xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 65dd60a6)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 4-operand operation using an out-of-line helper.  */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732                        vec_full_reg_offset(s, rn),
733                        vec_full_reg_offset(s, rm),
734                        vec_full_reg_offset(s, ra),
735                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737 
738 /*
739  * Expand a 4-operand + fpstatus pointer + simd data value operation using
740  * an out-of-line helper.
741  */
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743                               int rm, int ra, bool is_fp16, int data,
744                               gen_helper_gvec_4_ptr *fn)
745 {
746     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748                        vec_full_reg_offset(s, rn),
749                        vec_full_reg_offset(s, rm),
750                        vec_full_reg_offset(s, ra), fpst,
751                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753 
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755  * than the 32 bit equivalent.
756  */
757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762 
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766     if (sf) {
767         gen_set_NZ64(result);
768     } else {
769         tcg_gen_extrl_i64_i32(cpu_ZF, result);
770         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771     }
772     tcg_gen_movi_i32(cpu_CF, 0);
773     tcg_gen_movi_i32(cpu_VF, 0);
774 }
775 
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779     TCGv_i64 result, flag, tmp;
780     result = tcg_temp_new_i64();
781     flag = tcg_temp_new_i64();
782     tmp = tcg_temp_new_i64();
783 
784     tcg_gen_movi_i64(tmp, 0);
785     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786 
787     tcg_gen_extrl_i64_i32(cpu_CF, flag);
788 
789     gen_set_NZ64(result);
790 
791     tcg_gen_xor_i64(flag, result, t0);
792     tcg_gen_xor_i64(tmp, t0, t1);
793     tcg_gen_andc_i64(flag, flag, tmp);
794     tcg_gen_extrh_i64_i32(cpu_VF, flag);
795 
796     tcg_gen_mov_i64(dest, result);
797 }
798 
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801     TCGv_i32 t0_32 = tcg_temp_new_i32();
802     TCGv_i32 t1_32 = tcg_temp_new_i32();
803     TCGv_i32 tmp = tcg_temp_new_i32();
804 
805     tcg_gen_movi_i32(tmp, 0);
806     tcg_gen_extrl_i64_i32(t0_32, t0);
807     tcg_gen_extrl_i64_i32(t1_32, t1);
808     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811     tcg_gen_xor_i32(tmp, t0_32, t1_32);
812     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813     tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815 
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818     if (sf) {
819         gen_add64_CC(dest, t0, t1);
820     } else {
821         gen_add32_CC(dest, t0, t1);
822     }
823 }
824 
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828     /* 64 bit arithmetic */
829     TCGv_i64 result, flag, tmp;
830 
831     result = tcg_temp_new_i64();
832     flag = tcg_temp_new_i64();
833     tcg_gen_sub_i64(result, t0, t1);
834 
835     gen_set_NZ64(result);
836 
837     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838     tcg_gen_extrl_i64_i32(cpu_CF, flag);
839 
840     tcg_gen_xor_i64(flag, result, t0);
841     tmp = tcg_temp_new_i64();
842     tcg_gen_xor_i64(tmp, t0, t1);
843     tcg_gen_and_i64(flag, flag, tmp);
844     tcg_gen_extrh_i64_i32(cpu_VF, flag);
845     tcg_gen_mov_i64(dest, result);
846 }
847 
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850     /* 32 bit arithmetic */
851     TCGv_i32 t0_32 = tcg_temp_new_i32();
852     TCGv_i32 t1_32 = tcg_temp_new_i32();
853     TCGv_i32 tmp;
854 
855     tcg_gen_extrl_i64_i32(t0_32, t0);
856     tcg_gen_extrl_i64_i32(t1_32, t1);
857     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861     tmp = tcg_temp_new_i32();
862     tcg_gen_xor_i32(tmp, t0_32, t1_32);
863     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864     tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866 
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869     if (sf) {
870         gen_sub64_CC(dest, t0, t1);
871     } else {
872         gen_sub32_CC(dest, t0, t1);
873     }
874 }
875 
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879     TCGv_i64 flag = tcg_temp_new_i64();
880     tcg_gen_extu_i32_i64(flag, cpu_CF);
881     tcg_gen_add_i64(dest, t0, t1);
882     tcg_gen_add_i64(dest, dest, flag);
883 
884     if (!sf) {
885         tcg_gen_ext32u_i64(dest, dest);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     if (sf) {
893         TCGv_i64 result = tcg_temp_new_i64();
894         TCGv_i64 cf_64 = tcg_temp_new_i64();
895         TCGv_i64 vf_64 = tcg_temp_new_i64();
896         TCGv_i64 tmp = tcg_temp_new_i64();
897         TCGv_i64 zero = tcg_constant_i64(0);
898 
899         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903         gen_set_NZ64(result);
904 
905         tcg_gen_xor_i64(vf_64, result, t0);
906         tcg_gen_xor_i64(tmp, t0, t1);
907         tcg_gen_andc_i64(vf_64, vf_64, tmp);
908         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909 
910         tcg_gen_mov_i64(dest, result);
911     } else {
912         TCGv_i32 t0_32 = tcg_temp_new_i32();
913         TCGv_i32 t1_32 = tcg_temp_new_i32();
914         TCGv_i32 tmp = tcg_temp_new_i32();
915         TCGv_i32 zero = tcg_constant_i32(0);
916 
917         tcg_gen_extrl_i64_i32(t0_32, t0);
918         tcg_gen_extrl_i64_i32(t1_32, t1);
919         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921 
922         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924         tcg_gen_xor_i32(tmp, t0_32, t1_32);
925         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926         tcg_gen_extu_i32_i64(dest, cpu_NF);
927     }
928 }
929 
930 /*
931  * Load/Store generators
932  */
933 
934 /*
935  * Store from GPR register to memory.
936  */
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
939                              bool iss_valid,
940                              unsigned int iss_srt,
941                              bool iss_sf, bool iss_ar)
942 {
943     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944 
945     if (iss_valid) {
946         uint32_t syn;
947 
948         syn = syn_data_abort_with_iss(0,
949                                       (memop & MO_SIZE),
950                                       false,
951                                       iss_srt,
952                                       iss_sf,
953                                       iss_ar,
954                                       0, 0, 0, 0, 0, false);
955         disas_set_insn_syndrome(s, syn);
956     }
957 }
958 
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960                       TCGv_i64 tcg_addr, MemOp memop,
961                       bool iss_valid,
962                       unsigned int iss_srt,
963                       bool iss_sf, bool iss_ar)
964 {
965     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966                      iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968 
969 /*
970  * Load from memory to GPR register
971  */
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973                              MemOp memop, bool extend, int memidx,
974                              bool iss_valid, unsigned int iss_srt,
975                              bool iss_sf, bool iss_ar)
976 {
977     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978 
979     if (extend && (memop & MO_SIGN)) {
980         g_assert((memop & MO_SIZE) <= MO_32);
981         tcg_gen_ext32u_i64(dest, dest);
982     }
983 
984     if (iss_valid) {
985         uint32_t syn;
986 
987         syn = syn_data_abort_with_iss(0,
988                                       (memop & MO_SIZE),
989                                       (memop & MO_SIGN) != 0,
990                                       iss_srt,
991                                       iss_sf,
992                                       iss_ar,
993                                       0, 0, 0, 0, 0, false);
994         disas_set_insn_syndrome(s, syn);
995     }
996 }
997 
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999                       MemOp memop, bool extend,
1000                       bool iss_valid, unsigned int iss_srt,
1001                       bool iss_sf, bool iss_ar)
1002 {
1003     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004                      iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006 
1007 /*
1008  * Store from FP register to memory
1009  */
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013     TCGv_i64 tmplo = tcg_temp_new_i64();
1014 
1015     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016 
1017     if ((mop & MO_SIZE) < MO_128) {
1018         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019     } else {
1020         TCGv_i64 tmphi = tcg_temp_new_i64();
1021         TCGv_i128 t16 = tcg_temp_new_i128();
1022 
1023         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025 
1026         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027     }
1028 }
1029 
1030 /*
1031  * Load from memory to FP register
1032  */
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035     /* This always zero-extends and writes to a full 128 bit wide vector */
1036     TCGv_i64 tmplo = tcg_temp_new_i64();
1037     TCGv_i64 tmphi = NULL;
1038 
1039     if ((mop & MO_SIZE) < MO_128) {
1040         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041     } else {
1042         TCGv_i128 t16 = tcg_temp_new_i128();
1043 
1044         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045 
1046         tmphi = tcg_temp_new_i64();
1047         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048     }
1049 
1050     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051 
1052     if (tmphi) {
1053         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054     }
1055     clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057 
1058 /*
1059  * Vector load/store helpers.
1060  *
1061  * The principal difference between this and a FP load is that we don't
1062  * zero extend as we are filling a partial chunk of the vector register.
1063  * These functions don't support 128 bit loads/stores, which would be
1064  * normal load/store operations.
1065  *
1066  * The _i32 versions are useful when operating on 32 bit quantities
1067  * (eg for floating point single or using Neon helper functions).
1068  */
1069 
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072                              int element, MemOp memop)
1073 {
1074     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075     switch ((unsigned)memop) {
1076     case MO_8:
1077         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078         break;
1079     case MO_16:
1080         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081         break;
1082     case MO_32:
1083         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084         break;
1085     case MO_8|MO_SIGN:
1086         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087         break;
1088     case MO_16|MO_SIGN:
1089         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090         break;
1091     case MO_32|MO_SIGN:
1092         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093         break;
1094     case MO_64:
1095     case MO_64|MO_SIGN:
1096         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     default:
1099         g_assert_not_reached();
1100     }
1101 }
1102 
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104                                  int element, MemOp memop)
1105 {
1106     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107     switch (memop) {
1108     case MO_8:
1109         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110         break;
1111     case MO_16:
1112         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113         break;
1114     case MO_8|MO_SIGN:
1115         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116         break;
1117     case MO_16|MO_SIGN:
1118         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119         break;
1120     case MO_32:
1121     case MO_32|MO_SIGN:
1122         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127 }
1128 
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131                               int element, MemOp memop)
1132 {
1133     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134     switch (memop) {
1135     case MO_8:
1136         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137         break;
1138     case MO_16:
1139         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140         break;
1141     case MO_32:
1142         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143         break;
1144     case MO_64:
1145         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146         break;
1147     default:
1148         g_assert_not_reached();
1149     }
1150 }
1151 
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153                                   int destidx, int element, MemOp memop)
1154 {
1155     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156     switch (memop) {
1157     case MO_8:
1158         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159         break;
1160     case MO_16:
1161         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162         break;
1163     case MO_32:
1164         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169 }
1170 
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173                       TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176 
1177     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180 
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183                       TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186 
1187     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190 
1191 /* Check that FP/Neon access is enabled. If it is, return
1192  * true. If not, emit code to generate an appropriate exception,
1193  * and return false; the caller should not emit any code for
1194  * the instruction. Note that this check must happen after all
1195  * unallocated-encoding checks (otherwise the syndrome information
1196  * for the resulting exception will be incorrect).
1197  */
1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200     if (s->fp_excp_el) {
1201         assert(!s->fp_access_checked);
1202         s->fp_access_checked = true;
1203 
1204         gen_exception_insn_el(s, 0, EXCP_UDEF,
1205                               syn_fp_access_trap(1, 0xe, false, 0),
1206                               s->fp_excp_el);
1207         return false;
1208     }
1209     s->fp_access_checked = true;
1210     return true;
1211 }
1212 
1213 static bool fp_access_check(DisasContext *s)
1214 {
1215     if (!fp_access_check_only(s)) {
1216         return false;
1217     }
1218     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219         gen_exception_insn(s, 0, EXCP_UDEF,
1220                            syn_smetrap(SME_ET_Streaming, false));
1221         return false;
1222     }
1223     return true;
1224 }
1225 
1226 /*
1227  * Check that SVE access is enabled.  If it is, return true.
1228  * If not, emit code to generate an appropriate exception and return false.
1229  * This function corresponds to CheckSVEEnabled().
1230  */
1231 bool sve_access_check(DisasContext *s)
1232 {
1233     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234         assert(dc_isar_feature(aa64_sme, s));
1235         if (!sme_sm_enabled_check(s)) {
1236             goto fail_exit;
1237         }
1238     } else if (s->sve_excp_el) {
1239         gen_exception_insn_el(s, 0, EXCP_UDEF,
1240                               syn_sve_access_trap(), s->sve_excp_el);
1241         goto fail_exit;
1242     }
1243     s->sve_access_checked = true;
1244     return fp_access_check(s);
1245 
1246  fail_exit:
1247     /* Assert that we only raise one exception per instruction. */
1248     assert(!s->sve_access_checked);
1249     s->sve_access_checked = true;
1250     return false;
1251 }
1252 
1253 /*
1254  * Check that SME access is enabled, raise an exception if not.
1255  * Note that this function corresponds to CheckSMEAccess and is
1256  * only used directly for cpregs.
1257  */
1258 static bool sme_access_check(DisasContext *s)
1259 {
1260     if (s->sme_excp_el) {
1261         gen_exception_insn_el(s, 0, EXCP_UDEF,
1262                               syn_smetrap(SME_ET_AccessTrap, false),
1263                               s->sme_excp_el);
1264         return false;
1265     }
1266     return true;
1267 }
1268 
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272     /*
1273      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274      * to be zero when fp_excp_el has priority.  This is because we need
1275      * sme_excp_el by itself for cpregs access checks.
1276      */
1277     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278         s->fp_access_checked = true;
1279         return sme_access_check(s);
1280     }
1281     return fp_access_check_only(s);
1282 }
1283 
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287     if (!sme_enabled_check(s)) {
1288         return false;
1289     }
1290     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291         gen_exception_insn(s, 0, EXCP_UDEF,
1292                            syn_smetrap(SME_ET_NotStreaming, false));
1293         return false;
1294     }
1295     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296         gen_exception_insn(s, 0, EXCP_UDEF,
1297                            syn_smetrap(SME_ET_InactiveZA, false));
1298         return false;
1299     }
1300     return true;
1301 }
1302 
1303 /*
1304  * Expanders for AdvSIMD translation functions.
1305  */
1306 
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308                             gen_helper_gvec_2 *fn)
1309 {
1310     if (!a->q && a->esz == MO_64) {
1311         return false;
1312     }
1313     if (fp_access_check(s)) {
1314         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315     }
1316     return true;
1317 }
1318 
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320                             gen_helper_gvec_3 *fn)
1321 {
1322     if (!a->q && a->esz == MO_64) {
1323         return false;
1324     }
1325     if (fp_access_check(s)) {
1326         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327     }
1328     return true;
1329 }
1330 
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333     if (!a->q && a->esz == MO_64) {
1334         return false;
1335     }
1336     if (fp_access_check(s)) {
1337         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338     }
1339     return true;
1340 }
1341 
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344     if (a->esz == MO_64) {
1345         return false;
1346     }
1347     if (fp_access_check(s)) {
1348         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349     }
1350     return true;
1351 }
1352 
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355     if (a->esz == MO_8) {
1356         return false;
1357     }
1358     return do_gvec_fn3_no64(s, a, fn);
1359 }
1360 
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363     if (!a->q && a->esz == MO_64) {
1364         return false;
1365     }
1366     if (fp_access_check(s)) {
1367         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368     }
1369     return true;
1370 }
1371 
1372 /*
1373  * This utility function is for doing register extension with an
1374  * optional shift. You will likely want to pass a temporary for the
1375  * destination register. See DecodeRegExtend() in the ARM ARM.
1376  */
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378                               int option, unsigned int shift)
1379 {
1380     int extsize = extract32(option, 0, 2);
1381     bool is_signed = extract32(option, 2, 1);
1382 
1383     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386 
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389     /* The AArch64 architecture mandates that (if enabled via PSTATE
1390      * or SCTLR bits) there is a check that SP is 16-aligned on every
1391      * SP-relative load or store (with an exception generated if it is not).
1392      * In line with general QEMU practice regarding misaligned accesses,
1393      * we omit these checks for the sake of guest program performance.
1394      * This function is provided as a hook so we can more easily add these
1395      * checks in future (possibly as a "favour catching guest program bugs
1396      * over speed" user selectable option).
1397      */
1398 }
1399 
1400 /*
1401  * This provides a simple table based table lookup decoder. It is
1402  * intended to be used when the relevant bits for decode are too
1403  * awkwardly placed and switch/if based logic would be confusing and
1404  * deeply nested. Since it's a linear search through the table, tables
1405  * should be kept small.
1406  *
1407  * It returns the first handler where insn & mask == pattern, or
1408  * NULL if there is no match.
1409  * The table is terminated by an empty mask (i.e. 0)
1410  */
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412                                                uint32_t insn)
1413 {
1414     const AArch64DecodeTable *tptr = table;
1415 
1416     while (tptr->mask) {
1417         if ((insn & tptr->mask) == tptr->pattern) {
1418             return tptr->disas_fn;
1419         }
1420         tptr++;
1421     }
1422     return NULL;
1423 }
1424 
1425 /*
1426  * The instruction disassembly implemented here matches
1427  * the instruction encoding classifications in chapter C4
1428  * of the ARM Architecture Reference Manual (DDI0487B_a);
1429  * classification names and decode diagrams here should generally
1430  * match up with those in the manual.
1431  */
1432 
1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435     reset_btype(s);
1436     gen_goto_tb(s, 0, a->imm);
1437     return true;
1438 }
1439 
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443     reset_btype(s);
1444     gen_goto_tb(s, 0, a->imm);
1445     return true;
1446 }
1447 
1448 
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451     DisasLabel match;
1452     TCGv_i64 tcg_cmp;
1453 
1454     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455     reset_btype(s);
1456 
1457     match = gen_disas_label(s);
1458     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459                         tcg_cmp, 0, match.label);
1460     gen_goto_tb(s, 0, 4);
1461     set_disas_label(s, match);
1462     gen_goto_tb(s, 1, a->imm);
1463     return true;
1464 }
1465 
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468     DisasLabel match;
1469     TCGv_i64 tcg_cmp;
1470 
1471     tcg_cmp = tcg_temp_new_i64();
1472     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473 
1474     reset_btype(s);
1475 
1476     match = gen_disas_label(s);
1477     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478                         tcg_cmp, 0, match.label);
1479     gen_goto_tb(s, 0, 4);
1480     set_disas_label(s, match);
1481     gen_goto_tb(s, 1, a->imm);
1482     return true;
1483 }
1484 
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487     /* BC.cond is only present with FEAT_HBC */
1488     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489         return false;
1490     }
1491     reset_btype(s);
1492     if (a->cond < 0x0e) {
1493         /* genuinely conditional branches */
1494         DisasLabel match = gen_disas_label(s);
1495         arm_gen_test_cc(a->cond, match.label);
1496         gen_goto_tb(s, 0, 4);
1497         set_disas_label(s, match);
1498         gen_goto_tb(s, 1, a->imm);
1499     } else {
1500         /* 0xe and 0xf are both "always" conditions */
1501         gen_goto_tb(s, 0, a->imm);
1502     }
1503     return true;
1504 }
1505 
1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508     if (dc_isar_feature(aa64_bti, s)) {
1509         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1510         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1511     }
1512 }
1513 
1514 static void set_btype_for_blr(DisasContext *s)
1515 {
1516     if (dc_isar_feature(aa64_bti, s)) {
1517         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1518         set_btype(s, 2);
1519     }
1520 }
1521 
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1523 {
1524     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525     set_btype_for_br(s, a->rn);
1526     s->base.is_jmp = DISAS_JUMP;
1527     return true;
1528 }
1529 
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1531 {
1532     TCGv_i64 dst = cpu_reg(s, a->rn);
1533     TCGv_i64 lr = cpu_reg(s, 30);
1534     if (dst == lr) {
1535         TCGv_i64 tmp = tcg_temp_new_i64();
1536         tcg_gen_mov_i64(tmp, dst);
1537         dst = tmp;
1538     }
1539     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540     gen_a64_set_pc(s, dst);
1541     set_btype_for_blr(s);
1542     s->base.is_jmp = DISAS_JUMP;
1543     return true;
1544 }
1545 
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1547 {
1548     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549     s->base.is_jmp = DISAS_JUMP;
1550     return true;
1551 }
1552 
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554                                    TCGv_i64 modifier, bool use_key_a)
1555 {
1556     TCGv_i64 truedst;
1557     /*
1558      * Return the branch target for a BRAA/RETA/etc, which is either
1559      * just the destination dst, or that value with the pauth check
1560      * done and the code removed from the high bits.
1561      */
1562     if (!s->pauth_active) {
1563         return dst;
1564     }
1565 
1566     truedst = tcg_temp_new_i64();
1567     if (use_key_a) {
1568         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569     } else {
1570         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1571     }
1572     return truedst;
1573 }
1574 
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1576 {
1577     TCGv_i64 dst;
1578 
1579     if (!dc_isar_feature(aa64_pauth, s)) {
1580         return false;
1581     }
1582 
1583     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584     gen_a64_set_pc(s, dst);
1585     set_btype_for_br(s, a->rn);
1586     s->base.is_jmp = DISAS_JUMP;
1587     return true;
1588 }
1589 
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1591 {
1592     TCGv_i64 dst, lr;
1593 
1594     if (!dc_isar_feature(aa64_pauth, s)) {
1595         return false;
1596     }
1597 
1598     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599     lr = cpu_reg(s, 30);
1600     if (dst == lr) {
1601         TCGv_i64 tmp = tcg_temp_new_i64();
1602         tcg_gen_mov_i64(tmp, dst);
1603         dst = tmp;
1604     }
1605     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606     gen_a64_set_pc(s, dst);
1607     set_btype_for_blr(s);
1608     s->base.is_jmp = DISAS_JUMP;
1609     return true;
1610 }
1611 
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1613 {
1614     TCGv_i64 dst;
1615 
1616     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617     gen_a64_set_pc(s, dst);
1618     s->base.is_jmp = DISAS_JUMP;
1619     return true;
1620 }
1621 
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1623 {
1624     TCGv_i64 dst;
1625 
1626     if (!dc_isar_feature(aa64_pauth, s)) {
1627         return false;
1628     }
1629     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630     gen_a64_set_pc(s, dst);
1631     set_btype_for_br(s, a->rn);
1632     s->base.is_jmp = DISAS_JUMP;
1633     return true;
1634 }
1635 
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1637 {
1638     TCGv_i64 dst, lr;
1639 
1640     if (!dc_isar_feature(aa64_pauth, s)) {
1641         return false;
1642     }
1643     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644     lr = cpu_reg(s, 30);
1645     if (dst == lr) {
1646         TCGv_i64 tmp = tcg_temp_new_i64();
1647         tcg_gen_mov_i64(tmp, dst);
1648         dst = tmp;
1649     }
1650     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651     gen_a64_set_pc(s, dst);
1652     set_btype_for_blr(s);
1653     s->base.is_jmp = DISAS_JUMP;
1654     return true;
1655 }
1656 
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1658 {
1659     TCGv_i64 dst;
1660 
1661     if (s->current_el == 0) {
1662         return false;
1663     }
1664     if (s->trap_eret) {
1665         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666         return true;
1667     }
1668     dst = tcg_temp_new_i64();
1669     tcg_gen_ld_i64(dst, tcg_env,
1670                    offsetof(CPUARMState, elr_el[s->current_el]));
1671 
1672     translator_io_start(&s->base);
1673 
1674     gen_helper_exception_return(tcg_env, dst);
1675     /* Must exit loop to check un-masked IRQs */
1676     s->base.is_jmp = DISAS_EXIT;
1677     return true;
1678 }
1679 
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1681 {
1682     TCGv_i64 dst;
1683 
1684     if (!dc_isar_feature(aa64_pauth, s)) {
1685         return false;
1686     }
1687     if (s->current_el == 0) {
1688         return false;
1689     }
1690     /* The FGT trap takes precedence over an auth trap. */
1691     if (s->trap_eret) {
1692         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693         return true;
1694     }
1695     dst = tcg_temp_new_i64();
1696     tcg_gen_ld_i64(dst, tcg_env,
1697                    offsetof(CPUARMState, elr_el[s->current_el]));
1698 
1699     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1700 
1701     translator_io_start(&s->base);
1702 
1703     gen_helper_exception_return(tcg_env, dst);
1704     /* Must exit loop to check un-masked IRQs */
1705     s->base.is_jmp = DISAS_EXIT;
1706     return true;
1707 }
1708 
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1710 {
1711     return true;
1712 }
1713 
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1715 {
1716     /*
1717      * When running in MTTCG we don't generate jumps to the yield and
1718      * WFE helpers as it won't affect the scheduling of other vCPUs.
1719      * If we wanted to more completely model WFE/SEV so we don't busy
1720      * spin unnecessarily we would need to do something more involved.
1721      */
1722     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723         s->base.is_jmp = DISAS_YIELD;
1724     }
1725     return true;
1726 }
1727 
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1729 {
1730     s->base.is_jmp = DISAS_WFI;
1731     return true;
1732 }
1733 
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1735 {
1736     /*
1737      * When running in MTTCG we don't generate jumps to the yield and
1738      * WFE helpers as it won't affect the scheduling of other vCPUs.
1739      * If we wanted to more completely model WFE/SEV so we don't busy
1740      * spin unnecessarily we would need to do something more involved.
1741      */
1742     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743         s->base.is_jmp = DISAS_WFE;
1744     }
1745     return true;
1746 }
1747 
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1749 {
1750     if (!dc_isar_feature(aa64_wfxt, s)) {
1751         return false;
1752     }
1753 
1754     /*
1755      * Because we need to pass the register value to the helper,
1756      * it's easier to emit the code now, unlike trans_WFI which
1757      * defers it to aarch64_tr_tb_stop(). That means we need to
1758      * check ss_active so that single-stepping a WFIT doesn't halt.
1759      */
1760     if (s->ss_active) {
1761         /* Act like a NOP under architectural singlestep */
1762         return true;
1763     }
1764 
1765     gen_a64_update_pc(s, 4);
1766     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767     /* Go back to the main loop to check for interrupts */
1768     s->base.is_jmp = DISAS_EXIT;
1769     return true;
1770 }
1771 
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1773 {
1774     if (!dc_isar_feature(aa64_wfxt, s)) {
1775         return false;
1776     }
1777 
1778     /*
1779      * We rely here on our WFE implementation being a NOP, so we
1780      * don't need to do anything different to handle the WFET timeout
1781      * from what trans_WFE does.
1782      */
1783     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784         s->base.is_jmp = DISAS_WFE;
1785     }
1786     return true;
1787 }
1788 
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1790 {
1791     if (s->pauth_active) {
1792         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1793     }
1794     return true;
1795 }
1796 
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1798 {
1799     if (s->pauth_active) {
1800         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1801     }
1802     return true;
1803 }
1804 
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1806 {
1807     if (s->pauth_active) {
1808         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1830 {
1831     /* Without RAS, we must implement this as NOP. */
1832     if (dc_isar_feature(aa64_ras, s)) {
1833         /*
1834          * QEMU does not have a source of physical SErrors,
1835          * so we are only concerned with virtual SErrors.
1836          * The pseudocode in the ARM for this case is
1837          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838          *      AArch64.vESBOperation();
1839          * Most of the condition can be evaluated at translation time.
1840          * Test for EL2 present, and defer test for SEL2 to runtime.
1841          */
1842         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843             gen_helper_vesb(tcg_env);
1844         }
1845     }
1846     return true;
1847 }
1848 
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1850 {
1851     if (s->pauth_active) {
1852         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1853     }
1854     return true;
1855 }
1856 
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1858 {
1859     if (s->pauth_active) {
1860         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1861     }
1862     return true;
1863 }
1864 
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1866 {
1867     if (s->pauth_active) {
1868         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1869     }
1870     return true;
1871 }
1872 
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1874 {
1875     if (s->pauth_active) {
1876         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1877     }
1878     return true;
1879 }
1880 
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1882 {
1883     if (s->pauth_active) {
1884         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1885     }
1886     return true;
1887 }
1888 
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1890 {
1891     if (s->pauth_active) {
1892         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1893     }
1894     return true;
1895 }
1896 
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1898 {
1899     if (s->pauth_active) {
1900         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1901     }
1902     return true;
1903 }
1904 
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1906 {
1907     if (s->pauth_active) {
1908         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1909     }
1910     return true;
1911 }
1912 
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1914 {
1915     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916     return true;
1917 }
1918 
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1920 {
1921     /* We handle DSB and DMB the same way */
1922     TCGBar bar;
1923 
1924     switch (a->types) {
1925     case 1: /* MBReqTypes_Reads */
1926         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927         break;
1928     case 2: /* MBReqTypes_Writes */
1929         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930         break;
1931     default: /* MBReqTypes_All */
1932         bar = TCG_BAR_SC | TCG_MO_ALL;
1933         break;
1934     }
1935     tcg_gen_mb(bar);
1936     return true;
1937 }
1938 
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1940 {
1941     /*
1942      * We need to break the TB after this insn to execute
1943      * self-modifying code correctly and also to take
1944      * any pending interrupts immediately.
1945      */
1946     reset_btype(s);
1947     gen_goto_tb(s, 0, 4);
1948     return true;
1949 }
1950 
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1952 {
1953     if (!dc_isar_feature(aa64_sb, s)) {
1954         return false;
1955     }
1956     /*
1957      * TODO: There is no speculation barrier opcode for TCG;
1958      * MB and end the TB instead.
1959      */
1960     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961     gen_goto_tb(s, 0, 4);
1962     return true;
1963 }
1964 
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1966 {
1967     if (!dc_isar_feature(aa64_condm_4, s)) {
1968         return false;
1969     }
1970     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971     return true;
1972 }
1973 
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1975 {
1976     TCGv_i32 z;
1977 
1978     if (!dc_isar_feature(aa64_condm_5, s)) {
1979         return false;
1980     }
1981 
1982     z = tcg_temp_new_i32();
1983 
1984     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1985 
1986     /*
1987      * (!C & !Z) << 31
1988      * (!(C | Z)) << 31
1989      * ~((C | Z) << 31)
1990      * ~-(C | Z)
1991      * (C | Z) - 1
1992      */
1993     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1995 
1996     /* !(Z & C) */
1997     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1999 
2000     /* (!C & Z) << 31 -> -(Z & ~C) */
2001     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2003 
2004     /* C | Z */
2005     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2006 
2007     return true;
2008 }
2009 
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2011 {
2012     if (!dc_isar_feature(aa64_condm_5, s)) {
2013         return false;
2014     }
2015 
2016     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2017     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2018 
2019     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2021 
2022     tcg_gen_movi_i32(cpu_NF, 0);
2023     tcg_gen_movi_i32(cpu_VF, 0);
2024 
2025     return true;
2026 }
2027 
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2029 {
2030     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031         return false;
2032     }
2033     if (a->imm & 1) {
2034         set_pstate_bits(PSTATE_UAO);
2035     } else {
2036         clear_pstate_bits(PSTATE_UAO);
2037     }
2038     gen_rebuild_hflags(s);
2039     s->base.is_jmp = DISAS_TOO_MANY;
2040     return true;
2041 }
2042 
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2044 {
2045     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046         return false;
2047     }
2048     if (a->imm & 1) {
2049         set_pstate_bits(PSTATE_PAN);
2050     } else {
2051         clear_pstate_bits(PSTATE_PAN);
2052     }
2053     gen_rebuild_hflags(s);
2054     s->base.is_jmp = DISAS_TOO_MANY;
2055     return true;
2056 }
2057 
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2059 {
2060     if (s->current_el == 0) {
2061         return false;
2062     }
2063     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064     s->base.is_jmp = DISAS_TOO_MANY;
2065     return true;
2066 }
2067 
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2069 {
2070     if (!dc_isar_feature(aa64_ssbs, s)) {
2071         return false;
2072     }
2073     if (a->imm & 1) {
2074         set_pstate_bits(PSTATE_SSBS);
2075     } else {
2076         clear_pstate_bits(PSTATE_SSBS);
2077     }
2078     /* Don't need to rebuild hflags since SSBS is a nop */
2079     s->base.is_jmp = DISAS_TOO_MANY;
2080     return true;
2081 }
2082 
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2084 {
2085     if (!dc_isar_feature(aa64_dit, s)) {
2086         return false;
2087     }
2088     if (a->imm & 1) {
2089         set_pstate_bits(PSTATE_DIT);
2090     } else {
2091         clear_pstate_bits(PSTATE_DIT);
2092     }
2093     /* There's no need to rebuild hflags because DIT is a nop */
2094     s->base.is_jmp = DISAS_TOO_MANY;
2095     return true;
2096 }
2097 
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2099 {
2100     if (dc_isar_feature(aa64_mte, s)) {
2101         /* Full MTE is enabled -- set the TCO bit as directed. */
2102         if (a->imm & 1) {
2103             set_pstate_bits(PSTATE_TCO);
2104         } else {
2105             clear_pstate_bits(PSTATE_TCO);
2106         }
2107         gen_rebuild_hflags(s);
2108         /* Many factors, including TCO, go into MTE_ACTIVE. */
2109         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110         return true;
2111     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2113         return true;
2114     } else {
2115         /* Insn not present */
2116         return false;
2117     }
2118 }
2119 
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2121 {
2122     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123     s->base.is_jmp = DISAS_TOO_MANY;
2124     return true;
2125 }
2126 
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2128 {
2129     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130     /* Exit the cpu loop to re-evaluate pending IRQs. */
2131     s->base.is_jmp = DISAS_UPDATE_EXIT;
2132     return true;
2133 }
2134 
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2136 {
2137     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138         return false;
2139     }
2140 
2141     if (a->imm == 0) {
2142         clear_pstate_bits(PSTATE_ALLINT);
2143     } else if (s->current_el > 1) {
2144         set_pstate_bits(PSTATE_ALLINT);
2145     } else {
2146         gen_helper_msr_set_allint_el1(tcg_env);
2147     }
2148 
2149     /* Exit the cpu loop to re-evaluate pending IRQs. */
2150     s->base.is_jmp = DISAS_UPDATE_EXIT;
2151     return true;
2152 }
2153 
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2155 {
2156     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157         return false;
2158     }
2159     if (sme_access_check(s)) {
2160         int old = s->pstate_sm | (s->pstate_za << 1);
2161         int new = a->imm * 3;
2162 
2163         if ((old ^ new) & a->mask) {
2164             /* At least one bit changes. */
2165             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166                                 tcg_constant_i32(a->mask));
2167             s->base.is_jmp = DISAS_TOO_MANY;
2168         }
2169     }
2170     return true;
2171 }
2172 
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2174 {
2175     TCGv_i32 tmp = tcg_temp_new_i32();
2176     TCGv_i32 nzcv = tcg_temp_new_i32();
2177 
2178     /* build bit 31, N */
2179     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180     /* build bit 30, Z */
2181     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183     /* build bit 29, C */
2184     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185     /* build bit 28, V */
2186     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188     /* generate result */
2189     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2190 }
2191 
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2193 {
2194     TCGv_i32 nzcv = tcg_temp_new_i32();
2195 
2196     /* take NZCV from R[t] */
2197     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2198 
2199     /* bit 31, N */
2200     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201     /* bit 30, Z */
2202     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204     /* bit 29, C */
2205     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207     /* bit 28, V */
2208     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2210 }
2211 
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213                              uint8_t op0, uint8_t op1, uint8_t op2,
2214                              uint8_t crn, uint8_t crm, uint8_t rt)
2215 {
2216     /*
2217      * Generate code to emit an UNDEF with correct syndrome
2218      * information for a failed system register access.
2219      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220      * but if FEAT_IDST is implemented then read accesses to registers
2221      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222      * syndrome.
2223      */
2224     uint32_t syndrome;
2225 
2226     if (isread && dc_isar_feature(aa64_ids, s) &&
2227         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229     } else {
2230         syndrome = syn_uncategorized();
2231     }
2232     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2233 }
2234 
2235 /* MRS - move from system register
2236  * MSR (register) - move to system register
2237  * SYS
2238  * SYSL
2239  * These are all essentially the same insn in 'read' and 'write'
2240  * versions, with varying op0 fields.
2241  */
2242 static void handle_sys(DisasContext *s, bool isread,
2243                        unsigned int op0, unsigned int op1, unsigned int op2,
2244                        unsigned int crn, unsigned int crm, unsigned int rt)
2245 {
2246     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247                                       crn, crm, op0, op1, op2);
2248     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249     bool need_exit_tb = false;
2250     bool nv_trap_to_el2 = false;
2251     bool nv_redirect_reg = false;
2252     bool skip_fp_access_checks = false;
2253     bool nv2_mem_redirect = false;
2254     TCGv_ptr tcg_ri = NULL;
2255     TCGv_i64 tcg_rt;
2256     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2257 
2258     if (crn == 11 || crn == 15) {
2259         /*
2260          * Check for TIDCP trap, which must take precedence over
2261          * the UNDEF for "no such register" etc.
2262          */
2263         switch (s->current_el) {
2264         case 0:
2265             if (dc_isar_feature(aa64_tidcp1, s)) {
2266                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2267             }
2268             break;
2269         case 1:
2270             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271             break;
2272         }
2273     }
2274 
2275     if (!ri) {
2276         /* Unknown register; this might be a guest error or a QEMU
2277          * unimplemented feature.
2278          */
2279         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2282         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283         return;
2284     }
2285 
2286     if (s->nv2 && ri->nv2_redirect_offset) {
2287         /*
2288          * Some registers always redirect to memory; some only do so if
2289          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290          * pairs which share an offset; see the table in R_CSRPQ).
2291          */
2292         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293             nv2_mem_redirect = s->nv1;
2294         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295             nv2_mem_redirect = !s->nv1;
2296         } else {
2297             nv2_mem_redirect = true;
2298         }
2299     }
2300 
2301     /* Check access permissions */
2302     if (!cp_access_ok(s->current_el, ri, isread)) {
2303         /*
2304          * FEAT_NV/NV2 handling does not do the usual FP access checks
2305          * for registers only accessible at EL2 (though it *does* do them
2306          * for registers accessible at EL1).
2307          */
2308         skip_fp_access_checks = true;
2309         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2310             /*
2311              * This is one of the few EL2 registers which should redirect
2312              * to the equivalent EL1 register. We do that after running
2313              * the EL2 register's accessfn.
2314              */
2315             nv_redirect_reg = true;
2316             assert(!nv2_mem_redirect);
2317         } else if (nv2_mem_redirect) {
2318             /*
2319              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320              * UNDEF to EL1.
2321              */
2322         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2323             /*
2324              * This register / instruction exists and is an EL2 register, so
2325              * we must trap to EL2 if accessed in nested virtualization EL1
2326              * instead of UNDEFing. We'll do that after the usual access checks.
2327              * (This makes a difference only for a couple of registers like
2328              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330              * an accessfn which does nothing when called from EL1, because
2331              * the trap-to-EL3 controls which would apply to that register
2332              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2333              */
2334             nv_trap_to_el2 = true;
2335         } else {
2336             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337             return;
2338         }
2339     }
2340 
2341     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342         /* Emit code to perform further access permissions checks at
2343          * runtime; this may result in an exception.
2344          */
2345         gen_a64_update_pc(s, 0);
2346         tcg_ri = tcg_temp_new_ptr();
2347         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348                                        tcg_constant_i32(key),
2349                                        tcg_constant_i32(syndrome),
2350                                        tcg_constant_i32(isread));
2351     } else if (ri->type & ARM_CP_RAISES_EXC) {
2352         /*
2353          * The readfn or writefn might raise an exception;
2354          * synchronize the CPU state in case it does.
2355          */
2356         gen_a64_update_pc(s, 0);
2357     }
2358 
2359     if (!skip_fp_access_checks) {
2360         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361             return;
2362         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363             return;
2364         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365             return;
2366         }
2367     }
2368 
2369     if (nv_trap_to_el2) {
2370         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371         return;
2372     }
2373 
2374     if (nv_redirect_reg) {
2375         /*
2376          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377          * Conveniently in all cases the encoding of the EL1 register is
2378          * identical to the EL2 register except that opc1 is 0.
2379          * Get the reginfo for the EL1 register to use for the actual access.
2380          * We don't use the EL1 register's access function, and
2381          * fine-grained-traps on EL1 also do not apply here.
2382          */
2383         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384                                  crn, crm, op0, 0, op2);
2385         ri = get_arm_cp_reginfo(s->cp_regs, key);
2386         assert(ri);
2387         assert(cp_access_ok(s->current_el, ri, isread));
2388         /*
2389          * We might not have done an update_pc earlier, so check we don't
2390          * need it. We could support this in future if necessary.
2391          */
2392         assert(!(ri->type & ARM_CP_RAISES_EXC));
2393     }
2394 
2395     if (nv2_mem_redirect) {
2396         /*
2397          * This system register is being redirected into an EL2 memory access.
2398          * This means it is not an IO operation, doesn't change hflags,
2399          * and need not end the TB, because it has no side effects.
2400          *
2401          * The access is 64-bit single copy atomic, guaranteed aligned because
2402          * of the definition of VCNR_EL2. Its endianness depends on
2403          * SCTLR_EL2.EE, not on the data endianness of EL1.
2404          * It is done under either the EL2 translation regime or the EL2&0
2405          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406          * PSTATE.PAN is 0.
2407          */
2408         TCGv_i64 ptr = tcg_temp_new_i64();
2409         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411         int memidx = arm_to_core_mmu_idx(armmemidx);
2412         uint32_t syn;
2413 
2414         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2415 
2416         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417         tcg_gen_addi_i64(ptr, ptr,
2418                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419         tcg_rt = cpu_reg(s, rt);
2420 
2421         syn = syn_data_abort_vncr(0, !isread, 0);
2422         disas_set_insn_syndrome(s, syn);
2423         if (isread) {
2424             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425         } else {
2426             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2427         }
2428         return;
2429     }
2430 
2431     /* Handle special cases first */
2432     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433     case 0:
2434         break;
2435     case ARM_CP_NOP:
2436         return;
2437     case ARM_CP_NZCV:
2438         tcg_rt = cpu_reg(s, rt);
2439         if (isread) {
2440             gen_get_nzcv(tcg_rt);
2441         } else {
2442             gen_set_nzcv(tcg_rt);
2443         }
2444         return;
2445     case ARM_CP_CURRENTEL:
2446     {
2447         /*
2448          * Reads as current EL value from pstate, which is
2449          * guaranteed to be constant by the tb flags.
2450          * For nested virt we should report EL2.
2451          */
2452         int el = s->nv ? 2 : s->current_el;
2453         tcg_rt = cpu_reg(s, rt);
2454         tcg_gen_movi_i64(tcg_rt, el << 2);
2455         return;
2456     }
2457     case ARM_CP_DC_ZVA:
2458         /* Writes clear the aligned block of memory which rt points into. */
2459         if (s->mte_active[0]) {
2460             int desc = 0;
2461 
2462             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2465 
2466             tcg_rt = tcg_temp_new_i64();
2467             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2469         } else {
2470             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2471         }
2472         gen_helper_dc_zva(tcg_env, tcg_rt);
2473         return;
2474     case ARM_CP_DC_GVA:
2475         {
2476             TCGv_i64 clean_addr, tag;
2477 
2478             /*
2479              * DC_GVA, like DC_ZVA, requires that we supply the original
2480              * pointer for an invalid page.  Probe that address first.
2481              */
2482             tcg_rt = cpu_reg(s, rt);
2483             clean_addr = clean_data_tbi(s, tcg_rt);
2484             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2485 
2486             if (s->ata[0]) {
2487                 /* Extract the tag from the register to match STZGM.  */
2488                 tag = tcg_temp_new_i64();
2489                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2491             }
2492         }
2493         return;
2494     case ARM_CP_DC_GZVA:
2495         {
2496             TCGv_i64 clean_addr, tag;
2497 
2498             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499             tcg_rt = cpu_reg(s, rt);
2500             clean_addr = clean_data_tbi(s, tcg_rt);
2501             gen_helper_dc_zva(tcg_env, clean_addr);
2502 
2503             if (s->ata[0]) {
2504                 /* Extract the tag from the register to match STZGM.  */
2505                 tag = tcg_temp_new_i64();
2506                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2508             }
2509         }
2510         return;
2511     default:
2512         g_assert_not_reached();
2513     }
2514 
2515     if (ri->type & ARM_CP_IO) {
2516         /* I/O operations must end the TB here (whether read or write) */
2517         need_exit_tb = translator_io_start(&s->base);
2518     }
2519 
2520     tcg_rt = cpu_reg(s, rt);
2521 
2522     if (isread) {
2523         if (ri->type & ARM_CP_CONST) {
2524             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525         } else if (ri->readfn) {
2526             if (!tcg_ri) {
2527                 tcg_ri = gen_lookup_cp_reg(key);
2528             }
2529             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530         } else {
2531             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2532         }
2533     } else {
2534         if (ri->type & ARM_CP_CONST) {
2535             /* If not forbidden by access permissions, treat as WI */
2536             return;
2537         } else if (ri->writefn) {
2538             if (!tcg_ri) {
2539                 tcg_ri = gen_lookup_cp_reg(key);
2540             }
2541             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542         } else {
2543             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2544         }
2545     }
2546 
2547     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2548         /*
2549          * A write to any coprocessor register that ends a TB
2550          * must rebuild the hflags for the next TB.
2551          */
2552         gen_rebuild_hflags(s);
2553         /*
2554          * We default to ending the TB on a coprocessor register write,
2555          * but allow this to be suppressed by the register definition
2556          * (usually only necessary to work around guest bugs).
2557          */
2558         need_exit_tb = true;
2559     }
2560     if (need_exit_tb) {
2561         s->base.is_jmp = DISAS_UPDATE_EXIT;
2562     }
2563 }
2564 
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2566 {
2567     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568     return true;
2569 }
2570 
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2572 {
2573     /*
2574      * For SVC, HVC and SMC we advance the single-step state
2575      * machine before taking the exception. This is architecturally
2576      * mandated, to ensure that single-stepping a system call
2577      * instruction works properly.
2578      */
2579     uint32_t syndrome = syn_aa64_svc(a->imm);
2580     if (s->fgt_svc) {
2581         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582         return true;
2583     }
2584     gen_ss_advance(s);
2585     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586     return true;
2587 }
2588 
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2590 {
2591     int target_el = s->current_el == 3 ? 3 : 2;
2592 
2593     if (s->current_el == 0) {
2594         unallocated_encoding(s);
2595         return true;
2596     }
2597     /*
2598      * The pre HVC helper handles cases when HVC gets trapped
2599      * as an undefined insn by runtime configuration.
2600      */
2601     gen_a64_update_pc(s, 0);
2602     gen_helper_pre_hvc(tcg_env);
2603     /* Architecture requires ss advance before we do the actual work */
2604     gen_ss_advance(s);
2605     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606     return true;
2607 }
2608 
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2610 {
2611     if (s->current_el == 0) {
2612         unallocated_encoding(s);
2613         return true;
2614     }
2615     gen_a64_update_pc(s, 0);
2616     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617     /* Architecture requires ss advance before we do the actual work */
2618     gen_ss_advance(s);
2619     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620     return true;
2621 }
2622 
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2624 {
2625     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626     return true;
2627 }
2628 
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2630 {
2631     /*
2632      * HLT. This has two purposes.
2633      * Architecturally, it is an external halting debug instruction.
2634      * Since QEMU doesn't implement external debug, we treat this as
2635      * it is required for halting debug disabled: it will UNDEF.
2636      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2637      */
2638     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640     } else {
2641         unallocated_encoding(s);
2642     }
2643     return true;
2644 }
2645 
2646 /*
2647  * Load/Store exclusive instructions are implemented by remembering
2648  * the value/address loaded, and seeing if these are the same
2649  * when the store is performed. This is not actually the architecturally
2650  * mandated semantics, but it works for typical guest code sequences
2651  * and avoids having to monitor regular stores.
2652  *
2653  * The store exclusive uses the atomic cmpxchg primitives to avoid
2654  * races in multi-threaded linux-user and when MTTCG softmmu is
2655  * enabled.
2656  */
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658                                int size, bool is_pair)
2659 {
2660     int idx = get_mem_index(s);
2661     TCGv_i64 dirty_addr, clean_addr;
2662     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2663 
2664     s->is_ldex = true;
2665     dirty_addr = cpu_reg_sp(s, rn);
2666     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2667 
2668     g_assert(size <= 3);
2669     if (is_pair) {
2670         g_assert(size >= 2);
2671         if (size == 2) {
2672             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673             if (s->be_data == MO_LE) {
2674                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676             } else {
2677                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2679             }
2680         } else {
2681             TCGv_i128 t16 = tcg_temp_new_i128();
2682 
2683             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2684 
2685             if (s->be_data == MO_LE) {
2686                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687                                       cpu_exclusive_high, t16);
2688             } else {
2689                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690                                       cpu_exclusive_val, t16);
2691             }
2692             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2694         }
2695     } else {
2696         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2698     }
2699     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2700 }
2701 
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703                                 int rn, int size, int is_pair)
2704 {
2705     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707      *     [addr] = {Rt};
2708      *     if (is_pair) {
2709      *         [addr + datasize] = {Rt2};
2710      *     }
2711      *     {Rd} = 0;
2712      * } else {
2713      *     {Rd} = 1;
2714      * }
2715      * env->exclusive_addr = -1;
2716      */
2717     TCGLabel *fail_label = gen_new_label();
2718     TCGLabel *done_label = gen_new_label();
2719     TCGv_i64 tmp, clean_addr;
2720     MemOp memop;
2721 
2722     /*
2723      * FIXME: We are out of spec here.  We have recorded only the address
2724      * from load_exclusive, not the entire range, and we assume that the
2725      * size of the access on both sides match.  The architecture allows the
2726      * store to be smaller than the load, so long as the stored bytes are
2727      * within the range recorded by the load.
2728      */
2729 
2730     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2733 
2734     /*
2735      * The write, and any associated faults, only happen if the virtual
2736      * and physical addresses pass the exclusive monitor check.  These
2737      * faults are exceedingly unlikely, because normally the guest uses
2738      * the exact same address register for the load_exclusive, and we
2739      * would have recognized these faults there.
2740      *
2741      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742      * unaligned 4-byte write within the range of an aligned 8-byte load.
2743      * With LSE2, the store would need to cross a 16-byte boundary when the
2744      * load did not, which would mean the store is outside the range
2745      * recorded for the monitor, which would have failed a corrected monitor
2746      * check above.  For now, we assume no size change and retain the
2747      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2748      *
2749      * It is possible to trigger an MTE fault, by performing the load with
2750      * a virtual address with a valid tag and performing the store with the
2751      * same virtual address and a different invalid tag.
2752      */
2753     memop = size + is_pair;
2754     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755         memop |= MO_ALIGN;
2756     }
2757     memop = finalize_memop(s, memop);
2758     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2759 
2760     tmp = tcg_temp_new_i64();
2761     if (is_pair) {
2762         if (size == 2) {
2763             if (s->be_data == MO_LE) {
2764                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765             } else {
2766                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2767             }
2768             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769                                        cpu_exclusive_val, tmp,
2770                                        get_mem_index(s), memop);
2771             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772         } else {
2773             TCGv_i128 t16 = tcg_temp_new_i128();
2774             TCGv_i128 c16 = tcg_temp_new_i128();
2775             TCGv_i64 a, b;
2776 
2777             if (s->be_data == MO_LE) {
2778                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780                                         cpu_exclusive_high);
2781             } else {
2782                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784                                         cpu_exclusive_val);
2785             }
2786 
2787             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788                                         get_mem_index(s), memop);
2789 
2790             a = tcg_temp_new_i64();
2791             b = tcg_temp_new_i64();
2792             if (s->be_data == MO_LE) {
2793                 tcg_gen_extr_i128_i64(a, b, t16);
2794             } else {
2795                 tcg_gen_extr_i128_i64(b, a, t16);
2796             }
2797 
2798             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800             tcg_gen_or_i64(tmp, a, b);
2801 
2802             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2803         }
2804     } else {
2805         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806                                    cpu_reg(s, rt), get_mem_index(s), memop);
2807         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2808     }
2809     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810     tcg_gen_br(done_label);
2811 
2812     gen_set_label(fail_label);
2813     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814     gen_set_label(done_label);
2815     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2816 }
2817 
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819                                  int rn, int size)
2820 {
2821     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823     int memidx = get_mem_index(s);
2824     TCGv_i64 clean_addr;
2825     MemOp memop;
2826 
2827     if (rn == 31) {
2828         gen_check_sp_alignment(s);
2829     }
2830     memop = check_atomic_align(s, rn, size);
2831     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833                                memidx, memop);
2834 }
2835 
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837                                       int rn, int size)
2838 {
2839     TCGv_i64 s1 = cpu_reg(s, rs);
2840     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841     TCGv_i64 t1 = cpu_reg(s, rt);
2842     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843     TCGv_i64 clean_addr;
2844     int memidx = get_mem_index(s);
2845     MemOp memop;
2846 
2847     if (rn == 31) {
2848         gen_check_sp_alignment(s);
2849     }
2850 
2851     /* This is a single atomic access, despite the "pair". */
2852     memop = check_atomic_align(s, rn, size + 1);
2853     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2854 
2855     if (size == 2) {
2856         TCGv_i64 cmp = tcg_temp_new_i64();
2857         TCGv_i64 val = tcg_temp_new_i64();
2858 
2859         if (s->be_data == MO_LE) {
2860             tcg_gen_concat32_i64(val, t1, t2);
2861             tcg_gen_concat32_i64(cmp, s1, s2);
2862         } else {
2863             tcg_gen_concat32_i64(val, t2, t1);
2864             tcg_gen_concat32_i64(cmp, s2, s1);
2865         }
2866 
2867         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2868 
2869         if (s->be_data == MO_LE) {
2870             tcg_gen_extr32_i64(s1, s2, cmp);
2871         } else {
2872             tcg_gen_extr32_i64(s2, s1, cmp);
2873         }
2874     } else {
2875         TCGv_i128 cmp = tcg_temp_new_i128();
2876         TCGv_i128 val = tcg_temp_new_i128();
2877 
2878         if (s->be_data == MO_LE) {
2879             tcg_gen_concat_i64_i128(val, t1, t2);
2880             tcg_gen_concat_i64_i128(cmp, s1, s2);
2881         } else {
2882             tcg_gen_concat_i64_i128(val, t2, t1);
2883             tcg_gen_concat_i64_i128(cmp, s2, s1);
2884         }
2885 
2886         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2887 
2888         if (s->be_data == MO_LE) {
2889             tcg_gen_extr_i128_i64(s1, s2, cmp);
2890         } else {
2891             tcg_gen_extr_i128_i64(s2, s1, cmp);
2892         }
2893     }
2894 }
2895 
2896 /*
2897  * Compute the ISS.SF bit for syndrome information if an exception
2898  * is taken on a load or store. This indicates whether the instruction
2899  * is accessing a 32-bit or 64-bit register. This logic is derived
2900  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2901  */
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2903 {
2904 
2905     if (sign) {
2906         /*
2907          * Signed loads are 64 bit results if we are not going to
2908          * do a zero-extend from 32 to 64 after the load.
2909          * (For a store, sign and ext are always false.)
2910          */
2911         return !ext;
2912     } else {
2913         /* Unsigned loads/stores work at the specified size */
2914         return size == MO_64;
2915     }
2916 }
2917 
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2919 {
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     if (a->lasr) {
2924         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2925     }
2926     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927     return true;
2928 }
2929 
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2931 {
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936     if (a->lasr) {
2937         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2938     }
2939     return true;
2940 }
2941 
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2943 {
2944     TCGv_i64 clean_addr;
2945     MemOp memop;
2946     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2947 
2948     /*
2949      * StoreLORelease is the same as Store-Release for QEMU, but
2950      * needs the feature-test.
2951      */
2952     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953         return false;
2954     }
2955     /* Generate ISS for non-exclusive accesses including LASR.  */
2956     if (a->rn == 31) {
2957         gen_check_sp_alignment(s);
2958     }
2959     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962                                 true, a->rn != 31, memop);
2963     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964               iss_sf, a->lasr);
2965     return true;
2966 }
2967 
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2969 {
2970     TCGv_i64 clean_addr;
2971     MemOp memop;
2972     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2973 
2974     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2975     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976         return false;
2977     }
2978     /* Generate ISS for non-exclusive accesses including LASR.  */
2979     if (a->rn == 31) {
2980         gen_check_sp_alignment(s);
2981     }
2982     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984                                 false, a->rn != 31, memop);
2985     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986               a->rt, iss_sf, a->lasr);
2987     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988     return true;
2989 }
2990 
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2992 {
2993     if (a->rn == 31) {
2994         gen_check_sp_alignment(s);
2995     }
2996     if (a->lasr) {
2997         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2998     }
2999     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000     return true;
3001 }
3002 
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3004 {
3005     if (a->rn == 31) {
3006         gen_check_sp_alignment(s);
3007     }
3008     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009     if (a->lasr) {
3010         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3011     }
3012     return true;
3013 }
3014 
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3016 {
3017     if (!dc_isar_feature(aa64_atomics, s)) {
3018         return false;
3019     }
3020     if (((a->rt | a->rs) & 1) != 0) {
3021         return false;
3022     }
3023 
3024     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025     return true;
3026 }
3027 
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3029 {
3030     if (!dc_isar_feature(aa64_atomics, s)) {
3031         return false;
3032     }
3033     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034     return true;
3035 }
3036 
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3038 {
3039     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041     TCGv_i64 clean_addr = tcg_temp_new_i64();
3042     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3043 
3044     gen_pc_plus_diff(s, clean_addr, a->imm);
3045     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046               false, true, a->rt, iss_sf, false);
3047     return true;
3048 }
3049 
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3051 {
3052     /* Load register (literal), vector version */
3053     TCGv_i64 clean_addr;
3054     MemOp memop;
3055 
3056     if (!fp_access_check(s)) {
3057         return true;
3058     }
3059     memop = finalize_memop_asimd(s, a->sz);
3060     clean_addr = tcg_temp_new_i64();
3061     gen_pc_plus_diff(s, clean_addr, a->imm);
3062     do_fp_ld(s, a->rt, clean_addr, memop);
3063     return true;
3064 }
3065 
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068                                  uint64_t offset, bool is_store, MemOp mop)
3069 {
3070     if (a->rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075     if (!a->p) {
3076         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3077     }
3078 
3079     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3081 }
3082 
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084                                   TCGv_i64 dirty_addr, uint64_t offset)
3085 {
3086     if (a->w) {
3087         if (a->p) {
3088             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3089         }
3090         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3091     }
3092 }
3093 
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103     /*
3104      * We built mop above for the single logical access -- rebuild it
3105      * now for the paired operation.
3106      *
3107      * With LSE2, non-sign-extending pairs are treated atomically if
3108      * aligned, and if unaligned one of the pair will be completely
3109      * within a 16-byte block and that element will be atomic.
3110      * Otherwise each element is separately atomic.
3111      * In all cases, issue one operation with the correct atomicity.
3112      */
3113     mop = a->sz + 1;
3114     if (s->align_mem) {
3115         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3116     }
3117     mop = finalize_memop_pair(s, mop);
3118     if (a->sz == 2) {
3119         TCGv_i64 tmp = tcg_temp_new_i64();
3120 
3121         if (s->be_data == MO_LE) {
3122             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123         } else {
3124             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3125         }
3126         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127     } else {
3128         TCGv_i128 tmp = tcg_temp_new_i128();
3129 
3130         if (s->be_data == MO_LE) {
3131             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132         } else {
3133             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3134         }
3135         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3136     }
3137     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138     return true;
3139 }
3140 
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3142 {
3143     uint64_t offset = a->imm << a->sz;
3144     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145     MemOp mop = finalize_memop(s, a->sz);
3146 
3147     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148     tcg_rt = cpu_reg(s, a->rt);
3149     tcg_rt2 = cpu_reg(s, a->rt2);
3150 
3151     /*
3152      * We built mop above for the single logical access -- rebuild it
3153      * now for the paired operation.
3154      *
3155      * With LSE2, non-sign-extending pairs are treated atomically if
3156      * aligned, and if unaligned one of the pair will be completely
3157      * within a 16-byte block and that element will be atomic.
3158      * Otherwise each element is separately atomic.
3159      * In all cases, issue one operation with the correct atomicity.
3160      *
3161      * This treats sign-extending loads like zero-extending loads,
3162      * since that reuses the most code below.
3163      */
3164     mop = a->sz + 1;
3165     if (s->align_mem) {
3166         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3167     }
3168     mop = finalize_memop_pair(s, mop);
3169     if (a->sz == 2) {
3170         int o2 = s->be_data == MO_LE ? 32 : 0;
3171         int o1 = o2 ^ 32;
3172 
3173         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174         if (a->sign) {
3175             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177         } else {
3178             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3180         }
3181     } else {
3182         TCGv_i128 tmp = tcg_temp_new_i128();
3183 
3184         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185         if (s->be_data == MO_LE) {
3186             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187         } else {
3188             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3189         }
3190     }
3191     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192     return true;
3193 }
3194 
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3196 {
3197     uint64_t offset = a->imm << a->sz;
3198     TCGv_i64 clean_addr, dirty_addr;
3199     MemOp mop;
3200 
3201     if (!fp_access_check(s)) {
3202         return true;
3203     }
3204 
3205     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206     mop = finalize_memop_asimd(s, a->sz);
3207     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208     do_fp_st(s, a->rt, clean_addr, mop);
3209     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210     do_fp_st(s, a->rt2, clean_addr, mop);
3211     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212     return true;
3213 }
3214 
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3216 {
3217     uint64_t offset = a->imm << a->sz;
3218     TCGv_i64 clean_addr, dirty_addr;
3219     MemOp mop;
3220 
3221     if (!fp_access_check(s)) {
3222         return true;
3223     }
3224 
3225     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226     mop = finalize_memop_asimd(s, a->sz);
3227     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228     do_fp_ld(s, a->rt, clean_addr, mop);
3229     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230     do_fp_ld(s, a->rt2, clean_addr, mop);
3231     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232     return true;
3233 }
3234 
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3236 {
3237     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239     MemOp mop;
3240     TCGv_i128 tmp;
3241 
3242     /* STGP only comes in one size. */
3243     tcg_debug_assert(a->sz == MO_64);
3244 
3245     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246         return false;
3247     }
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252 
3253     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254     if (!a->p) {
3255         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3256     }
3257 
3258     clean_addr = clean_data_tbi(s, dirty_addr);
3259     tcg_rt = cpu_reg(s, a->rt);
3260     tcg_rt2 = cpu_reg(s, a->rt2);
3261 
3262     /*
3263      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264      * and one tag operation.  We implement it as one single aligned 16-byte
3265      * memory operation for convenience.  Note that the alignment ensures
3266      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3267      */
3268     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3269 
3270     tmp = tcg_temp_new_i128();
3271     if (s->be_data == MO_LE) {
3272         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273     } else {
3274         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3275     }
3276     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3277 
3278     /* Perform the tag store, if tag access enabled. */
3279     if (s->ata[0]) {
3280         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282         } else {
3283             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3284         }
3285     }
3286 
3287     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288     return true;
3289 }
3290 
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293                                  uint64_t offset, bool is_store, MemOp mop)
3294 {
3295     int memidx;
3296 
3297     if (a->rn == 31) {
3298         gen_check_sp_alignment(s);
3299     }
3300 
3301     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302     if (!a->p) {
3303         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3304     }
3305     memidx = get_a64_user_mem_index(s, a->unpriv);
3306     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307                                         a->w || a->rn != 31,
3308                                         mop, a->unpriv, memidx);
3309 }
3310 
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312                                   TCGv_i64 dirty_addr, uint64_t offset)
3313 {
3314     if (a->w) {
3315         if (a->p) {
3316             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317         }
3318         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3319     }
3320 }
3321 
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     bool iss_sf, iss_valid = !a->w;
3325     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326     int memidx = get_a64_user_mem_index(s, a->unpriv);
3327     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3328 
3329     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3330 
3331     tcg_rt = cpu_reg(s, a->rt);
3332     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3333 
3334     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335                      iss_valid, a->rt, iss_sf, false);
3336     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337     return true;
3338 }
3339 
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3341 {
3342     bool iss_sf, iss_valid = !a->w;
3343     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344     int memidx = get_a64_user_mem_index(s, a->unpriv);
3345     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3346 
3347     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3348 
3349     tcg_rt = cpu_reg(s, a->rt);
3350     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3351 
3352     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355     return true;
3356 }
3357 
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3359 {
3360     TCGv_i64 clean_addr, dirty_addr;
3361     MemOp mop;
3362 
3363     if (!fp_access_check(s)) {
3364         return true;
3365     }
3366     mop = finalize_memop_asimd(s, a->sz);
3367     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368     do_fp_st(s, a->rt, clean_addr, mop);
3369     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370     return true;
3371 }
3372 
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3374 {
3375     TCGv_i64 clean_addr, dirty_addr;
3376     MemOp mop;
3377 
3378     if (!fp_access_check(s)) {
3379         return true;
3380     }
3381     mop = finalize_memop_asimd(s, a->sz);
3382     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383     do_fp_ld(s, a->rt, clean_addr, mop);
3384     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385     return true;
3386 }
3387 
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390                              bool is_store, MemOp memop)
3391 {
3392     TCGv_i64 tcg_rm;
3393 
3394     if (a->rn == 31) {
3395         gen_check_sp_alignment(s);
3396     }
3397     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3398 
3399     tcg_rm = read_cpu_reg(s, a->rm, 1);
3400     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3401 
3402     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3404 }
3405 
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3407 {
3408     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410     MemOp memop;
3411 
3412     if (extract32(a->opt, 1, 1) == 0) {
3413         return false;
3414     }
3415 
3416     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418     tcg_rt = cpu_reg(s, a->rt);
3419     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420               a->ext, true, a->rt, iss_sf, false);
3421     return true;
3422 }
3423 
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428     MemOp memop;
3429 
3430     if (extract32(a->opt, 1, 1) == 0) {
3431         return false;
3432     }
3433 
3434     memop = finalize_memop(s, a->sz);
3435     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436     tcg_rt = cpu_reg(s, a->rt);
3437     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438     return true;
3439 }
3440 
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3442 {
3443     TCGv_i64 clean_addr, dirty_addr;
3444     MemOp memop;
3445 
3446     if (extract32(a->opt, 1, 1) == 0) {
3447         return false;
3448     }
3449 
3450     if (!fp_access_check(s)) {
3451         return true;
3452     }
3453 
3454     memop = finalize_memop_asimd(s, a->sz);
3455     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456     do_fp_ld(s, a->rt, clean_addr, memop);
3457     return true;
3458 }
3459 
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3461 {
3462     TCGv_i64 clean_addr, dirty_addr;
3463     MemOp memop;
3464 
3465     if (extract32(a->opt, 1, 1) == 0) {
3466         return false;
3467     }
3468 
3469     if (!fp_access_check(s)) {
3470         return true;
3471     }
3472 
3473     memop = finalize_memop_asimd(s, a->sz);
3474     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475     do_fp_st(s, a->rt, clean_addr, memop);
3476     return true;
3477 }
3478 
3479 
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481                          int sign, bool invert)
3482 {
3483     MemOp mop = a->sz | sign;
3484     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3485 
3486     if (a->rn == 31) {
3487         gen_check_sp_alignment(s);
3488     }
3489     mop = check_atomic_align(s, a->rn, mop);
3490     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491                                 a->rn != 31, mop);
3492     tcg_rs = read_cpu_reg(s, a->rs, true);
3493     tcg_rt = cpu_reg(s, a->rt);
3494     if (invert) {
3495         tcg_gen_not_i64(tcg_rs, tcg_rs);
3496     }
3497     /*
3498      * The tcg atomic primitives are all full barriers.  Therefore we
3499      * can ignore the Acquire and Release bits of this instruction.
3500      */
3501     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3502 
3503     if (mop & MO_SIGN) {
3504         switch (a->sz) {
3505         case MO_8:
3506             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507             break;
3508         case MO_16:
3509             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510             break;
3511         case MO_32:
3512             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513             break;
3514         case MO_64:
3515             break;
3516         default:
3517             g_assert_not_reached();
3518         }
3519     }
3520     return true;
3521 }
3522 
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3532 
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3534 {
3535     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536     TCGv_i64 clean_addr;
3537     MemOp mop;
3538 
3539     if (!dc_isar_feature(aa64_atomics, s) ||
3540         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541         return false;
3542     }
3543     if (a->rn == 31) {
3544         gen_check_sp_alignment(s);
3545     }
3546     mop = check_atomic_align(s, a->rn, a->sz);
3547     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548                                 a->rn != 31, mop);
3549     /*
3550      * LDAPR* are a special case because they are a simple load, not a
3551      * fetch-and-do-something op.
3552      * The architectural consistency requirements here are weaker than
3553      * full load-acquire (we only need "load-acquire processor consistent"),
3554      * but we choose to implement them as full LDAQ.
3555      */
3556     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557               true, a->rt, iss_sf, true);
3558     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559     return true;
3560 }
3561 
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3563 {
3564     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565     MemOp memop;
3566 
3567     /* Load with pointer authentication */
3568     if (!dc_isar_feature(aa64_pauth, s)) {
3569         return false;
3570     }
3571 
3572     if (a->rn == 31) {
3573         gen_check_sp_alignment(s);
3574     }
3575     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3576 
3577     if (s->pauth_active) {
3578         if (!a->m) {
3579             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580                                       tcg_constant_i64(0));
3581         } else {
3582             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583                                       tcg_constant_i64(0));
3584         }
3585     }
3586 
3587     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3588 
3589     memop = finalize_memop(s, MO_64);
3590 
3591     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3592     clean_addr = gen_mte_check1(s, dirty_addr, false,
3593                                 a->w || a->rn != 31, memop);
3594 
3595     tcg_rt = cpu_reg(s, a->rt);
3596     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597               /* extend */ false, /* iss_valid */ !a->w,
3598               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3599 
3600     if (a->w) {
3601         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3602     }
3603     return true;
3604 }
3605 
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3607 {
3608     TCGv_i64 clean_addr, dirty_addr;
3609     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3611 
3612     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613         return false;
3614     }
3615 
3616     if (a->rn == 31) {
3617         gen_check_sp_alignment(s);
3618     }
3619 
3620     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623     clean_addr = clean_data_tbi(s, dirty_addr);
3624 
3625     /*
3626      * Load-AcquirePC semantics; we implement as the slightly more
3627      * restrictive Load-Acquire.
3628      */
3629     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630               a->rt, iss_sf, true);
3631     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632     return true;
3633 }
3634 
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3636 {
3637     TCGv_i64 clean_addr, dirty_addr;
3638     MemOp mop = a->sz;
3639     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3640 
3641     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642         return false;
3643     }
3644 
3645     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654     clean_addr = clean_data_tbi(s, dirty_addr);
3655 
3656     /* Store-Release semantics */
3657     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659     return true;
3660 }
3661 
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3663 {
3664     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665     MemOp endian, align, mop;
3666 
3667     int total;    /* total bytes */
3668     int elements; /* elements per vector */
3669     int r;
3670     int size = a->sz;
3671 
3672     if (!a->p && a->rm != 0) {
3673         /* For non-postindexed accesses the Rm field must be 0 */
3674         return false;
3675     }
3676     if (size == 3 && !a->q && a->selem != 1) {
3677         return false;
3678     }
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     if (a->rn == 31) {
3684         gen_check_sp_alignment(s);
3685     }
3686 
3687     /* For our purposes, bytes are always little-endian.  */
3688     endian = s->be_data;
3689     if (size == 0) {
3690         endian = MO_LE;
3691     }
3692 
3693     total = a->rpt * a->selem * (a->q ? 16 : 8);
3694     tcg_rn = cpu_reg_sp(s, a->rn);
3695 
3696     /*
3697      * Issue the MTE check vs the logical repeat count, before we
3698      * promote consecutive little-endian elements below.
3699      */
3700     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701                                 finalize_memop_asimd(s, size));
3702 
3703     /*
3704      * Consecutive little-endian elements from a single register
3705      * can be promoted to a larger little-endian operation.
3706      */
3707     align = MO_ALIGN;
3708     if (a->selem == 1 && endian == MO_LE) {
3709         align = pow2_align(size);
3710         size = 3;
3711     }
3712     if (!s->align_mem) {
3713         align = 0;
3714     }
3715     mop = endian | size | align;
3716 
3717     elements = (a->q ? 16 : 8) >> size;
3718     tcg_ebytes = tcg_constant_i64(1 << size);
3719     for (r = 0; r < a->rpt; r++) {
3720         int e;
3721         for (e = 0; e < elements; e++) {
3722             int xs;
3723             for (xs = 0; xs < a->selem; xs++) {
3724                 int tt = (a->rt + r + xs) % 32;
3725                 do_vec_ld(s, tt, e, clean_addr, mop);
3726                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3727             }
3728         }
3729     }
3730 
3731     /*
3732      * For non-quad operations, setting a slice of the low 64 bits of
3733      * the register clears the high 64 bits (in the ARM ARM pseudocode
3734      * this is implicit in the fact that 'rval' is a 64 bit wide
3735      * variable).  For quad operations, we might still need to zero
3736      * the high bits of SVE.
3737      */
3738     for (r = 0; r < a->rpt * a->selem; r++) {
3739         int tt = (a->rt + r) % 32;
3740         clear_vec_high(s, a->q, tt);
3741     }
3742 
3743     if (a->p) {
3744         if (a->rm == 31) {
3745             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746         } else {
3747             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748         }
3749     }
3750     return true;
3751 }
3752 
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3754 {
3755     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756     MemOp endian, align, mop;
3757 
3758     int total;    /* total bytes */
3759     int elements; /* elements per vector */
3760     int r;
3761     int size = a->sz;
3762 
3763     if (!a->p && a->rm != 0) {
3764         /* For non-postindexed accesses the Rm field must be 0 */
3765         return false;
3766     }
3767     if (size == 3 && !a->q && a->selem != 1) {
3768         return false;
3769     }
3770     if (!fp_access_check(s)) {
3771         return true;
3772     }
3773 
3774     if (a->rn == 31) {
3775         gen_check_sp_alignment(s);
3776     }
3777 
3778     /* For our purposes, bytes are always little-endian.  */
3779     endian = s->be_data;
3780     if (size == 0) {
3781         endian = MO_LE;
3782     }
3783 
3784     total = a->rpt * a->selem * (a->q ? 16 : 8);
3785     tcg_rn = cpu_reg_sp(s, a->rn);
3786 
3787     /*
3788      * Issue the MTE check vs the logical repeat count, before we
3789      * promote consecutive little-endian elements below.
3790      */
3791     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792                                 finalize_memop_asimd(s, size));
3793 
3794     /*
3795      * Consecutive little-endian elements from a single register
3796      * can be promoted to a larger little-endian operation.
3797      */
3798     align = MO_ALIGN;
3799     if (a->selem == 1 && endian == MO_LE) {
3800         align = pow2_align(size);
3801         size = 3;
3802     }
3803     if (!s->align_mem) {
3804         align = 0;
3805     }
3806     mop = endian | size | align;
3807 
3808     elements = (a->q ? 16 : 8) >> size;
3809     tcg_ebytes = tcg_constant_i64(1 << size);
3810     for (r = 0; r < a->rpt; r++) {
3811         int e;
3812         for (e = 0; e < elements; e++) {
3813             int xs;
3814             for (xs = 0; xs < a->selem; xs++) {
3815                 int tt = (a->rt + r + xs) % 32;
3816                 do_vec_st(s, tt, e, clean_addr, mop);
3817                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3818             }
3819         }
3820     }
3821 
3822     if (a->p) {
3823         if (a->rm == 31) {
3824             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825         } else {
3826             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3827         }
3828     }
3829     return true;
3830 }
3831 
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3833 {
3834     int xs, total, rt;
3835     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836     MemOp mop;
3837 
3838     if (!a->p && a->rm != 0) {
3839         return false;
3840     }
3841     if (!fp_access_check(s)) {
3842         return true;
3843     }
3844 
3845     if (a->rn == 31) {
3846         gen_check_sp_alignment(s);
3847     }
3848 
3849     total = a->selem << a->scale;
3850     tcg_rn = cpu_reg_sp(s, a->rn);
3851 
3852     mop = finalize_memop_asimd(s, a->scale);
3853     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854                                 total, mop);
3855 
3856     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858         do_vec_st(s, rt, a->index, clean_addr, mop);
3859         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3860     }
3861 
3862     if (a->p) {
3863         if (a->rm == 31) {
3864             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865         } else {
3866             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3867         }
3868     }
3869     return true;
3870 }
3871 
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3873 {
3874     int xs, total, rt;
3875     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876     MemOp mop;
3877 
3878     if (!a->p && a->rm != 0) {
3879         return false;
3880     }
3881     if (!fp_access_check(s)) {
3882         return true;
3883     }
3884 
3885     if (a->rn == 31) {
3886         gen_check_sp_alignment(s);
3887     }
3888 
3889     total = a->selem << a->scale;
3890     tcg_rn = cpu_reg_sp(s, a->rn);
3891 
3892     mop = finalize_memop_asimd(s, a->scale);
3893     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894                                 total, mop);
3895 
3896     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898         do_vec_ld(s, rt, a->index, clean_addr, mop);
3899         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3900     }
3901 
3902     if (a->p) {
3903         if (a->rm == 31) {
3904             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905         } else {
3906             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3907         }
3908     }
3909     return true;
3910 }
3911 
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3913 {
3914     int xs, total, rt;
3915     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916     MemOp mop;
3917 
3918     if (!a->p && a->rm != 0) {
3919         return false;
3920     }
3921     if (!fp_access_check(s)) {
3922         return true;
3923     }
3924 
3925     if (a->rn == 31) {
3926         gen_check_sp_alignment(s);
3927     }
3928 
3929     total = a->selem << a->scale;
3930     tcg_rn = cpu_reg_sp(s, a->rn);
3931 
3932     mop = finalize_memop_asimd(s, a->scale);
3933     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934                                 total, mop);
3935 
3936     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938         /* Load and replicate to all elements */
3939         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3940 
3941         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3945     }
3946 
3947     if (a->p) {
3948         if (a->rm == 31) {
3949             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950         } else {
3951             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3952         }
3953     }
3954     return true;
3955 }
3956 
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3958 {
3959     TCGv_i64 addr, clean_addr, tcg_rt;
3960     int size = 4 << s->dcz_blocksize;
3961 
3962     if (!dc_isar_feature(aa64_mte, s)) {
3963         return false;
3964     }
3965     if (s->current_el == 0) {
3966         return false;
3967     }
3968 
3969     if (a->rn == 31) {
3970         gen_check_sp_alignment(s);
3971     }
3972 
3973     addr = read_cpu_reg_sp(s, a->rn, true);
3974     tcg_gen_addi_i64(addr, addr, a->imm);
3975     tcg_rt = cpu_reg(s, a->rt);
3976 
3977     if (s->ata[0]) {
3978         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3979     }
3980     /*
3981      * The non-tags portion of STZGM is mostly like DC_ZVA,
3982      * except the alignment happens before the access.
3983      */
3984     clean_addr = clean_data_tbi(s, addr);
3985     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986     gen_helper_dc_zva(tcg_env, clean_addr);
3987     return true;
3988 }
3989 
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3991 {
3992     TCGv_i64 addr, clean_addr, tcg_rt;
3993 
3994     if (!dc_isar_feature(aa64_mte, s)) {
3995         return false;
3996     }
3997     if (s->current_el == 0) {
3998         return false;
3999     }
4000 
4001     if (a->rn == 31) {
4002         gen_check_sp_alignment(s);
4003     }
4004 
4005     addr = read_cpu_reg_sp(s, a->rn, true);
4006     tcg_gen_addi_i64(addr, addr, a->imm);
4007     tcg_rt = cpu_reg(s, a->rt);
4008 
4009     if (s->ata[0]) {
4010         gen_helper_stgm(tcg_env, addr, tcg_rt);
4011     } else {
4012         MMUAccessType acc = MMU_DATA_STORE;
4013         int size = 4 << s->gm_blocksize;
4014 
4015         clean_addr = clean_data_tbi(s, addr);
4016         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017         gen_probe_access(s, clean_addr, acc, size);
4018     }
4019     return true;
4020 }
4021 
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4023 {
4024     TCGv_i64 addr, clean_addr, tcg_rt;
4025 
4026     if (!dc_isar_feature(aa64_mte, s)) {
4027         return false;
4028     }
4029     if (s->current_el == 0) {
4030         return false;
4031     }
4032 
4033     if (a->rn == 31) {
4034         gen_check_sp_alignment(s);
4035     }
4036 
4037     addr = read_cpu_reg_sp(s, a->rn, true);
4038     tcg_gen_addi_i64(addr, addr, a->imm);
4039     tcg_rt = cpu_reg(s, a->rt);
4040 
4041     if (s->ata[0]) {
4042         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043     } else {
4044         MMUAccessType acc = MMU_DATA_LOAD;
4045         int size = 4 << s->gm_blocksize;
4046 
4047         clean_addr = clean_data_tbi(s, addr);
4048         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049         gen_probe_access(s, clean_addr, acc, size);
4050         /* The result tags are zeros.  */
4051         tcg_gen_movi_i64(tcg_rt, 0);
4052     }
4053     return true;
4054 }
4055 
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4057 {
4058     TCGv_i64 addr, clean_addr, tcg_rt;
4059 
4060     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061         return false;
4062     }
4063 
4064     if (a->rn == 31) {
4065         gen_check_sp_alignment(s);
4066     }
4067 
4068     addr = read_cpu_reg_sp(s, a->rn, true);
4069     if (!a->p) {
4070         /* pre-index or signed offset */
4071         tcg_gen_addi_i64(addr, addr, a->imm);
4072     }
4073 
4074     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075     tcg_rt = cpu_reg(s, a->rt);
4076     if (s->ata[0]) {
4077         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078     } else {
4079         /*
4080          * Tag access disabled: we must check for aborts on the load
4081          * load from [rn+offset], and then insert a 0 tag into rt.
4082          */
4083         clean_addr = clean_data_tbi(s, addr);
4084         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4086     }
4087 
4088     if (a->w) {
4089         /* pre-index or post-index */
4090         if (a->p) {
4091             /* post-index */
4092             tcg_gen_addi_i64(addr, addr, a->imm);
4093         }
4094         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4095     }
4096     return true;
4097 }
4098 
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4100 {
4101     TCGv_i64 addr, tcg_rt;
4102 
4103     if (a->rn == 31) {
4104         gen_check_sp_alignment(s);
4105     }
4106 
4107     addr = read_cpu_reg_sp(s, a->rn, true);
4108     if (!a->p) {
4109         /* pre-index or signed offset */
4110         tcg_gen_addi_i64(addr, addr, a->imm);
4111     }
4112     tcg_rt = cpu_reg_sp(s, a->rt);
4113     if (!s->ata[0]) {
4114         /*
4115          * For STG and ST2G, we need to check alignment and probe memory.
4116          * TODO: For STZG and STZ2G, we could rely on the stores below,
4117          * at least for system mode; user-only won't enforce alignment.
4118          */
4119         if (is_pair) {
4120             gen_helper_st2g_stub(tcg_env, addr);
4121         } else {
4122             gen_helper_stg_stub(tcg_env, addr);
4123         }
4124     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125         if (is_pair) {
4126             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127         } else {
4128             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4129         }
4130     } else {
4131         if (is_pair) {
4132             gen_helper_st2g(tcg_env, addr, tcg_rt);
4133         } else {
4134             gen_helper_stg(tcg_env, addr, tcg_rt);
4135         }
4136     }
4137 
4138     if (is_zero) {
4139         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140         TCGv_i64 zero64 = tcg_constant_i64(0);
4141         TCGv_i128 zero128 = tcg_temp_new_i128();
4142         int mem_index = get_mem_index(s);
4143         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4144 
4145         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4146 
4147         /* This is 1 or 2 atomic 16-byte operations. */
4148         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149         if (is_pair) {
4150             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4152         }
4153     }
4154 
4155     if (a->w) {
4156         /* pre-index or post-index */
4157         if (a->p) {
4158             /* post-index */
4159             tcg_gen_addi_i64(addr, addr, a->imm);
4160         }
4161         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4162     }
4163     return true;
4164 }
4165 
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4170 
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4172 
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174                    bool is_setg, SetFn fn)
4175 {
4176     int memidx;
4177     uint32_t syndrome, desc = 0;
4178 
4179     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182 
4183     /*
4184      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185      * us to pull this check before the CheckMOPSEnabled() test
4186      * (which we do in the helper function)
4187      */
4188     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189         a->rd == 31 || a->rn == 31) {
4190         return false;
4191     }
4192 
4193     memidx = get_a64_user_mem_index(s, a->unpriv);
4194 
4195     /*
4196      * We pass option_a == true, matching our implementation;
4197      * we pass wrong_option == false: helper function may set that bit.
4198      */
4199     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4201 
4202     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203         /* We may need to do MTE tag checking, so assemble the descriptor */
4204         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4208     }
4209     /* The helper function always needs the memidx even with MTE disabled */
4210     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4211 
4212     /*
4213      * The helper needs the register numbers, but since they're in
4214      * the syndrome anyway, we let it extract them from there rather
4215      * than passing in an extra three integer arguments.
4216      */
4217     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218     return true;
4219 }
4220 
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4227 
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4229 
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4231 {
4232     int rmemidx, wmemidx;
4233     uint32_t syndrome, rdesc = 0, wdesc = 0;
4234     bool wunpriv = extract32(a->options, 0, 1);
4235     bool runpriv = extract32(a->options, 1, 1);
4236 
4237     /*
4238      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239      * us to pull this check before the CheckMOPSEnabled() test
4240      * (which we do in the helper function)
4241      */
4242     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244         return false;
4245     }
4246 
4247     rmemidx = get_a64_user_mem_index(s, runpriv);
4248     wmemidx = get_a64_user_mem_index(s, wunpriv);
4249 
4250     /*
4251      * We pass option_a == true, matching our implementation;
4252      * we pass wrong_option == false: helper function may set that bit.
4253      */
4254     syndrome = syn_mop(false, false, a->options, is_epilogue,
4255                        false, true, a->rd, a->rs, a->rn);
4256 
4257     /* If we need to do MTE tag checking, assemble the descriptors */
4258     if (s->mte_active[runpriv]) {
4259         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4261     }
4262     if (s->mte_active[wunpriv]) {
4263         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4266     }
4267     /* The helper function needs these parts of the descriptor regardless */
4268     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4270 
4271     /*
4272      * The helper needs the register numbers, but since they're in
4273      * the syndrome anyway, we let it extract them from there rather
4274      * than passing in an extra three integer arguments.
4275      */
4276     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277        tcg_constant_i32(rdesc));
4278     return true;
4279 }
4280 
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4287 
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4289 
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4292 {
4293     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4296 
4297     fn(tcg_rd, tcg_rn, tcg_imm);
4298     if (!a->sf) {
4299         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4300     }
4301     return true;
4302 }
4303 
4304 /*
4305  * PC-rel. addressing
4306  */
4307 
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4309 {
4310     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311     return true;
4312 }
4313 
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4315 {
4316     int64_t offset = (int64_t)a->imm << 12;
4317 
4318     /* The page offset is ok for CF_PCREL. */
4319     offset -= s->pc_curr & 0xfff;
4320     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321     return true;
4322 }
4323 
4324 /*
4325  * Add/subtract (immediate)
4326  */
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4331 
4332 /*
4333  * Add/subtract (immediate, with tags)
4334  */
4335 
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337                                       bool sub_op)
4338 {
4339     TCGv_i64 tcg_rn, tcg_rd;
4340     int imm;
4341 
4342     imm = a->uimm6 << LOG2_TAG_GRANULE;
4343     if (sub_op) {
4344         imm = -imm;
4345     }
4346 
4347     tcg_rn = cpu_reg_sp(s, a->rn);
4348     tcg_rd = cpu_reg_sp(s, a->rd);
4349 
4350     if (s->ata[0]) {
4351         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352                            tcg_constant_i32(imm),
4353                            tcg_constant_i32(a->uimm4));
4354     } else {
4355         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4357     }
4358     return true;
4359 }
4360 
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4363 
4364 /* The input should be a value in the bottom e bits (with higher
4365  * bits zero); returns that value replicated into every element
4366  * of size e in a 64 bit integer.
4367  */
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4369 {
4370     assert(e != 0);
4371     while (e < 64) {
4372         mask |= mask << e;
4373         e *= 2;
4374     }
4375     return mask;
4376 }
4377 
4378 /*
4379  * Logical (immediate)
4380  */
4381 
4382 /*
4383  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385  * value (ie should cause a guest UNDEF exception), and true if they are
4386  * valid, in which case the decoded bit pattern is written to result.
4387  */
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389                             unsigned int imms, unsigned int immr)
4390 {
4391     uint64_t mask;
4392     unsigned e, levels, s, r;
4393     int len;
4394 
4395     assert(immn < 2 && imms < 64 && immr < 64);
4396 
4397     /* The bit patterns we create here are 64 bit patterns which
4398      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399      * 64 bits each. Each element contains the same value: a run
4400      * of between 1 and e-1 non-zero bits, rotated within the
4401      * element by between 0 and e-1 bits.
4402      *
4403      * The element size and run length are encoded into immn (1 bit)
4404      * and imms (6 bits) as follows:
4405      * 64 bit elements: immn = 1, imms = <length of run - 1>
4406      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411      * Notice that immn = 0, imms = 11111x is the only combination
4412      * not covered by one of the above options; this is reserved.
4413      * Further, <length of run - 1> all-ones is a reserved pattern.
4414      *
4415      * In all cases the rotation is by immr % e (and immr is 6 bits).
4416      */
4417 
4418     /* First determine the element size */
4419     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420     if (len < 1) {
4421         /* This is the immn == 0, imms == 0x11111x case */
4422         return false;
4423     }
4424     e = 1 << len;
4425 
4426     levels = e - 1;
4427     s = imms & levels;
4428     r = immr & levels;
4429 
4430     if (s == levels) {
4431         /* <length of run - 1> mustn't be all-ones. */
4432         return false;
4433     }
4434 
4435     /* Create the value of one element: s+1 set bits rotated
4436      * by r within the element (which is e bits wide)...
4437      */
4438     mask = MAKE_64BIT_MASK(0, s + 1);
4439     if (r) {
4440         mask = (mask >> r) | (mask << (e - r));
4441         mask &= MAKE_64BIT_MASK(0, e);
4442     }
4443     /* ...then replicate the element over the whole 64 bit value */
4444     mask = bitfield_replicate(mask, e);
4445     *result = mask;
4446     return true;
4447 }
4448 
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4451 {
4452     TCGv_i64 tcg_rd, tcg_rn;
4453     uint64_t imm;
4454 
4455     /* Some immediate field values are reserved. */
4456     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457                                 extract32(a->dbm, 0, 6),
4458                                 extract32(a->dbm, 6, 6))) {
4459         return false;
4460     }
4461     if (!a->sf) {
4462         imm &= 0xffffffffull;
4463     }
4464 
4465     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466     tcg_rn = cpu_reg(s, a->rn);
4467 
4468     fn(tcg_rd, tcg_rn, imm);
4469     if (set_cc) {
4470         gen_logic_CC(a->sf, tcg_rd);
4471     }
4472     if (!a->sf) {
4473         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4474     }
4475     return true;
4476 }
4477 
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4482 
4483 /*
4484  * Move wide (immediate)
4485  */
4486 
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4488 {
4489     int pos = a->hw << 4;
4490     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491     return true;
4492 }
4493 
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4495 {
4496     int pos = a->hw << 4;
4497     uint64_t imm = a->imm;
4498 
4499     imm = ~(imm << pos);
4500     if (!a->sf) {
4501         imm = (uint32_t)imm;
4502     }
4503     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504     return true;
4505 }
4506 
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4508 {
4509     int pos = a->hw << 4;
4510     TCGv_i64 tcg_rd, tcg_im;
4511 
4512     tcg_rd = cpu_reg(s, a->rd);
4513     tcg_im = tcg_constant_i64(a->imm);
4514     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * Bitfield
4523  */
4524 
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4526 {
4527     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529     unsigned int bitsize = a->sf ? 64 : 32;
4530     unsigned int ri = a->immr;
4531     unsigned int si = a->imms;
4532     unsigned int pos, len;
4533 
4534     if (si >= ri) {
4535         /* Wd<s-r:0> = Wn<s:r> */
4536         len = (si - ri) + 1;
4537         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538         if (!a->sf) {
4539             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540         }
4541     } else {
4542         /* Wd<32+s-r,32-r> = Wn<s:0> */
4543         len = si + 1;
4544         pos = (bitsize - ri) & (bitsize - 1);
4545 
4546         if (len < ri) {
4547             /*
4548              * Sign extend the destination field from len to fill the
4549              * balance of the word.  Let the deposit below insert all
4550              * of those sign bits.
4551              */
4552             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553             len = ri;
4554         }
4555 
4556         /*
4557          * We start with zero, and we haven't modified any bits outside
4558          * bitsize, therefore no final zero-extension is unneeded for !sf.
4559          */
4560         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4561     }
4562     return true;
4563 }
4564 
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4566 {
4567     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569     unsigned int bitsize = a->sf ? 64 : 32;
4570     unsigned int ri = a->immr;
4571     unsigned int si = a->imms;
4572     unsigned int pos, len;
4573 
4574     tcg_rd = cpu_reg(s, a->rd);
4575     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 
4577     if (si >= ri) {
4578         /* Wd<s-r:0> = Wn<s:r> */
4579         len = (si - ri) + 1;
4580         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581     } else {
4582         /* Wd<32+s-r,32-r> = Wn<s:0> */
4583         len = si + 1;
4584         pos = (bitsize - ri) & (bitsize - 1);
4585         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4586     }
4587     return true;
4588 }
4589 
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4591 {
4592     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594     unsigned int bitsize = a->sf ? 64 : 32;
4595     unsigned int ri = a->immr;
4596     unsigned int si = a->imms;
4597     unsigned int pos, len;
4598 
4599     tcg_rd = cpu_reg(s, a->rd);
4600     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 
4602     if (si >= ri) {
4603         /* Wd<s-r:0> = Wn<s:r> */
4604         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605         len = (si - ri) + 1;
4606         pos = 0;
4607     } else {
4608         /* Wd<32+s-r,32-r> = Wn<s:0> */
4609         len = si + 1;
4610         pos = (bitsize - ri) & (bitsize - 1);
4611     }
4612 
4613     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614     if (!a->sf) {
4615         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4616     }
4617     return true;
4618 }
4619 
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4621 {
4622     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4623 
4624     tcg_rd = cpu_reg(s, a->rd);
4625 
4626     if (unlikely(a->imm == 0)) {
4627         /*
4628          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629          * so an extract from bit 0 is a special case.
4630          */
4631         if (a->sf) {
4632             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633         } else {
4634             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4635         }
4636     } else {
4637         tcg_rm = cpu_reg(s, a->rm);
4638         tcg_rn = cpu_reg(s, a->rn);
4639 
4640         if (a->sf) {
4641             /* Specialization to ROR happens in EXTRACT2.  */
4642             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643         } else {
4644             TCGv_i32 t0 = tcg_temp_new_i32();
4645 
4646             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647             if (a->rm == a->rn) {
4648                 tcg_gen_rotri_i32(t0, t0, a->imm);
4649             } else {
4650                 TCGv_i32 t1 = tcg_temp_new_i32();
4651                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4653             }
4654             tcg_gen_extu_i32_i64(tcg_rd, t0);
4655         }
4656     }
4657     return true;
4658 }
4659 
4660 /*
4661  * Cryptographic AES, SHA, SHA512
4662  */
4663 
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4668 
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4673 
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4677 
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4681 
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4689 
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4692 
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4695 
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4697 {
4698     if (!dc_isar_feature(aa64_sm3, s)) {
4699         return false;
4700     }
4701     if (fp_access_check(s)) {
4702         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705         TCGv_i32 tcg_res = tcg_temp_new_i32();
4706         unsigned vsz, dofs;
4707 
4708         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4711 
4712         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4716 
4717         /* Clear the whole register first, then store bits [127:96]. */
4718         vsz = vec_full_reg_size(s);
4719         dofs = vec_full_reg_offset(s, a->rd);
4720         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4722     }
4723     return true;
4724 }
4725 
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4727 {
4728     if (fp_access_check(s)) {
4729         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4730     }
4731     return true;
4732 }
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4737 
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4739 {
4740     if (!dc_isar_feature(aa64_sha3, s)) {
4741         return false;
4742     }
4743     if (fp_access_check(s)) {
4744         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745                      vec_full_reg_offset(s, a->rn),
4746                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4747                      vec_full_reg_size(s));
4748     }
4749     return true;
4750 }
4751 
4752 /*
4753  * Advanced SIMD copy
4754  */
4755 
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4757 {
4758     unsigned esz = ctz32(imm);
4759     if (esz <= MO_64) {
4760         *pesz = esz;
4761         *pidx = imm >> (esz + 1);
4762         return true;
4763     }
4764     return false;
4765 }
4766 
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4768 {
4769     MemOp esz;
4770     unsigned idx;
4771 
4772     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773         return false;
4774     }
4775     if (fp_access_check(s)) {
4776         /*
4777          * This instruction just extracts the specified element and
4778          * zero-extends it into the bottom of the destination register.
4779          */
4780         TCGv_i64 tmp = tcg_temp_new_i64();
4781         read_vec_element(s, tmp, a->rn, idx, esz);
4782         write_fp_dreg(s, a->rd, tmp);
4783     }
4784     return true;
4785 }
4786 
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4788 {
4789     MemOp esz;
4790     unsigned idx;
4791 
4792     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793         return false;
4794     }
4795     if (esz == MO_64 && !a->q) {
4796         return false;
4797     }
4798     if (fp_access_check(s)) {
4799         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800                              vec_reg_offset(s, a->rn, idx, esz),
4801                              a->q ? 16 : 8, vec_full_reg_size(s));
4802     }
4803     return true;
4804 }
4805 
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4807 {
4808     MemOp esz;
4809     unsigned idx;
4810 
4811     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812         return false;
4813     }
4814     if (esz == MO_64 && !a->q) {
4815         return false;
4816     }
4817     if (fp_access_check(s)) {
4818         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819                              a->q ? 16 : 8, vec_full_reg_size(s),
4820                              cpu_reg(s, a->rn));
4821     }
4822     return true;
4823 }
4824 
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4826 {
4827     MemOp esz;
4828     unsigned idx;
4829 
4830     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831         return false;
4832     }
4833     if (is_signed) {
4834         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835             return false;
4836         }
4837     } else {
4838         if (esz == MO_64 ? !a->q : a->q) {
4839             return false;
4840         }
4841     }
4842     if (fp_access_check(s)) {
4843         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845         if (is_signed && !a->q) {
4846             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4847         }
4848     }
4849     return true;
4850 }
4851 
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4854 
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4856 {
4857     MemOp esz;
4858     unsigned idx;
4859 
4860     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861         return false;
4862     }
4863     if (fp_access_check(s)) {
4864         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865         clear_vec_high(s, true, a->rd);
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4871 {
4872     MemOp esz;
4873     unsigned didx, sidx;
4874 
4875     if (!decode_esz_idx(a->di, &esz, &didx)) {
4876         return false;
4877     }
4878     sidx = a->si >> esz;
4879     if (fp_access_check(s)) {
4880         TCGv_i64 tmp = tcg_temp_new_i64();
4881 
4882         read_vec_element(s, tmp, a->rn, sidx, esz);
4883         write_vec_element(s, tmp, a->rd, didx, esz);
4884 
4885         /* INS is considered a 128-bit write for SVE. */
4886         clear_vec_high(s, true, a->rd);
4887     }
4888     return true;
4889 }
4890 
4891 /*
4892  * Advanced SIMD three same
4893  */
4894 
4895 typedef struct FPScalar {
4896     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4900 
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4902 {
4903     switch (a->esz) {
4904     case MO_64:
4905         if (fp_access_check(s)) {
4906             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909             write_fp_dreg(s, a->rd, t0);
4910         }
4911         break;
4912     case MO_32:
4913         if (fp_access_check(s)) {
4914             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917             write_fp_sreg(s, a->rd, t0);
4918         }
4919         break;
4920     case MO_16:
4921         if (!dc_isar_feature(aa64_fp16, s)) {
4922             return false;
4923         }
4924         if (fp_access_check(s)) {
4925             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928             write_fp_sreg(s, a->rd, t0);
4929         }
4930         break;
4931     default:
4932         return false;
4933     }
4934     return true;
4935 }
4936 
4937 static const FPScalar f_scalar_fadd = {
4938     gen_helper_vfp_addh,
4939     gen_helper_vfp_adds,
4940     gen_helper_vfp_addd,
4941 };
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4943 
4944 static const FPScalar f_scalar_fsub = {
4945     gen_helper_vfp_subh,
4946     gen_helper_vfp_subs,
4947     gen_helper_vfp_subd,
4948 };
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4950 
4951 static const FPScalar f_scalar_fdiv = {
4952     gen_helper_vfp_divh,
4953     gen_helper_vfp_divs,
4954     gen_helper_vfp_divd,
4955 };
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4957 
4958 static const FPScalar f_scalar_fmul = {
4959     gen_helper_vfp_mulh,
4960     gen_helper_vfp_muls,
4961     gen_helper_vfp_muld,
4962 };
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4964 
4965 static const FPScalar f_scalar_fmax = {
4966     gen_helper_advsimd_maxh,
4967     gen_helper_vfp_maxs,
4968     gen_helper_vfp_maxd,
4969 };
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4971 
4972 static const FPScalar f_scalar_fmin = {
4973     gen_helper_advsimd_minh,
4974     gen_helper_vfp_mins,
4975     gen_helper_vfp_mind,
4976 };
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4978 
4979 static const FPScalar f_scalar_fmaxnm = {
4980     gen_helper_advsimd_maxnumh,
4981     gen_helper_vfp_maxnums,
4982     gen_helper_vfp_maxnumd,
4983 };
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4985 
4986 static const FPScalar f_scalar_fminnm = {
4987     gen_helper_advsimd_minnumh,
4988     gen_helper_vfp_minnums,
4989     gen_helper_vfp_minnumd,
4990 };
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4992 
4993 static const FPScalar f_scalar_fmulx = {
4994     gen_helper_advsimd_mulxh,
4995     gen_helper_vfp_mulxs,
4996     gen_helper_vfp_mulxd,
4997 };
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4999 
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5001 {
5002     gen_helper_vfp_mulh(d, n, m, s);
5003     gen_vfp_negh(d, d);
5004 }
5005 
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5007 {
5008     gen_helper_vfp_muls(d, n, m, s);
5009     gen_vfp_negs(d, d);
5010 }
5011 
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5013 {
5014     gen_helper_vfp_muld(d, n, m, s);
5015     gen_vfp_negd(d, d);
5016 }
5017 
5018 static const FPScalar f_scalar_fnmul = {
5019     gen_fnmul_h,
5020     gen_fnmul_s,
5021     gen_fnmul_d,
5022 };
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5024 
5025 static const FPScalar f_scalar_fcmeq = {
5026     gen_helper_advsimd_ceq_f16,
5027     gen_helper_neon_ceq_f32,
5028     gen_helper_neon_ceq_f64,
5029 };
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5031 
5032 static const FPScalar f_scalar_fcmge = {
5033     gen_helper_advsimd_cge_f16,
5034     gen_helper_neon_cge_f32,
5035     gen_helper_neon_cge_f64,
5036 };
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5038 
5039 static const FPScalar f_scalar_fcmgt = {
5040     gen_helper_advsimd_cgt_f16,
5041     gen_helper_neon_cgt_f32,
5042     gen_helper_neon_cgt_f64,
5043 };
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5045 
5046 static const FPScalar f_scalar_facge = {
5047     gen_helper_advsimd_acge_f16,
5048     gen_helper_neon_acge_f32,
5049     gen_helper_neon_acge_f64,
5050 };
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5052 
5053 static const FPScalar f_scalar_facgt = {
5054     gen_helper_advsimd_acgt_f16,
5055     gen_helper_neon_acgt_f32,
5056     gen_helper_neon_acgt_f64,
5057 };
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5059 
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5061 {
5062     gen_helper_vfp_subh(d, n, m, s);
5063     gen_vfp_absh(d, d);
5064 }
5065 
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5067 {
5068     gen_helper_vfp_subs(d, n, m, s);
5069     gen_vfp_abss(d, d);
5070 }
5071 
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5073 {
5074     gen_helper_vfp_subd(d, n, m, s);
5075     gen_vfp_absd(d, d);
5076 }
5077 
5078 static const FPScalar f_scalar_fabd = {
5079     gen_fabd_h,
5080     gen_fabd_s,
5081     gen_fabd_d,
5082 };
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5084 
5085 static const FPScalar f_scalar_frecps = {
5086     gen_helper_recpsf_f16,
5087     gen_helper_recpsf_f32,
5088     gen_helper_recpsf_f64,
5089 };
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5091 
5092 static const FPScalar f_scalar_frsqrts = {
5093     gen_helper_rsqrtsf_f16,
5094     gen_helper_rsqrtsf_f32,
5095     gen_helper_rsqrtsf_f64,
5096 };
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5098 
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100                 MemOp sgn_n, MemOp sgn_m,
5101                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5103 {
5104     TCGv_i64 t0, t1, t2, qc;
5105     MemOp esz = a->esz;
5106 
5107     if (!fp_access_check(s)) {
5108         return true;
5109     }
5110 
5111     t0 = tcg_temp_new_i64();
5112     t1 = tcg_temp_new_i64();
5113     t2 = tcg_temp_new_i64();
5114     qc = tcg_temp_new_i64();
5115     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5118 
5119     if (esz == MO_64) {
5120         gen_d(t0, qc, t1, t2);
5121     } else {
5122         gen_bhs(t0, qc, t1, t2, esz);
5123         tcg_gen_ext_i64(t0, t0, esz);
5124     }
5125 
5126     write_fp_dreg(s, a->rd, t0);
5127     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128     return true;
5129 }
5130 
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5137 
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5140 {
5141     if (fp_access_check(s)) {
5142         TCGv_i64 t0 = tcg_temp_new_i64();
5143         TCGv_i64 t1 = tcg_temp_new_i64();
5144 
5145         read_vec_element(s, t0, a->rn, 0, MO_64);
5146         read_vec_element(s, t1, a->rm, 0, MO_64);
5147         fn(t0, t0, t1);
5148         write_fp_dreg(s, a->rd, t0);
5149     }
5150     return true;
5151 }
5152 
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5159 
5160 typedef struct ENVScalar2 {
5161     NeonGenTwoOpEnvFn *gen_bhs[3];
5162     NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5164 
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5166 {
5167     if (!fp_access_check(s)) {
5168         return true;
5169     }
5170     if (a->esz == MO_64) {
5171         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173         f->gen_d(t0, tcg_env, t0, t1);
5174         write_fp_dreg(s, a->rd, t0);
5175     } else {
5176         TCGv_i32 t0 = tcg_temp_new_i32();
5177         TCGv_i32 t1 = tcg_temp_new_i32();
5178 
5179         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182         write_fp_sreg(s, a->rd, t0);
5183     }
5184     return true;
5185 }
5186 
5187 static const ENVScalar2 f_scalar_sqshl = {
5188     { gen_helper_neon_qshl_s8,
5189       gen_helper_neon_qshl_s16,
5190       gen_helper_neon_qshl_s32 },
5191     gen_helper_neon_qshl_s64,
5192 };
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5194 
5195 static const ENVScalar2 f_scalar_uqshl = {
5196     { gen_helper_neon_qshl_u8,
5197       gen_helper_neon_qshl_u16,
5198       gen_helper_neon_qshl_u32 },
5199     gen_helper_neon_qshl_u64,
5200 };
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5202 
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204     { gen_helper_neon_qrshl_s8,
5205       gen_helper_neon_qrshl_s16,
5206       gen_helper_neon_qrshl_s32 },
5207     gen_helper_neon_qrshl_s64,
5208 };
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5210 
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212     { gen_helper_neon_qrshl_u8,
5213       gen_helper_neon_qrshl_u16,
5214       gen_helper_neon_qrshl_u32 },
5215     gen_helper_neon_qrshl_u64,
5216 };
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5218 
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220                               const ENVScalar2 *f)
5221 {
5222     if (a->esz == MO_16 || a->esz == MO_32) {
5223         return do_env_scalar2(s, a, f);
5224     }
5225     return false;
5226 }
5227 
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5230 };
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5232 
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5235 };
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5237 
5238 typedef struct ENVScalar3 {
5239     NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5241 
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243                               const ENVScalar3 *f)
5244 {
5245     TCGv_i32 t0, t1, t2;
5246 
5247     if (a->esz != MO_16 && a->esz != MO_32) {
5248         return false;
5249     }
5250     if (!fp_access_check(s)) {
5251         return true;
5252     }
5253 
5254     t0 = tcg_temp_new_i32();
5255     t1 = tcg_temp_new_i32();
5256     t2 = tcg_temp_new_i32();
5257     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261     write_fp_sreg(s, a->rd, t0);
5262     return true;
5263 }
5264 
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5267 };
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5269 
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5272 };
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5274 
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5276 {
5277     if (fp_access_check(s)) {
5278         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281         write_fp_dreg(s, a->rd, t0);
5282     }
5283     return true;
5284 }
5285 
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5292 
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5294                           gen_helper_gvec_3_ptr * const fns[3])
5295 {
5296     MemOp esz = a->esz;
5297 
5298     switch (esz) {
5299     case MO_64:
5300         if (!a->q) {
5301             return false;
5302         }
5303         break;
5304     case MO_32:
5305         break;
5306     case MO_16:
5307         if (!dc_isar_feature(aa64_fp16, s)) {
5308             return false;
5309         }
5310         break;
5311     default:
5312         return false;
5313     }
5314     if (fp_access_check(s)) {
5315         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316                           esz == MO_16, 0, fns[esz - 1]);
5317     }
5318     return true;
5319 }
5320 
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322     gen_helper_gvec_fadd_h,
5323     gen_helper_gvec_fadd_s,
5324     gen_helper_gvec_fadd_d,
5325 };
5326 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5327 
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329     gen_helper_gvec_fsub_h,
5330     gen_helper_gvec_fsub_s,
5331     gen_helper_gvec_fsub_d,
5332 };
5333 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5334 
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336     gen_helper_gvec_fdiv_h,
5337     gen_helper_gvec_fdiv_s,
5338     gen_helper_gvec_fdiv_d,
5339 };
5340 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5341 
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343     gen_helper_gvec_fmul_h,
5344     gen_helper_gvec_fmul_s,
5345     gen_helper_gvec_fmul_d,
5346 };
5347 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5348 
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350     gen_helper_gvec_fmax_h,
5351     gen_helper_gvec_fmax_s,
5352     gen_helper_gvec_fmax_d,
5353 };
5354 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5355 
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357     gen_helper_gvec_fmin_h,
5358     gen_helper_gvec_fmin_s,
5359     gen_helper_gvec_fmin_d,
5360 };
5361 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5362 
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364     gen_helper_gvec_fmaxnum_h,
5365     gen_helper_gvec_fmaxnum_s,
5366     gen_helper_gvec_fmaxnum_d,
5367 };
5368 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5369 
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371     gen_helper_gvec_fminnum_h,
5372     gen_helper_gvec_fminnum_s,
5373     gen_helper_gvec_fminnum_d,
5374 };
5375 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5376 
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378     gen_helper_gvec_fmulx_h,
5379     gen_helper_gvec_fmulx_s,
5380     gen_helper_gvec_fmulx_d,
5381 };
5382 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5383 
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385     gen_helper_gvec_vfma_h,
5386     gen_helper_gvec_vfma_s,
5387     gen_helper_gvec_vfma_d,
5388 };
5389 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5390 
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392     gen_helper_gvec_vfms_h,
5393     gen_helper_gvec_vfms_s,
5394     gen_helper_gvec_vfms_d,
5395 };
5396 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5397 
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399     gen_helper_gvec_fceq_h,
5400     gen_helper_gvec_fceq_s,
5401     gen_helper_gvec_fceq_d,
5402 };
5403 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5404 
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406     gen_helper_gvec_fcge_h,
5407     gen_helper_gvec_fcge_s,
5408     gen_helper_gvec_fcge_d,
5409 };
5410 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5411 
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413     gen_helper_gvec_fcgt_h,
5414     gen_helper_gvec_fcgt_s,
5415     gen_helper_gvec_fcgt_d,
5416 };
5417 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5418 
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420     gen_helper_gvec_facge_h,
5421     gen_helper_gvec_facge_s,
5422     gen_helper_gvec_facge_d,
5423 };
5424 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5425 
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427     gen_helper_gvec_facgt_h,
5428     gen_helper_gvec_facgt_s,
5429     gen_helper_gvec_facgt_d,
5430 };
5431 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5432 
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434     gen_helper_gvec_fabd_h,
5435     gen_helper_gvec_fabd_s,
5436     gen_helper_gvec_fabd_d,
5437 };
5438 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5439 
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441     gen_helper_gvec_recps_h,
5442     gen_helper_gvec_recps_s,
5443     gen_helper_gvec_recps_d,
5444 };
5445 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5446 
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448     gen_helper_gvec_rsqrts_h,
5449     gen_helper_gvec_rsqrts_s,
5450     gen_helper_gvec_rsqrts_d,
5451 };
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5453 
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455     gen_helper_gvec_faddp_h,
5456     gen_helper_gvec_faddp_s,
5457     gen_helper_gvec_faddp_d,
5458 };
5459 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5460 
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462     gen_helper_gvec_fmaxp_h,
5463     gen_helper_gvec_fmaxp_s,
5464     gen_helper_gvec_fmaxp_d,
5465 };
5466 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5467 
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469     gen_helper_gvec_fminp_h,
5470     gen_helper_gvec_fminp_s,
5471     gen_helper_gvec_fminp_d,
5472 };
5473 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5474 
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476     gen_helper_gvec_fmaxnump_h,
5477     gen_helper_gvec_fmaxnump_s,
5478     gen_helper_gvec_fmaxnump_d,
5479 };
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5481 
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483     gen_helper_gvec_fminnump_h,
5484     gen_helper_gvec_fminnump_s,
5485     gen_helper_gvec_fminnump_d,
5486 };
5487 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5488 
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5490 {
5491     if (fp_access_check(s)) {
5492         int data = (is_2 << 1) | is_s;
5493         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494                            vec_full_reg_offset(s, a->rn),
5495                            vec_full_reg_offset(s, a->rm), tcg_env,
5496                            a->q ? 16 : 8, vec_full_reg_size(s),
5497                            data, gen_helper_gvec_fmlal_a64);
5498     }
5499     return true;
5500 }
5501 
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5506 
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5512 
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5518 
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5520 {
5521     if (fp_access_check(s)) {
5522         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5523     }
5524     return true;
5525 }
5526 
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5530 
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5537 
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5546 
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5567 
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5569 {
5570     if (a->esz == MO_64 && !a->q) {
5571         return false;
5572     }
5573     if (fp_access_check(s)) {
5574         tcg_gen_gvec_cmp(cond, a->esz,
5575                          vec_full_reg_offset(s, a->rd),
5576                          vec_full_reg_offset(s, a->rn),
5577                          vec_full_reg_offset(s, a->rm),
5578                          a->q ? 16 : 8, vec_full_reg_size(s));
5579     }
5580     return true;
5581 }
5582 
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5589 
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5594 
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596                           gen_helper_gvec_4 *fn)
5597 {
5598     if (fp_access_check(s)) {
5599         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5600     }
5601     return true;
5602 }
5603 
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 
5607 /*
5608  * Advanced SIMD scalar/vector x indexed element
5609  */
5610 
5611 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5612 {
5613     switch (a->esz) {
5614     case MO_64:
5615         if (fp_access_check(s)) {
5616             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5617             TCGv_i64 t1 = tcg_temp_new_i64();
5618 
5619             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5620             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5621             write_fp_dreg(s, a->rd, t0);
5622         }
5623         break;
5624     case MO_32:
5625         if (fp_access_check(s)) {
5626             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5627             TCGv_i32 t1 = tcg_temp_new_i32();
5628 
5629             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5630             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5631             write_fp_sreg(s, a->rd, t0);
5632         }
5633         break;
5634     case MO_16:
5635         if (!dc_isar_feature(aa64_fp16, s)) {
5636             return false;
5637         }
5638         if (fp_access_check(s)) {
5639             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5640             TCGv_i32 t1 = tcg_temp_new_i32();
5641 
5642             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5643             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5644             write_fp_sreg(s, a->rd, t0);
5645         }
5646         break;
5647     default:
5648         g_assert_not_reached();
5649     }
5650     return true;
5651 }
5652 
5653 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5654 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5655 
5656 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5657 {
5658     switch (a->esz) {
5659     case MO_64:
5660         if (fp_access_check(s)) {
5661             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5662             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5663             TCGv_i64 t2 = tcg_temp_new_i64();
5664 
5665             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5666             if (neg) {
5667                 gen_vfp_negd(t1, t1);
5668             }
5669             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5670             write_fp_dreg(s, a->rd, t0);
5671         }
5672         break;
5673     case MO_32:
5674         if (fp_access_check(s)) {
5675             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5676             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5677             TCGv_i32 t2 = tcg_temp_new_i32();
5678 
5679             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5680             if (neg) {
5681                 gen_vfp_negs(t1, t1);
5682             }
5683             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5684             write_fp_sreg(s, a->rd, t0);
5685         }
5686         break;
5687     case MO_16:
5688         if (!dc_isar_feature(aa64_fp16, s)) {
5689             return false;
5690         }
5691         if (fp_access_check(s)) {
5692             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5693             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5694             TCGv_i32 t2 = tcg_temp_new_i32();
5695 
5696             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5697             if (neg) {
5698                 gen_vfp_negh(t1, t1);
5699             }
5700             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5701                                        fpstatus_ptr(FPST_FPCR_F16));
5702             write_fp_sreg(s, a->rd, t0);
5703         }
5704         break;
5705     default:
5706         g_assert_not_reached();
5707     }
5708     return true;
5709 }
5710 
5711 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5712 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5713 
5714 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
5715                                   const ENVScalar2 *f)
5716 {
5717     if (a->esz < MO_16 || a->esz > MO_32) {
5718         return false;
5719     }
5720     if (fp_access_check(s)) {
5721         TCGv_i32 t0 = tcg_temp_new_i32();
5722         TCGv_i32 t1 = tcg_temp_new_i32();
5723 
5724         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5725         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5726         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5727         write_fp_sreg(s, a->rd, t0);
5728     }
5729     return true;
5730 }
5731 
5732 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
5733 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
5734 
5735 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
5736                                   const ENVScalar3 *f)
5737 {
5738     if (a->esz < MO_16 || a->esz > MO_32) {
5739         return false;
5740     }
5741     if (fp_access_check(s)) {
5742         TCGv_i32 t0 = tcg_temp_new_i32();
5743         TCGv_i32 t1 = tcg_temp_new_i32();
5744         TCGv_i32 t2 = tcg_temp_new_i32();
5745 
5746         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5747         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
5748         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5749         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5750         write_fp_sreg(s, a->rd, t0);
5751     }
5752     return true;
5753 }
5754 
5755 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
5756 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
5757 
5758 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5759                               gen_helper_gvec_3_ptr * const fns[3])
5760 {
5761     MemOp esz = a->esz;
5762 
5763     switch (esz) {
5764     case MO_64:
5765         if (!a->q) {
5766             return false;
5767         }
5768         break;
5769     case MO_32:
5770         break;
5771     case MO_16:
5772         if (!dc_isar_feature(aa64_fp16, s)) {
5773             return false;
5774         }
5775         break;
5776     default:
5777         g_assert_not_reached();
5778     }
5779     if (fp_access_check(s)) {
5780         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5781                           esz == MO_16, a->idx, fns[esz - 1]);
5782     }
5783     return true;
5784 }
5785 
5786 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5787     gen_helper_gvec_fmul_idx_h,
5788     gen_helper_gvec_fmul_idx_s,
5789     gen_helper_gvec_fmul_idx_d,
5790 };
5791 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5792 
5793 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5794     gen_helper_gvec_fmulx_idx_h,
5795     gen_helper_gvec_fmulx_idx_s,
5796     gen_helper_gvec_fmulx_idx_d,
5797 };
5798 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5799 
5800 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5801 {
5802     static gen_helper_gvec_4_ptr * const fns[3] = {
5803         gen_helper_gvec_fmla_idx_h,
5804         gen_helper_gvec_fmla_idx_s,
5805         gen_helper_gvec_fmla_idx_d,
5806     };
5807     MemOp esz = a->esz;
5808 
5809     switch (esz) {
5810     case MO_64:
5811         if (!a->q) {
5812             return false;
5813         }
5814         break;
5815     case MO_32:
5816         break;
5817     case MO_16:
5818         if (!dc_isar_feature(aa64_fp16, s)) {
5819             return false;
5820         }
5821         break;
5822     default:
5823         g_assert_not_reached();
5824     }
5825     if (fp_access_check(s)) {
5826         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5827                           esz == MO_16, (a->idx << 1) | neg,
5828                           fns[esz - 1]);
5829     }
5830     return true;
5831 }
5832 
5833 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5834 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5835 
5836 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5837 {
5838     if (fp_access_check(s)) {
5839         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5840         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5841                            vec_full_reg_offset(s, a->rn),
5842                            vec_full_reg_offset(s, a->rm), tcg_env,
5843                            a->q ? 16 : 8, vec_full_reg_size(s),
5844                            data, gen_helper_gvec_fmlal_idx_a64);
5845     }
5846     return true;
5847 }
5848 
5849 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5850 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5851 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5852 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5853 
5854 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5855                                gen_helper_gvec_3 * const fns[2])
5856 {
5857     assert(a->esz == MO_16 || a->esz == MO_32);
5858     if (fp_access_check(s)) {
5859         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
5860     }
5861     return true;
5862 }
5863 
5864 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
5865     gen_helper_gvec_mul_idx_h,
5866     gen_helper_gvec_mul_idx_s,
5867 };
5868 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
5869 
5870 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
5871 {
5872     static gen_helper_gvec_4 * const fns[2][2] = {
5873         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
5874         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
5875     };
5876 
5877     assert(a->esz == MO_16 || a->esz == MO_32);
5878     if (fp_access_check(s)) {
5879         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
5880                          a->idx, fns[a->esz - 1][sub]);
5881     }
5882     return true;
5883 }
5884 
5885 TRANS(MLA_vi, do_mla_vector_idx, a, false)
5886 TRANS(MLS_vi, do_mla_vector_idx, a, true)
5887 
5888 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
5889                                   gen_helper_gvec_4 * const fns[2])
5890 {
5891     assert(a->esz == MO_16 || a->esz == MO_32);
5892     if (fp_access_check(s)) {
5893         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
5894                            vec_full_reg_offset(s, a->rn),
5895                            vec_full_reg_offset(s, a->rm),
5896                            offsetof(CPUARMState, vfp.qc),
5897                            a->q ? 16 : 8, vec_full_reg_size(s),
5898                            a->idx, fns[a->esz - 1]);
5899     }
5900     return true;
5901 }
5902 
5903 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
5904     gen_helper_neon_sqdmulh_idx_h,
5905     gen_helper_neon_sqdmulh_idx_s,
5906 };
5907 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
5908 
5909 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
5910     gen_helper_neon_sqrdmulh_idx_h,
5911     gen_helper_neon_sqrdmulh_idx_s,
5912 };
5913 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
5914 
5915 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
5916     gen_helper_neon_sqrdmlah_idx_h,
5917     gen_helper_neon_sqrdmlah_idx_s,
5918 };
5919 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5920            f_vector_idx_sqrdmlah)
5921 
5922 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
5923     gen_helper_neon_sqrdmlsh_idx_h,
5924     gen_helper_neon_sqrdmlsh_idx_s,
5925 };
5926 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
5927            f_vector_idx_sqrdmlsh)
5928 
5929 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
5930                               gen_helper_gvec_4 *fn)
5931 {
5932     if (fp_access_check(s)) {
5933         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
5934     }
5935     return true;
5936 }
5937 
5938 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
5939 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
5940 
5941 /*
5942  * Advanced SIMD scalar pairwise
5943  */
5944 
5945 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5946 {
5947     switch (a->esz) {
5948     case MO_64:
5949         if (fp_access_check(s)) {
5950             TCGv_i64 t0 = tcg_temp_new_i64();
5951             TCGv_i64 t1 = tcg_temp_new_i64();
5952 
5953             read_vec_element(s, t0, a->rn, 0, MO_64);
5954             read_vec_element(s, t1, a->rn, 1, MO_64);
5955             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5956             write_fp_dreg(s, a->rd, t0);
5957         }
5958         break;
5959     case MO_32:
5960         if (fp_access_check(s)) {
5961             TCGv_i32 t0 = tcg_temp_new_i32();
5962             TCGv_i32 t1 = tcg_temp_new_i32();
5963 
5964             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5965             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5966             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5967             write_fp_sreg(s, a->rd, t0);
5968         }
5969         break;
5970     case MO_16:
5971         if (!dc_isar_feature(aa64_fp16, s)) {
5972             return false;
5973         }
5974         if (fp_access_check(s)) {
5975             TCGv_i32 t0 = tcg_temp_new_i32();
5976             TCGv_i32 t1 = tcg_temp_new_i32();
5977 
5978             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5979             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5980             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5981             write_fp_sreg(s, a->rd, t0);
5982         }
5983         break;
5984     default:
5985         g_assert_not_reached();
5986     }
5987     return true;
5988 }
5989 
5990 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5991 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5992 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5993 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5994 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5995 
5996 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5997 {
5998     if (fp_access_check(s)) {
5999         TCGv_i64 t0 = tcg_temp_new_i64();
6000         TCGv_i64 t1 = tcg_temp_new_i64();
6001 
6002         read_vec_element(s, t0, a->rn, 0, MO_64);
6003         read_vec_element(s, t1, a->rn, 1, MO_64);
6004         tcg_gen_add_i64(t0, t0, t1);
6005         write_fp_dreg(s, a->rd, t0);
6006     }
6007     return true;
6008 }
6009 
6010 /*
6011  * Floating-point conditional select
6012  */
6013 
6014 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6015 {
6016     TCGv_i64 t_true, t_false;
6017     DisasCompare64 c;
6018 
6019     switch (a->esz) {
6020     case MO_32:
6021     case MO_64:
6022         break;
6023     case MO_16:
6024         if (!dc_isar_feature(aa64_fp16, s)) {
6025             return false;
6026         }
6027         break;
6028     default:
6029         return false;
6030     }
6031 
6032     if (!fp_access_check(s)) {
6033         return true;
6034     }
6035 
6036     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6037     t_true = tcg_temp_new_i64();
6038     t_false = tcg_temp_new_i64();
6039     read_vec_element(s, t_true, a->rn, 0, a->esz);
6040     read_vec_element(s, t_false, a->rm, 0, a->esz);
6041 
6042     a64_test_cc(&c, a->cond);
6043     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6044                         t_true, t_false);
6045 
6046     /*
6047      * Note that sregs & hregs write back zeros to the high bits,
6048      * and we've already done the zero-extension.
6049      */
6050     write_fp_dreg(s, a->rd, t_true);
6051     return true;
6052 }
6053 
6054 /*
6055  * Floating-point data-processing (3 source)
6056  */
6057 
6058 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6059 {
6060     TCGv_ptr fpst;
6061 
6062     /*
6063      * These are fused multiply-add.  Note that doing the negations here
6064      * as separate steps is correct: an input NaN should come out with
6065      * its sign bit flipped if it is a negated-input.
6066      */
6067     switch (a->esz) {
6068     case MO_64:
6069         if (fp_access_check(s)) {
6070             TCGv_i64 tn = read_fp_dreg(s, a->rn);
6071             TCGv_i64 tm = read_fp_dreg(s, a->rm);
6072             TCGv_i64 ta = read_fp_dreg(s, a->ra);
6073 
6074             if (neg_a) {
6075                 gen_vfp_negd(ta, ta);
6076             }
6077             if (neg_n) {
6078                 gen_vfp_negd(tn, tn);
6079             }
6080             fpst = fpstatus_ptr(FPST_FPCR);
6081             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6082             write_fp_dreg(s, a->rd, ta);
6083         }
6084         break;
6085 
6086     case MO_32:
6087         if (fp_access_check(s)) {
6088             TCGv_i32 tn = read_fp_sreg(s, a->rn);
6089             TCGv_i32 tm = read_fp_sreg(s, a->rm);
6090             TCGv_i32 ta = read_fp_sreg(s, a->ra);
6091 
6092             if (neg_a) {
6093                 gen_vfp_negs(ta, ta);
6094             }
6095             if (neg_n) {
6096                 gen_vfp_negs(tn, tn);
6097             }
6098             fpst = fpstatus_ptr(FPST_FPCR);
6099             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6100             write_fp_sreg(s, a->rd, ta);
6101         }
6102         break;
6103 
6104     case MO_16:
6105         if (!dc_isar_feature(aa64_fp16, s)) {
6106             return false;
6107         }
6108         if (fp_access_check(s)) {
6109             TCGv_i32 tn = read_fp_hreg(s, a->rn);
6110             TCGv_i32 tm = read_fp_hreg(s, a->rm);
6111             TCGv_i32 ta = read_fp_hreg(s, a->ra);
6112 
6113             if (neg_a) {
6114                 gen_vfp_negh(ta, ta);
6115             }
6116             if (neg_n) {
6117                 gen_vfp_negh(tn, tn);
6118             }
6119             fpst = fpstatus_ptr(FPST_FPCR_F16);
6120             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6121             write_fp_sreg(s, a->rd, ta);
6122         }
6123         break;
6124 
6125     default:
6126         return false;
6127     }
6128     return true;
6129 }
6130 
6131 TRANS(FMADD, do_fmadd, a, false, false)
6132 TRANS(FNMADD, do_fmadd, a, true, true)
6133 TRANS(FMSUB, do_fmadd, a, false, true)
6134 TRANS(FNMSUB, do_fmadd, a, true, false)
6135 
6136 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6137  * Note that it is the caller's responsibility to ensure that the
6138  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6139  * mandated semantics for out of range shifts.
6140  */
6141 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6142                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6143 {
6144     switch (shift_type) {
6145     case A64_SHIFT_TYPE_LSL:
6146         tcg_gen_shl_i64(dst, src, shift_amount);
6147         break;
6148     case A64_SHIFT_TYPE_LSR:
6149         tcg_gen_shr_i64(dst, src, shift_amount);
6150         break;
6151     case A64_SHIFT_TYPE_ASR:
6152         if (!sf) {
6153             tcg_gen_ext32s_i64(dst, src);
6154         }
6155         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6156         break;
6157     case A64_SHIFT_TYPE_ROR:
6158         if (sf) {
6159             tcg_gen_rotr_i64(dst, src, shift_amount);
6160         } else {
6161             TCGv_i32 t0, t1;
6162             t0 = tcg_temp_new_i32();
6163             t1 = tcg_temp_new_i32();
6164             tcg_gen_extrl_i64_i32(t0, src);
6165             tcg_gen_extrl_i64_i32(t1, shift_amount);
6166             tcg_gen_rotr_i32(t0, t0, t1);
6167             tcg_gen_extu_i32_i64(dst, t0);
6168         }
6169         break;
6170     default:
6171         assert(FALSE); /* all shift types should be handled */
6172         break;
6173     }
6174 
6175     if (!sf) { /* zero extend final result */
6176         tcg_gen_ext32u_i64(dst, dst);
6177     }
6178 }
6179 
6180 /* Shift a TCGv src by immediate, put result in dst.
6181  * The shift amount must be in range (this should always be true as the
6182  * relevant instructions will UNDEF on bad shift immediates).
6183  */
6184 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6185                           enum a64_shift_type shift_type, unsigned int shift_i)
6186 {
6187     assert(shift_i < (sf ? 64 : 32));
6188 
6189     if (shift_i == 0) {
6190         tcg_gen_mov_i64(dst, src);
6191     } else {
6192         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6193     }
6194 }
6195 
6196 /* Logical (shifted register)
6197  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
6198  * +----+-----+-----------+-------+---+------+--------+------+------+
6199  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
6200  * +----+-----+-----------+-------+---+------+--------+------+------+
6201  */
6202 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6203 {
6204     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6205     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6206 
6207     sf = extract32(insn, 31, 1);
6208     opc = extract32(insn, 29, 2);
6209     shift_type = extract32(insn, 22, 2);
6210     invert = extract32(insn, 21, 1);
6211     rm = extract32(insn, 16, 5);
6212     shift_amount = extract32(insn, 10, 6);
6213     rn = extract32(insn, 5, 5);
6214     rd = extract32(insn, 0, 5);
6215 
6216     if (!sf && (shift_amount & (1 << 5))) {
6217         unallocated_encoding(s);
6218         return;
6219     }
6220 
6221     tcg_rd = cpu_reg(s, rd);
6222 
6223     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6224         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6225          * register-register MOV and MVN, so it is worth special casing.
6226          */
6227         tcg_rm = cpu_reg(s, rm);
6228         if (invert) {
6229             tcg_gen_not_i64(tcg_rd, tcg_rm);
6230             if (!sf) {
6231                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6232             }
6233         } else {
6234             if (sf) {
6235                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6236             } else {
6237                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6238             }
6239         }
6240         return;
6241     }
6242 
6243     tcg_rm = read_cpu_reg(s, rm, sf);
6244 
6245     if (shift_amount) {
6246         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6247     }
6248 
6249     tcg_rn = cpu_reg(s, rn);
6250 
6251     switch (opc | (invert << 2)) {
6252     case 0: /* AND */
6253     case 3: /* ANDS */
6254         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6255         break;
6256     case 1: /* ORR */
6257         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6258         break;
6259     case 2: /* EOR */
6260         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6261         break;
6262     case 4: /* BIC */
6263     case 7: /* BICS */
6264         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6265         break;
6266     case 5: /* ORN */
6267         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6268         break;
6269     case 6: /* EON */
6270         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6271         break;
6272     default:
6273         assert(FALSE);
6274         break;
6275     }
6276 
6277     if (!sf) {
6278         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6279     }
6280 
6281     if (opc == 3) {
6282         gen_logic_CC(sf, tcg_rd);
6283     }
6284 }
6285 
6286 /*
6287  * Add/subtract (extended register)
6288  *
6289  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
6290  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6291  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
6292  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6293  *
6294  *  sf: 0 -> 32bit, 1 -> 64bit
6295  *  op: 0 -> add  , 1 -> sub
6296  *   S: 1 -> set flags
6297  * opt: 00
6298  * option: extension type (see DecodeRegExtend)
6299  * imm3: optional shift to Rm
6300  *
6301  * Rd = Rn + LSL(extend(Rm), amount)
6302  */
6303 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6304 {
6305     int rd = extract32(insn, 0, 5);
6306     int rn = extract32(insn, 5, 5);
6307     int imm3 = extract32(insn, 10, 3);
6308     int option = extract32(insn, 13, 3);
6309     int rm = extract32(insn, 16, 5);
6310     int opt = extract32(insn, 22, 2);
6311     bool setflags = extract32(insn, 29, 1);
6312     bool sub_op = extract32(insn, 30, 1);
6313     bool sf = extract32(insn, 31, 1);
6314 
6315     TCGv_i64 tcg_rm, tcg_rn; /* temps */
6316     TCGv_i64 tcg_rd;
6317     TCGv_i64 tcg_result;
6318 
6319     if (imm3 > 4 || opt != 0) {
6320         unallocated_encoding(s);
6321         return;
6322     }
6323 
6324     /* non-flag setting ops may use SP */
6325     if (!setflags) {
6326         tcg_rd = cpu_reg_sp(s, rd);
6327     } else {
6328         tcg_rd = cpu_reg(s, rd);
6329     }
6330     tcg_rn = read_cpu_reg_sp(s, rn, sf);
6331 
6332     tcg_rm = read_cpu_reg(s, rm, sf);
6333     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6334 
6335     tcg_result = tcg_temp_new_i64();
6336 
6337     if (!setflags) {
6338         if (sub_op) {
6339             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6340         } else {
6341             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6342         }
6343     } else {
6344         if (sub_op) {
6345             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6346         } else {
6347             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6348         }
6349     }
6350 
6351     if (sf) {
6352         tcg_gen_mov_i64(tcg_rd, tcg_result);
6353     } else {
6354         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6355     }
6356 }
6357 
6358 /*
6359  * Add/subtract (shifted register)
6360  *
6361  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
6362  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6363  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
6364  * +--+--+--+-----------+-----+--+-------+---------+------+------+
6365  *
6366  *    sf: 0 -> 32bit, 1 -> 64bit
6367  *    op: 0 -> add  , 1 -> sub
6368  *     S: 1 -> set flags
6369  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6370  *  imm6: Shift amount to apply to Rm before the add/sub
6371  */
6372 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6373 {
6374     int rd = extract32(insn, 0, 5);
6375     int rn = extract32(insn, 5, 5);
6376     int imm6 = extract32(insn, 10, 6);
6377     int rm = extract32(insn, 16, 5);
6378     int shift_type = extract32(insn, 22, 2);
6379     bool setflags = extract32(insn, 29, 1);
6380     bool sub_op = extract32(insn, 30, 1);
6381     bool sf = extract32(insn, 31, 1);
6382 
6383     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6384     TCGv_i64 tcg_rn, tcg_rm;
6385     TCGv_i64 tcg_result;
6386 
6387     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6388         unallocated_encoding(s);
6389         return;
6390     }
6391 
6392     tcg_rn = read_cpu_reg(s, rn, sf);
6393     tcg_rm = read_cpu_reg(s, rm, sf);
6394 
6395     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6396 
6397     tcg_result = tcg_temp_new_i64();
6398 
6399     if (!setflags) {
6400         if (sub_op) {
6401             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6402         } else {
6403             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6404         }
6405     } else {
6406         if (sub_op) {
6407             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6408         } else {
6409             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6410         }
6411     }
6412 
6413     if (sf) {
6414         tcg_gen_mov_i64(tcg_rd, tcg_result);
6415     } else {
6416         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6417     }
6418 }
6419 
6420 /* Data-processing (3 source)
6421  *
6422  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
6423  *  +--+------+-----------+------+------+----+------+------+------+
6424  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6425  *  +--+------+-----------+------+------+----+------+------+------+
6426  */
6427 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6428 {
6429     int rd = extract32(insn, 0, 5);
6430     int rn = extract32(insn, 5, 5);
6431     int ra = extract32(insn, 10, 5);
6432     int rm = extract32(insn, 16, 5);
6433     int op_id = (extract32(insn, 29, 3) << 4) |
6434         (extract32(insn, 21, 3) << 1) |
6435         extract32(insn, 15, 1);
6436     bool sf = extract32(insn, 31, 1);
6437     bool is_sub = extract32(op_id, 0, 1);
6438     bool is_high = extract32(op_id, 2, 1);
6439     bool is_signed = false;
6440     TCGv_i64 tcg_op1;
6441     TCGv_i64 tcg_op2;
6442     TCGv_i64 tcg_tmp;
6443 
6444     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6445     switch (op_id) {
6446     case 0x42: /* SMADDL */
6447     case 0x43: /* SMSUBL */
6448     case 0x44: /* SMULH */
6449         is_signed = true;
6450         break;
6451     case 0x0: /* MADD (32bit) */
6452     case 0x1: /* MSUB (32bit) */
6453     case 0x40: /* MADD (64bit) */
6454     case 0x41: /* MSUB (64bit) */
6455     case 0x4a: /* UMADDL */
6456     case 0x4b: /* UMSUBL */
6457     case 0x4c: /* UMULH */
6458         break;
6459     default:
6460         unallocated_encoding(s);
6461         return;
6462     }
6463 
6464     if (is_high) {
6465         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6466         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6467         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6468         TCGv_i64 tcg_rm = cpu_reg(s, rm);
6469 
6470         if (is_signed) {
6471             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6472         } else {
6473             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6474         }
6475         return;
6476     }
6477 
6478     tcg_op1 = tcg_temp_new_i64();
6479     tcg_op2 = tcg_temp_new_i64();
6480     tcg_tmp = tcg_temp_new_i64();
6481 
6482     if (op_id < 0x42) {
6483         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6484         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6485     } else {
6486         if (is_signed) {
6487             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6488             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6489         } else {
6490             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6491             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6492         }
6493     }
6494 
6495     if (ra == 31 && !is_sub) {
6496         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6497         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6498     } else {
6499         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6500         if (is_sub) {
6501             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6502         } else {
6503             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6504         }
6505     }
6506 
6507     if (!sf) {
6508         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
6509     }
6510 }
6511 
6512 /* Add/subtract (with carry)
6513  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
6514  * +--+--+--+------------------------+------+-------------+------+-----+
6515  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
6516  * +--+--+--+------------------------+------+-------------+------+-----+
6517  */
6518 
6519 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
6520 {
6521     unsigned int sf, op, setflags, rm, rn, rd;
6522     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
6523 
6524     sf = extract32(insn, 31, 1);
6525     op = extract32(insn, 30, 1);
6526     setflags = extract32(insn, 29, 1);
6527     rm = extract32(insn, 16, 5);
6528     rn = extract32(insn, 5, 5);
6529     rd = extract32(insn, 0, 5);
6530 
6531     tcg_rd = cpu_reg(s, rd);
6532     tcg_rn = cpu_reg(s, rn);
6533 
6534     if (op) {
6535         tcg_y = tcg_temp_new_i64();
6536         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
6537     } else {
6538         tcg_y = cpu_reg(s, rm);
6539     }
6540 
6541     if (setflags) {
6542         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
6543     } else {
6544         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
6545     }
6546 }
6547 
6548 /*
6549  * Rotate right into flags
6550  *  31 30 29                21       15          10      5  4      0
6551  * +--+--+--+-----------------+--------+-----------+------+--+------+
6552  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
6553  * +--+--+--+-----------------+--------+-----------+------+--+------+
6554  */
6555 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
6556 {
6557     int mask = extract32(insn, 0, 4);
6558     int o2 = extract32(insn, 4, 1);
6559     int rn = extract32(insn, 5, 5);
6560     int imm6 = extract32(insn, 15, 6);
6561     int sf_op_s = extract32(insn, 29, 3);
6562     TCGv_i64 tcg_rn;
6563     TCGv_i32 nzcv;
6564 
6565     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
6566         unallocated_encoding(s);
6567         return;
6568     }
6569 
6570     tcg_rn = read_cpu_reg(s, rn, 1);
6571     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
6572 
6573     nzcv = tcg_temp_new_i32();
6574     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
6575 
6576     if (mask & 8) { /* N */
6577         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
6578     }
6579     if (mask & 4) { /* Z */
6580         tcg_gen_not_i32(cpu_ZF, nzcv);
6581         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6582     }
6583     if (mask & 2) { /* C */
6584         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6585     }
6586     if (mask & 1) { /* V */
6587         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6588     }
6589 }
6590 
6591 /*
6592  * Evaluate into flags
6593  *  31 30 29                21        15   14        10      5  4      0
6594  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6595  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6596  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6597  */
6598 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6599 {
6600     int o3_mask = extract32(insn, 0, 5);
6601     int rn = extract32(insn, 5, 5);
6602     int o2 = extract32(insn, 15, 6);
6603     int sz = extract32(insn, 14, 1);
6604     int sf_op_s = extract32(insn, 29, 3);
6605     TCGv_i32 tmp;
6606     int shift;
6607 
6608     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6609         !dc_isar_feature(aa64_condm_4, s)) {
6610         unallocated_encoding(s);
6611         return;
6612     }
6613     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6614 
6615     tmp = tcg_temp_new_i32();
6616     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6617     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6618     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6619     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6620     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6621 }
6622 
6623 /* Conditional compare (immediate / register)
6624  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6625  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6626  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6627  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6628  *        [1]                             y                [0]       [0]
6629  */
6630 static void disas_cc(DisasContext *s, uint32_t insn)
6631 {
6632     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6633     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6634     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6635     DisasCompare c;
6636 
6637     if (!extract32(insn, 29, 1)) {
6638         unallocated_encoding(s);
6639         return;
6640     }
6641     if (insn & (1 << 10 | 1 << 4)) {
6642         unallocated_encoding(s);
6643         return;
6644     }
6645     sf = extract32(insn, 31, 1);
6646     op = extract32(insn, 30, 1);
6647     is_imm = extract32(insn, 11, 1);
6648     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6649     cond = extract32(insn, 12, 4);
6650     rn = extract32(insn, 5, 5);
6651     nzcv = extract32(insn, 0, 4);
6652 
6653     /* Set T0 = !COND.  */
6654     tcg_t0 = tcg_temp_new_i32();
6655     arm_test_cc(&c, cond);
6656     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6657 
6658     /* Load the arguments for the new comparison.  */
6659     if (is_imm) {
6660         tcg_y = tcg_temp_new_i64();
6661         tcg_gen_movi_i64(tcg_y, y);
6662     } else {
6663         tcg_y = cpu_reg(s, y);
6664     }
6665     tcg_rn = cpu_reg(s, rn);
6666 
6667     /* Set the flags for the new comparison.  */
6668     tcg_tmp = tcg_temp_new_i64();
6669     if (op) {
6670         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6671     } else {
6672         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6673     }
6674 
6675     /* If COND was false, force the flags to #nzcv.  Compute two masks
6676      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6677      * For tcg hosts that support ANDC, we can make do with just T1.
6678      * In either case, allow the tcg optimizer to delete any unused mask.
6679      */
6680     tcg_t1 = tcg_temp_new_i32();
6681     tcg_t2 = tcg_temp_new_i32();
6682     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6683     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6684 
6685     if (nzcv & 8) { /* N */
6686         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6687     } else {
6688         if (TCG_TARGET_HAS_andc_i32) {
6689             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6690         } else {
6691             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6692         }
6693     }
6694     if (nzcv & 4) { /* Z */
6695         if (TCG_TARGET_HAS_andc_i32) {
6696             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6697         } else {
6698             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6699         }
6700     } else {
6701         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6702     }
6703     if (nzcv & 2) { /* C */
6704         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6705     } else {
6706         if (TCG_TARGET_HAS_andc_i32) {
6707             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6708         } else {
6709             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6710         }
6711     }
6712     if (nzcv & 1) { /* V */
6713         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6714     } else {
6715         if (TCG_TARGET_HAS_andc_i32) {
6716             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6717         } else {
6718             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6719         }
6720     }
6721 }
6722 
6723 /* Conditional select
6724  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6725  * +----+----+---+-----------------+------+------+-----+------+------+
6726  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6727  * +----+----+---+-----------------+------+------+-----+------+------+
6728  */
6729 static void disas_cond_select(DisasContext *s, uint32_t insn)
6730 {
6731     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6732     TCGv_i64 tcg_rd, zero;
6733     DisasCompare64 c;
6734 
6735     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6736         /* S == 1 or op2<1> == 1 */
6737         unallocated_encoding(s);
6738         return;
6739     }
6740     sf = extract32(insn, 31, 1);
6741     else_inv = extract32(insn, 30, 1);
6742     rm = extract32(insn, 16, 5);
6743     cond = extract32(insn, 12, 4);
6744     else_inc = extract32(insn, 10, 1);
6745     rn = extract32(insn, 5, 5);
6746     rd = extract32(insn, 0, 5);
6747 
6748     tcg_rd = cpu_reg(s, rd);
6749 
6750     a64_test_cc(&c, cond);
6751     zero = tcg_constant_i64(0);
6752 
6753     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6754         /* CSET & CSETM.  */
6755         if (else_inv) {
6756             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6757                                    tcg_rd, c.value, zero);
6758         } else {
6759             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6760                                 tcg_rd, c.value, zero);
6761         }
6762     } else {
6763         TCGv_i64 t_true = cpu_reg(s, rn);
6764         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6765         if (else_inv && else_inc) {
6766             tcg_gen_neg_i64(t_false, t_false);
6767         } else if (else_inv) {
6768             tcg_gen_not_i64(t_false, t_false);
6769         } else if (else_inc) {
6770             tcg_gen_addi_i64(t_false, t_false, 1);
6771         }
6772         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6773     }
6774 
6775     if (!sf) {
6776         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6777     }
6778 }
6779 
6780 static void handle_clz(DisasContext *s, unsigned int sf,
6781                        unsigned int rn, unsigned int rd)
6782 {
6783     TCGv_i64 tcg_rd, tcg_rn;
6784     tcg_rd = cpu_reg(s, rd);
6785     tcg_rn = cpu_reg(s, rn);
6786 
6787     if (sf) {
6788         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6789     } else {
6790         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6791         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6792         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6793         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6794     }
6795 }
6796 
6797 static void handle_cls(DisasContext *s, unsigned int sf,
6798                        unsigned int rn, unsigned int rd)
6799 {
6800     TCGv_i64 tcg_rd, tcg_rn;
6801     tcg_rd = cpu_reg(s, rd);
6802     tcg_rn = cpu_reg(s, rn);
6803 
6804     if (sf) {
6805         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6806     } else {
6807         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6808         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6809         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6810         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6811     }
6812 }
6813 
6814 static void handle_rbit(DisasContext *s, unsigned int sf,
6815                         unsigned int rn, unsigned int rd)
6816 {
6817     TCGv_i64 tcg_rd, tcg_rn;
6818     tcg_rd = cpu_reg(s, rd);
6819     tcg_rn = cpu_reg(s, rn);
6820 
6821     if (sf) {
6822         gen_helper_rbit64(tcg_rd, tcg_rn);
6823     } else {
6824         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6825         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6826         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6827         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6828     }
6829 }
6830 
6831 /* REV with sf==1, opcode==3 ("REV64") */
6832 static void handle_rev64(DisasContext *s, unsigned int sf,
6833                          unsigned int rn, unsigned int rd)
6834 {
6835     if (!sf) {
6836         unallocated_encoding(s);
6837         return;
6838     }
6839     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6840 }
6841 
6842 /* REV with sf==0, opcode==2
6843  * REV32 (sf==1, opcode==2)
6844  */
6845 static void handle_rev32(DisasContext *s, unsigned int sf,
6846                          unsigned int rn, unsigned int rd)
6847 {
6848     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6849     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6850 
6851     if (sf) {
6852         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6853         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6854     } else {
6855         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6856     }
6857 }
6858 
6859 /* REV16 (opcode==1) */
6860 static void handle_rev16(DisasContext *s, unsigned int sf,
6861                          unsigned int rn, unsigned int rd)
6862 {
6863     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6864     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6865     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6866     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6867 
6868     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6869     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6870     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6871     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6872     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6873 }
6874 
6875 /* Data-processing (1 source)
6876  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6877  * +----+---+---+-----------------+---------+--------+------+------+
6878  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6879  * +----+---+---+-----------------+---------+--------+------+------+
6880  */
6881 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6882 {
6883     unsigned int sf, opcode, opcode2, rn, rd;
6884     TCGv_i64 tcg_rd;
6885 
6886     if (extract32(insn, 29, 1)) {
6887         unallocated_encoding(s);
6888         return;
6889     }
6890 
6891     sf = extract32(insn, 31, 1);
6892     opcode = extract32(insn, 10, 6);
6893     opcode2 = extract32(insn, 16, 5);
6894     rn = extract32(insn, 5, 5);
6895     rd = extract32(insn, 0, 5);
6896 
6897 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6898 
6899     switch (MAP(sf, opcode2, opcode)) {
6900     case MAP(0, 0x00, 0x00): /* RBIT */
6901     case MAP(1, 0x00, 0x00):
6902         handle_rbit(s, sf, rn, rd);
6903         break;
6904     case MAP(0, 0x00, 0x01): /* REV16 */
6905     case MAP(1, 0x00, 0x01):
6906         handle_rev16(s, sf, rn, rd);
6907         break;
6908     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6909     case MAP(1, 0x00, 0x02):
6910         handle_rev32(s, sf, rn, rd);
6911         break;
6912     case MAP(1, 0x00, 0x03): /* REV64 */
6913         handle_rev64(s, sf, rn, rd);
6914         break;
6915     case MAP(0, 0x00, 0x04): /* CLZ */
6916     case MAP(1, 0x00, 0x04):
6917         handle_clz(s, sf, rn, rd);
6918         break;
6919     case MAP(0, 0x00, 0x05): /* CLS */
6920     case MAP(1, 0x00, 0x05):
6921         handle_cls(s, sf, rn, rd);
6922         break;
6923     case MAP(1, 0x01, 0x00): /* PACIA */
6924         if (s->pauth_active) {
6925             tcg_rd = cpu_reg(s, rd);
6926             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6927         } else if (!dc_isar_feature(aa64_pauth, s)) {
6928             goto do_unallocated;
6929         }
6930         break;
6931     case MAP(1, 0x01, 0x01): /* PACIB */
6932         if (s->pauth_active) {
6933             tcg_rd = cpu_reg(s, rd);
6934             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6935         } else if (!dc_isar_feature(aa64_pauth, s)) {
6936             goto do_unallocated;
6937         }
6938         break;
6939     case MAP(1, 0x01, 0x02): /* PACDA */
6940         if (s->pauth_active) {
6941             tcg_rd = cpu_reg(s, rd);
6942             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6943         } else if (!dc_isar_feature(aa64_pauth, s)) {
6944             goto do_unallocated;
6945         }
6946         break;
6947     case MAP(1, 0x01, 0x03): /* PACDB */
6948         if (s->pauth_active) {
6949             tcg_rd = cpu_reg(s, rd);
6950             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6951         } else if (!dc_isar_feature(aa64_pauth, s)) {
6952             goto do_unallocated;
6953         }
6954         break;
6955     case MAP(1, 0x01, 0x04): /* AUTIA */
6956         if (s->pauth_active) {
6957             tcg_rd = cpu_reg(s, rd);
6958             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6959         } else if (!dc_isar_feature(aa64_pauth, s)) {
6960             goto do_unallocated;
6961         }
6962         break;
6963     case MAP(1, 0x01, 0x05): /* AUTIB */
6964         if (s->pauth_active) {
6965             tcg_rd = cpu_reg(s, rd);
6966             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6967         } else if (!dc_isar_feature(aa64_pauth, s)) {
6968             goto do_unallocated;
6969         }
6970         break;
6971     case MAP(1, 0x01, 0x06): /* AUTDA */
6972         if (s->pauth_active) {
6973             tcg_rd = cpu_reg(s, rd);
6974             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6975         } else if (!dc_isar_feature(aa64_pauth, s)) {
6976             goto do_unallocated;
6977         }
6978         break;
6979     case MAP(1, 0x01, 0x07): /* AUTDB */
6980         if (s->pauth_active) {
6981             tcg_rd = cpu_reg(s, rd);
6982             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6983         } else if (!dc_isar_feature(aa64_pauth, s)) {
6984             goto do_unallocated;
6985         }
6986         break;
6987     case MAP(1, 0x01, 0x08): /* PACIZA */
6988         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6989             goto do_unallocated;
6990         } else if (s->pauth_active) {
6991             tcg_rd = cpu_reg(s, rd);
6992             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6993         }
6994         break;
6995     case MAP(1, 0x01, 0x09): /* PACIZB */
6996         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6997             goto do_unallocated;
6998         } else if (s->pauth_active) {
6999             tcg_rd = cpu_reg(s, rd);
7000             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7001         }
7002         break;
7003     case MAP(1, 0x01, 0x0a): /* PACDZA */
7004         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7005             goto do_unallocated;
7006         } else if (s->pauth_active) {
7007             tcg_rd = cpu_reg(s, rd);
7008             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7009         }
7010         break;
7011     case MAP(1, 0x01, 0x0b): /* PACDZB */
7012         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7013             goto do_unallocated;
7014         } else if (s->pauth_active) {
7015             tcg_rd = cpu_reg(s, rd);
7016             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7017         }
7018         break;
7019     case MAP(1, 0x01, 0x0c): /* AUTIZA */
7020         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7021             goto do_unallocated;
7022         } else if (s->pauth_active) {
7023             tcg_rd = cpu_reg(s, rd);
7024             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7025         }
7026         break;
7027     case MAP(1, 0x01, 0x0d): /* AUTIZB */
7028         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7029             goto do_unallocated;
7030         } else if (s->pauth_active) {
7031             tcg_rd = cpu_reg(s, rd);
7032             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7033         }
7034         break;
7035     case MAP(1, 0x01, 0x0e): /* AUTDZA */
7036         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7037             goto do_unallocated;
7038         } else if (s->pauth_active) {
7039             tcg_rd = cpu_reg(s, rd);
7040             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7041         }
7042         break;
7043     case MAP(1, 0x01, 0x0f): /* AUTDZB */
7044         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7045             goto do_unallocated;
7046         } else if (s->pauth_active) {
7047             tcg_rd = cpu_reg(s, rd);
7048             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7049         }
7050         break;
7051     case MAP(1, 0x01, 0x10): /* XPACI */
7052         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7053             goto do_unallocated;
7054         } else if (s->pauth_active) {
7055             tcg_rd = cpu_reg(s, rd);
7056             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7057         }
7058         break;
7059     case MAP(1, 0x01, 0x11): /* XPACD */
7060         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7061             goto do_unallocated;
7062         } else if (s->pauth_active) {
7063             tcg_rd = cpu_reg(s, rd);
7064             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7065         }
7066         break;
7067     default:
7068     do_unallocated:
7069         unallocated_encoding(s);
7070         break;
7071     }
7072 
7073 #undef MAP
7074 }
7075 
7076 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7077                        unsigned int rm, unsigned int rn, unsigned int rd)
7078 {
7079     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7080     tcg_rd = cpu_reg(s, rd);
7081 
7082     if (!sf && is_signed) {
7083         tcg_n = tcg_temp_new_i64();
7084         tcg_m = tcg_temp_new_i64();
7085         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7086         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7087     } else {
7088         tcg_n = read_cpu_reg(s, rn, sf);
7089         tcg_m = read_cpu_reg(s, rm, sf);
7090     }
7091 
7092     if (is_signed) {
7093         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7094     } else {
7095         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7096     }
7097 
7098     if (!sf) { /* zero extend final result */
7099         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7100     }
7101 }
7102 
7103 /* LSLV, LSRV, ASRV, RORV */
7104 static void handle_shift_reg(DisasContext *s,
7105                              enum a64_shift_type shift_type, unsigned int sf,
7106                              unsigned int rm, unsigned int rn, unsigned int rd)
7107 {
7108     TCGv_i64 tcg_shift = tcg_temp_new_i64();
7109     TCGv_i64 tcg_rd = cpu_reg(s, rd);
7110     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7111 
7112     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7113     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7114 }
7115 
7116 /* CRC32[BHWX], CRC32C[BHWX] */
7117 static void handle_crc32(DisasContext *s,
7118                          unsigned int sf, unsigned int sz, bool crc32c,
7119                          unsigned int rm, unsigned int rn, unsigned int rd)
7120 {
7121     TCGv_i64 tcg_acc, tcg_val;
7122     TCGv_i32 tcg_bytes;
7123 
7124     if (!dc_isar_feature(aa64_crc32, s)
7125         || (sf == 1 && sz != 3)
7126         || (sf == 0 && sz == 3)) {
7127         unallocated_encoding(s);
7128         return;
7129     }
7130 
7131     if (sz == 3) {
7132         tcg_val = cpu_reg(s, rm);
7133     } else {
7134         uint64_t mask;
7135         switch (sz) {
7136         case 0:
7137             mask = 0xFF;
7138             break;
7139         case 1:
7140             mask = 0xFFFF;
7141             break;
7142         case 2:
7143             mask = 0xFFFFFFFF;
7144             break;
7145         default:
7146             g_assert_not_reached();
7147         }
7148         tcg_val = tcg_temp_new_i64();
7149         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7150     }
7151 
7152     tcg_acc = cpu_reg(s, rn);
7153     tcg_bytes = tcg_constant_i32(1 << sz);
7154 
7155     if (crc32c) {
7156         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7157     } else {
7158         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7159     }
7160 }
7161 
7162 /* Data-processing (2 source)
7163  *   31   30  29 28             21 20  16 15    10 9    5 4    0
7164  * +----+---+---+-----------------+------+--------+------+------+
7165  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
7166  * +----+---+---+-----------------+------+--------+------+------+
7167  */
7168 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7169 {
7170     unsigned int sf, rm, opcode, rn, rd, setflag;
7171     sf = extract32(insn, 31, 1);
7172     setflag = extract32(insn, 29, 1);
7173     rm = extract32(insn, 16, 5);
7174     opcode = extract32(insn, 10, 6);
7175     rn = extract32(insn, 5, 5);
7176     rd = extract32(insn, 0, 5);
7177 
7178     if (setflag && opcode != 0) {
7179         unallocated_encoding(s);
7180         return;
7181     }
7182 
7183     switch (opcode) {
7184     case 0: /* SUBP(S) */
7185         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7186             goto do_unallocated;
7187         } else {
7188             TCGv_i64 tcg_n, tcg_m, tcg_d;
7189 
7190             tcg_n = read_cpu_reg_sp(s, rn, true);
7191             tcg_m = read_cpu_reg_sp(s, rm, true);
7192             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7193             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7194             tcg_d = cpu_reg(s, rd);
7195 
7196             if (setflag) {
7197                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7198             } else {
7199                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7200             }
7201         }
7202         break;
7203     case 2: /* UDIV */
7204         handle_div(s, false, sf, rm, rn, rd);
7205         break;
7206     case 3: /* SDIV */
7207         handle_div(s, true, sf, rm, rn, rd);
7208         break;
7209     case 4: /* IRG */
7210         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7211             goto do_unallocated;
7212         }
7213         if (s->ata[0]) {
7214             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7215                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
7216         } else {
7217             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7218                                              cpu_reg_sp(s, rn));
7219         }
7220         break;
7221     case 5: /* GMI */
7222         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7223             goto do_unallocated;
7224         } else {
7225             TCGv_i64 t = tcg_temp_new_i64();
7226 
7227             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7228             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7229             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7230         }
7231         break;
7232     case 8: /* LSLV */
7233         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7234         break;
7235     case 9: /* LSRV */
7236         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7237         break;
7238     case 10: /* ASRV */
7239         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7240         break;
7241     case 11: /* RORV */
7242         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7243         break;
7244     case 12: /* PACGA */
7245         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7246             goto do_unallocated;
7247         }
7248         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7249                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
7250         break;
7251     case 16:
7252     case 17:
7253     case 18:
7254     case 19:
7255     case 20:
7256     case 21:
7257     case 22:
7258     case 23: /* CRC32 */
7259     {
7260         int sz = extract32(opcode, 0, 2);
7261         bool crc32c = extract32(opcode, 2, 1);
7262         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7263         break;
7264     }
7265     default:
7266     do_unallocated:
7267         unallocated_encoding(s);
7268         break;
7269     }
7270 }
7271 
7272 /*
7273  * Data processing - register
7274  *  31  30 29  28      25    21  20  16      10         0
7275  * +--+---+--+---+-------+-----+-------+-------+---------+
7276  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
7277  * +--+---+--+---+-------+-----+-------+-------+---------+
7278  */
7279 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7280 {
7281     int op0 = extract32(insn, 30, 1);
7282     int op1 = extract32(insn, 28, 1);
7283     int op2 = extract32(insn, 21, 4);
7284     int op3 = extract32(insn, 10, 6);
7285 
7286     if (!op1) {
7287         if (op2 & 8) {
7288             if (op2 & 1) {
7289                 /* Add/sub (extended register) */
7290                 disas_add_sub_ext_reg(s, insn);
7291             } else {
7292                 /* Add/sub (shifted register) */
7293                 disas_add_sub_reg(s, insn);
7294             }
7295         } else {
7296             /* Logical (shifted register) */
7297             disas_logic_reg(s, insn);
7298         }
7299         return;
7300     }
7301 
7302     switch (op2) {
7303     case 0x0:
7304         switch (op3) {
7305         case 0x00: /* Add/subtract (with carry) */
7306             disas_adc_sbc(s, insn);
7307             break;
7308 
7309         case 0x01: /* Rotate right into flags */
7310         case 0x21:
7311             disas_rotate_right_into_flags(s, insn);
7312             break;
7313 
7314         case 0x02: /* Evaluate into flags */
7315         case 0x12:
7316         case 0x22:
7317         case 0x32:
7318             disas_evaluate_into_flags(s, insn);
7319             break;
7320 
7321         default:
7322             goto do_unallocated;
7323         }
7324         break;
7325 
7326     case 0x2: /* Conditional compare */
7327         disas_cc(s, insn); /* both imm and reg forms */
7328         break;
7329 
7330     case 0x4: /* Conditional select */
7331         disas_cond_select(s, insn);
7332         break;
7333 
7334     case 0x6: /* Data-processing */
7335         if (op0) {    /* (1 source) */
7336             disas_data_proc_1src(s, insn);
7337         } else {      /* (2 source) */
7338             disas_data_proc_2src(s, insn);
7339         }
7340         break;
7341     case 0x8 ... 0xf: /* (3 source) */
7342         disas_data_proc_3src(s, insn);
7343         break;
7344 
7345     default:
7346     do_unallocated:
7347         unallocated_encoding(s);
7348         break;
7349     }
7350 }
7351 
7352 static void handle_fp_compare(DisasContext *s, int size,
7353                               unsigned int rn, unsigned int rm,
7354                               bool cmp_with_zero, bool signal_all_nans)
7355 {
7356     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7357     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7358 
7359     if (size == MO_64) {
7360         TCGv_i64 tcg_vn, tcg_vm;
7361 
7362         tcg_vn = read_fp_dreg(s, rn);
7363         if (cmp_with_zero) {
7364             tcg_vm = tcg_constant_i64(0);
7365         } else {
7366             tcg_vm = read_fp_dreg(s, rm);
7367         }
7368         if (signal_all_nans) {
7369             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7370         } else {
7371             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7372         }
7373     } else {
7374         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7375         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7376 
7377         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7378         if (cmp_with_zero) {
7379             tcg_gen_movi_i32(tcg_vm, 0);
7380         } else {
7381             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7382         }
7383 
7384         switch (size) {
7385         case MO_32:
7386             if (signal_all_nans) {
7387                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7388             } else {
7389                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7390             }
7391             break;
7392         case MO_16:
7393             if (signal_all_nans) {
7394                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7395             } else {
7396                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7397             }
7398             break;
7399         default:
7400             g_assert_not_reached();
7401         }
7402     }
7403 
7404     gen_set_nzcv(tcg_flags);
7405 }
7406 
7407 /* Floating point compare
7408  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
7409  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7410  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
7411  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7412  */
7413 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7414 {
7415     unsigned int mos, type, rm, op, rn, opc, op2r;
7416     int size;
7417 
7418     mos = extract32(insn, 29, 3);
7419     type = extract32(insn, 22, 2);
7420     rm = extract32(insn, 16, 5);
7421     op = extract32(insn, 14, 2);
7422     rn = extract32(insn, 5, 5);
7423     opc = extract32(insn, 3, 2);
7424     op2r = extract32(insn, 0, 3);
7425 
7426     if (mos || op || op2r) {
7427         unallocated_encoding(s);
7428         return;
7429     }
7430 
7431     switch (type) {
7432     case 0:
7433         size = MO_32;
7434         break;
7435     case 1:
7436         size = MO_64;
7437         break;
7438     case 3:
7439         size = MO_16;
7440         if (dc_isar_feature(aa64_fp16, s)) {
7441             break;
7442         }
7443         /* fallthru */
7444     default:
7445         unallocated_encoding(s);
7446         return;
7447     }
7448 
7449     if (!fp_access_check(s)) {
7450         return;
7451     }
7452 
7453     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7454 }
7455 
7456 /* Floating point conditional compare
7457  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
7458  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7459  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
7460  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7461  */
7462 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7463 {
7464     unsigned int mos, type, rm, cond, rn, op, nzcv;
7465     TCGLabel *label_continue = NULL;
7466     int size;
7467 
7468     mos = extract32(insn, 29, 3);
7469     type = extract32(insn, 22, 2);
7470     rm = extract32(insn, 16, 5);
7471     cond = extract32(insn, 12, 4);
7472     rn = extract32(insn, 5, 5);
7473     op = extract32(insn, 4, 1);
7474     nzcv = extract32(insn, 0, 4);
7475 
7476     if (mos) {
7477         unallocated_encoding(s);
7478         return;
7479     }
7480 
7481     switch (type) {
7482     case 0:
7483         size = MO_32;
7484         break;
7485     case 1:
7486         size = MO_64;
7487         break;
7488     case 3:
7489         size = MO_16;
7490         if (dc_isar_feature(aa64_fp16, s)) {
7491             break;
7492         }
7493         /* fallthru */
7494     default:
7495         unallocated_encoding(s);
7496         return;
7497     }
7498 
7499     if (!fp_access_check(s)) {
7500         return;
7501     }
7502 
7503     if (cond < 0x0e) { /* not always */
7504         TCGLabel *label_match = gen_new_label();
7505         label_continue = gen_new_label();
7506         arm_gen_test_cc(cond, label_match);
7507         /* nomatch: */
7508         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7509         tcg_gen_br(label_continue);
7510         gen_set_label(label_match);
7511     }
7512 
7513     handle_fp_compare(s, size, rn, rm, false, op);
7514 
7515     if (cond < 0x0e) {
7516         gen_set_label(label_continue);
7517     }
7518 }
7519 
7520 /* Floating-point data-processing (1 source) - half precision */
7521 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7522 {
7523     TCGv_ptr fpst = NULL;
7524     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7525     TCGv_i32 tcg_res = tcg_temp_new_i32();
7526 
7527     switch (opcode) {
7528     case 0x0: /* FMOV */
7529         tcg_gen_mov_i32(tcg_res, tcg_op);
7530         break;
7531     case 0x1: /* FABS */
7532         gen_vfp_absh(tcg_res, tcg_op);
7533         break;
7534     case 0x2: /* FNEG */
7535         gen_vfp_negh(tcg_res, tcg_op);
7536         break;
7537     case 0x3: /* FSQRT */
7538         fpst = fpstatus_ptr(FPST_FPCR_F16);
7539         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7540         break;
7541     case 0x8: /* FRINTN */
7542     case 0x9: /* FRINTP */
7543     case 0xa: /* FRINTM */
7544     case 0xb: /* FRINTZ */
7545     case 0xc: /* FRINTA */
7546     {
7547         TCGv_i32 tcg_rmode;
7548 
7549         fpst = fpstatus_ptr(FPST_FPCR_F16);
7550         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7551         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7552         gen_restore_rmode(tcg_rmode, fpst);
7553         break;
7554     }
7555     case 0xe: /* FRINTX */
7556         fpst = fpstatus_ptr(FPST_FPCR_F16);
7557         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7558         break;
7559     case 0xf: /* FRINTI */
7560         fpst = fpstatus_ptr(FPST_FPCR_F16);
7561         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7562         break;
7563     default:
7564         g_assert_not_reached();
7565     }
7566 
7567     write_fp_sreg(s, rd, tcg_res);
7568 }
7569 
7570 /* Floating-point data-processing (1 source) - single precision */
7571 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7572 {
7573     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7574     TCGv_i32 tcg_op, tcg_res;
7575     TCGv_ptr fpst;
7576     int rmode = -1;
7577 
7578     tcg_op = read_fp_sreg(s, rn);
7579     tcg_res = tcg_temp_new_i32();
7580 
7581     switch (opcode) {
7582     case 0x0: /* FMOV */
7583         tcg_gen_mov_i32(tcg_res, tcg_op);
7584         goto done;
7585     case 0x1: /* FABS */
7586         gen_vfp_abss(tcg_res, tcg_op);
7587         goto done;
7588     case 0x2: /* FNEG */
7589         gen_vfp_negs(tcg_res, tcg_op);
7590         goto done;
7591     case 0x3: /* FSQRT */
7592         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7593         goto done;
7594     case 0x6: /* BFCVT */
7595         gen_fpst = gen_helper_bfcvt;
7596         break;
7597     case 0x8: /* FRINTN */
7598     case 0x9: /* FRINTP */
7599     case 0xa: /* FRINTM */
7600     case 0xb: /* FRINTZ */
7601     case 0xc: /* FRINTA */
7602         rmode = opcode & 7;
7603         gen_fpst = gen_helper_rints;
7604         break;
7605     case 0xe: /* FRINTX */
7606         gen_fpst = gen_helper_rints_exact;
7607         break;
7608     case 0xf: /* FRINTI */
7609         gen_fpst = gen_helper_rints;
7610         break;
7611     case 0x10: /* FRINT32Z */
7612         rmode = FPROUNDING_ZERO;
7613         gen_fpst = gen_helper_frint32_s;
7614         break;
7615     case 0x11: /* FRINT32X */
7616         gen_fpst = gen_helper_frint32_s;
7617         break;
7618     case 0x12: /* FRINT64Z */
7619         rmode = FPROUNDING_ZERO;
7620         gen_fpst = gen_helper_frint64_s;
7621         break;
7622     case 0x13: /* FRINT64X */
7623         gen_fpst = gen_helper_frint64_s;
7624         break;
7625     default:
7626         g_assert_not_reached();
7627     }
7628 
7629     fpst = fpstatus_ptr(FPST_FPCR);
7630     if (rmode >= 0) {
7631         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7632         gen_fpst(tcg_res, tcg_op, fpst);
7633         gen_restore_rmode(tcg_rmode, fpst);
7634     } else {
7635         gen_fpst(tcg_res, tcg_op, fpst);
7636     }
7637 
7638  done:
7639     write_fp_sreg(s, rd, tcg_res);
7640 }
7641 
7642 /* Floating-point data-processing (1 source) - double precision */
7643 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7644 {
7645     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7646     TCGv_i64 tcg_op, tcg_res;
7647     TCGv_ptr fpst;
7648     int rmode = -1;
7649 
7650     switch (opcode) {
7651     case 0x0: /* FMOV */
7652         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7653         return;
7654     }
7655 
7656     tcg_op = read_fp_dreg(s, rn);
7657     tcg_res = tcg_temp_new_i64();
7658 
7659     switch (opcode) {
7660     case 0x1: /* FABS */
7661         gen_vfp_absd(tcg_res, tcg_op);
7662         goto done;
7663     case 0x2: /* FNEG */
7664         gen_vfp_negd(tcg_res, tcg_op);
7665         goto done;
7666     case 0x3: /* FSQRT */
7667         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7668         goto done;
7669     case 0x8: /* FRINTN */
7670     case 0x9: /* FRINTP */
7671     case 0xa: /* FRINTM */
7672     case 0xb: /* FRINTZ */
7673     case 0xc: /* FRINTA */
7674         rmode = opcode & 7;
7675         gen_fpst = gen_helper_rintd;
7676         break;
7677     case 0xe: /* FRINTX */
7678         gen_fpst = gen_helper_rintd_exact;
7679         break;
7680     case 0xf: /* FRINTI */
7681         gen_fpst = gen_helper_rintd;
7682         break;
7683     case 0x10: /* FRINT32Z */
7684         rmode = FPROUNDING_ZERO;
7685         gen_fpst = gen_helper_frint32_d;
7686         break;
7687     case 0x11: /* FRINT32X */
7688         gen_fpst = gen_helper_frint32_d;
7689         break;
7690     case 0x12: /* FRINT64Z */
7691         rmode = FPROUNDING_ZERO;
7692         gen_fpst = gen_helper_frint64_d;
7693         break;
7694     case 0x13: /* FRINT64X */
7695         gen_fpst = gen_helper_frint64_d;
7696         break;
7697     default:
7698         g_assert_not_reached();
7699     }
7700 
7701     fpst = fpstatus_ptr(FPST_FPCR);
7702     if (rmode >= 0) {
7703         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7704         gen_fpst(tcg_res, tcg_op, fpst);
7705         gen_restore_rmode(tcg_rmode, fpst);
7706     } else {
7707         gen_fpst(tcg_res, tcg_op, fpst);
7708     }
7709 
7710  done:
7711     write_fp_dreg(s, rd, tcg_res);
7712 }
7713 
7714 static void handle_fp_fcvt(DisasContext *s, int opcode,
7715                            int rd, int rn, int dtype, int ntype)
7716 {
7717     switch (ntype) {
7718     case 0x0:
7719     {
7720         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7721         if (dtype == 1) {
7722             /* Single to double */
7723             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7724             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7725             write_fp_dreg(s, rd, tcg_rd);
7726         } else {
7727             /* Single to half */
7728             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7729             TCGv_i32 ahp = get_ahp_flag();
7730             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7731 
7732             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7733             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7734             write_fp_sreg(s, rd, tcg_rd);
7735         }
7736         break;
7737     }
7738     case 0x1:
7739     {
7740         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7741         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7742         if (dtype == 0) {
7743             /* Double to single */
7744             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7745         } else {
7746             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7747             TCGv_i32 ahp = get_ahp_flag();
7748             /* Double to half */
7749             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7750             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7751         }
7752         write_fp_sreg(s, rd, tcg_rd);
7753         break;
7754     }
7755     case 0x3:
7756     {
7757         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7758         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7759         TCGv_i32 tcg_ahp = get_ahp_flag();
7760         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7761         if (dtype == 0) {
7762             /* Half to single */
7763             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7764             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7765             write_fp_sreg(s, rd, tcg_rd);
7766         } else {
7767             /* Half to double */
7768             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7769             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7770             write_fp_dreg(s, rd, tcg_rd);
7771         }
7772         break;
7773     }
7774     default:
7775         g_assert_not_reached();
7776     }
7777 }
7778 
7779 /* Floating point data-processing (1 source)
7780  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7781  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7782  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7783  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7784  */
7785 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7786 {
7787     int mos = extract32(insn, 29, 3);
7788     int type = extract32(insn, 22, 2);
7789     int opcode = extract32(insn, 15, 6);
7790     int rn = extract32(insn, 5, 5);
7791     int rd = extract32(insn, 0, 5);
7792 
7793     if (mos) {
7794         goto do_unallocated;
7795     }
7796 
7797     switch (opcode) {
7798     case 0x4: case 0x5: case 0x7:
7799     {
7800         /* FCVT between half, single and double precision */
7801         int dtype = extract32(opcode, 0, 2);
7802         if (type == 2 || dtype == type) {
7803             goto do_unallocated;
7804         }
7805         if (!fp_access_check(s)) {
7806             return;
7807         }
7808 
7809         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7810         break;
7811     }
7812 
7813     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7814         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7815             goto do_unallocated;
7816         }
7817         /* fall through */
7818     case 0x0 ... 0x3:
7819     case 0x8 ... 0xc:
7820     case 0xe ... 0xf:
7821         /* 32-to-32 and 64-to-64 ops */
7822         switch (type) {
7823         case 0:
7824             if (!fp_access_check(s)) {
7825                 return;
7826             }
7827             handle_fp_1src_single(s, opcode, rd, rn);
7828             break;
7829         case 1:
7830             if (!fp_access_check(s)) {
7831                 return;
7832             }
7833             handle_fp_1src_double(s, opcode, rd, rn);
7834             break;
7835         case 3:
7836             if (!dc_isar_feature(aa64_fp16, s)) {
7837                 goto do_unallocated;
7838             }
7839 
7840             if (!fp_access_check(s)) {
7841                 return;
7842             }
7843             handle_fp_1src_half(s, opcode, rd, rn);
7844             break;
7845         default:
7846             goto do_unallocated;
7847         }
7848         break;
7849 
7850     case 0x6:
7851         switch (type) {
7852         case 1: /* BFCVT */
7853             if (!dc_isar_feature(aa64_bf16, s)) {
7854                 goto do_unallocated;
7855             }
7856             if (!fp_access_check(s)) {
7857                 return;
7858             }
7859             handle_fp_1src_single(s, opcode, rd, rn);
7860             break;
7861         default:
7862             goto do_unallocated;
7863         }
7864         break;
7865 
7866     default:
7867     do_unallocated:
7868         unallocated_encoding(s);
7869         break;
7870     }
7871 }
7872 
7873 /* Floating point immediate
7874  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7875  * +---+---+---+-----------+------+---+------------+-------+------+------+
7876  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7877  * +---+---+---+-----------+------+---+------------+-------+------+------+
7878  */
7879 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7880 {
7881     int rd = extract32(insn, 0, 5);
7882     int imm5 = extract32(insn, 5, 5);
7883     int imm8 = extract32(insn, 13, 8);
7884     int type = extract32(insn, 22, 2);
7885     int mos = extract32(insn, 29, 3);
7886     uint64_t imm;
7887     MemOp sz;
7888 
7889     if (mos || imm5) {
7890         unallocated_encoding(s);
7891         return;
7892     }
7893 
7894     switch (type) {
7895     case 0:
7896         sz = MO_32;
7897         break;
7898     case 1:
7899         sz = MO_64;
7900         break;
7901     case 3:
7902         sz = MO_16;
7903         if (dc_isar_feature(aa64_fp16, s)) {
7904             break;
7905         }
7906         /* fallthru */
7907     default:
7908         unallocated_encoding(s);
7909         return;
7910     }
7911 
7912     if (!fp_access_check(s)) {
7913         return;
7914     }
7915 
7916     imm = vfp_expand_imm(sz, imm8);
7917     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7918 }
7919 
7920 /* Handle floating point <=> fixed point conversions. Note that we can
7921  * also deal with fp <=> integer conversions as a special case (scale == 64)
7922  * OPTME: consider handling that special case specially or at least skipping
7923  * the call to scalbn in the helpers for zero shifts.
7924  */
7925 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7926                            bool itof, int rmode, int scale, int sf, int type)
7927 {
7928     bool is_signed = !(opcode & 1);
7929     TCGv_ptr tcg_fpstatus;
7930     TCGv_i32 tcg_shift, tcg_single;
7931     TCGv_i64 tcg_double;
7932 
7933     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7934 
7935     tcg_shift = tcg_constant_i32(64 - scale);
7936 
7937     if (itof) {
7938         TCGv_i64 tcg_int = cpu_reg(s, rn);
7939         if (!sf) {
7940             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7941 
7942             if (is_signed) {
7943                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7944             } else {
7945                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7946             }
7947 
7948             tcg_int = tcg_extend;
7949         }
7950 
7951         switch (type) {
7952         case 1: /* float64 */
7953             tcg_double = tcg_temp_new_i64();
7954             if (is_signed) {
7955                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7956                                      tcg_shift, tcg_fpstatus);
7957             } else {
7958                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7959                                      tcg_shift, tcg_fpstatus);
7960             }
7961             write_fp_dreg(s, rd, tcg_double);
7962             break;
7963 
7964         case 0: /* float32 */
7965             tcg_single = tcg_temp_new_i32();
7966             if (is_signed) {
7967                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7968                                      tcg_shift, tcg_fpstatus);
7969             } else {
7970                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7971                                      tcg_shift, tcg_fpstatus);
7972             }
7973             write_fp_sreg(s, rd, tcg_single);
7974             break;
7975 
7976         case 3: /* float16 */
7977             tcg_single = tcg_temp_new_i32();
7978             if (is_signed) {
7979                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7980                                      tcg_shift, tcg_fpstatus);
7981             } else {
7982                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7983                                      tcg_shift, tcg_fpstatus);
7984             }
7985             write_fp_sreg(s, rd, tcg_single);
7986             break;
7987 
7988         default:
7989             g_assert_not_reached();
7990         }
7991     } else {
7992         TCGv_i64 tcg_int = cpu_reg(s, rd);
7993         TCGv_i32 tcg_rmode;
7994 
7995         if (extract32(opcode, 2, 1)) {
7996             /* There are too many rounding modes to all fit into rmode,
7997              * so FCVTA[US] is a special case.
7998              */
7999             rmode = FPROUNDING_TIEAWAY;
8000         }
8001 
8002         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8003 
8004         switch (type) {
8005         case 1: /* float64 */
8006             tcg_double = read_fp_dreg(s, rn);
8007             if (is_signed) {
8008                 if (!sf) {
8009                     gen_helper_vfp_tosld(tcg_int, tcg_double,
8010                                          tcg_shift, tcg_fpstatus);
8011                 } else {
8012                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
8013                                          tcg_shift, tcg_fpstatus);
8014                 }
8015             } else {
8016                 if (!sf) {
8017                     gen_helper_vfp_tould(tcg_int, tcg_double,
8018                                          tcg_shift, tcg_fpstatus);
8019                 } else {
8020                     gen_helper_vfp_touqd(tcg_int, tcg_double,
8021                                          tcg_shift, tcg_fpstatus);
8022                 }
8023             }
8024             if (!sf) {
8025                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8026             }
8027             break;
8028 
8029         case 0: /* float32 */
8030             tcg_single = read_fp_sreg(s, rn);
8031             if (sf) {
8032                 if (is_signed) {
8033                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
8034                                          tcg_shift, tcg_fpstatus);
8035                 } else {
8036                     gen_helper_vfp_touqs(tcg_int, tcg_single,
8037                                          tcg_shift, tcg_fpstatus);
8038                 }
8039             } else {
8040                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8041                 if (is_signed) {
8042                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
8043                                          tcg_shift, tcg_fpstatus);
8044                 } else {
8045                     gen_helper_vfp_touls(tcg_dest, tcg_single,
8046                                          tcg_shift, tcg_fpstatus);
8047                 }
8048                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8049             }
8050             break;
8051 
8052         case 3: /* float16 */
8053             tcg_single = read_fp_sreg(s, rn);
8054             if (sf) {
8055                 if (is_signed) {
8056                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
8057                                          tcg_shift, tcg_fpstatus);
8058                 } else {
8059                     gen_helper_vfp_touqh(tcg_int, tcg_single,
8060                                          tcg_shift, tcg_fpstatus);
8061                 }
8062             } else {
8063                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8064                 if (is_signed) {
8065                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
8066                                          tcg_shift, tcg_fpstatus);
8067                 } else {
8068                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
8069                                          tcg_shift, tcg_fpstatus);
8070                 }
8071                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8072             }
8073             break;
8074 
8075         default:
8076             g_assert_not_reached();
8077         }
8078 
8079         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8080     }
8081 }
8082 
8083 /* Floating point <-> fixed point conversions
8084  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
8085  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8086  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
8087  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8088  */
8089 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8090 {
8091     int rd = extract32(insn, 0, 5);
8092     int rn = extract32(insn, 5, 5);
8093     int scale = extract32(insn, 10, 6);
8094     int opcode = extract32(insn, 16, 3);
8095     int rmode = extract32(insn, 19, 2);
8096     int type = extract32(insn, 22, 2);
8097     bool sbit = extract32(insn, 29, 1);
8098     bool sf = extract32(insn, 31, 1);
8099     bool itof;
8100 
8101     if (sbit || (!sf && scale < 32)) {
8102         unallocated_encoding(s);
8103         return;
8104     }
8105 
8106     switch (type) {
8107     case 0: /* float32 */
8108     case 1: /* float64 */
8109         break;
8110     case 3: /* float16 */
8111         if (dc_isar_feature(aa64_fp16, s)) {
8112             break;
8113         }
8114         /* fallthru */
8115     default:
8116         unallocated_encoding(s);
8117         return;
8118     }
8119 
8120     switch ((rmode << 3) | opcode) {
8121     case 0x2: /* SCVTF */
8122     case 0x3: /* UCVTF */
8123         itof = true;
8124         break;
8125     case 0x18: /* FCVTZS */
8126     case 0x19: /* FCVTZU */
8127         itof = false;
8128         break;
8129     default:
8130         unallocated_encoding(s);
8131         return;
8132     }
8133 
8134     if (!fp_access_check(s)) {
8135         return;
8136     }
8137 
8138     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8139 }
8140 
8141 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8142 {
8143     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8144      * without conversion.
8145      */
8146 
8147     if (itof) {
8148         TCGv_i64 tcg_rn = cpu_reg(s, rn);
8149         TCGv_i64 tmp;
8150 
8151         switch (type) {
8152         case 0:
8153             /* 32 bit */
8154             tmp = tcg_temp_new_i64();
8155             tcg_gen_ext32u_i64(tmp, tcg_rn);
8156             write_fp_dreg(s, rd, tmp);
8157             break;
8158         case 1:
8159             /* 64 bit */
8160             write_fp_dreg(s, rd, tcg_rn);
8161             break;
8162         case 2:
8163             /* 64 bit to top half. */
8164             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8165             clear_vec_high(s, true, rd);
8166             break;
8167         case 3:
8168             /* 16 bit */
8169             tmp = tcg_temp_new_i64();
8170             tcg_gen_ext16u_i64(tmp, tcg_rn);
8171             write_fp_dreg(s, rd, tmp);
8172             break;
8173         default:
8174             g_assert_not_reached();
8175         }
8176     } else {
8177         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8178 
8179         switch (type) {
8180         case 0:
8181             /* 32 bit */
8182             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8183             break;
8184         case 1:
8185             /* 64 bit */
8186             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8187             break;
8188         case 2:
8189             /* 64 bits from top half */
8190             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8191             break;
8192         case 3:
8193             /* 16 bit */
8194             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8195             break;
8196         default:
8197             g_assert_not_reached();
8198         }
8199     }
8200 }
8201 
8202 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8203 {
8204     TCGv_i64 t = read_fp_dreg(s, rn);
8205     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8206 
8207     gen_helper_fjcvtzs(t, t, fpstatus);
8208 
8209     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8210     tcg_gen_extrh_i64_i32(cpu_ZF, t);
8211     tcg_gen_movi_i32(cpu_CF, 0);
8212     tcg_gen_movi_i32(cpu_NF, 0);
8213     tcg_gen_movi_i32(cpu_VF, 0);
8214 }
8215 
8216 /* Floating point <-> integer conversions
8217  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
8218  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8219  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8220  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8221  */
8222 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8223 {
8224     int rd = extract32(insn, 0, 5);
8225     int rn = extract32(insn, 5, 5);
8226     int opcode = extract32(insn, 16, 3);
8227     int rmode = extract32(insn, 19, 2);
8228     int type = extract32(insn, 22, 2);
8229     bool sbit = extract32(insn, 29, 1);
8230     bool sf = extract32(insn, 31, 1);
8231     bool itof = false;
8232 
8233     if (sbit) {
8234         goto do_unallocated;
8235     }
8236 
8237     switch (opcode) {
8238     case 2: /* SCVTF */
8239     case 3: /* UCVTF */
8240         itof = true;
8241         /* fallthru */
8242     case 4: /* FCVTAS */
8243     case 5: /* FCVTAU */
8244         if (rmode != 0) {
8245             goto do_unallocated;
8246         }
8247         /* fallthru */
8248     case 0: /* FCVT[NPMZ]S */
8249     case 1: /* FCVT[NPMZ]U */
8250         switch (type) {
8251         case 0: /* float32 */
8252         case 1: /* float64 */
8253             break;
8254         case 3: /* float16 */
8255             if (!dc_isar_feature(aa64_fp16, s)) {
8256                 goto do_unallocated;
8257             }
8258             break;
8259         default:
8260             goto do_unallocated;
8261         }
8262         if (!fp_access_check(s)) {
8263             return;
8264         }
8265         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8266         break;
8267 
8268     default:
8269         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8270         case 0b01100110: /* FMOV half <-> 32-bit int */
8271         case 0b01100111:
8272         case 0b11100110: /* FMOV half <-> 64-bit int */
8273         case 0b11100111:
8274             if (!dc_isar_feature(aa64_fp16, s)) {
8275                 goto do_unallocated;
8276             }
8277             /* fallthru */
8278         case 0b00000110: /* FMOV 32-bit */
8279         case 0b00000111:
8280         case 0b10100110: /* FMOV 64-bit */
8281         case 0b10100111:
8282         case 0b11001110: /* FMOV top half of 128-bit */
8283         case 0b11001111:
8284             if (!fp_access_check(s)) {
8285                 return;
8286             }
8287             itof = opcode & 1;
8288             handle_fmov(s, rd, rn, type, itof);
8289             break;
8290 
8291         case 0b00111110: /* FJCVTZS */
8292             if (!dc_isar_feature(aa64_jscvt, s)) {
8293                 goto do_unallocated;
8294             } else if (fp_access_check(s)) {
8295                 handle_fjcvtzs(s, rd, rn);
8296             }
8297             break;
8298 
8299         default:
8300         do_unallocated:
8301             unallocated_encoding(s);
8302             return;
8303         }
8304         break;
8305     }
8306 }
8307 
8308 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8309  *   31  30  29 28     25 24                          0
8310  * +---+---+---+---------+-----------------------------+
8311  * |   | 0 |   | 1 1 1 1 |                             |
8312  * +---+---+---+---------+-----------------------------+
8313  */
8314 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8315 {
8316     if (extract32(insn, 24, 1)) {
8317         unallocated_encoding(s); /* in decodetree */
8318     } else if (extract32(insn, 21, 1) == 0) {
8319         /* Floating point to fixed point conversions */
8320         disas_fp_fixed_conv(s, insn);
8321     } else {
8322         switch (extract32(insn, 10, 2)) {
8323         case 1:
8324             /* Floating point conditional compare */
8325             disas_fp_ccomp(s, insn);
8326             break;
8327         case 2:
8328             /* Floating point data-processing (2 source) */
8329             unallocated_encoding(s); /* in decodetree */
8330             break;
8331         case 3:
8332             /* Floating point conditional select */
8333             unallocated_encoding(s); /* in decodetree */
8334             break;
8335         case 0:
8336             switch (ctz32(extract32(insn, 12, 4))) {
8337             case 0: /* [15:12] == xxx1 */
8338                 /* Floating point immediate */
8339                 disas_fp_imm(s, insn);
8340                 break;
8341             case 1: /* [15:12] == xx10 */
8342                 /* Floating point compare */
8343                 disas_fp_compare(s, insn);
8344                 break;
8345             case 2: /* [15:12] == x100 */
8346                 /* Floating point data-processing (1 source) */
8347                 disas_fp_1src(s, insn);
8348                 break;
8349             case 3: /* [15:12] == 1000 */
8350                 unallocated_encoding(s);
8351                 break;
8352             default: /* [15:12] == 0000 */
8353                 /* Floating point <-> integer conversions */
8354                 disas_fp_int_conv(s, insn);
8355                 break;
8356             }
8357             break;
8358         }
8359     }
8360 }
8361 
8362 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8363                      int pos)
8364 {
8365     /* Extract 64 bits from the middle of two concatenated 64 bit
8366      * vector register slices left:right. The extracted bits start
8367      * at 'pos' bits into the right (least significant) side.
8368      * We return the result in tcg_right, and guarantee not to
8369      * trash tcg_left.
8370      */
8371     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8372     assert(pos > 0 && pos < 64);
8373 
8374     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8375     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8376     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8377 }
8378 
8379 /* EXT
8380  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8381  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8382  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8383  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8384  */
8385 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8386 {
8387     int is_q = extract32(insn, 30, 1);
8388     int op2 = extract32(insn, 22, 2);
8389     int imm4 = extract32(insn, 11, 4);
8390     int rm = extract32(insn, 16, 5);
8391     int rn = extract32(insn, 5, 5);
8392     int rd = extract32(insn, 0, 5);
8393     int pos = imm4 << 3;
8394     TCGv_i64 tcg_resl, tcg_resh;
8395 
8396     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8397         unallocated_encoding(s);
8398         return;
8399     }
8400 
8401     if (!fp_access_check(s)) {
8402         return;
8403     }
8404 
8405     tcg_resh = tcg_temp_new_i64();
8406     tcg_resl = tcg_temp_new_i64();
8407 
8408     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8409      * either extracting 128 bits from a 128:128 concatenation, or
8410      * extracting 64 bits from a 64:64 concatenation.
8411      */
8412     if (!is_q) {
8413         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8414         if (pos != 0) {
8415             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8416             do_ext64(s, tcg_resh, tcg_resl, pos);
8417         }
8418     } else {
8419         TCGv_i64 tcg_hh;
8420         typedef struct {
8421             int reg;
8422             int elt;
8423         } EltPosns;
8424         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8425         EltPosns *elt = eltposns;
8426 
8427         if (pos >= 64) {
8428             elt++;
8429             pos -= 64;
8430         }
8431 
8432         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8433         elt++;
8434         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8435         elt++;
8436         if (pos != 0) {
8437             do_ext64(s, tcg_resh, tcg_resl, pos);
8438             tcg_hh = tcg_temp_new_i64();
8439             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8440             do_ext64(s, tcg_hh, tcg_resh, pos);
8441         }
8442     }
8443 
8444     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8445     if (is_q) {
8446         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8447     }
8448     clear_vec_high(s, is_q, rd);
8449 }
8450 
8451 /* TBL/TBX
8452  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8453  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8454  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8455  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8456  */
8457 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8458 {
8459     int op2 = extract32(insn, 22, 2);
8460     int is_q = extract32(insn, 30, 1);
8461     int rm = extract32(insn, 16, 5);
8462     int rn = extract32(insn, 5, 5);
8463     int rd = extract32(insn, 0, 5);
8464     int is_tbx = extract32(insn, 12, 1);
8465     int len = (extract32(insn, 13, 2) + 1) * 16;
8466 
8467     if (op2 != 0) {
8468         unallocated_encoding(s);
8469         return;
8470     }
8471 
8472     if (!fp_access_check(s)) {
8473         return;
8474     }
8475 
8476     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8477                        vec_full_reg_offset(s, rm), tcg_env,
8478                        is_q ? 16 : 8, vec_full_reg_size(s),
8479                        (len << 6) | (is_tbx << 5) | rn,
8480                        gen_helper_simd_tblx);
8481 }
8482 
8483 /* ZIP/UZP/TRN
8484  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8485  * +---+---+-------------+------+---+------+---+------------------+------+
8486  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8487  * +---+---+-------------+------+---+------+---+------------------+------+
8488  */
8489 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8490 {
8491     int rd = extract32(insn, 0, 5);
8492     int rn = extract32(insn, 5, 5);
8493     int rm = extract32(insn, 16, 5);
8494     int size = extract32(insn, 22, 2);
8495     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8496      * bit 2 indicates 1 vs 2 variant of the insn.
8497      */
8498     int opcode = extract32(insn, 12, 2);
8499     bool part = extract32(insn, 14, 1);
8500     bool is_q = extract32(insn, 30, 1);
8501     int esize = 8 << size;
8502     int i;
8503     int datasize = is_q ? 128 : 64;
8504     int elements = datasize / esize;
8505     TCGv_i64 tcg_res[2], tcg_ele;
8506 
8507     if (opcode == 0 || (size == 3 && !is_q)) {
8508         unallocated_encoding(s);
8509         return;
8510     }
8511 
8512     if (!fp_access_check(s)) {
8513         return;
8514     }
8515 
8516     tcg_res[0] = tcg_temp_new_i64();
8517     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8518     tcg_ele = tcg_temp_new_i64();
8519 
8520     for (i = 0; i < elements; i++) {
8521         int o, w;
8522 
8523         switch (opcode) {
8524         case 1: /* UZP1/2 */
8525         {
8526             int midpoint = elements / 2;
8527             if (i < midpoint) {
8528                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8529             } else {
8530                 read_vec_element(s, tcg_ele, rm,
8531                                  2 * (i - midpoint) + part, size);
8532             }
8533             break;
8534         }
8535         case 2: /* TRN1/2 */
8536             if (i & 1) {
8537                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8538             } else {
8539                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8540             }
8541             break;
8542         case 3: /* ZIP1/2 */
8543         {
8544             int base = part * elements / 2;
8545             if (i & 1) {
8546                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8547             } else {
8548                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8549             }
8550             break;
8551         }
8552         default:
8553             g_assert_not_reached();
8554         }
8555 
8556         w = (i * esize) / 64;
8557         o = (i * esize) % 64;
8558         if (o == 0) {
8559             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8560         } else {
8561             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8562             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8563         }
8564     }
8565 
8566     for (i = 0; i <= is_q; ++i) {
8567         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8568     }
8569     clear_vec_high(s, is_q, rd);
8570 }
8571 
8572 /*
8573  * do_reduction_op helper
8574  *
8575  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8576  * important for correct NaN propagation that we do these
8577  * operations in exactly the order specified by the pseudocode.
8578  *
8579  * This is a recursive function, TCG temps should be freed by the
8580  * calling function once it is done with the values.
8581  */
8582 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8583                                 int esize, int size, int vmap, TCGv_ptr fpst)
8584 {
8585     if (esize == size) {
8586         int element;
8587         MemOp msize = esize == 16 ? MO_16 : MO_32;
8588         TCGv_i32 tcg_elem;
8589 
8590         /* We should have one register left here */
8591         assert(ctpop8(vmap) == 1);
8592         element = ctz32(vmap);
8593         assert(element < 8);
8594 
8595         tcg_elem = tcg_temp_new_i32();
8596         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8597         return tcg_elem;
8598     } else {
8599         int bits = size / 2;
8600         int shift = ctpop8(vmap) / 2;
8601         int vmap_lo = (vmap >> shift) & vmap;
8602         int vmap_hi = (vmap & ~vmap_lo);
8603         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8604 
8605         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8606         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8607         tcg_res = tcg_temp_new_i32();
8608 
8609         switch (fpopcode) {
8610         case 0x0c: /* fmaxnmv half-precision */
8611             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8612             break;
8613         case 0x0f: /* fmaxv half-precision */
8614             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8615             break;
8616         case 0x1c: /* fminnmv half-precision */
8617             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8618             break;
8619         case 0x1f: /* fminv half-precision */
8620             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8621             break;
8622         case 0x2c: /* fmaxnmv */
8623             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8624             break;
8625         case 0x2f: /* fmaxv */
8626             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8627             break;
8628         case 0x3c: /* fminnmv */
8629             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8630             break;
8631         case 0x3f: /* fminv */
8632             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8633             break;
8634         default:
8635             g_assert_not_reached();
8636         }
8637         return tcg_res;
8638     }
8639 }
8640 
8641 /* AdvSIMD across lanes
8642  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8643  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8644  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8645  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8646  */
8647 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8648 {
8649     int rd = extract32(insn, 0, 5);
8650     int rn = extract32(insn, 5, 5);
8651     int size = extract32(insn, 22, 2);
8652     int opcode = extract32(insn, 12, 5);
8653     bool is_q = extract32(insn, 30, 1);
8654     bool is_u = extract32(insn, 29, 1);
8655     bool is_fp = false;
8656     bool is_min = false;
8657     int esize;
8658     int elements;
8659     int i;
8660     TCGv_i64 tcg_res, tcg_elt;
8661 
8662     switch (opcode) {
8663     case 0x1b: /* ADDV */
8664         if (is_u) {
8665             unallocated_encoding(s);
8666             return;
8667         }
8668         /* fall through */
8669     case 0x3: /* SADDLV, UADDLV */
8670     case 0xa: /* SMAXV, UMAXV */
8671     case 0x1a: /* SMINV, UMINV */
8672         if (size == 3 || (size == 2 && !is_q)) {
8673             unallocated_encoding(s);
8674             return;
8675         }
8676         break;
8677     case 0xc: /* FMAXNMV, FMINNMV */
8678     case 0xf: /* FMAXV, FMINV */
8679         /* Bit 1 of size field encodes min vs max and the actual size
8680          * depends on the encoding of the U bit. If not set (and FP16
8681          * enabled) then we do half-precision float instead of single
8682          * precision.
8683          */
8684         is_min = extract32(size, 1, 1);
8685         is_fp = true;
8686         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8687             size = 1;
8688         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8689             unallocated_encoding(s);
8690             return;
8691         } else {
8692             size = 2;
8693         }
8694         break;
8695     default:
8696         unallocated_encoding(s);
8697         return;
8698     }
8699 
8700     if (!fp_access_check(s)) {
8701         return;
8702     }
8703 
8704     esize = 8 << size;
8705     elements = (is_q ? 128 : 64) / esize;
8706 
8707     tcg_res = tcg_temp_new_i64();
8708     tcg_elt = tcg_temp_new_i64();
8709 
8710     /* These instructions operate across all lanes of a vector
8711      * to produce a single result. We can guarantee that a 64
8712      * bit intermediate is sufficient:
8713      *  + for [US]ADDLV the maximum element size is 32 bits, and
8714      *    the result type is 64 bits
8715      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8716      *    same as the element size, which is 32 bits at most
8717      * For the integer operations we can choose to work at 64
8718      * or 32 bits and truncate at the end; for simplicity
8719      * we use 64 bits always. The floating point
8720      * ops do require 32 bit intermediates, though.
8721      */
8722     if (!is_fp) {
8723         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8724 
8725         for (i = 1; i < elements; i++) {
8726             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8727 
8728             switch (opcode) {
8729             case 0x03: /* SADDLV / UADDLV */
8730             case 0x1b: /* ADDV */
8731                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8732                 break;
8733             case 0x0a: /* SMAXV / UMAXV */
8734                 if (is_u) {
8735                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8736                 } else {
8737                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8738                 }
8739                 break;
8740             case 0x1a: /* SMINV / UMINV */
8741                 if (is_u) {
8742                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8743                 } else {
8744                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8745                 }
8746                 break;
8747             default:
8748                 g_assert_not_reached();
8749             }
8750 
8751         }
8752     } else {
8753         /* Floating point vector reduction ops which work across 32
8754          * bit (single) or 16 bit (half-precision) intermediates.
8755          * Note that correct NaN propagation requires that we do these
8756          * operations in exactly the order specified by the pseudocode.
8757          */
8758         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8759         int fpopcode = opcode | is_min << 4 | is_u << 5;
8760         int vmap = (1 << elements) - 1;
8761         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8762                                              (is_q ? 128 : 64), vmap, fpst);
8763         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8764     }
8765 
8766     /* Now truncate the result to the width required for the final output */
8767     if (opcode == 0x03) {
8768         /* SADDLV, UADDLV: result is 2*esize */
8769         size++;
8770     }
8771 
8772     switch (size) {
8773     case 0:
8774         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8775         break;
8776     case 1:
8777         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8778         break;
8779     case 2:
8780         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8781         break;
8782     case 3:
8783         break;
8784     default:
8785         g_assert_not_reached();
8786     }
8787 
8788     write_fp_dreg(s, rd, tcg_res);
8789 }
8790 
8791 /* AdvSIMD modified immediate
8792  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8793  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8794  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8795  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8796  *
8797  * There are a number of operations that can be carried out here:
8798  *   MOVI - move (shifted) imm into register
8799  *   MVNI - move inverted (shifted) imm into register
8800  *   ORR  - bitwise OR of (shifted) imm with register
8801  *   BIC  - bitwise clear of (shifted) imm with register
8802  * With ARMv8.2 we also have:
8803  *   FMOV half-precision
8804  */
8805 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8806 {
8807     int rd = extract32(insn, 0, 5);
8808     int cmode = extract32(insn, 12, 4);
8809     int o2 = extract32(insn, 11, 1);
8810     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8811     bool is_neg = extract32(insn, 29, 1);
8812     bool is_q = extract32(insn, 30, 1);
8813     uint64_t imm = 0;
8814 
8815     if (o2) {
8816         if (cmode != 0xf || is_neg) {
8817             unallocated_encoding(s);
8818             return;
8819         }
8820         /* FMOV (vector, immediate) - half-precision */
8821         if (!dc_isar_feature(aa64_fp16, s)) {
8822             unallocated_encoding(s);
8823             return;
8824         }
8825         imm = vfp_expand_imm(MO_16, abcdefgh);
8826         /* now duplicate across the lanes */
8827         imm = dup_const(MO_16, imm);
8828     } else {
8829         if (cmode == 0xf && is_neg && !is_q) {
8830             unallocated_encoding(s);
8831             return;
8832         }
8833         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8834     }
8835 
8836     if (!fp_access_check(s)) {
8837         return;
8838     }
8839 
8840     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8841         /* MOVI or MVNI, with MVNI negation handled above.  */
8842         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8843                              vec_full_reg_size(s), imm);
8844     } else {
8845         /* ORR or BIC, with BIC negation to AND handled above.  */
8846         if (is_neg) {
8847             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8848         } else {
8849             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8850         }
8851     }
8852 }
8853 
8854 /*
8855  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8856  *
8857  * This code is handles the common shifting code and is used by both
8858  * the vector and scalar code.
8859  */
8860 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8861                                     TCGv_i64 tcg_rnd, bool accumulate,
8862                                     bool is_u, int size, int shift)
8863 {
8864     bool extended_result = false;
8865     bool round = tcg_rnd != NULL;
8866     int ext_lshift = 0;
8867     TCGv_i64 tcg_src_hi;
8868 
8869     if (round && size == 3) {
8870         extended_result = true;
8871         ext_lshift = 64 - shift;
8872         tcg_src_hi = tcg_temp_new_i64();
8873     } else if (shift == 64) {
8874         if (!accumulate && is_u) {
8875             /* result is zero */
8876             tcg_gen_movi_i64(tcg_res, 0);
8877             return;
8878         }
8879     }
8880 
8881     /* Deal with the rounding step */
8882     if (round) {
8883         if (extended_result) {
8884             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8885             if (!is_u) {
8886                 /* take care of sign extending tcg_res */
8887                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8888                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8889                                  tcg_src, tcg_src_hi,
8890                                  tcg_rnd, tcg_zero);
8891             } else {
8892                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8893                                  tcg_src, tcg_zero,
8894                                  tcg_rnd, tcg_zero);
8895             }
8896         } else {
8897             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8898         }
8899     }
8900 
8901     /* Now do the shift right */
8902     if (round && extended_result) {
8903         /* extended case, >64 bit precision required */
8904         if (ext_lshift == 0) {
8905             /* special case, only high bits matter */
8906             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8907         } else {
8908             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8909             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8910             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8911         }
8912     } else {
8913         if (is_u) {
8914             if (shift == 64) {
8915                 /* essentially shifting in 64 zeros */
8916                 tcg_gen_movi_i64(tcg_src, 0);
8917             } else {
8918                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8919             }
8920         } else {
8921             if (shift == 64) {
8922                 /* effectively extending the sign-bit */
8923                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8924             } else {
8925                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8926             }
8927         }
8928     }
8929 
8930     if (accumulate) {
8931         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8932     } else {
8933         tcg_gen_mov_i64(tcg_res, tcg_src);
8934     }
8935 }
8936 
8937 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8938 static void handle_scalar_simd_shri(DisasContext *s,
8939                                     bool is_u, int immh, int immb,
8940                                     int opcode, int rn, int rd)
8941 {
8942     const int size = 3;
8943     int immhb = immh << 3 | immb;
8944     int shift = 2 * (8 << size) - immhb;
8945     bool accumulate = false;
8946     bool round = false;
8947     bool insert = false;
8948     TCGv_i64 tcg_rn;
8949     TCGv_i64 tcg_rd;
8950     TCGv_i64 tcg_round;
8951 
8952     if (!extract32(immh, 3, 1)) {
8953         unallocated_encoding(s);
8954         return;
8955     }
8956 
8957     if (!fp_access_check(s)) {
8958         return;
8959     }
8960 
8961     switch (opcode) {
8962     case 0x02: /* SSRA / USRA (accumulate) */
8963         accumulate = true;
8964         break;
8965     case 0x04: /* SRSHR / URSHR (rounding) */
8966         round = true;
8967         break;
8968     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8969         accumulate = round = true;
8970         break;
8971     case 0x08: /* SRI */
8972         insert = true;
8973         break;
8974     }
8975 
8976     if (round) {
8977         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8978     } else {
8979         tcg_round = NULL;
8980     }
8981 
8982     tcg_rn = read_fp_dreg(s, rn);
8983     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8984 
8985     if (insert) {
8986         /* shift count same as element size is valid but does nothing;
8987          * special case to avoid potential shift by 64.
8988          */
8989         int esize = 8 << size;
8990         if (shift != esize) {
8991             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8992             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8993         }
8994     } else {
8995         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8996                                 accumulate, is_u, size, shift);
8997     }
8998 
8999     write_fp_dreg(s, rd, tcg_rd);
9000 }
9001 
9002 /* SHL/SLI - Scalar shift left */
9003 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9004                                     int immh, int immb, int opcode,
9005                                     int rn, int rd)
9006 {
9007     int size = 32 - clz32(immh) - 1;
9008     int immhb = immh << 3 | immb;
9009     int shift = immhb - (8 << size);
9010     TCGv_i64 tcg_rn;
9011     TCGv_i64 tcg_rd;
9012 
9013     if (!extract32(immh, 3, 1)) {
9014         unallocated_encoding(s);
9015         return;
9016     }
9017 
9018     if (!fp_access_check(s)) {
9019         return;
9020     }
9021 
9022     tcg_rn = read_fp_dreg(s, rn);
9023     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9024 
9025     if (insert) {
9026         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9027     } else {
9028         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9029     }
9030 
9031     write_fp_dreg(s, rd, tcg_rd);
9032 }
9033 
9034 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9035  * (signed/unsigned) narrowing */
9036 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9037                                    bool is_u_shift, bool is_u_narrow,
9038                                    int immh, int immb, int opcode,
9039                                    int rn, int rd)
9040 {
9041     int immhb = immh << 3 | immb;
9042     int size = 32 - clz32(immh) - 1;
9043     int esize = 8 << size;
9044     int shift = (2 * esize) - immhb;
9045     int elements = is_scalar ? 1 : (64 / esize);
9046     bool round = extract32(opcode, 0, 1);
9047     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9048     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9049     TCGv_i32 tcg_rd_narrowed;
9050     TCGv_i64 tcg_final;
9051 
9052     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9053         { gen_helper_neon_narrow_sat_s8,
9054           gen_helper_neon_unarrow_sat8 },
9055         { gen_helper_neon_narrow_sat_s16,
9056           gen_helper_neon_unarrow_sat16 },
9057         { gen_helper_neon_narrow_sat_s32,
9058           gen_helper_neon_unarrow_sat32 },
9059         { NULL, NULL },
9060     };
9061     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9062         gen_helper_neon_narrow_sat_u8,
9063         gen_helper_neon_narrow_sat_u16,
9064         gen_helper_neon_narrow_sat_u32,
9065         NULL
9066     };
9067     NeonGenNarrowEnvFn *narrowfn;
9068 
9069     int i;
9070 
9071     assert(size < 4);
9072 
9073     if (extract32(immh, 3, 1)) {
9074         unallocated_encoding(s);
9075         return;
9076     }
9077 
9078     if (!fp_access_check(s)) {
9079         return;
9080     }
9081 
9082     if (is_u_shift) {
9083         narrowfn = unsigned_narrow_fns[size];
9084     } else {
9085         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9086     }
9087 
9088     tcg_rn = tcg_temp_new_i64();
9089     tcg_rd = tcg_temp_new_i64();
9090     tcg_rd_narrowed = tcg_temp_new_i32();
9091     tcg_final = tcg_temp_new_i64();
9092 
9093     if (round) {
9094         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9095     } else {
9096         tcg_round = NULL;
9097     }
9098 
9099     for (i = 0; i < elements; i++) {
9100         read_vec_element(s, tcg_rn, rn, i, ldop);
9101         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9102                                 false, is_u_shift, size+1, shift);
9103         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9104         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9105         if (i == 0) {
9106             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9107         } else {
9108             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9109         }
9110     }
9111 
9112     if (!is_q) {
9113         write_vec_element(s, tcg_final, rd, 0, MO_64);
9114     } else {
9115         write_vec_element(s, tcg_final, rd, 1, MO_64);
9116     }
9117     clear_vec_high(s, is_q, rd);
9118 }
9119 
9120 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9121 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9122                              bool src_unsigned, bool dst_unsigned,
9123                              int immh, int immb, int rn, int rd)
9124 {
9125     int immhb = immh << 3 | immb;
9126     int size = 32 - clz32(immh) - 1;
9127     int shift = immhb - (8 << size);
9128     int pass;
9129 
9130     assert(immh != 0);
9131     assert(!(scalar && is_q));
9132 
9133     if (!scalar) {
9134         if (!is_q && extract32(immh, 3, 1)) {
9135             unallocated_encoding(s);
9136             return;
9137         }
9138 
9139         /* Since we use the variable-shift helpers we must
9140          * replicate the shift count into each element of
9141          * the tcg_shift value.
9142          */
9143         switch (size) {
9144         case 0:
9145             shift |= shift << 8;
9146             /* fall through */
9147         case 1:
9148             shift |= shift << 16;
9149             break;
9150         case 2:
9151         case 3:
9152             break;
9153         default:
9154             g_assert_not_reached();
9155         }
9156     }
9157 
9158     if (!fp_access_check(s)) {
9159         return;
9160     }
9161 
9162     if (size == 3) {
9163         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9164         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9165             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9166             { NULL, gen_helper_neon_qshl_u64 },
9167         };
9168         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9169         int maxpass = is_q ? 2 : 1;
9170 
9171         for (pass = 0; pass < maxpass; pass++) {
9172             TCGv_i64 tcg_op = tcg_temp_new_i64();
9173 
9174             read_vec_element(s, tcg_op, rn, pass, MO_64);
9175             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9176             write_vec_element(s, tcg_op, rd, pass, MO_64);
9177         }
9178         clear_vec_high(s, is_q, rd);
9179     } else {
9180         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9181         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9182             {
9183                 { gen_helper_neon_qshl_s8,
9184                   gen_helper_neon_qshl_s16,
9185                   gen_helper_neon_qshl_s32 },
9186                 { gen_helper_neon_qshlu_s8,
9187                   gen_helper_neon_qshlu_s16,
9188                   gen_helper_neon_qshlu_s32 }
9189             }, {
9190                 { NULL, NULL, NULL },
9191                 { gen_helper_neon_qshl_u8,
9192                   gen_helper_neon_qshl_u16,
9193                   gen_helper_neon_qshl_u32 }
9194             }
9195         };
9196         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9197         MemOp memop = scalar ? size : MO_32;
9198         int maxpass = scalar ? 1 : is_q ? 4 : 2;
9199 
9200         for (pass = 0; pass < maxpass; pass++) {
9201             TCGv_i32 tcg_op = tcg_temp_new_i32();
9202 
9203             read_vec_element_i32(s, tcg_op, rn, pass, memop);
9204             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9205             if (scalar) {
9206                 switch (size) {
9207                 case 0:
9208                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
9209                     break;
9210                 case 1:
9211                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9212                     break;
9213                 case 2:
9214                     break;
9215                 default:
9216                     g_assert_not_reached();
9217                 }
9218                 write_fp_sreg(s, rd, tcg_op);
9219             } else {
9220                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9221             }
9222         }
9223 
9224         if (!scalar) {
9225             clear_vec_high(s, is_q, rd);
9226         }
9227     }
9228 }
9229 
9230 /* Common vector code for handling integer to FP conversion */
9231 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9232                                    int elements, int is_signed,
9233                                    int fracbits, int size)
9234 {
9235     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9236     TCGv_i32 tcg_shift = NULL;
9237 
9238     MemOp mop = size | (is_signed ? MO_SIGN : 0);
9239     int pass;
9240 
9241     if (fracbits || size == MO_64) {
9242         tcg_shift = tcg_constant_i32(fracbits);
9243     }
9244 
9245     if (size == MO_64) {
9246         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9247         TCGv_i64 tcg_double = tcg_temp_new_i64();
9248 
9249         for (pass = 0; pass < elements; pass++) {
9250             read_vec_element(s, tcg_int64, rn, pass, mop);
9251 
9252             if (is_signed) {
9253                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9254                                      tcg_shift, tcg_fpst);
9255             } else {
9256                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9257                                      tcg_shift, tcg_fpst);
9258             }
9259             if (elements == 1) {
9260                 write_fp_dreg(s, rd, tcg_double);
9261             } else {
9262                 write_vec_element(s, tcg_double, rd, pass, MO_64);
9263             }
9264         }
9265     } else {
9266         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9267         TCGv_i32 tcg_float = tcg_temp_new_i32();
9268 
9269         for (pass = 0; pass < elements; pass++) {
9270             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9271 
9272             switch (size) {
9273             case MO_32:
9274                 if (fracbits) {
9275                     if (is_signed) {
9276                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
9277                                              tcg_shift, tcg_fpst);
9278                     } else {
9279                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
9280                                              tcg_shift, tcg_fpst);
9281                     }
9282                 } else {
9283                     if (is_signed) {
9284                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9285                     } else {
9286                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9287                     }
9288                 }
9289                 break;
9290             case MO_16:
9291                 if (fracbits) {
9292                     if (is_signed) {
9293                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9294                                              tcg_shift, tcg_fpst);
9295                     } else {
9296                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9297                                              tcg_shift, tcg_fpst);
9298                     }
9299                 } else {
9300                     if (is_signed) {
9301                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9302                     } else {
9303                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9304                     }
9305                 }
9306                 break;
9307             default:
9308                 g_assert_not_reached();
9309             }
9310 
9311             if (elements == 1) {
9312                 write_fp_sreg(s, rd, tcg_float);
9313             } else {
9314                 write_vec_element_i32(s, tcg_float, rd, pass, size);
9315             }
9316         }
9317     }
9318 
9319     clear_vec_high(s, elements << size == 16, rd);
9320 }
9321 
9322 /* UCVTF/SCVTF - Integer to FP conversion */
9323 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9324                                          bool is_q, bool is_u,
9325                                          int immh, int immb, int opcode,
9326                                          int rn, int rd)
9327 {
9328     int size, elements, fracbits;
9329     int immhb = immh << 3 | immb;
9330 
9331     if (immh & 8) {
9332         size = MO_64;
9333         if (!is_scalar && !is_q) {
9334             unallocated_encoding(s);
9335             return;
9336         }
9337     } else if (immh & 4) {
9338         size = MO_32;
9339     } else if (immh & 2) {
9340         size = MO_16;
9341         if (!dc_isar_feature(aa64_fp16, s)) {
9342             unallocated_encoding(s);
9343             return;
9344         }
9345     } else {
9346         /* immh == 0 would be a failure of the decode logic */
9347         g_assert(immh == 1);
9348         unallocated_encoding(s);
9349         return;
9350     }
9351 
9352     if (is_scalar) {
9353         elements = 1;
9354     } else {
9355         elements = (8 << is_q) >> size;
9356     }
9357     fracbits = (16 << size) - immhb;
9358 
9359     if (!fp_access_check(s)) {
9360         return;
9361     }
9362 
9363     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9364 }
9365 
9366 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9367 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9368                                          bool is_q, bool is_u,
9369                                          int immh, int immb, int rn, int rd)
9370 {
9371     int immhb = immh << 3 | immb;
9372     int pass, size, fracbits;
9373     TCGv_ptr tcg_fpstatus;
9374     TCGv_i32 tcg_rmode, tcg_shift;
9375 
9376     if (immh & 0x8) {
9377         size = MO_64;
9378         if (!is_scalar && !is_q) {
9379             unallocated_encoding(s);
9380             return;
9381         }
9382     } else if (immh & 0x4) {
9383         size = MO_32;
9384     } else if (immh & 0x2) {
9385         size = MO_16;
9386         if (!dc_isar_feature(aa64_fp16, s)) {
9387             unallocated_encoding(s);
9388             return;
9389         }
9390     } else {
9391         /* Should have split out AdvSIMD modified immediate earlier.  */
9392         assert(immh == 1);
9393         unallocated_encoding(s);
9394         return;
9395     }
9396 
9397     if (!fp_access_check(s)) {
9398         return;
9399     }
9400 
9401     assert(!(is_scalar && is_q));
9402 
9403     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9404     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9405     fracbits = (16 << size) - immhb;
9406     tcg_shift = tcg_constant_i32(fracbits);
9407 
9408     if (size == MO_64) {
9409         int maxpass = is_scalar ? 1 : 2;
9410 
9411         for (pass = 0; pass < maxpass; pass++) {
9412             TCGv_i64 tcg_op = tcg_temp_new_i64();
9413 
9414             read_vec_element(s, tcg_op, rn, pass, MO_64);
9415             if (is_u) {
9416                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9417             } else {
9418                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9419             }
9420             write_vec_element(s, tcg_op, rd, pass, MO_64);
9421         }
9422         clear_vec_high(s, is_q, rd);
9423     } else {
9424         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9425         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9426 
9427         switch (size) {
9428         case MO_16:
9429             if (is_u) {
9430                 fn = gen_helper_vfp_touhh;
9431             } else {
9432                 fn = gen_helper_vfp_toshh;
9433             }
9434             break;
9435         case MO_32:
9436             if (is_u) {
9437                 fn = gen_helper_vfp_touls;
9438             } else {
9439                 fn = gen_helper_vfp_tosls;
9440             }
9441             break;
9442         default:
9443             g_assert_not_reached();
9444         }
9445 
9446         for (pass = 0; pass < maxpass; pass++) {
9447             TCGv_i32 tcg_op = tcg_temp_new_i32();
9448 
9449             read_vec_element_i32(s, tcg_op, rn, pass, size);
9450             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9451             if (is_scalar) {
9452                 if (size == MO_16 && !is_u) {
9453                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9454                 }
9455                 write_fp_sreg(s, rd, tcg_op);
9456             } else {
9457                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9458             }
9459         }
9460         if (!is_scalar) {
9461             clear_vec_high(s, is_q, rd);
9462         }
9463     }
9464 
9465     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9466 }
9467 
9468 /* AdvSIMD scalar shift by immediate
9469  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9470  * +-----+---+-------------+------+------+--------+---+------+------+
9471  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9472  * +-----+---+-------------+------+------+--------+---+------+------+
9473  *
9474  * This is the scalar version so it works on a fixed sized registers
9475  */
9476 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9477 {
9478     int rd = extract32(insn, 0, 5);
9479     int rn = extract32(insn, 5, 5);
9480     int opcode = extract32(insn, 11, 5);
9481     int immb = extract32(insn, 16, 3);
9482     int immh = extract32(insn, 19, 4);
9483     bool is_u = extract32(insn, 29, 1);
9484 
9485     if (immh == 0) {
9486         unallocated_encoding(s);
9487         return;
9488     }
9489 
9490     switch (opcode) {
9491     case 0x08: /* SRI */
9492         if (!is_u) {
9493             unallocated_encoding(s);
9494             return;
9495         }
9496         /* fall through */
9497     case 0x00: /* SSHR / USHR */
9498     case 0x02: /* SSRA / USRA */
9499     case 0x04: /* SRSHR / URSHR */
9500     case 0x06: /* SRSRA / URSRA */
9501         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9502         break;
9503     case 0x0a: /* SHL / SLI */
9504         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9505         break;
9506     case 0x1c: /* SCVTF, UCVTF */
9507         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9508                                      opcode, rn, rd);
9509         break;
9510     case 0x10: /* SQSHRUN, SQSHRUN2 */
9511     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9512         if (!is_u) {
9513             unallocated_encoding(s);
9514             return;
9515         }
9516         handle_vec_simd_sqshrn(s, true, false, false, true,
9517                                immh, immb, opcode, rn, rd);
9518         break;
9519     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9520     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9521         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9522                                immh, immb, opcode, rn, rd);
9523         break;
9524     case 0xc: /* SQSHLU */
9525         if (!is_u) {
9526             unallocated_encoding(s);
9527             return;
9528         }
9529         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9530         break;
9531     case 0xe: /* SQSHL, UQSHL */
9532         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9533         break;
9534     case 0x1f: /* FCVTZS, FCVTZU */
9535         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9536         break;
9537     default:
9538         unallocated_encoding(s);
9539         break;
9540     }
9541 }
9542 
9543 /* AdvSIMD scalar three different
9544  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9545  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9546  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9547  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9548  */
9549 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9550 {
9551     bool is_u = extract32(insn, 29, 1);
9552     int size = extract32(insn, 22, 2);
9553     int opcode = extract32(insn, 12, 4);
9554     int rm = extract32(insn, 16, 5);
9555     int rn = extract32(insn, 5, 5);
9556     int rd = extract32(insn, 0, 5);
9557 
9558     if (is_u) {
9559         unallocated_encoding(s);
9560         return;
9561     }
9562 
9563     switch (opcode) {
9564     case 0x9: /* SQDMLAL, SQDMLAL2 */
9565     case 0xb: /* SQDMLSL, SQDMLSL2 */
9566     case 0xd: /* SQDMULL, SQDMULL2 */
9567         if (size == 0 || size == 3) {
9568             unallocated_encoding(s);
9569             return;
9570         }
9571         break;
9572     default:
9573         unallocated_encoding(s);
9574         return;
9575     }
9576 
9577     if (!fp_access_check(s)) {
9578         return;
9579     }
9580 
9581     if (size == 2) {
9582         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9583         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9584         TCGv_i64 tcg_res = tcg_temp_new_i64();
9585 
9586         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9587         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9588 
9589         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9590         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9591 
9592         switch (opcode) {
9593         case 0xd: /* SQDMULL, SQDMULL2 */
9594             break;
9595         case 0xb: /* SQDMLSL, SQDMLSL2 */
9596             tcg_gen_neg_i64(tcg_res, tcg_res);
9597             /* fall through */
9598         case 0x9: /* SQDMLAL, SQDMLAL2 */
9599             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9600             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9601                                               tcg_res, tcg_op1);
9602             break;
9603         default:
9604             g_assert_not_reached();
9605         }
9606 
9607         write_fp_dreg(s, rd, tcg_res);
9608     } else {
9609         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9610         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9611         TCGv_i64 tcg_res = tcg_temp_new_i64();
9612 
9613         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9614         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9615 
9616         switch (opcode) {
9617         case 0xd: /* SQDMULL, SQDMULL2 */
9618             break;
9619         case 0xb: /* SQDMLSL, SQDMLSL2 */
9620             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9621             /* fall through */
9622         case 0x9: /* SQDMLAL, SQDMLAL2 */
9623         {
9624             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9625             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9626             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9627                                               tcg_res, tcg_op3);
9628             break;
9629         }
9630         default:
9631             g_assert_not_reached();
9632         }
9633 
9634         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9635         write_fp_dreg(s, rd, tcg_res);
9636     }
9637 }
9638 
9639 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9640                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9641                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9642 {
9643     /* Handle 64->64 opcodes which are shared between the scalar and
9644      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9645      * is valid in either group and also the double-precision fp ops.
9646      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9647      * requires them.
9648      */
9649     TCGCond cond;
9650 
9651     switch (opcode) {
9652     case 0x4: /* CLS, CLZ */
9653         if (u) {
9654             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9655         } else {
9656             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9657         }
9658         break;
9659     case 0x5: /* NOT */
9660         /* This opcode is shared with CNT and RBIT but we have earlier
9661          * enforced that size == 3 if and only if this is the NOT insn.
9662          */
9663         tcg_gen_not_i64(tcg_rd, tcg_rn);
9664         break;
9665     case 0x7: /* SQABS, SQNEG */
9666         if (u) {
9667             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9668         } else {
9669             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9670         }
9671         break;
9672     case 0xa: /* CMLT */
9673         cond = TCG_COND_LT;
9674     do_cmop:
9675         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9676         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9677         break;
9678     case 0x8: /* CMGT, CMGE */
9679         cond = u ? TCG_COND_GE : TCG_COND_GT;
9680         goto do_cmop;
9681     case 0x9: /* CMEQ, CMLE */
9682         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9683         goto do_cmop;
9684     case 0xb: /* ABS, NEG */
9685         if (u) {
9686             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9687         } else {
9688             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9689         }
9690         break;
9691     case 0x2f: /* FABS */
9692         gen_vfp_absd(tcg_rd, tcg_rn);
9693         break;
9694     case 0x6f: /* FNEG */
9695         gen_vfp_negd(tcg_rd, tcg_rn);
9696         break;
9697     case 0x7f: /* FSQRT */
9698         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9699         break;
9700     case 0x1a: /* FCVTNS */
9701     case 0x1b: /* FCVTMS */
9702     case 0x1c: /* FCVTAS */
9703     case 0x3a: /* FCVTPS */
9704     case 0x3b: /* FCVTZS */
9705         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9706         break;
9707     case 0x5a: /* FCVTNU */
9708     case 0x5b: /* FCVTMU */
9709     case 0x5c: /* FCVTAU */
9710     case 0x7a: /* FCVTPU */
9711     case 0x7b: /* FCVTZU */
9712         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9713         break;
9714     case 0x18: /* FRINTN */
9715     case 0x19: /* FRINTM */
9716     case 0x38: /* FRINTP */
9717     case 0x39: /* FRINTZ */
9718     case 0x58: /* FRINTA */
9719     case 0x79: /* FRINTI */
9720         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9721         break;
9722     case 0x59: /* FRINTX */
9723         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9724         break;
9725     case 0x1e: /* FRINT32Z */
9726     case 0x5e: /* FRINT32X */
9727         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9728         break;
9729     case 0x1f: /* FRINT64Z */
9730     case 0x5f: /* FRINT64X */
9731         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9732         break;
9733     default:
9734         g_assert_not_reached();
9735     }
9736 }
9737 
9738 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9739                                    bool is_scalar, bool is_u, bool is_q,
9740                                    int size, int rn, int rd)
9741 {
9742     bool is_double = (size == MO_64);
9743     TCGv_ptr fpst;
9744 
9745     if (!fp_access_check(s)) {
9746         return;
9747     }
9748 
9749     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9750 
9751     if (is_double) {
9752         TCGv_i64 tcg_op = tcg_temp_new_i64();
9753         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9754         TCGv_i64 tcg_res = tcg_temp_new_i64();
9755         NeonGenTwoDoubleOpFn *genfn;
9756         bool swap = false;
9757         int pass;
9758 
9759         switch (opcode) {
9760         case 0x2e: /* FCMLT (zero) */
9761             swap = true;
9762             /* fallthrough */
9763         case 0x2c: /* FCMGT (zero) */
9764             genfn = gen_helper_neon_cgt_f64;
9765             break;
9766         case 0x2d: /* FCMEQ (zero) */
9767             genfn = gen_helper_neon_ceq_f64;
9768             break;
9769         case 0x6d: /* FCMLE (zero) */
9770             swap = true;
9771             /* fall through */
9772         case 0x6c: /* FCMGE (zero) */
9773             genfn = gen_helper_neon_cge_f64;
9774             break;
9775         default:
9776             g_assert_not_reached();
9777         }
9778 
9779         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9780             read_vec_element(s, tcg_op, rn, pass, MO_64);
9781             if (swap) {
9782                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9783             } else {
9784                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9785             }
9786             write_vec_element(s, tcg_res, rd, pass, MO_64);
9787         }
9788 
9789         clear_vec_high(s, !is_scalar, rd);
9790     } else {
9791         TCGv_i32 tcg_op = tcg_temp_new_i32();
9792         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9793         TCGv_i32 tcg_res = tcg_temp_new_i32();
9794         NeonGenTwoSingleOpFn *genfn;
9795         bool swap = false;
9796         int pass, maxpasses;
9797 
9798         if (size == MO_16) {
9799             switch (opcode) {
9800             case 0x2e: /* FCMLT (zero) */
9801                 swap = true;
9802                 /* fall through */
9803             case 0x2c: /* FCMGT (zero) */
9804                 genfn = gen_helper_advsimd_cgt_f16;
9805                 break;
9806             case 0x2d: /* FCMEQ (zero) */
9807                 genfn = gen_helper_advsimd_ceq_f16;
9808                 break;
9809             case 0x6d: /* FCMLE (zero) */
9810                 swap = true;
9811                 /* fall through */
9812             case 0x6c: /* FCMGE (zero) */
9813                 genfn = gen_helper_advsimd_cge_f16;
9814                 break;
9815             default:
9816                 g_assert_not_reached();
9817             }
9818         } else {
9819             switch (opcode) {
9820             case 0x2e: /* FCMLT (zero) */
9821                 swap = true;
9822                 /* fall through */
9823             case 0x2c: /* FCMGT (zero) */
9824                 genfn = gen_helper_neon_cgt_f32;
9825                 break;
9826             case 0x2d: /* FCMEQ (zero) */
9827                 genfn = gen_helper_neon_ceq_f32;
9828                 break;
9829             case 0x6d: /* FCMLE (zero) */
9830                 swap = true;
9831                 /* fall through */
9832             case 0x6c: /* FCMGE (zero) */
9833                 genfn = gen_helper_neon_cge_f32;
9834                 break;
9835             default:
9836                 g_assert_not_reached();
9837             }
9838         }
9839 
9840         if (is_scalar) {
9841             maxpasses = 1;
9842         } else {
9843             int vector_size = 8 << is_q;
9844             maxpasses = vector_size >> size;
9845         }
9846 
9847         for (pass = 0; pass < maxpasses; pass++) {
9848             read_vec_element_i32(s, tcg_op, rn, pass, size);
9849             if (swap) {
9850                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9851             } else {
9852                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9853             }
9854             if (is_scalar) {
9855                 write_fp_sreg(s, rd, tcg_res);
9856             } else {
9857                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9858             }
9859         }
9860 
9861         if (!is_scalar) {
9862             clear_vec_high(s, is_q, rd);
9863         }
9864     }
9865 }
9866 
9867 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9868                                     bool is_scalar, bool is_u, bool is_q,
9869                                     int size, int rn, int rd)
9870 {
9871     bool is_double = (size == 3);
9872     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9873 
9874     if (is_double) {
9875         TCGv_i64 tcg_op = tcg_temp_new_i64();
9876         TCGv_i64 tcg_res = tcg_temp_new_i64();
9877         int pass;
9878 
9879         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9880             read_vec_element(s, tcg_op, rn, pass, MO_64);
9881             switch (opcode) {
9882             case 0x3d: /* FRECPE */
9883                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9884                 break;
9885             case 0x3f: /* FRECPX */
9886                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9887                 break;
9888             case 0x7d: /* FRSQRTE */
9889                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9890                 break;
9891             default:
9892                 g_assert_not_reached();
9893             }
9894             write_vec_element(s, tcg_res, rd, pass, MO_64);
9895         }
9896         clear_vec_high(s, !is_scalar, rd);
9897     } else {
9898         TCGv_i32 tcg_op = tcg_temp_new_i32();
9899         TCGv_i32 tcg_res = tcg_temp_new_i32();
9900         int pass, maxpasses;
9901 
9902         if (is_scalar) {
9903             maxpasses = 1;
9904         } else {
9905             maxpasses = is_q ? 4 : 2;
9906         }
9907 
9908         for (pass = 0; pass < maxpasses; pass++) {
9909             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9910 
9911             switch (opcode) {
9912             case 0x3c: /* URECPE */
9913                 gen_helper_recpe_u32(tcg_res, tcg_op);
9914                 break;
9915             case 0x3d: /* FRECPE */
9916                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9917                 break;
9918             case 0x3f: /* FRECPX */
9919                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9920                 break;
9921             case 0x7d: /* FRSQRTE */
9922                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9923                 break;
9924             default:
9925                 g_assert_not_reached();
9926             }
9927 
9928             if (is_scalar) {
9929                 write_fp_sreg(s, rd, tcg_res);
9930             } else {
9931                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9932             }
9933         }
9934         if (!is_scalar) {
9935             clear_vec_high(s, is_q, rd);
9936         }
9937     }
9938 }
9939 
9940 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9941                                 int opcode, bool u, bool is_q,
9942                                 int size, int rn, int rd)
9943 {
9944     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9945      * in the source becomes a size element in the destination).
9946      */
9947     int pass;
9948     TCGv_i32 tcg_res[2];
9949     int destelt = is_q ? 2 : 0;
9950     int passes = scalar ? 1 : 2;
9951 
9952     if (scalar) {
9953         tcg_res[1] = tcg_constant_i32(0);
9954     }
9955 
9956     for (pass = 0; pass < passes; pass++) {
9957         TCGv_i64 tcg_op = tcg_temp_new_i64();
9958         NeonGenNarrowFn *genfn = NULL;
9959         NeonGenNarrowEnvFn *genenvfn = NULL;
9960 
9961         if (scalar) {
9962             read_vec_element(s, tcg_op, rn, pass, size + 1);
9963         } else {
9964             read_vec_element(s, tcg_op, rn, pass, MO_64);
9965         }
9966         tcg_res[pass] = tcg_temp_new_i32();
9967 
9968         switch (opcode) {
9969         case 0x12: /* XTN, SQXTUN */
9970         {
9971             static NeonGenNarrowFn * const xtnfns[3] = {
9972                 gen_helper_neon_narrow_u8,
9973                 gen_helper_neon_narrow_u16,
9974                 tcg_gen_extrl_i64_i32,
9975             };
9976             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9977                 gen_helper_neon_unarrow_sat8,
9978                 gen_helper_neon_unarrow_sat16,
9979                 gen_helper_neon_unarrow_sat32,
9980             };
9981             if (u) {
9982                 genenvfn = sqxtunfns[size];
9983             } else {
9984                 genfn = xtnfns[size];
9985             }
9986             break;
9987         }
9988         case 0x14: /* SQXTN, UQXTN */
9989         {
9990             static NeonGenNarrowEnvFn * const fns[3][2] = {
9991                 { gen_helper_neon_narrow_sat_s8,
9992                   gen_helper_neon_narrow_sat_u8 },
9993                 { gen_helper_neon_narrow_sat_s16,
9994                   gen_helper_neon_narrow_sat_u16 },
9995                 { gen_helper_neon_narrow_sat_s32,
9996                   gen_helper_neon_narrow_sat_u32 },
9997             };
9998             genenvfn = fns[size][u];
9999             break;
10000         }
10001         case 0x16: /* FCVTN, FCVTN2 */
10002             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10003             if (size == 2) {
10004                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10005             } else {
10006                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10007                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10008                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10009                 TCGv_i32 ahp = get_ahp_flag();
10010 
10011                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10012                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10013                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10014                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10015             }
10016             break;
10017         case 0x36: /* BFCVTN, BFCVTN2 */
10018             {
10019                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10020                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10021             }
10022             break;
10023         case 0x56:  /* FCVTXN, FCVTXN2 */
10024             /* 64 bit to 32 bit float conversion
10025              * with von Neumann rounding (round to odd)
10026              */
10027             assert(size == 2);
10028             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10029             break;
10030         default:
10031             g_assert_not_reached();
10032         }
10033 
10034         if (genfn) {
10035             genfn(tcg_res[pass], tcg_op);
10036         } else if (genenvfn) {
10037             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10038         }
10039     }
10040 
10041     for (pass = 0; pass < 2; pass++) {
10042         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10043     }
10044     clear_vec_high(s, is_q, rd);
10045 }
10046 
10047 /* AdvSIMD scalar two reg misc
10048  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10049  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10050  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10051  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10052  */
10053 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10054 {
10055     int rd = extract32(insn, 0, 5);
10056     int rn = extract32(insn, 5, 5);
10057     int opcode = extract32(insn, 12, 5);
10058     int size = extract32(insn, 22, 2);
10059     bool u = extract32(insn, 29, 1);
10060     bool is_fcvt = false;
10061     int rmode;
10062     TCGv_i32 tcg_rmode;
10063     TCGv_ptr tcg_fpstatus;
10064 
10065     switch (opcode) {
10066     case 0x7: /* SQABS / SQNEG */
10067         break;
10068     case 0xa: /* CMLT */
10069         if (u) {
10070             unallocated_encoding(s);
10071             return;
10072         }
10073         /* fall through */
10074     case 0x8: /* CMGT, CMGE */
10075     case 0x9: /* CMEQ, CMLE */
10076     case 0xb: /* ABS, NEG */
10077         if (size != 3) {
10078             unallocated_encoding(s);
10079             return;
10080         }
10081         break;
10082     case 0x12: /* SQXTUN */
10083         if (!u) {
10084             unallocated_encoding(s);
10085             return;
10086         }
10087         /* fall through */
10088     case 0x14: /* SQXTN, UQXTN */
10089         if (size == 3) {
10090             unallocated_encoding(s);
10091             return;
10092         }
10093         if (!fp_access_check(s)) {
10094             return;
10095         }
10096         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10097         return;
10098     case 0xc ... 0xf:
10099     case 0x16 ... 0x1d:
10100     case 0x1f:
10101         /* Floating point: U, size[1] and opcode indicate operation;
10102          * size[0] indicates single or double precision.
10103          */
10104         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10105         size = extract32(size, 0, 1) ? 3 : 2;
10106         switch (opcode) {
10107         case 0x2c: /* FCMGT (zero) */
10108         case 0x2d: /* FCMEQ (zero) */
10109         case 0x2e: /* FCMLT (zero) */
10110         case 0x6c: /* FCMGE (zero) */
10111         case 0x6d: /* FCMLE (zero) */
10112             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10113             return;
10114         case 0x1d: /* SCVTF */
10115         case 0x5d: /* UCVTF */
10116         {
10117             bool is_signed = (opcode == 0x1d);
10118             if (!fp_access_check(s)) {
10119                 return;
10120             }
10121             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10122             return;
10123         }
10124         case 0x3d: /* FRECPE */
10125         case 0x3f: /* FRECPX */
10126         case 0x7d: /* FRSQRTE */
10127             if (!fp_access_check(s)) {
10128                 return;
10129             }
10130             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10131             return;
10132         case 0x1a: /* FCVTNS */
10133         case 0x1b: /* FCVTMS */
10134         case 0x3a: /* FCVTPS */
10135         case 0x3b: /* FCVTZS */
10136         case 0x5a: /* FCVTNU */
10137         case 0x5b: /* FCVTMU */
10138         case 0x7a: /* FCVTPU */
10139         case 0x7b: /* FCVTZU */
10140             is_fcvt = true;
10141             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10142             break;
10143         case 0x1c: /* FCVTAS */
10144         case 0x5c: /* FCVTAU */
10145             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10146             is_fcvt = true;
10147             rmode = FPROUNDING_TIEAWAY;
10148             break;
10149         case 0x56: /* FCVTXN, FCVTXN2 */
10150             if (size == 2) {
10151                 unallocated_encoding(s);
10152                 return;
10153             }
10154             if (!fp_access_check(s)) {
10155                 return;
10156             }
10157             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10158             return;
10159         default:
10160             unallocated_encoding(s);
10161             return;
10162         }
10163         break;
10164     default:
10165     case 0x3: /* USQADD / SUQADD */
10166         unallocated_encoding(s);
10167         return;
10168     }
10169 
10170     if (!fp_access_check(s)) {
10171         return;
10172     }
10173 
10174     if (is_fcvt) {
10175         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10176         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10177     } else {
10178         tcg_fpstatus = NULL;
10179         tcg_rmode = NULL;
10180     }
10181 
10182     if (size == 3) {
10183         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10184         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10185 
10186         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10187         write_fp_dreg(s, rd, tcg_rd);
10188     } else {
10189         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10190         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10191 
10192         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10193 
10194         switch (opcode) {
10195         case 0x7: /* SQABS, SQNEG */
10196         {
10197             NeonGenOneOpEnvFn *genfn;
10198             static NeonGenOneOpEnvFn * const fns[3][2] = {
10199                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10200                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10201                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10202             };
10203             genfn = fns[size][u];
10204             genfn(tcg_rd, tcg_env, tcg_rn);
10205             break;
10206         }
10207         case 0x1a: /* FCVTNS */
10208         case 0x1b: /* FCVTMS */
10209         case 0x1c: /* FCVTAS */
10210         case 0x3a: /* FCVTPS */
10211         case 0x3b: /* FCVTZS */
10212             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10213                                  tcg_fpstatus);
10214             break;
10215         case 0x5a: /* FCVTNU */
10216         case 0x5b: /* FCVTMU */
10217         case 0x5c: /* FCVTAU */
10218         case 0x7a: /* FCVTPU */
10219         case 0x7b: /* FCVTZU */
10220             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10221                                  tcg_fpstatus);
10222             break;
10223         default:
10224             g_assert_not_reached();
10225         }
10226 
10227         write_fp_sreg(s, rd, tcg_rd);
10228     }
10229 
10230     if (is_fcvt) {
10231         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10232     }
10233 }
10234 
10235 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10236 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10237                                  int immh, int immb, int opcode, int rn, int rd)
10238 {
10239     int size = 32 - clz32(immh) - 1;
10240     int immhb = immh << 3 | immb;
10241     int shift = 2 * (8 << size) - immhb;
10242     GVecGen2iFn *gvec_fn;
10243 
10244     if (extract32(immh, 3, 1) && !is_q) {
10245         unallocated_encoding(s);
10246         return;
10247     }
10248     tcg_debug_assert(size <= 3);
10249 
10250     if (!fp_access_check(s)) {
10251         return;
10252     }
10253 
10254     switch (opcode) {
10255     case 0x02: /* SSRA / USRA (accumulate) */
10256         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10257         break;
10258 
10259     case 0x08: /* SRI */
10260         gvec_fn = gen_gvec_sri;
10261         break;
10262 
10263     case 0x00: /* SSHR / USHR */
10264         if (is_u) {
10265             if (shift == 8 << size) {
10266                 /* Shift count the same size as element size produces zero.  */
10267                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10268                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10269                 return;
10270             }
10271             gvec_fn = tcg_gen_gvec_shri;
10272         } else {
10273             /* Shift count the same size as element size produces all sign.  */
10274             if (shift == 8 << size) {
10275                 shift -= 1;
10276             }
10277             gvec_fn = tcg_gen_gvec_sari;
10278         }
10279         break;
10280 
10281     case 0x04: /* SRSHR / URSHR (rounding) */
10282         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10283         break;
10284 
10285     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10286         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10287         break;
10288 
10289     default:
10290         g_assert_not_reached();
10291     }
10292 
10293     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10294 }
10295 
10296 /* SHL/SLI - Vector shift left */
10297 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10298                                  int immh, int immb, int opcode, int rn, int rd)
10299 {
10300     int size = 32 - clz32(immh) - 1;
10301     int immhb = immh << 3 | immb;
10302     int shift = immhb - (8 << size);
10303 
10304     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10305     assert(size >= 0 && size <= 3);
10306 
10307     if (extract32(immh, 3, 1) && !is_q) {
10308         unallocated_encoding(s);
10309         return;
10310     }
10311 
10312     if (!fp_access_check(s)) {
10313         return;
10314     }
10315 
10316     if (insert) {
10317         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10318     } else {
10319         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10320     }
10321 }
10322 
10323 /* USHLL/SHLL - Vector shift left with widening */
10324 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10325                                  int immh, int immb, int opcode, int rn, int rd)
10326 {
10327     int size = 32 - clz32(immh) - 1;
10328     int immhb = immh << 3 | immb;
10329     int shift = immhb - (8 << size);
10330     int dsize = 64;
10331     int esize = 8 << size;
10332     int elements = dsize/esize;
10333     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10334     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10335     int i;
10336 
10337     if (size >= 3) {
10338         unallocated_encoding(s);
10339         return;
10340     }
10341 
10342     if (!fp_access_check(s)) {
10343         return;
10344     }
10345 
10346     /* For the LL variants the store is larger than the load,
10347      * so if rd == rn we would overwrite parts of our input.
10348      * So load everything right now and use shifts in the main loop.
10349      */
10350     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10351 
10352     for (i = 0; i < elements; i++) {
10353         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10354         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10355         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10356         write_vec_element(s, tcg_rd, rd, i, size + 1);
10357     }
10358 }
10359 
10360 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10361 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10362                                  int immh, int immb, int opcode, int rn, int rd)
10363 {
10364     int immhb = immh << 3 | immb;
10365     int size = 32 - clz32(immh) - 1;
10366     int dsize = 64;
10367     int esize = 8 << size;
10368     int elements = dsize/esize;
10369     int shift = (2 * esize) - immhb;
10370     bool round = extract32(opcode, 0, 1);
10371     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10372     TCGv_i64 tcg_round;
10373     int i;
10374 
10375     if (extract32(immh, 3, 1)) {
10376         unallocated_encoding(s);
10377         return;
10378     }
10379 
10380     if (!fp_access_check(s)) {
10381         return;
10382     }
10383 
10384     tcg_rn = tcg_temp_new_i64();
10385     tcg_rd = tcg_temp_new_i64();
10386     tcg_final = tcg_temp_new_i64();
10387     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10388 
10389     if (round) {
10390         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10391     } else {
10392         tcg_round = NULL;
10393     }
10394 
10395     for (i = 0; i < elements; i++) {
10396         read_vec_element(s, tcg_rn, rn, i, size+1);
10397         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10398                                 false, true, size+1, shift);
10399 
10400         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10401     }
10402 
10403     if (!is_q) {
10404         write_vec_element(s, tcg_final, rd, 0, MO_64);
10405     } else {
10406         write_vec_element(s, tcg_final, rd, 1, MO_64);
10407     }
10408 
10409     clear_vec_high(s, is_q, rd);
10410 }
10411 
10412 
10413 /* AdvSIMD shift by immediate
10414  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10415  * +---+---+---+-------------+------+------+--------+---+------+------+
10416  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10417  * +---+---+---+-------------+------+------+--------+---+------+------+
10418  */
10419 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10420 {
10421     int rd = extract32(insn, 0, 5);
10422     int rn = extract32(insn, 5, 5);
10423     int opcode = extract32(insn, 11, 5);
10424     int immb = extract32(insn, 16, 3);
10425     int immh = extract32(insn, 19, 4);
10426     bool is_u = extract32(insn, 29, 1);
10427     bool is_q = extract32(insn, 30, 1);
10428 
10429     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10430     assert(immh != 0);
10431 
10432     switch (opcode) {
10433     case 0x08: /* SRI */
10434         if (!is_u) {
10435             unallocated_encoding(s);
10436             return;
10437         }
10438         /* fall through */
10439     case 0x00: /* SSHR / USHR */
10440     case 0x02: /* SSRA / USRA (accumulate) */
10441     case 0x04: /* SRSHR / URSHR (rounding) */
10442     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10443         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10444         break;
10445     case 0x0a: /* SHL / SLI */
10446         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10447         break;
10448     case 0x10: /* SHRN */
10449     case 0x11: /* RSHRN / SQRSHRUN */
10450         if (is_u) {
10451             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10452                                    opcode, rn, rd);
10453         } else {
10454             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10455         }
10456         break;
10457     case 0x12: /* SQSHRN / UQSHRN */
10458     case 0x13: /* SQRSHRN / UQRSHRN */
10459         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10460                                opcode, rn, rd);
10461         break;
10462     case 0x14: /* SSHLL / USHLL */
10463         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10464         break;
10465     case 0x1c: /* SCVTF / UCVTF */
10466         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10467                                      opcode, rn, rd);
10468         break;
10469     case 0xc: /* SQSHLU */
10470         if (!is_u) {
10471             unallocated_encoding(s);
10472             return;
10473         }
10474         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10475         break;
10476     case 0xe: /* SQSHL, UQSHL */
10477         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10478         break;
10479     case 0x1f: /* FCVTZS/ FCVTZU */
10480         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10481         return;
10482     default:
10483         unallocated_encoding(s);
10484         return;
10485     }
10486 }
10487 
10488 /* Generate code to do a "long" addition or subtraction, ie one done in
10489  * TCGv_i64 on vector lanes twice the width specified by size.
10490  */
10491 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10492                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10493 {
10494     static NeonGenTwo64OpFn * const fns[3][2] = {
10495         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10496         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10497         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10498     };
10499     NeonGenTwo64OpFn *genfn;
10500     assert(size < 3);
10501 
10502     genfn = fns[size][is_sub];
10503     genfn(tcg_res, tcg_op1, tcg_op2);
10504 }
10505 
10506 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10507                                 int opcode, int rd, int rn, int rm)
10508 {
10509     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10510     TCGv_i64 tcg_res[2];
10511     int pass, accop;
10512 
10513     tcg_res[0] = tcg_temp_new_i64();
10514     tcg_res[1] = tcg_temp_new_i64();
10515 
10516     /* Does this op do an adding accumulate, a subtracting accumulate,
10517      * or no accumulate at all?
10518      */
10519     switch (opcode) {
10520     case 5:
10521     case 8:
10522     case 9:
10523         accop = 1;
10524         break;
10525     case 10:
10526     case 11:
10527         accop = -1;
10528         break;
10529     default:
10530         accop = 0;
10531         break;
10532     }
10533 
10534     if (accop != 0) {
10535         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10536         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10537     }
10538 
10539     /* size == 2 means two 32x32->64 operations; this is worth special
10540      * casing because we can generally handle it inline.
10541      */
10542     if (size == 2) {
10543         for (pass = 0; pass < 2; pass++) {
10544             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10545             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10546             TCGv_i64 tcg_passres;
10547             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10548 
10549             int elt = pass + is_q * 2;
10550 
10551             read_vec_element(s, tcg_op1, rn, elt, memop);
10552             read_vec_element(s, tcg_op2, rm, elt, memop);
10553 
10554             if (accop == 0) {
10555                 tcg_passres = tcg_res[pass];
10556             } else {
10557                 tcg_passres = tcg_temp_new_i64();
10558             }
10559 
10560             switch (opcode) {
10561             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10562                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10563                 break;
10564             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10565                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10566                 break;
10567             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10568             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10569             {
10570                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10571                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10572 
10573                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10574                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10575                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10576                                     tcg_passres,
10577                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10578                 break;
10579             }
10580             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10581             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10582             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10583                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10584                 break;
10585             case 9: /* SQDMLAL, SQDMLAL2 */
10586             case 11: /* SQDMLSL, SQDMLSL2 */
10587             case 13: /* SQDMULL, SQDMULL2 */
10588                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10589                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10590                                                   tcg_passres, tcg_passres);
10591                 break;
10592             default:
10593                 g_assert_not_reached();
10594             }
10595 
10596             if (opcode == 9 || opcode == 11) {
10597                 /* saturating accumulate ops */
10598                 if (accop < 0) {
10599                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10600                 }
10601                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10602                                                   tcg_res[pass], tcg_passres);
10603             } else if (accop > 0) {
10604                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10605             } else if (accop < 0) {
10606                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10607             }
10608         }
10609     } else {
10610         /* size 0 or 1, generally helper functions */
10611         for (pass = 0; pass < 2; pass++) {
10612             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10613             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10614             TCGv_i64 tcg_passres;
10615             int elt = pass + is_q * 2;
10616 
10617             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10618             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10619 
10620             if (accop == 0) {
10621                 tcg_passres = tcg_res[pass];
10622             } else {
10623                 tcg_passres = tcg_temp_new_i64();
10624             }
10625 
10626             switch (opcode) {
10627             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10628             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10629             {
10630                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10631                 static NeonGenWidenFn * const widenfns[2][2] = {
10632                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10633                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10634                 };
10635                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10636 
10637                 widenfn(tcg_op2_64, tcg_op2);
10638                 widenfn(tcg_passres, tcg_op1);
10639                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10640                               tcg_passres, tcg_op2_64);
10641                 break;
10642             }
10643             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10644             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10645                 if (size == 0) {
10646                     if (is_u) {
10647                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10648                     } else {
10649                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10650                     }
10651                 } else {
10652                     if (is_u) {
10653                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10654                     } else {
10655                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10656                     }
10657                 }
10658                 break;
10659             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10660             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10661             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10662                 if (size == 0) {
10663                     if (is_u) {
10664                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10665                     } else {
10666                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10667                     }
10668                 } else {
10669                     if (is_u) {
10670                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10671                     } else {
10672                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10673                     }
10674                 }
10675                 break;
10676             case 9: /* SQDMLAL, SQDMLAL2 */
10677             case 11: /* SQDMLSL, SQDMLSL2 */
10678             case 13: /* SQDMULL, SQDMULL2 */
10679                 assert(size == 1);
10680                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10681                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10682                                                   tcg_passres, tcg_passres);
10683                 break;
10684             default:
10685                 g_assert_not_reached();
10686             }
10687 
10688             if (accop != 0) {
10689                 if (opcode == 9 || opcode == 11) {
10690                     /* saturating accumulate ops */
10691                     if (accop < 0) {
10692                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10693                     }
10694                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10695                                                       tcg_res[pass],
10696                                                       tcg_passres);
10697                 } else {
10698                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10699                                   tcg_res[pass], tcg_passres);
10700                 }
10701             }
10702         }
10703     }
10704 
10705     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10706     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10707 }
10708 
10709 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10710                             int opcode, int rd, int rn, int rm)
10711 {
10712     TCGv_i64 tcg_res[2];
10713     int part = is_q ? 2 : 0;
10714     int pass;
10715 
10716     for (pass = 0; pass < 2; pass++) {
10717         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10718         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10719         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10720         static NeonGenWidenFn * const widenfns[3][2] = {
10721             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10722             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10723             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10724         };
10725         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10726 
10727         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10728         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10729         widenfn(tcg_op2_wide, tcg_op2);
10730         tcg_res[pass] = tcg_temp_new_i64();
10731         gen_neon_addl(size, (opcode == 3),
10732                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10733     }
10734 
10735     for (pass = 0; pass < 2; pass++) {
10736         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10737     }
10738 }
10739 
10740 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10741 {
10742     tcg_gen_addi_i64(in, in, 1U << 31);
10743     tcg_gen_extrh_i64_i32(res, in);
10744 }
10745 
10746 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10747                                  int opcode, int rd, int rn, int rm)
10748 {
10749     TCGv_i32 tcg_res[2];
10750     int part = is_q ? 2 : 0;
10751     int pass;
10752 
10753     for (pass = 0; pass < 2; pass++) {
10754         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10755         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10756         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10757         static NeonGenNarrowFn * const narrowfns[3][2] = {
10758             { gen_helper_neon_narrow_high_u8,
10759               gen_helper_neon_narrow_round_high_u8 },
10760             { gen_helper_neon_narrow_high_u16,
10761               gen_helper_neon_narrow_round_high_u16 },
10762             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10763         };
10764         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10765 
10766         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10767         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10768 
10769         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10770 
10771         tcg_res[pass] = tcg_temp_new_i32();
10772         gennarrow(tcg_res[pass], tcg_wideres);
10773     }
10774 
10775     for (pass = 0; pass < 2; pass++) {
10776         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10777     }
10778     clear_vec_high(s, is_q, rd);
10779 }
10780 
10781 /* AdvSIMD three different
10782  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10783  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10784  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10785  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10786  */
10787 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10788 {
10789     /* Instructions in this group fall into three basic classes
10790      * (in each case with the operation working on each element in
10791      * the input vectors):
10792      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10793      *     128 bit input)
10794      * (2) wide 64 x 128 -> 128
10795      * (3) narrowing 128 x 128 -> 64
10796      * Here we do initial decode, catch unallocated cases and
10797      * dispatch to separate functions for each class.
10798      */
10799     int is_q = extract32(insn, 30, 1);
10800     int is_u = extract32(insn, 29, 1);
10801     int size = extract32(insn, 22, 2);
10802     int opcode = extract32(insn, 12, 4);
10803     int rm = extract32(insn, 16, 5);
10804     int rn = extract32(insn, 5, 5);
10805     int rd = extract32(insn, 0, 5);
10806 
10807     switch (opcode) {
10808     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10809     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10810         /* 64 x 128 -> 128 */
10811         if (size == 3) {
10812             unallocated_encoding(s);
10813             return;
10814         }
10815         if (!fp_access_check(s)) {
10816             return;
10817         }
10818         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10819         break;
10820     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10821     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10822         /* 128 x 128 -> 64 */
10823         if (size == 3) {
10824             unallocated_encoding(s);
10825             return;
10826         }
10827         if (!fp_access_check(s)) {
10828             return;
10829         }
10830         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10831         break;
10832     case 14: /* PMULL, PMULL2 */
10833         if (is_u) {
10834             unallocated_encoding(s);
10835             return;
10836         }
10837         switch (size) {
10838         case 0: /* PMULL.P8 */
10839             if (!fp_access_check(s)) {
10840                 return;
10841             }
10842             /* The Q field specifies lo/hi half input for this insn.  */
10843             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10844                              gen_helper_neon_pmull_h);
10845             break;
10846 
10847         case 3: /* PMULL.P64 */
10848             if (!dc_isar_feature(aa64_pmull, s)) {
10849                 unallocated_encoding(s);
10850                 return;
10851             }
10852             if (!fp_access_check(s)) {
10853                 return;
10854             }
10855             /* The Q field specifies lo/hi half input for this insn.  */
10856             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10857                              gen_helper_gvec_pmull_q);
10858             break;
10859 
10860         default:
10861             unallocated_encoding(s);
10862             break;
10863         }
10864         return;
10865     case 9: /* SQDMLAL, SQDMLAL2 */
10866     case 11: /* SQDMLSL, SQDMLSL2 */
10867     case 13: /* SQDMULL, SQDMULL2 */
10868         if (is_u || size == 0) {
10869             unallocated_encoding(s);
10870             return;
10871         }
10872         /* fall through */
10873     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10874     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10875     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10876     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10877     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10878     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10879     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10880         /* 64 x 64 -> 128 */
10881         if (size == 3) {
10882             unallocated_encoding(s);
10883             return;
10884         }
10885         if (!fp_access_check(s)) {
10886             return;
10887         }
10888 
10889         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10890         break;
10891     default:
10892         /* opcode 15 not allocated */
10893         unallocated_encoding(s);
10894         break;
10895     }
10896 }
10897 
10898 /* AdvSIMD three same extra
10899  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
10900  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10901  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
10902  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10903  */
10904 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10905 {
10906     int rd = extract32(insn, 0, 5);
10907     int rn = extract32(insn, 5, 5);
10908     int opcode = extract32(insn, 11, 4);
10909     int rm = extract32(insn, 16, 5);
10910     int size = extract32(insn, 22, 2);
10911     bool u = extract32(insn, 29, 1);
10912     bool is_q = extract32(insn, 30, 1);
10913     bool feature;
10914     int rot;
10915 
10916     switch (u * 16 + opcode) {
10917     case 0x03: /* USDOT */
10918         if (size != MO_32) {
10919             unallocated_encoding(s);
10920             return;
10921         }
10922         feature = dc_isar_feature(aa64_i8mm, s);
10923         break;
10924     case 0x04: /* SMMLA */
10925     case 0x14: /* UMMLA */
10926     case 0x05: /* USMMLA */
10927         if (!is_q || size != MO_32) {
10928             unallocated_encoding(s);
10929             return;
10930         }
10931         feature = dc_isar_feature(aa64_i8mm, s);
10932         break;
10933     case 0x18: /* FCMLA, #0 */
10934     case 0x19: /* FCMLA, #90 */
10935     case 0x1a: /* FCMLA, #180 */
10936     case 0x1b: /* FCMLA, #270 */
10937     case 0x1c: /* FCADD, #90 */
10938     case 0x1e: /* FCADD, #270 */
10939         if (size == 0
10940             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
10941             || (size == 3 && !is_q)) {
10942             unallocated_encoding(s);
10943             return;
10944         }
10945         feature = dc_isar_feature(aa64_fcma, s);
10946         break;
10947     case 0x1d: /* BFMMLA */
10948         if (size != MO_16 || !is_q) {
10949             unallocated_encoding(s);
10950             return;
10951         }
10952         feature = dc_isar_feature(aa64_bf16, s);
10953         break;
10954     case 0x1f:
10955         switch (size) {
10956         case 1: /* BFDOT */
10957         case 3: /* BFMLAL{B,T} */
10958             feature = dc_isar_feature(aa64_bf16, s);
10959             break;
10960         default:
10961             unallocated_encoding(s);
10962             return;
10963         }
10964         break;
10965     default:
10966     case 0x02: /* SDOT (vector) */
10967     case 0x10: /* SQRDMLAH (vector) */
10968     case 0x11: /* SQRDMLSH (vector) */
10969     case 0x12: /* UDOT (vector) */
10970         unallocated_encoding(s);
10971         return;
10972     }
10973     if (!feature) {
10974         unallocated_encoding(s);
10975         return;
10976     }
10977     if (!fp_access_check(s)) {
10978         return;
10979     }
10980 
10981     switch (opcode) {
10982     case 0x3: /* USDOT */
10983         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
10984         return;
10985 
10986     case 0x04: /* SMMLA, UMMLA */
10987         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
10988                          u ? gen_helper_gvec_ummla_b
10989                          : gen_helper_gvec_smmla_b);
10990         return;
10991     case 0x05: /* USMMLA */
10992         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
10993         return;
10994 
10995     case 0x8: /* FCMLA, #0 */
10996     case 0x9: /* FCMLA, #90 */
10997     case 0xa: /* FCMLA, #180 */
10998     case 0xb: /* FCMLA, #270 */
10999         rot = extract32(opcode, 0, 2);
11000         switch (size) {
11001         case 1:
11002             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11003                               gen_helper_gvec_fcmlah);
11004             break;
11005         case 2:
11006             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11007                               gen_helper_gvec_fcmlas);
11008             break;
11009         case 3:
11010             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11011                               gen_helper_gvec_fcmlad);
11012             break;
11013         default:
11014             g_assert_not_reached();
11015         }
11016         return;
11017 
11018     case 0xc: /* FCADD, #90 */
11019     case 0xe: /* FCADD, #270 */
11020         rot = extract32(opcode, 1, 1);
11021         switch (size) {
11022         case 1:
11023             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11024                               gen_helper_gvec_fcaddh);
11025             break;
11026         case 2:
11027             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11028                               gen_helper_gvec_fcadds);
11029             break;
11030         case 3:
11031             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11032                               gen_helper_gvec_fcaddd);
11033             break;
11034         default:
11035             g_assert_not_reached();
11036         }
11037         return;
11038 
11039     case 0xd: /* BFMMLA */
11040         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11041         return;
11042     case 0xf:
11043         switch (size) {
11044         case 1: /* BFDOT */
11045             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11046             break;
11047         case 3: /* BFMLAL{B,T} */
11048             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11049                               gen_helper_gvec_bfmlal);
11050             break;
11051         default:
11052             g_assert_not_reached();
11053         }
11054         return;
11055 
11056     default:
11057         g_assert_not_reached();
11058     }
11059 }
11060 
11061 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11062                                   int size, int rn, int rd)
11063 {
11064     /* Handle 2-reg-misc ops which are widening (so each size element
11065      * in the source becomes a 2*size element in the destination.
11066      * The only instruction like this is FCVTL.
11067      */
11068     int pass;
11069 
11070     if (size == 3) {
11071         /* 32 -> 64 bit fp conversion */
11072         TCGv_i64 tcg_res[2];
11073         int srcelt = is_q ? 2 : 0;
11074 
11075         for (pass = 0; pass < 2; pass++) {
11076             TCGv_i32 tcg_op = tcg_temp_new_i32();
11077             tcg_res[pass] = tcg_temp_new_i64();
11078 
11079             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11080             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11081         }
11082         for (pass = 0; pass < 2; pass++) {
11083             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11084         }
11085     } else {
11086         /* 16 -> 32 bit fp conversion */
11087         int srcelt = is_q ? 4 : 0;
11088         TCGv_i32 tcg_res[4];
11089         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11090         TCGv_i32 ahp = get_ahp_flag();
11091 
11092         for (pass = 0; pass < 4; pass++) {
11093             tcg_res[pass] = tcg_temp_new_i32();
11094 
11095             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11096             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11097                                            fpst, ahp);
11098         }
11099         for (pass = 0; pass < 4; pass++) {
11100             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11101         }
11102     }
11103 }
11104 
11105 static void handle_rev(DisasContext *s, int opcode, bool u,
11106                        bool is_q, int size, int rn, int rd)
11107 {
11108     int op = (opcode << 1) | u;
11109     int opsz = op + size;
11110     int grp_size = 3 - opsz;
11111     int dsize = is_q ? 128 : 64;
11112     int i;
11113 
11114     if (opsz >= 3) {
11115         unallocated_encoding(s);
11116         return;
11117     }
11118 
11119     if (!fp_access_check(s)) {
11120         return;
11121     }
11122 
11123     if (size == 0) {
11124         /* Special case bytes, use bswap op on each group of elements */
11125         int groups = dsize / (8 << grp_size);
11126 
11127         for (i = 0; i < groups; i++) {
11128             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11129 
11130             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11131             switch (grp_size) {
11132             case MO_16:
11133                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11134                 break;
11135             case MO_32:
11136                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11137                 break;
11138             case MO_64:
11139                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11140                 break;
11141             default:
11142                 g_assert_not_reached();
11143             }
11144             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11145         }
11146         clear_vec_high(s, is_q, rd);
11147     } else {
11148         int revmask = (1 << grp_size) - 1;
11149         int esize = 8 << size;
11150         int elements = dsize / esize;
11151         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11152         TCGv_i64 tcg_rd[2];
11153 
11154         for (i = 0; i < 2; i++) {
11155             tcg_rd[i] = tcg_temp_new_i64();
11156             tcg_gen_movi_i64(tcg_rd[i], 0);
11157         }
11158 
11159         for (i = 0; i < elements; i++) {
11160             int e_rev = (i & 0xf) ^ revmask;
11161             int w = (e_rev * esize) / 64;
11162             int o = (e_rev * esize) % 64;
11163 
11164             read_vec_element(s, tcg_rn, rn, i, size);
11165             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11166         }
11167 
11168         for (i = 0; i < 2; i++) {
11169             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11170         }
11171         clear_vec_high(s, true, rd);
11172     }
11173 }
11174 
11175 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11176                                   bool is_q, int size, int rn, int rd)
11177 {
11178     /* Implement the pairwise operations from 2-misc:
11179      * SADDLP, UADDLP, SADALP, UADALP.
11180      * These all add pairs of elements in the input to produce a
11181      * double-width result element in the output (possibly accumulating).
11182      */
11183     bool accum = (opcode == 0x6);
11184     int maxpass = is_q ? 2 : 1;
11185     int pass;
11186     TCGv_i64 tcg_res[2];
11187 
11188     if (size == 2) {
11189         /* 32 + 32 -> 64 op */
11190         MemOp memop = size + (u ? 0 : MO_SIGN);
11191 
11192         for (pass = 0; pass < maxpass; pass++) {
11193             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11194             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11195 
11196             tcg_res[pass] = tcg_temp_new_i64();
11197 
11198             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11199             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11200             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11201             if (accum) {
11202                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11203                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11204             }
11205         }
11206     } else {
11207         for (pass = 0; pass < maxpass; pass++) {
11208             TCGv_i64 tcg_op = tcg_temp_new_i64();
11209             NeonGenOne64OpFn *genfn;
11210             static NeonGenOne64OpFn * const fns[2][2] = {
11211                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11212                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11213             };
11214 
11215             genfn = fns[size][u];
11216 
11217             tcg_res[pass] = tcg_temp_new_i64();
11218 
11219             read_vec_element(s, tcg_op, rn, pass, MO_64);
11220             genfn(tcg_res[pass], tcg_op);
11221 
11222             if (accum) {
11223                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11224                 if (size == 0) {
11225                     gen_helper_neon_addl_u16(tcg_res[pass],
11226                                              tcg_res[pass], tcg_op);
11227                 } else {
11228                     gen_helper_neon_addl_u32(tcg_res[pass],
11229                                              tcg_res[pass], tcg_op);
11230                 }
11231             }
11232         }
11233     }
11234     if (!is_q) {
11235         tcg_res[1] = tcg_constant_i64(0);
11236     }
11237     for (pass = 0; pass < 2; pass++) {
11238         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11239     }
11240 }
11241 
11242 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11243 {
11244     /* Implement SHLL and SHLL2 */
11245     int pass;
11246     int part = is_q ? 2 : 0;
11247     TCGv_i64 tcg_res[2];
11248 
11249     for (pass = 0; pass < 2; pass++) {
11250         static NeonGenWidenFn * const widenfns[3] = {
11251             gen_helper_neon_widen_u8,
11252             gen_helper_neon_widen_u16,
11253             tcg_gen_extu_i32_i64,
11254         };
11255         NeonGenWidenFn *widenfn = widenfns[size];
11256         TCGv_i32 tcg_op = tcg_temp_new_i32();
11257 
11258         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11259         tcg_res[pass] = tcg_temp_new_i64();
11260         widenfn(tcg_res[pass], tcg_op);
11261         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11262     }
11263 
11264     for (pass = 0; pass < 2; pass++) {
11265         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11266     }
11267 }
11268 
11269 /* AdvSIMD two reg misc
11270  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11271  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11272  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11273  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11274  */
11275 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11276 {
11277     int size = extract32(insn, 22, 2);
11278     int opcode = extract32(insn, 12, 5);
11279     bool u = extract32(insn, 29, 1);
11280     bool is_q = extract32(insn, 30, 1);
11281     int rn = extract32(insn, 5, 5);
11282     int rd = extract32(insn, 0, 5);
11283     bool need_fpstatus = false;
11284     int rmode = -1;
11285     TCGv_i32 tcg_rmode;
11286     TCGv_ptr tcg_fpstatus;
11287 
11288     switch (opcode) {
11289     case 0x0: /* REV64, REV32 */
11290     case 0x1: /* REV16 */
11291         handle_rev(s, opcode, u, is_q, size, rn, rd);
11292         return;
11293     case 0x5: /* CNT, NOT, RBIT */
11294         if (u && size == 0) {
11295             /* NOT */
11296             break;
11297         } else if (u && size == 1) {
11298             /* RBIT */
11299             break;
11300         } else if (!u && size == 0) {
11301             /* CNT */
11302             break;
11303         }
11304         unallocated_encoding(s);
11305         return;
11306     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11307     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11308         if (size == 3) {
11309             unallocated_encoding(s);
11310             return;
11311         }
11312         if (!fp_access_check(s)) {
11313             return;
11314         }
11315 
11316         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11317         return;
11318     case 0x4: /* CLS, CLZ */
11319         if (size == 3) {
11320             unallocated_encoding(s);
11321             return;
11322         }
11323         break;
11324     case 0x2: /* SADDLP, UADDLP */
11325     case 0x6: /* SADALP, UADALP */
11326         if (size == 3) {
11327             unallocated_encoding(s);
11328             return;
11329         }
11330         if (!fp_access_check(s)) {
11331             return;
11332         }
11333         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11334         return;
11335     case 0x13: /* SHLL, SHLL2 */
11336         if (u == 0 || size == 3) {
11337             unallocated_encoding(s);
11338             return;
11339         }
11340         if (!fp_access_check(s)) {
11341             return;
11342         }
11343         handle_shll(s, is_q, size, rn, rd);
11344         return;
11345     case 0xa: /* CMLT */
11346         if (u == 1) {
11347             unallocated_encoding(s);
11348             return;
11349         }
11350         /* fall through */
11351     case 0x8: /* CMGT, CMGE */
11352     case 0x9: /* CMEQ, CMLE */
11353     case 0xb: /* ABS, NEG */
11354         if (size == 3 && !is_q) {
11355             unallocated_encoding(s);
11356             return;
11357         }
11358         break;
11359     case 0x7: /* SQABS, SQNEG */
11360         if (size == 3 && !is_q) {
11361             unallocated_encoding(s);
11362             return;
11363         }
11364         break;
11365     case 0xc ... 0xf:
11366     case 0x16 ... 0x1f:
11367     {
11368         /* Floating point: U, size[1] and opcode indicate operation;
11369          * size[0] indicates single or double precision.
11370          */
11371         int is_double = extract32(size, 0, 1);
11372         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11373         size = is_double ? 3 : 2;
11374         switch (opcode) {
11375         case 0x2f: /* FABS */
11376         case 0x6f: /* FNEG */
11377             if (size == 3 && !is_q) {
11378                 unallocated_encoding(s);
11379                 return;
11380             }
11381             break;
11382         case 0x1d: /* SCVTF */
11383         case 0x5d: /* UCVTF */
11384         {
11385             bool is_signed = (opcode == 0x1d) ? true : false;
11386             int elements = is_double ? 2 : is_q ? 4 : 2;
11387             if (is_double && !is_q) {
11388                 unallocated_encoding(s);
11389                 return;
11390             }
11391             if (!fp_access_check(s)) {
11392                 return;
11393             }
11394             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11395             return;
11396         }
11397         case 0x2c: /* FCMGT (zero) */
11398         case 0x2d: /* FCMEQ (zero) */
11399         case 0x2e: /* FCMLT (zero) */
11400         case 0x6c: /* FCMGE (zero) */
11401         case 0x6d: /* FCMLE (zero) */
11402             if (size == 3 && !is_q) {
11403                 unallocated_encoding(s);
11404                 return;
11405             }
11406             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11407             return;
11408         case 0x7f: /* FSQRT */
11409             if (size == 3 && !is_q) {
11410                 unallocated_encoding(s);
11411                 return;
11412             }
11413             break;
11414         case 0x1a: /* FCVTNS */
11415         case 0x1b: /* FCVTMS */
11416         case 0x3a: /* FCVTPS */
11417         case 0x3b: /* FCVTZS */
11418         case 0x5a: /* FCVTNU */
11419         case 0x5b: /* FCVTMU */
11420         case 0x7a: /* FCVTPU */
11421         case 0x7b: /* FCVTZU */
11422             need_fpstatus = true;
11423             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11424             if (size == 3 && !is_q) {
11425                 unallocated_encoding(s);
11426                 return;
11427             }
11428             break;
11429         case 0x5c: /* FCVTAU */
11430         case 0x1c: /* FCVTAS */
11431             need_fpstatus = true;
11432             rmode = FPROUNDING_TIEAWAY;
11433             if (size == 3 && !is_q) {
11434                 unallocated_encoding(s);
11435                 return;
11436             }
11437             break;
11438         case 0x3c: /* URECPE */
11439             if (size == 3) {
11440                 unallocated_encoding(s);
11441                 return;
11442             }
11443             /* fall through */
11444         case 0x3d: /* FRECPE */
11445         case 0x7d: /* FRSQRTE */
11446             if (size == 3 && !is_q) {
11447                 unallocated_encoding(s);
11448                 return;
11449             }
11450             if (!fp_access_check(s)) {
11451                 return;
11452             }
11453             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11454             return;
11455         case 0x56: /* FCVTXN, FCVTXN2 */
11456             if (size == 2) {
11457                 unallocated_encoding(s);
11458                 return;
11459             }
11460             /* fall through */
11461         case 0x16: /* FCVTN, FCVTN2 */
11462             /* handle_2misc_narrow does a 2*size -> size operation, but these
11463              * instructions encode the source size rather than dest size.
11464              */
11465             if (!fp_access_check(s)) {
11466                 return;
11467             }
11468             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11469             return;
11470         case 0x36: /* BFCVTN, BFCVTN2 */
11471             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11472                 unallocated_encoding(s);
11473                 return;
11474             }
11475             if (!fp_access_check(s)) {
11476                 return;
11477             }
11478             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11479             return;
11480         case 0x17: /* FCVTL, FCVTL2 */
11481             if (!fp_access_check(s)) {
11482                 return;
11483             }
11484             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11485             return;
11486         case 0x18: /* FRINTN */
11487         case 0x19: /* FRINTM */
11488         case 0x38: /* FRINTP */
11489         case 0x39: /* FRINTZ */
11490             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11491             /* fall through */
11492         case 0x59: /* FRINTX */
11493         case 0x79: /* FRINTI */
11494             need_fpstatus = true;
11495             if (size == 3 && !is_q) {
11496                 unallocated_encoding(s);
11497                 return;
11498             }
11499             break;
11500         case 0x58: /* FRINTA */
11501             rmode = FPROUNDING_TIEAWAY;
11502             need_fpstatus = true;
11503             if (size == 3 && !is_q) {
11504                 unallocated_encoding(s);
11505                 return;
11506             }
11507             break;
11508         case 0x7c: /* URSQRTE */
11509             if (size == 3) {
11510                 unallocated_encoding(s);
11511                 return;
11512             }
11513             break;
11514         case 0x1e: /* FRINT32Z */
11515         case 0x1f: /* FRINT64Z */
11516             rmode = FPROUNDING_ZERO;
11517             /* fall through */
11518         case 0x5e: /* FRINT32X */
11519         case 0x5f: /* FRINT64X */
11520             need_fpstatus = true;
11521             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11522                 unallocated_encoding(s);
11523                 return;
11524             }
11525             break;
11526         default:
11527             unallocated_encoding(s);
11528             return;
11529         }
11530         break;
11531     }
11532     default:
11533     case 0x3: /* SUQADD, USQADD */
11534         unallocated_encoding(s);
11535         return;
11536     }
11537 
11538     if (!fp_access_check(s)) {
11539         return;
11540     }
11541 
11542     if (need_fpstatus || rmode >= 0) {
11543         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11544     } else {
11545         tcg_fpstatus = NULL;
11546     }
11547     if (rmode >= 0) {
11548         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11549     } else {
11550         tcg_rmode = NULL;
11551     }
11552 
11553     switch (opcode) {
11554     case 0x5:
11555         if (u && size == 0) { /* NOT */
11556             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11557             return;
11558         }
11559         break;
11560     case 0x8: /* CMGT, CMGE */
11561         if (u) {
11562             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11563         } else {
11564             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11565         }
11566         return;
11567     case 0x9: /* CMEQ, CMLE */
11568         if (u) {
11569             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11570         } else {
11571             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11572         }
11573         return;
11574     case 0xa: /* CMLT */
11575         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11576         return;
11577     case 0xb:
11578         if (u) { /* ABS, NEG */
11579             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11580         } else {
11581             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11582         }
11583         return;
11584     }
11585 
11586     if (size == 3) {
11587         /* All 64-bit element operations can be shared with scalar 2misc */
11588         int pass;
11589 
11590         /* Coverity claims (size == 3 && !is_q) has been eliminated
11591          * from all paths leading to here.
11592          */
11593         tcg_debug_assert(is_q);
11594         for (pass = 0; pass < 2; pass++) {
11595             TCGv_i64 tcg_op = tcg_temp_new_i64();
11596             TCGv_i64 tcg_res = tcg_temp_new_i64();
11597 
11598             read_vec_element(s, tcg_op, rn, pass, MO_64);
11599 
11600             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11601                             tcg_rmode, tcg_fpstatus);
11602 
11603             write_vec_element(s, tcg_res, rd, pass, MO_64);
11604         }
11605     } else {
11606         int pass;
11607 
11608         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11609             TCGv_i32 tcg_op = tcg_temp_new_i32();
11610             TCGv_i32 tcg_res = tcg_temp_new_i32();
11611 
11612             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11613 
11614             if (size == 2) {
11615                 /* Special cases for 32 bit elements */
11616                 switch (opcode) {
11617                 case 0x4: /* CLS */
11618                     if (u) {
11619                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11620                     } else {
11621                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11622                     }
11623                     break;
11624                 case 0x7: /* SQABS, SQNEG */
11625                     if (u) {
11626                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11627                     } else {
11628                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11629                     }
11630                     break;
11631                 case 0x2f: /* FABS */
11632                     gen_vfp_abss(tcg_res, tcg_op);
11633                     break;
11634                 case 0x6f: /* FNEG */
11635                     gen_vfp_negs(tcg_res, tcg_op);
11636                     break;
11637                 case 0x7f: /* FSQRT */
11638                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11639                     break;
11640                 case 0x1a: /* FCVTNS */
11641                 case 0x1b: /* FCVTMS */
11642                 case 0x1c: /* FCVTAS */
11643                 case 0x3a: /* FCVTPS */
11644                 case 0x3b: /* FCVTZS */
11645                     gen_helper_vfp_tosls(tcg_res, tcg_op,
11646                                          tcg_constant_i32(0), tcg_fpstatus);
11647                     break;
11648                 case 0x5a: /* FCVTNU */
11649                 case 0x5b: /* FCVTMU */
11650                 case 0x5c: /* FCVTAU */
11651                 case 0x7a: /* FCVTPU */
11652                 case 0x7b: /* FCVTZU */
11653                     gen_helper_vfp_touls(tcg_res, tcg_op,
11654                                          tcg_constant_i32(0), tcg_fpstatus);
11655                     break;
11656                 case 0x18: /* FRINTN */
11657                 case 0x19: /* FRINTM */
11658                 case 0x38: /* FRINTP */
11659                 case 0x39: /* FRINTZ */
11660                 case 0x58: /* FRINTA */
11661                 case 0x79: /* FRINTI */
11662                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11663                     break;
11664                 case 0x59: /* FRINTX */
11665                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11666                     break;
11667                 case 0x7c: /* URSQRTE */
11668                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
11669                     break;
11670                 case 0x1e: /* FRINT32Z */
11671                 case 0x5e: /* FRINT32X */
11672                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11673                     break;
11674                 case 0x1f: /* FRINT64Z */
11675                 case 0x5f: /* FRINT64X */
11676                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11677                     break;
11678                 default:
11679                     g_assert_not_reached();
11680                 }
11681             } else {
11682                 /* Use helpers for 8 and 16 bit elements */
11683                 switch (opcode) {
11684                 case 0x5: /* CNT, RBIT */
11685                     /* For these two insns size is part of the opcode specifier
11686                      * (handled earlier); they always operate on byte elements.
11687                      */
11688                     if (u) {
11689                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11690                     } else {
11691                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11692                     }
11693                     break;
11694                 case 0x7: /* SQABS, SQNEG */
11695                 {
11696                     NeonGenOneOpEnvFn *genfn;
11697                     static NeonGenOneOpEnvFn * const fns[2][2] = {
11698                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11699                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11700                     };
11701                     genfn = fns[size][u];
11702                     genfn(tcg_res, tcg_env, tcg_op);
11703                     break;
11704                 }
11705                 case 0x4: /* CLS, CLZ */
11706                     if (u) {
11707                         if (size == 0) {
11708                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
11709                         } else {
11710                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
11711                         }
11712                     } else {
11713                         if (size == 0) {
11714                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
11715                         } else {
11716                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
11717                         }
11718                     }
11719                     break;
11720                 default:
11721                     g_assert_not_reached();
11722                 }
11723             }
11724 
11725             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11726         }
11727     }
11728     clear_vec_high(s, is_q, rd);
11729 
11730     if (tcg_rmode) {
11731         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11732     }
11733 }
11734 
11735 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11736  *
11737  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
11738  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11739  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11740  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11741  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11742  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11743  *
11744  * This actually covers two groups where scalar access is governed by
11745  * bit 28. A bunch of the instructions (float to integral) only exist
11746  * in the vector form and are un-allocated for the scalar decode. Also
11747  * in the scalar decode Q is always 1.
11748  */
11749 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11750 {
11751     int fpop, opcode, a, u;
11752     int rn, rd;
11753     bool is_q;
11754     bool is_scalar;
11755     bool only_in_vector = false;
11756 
11757     int pass;
11758     TCGv_i32 tcg_rmode = NULL;
11759     TCGv_ptr tcg_fpstatus = NULL;
11760     bool need_fpst = true;
11761     int rmode = -1;
11762 
11763     if (!dc_isar_feature(aa64_fp16, s)) {
11764         unallocated_encoding(s);
11765         return;
11766     }
11767 
11768     rd = extract32(insn, 0, 5);
11769     rn = extract32(insn, 5, 5);
11770 
11771     a = extract32(insn, 23, 1);
11772     u = extract32(insn, 29, 1);
11773     is_scalar = extract32(insn, 28, 1);
11774     is_q = extract32(insn, 30, 1);
11775 
11776     opcode = extract32(insn, 12, 5);
11777     fpop = deposit32(opcode, 5, 1, a);
11778     fpop = deposit32(fpop, 6, 1, u);
11779 
11780     switch (fpop) {
11781     case 0x1d: /* SCVTF */
11782     case 0x5d: /* UCVTF */
11783     {
11784         int elements;
11785 
11786         if (is_scalar) {
11787             elements = 1;
11788         } else {
11789             elements = (is_q ? 8 : 4);
11790         }
11791 
11792         if (!fp_access_check(s)) {
11793             return;
11794         }
11795         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11796         return;
11797     }
11798     break;
11799     case 0x2c: /* FCMGT (zero) */
11800     case 0x2d: /* FCMEQ (zero) */
11801     case 0x2e: /* FCMLT (zero) */
11802     case 0x6c: /* FCMGE (zero) */
11803     case 0x6d: /* FCMLE (zero) */
11804         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11805         return;
11806     case 0x3d: /* FRECPE */
11807     case 0x3f: /* FRECPX */
11808         break;
11809     case 0x18: /* FRINTN */
11810         only_in_vector = true;
11811         rmode = FPROUNDING_TIEEVEN;
11812         break;
11813     case 0x19: /* FRINTM */
11814         only_in_vector = true;
11815         rmode = FPROUNDING_NEGINF;
11816         break;
11817     case 0x38: /* FRINTP */
11818         only_in_vector = true;
11819         rmode = FPROUNDING_POSINF;
11820         break;
11821     case 0x39: /* FRINTZ */
11822         only_in_vector = true;
11823         rmode = FPROUNDING_ZERO;
11824         break;
11825     case 0x58: /* FRINTA */
11826         only_in_vector = true;
11827         rmode = FPROUNDING_TIEAWAY;
11828         break;
11829     case 0x59: /* FRINTX */
11830     case 0x79: /* FRINTI */
11831         only_in_vector = true;
11832         /* current rounding mode */
11833         break;
11834     case 0x1a: /* FCVTNS */
11835         rmode = FPROUNDING_TIEEVEN;
11836         break;
11837     case 0x1b: /* FCVTMS */
11838         rmode = FPROUNDING_NEGINF;
11839         break;
11840     case 0x1c: /* FCVTAS */
11841         rmode = FPROUNDING_TIEAWAY;
11842         break;
11843     case 0x3a: /* FCVTPS */
11844         rmode = FPROUNDING_POSINF;
11845         break;
11846     case 0x3b: /* FCVTZS */
11847         rmode = FPROUNDING_ZERO;
11848         break;
11849     case 0x5a: /* FCVTNU */
11850         rmode = FPROUNDING_TIEEVEN;
11851         break;
11852     case 0x5b: /* FCVTMU */
11853         rmode = FPROUNDING_NEGINF;
11854         break;
11855     case 0x5c: /* FCVTAU */
11856         rmode = FPROUNDING_TIEAWAY;
11857         break;
11858     case 0x7a: /* FCVTPU */
11859         rmode = FPROUNDING_POSINF;
11860         break;
11861     case 0x7b: /* FCVTZU */
11862         rmode = FPROUNDING_ZERO;
11863         break;
11864     case 0x2f: /* FABS */
11865     case 0x6f: /* FNEG */
11866         need_fpst = false;
11867         break;
11868     case 0x7d: /* FRSQRTE */
11869     case 0x7f: /* FSQRT (vector) */
11870         break;
11871     default:
11872         unallocated_encoding(s);
11873         return;
11874     }
11875 
11876 
11877     /* Check additional constraints for the scalar encoding */
11878     if (is_scalar) {
11879         if (!is_q) {
11880             unallocated_encoding(s);
11881             return;
11882         }
11883         /* FRINTxx is only in the vector form */
11884         if (only_in_vector) {
11885             unallocated_encoding(s);
11886             return;
11887         }
11888     }
11889 
11890     if (!fp_access_check(s)) {
11891         return;
11892     }
11893 
11894     if (rmode >= 0 || need_fpst) {
11895         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11896     }
11897 
11898     if (rmode >= 0) {
11899         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11900     }
11901 
11902     if (is_scalar) {
11903         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11904         TCGv_i32 tcg_res = tcg_temp_new_i32();
11905 
11906         switch (fpop) {
11907         case 0x1a: /* FCVTNS */
11908         case 0x1b: /* FCVTMS */
11909         case 0x1c: /* FCVTAS */
11910         case 0x3a: /* FCVTPS */
11911         case 0x3b: /* FCVTZS */
11912             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11913             break;
11914         case 0x3d: /* FRECPE */
11915             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11916             break;
11917         case 0x3f: /* FRECPX */
11918             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11919             break;
11920         case 0x5a: /* FCVTNU */
11921         case 0x5b: /* FCVTMU */
11922         case 0x5c: /* FCVTAU */
11923         case 0x7a: /* FCVTPU */
11924         case 0x7b: /* FCVTZU */
11925             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11926             break;
11927         case 0x6f: /* FNEG */
11928             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11929             break;
11930         case 0x7d: /* FRSQRTE */
11931             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11932             break;
11933         default:
11934             g_assert_not_reached();
11935         }
11936 
11937         /* limit any sign extension going on */
11938         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11939         write_fp_sreg(s, rd, tcg_res);
11940     } else {
11941         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11942             TCGv_i32 tcg_op = tcg_temp_new_i32();
11943             TCGv_i32 tcg_res = tcg_temp_new_i32();
11944 
11945             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11946 
11947             switch (fpop) {
11948             case 0x1a: /* FCVTNS */
11949             case 0x1b: /* FCVTMS */
11950             case 0x1c: /* FCVTAS */
11951             case 0x3a: /* FCVTPS */
11952             case 0x3b: /* FCVTZS */
11953                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11954                 break;
11955             case 0x3d: /* FRECPE */
11956                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11957                 break;
11958             case 0x5a: /* FCVTNU */
11959             case 0x5b: /* FCVTMU */
11960             case 0x5c: /* FCVTAU */
11961             case 0x7a: /* FCVTPU */
11962             case 0x7b: /* FCVTZU */
11963                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11964                 break;
11965             case 0x18: /* FRINTN */
11966             case 0x19: /* FRINTM */
11967             case 0x38: /* FRINTP */
11968             case 0x39: /* FRINTZ */
11969             case 0x58: /* FRINTA */
11970             case 0x79: /* FRINTI */
11971                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11972                 break;
11973             case 0x59: /* FRINTX */
11974                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11975                 break;
11976             case 0x2f: /* FABS */
11977                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11978                 break;
11979             case 0x6f: /* FNEG */
11980                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11981                 break;
11982             case 0x7d: /* FRSQRTE */
11983                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11984                 break;
11985             case 0x7f: /* FSQRT */
11986                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11987                 break;
11988             default:
11989                 g_assert_not_reached();
11990             }
11991 
11992             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11993         }
11994 
11995         clear_vec_high(s, is_q, rd);
11996     }
11997 
11998     if (tcg_rmode) {
11999         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12000     }
12001 }
12002 
12003 /* AdvSIMD scalar x indexed element
12004  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12005  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12006  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12007  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12008  * AdvSIMD vector x indexed element
12009  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12010  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12011  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12012  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12013  */
12014 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12015 {
12016     /* This encoding has two kinds of instruction:
12017      *  normal, where we perform elt x idxelt => elt for each
12018      *     element in the vector
12019      *  long, where we perform elt x idxelt and generate a result of
12020      *     double the width of the input element
12021      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12022      */
12023     bool is_scalar = extract32(insn, 28, 1);
12024     bool is_q = extract32(insn, 30, 1);
12025     bool u = extract32(insn, 29, 1);
12026     int size = extract32(insn, 22, 2);
12027     int l = extract32(insn, 21, 1);
12028     int m = extract32(insn, 20, 1);
12029     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12030     int rm = extract32(insn, 16, 4);
12031     int opcode = extract32(insn, 12, 4);
12032     int h = extract32(insn, 11, 1);
12033     int rn = extract32(insn, 5, 5);
12034     int rd = extract32(insn, 0, 5);
12035     bool is_long = false;
12036     int is_fp = 0;
12037     bool is_fp16 = false;
12038     int index;
12039     TCGv_ptr fpst;
12040 
12041     switch (16 * u + opcode) {
12042     case 0x02: /* SMLAL, SMLAL2 */
12043     case 0x12: /* UMLAL, UMLAL2 */
12044     case 0x06: /* SMLSL, SMLSL2 */
12045     case 0x16: /* UMLSL, UMLSL2 */
12046     case 0x0a: /* SMULL, SMULL2 */
12047     case 0x1a: /* UMULL, UMULL2 */
12048         if (is_scalar) {
12049             unallocated_encoding(s);
12050             return;
12051         }
12052         is_long = true;
12053         break;
12054     case 0x03: /* SQDMLAL, SQDMLAL2 */
12055     case 0x07: /* SQDMLSL, SQDMLSL2 */
12056     case 0x0b: /* SQDMULL, SQDMULL2 */
12057         is_long = true;
12058         break;
12059     case 0x0f:
12060         switch (size) {
12061         case 0: /* SUDOT */
12062         case 2: /* USDOT */
12063             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12064                 unallocated_encoding(s);
12065                 return;
12066             }
12067             size = MO_32;
12068             break;
12069         case 1: /* BFDOT */
12070             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12071                 unallocated_encoding(s);
12072                 return;
12073             }
12074             size = MO_32;
12075             break;
12076         case 3: /* BFMLAL{B,T} */
12077             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12078                 unallocated_encoding(s);
12079                 return;
12080             }
12081             /* can't set is_fp without other incorrect size checks */
12082             size = MO_16;
12083             break;
12084         default:
12085             unallocated_encoding(s);
12086             return;
12087         }
12088         break;
12089     case 0x11: /* FCMLA #0 */
12090     case 0x13: /* FCMLA #90 */
12091     case 0x15: /* FCMLA #180 */
12092     case 0x17: /* FCMLA #270 */
12093         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12094             unallocated_encoding(s);
12095             return;
12096         }
12097         is_fp = 2;
12098         break;
12099     default:
12100     case 0x00: /* FMLAL */
12101     case 0x01: /* FMLA */
12102     case 0x04: /* FMLSL */
12103     case 0x05: /* FMLS */
12104     case 0x08: /* MUL */
12105     case 0x09: /* FMUL */
12106     case 0x0c: /* SQDMULH */
12107     case 0x0d: /* SQRDMULH */
12108     case 0x0e: /* SDOT */
12109     case 0x10: /* MLA */
12110     case 0x14: /* MLS */
12111     case 0x18: /* FMLAL2 */
12112     case 0x19: /* FMULX */
12113     case 0x1c: /* FMLSL2 */
12114     case 0x1d: /* SQRDMLAH */
12115     case 0x1e: /* UDOT */
12116     case 0x1f: /* SQRDMLSH */
12117         unallocated_encoding(s);
12118         return;
12119     }
12120 
12121     switch (is_fp) {
12122     case 1: /* normal fp */
12123         unallocated_encoding(s); /* in decodetree */
12124         return;
12125 
12126     case 2: /* complex fp */
12127         /* Each indexable element is a complex pair.  */
12128         size += 1;
12129         switch (size) {
12130         case MO_32:
12131             if (h && !is_q) {
12132                 unallocated_encoding(s);
12133                 return;
12134             }
12135             is_fp16 = true;
12136             break;
12137         case MO_64:
12138             break;
12139         default:
12140             unallocated_encoding(s);
12141             return;
12142         }
12143         break;
12144 
12145     default: /* integer */
12146         switch (size) {
12147         case MO_8:
12148         case MO_64:
12149             unallocated_encoding(s);
12150             return;
12151         }
12152         break;
12153     }
12154     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12155         unallocated_encoding(s);
12156         return;
12157     }
12158 
12159     /* Given MemOp size, adjust register and indexing.  */
12160     switch (size) {
12161     case MO_16:
12162         index = h << 2 | l << 1 | m;
12163         break;
12164     case MO_32:
12165         index = h << 1 | l;
12166         rm |= m << 4;
12167         break;
12168     case MO_64:
12169         if (l || !is_q) {
12170             unallocated_encoding(s);
12171             return;
12172         }
12173         index = h;
12174         rm |= m << 4;
12175         break;
12176     default:
12177         g_assert_not_reached();
12178     }
12179 
12180     if (!fp_access_check(s)) {
12181         return;
12182     }
12183 
12184     if (is_fp) {
12185         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12186     } else {
12187         fpst = NULL;
12188     }
12189 
12190     switch (16 * u + opcode) {
12191     case 0x0f:
12192         switch (extract32(insn, 22, 2)) {
12193         case 0: /* SUDOT */
12194             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12195                              gen_helper_gvec_sudot_idx_b);
12196             return;
12197         case 1: /* BFDOT */
12198             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12199                              gen_helper_gvec_bfdot_idx);
12200             return;
12201         case 2: /* USDOT */
12202             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12203                              gen_helper_gvec_usdot_idx_b);
12204             return;
12205         case 3: /* BFMLAL{B,T} */
12206             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12207                               gen_helper_gvec_bfmlal_idx);
12208             return;
12209         }
12210         g_assert_not_reached();
12211     case 0x11: /* FCMLA #0 */
12212     case 0x13: /* FCMLA #90 */
12213     case 0x15: /* FCMLA #180 */
12214     case 0x17: /* FCMLA #270 */
12215         {
12216             int rot = extract32(insn, 13, 2);
12217             int data = (index << 2) | rot;
12218             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12219                                vec_full_reg_offset(s, rn),
12220                                vec_full_reg_offset(s, rm),
12221                                vec_full_reg_offset(s, rd), fpst,
12222                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12223                                size == MO_64
12224                                ? gen_helper_gvec_fcmlas_idx
12225                                : gen_helper_gvec_fcmlah_idx);
12226         }
12227         return;
12228     }
12229 
12230     if (size == 3) {
12231         g_assert_not_reached();
12232     } else if (!is_long) {
12233         /* 32 bit floating point, or 16 or 32 bit integer.
12234          * For the 16 bit scalar case we use the usual Neon helpers and
12235          * rely on the fact that 0 op 0 == 0 with no side effects.
12236          */
12237         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12238         int pass, maxpasses;
12239 
12240         if (is_scalar) {
12241             maxpasses = 1;
12242         } else {
12243             maxpasses = is_q ? 4 : 2;
12244         }
12245 
12246         read_vec_element_i32(s, tcg_idx, rm, index, size);
12247 
12248         if (size == 1 && !is_scalar) {
12249             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12250              * the index into both halves of the 32 bit tcg_idx and then use
12251              * the usual Neon helpers.
12252              */
12253             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12254         }
12255 
12256         for (pass = 0; pass < maxpasses; pass++) {
12257             TCGv_i32 tcg_op = tcg_temp_new_i32();
12258             TCGv_i32 tcg_res = tcg_temp_new_i32();
12259 
12260             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12261 
12262             switch (16 * u + opcode) {
12263             case 0x10: /* MLA */
12264             case 0x14: /* MLS */
12265             {
12266                 static NeonGenTwoOpFn * const fns[2][2] = {
12267                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12268                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12269                 };
12270                 NeonGenTwoOpFn *genfn;
12271                 bool is_sub = opcode == 0x4;
12272 
12273                 if (size == 1) {
12274                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12275                 } else {
12276                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12277                 }
12278                 if (opcode == 0x8) {
12279                     break;
12280                 }
12281                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12282                 genfn = fns[size - 1][is_sub];
12283                 genfn(tcg_res, tcg_op, tcg_res);
12284                 break;
12285             }
12286             case 0x0c: /* SQDMULH */
12287                 if (size == 1) {
12288                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12289                                                tcg_op, tcg_idx);
12290                 } else {
12291                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12292                                                tcg_op, tcg_idx);
12293                 }
12294                 break;
12295             case 0x0d: /* SQRDMULH */
12296                 if (size == 1) {
12297                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12298                                                 tcg_op, tcg_idx);
12299                 } else {
12300                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12301                                                 tcg_op, tcg_idx);
12302                 }
12303                 break;
12304             default:
12305             case 0x01: /* FMLA */
12306             case 0x05: /* FMLS */
12307             case 0x09: /* FMUL */
12308             case 0x19: /* FMULX */
12309             case 0x1d: /* SQRDMLAH */
12310             case 0x1f: /* SQRDMLSH */
12311                 g_assert_not_reached();
12312             }
12313 
12314             if (is_scalar) {
12315                 write_fp_sreg(s, rd, tcg_res);
12316             } else {
12317                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12318             }
12319         }
12320 
12321         clear_vec_high(s, is_q, rd);
12322     } else {
12323         /* long ops: 16x16->32 or 32x32->64 */
12324         TCGv_i64 tcg_res[2];
12325         int pass;
12326         bool satop = extract32(opcode, 0, 1);
12327         MemOp memop = MO_32;
12328 
12329         if (satop || !u) {
12330             memop |= MO_SIGN;
12331         }
12332 
12333         if (size == 2) {
12334             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12335 
12336             read_vec_element(s, tcg_idx, rm, index, memop);
12337 
12338             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12339                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12340                 TCGv_i64 tcg_passres;
12341                 int passelt;
12342 
12343                 if (is_scalar) {
12344                     passelt = 0;
12345                 } else {
12346                     passelt = pass + (is_q * 2);
12347                 }
12348 
12349                 read_vec_element(s, tcg_op, rn, passelt, memop);
12350 
12351                 tcg_res[pass] = tcg_temp_new_i64();
12352 
12353                 if (opcode == 0xa || opcode == 0xb) {
12354                     /* Non-accumulating ops */
12355                     tcg_passres = tcg_res[pass];
12356                 } else {
12357                     tcg_passres = tcg_temp_new_i64();
12358                 }
12359 
12360                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12361 
12362                 if (satop) {
12363                     /* saturating, doubling */
12364                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12365                                                       tcg_passres, tcg_passres);
12366                 }
12367 
12368                 if (opcode == 0xa || opcode == 0xb) {
12369                     continue;
12370                 }
12371 
12372                 /* Accumulating op: handle accumulate step */
12373                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12374 
12375                 switch (opcode) {
12376                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12377                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12378                     break;
12379                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12380                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12381                     break;
12382                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12383                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12384                     /* fall through */
12385                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12386                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12387                                                       tcg_res[pass],
12388                                                       tcg_passres);
12389                     break;
12390                 default:
12391                     g_assert_not_reached();
12392                 }
12393             }
12394 
12395             clear_vec_high(s, !is_scalar, rd);
12396         } else {
12397             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12398 
12399             assert(size == 1);
12400             read_vec_element_i32(s, tcg_idx, rm, index, size);
12401 
12402             if (!is_scalar) {
12403                 /* The simplest way to handle the 16x16 indexed ops is to
12404                  * duplicate the index into both halves of the 32 bit tcg_idx
12405                  * and then use the usual Neon helpers.
12406                  */
12407                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12408             }
12409 
12410             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12411                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12412                 TCGv_i64 tcg_passres;
12413 
12414                 if (is_scalar) {
12415                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12416                 } else {
12417                     read_vec_element_i32(s, tcg_op, rn,
12418                                          pass + (is_q * 2), MO_32);
12419                 }
12420 
12421                 tcg_res[pass] = tcg_temp_new_i64();
12422 
12423                 if (opcode == 0xa || opcode == 0xb) {
12424                     /* Non-accumulating ops */
12425                     tcg_passres = tcg_res[pass];
12426                 } else {
12427                     tcg_passres = tcg_temp_new_i64();
12428                 }
12429 
12430                 if (memop & MO_SIGN) {
12431                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12432                 } else {
12433                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12434                 }
12435                 if (satop) {
12436                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12437                                                       tcg_passres, tcg_passres);
12438                 }
12439 
12440                 if (opcode == 0xa || opcode == 0xb) {
12441                     continue;
12442                 }
12443 
12444                 /* Accumulating op: handle accumulate step */
12445                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12446 
12447                 switch (opcode) {
12448                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12449                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12450                                              tcg_passres);
12451                     break;
12452                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12453                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12454                                              tcg_passres);
12455                     break;
12456                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12457                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12458                     /* fall through */
12459                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12460                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12461                                                       tcg_res[pass],
12462                                                       tcg_passres);
12463                     break;
12464                 default:
12465                     g_assert_not_reached();
12466                 }
12467             }
12468 
12469             if (is_scalar) {
12470                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12471             }
12472         }
12473 
12474         if (is_scalar) {
12475             tcg_res[1] = tcg_constant_i64(0);
12476         }
12477 
12478         for (pass = 0; pass < 2; pass++) {
12479             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12480         }
12481     }
12482 }
12483 
12484 /* C3.6 Data processing - SIMD, inc Crypto
12485  *
12486  * As the decode gets a little complex we are using a table based
12487  * approach for this part of the decode.
12488  */
12489 static const AArch64DecodeTable data_proc_simd[] = {
12490     /* pattern  ,  mask     ,  fn                        */
12491     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12492     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12493     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12494     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12495     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12496     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12497     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12498     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12499     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12500     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12501     { 0x2e000000, 0xbf208400, disas_simd_ext },
12502     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12503     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12504     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12505     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12506     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12507     { 0x00000000, 0x00000000, NULL }
12508 };
12509 
12510 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12511 {
12512     /* Note that this is called with all non-FP cases from
12513      * table C3-6 so it must UNDEF for entries not specifically
12514      * allocated to instructions in that table.
12515      */
12516     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12517     if (fn) {
12518         fn(s, insn);
12519     } else {
12520         unallocated_encoding(s);
12521     }
12522 }
12523 
12524 /* C3.6 Data processing - SIMD and floating point */
12525 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12526 {
12527     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12528         disas_data_proc_fp(s, insn);
12529     } else {
12530         /* SIMD, including crypto */
12531         disas_data_proc_simd(s, insn);
12532     }
12533 }
12534 
12535 static bool trans_OK(DisasContext *s, arg_OK *a)
12536 {
12537     return true;
12538 }
12539 
12540 static bool trans_FAIL(DisasContext *s, arg_OK *a)
12541 {
12542     s->is_nonstreaming = true;
12543     return true;
12544 }
12545 
12546 /**
12547  * is_guarded_page:
12548  * @env: The cpu environment
12549  * @s: The DisasContext
12550  *
12551  * Return true if the page is guarded.
12552  */
12553 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
12554 {
12555     uint64_t addr = s->base.pc_first;
12556 #ifdef CONFIG_USER_ONLY
12557     return page_get_flags(addr) & PAGE_BTI;
12558 #else
12559     CPUTLBEntryFull *full;
12560     void *host;
12561     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
12562     int flags;
12563 
12564     /*
12565      * We test this immediately after reading an insn, which means
12566      * that the TLB entry must be present and valid, and thus this
12567      * access will never raise an exception.
12568      */
12569     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
12570                               false, &host, &full, 0);
12571     assert(!(flags & TLB_INVALID_MASK));
12572 
12573     return full->extra.arm.guarded;
12574 #endif
12575 }
12576 
12577 /**
12578  * btype_destination_ok:
12579  * @insn: The instruction at the branch destination
12580  * @bt: SCTLR_ELx.BT
12581  * @btype: PSTATE.BTYPE, and is non-zero
12582  *
12583  * On a guarded page, there are a limited number of insns
12584  * that may be present at the branch target:
12585  *   - branch target identifiers,
12586  *   - paciasp, pacibsp,
12587  *   - BRK insn
12588  *   - HLT insn
12589  * Anything else causes a Branch Target Exception.
12590  *
12591  * Return true if the branch is compatible, false to raise BTITRAP.
12592  */
12593 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
12594 {
12595     if ((insn & 0xfffff01fu) == 0xd503201fu) {
12596         /* HINT space */
12597         switch (extract32(insn, 5, 7)) {
12598         case 0b011001: /* PACIASP */
12599         case 0b011011: /* PACIBSP */
12600             /*
12601              * If SCTLR_ELx.BT, then PACI*SP are not compatible
12602              * with btype == 3.  Otherwise all btype are ok.
12603              */
12604             return !bt || btype != 3;
12605         case 0b100000: /* BTI */
12606             /* Not compatible with any btype.  */
12607             return false;
12608         case 0b100010: /* BTI c */
12609             /* Not compatible with btype == 3 */
12610             return btype != 3;
12611         case 0b100100: /* BTI j */
12612             /* Not compatible with btype == 2 */
12613             return btype != 2;
12614         case 0b100110: /* BTI jc */
12615             /* Compatible with any btype.  */
12616             return true;
12617         }
12618     } else {
12619         switch (insn & 0xffe0001fu) {
12620         case 0xd4200000u: /* BRK */
12621         case 0xd4400000u: /* HLT */
12622             /* Give priority to the breakpoint exception.  */
12623             return true;
12624         }
12625     }
12626     return false;
12627 }
12628 
12629 /* C3.1 A64 instruction index by encoding */
12630 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
12631 {
12632     switch (extract32(insn, 25, 4)) {
12633     case 0x5:
12634     case 0xd:      /* Data processing - register */
12635         disas_data_proc_reg(s, insn);
12636         break;
12637     case 0x7:
12638     case 0xf:      /* Data processing - SIMD and floating point */
12639         disas_data_proc_simd_fp(s, insn);
12640         break;
12641     default:
12642         unallocated_encoding(s);
12643         break;
12644     }
12645 }
12646 
12647 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
12648                                           CPUState *cpu)
12649 {
12650     DisasContext *dc = container_of(dcbase, DisasContext, base);
12651     CPUARMState *env = cpu_env(cpu);
12652     ARMCPU *arm_cpu = env_archcpu(env);
12653     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
12654     int bound, core_mmu_idx;
12655 
12656     dc->isar = &arm_cpu->isar;
12657     dc->condjmp = 0;
12658     dc->pc_save = dc->base.pc_first;
12659     dc->aarch64 = true;
12660     dc->thumb = false;
12661     dc->sctlr_b = 0;
12662     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
12663     dc->condexec_mask = 0;
12664     dc->condexec_cond = 0;
12665     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12666     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12667     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12668     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12669     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12670     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12671 #if !defined(CONFIG_USER_ONLY)
12672     dc->user = (dc->current_el == 0);
12673 #endif
12674     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12675     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12676     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12677     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12678     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12679     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12680     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12681     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12682     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12683     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12684     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12685     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12686     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12687     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12688     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12689     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12690     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12691     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12692     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12693     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12694     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12695     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12696     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12697     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12698     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12699     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12700     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12701     dc->vec_len = 0;
12702     dc->vec_stride = 0;
12703     dc->cp_regs = arm_cpu->cp_regs;
12704     dc->features = env->features;
12705     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12706     dc->gm_blocksize = arm_cpu->gm_blocksize;
12707 
12708 #ifdef CONFIG_USER_ONLY
12709     /* In sve_probe_page, we assume TBI is enabled. */
12710     tcg_debug_assert(dc->tbid & 1);
12711 #endif
12712 
12713     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12714 
12715     /* Single step state. The code-generation logic here is:
12716      *  SS_ACTIVE == 0:
12717      *   generate code with no special handling for single-stepping (except
12718      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12719      *   this happens anyway because those changes are all system register or
12720      *   PSTATE writes).
12721      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12722      *   emit code for one insn
12723      *   emit code to clear PSTATE.SS
12724      *   emit code to generate software step exception for completed step
12725      *   end TB (as usual for having generated an exception)
12726      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12727      *   emit code to generate a software step exception
12728      *   end the TB
12729      */
12730     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12731     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12732     dc->is_ldex = false;
12733 
12734     /* Bound the number of insns to execute to those left on the page.  */
12735     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12736 
12737     /* If architectural single step active, limit to 1.  */
12738     if (dc->ss_active) {
12739         bound = 1;
12740     }
12741     dc->base.max_insns = MIN(dc->base.max_insns, bound);
12742 }
12743 
12744 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12745 {
12746 }
12747 
12748 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12749 {
12750     DisasContext *dc = container_of(dcbase, DisasContext, base);
12751     target_ulong pc_arg = dc->base.pc_next;
12752 
12753     if (tb_cflags(dcbase->tb) & CF_PCREL) {
12754         pc_arg &= ~TARGET_PAGE_MASK;
12755     }
12756     tcg_gen_insn_start(pc_arg, 0, 0);
12757     dc->insn_start_updated = false;
12758 }
12759 
12760 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12761 {
12762     DisasContext *s = container_of(dcbase, DisasContext, base);
12763     CPUARMState *env = cpu_env(cpu);
12764     uint64_t pc = s->base.pc_next;
12765     uint32_t insn;
12766 
12767     /* Singlestep exceptions have the highest priority. */
12768     if (s->ss_active && !s->pstate_ss) {
12769         /* Singlestep state is Active-pending.
12770          * If we're in this state at the start of a TB then either
12771          *  a) we just took an exception to an EL which is being debugged
12772          *     and this is the first insn in the exception handler
12773          *  b) debug exceptions were masked and we just unmasked them
12774          *     without changing EL (eg by clearing PSTATE.D)
12775          * In either case we're going to take a swstep exception in the
12776          * "did not step an insn" case, and so the syndrome ISV and EX
12777          * bits should be zero.
12778          */
12779         assert(s->base.num_insns == 1);
12780         gen_swstep_exception(s, 0, 0);
12781         s->base.is_jmp = DISAS_NORETURN;
12782         s->base.pc_next = pc + 4;
12783         return;
12784     }
12785 
12786     if (pc & 3) {
12787         /*
12788          * PC alignment fault.  This has priority over the instruction abort
12789          * that we would receive from a translation fault via arm_ldl_code.
12790          * This should only be possible after an indirect branch, at the
12791          * start of the TB.
12792          */
12793         assert(s->base.num_insns == 1);
12794         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12795         s->base.is_jmp = DISAS_NORETURN;
12796         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12797         return;
12798     }
12799 
12800     s->pc_curr = pc;
12801     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12802     s->insn = insn;
12803     s->base.pc_next = pc + 4;
12804 
12805     s->fp_access_checked = false;
12806     s->sve_access_checked = false;
12807 
12808     if (s->pstate_il) {
12809         /*
12810          * Illegal execution state. This has priority over BTI
12811          * exceptions, but comes after instruction abort exceptions.
12812          */
12813         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12814         return;
12815     }
12816 
12817     if (dc_isar_feature(aa64_bti, s)) {
12818         if (s->base.num_insns == 1) {
12819             /*
12820              * At the first insn of the TB, compute s->guarded_page.
12821              * We delayed computing this until successfully reading
12822              * the first insn of the TB, above.  This (mostly) ensures
12823              * that the softmmu tlb entry has been populated, and the
12824              * page table GP bit is available.
12825              *
12826              * Note that we need to compute this even if btype == 0,
12827              * because this value is used for BR instructions later
12828              * where ENV is not available.
12829              */
12830             s->guarded_page = is_guarded_page(env, s);
12831 
12832             /* First insn can have btype set to non-zero.  */
12833             tcg_debug_assert(s->btype >= 0);
12834 
12835             /*
12836              * Note that the Branch Target Exception has fairly high
12837              * priority -- below debugging exceptions but above most
12838              * everything else.  This allows us to handle this now
12839              * instead of waiting until the insn is otherwise decoded.
12840              */
12841             if (s->btype != 0
12842                 && s->guarded_page
12843                 && !btype_destination_ok(insn, s->bt, s->btype)) {
12844                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12845                 return;
12846             }
12847         } else {
12848             /* Not the first insn: btype must be 0.  */
12849             tcg_debug_assert(s->btype == 0);
12850         }
12851     }
12852 
12853     s->is_nonstreaming = false;
12854     if (s->sme_trap_nonstreaming) {
12855         disas_sme_fa64(s, insn);
12856     }
12857 
12858     if (!disas_a64(s, insn) &&
12859         !disas_sme(s, insn) &&
12860         !disas_sve(s, insn)) {
12861         disas_a64_legacy(s, insn);
12862     }
12863 
12864     /*
12865      * After execution of most insns, btype is reset to 0.
12866      * Note that we set btype == -1 when the insn sets btype.
12867      */
12868     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12869         reset_btype(s);
12870     }
12871 }
12872 
12873 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12874 {
12875     DisasContext *dc = container_of(dcbase, DisasContext, base);
12876 
12877     if (unlikely(dc->ss_active)) {
12878         /* Note that this means single stepping WFI doesn't halt the CPU.
12879          * For conditional branch insns this is harmless unreachable code as
12880          * gen_goto_tb() has already handled emitting the debug exception
12881          * (and thus a tb-jump is not possible when singlestepping).
12882          */
12883         switch (dc->base.is_jmp) {
12884         default:
12885             gen_a64_update_pc(dc, 4);
12886             /* fall through */
12887         case DISAS_EXIT:
12888         case DISAS_JUMP:
12889             gen_step_complete_exception(dc);
12890             break;
12891         case DISAS_NORETURN:
12892             break;
12893         }
12894     } else {
12895         switch (dc->base.is_jmp) {
12896         case DISAS_NEXT:
12897         case DISAS_TOO_MANY:
12898             gen_goto_tb(dc, 1, 4);
12899             break;
12900         default:
12901         case DISAS_UPDATE_EXIT:
12902             gen_a64_update_pc(dc, 4);
12903             /* fall through */
12904         case DISAS_EXIT:
12905             tcg_gen_exit_tb(NULL, 0);
12906             break;
12907         case DISAS_UPDATE_NOCHAIN:
12908             gen_a64_update_pc(dc, 4);
12909             /* fall through */
12910         case DISAS_JUMP:
12911             tcg_gen_lookup_and_goto_ptr();
12912             break;
12913         case DISAS_NORETURN:
12914         case DISAS_SWI:
12915             break;
12916         case DISAS_WFE:
12917             gen_a64_update_pc(dc, 4);
12918             gen_helper_wfe(tcg_env);
12919             break;
12920         case DISAS_YIELD:
12921             gen_a64_update_pc(dc, 4);
12922             gen_helper_yield(tcg_env);
12923             break;
12924         case DISAS_WFI:
12925             /*
12926              * This is a special case because we don't want to just halt
12927              * the CPU if trying to debug across a WFI.
12928              */
12929             gen_a64_update_pc(dc, 4);
12930             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12931             /*
12932              * The helper doesn't necessarily throw an exception, but we
12933              * must go back to the main loop to check for interrupts anyway.
12934              */
12935             tcg_gen_exit_tb(NULL, 0);
12936             break;
12937         }
12938     }
12939 }
12940 
12941 const TranslatorOps aarch64_translator_ops = {
12942     .init_disas_context = aarch64_tr_init_disas_context,
12943     .tb_start           = aarch64_tr_tb_start,
12944     .insn_start         = aarch64_tr_insn_start,
12945     .translate_insn     = aarch64_tr_translate_insn,
12946     .tb_stop            = aarch64_tr_tb_stop,
12947 };
12948