 /* Floating-point data-processing (1 source) - half precision */ 6124 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6125 { 6126 TCGv_ptr fpst = NULL; 6127 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6128 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6129 6130 switch (opcode) { 6131 case 0x0: /* FMOV */ 6132 tcg_gen_mov_i32(tcg_res, tcg_op); 6133 break; 6134 case 0x1: /* FABS */ 6135 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6136 break; 6137 case 0x2: /* FNEG */ 6138 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6139 break; 6140 case 0x3: /* FSQRT */ 6141 fpst = fpstatus_ptr(FPST_FPCR_F16); 6142 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6143 break; 6144 case 0x8: /* FRINTN */ 6145 case 0x9: /* FRINTP */ 6146 case 0xa: /* FRINTM */ 6147 case 0xb: /* FRINTZ */ 6148 case 0xc: /* FRINTA */ 6149 { 6150 TCGv_i32 tcg_rmode; 6151 6152 fpst = fpstatus_ptr(FPST_FPCR_F16); 6153 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6154 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6155 gen_restore_rmode(tcg_rmode, fpst); 6156 break; 6157 } 6158 case 0xe: /* FRINTX */ 6159 fpst = fpstatus_ptr(FPST_FPCR_F16); 6160 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6161 break; 6162 case 0xf: /* FRINTI */ 6163 fpst = fpstatus_ptr(FPST_FPCR_F16); 6164 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6165 break; 6166 default: 6167 g_assert_not_reached(); 6168 } 6169 6170 write_fp_sreg(s, rd, tcg_res); 6171 } 6172 6173 /* Floating-point data-processing (1 source) - single precision */ 6174 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6175 { 6176 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6177 TCGv_i32 tcg_op, tcg_res; 6178 TCGv_ptr fpst; 6179 int rmode = -1; 6180 6181 tcg_op = read_fp_sreg(s, rn); 6182 tcg_res = tcg_temp_new_i32(); 6183 6184 switch (opcode) { 6185 case 0x0: /* FMOV */ 6186 tcg_gen_mov_i32(tcg_res, tcg_op); 6187 goto done; 6188 case 0x1: /* FABS */ 6189 gen_helper_vfp_abss(tcg_res, tcg_op); 6190 goto done; 6191 case 0x2: /* FNEG */ 6192 gen_helper_vfp_negs(tcg_res, tcg_op); 6193 goto done; 6194 case 0x3: /* FSQRT */ 6195 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6196 goto done; 6197 case 0x6: /* BFCVT */ 6198 gen_fpst = gen_helper_bfcvt; 6199 break; 6200 case 0x8: /* FRINTN */ 6201 case 0x9: /* FRINTP */ 6202 case 0xa: /* FRINTM */ 6203 case 0xb: /* FRINTZ */ 6204 case 0xc: /* FRINTA */ 6205 rmode = opcode & 7; 6206 gen_fpst = gen_helper_rints; 6207 break; 6208 case 0xe: /* FRINTX */ 6209 gen_fpst = gen_helper_rints_exact; 6210 break; 6211 case 0xf: /* FRINTI */ 6212 gen_fpst = gen_helper_rints; 6213 break; 6214 case 0x10: /* FRINT32Z */ 6215 rmode = FPROUNDING_ZERO; 6216 gen_fpst = gen_helper_frint32_s; 6217 break; 6218 case 0x11: /* FRINT32X */ 6219 gen_fpst = gen_helper_frint32_s; 6220 break; 6221 case 0x12: /* FRINT64Z */ 6222 rmode = FPROUNDING_ZERO; 6223 gen_fpst = gen_helper_frint64_s; 6224 break; 6225 case 0x13: /* FRINT64X */ 6226 gen_fpst = gen_helper_frint64_s; 6227 break; 6228 default: 6229 g_assert_not_reached(); 6230 } 6231 6232 fpst = fpstatus_ptr(FPST_FPCR); 6233 if (rmode >= 0) { 6234 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6235 gen_fpst(tcg_res, tcg_op, fpst); 6236 gen_restore_rmode(tcg_rmode, fpst); 6237 } else { 6238 gen_fpst(tcg_res, tcg_op, fpst); 6239 } 6240 6241 done: 6242 write_fp_sreg(s, rd, tcg_res); 6243 } 6244 6245 /* Floating-point data-processing (1 source) - double precision */ 6246 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6247 { 6248 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6249 TCGv_i64 tcg_op, tcg_res; 6250 TCGv_ptr fpst; 6251 int rmode = -1; 6252 6253 switch (opcode) { 6254 case 0x0: /* FMOV */ 6255 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6256 return; 6257 } 6258 6259 tcg_op = read_fp_dreg(s, rn); 6260 tcg_res = tcg_temp_new_i64(); 6261 6262 switch (opcode) { 6263 case 0x1: /* FABS */ 6264 gen_helper_vfp_absd(tcg_res, tcg_op); 6265 goto done; 6266 case 0x2: /* FNEG */ 6267 gen_helper_vfp_negd(tcg_res, tcg_op); 6268 goto done; 6269 case 0x3: /* FSQRT */ 6270 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6271 goto done; 6272 case 0x8: /* FRINTN */ 6273 case 0x9: /* FRINTP */ 6274 case 0xa: /* FRINTM */ 6275 case 0xb: /* FRINTZ */ 6276 case 0xc: /* FRINTA */ 6277 rmode = opcode & 7; 6278 gen_fpst = gen_helper_rintd; 6279 break; 6280 case 0xe: /* FRINTX */ 6281 gen_fpst = gen_helper_rintd_exact; 6282 break; 6283 case 0xf: /* FRINTI */ 6284 gen_fpst = gen_helper_rintd; 6285 break; 6286 case 0x10: /* FRINT32Z */ 6287 rmode = FPROUNDING_ZERO; 6288 gen_fpst = gen_helper_frint32_d; 6289 break; 6290 case 0x11: /* FRINT32X */ 6291 gen_fpst = gen_helper_frint32_d; 6292 break; 6293 case 0x12: /* FRINT64Z */ 6294 rmode = FPROUNDING_ZERO; 6295 gen_fpst = gen_helper_frint64_d; 6296 break; 6297 case 0x13: /* FRINT64X */ 6298 gen_fpst = gen_helper_frint64_d; 6299 break; 6300 default: 6301 g_assert_not_reached(); 6302 } 6303 6304 fpst = fpstatus_ptr(FPST_FPCR); 6305 if (rmode >= 0) { 6306 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6307 gen_fpst(tcg_res, tcg_op, fpst); 6308 gen_restore_rmode(tcg_rmode, fpst); 6309 } else { 6310 gen_fpst(tcg_res, tcg_op, fpst); 6311 } 6312 6313 done: 6314 write_fp_dreg(s, rd, tcg_res); 6315 } 6316 6317 static void handle_fp_fcvt(DisasContext *s, int opcode, 6318 int rd, int rn, int dtype, int ntype) 6319 { 6320 switch (ntype) { 6321 case 0x0: 6322 { 6323 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6324 if (dtype == 1) { 6325 /* Single to double */ 6326 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6327 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6328 write_fp_dreg(s, rd, tcg_rd); 6329 } else { 6330 /* Single to half */ 6331 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6332 TCGv_i32 ahp = get_ahp_flag(); 6333 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6334 6335 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6336 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6337 write_fp_sreg(s, rd, tcg_rd); 6338 } 6339 break; 6340 } 6341 case 0x1: 6342 { 6343 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6344 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6345 if (dtype == 0) { 6346 /* Double to single */ 6347 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6348 } else { 6349 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6350 TCGv_i32 ahp = get_ahp_flag(); 6351 /* Double to half */ 6352 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6353 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6354 } 6355 write_fp_sreg(s, rd, tcg_rd); 6356 break; 6357 } 6358 case 0x3: 6359 { 6360 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6361 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6362 TCGv_i32 tcg_ahp = get_ahp_flag(); 6363 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6364 if (dtype == 0) { 6365 /* Half to single */ 6366 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6367 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6368 write_fp_sreg(s, rd, tcg_rd); 6369 } else { 6370 /* Half to double */ 6371 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6372 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6373 write_fp_dreg(s, rd, tcg_rd); 6374 } 6375 break; 6376 } 6377 default: 6378 g_assert_not_reached(); 6379 } 6380 } 6381 6382 /* Floating point data-processing (1 source) 6383 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6384 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6385 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6386 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6387 */ 6388 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6389 { 6390 int mos = extract32(insn, 29, 3); 6391 int type = extract32(insn, 22, 2); 6392 int opcode = extract32(insn, 15, 6); 6393 int rn = extract32(insn, 5, 5); 6394 int rd = extract32(insn, 0, 5); 6395 6396 if (mos) { 6397 goto do_unallocated; 6398 } 6399 6400 switch (opcode) { 6401 case 0x4: case 0x5: case 0x7: 6402 { 6403 /* FCVT between half, single and double precision */ 6404 int dtype = extract32(opcode, 0, 2); 6405 if (type == 2 || dtype == type) { 6406 goto do_unallocated; 6407 } 6408 if (!fp_access_check(s)) { 6409 return; 6410 } 6411 6412 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6413 break; 6414 } 6415 6416 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6417 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6418 goto do_unallocated; 6419 } 6420 /* fall through */ 6421 case 0x0 ... 0x3: 6422 case 0x8 ... 0xc: 6423 case 0xe ... 0xf: 6424 /* 32-to-32 and 64-to-64 ops */ 6425 switch (type) { 6426 case 0: 6427 if (!fp_access_check(s)) { 6428 return; 6429 } 6430 handle_fp_1src_single(s, opcode, rd, rn); 6431 break; 6432 case 1: 6433 if (!fp_access_check(s)) { 6434 return; 6435 } 6436 handle_fp_1src_double(s, opcode, rd, rn); 6437 break; 6438 case 3: 6439 if (!dc_isar_feature(aa64_fp16, s)) { 6440 goto do_unallocated; 6441 } 6442 6443 if (!fp_access_check(s)) { 6444 return; 6445 } 6446 handle_fp_1src_half(s, opcode, rd, rn); 6447 break; 6448 default: 6449 goto do_unallocated; 6450 } 6451 break; 6452 6453 case 0x6: 6454 switch (type) { 6455 case 1: /* BFCVT */ 6456 if (!dc_isar_feature(aa64_bf16, s)) { 6457 goto do_unallocated; 6458 } 6459 if (!fp_access_check(s)) { 6460 return; 6461 } 6462 handle_fp_1src_single(s, opcode, rd, rn); 6463 break; 6464 default: 6465 goto do_unallocated; 6466 } 6467 break; 6468 6469 default: 6470 do_unallocated: 6471 unallocated_encoding(s); 6472 break; 6473 } 6474 } 6475 6476 /* Floating-point data-processing (2 source) - single precision */ 6477 static void handle_fp_2src_single(DisasContext *s, int opcode, 6478 int rd, int rn, int rm) 6479 { 6480 TCGv_i32 tcg_op1; 6481 TCGv_i32 tcg_op2; 6482 TCGv_i32 tcg_res; 6483 TCGv_ptr fpst; 6484 6485 tcg_res = tcg_temp_new_i32(); 6486 fpst = fpstatus_ptr(FPST_FPCR); 6487 tcg_op1 = read_fp_sreg(s, rn); 6488 tcg_op2 = read_fp_sreg(s, rm); 6489 6490 switch (opcode) { 6491 case 0x0: /* FMUL */ 6492 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6493 break; 6494 case 0x1: /* FDIV */ 6495 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6496 break; 6497 case 0x2: /* FADD */ 6498 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6499 break; 6500 case 0x3: /* FSUB */ 6501 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6502 break; 6503 case 0x4: /* FMAX */ 6504 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6505 break; 6506 case 0x5: /* FMIN */ 6507 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6508 break; 6509 case 0x6: /* FMAXNM */ 6510 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6511 break; 6512 case 0x7: /* FMINNM */ 6513 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6514 break; 6515 case 0x8: /* FNMUL */ 6516 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6517 gen_helper_vfp_negs(tcg_res, tcg_res); 6518 break; 6519 } 6520 6521 write_fp_sreg(s, rd, tcg_res); 6522 } 6523 6524 /* Floating-point data-processing (2 source) - double precision */ 6525 static void handle_fp_2src_double(DisasContext *s, int opcode, 6526 int rd, int rn, int rm) 6527 { 6528 TCGv_i64 tcg_op1; 6529 TCGv_i64 tcg_op2; 6530 TCGv_i64 tcg_res; 6531 TCGv_ptr fpst; 6532 6533 tcg_res = tcg_temp_new_i64(); 6534 fpst = fpstatus_ptr(FPST_FPCR); 6535 tcg_op1 = read_fp_dreg(s, rn); 6536 tcg_op2 = read_fp_dreg(s, rm); 6537 6538 switch (opcode) { 6539 case 0x0: /* FMUL */ 6540 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6541 break; 6542 case 0x1: /* FDIV */ 6543 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6544 break; 6545 case 0x2: /* FADD */ 6546 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6547 break; 6548 case 0x3: /* FSUB */ 6549 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6550 break; 6551 case 0x4: /* FMAX */ 6552 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6553 break; 6554 case 0x5: /* FMIN */ 6555 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6556 break; 6557 case 0x6: /* FMAXNM */ 6558 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6559 break; 6560 case 0x7: /* FMINNM */ 6561 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6562 break; 6563 case 0x8: /* FNMUL */ 6564 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6565 gen_helper_vfp_negd(tcg_res, tcg_res); 6566 break; 6567 } 6568 6569 write_fp_dreg(s, rd, tcg_res); 6570 } 6571 6572 /* Floating-point data-processing (2 source) - half precision */ 6573 static void handle_fp_2src_half(DisasContext *s, int opcode, 6574 int rd, int rn, int rm) 6575 { 6576 TCGv_i32 tcg_op1; 6577 TCGv_i32 tcg_op2; 6578 TCGv_i32 tcg_res; 6579 TCGv_ptr fpst; 6580 6581 tcg_res = tcg_temp_new_i32(); 6582 fpst = fpstatus_ptr(FPST_FPCR_F16); 6583 tcg_op1 = read_fp_hreg(s, rn); 6584 tcg_op2 = read_fp_hreg(s, rm); 6585 6586 switch (opcode) { 6587 case 0x0: /* FMUL */ 6588 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6589 break; 6590 case 0x1: /* FDIV */ 6591 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6592 break; 6593 case 0x2: /* FADD */ 6594 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6595 break; 6596 case 0x3: /* FSUB */ 6597 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6598 break; 6599 case 0x4: /* FMAX */ 6600 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6601 break; 6602 case 0x5: /* FMIN */ 6603 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6604 break; 6605 case 0x6: /* FMAXNM */ 6606 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6607 break; 6608 case 0x7: /* FMINNM */ 6609 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6610 break; 6611 case 0x8: /* FNMUL */ 6612 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6613 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6614 break; 6615 default: 6616 g_assert_not_reached(); 6617 } 6618 6619 write_fp_sreg(s, rd, tcg_res); 6620 } 6621 6622 /* Floating point data-processing (2 source) 6623 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6624 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6625 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6626 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6627 */ 6628 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6629 { 6630 int mos = extract32(insn, 29, 3); 6631 int type = extract32(insn, 22, 2); 6632 int rd = extract32(insn, 0, 5); 6633 int rn = extract32(insn, 5, 5); 6634 int rm = extract32(insn, 16, 5); 6635 int opcode = extract32(insn, 12, 4); 6636 6637 if (opcode > 8 || mos) { 6638 unallocated_encoding(s); 6639 return; 6640 } 6641 6642 switch (type) { 6643 case 0: 6644 if (!fp_access_check(s)) { 6645 return; 6646 } 6647 handle_fp_2src_single(s, opcode, rd, rn, rm); 6648 break; 6649 case 1: 6650 if (!fp_access_check(s)) { 6651 return; 6652 } 6653 handle_fp_2src_double(s, opcode, rd, rn, rm); 6654 break; 6655 case 3: 6656 if (!dc_isar_feature(aa64_fp16, s)) { 6657 unallocated_encoding(s); 6658 return; 6659 } 6660 if (!fp_access_check(s)) { 6661 return; 6662 } 6663 handle_fp_2src_half(s, opcode, rd, rn, rm); 6664 break; 6665 default: 6666 unallocated_encoding(s); 6667 } 6668 } 6669 6670 /* Floating-point data-processing (3 source) - single precision */ 6671 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6672 int rd, int rn, int rm, int ra) 6673 { 6674 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6675 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6676 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6677 6678 tcg_op1 = read_fp_sreg(s, rn); 6679 tcg_op2 = read_fp_sreg(s, rm); 6680 tcg_op3 = read_fp_sreg(s, ra); 6681 6682 /* These are fused multiply-add, and must be done as one 6683 * floating point operation with no rounding between the 6684 * multiplication and addition steps. 6685 * NB that doing the negations here as separate steps is 6686 * correct : an input NaN should come out with its sign bit 6687 * flipped if it is a negated-input. 6688 */ 6689 if (o1 == true) { 6690 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6691 } 6692 6693 if (o0 != o1) { 6694 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6695 } 6696 6697 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6698 6699 write_fp_sreg(s, rd, tcg_res); 6700 } 6701 6702 /* Floating-point data-processing (3 source) - double precision */ 6703 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6704 int rd, int rn, int rm, int ra) 6705 { 6706 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6707 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6708 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6709 6710 tcg_op1 = read_fp_dreg(s, rn); 6711 tcg_op2 = read_fp_dreg(s, rm); 6712 tcg_op3 = read_fp_dreg(s, ra); 6713 6714 /* These are fused multiply-add, and must be done as one 6715 * floating point operation with no rounding between the 6716 * multiplication and addition steps. 6717 * NB that doing the negations here as separate steps is 6718 * correct : an input NaN should come out with its sign bit 6719 * flipped if it is a negated-input. 6720 */ 6721 if (o1 == true) { 6722 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6723 } 6724 6725 if (o0 != o1) { 6726 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6727 } 6728 6729 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6730 6731 write_fp_dreg(s, rd, tcg_res); 6732 } 6733 6734 /* Floating-point data-processing (3 source) - half precision */ 6735 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6736 int rd, int rn, int rm, int ra) 6737 { 6738 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6739 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6740 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6741 6742 tcg_op1 = read_fp_hreg(s, rn); 6743 tcg_op2 = read_fp_hreg(s, rm); 6744 tcg_op3 = read_fp_hreg(s, ra); 6745 6746 /* These are fused multiply-add, and must be done as one 6747 * floating point operation with no rounding between the 6748 * multiplication and addition steps. 6749 * NB that doing the negations here as separate steps is 6750 * correct : an input NaN should come out with its sign bit 6751 * flipped if it is a negated-input. 6752 */ 6753 if (o1 == true) { 6754 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6755 } 6756 6757 if (o0 != o1) { 6758 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6759 } 6760 6761 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6762 6763 write_fp_sreg(s, rd, tcg_res); 6764 } 6765 6766 /* Floating point data-processing (3 source) 6767 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6768 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6769 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6770 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6771 */ 6772 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6773 { 6774 int mos = extract32(insn, 29, 3); 6775 int type = extract32(insn, 22, 2); 6776 int rd = extract32(insn, 0, 5); 6777 int rn = extract32(insn, 5, 5); 6778 int ra = extract32(insn, 10, 5); 6779 int rm = extract32(insn, 16, 5); 6780 bool o0 = extract32(insn, 15, 1); 6781 bool o1 = extract32(insn, 21, 1); 6782 6783 if (mos) { 6784 unallocated_encoding(s); 6785 return; 6786 } 6787 6788 switch (type) { 6789 case 0: 6790 if (!fp_access_check(s)) { 6791 return; 6792 } 6793 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6794 break; 6795 case 1: 6796 if (!fp_access_check(s)) { 6797 return; 6798 } 6799 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6800 break; 6801 case 3: 6802 if (!dc_isar_feature(aa64_fp16, s)) { 6803 unallocated_encoding(s); 6804 return; 6805 } 6806 if (!fp_access_check(s)) { 6807 return; 6808 } 6809 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6810 break; 6811 default: 6812 unallocated_encoding(s); 6813 } 6814 } 6815 6816 /* Floating point immediate 6817 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6818 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6819 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6820 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6821 */ 6822 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6823 { 6824 int rd = extract32(insn, 0, 5); 6825 int imm5 = extract32(insn, 5, 5); 6826 int imm8 = extract32(insn, 13, 8); 6827 int type = extract32(insn, 22, 2); 6828 int mos = extract32(insn, 29, 3); 6829 uint64_t imm; 6830 MemOp sz; 6831 6832 if (mos || imm5) { 6833 unallocated_encoding(s); 6834 return; 6835 } 6836 6837 switch (type) { 6838 case 0: 6839 sz = MO_32; 6840 break; 6841 case 1: 6842 sz = MO_64; 6843 break; 6844 case 3: 6845 sz = MO_16; 6846 if (dc_isar_feature(aa64_fp16, s)) { 6847 break; 6848 } 6849 /* fallthru */ 6850 default: 6851 unallocated_encoding(s); 6852 return; 6853 } 6854 6855 if (!fp_access_check(s)) { 6856 return; 6857 } 6858 6859 imm = vfp_expand_imm(sz, imm8); 6860 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6861 } 6862 6863 /* Handle floating point <=> fixed point conversions. Note that we can 6864 * also deal with fp <=> integer conversions as a special case (scale == 64) 6865 * OPTME: consider handling that special case specially or at least skipping 6866 * the call to scalbn in the helpers for zero shifts. 6867 */ 6868 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6869 bool itof, int rmode, int scale, int sf, int type) 6870 { 6871 bool is_signed = !(opcode & 1); 6872 TCGv_ptr tcg_fpstatus; 6873 TCGv_i32 tcg_shift, tcg_single; 6874 TCGv_i64 tcg_double; 6875 6876 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6877 6878 tcg_shift = tcg_constant_i32(64 - scale); 6879 6880 if (itof) { 6881 TCGv_i64 tcg_int = cpu_reg(s, rn); 6882 if (!sf) { 6883 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6884 6885 if (is_signed) { 6886 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6887 } else { 6888 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6889 } 6890 6891 tcg_int = tcg_extend; 6892 } 6893 6894 switch (type) { 6895 case 1: /* float64 */ 6896 tcg_double = tcg_temp_new_i64(); 6897 if (is_signed) { 6898 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6899 tcg_shift, tcg_fpstatus); 6900 } else { 6901 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6902 tcg_shift, tcg_fpstatus); 6903 } 6904 write_fp_dreg(s, rd, tcg_double); 6905 break; 6906 6907 case 0: /* float32 */ 6908 tcg_single = tcg_temp_new_i32(); 6909 if (is_signed) { 6910 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6911 tcg_shift, tcg_fpstatus); 6912 } else { 6913 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6914 tcg_shift, tcg_fpstatus); 6915 } 6916 write_fp_sreg(s, rd, tcg_single); 6917 break; 6918 6919 case 3: /* float16 */ 6920 tcg_single = tcg_temp_new_i32(); 6921 if (is_signed) { 6922 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6923 tcg_shift, tcg_fpstatus); 6924 } else { 6925 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6926 tcg_shift, tcg_fpstatus); 6927 } 6928 write_fp_sreg(s, rd, tcg_single); 6929 break; 6930 6931 default: 6932 g_assert_not_reached(); 6933 } 6934 } else { 6935 TCGv_i64 tcg_int = cpu_reg(s, rd); 6936 TCGv_i32 tcg_rmode; 6937 6938 if (extract32(opcode, 2, 1)) { 6939 /* There are too many rounding modes to all fit into rmode, 6940 * so FCVTA[US] is a special case. 6941 */ 6942 rmode = FPROUNDING_TIEAWAY; 6943 } 6944 6945 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6946 6947 switch (type) { 6948 case 1: /* float64 */ 6949 tcg_double = read_fp_dreg(s, rn); 6950 if (is_signed) { 6951 if (!sf) { 6952 gen_helper_vfp_tosld(tcg_int, tcg_double, 6953 tcg_shift, tcg_fpstatus); 6954 } else { 6955 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6956 tcg_shift, tcg_fpstatus); 6957 } 6958 } else { 6959 if (!sf) { 6960 gen_helper_vfp_tould(tcg_int, tcg_double, 6961 tcg_shift, tcg_fpstatus); 6962 } else { 6963 gen_helper_vfp_touqd(tcg_int, tcg_double, 6964 tcg_shift, tcg_fpstatus); 6965 } 6966 } 6967 if (!sf) { 6968 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6969 } 6970 break; 6971 6972 case 0: /* float32 */ 6973 tcg_single = read_fp_sreg(s, rn); 6974 if (sf) { 6975 if (is_signed) { 6976 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6977 tcg_shift, tcg_fpstatus); 6978 } else { 6979 gen_helper_vfp_touqs(tcg_int, tcg_single, 6980 tcg_shift, tcg_fpstatus); 6981 } 6982 } else { 6983 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6984 if (is_signed) { 6985 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6986 tcg_shift, tcg_fpstatus); 6987 } else { 6988 gen_helper_vfp_touls(tcg_dest, tcg_single, 6989 tcg_shift, tcg_fpstatus); 6990 } 6991 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6992 } 6993 break; 6994 6995 case 3: /* float16 */ 6996 tcg_single = read_fp_sreg(s, rn); 6997 if (sf) { 6998 if (is_signed) { 6999 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7000 tcg_shift, tcg_fpstatus); 7001 } else { 7002 gen_helper_vfp_touqh(tcg_int, tcg_single, 7003 tcg_shift, tcg_fpstatus); 7004 } 7005 } else { 7006 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7007 if (is_signed) { 7008 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7009 tcg_shift, tcg_fpstatus); 7010 } else { 7011 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7012 tcg_shift, tcg_fpstatus); 7013 } 7014 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7015 } 7016 break; 7017 7018 default: 7019 g_assert_not_reached(); 7020 } 7021 7022 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7023 } 7024 } 7025 7026 /* Floating point <-> fixed point conversions 7027 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7028 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7029 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7030 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7031 */ 7032 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7033 { 7034 int rd = extract32(insn, 0, 5); 7035 int rn = extract32(insn, 5, 5); 7036 int scale = extract32(insn, 10, 6); 7037 int opcode = extract32(insn, 16, 3); 7038 int rmode = extract32(insn, 19, 2); 7039 int type = extract32(insn, 22, 2); 7040 bool sbit = extract32(insn, 29, 1); 7041 bool sf = extract32(insn, 31, 1); 7042 bool itof; 7043 7044 if (sbit || (!sf && scale < 32)) { 7045 unallocated_encoding(s); 7046 return; 7047 } 7048 7049 switch (type) { 7050 case 0: /* float32 */ 7051 case 1: /* float64 */ 7052 break; 7053 case 3: /* float16 */ 7054 if (dc_isar_feature(aa64_fp16, s)) { 7055 break; 7056 } 7057 /* fallthru */ 7058 default: 7059 unallocated_encoding(s); 7060 return; 7061 } 7062 7063 switch ((rmode << 3) | opcode) { 7064 case 0x2: /* SCVTF */ 7065 case 0x3: /* UCVTF */ 7066 itof = true; 7067 break; 7068 case 0x18: /* FCVTZS */ 7069 case 0x19: /* FCVTZU */ 7070 itof = false; 7071 break; 7072 default: 7073 unallocated_encoding(s); 7074 return; 7075 } 7076 7077 if (!fp_access_check(s)) { 7078 return; 7079 } 7080 7081 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7082 } 7083 7084 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7085 { 7086 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7087 * without conversion. 7088 */ 7089 7090 if (itof) { 7091 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7092 TCGv_i64 tmp; 7093 7094 switch (type) { 7095 case 0: 7096 /* 32 bit */ 7097 tmp = tcg_temp_new_i64(); 7098 tcg_gen_ext32u_i64(tmp, tcg_rn); 7099 write_fp_dreg(s, rd, tmp); 7100 break; 7101 case 1: 7102 /* 64 bit */ 7103 write_fp_dreg(s, rd, tcg_rn); 7104 break; 7105 case 2: 7106 /* 64 bit to top half. */ 7107 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7108 clear_vec_high(s, true, rd); 7109 break; 7110 case 3: 7111 /* 16 bit */ 7112 tmp = tcg_temp_new_i64(); 7113 tcg_gen_ext16u_i64(tmp, tcg_rn); 7114 write_fp_dreg(s, rd, tmp); 7115 break; 7116 default: 7117 g_assert_not_reached(); 7118 } 7119 } else { 7120 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7121 7122 switch (type) { 7123 case 0: 7124 /* 32 bit */ 7125 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7126 break; 7127 case 1: 7128 /* 64 bit */ 7129 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7130 break; 7131 case 2: 7132 /* 64 bits from top half */ 7133 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7134 break; 7135 case 3: 7136 /* 16 bit */ 7137 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7138 break; 7139 default: 7140 g_assert_not_reached(); 7141 } 7142 } 7143 } 7144 7145 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7146 { 7147 TCGv_i64 t = read_fp_dreg(s, rn); 7148 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7149 7150 gen_helper_fjcvtzs(t, t, fpstatus); 7151 7152 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7153 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7154 tcg_gen_movi_i32(cpu_CF, 0); 7155 tcg_gen_movi_i32(cpu_NF, 0); 7156 tcg_gen_movi_i32(cpu_VF, 0); 7157 } 7158 7159 /* Floating point <-> integer conversions 7160 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7161 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7162 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7163 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7164 */ 7165 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7166 { 7167 int rd = extract32(insn, 0, 5); 7168 int rn = extract32(insn, 5, 5); 7169 int opcode = extract32(insn, 16, 3); 7170 int rmode = extract32(insn, 19, 2); 7171 int type = extract32(insn, 22, 2); 7172 bool sbit = extract32(insn, 29, 1); 7173 bool sf = extract32(insn, 31, 1); 7174 bool itof = false; 7175 7176 if (sbit) { 7177 goto do_unallocated; 7178 } 7179 7180 switch (opcode) { 7181 case 2: /* SCVTF */ 7182 case 3: /* UCVTF */ 7183 itof = true; 7184 /* fallthru */ 7185 case 4: /* FCVTAS */ 7186 case 5: /* FCVTAU */ 7187 if (rmode != 0) { 7188 goto do_unallocated; 7189 } 7190 /* fallthru */ 7191 case 0: /* FCVT[NPMZ]S */ 7192 case 1: /* FCVT[NPMZ]U */ 7193 switch (type) { 7194 case 0: /* float32 */ 7195 case 1: /* float64 */ 7196 break; 7197 case 3: /* float16 */ 7198 if (!dc_isar_feature(aa64_fp16, s)) { 7199 goto do_unallocated; 7200 } 7201 break; 7202 default: 7203 goto do_unallocated; 7204 } 7205 if (!fp_access_check(s)) { 7206 return; 7207 } 7208 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7209 break; 7210 7211 default: 7212 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7213 case 0b01100110: /* FMOV half <-> 32-bit int */ 7214 case 0b01100111: 7215 case 0b11100110: /* FMOV half <-> 64-bit int */ 7216 case 0b11100111: 7217 if (!dc_isar_feature(aa64_fp16, s)) { 7218 goto do_unallocated; 7219 } 7220 /* fallthru */ 7221 case 0b00000110: /* FMOV 32-bit */ 7222 case 0b00000111: 7223 case 0b10100110: /* FMOV 64-bit */ 7224 case 0b10100111: 7225 case 0b11001110: /* FMOV top half of 128-bit */ 7226 case 0b11001111: 7227 if (!fp_access_check(s)) { 7228 return; 7229 } 7230 itof = opcode & 1; 7231 handle_fmov(s, rd, rn, type, itof); 7232 break; 7233 7234 case 0b00111110: /* FJCVTZS */ 7235 if (!dc_isar_feature(aa64_jscvt, s)) { 7236 goto do_unallocated; 7237 } else if (fp_access_check(s)) { 7238 handle_fjcvtzs(s, rd, rn); 7239 } 7240 break; 7241 7242 default: 7243 do_unallocated: 7244 unallocated_encoding(s); 7245 return; 7246 } 7247 break; 7248 } 7249 } 7250 7251 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7252 * 31 30 29 28 25 24 0 7253 * +---+---+---+---------+-----------------------------+ 7254 * | | 0 | | 1 1 1 1 | | 7255 * +---+---+---+---------+-----------------------------+ 7256 */ 7257 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7258 { 7259 if (extract32(insn, 24, 1)) { 7260 /* Floating point data-processing (3 source) */ 7261 disas_fp_3src(s, insn); 7262 } else if (extract32(insn, 21, 1) == 0) { 7263 /* Floating point to fixed point conversions */ 7264 disas_fp_fixed_conv(s, insn); 7265 } else { 7266 switch (extract32(insn, 10, 2)) { 7267 case 1: 7268 /* Floating point conditional compare */ 7269 disas_fp_ccomp(s, insn); 7270 break; 7271 case 2: 7272 /* Floating point data-processing (2 source) */ 7273 disas_fp_2src(s, insn); 7274 break; 7275 case 3: 7276 /* Floating point conditional select */ 7277 disas_fp_csel(s, insn); 7278 break; 7279 case 0: 7280 switch (ctz32(extract32(insn, 12, 4))) { 7281 case 0: /* [15:12] == xxx1 */ 7282 /* Floating point immediate */ 7283 disas_fp_imm(s, insn); 7284 break; 7285 case 1: /* [15:12] == xx10 */ 7286 /* Floating point compare */ 7287 disas_fp_compare(s, insn); 7288 break; 7289 case 2: /* [15:12] == x100 */ 7290 /* Floating point data-processing (1 source) */ 7291 disas_fp_1src(s, insn); 7292 break; 7293 case 3: /* [15:12] == 1000 */ 7294 unallocated_encoding(s); 7295 break; 7296 default: /* [15:12] == 0000 */ 7297 /* Floating point <-> integer conversions */ 7298 disas_fp_int_conv(s, insn); 7299 break; 7300 } 7301 break; 7302 } 7303 } 7304 } 7305 7306 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7307 int pos) 7308 { 7309 /* Extract 64 bits from the middle of two concatenated 64 bit 7310 * vector register slices left:right. The extracted bits start 7311 * at 'pos' bits into the right (least significant) side. 7312 * We return the result in tcg_right, and guarantee not to 7313 * trash tcg_left. 7314 */ 7315 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7316 assert(pos > 0 && pos < 64); 7317 7318 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7319 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7320 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7321 } 7322 7323 /* EXT 7324 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7325 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7326 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7327 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7328 */ 7329 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7330 { 7331 int is_q = extract32(insn, 30, 1); 7332 int op2 = extract32(insn, 22, 2); 7333 int imm4 = extract32(insn, 11, 4); 7334 int rm = extract32(insn, 16, 5); 7335 int rn = extract32(insn, 5, 5); 7336 int rd = extract32(insn, 0, 5); 7337 int pos = imm4 << 3; 7338 TCGv_i64 tcg_resl, tcg_resh; 7339 7340 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7341 unallocated_encoding(s); 7342 return; 7343 } 7344 7345 if (!fp_access_check(s)) { 7346 return; 7347 } 7348 7349 tcg_resh = tcg_temp_new_i64(); 7350 tcg_resl = tcg_temp_new_i64(); 7351 7352 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7353 * either extracting 128 bits from a 128:128 concatenation, or 7354 * extracting 64 bits from a 64:64 concatenation. 7355 */ 7356 if (!is_q) { 7357 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7358 if (pos != 0) { 7359 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7360 do_ext64(s, tcg_resh, tcg_resl, pos); 7361 } 7362 } else { 7363 TCGv_i64 tcg_hh; 7364 typedef struct { 7365 int reg; 7366 int elt; 7367 } EltPosns; 7368 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7369 EltPosns *elt = eltposns; 7370 7371 if (pos >= 64) { 7372 elt++; 7373 pos -= 64; 7374 } 7375 7376 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7377 elt++; 7378 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7379 elt++; 7380 if (pos != 0) { 7381 do_ext64(s, tcg_resh, tcg_resl, pos); 7382 tcg_hh = tcg_temp_new_i64(); 7383 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7384 do_ext64(s, tcg_hh, tcg_resh, pos); 7385 } 7386 } 7387 7388 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7389 if (is_q) { 7390 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7391 } 7392 clear_vec_high(s, is_q, rd); 7393 } 7394 7395 /* TBL/TBX 7396 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7397 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7398 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7399 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7400 */ 7401 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7402 { 7403 int op2 = extract32(insn, 22, 2); 7404 int is_q = extract32(insn, 30, 1); 7405 int rm = extract32(insn, 16, 5); 7406 int rn = extract32(insn, 5, 5); 7407 int rd = extract32(insn, 0, 5); 7408 int is_tbx = extract32(insn, 12, 1); 7409 int len = (extract32(insn, 13, 2) + 1) * 16; 7410 7411 if (op2 != 0) { 7412 unallocated_encoding(s); 7413 return; 7414 } 7415 7416 if (!fp_access_check(s)) { 7417 return; 7418 } 7419 7420 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7421 vec_full_reg_offset(s, rm), cpu_env, 7422 is_q ? 16 : 8, vec_full_reg_size(s), 7423 (len << 6) | (is_tbx << 5) | rn, 7424 gen_helper_simd_tblx); 7425 } 7426 7427 /* ZIP/UZP/TRN 7428 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7429 * +---+---+-------------+------+---+------+---+------------------+------+ 7430 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7431 * +---+---+-------------+------+---+------+---+------------------+------+ 7432 */ 7433 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7434 { 7435 int rd = extract32(insn, 0, 5); 7436 int rn = extract32(insn, 5, 5); 7437 int rm = extract32(insn, 16, 5); 7438 int size = extract32(insn, 22, 2); 7439 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7440 * bit 2 indicates 1 vs 2 variant of the insn. 7441 */ 7442 int opcode = extract32(insn, 12, 2); 7443 bool part = extract32(insn, 14, 1); 7444 bool is_q = extract32(insn, 30, 1); 7445 int esize = 8 << size; 7446 int i; 7447 int datasize = is_q ? 128 : 64; 7448 int elements = datasize / esize; 7449 TCGv_i64 tcg_res[2], tcg_ele; 7450 7451 if (opcode == 0 || (size == 3 && !is_q)) { 7452 unallocated_encoding(s); 7453 return; 7454 } 7455 7456 if (!fp_access_check(s)) { 7457 return; 7458 } 7459 7460 tcg_res[0] = tcg_temp_new_i64(); 7461 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7462 tcg_ele = tcg_temp_new_i64(); 7463 7464 for (i = 0; i < elements; i++) { 7465 int o, w; 7466 7467 switch (opcode) { 7468 case 1: /* UZP1/2 */ 7469 { 7470 int midpoint = elements / 2; 7471 if (i < midpoint) { 7472 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7473 } else { 7474 read_vec_element(s, tcg_ele, rm, 7475 2 * (i - midpoint) + part, size); 7476 } 7477 break; 7478 } 7479 case 2: /* TRN1/2 */ 7480 if (i & 1) { 7481 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7482 } else { 7483 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7484 } 7485 break; 7486 case 3: /* ZIP1/2 */ 7487 { 7488 int base = part * elements / 2; 7489 if (i & 1) { 7490 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7491 } else { 7492 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7493 } 7494 break; 7495 } 7496 default: 7497 g_assert_not_reached(); 7498 } 7499 7500 w = (i * esize) / 64; 7501 o = (i * esize) % 64; 7502 if (o == 0) { 7503 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7504 } else { 7505 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7506 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7507 } 7508 } 7509 7510 for (i = 0; i <= is_q; ++i) { 7511 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7512 } 7513 clear_vec_high(s, is_q, rd); 7514 } 7515 7516 /* 7517 * do_reduction_op helper 7518 * 7519 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7520 * important for correct NaN propagation that we do these 7521 * operations in exactly the order specified by the pseudocode. 7522 * 7523 * This is a recursive function, TCG temps should be freed by the 7524 * calling function once it is done with the values. 7525 */ 7526 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7527 int esize, int size, int vmap, TCGv_ptr fpst) 7528 { 7529 if (esize == size) { 7530 int element; 7531 MemOp msize = esize == 16 ? MO_16 : MO_32; 7532 TCGv_i32 tcg_elem; 7533 7534 /* We should have one register left here */ 7535 assert(ctpop8(vmap) == 1); 7536 element = ctz32(vmap); 7537 assert(element < 8); 7538 7539 tcg_elem = tcg_temp_new_i32(); 7540 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7541 return tcg_elem; 7542 } else { 7543 int bits = size / 2; 7544 int shift = ctpop8(vmap) / 2; 7545 int vmap_lo = (vmap >> shift) & vmap; 7546 int vmap_hi = (vmap & ~vmap_lo); 7547 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7548 7549 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7550 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7551 tcg_res = tcg_temp_new_i32(); 7552 7553 switch (fpopcode) { 7554 case 0x0c: /* fmaxnmv half-precision */ 7555 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7556 break; 7557 case 0x0f: /* fmaxv half-precision */ 7558 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7559 break; 7560 case 0x1c: /* fminnmv half-precision */ 7561 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7562 break; 7563 case 0x1f: /* fminv half-precision */ 7564 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7565 break; 7566 case 0x2c: /* fmaxnmv */ 7567 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7568 break; 7569 case 0x2f: /* fmaxv */ 7570 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7571 break; 7572 case 0x3c: /* fminnmv */ 7573 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7574 break; 7575 case 0x3f: /* fminv */ 7576 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7577 break; 7578 default: 7579 g_assert_not_reached(); 7580 } 7581 return tcg_res; 7582 } 7583 } 7584 7585 /* AdvSIMD across lanes 7586 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7587 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7588 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7589 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7590 */ 7591 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7592 { 7593 int rd = extract32(insn, 0, 5); 7594 int rn = extract32(insn, 5, 5); 7595 int size = extract32(insn, 22, 2); 7596 int opcode = extract32(insn, 12, 5); 7597 bool is_q = extract32(insn, 30, 1); 7598 bool is_u = extract32(insn, 29, 1); 7599 bool is_fp = false; 7600 bool is_min = false; 7601 int esize; 7602 int elements; 7603 int i; 7604 TCGv_i64 tcg_res, tcg_elt; 7605 7606 switch (opcode) { 7607 case 0x1b: /* ADDV */ 7608 if (is_u) { 7609 unallocated_encoding(s); 7610 return; 7611 } 7612 /* fall through */ 7613 case 0x3: /* SADDLV, UADDLV */ 7614 case 0xa: /* SMAXV, UMAXV */ 7615 case 0x1a: /* SMINV, UMINV */ 7616 if (size == 3 || (size == 2 && !is_q)) { 7617 unallocated_encoding(s); 7618 return; 7619 } 7620 break; 7621 case 0xc: /* FMAXNMV, FMINNMV */ 7622 case 0xf: /* FMAXV, FMINV */ 7623 /* Bit 1 of size field encodes min vs max and the actual size 7624 * depends on the encoding of the U bit. If not set (and FP16 7625 * enabled) then we do half-precision float instead of single 7626 * precision. 7627 */ 7628 is_min = extract32(size, 1, 1); 7629 is_fp = true; 7630 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7631 size = 1; 7632 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7633 unallocated_encoding(s); 7634 return; 7635 } else { 7636 size = 2; 7637 } 7638 break; 7639 default: 7640 unallocated_encoding(s); 7641 return; 7642 } 7643 7644 if (!fp_access_check(s)) { 7645 return; 7646 } 7647 7648 esize = 8 << size; 7649 elements = (is_q ? 128 : 64) / esize; 7650 7651 tcg_res = tcg_temp_new_i64(); 7652 tcg_elt = tcg_temp_new_i64(); 7653 7654 /* These instructions operate across all lanes of a vector 7655 * to produce a single result. We can guarantee that a 64 7656 * bit intermediate is sufficient: 7657 * + for [US]ADDLV the maximum element size is 32 bits, and 7658 * the result type is 64 bits 7659 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7660 * same as the element size, which is 32 bits at most 7661 * For the integer operations we can choose to work at 64 7662 * or 32 bits and truncate at the end; for simplicity 7663 * we use 64 bits always. The floating point 7664 * ops do require 32 bit intermediates, though. 7665 */ 7666 if (!is_fp) { 7667 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7668 7669 for (i = 1; i < elements; i++) { 7670 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7671 7672 switch (opcode) { 7673 case 0x03: /* SADDLV / UADDLV */ 7674 case 0x1b: /* ADDV */ 7675 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7676 break; 7677 case 0x0a: /* SMAXV / UMAXV */ 7678 if (is_u) { 7679 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7680 } else { 7681 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7682 } 7683 break; 7684 case 0x1a: /* SMINV / UMINV */ 7685 if (is_u) { 7686 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7687 } else { 7688 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7689 } 7690 break; 7691 default: 7692 g_assert_not_reached(); 7693 } 7694 7695 } 7696 } else { 7697 /* Floating point vector reduction ops which work across 32 7698 * bit (single) or 16 bit (half-precision) intermediates. 7699 * Note that correct NaN propagation requires that we do these 7700 * operations in exactly the order specified by the pseudocode. 7701 */ 7702 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7703 int fpopcode = opcode | is_min << 4 | is_u << 5; 7704 int vmap = (1 << elements) - 1; 7705 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7706 (is_q ? 128 : 64), vmap, fpst); 7707 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7708 } 7709 7710 /* Now truncate the result to the width required for the final output */ 7711 if (opcode == 0x03) { 7712 /* SADDLV, UADDLV: result is 2*esize */ 7713 size++; 7714 } 7715 7716 switch (size) { 7717 case 0: 7718 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7719 break; 7720 case 1: 7721 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7722 break; 7723 case 2: 7724 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7725 break; 7726 case 3: 7727 break; 7728 default: 7729 g_assert_not_reached(); 7730 } 7731 7732 write_fp_dreg(s, rd, tcg_res); 7733 } 7734 7735 /* DUP (Element, Vector) 7736 * 7737 * 31 30 29 21 20 16 15 10 9 5 4 0 7738 * +---+---+-------------------+--------+-------------+------+------+ 7739 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7740 * +---+---+-------------------+--------+-------------+------+------+ 7741 * 7742 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7743 */ 7744 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7745 int imm5) 7746 { 7747 int size = ctz32(imm5); 7748 int index; 7749 7750 if (size > 3 || (size == 3 && !is_q)) { 7751 unallocated_encoding(s); 7752 return; 7753 } 7754 7755 if (!fp_access_check(s)) { 7756 return; 7757 } 7758 7759 index = imm5 >> (size + 1); 7760 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7761 vec_reg_offset(s, rn, index, size), 7762 is_q ? 16 : 8, vec_full_reg_size(s)); 7763 } 7764 7765 /* DUP (element, scalar) 7766 * 31 21 20 16 15 10 9 5 4 0 7767 * +-----------------------+--------+-------------+------+------+ 7768 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7769 * +-----------------------+--------+-------------+------+------+ 7770 */ 7771 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7772 int imm5) 7773 { 7774 int size = ctz32(imm5); 7775 int index; 7776 TCGv_i64 tmp; 7777 7778 if (size > 3) { 7779 unallocated_encoding(s); 7780 return; 7781 } 7782 7783 if (!fp_access_check(s)) { 7784 return; 7785 } 7786 7787 index = imm5 >> (size + 1); 7788 7789 /* This instruction just extracts the specified element and 7790 * zero-extends it into the bottom of the destination register. 7791 */ 7792 tmp = tcg_temp_new_i64(); 7793 read_vec_element(s, tmp, rn, index, size); 7794 write_fp_dreg(s, rd, tmp); 7795 } 7796 7797 /* DUP (General) 7798 * 7799 * 31 30 29 21 20 16 15 10 9 5 4 0 7800 * +---+---+-------------------+--------+-------------+------+------+ 7801 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7802 * +---+---+-------------------+--------+-------------+------+------+ 7803 * 7804 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7805 */ 7806 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7807 int imm5) 7808 { 7809 int size = ctz32(imm5); 7810 uint32_t dofs, oprsz, maxsz; 7811 7812 if (size > 3 || ((size == 3) && !is_q)) { 7813 unallocated_encoding(s); 7814 return; 7815 } 7816 7817 if (!fp_access_check(s)) { 7818 return; 7819 } 7820 7821 dofs = vec_full_reg_offset(s, rd); 7822 oprsz = is_q ? 16 : 8; 7823 maxsz = vec_full_reg_size(s); 7824 7825 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7826 } 7827 7828 /* INS (Element) 7829 * 7830 * 31 21 20 16 15 14 11 10 9 5 4 0 7831 * +-----------------------+--------+------------+---+------+------+ 7832 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7833 * +-----------------------+--------+------------+---+------+------+ 7834 * 7835 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7836 * index: encoded in imm5<4:size+1> 7837 */ 7838 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7839 int imm4, int imm5) 7840 { 7841 int size = ctz32(imm5); 7842 int src_index, dst_index; 7843 TCGv_i64 tmp; 7844 7845 if (size > 3) { 7846 unallocated_encoding(s); 7847 return; 7848 } 7849 7850 if (!fp_access_check(s)) { 7851 return; 7852 } 7853 7854 dst_index = extract32(imm5, 1+size, 5); 7855 src_index = extract32(imm4, size, 4); 7856 7857 tmp = tcg_temp_new_i64(); 7858 7859 read_vec_element(s, tmp, rn, src_index, size); 7860 write_vec_element(s, tmp, rd, dst_index, size); 7861 7862 /* INS is considered a 128-bit write for SVE. */ 7863 clear_vec_high(s, true, rd); 7864 } 7865 7866 7867 /* INS (General) 7868 * 7869 * 31 21 20 16 15 10 9 5 4 0 7870 * +-----------------------+--------+-------------+------+------+ 7871 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7872 * +-----------------------+--------+-------------+------+------+ 7873 * 7874 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7875 * index: encoded in imm5<4:size+1> 7876 */ 7877 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7878 { 7879 int size = ctz32(imm5); 7880 int idx; 7881 7882 if (size > 3) { 7883 unallocated_encoding(s); 7884 return; 7885 } 7886 7887 if (!fp_access_check(s)) { 7888 return; 7889 } 7890 7891 idx = extract32(imm5, 1 + size, 4 - size); 7892 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7893 7894 /* INS is considered a 128-bit write for SVE. */ 7895 clear_vec_high(s, true, rd); 7896 } 7897 7898 /* 7899 * UMOV (General) 7900 * SMOV (General) 7901 * 7902 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7903 * +---+---+-------------------+--------+-------------+------+------+ 7904 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7905 * +---+---+-------------------+--------+-------------+------+------+ 7906 * 7907 * U: unsigned when set 7908 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7909 */ 7910 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7911 int rn, int rd, int imm5) 7912 { 7913 int size = ctz32(imm5); 7914 int element; 7915 TCGv_i64 tcg_rd; 7916 7917 /* Check for UnallocatedEncodings */ 7918 if (is_signed) { 7919 if (size > 2 || (size == 2 && !is_q)) { 7920 unallocated_encoding(s); 7921 return; 7922 } 7923 } else { 7924 if (size > 3 7925 || (size < 3 && is_q) 7926 || (size == 3 && !is_q)) { 7927 unallocated_encoding(s); 7928 return; 7929 } 7930 } 7931 7932 if (!fp_access_check(s)) { 7933 return; 7934 } 7935 7936 element = extract32(imm5, 1+size, 4); 7937 7938 tcg_rd = cpu_reg(s, rd); 7939 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7940 if (is_signed && !is_q) { 7941 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7942 } 7943 } 7944 7945 /* AdvSIMD copy 7946 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7947 * +---+---+----+-----------------+------+---+------+---+------+------+ 7948 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7949 * +---+---+----+-----------------+------+---+------+---+------+------+ 7950 */ 7951 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7952 { 7953 int rd = extract32(insn, 0, 5); 7954 int rn = extract32(insn, 5, 5); 7955 int imm4 = extract32(insn, 11, 4); 7956 int op = extract32(insn, 29, 1); 7957 int is_q = extract32(insn, 30, 1); 7958 int imm5 = extract32(insn, 16, 5); 7959 7960 if (op) { 7961 if (is_q) { 7962 /* INS (element) */ 7963 handle_simd_inse(s, rd, rn, imm4, imm5); 7964 } else { 7965 unallocated_encoding(s); 7966 } 7967 } else { 7968 switch (imm4) { 7969 case 0: 7970 /* DUP (element - vector) */ 7971 handle_simd_dupe(s, is_q, rd, rn, imm5); 7972 break; 7973 case 1: 7974 /* DUP (general) */ 7975 handle_simd_dupg(s, is_q, rd, rn, imm5); 7976 break; 7977 case 3: 7978 if (is_q) { 7979 /* INS (general) */ 7980 handle_simd_insg(s, rd, rn, imm5); 7981 } else { 7982 unallocated_encoding(s); 7983 } 7984 break; 7985 case 5: 7986 case 7: 7987 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7988 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7989 break; 7990 default: 7991 unallocated_encoding(s); 7992 break; 7993 } 7994 } 7995 } 7996 7997 /* AdvSIMD modified immediate 7998 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7999 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8000 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8001 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8002 * 8003 * There are a number of operations that can be carried out here: 8004 * MOVI - move (shifted) imm into register 8005 * MVNI - move inverted (shifted) imm into register 8006 * ORR - bitwise OR of (shifted) imm with register 8007 * BIC - bitwise clear of (shifted) imm with register 8008 * With ARMv8.2 we also have: 8009 * FMOV half-precision 8010 */ 8011 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8012 { 8013 int rd = extract32(insn, 0, 5); 8014 int cmode = extract32(insn, 12, 4); 8015 int o2 = extract32(insn, 11, 1); 8016 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8017 bool is_neg = extract32(insn, 29, 1); 8018 bool is_q = extract32(insn, 30, 1); 8019 uint64_t imm = 0; 8020 8021 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8022 /* Check for FMOV (vector, immediate) - half-precision */ 8023 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8024 unallocated_encoding(s); 8025 return; 8026 } 8027 } 8028 8029 if (!fp_access_check(s)) { 8030 return; 8031 } 8032 8033 if (cmode == 15 && o2 && !is_neg) { 8034 /* FMOV (vector, immediate) - half-precision */ 8035 imm = vfp_expand_imm(MO_16, abcdefgh); 8036 /* now duplicate across the lanes */ 8037 imm = dup_const(MO_16, imm); 8038 } else { 8039 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8040 } 8041 8042 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8043 /* MOVI or MVNI, with MVNI negation handled above. */ 8044 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8045 vec_full_reg_size(s), imm); 8046 } else { 8047 /* ORR or BIC, with BIC negation to AND handled above. */ 8048 if (is_neg) { 8049 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8050 } else { 8051 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8052 } 8053 } 8054 } 8055 8056 /* AdvSIMD scalar copy 8057 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8058 * +-----+----+-----------------+------+---+------+---+------+------+ 8059 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8060 * +-----+----+-----------------+------+---+------+---+------+------+ 8061 */ 8062 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8063 { 8064 int rd = extract32(insn, 0, 5); 8065 int rn = extract32(insn, 5, 5); 8066 int imm4 = extract32(insn, 11, 4); 8067 int imm5 = extract32(insn, 16, 5); 8068 int op = extract32(insn, 29, 1); 8069 8070 if (op != 0 || imm4 != 0) { 8071 unallocated_encoding(s); 8072 return; 8073 } 8074 8075 /* DUP (element, scalar) */ 8076 handle_simd_dupes(s, rd, rn, imm5); 8077 } 8078 8079 /* AdvSIMD scalar pairwise 8080 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8081 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8082 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8083 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8084 */ 8085 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8086 { 8087 int u = extract32(insn, 29, 1); 8088 int size = extract32(insn, 22, 2); 8089 int opcode = extract32(insn, 12, 5); 8090 int rn = extract32(insn, 5, 5); 8091 int rd = extract32(insn, 0, 5); 8092 TCGv_ptr fpst; 8093 8094 /* For some ops (the FP ones), size[1] is part of the encoding. 8095 * For ADDP strictly it is not but size[1] is always 1 for valid 8096 * encodings. 8097 */ 8098 opcode |= (extract32(size, 1, 1) << 5); 8099 8100 switch (opcode) { 8101 case 0x3b: /* ADDP */ 8102 if (u || size != 3) { 8103 unallocated_encoding(s); 8104 return; 8105 } 8106 if (!fp_access_check(s)) { 8107 return; 8108 } 8109 8110 fpst = NULL; 8111 break; 8112 case 0xc: /* FMAXNMP */ 8113 case 0xd: /* FADDP */ 8114 case 0xf: /* FMAXP */ 8115 case 0x2c: /* FMINNMP */ 8116 case 0x2f: /* FMINP */ 8117 /* FP op, size[0] is 32 or 64 bit*/ 8118 if (!u) { 8119 if (!dc_isar_feature(aa64_fp16, s)) { 8120 unallocated_encoding(s); 8121 return; 8122 } else { 8123 size = MO_16; 8124 } 8125 } else { 8126 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8127 } 8128 8129 if (!fp_access_check(s)) { 8130 return; 8131 } 8132 8133 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8134 break; 8135 default: 8136 unallocated_encoding(s); 8137 return; 8138 } 8139 8140 if (size == MO_64) { 8141 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8142 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8143 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8144 8145 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8146 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8147 8148 switch (opcode) { 8149 case 0x3b: /* ADDP */ 8150 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8151 break; 8152 case 0xc: /* FMAXNMP */ 8153 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8154 break; 8155 case 0xd: /* FADDP */ 8156 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8157 break; 8158 case 0xf: /* FMAXP */ 8159 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8160 break; 8161 case 0x2c: /* FMINNMP */ 8162 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8163 break; 8164 case 0x2f: /* FMINP */ 8165 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8166 break; 8167 default: 8168 g_assert_not_reached(); 8169 } 8170 8171 write_fp_dreg(s, rd, tcg_res); 8172 } else { 8173 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8174 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8175 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8176 8177 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8178 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8179 8180 if (size == MO_16) { 8181 switch (opcode) { 8182 case 0xc: /* FMAXNMP */ 8183 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8184 break; 8185 case 0xd: /* FADDP */ 8186 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8187 break; 8188 case 0xf: /* FMAXP */ 8189 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8190 break; 8191 case 0x2c: /* FMINNMP */ 8192 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8193 break; 8194 case 0x2f: /* FMINP */ 8195 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8196 break; 8197 default: 8198 g_assert_not_reached(); 8199 } 8200 } else { 8201 switch (opcode) { 8202 case 0xc: /* FMAXNMP */ 8203 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8204 break; 8205 case 0xd: /* FADDP */ 8206 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8207 break; 8208 case 0xf: /* FMAXP */ 8209 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8210 break; 8211 case 0x2c: /* FMINNMP */ 8212 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8213 break; 8214 case 0x2f: /* FMINP */ 8215 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8216 break; 8217 default: 8218 g_assert_not_reached(); 8219 } 8220 } 8221 8222 write_fp_sreg(s, rd, tcg_res); 8223 } 8224 } 8225 8226 /* 8227 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8228 * 8229 * This code is handles the common shifting code and is used by both 8230 * the vector and scalar code. 8231 */ 8232 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8233 TCGv_i64 tcg_rnd, bool accumulate, 8234 bool is_u, int size, int shift) 8235 { 8236 bool extended_result = false; 8237 bool round = tcg_rnd != NULL; 8238 int ext_lshift = 0; 8239 TCGv_i64 tcg_src_hi; 8240 8241 if (round && size == 3) { 8242 extended_result = true; 8243 ext_lshift = 64 - shift; 8244 tcg_src_hi = tcg_temp_new_i64(); 8245 } else if (shift == 64) { 8246 if (!accumulate && is_u) { 8247 /* result is zero */ 8248 tcg_gen_movi_i64(tcg_res, 0); 8249 return; 8250 } 8251 } 8252 8253 /* Deal with the rounding step */ 8254 if (round) { 8255 if (extended_result) { 8256 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8257 if (!is_u) { 8258 /* take care of sign extending tcg_res */ 8259 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8260 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8261 tcg_src, tcg_src_hi, 8262 tcg_rnd, tcg_zero); 8263 } else { 8264 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8265 tcg_src, tcg_zero, 8266 tcg_rnd, tcg_zero); 8267 } 8268 } else { 8269 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8270 } 8271 } 8272 8273 /* Now do the shift right */ 8274 if (round && extended_result) { 8275 /* extended case, >64 bit precision required */ 8276 if (ext_lshift == 0) { 8277 /* special case, only high bits matter */ 8278 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8279 } else { 8280 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8281 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8282 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8283 } 8284 } else { 8285 if (is_u) { 8286 if (shift == 64) { 8287 /* essentially shifting in 64 zeros */ 8288 tcg_gen_movi_i64(tcg_src, 0); 8289 } else { 8290 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8291 } 8292 } else { 8293 if (shift == 64) { 8294 /* effectively extending the sign-bit */ 8295 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8296 } else { 8297 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8298 } 8299 } 8300 } 8301 8302 if (accumulate) { 8303 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8304 } else { 8305 tcg_gen_mov_i64(tcg_res, tcg_src); 8306 } 8307 } 8308 8309 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8310 static void handle_scalar_simd_shri(DisasContext *s, 8311 bool is_u, int immh, int immb, 8312 int opcode, int rn, int rd) 8313 { 8314 const int size = 3; 8315 int immhb = immh << 3 | immb; 8316 int shift = 2 * (8 << size) - immhb; 8317 bool accumulate = false; 8318 bool round = false; 8319 bool insert = false; 8320 TCGv_i64 tcg_rn; 8321 TCGv_i64 tcg_rd; 8322 TCGv_i64 tcg_round; 8323 8324 if (!extract32(immh, 3, 1)) { 8325 unallocated_encoding(s); 8326 return; 8327 } 8328 8329 if (!fp_access_check(s)) { 8330 return; 8331 } 8332 8333 switch (opcode) { 8334 case 0x02: /* SSRA / USRA (accumulate) */ 8335 accumulate = true; 8336 break; 8337 case 0x04: /* SRSHR / URSHR (rounding) */ 8338 round = true; 8339 break; 8340 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8341 accumulate = round = true; 8342 break; 8343 case 0x08: /* SRI */ 8344 insert = true; 8345 break; 8346 } 8347 8348 if (round) { 8349 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8350 } else { 8351 tcg_round = NULL; 8352 } 8353 8354 tcg_rn = read_fp_dreg(s, rn); 8355 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8356 8357 if (insert) { 8358 /* shift count same as element size is valid but does nothing; 8359 * special case to avoid potential shift by 64. 8360 */ 8361 int esize = 8 << size; 8362 if (shift != esize) { 8363 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8364 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8365 } 8366 } else { 8367 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8368 accumulate, is_u, size, shift); 8369 } 8370 8371 write_fp_dreg(s, rd, tcg_rd); 8372 } 8373 8374 /* SHL/SLI - Scalar shift left */ 8375 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8376 int immh, int immb, int opcode, 8377 int rn, int rd) 8378 { 8379 int size = 32 - clz32(immh) - 1; 8380 int immhb = immh << 3 | immb; 8381 int shift = immhb - (8 << size); 8382 TCGv_i64 tcg_rn; 8383 TCGv_i64 tcg_rd; 8384 8385 if (!extract32(immh, 3, 1)) { 8386 unallocated_encoding(s); 8387 return; 8388 } 8389 8390 if (!fp_access_check(s)) { 8391 return; 8392 } 8393 8394 tcg_rn = read_fp_dreg(s, rn); 8395 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8396 8397 if (insert) { 8398 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8399 } else { 8400 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8401 } 8402 8403 write_fp_dreg(s, rd, tcg_rd); 8404 } 8405 8406 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8407 * (signed/unsigned) narrowing */ 8408 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8409 bool is_u_shift, bool is_u_narrow, 8410 int immh, int immb, int opcode, 8411 int rn, int rd) 8412 { 8413 int immhb = immh << 3 | immb; 8414 int size = 32 - clz32(immh) - 1; 8415 int esize = 8 << size; 8416 int shift = (2 * esize) - immhb; 8417 int elements = is_scalar ? 1 : (64 / esize); 8418 bool round = extract32(opcode, 0, 1); 8419 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8420 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8421 TCGv_i32 tcg_rd_narrowed; 8422 TCGv_i64 tcg_final; 8423 8424 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8425 { gen_helper_neon_narrow_sat_s8, 8426 gen_helper_neon_unarrow_sat8 }, 8427 { gen_helper_neon_narrow_sat_s16, 8428 gen_helper_neon_unarrow_sat16 }, 8429 { gen_helper_neon_narrow_sat_s32, 8430 gen_helper_neon_unarrow_sat32 }, 8431 { NULL, NULL }, 8432 }; 8433 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8434 gen_helper_neon_narrow_sat_u8, 8435 gen_helper_neon_narrow_sat_u16, 8436 gen_helper_neon_narrow_sat_u32, 8437 NULL 8438 }; 8439 NeonGenNarrowEnvFn *narrowfn; 8440 8441 int i; 8442 8443 assert(size < 4); 8444 8445 if (extract32(immh, 3, 1)) { 8446 unallocated_encoding(s); 8447 return; 8448 } 8449 8450 if (!fp_access_check(s)) { 8451 return; 8452 } 8453 8454 if (is_u_shift) { 8455 narrowfn = unsigned_narrow_fns[size]; 8456 } else { 8457 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8458 } 8459 8460 tcg_rn = tcg_temp_new_i64(); 8461 tcg_rd = tcg_temp_new_i64(); 8462 tcg_rd_narrowed = tcg_temp_new_i32(); 8463 tcg_final = tcg_temp_new_i64(); 8464 8465 if (round) { 8466 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8467 } else { 8468 tcg_round = NULL; 8469 } 8470 8471 for (i = 0; i < elements; i++) { 8472 read_vec_element(s, tcg_rn, rn, i, ldop); 8473 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8474 false, is_u_shift, size+1, shift); 8475 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8476 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8477 if (i == 0) { 8478 tcg_gen_mov_i64(tcg_final, tcg_rd); 8479 } else { 8480 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8481 } 8482 } 8483 8484 if (!is_q) { 8485 write_vec_element(s, tcg_final, rd, 0, MO_64); 8486 } else { 8487 write_vec_element(s, tcg_final, rd, 1, MO_64); 8488 } 8489 clear_vec_high(s, is_q, rd); 8490 } 8491 8492 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8493 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8494 bool src_unsigned, bool dst_unsigned, 8495 int immh, int immb, int rn, int rd) 8496 { 8497 int immhb = immh << 3 | immb; 8498 int size = 32 - clz32(immh) - 1; 8499 int shift = immhb - (8 << size); 8500 int pass; 8501 8502 assert(immh != 0); 8503 assert(!(scalar && is_q)); 8504 8505 if (!scalar) { 8506 if (!is_q && extract32(immh, 3, 1)) { 8507 unallocated_encoding(s); 8508 return; 8509 } 8510 8511 /* Since we use the variable-shift helpers we must 8512 * replicate the shift count into each element of 8513 * the tcg_shift value. 8514 */ 8515 switch (size) { 8516 case 0: 8517 shift |= shift << 8; 8518 /* fall through */ 8519 case 1: 8520 shift |= shift << 16; 8521 break; 8522 case 2: 8523 case 3: 8524 break; 8525 default: 8526 g_assert_not_reached(); 8527 } 8528 } 8529 8530 if (!fp_access_check(s)) { 8531 return; 8532 } 8533 8534 if (size == 3) { 8535 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8536 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8537 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8538 { NULL, gen_helper_neon_qshl_u64 }, 8539 }; 8540 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8541 int maxpass = is_q ? 2 : 1; 8542 8543 for (pass = 0; pass < maxpass; pass++) { 8544 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8545 8546 read_vec_element(s, tcg_op, rn, pass, MO_64); 8547 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8548 write_vec_element(s, tcg_op, rd, pass, MO_64); 8549 } 8550 clear_vec_high(s, is_q, rd); 8551 } else { 8552 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8553 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8554 { 8555 { gen_helper_neon_qshl_s8, 8556 gen_helper_neon_qshl_s16, 8557 gen_helper_neon_qshl_s32 }, 8558 { gen_helper_neon_qshlu_s8, 8559 gen_helper_neon_qshlu_s16, 8560 gen_helper_neon_qshlu_s32 } 8561 }, { 8562 { NULL, NULL, NULL }, 8563 { gen_helper_neon_qshl_u8, 8564 gen_helper_neon_qshl_u16, 8565 gen_helper_neon_qshl_u32 } 8566 } 8567 }; 8568 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8569 MemOp memop = scalar ? size : MO_32; 8570 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8571 8572 for (pass = 0; pass < maxpass; pass++) { 8573 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8574 8575 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8576 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8577 if (scalar) { 8578 switch (size) { 8579 case 0: 8580 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8581 break; 8582 case 1: 8583 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8584 break; 8585 case 2: 8586 break; 8587 default: 8588 g_assert_not_reached(); 8589 } 8590 write_fp_sreg(s, rd, tcg_op); 8591 } else { 8592 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8593 } 8594 } 8595 8596 if (!scalar) { 8597 clear_vec_high(s, is_q, rd); 8598 } 8599 } 8600 } 8601 8602 /* Common vector code for handling integer to FP conversion */ 8603 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8604 int elements, int is_signed, 8605 int fracbits, int size) 8606 { 8607 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8608 TCGv_i32 tcg_shift = NULL; 8609 8610 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8611 int pass; 8612 8613 if (fracbits || size == MO_64) { 8614 tcg_shift = tcg_constant_i32(fracbits); 8615 } 8616 8617 if (size == MO_64) { 8618 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8619 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8620 8621 for (pass = 0; pass < elements; pass++) { 8622 read_vec_element(s, tcg_int64, rn, pass, mop); 8623 8624 if (is_signed) { 8625 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8626 tcg_shift, tcg_fpst); 8627 } else { 8628 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8629 tcg_shift, tcg_fpst); 8630 } 8631 if (elements == 1) { 8632 write_fp_dreg(s, rd, tcg_double); 8633 } else { 8634 write_vec_element(s, tcg_double, rd, pass, MO_64); 8635 } 8636 } 8637 } else { 8638 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8639 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8640 8641 for (pass = 0; pass < elements; pass++) { 8642 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8643 8644 switch (size) { 8645 case MO_32: 8646 if (fracbits) { 8647 if (is_signed) { 8648 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8649 tcg_shift, tcg_fpst); 8650 } else { 8651 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8652 tcg_shift, tcg_fpst); 8653 } 8654 } else { 8655 if (is_signed) { 8656 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8657 } else { 8658 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8659 } 8660 } 8661 break; 8662 case MO_16: 8663 if (fracbits) { 8664 if (is_signed) { 8665 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8666 tcg_shift, tcg_fpst); 8667 } else { 8668 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8669 tcg_shift, tcg_fpst); 8670 } 8671 } else { 8672 if (is_signed) { 8673 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8674 } else { 8675 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8676 } 8677 } 8678 break; 8679 default: 8680 g_assert_not_reached(); 8681 } 8682 8683 if (elements == 1) { 8684 write_fp_sreg(s, rd, tcg_float); 8685 } else { 8686 write_vec_element_i32(s, tcg_float, rd, pass, size); 8687 } 8688 } 8689 } 8690 8691 clear_vec_high(s, elements << size == 16, rd); 8692 } 8693 8694 /* UCVTF/SCVTF - Integer to FP conversion */ 8695 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8696 bool is_q, bool is_u, 8697 int immh, int immb, int opcode, 8698 int rn, int rd) 8699 { 8700 int size, elements, fracbits; 8701 int immhb = immh << 3 | immb; 8702 8703 if (immh & 8) { 8704 size = MO_64; 8705 if (!is_scalar && !is_q) { 8706 unallocated_encoding(s); 8707 return; 8708 } 8709 } else if (immh & 4) { 8710 size = MO_32; 8711 } else if (immh & 2) { 8712 size = MO_16; 8713 if (!dc_isar_feature(aa64_fp16, s)) { 8714 unallocated_encoding(s); 8715 return; 8716 } 8717 } else { 8718 /* immh == 0 would be a failure of the decode logic */ 8719 g_assert(immh == 1); 8720 unallocated_encoding(s); 8721 return; 8722 } 8723 8724 if (is_scalar) { 8725 elements = 1; 8726 } else { 8727 elements = (8 << is_q) >> size; 8728 } 8729 fracbits = (16 << size) - immhb; 8730 8731 if (!fp_access_check(s)) { 8732 return; 8733 } 8734 8735 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8736 } 8737 8738 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8739 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8740 bool is_q, bool is_u, 8741 int immh, int immb, int rn, int rd) 8742 { 8743 int immhb = immh << 3 | immb; 8744 int pass, size, fracbits; 8745 TCGv_ptr tcg_fpstatus; 8746 TCGv_i32 tcg_rmode, tcg_shift; 8747 8748 if (immh & 0x8) { 8749 size = MO_64; 8750 if (!is_scalar && !is_q) { 8751 unallocated_encoding(s); 8752 return; 8753 } 8754 } else if (immh & 0x4) { 8755 size = MO_32; 8756 } else if (immh & 0x2) { 8757 size = MO_16; 8758 if (!dc_isar_feature(aa64_fp16, s)) { 8759 unallocated_encoding(s); 8760 return; 8761 } 8762 } else { 8763 /* Should have split out AdvSIMD modified immediate earlier. */ 8764 assert(immh == 1); 8765 unallocated_encoding(s); 8766 return; 8767 } 8768 8769 if (!fp_access_check(s)) { 8770 return; 8771 } 8772 8773 assert(!(is_scalar && is_q)); 8774 8775 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8776 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8777 fracbits = (16 << size) - immhb; 8778 tcg_shift = tcg_constant_i32(fracbits); 8779 8780 if (size == MO_64) { 8781 int maxpass = is_scalar ? 1 : 2; 8782 8783 for (pass = 0; pass < maxpass; pass++) { 8784 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8785 8786 read_vec_element(s, tcg_op, rn, pass, MO_64); 8787 if (is_u) { 8788 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8789 } else { 8790 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8791 } 8792 write_vec_element(s, tcg_op, rd, pass, MO_64); 8793 } 8794 clear_vec_high(s, is_q, rd); 8795 } else { 8796 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8797 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8798 8799 switch (size) { 8800 case MO_16: 8801 if (is_u) { 8802 fn = gen_helper_vfp_touhh; 8803 } else { 8804 fn = gen_helper_vfp_toshh; 8805 } 8806 break; 8807 case MO_32: 8808 if (is_u) { 8809 fn = gen_helper_vfp_touls; 8810 } else { 8811 fn = gen_helper_vfp_tosls; 8812 } 8813 break; 8814 default: 8815 g_assert_not_reached(); 8816 } 8817 8818 for (pass = 0; pass < maxpass; pass++) { 8819 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8820 8821 read_vec_element_i32(s, tcg_op, rn, pass, size); 8822 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8823 if (is_scalar) { 8824 write_fp_sreg(s, rd, tcg_op); 8825 } else { 8826 write_vec_element_i32(s, tcg_op, rd, pass, size); 8827 } 8828 } 8829 if (!is_scalar) { 8830 clear_vec_high(s, is_q, rd); 8831 } 8832 } 8833 8834 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8835 } 8836 8837 /* AdvSIMD scalar shift by immediate 8838 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8839 * +-----+---+-------------+------+------+--------+---+------+------+ 8840 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8841 * +-----+---+-------------+------+------+--------+---+------+------+ 8842 * 8843 * This is the scalar version so it works on a fixed sized registers 8844 */ 8845 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8846 { 8847 int rd = extract32(insn, 0, 5); 8848 int rn = extract32(insn, 5, 5); 8849 int opcode = extract32(insn, 11, 5); 8850 int immb = extract32(insn, 16, 3); 8851 int immh = extract32(insn, 19, 4); 8852 bool is_u = extract32(insn, 29, 1); 8853 8854 if (immh == 0) { 8855 unallocated_encoding(s); 8856 return; 8857 } 8858 8859 switch (opcode) { 8860 case 0x08: /* SRI */ 8861 if (!is_u) { 8862 unallocated_encoding(s); 8863 return; 8864 } 8865 /* fall through */ 8866 case 0x00: /* SSHR / USHR */ 8867 case 0x02: /* SSRA / USRA */ 8868 case 0x04: /* SRSHR / URSHR */ 8869 case 0x06: /* SRSRA / URSRA */ 8870 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8871 break; 8872 case 0x0a: /* SHL / SLI */ 8873 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8874 break; 8875 case 0x1c: /* SCVTF, UCVTF */ 8876 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8877 opcode, rn, rd); 8878 break; 8879 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8880 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8881 if (!is_u) { 8882 unallocated_encoding(s); 8883 return; 8884 } 8885 handle_vec_simd_sqshrn(s, true, false, false, true, 8886 immh, immb, opcode, rn, rd); 8887 break; 8888 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8889 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8890 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8891 immh, immb, opcode, rn, rd); 8892 break; 8893 case 0xc: /* SQSHLU */ 8894 if (!is_u) { 8895 unallocated_encoding(s); 8896 return; 8897 } 8898 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8899 break; 8900 case 0xe: /* SQSHL, UQSHL */ 8901 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8902 break; 8903 case 0x1f: /* FCVTZS, FCVTZU */ 8904 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8905 break; 8906 default: 8907 unallocated_encoding(s); 8908 break; 8909 } 8910 } 8911 8912 /* AdvSIMD scalar three different 8913 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8914 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8915 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8916 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8917 */ 8918 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8919 { 8920 bool is_u = extract32(insn, 29, 1); 8921 int size = extract32(insn, 22, 2); 8922 int opcode = extract32(insn, 12, 4); 8923 int rm = extract32(insn, 16, 5); 8924 int rn = extract32(insn, 5, 5); 8925 int rd = extract32(insn, 0, 5); 8926 8927 if (is_u) { 8928 unallocated_encoding(s); 8929 return; 8930 } 8931 8932 switch (opcode) { 8933 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8934 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8935 case 0xd: /* SQDMULL, SQDMULL2 */ 8936 if (size == 0 || size == 3) { 8937 unallocated_encoding(s); 8938 return; 8939 } 8940 break; 8941 default: 8942 unallocated_encoding(s); 8943 return; 8944 } 8945 8946 if (!fp_access_check(s)) { 8947 return; 8948 } 8949 8950 if (size == 2) { 8951 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8952 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8953 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8954 8955 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8956 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8957 8958 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8959 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8960 8961 switch (opcode) { 8962 case 0xd: /* SQDMULL, SQDMULL2 */ 8963 break; 8964 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8965 tcg_gen_neg_i64(tcg_res, tcg_res); 8966 /* fall through */ 8967 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8968 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8969 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8970 tcg_res, tcg_op1); 8971 break; 8972 default: 8973 g_assert_not_reached(); 8974 } 8975 8976 write_fp_dreg(s, rd, tcg_res); 8977 } else { 8978 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8979 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8980 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8981 8982 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8983 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8984 8985 switch (opcode) { 8986 case 0xd: /* SQDMULL, SQDMULL2 */ 8987 break; 8988 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8989 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8990 /* fall through */ 8991 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8992 { 8993 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8994 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8995 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8996 tcg_res, tcg_op3); 8997 break; 8998 } 8999 default: 9000 g_assert_not_reached(); 9001 } 9002 9003 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9004 write_fp_dreg(s, rd, tcg_res); 9005 } 9006 } 9007 9008 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9009 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9010 { 9011 /* Handle 64x64->64 opcodes which are shared between the scalar 9012 * and vector 3-same groups. We cover every opcode where size == 3 9013 * is valid in either the three-reg-same (integer, not pairwise) 9014 * or scalar-three-reg-same groups. 9015 */ 9016 TCGCond cond; 9017 9018 switch (opcode) { 9019 case 0x1: /* SQADD */ 9020 if (u) { 9021 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9022 } else { 9023 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9024 } 9025 break; 9026 case 0x5: /* SQSUB */ 9027 if (u) { 9028 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9029 } else { 9030 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9031 } 9032 break; 9033 case 0x6: /* CMGT, CMHI */ 9034 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9035 * We implement this using setcond (test) and then negating. 9036 */ 9037 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9038 do_cmop: 9039 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9040 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9041 break; 9042 case 0x7: /* CMGE, CMHS */ 9043 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9044 goto do_cmop; 9045 case 0x11: /* CMTST, CMEQ */ 9046 if (u) { 9047 cond = TCG_COND_EQ; 9048 goto do_cmop; 9049 } 9050 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9051 break; 9052 case 0x8: /* SSHL, USHL */ 9053 if (u) { 9054 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9055 } else { 9056 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9057 } 9058 break; 9059 case 0x9: /* SQSHL, UQSHL */ 9060 if (u) { 9061 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9062 } else { 9063 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9064 } 9065 break; 9066 case 0xa: /* SRSHL, URSHL */ 9067 if (u) { 9068 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9069 } else { 9070 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9071 } 9072 break; 9073 case 0xb: /* SQRSHL, UQRSHL */ 9074 if (u) { 9075 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9076 } else { 9077 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9078 } 9079 break; 9080 case 0x10: /* ADD, SUB */ 9081 if (u) { 9082 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9083 } else { 9084 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9085 } 9086 break; 9087 default: 9088 g_assert_not_reached(); 9089 } 9090 } 9091 9092 /* Handle the 3-same-operands float operations; shared by the scalar 9093 * and vector encodings. The caller must filter out any encodings 9094 * not allocated for the encoding it is dealing with. 9095 */ 9096 static void handle_3same_float(DisasContext *s, int size, int elements, 9097 int fpopcode, int rd, int rn, int rm) 9098 { 9099 int pass; 9100 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9101 9102 for (pass = 0; pass < elements; pass++) { 9103 if (size) { 9104 /* Double */ 9105 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9106 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9107 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9108 9109 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9110 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9111 9112 switch (fpopcode) { 9113 case 0x39: /* FMLS */ 9114 /* As usual for ARM, separate negation for fused multiply-add */ 9115 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9116 /* fall through */ 9117 case 0x19: /* FMLA */ 9118 read_vec_element(s, tcg_res, rd, pass, MO_64); 9119 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9120 tcg_res, fpst); 9121 break; 9122 case 0x18: /* FMAXNM */ 9123 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9124 break; 9125 case 0x1a: /* FADD */ 9126 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9127 break; 9128 case 0x1b: /* FMULX */ 9129 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9130 break; 9131 case 0x1c: /* FCMEQ */ 9132 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9133 break; 9134 case 0x1e: /* FMAX */ 9135 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9136 break; 9137 case 0x1f: /* FRECPS */ 9138 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9139 break; 9140 case 0x38: /* FMINNM */ 9141 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9142 break; 9143 case 0x3a: /* FSUB */ 9144 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x3e: /* FMIN */ 9147 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9148 break; 9149 case 0x3f: /* FRSQRTS */ 9150 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9151 break; 9152 case 0x5b: /* FMUL */ 9153 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9154 break; 9155 case 0x5c: /* FCMGE */ 9156 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9157 break; 9158 case 0x5d: /* FACGE */ 9159 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9160 break; 9161 case 0x5f: /* FDIV */ 9162 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9163 break; 9164 case 0x7a: /* FABD */ 9165 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9166 gen_helper_vfp_absd(tcg_res, tcg_res); 9167 break; 9168 case 0x7c: /* FCMGT */ 9169 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9170 break; 9171 case 0x7d: /* FACGT */ 9172 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9173 break; 9174 default: 9175 g_assert_not_reached(); 9176 } 9177 9178 write_vec_element(s, tcg_res, rd, pass, MO_64); 9179 } else { 9180 /* Single */ 9181 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9182 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9183 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9184 9185 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9186 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9187 9188 switch (fpopcode) { 9189 case 0x39: /* FMLS */ 9190 /* As usual for ARM, separate negation for fused multiply-add */ 9191 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9192 /* fall through */ 9193 case 0x19: /* FMLA */ 9194 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9195 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9196 tcg_res, fpst); 9197 break; 9198 case 0x1a: /* FADD */ 9199 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9200 break; 9201 case 0x1b: /* FMULX */ 9202 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9203 break; 9204 case 0x1c: /* FCMEQ */ 9205 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9206 break; 9207 case 0x1e: /* FMAX */ 9208 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9209 break; 9210 case 0x1f: /* FRECPS */ 9211 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9212 break; 9213 case 0x18: /* FMAXNM */ 9214 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9215 break; 9216 case 0x38: /* FMINNM */ 9217 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9218 break; 9219 case 0x3a: /* FSUB */ 9220 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9221 break; 9222 case 0x3e: /* FMIN */ 9223 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9224 break; 9225 case 0x3f: /* FRSQRTS */ 9226 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9227 break; 9228 case 0x5b: /* FMUL */ 9229 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9230 break; 9231 case 0x5c: /* FCMGE */ 9232 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9233 break; 9234 case 0x5d: /* FACGE */ 9235 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9236 break; 9237 case 0x5f: /* FDIV */ 9238 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9239 break; 9240 case 0x7a: /* FABD */ 9241 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9242 gen_helper_vfp_abss(tcg_res, tcg_res); 9243 break; 9244 case 0x7c: /* FCMGT */ 9245 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9246 break; 9247 case 0x7d: /* FACGT */ 9248 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9249 break; 9250 default: 9251 g_assert_not_reached(); 9252 } 9253 9254 if (elements == 1) { 9255 /* scalar single so clear high part */ 9256 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9257 9258 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9259 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9260 } else { 9261 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9262 } 9263 } 9264 } 9265 9266 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9267 } 9268 9269 /* AdvSIMD scalar three same 9270 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9271 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9272 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9273 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9274 */ 9275 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9276 { 9277 int rd = extract32(insn, 0, 5); 9278 int rn = extract32(insn, 5, 5); 9279 int opcode = extract32(insn, 11, 5); 9280 int rm = extract32(insn, 16, 5); 9281 int size = extract32(insn, 22, 2); 9282 bool u = extract32(insn, 29, 1); 9283 TCGv_i64 tcg_rd; 9284 9285 if (opcode >= 0x18) { 9286 /* Floating point: U, size[1] and opcode indicate operation */ 9287 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9288 switch (fpopcode) { 9289 case 0x1b: /* FMULX */ 9290 case 0x1f: /* FRECPS */ 9291 case 0x3f: /* FRSQRTS */ 9292 case 0x5d: /* FACGE */ 9293 case 0x7d: /* FACGT */ 9294 case 0x1c: /* FCMEQ */ 9295 case 0x5c: /* FCMGE */ 9296 case 0x7c: /* FCMGT */ 9297 case 0x7a: /* FABD */ 9298 break; 9299 default: 9300 unallocated_encoding(s); 9301 return; 9302 } 9303 9304 if (!fp_access_check(s)) { 9305 return; 9306 } 9307 9308 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9309 return; 9310 } 9311 9312 switch (opcode) { 9313 case 0x1: /* SQADD, UQADD */ 9314 case 0x5: /* SQSUB, UQSUB */ 9315 case 0x9: /* SQSHL, UQSHL */ 9316 case 0xb: /* SQRSHL, UQRSHL */ 9317 break; 9318 case 0x8: /* SSHL, USHL */ 9319 case 0xa: /* SRSHL, URSHL */ 9320 case 0x6: /* CMGT, CMHI */ 9321 case 0x7: /* CMGE, CMHS */ 9322 case 0x11: /* CMTST, CMEQ */ 9323 case 0x10: /* ADD, SUB (vector) */ 9324 if (size != 3) { 9325 unallocated_encoding(s); 9326 return; 9327 } 9328 break; 9329 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9330 if (size != 1 && size != 2) { 9331 unallocated_encoding(s); 9332 return; 9333 } 9334 break; 9335 default: 9336 unallocated_encoding(s); 9337 return; 9338 } 9339 9340 if (!fp_access_check(s)) { 9341 return; 9342 } 9343 9344 tcg_rd = tcg_temp_new_i64(); 9345 9346 if (size == 3) { 9347 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9348 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9349 9350 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9351 } else { 9352 /* Do a single operation on the lowest element in the vector. 9353 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9354 * no side effects for all these operations. 9355 * OPTME: special-purpose helpers would avoid doing some 9356 * unnecessary work in the helper for the 8 and 16 bit cases. 9357 */ 9358 NeonGenTwoOpEnvFn *genenvfn; 9359 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9360 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9361 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9362 9363 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9364 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9365 9366 switch (opcode) { 9367 case 0x1: /* SQADD, UQADD */ 9368 { 9369 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9370 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9371 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9372 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9373 }; 9374 genenvfn = fns[size][u]; 9375 break; 9376 } 9377 case 0x5: /* SQSUB, UQSUB */ 9378 { 9379 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9380 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9381 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9382 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9383 }; 9384 genenvfn = fns[size][u]; 9385 break; 9386 } 9387 case 0x9: /* SQSHL, UQSHL */ 9388 { 9389 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9390 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9391 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9392 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9393 }; 9394 genenvfn = fns[size][u]; 9395 break; 9396 } 9397 case 0xb: /* SQRSHL, UQRSHL */ 9398 { 9399 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9400 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9401 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9402 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9403 }; 9404 genenvfn = fns[size][u]; 9405 break; 9406 } 9407 case 0x16: /* SQDMULH, SQRDMULH */ 9408 { 9409 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9410 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9411 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9412 }; 9413 assert(size == 1 || size == 2); 9414 genenvfn = fns[size - 1][u]; 9415 break; 9416 } 9417 default: 9418 g_assert_not_reached(); 9419 } 9420 9421 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9422 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9423 } 9424 9425 write_fp_dreg(s, rd, tcg_rd); 9426 } 9427 9428 /* AdvSIMD scalar three same FP16 9429 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9430 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9431 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9432 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9433 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9434 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9435 */ 9436 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9437 uint32_t insn) 9438 { 9439 int rd = extract32(insn, 0, 5); 9440 int rn = extract32(insn, 5, 5); 9441 int opcode = extract32(insn, 11, 3); 9442 int rm = extract32(insn, 16, 5); 9443 bool u = extract32(insn, 29, 1); 9444 bool a = extract32(insn, 23, 1); 9445 int fpopcode = opcode | (a << 3) | (u << 4); 9446 TCGv_ptr fpst; 9447 TCGv_i32 tcg_op1; 9448 TCGv_i32 tcg_op2; 9449 TCGv_i32 tcg_res; 9450 9451 switch (fpopcode) { 9452 case 0x03: /* FMULX */ 9453 case 0x04: /* FCMEQ (reg) */ 9454 case 0x07: /* FRECPS */ 9455 case 0x0f: /* FRSQRTS */ 9456 case 0x14: /* FCMGE (reg) */ 9457 case 0x15: /* FACGE */ 9458 case 0x1a: /* FABD */ 9459 case 0x1c: /* FCMGT (reg) */ 9460 case 0x1d: /* FACGT */ 9461 break; 9462 default: 9463 unallocated_encoding(s); 9464 return; 9465 } 9466 9467 if (!dc_isar_feature(aa64_fp16, s)) { 9468 unallocated_encoding(s); 9469 } 9470 9471 if (!fp_access_check(s)) { 9472 return; 9473 } 9474 9475 fpst = fpstatus_ptr(FPST_FPCR_F16); 9476 9477 tcg_op1 = read_fp_hreg(s, rn); 9478 tcg_op2 = read_fp_hreg(s, rm); 9479 tcg_res = tcg_temp_new_i32(); 9480 9481 switch (fpopcode) { 9482 case 0x03: /* FMULX */ 9483 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9484 break; 9485 case 0x04: /* FCMEQ (reg) */ 9486 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9487 break; 9488 case 0x07: /* FRECPS */ 9489 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9490 break; 9491 case 0x0f: /* FRSQRTS */ 9492 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9493 break; 9494 case 0x14: /* FCMGE (reg) */ 9495 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9496 break; 9497 case 0x15: /* FACGE */ 9498 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9499 break; 9500 case 0x1a: /* FABD */ 9501 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9502 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9503 break; 9504 case 0x1c: /* FCMGT (reg) */ 9505 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9506 break; 9507 case 0x1d: /* FACGT */ 9508 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9509 break; 9510 default: 9511 g_assert_not_reached(); 9512 } 9513 9514 write_fp_sreg(s, rd, tcg_res); 9515 } 9516 9517 /* AdvSIMD scalar three same extra 9518 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9519 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9520 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9521 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9522 */ 9523 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9524 uint32_t insn) 9525 { 9526 int rd = extract32(insn, 0, 5); 9527 int rn = extract32(insn, 5, 5); 9528 int opcode = extract32(insn, 11, 4); 9529 int rm = extract32(insn, 16, 5); 9530 int size = extract32(insn, 22, 2); 9531 bool u = extract32(insn, 29, 1); 9532 TCGv_i32 ele1, ele2, ele3; 9533 TCGv_i64 res; 9534 bool feature; 9535 9536 switch (u * 16 + opcode) { 9537 case 0x10: /* SQRDMLAH (vector) */ 9538 case 0x11: /* SQRDMLSH (vector) */ 9539 if (size != 1 && size != 2) { 9540 unallocated_encoding(s); 9541 return; 9542 } 9543 feature = dc_isar_feature(aa64_rdm, s); 9544 break; 9545 default: 9546 unallocated_encoding(s); 9547 return; 9548 } 9549 if (!feature) { 9550 unallocated_encoding(s); 9551 return; 9552 } 9553 if (!fp_access_check(s)) { 9554 return; 9555 } 9556 9557 /* Do a single operation on the lowest element in the vector. 9558 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9559 * with no side effects for all these operations. 9560 * OPTME: special-purpose helpers would avoid doing some 9561 * unnecessary work in the helper for the 16 bit cases. 9562 */ 9563 ele1 = tcg_temp_new_i32(); 9564 ele2 = tcg_temp_new_i32(); 9565 ele3 = tcg_temp_new_i32(); 9566 9567 read_vec_element_i32(s, ele1, rn, 0, size); 9568 read_vec_element_i32(s, ele2, rm, 0, size); 9569 read_vec_element_i32(s, ele3, rd, 0, size); 9570 9571 switch (opcode) { 9572 case 0x0: /* SQRDMLAH */ 9573 if (size == 1) { 9574 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9575 } else { 9576 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9577 } 9578 break; 9579 case 0x1: /* SQRDMLSH */ 9580 if (size == 1) { 9581 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9582 } else { 9583 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9584 } 9585 break; 9586 default: 9587 g_assert_not_reached(); 9588 } 9589 9590 res = tcg_temp_new_i64(); 9591 tcg_gen_extu_i32_i64(res, ele3); 9592 write_fp_dreg(s, rd, res); 9593 } 9594 9595 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9596 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9597 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9598 { 9599 /* Handle 64->64 opcodes which are shared between the scalar and 9600 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9601 * is valid in either group and also the double-precision fp ops. 9602 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9603 * requires them. 9604 */ 9605 TCGCond cond; 9606 9607 switch (opcode) { 9608 case 0x4: /* CLS, CLZ */ 9609 if (u) { 9610 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9611 } else { 9612 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9613 } 9614 break; 9615 case 0x5: /* NOT */ 9616 /* This opcode is shared with CNT and RBIT but we have earlier 9617 * enforced that size == 3 if and only if this is the NOT insn. 9618 */ 9619 tcg_gen_not_i64(tcg_rd, tcg_rn); 9620 break; 9621 case 0x7: /* SQABS, SQNEG */ 9622 if (u) { 9623 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9624 } else { 9625 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9626 } 9627 break; 9628 case 0xa: /* CMLT */ 9629 /* 64 bit integer comparison against zero, result is 9630 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9631 * subtracting 1. 9632 */ 9633 cond = TCG_COND_LT; 9634 do_cmop: 9635 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9636 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9637 break; 9638 case 0x8: /* CMGT, CMGE */ 9639 cond = u ? TCG_COND_GE : TCG_COND_GT; 9640 goto do_cmop; 9641 case 0x9: /* CMEQ, CMLE */ 9642 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9643 goto do_cmop; 9644 case 0xb: /* ABS, NEG */ 9645 if (u) { 9646 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9647 } else { 9648 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9649 } 9650 break; 9651 case 0x2f: /* FABS */ 9652 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9653 break; 9654 case 0x6f: /* FNEG */ 9655 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9656 break; 9657 case 0x7f: /* FSQRT */ 9658 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9659 break; 9660 case 0x1a: /* FCVTNS */ 9661 case 0x1b: /* FCVTMS */ 9662 case 0x1c: /* FCVTAS */ 9663 case 0x3a: /* FCVTPS */ 9664 case 0x3b: /* FCVTZS */ 9665 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9666 break; 9667 case 0x5a: /* FCVTNU */ 9668 case 0x5b: /* FCVTMU */ 9669 case 0x5c: /* FCVTAU */ 9670 case 0x7a: /* FCVTPU */ 9671 case 0x7b: /* FCVTZU */ 9672 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9673 break; 9674 case 0x18: /* FRINTN */ 9675 case 0x19: /* FRINTM */ 9676 case 0x38: /* FRINTP */ 9677 case 0x39: /* FRINTZ */ 9678 case 0x58: /* FRINTA */ 9679 case 0x79: /* FRINTI */ 9680 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9681 break; 9682 case 0x59: /* FRINTX */ 9683 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9684 break; 9685 case 0x1e: /* FRINT32Z */ 9686 case 0x5e: /* FRINT32X */ 9687 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9688 break; 9689 case 0x1f: /* FRINT64Z */ 9690 case 0x5f: /* FRINT64X */ 9691 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9692 break; 9693 default: 9694 g_assert_not_reached(); 9695 } 9696 } 9697 9698 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9699 bool is_scalar, bool is_u, bool is_q, 9700 int size, int rn, int rd) 9701 { 9702 bool is_double = (size == MO_64); 9703 TCGv_ptr fpst; 9704 9705 if (!fp_access_check(s)) { 9706 return; 9707 } 9708 9709 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9710 9711 if (is_double) { 9712 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9713 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9714 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9715 NeonGenTwoDoubleOpFn *genfn; 9716 bool swap = false; 9717 int pass; 9718 9719 switch (opcode) { 9720 case 0x2e: /* FCMLT (zero) */ 9721 swap = true; 9722 /* fallthrough */ 9723 case 0x2c: /* FCMGT (zero) */ 9724 genfn = gen_helper_neon_cgt_f64; 9725 break; 9726 case 0x2d: /* FCMEQ (zero) */ 9727 genfn = gen_helper_neon_ceq_f64; 9728 break; 9729 case 0x6d: /* FCMLE (zero) */ 9730 swap = true; 9731 /* fall through */ 9732 case 0x6c: /* FCMGE (zero) */ 9733 genfn = gen_helper_neon_cge_f64; 9734 break; 9735 default: 9736 g_assert_not_reached(); 9737 } 9738 9739 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9740 read_vec_element(s, tcg_op, rn, pass, MO_64); 9741 if (swap) { 9742 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9743 } else { 9744 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9745 } 9746 write_vec_element(s, tcg_res, rd, pass, MO_64); 9747 } 9748 9749 clear_vec_high(s, !is_scalar, rd); 9750 } else { 9751 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9752 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9753 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9754 NeonGenTwoSingleOpFn *genfn; 9755 bool swap = false; 9756 int pass, maxpasses; 9757 9758 if (size == MO_16) { 9759 switch (opcode) { 9760 case 0x2e: /* FCMLT (zero) */ 9761 swap = true; 9762 /* fall through */ 9763 case 0x2c: /* FCMGT (zero) */ 9764 genfn = gen_helper_advsimd_cgt_f16; 9765 break; 9766 case 0x2d: /* FCMEQ (zero) */ 9767 genfn = gen_helper_advsimd_ceq_f16; 9768 break; 9769 case 0x6d: /* FCMLE (zero) */ 9770 swap = true; 9771 /* fall through */ 9772 case 0x6c: /* FCMGE (zero) */ 9773 genfn = gen_helper_advsimd_cge_f16; 9774 break; 9775 default: 9776 g_assert_not_reached(); 9777 } 9778 } else { 9779 switch (opcode) { 9780 case 0x2e: /* FCMLT (zero) */ 9781 swap = true; 9782 /* fall through */ 9783 case 0x2c: /* FCMGT (zero) */ 9784 genfn = gen_helper_neon_cgt_f32; 9785 break; 9786 case 0x2d: /* FCMEQ (zero) */ 9787 genfn = gen_helper_neon_ceq_f32; 9788 break; 9789 case 0x6d: /* FCMLE (zero) */ 9790 swap = true; 9791 /* fall through */ 9792 case 0x6c: /* FCMGE (zero) */ 9793 genfn = gen_helper_neon_cge_f32; 9794 break; 9795 default: 9796 g_assert_not_reached(); 9797 } 9798 } 9799 9800 if (is_scalar) { 9801 maxpasses = 1; 9802 } else { 9803 int vector_size = 8 << is_q; 9804 maxpasses = vector_size >> size; 9805 } 9806 9807 for (pass = 0; pass < maxpasses; pass++) { 9808 read_vec_element_i32(s, tcg_op, rn, pass, size); 9809 if (swap) { 9810 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9811 } else { 9812 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9813 } 9814 if (is_scalar) { 9815 write_fp_sreg(s, rd, tcg_res); 9816 } else { 9817 write_vec_element_i32(s, tcg_res, rd, pass, size); 9818 } 9819 } 9820 9821 if (!is_scalar) { 9822 clear_vec_high(s, is_q, rd); 9823 } 9824 } 9825 } 9826 9827 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9828 bool is_scalar, bool is_u, bool is_q, 9829 int size, int rn, int rd) 9830 { 9831 bool is_double = (size == 3); 9832 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9833 9834 if (is_double) { 9835 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9836 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9837 int pass; 9838 9839 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9840 read_vec_element(s, tcg_op, rn, pass, MO_64); 9841 switch (opcode) { 9842 case 0x3d: /* FRECPE */ 9843 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9844 break; 9845 case 0x3f: /* FRECPX */ 9846 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9847 break; 9848 case 0x7d: /* FRSQRTE */ 9849 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9850 break; 9851 default: 9852 g_assert_not_reached(); 9853 } 9854 write_vec_element(s, tcg_res, rd, pass, MO_64); 9855 } 9856 clear_vec_high(s, !is_scalar, rd); 9857 } else { 9858 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9859 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9860 int pass, maxpasses; 9861 9862 if (is_scalar) { 9863 maxpasses = 1; 9864 } else { 9865 maxpasses = is_q ? 4 : 2; 9866 } 9867 9868 for (pass = 0; pass < maxpasses; pass++) { 9869 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9870 9871 switch (opcode) { 9872 case 0x3c: /* URECPE */ 9873 gen_helper_recpe_u32(tcg_res, tcg_op); 9874 break; 9875 case 0x3d: /* FRECPE */ 9876 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9877 break; 9878 case 0x3f: /* FRECPX */ 9879 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9880 break; 9881 case 0x7d: /* FRSQRTE */ 9882 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9883 break; 9884 default: 9885 g_assert_not_reached(); 9886 } 9887 9888 if (is_scalar) { 9889 write_fp_sreg(s, rd, tcg_res); 9890 } else { 9891 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9892 } 9893 } 9894 if (!is_scalar) { 9895 clear_vec_high(s, is_q, rd); 9896 } 9897 } 9898 } 9899 9900 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9901 int opcode, bool u, bool is_q, 9902 int size, int rn, int rd) 9903 { 9904 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9905 * in the source becomes a size element in the destination). 9906 */ 9907 int pass; 9908 TCGv_i32 tcg_res[2]; 9909 int destelt = is_q ? 2 : 0; 9910 int passes = scalar ? 1 : 2; 9911 9912 if (scalar) { 9913 tcg_res[1] = tcg_constant_i32(0); 9914 } 9915 9916 for (pass = 0; pass < passes; pass++) { 9917 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9918 NeonGenNarrowFn *genfn = NULL; 9919 NeonGenNarrowEnvFn *genenvfn = NULL; 9920 9921 if (scalar) { 9922 read_vec_element(s, tcg_op, rn, pass, size + 1); 9923 } else { 9924 read_vec_element(s, tcg_op, rn, pass, MO_64); 9925 } 9926 tcg_res[pass] = tcg_temp_new_i32(); 9927 9928 switch (opcode) { 9929 case 0x12: /* XTN, SQXTUN */ 9930 { 9931 static NeonGenNarrowFn * const xtnfns[3] = { 9932 gen_helper_neon_narrow_u8, 9933 gen_helper_neon_narrow_u16, 9934 tcg_gen_extrl_i64_i32, 9935 }; 9936 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9937 gen_helper_neon_unarrow_sat8, 9938 gen_helper_neon_unarrow_sat16, 9939 gen_helper_neon_unarrow_sat32, 9940 }; 9941 if (u) { 9942 genenvfn = sqxtunfns[size]; 9943 } else { 9944 genfn = xtnfns[size]; 9945 } 9946 break; 9947 } 9948 case 0x14: /* SQXTN, UQXTN */ 9949 { 9950 static NeonGenNarrowEnvFn * const fns[3][2] = { 9951 { gen_helper_neon_narrow_sat_s8, 9952 gen_helper_neon_narrow_sat_u8 }, 9953 { gen_helper_neon_narrow_sat_s16, 9954 gen_helper_neon_narrow_sat_u16 }, 9955 { gen_helper_neon_narrow_sat_s32, 9956 gen_helper_neon_narrow_sat_u32 }, 9957 }; 9958 genenvfn = fns[size][u]; 9959 break; 9960 } 9961 case 0x16: /* FCVTN, FCVTN2 */ 9962 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9963 if (size == 2) { 9964 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9965 } else { 9966 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9967 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9968 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9969 TCGv_i32 ahp = get_ahp_flag(); 9970 9971 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9972 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9973 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9974 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9975 } 9976 break; 9977 case 0x36: /* BFCVTN, BFCVTN2 */ 9978 { 9979 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9980 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9981 } 9982 break; 9983 case 0x56: /* FCVTXN, FCVTXN2 */ 9984 /* 64 bit to 32 bit float conversion 9985 * with von Neumann rounding (round to odd) 9986 */ 9987 assert(size == 2); 9988 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9989 break; 9990 default: 9991 g_assert_not_reached(); 9992 } 9993 9994 if (genfn) { 9995 genfn(tcg_res[pass], tcg_op); 9996 } else if (genenvfn) { 9997 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9998 } 9999 } 10000 10001 for (pass = 0; pass < 2; pass++) { 10002 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10003 } 10004 clear_vec_high(s, is_q, rd); 10005 } 10006 10007 /* Remaining saturating accumulating ops */ 10008 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10009 bool is_q, int size, int rn, int rd) 10010 { 10011 bool is_double = (size == 3); 10012 10013 if (is_double) { 10014 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10015 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10016 int pass; 10017 10018 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10019 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10020 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10021 10022 if (is_u) { /* USQADD */ 10023 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10024 } else { /* SUQADD */ 10025 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10026 } 10027 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10028 } 10029 clear_vec_high(s, !is_scalar, rd); 10030 } else { 10031 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10032 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10033 int pass, maxpasses; 10034 10035 if (is_scalar) { 10036 maxpasses = 1; 10037 } else { 10038 maxpasses = is_q ? 4 : 2; 10039 } 10040 10041 for (pass = 0; pass < maxpasses; pass++) { 10042 if (is_scalar) { 10043 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10044 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10045 } else { 10046 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10047 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10048 } 10049 10050 if (is_u) { /* USQADD */ 10051 switch (size) { 10052 case 0: 10053 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10054 break; 10055 case 1: 10056 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10057 break; 10058 case 2: 10059 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10060 break; 10061 default: 10062 g_assert_not_reached(); 10063 } 10064 } else { /* SUQADD */ 10065 switch (size) { 10066 case 0: 10067 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10068 break; 10069 case 1: 10070 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10071 break; 10072 case 2: 10073 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10074 break; 10075 default: 10076 g_assert_not_reached(); 10077 } 10078 } 10079 10080 if (is_scalar) { 10081 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10082 } 10083 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10084 } 10085 clear_vec_high(s, is_q, rd); 10086 } 10087 } 10088 10089 /* AdvSIMD scalar two reg misc 10090 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10091 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10092 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10093 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10094 */ 10095 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10096 { 10097 int rd = extract32(insn, 0, 5); 10098 int rn = extract32(insn, 5, 5); 10099 int opcode = extract32(insn, 12, 5); 10100 int size = extract32(insn, 22, 2); 10101 bool u = extract32(insn, 29, 1); 10102 bool is_fcvt = false; 10103 int rmode; 10104 TCGv_i32 tcg_rmode; 10105 TCGv_ptr tcg_fpstatus; 10106 10107 switch (opcode) { 10108 case 0x3: /* USQADD / SUQADD*/ 10109 if (!fp_access_check(s)) { 10110 return; 10111 } 10112 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10113 return; 10114 case 0x7: /* SQABS / SQNEG */ 10115 break; 10116 case 0xa: /* CMLT */ 10117 if (u) { 10118 unallocated_encoding(s); 10119 return; 10120 } 10121 /* fall through */ 10122 case 0x8: /* CMGT, CMGE */ 10123 case 0x9: /* CMEQ, CMLE */ 10124 case 0xb: /* ABS, NEG */ 10125 if (size != 3) { 10126 unallocated_encoding(s); 10127 return; 10128 } 10129 break; 10130 case 0x12: /* SQXTUN */ 10131 if (!u) { 10132 unallocated_encoding(s); 10133 return; 10134 } 10135 /* fall through */ 10136 case 0x14: /* SQXTN, UQXTN */ 10137 if (size == 3) { 10138 unallocated_encoding(s); 10139 return; 10140 } 10141 if (!fp_access_check(s)) { 10142 return; 10143 } 10144 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10145 return; 10146 case 0xc ... 0xf: 10147 case 0x16 ... 0x1d: 10148 case 0x1f: 10149 /* Floating point: U, size[1] and opcode indicate operation; 10150 * size[0] indicates single or double precision. 10151 */ 10152 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10153 size = extract32(size, 0, 1) ? 3 : 2; 10154 switch (opcode) { 10155 case 0x2c: /* FCMGT (zero) */ 10156 case 0x2d: /* FCMEQ (zero) */ 10157 case 0x2e: /* FCMLT (zero) */ 10158 case 0x6c: /* FCMGE (zero) */ 10159 case 0x6d: /* FCMLE (zero) */ 10160 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10161 return; 10162 case 0x1d: /* SCVTF */ 10163 case 0x5d: /* UCVTF */ 10164 { 10165 bool is_signed = (opcode == 0x1d); 10166 if (!fp_access_check(s)) { 10167 return; 10168 } 10169 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10170 return; 10171 } 10172 case 0x3d: /* FRECPE */ 10173 case 0x3f: /* FRECPX */ 10174 case 0x7d: /* FRSQRTE */ 10175 if (!fp_access_check(s)) { 10176 return; 10177 } 10178 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10179 return; 10180 case 0x1a: /* FCVTNS */ 10181 case 0x1b: /* FCVTMS */ 10182 case 0x3a: /* FCVTPS */ 10183 case 0x3b: /* FCVTZS */ 10184 case 0x5a: /* FCVTNU */ 10185 case 0x5b: /* FCVTMU */ 10186 case 0x7a: /* FCVTPU */ 10187 case 0x7b: /* FCVTZU */ 10188 is_fcvt = true; 10189 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10190 break; 10191 case 0x1c: /* FCVTAS */ 10192 case 0x5c: /* FCVTAU */ 10193 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10194 is_fcvt = true; 10195 rmode = FPROUNDING_TIEAWAY; 10196 break; 10197 case 0x56: /* FCVTXN, FCVTXN2 */ 10198 if (size == 2) { 10199 unallocated_encoding(s); 10200 return; 10201 } 10202 if (!fp_access_check(s)) { 10203 return; 10204 } 10205 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10206 return; 10207 default: 10208 unallocated_encoding(s); 10209 return; 10210 } 10211 break; 10212 default: 10213 unallocated_encoding(s); 10214 return; 10215 } 10216 10217 if (!fp_access_check(s)) { 10218 return; 10219 } 10220 10221 if (is_fcvt) { 10222 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10223 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10224 } else { 10225 tcg_fpstatus = NULL; 10226 tcg_rmode = NULL; 10227 } 10228 10229 if (size == 3) { 10230 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10231 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10232 10233 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10234 write_fp_dreg(s, rd, tcg_rd); 10235 } else { 10236 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10237 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10238 10239 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10240 10241 switch (opcode) { 10242 case 0x7: /* SQABS, SQNEG */ 10243 { 10244 NeonGenOneOpEnvFn *genfn; 10245 static NeonGenOneOpEnvFn * const fns[3][2] = { 10246 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10247 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10248 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10249 }; 10250 genfn = fns[size][u]; 10251 genfn(tcg_rd, cpu_env, tcg_rn); 10252 break; 10253 } 10254 case 0x1a: /* FCVTNS */ 10255 case 0x1b: /* FCVTMS */ 10256 case 0x1c: /* FCVTAS */ 10257 case 0x3a: /* FCVTPS */ 10258 case 0x3b: /* FCVTZS */ 10259 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10260 tcg_fpstatus); 10261 break; 10262 case 0x5a: /* FCVTNU */ 10263 case 0x5b: /* FCVTMU */ 10264 case 0x5c: /* FCVTAU */ 10265 case 0x7a: /* FCVTPU */ 10266 case 0x7b: /* FCVTZU */ 10267 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10268 tcg_fpstatus); 10269 break; 10270 default: 10271 g_assert_not_reached(); 10272 } 10273 10274 write_fp_sreg(s, rd, tcg_rd); 10275 } 10276 10277 if (is_fcvt) { 10278 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10279 } 10280 } 10281 10282 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10283 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10284 int immh, int immb, int opcode, int rn, int rd) 10285 { 10286 int size = 32 - clz32(immh) - 1; 10287 int immhb = immh << 3 | immb; 10288 int shift = 2 * (8 << size) - immhb; 10289 GVecGen2iFn *gvec_fn; 10290 10291 if (extract32(immh, 3, 1) && !is_q) { 10292 unallocated_encoding(s); 10293 return; 10294 } 10295 tcg_debug_assert(size <= 3); 10296 10297 if (!fp_access_check(s)) { 10298 return; 10299 } 10300 10301 switch (opcode) { 10302 case 0x02: /* SSRA / USRA (accumulate) */ 10303 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10304 break; 10305 10306 case 0x08: /* SRI */ 10307 gvec_fn = gen_gvec_sri; 10308 break; 10309 10310 case 0x00: /* SSHR / USHR */ 10311 if (is_u) { 10312 if (shift == 8 << size) { 10313 /* Shift count the same size as element size produces zero. */ 10314 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10315 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10316 return; 10317 } 10318 gvec_fn = tcg_gen_gvec_shri; 10319 } else { 10320 /* Shift count the same size as element size produces all sign. */ 10321 if (shift == 8 << size) { 10322 shift -= 1; 10323 } 10324 gvec_fn = tcg_gen_gvec_sari; 10325 } 10326 break; 10327 10328 case 0x04: /* SRSHR / URSHR (rounding) */ 10329 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10330 break; 10331 10332 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10333 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10334 break; 10335 10336 default: 10337 g_assert_not_reached(); 10338 } 10339 10340 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10341 } 10342 10343 /* SHL/SLI - Vector shift left */ 10344 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10345 int immh, int immb, int opcode, int rn, int rd) 10346 { 10347 int size = 32 - clz32(immh) - 1; 10348 int immhb = immh << 3 | immb; 10349 int shift = immhb - (8 << size); 10350 10351 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10352 assert(size >= 0 && size <= 3); 10353 10354 if (extract32(immh, 3, 1) && !is_q) { 10355 unallocated_encoding(s); 10356 return; 10357 } 10358 10359 if (!fp_access_check(s)) { 10360 return; 10361 } 10362 10363 if (insert) { 10364 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10365 } else { 10366 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10367 } 10368 } 10369 10370 /* USHLL/SHLL - Vector shift left with widening */ 10371 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10372 int immh, int immb, int opcode, int rn, int rd) 10373 { 10374 int size = 32 - clz32(immh) - 1; 10375 int immhb = immh << 3 | immb; 10376 int shift = immhb - (8 << size); 10377 int dsize = 64; 10378 int esize = 8 << size; 10379 int elements = dsize/esize; 10380 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10381 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10382 int i; 10383 10384 if (size >= 3) { 10385 unallocated_encoding(s); 10386 return; 10387 } 10388 10389 if (!fp_access_check(s)) { 10390 return; 10391 } 10392 10393 /* For the LL variants the store is larger than the load, 10394 * so if rd == rn we would overwrite parts of our input. 10395 * So load everything right now and use shifts in the main loop. 10396 */ 10397 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10398 10399 for (i = 0; i < elements; i++) { 10400 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10401 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10402 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10403 write_vec_element(s, tcg_rd, rd, i, size + 1); 10404 } 10405 } 10406 10407 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10408 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10409 int immh, int immb, int opcode, int rn, int rd) 10410 { 10411 int immhb = immh << 3 | immb; 10412 int size = 32 - clz32(immh) - 1; 10413 int dsize = 64; 10414 int esize = 8 << size; 10415 int elements = dsize/esize; 10416 int shift = (2 * esize) - immhb; 10417 bool round = extract32(opcode, 0, 1); 10418 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10419 TCGv_i64 tcg_round; 10420 int i; 10421 10422 if (extract32(immh, 3, 1)) { 10423 unallocated_encoding(s); 10424 return; 10425 } 10426 10427 if (!fp_access_check(s)) { 10428 return; 10429 } 10430 10431 tcg_rn = tcg_temp_new_i64(); 10432 tcg_rd = tcg_temp_new_i64(); 10433 tcg_final = tcg_temp_new_i64(); 10434 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10435 10436 if (round) { 10437 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10438 } else { 10439 tcg_round = NULL; 10440 } 10441 10442 for (i = 0; i < elements; i++) { 10443 read_vec_element(s, tcg_rn, rn, i, size+1); 10444 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10445 false, true, size+1, shift); 10446 10447 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10448 } 10449 10450 if (!is_q) { 10451 write_vec_element(s, tcg_final, rd, 0, MO_64); 10452 } else { 10453 write_vec_element(s, tcg_final, rd, 1, MO_64); 10454 } 10455 10456 clear_vec_high(s, is_q, rd); 10457 } 10458 10459 10460 /* AdvSIMD shift by immediate 10461 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10462 * +---+---+---+-------------+------+------+--------+---+------+------+ 10463 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10464 * +---+---+---+-------------+------+------+--------+---+------+------+ 10465 */ 10466 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10467 { 10468 int rd = extract32(insn, 0, 5); 10469 int rn = extract32(insn, 5, 5); 10470 int opcode = extract32(insn, 11, 5); 10471 int immb = extract32(insn, 16, 3); 10472 int immh = extract32(insn, 19, 4); 10473 bool is_u = extract32(insn, 29, 1); 10474 bool is_q = extract32(insn, 30, 1); 10475 10476 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10477 assert(immh != 0); 10478 10479 switch (opcode) { 10480 case 0x08: /* SRI */ 10481 if (!is_u) { 10482 unallocated_encoding(s); 10483 return; 10484 } 10485 /* fall through */ 10486 case 0x00: /* SSHR / USHR */ 10487 case 0x02: /* SSRA / USRA (accumulate) */ 10488 case 0x04: /* SRSHR / URSHR (rounding) */ 10489 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10490 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10491 break; 10492 case 0x0a: /* SHL / SLI */ 10493 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10494 break; 10495 case 0x10: /* SHRN */ 10496 case 0x11: /* RSHRN / SQRSHRUN */ 10497 if (is_u) { 10498 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10499 opcode, rn, rd); 10500 } else { 10501 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10502 } 10503 break; 10504 case 0x12: /* SQSHRN / UQSHRN */ 10505 case 0x13: /* SQRSHRN / UQRSHRN */ 10506 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10507 opcode, rn, rd); 10508 break; 10509 case 0x14: /* SSHLL / USHLL */ 10510 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10511 break; 10512 case 0x1c: /* SCVTF / UCVTF */ 10513 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10514 opcode, rn, rd); 10515 break; 10516 case 0xc: /* SQSHLU */ 10517 if (!is_u) { 10518 unallocated_encoding(s); 10519 return; 10520 } 10521 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10522 break; 10523 case 0xe: /* SQSHL, UQSHL */ 10524 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10525 break; 10526 case 0x1f: /* FCVTZS/ FCVTZU */ 10527 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10528 return; 10529 default: 10530 unallocated_encoding(s); 10531 return; 10532 } 10533 } 10534 10535 /* Generate code to do a "long" addition or subtraction, ie one done in 10536 * TCGv_i64 on vector lanes twice the width specified by size. 10537 */ 10538 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10539 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10540 { 10541 static NeonGenTwo64OpFn * const fns[3][2] = { 10542 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10543 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10544 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10545 }; 10546 NeonGenTwo64OpFn *genfn; 10547 assert(size < 3); 10548 10549 genfn = fns[size][is_sub]; 10550 genfn(tcg_res, tcg_op1, tcg_op2); 10551 } 10552 10553 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10554 int opcode, int rd, int rn, int rm) 10555 { 10556 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10557 TCGv_i64 tcg_res[2]; 10558 int pass, accop; 10559 10560 tcg_res[0] = tcg_temp_new_i64(); 10561 tcg_res[1] = tcg_temp_new_i64(); 10562 10563 /* Does this op do an adding accumulate, a subtracting accumulate, 10564 * or no accumulate at all? 10565 */ 10566 switch (opcode) { 10567 case 5: 10568 case 8: 10569 case 9: 10570 accop = 1; 10571 break; 10572 case 10: 10573 case 11: 10574 accop = -1; 10575 break; 10576 default: 10577 accop = 0; 10578 break; 10579 } 10580 10581 if (accop != 0) { 10582 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10583 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10584 } 10585 10586 /* size == 2 means two 32x32->64 operations; this is worth special 10587 * casing because we can generally handle it inline. 10588 */ 10589 if (size == 2) { 10590 for (pass = 0; pass < 2; pass++) { 10591 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10592 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10593 TCGv_i64 tcg_passres; 10594 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10595 10596 int elt = pass + is_q * 2; 10597 10598 read_vec_element(s, tcg_op1, rn, elt, memop); 10599 read_vec_element(s, tcg_op2, rm, elt, memop); 10600 10601 if (accop == 0) { 10602 tcg_passres = tcg_res[pass]; 10603 } else { 10604 tcg_passres = tcg_temp_new_i64(); 10605 } 10606 10607 switch (opcode) { 10608 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10609 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10610 break; 10611 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10612 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10613 break; 10614 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10615 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10616 { 10617 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10618 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10619 10620 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10621 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10622 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10623 tcg_passres, 10624 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10625 break; 10626 } 10627 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10628 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10629 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10630 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10631 break; 10632 case 9: /* SQDMLAL, SQDMLAL2 */ 10633 case 11: /* SQDMLSL, SQDMLSL2 */ 10634 case 13: /* SQDMULL, SQDMULL2 */ 10635 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10636 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10637 tcg_passres, tcg_passres); 10638 break; 10639 default: 10640 g_assert_not_reached(); 10641 } 10642 10643 if (opcode == 9 || opcode == 11) { 10644 /* saturating accumulate ops */ 10645 if (accop < 0) { 10646 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10647 } 10648 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10649 tcg_res[pass], tcg_passres); 10650 } else if (accop > 0) { 10651 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10652 } else if (accop < 0) { 10653 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10654 } 10655 } 10656 } else { 10657 /* size 0 or 1, generally helper functions */ 10658 for (pass = 0; pass < 2; pass++) { 10659 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10660 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10661 TCGv_i64 tcg_passres; 10662 int elt = pass + is_q * 2; 10663 10664 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10665 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10666 10667 if (accop == 0) { 10668 tcg_passres = tcg_res[pass]; 10669 } else { 10670 tcg_passres = tcg_temp_new_i64(); 10671 } 10672 10673 switch (opcode) { 10674 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10675 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10676 { 10677 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10678 static NeonGenWidenFn * const widenfns[2][2] = { 10679 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10680 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10681 }; 10682 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10683 10684 widenfn(tcg_op2_64, tcg_op2); 10685 widenfn(tcg_passres, tcg_op1); 10686 gen_neon_addl(size, (opcode == 2), tcg_passres, 10687 tcg_passres, tcg_op2_64); 10688 break; 10689 } 10690 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10691 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10692 if (size == 0) { 10693 if (is_u) { 10694 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10695 } else { 10696 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10697 } 10698 } else { 10699 if (is_u) { 10700 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10701 } else { 10702 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10703 } 10704 } 10705 break; 10706 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10707 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10708 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10709 if (size == 0) { 10710 if (is_u) { 10711 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10712 } else { 10713 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10714 } 10715 } else { 10716 if (is_u) { 10717 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10718 } else { 10719 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10720 } 10721 } 10722 break; 10723 case 9: /* SQDMLAL, SQDMLAL2 */ 10724 case 11: /* SQDMLSL, SQDMLSL2 */ 10725 case 13: /* SQDMULL, SQDMULL2 */ 10726 assert(size == 1); 10727 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10728 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10729 tcg_passres, tcg_passres); 10730 break; 10731 default: 10732 g_assert_not_reached(); 10733 } 10734 10735 if (accop != 0) { 10736 if (opcode == 9 || opcode == 11) { 10737 /* saturating accumulate ops */ 10738 if (accop < 0) { 10739 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10740 } 10741 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10742 tcg_res[pass], 10743 tcg_passres); 10744 } else { 10745 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10746 tcg_res[pass], tcg_passres); 10747 } 10748 } 10749 } 10750 } 10751 10752 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10753 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10754 } 10755 10756 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10757 int opcode, int rd, int rn, int rm) 10758 { 10759 TCGv_i64 tcg_res[2]; 10760 int part = is_q ? 2 : 0; 10761 int pass; 10762 10763 for (pass = 0; pass < 2; pass++) { 10764 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10765 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10766 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10767 static NeonGenWidenFn * const widenfns[3][2] = { 10768 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10769 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10770 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10771 }; 10772 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10773 10774 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10775 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10776 widenfn(tcg_op2_wide, tcg_op2); 10777 tcg_res[pass] = tcg_temp_new_i64(); 10778 gen_neon_addl(size, (opcode == 3), 10779 tcg_res[pass], tcg_op1, tcg_op2_wide); 10780 } 10781 10782 for (pass = 0; pass < 2; pass++) { 10783 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10784 } 10785 } 10786 10787 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10788 { 10789 tcg_gen_addi_i64(in, in, 1U << 31); 10790 tcg_gen_extrh_i64_i32(res, in); 10791 } 10792 10793 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10794 int opcode, int rd, int rn, int rm) 10795 { 10796 TCGv_i32 tcg_res[2]; 10797 int part = is_q ? 2 : 0; 10798 int pass; 10799 10800 for (pass = 0; pass < 2; pass++) { 10801 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10802 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10803 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10804 static NeonGenNarrowFn * const narrowfns[3][2] = { 10805 { gen_helper_neon_narrow_high_u8, 10806 gen_helper_neon_narrow_round_high_u8 }, 10807 { gen_helper_neon_narrow_high_u16, 10808 gen_helper_neon_narrow_round_high_u16 }, 10809 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10810 }; 10811 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10812 10813 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10814 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10815 10816 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10817 10818 tcg_res[pass] = tcg_temp_new_i32(); 10819 gennarrow(tcg_res[pass], tcg_wideres); 10820 } 10821 10822 for (pass = 0; pass < 2; pass++) { 10823 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10824 } 10825 clear_vec_high(s, is_q, rd); 10826 } 10827 10828 /* AdvSIMD three different 10829 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10830 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10831 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10832 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10833 */ 10834 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10835 { 10836 /* Instructions in this group fall into three basic classes 10837 * (in each case with the operation working on each element in 10838 * the input vectors): 10839 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10840 * 128 bit input) 10841 * (2) wide 64 x 128 -> 128 10842 * (3) narrowing 128 x 128 -> 64 10843 * Here we do initial decode, catch unallocated cases and 10844 * dispatch to separate functions for each class. 10845 */ 10846 int is_q = extract32(insn, 30, 1); 10847 int is_u = extract32(insn, 29, 1); 10848 int size = extract32(insn, 22, 2); 10849 int opcode = extract32(insn, 12, 4); 10850 int rm = extract32(insn, 16, 5); 10851 int rn = extract32(insn, 5, 5); 10852 int rd = extract32(insn, 0, 5); 10853 10854 switch (opcode) { 10855 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10856 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10857 /* 64 x 128 -> 128 */ 10858 if (size == 3) { 10859 unallocated_encoding(s); 10860 return; 10861 } 10862 if (!fp_access_check(s)) { 10863 return; 10864 } 10865 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10866 break; 10867 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10868 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10869 /* 128 x 128 -> 64 */ 10870 if (size == 3) { 10871 unallocated_encoding(s); 10872 return; 10873 } 10874 if (!fp_access_check(s)) { 10875 return; 10876 } 10877 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10878 break; 10879 case 14: /* PMULL, PMULL2 */ 10880 if (is_u) { 10881 unallocated_encoding(s); 10882 return; 10883 } 10884 switch (size) { 10885 case 0: /* PMULL.P8 */ 10886 if (!fp_access_check(s)) { 10887 return; 10888 } 10889 /* The Q field specifies lo/hi half input for this insn. */ 10890 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10891 gen_helper_neon_pmull_h); 10892 break; 10893 10894 case 3: /* PMULL.P64 */ 10895 if (!dc_isar_feature(aa64_pmull, s)) { 10896 unallocated_encoding(s); 10897 return; 10898 } 10899 if (!fp_access_check(s)) { 10900 return; 10901 } 10902 /* The Q field specifies lo/hi half input for this insn. */ 10903 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10904 gen_helper_gvec_pmull_q); 10905 break; 10906 10907 default: 10908 unallocated_encoding(s); 10909 break; 10910 } 10911 return; 10912 case 9: /* SQDMLAL, SQDMLAL2 */ 10913 case 11: /* SQDMLSL, SQDMLSL2 */ 10914 case 13: /* SQDMULL, SQDMULL2 */ 10915 if (is_u || size == 0) { 10916 unallocated_encoding(s); 10917 return; 10918 } 10919 /* fall through */ 10920 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10921 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10922 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10923 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10924 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10925 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10926 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10927 /* 64 x 64 -> 128 */ 10928 if (size == 3) { 10929 unallocated_encoding(s); 10930 return; 10931 } 10932 if (!fp_access_check(s)) { 10933 return; 10934 } 10935 10936 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10937 break; 10938 default: 10939 /* opcode 15 not allocated */ 10940 unallocated_encoding(s); 10941 break; 10942 } 10943 } 10944 10945 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10946 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10947 { 10948 int rd = extract32(insn, 0, 5); 10949 int rn = extract32(insn, 5, 5); 10950 int rm = extract32(insn, 16, 5); 10951 int size = extract32(insn, 22, 2); 10952 bool is_u = extract32(insn, 29, 1); 10953 bool is_q = extract32(insn, 30, 1); 10954 10955 if (!fp_access_check(s)) { 10956 return; 10957 } 10958 10959 switch (size + 4 * is_u) { 10960 case 0: /* AND */ 10961 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10962 return; 10963 case 1: /* BIC */ 10964 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10965 return; 10966 case 2: /* ORR */ 10967 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10968 return; 10969 case 3: /* ORN */ 10970 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10971 return; 10972 case 4: /* EOR */ 10973 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10974 return; 10975 10976 case 5: /* BSL bitwise select */ 10977 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10978 return; 10979 case 6: /* BIT, bitwise insert if true */ 10980 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10981 return; 10982 case 7: /* BIF, bitwise insert if false */ 10983 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10984 return; 10985 10986 default: 10987 g_assert_not_reached(); 10988 } 10989 } 10990 10991 /* Pairwise op subgroup of C3.6.16. 10992 * 10993 * This is called directly or via the handle_3same_float for float pairwise 10994 * operations where the opcode and size are calculated differently. 10995 */ 10996 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10997 int size, int rn, int rm, int rd) 10998 { 10999 TCGv_ptr fpst; 11000 int pass; 11001 11002 /* Floating point operations need fpst */ 11003 if (opcode >= 0x58) { 11004 fpst = fpstatus_ptr(FPST_FPCR); 11005 } else { 11006 fpst = NULL; 11007 } 11008 11009 if (!fp_access_check(s)) { 11010 return; 11011 } 11012 11013 /* These operations work on the concatenated rm:rn, with each pair of 11014 * adjacent elements being operated on to produce an element in the result. 11015 */ 11016 if (size == 3) { 11017 TCGv_i64 tcg_res[2]; 11018 11019 for (pass = 0; pass < 2; pass++) { 11020 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11021 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11022 int passreg = (pass == 0) ? rn : rm; 11023 11024 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11025 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11026 tcg_res[pass] = tcg_temp_new_i64(); 11027 11028 switch (opcode) { 11029 case 0x17: /* ADDP */ 11030 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11031 break; 11032 case 0x58: /* FMAXNMP */ 11033 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11034 break; 11035 case 0x5a: /* FADDP */ 11036 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11037 break; 11038 case 0x5e: /* FMAXP */ 11039 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11040 break; 11041 case 0x78: /* FMINNMP */ 11042 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11043 break; 11044 case 0x7e: /* FMINP */ 11045 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11046 break; 11047 default: 11048 g_assert_not_reached(); 11049 } 11050 } 11051 11052 for (pass = 0; pass < 2; pass++) { 11053 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11054 } 11055 } else { 11056 int maxpass = is_q ? 4 : 2; 11057 TCGv_i32 tcg_res[4]; 11058 11059 for (pass = 0; pass < maxpass; pass++) { 11060 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11061 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11062 NeonGenTwoOpFn *genfn = NULL; 11063 int passreg = pass < (maxpass / 2) ? rn : rm; 11064 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11065 11066 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11067 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11068 tcg_res[pass] = tcg_temp_new_i32(); 11069 11070 switch (opcode) { 11071 case 0x17: /* ADDP */ 11072 { 11073 static NeonGenTwoOpFn * const fns[3] = { 11074 gen_helper_neon_padd_u8, 11075 gen_helper_neon_padd_u16, 11076 tcg_gen_add_i32, 11077 }; 11078 genfn = fns[size]; 11079 break; 11080 } 11081 case 0x14: /* SMAXP, UMAXP */ 11082 { 11083 static NeonGenTwoOpFn * const fns[3][2] = { 11084 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11085 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11086 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11087 }; 11088 genfn = fns[size][u]; 11089 break; 11090 } 11091 case 0x15: /* SMINP, UMINP */ 11092 { 11093 static NeonGenTwoOpFn * const fns[3][2] = { 11094 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11095 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11096 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11097 }; 11098 genfn = fns[size][u]; 11099 break; 11100 } 11101 /* The FP operations are all on single floats (32 bit) */ 11102 case 0x58: /* FMAXNMP */ 11103 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11104 break; 11105 case 0x5a: /* FADDP */ 11106 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11107 break; 11108 case 0x5e: /* FMAXP */ 11109 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11110 break; 11111 case 0x78: /* FMINNMP */ 11112 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11113 break; 11114 case 0x7e: /* FMINP */ 11115 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11116 break; 11117 default: 11118 g_assert_not_reached(); 11119 } 11120 11121 /* FP ops called directly, otherwise call now */ 11122 if (genfn) { 11123 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11124 } 11125 } 11126 11127 for (pass = 0; pass < maxpass; pass++) { 11128 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11129 } 11130 clear_vec_high(s, is_q, rd); 11131 } 11132 } 11133 11134 /* Floating point op subgroup of C3.6.16. */ 11135 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11136 { 11137 /* For floating point ops, the U, size[1] and opcode bits 11138 * together indicate the operation. size[0] indicates single 11139 * or double. 11140 */ 11141 int fpopcode = extract32(insn, 11, 5) 11142 | (extract32(insn, 23, 1) << 5) 11143 | (extract32(insn, 29, 1) << 6); 11144 int is_q = extract32(insn, 30, 1); 11145 int size = extract32(insn, 22, 1); 11146 int rm = extract32(insn, 16, 5); 11147 int rn = extract32(insn, 5, 5); 11148 int rd = extract32(insn, 0, 5); 11149 11150 int datasize = is_q ? 128 : 64; 11151 int esize = 32 << size; 11152 int elements = datasize / esize; 11153 11154 if (size == 1 && !is_q) { 11155 unallocated_encoding(s); 11156 return; 11157 } 11158 11159 switch (fpopcode) { 11160 case 0x58: /* FMAXNMP */ 11161 case 0x5a: /* FADDP */ 11162 case 0x5e: /* FMAXP */ 11163 case 0x78: /* FMINNMP */ 11164 case 0x7e: /* FMINP */ 11165 if (size && !is_q) { 11166 unallocated_encoding(s); 11167 return; 11168 } 11169 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11170 rn, rm, rd); 11171 return; 11172 case 0x1b: /* FMULX */ 11173 case 0x1f: /* FRECPS */ 11174 case 0x3f: /* FRSQRTS */ 11175 case 0x5d: /* FACGE */ 11176 case 0x7d: /* FACGT */ 11177 case 0x19: /* FMLA */ 11178 case 0x39: /* FMLS */ 11179 case 0x18: /* FMAXNM */ 11180 case 0x1a: /* FADD */ 11181 case 0x1c: /* FCMEQ */ 11182 case 0x1e: /* FMAX */ 11183 case 0x38: /* FMINNM */ 11184 case 0x3a: /* FSUB */ 11185 case 0x3e: /* FMIN */ 11186 case 0x5b: /* FMUL */ 11187 case 0x5c: /* FCMGE */ 11188 case 0x5f: /* FDIV */ 11189 case 0x7a: /* FABD */ 11190 case 0x7c: /* FCMGT */ 11191 if (!fp_access_check(s)) { 11192 return; 11193 } 11194 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11195 return; 11196 11197 case 0x1d: /* FMLAL */ 11198 case 0x3d: /* FMLSL */ 11199 case 0x59: /* FMLAL2 */ 11200 case 0x79: /* FMLSL2 */ 11201 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11202 unallocated_encoding(s); 11203 return; 11204 } 11205 if (fp_access_check(s)) { 11206 int is_s = extract32(insn, 23, 1); 11207 int is_2 = extract32(insn, 29, 1); 11208 int data = (is_2 << 1) | is_s; 11209 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11210 vec_full_reg_offset(s, rn), 11211 vec_full_reg_offset(s, rm), cpu_env, 11212 is_q ? 16 : 8, vec_full_reg_size(s), 11213 data, gen_helper_gvec_fmlal_a64); 11214 } 11215 return; 11216 11217 default: 11218 unallocated_encoding(s); 11219 return; 11220 } 11221 } 11222 11223 /* Integer op subgroup of C3.6.16. */ 11224 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11225 { 11226 int is_q = extract32(insn, 30, 1); 11227 int u = extract32(insn, 29, 1); 11228 int size = extract32(insn, 22, 2); 11229 int opcode = extract32(insn, 11, 5); 11230 int rm = extract32(insn, 16, 5); 11231 int rn = extract32(insn, 5, 5); 11232 int rd = extract32(insn, 0, 5); 11233 int pass; 11234 TCGCond cond; 11235 11236 switch (opcode) { 11237 case 0x13: /* MUL, PMUL */ 11238 if (u && size != 0) { 11239 unallocated_encoding(s); 11240 return; 11241 } 11242 /* fall through */ 11243 case 0x0: /* SHADD, UHADD */ 11244 case 0x2: /* SRHADD, URHADD */ 11245 case 0x4: /* SHSUB, UHSUB */ 11246 case 0xc: /* SMAX, UMAX */ 11247 case 0xd: /* SMIN, UMIN */ 11248 case 0xe: /* SABD, UABD */ 11249 case 0xf: /* SABA, UABA */ 11250 case 0x12: /* MLA, MLS */ 11251 if (size == 3) { 11252 unallocated_encoding(s); 11253 return; 11254 } 11255 break; 11256 case 0x16: /* SQDMULH, SQRDMULH */ 11257 if (size == 0 || size == 3) { 11258 unallocated_encoding(s); 11259 return; 11260 } 11261 break; 11262 default: 11263 if (size == 3 && !is_q) { 11264 unallocated_encoding(s); 11265 return; 11266 } 11267 break; 11268 } 11269 11270 if (!fp_access_check(s)) { 11271 return; 11272 } 11273 11274 switch (opcode) { 11275 case 0x01: /* SQADD, UQADD */ 11276 if (u) { 11277 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11278 } else { 11279 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11280 } 11281 return; 11282 case 0x05: /* SQSUB, UQSUB */ 11283 if (u) { 11284 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11285 } else { 11286 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11287 } 11288 return; 11289 case 0x08: /* SSHL, USHL */ 11290 if (u) { 11291 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11292 } else { 11293 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11294 } 11295 return; 11296 case 0x0c: /* SMAX, UMAX */ 11297 if (u) { 11298 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11299 } else { 11300 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11301 } 11302 return; 11303 case 0x0d: /* SMIN, UMIN */ 11304 if (u) { 11305 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11306 } else { 11307 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11308 } 11309 return; 11310 case 0xe: /* SABD, UABD */ 11311 if (u) { 11312 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11313 } else { 11314 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11315 } 11316 return; 11317 case 0xf: /* SABA, UABA */ 11318 if (u) { 11319 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11320 } else { 11321 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11322 } 11323 return; 11324 case 0x10: /* ADD, SUB */ 11325 if (u) { 11326 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11327 } else { 11328 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11329 } 11330 return; 11331 case 0x13: /* MUL, PMUL */ 11332 if (!u) { /* MUL */ 11333 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11334 } else { /* PMUL */ 11335 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11336 } 11337 return; 11338 case 0x12: /* MLA, MLS */ 11339 if (u) { 11340 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11341 } else { 11342 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11343 } 11344 return; 11345 case 0x16: /* SQDMULH, SQRDMULH */ 11346 { 11347 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11348 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11349 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11350 }; 11351 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11352 } 11353 return; 11354 case 0x11: 11355 if (!u) { /* CMTST */ 11356 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11357 return; 11358 } 11359 /* else CMEQ */ 11360 cond = TCG_COND_EQ; 11361 goto do_gvec_cmp; 11362 case 0x06: /* CMGT, CMHI */ 11363 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11364 goto do_gvec_cmp; 11365 case 0x07: /* CMGE, CMHS */ 11366 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11367 do_gvec_cmp: 11368 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11369 vec_full_reg_offset(s, rn), 11370 vec_full_reg_offset(s, rm), 11371 is_q ? 16 : 8, vec_full_reg_size(s)); 11372 return; 11373 } 11374 11375 if (size == 3) { 11376 assert(is_q); 11377 for (pass = 0; pass < 2; pass++) { 11378 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11379 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11380 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11381 11382 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11383 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11384 11385 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11386 11387 write_vec_element(s, tcg_res, rd, pass, MO_64); 11388 } 11389 } else { 11390 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11391 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11392 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11393 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11394 NeonGenTwoOpFn *genfn = NULL; 11395 NeonGenTwoOpEnvFn *genenvfn = NULL; 11396 11397 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11398 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11399 11400 switch (opcode) { 11401 case 0x0: /* SHADD, UHADD */ 11402 { 11403 static NeonGenTwoOpFn * const fns[3][2] = { 11404 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11405 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11406 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11407 }; 11408 genfn = fns[size][u]; 11409 break; 11410 } 11411 case 0x2: /* SRHADD, URHADD */ 11412 { 11413 static NeonGenTwoOpFn * const fns[3][2] = { 11414 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11415 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11416 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11417 }; 11418 genfn = fns[size][u]; 11419 break; 11420 } 11421 case 0x4: /* SHSUB, UHSUB */ 11422 { 11423 static NeonGenTwoOpFn * const fns[3][2] = { 11424 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11425 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11426 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11427 }; 11428 genfn = fns[size][u]; 11429 break; 11430 } 11431 case 0x9: /* SQSHL, UQSHL */ 11432 { 11433 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11434 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11435 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11436 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11437 }; 11438 genenvfn = fns[size][u]; 11439 break; 11440 } 11441 case 0xa: /* SRSHL, URSHL */ 11442 { 11443 static NeonGenTwoOpFn * const fns[3][2] = { 11444 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11445 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11446 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11447 }; 11448 genfn = fns[size][u]; 11449 break; 11450 } 11451 case 0xb: /* SQRSHL, UQRSHL */ 11452 { 11453 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11454 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11455 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11456 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11457 }; 11458 genenvfn = fns[size][u]; 11459 break; 11460 } 11461 default: 11462 g_assert_not_reached(); 11463 } 11464 11465 if (genenvfn) { 11466 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11467 } else { 11468 genfn(tcg_res, tcg_op1, tcg_op2); 11469 } 11470 11471 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11472 } 11473 } 11474 clear_vec_high(s, is_q, rd); 11475 } 11476 11477 /* AdvSIMD three same 11478 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11479 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11480 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11481 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11482 */ 11483 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11484 { 11485 int opcode = extract32(insn, 11, 5); 11486 11487 switch (opcode) { 11488 case 0x3: /* logic ops */ 11489 disas_simd_3same_logic(s, insn); 11490 break; 11491 case 0x17: /* ADDP */ 11492 case 0x14: /* SMAXP, UMAXP */ 11493 case 0x15: /* SMINP, UMINP */ 11494 { 11495 /* Pairwise operations */ 11496 int is_q = extract32(insn, 30, 1); 11497 int u = extract32(insn, 29, 1); 11498 int size = extract32(insn, 22, 2); 11499 int rm = extract32(insn, 16, 5); 11500 int rn = extract32(insn, 5, 5); 11501 int rd = extract32(insn, 0, 5); 11502 if (opcode == 0x17) { 11503 if (u || (size == 3 && !is_q)) { 11504 unallocated_encoding(s); 11505 return; 11506 } 11507 } else { 11508 if (size == 3) { 11509 unallocated_encoding(s); 11510 return; 11511 } 11512 } 11513 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11514 break; 11515 } 11516 case 0x18 ... 0x31: 11517 /* floating point ops, sz[1] and U are part of opcode */ 11518 disas_simd_3same_float(s, insn); 11519 break; 11520 default: 11521 disas_simd_3same_int(s, insn); 11522 break; 11523 } 11524 } 11525 11526 /* 11527 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11528 * 11529 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11530 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11531 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11532 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11533 * 11534 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11535 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11536 * 11537 */ 11538 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11539 { 11540 int opcode = extract32(insn, 11, 3); 11541 int u = extract32(insn, 29, 1); 11542 int a = extract32(insn, 23, 1); 11543 int is_q = extract32(insn, 30, 1); 11544 int rm = extract32(insn, 16, 5); 11545 int rn = extract32(insn, 5, 5); 11546 int rd = extract32(insn, 0, 5); 11547 /* 11548 * For these floating point ops, the U, a and opcode bits 11549 * together indicate the operation. 11550 */ 11551 int fpopcode = opcode | (a << 3) | (u << 4); 11552 int datasize = is_q ? 128 : 64; 11553 int elements = datasize / 16; 11554 bool pairwise; 11555 TCGv_ptr fpst; 11556 int pass; 11557 11558 switch (fpopcode) { 11559 case 0x0: /* FMAXNM */ 11560 case 0x1: /* FMLA */ 11561 case 0x2: /* FADD */ 11562 case 0x3: /* FMULX */ 11563 case 0x4: /* FCMEQ */ 11564 case 0x6: /* FMAX */ 11565 case 0x7: /* FRECPS */ 11566 case 0x8: /* FMINNM */ 11567 case 0x9: /* FMLS */ 11568 case 0xa: /* FSUB */ 11569 case 0xe: /* FMIN */ 11570 case 0xf: /* FRSQRTS */ 11571 case 0x13: /* FMUL */ 11572 case 0x14: /* FCMGE */ 11573 case 0x15: /* FACGE */ 11574 case 0x17: /* FDIV */ 11575 case 0x1a: /* FABD */ 11576 case 0x1c: /* FCMGT */ 11577 case 0x1d: /* FACGT */ 11578 pairwise = false; 11579 break; 11580 case 0x10: /* FMAXNMP */ 11581 case 0x12: /* FADDP */ 11582 case 0x16: /* FMAXP */ 11583 case 0x18: /* FMINNMP */ 11584 case 0x1e: /* FMINP */ 11585 pairwise = true; 11586 break; 11587 default: 11588 unallocated_encoding(s); 11589 return; 11590 } 11591 11592 if (!dc_isar_feature(aa64_fp16, s)) { 11593 unallocated_encoding(s); 11594 return; 11595 } 11596 11597 if (!fp_access_check(s)) { 11598 return; 11599 } 11600 11601 fpst = fpstatus_ptr(FPST_FPCR_F16); 11602 11603 if (pairwise) { 11604 int maxpass = is_q ? 8 : 4; 11605 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11606 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11607 TCGv_i32 tcg_res[8]; 11608 11609 for (pass = 0; pass < maxpass; pass++) { 11610 int passreg = pass < (maxpass / 2) ? rn : rm; 11611 int passelt = (pass << 1) & (maxpass - 1); 11612 11613 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11614 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11615 tcg_res[pass] = tcg_temp_new_i32(); 11616 11617 switch (fpopcode) { 11618 case 0x10: /* FMAXNMP */ 11619 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11620 fpst); 11621 break; 11622 case 0x12: /* FADDP */ 11623 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11624 break; 11625 case 0x16: /* FMAXP */ 11626 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11627 break; 11628 case 0x18: /* FMINNMP */ 11629 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11630 fpst); 11631 break; 11632 case 0x1e: /* FMINP */ 11633 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11634 break; 11635 default: 11636 g_assert_not_reached(); 11637 } 11638 } 11639 11640 for (pass = 0; pass < maxpass; pass++) { 11641 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11642 } 11643 } else { 11644 for (pass = 0; pass < elements; pass++) { 11645 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11646 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11647 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11648 11649 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11650 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11651 11652 switch (fpopcode) { 11653 case 0x0: /* FMAXNM */ 11654 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11655 break; 11656 case 0x1: /* FMLA */ 11657 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11658 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11659 fpst); 11660 break; 11661 case 0x2: /* FADD */ 11662 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11663 break; 11664 case 0x3: /* FMULX */ 11665 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11666 break; 11667 case 0x4: /* FCMEQ */ 11668 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11669 break; 11670 case 0x6: /* FMAX */ 11671 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11672 break; 11673 case 0x7: /* FRECPS */ 11674 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11675 break; 11676 case 0x8: /* FMINNM */ 11677 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11678 break; 11679 case 0x9: /* FMLS */ 11680 /* As usual for ARM, separate negation for fused multiply-add */ 11681 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11682 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11683 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11684 fpst); 11685 break; 11686 case 0xa: /* FSUB */ 11687 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11688 break; 11689 case 0xe: /* FMIN */ 11690 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11691 break; 11692 case 0xf: /* FRSQRTS */ 11693 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11694 break; 11695 case 0x13: /* FMUL */ 11696 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11697 break; 11698 case 0x14: /* FCMGE */ 11699 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11700 break; 11701 case 0x15: /* FACGE */ 11702 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11703 break; 11704 case 0x17: /* FDIV */ 11705 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11706 break; 11707 case 0x1a: /* FABD */ 11708 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11709 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11710 break; 11711 case 0x1c: /* FCMGT */ 11712 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11713 break; 11714 case 0x1d: /* FACGT */ 11715 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11716 break; 11717 default: 11718 g_assert_not_reached(); 11719 } 11720 11721 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11722 } 11723 } 11724 11725 clear_vec_high(s, is_q, rd); 11726 } 11727 11728 /* AdvSIMD three same extra 11729 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11730 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11731 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11732 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11733 */ 11734 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11735 { 11736 int rd = extract32(insn, 0, 5); 11737 int rn = extract32(insn, 5, 5); 11738 int opcode = extract32(insn, 11, 4); 11739 int rm = extract32(insn, 16, 5); 11740 int size = extract32(insn, 22, 2); 11741 bool u = extract32(insn, 29, 1); 11742 bool is_q = extract32(insn, 30, 1); 11743 bool feature; 11744 int rot; 11745 11746 switch (u * 16 + opcode) { 11747 case 0x10: /* SQRDMLAH (vector) */ 11748 case 0x11: /* SQRDMLSH (vector) */ 11749 if (size != 1 && size != 2) { 11750 unallocated_encoding(s); 11751 return; 11752 } 11753 feature = dc_isar_feature(aa64_rdm, s); 11754 break; 11755 case 0x02: /* SDOT (vector) */ 11756 case 0x12: /* UDOT (vector) */ 11757 if (size != MO_32) { 11758 unallocated_encoding(s); 11759 return; 11760 } 11761 feature = dc_isar_feature(aa64_dp, s); 11762 break; 11763 case 0x03: /* USDOT */ 11764 if (size != MO_32) { 11765 unallocated_encoding(s); 11766 return; 11767 } 11768 feature = dc_isar_feature(aa64_i8mm, s); 11769 break; 11770 case 0x04: /* SMMLA */ 11771 case 0x14: /* UMMLA */ 11772 case 0x05: /* USMMLA */ 11773 if (!is_q || size != MO_32) { 11774 unallocated_encoding(s); 11775 return; 11776 } 11777 feature = dc_isar_feature(aa64_i8mm, s); 11778 break; 11779 case 0x18: /* FCMLA, #0 */ 11780 case 0x19: /* FCMLA, #90 */ 11781 case 0x1a: /* FCMLA, #180 */ 11782 case 0x1b: /* FCMLA, #270 */ 11783 case 0x1c: /* FCADD, #90 */ 11784 case 0x1e: /* FCADD, #270 */ 11785 if (size == 0 11786 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11787 || (size == 3 && !is_q)) { 11788 unallocated_encoding(s); 11789 return; 11790 } 11791 feature = dc_isar_feature(aa64_fcma, s); 11792 break; 11793 case 0x1d: /* BFMMLA */ 11794 if (size != MO_16 || !is_q) { 11795 unallocated_encoding(s); 11796 return; 11797 } 11798 feature = dc_isar_feature(aa64_bf16, s); 11799 break; 11800 case 0x1f: 11801 switch (size) { 11802 case 1: /* BFDOT */ 11803 case 3: /* BFMLAL{B,T} */ 11804 feature = dc_isar_feature(aa64_bf16, s); 11805 break; 11806 default: 11807 unallocated_encoding(s); 11808 return; 11809 } 11810 break; 11811 default: 11812 unallocated_encoding(s); 11813 return; 11814 } 11815 if (!feature) { 11816 unallocated_encoding(s); 11817 return; 11818 } 11819 if (!fp_access_check(s)) { 11820 return; 11821 } 11822 11823 switch (opcode) { 11824 case 0x0: /* SQRDMLAH (vector) */ 11825 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11826 return; 11827 11828 case 0x1: /* SQRDMLSH (vector) */ 11829 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11830 return; 11831 11832 case 0x2: /* SDOT / UDOT */ 11833 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11834 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11835 return; 11836 11837 case 0x3: /* USDOT */ 11838 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11839 return; 11840 11841 case 0x04: /* SMMLA, UMMLA */ 11842 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11843 u ? gen_helper_gvec_ummla_b 11844 : gen_helper_gvec_smmla_b); 11845 return; 11846 case 0x05: /* USMMLA */ 11847 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11848 return; 11849 11850 case 0x8: /* FCMLA, #0 */ 11851 case 0x9: /* FCMLA, #90 */ 11852 case 0xa: /* FCMLA, #180 */ 11853 case 0xb: /* FCMLA, #270 */ 11854 rot = extract32(opcode, 0, 2); 11855 switch (size) { 11856 case 1: 11857 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11858 gen_helper_gvec_fcmlah); 11859 break; 11860 case 2: 11861 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11862 gen_helper_gvec_fcmlas); 11863 break; 11864 case 3: 11865 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11866 gen_helper_gvec_fcmlad); 11867 break; 11868 default: 11869 g_assert_not_reached(); 11870 } 11871 return; 11872 11873 case 0xc: /* FCADD, #90 */ 11874 case 0xe: /* FCADD, #270 */ 11875 rot = extract32(opcode, 1, 1); 11876 switch (size) { 11877 case 1: 11878 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11879 gen_helper_gvec_fcaddh); 11880 break; 11881 case 2: 11882 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11883 gen_helper_gvec_fcadds); 11884 break; 11885 case 3: 11886 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11887 gen_helper_gvec_fcaddd); 11888 break; 11889 default: 11890 g_assert_not_reached(); 11891 } 11892 return; 11893 11894 case 0xd: /* BFMMLA */ 11895 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11896 return; 11897 case 0xf: 11898 switch (size) { 11899 case 1: /* BFDOT */ 11900 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11901 break; 11902 case 3: /* BFMLAL{B,T} */ 11903 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11904 gen_helper_gvec_bfmlal); 11905 break; 11906 default: 11907 g_assert_not_reached(); 11908 } 11909 return; 11910 11911 default: 11912 g_assert_not_reached(); 11913 } 11914 } 11915 11916 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11917 int size, int rn, int rd) 11918 { 11919 /* Handle 2-reg-misc ops which are widening (so each size element 11920 * in the source becomes a 2*size element in the destination. 11921 * The only instruction like this is FCVTL. 11922 */ 11923 int pass; 11924 11925 if (size == 3) { 11926 /* 32 -> 64 bit fp conversion */ 11927 TCGv_i64 tcg_res[2]; 11928 int srcelt = is_q ? 2 : 0; 11929 11930 for (pass = 0; pass < 2; pass++) { 11931 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11932 tcg_res[pass] = tcg_temp_new_i64(); 11933 11934 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11935 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11936 } 11937 for (pass = 0; pass < 2; pass++) { 11938 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11939 } 11940 } else { 11941 /* 16 -> 32 bit fp conversion */ 11942 int srcelt = is_q ? 4 : 0; 11943 TCGv_i32 tcg_res[4]; 11944 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11945 TCGv_i32 ahp = get_ahp_flag(); 11946 11947 for (pass = 0; pass < 4; pass++) { 11948 tcg_res[pass] = tcg_temp_new_i32(); 11949 11950 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11951 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11952 fpst, ahp); 11953 } 11954 for (pass = 0; pass < 4; pass++) { 11955 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11956 } 11957 } 11958 } 11959 11960 static void handle_rev(DisasContext *s, int opcode, bool u, 11961 bool is_q, int size, int rn, int rd) 11962 { 11963 int op = (opcode << 1) | u; 11964 int opsz = op + size; 11965 int grp_size = 3 - opsz; 11966 int dsize = is_q ? 128 : 64; 11967 int i; 11968 11969 if (opsz >= 3) { 11970 unallocated_encoding(s); 11971 return; 11972 } 11973 11974 if (!fp_access_check(s)) { 11975 return; 11976 } 11977 11978 if (size == 0) { 11979 /* Special case bytes, use bswap op on each group of elements */ 11980 int groups = dsize / (8 << grp_size); 11981 11982 for (i = 0; i < groups; i++) { 11983 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11984 11985 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11986 switch (grp_size) { 11987 case MO_16: 11988 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11989 break; 11990 case MO_32: 11991 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11992 break; 11993 case MO_64: 11994 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11995 break; 11996 default: 11997 g_assert_not_reached(); 11998 } 11999 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12000 } 12001 clear_vec_high(s, is_q, rd); 12002 } else { 12003 int revmask = (1 << grp_size) - 1; 12004 int esize = 8 << size; 12005 int elements = dsize / esize; 12006 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12007 TCGv_i64 tcg_rd[2]; 12008 12009 for (i = 0; i < 2; i++) { 12010 tcg_rd[i] = tcg_temp_new_i64(); 12011 tcg_gen_movi_i64(tcg_rd[i], 0); 12012 } 12013 12014 for (i = 0; i < elements; i++) { 12015 int e_rev = (i & 0xf) ^ revmask; 12016 int w = (e_rev * esize) / 64; 12017 int o = (e_rev * esize) % 64; 12018 12019 read_vec_element(s, tcg_rn, rn, i, size); 12020 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12021 } 12022 12023 for (i = 0; i < 2; i++) { 12024 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12025 } 12026 clear_vec_high(s, true, rd); 12027 } 12028 } 12029 12030 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12031 bool is_q, int size, int rn, int rd) 12032 { 12033 /* Implement the pairwise operations from 2-misc: 12034 * SADDLP, UADDLP, SADALP, UADALP. 12035 * These all add pairs of elements in the input to produce a 12036 * double-width result element in the output (possibly accumulating). 12037 */ 12038 bool accum = (opcode == 0x6); 12039 int maxpass = is_q ? 2 : 1; 12040 int pass; 12041 TCGv_i64 tcg_res[2]; 12042 12043 if (size == 2) { 12044 /* 32 + 32 -> 64 op */ 12045 MemOp memop = size + (u ? 0 : MO_SIGN); 12046 12047 for (pass = 0; pass < maxpass; pass++) { 12048 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12049 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12050 12051 tcg_res[pass] = tcg_temp_new_i64(); 12052 12053 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12054 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12055 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12056 if (accum) { 12057 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12058 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12059 } 12060 } 12061 } else { 12062 for (pass = 0; pass < maxpass; pass++) { 12063 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12064 NeonGenOne64OpFn *genfn; 12065 static NeonGenOne64OpFn * const fns[2][2] = { 12066 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12067 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12068 }; 12069 12070 genfn = fns[size][u]; 12071 12072 tcg_res[pass] = tcg_temp_new_i64(); 12073 12074 read_vec_element(s, tcg_op, rn, pass, MO_64); 12075 genfn(tcg_res[pass], tcg_op); 12076 12077 if (accum) { 12078 read_vec_element(s, tcg_op, rd, pass, MO_64); 12079 if (size == 0) { 12080 gen_helper_neon_addl_u16(tcg_res[pass], 12081 tcg_res[pass], tcg_op); 12082 } else { 12083 gen_helper_neon_addl_u32(tcg_res[pass], 12084 tcg_res[pass], tcg_op); 12085 } 12086 } 12087 } 12088 } 12089 if (!is_q) { 12090 tcg_res[1] = tcg_constant_i64(0); 12091 } 12092 for (pass = 0; pass < 2; pass++) { 12093 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12094 } 12095 } 12096 12097 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12098 { 12099 /* Implement SHLL and SHLL2 */ 12100 int pass; 12101 int part = is_q ? 2 : 0; 12102 TCGv_i64 tcg_res[2]; 12103 12104 for (pass = 0; pass < 2; pass++) { 12105 static NeonGenWidenFn * const widenfns[3] = { 12106 gen_helper_neon_widen_u8, 12107 gen_helper_neon_widen_u16, 12108 tcg_gen_extu_i32_i64, 12109 }; 12110 NeonGenWidenFn *widenfn = widenfns[size]; 12111 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12112 12113 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12114 tcg_res[pass] = tcg_temp_new_i64(); 12115 widenfn(tcg_res[pass], tcg_op); 12116 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12117 } 12118 12119 for (pass = 0; pass < 2; pass++) { 12120 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12121 } 12122 } 12123 12124 /* AdvSIMD two reg misc 12125 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12126 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12127 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12128 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12129 */ 12130 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12131 { 12132 int size = extract32(insn, 22, 2); 12133 int opcode = extract32(insn, 12, 5); 12134 bool u = extract32(insn, 29, 1); 12135 bool is_q = extract32(insn, 30, 1); 12136 int rn = extract32(insn, 5, 5); 12137 int rd = extract32(insn, 0, 5); 12138 bool need_fpstatus = false; 12139 int rmode = -1; 12140 TCGv_i32 tcg_rmode; 12141 TCGv_ptr tcg_fpstatus; 12142 12143 switch (opcode) { 12144 case 0x0: /* REV64, REV32 */ 12145 case 0x1: /* REV16 */ 12146 handle_rev(s, opcode, u, is_q, size, rn, rd); 12147 return; 12148 case 0x5: /* CNT, NOT, RBIT */ 12149 if (u && size == 0) { 12150 /* NOT */ 12151 break; 12152 } else if (u && size == 1) { 12153 /* RBIT */ 12154 break; 12155 } else if (!u && size == 0) { 12156 /* CNT */ 12157 break; 12158 } 12159 unallocated_encoding(s); 12160 return; 12161 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12162 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12163 if (size == 3) { 12164 unallocated_encoding(s); 12165 return; 12166 } 12167 if (!fp_access_check(s)) { 12168 return; 12169 } 12170 12171 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12172 return; 12173 case 0x4: /* CLS, CLZ */ 12174 if (size == 3) { 12175 unallocated_encoding(s); 12176 return; 12177 } 12178 break; 12179 case 0x2: /* SADDLP, UADDLP */ 12180 case 0x6: /* SADALP, UADALP */ 12181 if (size == 3) { 12182 unallocated_encoding(s); 12183 return; 12184 } 12185 if (!fp_access_check(s)) { 12186 return; 12187 } 12188 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12189 return; 12190 case 0x13: /* SHLL, SHLL2 */ 12191 if (u == 0 || size == 3) { 12192 unallocated_encoding(s); 12193 return; 12194 } 12195 if (!fp_access_check(s)) { 12196 return; 12197 } 12198 handle_shll(s, is_q, size, rn, rd); 12199 return; 12200 case 0xa: /* CMLT */ 12201 if (u == 1) { 12202 unallocated_encoding(s); 12203 return; 12204 } 12205 /* fall through */ 12206 case 0x8: /* CMGT, CMGE */ 12207 case 0x9: /* CMEQ, CMLE */ 12208 case 0xb: /* ABS, NEG */ 12209 if (size == 3 && !is_q) { 12210 unallocated_encoding(s); 12211 return; 12212 } 12213 break; 12214 case 0x3: /* SUQADD, USQADD */ 12215 if (size == 3 && !is_q) { 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 if (!fp_access_check(s)) { 12220 return; 12221 } 12222 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12223 return; 12224 case 0x7: /* SQABS, SQNEG */ 12225 if (size == 3 && !is_q) { 12226 unallocated_encoding(s); 12227 return; 12228 } 12229 break; 12230 case 0xc ... 0xf: 12231 case 0x16 ... 0x1f: 12232 { 12233 /* Floating point: U, size[1] and opcode indicate operation; 12234 * size[0] indicates single or double precision. 12235 */ 12236 int is_double = extract32(size, 0, 1); 12237 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12238 size = is_double ? 3 : 2; 12239 switch (opcode) { 12240 case 0x2f: /* FABS */ 12241 case 0x6f: /* FNEG */ 12242 if (size == 3 && !is_q) { 12243 unallocated_encoding(s); 12244 return; 12245 } 12246 break; 12247 case 0x1d: /* SCVTF */ 12248 case 0x5d: /* UCVTF */ 12249 { 12250 bool is_signed = (opcode == 0x1d) ? true : false; 12251 int elements = is_double ? 2 : is_q ? 4 : 2; 12252 if (is_double && !is_q) { 12253 unallocated_encoding(s); 12254 return; 12255 } 12256 if (!fp_access_check(s)) { 12257 return; 12258 } 12259 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12260 return; 12261 } 12262 case 0x2c: /* FCMGT (zero) */ 12263 case 0x2d: /* FCMEQ (zero) */ 12264 case 0x2e: /* FCMLT (zero) */ 12265 case 0x6c: /* FCMGE (zero) */ 12266 case 0x6d: /* FCMLE (zero) */ 12267 if (size == 3 && !is_q) { 12268 unallocated_encoding(s); 12269 return; 12270 } 12271 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12272 return; 12273 case 0x7f: /* FSQRT */ 12274 if (size == 3 && !is_q) { 12275 unallocated_encoding(s); 12276 return; 12277 } 12278 break; 12279 case 0x1a: /* FCVTNS */ 12280 case 0x1b: /* FCVTMS */ 12281 case 0x3a: /* FCVTPS */ 12282 case 0x3b: /* FCVTZS */ 12283 case 0x5a: /* FCVTNU */ 12284 case 0x5b: /* FCVTMU */ 12285 case 0x7a: /* FCVTPU */ 12286 case 0x7b: /* FCVTZU */ 12287 need_fpstatus = true; 12288 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12289 if (size == 3 && !is_q) { 12290 unallocated_encoding(s); 12291 return; 12292 } 12293 break; 12294 case 0x5c: /* FCVTAU */ 12295 case 0x1c: /* FCVTAS */ 12296 need_fpstatus = true; 12297 rmode = FPROUNDING_TIEAWAY; 12298 if (size == 3 && !is_q) { 12299 unallocated_encoding(s); 12300 return; 12301 } 12302 break; 12303 case 0x3c: /* URECPE */ 12304 if (size == 3) { 12305 unallocated_encoding(s); 12306 return; 12307 } 12308 /* fall through */ 12309 case 0x3d: /* FRECPE */ 12310 case 0x7d: /* FRSQRTE */ 12311 if (size == 3 && !is_q) { 12312 unallocated_encoding(s); 12313 return; 12314 } 12315 if (!fp_access_check(s)) { 12316 return; 12317 } 12318 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12319 return; 12320 case 0x56: /* FCVTXN, FCVTXN2 */ 12321 if (size == 2) { 12322 unallocated_encoding(s); 12323 return; 12324 } 12325 /* fall through */ 12326 case 0x16: /* FCVTN, FCVTN2 */ 12327 /* handle_2misc_narrow does a 2*size -> size operation, but these 12328 * instructions encode the source size rather than dest size. 12329 */ 12330 if (!fp_access_check(s)) { 12331 return; 12332 } 12333 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12334 return; 12335 case 0x36: /* BFCVTN, BFCVTN2 */ 12336 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12337 unallocated_encoding(s); 12338 return; 12339 } 12340 if (!fp_access_check(s)) { 12341 return; 12342 } 12343 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12344 return; 12345 case 0x17: /* FCVTL, FCVTL2 */ 12346 if (!fp_access_check(s)) { 12347 return; 12348 } 12349 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12350 return; 12351 case 0x18: /* FRINTN */ 12352 case 0x19: /* FRINTM */ 12353 case 0x38: /* FRINTP */ 12354 case 0x39: /* FRINTZ */ 12355 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12356 /* fall through */ 12357 case 0x59: /* FRINTX */ 12358 case 0x79: /* FRINTI */ 12359 need_fpstatus = true; 12360 if (size == 3 && !is_q) { 12361 unallocated_encoding(s); 12362 return; 12363 } 12364 break; 12365 case 0x58: /* FRINTA */ 12366 rmode = FPROUNDING_TIEAWAY; 12367 need_fpstatus = true; 12368 if (size == 3 && !is_q) { 12369 unallocated_encoding(s); 12370 return; 12371 } 12372 break; 12373 case 0x7c: /* URSQRTE */ 12374 if (size == 3) { 12375 unallocated_encoding(s); 12376 return; 12377 } 12378 break; 12379 case 0x1e: /* FRINT32Z */ 12380 case 0x1f: /* FRINT64Z */ 12381 rmode = FPROUNDING_ZERO; 12382 /* fall through */ 12383 case 0x5e: /* FRINT32X */ 12384 case 0x5f: /* FRINT64X */ 12385 need_fpstatus = true; 12386 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12387 unallocated_encoding(s); 12388 return; 12389 } 12390 break; 12391 default: 12392 unallocated_encoding(s); 12393 return; 12394 } 12395 break; 12396 } 12397 default: 12398 unallocated_encoding(s); 12399 return; 12400 } 12401 12402 if (!fp_access_check(s)) { 12403 return; 12404 } 12405 12406 if (need_fpstatus || rmode >= 0) { 12407 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12408 } else { 12409 tcg_fpstatus = NULL; 12410 } 12411 if (rmode >= 0) { 12412 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12413 } else { 12414 tcg_rmode = NULL; 12415 } 12416 12417 switch (opcode) { 12418 case 0x5: 12419 if (u && size == 0) { /* NOT */ 12420 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12421 return; 12422 } 12423 break; 12424 case 0x8: /* CMGT, CMGE */ 12425 if (u) { 12426 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12427 } else { 12428 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12429 } 12430 return; 12431 case 0x9: /* CMEQ, CMLE */ 12432 if (u) { 12433 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12434 } else { 12435 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12436 } 12437 return; 12438 case 0xa: /* CMLT */ 12439 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12440 return; 12441 case 0xb: 12442 if (u) { /* ABS, NEG */ 12443 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12444 } else { 12445 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12446 } 12447 return; 12448 } 12449 12450 if (size == 3) { 12451 /* All 64-bit element operations can be shared with scalar 2misc */ 12452 int pass; 12453 12454 /* Coverity claims (size == 3 && !is_q) has been eliminated 12455 * from all paths leading to here. 12456 */ 12457 tcg_debug_assert(is_q); 12458 for (pass = 0; pass < 2; pass++) { 12459 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12460 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12461 12462 read_vec_element(s, tcg_op, rn, pass, MO_64); 12463 12464 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12465 tcg_rmode, tcg_fpstatus); 12466 12467 write_vec_element(s, tcg_res, rd, pass, MO_64); 12468 } 12469 } else { 12470 int pass; 12471 12472 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12473 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12474 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12475 12476 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12477 12478 if (size == 2) { 12479 /* Special cases for 32 bit elements */ 12480 switch (opcode) { 12481 case 0x4: /* CLS */ 12482 if (u) { 12483 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12484 } else { 12485 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12486 } 12487 break; 12488 case 0x7: /* SQABS, SQNEG */ 12489 if (u) { 12490 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12491 } else { 12492 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12493 } 12494 break; 12495 case 0x2f: /* FABS */ 12496 gen_helper_vfp_abss(tcg_res, tcg_op); 12497 break; 12498 case 0x6f: /* FNEG */ 12499 gen_helper_vfp_negs(tcg_res, tcg_op); 12500 break; 12501 case 0x7f: /* FSQRT */ 12502 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12503 break; 12504 case 0x1a: /* FCVTNS */ 12505 case 0x1b: /* FCVTMS */ 12506 case 0x1c: /* FCVTAS */ 12507 case 0x3a: /* FCVTPS */ 12508 case 0x3b: /* FCVTZS */ 12509 gen_helper_vfp_tosls(tcg_res, tcg_op, 12510 tcg_constant_i32(0), tcg_fpstatus); 12511 break; 12512 case 0x5a: /* FCVTNU */ 12513 case 0x5b: /* FCVTMU */ 12514 case 0x5c: /* FCVTAU */ 12515 case 0x7a: /* FCVTPU */ 12516 case 0x7b: /* FCVTZU */ 12517 gen_helper_vfp_touls(tcg_res, tcg_op, 12518 tcg_constant_i32(0), tcg_fpstatus); 12519 break; 12520 case 0x18: /* FRINTN */ 12521 case 0x19: /* FRINTM */ 12522 case 0x38: /* FRINTP */ 12523 case 0x39: /* FRINTZ */ 12524 case 0x58: /* FRINTA */ 12525 case 0x79: /* FRINTI */ 12526 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12527 break; 12528 case 0x59: /* FRINTX */ 12529 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12530 break; 12531 case 0x7c: /* URSQRTE */ 12532 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12533 break; 12534 case 0x1e: /* FRINT32Z */ 12535 case 0x5e: /* FRINT32X */ 12536 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12537 break; 12538 case 0x1f: /* FRINT64Z */ 12539 case 0x5f: /* FRINT64X */ 12540 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12541 break; 12542 default: 12543 g_assert_not_reached(); 12544 } 12545 } else { 12546 /* Use helpers for 8 and 16 bit elements */ 12547 switch (opcode) { 12548 case 0x5: /* CNT, RBIT */ 12549 /* For these two insns size is part of the opcode specifier 12550 * (handled earlier); they always operate on byte elements. 12551 */ 12552 if (u) { 12553 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12554 } else { 12555 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12556 } 12557 break; 12558 case 0x7: /* SQABS, SQNEG */ 12559 { 12560 NeonGenOneOpEnvFn *genfn; 12561 static NeonGenOneOpEnvFn * const fns[2][2] = { 12562 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12563 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12564 }; 12565 genfn = fns[size][u]; 12566 genfn(tcg_res, cpu_env, tcg_op); 12567 break; 12568 } 12569 case 0x4: /* CLS, CLZ */ 12570 if (u) { 12571 if (size == 0) { 12572 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12573 } else { 12574 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12575 } 12576 } else { 12577 if (size == 0) { 12578 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12579 } else { 12580 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12581 } 12582 } 12583 break; 12584 default: 12585 g_assert_not_reached(); 12586 } 12587 } 12588 12589 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12590 } 12591 } 12592 clear_vec_high(s, is_q, rd); 12593 12594 if (tcg_rmode) { 12595 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12596 } 12597 } 12598 12599 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12600 * 12601 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12602 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12603 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12604 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12605 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12606 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12607 * 12608 * This actually covers two groups where scalar access is governed by 12609 * bit 28. A bunch of the instructions (float to integral) only exist 12610 * in the vector form and are un-allocated for the scalar decode. Also 12611 * in the scalar decode Q is always 1. 12612 */ 12613 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12614 { 12615 int fpop, opcode, a, u; 12616 int rn, rd; 12617 bool is_q; 12618 bool is_scalar; 12619 bool only_in_vector = false; 12620 12621 int pass; 12622 TCGv_i32 tcg_rmode = NULL; 12623 TCGv_ptr tcg_fpstatus = NULL; 12624 bool need_fpst = true; 12625 int rmode = -1; 12626 12627 if (!dc_isar_feature(aa64_fp16, s)) { 12628 unallocated_encoding(s); 12629 return; 12630 } 12631 12632 rd = extract32(insn, 0, 5); 12633 rn = extract32(insn, 5, 5); 12634 12635 a = extract32(insn, 23, 1); 12636 u = extract32(insn, 29, 1); 12637 is_scalar = extract32(insn, 28, 1); 12638 is_q = extract32(insn, 30, 1); 12639 12640 opcode = extract32(insn, 12, 5); 12641 fpop = deposit32(opcode, 5, 1, a); 12642 fpop = deposit32(fpop, 6, 1, u); 12643 12644 switch (fpop) { 12645 case 0x1d: /* SCVTF */ 12646 case 0x5d: /* UCVTF */ 12647 { 12648 int elements; 12649 12650 if (is_scalar) { 12651 elements = 1; 12652 } else { 12653 elements = (is_q ? 8 : 4); 12654 } 12655 12656 if (!fp_access_check(s)) { 12657 return; 12658 } 12659 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12660 return; 12661 } 12662 break; 12663 case 0x2c: /* FCMGT (zero) */ 12664 case 0x2d: /* FCMEQ (zero) */ 12665 case 0x2e: /* FCMLT (zero) */ 12666 case 0x6c: /* FCMGE (zero) */ 12667 case 0x6d: /* FCMLE (zero) */ 12668 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12669 return; 12670 case 0x3d: /* FRECPE */ 12671 case 0x3f: /* FRECPX */ 12672 break; 12673 case 0x18: /* FRINTN */ 12674 only_in_vector = true; 12675 rmode = FPROUNDING_TIEEVEN; 12676 break; 12677 case 0x19: /* FRINTM */ 12678 only_in_vector = true; 12679 rmode = FPROUNDING_NEGINF; 12680 break; 12681 case 0x38: /* FRINTP */ 12682 only_in_vector = true; 12683 rmode = FPROUNDING_POSINF; 12684 break; 12685 case 0x39: /* FRINTZ */ 12686 only_in_vector = true; 12687 rmode = FPROUNDING_ZERO; 12688 break; 12689 case 0x58: /* FRINTA */ 12690 only_in_vector = true; 12691 rmode = FPROUNDING_TIEAWAY; 12692 break; 12693 case 0x59: /* FRINTX */ 12694 case 0x79: /* FRINTI */ 12695 only_in_vector = true; 12696 /* current rounding mode */ 12697 break; 12698 case 0x1a: /* FCVTNS */ 12699 rmode = FPROUNDING_TIEEVEN; 12700 break; 12701 case 0x1b: /* FCVTMS */ 12702 rmode = FPROUNDING_NEGINF; 12703 break; 12704 case 0x1c: /* FCVTAS */ 12705 rmode = FPROUNDING_TIEAWAY; 12706 break; 12707 case 0x3a: /* FCVTPS */ 12708 rmode = FPROUNDING_POSINF; 12709 break; 12710 case 0x3b: /* FCVTZS */ 12711 rmode = FPROUNDING_ZERO; 12712 break; 12713 case 0x5a: /* FCVTNU */ 12714 rmode = FPROUNDING_TIEEVEN; 12715 break; 12716 case 0x5b: /* FCVTMU */ 12717 rmode = FPROUNDING_NEGINF; 12718 break; 12719 case 0x5c: /* FCVTAU */ 12720 rmode = FPROUNDING_TIEAWAY; 12721 break; 12722 case 0x7a: /* FCVTPU */ 12723 rmode = FPROUNDING_POSINF; 12724 break; 12725 case 0x7b: /* FCVTZU */ 12726 rmode = FPROUNDING_ZERO; 12727 break; 12728 case 0x2f: /* FABS */ 12729 case 0x6f: /* FNEG */ 12730 need_fpst = false; 12731 break; 12732 case 0x7d: /* FRSQRTE */ 12733 case 0x7f: /* FSQRT (vector) */ 12734 break; 12735 default: 12736 unallocated_encoding(s); 12737 return; 12738 } 12739 12740 12741 /* Check additional constraints for the scalar encoding */ 12742 if (is_scalar) { 12743 if (!is_q) { 12744 unallocated_encoding(s); 12745 return; 12746 } 12747 /* FRINTxx is only in the vector form */ 12748 if (only_in_vector) { 12749 unallocated_encoding(s); 12750 return; 12751 } 12752 } 12753 12754 if (!fp_access_check(s)) { 12755 return; 12756 } 12757 12758 if (rmode >= 0 || need_fpst) { 12759 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12760 } 12761 12762 if (rmode >= 0) { 12763 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12764 } 12765 12766 if (is_scalar) { 12767 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12768 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12769 12770 switch (fpop) { 12771 case 0x1a: /* FCVTNS */ 12772 case 0x1b: /* FCVTMS */ 12773 case 0x1c: /* FCVTAS */ 12774 case 0x3a: /* FCVTPS */ 12775 case 0x3b: /* FCVTZS */ 12776 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12777 break; 12778 case 0x3d: /* FRECPE */ 12779 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12780 break; 12781 case 0x3f: /* FRECPX */ 12782 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12783 break; 12784 case 0x5a: /* FCVTNU */ 12785 case 0x5b: /* FCVTMU */ 12786 case 0x5c: /* FCVTAU */ 12787 case 0x7a: /* FCVTPU */ 12788 case 0x7b: /* FCVTZU */ 12789 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12790 break; 12791 case 0x6f: /* FNEG */ 12792 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12793 break; 12794 case 0x7d: /* FRSQRTE */ 12795 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12796 break; 12797 default: 12798 g_assert_not_reached(); 12799 } 12800 12801 /* limit any sign extension going on */ 12802 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12803 write_fp_sreg(s, rd, tcg_res); 12804 } else { 12805 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12806 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12807 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12808 12809 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12810 12811 switch (fpop) { 12812 case 0x1a: /* FCVTNS */ 12813 case 0x1b: /* FCVTMS */ 12814 case 0x1c: /* FCVTAS */ 12815 case 0x3a: /* FCVTPS */ 12816 case 0x3b: /* FCVTZS */ 12817 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12818 break; 12819 case 0x3d: /* FRECPE */ 12820 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12821 break; 12822 case 0x5a: /* FCVTNU */ 12823 case 0x5b: /* FCVTMU */ 12824 case 0x5c: /* FCVTAU */ 12825 case 0x7a: /* FCVTPU */ 12826 case 0x7b: /* FCVTZU */ 12827 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12828 break; 12829 case 0x18: /* FRINTN */ 12830 case 0x19: /* FRINTM */ 12831 case 0x38: /* FRINTP */ 12832 case 0x39: /* FRINTZ */ 12833 case 0x58: /* FRINTA */ 12834 case 0x79: /* FRINTI */ 12835 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12836 break; 12837 case 0x59: /* FRINTX */ 12838 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12839 break; 12840 case 0x2f: /* FABS */ 12841 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12842 break; 12843 case 0x6f: /* FNEG */ 12844 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12845 break; 12846 case 0x7d: /* FRSQRTE */ 12847 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12848 break; 12849 case 0x7f: /* FSQRT */ 12850 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12851 break; 12852 default: 12853 g_assert_not_reached(); 12854 } 12855 12856 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12857 } 12858 12859 clear_vec_high(s, is_q, rd); 12860 } 12861 12862 if (tcg_rmode) { 12863 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12864 } 12865 } 12866 12867 /* AdvSIMD scalar x indexed element 12868 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12869 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12870 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12871 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12872 * AdvSIMD vector x indexed element 12873 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12874 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12875 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12876 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12877 */ 12878 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12879 { 12880 /* This encoding has two kinds of instruction: 12881 * normal, where we perform elt x idxelt => elt for each 12882 * element in the vector 12883 * long, where we perform elt x idxelt and generate a result of 12884 * double the width of the input element 12885 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12886 */ 12887 bool is_scalar = extract32(insn, 28, 1); 12888 bool is_q = extract32(insn, 30, 1); 12889 bool u = extract32(insn, 29, 1); 12890 int size = extract32(insn, 22, 2); 12891 int l = extract32(insn, 21, 1); 12892 int m = extract32(insn, 20, 1); 12893 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12894 int rm = extract32(insn, 16, 4); 12895 int opcode = extract32(insn, 12, 4); 12896 int h = extract32(insn, 11, 1); 12897 int rn = extract32(insn, 5, 5); 12898 int rd = extract32(insn, 0, 5); 12899 bool is_long = false; 12900 int is_fp = 0; 12901 bool is_fp16 = false; 12902 int index; 12903 TCGv_ptr fpst; 12904 12905 switch (16 * u + opcode) { 12906 case 0x08: /* MUL */ 12907 case 0x10: /* MLA */ 12908 case 0x14: /* MLS */ 12909 if (is_scalar) { 12910 unallocated_encoding(s); 12911 return; 12912 } 12913 break; 12914 case 0x02: /* SMLAL, SMLAL2 */ 12915 case 0x12: /* UMLAL, UMLAL2 */ 12916 case 0x06: /* SMLSL, SMLSL2 */ 12917 case 0x16: /* UMLSL, UMLSL2 */ 12918 case 0x0a: /* SMULL, SMULL2 */ 12919 case 0x1a: /* UMULL, UMULL2 */ 12920 if (is_scalar) { 12921 unallocated_encoding(s); 12922 return; 12923 } 12924 is_long = true; 12925 break; 12926 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12927 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12928 case 0x0b: /* SQDMULL, SQDMULL2 */ 12929 is_long = true; 12930 break; 12931 case 0x0c: /* SQDMULH */ 12932 case 0x0d: /* SQRDMULH */ 12933 break; 12934 case 0x01: /* FMLA */ 12935 case 0x05: /* FMLS */ 12936 case 0x09: /* FMUL */ 12937 case 0x19: /* FMULX */ 12938 is_fp = 1; 12939 break; 12940 case 0x1d: /* SQRDMLAH */ 12941 case 0x1f: /* SQRDMLSH */ 12942 if (!dc_isar_feature(aa64_rdm, s)) { 12943 unallocated_encoding(s); 12944 return; 12945 } 12946 break; 12947 case 0x0e: /* SDOT */ 12948 case 0x1e: /* UDOT */ 12949 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12950 unallocated_encoding(s); 12951 return; 12952 } 12953 break; 12954 case 0x0f: 12955 switch (size) { 12956 case 0: /* SUDOT */ 12957 case 2: /* USDOT */ 12958 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12959 unallocated_encoding(s); 12960 return; 12961 } 12962 size = MO_32; 12963 break; 12964 case 1: /* BFDOT */ 12965 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12966 unallocated_encoding(s); 12967 return; 12968 } 12969 size = MO_32; 12970 break; 12971 case 3: /* BFMLAL{B,T} */ 12972 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12973 unallocated_encoding(s); 12974 return; 12975 } 12976 /* can't set is_fp without other incorrect size checks */ 12977 size = MO_16; 12978 break; 12979 default: 12980 unallocated_encoding(s); 12981 return; 12982 } 12983 break; 12984 case 0x11: /* FCMLA #0 */ 12985 case 0x13: /* FCMLA #90 */ 12986 case 0x15: /* FCMLA #180 */ 12987 case 0x17: /* FCMLA #270 */ 12988 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12989 unallocated_encoding(s); 12990 return; 12991 } 12992 is_fp = 2; 12993 break; 12994 case 0x00: /* FMLAL */ 12995 case 0x04: /* FMLSL */ 12996 case 0x18: /* FMLAL2 */ 12997 case 0x1c: /* FMLSL2 */ 12998 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12999 unallocated_encoding(s); 13000 return; 13001 } 13002 size = MO_16; 13003 /* is_fp, but we pass cpu_env not fp_status. */ 13004 break; 13005 default: 13006 unallocated_encoding(s); 13007 return; 13008 } 13009 13010 switch (is_fp) { 13011 case 1: /* normal fp */ 13012 /* convert insn encoded size to MemOp size */ 13013 switch (size) { 13014 case 0: /* half-precision */ 13015 size = MO_16; 13016 is_fp16 = true; 13017 break; 13018 case MO_32: /* single precision */ 13019 case MO_64: /* double precision */ 13020 break; 13021 default: 13022 unallocated_encoding(s); 13023 return; 13024 } 13025 break; 13026 13027 case 2: /* complex fp */ 13028 /* Each indexable element is a complex pair. */ 13029 size += 1; 13030 switch (size) { 13031 case MO_32: 13032 if (h && !is_q) { 13033 unallocated_encoding(s); 13034 return; 13035 } 13036 is_fp16 = true; 13037 break; 13038 case MO_64: 13039 break; 13040 default: 13041 unallocated_encoding(s); 13042 return; 13043 } 13044 break; 13045 13046 default: /* integer */ 13047 switch (size) { 13048 case MO_8: 13049 case MO_64: 13050 unallocated_encoding(s); 13051 return; 13052 } 13053 break; 13054 } 13055 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13056 unallocated_encoding(s); 13057 return; 13058 } 13059 13060 /* Given MemOp size, adjust register and indexing. */ 13061 switch (size) { 13062 case MO_16: 13063 index = h << 2 | l << 1 | m; 13064 break; 13065 case MO_32: 13066 index = h << 1 | l; 13067 rm |= m << 4; 13068 break; 13069 case MO_64: 13070 if (l || !is_q) { 13071 unallocated_encoding(s); 13072 return; 13073 } 13074 index = h; 13075 rm |= m << 4; 13076 break; 13077 default: 13078 g_assert_not_reached(); 13079 } 13080 13081 if (!fp_access_check(s)) { 13082 return; 13083 } 13084 13085 if (is_fp) { 13086 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13087 } else { 13088 fpst = NULL; 13089 } 13090 13091 switch (16 * u + opcode) { 13092 case 0x0e: /* SDOT */ 13093 case 0x1e: /* UDOT */ 13094 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13095 u ? gen_helper_gvec_udot_idx_b 13096 : gen_helper_gvec_sdot_idx_b); 13097 return; 13098 case 0x0f: 13099 switch (extract32(insn, 22, 2)) { 13100 case 0: /* SUDOT */ 13101 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13102 gen_helper_gvec_sudot_idx_b); 13103 return; 13104 case 1: /* BFDOT */ 13105 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13106 gen_helper_gvec_bfdot_idx); 13107 return; 13108 case 2: /* USDOT */ 13109 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13110 gen_helper_gvec_usdot_idx_b); 13111 return; 13112 case 3: /* BFMLAL{B,T} */ 13113 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13114 gen_helper_gvec_bfmlal_idx); 13115 return; 13116 } 13117 g_assert_not_reached(); 13118 case 0x11: /* FCMLA #0 */ 13119 case 0x13: /* FCMLA #90 */ 13120 case 0x15: /* FCMLA #180 */ 13121 case 0x17: /* FCMLA #270 */ 13122 { 13123 int rot = extract32(insn, 13, 2); 13124 int data = (index << 2) | rot; 13125 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13126 vec_full_reg_offset(s, rn), 13127 vec_full_reg_offset(s, rm), 13128 vec_full_reg_offset(s, rd), fpst, 13129 is_q ? 16 : 8, vec_full_reg_size(s), data, 13130 size == MO_64 13131 ? gen_helper_gvec_fcmlas_idx 13132 : gen_helper_gvec_fcmlah_idx); 13133 } 13134 return; 13135 13136 case 0x00: /* FMLAL */ 13137 case 0x04: /* FMLSL */ 13138 case 0x18: /* FMLAL2 */ 13139 case 0x1c: /* FMLSL2 */ 13140 { 13141 int is_s = extract32(opcode, 2, 1); 13142 int is_2 = u; 13143 int data = (index << 2) | (is_2 << 1) | is_s; 13144 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13145 vec_full_reg_offset(s, rn), 13146 vec_full_reg_offset(s, rm), cpu_env, 13147 is_q ? 16 : 8, vec_full_reg_size(s), 13148 data, gen_helper_gvec_fmlal_idx_a64); 13149 } 13150 return; 13151 13152 case 0x08: /* MUL */ 13153 if (!is_long && !is_scalar) { 13154 static gen_helper_gvec_3 * const fns[3] = { 13155 gen_helper_gvec_mul_idx_h, 13156 gen_helper_gvec_mul_idx_s, 13157 gen_helper_gvec_mul_idx_d, 13158 }; 13159 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13160 vec_full_reg_offset(s, rn), 13161 vec_full_reg_offset(s, rm), 13162 is_q ? 16 : 8, vec_full_reg_size(s), 13163 index, fns[size - 1]); 13164 return; 13165 } 13166 break; 13167 13168 case 0x10: /* MLA */ 13169 if (!is_long && !is_scalar) { 13170 static gen_helper_gvec_4 * const fns[3] = { 13171 gen_helper_gvec_mla_idx_h, 13172 gen_helper_gvec_mla_idx_s, 13173 gen_helper_gvec_mla_idx_d, 13174 }; 13175 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13176 vec_full_reg_offset(s, rn), 13177 vec_full_reg_offset(s, rm), 13178 vec_full_reg_offset(s, rd), 13179 is_q ? 16 : 8, vec_full_reg_size(s), 13180 index, fns[size - 1]); 13181 return; 13182 } 13183 break; 13184 13185 case 0x14: /* MLS */ 13186 if (!is_long && !is_scalar) { 13187 static gen_helper_gvec_4 * const fns[3] = { 13188 gen_helper_gvec_mls_idx_h, 13189 gen_helper_gvec_mls_idx_s, 13190 gen_helper_gvec_mls_idx_d, 13191 }; 13192 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13193 vec_full_reg_offset(s, rn), 13194 vec_full_reg_offset(s, rm), 13195 vec_full_reg_offset(s, rd), 13196 is_q ? 16 : 8, vec_full_reg_size(s), 13197 index, fns[size - 1]); 13198 return; 13199 } 13200 break; 13201 } 13202 13203 if (size == 3) { 13204 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13205 int pass; 13206 13207 assert(is_fp && is_q && !is_long); 13208 13209 read_vec_element(s, tcg_idx, rm, index, MO_64); 13210 13211 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13212 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13213 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13214 13215 read_vec_element(s, tcg_op, rn, pass, MO_64); 13216 13217 switch (16 * u + opcode) { 13218 case 0x05: /* FMLS */ 13219 /* As usual for ARM, separate negation for fused multiply-add */ 13220 gen_helper_vfp_negd(tcg_op, tcg_op); 13221 /* fall through */ 13222 case 0x01: /* FMLA */ 13223 read_vec_element(s, tcg_res, rd, pass, MO_64); 13224 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13225 break; 13226 case 0x09: /* FMUL */ 13227 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13228 break; 13229 case 0x19: /* FMULX */ 13230 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13231 break; 13232 default: 13233 g_assert_not_reached(); 13234 } 13235 13236 write_vec_element(s, tcg_res, rd, pass, MO_64); 13237 } 13238 13239 clear_vec_high(s, !is_scalar, rd); 13240 } else if (!is_long) { 13241 /* 32 bit floating point, or 16 or 32 bit integer. 13242 * For the 16 bit scalar case we use the usual Neon helpers and 13243 * rely on the fact that 0 op 0 == 0 with no side effects. 13244 */ 13245 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13246 int pass, maxpasses; 13247 13248 if (is_scalar) { 13249 maxpasses = 1; 13250 } else { 13251 maxpasses = is_q ? 4 : 2; 13252 } 13253 13254 read_vec_element_i32(s, tcg_idx, rm, index, size); 13255 13256 if (size == 1 && !is_scalar) { 13257 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13258 * the index into both halves of the 32 bit tcg_idx and then use 13259 * the usual Neon helpers. 13260 */ 13261 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13262 } 13263 13264 for (pass = 0; pass < maxpasses; pass++) { 13265 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13266 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13267 13268 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13269 13270 switch (16 * u + opcode) { 13271 case 0x08: /* MUL */ 13272 case 0x10: /* MLA */ 13273 case 0x14: /* MLS */ 13274 { 13275 static NeonGenTwoOpFn * const fns[2][2] = { 13276 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13277 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13278 }; 13279 NeonGenTwoOpFn *genfn; 13280 bool is_sub = opcode == 0x4; 13281 13282 if (size == 1) { 13283 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13284 } else { 13285 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13286 } 13287 if (opcode == 0x8) { 13288 break; 13289 } 13290 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13291 genfn = fns[size - 1][is_sub]; 13292 genfn(tcg_res, tcg_op, tcg_res); 13293 break; 13294 } 13295 case 0x05: /* FMLS */ 13296 case 0x01: /* FMLA */ 13297 read_vec_element_i32(s, tcg_res, rd, pass, 13298 is_scalar ? size : MO_32); 13299 switch (size) { 13300 case 1: 13301 if (opcode == 0x5) { 13302 /* As usual for ARM, separate negation for fused 13303 * multiply-add */ 13304 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13305 } 13306 if (is_scalar) { 13307 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13308 tcg_res, fpst); 13309 } else { 13310 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13311 tcg_res, fpst); 13312 } 13313 break; 13314 case 2: 13315 if (opcode == 0x5) { 13316 /* As usual for ARM, separate negation for 13317 * fused multiply-add */ 13318 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13319 } 13320 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13321 tcg_res, fpst); 13322 break; 13323 default: 13324 g_assert_not_reached(); 13325 } 13326 break; 13327 case 0x09: /* FMUL */ 13328 switch (size) { 13329 case 1: 13330 if (is_scalar) { 13331 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13332 tcg_idx, fpst); 13333 } else { 13334 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13335 tcg_idx, fpst); 13336 } 13337 break; 13338 case 2: 13339 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13340 break; 13341 default: 13342 g_assert_not_reached(); 13343 } 13344 break; 13345 case 0x19: /* FMULX */ 13346 switch (size) { 13347 case 1: 13348 if (is_scalar) { 13349 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13350 tcg_idx, fpst); 13351 } else { 13352 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13353 tcg_idx, fpst); 13354 } 13355 break; 13356 case 2: 13357 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13358 break; 13359 default: 13360 g_assert_not_reached(); 13361 } 13362 break; 13363 case 0x0c: /* SQDMULH */ 13364 if (size == 1) { 13365 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13366 tcg_op, tcg_idx); 13367 } else { 13368 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13369 tcg_op, tcg_idx); 13370 } 13371 break; 13372 case 0x0d: /* SQRDMULH */ 13373 if (size == 1) { 13374 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13375 tcg_op, tcg_idx); 13376 } else { 13377 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13378 tcg_op, tcg_idx); 13379 } 13380 break; 13381 case 0x1d: /* SQRDMLAH */ 13382 read_vec_element_i32(s, tcg_res, rd, pass, 13383 is_scalar ? size : MO_32); 13384 if (size == 1) { 13385 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13386 tcg_op, tcg_idx, tcg_res); 13387 } else { 13388 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13389 tcg_op, tcg_idx, tcg_res); 13390 } 13391 break; 13392 case 0x1f: /* SQRDMLSH */ 13393 read_vec_element_i32(s, tcg_res, rd, pass, 13394 is_scalar ? size : MO_32); 13395 if (size == 1) { 13396 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13397 tcg_op, tcg_idx, tcg_res); 13398 } else { 13399 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13400 tcg_op, tcg_idx, tcg_res); 13401 } 13402 break; 13403 default: 13404 g_assert_not_reached(); 13405 } 13406 13407 if (is_scalar) { 13408 write_fp_sreg(s, rd, tcg_res); 13409 } else { 13410 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13411 } 13412 } 13413 13414 clear_vec_high(s, is_q, rd); 13415 } else { 13416 /* long ops: 16x16->32 or 32x32->64 */ 13417 TCGv_i64 tcg_res[2]; 13418 int pass; 13419 bool satop = extract32(opcode, 0, 1); 13420 MemOp memop = MO_32; 13421 13422 if (satop || !u) { 13423 memop |= MO_SIGN; 13424 } 13425 13426 if (size == 2) { 13427 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13428 13429 read_vec_element(s, tcg_idx, rm, index, memop); 13430 13431 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13432 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13433 TCGv_i64 tcg_passres; 13434 int passelt; 13435 13436 if (is_scalar) { 13437 passelt = 0; 13438 } else { 13439 passelt = pass + (is_q * 2); 13440 } 13441 13442 read_vec_element(s, tcg_op, rn, passelt, memop); 13443 13444 tcg_res[pass] = tcg_temp_new_i64(); 13445 13446 if (opcode == 0xa || opcode == 0xb) { 13447 /* Non-accumulating ops */ 13448 tcg_passres = tcg_res[pass]; 13449 } else { 13450 tcg_passres = tcg_temp_new_i64(); 13451 } 13452 13453 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13454 13455 if (satop) { 13456 /* saturating, doubling */ 13457 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13458 tcg_passres, tcg_passres); 13459 } 13460 13461 if (opcode == 0xa || opcode == 0xb) { 13462 continue; 13463 } 13464 13465 /* Accumulating op: handle accumulate step */ 13466 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13467 13468 switch (opcode) { 13469 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13470 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13471 break; 13472 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13473 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13474 break; 13475 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13476 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13477 /* fall through */ 13478 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13479 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13480 tcg_res[pass], 13481 tcg_passres); 13482 break; 13483 default: 13484 g_assert_not_reached(); 13485 } 13486 } 13487 13488 clear_vec_high(s, !is_scalar, rd); 13489 } else { 13490 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13491 13492 assert(size == 1); 13493 read_vec_element_i32(s, tcg_idx, rm, index, size); 13494 13495 if (!is_scalar) { 13496 /* The simplest way to handle the 16x16 indexed ops is to 13497 * duplicate the index into both halves of the 32 bit tcg_idx 13498 * and then use the usual Neon helpers. 13499 */ 13500 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13501 } 13502 13503 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13504 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13505 TCGv_i64 tcg_passres; 13506 13507 if (is_scalar) { 13508 read_vec_element_i32(s, tcg_op, rn, pass, size); 13509 } else { 13510 read_vec_element_i32(s, tcg_op, rn, 13511 pass + (is_q * 2), MO_32); 13512 } 13513 13514 tcg_res[pass] = tcg_temp_new_i64(); 13515 13516 if (opcode == 0xa || opcode == 0xb) { 13517 /* Non-accumulating ops */ 13518 tcg_passres = tcg_res[pass]; 13519 } else { 13520 tcg_passres = tcg_temp_new_i64(); 13521 } 13522 13523 if (memop & MO_SIGN) { 13524 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13525 } else { 13526 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13527 } 13528 if (satop) { 13529 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13530 tcg_passres, tcg_passres); 13531 } 13532 13533 if (opcode == 0xa || opcode == 0xb) { 13534 continue; 13535 } 13536 13537 /* Accumulating op: handle accumulate step */ 13538 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13539 13540 switch (opcode) { 13541 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13542 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13543 tcg_passres); 13544 break; 13545 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13546 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13547 tcg_passres); 13548 break; 13549 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13550 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13551 /* fall through */ 13552 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13553 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13554 tcg_res[pass], 13555 tcg_passres); 13556 break; 13557 default: 13558 g_assert_not_reached(); 13559 } 13560 } 13561 13562 if (is_scalar) { 13563 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13564 } 13565 } 13566 13567 if (is_scalar) { 13568 tcg_res[1] = tcg_constant_i64(0); 13569 } 13570 13571 for (pass = 0; pass < 2; pass++) { 13572 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13573 } 13574 } 13575 } 13576 13577 /* Crypto AES 13578 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13579 * +-----------------+------+-----------+--------+-----+------+------+ 13580 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13581 * +-----------------+------+-----------+--------+-----+------+------+ 13582 */ 13583 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13584 { 13585 int size = extract32(insn, 22, 2); 13586 int opcode = extract32(insn, 12, 5); 13587 int rn = extract32(insn, 5, 5); 13588 int rd = extract32(insn, 0, 5); 13589 int decrypt; 13590 gen_helper_gvec_2 *genfn2 = NULL; 13591 gen_helper_gvec_3 *genfn3 = NULL; 13592 13593 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13594 unallocated_encoding(s); 13595 return; 13596 } 13597 13598 switch (opcode) { 13599 case 0x4: /* AESE */ 13600 decrypt = 0; 13601 genfn3 = gen_helper_crypto_aese; 13602 break; 13603 case 0x6: /* AESMC */ 13604 decrypt = 0; 13605 genfn2 = gen_helper_crypto_aesmc; 13606 break; 13607 case 0x5: /* AESD */ 13608 decrypt = 1; 13609 genfn3 = gen_helper_crypto_aese; 13610 break; 13611 case 0x7: /* AESIMC */ 13612 decrypt = 1; 13613 genfn2 = gen_helper_crypto_aesmc; 13614 break; 13615 default: 13616 unallocated_encoding(s); 13617 return; 13618 } 13619 13620 if (!fp_access_check(s)) { 13621 return; 13622 } 13623 if (genfn2) { 13624 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13625 } else { 13626 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13627 } 13628 } 13629 13630 /* Crypto three-reg SHA 13631 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13632 * +-----------------+------+---+------+---+--------+-----+------+------+ 13633 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13634 * +-----------------+------+---+------+---+--------+-----+------+------+ 13635 */ 13636 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13637 { 13638 int size = extract32(insn, 22, 2); 13639 int opcode = extract32(insn, 12, 3); 13640 int rm = extract32(insn, 16, 5); 13641 int rn = extract32(insn, 5, 5); 13642 int rd = extract32(insn, 0, 5); 13643 gen_helper_gvec_3 *genfn; 13644 bool feature; 13645 13646 if (size != 0) { 13647 unallocated_encoding(s); 13648 return; 13649 } 13650 13651 switch (opcode) { 13652 case 0: /* SHA1C */ 13653 genfn = gen_helper_crypto_sha1c; 13654 feature = dc_isar_feature(aa64_sha1, s); 13655 break; 13656 case 1: /* SHA1P */ 13657 genfn = gen_helper_crypto_sha1p; 13658 feature = dc_isar_feature(aa64_sha1, s); 13659 break; 13660 case 2: /* SHA1M */ 13661 genfn = gen_helper_crypto_sha1m; 13662 feature = dc_isar_feature(aa64_sha1, s); 13663 break; 13664 case 3: /* SHA1SU0 */ 13665 genfn = gen_helper_crypto_sha1su0; 13666 feature = dc_isar_feature(aa64_sha1, s); 13667 break; 13668 case 4: /* SHA256H */ 13669 genfn = gen_helper_crypto_sha256h; 13670 feature = dc_isar_feature(aa64_sha256, s); 13671 break; 13672 case 5: /* SHA256H2 */ 13673 genfn = gen_helper_crypto_sha256h2; 13674 feature = dc_isar_feature(aa64_sha256, s); 13675 break; 13676 case 6: /* SHA256SU1 */ 13677 genfn = gen_helper_crypto_sha256su1; 13678 feature = dc_isar_feature(aa64_sha256, s); 13679 break; 13680 default: 13681 unallocated_encoding(s); 13682 return; 13683 } 13684 13685 if (!feature) { 13686 unallocated_encoding(s); 13687 return; 13688 } 13689 13690 if (!fp_access_check(s)) { 13691 return; 13692 } 13693 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13694 } 13695 13696 /* Crypto two-reg SHA 13697 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13698 * +-----------------+------+-----------+--------+-----+------+------+ 13699 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13700 * +-----------------+------+-----------+--------+-----+------+------+ 13701 */ 13702 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13703 { 13704 int size = extract32(insn, 22, 2); 13705 int opcode = extract32(insn, 12, 5); 13706 int rn = extract32(insn, 5, 5); 13707 int rd = extract32(insn, 0, 5); 13708 gen_helper_gvec_2 *genfn; 13709 bool feature; 13710 13711 if (size != 0) { 13712 unallocated_encoding(s); 13713 return; 13714 } 13715 13716 switch (opcode) { 13717 case 0: /* SHA1H */ 13718 feature = dc_isar_feature(aa64_sha1, s); 13719 genfn = gen_helper_crypto_sha1h; 13720 break; 13721 case 1: /* SHA1SU1 */ 13722 feature = dc_isar_feature(aa64_sha1, s); 13723 genfn = gen_helper_crypto_sha1su1; 13724 break; 13725 case 2: /* SHA256SU0 */ 13726 feature = dc_isar_feature(aa64_sha256, s); 13727 genfn = gen_helper_crypto_sha256su0; 13728 break; 13729 default: 13730 unallocated_encoding(s); 13731 return; 13732 } 13733 13734 if (!feature) { 13735 unallocated_encoding(s); 13736 return; 13737 } 13738 13739 if (!fp_access_check(s)) { 13740 return; 13741 } 13742 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13743 } 13744 13745 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13746 { 13747 tcg_gen_rotli_i64(d, m, 1); 13748 tcg_gen_xor_i64(d, d, n); 13749 } 13750 13751 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13752 { 13753 tcg_gen_rotli_vec(vece, d, m, 1); 13754 tcg_gen_xor_vec(vece, d, d, n); 13755 } 13756 13757 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13758 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13759 { 13760 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13761 static const GVecGen3 op = { 13762 .fni8 = gen_rax1_i64, 13763 .fniv = gen_rax1_vec, 13764 .opt_opc = vecop_list, 13765 .fno = gen_helper_crypto_rax1, 13766 .vece = MO_64, 13767 }; 13768 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13769 } 13770 13771 /* Crypto three-reg SHA512 13772 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13773 * +-----------------------+------+---+---+-----+--------+------+------+ 13774 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13775 * +-----------------------+------+---+---+-----+--------+------+------+ 13776 */ 13777 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13778 { 13779 int opcode = extract32(insn, 10, 2); 13780 int o = extract32(insn, 14, 1); 13781 int rm = extract32(insn, 16, 5); 13782 int rn = extract32(insn, 5, 5); 13783 int rd = extract32(insn, 0, 5); 13784 bool feature; 13785 gen_helper_gvec_3 *oolfn = NULL; 13786 GVecGen3Fn *gvecfn = NULL; 13787 13788 if (o == 0) { 13789 switch (opcode) { 13790 case 0: /* SHA512H */ 13791 feature = dc_isar_feature(aa64_sha512, s); 13792 oolfn = gen_helper_crypto_sha512h; 13793 break; 13794 case 1: /* SHA512H2 */ 13795 feature = dc_isar_feature(aa64_sha512, s); 13796 oolfn = gen_helper_crypto_sha512h2; 13797 break; 13798 case 2: /* SHA512SU1 */ 13799 feature = dc_isar_feature(aa64_sha512, s); 13800 oolfn = gen_helper_crypto_sha512su1; 13801 break; 13802 case 3: /* RAX1 */ 13803 feature = dc_isar_feature(aa64_sha3, s); 13804 gvecfn = gen_gvec_rax1; 13805 break; 13806 default: 13807 g_assert_not_reached(); 13808 } 13809 } else { 13810 switch (opcode) { 13811 case 0: /* SM3PARTW1 */ 13812 feature = dc_isar_feature(aa64_sm3, s); 13813 oolfn = gen_helper_crypto_sm3partw1; 13814 break; 13815 case 1: /* SM3PARTW2 */ 13816 feature = dc_isar_feature(aa64_sm3, s); 13817 oolfn = gen_helper_crypto_sm3partw2; 13818 break; 13819 case 2: /* SM4EKEY */ 13820 feature = dc_isar_feature(aa64_sm4, s); 13821 oolfn = gen_helper_crypto_sm4ekey; 13822 break; 13823 default: 13824 unallocated_encoding(s); 13825 return; 13826 } 13827 } 13828 13829 if (!feature) { 13830 unallocated_encoding(s); 13831 return; 13832 } 13833 13834 if (!fp_access_check(s)) { 13835 return; 13836 } 13837 13838 if (oolfn) { 13839 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13840 } else { 13841 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13842 } 13843 } 13844 13845 /* Crypto two-reg SHA512 13846 * 31 12 11 10 9 5 4 0 13847 * +-----------------------------------------+--------+------+------+ 13848 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13849 * +-----------------------------------------+--------+------+------+ 13850 */ 13851 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13852 { 13853 int opcode = extract32(insn, 10, 2); 13854 int rn = extract32(insn, 5, 5); 13855 int rd = extract32(insn, 0, 5); 13856 bool feature; 13857 13858 switch (opcode) { 13859 case 0: /* SHA512SU0 */ 13860 feature = dc_isar_feature(aa64_sha512, s); 13861 break; 13862 case 1: /* SM4E */ 13863 feature = dc_isar_feature(aa64_sm4, s); 13864 break; 13865 default: 13866 unallocated_encoding(s); 13867 return; 13868 } 13869 13870 if (!feature) { 13871 unallocated_encoding(s); 13872 return; 13873 } 13874 13875 if (!fp_access_check(s)) { 13876 return; 13877 } 13878 13879 switch (opcode) { 13880 case 0: /* SHA512SU0 */ 13881 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13882 break; 13883 case 1: /* SM4E */ 13884 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13885 break; 13886 default: 13887 g_assert_not_reached(); 13888 } 13889 } 13890 13891 /* Crypto four-register 13892 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13893 * +-------------------+-----+------+---+------+------+------+ 13894 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13895 * +-------------------+-----+------+---+------+------+------+ 13896 */ 13897 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13898 { 13899 int op0 = extract32(insn, 21, 2); 13900 int rm = extract32(insn, 16, 5); 13901 int ra = extract32(insn, 10, 5); 13902 int rn = extract32(insn, 5, 5); 13903 int rd = extract32(insn, 0, 5); 13904 bool feature; 13905 13906 switch (op0) { 13907 case 0: /* EOR3 */ 13908 case 1: /* BCAX */ 13909 feature = dc_isar_feature(aa64_sha3, s); 13910 break; 13911 case 2: /* SM3SS1 */ 13912 feature = dc_isar_feature(aa64_sm3, s); 13913 break; 13914 default: 13915 unallocated_encoding(s); 13916 return; 13917 } 13918 13919 if (!feature) { 13920 unallocated_encoding(s); 13921 return; 13922 } 13923 13924 if (!fp_access_check(s)) { 13925 return; 13926 } 13927 13928 if (op0 < 2) { 13929 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13930 int pass; 13931 13932 tcg_op1 = tcg_temp_new_i64(); 13933 tcg_op2 = tcg_temp_new_i64(); 13934 tcg_op3 = tcg_temp_new_i64(); 13935 tcg_res[0] = tcg_temp_new_i64(); 13936 tcg_res[1] = tcg_temp_new_i64(); 13937 13938 for (pass = 0; pass < 2; pass++) { 13939 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13940 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13941 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13942 13943 if (op0 == 0) { 13944 /* EOR3 */ 13945 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13946 } else { 13947 /* BCAX */ 13948 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13949 } 13950 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13951 } 13952 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13953 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13954 } else { 13955 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13956 13957 tcg_op1 = tcg_temp_new_i32(); 13958 tcg_op2 = tcg_temp_new_i32(); 13959 tcg_op3 = tcg_temp_new_i32(); 13960 tcg_res = tcg_temp_new_i32(); 13961 tcg_zero = tcg_constant_i32(0); 13962 13963 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13964 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13965 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13966 13967 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13968 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13969 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13970 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13971 13972 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13973 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13974 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13975 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13976 } 13977 } 13978 13979 /* Crypto XAR 13980 * 31 21 20 16 15 10 9 5 4 0 13981 * +-----------------------+------+--------+------+------+ 13982 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13983 * +-----------------------+------+--------+------+------+ 13984 */ 13985 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13986 { 13987 int rm = extract32(insn, 16, 5); 13988 int imm6 = extract32(insn, 10, 6); 13989 int rn = extract32(insn, 5, 5); 13990 int rd = extract32(insn, 0, 5); 13991 13992 if (!dc_isar_feature(aa64_sha3, s)) { 13993 unallocated_encoding(s); 13994 return; 13995 } 13996 13997 if (!fp_access_check(s)) { 13998 return; 13999 } 14000 14001 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14002 vec_full_reg_offset(s, rn), 14003 vec_full_reg_offset(s, rm), imm6, 16, 14004 vec_full_reg_size(s)); 14005 } 14006 14007 /* Crypto three-reg imm2 14008 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14009 * +-----------------------+------+-----+------+--------+------+------+ 14010 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14011 * +-----------------------+------+-----+------+--------+------+------+ 14012 */ 14013 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14014 { 14015 static gen_helper_gvec_3 * const fns[4] = { 14016 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14017 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14018 }; 14019 int opcode = extract32(insn, 10, 2); 14020 int imm2 = extract32(insn, 12, 2); 14021 int rm = extract32(insn, 16, 5); 14022 int rn = extract32(insn, 5, 5); 14023 int rd = extract32(insn, 0, 5); 14024 14025 if (!dc_isar_feature(aa64_sm3, s)) { 14026 unallocated_encoding(s); 14027 return; 14028 } 14029 14030 if (!fp_access_check(s)) { 14031 return; 14032 } 14033 14034 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14035 } 14036 14037 /* C3.6 Data processing - SIMD, inc Crypto 14038 * 14039 * As the decode gets a little complex we are using a table based 14040 * approach for this part of the decode. 14041 */ 14042 static const AArch64DecodeTable data_proc_simd[] = { 14043 /* pattern , mask , fn */ 14044 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14045 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14046 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14047 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14048 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14049 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14050 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14051 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14052 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14053 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14054 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14055 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14056 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14057 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14058 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14059 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14060 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14061 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14062 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14063 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14064 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14065 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14066 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14067 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14068 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14069 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14070 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14071 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14072 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14073 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14074 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14075 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14076 { 0x00000000, 0x00000000, NULL } 14077 }; 14078 14079 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14080 { 14081 /* Note that this is called with all non-FP cases from 14082 * table C3-6 so it must UNDEF for entries not specifically 14083 * allocated to instructions in that table. 14084 */ 14085 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14086 if (fn) { 14087 fn(s, insn); 14088 } else { 14089 unallocated_encoding(s); 14090 } 14091 } 14092 14093 /* C3.6 Data processing - SIMD and floating point */ 14094 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14095 { 14096 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14097 disas_data_proc_fp(s, insn); 14098 } else { 14099 /* SIMD, including crypto */ 14100 disas_data_proc_simd(s, insn); 14101 } 14102 } 14103 14104 static bool trans_OK(DisasContext *s, arg_OK *a) 14105 { 14106 return true; 14107 } 14108 14109 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14110 { 14111 s->is_nonstreaming = true; 14112 return true; 14113 } 14114 14115 /** 14116 * is_guarded_page: 14117 * @env: The cpu environment 14118 * @s: The DisasContext 14119 * 14120 * Return true if the page is guarded. 14121 */ 14122 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14123 { 14124 uint64_t addr = s->base.pc_first; 14125 #ifdef CONFIG_USER_ONLY 14126 return page_get_flags(addr) & PAGE_BTI; 14127 #else 14128 CPUTLBEntryFull *full; 14129 void *host; 14130 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14131 int flags; 14132 14133 /* 14134 * We test this immediately after reading an insn, which means 14135 * that the TLB entry must be present and valid, and thus this 14136 * access will never raise an exception. 14137 */ 14138 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14139 false, &host, &full, 0); 14140 assert(!(flags & TLB_INVALID_MASK)); 14141 14142 return full->guarded; 14143 #endif 14144 } 14145 14146 /** 14147 * btype_destination_ok: 14148 * @insn: The instruction at the branch destination 14149 * @bt: SCTLR_ELx.BT 14150 * @btype: PSTATE.BTYPE, and is non-zero 14151 * 14152 * On a guarded page, there are a limited number of insns 14153 * that may be present at the branch target: 14154 * - branch target identifiers, 14155 * - paciasp, pacibsp, 14156 * - BRK insn 14157 * - HLT insn 14158 * Anything else causes a Branch Target Exception. 14159 * 14160 * Return true if the branch is compatible, false to raise BTITRAP. 14161 */ 14162 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14163 { 14164 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14165 /* HINT space */ 14166 switch (extract32(insn, 5, 7)) { 14167 case 0b011001: /* PACIASP */ 14168 case 0b011011: /* PACIBSP */ 14169 /* 14170 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14171 * with btype == 3. Otherwise all btype are ok. 14172 */ 14173 return !bt || btype != 3; 14174 case 0b100000: /* BTI */ 14175 /* Not compatible with any btype. */ 14176 return false; 14177 case 0b100010: /* BTI c */ 14178 /* Not compatible with btype == 3 */ 14179 return btype != 3; 14180 case 0b100100: /* BTI j */ 14181 /* Not compatible with btype == 2 */ 14182 return btype != 2; 14183 case 0b100110: /* BTI jc */ 14184 /* Compatible with any btype. */ 14185 return true; 14186 } 14187 } else { 14188 switch (insn & 0xffe0001fu) { 14189 case 0xd4200000u: /* BRK */ 14190 case 0xd4400000u: /* HLT */ 14191 /* Give priority to the breakpoint exception. */ 14192 return true; 14193 } 14194 } 14195 return false; 14196 } 14197 14198 /* C3.1 A64 instruction index by encoding */ 14199 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14200 { 14201 switch (extract32(insn, 25, 4)) { 14202 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14203 disas_b_exc_sys(s, insn); 14204 break; 14205 case 0x4: 14206 case 0x6: 14207 case 0xc: 14208 case 0xe: /* Loads and stores */ 14209 disas_ldst(s, insn); 14210 break; 14211 case 0x5: 14212 case 0xd: /* Data processing - register */ 14213 disas_data_proc_reg(s, insn); 14214 break; 14215 case 0x7: 14216 case 0xf: /* Data processing - SIMD and floating point */ 14217 disas_data_proc_simd_fp(s, insn); 14218 break; 14219 default: 14220 unallocated_encoding(s); 14221 break; 14222 } 14223 } 14224 14225 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14226 CPUState *cpu) 14227 { 14228 DisasContext *dc = container_of(dcbase, DisasContext, base); 14229 CPUARMState *env = cpu->env_ptr; 14230 ARMCPU *arm_cpu = env_archcpu(env); 14231 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14232 int bound, core_mmu_idx; 14233 14234 dc->isar = &arm_cpu->isar; 14235 dc->condjmp = 0; 14236 dc->pc_save = dc->base.pc_first; 14237 dc->aarch64 = true; 14238 dc->thumb = false; 14239 dc->sctlr_b = 0; 14240 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14241 dc->condexec_mask = 0; 14242 dc->condexec_cond = 0; 14243 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14244 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14245 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14246 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14247 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14248 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14249 #if !defined(CONFIG_USER_ONLY) 14250 dc->user = (dc->current_el == 0); 14251 #endif 14252 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14253 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14254 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14255 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14256 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14257 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14258 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14259 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14260 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14261 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14262 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14263 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14264 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14265 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14266 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14267 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14268 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14269 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14270 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14271 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14272 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14273 dc->vec_len = 0; 14274 dc->vec_stride = 0; 14275 dc->cp_regs = arm_cpu->cp_regs; 14276 dc->features = env->features; 14277 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14278 14279 #ifdef CONFIG_USER_ONLY 14280 /* In sve_probe_page, we assume TBI is enabled. */ 14281 tcg_debug_assert(dc->tbid & 1); 14282 #endif 14283 14284 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14285 14286 /* Single step state. The code-generation logic here is: 14287 * SS_ACTIVE == 0: 14288 * generate code with no special handling for single-stepping (except 14289 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14290 * this happens anyway because those changes are all system register or 14291 * PSTATE writes). 14292 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14293 * emit code for one insn 14294 * emit code to clear PSTATE.SS 14295 * emit code to generate software step exception for completed step 14296 * end TB (as usual for having generated an exception) 14297 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14298 * emit code to generate a software step exception 14299 * end the TB 14300 */ 14301 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14302 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14303 dc->is_ldex = false; 14304 14305 /* Bound the number of insns to execute to those left on the page. */ 14306 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14307 14308 /* If architectural single step active, limit to 1. */ 14309 if (dc->ss_active) { 14310 bound = 1; 14311 } 14312 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14313 } 14314 14315 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14316 { 14317 } 14318 14319 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14320 { 14321 DisasContext *dc = container_of(dcbase, DisasContext, base); 14322 target_ulong pc_arg = dc->base.pc_next; 14323 14324 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14325 pc_arg &= ~TARGET_PAGE_MASK; 14326 } 14327 tcg_gen_insn_start(pc_arg, 0, 0); 14328 dc->insn_start = tcg_last_op(); 14329 } 14330 14331 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14332 { 14333 DisasContext *s = container_of(dcbase, DisasContext, base); 14334 CPUARMState *env = cpu->env_ptr; 14335 uint64_t pc = s->base.pc_next; 14336 uint32_t insn; 14337 14338 /* Singlestep exceptions have the highest priority. */ 14339 if (s->ss_active && !s->pstate_ss) { 14340 /* Singlestep state is Active-pending. 14341 * If we're in this state at the start of a TB then either 14342 * a) we just took an exception to an EL which is being debugged 14343 * and this is the first insn in the exception handler 14344 * b) debug exceptions were masked and we just unmasked them 14345 * without changing EL (eg by clearing PSTATE.D) 14346 * In either case we're going to take a swstep exception in the 14347 * "did not step an insn" case, and so the syndrome ISV and EX 14348 * bits should be zero. 14349 */ 14350 assert(s->base.num_insns == 1); 14351 gen_swstep_exception(s, 0, 0); 14352 s->base.is_jmp = DISAS_NORETURN; 14353 s->base.pc_next = pc + 4; 14354 return; 14355 } 14356 14357 if (pc & 3) { 14358 /* 14359 * PC alignment fault. This has priority over the instruction abort 14360 * that we would receive from a translation fault via arm_ldl_code. 14361 * This should only be possible after an indirect branch, at the 14362 * start of the TB. 14363 */ 14364 assert(s->base.num_insns == 1); 14365 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14366 s->base.is_jmp = DISAS_NORETURN; 14367 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14368 return; 14369 } 14370 14371 s->pc_curr = pc; 14372 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14373 s->insn = insn; 14374 s->base.pc_next = pc + 4; 14375 14376 s->fp_access_checked = false; 14377 s->sve_access_checked = false; 14378 14379 if (s->pstate_il) { 14380 /* 14381 * Illegal execution state. This has priority over BTI 14382 * exceptions, but comes after instruction abort exceptions. 14383 */ 14384 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14385 return; 14386 } 14387 14388 if (dc_isar_feature(aa64_bti, s)) { 14389 if (s->base.num_insns == 1) { 14390 /* 14391 * At the first insn of the TB, compute s->guarded_page. 14392 * We delayed computing this until successfully reading 14393 * the first insn of the TB, above. This (mostly) ensures 14394 * that the softmmu tlb entry has been populated, and the 14395 * page table GP bit is available. 14396 * 14397 * Note that we need to compute this even if btype == 0, 14398 * because this value is used for BR instructions later 14399 * where ENV is not available. 14400 */ 14401 s->guarded_page = is_guarded_page(env, s); 14402 14403 /* First insn can have btype set to non-zero. */ 14404 tcg_debug_assert(s->btype >= 0); 14405 14406 /* 14407 * Note that the Branch Target Exception has fairly high 14408 * priority -- below debugging exceptions but above most 14409 * everything else. This allows us to handle this now 14410 * instead of waiting until the insn is otherwise decoded. 14411 */ 14412 if (s->btype != 0 14413 && s->guarded_page 14414 && !btype_destination_ok(insn, s->bt, s->btype)) { 14415 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14416 return; 14417 } 14418 } else { 14419 /* Not the first insn: btype must be 0. */ 14420 tcg_debug_assert(s->btype == 0); 14421 } 14422 } 14423 14424 s->is_nonstreaming = false; 14425 if (s->sme_trap_nonstreaming) { 14426 disas_sme_fa64(s, insn); 14427 } 14428 14429 if (!disas_a64(s, insn) && 14430 !disas_sme(s, insn) && 14431 !disas_sve(s, insn)) { 14432 disas_a64_legacy(s, insn); 14433 } 14434 14435 /* 14436 * After execution of most insns, btype is reset to 0. 14437 * Note that we set btype == -1 when the insn sets btype. 14438 */ 14439 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14440 reset_btype(s); 14441 } 14442 } 14443 14444 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14445 { 14446 DisasContext *dc = container_of(dcbase, DisasContext, base); 14447 14448 if (unlikely(dc->ss_active)) { 14449 /* Note that this means single stepping WFI doesn't halt the CPU. 14450 * For conditional branch insns this is harmless unreachable code as 14451 * gen_goto_tb() has already handled emitting the debug exception 14452 * (and thus a tb-jump is not possible when singlestepping). 14453 */ 14454 switch (dc->base.is_jmp) { 14455 default: 14456 gen_a64_update_pc(dc, 4); 14457 /* fall through */ 14458 case DISAS_EXIT: 14459 case DISAS_JUMP: 14460 gen_step_complete_exception(dc); 14461 break; 14462 case DISAS_NORETURN: 14463 break; 14464 } 14465 } else { 14466 switch (dc->base.is_jmp) { 14467 case DISAS_NEXT: 14468 case DISAS_TOO_MANY: 14469 gen_goto_tb(dc, 1, 4); 14470 break; 14471 default: 14472 case DISAS_UPDATE_EXIT: 14473 gen_a64_update_pc(dc, 4); 14474 /* fall through */ 14475 case DISAS_EXIT: 14476 tcg_gen_exit_tb(NULL, 0); 14477 break; 14478 case DISAS_UPDATE_NOCHAIN: 14479 gen_a64_update_pc(dc, 4); 14480 /* fall through */ 14481 case DISAS_JUMP: 14482 tcg_gen_lookup_and_goto_ptr(); 14483 break; 14484 case DISAS_NORETURN: 14485 case DISAS_SWI: 14486 break; 14487 case DISAS_WFE: 14488 gen_a64_update_pc(dc, 4); 14489 gen_helper_wfe(cpu_env); 14490 break; 14491 case DISAS_YIELD: 14492 gen_a64_update_pc(dc, 4); 14493 gen_helper_yield(cpu_env); 14494 break; 14495 case DISAS_WFI: 14496 /* 14497 * This is a special case because we don't want to just halt 14498 * the CPU if trying to debug across a WFI. 14499 */ 14500 gen_a64_update_pc(dc, 4); 14501 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14502 /* 14503 * The helper doesn't necessarily throw an exception, but we 14504 * must go back to the main loop to check for interrupts anyway. 14505 */ 14506 tcg_gen_exit_tb(NULL, 0); 14507 break; 14508 } 14509 } 14510 } 14511 14512 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14513 CPUState *cpu, FILE *logfile) 14514 { 14515 DisasContext *dc = container_of(dcbase, DisasContext, base); 14516 14517 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14518 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14519 } 14520 14521 const TranslatorOps aarch64_translator_ops = { 14522 .init_disas_context = aarch64_tr_init_disas_context, 14523 .tb_start = aarch64_tr_tb_start, 14524 .insn_start = aarch64_tr_insn_start, 14525 .translate_insn = aarch64_tr_translate_insn, 14526 .tb_stop = aarch64_tr_tb_stop, 14527 .disas_log = aarch64_tr_disas_log, 14528 }; 14529