1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "disas/disas.h" 26 #include "arm_ldst.h" 27 #include "semihosting/semihost.h" 28 #include "cpregs.h" 29 30 static TCGv_i64 cpu_X[32]; 31 static TCGv_i64 cpu_pc; 32 33 /* Load/store exclusive handling */ 34 static TCGv_i64 cpu_exclusive_high; 35 36 static const char *regnames[] = { 37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 41 }; 42 43 enum a64_shift_type { 44 A64_SHIFT_TYPE_LSL = 0, 45 A64_SHIFT_TYPE_LSR = 1, 46 A64_SHIFT_TYPE_ASR = 2, 47 A64_SHIFT_TYPE_ROR = 3 48 }; 49 50 /* 51 * Helpers for extracting complex instruction fields 52 */ 53 54 /* 55 * For load/store with an unsigned 12 bit immediate scaled by the element 56 * size. The input has the immediate field in bits [14:3] and the element 57 * size in [2:0]. 58 */ 59 static int uimm_scaled(DisasContext *s, int x) 60 { 61 unsigned imm = x >> 3; 62 unsigned scale = extract32(x, 0, 3); 63 return imm << scale; 64 } 65 66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 67 static int scale_by_log2_tag_granule(DisasContext *s, int x) 68 { 69 return x << LOG2_TAG_GRANULE; 70 } 71 72 /* 73 * Include the generated decoders. 74 */ 75 76 #include "decode-sme-fa64.c.inc" 77 #include "decode-a64.c.inc" 78 79 /* Table based decoder typedefs - used when the relevant bits for decode 80 * are too awkwardly scattered across the instruction (eg SIMD). 81 */ 82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 83 84 typedef struct AArch64DecodeTable { 85 uint32_t pattern; 86 uint32_t mask; 87 AArch64DecodeFn *disas_fn; 88 } AArch64DecodeTable; 89 90 /* initialize TCG globals. */ 91 void a64_translate_init(void) 92 { 93 int i; 94 95 cpu_pc = tcg_global_mem_new_i64(tcg_env, 96 offsetof(CPUARMState, pc), 97 "pc"); 98 for (i = 0; i < 32; i++) { 99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 100 offsetof(CPUARMState, xregs[i]), 101 regnames[i]); 102 } 103 104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 105 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 106 } 107 108 /* 109 * Return the core mmu_idx to use for A64 load/store insns which 110 * have a "unprivileged load/store" variant. Those insns access 111 * EL0 if executed from an EL which has control over EL0 (usually 112 * EL1) but behave like normal loads and stores if executed from 113 * elsewhere (eg EL3). 114 * 115 * @unpriv : true for the unprivileged encoding; false for the 116 * normal encoding (in which case we will return the same 117 * thing as get_mem_index(). 118 */ 119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 120 { 121 /* 122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 123 * which is the usual mmu_idx for this cpu state. 124 */ 125 ARMMMUIdx useridx = s->mmu_idx; 126 127 if (unpriv && s->unpriv) { 128 /* 129 * We have pre-computed the condition for AccType_UNPRIV. 130 * Therefore we should never get here with a mmu_idx for 131 * which we do not know the corresponding user mmu_idx. 132 */ 133 switch (useridx) { 134 case ARMMMUIdx_E10_1: 135 case ARMMMUIdx_E10_1_PAN: 136 useridx = ARMMMUIdx_E10_0; 137 break; 138 case ARMMMUIdx_E20_2: 139 case ARMMMUIdx_E20_2_PAN: 140 useridx = ARMMMUIdx_E20_0; 141 break; 142 default: 143 g_assert_not_reached(); 144 } 145 } 146 return arm_to_core_mmu_idx(useridx); 147 } 148 149 static void set_btype_raw(int val) 150 { 151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 152 offsetof(CPUARMState, btype)); 153 } 154 155 static void set_btype(DisasContext *s, int val) 156 { 157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 158 tcg_debug_assert(val >= 1 && val <= 3); 159 set_btype_raw(val); 160 s->btype = -1; 161 } 162 163 static void reset_btype(DisasContext *s) 164 { 165 if (s->btype != 0) { 166 set_btype_raw(0); 167 s->btype = 0; 168 } 169 } 170 171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 172 { 173 assert(s->pc_save != -1); 174 if (tb_cflags(s->base.tb) & CF_PCREL) { 175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 176 } else { 177 tcg_gen_movi_i64(dest, s->pc_curr + diff); 178 } 179 } 180 181 void gen_a64_update_pc(DisasContext *s, target_long diff) 182 { 183 gen_pc_plus_diff(s, cpu_pc, diff); 184 s->pc_save = s->pc_curr + diff; 185 } 186 187 /* 188 * Handle Top Byte Ignore (TBI) bits. 189 * 190 * If address tagging is enabled via the TCR TBI bits: 191 * + for EL2 and EL3 there is only one TBI bit, and if it is set 192 * then the address is zero-extended, clearing bits [63:56] 193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 194 * and TBI1 controls addresses with bit 55 == 1. 195 * If the appropriate TBI bit is set for the address then 196 * the address is sign-extended from bit 55 into bits [63:56] 197 * 198 * Here We have concatenated TBI{1,0} into tbi. 199 */ 200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 201 TCGv_i64 src, int tbi) 202 { 203 if (tbi == 0) { 204 /* Load unmodified address */ 205 tcg_gen_mov_i64(dst, src); 206 } else if (!regime_has_2_ranges(s->mmu_idx)) { 207 /* Force tag byte to all zero */ 208 tcg_gen_extract_i64(dst, src, 0, 56); 209 } else { 210 /* Sign-extend from bit 55. */ 211 tcg_gen_sextract_i64(dst, src, 0, 56); 212 213 switch (tbi) { 214 case 1: 215 /* tbi0 but !tbi1: only use the extension if positive */ 216 tcg_gen_and_i64(dst, dst, src); 217 break; 218 case 2: 219 /* !tbi0 but tbi1: only use the extension if negative */ 220 tcg_gen_or_i64(dst, dst, src); 221 break; 222 case 3: 223 /* tbi0 and tbi1: always use the extension */ 224 break; 225 default: 226 g_assert_not_reached(); 227 } 228 } 229 } 230 231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 232 { 233 /* 234 * If address tagging is enabled for instructions via the TCR TBI bits, 235 * then loading an address into the PC will clear out any tag. 236 */ 237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 238 s->pc_save = -1; 239 } 240 241 /* 242 * Handle MTE and/or TBI. 243 * 244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 245 * for the tag to be present in the FAR_ELx register. But for user-only 246 * mode we do not have a TLB with which to implement this, so we must 247 * remove the top byte now. 248 * 249 * Always return a fresh temporary that we can increment independently 250 * of the write-back address. 251 */ 252 253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 254 { 255 TCGv_i64 clean = tcg_temp_new_i64(); 256 #ifdef CONFIG_USER_ONLY 257 gen_top_byte_ignore(s, clean, addr, s->tbid); 258 #else 259 tcg_gen_mov_i64(clean, addr); 260 #endif 261 return clean; 262 } 263 264 /* Insert a zero tag into src, with the result at dst. */ 265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 266 { 267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 268 } 269 270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 271 MMUAccessType acc, int log2_size) 272 { 273 gen_helper_probe_access(tcg_env, ptr, 274 tcg_constant_i32(acc), 275 tcg_constant_i32(get_mem_index(s)), 276 tcg_constant_i32(1 << log2_size)); 277 } 278 279 /* 280 * For MTE, check a single logical or atomic access. This probes a single 281 * address, the exact one specified. The size and alignment of the access 282 * is not relevant to MTE, per se, but watchpoints do require the size, 283 * and we want to recognize those before making any other changes to state. 284 */ 285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 286 bool is_write, bool tag_checked, 287 MemOp memop, bool is_unpriv, 288 int core_idx) 289 { 290 if (tag_checked && s->mte_active[is_unpriv]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 300 301 ret = tcg_temp_new_i64(); 302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 303 304 return ret; 305 } 306 return clean_data_tbi(s, addr); 307 } 308 309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 310 bool tag_checked, MemOp memop) 311 { 312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 313 false, get_mem_index(s)); 314 } 315 316 /* 317 * For MTE, check multiple logical sequential accesses. 318 */ 319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 320 bool tag_checked, int total_size, MemOp single_mop) 321 { 322 if (tag_checked && s->mte_active[0]) { 323 TCGv_i64 ret; 324 int desc = 0; 325 326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 332 333 ret = tcg_temp_new_i64(); 334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 335 336 return ret; 337 } 338 return clean_data_tbi(s, addr); 339 } 340 341 /* 342 * Generate the special alignment check that applies to AccType_ATOMIC 343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 344 * naturally aligned, but it must not cross a 16-byte boundary. 345 * See AArch64.CheckAlignment(). 346 */ 347 static void check_lse2_align(DisasContext *s, int rn, int imm, 348 bool is_write, MemOp mop) 349 { 350 TCGv_i32 tmp; 351 TCGv_i64 addr; 352 TCGLabel *over_label; 353 MMUAccessType type; 354 int mmu_idx; 355 356 tmp = tcg_temp_new_i32(); 357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 358 tcg_gen_addi_i32(tmp, tmp, imm & 15); 359 tcg_gen_andi_i32(tmp, tmp, 15); 360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 361 362 over_label = gen_new_label(); 363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 364 365 addr = tcg_temp_new_i64(); 366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 367 368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 369 mmu_idx = get_mem_index(s); 370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 371 tcg_constant_i32(mmu_idx)); 372 373 gen_set_label(over_label); 374 375 } 376 377 /* Handle the alignment check for AccType_ATOMIC instructions. */ 378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 379 { 380 MemOp size = mop & MO_SIZE; 381 382 if (size == MO_8) { 383 return mop; 384 } 385 386 /* 387 * If size == MO_128, this is a LDXP, and the operation is single-copy 388 * atomic for each doubleword, not the entire quadword; it still must 389 * be quadword aligned. 390 */ 391 if (size == MO_128) { 392 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 393 MO_ATOM_IFALIGN_PAIR); 394 } 395 if (dc_isar_feature(aa64_lse2, s)) { 396 check_lse2_align(s, rn, 0, true, mop); 397 } else { 398 mop |= MO_ALIGN; 399 } 400 return finalize_memop(s, mop); 401 } 402 403 /* Handle the alignment check for AccType_ORDERED instructions. */ 404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 405 bool is_write, MemOp mop) 406 { 407 MemOp size = mop & MO_SIZE; 408 409 if (size == MO_8) { 410 return mop; 411 } 412 if (size == MO_128) { 413 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 414 MO_ATOM_IFALIGN_PAIR); 415 } 416 if (!dc_isar_feature(aa64_lse2, s)) { 417 mop |= MO_ALIGN; 418 } else if (!s->naa) { 419 check_lse2_align(s, rn, imm, is_write, mop); 420 } 421 return finalize_memop(s, mop); 422 } 423 424 typedef struct DisasCompare64 { 425 TCGCond cond; 426 TCGv_i64 value; 427 } DisasCompare64; 428 429 static void a64_test_cc(DisasCompare64 *c64, int cc) 430 { 431 DisasCompare c32; 432 433 arm_test_cc(&c32, cc); 434 435 /* 436 * Sign-extend the 32-bit value so that the GE/LT comparisons work 437 * properly. The NE/EQ comparisons are also fine with this choice. 438 */ 439 c64->cond = c32.cond; 440 c64->value = tcg_temp_new_i64(); 441 tcg_gen_ext_i32_i64(c64->value, c32.value); 442 } 443 444 static void gen_rebuild_hflags(DisasContext *s) 445 { 446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 447 } 448 449 static void gen_exception_internal(int excp) 450 { 451 assert(excp_is_internal(excp)); 452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 453 } 454 455 static void gen_exception_internal_insn(DisasContext *s, int excp) 456 { 457 gen_a64_update_pc(s, 0); 458 gen_exception_internal(excp); 459 s->base.is_jmp = DISAS_NORETURN; 460 } 461 462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 463 { 464 gen_a64_update_pc(s, 0); 465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 466 s->base.is_jmp = DISAS_NORETURN; 467 } 468 469 static void gen_step_complete_exception(DisasContext *s) 470 { 471 /* We just completed step of an insn. Move from Active-not-pending 472 * to Active-pending, and then also take the swstep exception. 473 * This corresponds to making the (IMPDEF) choice to prioritize 474 * swstep exceptions over asynchronous exceptions taken to an exception 475 * level where debug is disabled. This choice has the advantage that 476 * we do not need to maintain internal state corresponding to the 477 * ISV/EX syndrome bits between completion of the step and generation 478 * of the exception, and our syndrome information is always correct. 479 */ 480 gen_ss_advance(s); 481 gen_swstep_exception(s, 1, s->is_ldex); 482 s->base.is_jmp = DISAS_NORETURN; 483 } 484 485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 486 { 487 if (s->ss_active) { 488 return false; 489 } 490 return translator_use_goto_tb(&s->base, dest); 491 } 492 493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 494 { 495 if (use_goto_tb(s, s->pc_curr + diff)) { 496 /* 497 * For pcrel, the pc must always be up-to-date on entry to 498 * the linked TB, so that it can use simple additions for all 499 * further adjustments. For !pcrel, the linked TB is compiled 500 * to know its full virtual address, so we can delay the 501 * update to pc to the unlinked path. A long chain of links 502 * can thus avoid many updates to the PC. 503 */ 504 if (tb_cflags(s->base.tb) & CF_PCREL) { 505 gen_a64_update_pc(s, diff); 506 tcg_gen_goto_tb(n); 507 } else { 508 tcg_gen_goto_tb(n); 509 gen_a64_update_pc(s, diff); 510 } 511 tcg_gen_exit_tb(s->base.tb, n); 512 s->base.is_jmp = DISAS_NORETURN; 513 } else { 514 gen_a64_update_pc(s, diff); 515 if (s->ss_active) { 516 gen_step_complete_exception(s); 517 } else { 518 tcg_gen_lookup_and_goto_ptr(); 519 s->base.is_jmp = DISAS_NORETURN; 520 } 521 } 522 } 523 524 /* 525 * Register access functions 526 * 527 * These functions are used for directly accessing a register in where 528 * changes to the final register value are likely to be made. If you 529 * need to use a register for temporary calculation (e.g. index type 530 * operations) use the read_* form. 531 * 532 * B1.2.1 Register mappings 533 * 534 * In instruction register encoding 31 can refer to ZR (zero register) or 535 * the SP (stack pointer) depending on context. In QEMU's case we map SP 536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 537 * This is the point of the _sp forms. 538 */ 539 TCGv_i64 cpu_reg(DisasContext *s, int reg) 540 { 541 if (reg == 31) { 542 TCGv_i64 t = tcg_temp_new_i64(); 543 tcg_gen_movi_i64(t, 0); 544 return t; 545 } else { 546 return cpu_X[reg]; 547 } 548 } 549 550 /* register access for when 31 == SP */ 551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 552 { 553 return cpu_X[reg]; 554 } 555 556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 557 * representing the register contents. This TCGv is an auto-freed 558 * temporary so it need not be explicitly freed, and may be modified. 559 */ 560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 561 { 562 TCGv_i64 v = tcg_temp_new_i64(); 563 if (reg != 31) { 564 if (sf) { 565 tcg_gen_mov_i64(v, cpu_X[reg]); 566 } else { 567 tcg_gen_ext32u_i64(v, cpu_X[reg]); 568 } 569 } else { 570 tcg_gen_movi_i64(v, 0); 571 } 572 return v; 573 } 574 575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 576 { 577 TCGv_i64 v = tcg_temp_new_i64(); 578 if (sf) { 579 tcg_gen_mov_i64(v, cpu_X[reg]); 580 } else { 581 tcg_gen_ext32u_i64(v, cpu_X[reg]); 582 } 583 return v; 584 } 585 586 /* Return the offset into CPUARMState of a slice (from 587 * the least significant end) of FP register Qn (ie 588 * Dn, Sn, Hn or Bn). 589 * (Note that this is not the same mapping as for A32; see cpu.h) 590 */ 591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 592 { 593 return vec_reg_offset(s, regno, 0, size); 594 } 595 596 /* Offset of the high half of the 128 bit vector Qn */ 597 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 598 { 599 return vec_reg_offset(s, regno, 1, MO_64); 600 } 601 602 /* Convenience accessors for reading and writing single and double 603 * FP registers. Writing clears the upper parts of the associated 604 * 128 bit vector register, as required by the architecture. 605 * Note that unlike the GP register accessors, the values returned 606 * by the read functions must be manually freed. 607 */ 608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 609 { 610 TCGv_i64 v = tcg_temp_new_i64(); 611 612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 613 return v; 614 } 615 616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 617 { 618 TCGv_i32 v = tcg_temp_new_i32(); 619 620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 621 return v; 622 } 623 624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 625 { 626 TCGv_i32 v = tcg_temp_new_i32(); 627 628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 629 return v; 630 } 631 632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 633 * If SVE is not enabled, then there are only 128 bits in the vector. 634 */ 635 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 636 { 637 unsigned ofs = fp_reg_offset(s, rd, MO_64); 638 unsigned vsz = vec_full_reg_size(s); 639 640 /* Nop move, with side effect of clearing the tail. */ 641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 642 } 643 644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 645 { 646 unsigned ofs = fp_reg_offset(s, reg, MO_64); 647 648 tcg_gen_st_i64(v, tcg_env, ofs); 649 clear_vec_high(s, false, reg); 650 } 651 652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 653 { 654 TCGv_i64 tmp = tcg_temp_new_i64(); 655 656 tcg_gen_extu_i32_i64(tmp, v); 657 write_fp_dreg(s, reg, tmp); 658 } 659 660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 662 GVecGen2Fn *gvec_fn, int vece) 663 { 664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 665 is_q ? 16 : 8, vec_full_reg_size(s)); 666 } 667 668 /* Expand a 2-operand + immediate AdvSIMD vector operation using 669 * an expander function. 670 */ 671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 672 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 673 { 674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 675 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 676 } 677 678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 680 GVecGen3Fn *gvec_fn, int vece) 681 { 682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 688 int rx, GVecGen4Fn *gvec_fn, int vece) 689 { 690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 692 is_q ? 16 : 8, vec_full_reg_size(s)); 693 } 694 695 /* Expand a 2-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int data, gen_helper_gvec_2 *fn) 698 { 699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 702 } 703 704 /* Expand a 3-operand operation using an out-of-line helper. */ 705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 706 int rn, int rm, int data, gen_helper_gvec_3 *fn) 707 { 708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 709 vec_full_reg_offset(s, rn), 710 vec_full_reg_offset(s, rm), 711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 712 } 713 714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 715 * an out-of-line helper. 716 */ 717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 718 int rm, bool is_fp16, int data, 719 gen_helper_gvec_3_ptr *fn) 720 { 721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 723 vec_full_reg_offset(s, rn), 724 vec_full_reg_offset(s, rm), fpst, 725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 726 } 727 728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 730 int rm, gen_helper_gvec_3_ptr *fn) 731 { 732 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 733 734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 736 vec_full_reg_offset(s, rn), 737 vec_full_reg_offset(s, rm), qc_ptr, 738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 739 } 740 741 /* Expand a 4-operand operation using an out-of-line helper. */ 742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 743 int rm, int ra, int data, gen_helper_gvec_4 *fn) 744 { 745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 746 vec_full_reg_offset(s, rn), 747 vec_full_reg_offset(s, rm), 748 vec_full_reg_offset(s, ra), 749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 750 } 751 752 /* 753 * Expand a 4-operand + fpstatus pointer + simd data value operation using 754 * an out-of-line helper. 755 */ 756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 757 int rm, int ra, bool is_fp16, int data, 758 gen_helper_gvec_4_ptr *fn) 759 { 760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 762 vec_full_reg_offset(s, rn), 763 vec_full_reg_offset(s, rm), 764 vec_full_reg_offset(s, ra), fpst, 765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 766 } 767 768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 769 * than the 32 bit equivalent. 770 */ 771 static inline void gen_set_NZ64(TCGv_i64 result) 772 { 773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 775 } 776 777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 778 static inline void gen_logic_CC(int sf, TCGv_i64 result) 779 { 780 if (sf) { 781 gen_set_NZ64(result); 782 } else { 783 tcg_gen_extrl_i64_i32(cpu_ZF, result); 784 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 785 } 786 tcg_gen_movi_i32(cpu_CF, 0); 787 tcg_gen_movi_i32(cpu_VF, 0); 788 } 789 790 /* dest = T0 + T1; compute C, N, V and Z flags */ 791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 792 { 793 TCGv_i64 result, flag, tmp; 794 result = tcg_temp_new_i64(); 795 flag = tcg_temp_new_i64(); 796 tmp = tcg_temp_new_i64(); 797 798 tcg_gen_movi_i64(tmp, 0); 799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 800 801 tcg_gen_extrl_i64_i32(cpu_CF, flag); 802 803 gen_set_NZ64(result); 804 805 tcg_gen_xor_i64(flag, result, t0); 806 tcg_gen_xor_i64(tmp, t0, t1); 807 tcg_gen_andc_i64(flag, flag, tmp); 808 tcg_gen_extrh_i64_i32(cpu_VF, flag); 809 810 tcg_gen_mov_i64(dest, result); 811 } 812 813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 814 { 815 TCGv_i32 t0_32 = tcg_temp_new_i32(); 816 TCGv_i32 t1_32 = tcg_temp_new_i32(); 817 TCGv_i32 tmp = tcg_temp_new_i32(); 818 819 tcg_gen_movi_i32(tmp, 0); 820 tcg_gen_extrl_i64_i32(t0_32, t0); 821 tcg_gen_extrl_i64_i32(t1_32, t1); 822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 823 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 825 tcg_gen_xor_i32(tmp, t0_32, t1_32); 826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 827 tcg_gen_extu_i32_i64(dest, cpu_NF); 828 } 829 830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 831 { 832 if (sf) { 833 gen_add64_CC(dest, t0, t1); 834 } else { 835 gen_add32_CC(dest, t0, t1); 836 } 837 } 838 839 /* dest = T0 - T1; compute C, N, V and Z flags */ 840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 841 { 842 /* 64 bit arithmetic */ 843 TCGv_i64 result, flag, tmp; 844 845 result = tcg_temp_new_i64(); 846 flag = tcg_temp_new_i64(); 847 tcg_gen_sub_i64(result, t0, t1); 848 849 gen_set_NZ64(result); 850 851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 852 tcg_gen_extrl_i64_i32(cpu_CF, flag); 853 854 tcg_gen_xor_i64(flag, result, t0); 855 tmp = tcg_temp_new_i64(); 856 tcg_gen_xor_i64(tmp, t0, t1); 857 tcg_gen_and_i64(flag, flag, tmp); 858 tcg_gen_extrh_i64_i32(cpu_VF, flag); 859 tcg_gen_mov_i64(dest, result); 860 } 861 862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 863 { 864 /* 32 bit arithmetic */ 865 TCGv_i32 t0_32 = tcg_temp_new_i32(); 866 TCGv_i32 t1_32 = tcg_temp_new_i32(); 867 TCGv_i32 tmp; 868 869 tcg_gen_extrl_i64_i32(t0_32, t0); 870 tcg_gen_extrl_i64_i32(t1_32, t1); 871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 872 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 875 tmp = tcg_temp_new_i32(); 876 tcg_gen_xor_i32(tmp, t0_32, t1_32); 877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 878 tcg_gen_extu_i32_i64(dest, cpu_NF); 879 } 880 881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 882 { 883 if (sf) { 884 gen_sub64_CC(dest, t0, t1); 885 } else { 886 gen_sub32_CC(dest, t0, t1); 887 } 888 } 889 890 /* dest = T0 + T1 + CF; do not compute flags. */ 891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 892 { 893 TCGv_i64 flag = tcg_temp_new_i64(); 894 tcg_gen_extu_i32_i64(flag, cpu_CF); 895 tcg_gen_add_i64(dest, t0, t1); 896 tcg_gen_add_i64(dest, dest, flag); 897 898 if (!sf) { 899 tcg_gen_ext32u_i64(dest, dest); 900 } 901 } 902 903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 905 { 906 if (sf) { 907 TCGv_i64 result = tcg_temp_new_i64(); 908 TCGv_i64 cf_64 = tcg_temp_new_i64(); 909 TCGv_i64 vf_64 = tcg_temp_new_i64(); 910 TCGv_i64 tmp = tcg_temp_new_i64(); 911 TCGv_i64 zero = tcg_constant_i64(0); 912 913 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 917 gen_set_NZ64(result); 918 919 tcg_gen_xor_i64(vf_64, result, t0); 920 tcg_gen_xor_i64(tmp, t0, t1); 921 tcg_gen_andc_i64(vf_64, vf_64, tmp); 922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 923 924 tcg_gen_mov_i64(dest, result); 925 } else { 926 TCGv_i32 t0_32 = tcg_temp_new_i32(); 927 TCGv_i32 t1_32 = tcg_temp_new_i32(); 928 TCGv_i32 tmp = tcg_temp_new_i32(); 929 TCGv_i32 zero = tcg_constant_i32(0); 930 931 tcg_gen_extrl_i64_i32(t0_32, t0); 932 tcg_gen_extrl_i64_i32(t1_32, t1); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 935 936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 938 tcg_gen_xor_i32(tmp, t0_32, t1_32); 939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 940 tcg_gen_extu_i32_i64(dest, cpu_NF); 941 } 942 } 943 944 /* 945 * Load/Store generators 946 */ 947 948 /* 949 * Store from GPR register to memory. 950 */ 951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 952 TCGv_i64 tcg_addr, MemOp memop, int memidx, 953 bool iss_valid, 954 unsigned int iss_srt, 955 bool iss_sf, bool iss_ar) 956 { 957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 958 959 if (iss_valid) { 960 uint32_t syn; 961 962 syn = syn_data_abort_with_iss(0, 963 (memop & MO_SIZE), 964 false, 965 iss_srt, 966 iss_sf, 967 iss_ar, 968 0, 0, 0, 0, 0, false); 969 disas_set_insn_syndrome(s, syn); 970 } 971 } 972 973 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 974 TCGv_i64 tcg_addr, MemOp memop, 975 bool iss_valid, 976 unsigned int iss_srt, 977 bool iss_sf, bool iss_ar) 978 { 979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 980 iss_valid, iss_srt, iss_sf, iss_ar); 981 } 982 983 /* 984 * Load from memory to GPR register 985 */ 986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 987 MemOp memop, bool extend, int memidx, 988 bool iss_valid, unsigned int iss_srt, 989 bool iss_sf, bool iss_ar) 990 { 991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 992 993 if (extend && (memop & MO_SIGN)) { 994 g_assert((memop & MO_SIZE) <= MO_32); 995 tcg_gen_ext32u_i64(dest, dest); 996 } 997 998 if (iss_valid) { 999 uint32_t syn; 1000 1001 syn = syn_data_abort_with_iss(0, 1002 (memop & MO_SIZE), 1003 (memop & MO_SIGN) != 0, 1004 iss_srt, 1005 iss_sf, 1006 iss_ar, 1007 0, 0, 0, 0, 0, false); 1008 disas_set_insn_syndrome(s, syn); 1009 } 1010 } 1011 1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1013 MemOp memop, bool extend, 1014 bool iss_valid, unsigned int iss_srt, 1015 bool iss_sf, bool iss_ar) 1016 { 1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1018 iss_valid, iss_srt, iss_sf, iss_ar); 1019 } 1020 1021 /* 1022 * Store from FP register to memory 1023 */ 1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1025 { 1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1027 TCGv_i64 tmplo = tcg_temp_new_i64(); 1028 1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1030 1031 if ((mop & MO_SIZE) < MO_128) { 1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1033 } else { 1034 TCGv_i64 tmphi = tcg_temp_new_i64(); 1035 TCGv_i128 t16 = tcg_temp_new_i128(); 1036 1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1039 1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1041 } 1042 } 1043 1044 /* 1045 * Load from memory to FP register 1046 */ 1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1048 { 1049 /* This always zero-extends and writes to a full 128 bit wide vector */ 1050 TCGv_i64 tmplo = tcg_temp_new_i64(); 1051 TCGv_i64 tmphi = NULL; 1052 1053 if ((mop & MO_SIZE) < MO_128) { 1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1055 } else { 1056 TCGv_i128 t16 = tcg_temp_new_i128(); 1057 1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1059 1060 tmphi = tcg_temp_new_i64(); 1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1062 } 1063 1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1065 1066 if (tmphi) { 1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1068 } 1069 clear_vec_high(s, tmphi != NULL, destidx); 1070 } 1071 1072 /* 1073 * Vector load/store helpers. 1074 * 1075 * The principal difference between this and a FP load is that we don't 1076 * zero extend as we are filling a partial chunk of the vector register. 1077 * These functions don't support 128 bit loads/stores, which would be 1078 * normal load/store operations. 1079 * 1080 * The _i32 versions are useful when operating on 32 bit quantities 1081 * (eg for floating point single or using Neon helper functions). 1082 */ 1083 1084 /* Get value of an element within a vector register */ 1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1086 int element, MemOp memop) 1087 { 1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1089 switch ((unsigned)memop) { 1090 case MO_8: 1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1092 break; 1093 case MO_16: 1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1095 break; 1096 case MO_32: 1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1098 break; 1099 case MO_8|MO_SIGN: 1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1101 break; 1102 case MO_16|MO_SIGN: 1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1104 break; 1105 case MO_32|MO_SIGN: 1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1107 break; 1108 case MO_64: 1109 case MO_64|MO_SIGN: 1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1118 int element, MemOp memop) 1119 { 1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1121 switch (memop) { 1122 case MO_8: 1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1124 break; 1125 case MO_16: 1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1127 break; 1128 case MO_8|MO_SIGN: 1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1130 break; 1131 case MO_16|MO_SIGN: 1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1133 break; 1134 case MO_32: 1135 case MO_32|MO_SIGN: 1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1137 break; 1138 default: 1139 g_assert_not_reached(); 1140 } 1141 } 1142 1143 /* Set value of an element within a vector register */ 1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1145 int element, MemOp memop) 1146 { 1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1148 switch (memop) { 1149 case MO_8: 1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1151 break; 1152 case MO_16: 1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1154 break; 1155 case MO_32: 1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1157 break; 1158 case MO_64: 1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1160 break; 1161 default: 1162 g_assert_not_reached(); 1163 } 1164 } 1165 1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1167 int destidx, int element, MemOp memop) 1168 { 1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1170 switch (memop) { 1171 case MO_8: 1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1173 break; 1174 case MO_16: 1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1176 break; 1177 case MO_32: 1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1179 break; 1180 default: 1181 g_assert_not_reached(); 1182 } 1183 } 1184 1185 /* Store from vector register to memory */ 1186 static void do_vec_st(DisasContext *s, int srcidx, int element, 1187 TCGv_i64 tcg_addr, MemOp mop) 1188 { 1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1190 1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 } 1194 1195 /* Load from memory to vector register */ 1196 static void do_vec_ld(DisasContext *s, int destidx, int element, 1197 TCGv_i64 tcg_addr, MemOp mop) 1198 { 1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1200 1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1203 } 1204 1205 /* Check that FP/Neon access is enabled. If it is, return 1206 * true. If not, emit code to generate an appropriate exception, 1207 * and return false; the caller should not emit any code for 1208 * the instruction. Note that this check must happen after all 1209 * unallocated-encoding checks (otherwise the syndrome information 1210 * for the resulting exception will be incorrect). 1211 */ 1212 static bool fp_access_check_only(DisasContext *s) 1213 { 1214 if (s->fp_excp_el) { 1215 assert(!s->fp_access_checked); 1216 s->fp_access_checked = true; 1217 1218 gen_exception_insn_el(s, 0, EXCP_UDEF, 1219 syn_fp_access_trap(1, 0xe, false, 0), 1220 s->fp_excp_el); 1221 return false; 1222 } 1223 s->fp_access_checked = true; 1224 return true; 1225 } 1226 1227 static bool fp_access_check(DisasContext *s) 1228 { 1229 if (!fp_access_check_only(s)) { 1230 return false; 1231 } 1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1233 gen_exception_insn(s, 0, EXCP_UDEF, 1234 syn_smetrap(SME_ET_Streaming, false)); 1235 return false; 1236 } 1237 return true; 1238 } 1239 1240 /* 1241 * Check that SVE access is enabled. If it is, return true. 1242 * If not, emit code to generate an appropriate exception and return false. 1243 * This function corresponds to CheckSVEEnabled(). 1244 */ 1245 bool sve_access_check(DisasContext *s) 1246 { 1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1248 assert(dc_isar_feature(aa64_sme, s)); 1249 if (!sme_sm_enabled_check(s)) { 1250 goto fail_exit; 1251 } 1252 } else if (s->sve_excp_el) { 1253 gen_exception_insn_el(s, 0, EXCP_UDEF, 1254 syn_sve_access_trap(), s->sve_excp_el); 1255 goto fail_exit; 1256 } 1257 s->sve_access_checked = true; 1258 return fp_access_check(s); 1259 1260 fail_exit: 1261 /* Assert that we only raise one exception per instruction. */ 1262 assert(!s->sve_access_checked); 1263 s->sve_access_checked = true; 1264 return false; 1265 } 1266 1267 /* 1268 * Check that SME access is enabled, raise an exception if not. 1269 * Note that this function corresponds to CheckSMEAccess and is 1270 * only used directly for cpregs. 1271 */ 1272 static bool sme_access_check(DisasContext *s) 1273 { 1274 if (s->sme_excp_el) { 1275 gen_exception_insn_el(s, 0, EXCP_UDEF, 1276 syn_smetrap(SME_ET_AccessTrap, false), 1277 s->sme_excp_el); 1278 return false; 1279 } 1280 return true; 1281 } 1282 1283 /* This function corresponds to CheckSMEEnabled. */ 1284 bool sme_enabled_check(DisasContext *s) 1285 { 1286 /* 1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1288 * to be zero when fp_excp_el has priority. This is because we need 1289 * sme_excp_el by itself for cpregs access checks. 1290 */ 1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1292 s->fp_access_checked = true; 1293 return sme_access_check(s); 1294 } 1295 return fp_access_check_only(s); 1296 } 1297 1298 /* Common subroutine for CheckSMEAnd*Enabled. */ 1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1300 { 1301 if (!sme_enabled_check(s)) { 1302 return false; 1303 } 1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1305 gen_exception_insn(s, 0, EXCP_UDEF, 1306 syn_smetrap(SME_ET_NotStreaming, false)); 1307 return false; 1308 } 1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1310 gen_exception_insn(s, 0, EXCP_UDEF, 1311 syn_smetrap(SME_ET_InactiveZA, false)); 1312 return false; 1313 } 1314 return true; 1315 } 1316 1317 /* 1318 * This utility function is for doing register extension with an 1319 * optional shift. You will likely want to pass a temporary for the 1320 * destination register. See DecodeRegExtend() in the ARM ARM. 1321 */ 1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1323 int option, unsigned int shift) 1324 { 1325 int extsize = extract32(option, 0, 2); 1326 bool is_signed = extract32(option, 2, 1); 1327 1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1330 } 1331 1332 static inline void gen_check_sp_alignment(DisasContext *s) 1333 { 1334 /* The AArch64 architecture mandates that (if enabled via PSTATE 1335 * or SCTLR bits) there is a check that SP is 16-aligned on every 1336 * SP-relative load or store (with an exception generated if it is not). 1337 * In line with general QEMU practice regarding misaligned accesses, 1338 * we omit these checks for the sake of guest program performance. 1339 * This function is provided as a hook so we can more easily add these 1340 * checks in future (possibly as a "favour catching guest program bugs 1341 * over speed" user selectable option). 1342 */ 1343 } 1344 1345 /* 1346 * This provides a simple table based table lookup decoder. It is 1347 * intended to be used when the relevant bits for decode are too 1348 * awkwardly placed and switch/if based logic would be confusing and 1349 * deeply nested. Since it's a linear search through the table, tables 1350 * should be kept small. 1351 * 1352 * It returns the first handler where insn & mask == pattern, or 1353 * NULL if there is no match. 1354 * The table is terminated by an empty mask (i.e. 0) 1355 */ 1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1357 uint32_t insn) 1358 { 1359 const AArch64DecodeTable *tptr = table; 1360 1361 while (tptr->mask) { 1362 if ((insn & tptr->mask) == tptr->pattern) { 1363 return tptr->disas_fn; 1364 } 1365 tptr++; 1366 } 1367 return NULL; 1368 } 1369 1370 /* 1371 * The instruction disassembly implemented here matches 1372 * the instruction encoding classifications in chapter C4 1373 * of the ARM Architecture Reference Manual (DDI0487B_a); 1374 * classification names and decode diagrams here should generally 1375 * match up with those in the manual. 1376 */ 1377 1378 static bool trans_B(DisasContext *s, arg_i *a) 1379 { 1380 reset_btype(s); 1381 gen_goto_tb(s, 0, a->imm); 1382 return true; 1383 } 1384 1385 static bool trans_BL(DisasContext *s, arg_i *a) 1386 { 1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1388 reset_btype(s); 1389 gen_goto_tb(s, 0, a->imm); 1390 return true; 1391 } 1392 1393 1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1395 { 1396 DisasLabel match; 1397 TCGv_i64 tcg_cmp; 1398 1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1400 reset_btype(s); 1401 1402 match = gen_disas_label(s); 1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1404 tcg_cmp, 0, match.label); 1405 gen_goto_tb(s, 0, 4); 1406 set_disas_label(s, match); 1407 gen_goto_tb(s, 1, a->imm); 1408 return true; 1409 } 1410 1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1412 { 1413 DisasLabel match; 1414 TCGv_i64 tcg_cmp; 1415 1416 tcg_cmp = tcg_temp_new_i64(); 1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1418 1419 reset_btype(s); 1420 1421 match = gen_disas_label(s); 1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1423 tcg_cmp, 0, match.label); 1424 gen_goto_tb(s, 0, 4); 1425 set_disas_label(s, match); 1426 gen_goto_tb(s, 1, a->imm); 1427 return true; 1428 } 1429 1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1431 { 1432 /* BC.cond is only present with FEAT_HBC */ 1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1434 return false; 1435 } 1436 reset_btype(s); 1437 if (a->cond < 0x0e) { 1438 /* genuinely conditional branches */ 1439 DisasLabel match = gen_disas_label(s); 1440 arm_gen_test_cc(a->cond, match.label); 1441 gen_goto_tb(s, 0, 4); 1442 set_disas_label(s, match); 1443 gen_goto_tb(s, 1, a->imm); 1444 } else { 1445 /* 0xe and 0xf are both "always" conditions */ 1446 gen_goto_tb(s, 0, a->imm); 1447 } 1448 return true; 1449 } 1450 1451 static void set_btype_for_br(DisasContext *s, int rn) 1452 { 1453 if (dc_isar_feature(aa64_bti, s)) { 1454 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1456 } 1457 } 1458 1459 static void set_btype_for_blr(DisasContext *s) 1460 { 1461 if (dc_isar_feature(aa64_bti, s)) { 1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1463 set_btype(s, 2); 1464 } 1465 } 1466 1467 static bool trans_BR(DisasContext *s, arg_r *a) 1468 { 1469 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1470 set_btype_for_br(s, a->rn); 1471 s->base.is_jmp = DISAS_JUMP; 1472 return true; 1473 } 1474 1475 static bool trans_BLR(DisasContext *s, arg_r *a) 1476 { 1477 TCGv_i64 dst = cpu_reg(s, a->rn); 1478 TCGv_i64 lr = cpu_reg(s, 30); 1479 if (dst == lr) { 1480 TCGv_i64 tmp = tcg_temp_new_i64(); 1481 tcg_gen_mov_i64(tmp, dst); 1482 dst = tmp; 1483 } 1484 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1485 gen_a64_set_pc(s, dst); 1486 set_btype_for_blr(s); 1487 s->base.is_jmp = DISAS_JUMP; 1488 return true; 1489 } 1490 1491 static bool trans_RET(DisasContext *s, arg_r *a) 1492 { 1493 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1499 TCGv_i64 modifier, bool use_key_a) 1500 { 1501 TCGv_i64 truedst; 1502 /* 1503 * Return the branch target for a BRAA/RETA/etc, which is either 1504 * just the destination dst, or that value with the pauth check 1505 * done and the code removed from the high bits. 1506 */ 1507 if (!s->pauth_active) { 1508 return dst; 1509 } 1510 1511 truedst = tcg_temp_new_i64(); 1512 if (use_key_a) { 1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1514 } else { 1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1516 } 1517 return truedst; 1518 } 1519 1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1521 { 1522 TCGv_i64 dst; 1523 1524 if (!dc_isar_feature(aa64_pauth, s)) { 1525 return false; 1526 } 1527 1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1529 gen_a64_set_pc(s, dst); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1536 { 1537 TCGv_i64 dst, lr; 1538 1539 if (!dc_isar_feature(aa64_pauth, s)) { 1540 return false; 1541 } 1542 1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1544 lr = cpu_reg(s, 30); 1545 if (dst == lr) { 1546 TCGv_i64 tmp = tcg_temp_new_i64(); 1547 tcg_gen_mov_i64(tmp, dst); 1548 dst = tmp; 1549 } 1550 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1551 gen_a64_set_pc(s, dst); 1552 set_btype_for_blr(s); 1553 s->base.is_jmp = DISAS_JUMP; 1554 return true; 1555 } 1556 1557 static bool trans_RETA(DisasContext *s, arg_reta *a) 1558 { 1559 TCGv_i64 dst; 1560 1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1562 gen_a64_set_pc(s, dst); 1563 s->base.is_jmp = DISAS_JUMP; 1564 return true; 1565 } 1566 1567 static bool trans_BRA(DisasContext *s, arg_bra *a) 1568 { 1569 TCGv_i64 dst; 1570 1571 if (!dc_isar_feature(aa64_pauth, s)) { 1572 return false; 1573 } 1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1575 gen_a64_set_pc(s, dst); 1576 set_btype_for_br(s, a->rn); 1577 s->base.is_jmp = DISAS_JUMP; 1578 return true; 1579 } 1580 1581 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1582 { 1583 TCGv_i64 dst, lr; 1584 1585 if (!dc_isar_feature(aa64_pauth, s)) { 1586 return false; 1587 } 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1589 lr = cpu_reg(s, 30); 1590 if (dst == lr) { 1591 TCGv_i64 tmp = tcg_temp_new_i64(); 1592 tcg_gen_mov_i64(tmp, dst); 1593 dst = tmp; 1594 } 1595 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1596 gen_a64_set_pc(s, dst); 1597 set_btype_for_blr(s); 1598 s->base.is_jmp = DISAS_JUMP; 1599 return true; 1600 } 1601 1602 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1603 { 1604 TCGv_i64 dst; 1605 1606 if (s->current_el == 0) { 1607 return false; 1608 } 1609 if (s->trap_eret) { 1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1611 return true; 1612 } 1613 dst = tcg_temp_new_i64(); 1614 tcg_gen_ld_i64(dst, tcg_env, 1615 offsetof(CPUARMState, elr_el[s->current_el])); 1616 1617 translator_io_start(&s->base); 1618 1619 gen_helper_exception_return(tcg_env, dst); 1620 /* Must exit loop to check un-masked IRQs */ 1621 s->base.is_jmp = DISAS_EXIT; 1622 return true; 1623 } 1624 1625 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1626 { 1627 TCGv_i64 dst; 1628 1629 if (!dc_isar_feature(aa64_pauth, s)) { 1630 return false; 1631 } 1632 if (s->current_el == 0) { 1633 return false; 1634 } 1635 /* The FGT trap takes precedence over an auth trap. */ 1636 if (s->trap_eret) { 1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1638 return true; 1639 } 1640 dst = tcg_temp_new_i64(); 1641 tcg_gen_ld_i64(dst, tcg_env, 1642 offsetof(CPUARMState, elr_el[s->current_el])); 1643 1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1645 1646 translator_io_start(&s->base); 1647 1648 gen_helper_exception_return(tcg_env, dst); 1649 /* Must exit loop to check un-masked IRQs */ 1650 s->base.is_jmp = DISAS_EXIT; 1651 return true; 1652 } 1653 1654 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1655 { 1656 return true; 1657 } 1658 1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1660 { 1661 /* 1662 * When running in MTTCG we don't generate jumps to the yield and 1663 * WFE helpers as it won't affect the scheduling of other vCPUs. 1664 * If we wanted to more completely model WFE/SEV so we don't busy 1665 * spin unnecessarily we would need to do something more involved. 1666 */ 1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1668 s->base.is_jmp = DISAS_YIELD; 1669 } 1670 return true; 1671 } 1672 1673 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1674 { 1675 s->base.is_jmp = DISAS_WFI; 1676 return true; 1677 } 1678 1679 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_WFE; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1694 { 1695 if (s->pauth_active) { 1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1697 } 1698 return true; 1699 } 1700 1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1702 { 1703 if (s->pauth_active) { 1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1705 } 1706 return true; 1707 } 1708 1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1710 { 1711 if (s->pauth_active) { 1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1713 } 1714 return true; 1715 } 1716 1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1718 { 1719 if (s->pauth_active) { 1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1721 } 1722 return true; 1723 } 1724 1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1726 { 1727 if (s->pauth_active) { 1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1734 { 1735 /* Without RAS, we must implement this as NOP. */ 1736 if (dc_isar_feature(aa64_ras, s)) { 1737 /* 1738 * QEMU does not have a source of physical SErrors, 1739 * so we are only concerned with virtual SErrors. 1740 * The pseudocode in the ARM for this case is 1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1742 * AArch64.vESBOperation(); 1743 * Most of the condition can be evaluated at translation time. 1744 * Test for EL2 present, and defer test for SEL2 to runtime. 1745 */ 1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1747 gen_helper_vesb(tcg_env); 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1794 { 1795 if (s->pauth_active) { 1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1797 } 1798 return true; 1799 } 1800 1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1802 { 1803 if (s->pauth_active) { 1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1805 } 1806 return true; 1807 } 1808 1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1810 { 1811 if (s->pauth_active) { 1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1813 } 1814 return true; 1815 } 1816 1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1818 { 1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1820 return true; 1821 } 1822 1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1824 { 1825 /* We handle DSB and DMB the same way */ 1826 TCGBar bar; 1827 1828 switch (a->types) { 1829 case 1: /* MBReqTypes_Reads */ 1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1831 break; 1832 case 2: /* MBReqTypes_Writes */ 1833 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1834 break; 1835 default: /* MBReqTypes_All */ 1836 bar = TCG_BAR_SC | TCG_MO_ALL; 1837 break; 1838 } 1839 tcg_gen_mb(bar); 1840 return true; 1841 } 1842 1843 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1844 { 1845 /* 1846 * We need to break the TB after this insn to execute 1847 * self-modifying code correctly and also to take 1848 * any pending interrupts immediately. 1849 */ 1850 reset_btype(s); 1851 gen_goto_tb(s, 0, 4); 1852 return true; 1853 } 1854 1855 static bool trans_SB(DisasContext *s, arg_SB *a) 1856 { 1857 if (!dc_isar_feature(aa64_sb, s)) { 1858 return false; 1859 } 1860 /* 1861 * TODO: There is no speculation barrier opcode for TCG; 1862 * MB and end the TB instead. 1863 */ 1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1865 gen_goto_tb(s, 0, 4); 1866 return true; 1867 } 1868 1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1870 { 1871 if (!dc_isar_feature(aa64_condm_4, s)) { 1872 return false; 1873 } 1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1875 return true; 1876 } 1877 1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1879 { 1880 TCGv_i32 z; 1881 1882 if (!dc_isar_feature(aa64_condm_5, s)) { 1883 return false; 1884 } 1885 1886 z = tcg_temp_new_i32(); 1887 1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1889 1890 /* 1891 * (!C & !Z) << 31 1892 * (!(C | Z)) << 31 1893 * ~((C | Z) << 31) 1894 * ~-(C | Z) 1895 * (C | Z) - 1 1896 */ 1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1899 1900 /* !(Z & C) */ 1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1903 1904 /* (!C & Z) << 31 -> -(Z & ~C) */ 1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1906 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1907 1908 /* C | Z */ 1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1910 1911 return true; 1912 } 1913 1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1915 { 1916 if (!dc_isar_feature(aa64_condm_5, s)) { 1917 return false; 1918 } 1919 1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1922 1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1925 1926 tcg_gen_movi_i32(cpu_NF, 0); 1927 tcg_gen_movi_i32(cpu_VF, 0); 1928 1929 return true; 1930 } 1931 1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1933 { 1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1935 return false; 1936 } 1937 if (a->imm & 1) { 1938 set_pstate_bits(PSTATE_UAO); 1939 } else { 1940 clear_pstate_bits(PSTATE_UAO); 1941 } 1942 gen_rebuild_hflags(s); 1943 s->base.is_jmp = DISAS_TOO_MANY; 1944 return true; 1945 } 1946 1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1948 { 1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1950 return false; 1951 } 1952 if (a->imm & 1) { 1953 set_pstate_bits(PSTATE_PAN); 1954 } else { 1955 clear_pstate_bits(PSTATE_PAN); 1956 } 1957 gen_rebuild_hflags(s); 1958 s->base.is_jmp = DISAS_TOO_MANY; 1959 return true; 1960 } 1961 1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1963 { 1964 if (s->current_el == 0) { 1965 return false; 1966 } 1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1968 s->base.is_jmp = DISAS_TOO_MANY; 1969 return true; 1970 } 1971 1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1973 { 1974 if (!dc_isar_feature(aa64_ssbs, s)) { 1975 return false; 1976 } 1977 if (a->imm & 1) { 1978 set_pstate_bits(PSTATE_SSBS); 1979 } else { 1980 clear_pstate_bits(PSTATE_SSBS); 1981 } 1982 /* Don't need to rebuild hflags since SSBS is a nop */ 1983 s->base.is_jmp = DISAS_TOO_MANY; 1984 return true; 1985 } 1986 1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 1988 { 1989 if (!dc_isar_feature(aa64_dit, s)) { 1990 return false; 1991 } 1992 if (a->imm & 1) { 1993 set_pstate_bits(PSTATE_DIT); 1994 } else { 1995 clear_pstate_bits(PSTATE_DIT); 1996 } 1997 /* There's no need to rebuild hflags because DIT is a nop */ 1998 s->base.is_jmp = DISAS_TOO_MANY; 1999 return true; 2000 } 2001 2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2003 { 2004 if (dc_isar_feature(aa64_mte, s)) { 2005 /* Full MTE is enabled -- set the TCO bit as directed. */ 2006 if (a->imm & 1) { 2007 set_pstate_bits(PSTATE_TCO); 2008 } else { 2009 clear_pstate_bits(PSTATE_TCO); 2010 } 2011 gen_rebuild_hflags(s); 2012 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2014 return true; 2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2017 return true; 2018 } else { 2019 /* Insn not present */ 2020 return false; 2021 } 2022 } 2023 2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2025 { 2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2027 s->base.is_jmp = DISAS_TOO_MANY; 2028 return true; 2029 } 2030 2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2032 { 2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2034 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2035 s->base.is_jmp = DISAS_UPDATE_EXIT; 2036 return true; 2037 } 2038 2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2040 { 2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2042 return false; 2043 } 2044 if (sme_access_check(s)) { 2045 int old = s->pstate_sm | (s->pstate_za << 1); 2046 int new = a->imm * 3; 2047 2048 if ((old ^ new) & a->mask) { 2049 /* At least one bit changes. */ 2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2051 tcg_constant_i32(a->mask)); 2052 s->base.is_jmp = DISAS_TOO_MANY; 2053 } 2054 } 2055 return true; 2056 } 2057 2058 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2059 { 2060 TCGv_i32 tmp = tcg_temp_new_i32(); 2061 TCGv_i32 nzcv = tcg_temp_new_i32(); 2062 2063 /* build bit 31, N */ 2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2065 /* build bit 30, Z */ 2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2068 /* build bit 29, C */ 2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2070 /* build bit 28, V */ 2071 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2073 /* generate result */ 2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2075 } 2076 2077 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2078 { 2079 TCGv_i32 nzcv = tcg_temp_new_i32(); 2080 2081 /* take NZCV from R[t] */ 2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2083 2084 /* bit 31, N */ 2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2086 /* bit 30, Z */ 2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2089 /* bit 29, C */ 2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2092 /* bit 28, V */ 2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2095 } 2096 2097 static void gen_sysreg_undef(DisasContext *s, bool isread, 2098 uint8_t op0, uint8_t op1, uint8_t op2, 2099 uint8_t crn, uint8_t crm, uint8_t rt) 2100 { 2101 /* 2102 * Generate code to emit an UNDEF with correct syndrome 2103 * information for a failed system register access. 2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2105 * but if FEAT_IDST is implemented then read accesses to registers 2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2107 * syndrome. 2108 */ 2109 uint32_t syndrome; 2110 2111 if (isread && dc_isar_feature(aa64_ids, s) && 2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2114 } else { 2115 syndrome = syn_uncategorized(); 2116 } 2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2118 } 2119 2120 /* MRS - move from system register 2121 * MSR (register) - move to system register 2122 * SYS 2123 * SYSL 2124 * These are all essentially the same insn in 'read' and 'write' 2125 * versions, with varying op0 fields. 2126 */ 2127 static void handle_sys(DisasContext *s, bool isread, 2128 unsigned int op0, unsigned int op1, unsigned int op2, 2129 unsigned int crn, unsigned int crm, unsigned int rt) 2130 { 2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2132 crn, crm, op0, op1, op2); 2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2134 bool need_exit_tb = false; 2135 bool nv_trap_to_el2 = false; 2136 bool skip_fp_access_checks = false; 2137 TCGv_ptr tcg_ri = NULL; 2138 TCGv_i64 tcg_rt; 2139 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2140 2141 if (crn == 11 || crn == 15) { 2142 /* 2143 * Check for TIDCP trap, which must take precedence over 2144 * the UNDEF for "no such register" etc. 2145 */ 2146 switch (s->current_el) { 2147 case 0: 2148 if (dc_isar_feature(aa64_tidcp1, s)) { 2149 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2150 } 2151 break; 2152 case 1: 2153 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2154 break; 2155 } 2156 } 2157 2158 if (!ri) { 2159 /* Unknown register; this might be a guest error or a QEMU 2160 * unimplemented feature. 2161 */ 2162 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2163 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2164 isread ? "read" : "write", op0, op1, crn, crm, op2); 2165 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2166 return; 2167 } 2168 2169 /* Check access permissions */ 2170 if (!cp_access_ok(s->current_el, ri, isread)) { 2171 /* 2172 * FEAT_NV/NV2 handling does not do the usual FP access checks 2173 * for registers only accessible at EL2 (though it *does* do them 2174 * for registers accessible at EL1). 2175 */ 2176 skip_fp_access_checks = true; 2177 if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2178 /* 2179 * This register / instruction exists and is an EL2 register, so 2180 * we must trap to EL2 if accessed in nested virtualization EL1 2181 * instead of UNDEFing. We'll do that after the usual access checks. 2182 * (This makes a difference only for a couple of registers like 2183 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2184 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2185 * an accessfn which does nothing when called from EL1, because 2186 * the trap-to-EL3 controls which would apply to that register 2187 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2188 */ 2189 nv_trap_to_el2 = true; 2190 } else { 2191 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2192 return; 2193 } 2194 } 2195 2196 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2197 /* Emit code to perform further access permissions checks at 2198 * runtime; this may result in an exception. 2199 */ 2200 gen_a64_update_pc(s, 0); 2201 tcg_ri = tcg_temp_new_ptr(); 2202 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2203 tcg_constant_i32(key), 2204 tcg_constant_i32(syndrome), 2205 tcg_constant_i32(isread)); 2206 } else if (ri->type & ARM_CP_RAISES_EXC) { 2207 /* 2208 * The readfn or writefn might raise an exception; 2209 * synchronize the CPU state in case it does. 2210 */ 2211 gen_a64_update_pc(s, 0); 2212 } 2213 2214 if (!skip_fp_access_checks) { 2215 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2216 return; 2217 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2218 return; 2219 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2220 return; 2221 } 2222 } 2223 2224 if (nv_trap_to_el2) { 2225 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2226 return; 2227 } 2228 2229 /* Handle special cases first */ 2230 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2231 case 0: 2232 break; 2233 case ARM_CP_NOP: 2234 return; 2235 case ARM_CP_NZCV: 2236 tcg_rt = cpu_reg(s, rt); 2237 if (isread) { 2238 gen_get_nzcv(tcg_rt); 2239 } else { 2240 gen_set_nzcv(tcg_rt); 2241 } 2242 return; 2243 case ARM_CP_CURRENTEL: 2244 /* Reads as current EL value from pstate, which is 2245 * guaranteed to be constant by the tb flags. 2246 */ 2247 tcg_rt = cpu_reg(s, rt); 2248 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2249 return; 2250 case ARM_CP_DC_ZVA: 2251 /* Writes clear the aligned block of memory which rt points into. */ 2252 if (s->mte_active[0]) { 2253 int desc = 0; 2254 2255 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2256 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2257 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2258 2259 tcg_rt = tcg_temp_new_i64(); 2260 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2261 tcg_constant_i32(desc), cpu_reg(s, rt)); 2262 } else { 2263 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2264 } 2265 gen_helper_dc_zva(tcg_env, tcg_rt); 2266 return; 2267 case ARM_CP_DC_GVA: 2268 { 2269 TCGv_i64 clean_addr, tag; 2270 2271 /* 2272 * DC_GVA, like DC_ZVA, requires that we supply the original 2273 * pointer for an invalid page. Probe that address first. 2274 */ 2275 tcg_rt = cpu_reg(s, rt); 2276 clean_addr = clean_data_tbi(s, tcg_rt); 2277 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2278 2279 if (s->ata[0]) { 2280 /* Extract the tag from the register to match STZGM. */ 2281 tag = tcg_temp_new_i64(); 2282 tcg_gen_shri_i64(tag, tcg_rt, 56); 2283 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2284 } 2285 } 2286 return; 2287 case ARM_CP_DC_GZVA: 2288 { 2289 TCGv_i64 clean_addr, tag; 2290 2291 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2292 tcg_rt = cpu_reg(s, rt); 2293 clean_addr = clean_data_tbi(s, tcg_rt); 2294 gen_helper_dc_zva(tcg_env, clean_addr); 2295 2296 if (s->ata[0]) { 2297 /* Extract the tag from the register to match STZGM. */ 2298 tag = tcg_temp_new_i64(); 2299 tcg_gen_shri_i64(tag, tcg_rt, 56); 2300 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2301 } 2302 } 2303 return; 2304 default: 2305 g_assert_not_reached(); 2306 } 2307 2308 if (ri->type & ARM_CP_IO) { 2309 /* I/O operations must end the TB here (whether read or write) */ 2310 need_exit_tb = translator_io_start(&s->base); 2311 } 2312 2313 tcg_rt = cpu_reg(s, rt); 2314 2315 if (isread) { 2316 if (ri->type & ARM_CP_CONST) { 2317 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2318 } else if (ri->readfn) { 2319 if (!tcg_ri) { 2320 tcg_ri = gen_lookup_cp_reg(key); 2321 } 2322 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2323 } else { 2324 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2325 } 2326 } else { 2327 if (ri->type & ARM_CP_CONST) { 2328 /* If not forbidden by access permissions, treat as WI */ 2329 return; 2330 } else if (ri->writefn) { 2331 if (!tcg_ri) { 2332 tcg_ri = gen_lookup_cp_reg(key); 2333 } 2334 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2335 } else { 2336 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2337 } 2338 } 2339 2340 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2341 /* 2342 * A write to any coprocessor register that ends a TB 2343 * must rebuild the hflags for the next TB. 2344 */ 2345 gen_rebuild_hflags(s); 2346 /* 2347 * We default to ending the TB on a coprocessor register write, 2348 * but allow this to be suppressed by the register definition 2349 * (usually only necessary to work around guest bugs). 2350 */ 2351 need_exit_tb = true; 2352 } 2353 if (need_exit_tb) { 2354 s->base.is_jmp = DISAS_UPDATE_EXIT; 2355 } 2356 } 2357 2358 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2359 { 2360 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2361 return true; 2362 } 2363 2364 static bool trans_SVC(DisasContext *s, arg_i *a) 2365 { 2366 /* 2367 * For SVC, HVC and SMC we advance the single-step state 2368 * machine before taking the exception. This is architecturally 2369 * mandated, to ensure that single-stepping a system call 2370 * instruction works properly. 2371 */ 2372 uint32_t syndrome = syn_aa64_svc(a->imm); 2373 if (s->fgt_svc) { 2374 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2375 return true; 2376 } 2377 gen_ss_advance(s); 2378 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2379 return true; 2380 } 2381 2382 static bool trans_HVC(DisasContext *s, arg_i *a) 2383 { 2384 int target_el = s->current_el == 3 ? 3 : 2; 2385 2386 if (s->current_el == 0) { 2387 unallocated_encoding(s); 2388 return true; 2389 } 2390 /* 2391 * The pre HVC helper handles cases when HVC gets trapped 2392 * as an undefined insn by runtime configuration. 2393 */ 2394 gen_a64_update_pc(s, 0); 2395 gen_helper_pre_hvc(tcg_env); 2396 /* Architecture requires ss advance before we do the actual work */ 2397 gen_ss_advance(s); 2398 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2399 return true; 2400 } 2401 2402 static bool trans_SMC(DisasContext *s, arg_i *a) 2403 { 2404 if (s->current_el == 0) { 2405 unallocated_encoding(s); 2406 return true; 2407 } 2408 gen_a64_update_pc(s, 0); 2409 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2410 /* Architecture requires ss advance before we do the actual work */ 2411 gen_ss_advance(s); 2412 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2413 return true; 2414 } 2415 2416 static bool trans_BRK(DisasContext *s, arg_i *a) 2417 { 2418 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2419 return true; 2420 } 2421 2422 static bool trans_HLT(DisasContext *s, arg_i *a) 2423 { 2424 /* 2425 * HLT. This has two purposes. 2426 * Architecturally, it is an external halting debug instruction. 2427 * Since QEMU doesn't implement external debug, we treat this as 2428 * it is required for halting debug disabled: it will UNDEF. 2429 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2430 */ 2431 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2432 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2433 } else { 2434 unallocated_encoding(s); 2435 } 2436 return true; 2437 } 2438 2439 /* 2440 * Load/Store exclusive instructions are implemented by remembering 2441 * the value/address loaded, and seeing if these are the same 2442 * when the store is performed. This is not actually the architecturally 2443 * mandated semantics, but it works for typical guest code sequences 2444 * and avoids having to monitor regular stores. 2445 * 2446 * The store exclusive uses the atomic cmpxchg primitives to avoid 2447 * races in multi-threaded linux-user and when MTTCG softmmu is 2448 * enabled. 2449 */ 2450 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2451 int size, bool is_pair) 2452 { 2453 int idx = get_mem_index(s); 2454 TCGv_i64 dirty_addr, clean_addr; 2455 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2456 2457 s->is_ldex = true; 2458 dirty_addr = cpu_reg_sp(s, rn); 2459 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2460 2461 g_assert(size <= 3); 2462 if (is_pair) { 2463 g_assert(size >= 2); 2464 if (size == 2) { 2465 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2466 if (s->be_data == MO_LE) { 2467 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2468 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2469 } else { 2470 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2471 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2472 } 2473 } else { 2474 TCGv_i128 t16 = tcg_temp_new_i128(); 2475 2476 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2477 2478 if (s->be_data == MO_LE) { 2479 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2480 cpu_exclusive_high, t16); 2481 } else { 2482 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2483 cpu_exclusive_val, t16); 2484 } 2485 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2486 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2487 } 2488 } else { 2489 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2490 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2491 } 2492 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2493 } 2494 2495 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2496 int rn, int size, int is_pair) 2497 { 2498 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2499 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2500 * [addr] = {Rt}; 2501 * if (is_pair) { 2502 * [addr + datasize] = {Rt2}; 2503 * } 2504 * {Rd} = 0; 2505 * } else { 2506 * {Rd} = 1; 2507 * } 2508 * env->exclusive_addr = -1; 2509 */ 2510 TCGLabel *fail_label = gen_new_label(); 2511 TCGLabel *done_label = gen_new_label(); 2512 TCGv_i64 tmp, clean_addr; 2513 MemOp memop; 2514 2515 /* 2516 * FIXME: We are out of spec here. We have recorded only the address 2517 * from load_exclusive, not the entire range, and we assume that the 2518 * size of the access on both sides match. The architecture allows the 2519 * store to be smaller than the load, so long as the stored bytes are 2520 * within the range recorded by the load. 2521 */ 2522 2523 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2524 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2525 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2526 2527 /* 2528 * The write, and any associated faults, only happen if the virtual 2529 * and physical addresses pass the exclusive monitor check. These 2530 * faults are exceedingly unlikely, because normally the guest uses 2531 * the exact same address register for the load_exclusive, and we 2532 * would have recognized these faults there. 2533 * 2534 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2535 * unaligned 4-byte write within the range of an aligned 8-byte load. 2536 * With LSE2, the store would need to cross a 16-byte boundary when the 2537 * load did not, which would mean the store is outside the range 2538 * recorded for the monitor, which would have failed a corrected monitor 2539 * check above. For now, we assume no size change and retain the 2540 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2541 * 2542 * It is possible to trigger an MTE fault, by performing the load with 2543 * a virtual address with a valid tag and performing the store with the 2544 * same virtual address and a different invalid tag. 2545 */ 2546 memop = size + is_pair; 2547 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2548 memop |= MO_ALIGN; 2549 } 2550 memop = finalize_memop(s, memop); 2551 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2552 2553 tmp = tcg_temp_new_i64(); 2554 if (is_pair) { 2555 if (size == 2) { 2556 if (s->be_data == MO_LE) { 2557 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2558 } else { 2559 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2560 } 2561 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2562 cpu_exclusive_val, tmp, 2563 get_mem_index(s), memop); 2564 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2565 } else { 2566 TCGv_i128 t16 = tcg_temp_new_i128(); 2567 TCGv_i128 c16 = tcg_temp_new_i128(); 2568 TCGv_i64 a, b; 2569 2570 if (s->be_data == MO_LE) { 2571 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2572 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2573 cpu_exclusive_high); 2574 } else { 2575 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2576 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2577 cpu_exclusive_val); 2578 } 2579 2580 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2581 get_mem_index(s), memop); 2582 2583 a = tcg_temp_new_i64(); 2584 b = tcg_temp_new_i64(); 2585 if (s->be_data == MO_LE) { 2586 tcg_gen_extr_i128_i64(a, b, t16); 2587 } else { 2588 tcg_gen_extr_i128_i64(b, a, t16); 2589 } 2590 2591 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2592 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2593 tcg_gen_or_i64(tmp, a, b); 2594 2595 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2596 } 2597 } else { 2598 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2599 cpu_reg(s, rt), get_mem_index(s), memop); 2600 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2601 } 2602 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2603 tcg_gen_br(done_label); 2604 2605 gen_set_label(fail_label); 2606 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2607 gen_set_label(done_label); 2608 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2609 } 2610 2611 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2612 int rn, int size) 2613 { 2614 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2615 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2616 int memidx = get_mem_index(s); 2617 TCGv_i64 clean_addr; 2618 MemOp memop; 2619 2620 if (rn == 31) { 2621 gen_check_sp_alignment(s); 2622 } 2623 memop = check_atomic_align(s, rn, size); 2624 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2625 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2626 memidx, memop); 2627 } 2628 2629 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2630 int rn, int size) 2631 { 2632 TCGv_i64 s1 = cpu_reg(s, rs); 2633 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2634 TCGv_i64 t1 = cpu_reg(s, rt); 2635 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2636 TCGv_i64 clean_addr; 2637 int memidx = get_mem_index(s); 2638 MemOp memop; 2639 2640 if (rn == 31) { 2641 gen_check_sp_alignment(s); 2642 } 2643 2644 /* This is a single atomic access, despite the "pair". */ 2645 memop = check_atomic_align(s, rn, size + 1); 2646 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2647 2648 if (size == 2) { 2649 TCGv_i64 cmp = tcg_temp_new_i64(); 2650 TCGv_i64 val = tcg_temp_new_i64(); 2651 2652 if (s->be_data == MO_LE) { 2653 tcg_gen_concat32_i64(val, t1, t2); 2654 tcg_gen_concat32_i64(cmp, s1, s2); 2655 } else { 2656 tcg_gen_concat32_i64(val, t2, t1); 2657 tcg_gen_concat32_i64(cmp, s2, s1); 2658 } 2659 2660 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2661 2662 if (s->be_data == MO_LE) { 2663 tcg_gen_extr32_i64(s1, s2, cmp); 2664 } else { 2665 tcg_gen_extr32_i64(s2, s1, cmp); 2666 } 2667 } else { 2668 TCGv_i128 cmp = tcg_temp_new_i128(); 2669 TCGv_i128 val = tcg_temp_new_i128(); 2670 2671 if (s->be_data == MO_LE) { 2672 tcg_gen_concat_i64_i128(val, t1, t2); 2673 tcg_gen_concat_i64_i128(cmp, s1, s2); 2674 } else { 2675 tcg_gen_concat_i64_i128(val, t2, t1); 2676 tcg_gen_concat_i64_i128(cmp, s2, s1); 2677 } 2678 2679 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2680 2681 if (s->be_data == MO_LE) { 2682 tcg_gen_extr_i128_i64(s1, s2, cmp); 2683 } else { 2684 tcg_gen_extr_i128_i64(s2, s1, cmp); 2685 } 2686 } 2687 } 2688 2689 /* 2690 * Compute the ISS.SF bit for syndrome information if an exception 2691 * is taken on a load or store. This indicates whether the instruction 2692 * is accessing a 32-bit or 64-bit register. This logic is derived 2693 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2694 */ 2695 static bool ldst_iss_sf(int size, bool sign, bool ext) 2696 { 2697 2698 if (sign) { 2699 /* 2700 * Signed loads are 64 bit results if we are not going to 2701 * do a zero-extend from 32 to 64 after the load. 2702 * (For a store, sign and ext are always false.) 2703 */ 2704 return !ext; 2705 } else { 2706 /* Unsigned loads/stores work at the specified size */ 2707 return size == MO_64; 2708 } 2709 } 2710 2711 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2712 { 2713 if (a->rn == 31) { 2714 gen_check_sp_alignment(s); 2715 } 2716 if (a->lasr) { 2717 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2718 } 2719 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2720 return true; 2721 } 2722 2723 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2724 { 2725 if (a->rn == 31) { 2726 gen_check_sp_alignment(s); 2727 } 2728 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2729 if (a->lasr) { 2730 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2731 } 2732 return true; 2733 } 2734 2735 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2736 { 2737 TCGv_i64 clean_addr; 2738 MemOp memop; 2739 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2740 2741 /* 2742 * StoreLORelease is the same as Store-Release for QEMU, but 2743 * needs the feature-test. 2744 */ 2745 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2746 return false; 2747 } 2748 /* Generate ISS for non-exclusive accesses including LASR. */ 2749 if (a->rn == 31) { 2750 gen_check_sp_alignment(s); 2751 } 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2753 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2754 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2755 true, a->rn != 31, memop); 2756 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2757 iss_sf, a->lasr); 2758 return true; 2759 } 2760 2761 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2762 { 2763 TCGv_i64 clean_addr; 2764 MemOp memop; 2765 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2766 2767 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2768 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2769 return false; 2770 } 2771 /* Generate ISS for non-exclusive accesses including LASR. */ 2772 if (a->rn == 31) { 2773 gen_check_sp_alignment(s); 2774 } 2775 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2776 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2777 false, a->rn != 31, memop); 2778 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2779 a->rt, iss_sf, a->lasr); 2780 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2781 return true; 2782 } 2783 2784 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2785 { 2786 if (a->rn == 31) { 2787 gen_check_sp_alignment(s); 2788 } 2789 if (a->lasr) { 2790 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2791 } 2792 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2793 return true; 2794 } 2795 2796 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2797 { 2798 if (a->rn == 31) { 2799 gen_check_sp_alignment(s); 2800 } 2801 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2802 if (a->lasr) { 2803 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2804 } 2805 return true; 2806 } 2807 2808 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2809 { 2810 if (!dc_isar_feature(aa64_atomics, s)) { 2811 return false; 2812 } 2813 if (((a->rt | a->rs) & 1) != 0) { 2814 return false; 2815 } 2816 2817 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2818 return true; 2819 } 2820 2821 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2822 { 2823 if (!dc_isar_feature(aa64_atomics, s)) { 2824 return false; 2825 } 2826 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2827 return true; 2828 } 2829 2830 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2831 { 2832 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2833 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2834 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2835 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2836 2837 gen_pc_plus_diff(s, clean_addr, a->imm); 2838 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2839 false, true, a->rt, iss_sf, false); 2840 return true; 2841 } 2842 2843 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2844 { 2845 /* Load register (literal), vector version */ 2846 TCGv_i64 clean_addr; 2847 MemOp memop; 2848 2849 if (!fp_access_check(s)) { 2850 return true; 2851 } 2852 memop = finalize_memop_asimd(s, a->sz); 2853 clean_addr = tcg_temp_new_i64(); 2854 gen_pc_plus_diff(s, clean_addr, a->imm); 2855 do_fp_ld(s, a->rt, clean_addr, memop); 2856 return true; 2857 } 2858 2859 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2860 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2861 uint64_t offset, bool is_store, MemOp mop) 2862 { 2863 if (a->rn == 31) { 2864 gen_check_sp_alignment(s); 2865 } 2866 2867 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2868 if (!a->p) { 2869 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2870 } 2871 2872 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2873 (a->w || a->rn != 31), 2 << a->sz, mop); 2874 } 2875 2876 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2877 TCGv_i64 dirty_addr, uint64_t offset) 2878 { 2879 if (a->w) { 2880 if (a->p) { 2881 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2882 } 2883 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2884 } 2885 } 2886 2887 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2888 { 2889 uint64_t offset = a->imm << a->sz; 2890 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2891 MemOp mop = finalize_memop(s, a->sz); 2892 2893 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2894 tcg_rt = cpu_reg(s, a->rt); 2895 tcg_rt2 = cpu_reg(s, a->rt2); 2896 /* 2897 * We built mop above for the single logical access -- rebuild it 2898 * now for the paired operation. 2899 * 2900 * With LSE2, non-sign-extending pairs are treated atomically if 2901 * aligned, and if unaligned one of the pair will be completely 2902 * within a 16-byte block and that element will be atomic. 2903 * Otherwise each element is separately atomic. 2904 * In all cases, issue one operation with the correct atomicity. 2905 */ 2906 mop = a->sz + 1; 2907 if (s->align_mem) { 2908 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2909 } 2910 mop = finalize_memop_pair(s, mop); 2911 if (a->sz == 2) { 2912 TCGv_i64 tmp = tcg_temp_new_i64(); 2913 2914 if (s->be_data == MO_LE) { 2915 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2916 } else { 2917 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2918 } 2919 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2920 } else { 2921 TCGv_i128 tmp = tcg_temp_new_i128(); 2922 2923 if (s->be_data == MO_LE) { 2924 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2925 } else { 2926 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2927 } 2928 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2929 } 2930 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2931 return true; 2932 } 2933 2934 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2935 { 2936 uint64_t offset = a->imm << a->sz; 2937 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2938 MemOp mop = finalize_memop(s, a->sz); 2939 2940 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2941 tcg_rt = cpu_reg(s, a->rt); 2942 tcg_rt2 = cpu_reg(s, a->rt2); 2943 2944 /* 2945 * We built mop above for the single logical access -- rebuild it 2946 * now for the paired operation. 2947 * 2948 * With LSE2, non-sign-extending pairs are treated atomically if 2949 * aligned, and if unaligned one of the pair will be completely 2950 * within a 16-byte block and that element will be atomic. 2951 * Otherwise each element is separately atomic. 2952 * In all cases, issue one operation with the correct atomicity. 2953 * 2954 * This treats sign-extending loads like zero-extending loads, 2955 * since that reuses the most code below. 2956 */ 2957 mop = a->sz + 1; 2958 if (s->align_mem) { 2959 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2960 } 2961 mop = finalize_memop_pair(s, mop); 2962 if (a->sz == 2) { 2963 int o2 = s->be_data == MO_LE ? 32 : 0; 2964 int o1 = o2 ^ 32; 2965 2966 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2967 if (a->sign) { 2968 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2969 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2970 } else { 2971 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2972 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2973 } 2974 } else { 2975 TCGv_i128 tmp = tcg_temp_new_i128(); 2976 2977 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2978 if (s->be_data == MO_LE) { 2979 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2980 } else { 2981 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2982 } 2983 } 2984 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2985 return true; 2986 } 2987 2988 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2989 { 2990 uint64_t offset = a->imm << a->sz; 2991 TCGv_i64 clean_addr, dirty_addr; 2992 MemOp mop; 2993 2994 if (!fp_access_check(s)) { 2995 return true; 2996 } 2997 2998 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2999 mop = finalize_memop_asimd(s, a->sz); 3000 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3001 do_fp_st(s, a->rt, clean_addr, mop); 3002 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3003 do_fp_st(s, a->rt2, clean_addr, mop); 3004 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3005 return true; 3006 } 3007 3008 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3009 { 3010 uint64_t offset = a->imm << a->sz; 3011 TCGv_i64 clean_addr, dirty_addr; 3012 MemOp mop; 3013 3014 if (!fp_access_check(s)) { 3015 return true; 3016 } 3017 3018 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3019 mop = finalize_memop_asimd(s, a->sz); 3020 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3021 do_fp_ld(s, a->rt, clean_addr, mop); 3022 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3023 do_fp_ld(s, a->rt2, clean_addr, mop); 3024 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3025 return true; 3026 } 3027 3028 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3029 { 3030 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3031 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3032 MemOp mop; 3033 TCGv_i128 tmp; 3034 3035 /* STGP only comes in one size. */ 3036 tcg_debug_assert(a->sz == MO_64); 3037 3038 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3039 return false; 3040 } 3041 3042 if (a->rn == 31) { 3043 gen_check_sp_alignment(s); 3044 } 3045 3046 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3047 if (!a->p) { 3048 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3049 } 3050 3051 clean_addr = clean_data_tbi(s, dirty_addr); 3052 tcg_rt = cpu_reg(s, a->rt); 3053 tcg_rt2 = cpu_reg(s, a->rt2); 3054 3055 /* 3056 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3057 * and one tag operation. We implement it as one single aligned 16-byte 3058 * memory operation for convenience. Note that the alignment ensures 3059 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3060 */ 3061 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3062 3063 tmp = tcg_temp_new_i128(); 3064 if (s->be_data == MO_LE) { 3065 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3066 } else { 3067 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3068 } 3069 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3070 3071 /* Perform the tag store, if tag access enabled. */ 3072 if (s->ata[0]) { 3073 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3074 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3075 } else { 3076 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3077 } 3078 } 3079 3080 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3081 return true; 3082 } 3083 3084 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3085 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3086 uint64_t offset, bool is_store, MemOp mop) 3087 { 3088 int memidx; 3089 3090 if (a->rn == 31) { 3091 gen_check_sp_alignment(s); 3092 } 3093 3094 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3095 if (!a->p) { 3096 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3097 } 3098 memidx = get_a64_user_mem_index(s, a->unpriv); 3099 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3100 a->w || a->rn != 31, 3101 mop, a->unpriv, memidx); 3102 } 3103 3104 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3105 TCGv_i64 dirty_addr, uint64_t offset) 3106 { 3107 if (a->w) { 3108 if (a->p) { 3109 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3110 } 3111 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3112 } 3113 } 3114 3115 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3116 { 3117 bool iss_sf, iss_valid = !a->w; 3118 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3119 int memidx = get_a64_user_mem_index(s, a->unpriv); 3120 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3121 3122 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3123 3124 tcg_rt = cpu_reg(s, a->rt); 3125 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3126 3127 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3128 iss_valid, a->rt, iss_sf, false); 3129 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3130 return true; 3131 } 3132 3133 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3134 { 3135 bool iss_sf, iss_valid = !a->w; 3136 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3137 int memidx = get_a64_user_mem_index(s, a->unpriv); 3138 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3139 3140 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3141 3142 tcg_rt = cpu_reg(s, a->rt); 3143 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3144 3145 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3146 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3147 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3148 return true; 3149 } 3150 3151 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3152 { 3153 TCGv_i64 clean_addr, dirty_addr; 3154 MemOp mop; 3155 3156 if (!fp_access_check(s)) { 3157 return true; 3158 } 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3163 return true; 3164 } 3165 3166 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3167 { 3168 TCGv_i64 clean_addr, dirty_addr; 3169 MemOp mop; 3170 3171 if (!fp_access_check(s)) { 3172 return true; 3173 } 3174 mop = finalize_memop_asimd(s, a->sz); 3175 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3176 do_fp_ld(s, a->rt, clean_addr, mop); 3177 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3178 return true; 3179 } 3180 3181 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3182 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3183 bool is_store, MemOp memop) 3184 { 3185 TCGv_i64 tcg_rm; 3186 3187 if (a->rn == 31) { 3188 gen_check_sp_alignment(s); 3189 } 3190 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3191 3192 tcg_rm = read_cpu_reg(s, a->rm, 1); 3193 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3194 3195 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3196 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3197 } 3198 3199 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3200 { 3201 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3202 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3203 MemOp memop; 3204 3205 if (extract32(a->opt, 1, 1) == 0) { 3206 return false; 3207 } 3208 3209 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3210 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3211 tcg_rt = cpu_reg(s, a->rt); 3212 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3213 a->ext, true, a->rt, iss_sf, false); 3214 return true; 3215 } 3216 3217 static bool trans_STR(DisasContext *s, arg_ldst *a) 3218 { 3219 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3220 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3221 MemOp memop; 3222 3223 if (extract32(a->opt, 1, 1) == 0) { 3224 return false; 3225 } 3226 3227 memop = finalize_memop(s, a->sz); 3228 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3229 tcg_rt = cpu_reg(s, a->rt); 3230 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3231 return true; 3232 } 3233 3234 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3235 { 3236 TCGv_i64 clean_addr, dirty_addr; 3237 MemOp memop; 3238 3239 if (extract32(a->opt, 1, 1) == 0) { 3240 return false; 3241 } 3242 3243 if (!fp_access_check(s)) { 3244 return true; 3245 } 3246 3247 memop = finalize_memop_asimd(s, a->sz); 3248 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3249 do_fp_ld(s, a->rt, clean_addr, memop); 3250 return true; 3251 } 3252 3253 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3254 { 3255 TCGv_i64 clean_addr, dirty_addr; 3256 MemOp memop; 3257 3258 if (extract32(a->opt, 1, 1) == 0) { 3259 return false; 3260 } 3261 3262 if (!fp_access_check(s)) { 3263 return true; 3264 } 3265 3266 memop = finalize_memop_asimd(s, a->sz); 3267 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3268 do_fp_st(s, a->rt, clean_addr, memop); 3269 return true; 3270 } 3271 3272 3273 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3274 int sign, bool invert) 3275 { 3276 MemOp mop = a->sz | sign; 3277 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3278 3279 if (a->rn == 31) { 3280 gen_check_sp_alignment(s); 3281 } 3282 mop = check_atomic_align(s, a->rn, mop); 3283 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3284 a->rn != 31, mop); 3285 tcg_rs = read_cpu_reg(s, a->rs, true); 3286 tcg_rt = cpu_reg(s, a->rt); 3287 if (invert) { 3288 tcg_gen_not_i64(tcg_rs, tcg_rs); 3289 } 3290 /* 3291 * The tcg atomic primitives are all full barriers. Therefore we 3292 * can ignore the Acquire and Release bits of this instruction. 3293 */ 3294 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3295 3296 if (mop & MO_SIGN) { 3297 switch (a->sz) { 3298 case MO_8: 3299 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3300 break; 3301 case MO_16: 3302 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3303 break; 3304 case MO_32: 3305 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3306 break; 3307 case MO_64: 3308 break; 3309 default: 3310 g_assert_not_reached(); 3311 } 3312 } 3313 return true; 3314 } 3315 3316 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3317 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3318 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3319 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3320 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3321 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3322 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3323 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3324 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3325 3326 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3327 { 3328 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3329 TCGv_i64 clean_addr; 3330 MemOp mop; 3331 3332 if (!dc_isar_feature(aa64_atomics, s) || 3333 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3334 return false; 3335 } 3336 if (a->rn == 31) { 3337 gen_check_sp_alignment(s); 3338 } 3339 mop = check_atomic_align(s, a->rn, a->sz); 3340 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3341 a->rn != 31, mop); 3342 /* 3343 * LDAPR* are a special case because they are a simple load, not a 3344 * fetch-and-do-something op. 3345 * The architectural consistency requirements here are weaker than 3346 * full load-acquire (we only need "load-acquire processor consistent"), 3347 * but we choose to implement them as full LDAQ. 3348 */ 3349 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3350 true, a->rt, iss_sf, true); 3351 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3352 return true; 3353 } 3354 3355 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3356 { 3357 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3358 MemOp memop; 3359 3360 /* Load with pointer authentication */ 3361 if (!dc_isar_feature(aa64_pauth, s)) { 3362 return false; 3363 } 3364 3365 if (a->rn == 31) { 3366 gen_check_sp_alignment(s); 3367 } 3368 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3369 3370 if (s->pauth_active) { 3371 if (!a->m) { 3372 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3373 tcg_constant_i64(0)); 3374 } else { 3375 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3376 tcg_constant_i64(0)); 3377 } 3378 } 3379 3380 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3381 3382 memop = finalize_memop(s, MO_64); 3383 3384 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3385 clean_addr = gen_mte_check1(s, dirty_addr, false, 3386 a->w || a->rn != 31, memop); 3387 3388 tcg_rt = cpu_reg(s, a->rt); 3389 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3390 /* extend */ false, /* iss_valid */ !a->w, 3391 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3392 3393 if (a->w) { 3394 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3395 } 3396 return true; 3397 } 3398 3399 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3400 { 3401 TCGv_i64 clean_addr, dirty_addr; 3402 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3403 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3404 3405 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3406 return false; 3407 } 3408 3409 if (a->rn == 31) { 3410 gen_check_sp_alignment(s); 3411 } 3412 3413 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3414 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3415 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3416 clean_addr = clean_data_tbi(s, dirty_addr); 3417 3418 /* 3419 * Load-AcquirePC semantics; we implement as the slightly more 3420 * restrictive Load-Acquire. 3421 */ 3422 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3423 a->rt, iss_sf, true); 3424 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3425 return true; 3426 } 3427 3428 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3429 { 3430 TCGv_i64 clean_addr, dirty_addr; 3431 MemOp mop = a->sz; 3432 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3433 3434 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3435 return false; 3436 } 3437 3438 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3439 3440 if (a->rn == 31) { 3441 gen_check_sp_alignment(s); 3442 } 3443 3444 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3445 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3446 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3447 clean_addr = clean_data_tbi(s, dirty_addr); 3448 3449 /* Store-Release semantics */ 3450 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3451 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3452 return true; 3453 } 3454 3455 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3456 { 3457 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3458 MemOp endian, align, mop; 3459 3460 int total; /* total bytes */ 3461 int elements; /* elements per vector */ 3462 int r; 3463 int size = a->sz; 3464 3465 if (!a->p && a->rm != 0) { 3466 /* For non-postindexed accesses the Rm field must be 0 */ 3467 return false; 3468 } 3469 if (size == 3 && !a->q && a->selem != 1) { 3470 return false; 3471 } 3472 if (!fp_access_check(s)) { 3473 return true; 3474 } 3475 3476 if (a->rn == 31) { 3477 gen_check_sp_alignment(s); 3478 } 3479 3480 /* For our purposes, bytes are always little-endian. */ 3481 endian = s->be_data; 3482 if (size == 0) { 3483 endian = MO_LE; 3484 } 3485 3486 total = a->rpt * a->selem * (a->q ? 16 : 8); 3487 tcg_rn = cpu_reg_sp(s, a->rn); 3488 3489 /* 3490 * Issue the MTE check vs the logical repeat count, before we 3491 * promote consecutive little-endian elements below. 3492 */ 3493 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3494 finalize_memop_asimd(s, size)); 3495 3496 /* 3497 * Consecutive little-endian elements from a single register 3498 * can be promoted to a larger little-endian operation. 3499 */ 3500 align = MO_ALIGN; 3501 if (a->selem == 1 && endian == MO_LE) { 3502 align = pow2_align(size); 3503 size = 3; 3504 } 3505 if (!s->align_mem) { 3506 align = 0; 3507 } 3508 mop = endian | size | align; 3509 3510 elements = (a->q ? 16 : 8) >> size; 3511 tcg_ebytes = tcg_constant_i64(1 << size); 3512 for (r = 0; r < a->rpt; r++) { 3513 int e; 3514 for (e = 0; e < elements; e++) { 3515 int xs; 3516 for (xs = 0; xs < a->selem; xs++) { 3517 int tt = (a->rt + r + xs) % 32; 3518 do_vec_ld(s, tt, e, clean_addr, mop); 3519 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3520 } 3521 } 3522 } 3523 3524 /* 3525 * For non-quad operations, setting a slice of the low 64 bits of 3526 * the register clears the high 64 bits (in the ARM ARM pseudocode 3527 * this is implicit in the fact that 'rval' is a 64 bit wide 3528 * variable). For quad operations, we might still need to zero 3529 * the high bits of SVE. 3530 */ 3531 for (r = 0; r < a->rpt * a->selem; r++) { 3532 int tt = (a->rt + r) % 32; 3533 clear_vec_high(s, a->q, tt); 3534 } 3535 3536 if (a->p) { 3537 if (a->rm == 31) { 3538 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3539 } else { 3540 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3541 } 3542 } 3543 return true; 3544 } 3545 3546 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3547 { 3548 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3549 MemOp endian, align, mop; 3550 3551 int total; /* total bytes */ 3552 int elements; /* elements per vector */ 3553 int r; 3554 int size = a->sz; 3555 3556 if (!a->p && a->rm != 0) { 3557 /* For non-postindexed accesses the Rm field must be 0 */ 3558 return false; 3559 } 3560 if (size == 3 && !a->q && a->selem != 1) { 3561 return false; 3562 } 3563 if (!fp_access_check(s)) { 3564 return true; 3565 } 3566 3567 if (a->rn == 31) { 3568 gen_check_sp_alignment(s); 3569 } 3570 3571 /* For our purposes, bytes are always little-endian. */ 3572 endian = s->be_data; 3573 if (size == 0) { 3574 endian = MO_LE; 3575 } 3576 3577 total = a->rpt * a->selem * (a->q ? 16 : 8); 3578 tcg_rn = cpu_reg_sp(s, a->rn); 3579 3580 /* 3581 * Issue the MTE check vs the logical repeat count, before we 3582 * promote consecutive little-endian elements below. 3583 */ 3584 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3585 finalize_memop_asimd(s, size)); 3586 3587 /* 3588 * Consecutive little-endian elements from a single register 3589 * can be promoted to a larger little-endian operation. 3590 */ 3591 align = MO_ALIGN; 3592 if (a->selem == 1 && endian == MO_LE) { 3593 align = pow2_align(size); 3594 size = 3; 3595 } 3596 if (!s->align_mem) { 3597 align = 0; 3598 } 3599 mop = endian | size | align; 3600 3601 elements = (a->q ? 16 : 8) >> size; 3602 tcg_ebytes = tcg_constant_i64(1 << size); 3603 for (r = 0; r < a->rpt; r++) { 3604 int e; 3605 for (e = 0; e < elements; e++) { 3606 int xs; 3607 for (xs = 0; xs < a->selem; xs++) { 3608 int tt = (a->rt + r + xs) % 32; 3609 do_vec_st(s, tt, e, clean_addr, mop); 3610 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3611 } 3612 } 3613 } 3614 3615 if (a->p) { 3616 if (a->rm == 31) { 3617 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3618 } else { 3619 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3620 } 3621 } 3622 return true; 3623 } 3624 3625 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3626 { 3627 int xs, total, rt; 3628 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3629 MemOp mop; 3630 3631 if (!a->p && a->rm != 0) { 3632 return false; 3633 } 3634 if (!fp_access_check(s)) { 3635 return true; 3636 } 3637 3638 if (a->rn == 31) { 3639 gen_check_sp_alignment(s); 3640 } 3641 3642 total = a->selem << a->scale; 3643 tcg_rn = cpu_reg_sp(s, a->rn); 3644 3645 mop = finalize_memop_asimd(s, a->scale); 3646 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3647 total, mop); 3648 3649 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3650 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3651 do_vec_st(s, rt, a->index, clean_addr, mop); 3652 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3653 } 3654 3655 if (a->p) { 3656 if (a->rm == 31) { 3657 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3658 } else { 3659 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3660 } 3661 } 3662 return true; 3663 } 3664 3665 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3666 { 3667 int xs, total, rt; 3668 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3669 MemOp mop; 3670 3671 if (!a->p && a->rm != 0) { 3672 return false; 3673 } 3674 if (!fp_access_check(s)) { 3675 return true; 3676 } 3677 3678 if (a->rn == 31) { 3679 gen_check_sp_alignment(s); 3680 } 3681 3682 total = a->selem << a->scale; 3683 tcg_rn = cpu_reg_sp(s, a->rn); 3684 3685 mop = finalize_memop_asimd(s, a->scale); 3686 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3687 total, mop); 3688 3689 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3690 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3691 do_vec_ld(s, rt, a->index, clean_addr, mop); 3692 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3693 } 3694 3695 if (a->p) { 3696 if (a->rm == 31) { 3697 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3698 } else { 3699 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3700 } 3701 } 3702 return true; 3703 } 3704 3705 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3706 { 3707 int xs, total, rt; 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp mop; 3710 3711 if (!a->p && a->rm != 0) { 3712 return false; 3713 } 3714 if (!fp_access_check(s)) { 3715 return true; 3716 } 3717 3718 if (a->rn == 31) { 3719 gen_check_sp_alignment(s); 3720 } 3721 3722 total = a->selem << a->scale; 3723 tcg_rn = cpu_reg_sp(s, a->rn); 3724 3725 mop = finalize_memop_asimd(s, a->scale); 3726 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3727 total, mop); 3728 3729 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3730 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3731 /* Load and replicate to all elements */ 3732 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3733 3734 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3735 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3736 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3737 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3738 } 3739 3740 if (a->p) { 3741 if (a->rm == 31) { 3742 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3743 } else { 3744 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3745 } 3746 } 3747 return true; 3748 } 3749 3750 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3751 { 3752 TCGv_i64 addr, clean_addr, tcg_rt; 3753 int size = 4 << s->dcz_blocksize; 3754 3755 if (!dc_isar_feature(aa64_mte, s)) { 3756 return false; 3757 } 3758 if (s->current_el == 0) { 3759 return false; 3760 } 3761 3762 if (a->rn == 31) { 3763 gen_check_sp_alignment(s); 3764 } 3765 3766 addr = read_cpu_reg_sp(s, a->rn, true); 3767 tcg_gen_addi_i64(addr, addr, a->imm); 3768 tcg_rt = cpu_reg(s, a->rt); 3769 3770 if (s->ata[0]) { 3771 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3772 } 3773 /* 3774 * The non-tags portion of STZGM is mostly like DC_ZVA, 3775 * except the alignment happens before the access. 3776 */ 3777 clean_addr = clean_data_tbi(s, addr); 3778 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3779 gen_helper_dc_zva(tcg_env, clean_addr); 3780 return true; 3781 } 3782 3783 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3784 { 3785 TCGv_i64 addr, clean_addr, tcg_rt; 3786 3787 if (!dc_isar_feature(aa64_mte, s)) { 3788 return false; 3789 } 3790 if (s->current_el == 0) { 3791 return false; 3792 } 3793 3794 if (a->rn == 31) { 3795 gen_check_sp_alignment(s); 3796 } 3797 3798 addr = read_cpu_reg_sp(s, a->rn, true); 3799 tcg_gen_addi_i64(addr, addr, a->imm); 3800 tcg_rt = cpu_reg(s, a->rt); 3801 3802 if (s->ata[0]) { 3803 gen_helper_stgm(tcg_env, addr, tcg_rt); 3804 } else { 3805 MMUAccessType acc = MMU_DATA_STORE; 3806 int size = 4 << s->gm_blocksize; 3807 3808 clean_addr = clean_data_tbi(s, addr); 3809 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3810 gen_probe_access(s, clean_addr, acc, size); 3811 } 3812 return true; 3813 } 3814 3815 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3816 { 3817 TCGv_i64 addr, clean_addr, tcg_rt; 3818 3819 if (!dc_isar_feature(aa64_mte, s)) { 3820 return false; 3821 } 3822 if (s->current_el == 0) { 3823 return false; 3824 } 3825 3826 if (a->rn == 31) { 3827 gen_check_sp_alignment(s); 3828 } 3829 3830 addr = read_cpu_reg_sp(s, a->rn, true); 3831 tcg_gen_addi_i64(addr, addr, a->imm); 3832 tcg_rt = cpu_reg(s, a->rt); 3833 3834 if (s->ata[0]) { 3835 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3836 } else { 3837 MMUAccessType acc = MMU_DATA_LOAD; 3838 int size = 4 << s->gm_blocksize; 3839 3840 clean_addr = clean_data_tbi(s, addr); 3841 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3842 gen_probe_access(s, clean_addr, acc, size); 3843 /* The result tags are zeros. */ 3844 tcg_gen_movi_i64(tcg_rt, 0); 3845 } 3846 return true; 3847 } 3848 3849 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3850 { 3851 TCGv_i64 addr, clean_addr, tcg_rt; 3852 3853 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3854 return false; 3855 } 3856 3857 if (a->rn == 31) { 3858 gen_check_sp_alignment(s); 3859 } 3860 3861 addr = read_cpu_reg_sp(s, a->rn, true); 3862 if (!a->p) { 3863 /* pre-index or signed offset */ 3864 tcg_gen_addi_i64(addr, addr, a->imm); 3865 } 3866 3867 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3868 tcg_rt = cpu_reg(s, a->rt); 3869 if (s->ata[0]) { 3870 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 3871 } else { 3872 /* 3873 * Tag access disabled: we must check for aborts on the load 3874 * load from [rn+offset], and then insert a 0 tag into rt. 3875 */ 3876 clean_addr = clean_data_tbi(s, addr); 3877 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3878 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3879 } 3880 3881 if (a->w) { 3882 /* pre-index or post-index */ 3883 if (a->p) { 3884 /* post-index */ 3885 tcg_gen_addi_i64(addr, addr, a->imm); 3886 } 3887 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3888 } 3889 return true; 3890 } 3891 3892 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3893 { 3894 TCGv_i64 addr, tcg_rt; 3895 3896 if (a->rn == 31) { 3897 gen_check_sp_alignment(s); 3898 } 3899 3900 addr = read_cpu_reg_sp(s, a->rn, true); 3901 if (!a->p) { 3902 /* pre-index or signed offset */ 3903 tcg_gen_addi_i64(addr, addr, a->imm); 3904 } 3905 tcg_rt = cpu_reg_sp(s, a->rt); 3906 if (!s->ata[0]) { 3907 /* 3908 * For STG and ST2G, we need to check alignment and probe memory. 3909 * TODO: For STZG and STZ2G, we could rely on the stores below, 3910 * at least for system mode; user-only won't enforce alignment. 3911 */ 3912 if (is_pair) { 3913 gen_helper_st2g_stub(tcg_env, addr); 3914 } else { 3915 gen_helper_stg_stub(tcg_env, addr); 3916 } 3917 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3918 if (is_pair) { 3919 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 3920 } else { 3921 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 3922 } 3923 } else { 3924 if (is_pair) { 3925 gen_helper_st2g(tcg_env, addr, tcg_rt); 3926 } else { 3927 gen_helper_stg(tcg_env, addr, tcg_rt); 3928 } 3929 } 3930 3931 if (is_zero) { 3932 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3933 TCGv_i64 zero64 = tcg_constant_i64(0); 3934 TCGv_i128 zero128 = tcg_temp_new_i128(); 3935 int mem_index = get_mem_index(s); 3936 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3937 3938 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3939 3940 /* This is 1 or 2 atomic 16-byte operations. */ 3941 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3942 if (is_pair) { 3943 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3944 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3945 } 3946 } 3947 3948 if (a->w) { 3949 /* pre-index or post-index */ 3950 if (a->p) { 3951 /* post-index */ 3952 tcg_gen_addi_i64(addr, addr, a->imm); 3953 } 3954 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3955 } 3956 return true; 3957 } 3958 3959 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3960 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3961 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3962 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3963 3964 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 3965 3966 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 3967 bool is_setg, SetFn fn) 3968 { 3969 int memidx; 3970 uint32_t syndrome, desc = 0; 3971 3972 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 3973 return false; 3974 } 3975 3976 /* 3977 * UNPREDICTABLE cases: we choose to UNDEF, which allows 3978 * us to pull this check before the CheckMOPSEnabled() test 3979 * (which we do in the helper function) 3980 */ 3981 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 3982 a->rd == 31 || a->rn == 31) { 3983 return false; 3984 } 3985 3986 memidx = get_a64_user_mem_index(s, a->unpriv); 3987 3988 /* 3989 * We pass option_a == true, matching our implementation; 3990 * we pass wrong_option == false: helper function may set that bit. 3991 */ 3992 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 3993 is_epilogue, false, true, a->rd, a->rs, a->rn); 3994 3995 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 3996 /* We may need to do MTE tag checking, so assemble the descriptor */ 3997 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 3998 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 3999 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4000 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4001 } 4002 /* The helper function always needs the memidx even with MTE disabled */ 4003 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4004 4005 /* 4006 * The helper needs the register numbers, but since they're in 4007 * the syndrome anyway, we let it extract them from there rather 4008 * than passing in an extra three integer arguments. 4009 */ 4010 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4011 return true; 4012 } 4013 4014 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4015 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4016 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4017 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4018 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4019 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4020 4021 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4022 4023 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4024 { 4025 int rmemidx, wmemidx; 4026 uint32_t syndrome, rdesc = 0, wdesc = 0; 4027 bool wunpriv = extract32(a->options, 0, 1); 4028 bool runpriv = extract32(a->options, 1, 1); 4029 4030 /* 4031 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4032 * us to pull this check before the CheckMOPSEnabled() test 4033 * (which we do in the helper function) 4034 */ 4035 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4036 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4037 return false; 4038 } 4039 4040 rmemidx = get_a64_user_mem_index(s, runpriv); 4041 wmemidx = get_a64_user_mem_index(s, wunpriv); 4042 4043 /* 4044 * We pass option_a == true, matching our implementation; 4045 * we pass wrong_option == false: helper function may set that bit. 4046 */ 4047 syndrome = syn_mop(false, false, a->options, is_epilogue, 4048 false, true, a->rd, a->rs, a->rn); 4049 4050 /* If we need to do MTE tag checking, assemble the descriptors */ 4051 if (s->mte_active[runpriv]) { 4052 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4053 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4054 } 4055 if (s->mte_active[wunpriv]) { 4056 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4057 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4058 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4059 } 4060 /* The helper function needs these parts of the descriptor regardless */ 4061 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4062 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4063 4064 /* 4065 * The helper needs the register numbers, but since they're in 4066 * the syndrome anyway, we let it extract them from there rather 4067 * than passing in an extra three integer arguments. 4068 */ 4069 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4070 tcg_constant_i32(rdesc)); 4071 return true; 4072 } 4073 4074 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4075 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4076 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4077 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4078 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4079 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4080 4081 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4082 4083 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4084 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4085 { 4086 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4087 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4088 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4089 4090 fn(tcg_rd, tcg_rn, tcg_imm); 4091 if (!a->sf) { 4092 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4093 } 4094 return true; 4095 } 4096 4097 /* 4098 * PC-rel. addressing 4099 */ 4100 4101 static bool trans_ADR(DisasContext *s, arg_ri *a) 4102 { 4103 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4104 return true; 4105 } 4106 4107 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4108 { 4109 int64_t offset = (int64_t)a->imm << 12; 4110 4111 /* The page offset is ok for CF_PCREL. */ 4112 offset -= s->pc_curr & 0xfff; 4113 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4114 return true; 4115 } 4116 4117 /* 4118 * Add/subtract (immediate) 4119 */ 4120 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4121 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4122 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4123 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4124 4125 /* 4126 * Add/subtract (immediate, with tags) 4127 */ 4128 4129 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4130 bool sub_op) 4131 { 4132 TCGv_i64 tcg_rn, tcg_rd; 4133 int imm; 4134 4135 imm = a->uimm6 << LOG2_TAG_GRANULE; 4136 if (sub_op) { 4137 imm = -imm; 4138 } 4139 4140 tcg_rn = cpu_reg_sp(s, a->rn); 4141 tcg_rd = cpu_reg_sp(s, a->rd); 4142 4143 if (s->ata[0]) { 4144 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4145 tcg_constant_i32(imm), 4146 tcg_constant_i32(a->uimm4)); 4147 } else { 4148 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4149 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4150 } 4151 return true; 4152 } 4153 4154 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4155 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4156 4157 /* The input should be a value in the bottom e bits (with higher 4158 * bits zero); returns that value replicated into every element 4159 * of size e in a 64 bit integer. 4160 */ 4161 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4162 { 4163 assert(e != 0); 4164 while (e < 64) { 4165 mask |= mask << e; 4166 e *= 2; 4167 } 4168 return mask; 4169 } 4170 4171 /* 4172 * Logical (immediate) 4173 */ 4174 4175 /* 4176 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4177 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4178 * value (ie should cause a guest UNDEF exception), and true if they are 4179 * valid, in which case the decoded bit pattern is written to result. 4180 */ 4181 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4182 unsigned int imms, unsigned int immr) 4183 { 4184 uint64_t mask; 4185 unsigned e, levels, s, r; 4186 int len; 4187 4188 assert(immn < 2 && imms < 64 && immr < 64); 4189 4190 /* The bit patterns we create here are 64 bit patterns which 4191 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4192 * 64 bits each. Each element contains the same value: a run 4193 * of between 1 and e-1 non-zero bits, rotated within the 4194 * element by between 0 and e-1 bits. 4195 * 4196 * The element size and run length are encoded into immn (1 bit) 4197 * and imms (6 bits) as follows: 4198 * 64 bit elements: immn = 1, imms = <length of run - 1> 4199 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4200 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4201 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4202 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4203 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4204 * Notice that immn = 0, imms = 11111x is the only combination 4205 * not covered by one of the above options; this is reserved. 4206 * Further, <length of run - 1> all-ones is a reserved pattern. 4207 * 4208 * In all cases the rotation is by immr % e (and immr is 6 bits). 4209 */ 4210 4211 /* First determine the element size */ 4212 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4213 if (len < 1) { 4214 /* This is the immn == 0, imms == 0x11111x case */ 4215 return false; 4216 } 4217 e = 1 << len; 4218 4219 levels = e - 1; 4220 s = imms & levels; 4221 r = immr & levels; 4222 4223 if (s == levels) { 4224 /* <length of run - 1> mustn't be all-ones. */ 4225 return false; 4226 } 4227 4228 /* Create the value of one element: s+1 set bits rotated 4229 * by r within the element (which is e bits wide)... 4230 */ 4231 mask = MAKE_64BIT_MASK(0, s + 1); 4232 if (r) { 4233 mask = (mask >> r) | (mask << (e - r)); 4234 mask &= MAKE_64BIT_MASK(0, e); 4235 } 4236 /* ...then replicate the element over the whole 64 bit value */ 4237 mask = bitfield_replicate(mask, e); 4238 *result = mask; 4239 return true; 4240 } 4241 4242 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4243 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4244 { 4245 TCGv_i64 tcg_rd, tcg_rn; 4246 uint64_t imm; 4247 4248 /* Some immediate field values are reserved. */ 4249 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4250 extract32(a->dbm, 0, 6), 4251 extract32(a->dbm, 6, 6))) { 4252 return false; 4253 } 4254 if (!a->sf) { 4255 imm &= 0xffffffffull; 4256 } 4257 4258 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4259 tcg_rn = cpu_reg(s, a->rn); 4260 4261 fn(tcg_rd, tcg_rn, imm); 4262 if (set_cc) { 4263 gen_logic_CC(a->sf, tcg_rd); 4264 } 4265 if (!a->sf) { 4266 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4267 } 4268 return true; 4269 } 4270 4271 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4272 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4273 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4274 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4275 4276 /* 4277 * Move wide (immediate) 4278 */ 4279 4280 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4281 { 4282 int pos = a->hw << 4; 4283 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4284 return true; 4285 } 4286 4287 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4288 { 4289 int pos = a->hw << 4; 4290 uint64_t imm = a->imm; 4291 4292 imm = ~(imm << pos); 4293 if (!a->sf) { 4294 imm = (uint32_t)imm; 4295 } 4296 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4297 return true; 4298 } 4299 4300 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4301 { 4302 int pos = a->hw << 4; 4303 TCGv_i64 tcg_rd, tcg_im; 4304 4305 tcg_rd = cpu_reg(s, a->rd); 4306 tcg_im = tcg_constant_i64(a->imm); 4307 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4308 if (!a->sf) { 4309 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 /* 4315 * Bitfield 4316 */ 4317 4318 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4319 { 4320 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4321 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4322 unsigned int bitsize = a->sf ? 64 : 32; 4323 unsigned int ri = a->immr; 4324 unsigned int si = a->imms; 4325 unsigned int pos, len; 4326 4327 if (si >= ri) { 4328 /* Wd<s-r:0> = Wn<s:r> */ 4329 len = (si - ri) + 1; 4330 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4331 if (!a->sf) { 4332 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4333 } 4334 } else { 4335 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4336 len = si + 1; 4337 pos = (bitsize - ri) & (bitsize - 1); 4338 4339 if (len < ri) { 4340 /* 4341 * Sign extend the destination field from len to fill the 4342 * balance of the word. Let the deposit below insert all 4343 * of those sign bits. 4344 */ 4345 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4346 len = ri; 4347 } 4348 4349 /* 4350 * We start with zero, and we haven't modified any bits outside 4351 * bitsize, therefore no final zero-extension is unneeded for !sf. 4352 */ 4353 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4354 } 4355 return true; 4356 } 4357 4358 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4359 { 4360 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4361 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4362 unsigned int bitsize = a->sf ? 64 : 32; 4363 unsigned int ri = a->immr; 4364 unsigned int si = a->imms; 4365 unsigned int pos, len; 4366 4367 tcg_rd = cpu_reg(s, a->rd); 4368 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4369 4370 if (si >= ri) { 4371 /* Wd<s-r:0> = Wn<s:r> */ 4372 len = (si - ri) + 1; 4373 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4374 } else { 4375 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4376 len = si + 1; 4377 pos = (bitsize - ri) & (bitsize - 1); 4378 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4379 } 4380 return true; 4381 } 4382 4383 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4384 { 4385 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4386 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4387 unsigned int bitsize = a->sf ? 64 : 32; 4388 unsigned int ri = a->immr; 4389 unsigned int si = a->imms; 4390 unsigned int pos, len; 4391 4392 tcg_rd = cpu_reg(s, a->rd); 4393 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4394 4395 if (si >= ri) { 4396 /* Wd<s-r:0> = Wn<s:r> */ 4397 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4398 len = (si - ri) + 1; 4399 pos = 0; 4400 } else { 4401 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4402 len = si + 1; 4403 pos = (bitsize - ri) & (bitsize - 1); 4404 } 4405 4406 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4407 if (!a->sf) { 4408 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4409 } 4410 return true; 4411 } 4412 4413 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4414 { 4415 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4416 4417 tcg_rd = cpu_reg(s, a->rd); 4418 4419 if (unlikely(a->imm == 0)) { 4420 /* 4421 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4422 * so an extract from bit 0 is a special case. 4423 */ 4424 if (a->sf) { 4425 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4426 } else { 4427 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4428 } 4429 } else { 4430 tcg_rm = cpu_reg(s, a->rm); 4431 tcg_rn = cpu_reg(s, a->rn); 4432 4433 if (a->sf) { 4434 /* Specialization to ROR happens in EXTRACT2. */ 4435 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4436 } else { 4437 TCGv_i32 t0 = tcg_temp_new_i32(); 4438 4439 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4440 if (a->rm == a->rn) { 4441 tcg_gen_rotri_i32(t0, t0, a->imm); 4442 } else { 4443 TCGv_i32 t1 = tcg_temp_new_i32(); 4444 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4445 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4446 } 4447 tcg_gen_extu_i32_i64(tcg_rd, t0); 4448 } 4449 } 4450 return true; 4451 } 4452 4453 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4454 * Note that it is the caller's responsibility to ensure that the 4455 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4456 * mandated semantics for out of range shifts. 4457 */ 4458 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4459 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4460 { 4461 switch (shift_type) { 4462 case A64_SHIFT_TYPE_LSL: 4463 tcg_gen_shl_i64(dst, src, shift_amount); 4464 break; 4465 case A64_SHIFT_TYPE_LSR: 4466 tcg_gen_shr_i64(dst, src, shift_amount); 4467 break; 4468 case A64_SHIFT_TYPE_ASR: 4469 if (!sf) { 4470 tcg_gen_ext32s_i64(dst, src); 4471 } 4472 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4473 break; 4474 case A64_SHIFT_TYPE_ROR: 4475 if (sf) { 4476 tcg_gen_rotr_i64(dst, src, shift_amount); 4477 } else { 4478 TCGv_i32 t0, t1; 4479 t0 = tcg_temp_new_i32(); 4480 t1 = tcg_temp_new_i32(); 4481 tcg_gen_extrl_i64_i32(t0, src); 4482 tcg_gen_extrl_i64_i32(t1, shift_amount); 4483 tcg_gen_rotr_i32(t0, t0, t1); 4484 tcg_gen_extu_i32_i64(dst, t0); 4485 } 4486 break; 4487 default: 4488 assert(FALSE); /* all shift types should be handled */ 4489 break; 4490 } 4491 4492 if (!sf) { /* zero extend final result */ 4493 tcg_gen_ext32u_i64(dst, dst); 4494 } 4495 } 4496 4497 /* Shift a TCGv src by immediate, put result in dst. 4498 * The shift amount must be in range (this should always be true as the 4499 * relevant instructions will UNDEF on bad shift immediates). 4500 */ 4501 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4502 enum a64_shift_type shift_type, unsigned int shift_i) 4503 { 4504 assert(shift_i < (sf ? 64 : 32)); 4505 4506 if (shift_i == 0) { 4507 tcg_gen_mov_i64(dst, src); 4508 } else { 4509 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4510 } 4511 } 4512 4513 /* Logical (shifted register) 4514 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4515 * +----+-----+-----------+-------+---+------+--------+------+------+ 4516 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4517 * +----+-----+-----------+-------+---+------+--------+------+------+ 4518 */ 4519 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4520 { 4521 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4522 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4523 4524 sf = extract32(insn, 31, 1); 4525 opc = extract32(insn, 29, 2); 4526 shift_type = extract32(insn, 22, 2); 4527 invert = extract32(insn, 21, 1); 4528 rm = extract32(insn, 16, 5); 4529 shift_amount = extract32(insn, 10, 6); 4530 rn = extract32(insn, 5, 5); 4531 rd = extract32(insn, 0, 5); 4532 4533 if (!sf && (shift_amount & (1 << 5))) { 4534 unallocated_encoding(s); 4535 return; 4536 } 4537 4538 tcg_rd = cpu_reg(s, rd); 4539 4540 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4541 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4542 * register-register MOV and MVN, so it is worth special casing. 4543 */ 4544 tcg_rm = cpu_reg(s, rm); 4545 if (invert) { 4546 tcg_gen_not_i64(tcg_rd, tcg_rm); 4547 if (!sf) { 4548 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4549 } 4550 } else { 4551 if (sf) { 4552 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4553 } else { 4554 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4555 } 4556 } 4557 return; 4558 } 4559 4560 tcg_rm = read_cpu_reg(s, rm, sf); 4561 4562 if (shift_amount) { 4563 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4564 } 4565 4566 tcg_rn = cpu_reg(s, rn); 4567 4568 switch (opc | (invert << 2)) { 4569 case 0: /* AND */ 4570 case 3: /* ANDS */ 4571 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4572 break; 4573 case 1: /* ORR */ 4574 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4575 break; 4576 case 2: /* EOR */ 4577 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4578 break; 4579 case 4: /* BIC */ 4580 case 7: /* BICS */ 4581 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4582 break; 4583 case 5: /* ORN */ 4584 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4585 break; 4586 case 6: /* EON */ 4587 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4588 break; 4589 default: 4590 assert(FALSE); 4591 break; 4592 } 4593 4594 if (!sf) { 4595 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4596 } 4597 4598 if (opc == 3) { 4599 gen_logic_CC(sf, tcg_rd); 4600 } 4601 } 4602 4603 /* 4604 * Add/subtract (extended register) 4605 * 4606 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4607 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4608 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4609 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4610 * 4611 * sf: 0 -> 32bit, 1 -> 64bit 4612 * op: 0 -> add , 1 -> sub 4613 * S: 1 -> set flags 4614 * opt: 00 4615 * option: extension type (see DecodeRegExtend) 4616 * imm3: optional shift to Rm 4617 * 4618 * Rd = Rn + LSL(extend(Rm), amount) 4619 */ 4620 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4621 { 4622 int rd = extract32(insn, 0, 5); 4623 int rn = extract32(insn, 5, 5); 4624 int imm3 = extract32(insn, 10, 3); 4625 int option = extract32(insn, 13, 3); 4626 int rm = extract32(insn, 16, 5); 4627 int opt = extract32(insn, 22, 2); 4628 bool setflags = extract32(insn, 29, 1); 4629 bool sub_op = extract32(insn, 30, 1); 4630 bool sf = extract32(insn, 31, 1); 4631 4632 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4633 TCGv_i64 tcg_rd; 4634 TCGv_i64 tcg_result; 4635 4636 if (imm3 > 4 || opt != 0) { 4637 unallocated_encoding(s); 4638 return; 4639 } 4640 4641 /* non-flag setting ops may use SP */ 4642 if (!setflags) { 4643 tcg_rd = cpu_reg_sp(s, rd); 4644 } else { 4645 tcg_rd = cpu_reg(s, rd); 4646 } 4647 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4648 4649 tcg_rm = read_cpu_reg(s, rm, sf); 4650 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4651 4652 tcg_result = tcg_temp_new_i64(); 4653 4654 if (!setflags) { 4655 if (sub_op) { 4656 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4657 } else { 4658 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4659 } 4660 } else { 4661 if (sub_op) { 4662 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4663 } else { 4664 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4665 } 4666 } 4667 4668 if (sf) { 4669 tcg_gen_mov_i64(tcg_rd, tcg_result); 4670 } else { 4671 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4672 } 4673 } 4674 4675 /* 4676 * Add/subtract (shifted register) 4677 * 4678 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4679 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4680 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4681 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4682 * 4683 * sf: 0 -> 32bit, 1 -> 64bit 4684 * op: 0 -> add , 1 -> sub 4685 * S: 1 -> set flags 4686 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4687 * imm6: Shift amount to apply to Rm before the add/sub 4688 */ 4689 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4690 { 4691 int rd = extract32(insn, 0, 5); 4692 int rn = extract32(insn, 5, 5); 4693 int imm6 = extract32(insn, 10, 6); 4694 int rm = extract32(insn, 16, 5); 4695 int shift_type = extract32(insn, 22, 2); 4696 bool setflags = extract32(insn, 29, 1); 4697 bool sub_op = extract32(insn, 30, 1); 4698 bool sf = extract32(insn, 31, 1); 4699 4700 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4701 TCGv_i64 tcg_rn, tcg_rm; 4702 TCGv_i64 tcg_result; 4703 4704 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4705 unallocated_encoding(s); 4706 return; 4707 } 4708 4709 tcg_rn = read_cpu_reg(s, rn, sf); 4710 tcg_rm = read_cpu_reg(s, rm, sf); 4711 4712 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4713 4714 tcg_result = tcg_temp_new_i64(); 4715 4716 if (!setflags) { 4717 if (sub_op) { 4718 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4719 } else { 4720 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4721 } 4722 } else { 4723 if (sub_op) { 4724 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4725 } else { 4726 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4727 } 4728 } 4729 4730 if (sf) { 4731 tcg_gen_mov_i64(tcg_rd, tcg_result); 4732 } else { 4733 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4734 } 4735 } 4736 4737 /* Data-processing (3 source) 4738 * 4739 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4740 * +--+------+-----------+------+------+----+------+------+------+ 4741 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4742 * +--+------+-----------+------+------+----+------+------+------+ 4743 */ 4744 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4745 { 4746 int rd = extract32(insn, 0, 5); 4747 int rn = extract32(insn, 5, 5); 4748 int ra = extract32(insn, 10, 5); 4749 int rm = extract32(insn, 16, 5); 4750 int op_id = (extract32(insn, 29, 3) << 4) | 4751 (extract32(insn, 21, 3) << 1) | 4752 extract32(insn, 15, 1); 4753 bool sf = extract32(insn, 31, 1); 4754 bool is_sub = extract32(op_id, 0, 1); 4755 bool is_high = extract32(op_id, 2, 1); 4756 bool is_signed = false; 4757 TCGv_i64 tcg_op1; 4758 TCGv_i64 tcg_op2; 4759 TCGv_i64 tcg_tmp; 4760 4761 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4762 switch (op_id) { 4763 case 0x42: /* SMADDL */ 4764 case 0x43: /* SMSUBL */ 4765 case 0x44: /* SMULH */ 4766 is_signed = true; 4767 break; 4768 case 0x0: /* MADD (32bit) */ 4769 case 0x1: /* MSUB (32bit) */ 4770 case 0x40: /* MADD (64bit) */ 4771 case 0x41: /* MSUB (64bit) */ 4772 case 0x4a: /* UMADDL */ 4773 case 0x4b: /* UMSUBL */ 4774 case 0x4c: /* UMULH */ 4775 break; 4776 default: 4777 unallocated_encoding(s); 4778 return; 4779 } 4780 4781 if (is_high) { 4782 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4783 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4784 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4785 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4786 4787 if (is_signed) { 4788 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4789 } else { 4790 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4791 } 4792 return; 4793 } 4794 4795 tcg_op1 = tcg_temp_new_i64(); 4796 tcg_op2 = tcg_temp_new_i64(); 4797 tcg_tmp = tcg_temp_new_i64(); 4798 4799 if (op_id < 0x42) { 4800 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4801 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4802 } else { 4803 if (is_signed) { 4804 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4805 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4806 } else { 4807 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4808 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4809 } 4810 } 4811 4812 if (ra == 31 && !is_sub) { 4813 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4814 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4815 } else { 4816 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4817 if (is_sub) { 4818 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4819 } else { 4820 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4821 } 4822 } 4823 4824 if (!sf) { 4825 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4826 } 4827 } 4828 4829 /* Add/subtract (with carry) 4830 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4831 * +--+--+--+------------------------+------+-------------+------+-----+ 4832 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4833 * +--+--+--+------------------------+------+-------------+------+-----+ 4834 */ 4835 4836 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4837 { 4838 unsigned int sf, op, setflags, rm, rn, rd; 4839 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4840 4841 sf = extract32(insn, 31, 1); 4842 op = extract32(insn, 30, 1); 4843 setflags = extract32(insn, 29, 1); 4844 rm = extract32(insn, 16, 5); 4845 rn = extract32(insn, 5, 5); 4846 rd = extract32(insn, 0, 5); 4847 4848 tcg_rd = cpu_reg(s, rd); 4849 tcg_rn = cpu_reg(s, rn); 4850 4851 if (op) { 4852 tcg_y = tcg_temp_new_i64(); 4853 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4854 } else { 4855 tcg_y = cpu_reg(s, rm); 4856 } 4857 4858 if (setflags) { 4859 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4860 } else { 4861 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4862 } 4863 } 4864 4865 /* 4866 * Rotate right into flags 4867 * 31 30 29 21 15 10 5 4 0 4868 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4869 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4870 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4871 */ 4872 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4873 { 4874 int mask = extract32(insn, 0, 4); 4875 int o2 = extract32(insn, 4, 1); 4876 int rn = extract32(insn, 5, 5); 4877 int imm6 = extract32(insn, 15, 6); 4878 int sf_op_s = extract32(insn, 29, 3); 4879 TCGv_i64 tcg_rn; 4880 TCGv_i32 nzcv; 4881 4882 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4883 unallocated_encoding(s); 4884 return; 4885 } 4886 4887 tcg_rn = read_cpu_reg(s, rn, 1); 4888 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4889 4890 nzcv = tcg_temp_new_i32(); 4891 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4892 4893 if (mask & 8) { /* N */ 4894 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4895 } 4896 if (mask & 4) { /* Z */ 4897 tcg_gen_not_i32(cpu_ZF, nzcv); 4898 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4899 } 4900 if (mask & 2) { /* C */ 4901 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4902 } 4903 if (mask & 1) { /* V */ 4904 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4905 } 4906 } 4907 4908 /* 4909 * Evaluate into flags 4910 * 31 30 29 21 15 14 10 5 4 0 4911 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4912 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4913 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4914 */ 4915 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4916 { 4917 int o3_mask = extract32(insn, 0, 5); 4918 int rn = extract32(insn, 5, 5); 4919 int o2 = extract32(insn, 15, 6); 4920 int sz = extract32(insn, 14, 1); 4921 int sf_op_s = extract32(insn, 29, 3); 4922 TCGv_i32 tmp; 4923 int shift; 4924 4925 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4926 !dc_isar_feature(aa64_condm_4, s)) { 4927 unallocated_encoding(s); 4928 return; 4929 } 4930 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4931 4932 tmp = tcg_temp_new_i32(); 4933 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4934 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4935 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4936 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4937 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4938 } 4939 4940 /* Conditional compare (immediate / register) 4941 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4942 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4943 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4944 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4945 * [1] y [0] [0] 4946 */ 4947 static void disas_cc(DisasContext *s, uint32_t insn) 4948 { 4949 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4950 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4951 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4952 DisasCompare c; 4953 4954 if (!extract32(insn, 29, 1)) { 4955 unallocated_encoding(s); 4956 return; 4957 } 4958 if (insn & (1 << 10 | 1 << 4)) { 4959 unallocated_encoding(s); 4960 return; 4961 } 4962 sf = extract32(insn, 31, 1); 4963 op = extract32(insn, 30, 1); 4964 is_imm = extract32(insn, 11, 1); 4965 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4966 cond = extract32(insn, 12, 4); 4967 rn = extract32(insn, 5, 5); 4968 nzcv = extract32(insn, 0, 4); 4969 4970 /* Set T0 = !COND. */ 4971 tcg_t0 = tcg_temp_new_i32(); 4972 arm_test_cc(&c, cond); 4973 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4974 4975 /* Load the arguments for the new comparison. */ 4976 if (is_imm) { 4977 tcg_y = tcg_temp_new_i64(); 4978 tcg_gen_movi_i64(tcg_y, y); 4979 } else { 4980 tcg_y = cpu_reg(s, y); 4981 } 4982 tcg_rn = cpu_reg(s, rn); 4983 4984 /* Set the flags for the new comparison. */ 4985 tcg_tmp = tcg_temp_new_i64(); 4986 if (op) { 4987 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4988 } else { 4989 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4990 } 4991 4992 /* If COND was false, force the flags to #nzcv. Compute two masks 4993 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4994 * For tcg hosts that support ANDC, we can make do with just T1. 4995 * In either case, allow the tcg optimizer to delete any unused mask. 4996 */ 4997 tcg_t1 = tcg_temp_new_i32(); 4998 tcg_t2 = tcg_temp_new_i32(); 4999 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5000 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5001 5002 if (nzcv & 8) { /* N */ 5003 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5004 } else { 5005 if (TCG_TARGET_HAS_andc_i32) { 5006 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5007 } else { 5008 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5009 } 5010 } 5011 if (nzcv & 4) { /* Z */ 5012 if (TCG_TARGET_HAS_andc_i32) { 5013 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5014 } else { 5015 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5016 } 5017 } else { 5018 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5019 } 5020 if (nzcv & 2) { /* C */ 5021 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5022 } else { 5023 if (TCG_TARGET_HAS_andc_i32) { 5024 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5025 } else { 5026 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5027 } 5028 } 5029 if (nzcv & 1) { /* V */ 5030 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5031 } else { 5032 if (TCG_TARGET_HAS_andc_i32) { 5033 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5034 } else { 5035 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5036 } 5037 } 5038 } 5039 5040 /* Conditional select 5041 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5042 * +----+----+---+-----------------+------+------+-----+------+------+ 5043 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5044 * +----+----+---+-----------------+------+------+-----+------+------+ 5045 */ 5046 static void disas_cond_select(DisasContext *s, uint32_t insn) 5047 { 5048 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5049 TCGv_i64 tcg_rd, zero; 5050 DisasCompare64 c; 5051 5052 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5053 /* S == 1 or op2<1> == 1 */ 5054 unallocated_encoding(s); 5055 return; 5056 } 5057 sf = extract32(insn, 31, 1); 5058 else_inv = extract32(insn, 30, 1); 5059 rm = extract32(insn, 16, 5); 5060 cond = extract32(insn, 12, 4); 5061 else_inc = extract32(insn, 10, 1); 5062 rn = extract32(insn, 5, 5); 5063 rd = extract32(insn, 0, 5); 5064 5065 tcg_rd = cpu_reg(s, rd); 5066 5067 a64_test_cc(&c, cond); 5068 zero = tcg_constant_i64(0); 5069 5070 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5071 /* CSET & CSETM. */ 5072 if (else_inv) { 5073 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5074 tcg_rd, c.value, zero); 5075 } else { 5076 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5077 tcg_rd, c.value, zero); 5078 } 5079 } else { 5080 TCGv_i64 t_true = cpu_reg(s, rn); 5081 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5082 if (else_inv && else_inc) { 5083 tcg_gen_neg_i64(t_false, t_false); 5084 } else if (else_inv) { 5085 tcg_gen_not_i64(t_false, t_false); 5086 } else if (else_inc) { 5087 tcg_gen_addi_i64(t_false, t_false, 1); 5088 } 5089 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5090 } 5091 5092 if (!sf) { 5093 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5094 } 5095 } 5096 5097 static void handle_clz(DisasContext *s, unsigned int sf, 5098 unsigned int rn, unsigned int rd) 5099 { 5100 TCGv_i64 tcg_rd, tcg_rn; 5101 tcg_rd = cpu_reg(s, rd); 5102 tcg_rn = cpu_reg(s, rn); 5103 5104 if (sf) { 5105 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5106 } else { 5107 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5108 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5109 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5110 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5111 } 5112 } 5113 5114 static void handle_cls(DisasContext *s, unsigned int sf, 5115 unsigned int rn, unsigned int rd) 5116 { 5117 TCGv_i64 tcg_rd, tcg_rn; 5118 tcg_rd = cpu_reg(s, rd); 5119 tcg_rn = cpu_reg(s, rn); 5120 5121 if (sf) { 5122 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5123 } else { 5124 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5125 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5126 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5127 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5128 } 5129 } 5130 5131 static void handle_rbit(DisasContext *s, unsigned int sf, 5132 unsigned int rn, unsigned int rd) 5133 { 5134 TCGv_i64 tcg_rd, tcg_rn; 5135 tcg_rd = cpu_reg(s, rd); 5136 tcg_rn = cpu_reg(s, rn); 5137 5138 if (sf) { 5139 gen_helper_rbit64(tcg_rd, tcg_rn); 5140 } else { 5141 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5142 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5143 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5144 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5145 } 5146 } 5147 5148 /* REV with sf==1, opcode==3 ("REV64") */ 5149 static void handle_rev64(DisasContext *s, unsigned int sf, 5150 unsigned int rn, unsigned int rd) 5151 { 5152 if (!sf) { 5153 unallocated_encoding(s); 5154 return; 5155 } 5156 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5157 } 5158 5159 /* REV with sf==0, opcode==2 5160 * REV32 (sf==1, opcode==2) 5161 */ 5162 static void handle_rev32(DisasContext *s, unsigned int sf, 5163 unsigned int rn, unsigned int rd) 5164 { 5165 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5166 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5167 5168 if (sf) { 5169 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5170 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5171 } else { 5172 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5173 } 5174 } 5175 5176 /* REV16 (opcode==1) */ 5177 static void handle_rev16(DisasContext *s, unsigned int sf, 5178 unsigned int rn, unsigned int rd) 5179 { 5180 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5181 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5182 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5183 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5184 5185 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5186 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5187 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5188 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5189 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5190 } 5191 5192 /* Data-processing (1 source) 5193 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5194 * +----+---+---+-----------------+---------+--------+------+------+ 5195 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5196 * +----+---+---+-----------------+---------+--------+------+------+ 5197 */ 5198 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5199 { 5200 unsigned int sf, opcode, opcode2, rn, rd; 5201 TCGv_i64 tcg_rd; 5202 5203 if (extract32(insn, 29, 1)) { 5204 unallocated_encoding(s); 5205 return; 5206 } 5207 5208 sf = extract32(insn, 31, 1); 5209 opcode = extract32(insn, 10, 6); 5210 opcode2 = extract32(insn, 16, 5); 5211 rn = extract32(insn, 5, 5); 5212 rd = extract32(insn, 0, 5); 5213 5214 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5215 5216 switch (MAP(sf, opcode2, opcode)) { 5217 case MAP(0, 0x00, 0x00): /* RBIT */ 5218 case MAP(1, 0x00, 0x00): 5219 handle_rbit(s, sf, rn, rd); 5220 break; 5221 case MAP(0, 0x00, 0x01): /* REV16 */ 5222 case MAP(1, 0x00, 0x01): 5223 handle_rev16(s, sf, rn, rd); 5224 break; 5225 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5226 case MAP(1, 0x00, 0x02): 5227 handle_rev32(s, sf, rn, rd); 5228 break; 5229 case MAP(1, 0x00, 0x03): /* REV64 */ 5230 handle_rev64(s, sf, rn, rd); 5231 break; 5232 case MAP(0, 0x00, 0x04): /* CLZ */ 5233 case MAP(1, 0x00, 0x04): 5234 handle_clz(s, sf, rn, rd); 5235 break; 5236 case MAP(0, 0x00, 0x05): /* CLS */ 5237 case MAP(1, 0x00, 0x05): 5238 handle_cls(s, sf, rn, rd); 5239 break; 5240 case MAP(1, 0x01, 0x00): /* PACIA */ 5241 if (s->pauth_active) { 5242 tcg_rd = cpu_reg(s, rd); 5243 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5244 } else if (!dc_isar_feature(aa64_pauth, s)) { 5245 goto do_unallocated; 5246 } 5247 break; 5248 case MAP(1, 0x01, 0x01): /* PACIB */ 5249 if (s->pauth_active) { 5250 tcg_rd = cpu_reg(s, rd); 5251 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5252 } else if (!dc_isar_feature(aa64_pauth, s)) { 5253 goto do_unallocated; 5254 } 5255 break; 5256 case MAP(1, 0x01, 0x02): /* PACDA */ 5257 if (s->pauth_active) { 5258 tcg_rd = cpu_reg(s, rd); 5259 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5260 } else if (!dc_isar_feature(aa64_pauth, s)) { 5261 goto do_unallocated; 5262 } 5263 break; 5264 case MAP(1, 0x01, 0x03): /* PACDB */ 5265 if (s->pauth_active) { 5266 tcg_rd = cpu_reg(s, rd); 5267 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5268 } else if (!dc_isar_feature(aa64_pauth, s)) { 5269 goto do_unallocated; 5270 } 5271 break; 5272 case MAP(1, 0x01, 0x04): /* AUTIA */ 5273 if (s->pauth_active) { 5274 tcg_rd = cpu_reg(s, rd); 5275 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5276 } else if (!dc_isar_feature(aa64_pauth, s)) { 5277 goto do_unallocated; 5278 } 5279 break; 5280 case MAP(1, 0x01, 0x05): /* AUTIB */ 5281 if (s->pauth_active) { 5282 tcg_rd = cpu_reg(s, rd); 5283 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5284 } else if (!dc_isar_feature(aa64_pauth, s)) { 5285 goto do_unallocated; 5286 } 5287 break; 5288 case MAP(1, 0x01, 0x06): /* AUTDA */ 5289 if (s->pauth_active) { 5290 tcg_rd = cpu_reg(s, rd); 5291 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5292 } else if (!dc_isar_feature(aa64_pauth, s)) { 5293 goto do_unallocated; 5294 } 5295 break; 5296 case MAP(1, 0x01, 0x07): /* AUTDB */ 5297 if (s->pauth_active) { 5298 tcg_rd = cpu_reg(s, rd); 5299 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 5300 } else if (!dc_isar_feature(aa64_pauth, s)) { 5301 goto do_unallocated; 5302 } 5303 break; 5304 case MAP(1, 0x01, 0x08): /* PACIZA */ 5305 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5306 goto do_unallocated; 5307 } else if (s->pauth_active) { 5308 tcg_rd = cpu_reg(s, rd); 5309 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5310 } 5311 break; 5312 case MAP(1, 0x01, 0x09): /* PACIZB */ 5313 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5314 goto do_unallocated; 5315 } else if (s->pauth_active) { 5316 tcg_rd = cpu_reg(s, rd); 5317 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5318 } 5319 break; 5320 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5321 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5322 goto do_unallocated; 5323 } else if (s->pauth_active) { 5324 tcg_rd = cpu_reg(s, rd); 5325 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5326 } 5327 break; 5328 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5329 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5330 goto do_unallocated; 5331 } else if (s->pauth_active) { 5332 tcg_rd = cpu_reg(s, rd); 5333 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5334 } 5335 break; 5336 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5337 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5338 goto do_unallocated; 5339 } else if (s->pauth_active) { 5340 tcg_rd = cpu_reg(s, rd); 5341 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5342 } 5343 break; 5344 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5345 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5346 goto do_unallocated; 5347 } else if (s->pauth_active) { 5348 tcg_rd = cpu_reg(s, rd); 5349 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5350 } 5351 break; 5352 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5353 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5354 goto do_unallocated; 5355 } else if (s->pauth_active) { 5356 tcg_rd = cpu_reg(s, rd); 5357 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5358 } 5359 break; 5360 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5361 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5362 goto do_unallocated; 5363 } else if (s->pauth_active) { 5364 tcg_rd = cpu_reg(s, rd); 5365 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 5366 } 5367 break; 5368 case MAP(1, 0x01, 0x10): /* XPACI */ 5369 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5370 goto do_unallocated; 5371 } else if (s->pauth_active) { 5372 tcg_rd = cpu_reg(s, rd); 5373 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 5374 } 5375 break; 5376 case MAP(1, 0x01, 0x11): /* XPACD */ 5377 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5378 goto do_unallocated; 5379 } else if (s->pauth_active) { 5380 tcg_rd = cpu_reg(s, rd); 5381 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 5382 } 5383 break; 5384 default: 5385 do_unallocated: 5386 unallocated_encoding(s); 5387 break; 5388 } 5389 5390 #undef MAP 5391 } 5392 5393 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5394 unsigned int rm, unsigned int rn, unsigned int rd) 5395 { 5396 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5397 tcg_rd = cpu_reg(s, rd); 5398 5399 if (!sf && is_signed) { 5400 tcg_n = tcg_temp_new_i64(); 5401 tcg_m = tcg_temp_new_i64(); 5402 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5403 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5404 } else { 5405 tcg_n = read_cpu_reg(s, rn, sf); 5406 tcg_m = read_cpu_reg(s, rm, sf); 5407 } 5408 5409 if (is_signed) { 5410 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5411 } else { 5412 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5413 } 5414 5415 if (!sf) { /* zero extend final result */ 5416 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5417 } 5418 } 5419 5420 /* LSLV, LSRV, ASRV, RORV */ 5421 static void handle_shift_reg(DisasContext *s, 5422 enum a64_shift_type shift_type, unsigned int sf, 5423 unsigned int rm, unsigned int rn, unsigned int rd) 5424 { 5425 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5426 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5427 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5428 5429 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5430 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5431 } 5432 5433 /* CRC32[BHWX], CRC32C[BHWX] */ 5434 static void handle_crc32(DisasContext *s, 5435 unsigned int sf, unsigned int sz, bool crc32c, 5436 unsigned int rm, unsigned int rn, unsigned int rd) 5437 { 5438 TCGv_i64 tcg_acc, tcg_val; 5439 TCGv_i32 tcg_bytes; 5440 5441 if (!dc_isar_feature(aa64_crc32, s) 5442 || (sf == 1 && sz != 3) 5443 || (sf == 0 && sz == 3)) { 5444 unallocated_encoding(s); 5445 return; 5446 } 5447 5448 if (sz == 3) { 5449 tcg_val = cpu_reg(s, rm); 5450 } else { 5451 uint64_t mask; 5452 switch (sz) { 5453 case 0: 5454 mask = 0xFF; 5455 break; 5456 case 1: 5457 mask = 0xFFFF; 5458 break; 5459 case 2: 5460 mask = 0xFFFFFFFF; 5461 break; 5462 default: 5463 g_assert_not_reached(); 5464 } 5465 tcg_val = tcg_temp_new_i64(); 5466 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5467 } 5468 5469 tcg_acc = cpu_reg(s, rn); 5470 tcg_bytes = tcg_constant_i32(1 << sz); 5471 5472 if (crc32c) { 5473 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5474 } else { 5475 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5476 } 5477 } 5478 5479 /* Data-processing (2 source) 5480 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5481 * +----+---+---+-----------------+------+--------+------+------+ 5482 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5483 * +----+---+---+-----------------+------+--------+------+------+ 5484 */ 5485 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5486 { 5487 unsigned int sf, rm, opcode, rn, rd, setflag; 5488 sf = extract32(insn, 31, 1); 5489 setflag = extract32(insn, 29, 1); 5490 rm = extract32(insn, 16, 5); 5491 opcode = extract32(insn, 10, 6); 5492 rn = extract32(insn, 5, 5); 5493 rd = extract32(insn, 0, 5); 5494 5495 if (setflag && opcode != 0) { 5496 unallocated_encoding(s); 5497 return; 5498 } 5499 5500 switch (opcode) { 5501 case 0: /* SUBP(S) */ 5502 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5503 goto do_unallocated; 5504 } else { 5505 TCGv_i64 tcg_n, tcg_m, tcg_d; 5506 5507 tcg_n = read_cpu_reg_sp(s, rn, true); 5508 tcg_m = read_cpu_reg_sp(s, rm, true); 5509 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5510 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5511 tcg_d = cpu_reg(s, rd); 5512 5513 if (setflag) { 5514 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5515 } else { 5516 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5517 } 5518 } 5519 break; 5520 case 2: /* UDIV */ 5521 handle_div(s, false, sf, rm, rn, rd); 5522 break; 5523 case 3: /* SDIV */ 5524 handle_div(s, true, sf, rm, rn, rd); 5525 break; 5526 case 4: /* IRG */ 5527 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5528 goto do_unallocated; 5529 } 5530 if (s->ata[0]) { 5531 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 5532 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5533 } else { 5534 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5535 cpu_reg_sp(s, rn)); 5536 } 5537 break; 5538 case 5: /* GMI */ 5539 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5540 goto do_unallocated; 5541 } else { 5542 TCGv_i64 t = tcg_temp_new_i64(); 5543 5544 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5545 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5546 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5547 } 5548 break; 5549 case 8: /* LSLV */ 5550 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5551 break; 5552 case 9: /* LSRV */ 5553 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5554 break; 5555 case 10: /* ASRV */ 5556 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5557 break; 5558 case 11: /* RORV */ 5559 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5560 break; 5561 case 12: /* PACGA */ 5562 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5563 goto do_unallocated; 5564 } 5565 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 5566 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5567 break; 5568 case 16: 5569 case 17: 5570 case 18: 5571 case 19: 5572 case 20: 5573 case 21: 5574 case 22: 5575 case 23: /* CRC32 */ 5576 { 5577 int sz = extract32(opcode, 0, 2); 5578 bool crc32c = extract32(opcode, 2, 1); 5579 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5580 break; 5581 } 5582 default: 5583 do_unallocated: 5584 unallocated_encoding(s); 5585 break; 5586 } 5587 } 5588 5589 /* 5590 * Data processing - register 5591 * 31 30 29 28 25 21 20 16 10 0 5592 * +--+---+--+---+-------+-----+-------+-------+---------+ 5593 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5594 * +--+---+--+---+-------+-----+-------+-------+---------+ 5595 */ 5596 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5597 { 5598 int op0 = extract32(insn, 30, 1); 5599 int op1 = extract32(insn, 28, 1); 5600 int op2 = extract32(insn, 21, 4); 5601 int op3 = extract32(insn, 10, 6); 5602 5603 if (!op1) { 5604 if (op2 & 8) { 5605 if (op2 & 1) { 5606 /* Add/sub (extended register) */ 5607 disas_add_sub_ext_reg(s, insn); 5608 } else { 5609 /* Add/sub (shifted register) */ 5610 disas_add_sub_reg(s, insn); 5611 } 5612 } else { 5613 /* Logical (shifted register) */ 5614 disas_logic_reg(s, insn); 5615 } 5616 return; 5617 } 5618 5619 switch (op2) { 5620 case 0x0: 5621 switch (op3) { 5622 case 0x00: /* Add/subtract (with carry) */ 5623 disas_adc_sbc(s, insn); 5624 break; 5625 5626 case 0x01: /* Rotate right into flags */ 5627 case 0x21: 5628 disas_rotate_right_into_flags(s, insn); 5629 break; 5630 5631 case 0x02: /* Evaluate into flags */ 5632 case 0x12: 5633 case 0x22: 5634 case 0x32: 5635 disas_evaluate_into_flags(s, insn); 5636 break; 5637 5638 default: 5639 goto do_unallocated; 5640 } 5641 break; 5642 5643 case 0x2: /* Conditional compare */ 5644 disas_cc(s, insn); /* both imm and reg forms */ 5645 break; 5646 5647 case 0x4: /* Conditional select */ 5648 disas_cond_select(s, insn); 5649 break; 5650 5651 case 0x6: /* Data-processing */ 5652 if (op0) { /* (1 source) */ 5653 disas_data_proc_1src(s, insn); 5654 } else { /* (2 source) */ 5655 disas_data_proc_2src(s, insn); 5656 } 5657 break; 5658 case 0x8 ... 0xf: /* (3 source) */ 5659 disas_data_proc_3src(s, insn); 5660 break; 5661 5662 default: 5663 do_unallocated: 5664 unallocated_encoding(s); 5665 break; 5666 } 5667 } 5668 5669 static void handle_fp_compare(DisasContext *s, int size, 5670 unsigned int rn, unsigned int rm, 5671 bool cmp_with_zero, bool signal_all_nans) 5672 { 5673 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5674 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5675 5676 if (size == MO_64) { 5677 TCGv_i64 tcg_vn, tcg_vm; 5678 5679 tcg_vn = read_fp_dreg(s, rn); 5680 if (cmp_with_zero) { 5681 tcg_vm = tcg_constant_i64(0); 5682 } else { 5683 tcg_vm = read_fp_dreg(s, rm); 5684 } 5685 if (signal_all_nans) { 5686 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5687 } else { 5688 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5689 } 5690 } else { 5691 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5692 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5693 5694 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5695 if (cmp_with_zero) { 5696 tcg_gen_movi_i32(tcg_vm, 0); 5697 } else { 5698 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5699 } 5700 5701 switch (size) { 5702 case MO_32: 5703 if (signal_all_nans) { 5704 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5705 } else { 5706 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5707 } 5708 break; 5709 case MO_16: 5710 if (signal_all_nans) { 5711 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5712 } else { 5713 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5714 } 5715 break; 5716 default: 5717 g_assert_not_reached(); 5718 } 5719 } 5720 5721 gen_set_nzcv(tcg_flags); 5722 } 5723 5724 /* Floating point compare 5725 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5726 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5727 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5728 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5729 */ 5730 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5731 { 5732 unsigned int mos, type, rm, op, rn, opc, op2r; 5733 int size; 5734 5735 mos = extract32(insn, 29, 3); 5736 type = extract32(insn, 22, 2); 5737 rm = extract32(insn, 16, 5); 5738 op = extract32(insn, 14, 2); 5739 rn = extract32(insn, 5, 5); 5740 opc = extract32(insn, 3, 2); 5741 op2r = extract32(insn, 0, 3); 5742 5743 if (mos || op || op2r) { 5744 unallocated_encoding(s); 5745 return; 5746 } 5747 5748 switch (type) { 5749 case 0: 5750 size = MO_32; 5751 break; 5752 case 1: 5753 size = MO_64; 5754 break; 5755 case 3: 5756 size = MO_16; 5757 if (dc_isar_feature(aa64_fp16, s)) { 5758 break; 5759 } 5760 /* fallthru */ 5761 default: 5762 unallocated_encoding(s); 5763 return; 5764 } 5765 5766 if (!fp_access_check(s)) { 5767 return; 5768 } 5769 5770 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5771 } 5772 5773 /* Floating point conditional compare 5774 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5775 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5776 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5777 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5778 */ 5779 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5780 { 5781 unsigned int mos, type, rm, cond, rn, op, nzcv; 5782 TCGLabel *label_continue = NULL; 5783 int size; 5784 5785 mos = extract32(insn, 29, 3); 5786 type = extract32(insn, 22, 2); 5787 rm = extract32(insn, 16, 5); 5788 cond = extract32(insn, 12, 4); 5789 rn = extract32(insn, 5, 5); 5790 op = extract32(insn, 4, 1); 5791 nzcv = extract32(insn, 0, 4); 5792 5793 if (mos) { 5794 unallocated_encoding(s); 5795 return; 5796 } 5797 5798 switch (type) { 5799 case 0: 5800 size = MO_32; 5801 break; 5802 case 1: 5803 size = MO_64; 5804 break; 5805 case 3: 5806 size = MO_16; 5807 if (dc_isar_feature(aa64_fp16, s)) { 5808 break; 5809 } 5810 /* fallthru */ 5811 default: 5812 unallocated_encoding(s); 5813 return; 5814 } 5815 5816 if (!fp_access_check(s)) { 5817 return; 5818 } 5819 5820 if (cond < 0x0e) { /* not always */ 5821 TCGLabel *label_match = gen_new_label(); 5822 label_continue = gen_new_label(); 5823 arm_gen_test_cc(cond, label_match); 5824 /* nomatch: */ 5825 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5826 tcg_gen_br(label_continue); 5827 gen_set_label(label_match); 5828 } 5829 5830 handle_fp_compare(s, size, rn, rm, false, op); 5831 5832 if (cond < 0x0e) { 5833 gen_set_label(label_continue); 5834 } 5835 } 5836 5837 /* Floating point conditional select 5838 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5839 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5840 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5841 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5842 */ 5843 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5844 { 5845 unsigned int mos, type, rm, cond, rn, rd; 5846 TCGv_i64 t_true, t_false; 5847 DisasCompare64 c; 5848 MemOp sz; 5849 5850 mos = extract32(insn, 29, 3); 5851 type = extract32(insn, 22, 2); 5852 rm = extract32(insn, 16, 5); 5853 cond = extract32(insn, 12, 4); 5854 rn = extract32(insn, 5, 5); 5855 rd = extract32(insn, 0, 5); 5856 5857 if (mos) { 5858 unallocated_encoding(s); 5859 return; 5860 } 5861 5862 switch (type) { 5863 case 0: 5864 sz = MO_32; 5865 break; 5866 case 1: 5867 sz = MO_64; 5868 break; 5869 case 3: 5870 sz = MO_16; 5871 if (dc_isar_feature(aa64_fp16, s)) { 5872 break; 5873 } 5874 /* fallthru */ 5875 default: 5876 unallocated_encoding(s); 5877 return; 5878 } 5879 5880 if (!fp_access_check(s)) { 5881 return; 5882 } 5883 5884 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5885 t_true = tcg_temp_new_i64(); 5886 t_false = tcg_temp_new_i64(); 5887 read_vec_element(s, t_true, rn, 0, sz); 5888 read_vec_element(s, t_false, rm, 0, sz); 5889 5890 a64_test_cc(&c, cond); 5891 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5892 t_true, t_false); 5893 5894 /* Note that sregs & hregs write back zeros to the high bits, 5895 and we've already done the zero-extension. */ 5896 write_fp_dreg(s, rd, t_true); 5897 } 5898 5899 /* Floating-point data-processing (1 source) - half precision */ 5900 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5901 { 5902 TCGv_ptr fpst = NULL; 5903 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5904 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5905 5906 switch (opcode) { 5907 case 0x0: /* FMOV */ 5908 tcg_gen_mov_i32(tcg_res, tcg_op); 5909 break; 5910 case 0x1: /* FABS */ 5911 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5912 break; 5913 case 0x2: /* FNEG */ 5914 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5915 break; 5916 case 0x3: /* FSQRT */ 5917 fpst = fpstatus_ptr(FPST_FPCR_F16); 5918 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5919 break; 5920 case 0x8: /* FRINTN */ 5921 case 0x9: /* FRINTP */ 5922 case 0xa: /* FRINTM */ 5923 case 0xb: /* FRINTZ */ 5924 case 0xc: /* FRINTA */ 5925 { 5926 TCGv_i32 tcg_rmode; 5927 5928 fpst = fpstatus_ptr(FPST_FPCR_F16); 5929 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5930 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5931 gen_restore_rmode(tcg_rmode, fpst); 5932 break; 5933 } 5934 case 0xe: /* FRINTX */ 5935 fpst = fpstatus_ptr(FPST_FPCR_F16); 5936 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5937 break; 5938 case 0xf: /* FRINTI */ 5939 fpst = fpstatus_ptr(FPST_FPCR_F16); 5940 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5941 break; 5942 default: 5943 g_assert_not_reached(); 5944 } 5945 5946 write_fp_sreg(s, rd, tcg_res); 5947 } 5948 5949 /* Floating-point data-processing (1 source) - single precision */ 5950 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5951 { 5952 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5953 TCGv_i32 tcg_op, tcg_res; 5954 TCGv_ptr fpst; 5955 int rmode = -1; 5956 5957 tcg_op = read_fp_sreg(s, rn); 5958 tcg_res = tcg_temp_new_i32(); 5959 5960 switch (opcode) { 5961 case 0x0: /* FMOV */ 5962 tcg_gen_mov_i32(tcg_res, tcg_op); 5963 goto done; 5964 case 0x1: /* FABS */ 5965 gen_helper_vfp_abss(tcg_res, tcg_op); 5966 goto done; 5967 case 0x2: /* FNEG */ 5968 gen_helper_vfp_negs(tcg_res, tcg_op); 5969 goto done; 5970 case 0x3: /* FSQRT */ 5971 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 5972 goto done; 5973 case 0x6: /* BFCVT */ 5974 gen_fpst = gen_helper_bfcvt; 5975 break; 5976 case 0x8: /* FRINTN */ 5977 case 0x9: /* FRINTP */ 5978 case 0xa: /* FRINTM */ 5979 case 0xb: /* FRINTZ */ 5980 case 0xc: /* FRINTA */ 5981 rmode = opcode & 7; 5982 gen_fpst = gen_helper_rints; 5983 break; 5984 case 0xe: /* FRINTX */ 5985 gen_fpst = gen_helper_rints_exact; 5986 break; 5987 case 0xf: /* FRINTI */ 5988 gen_fpst = gen_helper_rints; 5989 break; 5990 case 0x10: /* FRINT32Z */ 5991 rmode = FPROUNDING_ZERO; 5992 gen_fpst = gen_helper_frint32_s; 5993 break; 5994 case 0x11: /* FRINT32X */ 5995 gen_fpst = gen_helper_frint32_s; 5996 break; 5997 case 0x12: /* FRINT64Z */ 5998 rmode = FPROUNDING_ZERO; 5999 gen_fpst = gen_helper_frint64_s; 6000 break; 6001 case 0x13: /* FRINT64X */ 6002 gen_fpst = gen_helper_frint64_s; 6003 break; 6004 default: 6005 g_assert_not_reached(); 6006 } 6007 6008 fpst = fpstatus_ptr(FPST_FPCR); 6009 if (rmode >= 0) { 6010 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6011 gen_fpst(tcg_res, tcg_op, fpst); 6012 gen_restore_rmode(tcg_rmode, fpst); 6013 } else { 6014 gen_fpst(tcg_res, tcg_op, fpst); 6015 } 6016 6017 done: 6018 write_fp_sreg(s, rd, tcg_res); 6019 } 6020 6021 /* Floating-point data-processing (1 source) - double precision */ 6022 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6023 { 6024 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6025 TCGv_i64 tcg_op, tcg_res; 6026 TCGv_ptr fpst; 6027 int rmode = -1; 6028 6029 switch (opcode) { 6030 case 0x0: /* FMOV */ 6031 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6032 return; 6033 } 6034 6035 tcg_op = read_fp_dreg(s, rn); 6036 tcg_res = tcg_temp_new_i64(); 6037 6038 switch (opcode) { 6039 case 0x1: /* FABS */ 6040 gen_helper_vfp_absd(tcg_res, tcg_op); 6041 goto done; 6042 case 0x2: /* FNEG */ 6043 gen_helper_vfp_negd(tcg_res, tcg_op); 6044 goto done; 6045 case 0x3: /* FSQRT */ 6046 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6047 goto done; 6048 case 0x8: /* FRINTN */ 6049 case 0x9: /* FRINTP */ 6050 case 0xa: /* FRINTM */ 6051 case 0xb: /* FRINTZ */ 6052 case 0xc: /* FRINTA */ 6053 rmode = opcode & 7; 6054 gen_fpst = gen_helper_rintd; 6055 break; 6056 case 0xe: /* FRINTX */ 6057 gen_fpst = gen_helper_rintd_exact; 6058 break; 6059 case 0xf: /* FRINTI */ 6060 gen_fpst = gen_helper_rintd; 6061 break; 6062 case 0x10: /* FRINT32Z */ 6063 rmode = FPROUNDING_ZERO; 6064 gen_fpst = gen_helper_frint32_d; 6065 break; 6066 case 0x11: /* FRINT32X */ 6067 gen_fpst = gen_helper_frint32_d; 6068 break; 6069 case 0x12: /* FRINT64Z */ 6070 rmode = FPROUNDING_ZERO; 6071 gen_fpst = gen_helper_frint64_d; 6072 break; 6073 case 0x13: /* FRINT64X */ 6074 gen_fpst = gen_helper_frint64_d; 6075 break; 6076 default: 6077 g_assert_not_reached(); 6078 } 6079 6080 fpst = fpstatus_ptr(FPST_FPCR); 6081 if (rmode >= 0) { 6082 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6083 gen_fpst(tcg_res, tcg_op, fpst); 6084 gen_restore_rmode(tcg_rmode, fpst); 6085 } else { 6086 gen_fpst(tcg_res, tcg_op, fpst); 6087 } 6088 6089 done: 6090 write_fp_dreg(s, rd, tcg_res); 6091 } 6092 6093 static void handle_fp_fcvt(DisasContext *s, int opcode, 6094 int rd, int rn, int dtype, int ntype) 6095 { 6096 switch (ntype) { 6097 case 0x0: 6098 { 6099 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6100 if (dtype == 1) { 6101 /* Single to double */ 6102 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6103 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6104 write_fp_dreg(s, rd, tcg_rd); 6105 } else { 6106 /* Single to half */ 6107 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6108 TCGv_i32 ahp = get_ahp_flag(); 6109 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6110 6111 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6112 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6113 write_fp_sreg(s, rd, tcg_rd); 6114 } 6115 break; 6116 } 6117 case 0x1: 6118 { 6119 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6120 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6121 if (dtype == 0) { 6122 /* Double to single */ 6123 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 6124 } else { 6125 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6126 TCGv_i32 ahp = get_ahp_flag(); 6127 /* Double to half */ 6128 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6129 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6130 } 6131 write_fp_sreg(s, rd, tcg_rd); 6132 break; 6133 } 6134 case 0x3: 6135 { 6136 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6137 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6138 TCGv_i32 tcg_ahp = get_ahp_flag(); 6139 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6140 if (dtype == 0) { 6141 /* Half to single */ 6142 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6143 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6144 write_fp_sreg(s, rd, tcg_rd); 6145 } else { 6146 /* Half to double */ 6147 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6148 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6149 write_fp_dreg(s, rd, tcg_rd); 6150 } 6151 break; 6152 } 6153 default: 6154 g_assert_not_reached(); 6155 } 6156 } 6157 6158 /* Floating point data-processing (1 source) 6159 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6160 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6161 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6162 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6163 */ 6164 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6165 { 6166 int mos = extract32(insn, 29, 3); 6167 int type = extract32(insn, 22, 2); 6168 int opcode = extract32(insn, 15, 6); 6169 int rn = extract32(insn, 5, 5); 6170 int rd = extract32(insn, 0, 5); 6171 6172 if (mos) { 6173 goto do_unallocated; 6174 } 6175 6176 switch (opcode) { 6177 case 0x4: case 0x5: case 0x7: 6178 { 6179 /* FCVT between half, single and double precision */ 6180 int dtype = extract32(opcode, 0, 2); 6181 if (type == 2 || dtype == type) { 6182 goto do_unallocated; 6183 } 6184 if (!fp_access_check(s)) { 6185 return; 6186 } 6187 6188 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6189 break; 6190 } 6191 6192 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6193 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6194 goto do_unallocated; 6195 } 6196 /* fall through */ 6197 case 0x0 ... 0x3: 6198 case 0x8 ... 0xc: 6199 case 0xe ... 0xf: 6200 /* 32-to-32 and 64-to-64 ops */ 6201 switch (type) { 6202 case 0: 6203 if (!fp_access_check(s)) { 6204 return; 6205 } 6206 handle_fp_1src_single(s, opcode, rd, rn); 6207 break; 6208 case 1: 6209 if (!fp_access_check(s)) { 6210 return; 6211 } 6212 handle_fp_1src_double(s, opcode, rd, rn); 6213 break; 6214 case 3: 6215 if (!dc_isar_feature(aa64_fp16, s)) { 6216 goto do_unallocated; 6217 } 6218 6219 if (!fp_access_check(s)) { 6220 return; 6221 } 6222 handle_fp_1src_half(s, opcode, rd, rn); 6223 break; 6224 default: 6225 goto do_unallocated; 6226 } 6227 break; 6228 6229 case 0x6: 6230 switch (type) { 6231 case 1: /* BFCVT */ 6232 if (!dc_isar_feature(aa64_bf16, s)) { 6233 goto do_unallocated; 6234 } 6235 if (!fp_access_check(s)) { 6236 return; 6237 } 6238 handle_fp_1src_single(s, opcode, rd, rn); 6239 break; 6240 default: 6241 goto do_unallocated; 6242 } 6243 break; 6244 6245 default: 6246 do_unallocated: 6247 unallocated_encoding(s); 6248 break; 6249 } 6250 } 6251 6252 /* Floating-point data-processing (2 source) - single precision */ 6253 static void handle_fp_2src_single(DisasContext *s, int opcode, 6254 int rd, int rn, int rm) 6255 { 6256 TCGv_i32 tcg_op1; 6257 TCGv_i32 tcg_op2; 6258 TCGv_i32 tcg_res; 6259 TCGv_ptr fpst; 6260 6261 tcg_res = tcg_temp_new_i32(); 6262 fpst = fpstatus_ptr(FPST_FPCR); 6263 tcg_op1 = read_fp_sreg(s, rn); 6264 tcg_op2 = read_fp_sreg(s, rm); 6265 6266 switch (opcode) { 6267 case 0x0: /* FMUL */ 6268 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6269 break; 6270 case 0x1: /* FDIV */ 6271 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6272 break; 6273 case 0x2: /* FADD */ 6274 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6275 break; 6276 case 0x3: /* FSUB */ 6277 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6278 break; 6279 case 0x4: /* FMAX */ 6280 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6281 break; 6282 case 0x5: /* FMIN */ 6283 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6284 break; 6285 case 0x6: /* FMAXNM */ 6286 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6287 break; 6288 case 0x7: /* FMINNM */ 6289 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6290 break; 6291 case 0x8: /* FNMUL */ 6292 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6293 gen_helper_vfp_negs(tcg_res, tcg_res); 6294 break; 6295 } 6296 6297 write_fp_sreg(s, rd, tcg_res); 6298 } 6299 6300 /* Floating-point data-processing (2 source) - double precision */ 6301 static void handle_fp_2src_double(DisasContext *s, int opcode, 6302 int rd, int rn, int rm) 6303 { 6304 TCGv_i64 tcg_op1; 6305 TCGv_i64 tcg_op2; 6306 TCGv_i64 tcg_res; 6307 TCGv_ptr fpst; 6308 6309 tcg_res = tcg_temp_new_i64(); 6310 fpst = fpstatus_ptr(FPST_FPCR); 6311 tcg_op1 = read_fp_dreg(s, rn); 6312 tcg_op2 = read_fp_dreg(s, rm); 6313 6314 switch (opcode) { 6315 case 0x0: /* FMUL */ 6316 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6317 break; 6318 case 0x1: /* FDIV */ 6319 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6320 break; 6321 case 0x2: /* FADD */ 6322 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6323 break; 6324 case 0x3: /* FSUB */ 6325 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6326 break; 6327 case 0x4: /* FMAX */ 6328 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6329 break; 6330 case 0x5: /* FMIN */ 6331 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6332 break; 6333 case 0x6: /* FMAXNM */ 6334 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6335 break; 6336 case 0x7: /* FMINNM */ 6337 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6338 break; 6339 case 0x8: /* FNMUL */ 6340 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6341 gen_helper_vfp_negd(tcg_res, tcg_res); 6342 break; 6343 } 6344 6345 write_fp_dreg(s, rd, tcg_res); 6346 } 6347 6348 /* Floating-point data-processing (2 source) - half precision */ 6349 static void handle_fp_2src_half(DisasContext *s, int opcode, 6350 int rd, int rn, int rm) 6351 { 6352 TCGv_i32 tcg_op1; 6353 TCGv_i32 tcg_op2; 6354 TCGv_i32 tcg_res; 6355 TCGv_ptr fpst; 6356 6357 tcg_res = tcg_temp_new_i32(); 6358 fpst = fpstatus_ptr(FPST_FPCR_F16); 6359 tcg_op1 = read_fp_hreg(s, rn); 6360 tcg_op2 = read_fp_hreg(s, rm); 6361 6362 switch (opcode) { 6363 case 0x0: /* FMUL */ 6364 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6365 break; 6366 case 0x1: /* FDIV */ 6367 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6368 break; 6369 case 0x2: /* FADD */ 6370 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6371 break; 6372 case 0x3: /* FSUB */ 6373 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6374 break; 6375 case 0x4: /* FMAX */ 6376 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6377 break; 6378 case 0x5: /* FMIN */ 6379 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6380 break; 6381 case 0x6: /* FMAXNM */ 6382 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6383 break; 6384 case 0x7: /* FMINNM */ 6385 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6386 break; 6387 case 0x8: /* FNMUL */ 6388 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6389 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6390 break; 6391 default: 6392 g_assert_not_reached(); 6393 } 6394 6395 write_fp_sreg(s, rd, tcg_res); 6396 } 6397 6398 /* Floating point data-processing (2 source) 6399 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6400 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6401 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6402 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6403 */ 6404 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6405 { 6406 int mos = extract32(insn, 29, 3); 6407 int type = extract32(insn, 22, 2); 6408 int rd = extract32(insn, 0, 5); 6409 int rn = extract32(insn, 5, 5); 6410 int rm = extract32(insn, 16, 5); 6411 int opcode = extract32(insn, 12, 4); 6412 6413 if (opcode > 8 || mos) { 6414 unallocated_encoding(s); 6415 return; 6416 } 6417 6418 switch (type) { 6419 case 0: 6420 if (!fp_access_check(s)) { 6421 return; 6422 } 6423 handle_fp_2src_single(s, opcode, rd, rn, rm); 6424 break; 6425 case 1: 6426 if (!fp_access_check(s)) { 6427 return; 6428 } 6429 handle_fp_2src_double(s, opcode, rd, rn, rm); 6430 break; 6431 case 3: 6432 if (!dc_isar_feature(aa64_fp16, s)) { 6433 unallocated_encoding(s); 6434 return; 6435 } 6436 if (!fp_access_check(s)) { 6437 return; 6438 } 6439 handle_fp_2src_half(s, opcode, rd, rn, rm); 6440 break; 6441 default: 6442 unallocated_encoding(s); 6443 } 6444 } 6445 6446 /* Floating-point data-processing (3 source) - single precision */ 6447 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6448 int rd, int rn, int rm, int ra) 6449 { 6450 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6451 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6452 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6453 6454 tcg_op1 = read_fp_sreg(s, rn); 6455 tcg_op2 = read_fp_sreg(s, rm); 6456 tcg_op3 = read_fp_sreg(s, ra); 6457 6458 /* These are fused multiply-add, and must be done as one 6459 * floating point operation with no rounding between the 6460 * multiplication and addition steps. 6461 * NB that doing the negations here as separate steps is 6462 * correct : an input NaN should come out with its sign bit 6463 * flipped if it is a negated-input. 6464 */ 6465 if (o1 == true) { 6466 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6467 } 6468 6469 if (o0 != o1) { 6470 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6471 } 6472 6473 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6474 6475 write_fp_sreg(s, rd, tcg_res); 6476 } 6477 6478 /* Floating-point data-processing (3 source) - double precision */ 6479 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6480 int rd, int rn, int rm, int ra) 6481 { 6482 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6483 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6484 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6485 6486 tcg_op1 = read_fp_dreg(s, rn); 6487 tcg_op2 = read_fp_dreg(s, rm); 6488 tcg_op3 = read_fp_dreg(s, ra); 6489 6490 /* These are fused multiply-add, and must be done as one 6491 * floating point operation with no rounding between the 6492 * multiplication and addition steps. 6493 * NB that doing the negations here as separate steps is 6494 * correct : an input NaN should come out with its sign bit 6495 * flipped if it is a negated-input. 6496 */ 6497 if (o1 == true) { 6498 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6499 } 6500 6501 if (o0 != o1) { 6502 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6503 } 6504 6505 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6506 6507 write_fp_dreg(s, rd, tcg_res); 6508 } 6509 6510 /* Floating-point data-processing (3 source) - half precision */ 6511 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6512 int rd, int rn, int rm, int ra) 6513 { 6514 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6515 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6516 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6517 6518 tcg_op1 = read_fp_hreg(s, rn); 6519 tcg_op2 = read_fp_hreg(s, rm); 6520 tcg_op3 = read_fp_hreg(s, ra); 6521 6522 /* These are fused multiply-add, and must be done as one 6523 * floating point operation with no rounding between the 6524 * multiplication and addition steps. 6525 * NB that doing the negations here as separate steps is 6526 * correct : an input NaN should come out with its sign bit 6527 * flipped if it is a negated-input. 6528 */ 6529 if (o1 == true) { 6530 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6531 } 6532 6533 if (o0 != o1) { 6534 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6535 } 6536 6537 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6538 6539 write_fp_sreg(s, rd, tcg_res); 6540 } 6541 6542 /* Floating point data-processing (3 source) 6543 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6544 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6545 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6546 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6547 */ 6548 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6549 { 6550 int mos = extract32(insn, 29, 3); 6551 int type = extract32(insn, 22, 2); 6552 int rd = extract32(insn, 0, 5); 6553 int rn = extract32(insn, 5, 5); 6554 int ra = extract32(insn, 10, 5); 6555 int rm = extract32(insn, 16, 5); 6556 bool o0 = extract32(insn, 15, 1); 6557 bool o1 = extract32(insn, 21, 1); 6558 6559 if (mos) { 6560 unallocated_encoding(s); 6561 return; 6562 } 6563 6564 switch (type) { 6565 case 0: 6566 if (!fp_access_check(s)) { 6567 return; 6568 } 6569 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6570 break; 6571 case 1: 6572 if (!fp_access_check(s)) { 6573 return; 6574 } 6575 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6576 break; 6577 case 3: 6578 if (!dc_isar_feature(aa64_fp16, s)) { 6579 unallocated_encoding(s); 6580 return; 6581 } 6582 if (!fp_access_check(s)) { 6583 return; 6584 } 6585 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6586 break; 6587 default: 6588 unallocated_encoding(s); 6589 } 6590 } 6591 6592 /* Floating point immediate 6593 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6594 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6595 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6596 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6597 */ 6598 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6599 { 6600 int rd = extract32(insn, 0, 5); 6601 int imm5 = extract32(insn, 5, 5); 6602 int imm8 = extract32(insn, 13, 8); 6603 int type = extract32(insn, 22, 2); 6604 int mos = extract32(insn, 29, 3); 6605 uint64_t imm; 6606 MemOp sz; 6607 6608 if (mos || imm5) { 6609 unallocated_encoding(s); 6610 return; 6611 } 6612 6613 switch (type) { 6614 case 0: 6615 sz = MO_32; 6616 break; 6617 case 1: 6618 sz = MO_64; 6619 break; 6620 case 3: 6621 sz = MO_16; 6622 if (dc_isar_feature(aa64_fp16, s)) { 6623 break; 6624 } 6625 /* fallthru */ 6626 default: 6627 unallocated_encoding(s); 6628 return; 6629 } 6630 6631 if (!fp_access_check(s)) { 6632 return; 6633 } 6634 6635 imm = vfp_expand_imm(sz, imm8); 6636 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6637 } 6638 6639 /* Handle floating point <=> fixed point conversions. Note that we can 6640 * also deal with fp <=> integer conversions as a special case (scale == 64) 6641 * OPTME: consider handling that special case specially or at least skipping 6642 * the call to scalbn in the helpers for zero shifts. 6643 */ 6644 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6645 bool itof, int rmode, int scale, int sf, int type) 6646 { 6647 bool is_signed = !(opcode & 1); 6648 TCGv_ptr tcg_fpstatus; 6649 TCGv_i32 tcg_shift, tcg_single; 6650 TCGv_i64 tcg_double; 6651 6652 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6653 6654 tcg_shift = tcg_constant_i32(64 - scale); 6655 6656 if (itof) { 6657 TCGv_i64 tcg_int = cpu_reg(s, rn); 6658 if (!sf) { 6659 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6660 6661 if (is_signed) { 6662 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6663 } else { 6664 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6665 } 6666 6667 tcg_int = tcg_extend; 6668 } 6669 6670 switch (type) { 6671 case 1: /* float64 */ 6672 tcg_double = tcg_temp_new_i64(); 6673 if (is_signed) { 6674 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6675 tcg_shift, tcg_fpstatus); 6676 } else { 6677 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6678 tcg_shift, tcg_fpstatus); 6679 } 6680 write_fp_dreg(s, rd, tcg_double); 6681 break; 6682 6683 case 0: /* float32 */ 6684 tcg_single = tcg_temp_new_i32(); 6685 if (is_signed) { 6686 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6687 tcg_shift, tcg_fpstatus); 6688 } else { 6689 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6690 tcg_shift, tcg_fpstatus); 6691 } 6692 write_fp_sreg(s, rd, tcg_single); 6693 break; 6694 6695 case 3: /* float16 */ 6696 tcg_single = tcg_temp_new_i32(); 6697 if (is_signed) { 6698 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6699 tcg_shift, tcg_fpstatus); 6700 } else { 6701 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6702 tcg_shift, tcg_fpstatus); 6703 } 6704 write_fp_sreg(s, rd, tcg_single); 6705 break; 6706 6707 default: 6708 g_assert_not_reached(); 6709 } 6710 } else { 6711 TCGv_i64 tcg_int = cpu_reg(s, rd); 6712 TCGv_i32 tcg_rmode; 6713 6714 if (extract32(opcode, 2, 1)) { 6715 /* There are too many rounding modes to all fit into rmode, 6716 * so FCVTA[US] is a special case. 6717 */ 6718 rmode = FPROUNDING_TIEAWAY; 6719 } 6720 6721 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6722 6723 switch (type) { 6724 case 1: /* float64 */ 6725 tcg_double = read_fp_dreg(s, rn); 6726 if (is_signed) { 6727 if (!sf) { 6728 gen_helper_vfp_tosld(tcg_int, tcg_double, 6729 tcg_shift, tcg_fpstatus); 6730 } else { 6731 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6732 tcg_shift, tcg_fpstatus); 6733 } 6734 } else { 6735 if (!sf) { 6736 gen_helper_vfp_tould(tcg_int, tcg_double, 6737 tcg_shift, tcg_fpstatus); 6738 } else { 6739 gen_helper_vfp_touqd(tcg_int, tcg_double, 6740 tcg_shift, tcg_fpstatus); 6741 } 6742 } 6743 if (!sf) { 6744 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6745 } 6746 break; 6747 6748 case 0: /* float32 */ 6749 tcg_single = read_fp_sreg(s, rn); 6750 if (sf) { 6751 if (is_signed) { 6752 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6753 tcg_shift, tcg_fpstatus); 6754 } else { 6755 gen_helper_vfp_touqs(tcg_int, tcg_single, 6756 tcg_shift, tcg_fpstatus); 6757 } 6758 } else { 6759 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6760 if (is_signed) { 6761 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6762 tcg_shift, tcg_fpstatus); 6763 } else { 6764 gen_helper_vfp_touls(tcg_dest, tcg_single, 6765 tcg_shift, tcg_fpstatus); 6766 } 6767 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6768 } 6769 break; 6770 6771 case 3: /* float16 */ 6772 tcg_single = read_fp_sreg(s, rn); 6773 if (sf) { 6774 if (is_signed) { 6775 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6776 tcg_shift, tcg_fpstatus); 6777 } else { 6778 gen_helper_vfp_touqh(tcg_int, tcg_single, 6779 tcg_shift, tcg_fpstatus); 6780 } 6781 } else { 6782 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6783 if (is_signed) { 6784 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6785 tcg_shift, tcg_fpstatus); 6786 } else { 6787 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6788 tcg_shift, tcg_fpstatus); 6789 } 6790 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6791 } 6792 break; 6793 6794 default: 6795 g_assert_not_reached(); 6796 } 6797 6798 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6799 } 6800 } 6801 6802 /* Floating point <-> fixed point conversions 6803 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6804 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6805 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6806 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6807 */ 6808 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6809 { 6810 int rd = extract32(insn, 0, 5); 6811 int rn = extract32(insn, 5, 5); 6812 int scale = extract32(insn, 10, 6); 6813 int opcode = extract32(insn, 16, 3); 6814 int rmode = extract32(insn, 19, 2); 6815 int type = extract32(insn, 22, 2); 6816 bool sbit = extract32(insn, 29, 1); 6817 bool sf = extract32(insn, 31, 1); 6818 bool itof; 6819 6820 if (sbit || (!sf && scale < 32)) { 6821 unallocated_encoding(s); 6822 return; 6823 } 6824 6825 switch (type) { 6826 case 0: /* float32 */ 6827 case 1: /* float64 */ 6828 break; 6829 case 3: /* float16 */ 6830 if (dc_isar_feature(aa64_fp16, s)) { 6831 break; 6832 } 6833 /* fallthru */ 6834 default: 6835 unallocated_encoding(s); 6836 return; 6837 } 6838 6839 switch ((rmode << 3) | opcode) { 6840 case 0x2: /* SCVTF */ 6841 case 0x3: /* UCVTF */ 6842 itof = true; 6843 break; 6844 case 0x18: /* FCVTZS */ 6845 case 0x19: /* FCVTZU */ 6846 itof = false; 6847 break; 6848 default: 6849 unallocated_encoding(s); 6850 return; 6851 } 6852 6853 if (!fp_access_check(s)) { 6854 return; 6855 } 6856 6857 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6858 } 6859 6860 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6861 { 6862 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6863 * without conversion. 6864 */ 6865 6866 if (itof) { 6867 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6868 TCGv_i64 tmp; 6869 6870 switch (type) { 6871 case 0: 6872 /* 32 bit */ 6873 tmp = tcg_temp_new_i64(); 6874 tcg_gen_ext32u_i64(tmp, tcg_rn); 6875 write_fp_dreg(s, rd, tmp); 6876 break; 6877 case 1: 6878 /* 64 bit */ 6879 write_fp_dreg(s, rd, tcg_rn); 6880 break; 6881 case 2: 6882 /* 64 bit to top half. */ 6883 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 6884 clear_vec_high(s, true, rd); 6885 break; 6886 case 3: 6887 /* 16 bit */ 6888 tmp = tcg_temp_new_i64(); 6889 tcg_gen_ext16u_i64(tmp, tcg_rn); 6890 write_fp_dreg(s, rd, tmp); 6891 break; 6892 default: 6893 g_assert_not_reached(); 6894 } 6895 } else { 6896 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6897 6898 switch (type) { 6899 case 0: 6900 /* 32 bit */ 6901 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 6902 break; 6903 case 1: 6904 /* 64 bit */ 6905 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 6906 break; 6907 case 2: 6908 /* 64 bits from top half */ 6909 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 6910 break; 6911 case 3: 6912 /* 16 bit */ 6913 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 6914 break; 6915 default: 6916 g_assert_not_reached(); 6917 } 6918 } 6919 } 6920 6921 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6922 { 6923 TCGv_i64 t = read_fp_dreg(s, rn); 6924 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6925 6926 gen_helper_fjcvtzs(t, t, fpstatus); 6927 6928 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6929 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6930 tcg_gen_movi_i32(cpu_CF, 0); 6931 tcg_gen_movi_i32(cpu_NF, 0); 6932 tcg_gen_movi_i32(cpu_VF, 0); 6933 } 6934 6935 /* Floating point <-> integer conversions 6936 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6937 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6938 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6939 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6940 */ 6941 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6942 { 6943 int rd = extract32(insn, 0, 5); 6944 int rn = extract32(insn, 5, 5); 6945 int opcode = extract32(insn, 16, 3); 6946 int rmode = extract32(insn, 19, 2); 6947 int type = extract32(insn, 22, 2); 6948 bool sbit = extract32(insn, 29, 1); 6949 bool sf = extract32(insn, 31, 1); 6950 bool itof = false; 6951 6952 if (sbit) { 6953 goto do_unallocated; 6954 } 6955 6956 switch (opcode) { 6957 case 2: /* SCVTF */ 6958 case 3: /* UCVTF */ 6959 itof = true; 6960 /* fallthru */ 6961 case 4: /* FCVTAS */ 6962 case 5: /* FCVTAU */ 6963 if (rmode != 0) { 6964 goto do_unallocated; 6965 } 6966 /* fallthru */ 6967 case 0: /* FCVT[NPMZ]S */ 6968 case 1: /* FCVT[NPMZ]U */ 6969 switch (type) { 6970 case 0: /* float32 */ 6971 case 1: /* float64 */ 6972 break; 6973 case 3: /* float16 */ 6974 if (!dc_isar_feature(aa64_fp16, s)) { 6975 goto do_unallocated; 6976 } 6977 break; 6978 default: 6979 goto do_unallocated; 6980 } 6981 if (!fp_access_check(s)) { 6982 return; 6983 } 6984 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6985 break; 6986 6987 default: 6988 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6989 case 0b01100110: /* FMOV half <-> 32-bit int */ 6990 case 0b01100111: 6991 case 0b11100110: /* FMOV half <-> 64-bit int */ 6992 case 0b11100111: 6993 if (!dc_isar_feature(aa64_fp16, s)) { 6994 goto do_unallocated; 6995 } 6996 /* fallthru */ 6997 case 0b00000110: /* FMOV 32-bit */ 6998 case 0b00000111: 6999 case 0b10100110: /* FMOV 64-bit */ 7000 case 0b10100111: 7001 case 0b11001110: /* FMOV top half of 128-bit */ 7002 case 0b11001111: 7003 if (!fp_access_check(s)) { 7004 return; 7005 } 7006 itof = opcode & 1; 7007 handle_fmov(s, rd, rn, type, itof); 7008 break; 7009 7010 case 0b00111110: /* FJCVTZS */ 7011 if (!dc_isar_feature(aa64_jscvt, s)) { 7012 goto do_unallocated; 7013 } else if (fp_access_check(s)) { 7014 handle_fjcvtzs(s, rd, rn); 7015 } 7016 break; 7017 7018 default: 7019 do_unallocated: 7020 unallocated_encoding(s); 7021 return; 7022 } 7023 break; 7024 } 7025 } 7026 7027 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7028 * 31 30 29 28 25 24 0 7029 * +---+---+---+---------+-----------------------------+ 7030 * | | 0 | | 1 1 1 1 | | 7031 * +---+---+---+---------+-----------------------------+ 7032 */ 7033 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7034 { 7035 if (extract32(insn, 24, 1)) { 7036 /* Floating point data-processing (3 source) */ 7037 disas_fp_3src(s, insn); 7038 } else if (extract32(insn, 21, 1) == 0) { 7039 /* Floating point to fixed point conversions */ 7040 disas_fp_fixed_conv(s, insn); 7041 } else { 7042 switch (extract32(insn, 10, 2)) { 7043 case 1: 7044 /* Floating point conditional compare */ 7045 disas_fp_ccomp(s, insn); 7046 break; 7047 case 2: 7048 /* Floating point data-processing (2 source) */ 7049 disas_fp_2src(s, insn); 7050 break; 7051 case 3: 7052 /* Floating point conditional select */ 7053 disas_fp_csel(s, insn); 7054 break; 7055 case 0: 7056 switch (ctz32(extract32(insn, 12, 4))) { 7057 case 0: /* [15:12] == xxx1 */ 7058 /* Floating point immediate */ 7059 disas_fp_imm(s, insn); 7060 break; 7061 case 1: /* [15:12] == xx10 */ 7062 /* Floating point compare */ 7063 disas_fp_compare(s, insn); 7064 break; 7065 case 2: /* [15:12] == x100 */ 7066 /* Floating point data-processing (1 source) */ 7067 disas_fp_1src(s, insn); 7068 break; 7069 case 3: /* [15:12] == 1000 */ 7070 unallocated_encoding(s); 7071 break; 7072 default: /* [15:12] == 0000 */ 7073 /* Floating point <-> integer conversions */ 7074 disas_fp_int_conv(s, insn); 7075 break; 7076 } 7077 break; 7078 } 7079 } 7080 } 7081 7082 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7083 int pos) 7084 { 7085 /* Extract 64 bits from the middle of two concatenated 64 bit 7086 * vector register slices left:right. The extracted bits start 7087 * at 'pos' bits into the right (least significant) side. 7088 * We return the result in tcg_right, and guarantee not to 7089 * trash tcg_left. 7090 */ 7091 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7092 assert(pos > 0 && pos < 64); 7093 7094 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7095 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7096 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7097 } 7098 7099 /* EXT 7100 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7101 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7102 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7103 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7104 */ 7105 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7106 { 7107 int is_q = extract32(insn, 30, 1); 7108 int op2 = extract32(insn, 22, 2); 7109 int imm4 = extract32(insn, 11, 4); 7110 int rm = extract32(insn, 16, 5); 7111 int rn = extract32(insn, 5, 5); 7112 int rd = extract32(insn, 0, 5); 7113 int pos = imm4 << 3; 7114 TCGv_i64 tcg_resl, tcg_resh; 7115 7116 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7117 unallocated_encoding(s); 7118 return; 7119 } 7120 7121 if (!fp_access_check(s)) { 7122 return; 7123 } 7124 7125 tcg_resh = tcg_temp_new_i64(); 7126 tcg_resl = tcg_temp_new_i64(); 7127 7128 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7129 * either extracting 128 bits from a 128:128 concatenation, or 7130 * extracting 64 bits from a 64:64 concatenation. 7131 */ 7132 if (!is_q) { 7133 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7134 if (pos != 0) { 7135 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7136 do_ext64(s, tcg_resh, tcg_resl, pos); 7137 } 7138 } else { 7139 TCGv_i64 tcg_hh; 7140 typedef struct { 7141 int reg; 7142 int elt; 7143 } EltPosns; 7144 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7145 EltPosns *elt = eltposns; 7146 7147 if (pos >= 64) { 7148 elt++; 7149 pos -= 64; 7150 } 7151 7152 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7153 elt++; 7154 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7155 elt++; 7156 if (pos != 0) { 7157 do_ext64(s, tcg_resh, tcg_resl, pos); 7158 tcg_hh = tcg_temp_new_i64(); 7159 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7160 do_ext64(s, tcg_hh, tcg_resh, pos); 7161 } 7162 } 7163 7164 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7165 if (is_q) { 7166 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7167 } 7168 clear_vec_high(s, is_q, rd); 7169 } 7170 7171 /* TBL/TBX 7172 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7173 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7174 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7175 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7176 */ 7177 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7178 { 7179 int op2 = extract32(insn, 22, 2); 7180 int is_q = extract32(insn, 30, 1); 7181 int rm = extract32(insn, 16, 5); 7182 int rn = extract32(insn, 5, 5); 7183 int rd = extract32(insn, 0, 5); 7184 int is_tbx = extract32(insn, 12, 1); 7185 int len = (extract32(insn, 13, 2) + 1) * 16; 7186 7187 if (op2 != 0) { 7188 unallocated_encoding(s); 7189 return; 7190 } 7191 7192 if (!fp_access_check(s)) { 7193 return; 7194 } 7195 7196 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7197 vec_full_reg_offset(s, rm), tcg_env, 7198 is_q ? 16 : 8, vec_full_reg_size(s), 7199 (len << 6) | (is_tbx << 5) | rn, 7200 gen_helper_simd_tblx); 7201 } 7202 7203 /* ZIP/UZP/TRN 7204 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7205 * +---+---+-------------+------+---+------+---+------------------+------+ 7206 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7207 * +---+---+-------------+------+---+------+---+------------------+------+ 7208 */ 7209 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7210 { 7211 int rd = extract32(insn, 0, 5); 7212 int rn = extract32(insn, 5, 5); 7213 int rm = extract32(insn, 16, 5); 7214 int size = extract32(insn, 22, 2); 7215 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7216 * bit 2 indicates 1 vs 2 variant of the insn. 7217 */ 7218 int opcode = extract32(insn, 12, 2); 7219 bool part = extract32(insn, 14, 1); 7220 bool is_q = extract32(insn, 30, 1); 7221 int esize = 8 << size; 7222 int i; 7223 int datasize = is_q ? 128 : 64; 7224 int elements = datasize / esize; 7225 TCGv_i64 tcg_res[2], tcg_ele; 7226 7227 if (opcode == 0 || (size == 3 && !is_q)) { 7228 unallocated_encoding(s); 7229 return; 7230 } 7231 7232 if (!fp_access_check(s)) { 7233 return; 7234 } 7235 7236 tcg_res[0] = tcg_temp_new_i64(); 7237 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7238 tcg_ele = tcg_temp_new_i64(); 7239 7240 for (i = 0; i < elements; i++) { 7241 int o, w; 7242 7243 switch (opcode) { 7244 case 1: /* UZP1/2 */ 7245 { 7246 int midpoint = elements / 2; 7247 if (i < midpoint) { 7248 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7249 } else { 7250 read_vec_element(s, tcg_ele, rm, 7251 2 * (i - midpoint) + part, size); 7252 } 7253 break; 7254 } 7255 case 2: /* TRN1/2 */ 7256 if (i & 1) { 7257 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7258 } else { 7259 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7260 } 7261 break; 7262 case 3: /* ZIP1/2 */ 7263 { 7264 int base = part * elements / 2; 7265 if (i & 1) { 7266 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7267 } else { 7268 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7269 } 7270 break; 7271 } 7272 default: 7273 g_assert_not_reached(); 7274 } 7275 7276 w = (i * esize) / 64; 7277 o = (i * esize) % 64; 7278 if (o == 0) { 7279 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7280 } else { 7281 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7282 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7283 } 7284 } 7285 7286 for (i = 0; i <= is_q; ++i) { 7287 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7288 } 7289 clear_vec_high(s, is_q, rd); 7290 } 7291 7292 /* 7293 * do_reduction_op helper 7294 * 7295 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7296 * important for correct NaN propagation that we do these 7297 * operations in exactly the order specified by the pseudocode. 7298 * 7299 * This is a recursive function, TCG temps should be freed by the 7300 * calling function once it is done with the values. 7301 */ 7302 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7303 int esize, int size, int vmap, TCGv_ptr fpst) 7304 { 7305 if (esize == size) { 7306 int element; 7307 MemOp msize = esize == 16 ? MO_16 : MO_32; 7308 TCGv_i32 tcg_elem; 7309 7310 /* We should have one register left here */ 7311 assert(ctpop8(vmap) == 1); 7312 element = ctz32(vmap); 7313 assert(element < 8); 7314 7315 tcg_elem = tcg_temp_new_i32(); 7316 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7317 return tcg_elem; 7318 } else { 7319 int bits = size / 2; 7320 int shift = ctpop8(vmap) / 2; 7321 int vmap_lo = (vmap >> shift) & vmap; 7322 int vmap_hi = (vmap & ~vmap_lo); 7323 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7324 7325 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7326 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7327 tcg_res = tcg_temp_new_i32(); 7328 7329 switch (fpopcode) { 7330 case 0x0c: /* fmaxnmv half-precision */ 7331 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7332 break; 7333 case 0x0f: /* fmaxv half-precision */ 7334 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7335 break; 7336 case 0x1c: /* fminnmv half-precision */ 7337 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7338 break; 7339 case 0x1f: /* fminv half-precision */ 7340 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7341 break; 7342 case 0x2c: /* fmaxnmv */ 7343 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7344 break; 7345 case 0x2f: /* fmaxv */ 7346 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7347 break; 7348 case 0x3c: /* fminnmv */ 7349 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7350 break; 7351 case 0x3f: /* fminv */ 7352 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7353 break; 7354 default: 7355 g_assert_not_reached(); 7356 } 7357 return tcg_res; 7358 } 7359 } 7360 7361 /* AdvSIMD across lanes 7362 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7363 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7364 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7365 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7366 */ 7367 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7368 { 7369 int rd = extract32(insn, 0, 5); 7370 int rn = extract32(insn, 5, 5); 7371 int size = extract32(insn, 22, 2); 7372 int opcode = extract32(insn, 12, 5); 7373 bool is_q = extract32(insn, 30, 1); 7374 bool is_u = extract32(insn, 29, 1); 7375 bool is_fp = false; 7376 bool is_min = false; 7377 int esize; 7378 int elements; 7379 int i; 7380 TCGv_i64 tcg_res, tcg_elt; 7381 7382 switch (opcode) { 7383 case 0x1b: /* ADDV */ 7384 if (is_u) { 7385 unallocated_encoding(s); 7386 return; 7387 } 7388 /* fall through */ 7389 case 0x3: /* SADDLV, UADDLV */ 7390 case 0xa: /* SMAXV, UMAXV */ 7391 case 0x1a: /* SMINV, UMINV */ 7392 if (size == 3 || (size == 2 && !is_q)) { 7393 unallocated_encoding(s); 7394 return; 7395 } 7396 break; 7397 case 0xc: /* FMAXNMV, FMINNMV */ 7398 case 0xf: /* FMAXV, FMINV */ 7399 /* Bit 1 of size field encodes min vs max and the actual size 7400 * depends on the encoding of the U bit. If not set (and FP16 7401 * enabled) then we do half-precision float instead of single 7402 * precision. 7403 */ 7404 is_min = extract32(size, 1, 1); 7405 is_fp = true; 7406 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7407 size = 1; 7408 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7409 unallocated_encoding(s); 7410 return; 7411 } else { 7412 size = 2; 7413 } 7414 break; 7415 default: 7416 unallocated_encoding(s); 7417 return; 7418 } 7419 7420 if (!fp_access_check(s)) { 7421 return; 7422 } 7423 7424 esize = 8 << size; 7425 elements = (is_q ? 128 : 64) / esize; 7426 7427 tcg_res = tcg_temp_new_i64(); 7428 tcg_elt = tcg_temp_new_i64(); 7429 7430 /* These instructions operate across all lanes of a vector 7431 * to produce a single result. We can guarantee that a 64 7432 * bit intermediate is sufficient: 7433 * + for [US]ADDLV the maximum element size is 32 bits, and 7434 * the result type is 64 bits 7435 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7436 * same as the element size, which is 32 bits at most 7437 * For the integer operations we can choose to work at 64 7438 * or 32 bits and truncate at the end; for simplicity 7439 * we use 64 bits always. The floating point 7440 * ops do require 32 bit intermediates, though. 7441 */ 7442 if (!is_fp) { 7443 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7444 7445 for (i = 1; i < elements; i++) { 7446 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7447 7448 switch (opcode) { 7449 case 0x03: /* SADDLV / UADDLV */ 7450 case 0x1b: /* ADDV */ 7451 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7452 break; 7453 case 0x0a: /* SMAXV / UMAXV */ 7454 if (is_u) { 7455 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7456 } else { 7457 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7458 } 7459 break; 7460 case 0x1a: /* SMINV / UMINV */ 7461 if (is_u) { 7462 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7463 } else { 7464 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7465 } 7466 break; 7467 default: 7468 g_assert_not_reached(); 7469 } 7470 7471 } 7472 } else { 7473 /* Floating point vector reduction ops which work across 32 7474 * bit (single) or 16 bit (half-precision) intermediates. 7475 * Note that correct NaN propagation requires that we do these 7476 * operations in exactly the order specified by the pseudocode. 7477 */ 7478 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7479 int fpopcode = opcode | is_min << 4 | is_u << 5; 7480 int vmap = (1 << elements) - 1; 7481 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7482 (is_q ? 128 : 64), vmap, fpst); 7483 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7484 } 7485 7486 /* Now truncate the result to the width required for the final output */ 7487 if (opcode == 0x03) { 7488 /* SADDLV, UADDLV: result is 2*esize */ 7489 size++; 7490 } 7491 7492 switch (size) { 7493 case 0: 7494 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7495 break; 7496 case 1: 7497 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7498 break; 7499 case 2: 7500 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7501 break; 7502 case 3: 7503 break; 7504 default: 7505 g_assert_not_reached(); 7506 } 7507 7508 write_fp_dreg(s, rd, tcg_res); 7509 } 7510 7511 /* DUP (Element, Vector) 7512 * 7513 * 31 30 29 21 20 16 15 10 9 5 4 0 7514 * +---+---+-------------------+--------+-------------+------+------+ 7515 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7516 * +---+---+-------------------+--------+-------------+------+------+ 7517 * 7518 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7519 */ 7520 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7521 int imm5) 7522 { 7523 int size = ctz32(imm5); 7524 int index; 7525 7526 if (size > 3 || (size == 3 && !is_q)) { 7527 unallocated_encoding(s); 7528 return; 7529 } 7530 7531 if (!fp_access_check(s)) { 7532 return; 7533 } 7534 7535 index = imm5 >> (size + 1); 7536 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7537 vec_reg_offset(s, rn, index, size), 7538 is_q ? 16 : 8, vec_full_reg_size(s)); 7539 } 7540 7541 /* DUP (element, scalar) 7542 * 31 21 20 16 15 10 9 5 4 0 7543 * +-----------------------+--------+-------------+------+------+ 7544 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7545 * +-----------------------+--------+-------------+------+------+ 7546 */ 7547 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7548 int imm5) 7549 { 7550 int size = ctz32(imm5); 7551 int index; 7552 TCGv_i64 tmp; 7553 7554 if (size > 3) { 7555 unallocated_encoding(s); 7556 return; 7557 } 7558 7559 if (!fp_access_check(s)) { 7560 return; 7561 } 7562 7563 index = imm5 >> (size + 1); 7564 7565 /* This instruction just extracts the specified element and 7566 * zero-extends it into the bottom of the destination register. 7567 */ 7568 tmp = tcg_temp_new_i64(); 7569 read_vec_element(s, tmp, rn, index, size); 7570 write_fp_dreg(s, rd, tmp); 7571 } 7572 7573 /* DUP (General) 7574 * 7575 * 31 30 29 21 20 16 15 10 9 5 4 0 7576 * +---+---+-------------------+--------+-------------+------+------+ 7577 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7578 * +---+---+-------------------+--------+-------------+------+------+ 7579 * 7580 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7581 */ 7582 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7583 int imm5) 7584 { 7585 int size = ctz32(imm5); 7586 uint32_t dofs, oprsz, maxsz; 7587 7588 if (size > 3 || ((size == 3) && !is_q)) { 7589 unallocated_encoding(s); 7590 return; 7591 } 7592 7593 if (!fp_access_check(s)) { 7594 return; 7595 } 7596 7597 dofs = vec_full_reg_offset(s, rd); 7598 oprsz = is_q ? 16 : 8; 7599 maxsz = vec_full_reg_size(s); 7600 7601 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7602 } 7603 7604 /* INS (Element) 7605 * 7606 * 31 21 20 16 15 14 11 10 9 5 4 0 7607 * +-----------------------+--------+------------+---+------+------+ 7608 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7609 * +-----------------------+--------+------------+---+------+------+ 7610 * 7611 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7612 * index: encoded in imm5<4:size+1> 7613 */ 7614 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7615 int imm4, int imm5) 7616 { 7617 int size = ctz32(imm5); 7618 int src_index, dst_index; 7619 TCGv_i64 tmp; 7620 7621 if (size > 3) { 7622 unallocated_encoding(s); 7623 return; 7624 } 7625 7626 if (!fp_access_check(s)) { 7627 return; 7628 } 7629 7630 dst_index = extract32(imm5, 1+size, 5); 7631 src_index = extract32(imm4, size, 4); 7632 7633 tmp = tcg_temp_new_i64(); 7634 7635 read_vec_element(s, tmp, rn, src_index, size); 7636 write_vec_element(s, tmp, rd, dst_index, size); 7637 7638 /* INS is considered a 128-bit write for SVE. */ 7639 clear_vec_high(s, true, rd); 7640 } 7641 7642 7643 /* INS (General) 7644 * 7645 * 31 21 20 16 15 10 9 5 4 0 7646 * +-----------------------+--------+-------------+------+------+ 7647 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7648 * +-----------------------+--------+-------------+------+------+ 7649 * 7650 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7651 * index: encoded in imm5<4:size+1> 7652 */ 7653 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7654 { 7655 int size = ctz32(imm5); 7656 int idx; 7657 7658 if (size > 3) { 7659 unallocated_encoding(s); 7660 return; 7661 } 7662 7663 if (!fp_access_check(s)) { 7664 return; 7665 } 7666 7667 idx = extract32(imm5, 1 + size, 4 - size); 7668 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7669 7670 /* INS is considered a 128-bit write for SVE. */ 7671 clear_vec_high(s, true, rd); 7672 } 7673 7674 /* 7675 * UMOV (General) 7676 * SMOV (General) 7677 * 7678 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7679 * +---+---+-------------------+--------+-------------+------+------+ 7680 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7681 * +---+---+-------------------+--------+-------------+------+------+ 7682 * 7683 * U: unsigned when set 7684 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7685 */ 7686 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7687 int rn, int rd, int imm5) 7688 { 7689 int size = ctz32(imm5); 7690 int element; 7691 TCGv_i64 tcg_rd; 7692 7693 /* Check for UnallocatedEncodings */ 7694 if (is_signed) { 7695 if (size > 2 || (size == 2 && !is_q)) { 7696 unallocated_encoding(s); 7697 return; 7698 } 7699 } else { 7700 if (size > 3 7701 || (size < 3 && is_q) 7702 || (size == 3 && !is_q)) { 7703 unallocated_encoding(s); 7704 return; 7705 } 7706 } 7707 7708 if (!fp_access_check(s)) { 7709 return; 7710 } 7711 7712 element = extract32(imm5, 1+size, 4); 7713 7714 tcg_rd = cpu_reg(s, rd); 7715 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7716 if (is_signed && !is_q) { 7717 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7718 } 7719 } 7720 7721 /* AdvSIMD copy 7722 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7723 * +---+---+----+-----------------+------+---+------+---+------+------+ 7724 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7725 * +---+---+----+-----------------+------+---+------+---+------+------+ 7726 */ 7727 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7728 { 7729 int rd = extract32(insn, 0, 5); 7730 int rn = extract32(insn, 5, 5); 7731 int imm4 = extract32(insn, 11, 4); 7732 int op = extract32(insn, 29, 1); 7733 int is_q = extract32(insn, 30, 1); 7734 int imm5 = extract32(insn, 16, 5); 7735 7736 if (op) { 7737 if (is_q) { 7738 /* INS (element) */ 7739 handle_simd_inse(s, rd, rn, imm4, imm5); 7740 } else { 7741 unallocated_encoding(s); 7742 } 7743 } else { 7744 switch (imm4) { 7745 case 0: 7746 /* DUP (element - vector) */ 7747 handle_simd_dupe(s, is_q, rd, rn, imm5); 7748 break; 7749 case 1: 7750 /* DUP (general) */ 7751 handle_simd_dupg(s, is_q, rd, rn, imm5); 7752 break; 7753 case 3: 7754 if (is_q) { 7755 /* INS (general) */ 7756 handle_simd_insg(s, rd, rn, imm5); 7757 } else { 7758 unallocated_encoding(s); 7759 } 7760 break; 7761 case 5: 7762 case 7: 7763 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7764 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7765 break; 7766 default: 7767 unallocated_encoding(s); 7768 break; 7769 } 7770 } 7771 } 7772 7773 /* AdvSIMD modified immediate 7774 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7775 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7776 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7777 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7778 * 7779 * There are a number of operations that can be carried out here: 7780 * MOVI - move (shifted) imm into register 7781 * MVNI - move inverted (shifted) imm into register 7782 * ORR - bitwise OR of (shifted) imm with register 7783 * BIC - bitwise clear of (shifted) imm with register 7784 * With ARMv8.2 we also have: 7785 * FMOV half-precision 7786 */ 7787 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7788 { 7789 int rd = extract32(insn, 0, 5); 7790 int cmode = extract32(insn, 12, 4); 7791 int o2 = extract32(insn, 11, 1); 7792 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7793 bool is_neg = extract32(insn, 29, 1); 7794 bool is_q = extract32(insn, 30, 1); 7795 uint64_t imm = 0; 7796 7797 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7798 /* Check for FMOV (vector, immediate) - half-precision */ 7799 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7800 unallocated_encoding(s); 7801 return; 7802 } 7803 } 7804 7805 if (!fp_access_check(s)) { 7806 return; 7807 } 7808 7809 if (cmode == 15 && o2 && !is_neg) { 7810 /* FMOV (vector, immediate) - half-precision */ 7811 imm = vfp_expand_imm(MO_16, abcdefgh); 7812 /* now duplicate across the lanes */ 7813 imm = dup_const(MO_16, imm); 7814 } else { 7815 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7816 } 7817 7818 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7819 /* MOVI or MVNI, with MVNI negation handled above. */ 7820 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7821 vec_full_reg_size(s), imm); 7822 } else { 7823 /* ORR or BIC, with BIC negation to AND handled above. */ 7824 if (is_neg) { 7825 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7826 } else { 7827 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7828 } 7829 } 7830 } 7831 7832 /* AdvSIMD scalar copy 7833 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7834 * +-----+----+-----------------+------+---+------+---+------+------+ 7835 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7836 * +-----+----+-----------------+------+---+------+---+------+------+ 7837 */ 7838 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7839 { 7840 int rd = extract32(insn, 0, 5); 7841 int rn = extract32(insn, 5, 5); 7842 int imm4 = extract32(insn, 11, 4); 7843 int imm5 = extract32(insn, 16, 5); 7844 int op = extract32(insn, 29, 1); 7845 7846 if (op != 0 || imm4 != 0) { 7847 unallocated_encoding(s); 7848 return; 7849 } 7850 7851 /* DUP (element, scalar) */ 7852 handle_simd_dupes(s, rd, rn, imm5); 7853 } 7854 7855 /* AdvSIMD scalar pairwise 7856 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7857 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7858 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7859 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7860 */ 7861 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7862 { 7863 int u = extract32(insn, 29, 1); 7864 int size = extract32(insn, 22, 2); 7865 int opcode = extract32(insn, 12, 5); 7866 int rn = extract32(insn, 5, 5); 7867 int rd = extract32(insn, 0, 5); 7868 TCGv_ptr fpst; 7869 7870 /* For some ops (the FP ones), size[1] is part of the encoding. 7871 * For ADDP strictly it is not but size[1] is always 1 for valid 7872 * encodings. 7873 */ 7874 opcode |= (extract32(size, 1, 1) << 5); 7875 7876 switch (opcode) { 7877 case 0x3b: /* ADDP */ 7878 if (u || size != 3) { 7879 unallocated_encoding(s); 7880 return; 7881 } 7882 if (!fp_access_check(s)) { 7883 return; 7884 } 7885 7886 fpst = NULL; 7887 break; 7888 case 0xc: /* FMAXNMP */ 7889 case 0xd: /* FADDP */ 7890 case 0xf: /* FMAXP */ 7891 case 0x2c: /* FMINNMP */ 7892 case 0x2f: /* FMINP */ 7893 /* FP op, size[0] is 32 or 64 bit*/ 7894 if (!u) { 7895 if (!dc_isar_feature(aa64_fp16, s)) { 7896 unallocated_encoding(s); 7897 return; 7898 } else { 7899 size = MO_16; 7900 } 7901 } else { 7902 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7903 } 7904 7905 if (!fp_access_check(s)) { 7906 return; 7907 } 7908 7909 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7910 break; 7911 default: 7912 unallocated_encoding(s); 7913 return; 7914 } 7915 7916 if (size == MO_64) { 7917 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7918 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7919 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7920 7921 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7922 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7923 7924 switch (opcode) { 7925 case 0x3b: /* ADDP */ 7926 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7927 break; 7928 case 0xc: /* FMAXNMP */ 7929 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7930 break; 7931 case 0xd: /* FADDP */ 7932 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7933 break; 7934 case 0xf: /* FMAXP */ 7935 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7936 break; 7937 case 0x2c: /* FMINNMP */ 7938 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7939 break; 7940 case 0x2f: /* FMINP */ 7941 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7942 break; 7943 default: 7944 g_assert_not_reached(); 7945 } 7946 7947 write_fp_dreg(s, rd, tcg_res); 7948 } else { 7949 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7950 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7951 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7952 7953 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7954 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7955 7956 if (size == MO_16) { 7957 switch (opcode) { 7958 case 0xc: /* FMAXNMP */ 7959 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7960 break; 7961 case 0xd: /* FADDP */ 7962 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7963 break; 7964 case 0xf: /* FMAXP */ 7965 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7966 break; 7967 case 0x2c: /* FMINNMP */ 7968 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7969 break; 7970 case 0x2f: /* FMINP */ 7971 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7972 break; 7973 default: 7974 g_assert_not_reached(); 7975 } 7976 } else { 7977 switch (opcode) { 7978 case 0xc: /* FMAXNMP */ 7979 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7980 break; 7981 case 0xd: /* FADDP */ 7982 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7983 break; 7984 case 0xf: /* FMAXP */ 7985 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7986 break; 7987 case 0x2c: /* FMINNMP */ 7988 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7989 break; 7990 case 0x2f: /* FMINP */ 7991 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7992 break; 7993 default: 7994 g_assert_not_reached(); 7995 } 7996 } 7997 7998 write_fp_sreg(s, rd, tcg_res); 7999 } 8000 } 8001 8002 /* 8003 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8004 * 8005 * This code is handles the common shifting code and is used by both 8006 * the vector and scalar code. 8007 */ 8008 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8009 TCGv_i64 tcg_rnd, bool accumulate, 8010 bool is_u, int size, int shift) 8011 { 8012 bool extended_result = false; 8013 bool round = tcg_rnd != NULL; 8014 int ext_lshift = 0; 8015 TCGv_i64 tcg_src_hi; 8016 8017 if (round && size == 3) { 8018 extended_result = true; 8019 ext_lshift = 64 - shift; 8020 tcg_src_hi = tcg_temp_new_i64(); 8021 } else if (shift == 64) { 8022 if (!accumulate && is_u) { 8023 /* result is zero */ 8024 tcg_gen_movi_i64(tcg_res, 0); 8025 return; 8026 } 8027 } 8028 8029 /* Deal with the rounding step */ 8030 if (round) { 8031 if (extended_result) { 8032 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8033 if (!is_u) { 8034 /* take care of sign extending tcg_res */ 8035 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8036 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8037 tcg_src, tcg_src_hi, 8038 tcg_rnd, tcg_zero); 8039 } else { 8040 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8041 tcg_src, tcg_zero, 8042 tcg_rnd, tcg_zero); 8043 } 8044 } else { 8045 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8046 } 8047 } 8048 8049 /* Now do the shift right */ 8050 if (round && extended_result) { 8051 /* extended case, >64 bit precision required */ 8052 if (ext_lshift == 0) { 8053 /* special case, only high bits matter */ 8054 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8055 } else { 8056 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8057 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8058 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8059 } 8060 } else { 8061 if (is_u) { 8062 if (shift == 64) { 8063 /* essentially shifting in 64 zeros */ 8064 tcg_gen_movi_i64(tcg_src, 0); 8065 } else { 8066 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8067 } 8068 } else { 8069 if (shift == 64) { 8070 /* effectively extending the sign-bit */ 8071 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8072 } else { 8073 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8074 } 8075 } 8076 } 8077 8078 if (accumulate) { 8079 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8080 } else { 8081 tcg_gen_mov_i64(tcg_res, tcg_src); 8082 } 8083 } 8084 8085 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8086 static void handle_scalar_simd_shri(DisasContext *s, 8087 bool is_u, int immh, int immb, 8088 int opcode, int rn, int rd) 8089 { 8090 const int size = 3; 8091 int immhb = immh << 3 | immb; 8092 int shift = 2 * (8 << size) - immhb; 8093 bool accumulate = false; 8094 bool round = false; 8095 bool insert = false; 8096 TCGv_i64 tcg_rn; 8097 TCGv_i64 tcg_rd; 8098 TCGv_i64 tcg_round; 8099 8100 if (!extract32(immh, 3, 1)) { 8101 unallocated_encoding(s); 8102 return; 8103 } 8104 8105 if (!fp_access_check(s)) { 8106 return; 8107 } 8108 8109 switch (opcode) { 8110 case 0x02: /* SSRA / USRA (accumulate) */ 8111 accumulate = true; 8112 break; 8113 case 0x04: /* SRSHR / URSHR (rounding) */ 8114 round = true; 8115 break; 8116 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8117 accumulate = round = true; 8118 break; 8119 case 0x08: /* SRI */ 8120 insert = true; 8121 break; 8122 } 8123 8124 if (round) { 8125 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8126 } else { 8127 tcg_round = NULL; 8128 } 8129 8130 tcg_rn = read_fp_dreg(s, rn); 8131 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8132 8133 if (insert) { 8134 /* shift count same as element size is valid but does nothing; 8135 * special case to avoid potential shift by 64. 8136 */ 8137 int esize = 8 << size; 8138 if (shift != esize) { 8139 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8140 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8141 } 8142 } else { 8143 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8144 accumulate, is_u, size, shift); 8145 } 8146 8147 write_fp_dreg(s, rd, tcg_rd); 8148 } 8149 8150 /* SHL/SLI - Scalar shift left */ 8151 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8152 int immh, int immb, int opcode, 8153 int rn, int rd) 8154 { 8155 int size = 32 - clz32(immh) - 1; 8156 int immhb = immh << 3 | immb; 8157 int shift = immhb - (8 << size); 8158 TCGv_i64 tcg_rn; 8159 TCGv_i64 tcg_rd; 8160 8161 if (!extract32(immh, 3, 1)) { 8162 unallocated_encoding(s); 8163 return; 8164 } 8165 8166 if (!fp_access_check(s)) { 8167 return; 8168 } 8169 8170 tcg_rn = read_fp_dreg(s, rn); 8171 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8172 8173 if (insert) { 8174 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8175 } else { 8176 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8177 } 8178 8179 write_fp_dreg(s, rd, tcg_rd); 8180 } 8181 8182 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8183 * (signed/unsigned) narrowing */ 8184 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8185 bool is_u_shift, bool is_u_narrow, 8186 int immh, int immb, int opcode, 8187 int rn, int rd) 8188 { 8189 int immhb = immh << 3 | immb; 8190 int size = 32 - clz32(immh) - 1; 8191 int esize = 8 << size; 8192 int shift = (2 * esize) - immhb; 8193 int elements = is_scalar ? 1 : (64 / esize); 8194 bool round = extract32(opcode, 0, 1); 8195 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8196 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8197 TCGv_i32 tcg_rd_narrowed; 8198 TCGv_i64 tcg_final; 8199 8200 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8201 { gen_helper_neon_narrow_sat_s8, 8202 gen_helper_neon_unarrow_sat8 }, 8203 { gen_helper_neon_narrow_sat_s16, 8204 gen_helper_neon_unarrow_sat16 }, 8205 { gen_helper_neon_narrow_sat_s32, 8206 gen_helper_neon_unarrow_sat32 }, 8207 { NULL, NULL }, 8208 }; 8209 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8210 gen_helper_neon_narrow_sat_u8, 8211 gen_helper_neon_narrow_sat_u16, 8212 gen_helper_neon_narrow_sat_u32, 8213 NULL 8214 }; 8215 NeonGenNarrowEnvFn *narrowfn; 8216 8217 int i; 8218 8219 assert(size < 4); 8220 8221 if (extract32(immh, 3, 1)) { 8222 unallocated_encoding(s); 8223 return; 8224 } 8225 8226 if (!fp_access_check(s)) { 8227 return; 8228 } 8229 8230 if (is_u_shift) { 8231 narrowfn = unsigned_narrow_fns[size]; 8232 } else { 8233 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8234 } 8235 8236 tcg_rn = tcg_temp_new_i64(); 8237 tcg_rd = tcg_temp_new_i64(); 8238 tcg_rd_narrowed = tcg_temp_new_i32(); 8239 tcg_final = tcg_temp_new_i64(); 8240 8241 if (round) { 8242 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8243 } else { 8244 tcg_round = NULL; 8245 } 8246 8247 for (i = 0; i < elements; i++) { 8248 read_vec_element(s, tcg_rn, rn, i, ldop); 8249 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8250 false, is_u_shift, size+1, shift); 8251 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8252 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8253 if (i == 0) { 8254 tcg_gen_mov_i64(tcg_final, tcg_rd); 8255 } else { 8256 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8257 } 8258 } 8259 8260 if (!is_q) { 8261 write_vec_element(s, tcg_final, rd, 0, MO_64); 8262 } else { 8263 write_vec_element(s, tcg_final, rd, 1, MO_64); 8264 } 8265 clear_vec_high(s, is_q, rd); 8266 } 8267 8268 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8269 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8270 bool src_unsigned, bool dst_unsigned, 8271 int immh, int immb, int rn, int rd) 8272 { 8273 int immhb = immh << 3 | immb; 8274 int size = 32 - clz32(immh) - 1; 8275 int shift = immhb - (8 << size); 8276 int pass; 8277 8278 assert(immh != 0); 8279 assert(!(scalar && is_q)); 8280 8281 if (!scalar) { 8282 if (!is_q && extract32(immh, 3, 1)) { 8283 unallocated_encoding(s); 8284 return; 8285 } 8286 8287 /* Since we use the variable-shift helpers we must 8288 * replicate the shift count into each element of 8289 * the tcg_shift value. 8290 */ 8291 switch (size) { 8292 case 0: 8293 shift |= shift << 8; 8294 /* fall through */ 8295 case 1: 8296 shift |= shift << 16; 8297 break; 8298 case 2: 8299 case 3: 8300 break; 8301 default: 8302 g_assert_not_reached(); 8303 } 8304 } 8305 8306 if (!fp_access_check(s)) { 8307 return; 8308 } 8309 8310 if (size == 3) { 8311 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8312 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8313 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8314 { NULL, gen_helper_neon_qshl_u64 }, 8315 }; 8316 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8317 int maxpass = is_q ? 2 : 1; 8318 8319 for (pass = 0; pass < maxpass; pass++) { 8320 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8321 8322 read_vec_element(s, tcg_op, rn, pass, MO_64); 8323 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8324 write_vec_element(s, tcg_op, rd, pass, MO_64); 8325 } 8326 clear_vec_high(s, is_q, rd); 8327 } else { 8328 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8329 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8330 { 8331 { gen_helper_neon_qshl_s8, 8332 gen_helper_neon_qshl_s16, 8333 gen_helper_neon_qshl_s32 }, 8334 { gen_helper_neon_qshlu_s8, 8335 gen_helper_neon_qshlu_s16, 8336 gen_helper_neon_qshlu_s32 } 8337 }, { 8338 { NULL, NULL, NULL }, 8339 { gen_helper_neon_qshl_u8, 8340 gen_helper_neon_qshl_u16, 8341 gen_helper_neon_qshl_u32 } 8342 } 8343 }; 8344 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8345 MemOp memop = scalar ? size : MO_32; 8346 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8347 8348 for (pass = 0; pass < maxpass; pass++) { 8349 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8350 8351 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8352 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8353 if (scalar) { 8354 switch (size) { 8355 case 0: 8356 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8357 break; 8358 case 1: 8359 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8360 break; 8361 case 2: 8362 break; 8363 default: 8364 g_assert_not_reached(); 8365 } 8366 write_fp_sreg(s, rd, tcg_op); 8367 } else { 8368 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8369 } 8370 } 8371 8372 if (!scalar) { 8373 clear_vec_high(s, is_q, rd); 8374 } 8375 } 8376 } 8377 8378 /* Common vector code for handling integer to FP conversion */ 8379 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8380 int elements, int is_signed, 8381 int fracbits, int size) 8382 { 8383 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8384 TCGv_i32 tcg_shift = NULL; 8385 8386 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8387 int pass; 8388 8389 if (fracbits || size == MO_64) { 8390 tcg_shift = tcg_constant_i32(fracbits); 8391 } 8392 8393 if (size == MO_64) { 8394 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8395 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8396 8397 for (pass = 0; pass < elements; pass++) { 8398 read_vec_element(s, tcg_int64, rn, pass, mop); 8399 8400 if (is_signed) { 8401 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8402 tcg_shift, tcg_fpst); 8403 } else { 8404 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8405 tcg_shift, tcg_fpst); 8406 } 8407 if (elements == 1) { 8408 write_fp_dreg(s, rd, tcg_double); 8409 } else { 8410 write_vec_element(s, tcg_double, rd, pass, MO_64); 8411 } 8412 } 8413 } else { 8414 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8415 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8416 8417 for (pass = 0; pass < elements; pass++) { 8418 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8419 8420 switch (size) { 8421 case MO_32: 8422 if (fracbits) { 8423 if (is_signed) { 8424 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8425 tcg_shift, tcg_fpst); 8426 } else { 8427 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8428 tcg_shift, tcg_fpst); 8429 } 8430 } else { 8431 if (is_signed) { 8432 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8433 } else { 8434 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8435 } 8436 } 8437 break; 8438 case MO_16: 8439 if (fracbits) { 8440 if (is_signed) { 8441 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8442 tcg_shift, tcg_fpst); 8443 } else { 8444 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8445 tcg_shift, tcg_fpst); 8446 } 8447 } else { 8448 if (is_signed) { 8449 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8450 } else { 8451 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8452 } 8453 } 8454 break; 8455 default: 8456 g_assert_not_reached(); 8457 } 8458 8459 if (elements == 1) { 8460 write_fp_sreg(s, rd, tcg_float); 8461 } else { 8462 write_vec_element_i32(s, tcg_float, rd, pass, size); 8463 } 8464 } 8465 } 8466 8467 clear_vec_high(s, elements << size == 16, rd); 8468 } 8469 8470 /* UCVTF/SCVTF - Integer to FP conversion */ 8471 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8472 bool is_q, bool is_u, 8473 int immh, int immb, int opcode, 8474 int rn, int rd) 8475 { 8476 int size, elements, fracbits; 8477 int immhb = immh << 3 | immb; 8478 8479 if (immh & 8) { 8480 size = MO_64; 8481 if (!is_scalar && !is_q) { 8482 unallocated_encoding(s); 8483 return; 8484 } 8485 } else if (immh & 4) { 8486 size = MO_32; 8487 } else if (immh & 2) { 8488 size = MO_16; 8489 if (!dc_isar_feature(aa64_fp16, s)) { 8490 unallocated_encoding(s); 8491 return; 8492 } 8493 } else { 8494 /* immh == 0 would be a failure of the decode logic */ 8495 g_assert(immh == 1); 8496 unallocated_encoding(s); 8497 return; 8498 } 8499 8500 if (is_scalar) { 8501 elements = 1; 8502 } else { 8503 elements = (8 << is_q) >> size; 8504 } 8505 fracbits = (16 << size) - immhb; 8506 8507 if (!fp_access_check(s)) { 8508 return; 8509 } 8510 8511 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8512 } 8513 8514 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8515 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8516 bool is_q, bool is_u, 8517 int immh, int immb, int rn, int rd) 8518 { 8519 int immhb = immh << 3 | immb; 8520 int pass, size, fracbits; 8521 TCGv_ptr tcg_fpstatus; 8522 TCGv_i32 tcg_rmode, tcg_shift; 8523 8524 if (immh & 0x8) { 8525 size = MO_64; 8526 if (!is_scalar && !is_q) { 8527 unallocated_encoding(s); 8528 return; 8529 } 8530 } else if (immh & 0x4) { 8531 size = MO_32; 8532 } else if (immh & 0x2) { 8533 size = MO_16; 8534 if (!dc_isar_feature(aa64_fp16, s)) { 8535 unallocated_encoding(s); 8536 return; 8537 } 8538 } else { 8539 /* Should have split out AdvSIMD modified immediate earlier. */ 8540 assert(immh == 1); 8541 unallocated_encoding(s); 8542 return; 8543 } 8544 8545 if (!fp_access_check(s)) { 8546 return; 8547 } 8548 8549 assert(!(is_scalar && is_q)); 8550 8551 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8552 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8553 fracbits = (16 << size) - immhb; 8554 tcg_shift = tcg_constant_i32(fracbits); 8555 8556 if (size == MO_64) { 8557 int maxpass = is_scalar ? 1 : 2; 8558 8559 for (pass = 0; pass < maxpass; pass++) { 8560 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8561 8562 read_vec_element(s, tcg_op, rn, pass, MO_64); 8563 if (is_u) { 8564 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8565 } else { 8566 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8567 } 8568 write_vec_element(s, tcg_op, rd, pass, MO_64); 8569 } 8570 clear_vec_high(s, is_q, rd); 8571 } else { 8572 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8573 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8574 8575 switch (size) { 8576 case MO_16: 8577 if (is_u) { 8578 fn = gen_helper_vfp_touhh; 8579 } else { 8580 fn = gen_helper_vfp_toshh; 8581 } 8582 break; 8583 case MO_32: 8584 if (is_u) { 8585 fn = gen_helper_vfp_touls; 8586 } else { 8587 fn = gen_helper_vfp_tosls; 8588 } 8589 break; 8590 default: 8591 g_assert_not_reached(); 8592 } 8593 8594 for (pass = 0; pass < maxpass; pass++) { 8595 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8596 8597 read_vec_element_i32(s, tcg_op, rn, pass, size); 8598 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8599 if (is_scalar) { 8600 write_fp_sreg(s, rd, tcg_op); 8601 } else { 8602 write_vec_element_i32(s, tcg_op, rd, pass, size); 8603 } 8604 } 8605 if (!is_scalar) { 8606 clear_vec_high(s, is_q, rd); 8607 } 8608 } 8609 8610 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8611 } 8612 8613 /* AdvSIMD scalar shift by immediate 8614 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8615 * +-----+---+-------------+------+------+--------+---+------+------+ 8616 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8617 * +-----+---+-------------+------+------+--------+---+------+------+ 8618 * 8619 * This is the scalar version so it works on a fixed sized registers 8620 */ 8621 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8622 { 8623 int rd = extract32(insn, 0, 5); 8624 int rn = extract32(insn, 5, 5); 8625 int opcode = extract32(insn, 11, 5); 8626 int immb = extract32(insn, 16, 3); 8627 int immh = extract32(insn, 19, 4); 8628 bool is_u = extract32(insn, 29, 1); 8629 8630 if (immh == 0) { 8631 unallocated_encoding(s); 8632 return; 8633 } 8634 8635 switch (opcode) { 8636 case 0x08: /* SRI */ 8637 if (!is_u) { 8638 unallocated_encoding(s); 8639 return; 8640 } 8641 /* fall through */ 8642 case 0x00: /* SSHR / USHR */ 8643 case 0x02: /* SSRA / USRA */ 8644 case 0x04: /* SRSHR / URSHR */ 8645 case 0x06: /* SRSRA / URSRA */ 8646 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8647 break; 8648 case 0x0a: /* SHL / SLI */ 8649 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8650 break; 8651 case 0x1c: /* SCVTF, UCVTF */ 8652 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8653 opcode, rn, rd); 8654 break; 8655 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8656 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8657 if (!is_u) { 8658 unallocated_encoding(s); 8659 return; 8660 } 8661 handle_vec_simd_sqshrn(s, true, false, false, true, 8662 immh, immb, opcode, rn, rd); 8663 break; 8664 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8665 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8666 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8667 immh, immb, opcode, rn, rd); 8668 break; 8669 case 0xc: /* SQSHLU */ 8670 if (!is_u) { 8671 unallocated_encoding(s); 8672 return; 8673 } 8674 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8675 break; 8676 case 0xe: /* SQSHL, UQSHL */ 8677 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8678 break; 8679 case 0x1f: /* FCVTZS, FCVTZU */ 8680 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8681 break; 8682 default: 8683 unallocated_encoding(s); 8684 break; 8685 } 8686 } 8687 8688 /* AdvSIMD scalar three different 8689 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8690 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8691 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8692 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8693 */ 8694 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8695 { 8696 bool is_u = extract32(insn, 29, 1); 8697 int size = extract32(insn, 22, 2); 8698 int opcode = extract32(insn, 12, 4); 8699 int rm = extract32(insn, 16, 5); 8700 int rn = extract32(insn, 5, 5); 8701 int rd = extract32(insn, 0, 5); 8702 8703 if (is_u) { 8704 unallocated_encoding(s); 8705 return; 8706 } 8707 8708 switch (opcode) { 8709 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8710 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8711 case 0xd: /* SQDMULL, SQDMULL2 */ 8712 if (size == 0 || size == 3) { 8713 unallocated_encoding(s); 8714 return; 8715 } 8716 break; 8717 default: 8718 unallocated_encoding(s); 8719 return; 8720 } 8721 8722 if (!fp_access_check(s)) { 8723 return; 8724 } 8725 8726 if (size == 2) { 8727 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8728 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8729 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8730 8731 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8732 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8733 8734 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8735 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 8736 8737 switch (opcode) { 8738 case 0xd: /* SQDMULL, SQDMULL2 */ 8739 break; 8740 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8741 tcg_gen_neg_i64(tcg_res, tcg_res); 8742 /* fall through */ 8743 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8744 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8745 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 8746 tcg_res, tcg_op1); 8747 break; 8748 default: 8749 g_assert_not_reached(); 8750 } 8751 8752 write_fp_dreg(s, rd, tcg_res); 8753 } else { 8754 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8755 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8756 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8757 8758 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8759 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 8760 8761 switch (opcode) { 8762 case 0xd: /* SQDMULL, SQDMULL2 */ 8763 break; 8764 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8765 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8766 /* fall through */ 8767 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8768 { 8769 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8770 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8771 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 8772 tcg_res, tcg_op3); 8773 break; 8774 } 8775 default: 8776 g_assert_not_reached(); 8777 } 8778 8779 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8780 write_fp_dreg(s, rd, tcg_res); 8781 } 8782 } 8783 8784 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8785 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8786 { 8787 /* Handle 64x64->64 opcodes which are shared between the scalar 8788 * and vector 3-same groups. We cover every opcode where size == 3 8789 * is valid in either the three-reg-same (integer, not pairwise) 8790 * or scalar-three-reg-same groups. 8791 */ 8792 TCGCond cond; 8793 8794 switch (opcode) { 8795 case 0x1: /* SQADD */ 8796 if (u) { 8797 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8798 } else { 8799 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8800 } 8801 break; 8802 case 0x5: /* SQSUB */ 8803 if (u) { 8804 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8805 } else { 8806 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8807 } 8808 break; 8809 case 0x6: /* CMGT, CMHI */ 8810 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8811 do_cmop: 8812 /* 64 bit integer comparison, result = test ? -1 : 0. */ 8813 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8814 break; 8815 case 0x7: /* CMGE, CMHS */ 8816 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8817 goto do_cmop; 8818 case 0x11: /* CMTST, CMEQ */ 8819 if (u) { 8820 cond = TCG_COND_EQ; 8821 goto do_cmop; 8822 } 8823 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8824 break; 8825 case 0x8: /* SSHL, USHL */ 8826 if (u) { 8827 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8828 } else { 8829 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8830 } 8831 break; 8832 case 0x9: /* SQSHL, UQSHL */ 8833 if (u) { 8834 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8835 } else { 8836 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8837 } 8838 break; 8839 case 0xa: /* SRSHL, URSHL */ 8840 if (u) { 8841 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8842 } else { 8843 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8844 } 8845 break; 8846 case 0xb: /* SQRSHL, UQRSHL */ 8847 if (u) { 8848 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8849 } else { 8850 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 8851 } 8852 break; 8853 case 0x10: /* ADD, SUB */ 8854 if (u) { 8855 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8856 } else { 8857 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8858 } 8859 break; 8860 default: 8861 g_assert_not_reached(); 8862 } 8863 } 8864 8865 /* Handle the 3-same-operands float operations; shared by the scalar 8866 * and vector encodings. The caller must filter out any encodings 8867 * not allocated for the encoding it is dealing with. 8868 */ 8869 static void handle_3same_float(DisasContext *s, int size, int elements, 8870 int fpopcode, int rd, int rn, int rm) 8871 { 8872 int pass; 8873 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8874 8875 for (pass = 0; pass < elements; pass++) { 8876 if (size) { 8877 /* Double */ 8878 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8879 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8880 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8881 8882 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8883 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8884 8885 switch (fpopcode) { 8886 case 0x39: /* FMLS */ 8887 /* As usual for ARM, separate negation for fused multiply-add */ 8888 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8889 /* fall through */ 8890 case 0x19: /* FMLA */ 8891 read_vec_element(s, tcg_res, rd, pass, MO_64); 8892 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8893 tcg_res, fpst); 8894 break; 8895 case 0x18: /* FMAXNM */ 8896 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8897 break; 8898 case 0x1a: /* FADD */ 8899 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8900 break; 8901 case 0x1b: /* FMULX */ 8902 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8903 break; 8904 case 0x1c: /* FCMEQ */ 8905 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8906 break; 8907 case 0x1e: /* FMAX */ 8908 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8909 break; 8910 case 0x1f: /* FRECPS */ 8911 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8912 break; 8913 case 0x38: /* FMINNM */ 8914 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8915 break; 8916 case 0x3a: /* FSUB */ 8917 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8918 break; 8919 case 0x3e: /* FMIN */ 8920 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8921 break; 8922 case 0x3f: /* FRSQRTS */ 8923 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8924 break; 8925 case 0x5b: /* FMUL */ 8926 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8927 break; 8928 case 0x5c: /* FCMGE */ 8929 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8930 break; 8931 case 0x5d: /* FACGE */ 8932 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8933 break; 8934 case 0x5f: /* FDIV */ 8935 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8936 break; 8937 case 0x7a: /* FABD */ 8938 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8939 gen_helper_vfp_absd(tcg_res, tcg_res); 8940 break; 8941 case 0x7c: /* FCMGT */ 8942 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8943 break; 8944 case 0x7d: /* FACGT */ 8945 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8946 break; 8947 default: 8948 g_assert_not_reached(); 8949 } 8950 8951 write_vec_element(s, tcg_res, rd, pass, MO_64); 8952 } else { 8953 /* Single */ 8954 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8955 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8956 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8957 8958 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8959 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8960 8961 switch (fpopcode) { 8962 case 0x39: /* FMLS */ 8963 /* As usual for ARM, separate negation for fused multiply-add */ 8964 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8965 /* fall through */ 8966 case 0x19: /* FMLA */ 8967 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8968 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8969 tcg_res, fpst); 8970 break; 8971 case 0x1a: /* FADD */ 8972 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8973 break; 8974 case 0x1b: /* FMULX */ 8975 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8976 break; 8977 case 0x1c: /* FCMEQ */ 8978 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8979 break; 8980 case 0x1e: /* FMAX */ 8981 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8982 break; 8983 case 0x1f: /* FRECPS */ 8984 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8985 break; 8986 case 0x18: /* FMAXNM */ 8987 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8988 break; 8989 case 0x38: /* FMINNM */ 8990 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8991 break; 8992 case 0x3a: /* FSUB */ 8993 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8994 break; 8995 case 0x3e: /* FMIN */ 8996 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8997 break; 8998 case 0x3f: /* FRSQRTS */ 8999 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9000 break; 9001 case 0x5b: /* FMUL */ 9002 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9003 break; 9004 case 0x5c: /* FCMGE */ 9005 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9006 break; 9007 case 0x5d: /* FACGE */ 9008 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9009 break; 9010 case 0x5f: /* FDIV */ 9011 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9012 break; 9013 case 0x7a: /* FABD */ 9014 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9015 gen_helper_vfp_abss(tcg_res, tcg_res); 9016 break; 9017 case 0x7c: /* FCMGT */ 9018 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9019 break; 9020 case 0x7d: /* FACGT */ 9021 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9022 break; 9023 default: 9024 g_assert_not_reached(); 9025 } 9026 9027 if (elements == 1) { 9028 /* scalar single so clear high part */ 9029 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9030 9031 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9032 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9033 } else { 9034 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9035 } 9036 } 9037 } 9038 9039 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9040 } 9041 9042 /* AdvSIMD scalar three same 9043 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9044 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9045 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9046 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9047 */ 9048 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9049 { 9050 int rd = extract32(insn, 0, 5); 9051 int rn = extract32(insn, 5, 5); 9052 int opcode = extract32(insn, 11, 5); 9053 int rm = extract32(insn, 16, 5); 9054 int size = extract32(insn, 22, 2); 9055 bool u = extract32(insn, 29, 1); 9056 TCGv_i64 tcg_rd; 9057 9058 if (opcode >= 0x18) { 9059 /* Floating point: U, size[1] and opcode indicate operation */ 9060 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9061 switch (fpopcode) { 9062 case 0x1b: /* FMULX */ 9063 case 0x1f: /* FRECPS */ 9064 case 0x3f: /* FRSQRTS */ 9065 case 0x5d: /* FACGE */ 9066 case 0x7d: /* FACGT */ 9067 case 0x1c: /* FCMEQ */ 9068 case 0x5c: /* FCMGE */ 9069 case 0x7c: /* FCMGT */ 9070 case 0x7a: /* FABD */ 9071 break; 9072 default: 9073 unallocated_encoding(s); 9074 return; 9075 } 9076 9077 if (!fp_access_check(s)) { 9078 return; 9079 } 9080 9081 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9082 return; 9083 } 9084 9085 switch (opcode) { 9086 case 0x1: /* SQADD, UQADD */ 9087 case 0x5: /* SQSUB, UQSUB */ 9088 case 0x9: /* SQSHL, UQSHL */ 9089 case 0xb: /* SQRSHL, UQRSHL */ 9090 break; 9091 case 0x8: /* SSHL, USHL */ 9092 case 0xa: /* SRSHL, URSHL */ 9093 case 0x6: /* CMGT, CMHI */ 9094 case 0x7: /* CMGE, CMHS */ 9095 case 0x11: /* CMTST, CMEQ */ 9096 case 0x10: /* ADD, SUB (vector) */ 9097 if (size != 3) { 9098 unallocated_encoding(s); 9099 return; 9100 } 9101 break; 9102 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9103 if (size != 1 && size != 2) { 9104 unallocated_encoding(s); 9105 return; 9106 } 9107 break; 9108 default: 9109 unallocated_encoding(s); 9110 return; 9111 } 9112 9113 if (!fp_access_check(s)) { 9114 return; 9115 } 9116 9117 tcg_rd = tcg_temp_new_i64(); 9118 9119 if (size == 3) { 9120 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9121 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9122 9123 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9124 } else { 9125 /* Do a single operation on the lowest element in the vector. 9126 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9127 * no side effects for all these operations. 9128 * OPTME: special-purpose helpers would avoid doing some 9129 * unnecessary work in the helper for the 8 and 16 bit cases. 9130 */ 9131 NeonGenTwoOpEnvFn *genenvfn; 9132 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9133 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9134 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9135 9136 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9137 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9138 9139 switch (opcode) { 9140 case 0x1: /* SQADD, UQADD */ 9141 { 9142 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9143 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9144 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9145 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9146 }; 9147 genenvfn = fns[size][u]; 9148 break; 9149 } 9150 case 0x5: /* SQSUB, UQSUB */ 9151 { 9152 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9153 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9154 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9155 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9156 }; 9157 genenvfn = fns[size][u]; 9158 break; 9159 } 9160 case 0x9: /* SQSHL, UQSHL */ 9161 { 9162 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9163 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9164 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9165 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9166 }; 9167 genenvfn = fns[size][u]; 9168 break; 9169 } 9170 case 0xb: /* SQRSHL, UQRSHL */ 9171 { 9172 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9173 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9174 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9175 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9176 }; 9177 genenvfn = fns[size][u]; 9178 break; 9179 } 9180 case 0x16: /* SQDMULH, SQRDMULH */ 9181 { 9182 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9183 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9184 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9185 }; 9186 assert(size == 1 || size == 2); 9187 genenvfn = fns[size - 1][u]; 9188 break; 9189 } 9190 default: 9191 g_assert_not_reached(); 9192 } 9193 9194 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9195 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9196 } 9197 9198 write_fp_dreg(s, rd, tcg_rd); 9199 } 9200 9201 /* AdvSIMD scalar three same FP16 9202 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9203 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9204 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9205 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9206 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9207 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9208 */ 9209 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9210 uint32_t insn) 9211 { 9212 int rd = extract32(insn, 0, 5); 9213 int rn = extract32(insn, 5, 5); 9214 int opcode = extract32(insn, 11, 3); 9215 int rm = extract32(insn, 16, 5); 9216 bool u = extract32(insn, 29, 1); 9217 bool a = extract32(insn, 23, 1); 9218 int fpopcode = opcode | (a << 3) | (u << 4); 9219 TCGv_ptr fpst; 9220 TCGv_i32 tcg_op1; 9221 TCGv_i32 tcg_op2; 9222 TCGv_i32 tcg_res; 9223 9224 switch (fpopcode) { 9225 case 0x03: /* FMULX */ 9226 case 0x04: /* FCMEQ (reg) */ 9227 case 0x07: /* FRECPS */ 9228 case 0x0f: /* FRSQRTS */ 9229 case 0x14: /* FCMGE (reg) */ 9230 case 0x15: /* FACGE */ 9231 case 0x1a: /* FABD */ 9232 case 0x1c: /* FCMGT (reg) */ 9233 case 0x1d: /* FACGT */ 9234 break; 9235 default: 9236 unallocated_encoding(s); 9237 return; 9238 } 9239 9240 if (!dc_isar_feature(aa64_fp16, s)) { 9241 unallocated_encoding(s); 9242 } 9243 9244 if (!fp_access_check(s)) { 9245 return; 9246 } 9247 9248 fpst = fpstatus_ptr(FPST_FPCR_F16); 9249 9250 tcg_op1 = read_fp_hreg(s, rn); 9251 tcg_op2 = read_fp_hreg(s, rm); 9252 tcg_res = tcg_temp_new_i32(); 9253 9254 switch (fpopcode) { 9255 case 0x03: /* FMULX */ 9256 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9257 break; 9258 case 0x04: /* FCMEQ (reg) */ 9259 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9260 break; 9261 case 0x07: /* FRECPS */ 9262 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9263 break; 9264 case 0x0f: /* FRSQRTS */ 9265 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9266 break; 9267 case 0x14: /* FCMGE (reg) */ 9268 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9269 break; 9270 case 0x15: /* FACGE */ 9271 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9272 break; 9273 case 0x1a: /* FABD */ 9274 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9275 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9276 break; 9277 case 0x1c: /* FCMGT (reg) */ 9278 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9279 break; 9280 case 0x1d: /* FACGT */ 9281 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9282 break; 9283 default: 9284 g_assert_not_reached(); 9285 } 9286 9287 write_fp_sreg(s, rd, tcg_res); 9288 } 9289 9290 /* AdvSIMD scalar three same extra 9291 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9292 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9293 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9294 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9295 */ 9296 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9297 uint32_t insn) 9298 { 9299 int rd = extract32(insn, 0, 5); 9300 int rn = extract32(insn, 5, 5); 9301 int opcode = extract32(insn, 11, 4); 9302 int rm = extract32(insn, 16, 5); 9303 int size = extract32(insn, 22, 2); 9304 bool u = extract32(insn, 29, 1); 9305 TCGv_i32 ele1, ele2, ele3; 9306 TCGv_i64 res; 9307 bool feature; 9308 9309 switch (u * 16 + opcode) { 9310 case 0x10: /* SQRDMLAH (vector) */ 9311 case 0x11: /* SQRDMLSH (vector) */ 9312 if (size != 1 && size != 2) { 9313 unallocated_encoding(s); 9314 return; 9315 } 9316 feature = dc_isar_feature(aa64_rdm, s); 9317 break; 9318 default: 9319 unallocated_encoding(s); 9320 return; 9321 } 9322 if (!feature) { 9323 unallocated_encoding(s); 9324 return; 9325 } 9326 if (!fp_access_check(s)) { 9327 return; 9328 } 9329 9330 /* Do a single operation on the lowest element in the vector. 9331 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9332 * with no side effects for all these operations. 9333 * OPTME: special-purpose helpers would avoid doing some 9334 * unnecessary work in the helper for the 16 bit cases. 9335 */ 9336 ele1 = tcg_temp_new_i32(); 9337 ele2 = tcg_temp_new_i32(); 9338 ele3 = tcg_temp_new_i32(); 9339 9340 read_vec_element_i32(s, ele1, rn, 0, size); 9341 read_vec_element_i32(s, ele2, rm, 0, size); 9342 read_vec_element_i32(s, ele3, rd, 0, size); 9343 9344 switch (opcode) { 9345 case 0x0: /* SQRDMLAH */ 9346 if (size == 1) { 9347 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9348 } else { 9349 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9350 } 9351 break; 9352 case 0x1: /* SQRDMLSH */ 9353 if (size == 1) { 9354 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9355 } else { 9356 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9357 } 9358 break; 9359 default: 9360 g_assert_not_reached(); 9361 } 9362 9363 res = tcg_temp_new_i64(); 9364 tcg_gen_extu_i32_i64(res, ele3); 9365 write_fp_dreg(s, rd, res); 9366 } 9367 9368 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9369 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9370 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9371 { 9372 /* Handle 64->64 opcodes which are shared between the scalar and 9373 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9374 * is valid in either group and also the double-precision fp ops. 9375 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9376 * requires them. 9377 */ 9378 TCGCond cond; 9379 9380 switch (opcode) { 9381 case 0x4: /* CLS, CLZ */ 9382 if (u) { 9383 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9384 } else { 9385 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9386 } 9387 break; 9388 case 0x5: /* NOT */ 9389 /* This opcode is shared with CNT and RBIT but we have earlier 9390 * enforced that size == 3 if and only if this is the NOT insn. 9391 */ 9392 tcg_gen_not_i64(tcg_rd, tcg_rn); 9393 break; 9394 case 0x7: /* SQABS, SQNEG */ 9395 if (u) { 9396 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9397 } else { 9398 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9399 } 9400 break; 9401 case 0xa: /* CMLT */ 9402 cond = TCG_COND_LT; 9403 do_cmop: 9404 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9405 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9406 break; 9407 case 0x8: /* CMGT, CMGE */ 9408 cond = u ? TCG_COND_GE : TCG_COND_GT; 9409 goto do_cmop; 9410 case 0x9: /* CMEQ, CMLE */ 9411 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9412 goto do_cmop; 9413 case 0xb: /* ABS, NEG */ 9414 if (u) { 9415 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9416 } else { 9417 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9418 } 9419 break; 9420 case 0x2f: /* FABS */ 9421 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9422 break; 9423 case 0x6f: /* FNEG */ 9424 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9425 break; 9426 case 0x7f: /* FSQRT */ 9427 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9428 break; 9429 case 0x1a: /* FCVTNS */ 9430 case 0x1b: /* FCVTMS */ 9431 case 0x1c: /* FCVTAS */ 9432 case 0x3a: /* FCVTPS */ 9433 case 0x3b: /* FCVTZS */ 9434 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9435 break; 9436 case 0x5a: /* FCVTNU */ 9437 case 0x5b: /* FCVTMU */ 9438 case 0x5c: /* FCVTAU */ 9439 case 0x7a: /* FCVTPU */ 9440 case 0x7b: /* FCVTZU */ 9441 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9442 break; 9443 case 0x18: /* FRINTN */ 9444 case 0x19: /* FRINTM */ 9445 case 0x38: /* FRINTP */ 9446 case 0x39: /* FRINTZ */ 9447 case 0x58: /* FRINTA */ 9448 case 0x79: /* FRINTI */ 9449 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9450 break; 9451 case 0x59: /* FRINTX */ 9452 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9453 break; 9454 case 0x1e: /* FRINT32Z */ 9455 case 0x5e: /* FRINT32X */ 9456 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9457 break; 9458 case 0x1f: /* FRINT64Z */ 9459 case 0x5f: /* FRINT64X */ 9460 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9461 break; 9462 default: 9463 g_assert_not_reached(); 9464 } 9465 } 9466 9467 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9468 bool is_scalar, bool is_u, bool is_q, 9469 int size, int rn, int rd) 9470 { 9471 bool is_double = (size == MO_64); 9472 TCGv_ptr fpst; 9473 9474 if (!fp_access_check(s)) { 9475 return; 9476 } 9477 9478 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9479 9480 if (is_double) { 9481 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9482 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9483 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9484 NeonGenTwoDoubleOpFn *genfn; 9485 bool swap = false; 9486 int pass; 9487 9488 switch (opcode) { 9489 case 0x2e: /* FCMLT (zero) */ 9490 swap = true; 9491 /* fallthrough */ 9492 case 0x2c: /* FCMGT (zero) */ 9493 genfn = gen_helper_neon_cgt_f64; 9494 break; 9495 case 0x2d: /* FCMEQ (zero) */ 9496 genfn = gen_helper_neon_ceq_f64; 9497 break; 9498 case 0x6d: /* FCMLE (zero) */ 9499 swap = true; 9500 /* fall through */ 9501 case 0x6c: /* FCMGE (zero) */ 9502 genfn = gen_helper_neon_cge_f64; 9503 break; 9504 default: 9505 g_assert_not_reached(); 9506 } 9507 9508 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9509 read_vec_element(s, tcg_op, rn, pass, MO_64); 9510 if (swap) { 9511 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9512 } else { 9513 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9514 } 9515 write_vec_element(s, tcg_res, rd, pass, MO_64); 9516 } 9517 9518 clear_vec_high(s, !is_scalar, rd); 9519 } else { 9520 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9521 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9522 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9523 NeonGenTwoSingleOpFn *genfn; 9524 bool swap = false; 9525 int pass, maxpasses; 9526 9527 if (size == MO_16) { 9528 switch (opcode) { 9529 case 0x2e: /* FCMLT (zero) */ 9530 swap = true; 9531 /* fall through */ 9532 case 0x2c: /* FCMGT (zero) */ 9533 genfn = gen_helper_advsimd_cgt_f16; 9534 break; 9535 case 0x2d: /* FCMEQ (zero) */ 9536 genfn = gen_helper_advsimd_ceq_f16; 9537 break; 9538 case 0x6d: /* FCMLE (zero) */ 9539 swap = true; 9540 /* fall through */ 9541 case 0x6c: /* FCMGE (zero) */ 9542 genfn = gen_helper_advsimd_cge_f16; 9543 break; 9544 default: 9545 g_assert_not_reached(); 9546 } 9547 } else { 9548 switch (opcode) { 9549 case 0x2e: /* FCMLT (zero) */ 9550 swap = true; 9551 /* fall through */ 9552 case 0x2c: /* FCMGT (zero) */ 9553 genfn = gen_helper_neon_cgt_f32; 9554 break; 9555 case 0x2d: /* FCMEQ (zero) */ 9556 genfn = gen_helper_neon_ceq_f32; 9557 break; 9558 case 0x6d: /* FCMLE (zero) */ 9559 swap = true; 9560 /* fall through */ 9561 case 0x6c: /* FCMGE (zero) */ 9562 genfn = gen_helper_neon_cge_f32; 9563 break; 9564 default: 9565 g_assert_not_reached(); 9566 } 9567 } 9568 9569 if (is_scalar) { 9570 maxpasses = 1; 9571 } else { 9572 int vector_size = 8 << is_q; 9573 maxpasses = vector_size >> size; 9574 } 9575 9576 for (pass = 0; pass < maxpasses; pass++) { 9577 read_vec_element_i32(s, tcg_op, rn, pass, size); 9578 if (swap) { 9579 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9580 } else { 9581 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9582 } 9583 if (is_scalar) { 9584 write_fp_sreg(s, rd, tcg_res); 9585 } else { 9586 write_vec_element_i32(s, tcg_res, rd, pass, size); 9587 } 9588 } 9589 9590 if (!is_scalar) { 9591 clear_vec_high(s, is_q, rd); 9592 } 9593 } 9594 } 9595 9596 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9597 bool is_scalar, bool is_u, bool is_q, 9598 int size, int rn, int rd) 9599 { 9600 bool is_double = (size == 3); 9601 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9602 9603 if (is_double) { 9604 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9605 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9606 int pass; 9607 9608 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9609 read_vec_element(s, tcg_op, rn, pass, MO_64); 9610 switch (opcode) { 9611 case 0x3d: /* FRECPE */ 9612 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9613 break; 9614 case 0x3f: /* FRECPX */ 9615 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9616 break; 9617 case 0x7d: /* FRSQRTE */ 9618 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9619 break; 9620 default: 9621 g_assert_not_reached(); 9622 } 9623 write_vec_element(s, tcg_res, rd, pass, MO_64); 9624 } 9625 clear_vec_high(s, !is_scalar, rd); 9626 } else { 9627 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9628 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9629 int pass, maxpasses; 9630 9631 if (is_scalar) { 9632 maxpasses = 1; 9633 } else { 9634 maxpasses = is_q ? 4 : 2; 9635 } 9636 9637 for (pass = 0; pass < maxpasses; pass++) { 9638 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9639 9640 switch (opcode) { 9641 case 0x3c: /* URECPE */ 9642 gen_helper_recpe_u32(tcg_res, tcg_op); 9643 break; 9644 case 0x3d: /* FRECPE */ 9645 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9646 break; 9647 case 0x3f: /* FRECPX */ 9648 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9649 break; 9650 case 0x7d: /* FRSQRTE */ 9651 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9652 break; 9653 default: 9654 g_assert_not_reached(); 9655 } 9656 9657 if (is_scalar) { 9658 write_fp_sreg(s, rd, tcg_res); 9659 } else { 9660 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9661 } 9662 } 9663 if (!is_scalar) { 9664 clear_vec_high(s, is_q, rd); 9665 } 9666 } 9667 } 9668 9669 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9670 int opcode, bool u, bool is_q, 9671 int size, int rn, int rd) 9672 { 9673 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9674 * in the source becomes a size element in the destination). 9675 */ 9676 int pass; 9677 TCGv_i32 tcg_res[2]; 9678 int destelt = is_q ? 2 : 0; 9679 int passes = scalar ? 1 : 2; 9680 9681 if (scalar) { 9682 tcg_res[1] = tcg_constant_i32(0); 9683 } 9684 9685 for (pass = 0; pass < passes; pass++) { 9686 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9687 NeonGenNarrowFn *genfn = NULL; 9688 NeonGenNarrowEnvFn *genenvfn = NULL; 9689 9690 if (scalar) { 9691 read_vec_element(s, tcg_op, rn, pass, size + 1); 9692 } else { 9693 read_vec_element(s, tcg_op, rn, pass, MO_64); 9694 } 9695 tcg_res[pass] = tcg_temp_new_i32(); 9696 9697 switch (opcode) { 9698 case 0x12: /* XTN, SQXTUN */ 9699 { 9700 static NeonGenNarrowFn * const xtnfns[3] = { 9701 gen_helper_neon_narrow_u8, 9702 gen_helper_neon_narrow_u16, 9703 tcg_gen_extrl_i64_i32, 9704 }; 9705 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9706 gen_helper_neon_unarrow_sat8, 9707 gen_helper_neon_unarrow_sat16, 9708 gen_helper_neon_unarrow_sat32, 9709 }; 9710 if (u) { 9711 genenvfn = sqxtunfns[size]; 9712 } else { 9713 genfn = xtnfns[size]; 9714 } 9715 break; 9716 } 9717 case 0x14: /* SQXTN, UQXTN */ 9718 { 9719 static NeonGenNarrowEnvFn * const fns[3][2] = { 9720 { gen_helper_neon_narrow_sat_s8, 9721 gen_helper_neon_narrow_sat_u8 }, 9722 { gen_helper_neon_narrow_sat_s16, 9723 gen_helper_neon_narrow_sat_u16 }, 9724 { gen_helper_neon_narrow_sat_s32, 9725 gen_helper_neon_narrow_sat_u32 }, 9726 }; 9727 genenvfn = fns[size][u]; 9728 break; 9729 } 9730 case 0x16: /* FCVTN, FCVTN2 */ 9731 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9732 if (size == 2) { 9733 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9734 } else { 9735 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9736 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9737 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9738 TCGv_i32 ahp = get_ahp_flag(); 9739 9740 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9741 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9742 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9743 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9744 } 9745 break; 9746 case 0x36: /* BFCVTN, BFCVTN2 */ 9747 { 9748 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9749 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9750 } 9751 break; 9752 case 0x56: /* FCVTXN, FCVTXN2 */ 9753 /* 64 bit to 32 bit float conversion 9754 * with von Neumann rounding (round to odd) 9755 */ 9756 assert(size == 2); 9757 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9758 break; 9759 default: 9760 g_assert_not_reached(); 9761 } 9762 9763 if (genfn) { 9764 genfn(tcg_res[pass], tcg_op); 9765 } else if (genenvfn) { 9766 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9767 } 9768 } 9769 9770 for (pass = 0; pass < 2; pass++) { 9771 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9772 } 9773 clear_vec_high(s, is_q, rd); 9774 } 9775 9776 /* Remaining saturating accumulating ops */ 9777 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9778 bool is_q, int size, int rn, int rd) 9779 { 9780 bool is_double = (size == 3); 9781 9782 if (is_double) { 9783 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9784 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9785 int pass; 9786 9787 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9788 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9789 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9790 9791 if (is_u) { /* USQADD */ 9792 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9793 } else { /* SUQADD */ 9794 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9795 } 9796 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9797 } 9798 clear_vec_high(s, !is_scalar, rd); 9799 } else { 9800 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9801 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9802 int pass, maxpasses; 9803 9804 if (is_scalar) { 9805 maxpasses = 1; 9806 } else { 9807 maxpasses = is_q ? 4 : 2; 9808 } 9809 9810 for (pass = 0; pass < maxpasses; pass++) { 9811 if (is_scalar) { 9812 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9813 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9814 } else { 9815 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9816 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9817 } 9818 9819 if (is_u) { /* USQADD */ 9820 switch (size) { 9821 case 0: 9822 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9823 break; 9824 case 1: 9825 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9826 break; 9827 case 2: 9828 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9829 break; 9830 default: 9831 g_assert_not_reached(); 9832 } 9833 } else { /* SUQADD */ 9834 switch (size) { 9835 case 0: 9836 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9837 break; 9838 case 1: 9839 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9840 break; 9841 case 2: 9842 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9843 break; 9844 default: 9845 g_assert_not_reached(); 9846 } 9847 } 9848 9849 if (is_scalar) { 9850 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9851 } 9852 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9853 } 9854 clear_vec_high(s, is_q, rd); 9855 } 9856 } 9857 9858 /* AdvSIMD scalar two reg misc 9859 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9860 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9861 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9862 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9863 */ 9864 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9865 { 9866 int rd = extract32(insn, 0, 5); 9867 int rn = extract32(insn, 5, 5); 9868 int opcode = extract32(insn, 12, 5); 9869 int size = extract32(insn, 22, 2); 9870 bool u = extract32(insn, 29, 1); 9871 bool is_fcvt = false; 9872 int rmode; 9873 TCGv_i32 tcg_rmode; 9874 TCGv_ptr tcg_fpstatus; 9875 9876 switch (opcode) { 9877 case 0x3: /* USQADD / SUQADD*/ 9878 if (!fp_access_check(s)) { 9879 return; 9880 } 9881 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9882 return; 9883 case 0x7: /* SQABS / SQNEG */ 9884 break; 9885 case 0xa: /* CMLT */ 9886 if (u) { 9887 unallocated_encoding(s); 9888 return; 9889 } 9890 /* fall through */ 9891 case 0x8: /* CMGT, CMGE */ 9892 case 0x9: /* CMEQ, CMLE */ 9893 case 0xb: /* ABS, NEG */ 9894 if (size != 3) { 9895 unallocated_encoding(s); 9896 return; 9897 } 9898 break; 9899 case 0x12: /* SQXTUN */ 9900 if (!u) { 9901 unallocated_encoding(s); 9902 return; 9903 } 9904 /* fall through */ 9905 case 0x14: /* SQXTN, UQXTN */ 9906 if (size == 3) { 9907 unallocated_encoding(s); 9908 return; 9909 } 9910 if (!fp_access_check(s)) { 9911 return; 9912 } 9913 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9914 return; 9915 case 0xc ... 0xf: 9916 case 0x16 ... 0x1d: 9917 case 0x1f: 9918 /* Floating point: U, size[1] and opcode indicate operation; 9919 * size[0] indicates single or double precision. 9920 */ 9921 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9922 size = extract32(size, 0, 1) ? 3 : 2; 9923 switch (opcode) { 9924 case 0x2c: /* FCMGT (zero) */ 9925 case 0x2d: /* FCMEQ (zero) */ 9926 case 0x2e: /* FCMLT (zero) */ 9927 case 0x6c: /* FCMGE (zero) */ 9928 case 0x6d: /* FCMLE (zero) */ 9929 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9930 return; 9931 case 0x1d: /* SCVTF */ 9932 case 0x5d: /* UCVTF */ 9933 { 9934 bool is_signed = (opcode == 0x1d); 9935 if (!fp_access_check(s)) { 9936 return; 9937 } 9938 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9939 return; 9940 } 9941 case 0x3d: /* FRECPE */ 9942 case 0x3f: /* FRECPX */ 9943 case 0x7d: /* FRSQRTE */ 9944 if (!fp_access_check(s)) { 9945 return; 9946 } 9947 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9948 return; 9949 case 0x1a: /* FCVTNS */ 9950 case 0x1b: /* FCVTMS */ 9951 case 0x3a: /* FCVTPS */ 9952 case 0x3b: /* FCVTZS */ 9953 case 0x5a: /* FCVTNU */ 9954 case 0x5b: /* FCVTMU */ 9955 case 0x7a: /* FCVTPU */ 9956 case 0x7b: /* FCVTZU */ 9957 is_fcvt = true; 9958 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9959 break; 9960 case 0x1c: /* FCVTAS */ 9961 case 0x5c: /* FCVTAU */ 9962 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9963 is_fcvt = true; 9964 rmode = FPROUNDING_TIEAWAY; 9965 break; 9966 case 0x56: /* FCVTXN, FCVTXN2 */ 9967 if (size == 2) { 9968 unallocated_encoding(s); 9969 return; 9970 } 9971 if (!fp_access_check(s)) { 9972 return; 9973 } 9974 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9975 return; 9976 default: 9977 unallocated_encoding(s); 9978 return; 9979 } 9980 break; 9981 default: 9982 unallocated_encoding(s); 9983 return; 9984 } 9985 9986 if (!fp_access_check(s)) { 9987 return; 9988 } 9989 9990 if (is_fcvt) { 9991 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9992 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9993 } else { 9994 tcg_fpstatus = NULL; 9995 tcg_rmode = NULL; 9996 } 9997 9998 if (size == 3) { 9999 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10000 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10001 10002 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10003 write_fp_dreg(s, rd, tcg_rd); 10004 } else { 10005 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10006 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10007 10008 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10009 10010 switch (opcode) { 10011 case 0x7: /* SQABS, SQNEG */ 10012 { 10013 NeonGenOneOpEnvFn *genfn; 10014 static NeonGenOneOpEnvFn * const fns[3][2] = { 10015 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10016 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10017 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10018 }; 10019 genfn = fns[size][u]; 10020 genfn(tcg_rd, tcg_env, tcg_rn); 10021 break; 10022 } 10023 case 0x1a: /* FCVTNS */ 10024 case 0x1b: /* FCVTMS */ 10025 case 0x1c: /* FCVTAS */ 10026 case 0x3a: /* FCVTPS */ 10027 case 0x3b: /* FCVTZS */ 10028 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10029 tcg_fpstatus); 10030 break; 10031 case 0x5a: /* FCVTNU */ 10032 case 0x5b: /* FCVTMU */ 10033 case 0x5c: /* FCVTAU */ 10034 case 0x7a: /* FCVTPU */ 10035 case 0x7b: /* FCVTZU */ 10036 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10037 tcg_fpstatus); 10038 break; 10039 default: 10040 g_assert_not_reached(); 10041 } 10042 10043 write_fp_sreg(s, rd, tcg_rd); 10044 } 10045 10046 if (is_fcvt) { 10047 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10048 } 10049 } 10050 10051 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10052 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10053 int immh, int immb, int opcode, int rn, int rd) 10054 { 10055 int size = 32 - clz32(immh) - 1; 10056 int immhb = immh << 3 | immb; 10057 int shift = 2 * (8 << size) - immhb; 10058 GVecGen2iFn *gvec_fn; 10059 10060 if (extract32(immh, 3, 1) && !is_q) { 10061 unallocated_encoding(s); 10062 return; 10063 } 10064 tcg_debug_assert(size <= 3); 10065 10066 if (!fp_access_check(s)) { 10067 return; 10068 } 10069 10070 switch (opcode) { 10071 case 0x02: /* SSRA / USRA (accumulate) */ 10072 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10073 break; 10074 10075 case 0x08: /* SRI */ 10076 gvec_fn = gen_gvec_sri; 10077 break; 10078 10079 case 0x00: /* SSHR / USHR */ 10080 if (is_u) { 10081 if (shift == 8 << size) { 10082 /* Shift count the same size as element size produces zero. */ 10083 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10084 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10085 return; 10086 } 10087 gvec_fn = tcg_gen_gvec_shri; 10088 } else { 10089 /* Shift count the same size as element size produces all sign. */ 10090 if (shift == 8 << size) { 10091 shift -= 1; 10092 } 10093 gvec_fn = tcg_gen_gvec_sari; 10094 } 10095 break; 10096 10097 case 0x04: /* SRSHR / URSHR (rounding) */ 10098 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10099 break; 10100 10101 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10102 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10103 break; 10104 10105 default: 10106 g_assert_not_reached(); 10107 } 10108 10109 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10110 } 10111 10112 /* SHL/SLI - Vector shift left */ 10113 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10114 int immh, int immb, int opcode, int rn, int rd) 10115 { 10116 int size = 32 - clz32(immh) - 1; 10117 int immhb = immh << 3 | immb; 10118 int shift = immhb - (8 << size); 10119 10120 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10121 assert(size >= 0 && size <= 3); 10122 10123 if (extract32(immh, 3, 1) && !is_q) { 10124 unallocated_encoding(s); 10125 return; 10126 } 10127 10128 if (!fp_access_check(s)) { 10129 return; 10130 } 10131 10132 if (insert) { 10133 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10134 } else { 10135 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10136 } 10137 } 10138 10139 /* USHLL/SHLL - Vector shift left with widening */ 10140 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10141 int immh, int immb, int opcode, int rn, int rd) 10142 { 10143 int size = 32 - clz32(immh) - 1; 10144 int immhb = immh << 3 | immb; 10145 int shift = immhb - (8 << size); 10146 int dsize = 64; 10147 int esize = 8 << size; 10148 int elements = dsize/esize; 10149 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10150 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10151 int i; 10152 10153 if (size >= 3) { 10154 unallocated_encoding(s); 10155 return; 10156 } 10157 10158 if (!fp_access_check(s)) { 10159 return; 10160 } 10161 10162 /* For the LL variants the store is larger than the load, 10163 * so if rd == rn we would overwrite parts of our input. 10164 * So load everything right now and use shifts in the main loop. 10165 */ 10166 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10167 10168 for (i = 0; i < elements; i++) { 10169 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10170 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10171 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10172 write_vec_element(s, tcg_rd, rd, i, size + 1); 10173 } 10174 } 10175 10176 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10177 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10178 int immh, int immb, int opcode, int rn, int rd) 10179 { 10180 int immhb = immh << 3 | immb; 10181 int size = 32 - clz32(immh) - 1; 10182 int dsize = 64; 10183 int esize = 8 << size; 10184 int elements = dsize/esize; 10185 int shift = (2 * esize) - immhb; 10186 bool round = extract32(opcode, 0, 1); 10187 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10188 TCGv_i64 tcg_round; 10189 int i; 10190 10191 if (extract32(immh, 3, 1)) { 10192 unallocated_encoding(s); 10193 return; 10194 } 10195 10196 if (!fp_access_check(s)) { 10197 return; 10198 } 10199 10200 tcg_rn = tcg_temp_new_i64(); 10201 tcg_rd = tcg_temp_new_i64(); 10202 tcg_final = tcg_temp_new_i64(); 10203 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10204 10205 if (round) { 10206 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10207 } else { 10208 tcg_round = NULL; 10209 } 10210 10211 for (i = 0; i < elements; i++) { 10212 read_vec_element(s, tcg_rn, rn, i, size+1); 10213 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10214 false, true, size+1, shift); 10215 10216 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10217 } 10218 10219 if (!is_q) { 10220 write_vec_element(s, tcg_final, rd, 0, MO_64); 10221 } else { 10222 write_vec_element(s, tcg_final, rd, 1, MO_64); 10223 } 10224 10225 clear_vec_high(s, is_q, rd); 10226 } 10227 10228 10229 /* AdvSIMD shift by immediate 10230 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10231 * +---+---+---+-------------+------+------+--------+---+------+------+ 10232 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10233 * +---+---+---+-------------+------+------+--------+---+------+------+ 10234 */ 10235 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10236 { 10237 int rd = extract32(insn, 0, 5); 10238 int rn = extract32(insn, 5, 5); 10239 int opcode = extract32(insn, 11, 5); 10240 int immb = extract32(insn, 16, 3); 10241 int immh = extract32(insn, 19, 4); 10242 bool is_u = extract32(insn, 29, 1); 10243 bool is_q = extract32(insn, 30, 1); 10244 10245 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10246 assert(immh != 0); 10247 10248 switch (opcode) { 10249 case 0x08: /* SRI */ 10250 if (!is_u) { 10251 unallocated_encoding(s); 10252 return; 10253 } 10254 /* fall through */ 10255 case 0x00: /* SSHR / USHR */ 10256 case 0x02: /* SSRA / USRA (accumulate) */ 10257 case 0x04: /* SRSHR / URSHR (rounding) */ 10258 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10259 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10260 break; 10261 case 0x0a: /* SHL / SLI */ 10262 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10263 break; 10264 case 0x10: /* SHRN */ 10265 case 0x11: /* RSHRN / SQRSHRUN */ 10266 if (is_u) { 10267 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10268 opcode, rn, rd); 10269 } else { 10270 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10271 } 10272 break; 10273 case 0x12: /* SQSHRN / UQSHRN */ 10274 case 0x13: /* SQRSHRN / UQRSHRN */ 10275 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10276 opcode, rn, rd); 10277 break; 10278 case 0x14: /* SSHLL / USHLL */ 10279 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10280 break; 10281 case 0x1c: /* SCVTF / UCVTF */ 10282 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10283 opcode, rn, rd); 10284 break; 10285 case 0xc: /* SQSHLU */ 10286 if (!is_u) { 10287 unallocated_encoding(s); 10288 return; 10289 } 10290 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10291 break; 10292 case 0xe: /* SQSHL, UQSHL */ 10293 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10294 break; 10295 case 0x1f: /* FCVTZS/ FCVTZU */ 10296 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10297 return; 10298 default: 10299 unallocated_encoding(s); 10300 return; 10301 } 10302 } 10303 10304 /* Generate code to do a "long" addition or subtraction, ie one done in 10305 * TCGv_i64 on vector lanes twice the width specified by size. 10306 */ 10307 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10308 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10309 { 10310 static NeonGenTwo64OpFn * const fns[3][2] = { 10311 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10312 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10313 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10314 }; 10315 NeonGenTwo64OpFn *genfn; 10316 assert(size < 3); 10317 10318 genfn = fns[size][is_sub]; 10319 genfn(tcg_res, tcg_op1, tcg_op2); 10320 } 10321 10322 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10323 int opcode, int rd, int rn, int rm) 10324 { 10325 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10326 TCGv_i64 tcg_res[2]; 10327 int pass, accop; 10328 10329 tcg_res[0] = tcg_temp_new_i64(); 10330 tcg_res[1] = tcg_temp_new_i64(); 10331 10332 /* Does this op do an adding accumulate, a subtracting accumulate, 10333 * or no accumulate at all? 10334 */ 10335 switch (opcode) { 10336 case 5: 10337 case 8: 10338 case 9: 10339 accop = 1; 10340 break; 10341 case 10: 10342 case 11: 10343 accop = -1; 10344 break; 10345 default: 10346 accop = 0; 10347 break; 10348 } 10349 10350 if (accop != 0) { 10351 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10352 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10353 } 10354 10355 /* size == 2 means two 32x32->64 operations; this is worth special 10356 * casing because we can generally handle it inline. 10357 */ 10358 if (size == 2) { 10359 for (pass = 0; pass < 2; pass++) { 10360 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10361 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10362 TCGv_i64 tcg_passres; 10363 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10364 10365 int elt = pass + is_q * 2; 10366 10367 read_vec_element(s, tcg_op1, rn, elt, memop); 10368 read_vec_element(s, tcg_op2, rm, elt, memop); 10369 10370 if (accop == 0) { 10371 tcg_passres = tcg_res[pass]; 10372 } else { 10373 tcg_passres = tcg_temp_new_i64(); 10374 } 10375 10376 switch (opcode) { 10377 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10378 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10379 break; 10380 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10381 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10382 break; 10383 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10384 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10385 { 10386 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10387 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10388 10389 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10390 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10391 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10392 tcg_passres, 10393 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10394 break; 10395 } 10396 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10397 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10398 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10399 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10400 break; 10401 case 9: /* SQDMLAL, SQDMLAL2 */ 10402 case 11: /* SQDMLSL, SQDMLSL2 */ 10403 case 13: /* SQDMULL, SQDMULL2 */ 10404 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10405 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10406 tcg_passres, tcg_passres); 10407 break; 10408 default: 10409 g_assert_not_reached(); 10410 } 10411 10412 if (opcode == 9 || opcode == 11) { 10413 /* saturating accumulate ops */ 10414 if (accop < 0) { 10415 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10416 } 10417 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10418 tcg_res[pass], tcg_passres); 10419 } else if (accop > 0) { 10420 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10421 } else if (accop < 0) { 10422 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10423 } 10424 } 10425 } else { 10426 /* size 0 or 1, generally helper functions */ 10427 for (pass = 0; pass < 2; pass++) { 10428 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10429 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10430 TCGv_i64 tcg_passres; 10431 int elt = pass + is_q * 2; 10432 10433 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10434 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10435 10436 if (accop == 0) { 10437 tcg_passres = tcg_res[pass]; 10438 } else { 10439 tcg_passres = tcg_temp_new_i64(); 10440 } 10441 10442 switch (opcode) { 10443 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10444 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10445 { 10446 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10447 static NeonGenWidenFn * const widenfns[2][2] = { 10448 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10449 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10450 }; 10451 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10452 10453 widenfn(tcg_op2_64, tcg_op2); 10454 widenfn(tcg_passres, tcg_op1); 10455 gen_neon_addl(size, (opcode == 2), tcg_passres, 10456 tcg_passres, tcg_op2_64); 10457 break; 10458 } 10459 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10460 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10461 if (size == 0) { 10462 if (is_u) { 10463 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10464 } else { 10465 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10466 } 10467 } else { 10468 if (is_u) { 10469 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10470 } else { 10471 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10472 } 10473 } 10474 break; 10475 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10476 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10477 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10478 if (size == 0) { 10479 if (is_u) { 10480 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10481 } else { 10482 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10483 } 10484 } else { 10485 if (is_u) { 10486 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10487 } else { 10488 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10489 } 10490 } 10491 break; 10492 case 9: /* SQDMLAL, SQDMLAL2 */ 10493 case 11: /* SQDMLSL, SQDMLSL2 */ 10494 case 13: /* SQDMULL, SQDMULL2 */ 10495 assert(size == 1); 10496 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10497 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10498 tcg_passres, tcg_passres); 10499 break; 10500 default: 10501 g_assert_not_reached(); 10502 } 10503 10504 if (accop != 0) { 10505 if (opcode == 9 || opcode == 11) { 10506 /* saturating accumulate ops */ 10507 if (accop < 0) { 10508 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10509 } 10510 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10511 tcg_res[pass], 10512 tcg_passres); 10513 } else { 10514 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10515 tcg_res[pass], tcg_passres); 10516 } 10517 } 10518 } 10519 } 10520 10521 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10522 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10523 } 10524 10525 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10526 int opcode, int rd, int rn, int rm) 10527 { 10528 TCGv_i64 tcg_res[2]; 10529 int part = is_q ? 2 : 0; 10530 int pass; 10531 10532 for (pass = 0; pass < 2; pass++) { 10533 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10534 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10535 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10536 static NeonGenWidenFn * const widenfns[3][2] = { 10537 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10538 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10539 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10540 }; 10541 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10542 10543 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10544 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10545 widenfn(tcg_op2_wide, tcg_op2); 10546 tcg_res[pass] = tcg_temp_new_i64(); 10547 gen_neon_addl(size, (opcode == 3), 10548 tcg_res[pass], tcg_op1, tcg_op2_wide); 10549 } 10550 10551 for (pass = 0; pass < 2; pass++) { 10552 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10553 } 10554 } 10555 10556 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10557 { 10558 tcg_gen_addi_i64(in, in, 1U << 31); 10559 tcg_gen_extrh_i64_i32(res, in); 10560 } 10561 10562 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10563 int opcode, int rd, int rn, int rm) 10564 { 10565 TCGv_i32 tcg_res[2]; 10566 int part = is_q ? 2 : 0; 10567 int pass; 10568 10569 for (pass = 0; pass < 2; pass++) { 10570 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10571 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10572 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10573 static NeonGenNarrowFn * const narrowfns[3][2] = { 10574 { gen_helper_neon_narrow_high_u8, 10575 gen_helper_neon_narrow_round_high_u8 }, 10576 { gen_helper_neon_narrow_high_u16, 10577 gen_helper_neon_narrow_round_high_u16 }, 10578 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10579 }; 10580 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10581 10582 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10583 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10584 10585 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10586 10587 tcg_res[pass] = tcg_temp_new_i32(); 10588 gennarrow(tcg_res[pass], tcg_wideres); 10589 } 10590 10591 for (pass = 0; pass < 2; pass++) { 10592 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10593 } 10594 clear_vec_high(s, is_q, rd); 10595 } 10596 10597 /* AdvSIMD three different 10598 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10599 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10600 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10601 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10602 */ 10603 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10604 { 10605 /* Instructions in this group fall into three basic classes 10606 * (in each case with the operation working on each element in 10607 * the input vectors): 10608 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10609 * 128 bit input) 10610 * (2) wide 64 x 128 -> 128 10611 * (3) narrowing 128 x 128 -> 64 10612 * Here we do initial decode, catch unallocated cases and 10613 * dispatch to separate functions for each class. 10614 */ 10615 int is_q = extract32(insn, 30, 1); 10616 int is_u = extract32(insn, 29, 1); 10617 int size = extract32(insn, 22, 2); 10618 int opcode = extract32(insn, 12, 4); 10619 int rm = extract32(insn, 16, 5); 10620 int rn = extract32(insn, 5, 5); 10621 int rd = extract32(insn, 0, 5); 10622 10623 switch (opcode) { 10624 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10625 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10626 /* 64 x 128 -> 128 */ 10627 if (size == 3) { 10628 unallocated_encoding(s); 10629 return; 10630 } 10631 if (!fp_access_check(s)) { 10632 return; 10633 } 10634 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10635 break; 10636 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10637 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10638 /* 128 x 128 -> 64 */ 10639 if (size == 3) { 10640 unallocated_encoding(s); 10641 return; 10642 } 10643 if (!fp_access_check(s)) { 10644 return; 10645 } 10646 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10647 break; 10648 case 14: /* PMULL, PMULL2 */ 10649 if (is_u) { 10650 unallocated_encoding(s); 10651 return; 10652 } 10653 switch (size) { 10654 case 0: /* PMULL.P8 */ 10655 if (!fp_access_check(s)) { 10656 return; 10657 } 10658 /* The Q field specifies lo/hi half input for this insn. */ 10659 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10660 gen_helper_neon_pmull_h); 10661 break; 10662 10663 case 3: /* PMULL.P64 */ 10664 if (!dc_isar_feature(aa64_pmull, s)) { 10665 unallocated_encoding(s); 10666 return; 10667 } 10668 if (!fp_access_check(s)) { 10669 return; 10670 } 10671 /* The Q field specifies lo/hi half input for this insn. */ 10672 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10673 gen_helper_gvec_pmull_q); 10674 break; 10675 10676 default: 10677 unallocated_encoding(s); 10678 break; 10679 } 10680 return; 10681 case 9: /* SQDMLAL, SQDMLAL2 */ 10682 case 11: /* SQDMLSL, SQDMLSL2 */ 10683 case 13: /* SQDMULL, SQDMULL2 */ 10684 if (is_u || size == 0) { 10685 unallocated_encoding(s); 10686 return; 10687 } 10688 /* fall through */ 10689 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10690 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10691 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10692 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10693 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10694 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10695 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10696 /* 64 x 64 -> 128 */ 10697 if (size == 3) { 10698 unallocated_encoding(s); 10699 return; 10700 } 10701 if (!fp_access_check(s)) { 10702 return; 10703 } 10704 10705 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10706 break; 10707 default: 10708 /* opcode 15 not allocated */ 10709 unallocated_encoding(s); 10710 break; 10711 } 10712 } 10713 10714 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10715 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10716 { 10717 int rd = extract32(insn, 0, 5); 10718 int rn = extract32(insn, 5, 5); 10719 int rm = extract32(insn, 16, 5); 10720 int size = extract32(insn, 22, 2); 10721 bool is_u = extract32(insn, 29, 1); 10722 bool is_q = extract32(insn, 30, 1); 10723 10724 if (!fp_access_check(s)) { 10725 return; 10726 } 10727 10728 switch (size + 4 * is_u) { 10729 case 0: /* AND */ 10730 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10731 return; 10732 case 1: /* BIC */ 10733 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10734 return; 10735 case 2: /* ORR */ 10736 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10737 return; 10738 case 3: /* ORN */ 10739 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10740 return; 10741 case 4: /* EOR */ 10742 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10743 return; 10744 10745 case 5: /* BSL bitwise select */ 10746 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10747 return; 10748 case 6: /* BIT, bitwise insert if true */ 10749 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10750 return; 10751 case 7: /* BIF, bitwise insert if false */ 10752 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10753 return; 10754 10755 default: 10756 g_assert_not_reached(); 10757 } 10758 } 10759 10760 /* Pairwise op subgroup of C3.6.16. 10761 * 10762 * This is called directly or via the handle_3same_float for float pairwise 10763 * operations where the opcode and size are calculated differently. 10764 */ 10765 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10766 int size, int rn, int rm, int rd) 10767 { 10768 TCGv_ptr fpst; 10769 int pass; 10770 10771 /* Floating point operations need fpst */ 10772 if (opcode >= 0x58) { 10773 fpst = fpstatus_ptr(FPST_FPCR); 10774 } else { 10775 fpst = NULL; 10776 } 10777 10778 if (!fp_access_check(s)) { 10779 return; 10780 } 10781 10782 /* These operations work on the concatenated rm:rn, with each pair of 10783 * adjacent elements being operated on to produce an element in the result. 10784 */ 10785 if (size == 3) { 10786 TCGv_i64 tcg_res[2]; 10787 10788 for (pass = 0; pass < 2; pass++) { 10789 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10790 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10791 int passreg = (pass == 0) ? rn : rm; 10792 10793 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10794 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10795 tcg_res[pass] = tcg_temp_new_i64(); 10796 10797 switch (opcode) { 10798 case 0x17: /* ADDP */ 10799 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10800 break; 10801 case 0x58: /* FMAXNMP */ 10802 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10803 break; 10804 case 0x5a: /* FADDP */ 10805 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10806 break; 10807 case 0x5e: /* FMAXP */ 10808 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10809 break; 10810 case 0x78: /* FMINNMP */ 10811 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10812 break; 10813 case 0x7e: /* FMINP */ 10814 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10815 break; 10816 default: 10817 g_assert_not_reached(); 10818 } 10819 } 10820 10821 for (pass = 0; pass < 2; pass++) { 10822 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10823 } 10824 } else { 10825 int maxpass = is_q ? 4 : 2; 10826 TCGv_i32 tcg_res[4]; 10827 10828 for (pass = 0; pass < maxpass; pass++) { 10829 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10830 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10831 NeonGenTwoOpFn *genfn = NULL; 10832 int passreg = pass < (maxpass / 2) ? rn : rm; 10833 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10834 10835 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10836 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10837 tcg_res[pass] = tcg_temp_new_i32(); 10838 10839 switch (opcode) { 10840 case 0x17: /* ADDP */ 10841 { 10842 static NeonGenTwoOpFn * const fns[3] = { 10843 gen_helper_neon_padd_u8, 10844 gen_helper_neon_padd_u16, 10845 tcg_gen_add_i32, 10846 }; 10847 genfn = fns[size]; 10848 break; 10849 } 10850 case 0x14: /* SMAXP, UMAXP */ 10851 { 10852 static NeonGenTwoOpFn * const fns[3][2] = { 10853 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10854 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10855 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10856 }; 10857 genfn = fns[size][u]; 10858 break; 10859 } 10860 case 0x15: /* SMINP, UMINP */ 10861 { 10862 static NeonGenTwoOpFn * const fns[3][2] = { 10863 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10864 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10865 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10866 }; 10867 genfn = fns[size][u]; 10868 break; 10869 } 10870 /* The FP operations are all on single floats (32 bit) */ 10871 case 0x58: /* FMAXNMP */ 10872 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10873 break; 10874 case 0x5a: /* FADDP */ 10875 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10876 break; 10877 case 0x5e: /* FMAXP */ 10878 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10879 break; 10880 case 0x78: /* FMINNMP */ 10881 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10882 break; 10883 case 0x7e: /* FMINP */ 10884 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10885 break; 10886 default: 10887 g_assert_not_reached(); 10888 } 10889 10890 /* FP ops called directly, otherwise call now */ 10891 if (genfn) { 10892 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10893 } 10894 } 10895 10896 for (pass = 0; pass < maxpass; pass++) { 10897 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10898 } 10899 clear_vec_high(s, is_q, rd); 10900 } 10901 } 10902 10903 /* Floating point op subgroup of C3.6.16. */ 10904 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10905 { 10906 /* For floating point ops, the U, size[1] and opcode bits 10907 * together indicate the operation. size[0] indicates single 10908 * or double. 10909 */ 10910 int fpopcode = extract32(insn, 11, 5) 10911 | (extract32(insn, 23, 1) << 5) 10912 | (extract32(insn, 29, 1) << 6); 10913 int is_q = extract32(insn, 30, 1); 10914 int size = extract32(insn, 22, 1); 10915 int rm = extract32(insn, 16, 5); 10916 int rn = extract32(insn, 5, 5); 10917 int rd = extract32(insn, 0, 5); 10918 10919 int datasize = is_q ? 128 : 64; 10920 int esize = 32 << size; 10921 int elements = datasize / esize; 10922 10923 if (size == 1 && !is_q) { 10924 unallocated_encoding(s); 10925 return; 10926 } 10927 10928 switch (fpopcode) { 10929 case 0x58: /* FMAXNMP */ 10930 case 0x5a: /* FADDP */ 10931 case 0x5e: /* FMAXP */ 10932 case 0x78: /* FMINNMP */ 10933 case 0x7e: /* FMINP */ 10934 if (size && !is_q) { 10935 unallocated_encoding(s); 10936 return; 10937 } 10938 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10939 rn, rm, rd); 10940 return; 10941 case 0x1b: /* FMULX */ 10942 case 0x1f: /* FRECPS */ 10943 case 0x3f: /* FRSQRTS */ 10944 case 0x5d: /* FACGE */ 10945 case 0x7d: /* FACGT */ 10946 case 0x19: /* FMLA */ 10947 case 0x39: /* FMLS */ 10948 case 0x18: /* FMAXNM */ 10949 case 0x1a: /* FADD */ 10950 case 0x1c: /* FCMEQ */ 10951 case 0x1e: /* FMAX */ 10952 case 0x38: /* FMINNM */ 10953 case 0x3a: /* FSUB */ 10954 case 0x3e: /* FMIN */ 10955 case 0x5b: /* FMUL */ 10956 case 0x5c: /* FCMGE */ 10957 case 0x5f: /* FDIV */ 10958 case 0x7a: /* FABD */ 10959 case 0x7c: /* FCMGT */ 10960 if (!fp_access_check(s)) { 10961 return; 10962 } 10963 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10964 return; 10965 10966 case 0x1d: /* FMLAL */ 10967 case 0x3d: /* FMLSL */ 10968 case 0x59: /* FMLAL2 */ 10969 case 0x79: /* FMLSL2 */ 10970 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10971 unallocated_encoding(s); 10972 return; 10973 } 10974 if (fp_access_check(s)) { 10975 int is_s = extract32(insn, 23, 1); 10976 int is_2 = extract32(insn, 29, 1); 10977 int data = (is_2 << 1) | is_s; 10978 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10979 vec_full_reg_offset(s, rn), 10980 vec_full_reg_offset(s, rm), tcg_env, 10981 is_q ? 16 : 8, vec_full_reg_size(s), 10982 data, gen_helper_gvec_fmlal_a64); 10983 } 10984 return; 10985 10986 default: 10987 unallocated_encoding(s); 10988 return; 10989 } 10990 } 10991 10992 /* Integer op subgroup of C3.6.16. */ 10993 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10994 { 10995 int is_q = extract32(insn, 30, 1); 10996 int u = extract32(insn, 29, 1); 10997 int size = extract32(insn, 22, 2); 10998 int opcode = extract32(insn, 11, 5); 10999 int rm = extract32(insn, 16, 5); 11000 int rn = extract32(insn, 5, 5); 11001 int rd = extract32(insn, 0, 5); 11002 int pass; 11003 TCGCond cond; 11004 11005 switch (opcode) { 11006 case 0x13: /* MUL, PMUL */ 11007 if (u && size != 0) { 11008 unallocated_encoding(s); 11009 return; 11010 } 11011 /* fall through */ 11012 case 0x0: /* SHADD, UHADD */ 11013 case 0x2: /* SRHADD, URHADD */ 11014 case 0x4: /* SHSUB, UHSUB */ 11015 case 0xc: /* SMAX, UMAX */ 11016 case 0xd: /* SMIN, UMIN */ 11017 case 0xe: /* SABD, UABD */ 11018 case 0xf: /* SABA, UABA */ 11019 case 0x12: /* MLA, MLS */ 11020 if (size == 3) { 11021 unallocated_encoding(s); 11022 return; 11023 } 11024 break; 11025 case 0x16: /* SQDMULH, SQRDMULH */ 11026 if (size == 0 || size == 3) { 11027 unallocated_encoding(s); 11028 return; 11029 } 11030 break; 11031 default: 11032 if (size == 3 && !is_q) { 11033 unallocated_encoding(s); 11034 return; 11035 } 11036 break; 11037 } 11038 11039 if (!fp_access_check(s)) { 11040 return; 11041 } 11042 11043 switch (opcode) { 11044 case 0x01: /* SQADD, UQADD */ 11045 if (u) { 11046 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11047 } else { 11048 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11049 } 11050 return; 11051 case 0x05: /* SQSUB, UQSUB */ 11052 if (u) { 11053 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11054 } else { 11055 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11056 } 11057 return; 11058 case 0x08: /* SSHL, USHL */ 11059 if (u) { 11060 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11061 } else { 11062 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11063 } 11064 return; 11065 case 0x0c: /* SMAX, UMAX */ 11066 if (u) { 11067 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11068 } else { 11069 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11070 } 11071 return; 11072 case 0x0d: /* SMIN, UMIN */ 11073 if (u) { 11074 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11075 } else { 11076 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11077 } 11078 return; 11079 case 0xe: /* SABD, UABD */ 11080 if (u) { 11081 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11082 } else { 11083 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11084 } 11085 return; 11086 case 0xf: /* SABA, UABA */ 11087 if (u) { 11088 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11089 } else { 11090 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11091 } 11092 return; 11093 case 0x10: /* ADD, SUB */ 11094 if (u) { 11095 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11096 } else { 11097 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11098 } 11099 return; 11100 case 0x13: /* MUL, PMUL */ 11101 if (!u) { /* MUL */ 11102 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11103 } else { /* PMUL */ 11104 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11105 } 11106 return; 11107 case 0x12: /* MLA, MLS */ 11108 if (u) { 11109 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11110 } else { 11111 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11112 } 11113 return; 11114 case 0x16: /* SQDMULH, SQRDMULH */ 11115 { 11116 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11117 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11118 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11119 }; 11120 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11121 } 11122 return; 11123 case 0x11: 11124 if (!u) { /* CMTST */ 11125 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11126 return; 11127 } 11128 /* else CMEQ */ 11129 cond = TCG_COND_EQ; 11130 goto do_gvec_cmp; 11131 case 0x06: /* CMGT, CMHI */ 11132 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11133 goto do_gvec_cmp; 11134 case 0x07: /* CMGE, CMHS */ 11135 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11136 do_gvec_cmp: 11137 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11138 vec_full_reg_offset(s, rn), 11139 vec_full_reg_offset(s, rm), 11140 is_q ? 16 : 8, vec_full_reg_size(s)); 11141 return; 11142 } 11143 11144 if (size == 3) { 11145 assert(is_q); 11146 for (pass = 0; pass < 2; pass++) { 11147 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11148 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11149 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11150 11151 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11152 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11153 11154 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11155 11156 write_vec_element(s, tcg_res, rd, pass, MO_64); 11157 } 11158 } else { 11159 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11160 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11161 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11162 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11163 NeonGenTwoOpFn *genfn = NULL; 11164 NeonGenTwoOpEnvFn *genenvfn = NULL; 11165 11166 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11167 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11168 11169 switch (opcode) { 11170 case 0x0: /* SHADD, UHADD */ 11171 { 11172 static NeonGenTwoOpFn * const fns[3][2] = { 11173 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11174 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11175 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11176 }; 11177 genfn = fns[size][u]; 11178 break; 11179 } 11180 case 0x2: /* SRHADD, URHADD */ 11181 { 11182 static NeonGenTwoOpFn * const fns[3][2] = { 11183 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11184 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11185 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11186 }; 11187 genfn = fns[size][u]; 11188 break; 11189 } 11190 case 0x4: /* SHSUB, UHSUB */ 11191 { 11192 static NeonGenTwoOpFn * const fns[3][2] = { 11193 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11194 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11195 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11196 }; 11197 genfn = fns[size][u]; 11198 break; 11199 } 11200 case 0x9: /* SQSHL, UQSHL */ 11201 { 11202 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11203 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11204 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11205 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11206 }; 11207 genenvfn = fns[size][u]; 11208 break; 11209 } 11210 case 0xa: /* SRSHL, URSHL */ 11211 { 11212 static NeonGenTwoOpFn * const fns[3][2] = { 11213 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11214 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11215 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11216 }; 11217 genfn = fns[size][u]; 11218 break; 11219 } 11220 case 0xb: /* SQRSHL, UQRSHL */ 11221 { 11222 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11223 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11224 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11225 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11226 }; 11227 genenvfn = fns[size][u]; 11228 break; 11229 } 11230 default: 11231 g_assert_not_reached(); 11232 } 11233 11234 if (genenvfn) { 11235 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11236 } else { 11237 genfn(tcg_res, tcg_op1, tcg_op2); 11238 } 11239 11240 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11241 } 11242 } 11243 clear_vec_high(s, is_q, rd); 11244 } 11245 11246 /* AdvSIMD three same 11247 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11248 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11249 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11250 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11251 */ 11252 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11253 { 11254 int opcode = extract32(insn, 11, 5); 11255 11256 switch (opcode) { 11257 case 0x3: /* logic ops */ 11258 disas_simd_3same_logic(s, insn); 11259 break; 11260 case 0x17: /* ADDP */ 11261 case 0x14: /* SMAXP, UMAXP */ 11262 case 0x15: /* SMINP, UMINP */ 11263 { 11264 /* Pairwise operations */ 11265 int is_q = extract32(insn, 30, 1); 11266 int u = extract32(insn, 29, 1); 11267 int size = extract32(insn, 22, 2); 11268 int rm = extract32(insn, 16, 5); 11269 int rn = extract32(insn, 5, 5); 11270 int rd = extract32(insn, 0, 5); 11271 if (opcode == 0x17) { 11272 if (u || (size == 3 && !is_q)) { 11273 unallocated_encoding(s); 11274 return; 11275 } 11276 } else { 11277 if (size == 3) { 11278 unallocated_encoding(s); 11279 return; 11280 } 11281 } 11282 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11283 break; 11284 } 11285 case 0x18 ... 0x31: 11286 /* floating point ops, sz[1] and U are part of opcode */ 11287 disas_simd_3same_float(s, insn); 11288 break; 11289 default: 11290 disas_simd_3same_int(s, insn); 11291 break; 11292 } 11293 } 11294 11295 /* 11296 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11297 * 11298 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11299 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11300 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11301 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11302 * 11303 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11304 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11305 * 11306 */ 11307 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11308 { 11309 int opcode = extract32(insn, 11, 3); 11310 int u = extract32(insn, 29, 1); 11311 int a = extract32(insn, 23, 1); 11312 int is_q = extract32(insn, 30, 1); 11313 int rm = extract32(insn, 16, 5); 11314 int rn = extract32(insn, 5, 5); 11315 int rd = extract32(insn, 0, 5); 11316 /* 11317 * For these floating point ops, the U, a and opcode bits 11318 * together indicate the operation. 11319 */ 11320 int fpopcode = opcode | (a << 3) | (u << 4); 11321 int datasize = is_q ? 128 : 64; 11322 int elements = datasize / 16; 11323 bool pairwise; 11324 TCGv_ptr fpst; 11325 int pass; 11326 11327 switch (fpopcode) { 11328 case 0x0: /* FMAXNM */ 11329 case 0x1: /* FMLA */ 11330 case 0x2: /* FADD */ 11331 case 0x3: /* FMULX */ 11332 case 0x4: /* FCMEQ */ 11333 case 0x6: /* FMAX */ 11334 case 0x7: /* FRECPS */ 11335 case 0x8: /* FMINNM */ 11336 case 0x9: /* FMLS */ 11337 case 0xa: /* FSUB */ 11338 case 0xe: /* FMIN */ 11339 case 0xf: /* FRSQRTS */ 11340 case 0x13: /* FMUL */ 11341 case 0x14: /* FCMGE */ 11342 case 0x15: /* FACGE */ 11343 case 0x17: /* FDIV */ 11344 case 0x1a: /* FABD */ 11345 case 0x1c: /* FCMGT */ 11346 case 0x1d: /* FACGT */ 11347 pairwise = false; 11348 break; 11349 case 0x10: /* FMAXNMP */ 11350 case 0x12: /* FADDP */ 11351 case 0x16: /* FMAXP */ 11352 case 0x18: /* FMINNMP */ 11353 case 0x1e: /* FMINP */ 11354 pairwise = true; 11355 break; 11356 default: 11357 unallocated_encoding(s); 11358 return; 11359 } 11360 11361 if (!dc_isar_feature(aa64_fp16, s)) { 11362 unallocated_encoding(s); 11363 return; 11364 } 11365 11366 if (!fp_access_check(s)) { 11367 return; 11368 } 11369 11370 fpst = fpstatus_ptr(FPST_FPCR_F16); 11371 11372 if (pairwise) { 11373 int maxpass = is_q ? 8 : 4; 11374 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11375 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11376 TCGv_i32 tcg_res[8]; 11377 11378 for (pass = 0; pass < maxpass; pass++) { 11379 int passreg = pass < (maxpass / 2) ? rn : rm; 11380 int passelt = (pass << 1) & (maxpass - 1); 11381 11382 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11383 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11384 tcg_res[pass] = tcg_temp_new_i32(); 11385 11386 switch (fpopcode) { 11387 case 0x10: /* FMAXNMP */ 11388 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11389 fpst); 11390 break; 11391 case 0x12: /* FADDP */ 11392 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11393 break; 11394 case 0x16: /* FMAXP */ 11395 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11396 break; 11397 case 0x18: /* FMINNMP */ 11398 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11399 fpst); 11400 break; 11401 case 0x1e: /* FMINP */ 11402 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11403 break; 11404 default: 11405 g_assert_not_reached(); 11406 } 11407 } 11408 11409 for (pass = 0; pass < maxpass; pass++) { 11410 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11411 } 11412 } else { 11413 for (pass = 0; pass < elements; pass++) { 11414 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11415 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11416 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11417 11418 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11419 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11420 11421 switch (fpopcode) { 11422 case 0x0: /* FMAXNM */ 11423 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11424 break; 11425 case 0x1: /* FMLA */ 11426 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11427 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11428 fpst); 11429 break; 11430 case 0x2: /* FADD */ 11431 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11432 break; 11433 case 0x3: /* FMULX */ 11434 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11435 break; 11436 case 0x4: /* FCMEQ */ 11437 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11438 break; 11439 case 0x6: /* FMAX */ 11440 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11441 break; 11442 case 0x7: /* FRECPS */ 11443 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11444 break; 11445 case 0x8: /* FMINNM */ 11446 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11447 break; 11448 case 0x9: /* FMLS */ 11449 /* As usual for ARM, separate negation for fused multiply-add */ 11450 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11451 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11452 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11453 fpst); 11454 break; 11455 case 0xa: /* FSUB */ 11456 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11457 break; 11458 case 0xe: /* FMIN */ 11459 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11460 break; 11461 case 0xf: /* FRSQRTS */ 11462 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11463 break; 11464 case 0x13: /* FMUL */ 11465 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11466 break; 11467 case 0x14: /* FCMGE */ 11468 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11469 break; 11470 case 0x15: /* FACGE */ 11471 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11472 break; 11473 case 0x17: /* FDIV */ 11474 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11475 break; 11476 case 0x1a: /* FABD */ 11477 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11478 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11479 break; 11480 case 0x1c: /* FCMGT */ 11481 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11482 break; 11483 case 0x1d: /* FACGT */ 11484 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11485 break; 11486 default: 11487 g_assert_not_reached(); 11488 } 11489 11490 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11491 } 11492 } 11493 11494 clear_vec_high(s, is_q, rd); 11495 } 11496 11497 /* AdvSIMD three same extra 11498 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11499 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11500 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11501 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11502 */ 11503 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11504 { 11505 int rd = extract32(insn, 0, 5); 11506 int rn = extract32(insn, 5, 5); 11507 int opcode = extract32(insn, 11, 4); 11508 int rm = extract32(insn, 16, 5); 11509 int size = extract32(insn, 22, 2); 11510 bool u = extract32(insn, 29, 1); 11511 bool is_q = extract32(insn, 30, 1); 11512 bool feature; 11513 int rot; 11514 11515 switch (u * 16 + opcode) { 11516 case 0x10: /* SQRDMLAH (vector) */ 11517 case 0x11: /* SQRDMLSH (vector) */ 11518 if (size != 1 && size != 2) { 11519 unallocated_encoding(s); 11520 return; 11521 } 11522 feature = dc_isar_feature(aa64_rdm, s); 11523 break; 11524 case 0x02: /* SDOT (vector) */ 11525 case 0x12: /* UDOT (vector) */ 11526 if (size != MO_32) { 11527 unallocated_encoding(s); 11528 return; 11529 } 11530 feature = dc_isar_feature(aa64_dp, s); 11531 break; 11532 case 0x03: /* USDOT */ 11533 if (size != MO_32) { 11534 unallocated_encoding(s); 11535 return; 11536 } 11537 feature = dc_isar_feature(aa64_i8mm, s); 11538 break; 11539 case 0x04: /* SMMLA */ 11540 case 0x14: /* UMMLA */ 11541 case 0x05: /* USMMLA */ 11542 if (!is_q || size != MO_32) { 11543 unallocated_encoding(s); 11544 return; 11545 } 11546 feature = dc_isar_feature(aa64_i8mm, s); 11547 break; 11548 case 0x18: /* FCMLA, #0 */ 11549 case 0x19: /* FCMLA, #90 */ 11550 case 0x1a: /* FCMLA, #180 */ 11551 case 0x1b: /* FCMLA, #270 */ 11552 case 0x1c: /* FCADD, #90 */ 11553 case 0x1e: /* FCADD, #270 */ 11554 if (size == 0 11555 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11556 || (size == 3 && !is_q)) { 11557 unallocated_encoding(s); 11558 return; 11559 } 11560 feature = dc_isar_feature(aa64_fcma, s); 11561 break; 11562 case 0x1d: /* BFMMLA */ 11563 if (size != MO_16 || !is_q) { 11564 unallocated_encoding(s); 11565 return; 11566 } 11567 feature = dc_isar_feature(aa64_bf16, s); 11568 break; 11569 case 0x1f: 11570 switch (size) { 11571 case 1: /* BFDOT */ 11572 case 3: /* BFMLAL{B,T} */ 11573 feature = dc_isar_feature(aa64_bf16, s); 11574 break; 11575 default: 11576 unallocated_encoding(s); 11577 return; 11578 } 11579 break; 11580 default: 11581 unallocated_encoding(s); 11582 return; 11583 } 11584 if (!feature) { 11585 unallocated_encoding(s); 11586 return; 11587 } 11588 if (!fp_access_check(s)) { 11589 return; 11590 } 11591 11592 switch (opcode) { 11593 case 0x0: /* SQRDMLAH (vector) */ 11594 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11595 return; 11596 11597 case 0x1: /* SQRDMLSH (vector) */ 11598 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11599 return; 11600 11601 case 0x2: /* SDOT / UDOT */ 11602 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11603 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11604 return; 11605 11606 case 0x3: /* USDOT */ 11607 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11608 return; 11609 11610 case 0x04: /* SMMLA, UMMLA */ 11611 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11612 u ? gen_helper_gvec_ummla_b 11613 : gen_helper_gvec_smmla_b); 11614 return; 11615 case 0x05: /* USMMLA */ 11616 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11617 return; 11618 11619 case 0x8: /* FCMLA, #0 */ 11620 case 0x9: /* FCMLA, #90 */ 11621 case 0xa: /* FCMLA, #180 */ 11622 case 0xb: /* FCMLA, #270 */ 11623 rot = extract32(opcode, 0, 2); 11624 switch (size) { 11625 case 1: 11626 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11627 gen_helper_gvec_fcmlah); 11628 break; 11629 case 2: 11630 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11631 gen_helper_gvec_fcmlas); 11632 break; 11633 case 3: 11634 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11635 gen_helper_gvec_fcmlad); 11636 break; 11637 default: 11638 g_assert_not_reached(); 11639 } 11640 return; 11641 11642 case 0xc: /* FCADD, #90 */ 11643 case 0xe: /* FCADD, #270 */ 11644 rot = extract32(opcode, 1, 1); 11645 switch (size) { 11646 case 1: 11647 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11648 gen_helper_gvec_fcaddh); 11649 break; 11650 case 2: 11651 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11652 gen_helper_gvec_fcadds); 11653 break; 11654 case 3: 11655 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11656 gen_helper_gvec_fcaddd); 11657 break; 11658 default: 11659 g_assert_not_reached(); 11660 } 11661 return; 11662 11663 case 0xd: /* BFMMLA */ 11664 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11665 return; 11666 case 0xf: 11667 switch (size) { 11668 case 1: /* BFDOT */ 11669 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11670 break; 11671 case 3: /* BFMLAL{B,T} */ 11672 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11673 gen_helper_gvec_bfmlal); 11674 break; 11675 default: 11676 g_assert_not_reached(); 11677 } 11678 return; 11679 11680 default: 11681 g_assert_not_reached(); 11682 } 11683 } 11684 11685 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11686 int size, int rn, int rd) 11687 { 11688 /* Handle 2-reg-misc ops which are widening (so each size element 11689 * in the source becomes a 2*size element in the destination. 11690 * The only instruction like this is FCVTL. 11691 */ 11692 int pass; 11693 11694 if (size == 3) { 11695 /* 32 -> 64 bit fp conversion */ 11696 TCGv_i64 tcg_res[2]; 11697 int srcelt = is_q ? 2 : 0; 11698 11699 for (pass = 0; pass < 2; pass++) { 11700 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11701 tcg_res[pass] = tcg_temp_new_i64(); 11702 11703 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11704 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11705 } 11706 for (pass = 0; pass < 2; pass++) { 11707 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11708 } 11709 } else { 11710 /* 16 -> 32 bit fp conversion */ 11711 int srcelt = is_q ? 4 : 0; 11712 TCGv_i32 tcg_res[4]; 11713 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11714 TCGv_i32 ahp = get_ahp_flag(); 11715 11716 for (pass = 0; pass < 4; pass++) { 11717 tcg_res[pass] = tcg_temp_new_i32(); 11718 11719 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11720 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11721 fpst, ahp); 11722 } 11723 for (pass = 0; pass < 4; pass++) { 11724 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11725 } 11726 } 11727 } 11728 11729 static void handle_rev(DisasContext *s, int opcode, bool u, 11730 bool is_q, int size, int rn, int rd) 11731 { 11732 int op = (opcode << 1) | u; 11733 int opsz = op + size; 11734 int grp_size = 3 - opsz; 11735 int dsize = is_q ? 128 : 64; 11736 int i; 11737 11738 if (opsz >= 3) { 11739 unallocated_encoding(s); 11740 return; 11741 } 11742 11743 if (!fp_access_check(s)) { 11744 return; 11745 } 11746 11747 if (size == 0) { 11748 /* Special case bytes, use bswap op on each group of elements */ 11749 int groups = dsize / (8 << grp_size); 11750 11751 for (i = 0; i < groups; i++) { 11752 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11753 11754 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11755 switch (grp_size) { 11756 case MO_16: 11757 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11758 break; 11759 case MO_32: 11760 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11761 break; 11762 case MO_64: 11763 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11764 break; 11765 default: 11766 g_assert_not_reached(); 11767 } 11768 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11769 } 11770 clear_vec_high(s, is_q, rd); 11771 } else { 11772 int revmask = (1 << grp_size) - 1; 11773 int esize = 8 << size; 11774 int elements = dsize / esize; 11775 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11776 TCGv_i64 tcg_rd[2]; 11777 11778 for (i = 0; i < 2; i++) { 11779 tcg_rd[i] = tcg_temp_new_i64(); 11780 tcg_gen_movi_i64(tcg_rd[i], 0); 11781 } 11782 11783 for (i = 0; i < elements; i++) { 11784 int e_rev = (i & 0xf) ^ revmask; 11785 int w = (e_rev * esize) / 64; 11786 int o = (e_rev * esize) % 64; 11787 11788 read_vec_element(s, tcg_rn, rn, i, size); 11789 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11790 } 11791 11792 for (i = 0; i < 2; i++) { 11793 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11794 } 11795 clear_vec_high(s, true, rd); 11796 } 11797 } 11798 11799 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11800 bool is_q, int size, int rn, int rd) 11801 { 11802 /* Implement the pairwise operations from 2-misc: 11803 * SADDLP, UADDLP, SADALP, UADALP. 11804 * These all add pairs of elements in the input to produce a 11805 * double-width result element in the output (possibly accumulating). 11806 */ 11807 bool accum = (opcode == 0x6); 11808 int maxpass = is_q ? 2 : 1; 11809 int pass; 11810 TCGv_i64 tcg_res[2]; 11811 11812 if (size == 2) { 11813 /* 32 + 32 -> 64 op */ 11814 MemOp memop = size + (u ? 0 : MO_SIGN); 11815 11816 for (pass = 0; pass < maxpass; pass++) { 11817 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11818 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11819 11820 tcg_res[pass] = tcg_temp_new_i64(); 11821 11822 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11823 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11824 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11825 if (accum) { 11826 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11827 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11828 } 11829 } 11830 } else { 11831 for (pass = 0; pass < maxpass; pass++) { 11832 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11833 NeonGenOne64OpFn *genfn; 11834 static NeonGenOne64OpFn * const fns[2][2] = { 11835 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11836 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11837 }; 11838 11839 genfn = fns[size][u]; 11840 11841 tcg_res[pass] = tcg_temp_new_i64(); 11842 11843 read_vec_element(s, tcg_op, rn, pass, MO_64); 11844 genfn(tcg_res[pass], tcg_op); 11845 11846 if (accum) { 11847 read_vec_element(s, tcg_op, rd, pass, MO_64); 11848 if (size == 0) { 11849 gen_helper_neon_addl_u16(tcg_res[pass], 11850 tcg_res[pass], tcg_op); 11851 } else { 11852 gen_helper_neon_addl_u32(tcg_res[pass], 11853 tcg_res[pass], tcg_op); 11854 } 11855 } 11856 } 11857 } 11858 if (!is_q) { 11859 tcg_res[1] = tcg_constant_i64(0); 11860 } 11861 for (pass = 0; pass < 2; pass++) { 11862 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11863 } 11864 } 11865 11866 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11867 { 11868 /* Implement SHLL and SHLL2 */ 11869 int pass; 11870 int part = is_q ? 2 : 0; 11871 TCGv_i64 tcg_res[2]; 11872 11873 for (pass = 0; pass < 2; pass++) { 11874 static NeonGenWidenFn * const widenfns[3] = { 11875 gen_helper_neon_widen_u8, 11876 gen_helper_neon_widen_u16, 11877 tcg_gen_extu_i32_i64, 11878 }; 11879 NeonGenWidenFn *widenfn = widenfns[size]; 11880 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11881 11882 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11883 tcg_res[pass] = tcg_temp_new_i64(); 11884 widenfn(tcg_res[pass], tcg_op); 11885 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11886 } 11887 11888 for (pass = 0; pass < 2; pass++) { 11889 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11890 } 11891 } 11892 11893 /* AdvSIMD two reg misc 11894 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11895 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11896 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11897 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11898 */ 11899 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11900 { 11901 int size = extract32(insn, 22, 2); 11902 int opcode = extract32(insn, 12, 5); 11903 bool u = extract32(insn, 29, 1); 11904 bool is_q = extract32(insn, 30, 1); 11905 int rn = extract32(insn, 5, 5); 11906 int rd = extract32(insn, 0, 5); 11907 bool need_fpstatus = false; 11908 int rmode = -1; 11909 TCGv_i32 tcg_rmode; 11910 TCGv_ptr tcg_fpstatus; 11911 11912 switch (opcode) { 11913 case 0x0: /* REV64, REV32 */ 11914 case 0x1: /* REV16 */ 11915 handle_rev(s, opcode, u, is_q, size, rn, rd); 11916 return; 11917 case 0x5: /* CNT, NOT, RBIT */ 11918 if (u && size == 0) { 11919 /* NOT */ 11920 break; 11921 } else if (u && size == 1) { 11922 /* RBIT */ 11923 break; 11924 } else if (!u && size == 0) { 11925 /* CNT */ 11926 break; 11927 } 11928 unallocated_encoding(s); 11929 return; 11930 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11931 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11932 if (size == 3) { 11933 unallocated_encoding(s); 11934 return; 11935 } 11936 if (!fp_access_check(s)) { 11937 return; 11938 } 11939 11940 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11941 return; 11942 case 0x4: /* CLS, CLZ */ 11943 if (size == 3) { 11944 unallocated_encoding(s); 11945 return; 11946 } 11947 break; 11948 case 0x2: /* SADDLP, UADDLP */ 11949 case 0x6: /* SADALP, UADALP */ 11950 if (size == 3) { 11951 unallocated_encoding(s); 11952 return; 11953 } 11954 if (!fp_access_check(s)) { 11955 return; 11956 } 11957 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11958 return; 11959 case 0x13: /* SHLL, SHLL2 */ 11960 if (u == 0 || size == 3) { 11961 unallocated_encoding(s); 11962 return; 11963 } 11964 if (!fp_access_check(s)) { 11965 return; 11966 } 11967 handle_shll(s, is_q, size, rn, rd); 11968 return; 11969 case 0xa: /* CMLT */ 11970 if (u == 1) { 11971 unallocated_encoding(s); 11972 return; 11973 } 11974 /* fall through */ 11975 case 0x8: /* CMGT, CMGE */ 11976 case 0x9: /* CMEQ, CMLE */ 11977 case 0xb: /* ABS, NEG */ 11978 if (size == 3 && !is_q) { 11979 unallocated_encoding(s); 11980 return; 11981 } 11982 break; 11983 case 0x3: /* SUQADD, USQADD */ 11984 if (size == 3 && !is_q) { 11985 unallocated_encoding(s); 11986 return; 11987 } 11988 if (!fp_access_check(s)) { 11989 return; 11990 } 11991 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11992 return; 11993 case 0x7: /* SQABS, SQNEG */ 11994 if (size == 3 && !is_q) { 11995 unallocated_encoding(s); 11996 return; 11997 } 11998 break; 11999 case 0xc ... 0xf: 12000 case 0x16 ... 0x1f: 12001 { 12002 /* Floating point: U, size[1] and opcode indicate operation; 12003 * size[0] indicates single or double precision. 12004 */ 12005 int is_double = extract32(size, 0, 1); 12006 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12007 size = is_double ? 3 : 2; 12008 switch (opcode) { 12009 case 0x2f: /* FABS */ 12010 case 0x6f: /* FNEG */ 12011 if (size == 3 && !is_q) { 12012 unallocated_encoding(s); 12013 return; 12014 } 12015 break; 12016 case 0x1d: /* SCVTF */ 12017 case 0x5d: /* UCVTF */ 12018 { 12019 bool is_signed = (opcode == 0x1d) ? true : false; 12020 int elements = is_double ? 2 : is_q ? 4 : 2; 12021 if (is_double && !is_q) { 12022 unallocated_encoding(s); 12023 return; 12024 } 12025 if (!fp_access_check(s)) { 12026 return; 12027 } 12028 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12029 return; 12030 } 12031 case 0x2c: /* FCMGT (zero) */ 12032 case 0x2d: /* FCMEQ (zero) */ 12033 case 0x2e: /* FCMLT (zero) */ 12034 case 0x6c: /* FCMGE (zero) */ 12035 case 0x6d: /* FCMLE (zero) */ 12036 if (size == 3 && !is_q) { 12037 unallocated_encoding(s); 12038 return; 12039 } 12040 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12041 return; 12042 case 0x7f: /* FSQRT */ 12043 if (size == 3 && !is_q) { 12044 unallocated_encoding(s); 12045 return; 12046 } 12047 break; 12048 case 0x1a: /* FCVTNS */ 12049 case 0x1b: /* FCVTMS */ 12050 case 0x3a: /* FCVTPS */ 12051 case 0x3b: /* FCVTZS */ 12052 case 0x5a: /* FCVTNU */ 12053 case 0x5b: /* FCVTMU */ 12054 case 0x7a: /* FCVTPU */ 12055 case 0x7b: /* FCVTZU */ 12056 need_fpstatus = true; 12057 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12058 if (size == 3 && !is_q) { 12059 unallocated_encoding(s); 12060 return; 12061 } 12062 break; 12063 case 0x5c: /* FCVTAU */ 12064 case 0x1c: /* FCVTAS */ 12065 need_fpstatus = true; 12066 rmode = FPROUNDING_TIEAWAY; 12067 if (size == 3 && !is_q) { 12068 unallocated_encoding(s); 12069 return; 12070 } 12071 break; 12072 case 0x3c: /* URECPE */ 12073 if (size == 3) { 12074 unallocated_encoding(s); 12075 return; 12076 } 12077 /* fall through */ 12078 case 0x3d: /* FRECPE */ 12079 case 0x7d: /* FRSQRTE */ 12080 if (size == 3 && !is_q) { 12081 unallocated_encoding(s); 12082 return; 12083 } 12084 if (!fp_access_check(s)) { 12085 return; 12086 } 12087 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12088 return; 12089 case 0x56: /* FCVTXN, FCVTXN2 */ 12090 if (size == 2) { 12091 unallocated_encoding(s); 12092 return; 12093 } 12094 /* fall through */ 12095 case 0x16: /* FCVTN, FCVTN2 */ 12096 /* handle_2misc_narrow does a 2*size -> size operation, but these 12097 * instructions encode the source size rather than dest size. 12098 */ 12099 if (!fp_access_check(s)) { 12100 return; 12101 } 12102 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12103 return; 12104 case 0x36: /* BFCVTN, BFCVTN2 */ 12105 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12106 unallocated_encoding(s); 12107 return; 12108 } 12109 if (!fp_access_check(s)) { 12110 return; 12111 } 12112 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12113 return; 12114 case 0x17: /* FCVTL, FCVTL2 */ 12115 if (!fp_access_check(s)) { 12116 return; 12117 } 12118 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12119 return; 12120 case 0x18: /* FRINTN */ 12121 case 0x19: /* FRINTM */ 12122 case 0x38: /* FRINTP */ 12123 case 0x39: /* FRINTZ */ 12124 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12125 /* fall through */ 12126 case 0x59: /* FRINTX */ 12127 case 0x79: /* FRINTI */ 12128 need_fpstatus = true; 12129 if (size == 3 && !is_q) { 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 break; 12134 case 0x58: /* FRINTA */ 12135 rmode = FPROUNDING_TIEAWAY; 12136 need_fpstatus = true; 12137 if (size == 3 && !is_q) { 12138 unallocated_encoding(s); 12139 return; 12140 } 12141 break; 12142 case 0x7c: /* URSQRTE */ 12143 if (size == 3) { 12144 unallocated_encoding(s); 12145 return; 12146 } 12147 break; 12148 case 0x1e: /* FRINT32Z */ 12149 case 0x1f: /* FRINT64Z */ 12150 rmode = FPROUNDING_ZERO; 12151 /* fall through */ 12152 case 0x5e: /* FRINT32X */ 12153 case 0x5f: /* FRINT64X */ 12154 need_fpstatus = true; 12155 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12156 unallocated_encoding(s); 12157 return; 12158 } 12159 break; 12160 default: 12161 unallocated_encoding(s); 12162 return; 12163 } 12164 break; 12165 } 12166 default: 12167 unallocated_encoding(s); 12168 return; 12169 } 12170 12171 if (!fp_access_check(s)) { 12172 return; 12173 } 12174 12175 if (need_fpstatus || rmode >= 0) { 12176 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12177 } else { 12178 tcg_fpstatus = NULL; 12179 } 12180 if (rmode >= 0) { 12181 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12182 } else { 12183 tcg_rmode = NULL; 12184 } 12185 12186 switch (opcode) { 12187 case 0x5: 12188 if (u && size == 0) { /* NOT */ 12189 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12190 return; 12191 } 12192 break; 12193 case 0x8: /* CMGT, CMGE */ 12194 if (u) { 12195 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12196 } else { 12197 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12198 } 12199 return; 12200 case 0x9: /* CMEQ, CMLE */ 12201 if (u) { 12202 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12203 } else { 12204 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12205 } 12206 return; 12207 case 0xa: /* CMLT */ 12208 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12209 return; 12210 case 0xb: 12211 if (u) { /* ABS, NEG */ 12212 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12213 } else { 12214 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12215 } 12216 return; 12217 } 12218 12219 if (size == 3) { 12220 /* All 64-bit element operations can be shared with scalar 2misc */ 12221 int pass; 12222 12223 /* Coverity claims (size == 3 && !is_q) has been eliminated 12224 * from all paths leading to here. 12225 */ 12226 tcg_debug_assert(is_q); 12227 for (pass = 0; pass < 2; pass++) { 12228 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12229 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12230 12231 read_vec_element(s, tcg_op, rn, pass, MO_64); 12232 12233 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12234 tcg_rmode, tcg_fpstatus); 12235 12236 write_vec_element(s, tcg_res, rd, pass, MO_64); 12237 } 12238 } else { 12239 int pass; 12240 12241 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12242 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12243 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12244 12245 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12246 12247 if (size == 2) { 12248 /* Special cases for 32 bit elements */ 12249 switch (opcode) { 12250 case 0x4: /* CLS */ 12251 if (u) { 12252 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12253 } else { 12254 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12255 } 12256 break; 12257 case 0x7: /* SQABS, SQNEG */ 12258 if (u) { 12259 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12260 } else { 12261 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12262 } 12263 break; 12264 case 0x2f: /* FABS */ 12265 gen_helper_vfp_abss(tcg_res, tcg_op); 12266 break; 12267 case 0x6f: /* FNEG */ 12268 gen_helper_vfp_negs(tcg_res, tcg_op); 12269 break; 12270 case 0x7f: /* FSQRT */ 12271 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12272 break; 12273 case 0x1a: /* FCVTNS */ 12274 case 0x1b: /* FCVTMS */ 12275 case 0x1c: /* FCVTAS */ 12276 case 0x3a: /* FCVTPS */ 12277 case 0x3b: /* FCVTZS */ 12278 gen_helper_vfp_tosls(tcg_res, tcg_op, 12279 tcg_constant_i32(0), tcg_fpstatus); 12280 break; 12281 case 0x5a: /* FCVTNU */ 12282 case 0x5b: /* FCVTMU */ 12283 case 0x5c: /* FCVTAU */ 12284 case 0x7a: /* FCVTPU */ 12285 case 0x7b: /* FCVTZU */ 12286 gen_helper_vfp_touls(tcg_res, tcg_op, 12287 tcg_constant_i32(0), tcg_fpstatus); 12288 break; 12289 case 0x18: /* FRINTN */ 12290 case 0x19: /* FRINTM */ 12291 case 0x38: /* FRINTP */ 12292 case 0x39: /* FRINTZ */ 12293 case 0x58: /* FRINTA */ 12294 case 0x79: /* FRINTI */ 12295 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12296 break; 12297 case 0x59: /* FRINTX */ 12298 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12299 break; 12300 case 0x7c: /* URSQRTE */ 12301 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12302 break; 12303 case 0x1e: /* FRINT32Z */ 12304 case 0x5e: /* FRINT32X */ 12305 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12306 break; 12307 case 0x1f: /* FRINT64Z */ 12308 case 0x5f: /* FRINT64X */ 12309 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12310 break; 12311 default: 12312 g_assert_not_reached(); 12313 } 12314 } else { 12315 /* Use helpers for 8 and 16 bit elements */ 12316 switch (opcode) { 12317 case 0x5: /* CNT, RBIT */ 12318 /* For these two insns size is part of the opcode specifier 12319 * (handled earlier); they always operate on byte elements. 12320 */ 12321 if (u) { 12322 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12323 } else { 12324 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12325 } 12326 break; 12327 case 0x7: /* SQABS, SQNEG */ 12328 { 12329 NeonGenOneOpEnvFn *genfn; 12330 static NeonGenOneOpEnvFn * const fns[2][2] = { 12331 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12332 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12333 }; 12334 genfn = fns[size][u]; 12335 genfn(tcg_res, tcg_env, tcg_op); 12336 break; 12337 } 12338 case 0x4: /* CLS, CLZ */ 12339 if (u) { 12340 if (size == 0) { 12341 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12342 } else { 12343 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12344 } 12345 } else { 12346 if (size == 0) { 12347 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12348 } else { 12349 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12350 } 12351 } 12352 break; 12353 default: 12354 g_assert_not_reached(); 12355 } 12356 } 12357 12358 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12359 } 12360 } 12361 clear_vec_high(s, is_q, rd); 12362 12363 if (tcg_rmode) { 12364 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12365 } 12366 } 12367 12368 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12369 * 12370 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12371 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12372 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12373 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12374 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12375 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12376 * 12377 * This actually covers two groups where scalar access is governed by 12378 * bit 28. A bunch of the instructions (float to integral) only exist 12379 * in the vector form and are un-allocated for the scalar decode. Also 12380 * in the scalar decode Q is always 1. 12381 */ 12382 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12383 { 12384 int fpop, opcode, a, u; 12385 int rn, rd; 12386 bool is_q; 12387 bool is_scalar; 12388 bool only_in_vector = false; 12389 12390 int pass; 12391 TCGv_i32 tcg_rmode = NULL; 12392 TCGv_ptr tcg_fpstatus = NULL; 12393 bool need_fpst = true; 12394 int rmode = -1; 12395 12396 if (!dc_isar_feature(aa64_fp16, s)) { 12397 unallocated_encoding(s); 12398 return; 12399 } 12400 12401 rd = extract32(insn, 0, 5); 12402 rn = extract32(insn, 5, 5); 12403 12404 a = extract32(insn, 23, 1); 12405 u = extract32(insn, 29, 1); 12406 is_scalar = extract32(insn, 28, 1); 12407 is_q = extract32(insn, 30, 1); 12408 12409 opcode = extract32(insn, 12, 5); 12410 fpop = deposit32(opcode, 5, 1, a); 12411 fpop = deposit32(fpop, 6, 1, u); 12412 12413 switch (fpop) { 12414 case 0x1d: /* SCVTF */ 12415 case 0x5d: /* UCVTF */ 12416 { 12417 int elements; 12418 12419 if (is_scalar) { 12420 elements = 1; 12421 } else { 12422 elements = (is_q ? 8 : 4); 12423 } 12424 12425 if (!fp_access_check(s)) { 12426 return; 12427 } 12428 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12429 return; 12430 } 12431 break; 12432 case 0x2c: /* FCMGT (zero) */ 12433 case 0x2d: /* FCMEQ (zero) */ 12434 case 0x2e: /* FCMLT (zero) */ 12435 case 0x6c: /* FCMGE (zero) */ 12436 case 0x6d: /* FCMLE (zero) */ 12437 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12438 return; 12439 case 0x3d: /* FRECPE */ 12440 case 0x3f: /* FRECPX */ 12441 break; 12442 case 0x18: /* FRINTN */ 12443 only_in_vector = true; 12444 rmode = FPROUNDING_TIEEVEN; 12445 break; 12446 case 0x19: /* FRINTM */ 12447 only_in_vector = true; 12448 rmode = FPROUNDING_NEGINF; 12449 break; 12450 case 0x38: /* FRINTP */ 12451 only_in_vector = true; 12452 rmode = FPROUNDING_POSINF; 12453 break; 12454 case 0x39: /* FRINTZ */ 12455 only_in_vector = true; 12456 rmode = FPROUNDING_ZERO; 12457 break; 12458 case 0x58: /* FRINTA */ 12459 only_in_vector = true; 12460 rmode = FPROUNDING_TIEAWAY; 12461 break; 12462 case 0x59: /* FRINTX */ 12463 case 0x79: /* FRINTI */ 12464 only_in_vector = true; 12465 /* current rounding mode */ 12466 break; 12467 case 0x1a: /* FCVTNS */ 12468 rmode = FPROUNDING_TIEEVEN; 12469 break; 12470 case 0x1b: /* FCVTMS */ 12471 rmode = FPROUNDING_NEGINF; 12472 break; 12473 case 0x1c: /* FCVTAS */ 12474 rmode = FPROUNDING_TIEAWAY; 12475 break; 12476 case 0x3a: /* FCVTPS */ 12477 rmode = FPROUNDING_POSINF; 12478 break; 12479 case 0x3b: /* FCVTZS */ 12480 rmode = FPROUNDING_ZERO; 12481 break; 12482 case 0x5a: /* FCVTNU */ 12483 rmode = FPROUNDING_TIEEVEN; 12484 break; 12485 case 0x5b: /* FCVTMU */ 12486 rmode = FPROUNDING_NEGINF; 12487 break; 12488 case 0x5c: /* FCVTAU */ 12489 rmode = FPROUNDING_TIEAWAY; 12490 break; 12491 case 0x7a: /* FCVTPU */ 12492 rmode = FPROUNDING_POSINF; 12493 break; 12494 case 0x7b: /* FCVTZU */ 12495 rmode = FPROUNDING_ZERO; 12496 break; 12497 case 0x2f: /* FABS */ 12498 case 0x6f: /* FNEG */ 12499 need_fpst = false; 12500 break; 12501 case 0x7d: /* FRSQRTE */ 12502 case 0x7f: /* FSQRT (vector) */ 12503 break; 12504 default: 12505 unallocated_encoding(s); 12506 return; 12507 } 12508 12509 12510 /* Check additional constraints for the scalar encoding */ 12511 if (is_scalar) { 12512 if (!is_q) { 12513 unallocated_encoding(s); 12514 return; 12515 } 12516 /* FRINTxx is only in the vector form */ 12517 if (only_in_vector) { 12518 unallocated_encoding(s); 12519 return; 12520 } 12521 } 12522 12523 if (!fp_access_check(s)) { 12524 return; 12525 } 12526 12527 if (rmode >= 0 || need_fpst) { 12528 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12529 } 12530 12531 if (rmode >= 0) { 12532 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12533 } 12534 12535 if (is_scalar) { 12536 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12537 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12538 12539 switch (fpop) { 12540 case 0x1a: /* FCVTNS */ 12541 case 0x1b: /* FCVTMS */ 12542 case 0x1c: /* FCVTAS */ 12543 case 0x3a: /* FCVTPS */ 12544 case 0x3b: /* FCVTZS */ 12545 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12546 break; 12547 case 0x3d: /* FRECPE */ 12548 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12549 break; 12550 case 0x3f: /* FRECPX */ 12551 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12552 break; 12553 case 0x5a: /* FCVTNU */ 12554 case 0x5b: /* FCVTMU */ 12555 case 0x5c: /* FCVTAU */ 12556 case 0x7a: /* FCVTPU */ 12557 case 0x7b: /* FCVTZU */ 12558 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12559 break; 12560 case 0x6f: /* FNEG */ 12561 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12562 break; 12563 case 0x7d: /* FRSQRTE */ 12564 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12565 break; 12566 default: 12567 g_assert_not_reached(); 12568 } 12569 12570 /* limit any sign extension going on */ 12571 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12572 write_fp_sreg(s, rd, tcg_res); 12573 } else { 12574 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12575 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12576 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12577 12578 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12579 12580 switch (fpop) { 12581 case 0x1a: /* FCVTNS */ 12582 case 0x1b: /* FCVTMS */ 12583 case 0x1c: /* FCVTAS */ 12584 case 0x3a: /* FCVTPS */ 12585 case 0x3b: /* FCVTZS */ 12586 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12587 break; 12588 case 0x3d: /* FRECPE */ 12589 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12590 break; 12591 case 0x5a: /* FCVTNU */ 12592 case 0x5b: /* FCVTMU */ 12593 case 0x5c: /* FCVTAU */ 12594 case 0x7a: /* FCVTPU */ 12595 case 0x7b: /* FCVTZU */ 12596 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12597 break; 12598 case 0x18: /* FRINTN */ 12599 case 0x19: /* FRINTM */ 12600 case 0x38: /* FRINTP */ 12601 case 0x39: /* FRINTZ */ 12602 case 0x58: /* FRINTA */ 12603 case 0x79: /* FRINTI */ 12604 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12605 break; 12606 case 0x59: /* FRINTX */ 12607 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12608 break; 12609 case 0x2f: /* FABS */ 12610 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12611 break; 12612 case 0x6f: /* FNEG */ 12613 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12614 break; 12615 case 0x7d: /* FRSQRTE */ 12616 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12617 break; 12618 case 0x7f: /* FSQRT */ 12619 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12620 break; 12621 default: 12622 g_assert_not_reached(); 12623 } 12624 12625 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12626 } 12627 12628 clear_vec_high(s, is_q, rd); 12629 } 12630 12631 if (tcg_rmode) { 12632 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12633 } 12634 } 12635 12636 /* AdvSIMD scalar x indexed element 12637 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12638 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12639 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12640 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12641 * AdvSIMD vector x indexed element 12642 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12643 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12644 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12645 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12646 */ 12647 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12648 { 12649 /* This encoding has two kinds of instruction: 12650 * normal, where we perform elt x idxelt => elt for each 12651 * element in the vector 12652 * long, where we perform elt x idxelt and generate a result of 12653 * double the width of the input element 12654 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12655 */ 12656 bool is_scalar = extract32(insn, 28, 1); 12657 bool is_q = extract32(insn, 30, 1); 12658 bool u = extract32(insn, 29, 1); 12659 int size = extract32(insn, 22, 2); 12660 int l = extract32(insn, 21, 1); 12661 int m = extract32(insn, 20, 1); 12662 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12663 int rm = extract32(insn, 16, 4); 12664 int opcode = extract32(insn, 12, 4); 12665 int h = extract32(insn, 11, 1); 12666 int rn = extract32(insn, 5, 5); 12667 int rd = extract32(insn, 0, 5); 12668 bool is_long = false; 12669 int is_fp = 0; 12670 bool is_fp16 = false; 12671 int index; 12672 TCGv_ptr fpst; 12673 12674 switch (16 * u + opcode) { 12675 case 0x08: /* MUL */ 12676 case 0x10: /* MLA */ 12677 case 0x14: /* MLS */ 12678 if (is_scalar) { 12679 unallocated_encoding(s); 12680 return; 12681 } 12682 break; 12683 case 0x02: /* SMLAL, SMLAL2 */ 12684 case 0x12: /* UMLAL, UMLAL2 */ 12685 case 0x06: /* SMLSL, SMLSL2 */ 12686 case 0x16: /* UMLSL, UMLSL2 */ 12687 case 0x0a: /* SMULL, SMULL2 */ 12688 case 0x1a: /* UMULL, UMULL2 */ 12689 if (is_scalar) { 12690 unallocated_encoding(s); 12691 return; 12692 } 12693 is_long = true; 12694 break; 12695 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12696 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12697 case 0x0b: /* SQDMULL, SQDMULL2 */ 12698 is_long = true; 12699 break; 12700 case 0x0c: /* SQDMULH */ 12701 case 0x0d: /* SQRDMULH */ 12702 break; 12703 case 0x01: /* FMLA */ 12704 case 0x05: /* FMLS */ 12705 case 0x09: /* FMUL */ 12706 case 0x19: /* FMULX */ 12707 is_fp = 1; 12708 break; 12709 case 0x1d: /* SQRDMLAH */ 12710 case 0x1f: /* SQRDMLSH */ 12711 if (!dc_isar_feature(aa64_rdm, s)) { 12712 unallocated_encoding(s); 12713 return; 12714 } 12715 break; 12716 case 0x0e: /* SDOT */ 12717 case 0x1e: /* UDOT */ 12718 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12719 unallocated_encoding(s); 12720 return; 12721 } 12722 break; 12723 case 0x0f: 12724 switch (size) { 12725 case 0: /* SUDOT */ 12726 case 2: /* USDOT */ 12727 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12728 unallocated_encoding(s); 12729 return; 12730 } 12731 size = MO_32; 12732 break; 12733 case 1: /* BFDOT */ 12734 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12735 unallocated_encoding(s); 12736 return; 12737 } 12738 size = MO_32; 12739 break; 12740 case 3: /* BFMLAL{B,T} */ 12741 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12742 unallocated_encoding(s); 12743 return; 12744 } 12745 /* can't set is_fp without other incorrect size checks */ 12746 size = MO_16; 12747 break; 12748 default: 12749 unallocated_encoding(s); 12750 return; 12751 } 12752 break; 12753 case 0x11: /* FCMLA #0 */ 12754 case 0x13: /* FCMLA #90 */ 12755 case 0x15: /* FCMLA #180 */ 12756 case 0x17: /* FCMLA #270 */ 12757 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12758 unallocated_encoding(s); 12759 return; 12760 } 12761 is_fp = 2; 12762 break; 12763 case 0x00: /* FMLAL */ 12764 case 0x04: /* FMLSL */ 12765 case 0x18: /* FMLAL2 */ 12766 case 0x1c: /* FMLSL2 */ 12767 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12768 unallocated_encoding(s); 12769 return; 12770 } 12771 size = MO_16; 12772 /* is_fp, but we pass tcg_env not fp_status. */ 12773 break; 12774 default: 12775 unallocated_encoding(s); 12776 return; 12777 } 12778 12779 switch (is_fp) { 12780 case 1: /* normal fp */ 12781 /* convert insn encoded size to MemOp size */ 12782 switch (size) { 12783 case 0: /* half-precision */ 12784 size = MO_16; 12785 is_fp16 = true; 12786 break; 12787 case MO_32: /* single precision */ 12788 case MO_64: /* double precision */ 12789 break; 12790 default: 12791 unallocated_encoding(s); 12792 return; 12793 } 12794 break; 12795 12796 case 2: /* complex fp */ 12797 /* Each indexable element is a complex pair. */ 12798 size += 1; 12799 switch (size) { 12800 case MO_32: 12801 if (h && !is_q) { 12802 unallocated_encoding(s); 12803 return; 12804 } 12805 is_fp16 = true; 12806 break; 12807 case MO_64: 12808 break; 12809 default: 12810 unallocated_encoding(s); 12811 return; 12812 } 12813 break; 12814 12815 default: /* integer */ 12816 switch (size) { 12817 case MO_8: 12818 case MO_64: 12819 unallocated_encoding(s); 12820 return; 12821 } 12822 break; 12823 } 12824 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12825 unallocated_encoding(s); 12826 return; 12827 } 12828 12829 /* Given MemOp size, adjust register and indexing. */ 12830 switch (size) { 12831 case MO_16: 12832 index = h << 2 | l << 1 | m; 12833 break; 12834 case MO_32: 12835 index = h << 1 | l; 12836 rm |= m << 4; 12837 break; 12838 case MO_64: 12839 if (l || !is_q) { 12840 unallocated_encoding(s); 12841 return; 12842 } 12843 index = h; 12844 rm |= m << 4; 12845 break; 12846 default: 12847 g_assert_not_reached(); 12848 } 12849 12850 if (!fp_access_check(s)) { 12851 return; 12852 } 12853 12854 if (is_fp) { 12855 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12856 } else { 12857 fpst = NULL; 12858 } 12859 12860 switch (16 * u + opcode) { 12861 case 0x0e: /* SDOT */ 12862 case 0x1e: /* UDOT */ 12863 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12864 u ? gen_helper_gvec_udot_idx_b 12865 : gen_helper_gvec_sdot_idx_b); 12866 return; 12867 case 0x0f: 12868 switch (extract32(insn, 22, 2)) { 12869 case 0: /* SUDOT */ 12870 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12871 gen_helper_gvec_sudot_idx_b); 12872 return; 12873 case 1: /* BFDOT */ 12874 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12875 gen_helper_gvec_bfdot_idx); 12876 return; 12877 case 2: /* USDOT */ 12878 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12879 gen_helper_gvec_usdot_idx_b); 12880 return; 12881 case 3: /* BFMLAL{B,T} */ 12882 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12883 gen_helper_gvec_bfmlal_idx); 12884 return; 12885 } 12886 g_assert_not_reached(); 12887 case 0x11: /* FCMLA #0 */ 12888 case 0x13: /* FCMLA #90 */ 12889 case 0x15: /* FCMLA #180 */ 12890 case 0x17: /* FCMLA #270 */ 12891 { 12892 int rot = extract32(insn, 13, 2); 12893 int data = (index << 2) | rot; 12894 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12895 vec_full_reg_offset(s, rn), 12896 vec_full_reg_offset(s, rm), 12897 vec_full_reg_offset(s, rd), fpst, 12898 is_q ? 16 : 8, vec_full_reg_size(s), data, 12899 size == MO_64 12900 ? gen_helper_gvec_fcmlas_idx 12901 : gen_helper_gvec_fcmlah_idx); 12902 } 12903 return; 12904 12905 case 0x00: /* FMLAL */ 12906 case 0x04: /* FMLSL */ 12907 case 0x18: /* FMLAL2 */ 12908 case 0x1c: /* FMLSL2 */ 12909 { 12910 int is_s = extract32(opcode, 2, 1); 12911 int is_2 = u; 12912 int data = (index << 2) | (is_2 << 1) | is_s; 12913 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12914 vec_full_reg_offset(s, rn), 12915 vec_full_reg_offset(s, rm), tcg_env, 12916 is_q ? 16 : 8, vec_full_reg_size(s), 12917 data, gen_helper_gvec_fmlal_idx_a64); 12918 } 12919 return; 12920 12921 case 0x08: /* MUL */ 12922 if (!is_long && !is_scalar) { 12923 static gen_helper_gvec_3 * const fns[3] = { 12924 gen_helper_gvec_mul_idx_h, 12925 gen_helper_gvec_mul_idx_s, 12926 gen_helper_gvec_mul_idx_d, 12927 }; 12928 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12929 vec_full_reg_offset(s, rn), 12930 vec_full_reg_offset(s, rm), 12931 is_q ? 16 : 8, vec_full_reg_size(s), 12932 index, fns[size - 1]); 12933 return; 12934 } 12935 break; 12936 12937 case 0x10: /* MLA */ 12938 if (!is_long && !is_scalar) { 12939 static gen_helper_gvec_4 * const fns[3] = { 12940 gen_helper_gvec_mla_idx_h, 12941 gen_helper_gvec_mla_idx_s, 12942 gen_helper_gvec_mla_idx_d, 12943 }; 12944 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12945 vec_full_reg_offset(s, rn), 12946 vec_full_reg_offset(s, rm), 12947 vec_full_reg_offset(s, rd), 12948 is_q ? 16 : 8, vec_full_reg_size(s), 12949 index, fns[size - 1]); 12950 return; 12951 } 12952 break; 12953 12954 case 0x14: /* MLS */ 12955 if (!is_long && !is_scalar) { 12956 static gen_helper_gvec_4 * const fns[3] = { 12957 gen_helper_gvec_mls_idx_h, 12958 gen_helper_gvec_mls_idx_s, 12959 gen_helper_gvec_mls_idx_d, 12960 }; 12961 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12962 vec_full_reg_offset(s, rn), 12963 vec_full_reg_offset(s, rm), 12964 vec_full_reg_offset(s, rd), 12965 is_q ? 16 : 8, vec_full_reg_size(s), 12966 index, fns[size - 1]); 12967 return; 12968 } 12969 break; 12970 } 12971 12972 if (size == 3) { 12973 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12974 int pass; 12975 12976 assert(is_fp && is_q && !is_long); 12977 12978 read_vec_element(s, tcg_idx, rm, index, MO_64); 12979 12980 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12981 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12982 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12983 12984 read_vec_element(s, tcg_op, rn, pass, MO_64); 12985 12986 switch (16 * u + opcode) { 12987 case 0x05: /* FMLS */ 12988 /* As usual for ARM, separate negation for fused multiply-add */ 12989 gen_helper_vfp_negd(tcg_op, tcg_op); 12990 /* fall through */ 12991 case 0x01: /* FMLA */ 12992 read_vec_element(s, tcg_res, rd, pass, MO_64); 12993 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12994 break; 12995 case 0x09: /* FMUL */ 12996 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12997 break; 12998 case 0x19: /* FMULX */ 12999 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13000 break; 13001 default: 13002 g_assert_not_reached(); 13003 } 13004 13005 write_vec_element(s, tcg_res, rd, pass, MO_64); 13006 } 13007 13008 clear_vec_high(s, !is_scalar, rd); 13009 } else if (!is_long) { 13010 /* 32 bit floating point, or 16 or 32 bit integer. 13011 * For the 16 bit scalar case we use the usual Neon helpers and 13012 * rely on the fact that 0 op 0 == 0 with no side effects. 13013 */ 13014 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13015 int pass, maxpasses; 13016 13017 if (is_scalar) { 13018 maxpasses = 1; 13019 } else { 13020 maxpasses = is_q ? 4 : 2; 13021 } 13022 13023 read_vec_element_i32(s, tcg_idx, rm, index, size); 13024 13025 if (size == 1 && !is_scalar) { 13026 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13027 * the index into both halves of the 32 bit tcg_idx and then use 13028 * the usual Neon helpers. 13029 */ 13030 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13031 } 13032 13033 for (pass = 0; pass < maxpasses; pass++) { 13034 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13035 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13036 13037 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13038 13039 switch (16 * u + opcode) { 13040 case 0x08: /* MUL */ 13041 case 0x10: /* MLA */ 13042 case 0x14: /* MLS */ 13043 { 13044 static NeonGenTwoOpFn * const fns[2][2] = { 13045 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13046 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13047 }; 13048 NeonGenTwoOpFn *genfn; 13049 bool is_sub = opcode == 0x4; 13050 13051 if (size == 1) { 13052 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13053 } else { 13054 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13055 } 13056 if (opcode == 0x8) { 13057 break; 13058 } 13059 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13060 genfn = fns[size - 1][is_sub]; 13061 genfn(tcg_res, tcg_op, tcg_res); 13062 break; 13063 } 13064 case 0x05: /* FMLS */ 13065 case 0x01: /* FMLA */ 13066 read_vec_element_i32(s, tcg_res, rd, pass, 13067 is_scalar ? size : MO_32); 13068 switch (size) { 13069 case 1: 13070 if (opcode == 0x5) { 13071 /* As usual for ARM, separate negation for fused 13072 * multiply-add */ 13073 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13074 } 13075 if (is_scalar) { 13076 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13077 tcg_res, fpst); 13078 } else { 13079 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13080 tcg_res, fpst); 13081 } 13082 break; 13083 case 2: 13084 if (opcode == 0x5) { 13085 /* As usual for ARM, separate negation for 13086 * fused multiply-add */ 13087 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13088 } 13089 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13090 tcg_res, fpst); 13091 break; 13092 default: 13093 g_assert_not_reached(); 13094 } 13095 break; 13096 case 0x09: /* FMUL */ 13097 switch (size) { 13098 case 1: 13099 if (is_scalar) { 13100 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13101 tcg_idx, fpst); 13102 } else { 13103 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13104 tcg_idx, fpst); 13105 } 13106 break; 13107 case 2: 13108 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13109 break; 13110 default: 13111 g_assert_not_reached(); 13112 } 13113 break; 13114 case 0x19: /* FMULX */ 13115 switch (size) { 13116 case 1: 13117 if (is_scalar) { 13118 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13119 tcg_idx, fpst); 13120 } else { 13121 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13122 tcg_idx, fpst); 13123 } 13124 break; 13125 case 2: 13126 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13127 break; 13128 default: 13129 g_assert_not_reached(); 13130 } 13131 break; 13132 case 0x0c: /* SQDMULH */ 13133 if (size == 1) { 13134 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13135 tcg_op, tcg_idx); 13136 } else { 13137 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13138 tcg_op, tcg_idx); 13139 } 13140 break; 13141 case 0x0d: /* SQRDMULH */ 13142 if (size == 1) { 13143 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13144 tcg_op, tcg_idx); 13145 } else { 13146 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13147 tcg_op, tcg_idx); 13148 } 13149 break; 13150 case 0x1d: /* SQRDMLAH */ 13151 read_vec_element_i32(s, tcg_res, rd, pass, 13152 is_scalar ? size : MO_32); 13153 if (size == 1) { 13154 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13155 tcg_op, tcg_idx, tcg_res); 13156 } else { 13157 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13158 tcg_op, tcg_idx, tcg_res); 13159 } 13160 break; 13161 case 0x1f: /* SQRDMLSH */ 13162 read_vec_element_i32(s, tcg_res, rd, pass, 13163 is_scalar ? size : MO_32); 13164 if (size == 1) { 13165 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13166 tcg_op, tcg_idx, tcg_res); 13167 } else { 13168 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13169 tcg_op, tcg_idx, tcg_res); 13170 } 13171 break; 13172 default: 13173 g_assert_not_reached(); 13174 } 13175 13176 if (is_scalar) { 13177 write_fp_sreg(s, rd, tcg_res); 13178 } else { 13179 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13180 } 13181 } 13182 13183 clear_vec_high(s, is_q, rd); 13184 } else { 13185 /* long ops: 16x16->32 or 32x32->64 */ 13186 TCGv_i64 tcg_res[2]; 13187 int pass; 13188 bool satop = extract32(opcode, 0, 1); 13189 MemOp memop = MO_32; 13190 13191 if (satop || !u) { 13192 memop |= MO_SIGN; 13193 } 13194 13195 if (size == 2) { 13196 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13197 13198 read_vec_element(s, tcg_idx, rm, index, memop); 13199 13200 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13201 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13202 TCGv_i64 tcg_passres; 13203 int passelt; 13204 13205 if (is_scalar) { 13206 passelt = 0; 13207 } else { 13208 passelt = pass + (is_q * 2); 13209 } 13210 13211 read_vec_element(s, tcg_op, rn, passelt, memop); 13212 13213 tcg_res[pass] = tcg_temp_new_i64(); 13214 13215 if (opcode == 0xa || opcode == 0xb) { 13216 /* Non-accumulating ops */ 13217 tcg_passres = tcg_res[pass]; 13218 } else { 13219 tcg_passres = tcg_temp_new_i64(); 13220 } 13221 13222 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13223 13224 if (satop) { 13225 /* saturating, doubling */ 13226 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13227 tcg_passres, tcg_passres); 13228 } 13229 13230 if (opcode == 0xa || opcode == 0xb) { 13231 continue; 13232 } 13233 13234 /* Accumulating op: handle accumulate step */ 13235 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13236 13237 switch (opcode) { 13238 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13239 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13240 break; 13241 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13242 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13243 break; 13244 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13245 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13246 /* fall through */ 13247 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13248 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13249 tcg_res[pass], 13250 tcg_passres); 13251 break; 13252 default: 13253 g_assert_not_reached(); 13254 } 13255 } 13256 13257 clear_vec_high(s, !is_scalar, rd); 13258 } else { 13259 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13260 13261 assert(size == 1); 13262 read_vec_element_i32(s, tcg_idx, rm, index, size); 13263 13264 if (!is_scalar) { 13265 /* The simplest way to handle the 16x16 indexed ops is to 13266 * duplicate the index into both halves of the 32 bit tcg_idx 13267 * and then use the usual Neon helpers. 13268 */ 13269 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13270 } 13271 13272 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13273 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13274 TCGv_i64 tcg_passres; 13275 13276 if (is_scalar) { 13277 read_vec_element_i32(s, tcg_op, rn, pass, size); 13278 } else { 13279 read_vec_element_i32(s, tcg_op, rn, 13280 pass + (is_q * 2), MO_32); 13281 } 13282 13283 tcg_res[pass] = tcg_temp_new_i64(); 13284 13285 if (opcode == 0xa || opcode == 0xb) { 13286 /* Non-accumulating ops */ 13287 tcg_passres = tcg_res[pass]; 13288 } else { 13289 tcg_passres = tcg_temp_new_i64(); 13290 } 13291 13292 if (memop & MO_SIGN) { 13293 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13294 } else { 13295 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13296 } 13297 if (satop) { 13298 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13299 tcg_passres, tcg_passres); 13300 } 13301 13302 if (opcode == 0xa || opcode == 0xb) { 13303 continue; 13304 } 13305 13306 /* Accumulating op: handle accumulate step */ 13307 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13308 13309 switch (opcode) { 13310 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13311 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13312 tcg_passres); 13313 break; 13314 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13315 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13316 tcg_passres); 13317 break; 13318 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13319 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13320 /* fall through */ 13321 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13322 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13323 tcg_res[pass], 13324 tcg_passres); 13325 break; 13326 default: 13327 g_assert_not_reached(); 13328 } 13329 } 13330 13331 if (is_scalar) { 13332 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13333 } 13334 } 13335 13336 if (is_scalar) { 13337 tcg_res[1] = tcg_constant_i64(0); 13338 } 13339 13340 for (pass = 0; pass < 2; pass++) { 13341 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13342 } 13343 } 13344 } 13345 13346 /* Crypto AES 13347 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13348 * +-----------------+------+-----------+--------+-----+------+------+ 13349 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13350 * +-----------------+------+-----------+--------+-----+------+------+ 13351 */ 13352 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13353 { 13354 int size = extract32(insn, 22, 2); 13355 int opcode = extract32(insn, 12, 5); 13356 int rn = extract32(insn, 5, 5); 13357 int rd = extract32(insn, 0, 5); 13358 gen_helper_gvec_2 *genfn2 = NULL; 13359 gen_helper_gvec_3 *genfn3 = NULL; 13360 13361 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13362 unallocated_encoding(s); 13363 return; 13364 } 13365 13366 switch (opcode) { 13367 case 0x4: /* AESE */ 13368 genfn3 = gen_helper_crypto_aese; 13369 break; 13370 case 0x6: /* AESMC */ 13371 genfn2 = gen_helper_crypto_aesmc; 13372 break; 13373 case 0x5: /* AESD */ 13374 genfn3 = gen_helper_crypto_aesd; 13375 break; 13376 case 0x7: /* AESIMC */ 13377 genfn2 = gen_helper_crypto_aesimc; 13378 break; 13379 default: 13380 unallocated_encoding(s); 13381 return; 13382 } 13383 13384 if (!fp_access_check(s)) { 13385 return; 13386 } 13387 if (genfn2) { 13388 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13389 } else { 13390 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13391 } 13392 } 13393 13394 /* Crypto three-reg SHA 13395 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13396 * +-----------------+------+---+------+---+--------+-----+------+------+ 13397 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13398 * +-----------------+------+---+------+---+--------+-----+------+------+ 13399 */ 13400 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13401 { 13402 int size = extract32(insn, 22, 2); 13403 int opcode = extract32(insn, 12, 3); 13404 int rm = extract32(insn, 16, 5); 13405 int rn = extract32(insn, 5, 5); 13406 int rd = extract32(insn, 0, 5); 13407 gen_helper_gvec_3 *genfn; 13408 bool feature; 13409 13410 if (size != 0) { 13411 unallocated_encoding(s); 13412 return; 13413 } 13414 13415 switch (opcode) { 13416 case 0: /* SHA1C */ 13417 genfn = gen_helper_crypto_sha1c; 13418 feature = dc_isar_feature(aa64_sha1, s); 13419 break; 13420 case 1: /* SHA1P */ 13421 genfn = gen_helper_crypto_sha1p; 13422 feature = dc_isar_feature(aa64_sha1, s); 13423 break; 13424 case 2: /* SHA1M */ 13425 genfn = gen_helper_crypto_sha1m; 13426 feature = dc_isar_feature(aa64_sha1, s); 13427 break; 13428 case 3: /* SHA1SU0 */ 13429 genfn = gen_helper_crypto_sha1su0; 13430 feature = dc_isar_feature(aa64_sha1, s); 13431 break; 13432 case 4: /* SHA256H */ 13433 genfn = gen_helper_crypto_sha256h; 13434 feature = dc_isar_feature(aa64_sha256, s); 13435 break; 13436 case 5: /* SHA256H2 */ 13437 genfn = gen_helper_crypto_sha256h2; 13438 feature = dc_isar_feature(aa64_sha256, s); 13439 break; 13440 case 6: /* SHA256SU1 */ 13441 genfn = gen_helper_crypto_sha256su1; 13442 feature = dc_isar_feature(aa64_sha256, s); 13443 break; 13444 default: 13445 unallocated_encoding(s); 13446 return; 13447 } 13448 13449 if (!feature) { 13450 unallocated_encoding(s); 13451 return; 13452 } 13453 13454 if (!fp_access_check(s)) { 13455 return; 13456 } 13457 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13458 } 13459 13460 /* Crypto two-reg SHA 13461 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13462 * +-----------------+------+-----------+--------+-----+------+------+ 13463 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13464 * +-----------------+------+-----------+--------+-----+------+------+ 13465 */ 13466 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13467 { 13468 int size = extract32(insn, 22, 2); 13469 int opcode = extract32(insn, 12, 5); 13470 int rn = extract32(insn, 5, 5); 13471 int rd = extract32(insn, 0, 5); 13472 gen_helper_gvec_2 *genfn; 13473 bool feature; 13474 13475 if (size != 0) { 13476 unallocated_encoding(s); 13477 return; 13478 } 13479 13480 switch (opcode) { 13481 case 0: /* SHA1H */ 13482 feature = dc_isar_feature(aa64_sha1, s); 13483 genfn = gen_helper_crypto_sha1h; 13484 break; 13485 case 1: /* SHA1SU1 */ 13486 feature = dc_isar_feature(aa64_sha1, s); 13487 genfn = gen_helper_crypto_sha1su1; 13488 break; 13489 case 2: /* SHA256SU0 */ 13490 feature = dc_isar_feature(aa64_sha256, s); 13491 genfn = gen_helper_crypto_sha256su0; 13492 break; 13493 default: 13494 unallocated_encoding(s); 13495 return; 13496 } 13497 13498 if (!feature) { 13499 unallocated_encoding(s); 13500 return; 13501 } 13502 13503 if (!fp_access_check(s)) { 13504 return; 13505 } 13506 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13507 } 13508 13509 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13510 { 13511 tcg_gen_rotli_i64(d, m, 1); 13512 tcg_gen_xor_i64(d, d, n); 13513 } 13514 13515 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13516 { 13517 tcg_gen_rotli_vec(vece, d, m, 1); 13518 tcg_gen_xor_vec(vece, d, d, n); 13519 } 13520 13521 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13522 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13523 { 13524 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13525 static const GVecGen3 op = { 13526 .fni8 = gen_rax1_i64, 13527 .fniv = gen_rax1_vec, 13528 .opt_opc = vecop_list, 13529 .fno = gen_helper_crypto_rax1, 13530 .vece = MO_64, 13531 }; 13532 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13533 } 13534 13535 /* Crypto three-reg SHA512 13536 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13537 * +-----------------------+------+---+---+-----+--------+------+------+ 13538 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13539 * +-----------------------+------+---+---+-----+--------+------+------+ 13540 */ 13541 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13542 { 13543 int opcode = extract32(insn, 10, 2); 13544 int o = extract32(insn, 14, 1); 13545 int rm = extract32(insn, 16, 5); 13546 int rn = extract32(insn, 5, 5); 13547 int rd = extract32(insn, 0, 5); 13548 bool feature; 13549 gen_helper_gvec_3 *oolfn = NULL; 13550 GVecGen3Fn *gvecfn = NULL; 13551 13552 if (o == 0) { 13553 switch (opcode) { 13554 case 0: /* SHA512H */ 13555 feature = dc_isar_feature(aa64_sha512, s); 13556 oolfn = gen_helper_crypto_sha512h; 13557 break; 13558 case 1: /* SHA512H2 */ 13559 feature = dc_isar_feature(aa64_sha512, s); 13560 oolfn = gen_helper_crypto_sha512h2; 13561 break; 13562 case 2: /* SHA512SU1 */ 13563 feature = dc_isar_feature(aa64_sha512, s); 13564 oolfn = gen_helper_crypto_sha512su1; 13565 break; 13566 case 3: /* RAX1 */ 13567 feature = dc_isar_feature(aa64_sha3, s); 13568 gvecfn = gen_gvec_rax1; 13569 break; 13570 default: 13571 g_assert_not_reached(); 13572 } 13573 } else { 13574 switch (opcode) { 13575 case 0: /* SM3PARTW1 */ 13576 feature = dc_isar_feature(aa64_sm3, s); 13577 oolfn = gen_helper_crypto_sm3partw1; 13578 break; 13579 case 1: /* SM3PARTW2 */ 13580 feature = dc_isar_feature(aa64_sm3, s); 13581 oolfn = gen_helper_crypto_sm3partw2; 13582 break; 13583 case 2: /* SM4EKEY */ 13584 feature = dc_isar_feature(aa64_sm4, s); 13585 oolfn = gen_helper_crypto_sm4ekey; 13586 break; 13587 default: 13588 unallocated_encoding(s); 13589 return; 13590 } 13591 } 13592 13593 if (!feature) { 13594 unallocated_encoding(s); 13595 return; 13596 } 13597 13598 if (!fp_access_check(s)) { 13599 return; 13600 } 13601 13602 if (oolfn) { 13603 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13604 } else { 13605 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13606 } 13607 } 13608 13609 /* Crypto two-reg SHA512 13610 * 31 12 11 10 9 5 4 0 13611 * +-----------------------------------------+--------+------+------+ 13612 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13613 * +-----------------------------------------+--------+------+------+ 13614 */ 13615 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13616 { 13617 int opcode = extract32(insn, 10, 2); 13618 int rn = extract32(insn, 5, 5); 13619 int rd = extract32(insn, 0, 5); 13620 bool feature; 13621 13622 switch (opcode) { 13623 case 0: /* SHA512SU0 */ 13624 feature = dc_isar_feature(aa64_sha512, s); 13625 break; 13626 case 1: /* SM4E */ 13627 feature = dc_isar_feature(aa64_sm4, s); 13628 break; 13629 default: 13630 unallocated_encoding(s); 13631 return; 13632 } 13633 13634 if (!feature) { 13635 unallocated_encoding(s); 13636 return; 13637 } 13638 13639 if (!fp_access_check(s)) { 13640 return; 13641 } 13642 13643 switch (opcode) { 13644 case 0: /* SHA512SU0 */ 13645 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13646 break; 13647 case 1: /* SM4E */ 13648 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13649 break; 13650 default: 13651 g_assert_not_reached(); 13652 } 13653 } 13654 13655 /* Crypto four-register 13656 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13657 * +-------------------+-----+------+---+------+------+------+ 13658 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13659 * +-------------------+-----+------+---+------+------+------+ 13660 */ 13661 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13662 { 13663 int op0 = extract32(insn, 21, 2); 13664 int rm = extract32(insn, 16, 5); 13665 int ra = extract32(insn, 10, 5); 13666 int rn = extract32(insn, 5, 5); 13667 int rd = extract32(insn, 0, 5); 13668 bool feature; 13669 13670 switch (op0) { 13671 case 0: /* EOR3 */ 13672 case 1: /* BCAX */ 13673 feature = dc_isar_feature(aa64_sha3, s); 13674 break; 13675 case 2: /* SM3SS1 */ 13676 feature = dc_isar_feature(aa64_sm3, s); 13677 break; 13678 default: 13679 unallocated_encoding(s); 13680 return; 13681 } 13682 13683 if (!feature) { 13684 unallocated_encoding(s); 13685 return; 13686 } 13687 13688 if (!fp_access_check(s)) { 13689 return; 13690 } 13691 13692 if (op0 < 2) { 13693 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13694 int pass; 13695 13696 tcg_op1 = tcg_temp_new_i64(); 13697 tcg_op2 = tcg_temp_new_i64(); 13698 tcg_op3 = tcg_temp_new_i64(); 13699 tcg_res[0] = tcg_temp_new_i64(); 13700 tcg_res[1] = tcg_temp_new_i64(); 13701 13702 for (pass = 0; pass < 2; pass++) { 13703 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13704 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13705 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13706 13707 if (op0 == 0) { 13708 /* EOR3 */ 13709 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13710 } else { 13711 /* BCAX */ 13712 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13713 } 13714 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13715 } 13716 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13717 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13718 } else { 13719 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13720 13721 tcg_op1 = tcg_temp_new_i32(); 13722 tcg_op2 = tcg_temp_new_i32(); 13723 tcg_op3 = tcg_temp_new_i32(); 13724 tcg_res = tcg_temp_new_i32(); 13725 tcg_zero = tcg_constant_i32(0); 13726 13727 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13728 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13729 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13730 13731 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13732 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13733 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13734 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13735 13736 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13737 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13738 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13739 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13740 } 13741 } 13742 13743 /* Crypto XAR 13744 * 31 21 20 16 15 10 9 5 4 0 13745 * +-----------------------+------+--------+------+------+ 13746 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13747 * +-----------------------+------+--------+------+------+ 13748 */ 13749 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13750 { 13751 int rm = extract32(insn, 16, 5); 13752 int imm6 = extract32(insn, 10, 6); 13753 int rn = extract32(insn, 5, 5); 13754 int rd = extract32(insn, 0, 5); 13755 13756 if (!dc_isar_feature(aa64_sha3, s)) { 13757 unallocated_encoding(s); 13758 return; 13759 } 13760 13761 if (!fp_access_check(s)) { 13762 return; 13763 } 13764 13765 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13766 vec_full_reg_offset(s, rn), 13767 vec_full_reg_offset(s, rm), imm6, 16, 13768 vec_full_reg_size(s)); 13769 } 13770 13771 /* Crypto three-reg imm2 13772 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13773 * +-----------------------+------+-----+------+--------+------+------+ 13774 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13775 * +-----------------------+------+-----+------+--------+------+------+ 13776 */ 13777 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13778 { 13779 static gen_helper_gvec_3 * const fns[4] = { 13780 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13781 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13782 }; 13783 int opcode = extract32(insn, 10, 2); 13784 int imm2 = extract32(insn, 12, 2); 13785 int rm = extract32(insn, 16, 5); 13786 int rn = extract32(insn, 5, 5); 13787 int rd = extract32(insn, 0, 5); 13788 13789 if (!dc_isar_feature(aa64_sm3, s)) { 13790 unallocated_encoding(s); 13791 return; 13792 } 13793 13794 if (!fp_access_check(s)) { 13795 return; 13796 } 13797 13798 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13799 } 13800 13801 /* C3.6 Data processing - SIMD, inc Crypto 13802 * 13803 * As the decode gets a little complex we are using a table based 13804 * approach for this part of the decode. 13805 */ 13806 static const AArch64DecodeTable data_proc_simd[] = { 13807 /* pattern , mask , fn */ 13808 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13809 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13810 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13811 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13812 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13813 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13814 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13815 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13816 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13817 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13818 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13819 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13820 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13821 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13822 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13823 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13824 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13825 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13826 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13827 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13828 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13829 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13830 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13831 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13832 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13833 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13834 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13835 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13836 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13837 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13838 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13839 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13840 { 0x00000000, 0x00000000, NULL } 13841 }; 13842 13843 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13844 { 13845 /* Note that this is called with all non-FP cases from 13846 * table C3-6 so it must UNDEF for entries not specifically 13847 * allocated to instructions in that table. 13848 */ 13849 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13850 if (fn) { 13851 fn(s, insn); 13852 } else { 13853 unallocated_encoding(s); 13854 } 13855 } 13856 13857 /* C3.6 Data processing - SIMD and floating point */ 13858 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13859 { 13860 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13861 disas_data_proc_fp(s, insn); 13862 } else { 13863 /* SIMD, including crypto */ 13864 disas_data_proc_simd(s, insn); 13865 } 13866 } 13867 13868 static bool trans_OK(DisasContext *s, arg_OK *a) 13869 { 13870 return true; 13871 } 13872 13873 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13874 { 13875 s->is_nonstreaming = true; 13876 return true; 13877 } 13878 13879 /** 13880 * is_guarded_page: 13881 * @env: The cpu environment 13882 * @s: The DisasContext 13883 * 13884 * Return true if the page is guarded. 13885 */ 13886 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13887 { 13888 uint64_t addr = s->base.pc_first; 13889 #ifdef CONFIG_USER_ONLY 13890 return page_get_flags(addr) & PAGE_BTI; 13891 #else 13892 CPUTLBEntryFull *full; 13893 void *host; 13894 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13895 int flags; 13896 13897 /* 13898 * We test this immediately after reading an insn, which means 13899 * that the TLB entry must be present and valid, and thus this 13900 * access will never raise an exception. 13901 */ 13902 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13903 false, &host, &full, 0); 13904 assert(!(flags & TLB_INVALID_MASK)); 13905 13906 return full->extra.arm.guarded; 13907 #endif 13908 } 13909 13910 /** 13911 * btype_destination_ok: 13912 * @insn: The instruction at the branch destination 13913 * @bt: SCTLR_ELx.BT 13914 * @btype: PSTATE.BTYPE, and is non-zero 13915 * 13916 * On a guarded page, there are a limited number of insns 13917 * that may be present at the branch target: 13918 * - branch target identifiers, 13919 * - paciasp, pacibsp, 13920 * - BRK insn 13921 * - HLT insn 13922 * Anything else causes a Branch Target Exception. 13923 * 13924 * Return true if the branch is compatible, false to raise BTITRAP. 13925 */ 13926 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13927 { 13928 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13929 /* HINT space */ 13930 switch (extract32(insn, 5, 7)) { 13931 case 0b011001: /* PACIASP */ 13932 case 0b011011: /* PACIBSP */ 13933 /* 13934 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13935 * with btype == 3. Otherwise all btype are ok. 13936 */ 13937 return !bt || btype != 3; 13938 case 0b100000: /* BTI */ 13939 /* Not compatible with any btype. */ 13940 return false; 13941 case 0b100010: /* BTI c */ 13942 /* Not compatible with btype == 3 */ 13943 return btype != 3; 13944 case 0b100100: /* BTI j */ 13945 /* Not compatible with btype == 2 */ 13946 return btype != 2; 13947 case 0b100110: /* BTI jc */ 13948 /* Compatible with any btype. */ 13949 return true; 13950 } 13951 } else { 13952 switch (insn & 0xffe0001fu) { 13953 case 0xd4200000u: /* BRK */ 13954 case 0xd4400000u: /* HLT */ 13955 /* Give priority to the breakpoint exception. */ 13956 return true; 13957 } 13958 } 13959 return false; 13960 } 13961 13962 /* C3.1 A64 instruction index by encoding */ 13963 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13964 { 13965 switch (extract32(insn, 25, 4)) { 13966 case 0x5: 13967 case 0xd: /* Data processing - register */ 13968 disas_data_proc_reg(s, insn); 13969 break; 13970 case 0x7: 13971 case 0xf: /* Data processing - SIMD and floating point */ 13972 disas_data_proc_simd_fp(s, insn); 13973 break; 13974 default: 13975 unallocated_encoding(s); 13976 break; 13977 } 13978 } 13979 13980 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13981 CPUState *cpu) 13982 { 13983 DisasContext *dc = container_of(dcbase, DisasContext, base); 13984 CPUARMState *env = cpu_env(cpu); 13985 ARMCPU *arm_cpu = env_archcpu(env); 13986 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13987 int bound, core_mmu_idx; 13988 13989 dc->isar = &arm_cpu->isar; 13990 dc->condjmp = 0; 13991 dc->pc_save = dc->base.pc_first; 13992 dc->aarch64 = true; 13993 dc->thumb = false; 13994 dc->sctlr_b = 0; 13995 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13996 dc->condexec_mask = 0; 13997 dc->condexec_cond = 0; 13998 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13999 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14000 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14001 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14002 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14003 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14004 #if !defined(CONFIG_USER_ONLY) 14005 dc->user = (dc->current_el == 0); 14006 #endif 14007 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14008 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14009 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14010 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14011 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14012 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 14013 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14014 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14015 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14016 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14017 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14018 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14019 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14020 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14021 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 14022 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 14023 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14024 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14025 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14026 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14027 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14028 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14029 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 14030 dc->vec_len = 0; 14031 dc->vec_stride = 0; 14032 dc->cp_regs = arm_cpu->cp_regs; 14033 dc->features = env->features; 14034 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14035 dc->gm_blocksize = arm_cpu->gm_blocksize; 14036 14037 #ifdef CONFIG_USER_ONLY 14038 /* In sve_probe_page, we assume TBI is enabled. */ 14039 tcg_debug_assert(dc->tbid & 1); 14040 #endif 14041 14042 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14043 14044 /* Single step state. The code-generation logic here is: 14045 * SS_ACTIVE == 0: 14046 * generate code with no special handling for single-stepping (except 14047 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14048 * this happens anyway because those changes are all system register or 14049 * PSTATE writes). 14050 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14051 * emit code for one insn 14052 * emit code to clear PSTATE.SS 14053 * emit code to generate software step exception for completed step 14054 * end TB (as usual for having generated an exception) 14055 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14056 * emit code to generate a software step exception 14057 * end the TB 14058 */ 14059 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14060 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14061 dc->is_ldex = false; 14062 14063 /* Bound the number of insns to execute to those left on the page. */ 14064 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14065 14066 /* If architectural single step active, limit to 1. */ 14067 if (dc->ss_active) { 14068 bound = 1; 14069 } 14070 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14071 } 14072 14073 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14074 { 14075 } 14076 14077 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14078 { 14079 DisasContext *dc = container_of(dcbase, DisasContext, base); 14080 target_ulong pc_arg = dc->base.pc_next; 14081 14082 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14083 pc_arg &= ~TARGET_PAGE_MASK; 14084 } 14085 tcg_gen_insn_start(pc_arg, 0, 0); 14086 dc->insn_start = tcg_last_op(); 14087 } 14088 14089 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14090 { 14091 DisasContext *s = container_of(dcbase, DisasContext, base); 14092 CPUARMState *env = cpu_env(cpu); 14093 uint64_t pc = s->base.pc_next; 14094 uint32_t insn; 14095 14096 /* Singlestep exceptions have the highest priority. */ 14097 if (s->ss_active && !s->pstate_ss) { 14098 /* Singlestep state is Active-pending. 14099 * If we're in this state at the start of a TB then either 14100 * a) we just took an exception to an EL which is being debugged 14101 * and this is the first insn in the exception handler 14102 * b) debug exceptions were masked and we just unmasked them 14103 * without changing EL (eg by clearing PSTATE.D) 14104 * In either case we're going to take a swstep exception in the 14105 * "did not step an insn" case, and so the syndrome ISV and EX 14106 * bits should be zero. 14107 */ 14108 assert(s->base.num_insns == 1); 14109 gen_swstep_exception(s, 0, 0); 14110 s->base.is_jmp = DISAS_NORETURN; 14111 s->base.pc_next = pc + 4; 14112 return; 14113 } 14114 14115 if (pc & 3) { 14116 /* 14117 * PC alignment fault. This has priority over the instruction abort 14118 * that we would receive from a translation fault via arm_ldl_code. 14119 * This should only be possible after an indirect branch, at the 14120 * start of the TB. 14121 */ 14122 assert(s->base.num_insns == 1); 14123 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 14124 s->base.is_jmp = DISAS_NORETURN; 14125 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14126 return; 14127 } 14128 14129 s->pc_curr = pc; 14130 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14131 s->insn = insn; 14132 s->base.pc_next = pc + 4; 14133 14134 s->fp_access_checked = false; 14135 s->sve_access_checked = false; 14136 14137 if (s->pstate_il) { 14138 /* 14139 * Illegal execution state. This has priority over BTI 14140 * exceptions, but comes after instruction abort exceptions. 14141 */ 14142 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14143 return; 14144 } 14145 14146 if (dc_isar_feature(aa64_bti, s)) { 14147 if (s->base.num_insns == 1) { 14148 /* 14149 * At the first insn of the TB, compute s->guarded_page. 14150 * We delayed computing this until successfully reading 14151 * the first insn of the TB, above. This (mostly) ensures 14152 * that the softmmu tlb entry has been populated, and the 14153 * page table GP bit is available. 14154 * 14155 * Note that we need to compute this even if btype == 0, 14156 * because this value is used for BR instructions later 14157 * where ENV is not available. 14158 */ 14159 s->guarded_page = is_guarded_page(env, s); 14160 14161 /* First insn can have btype set to non-zero. */ 14162 tcg_debug_assert(s->btype >= 0); 14163 14164 /* 14165 * Note that the Branch Target Exception has fairly high 14166 * priority -- below debugging exceptions but above most 14167 * everything else. This allows us to handle this now 14168 * instead of waiting until the insn is otherwise decoded. 14169 */ 14170 if (s->btype != 0 14171 && s->guarded_page 14172 && !btype_destination_ok(insn, s->bt, s->btype)) { 14173 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14174 return; 14175 } 14176 } else { 14177 /* Not the first insn: btype must be 0. */ 14178 tcg_debug_assert(s->btype == 0); 14179 } 14180 } 14181 14182 s->is_nonstreaming = false; 14183 if (s->sme_trap_nonstreaming) { 14184 disas_sme_fa64(s, insn); 14185 } 14186 14187 if (!disas_a64(s, insn) && 14188 !disas_sme(s, insn) && 14189 !disas_sve(s, insn)) { 14190 disas_a64_legacy(s, insn); 14191 } 14192 14193 /* 14194 * After execution of most insns, btype is reset to 0. 14195 * Note that we set btype == -1 when the insn sets btype. 14196 */ 14197 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14198 reset_btype(s); 14199 } 14200 } 14201 14202 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14203 { 14204 DisasContext *dc = container_of(dcbase, DisasContext, base); 14205 14206 if (unlikely(dc->ss_active)) { 14207 /* Note that this means single stepping WFI doesn't halt the CPU. 14208 * For conditional branch insns this is harmless unreachable code as 14209 * gen_goto_tb() has already handled emitting the debug exception 14210 * (and thus a tb-jump is not possible when singlestepping). 14211 */ 14212 switch (dc->base.is_jmp) { 14213 default: 14214 gen_a64_update_pc(dc, 4); 14215 /* fall through */ 14216 case DISAS_EXIT: 14217 case DISAS_JUMP: 14218 gen_step_complete_exception(dc); 14219 break; 14220 case DISAS_NORETURN: 14221 break; 14222 } 14223 } else { 14224 switch (dc->base.is_jmp) { 14225 case DISAS_NEXT: 14226 case DISAS_TOO_MANY: 14227 gen_goto_tb(dc, 1, 4); 14228 break; 14229 default: 14230 case DISAS_UPDATE_EXIT: 14231 gen_a64_update_pc(dc, 4); 14232 /* fall through */ 14233 case DISAS_EXIT: 14234 tcg_gen_exit_tb(NULL, 0); 14235 break; 14236 case DISAS_UPDATE_NOCHAIN: 14237 gen_a64_update_pc(dc, 4); 14238 /* fall through */ 14239 case DISAS_JUMP: 14240 tcg_gen_lookup_and_goto_ptr(); 14241 break; 14242 case DISAS_NORETURN: 14243 case DISAS_SWI: 14244 break; 14245 case DISAS_WFE: 14246 gen_a64_update_pc(dc, 4); 14247 gen_helper_wfe(tcg_env); 14248 break; 14249 case DISAS_YIELD: 14250 gen_a64_update_pc(dc, 4); 14251 gen_helper_yield(tcg_env); 14252 break; 14253 case DISAS_WFI: 14254 /* 14255 * This is a special case because we don't want to just halt 14256 * the CPU if trying to debug across a WFI. 14257 */ 14258 gen_a64_update_pc(dc, 4); 14259 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 14260 /* 14261 * The helper doesn't necessarily throw an exception, but we 14262 * must go back to the main loop to check for interrupts anyway. 14263 */ 14264 tcg_gen_exit_tb(NULL, 0); 14265 break; 14266 } 14267 } 14268 } 14269 14270 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14271 CPUState *cpu, FILE *logfile) 14272 { 14273 DisasContext *dc = container_of(dcbase, DisasContext, base); 14274 14275 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14276 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14277 } 14278 14279 const TranslatorOps aarch64_translator_ops = { 14280 .init_disas_context = aarch64_tr_init_disas_context, 14281 .tb_start = aarch64_tr_tb_start, 14282 .insn_start = aarch64_tr_insn_start, 14283 .translate_insn = aarch64_tr_translate_insn, 14284 .tb_stop = aarch64_tr_tb_stop, 14285 .disas_log = aarch64_tr_disas_log, 14286 }; 14287