1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1356 { 1357 if (a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1367 { 1368 if (!a->q && a->esz == MO_64) { 1369 return false; 1370 } 1371 if (fp_access_check(s)) { 1372 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1373 } 1374 return true; 1375 } 1376 1377 /* 1378 * This utility function is for doing register extension with an 1379 * optional shift. You will likely want to pass a temporary for the 1380 * destination register. See DecodeRegExtend() in the ARM ARM. 1381 */ 1382 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1383 int option, unsigned int shift) 1384 { 1385 int extsize = extract32(option, 0, 2); 1386 bool is_signed = extract32(option, 2, 1); 1387 1388 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1389 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1390 } 1391 1392 static inline void gen_check_sp_alignment(DisasContext *s) 1393 { 1394 /* The AArch64 architecture mandates that (if enabled via PSTATE 1395 * or SCTLR bits) there is a check that SP is 16-aligned on every 1396 * SP-relative load or store (with an exception generated if it is not). 1397 * In line with general QEMU practice regarding misaligned accesses, 1398 * we omit these checks for the sake of guest program performance. 1399 * This function is provided as a hook so we can more easily add these 1400 * checks in future (possibly as a "favour catching guest program bugs 1401 * over speed" user selectable option). 1402 */ 1403 } 1404 1405 /* 1406 * This provides a simple table based table lookup decoder. It is 1407 * intended to be used when the relevant bits for decode are too 1408 * awkwardly placed and switch/if based logic would be confusing and 1409 * deeply nested. Since it's a linear search through the table, tables 1410 * should be kept small. 1411 * 1412 * It returns the first handler where insn & mask == pattern, or 1413 * NULL if there is no match. 1414 * The table is terminated by an empty mask (i.e. 0) 1415 */ 1416 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1417 uint32_t insn) 1418 { 1419 const AArch64DecodeTable *tptr = table; 1420 1421 while (tptr->mask) { 1422 if ((insn & tptr->mask) == tptr->pattern) { 1423 return tptr->disas_fn; 1424 } 1425 tptr++; 1426 } 1427 return NULL; 1428 } 1429 1430 /* 1431 * The instruction disassembly implemented here matches 1432 * the instruction encoding classifications in chapter C4 1433 * of the ARM Architecture Reference Manual (DDI0487B_a); 1434 * classification names and decode diagrams here should generally 1435 * match up with those in the manual. 1436 */ 1437 1438 static bool trans_B(DisasContext *s, arg_i *a) 1439 { 1440 reset_btype(s); 1441 gen_goto_tb(s, 0, a->imm); 1442 return true; 1443 } 1444 1445 static bool trans_BL(DisasContext *s, arg_i *a) 1446 { 1447 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1448 reset_btype(s); 1449 gen_goto_tb(s, 0, a->imm); 1450 return true; 1451 } 1452 1453 1454 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1455 { 1456 DisasLabel match; 1457 TCGv_i64 tcg_cmp; 1458 1459 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1460 reset_btype(s); 1461 1462 match = gen_disas_label(s); 1463 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1464 tcg_cmp, 0, match.label); 1465 gen_goto_tb(s, 0, 4); 1466 set_disas_label(s, match); 1467 gen_goto_tb(s, 1, a->imm); 1468 return true; 1469 } 1470 1471 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1472 { 1473 DisasLabel match; 1474 TCGv_i64 tcg_cmp; 1475 1476 tcg_cmp = tcg_temp_new_i64(); 1477 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1478 1479 reset_btype(s); 1480 1481 match = gen_disas_label(s); 1482 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1483 tcg_cmp, 0, match.label); 1484 gen_goto_tb(s, 0, 4); 1485 set_disas_label(s, match); 1486 gen_goto_tb(s, 1, a->imm); 1487 return true; 1488 } 1489 1490 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1491 { 1492 /* BC.cond is only present with FEAT_HBC */ 1493 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1494 return false; 1495 } 1496 reset_btype(s); 1497 if (a->cond < 0x0e) { 1498 /* genuinely conditional branches */ 1499 DisasLabel match = gen_disas_label(s); 1500 arm_gen_test_cc(a->cond, match.label); 1501 gen_goto_tb(s, 0, 4); 1502 set_disas_label(s, match); 1503 gen_goto_tb(s, 1, a->imm); 1504 } else { 1505 /* 0xe and 0xf are both "always" conditions */ 1506 gen_goto_tb(s, 0, a->imm); 1507 } 1508 return true; 1509 } 1510 1511 static void set_btype_for_br(DisasContext *s, int rn) 1512 { 1513 if (dc_isar_feature(aa64_bti, s)) { 1514 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1515 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1516 } 1517 } 1518 1519 static void set_btype_for_blr(DisasContext *s) 1520 { 1521 if (dc_isar_feature(aa64_bti, s)) { 1522 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1523 set_btype(s, 2); 1524 } 1525 } 1526 1527 static bool trans_BR(DisasContext *s, arg_r *a) 1528 { 1529 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1530 set_btype_for_br(s, a->rn); 1531 s->base.is_jmp = DISAS_JUMP; 1532 return true; 1533 } 1534 1535 static bool trans_BLR(DisasContext *s, arg_r *a) 1536 { 1537 TCGv_i64 dst = cpu_reg(s, a->rn); 1538 TCGv_i64 lr = cpu_reg(s, 30); 1539 if (dst == lr) { 1540 TCGv_i64 tmp = tcg_temp_new_i64(); 1541 tcg_gen_mov_i64(tmp, dst); 1542 dst = tmp; 1543 } 1544 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1545 gen_a64_set_pc(s, dst); 1546 set_btype_for_blr(s); 1547 s->base.is_jmp = DISAS_JUMP; 1548 return true; 1549 } 1550 1551 static bool trans_RET(DisasContext *s, arg_r *a) 1552 { 1553 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1554 s->base.is_jmp = DISAS_JUMP; 1555 return true; 1556 } 1557 1558 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1559 TCGv_i64 modifier, bool use_key_a) 1560 { 1561 TCGv_i64 truedst; 1562 /* 1563 * Return the branch target for a BRAA/RETA/etc, which is either 1564 * just the destination dst, or that value with the pauth check 1565 * done and the code removed from the high bits. 1566 */ 1567 if (!s->pauth_active) { 1568 return dst; 1569 } 1570 1571 truedst = tcg_temp_new_i64(); 1572 if (use_key_a) { 1573 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1574 } else { 1575 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1576 } 1577 return truedst; 1578 } 1579 1580 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1581 { 1582 TCGv_i64 dst; 1583 1584 if (!dc_isar_feature(aa64_pauth, s)) { 1585 return false; 1586 } 1587 1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1589 gen_a64_set_pc(s, dst); 1590 set_btype_for_br(s, a->rn); 1591 s->base.is_jmp = DISAS_JUMP; 1592 return true; 1593 } 1594 1595 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1596 { 1597 TCGv_i64 dst, lr; 1598 1599 if (!dc_isar_feature(aa64_pauth, s)) { 1600 return false; 1601 } 1602 1603 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1604 lr = cpu_reg(s, 30); 1605 if (dst == lr) { 1606 TCGv_i64 tmp = tcg_temp_new_i64(); 1607 tcg_gen_mov_i64(tmp, dst); 1608 dst = tmp; 1609 } 1610 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1611 gen_a64_set_pc(s, dst); 1612 set_btype_for_blr(s); 1613 s->base.is_jmp = DISAS_JUMP; 1614 return true; 1615 } 1616 1617 static bool trans_RETA(DisasContext *s, arg_reta *a) 1618 { 1619 TCGv_i64 dst; 1620 1621 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1622 gen_a64_set_pc(s, dst); 1623 s->base.is_jmp = DISAS_JUMP; 1624 return true; 1625 } 1626 1627 static bool trans_BRA(DisasContext *s, arg_bra *a) 1628 { 1629 TCGv_i64 dst; 1630 1631 if (!dc_isar_feature(aa64_pauth, s)) { 1632 return false; 1633 } 1634 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1635 gen_a64_set_pc(s, dst); 1636 set_btype_for_br(s, a->rn); 1637 s->base.is_jmp = DISAS_JUMP; 1638 return true; 1639 } 1640 1641 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1642 { 1643 TCGv_i64 dst, lr; 1644 1645 if (!dc_isar_feature(aa64_pauth, s)) { 1646 return false; 1647 } 1648 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1649 lr = cpu_reg(s, 30); 1650 if (dst == lr) { 1651 TCGv_i64 tmp = tcg_temp_new_i64(); 1652 tcg_gen_mov_i64(tmp, dst); 1653 dst = tmp; 1654 } 1655 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1656 gen_a64_set_pc(s, dst); 1657 set_btype_for_blr(s); 1658 s->base.is_jmp = DISAS_JUMP; 1659 return true; 1660 } 1661 1662 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1663 { 1664 TCGv_i64 dst; 1665 1666 if (s->current_el == 0) { 1667 return false; 1668 } 1669 if (s->trap_eret) { 1670 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1671 return true; 1672 } 1673 dst = tcg_temp_new_i64(); 1674 tcg_gen_ld_i64(dst, tcg_env, 1675 offsetof(CPUARMState, elr_el[s->current_el])); 1676 1677 translator_io_start(&s->base); 1678 1679 gen_helper_exception_return(tcg_env, dst); 1680 /* Must exit loop to check un-masked IRQs */ 1681 s->base.is_jmp = DISAS_EXIT; 1682 return true; 1683 } 1684 1685 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1686 { 1687 TCGv_i64 dst; 1688 1689 if (!dc_isar_feature(aa64_pauth, s)) { 1690 return false; 1691 } 1692 if (s->current_el == 0) { 1693 return false; 1694 } 1695 /* The FGT trap takes precedence over an auth trap. */ 1696 if (s->trap_eret) { 1697 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1698 return true; 1699 } 1700 dst = tcg_temp_new_i64(); 1701 tcg_gen_ld_i64(dst, tcg_env, 1702 offsetof(CPUARMState, elr_el[s->current_el])); 1703 1704 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1705 1706 translator_io_start(&s->base); 1707 1708 gen_helper_exception_return(tcg_env, dst); 1709 /* Must exit loop to check un-masked IRQs */ 1710 s->base.is_jmp = DISAS_EXIT; 1711 return true; 1712 } 1713 1714 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1715 { 1716 return true; 1717 } 1718 1719 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1720 { 1721 /* 1722 * When running in MTTCG we don't generate jumps to the yield and 1723 * WFE helpers as it won't affect the scheduling of other vCPUs. 1724 * If we wanted to more completely model WFE/SEV so we don't busy 1725 * spin unnecessarily we would need to do something more involved. 1726 */ 1727 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1728 s->base.is_jmp = DISAS_YIELD; 1729 } 1730 return true; 1731 } 1732 1733 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1734 { 1735 s->base.is_jmp = DISAS_WFI; 1736 return true; 1737 } 1738 1739 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1740 { 1741 /* 1742 * When running in MTTCG we don't generate jumps to the yield and 1743 * WFE helpers as it won't affect the scheduling of other vCPUs. 1744 * If we wanted to more completely model WFE/SEV so we don't busy 1745 * spin unnecessarily we would need to do something more involved. 1746 */ 1747 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1748 s->base.is_jmp = DISAS_WFE; 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1754 { 1755 if (s->pauth_active) { 1756 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1757 } 1758 return true; 1759 } 1760 1761 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1762 { 1763 if (s->pauth_active) { 1764 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1765 } 1766 return true; 1767 } 1768 1769 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1770 { 1771 if (s->pauth_active) { 1772 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1773 } 1774 return true; 1775 } 1776 1777 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1778 { 1779 if (s->pauth_active) { 1780 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1781 } 1782 return true; 1783 } 1784 1785 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1786 { 1787 if (s->pauth_active) { 1788 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1789 } 1790 return true; 1791 } 1792 1793 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1794 { 1795 /* Without RAS, we must implement this as NOP. */ 1796 if (dc_isar_feature(aa64_ras, s)) { 1797 /* 1798 * QEMU does not have a source of physical SErrors, 1799 * so we are only concerned with virtual SErrors. 1800 * The pseudocode in the ARM for this case is 1801 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1802 * AArch64.vESBOperation(); 1803 * Most of the condition can be evaluated at translation time. 1804 * Test for EL2 present, and defer test for SEL2 to runtime. 1805 */ 1806 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1807 gen_helper_vesb(tcg_env); 1808 } 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1838 { 1839 if (s->pauth_active) { 1840 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1841 } 1842 return true; 1843 } 1844 1845 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1846 { 1847 if (s->pauth_active) { 1848 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1849 } 1850 return true; 1851 } 1852 1853 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1854 { 1855 if (s->pauth_active) { 1856 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1857 } 1858 return true; 1859 } 1860 1861 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1862 { 1863 if (s->pauth_active) { 1864 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1865 } 1866 return true; 1867 } 1868 1869 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1870 { 1871 if (s->pauth_active) { 1872 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1873 } 1874 return true; 1875 } 1876 1877 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1878 { 1879 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1880 return true; 1881 } 1882 1883 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1884 { 1885 /* We handle DSB and DMB the same way */ 1886 TCGBar bar; 1887 1888 switch (a->types) { 1889 case 1: /* MBReqTypes_Reads */ 1890 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1891 break; 1892 case 2: /* MBReqTypes_Writes */ 1893 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1894 break; 1895 default: /* MBReqTypes_All */ 1896 bar = TCG_BAR_SC | TCG_MO_ALL; 1897 break; 1898 } 1899 tcg_gen_mb(bar); 1900 return true; 1901 } 1902 1903 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1904 { 1905 /* 1906 * We need to break the TB after this insn to execute 1907 * self-modifying code correctly and also to take 1908 * any pending interrupts immediately. 1909 */ 1910 reset_btype(s); 1911 gen_goto_tb(s, 0, 4); 1912 return true; 1913 } 1914 1915 static bool trans_SB(DisasContext *s, arg_SB *a) 1916 { 1917 if (!dc_isar_feature(aa64_sb, s)) { 1918 return false; 1919 } 1920 /* 1921 * TODO: There is no speculation barrier opcode for TCG; 1922 * MB and end the TB instead. 1923 */ 1924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1925 gen_goto_tb(s, 0, 4); 1926 return true; 1927 } 1928 1929 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1930 { 1931 if (!dc_isar_feature(aa64_condm_4, s)) { 1932 return false; 1933 } 1934 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1935 return true; 1936 } 1937 1938 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1939 { 1940 TCGv_i32 z; 1941 1942 if (!dc_isar_feature(aa64_condm_5, s)) { 1943 return false; 1944 } 1945 1946 z = tcg_temp_new_i32(); 1947 1948 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1949 1950 /* 1951 * (!C & !Z) << 31 1952 * (!(C | Z)) << 31 1953 * ~((C | Z) << 31) 1954 * ~-(C | Z) 1955 * (C | Z) - 1 1956 */ 1957 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1958 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1959 1960 /* !(Z & C) */ 1961 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1962 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1963 1964 /* (!C & Z) << 31 -> -(Z & ~C) */ 1965 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1966 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1967 1968 /* C | Z */ 1969 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1970 1971 return true; 1972 } 1973 1974 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1975 { 1976 if (!dc_isar_feature(aa64_condm_5, s)) { 1977 return false; 1978 } 1979 1980 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1981 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1982 1983 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1984 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1985 1986 tcg_gen_movi_i32(cpu_NF, 0); 1987 tcg_gen_movi_i32(cpu_VF, 0); 1988 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_UAO); 1999 } else { 2000 clear_pstate_bits(PSTATE_UAO); 2001 } 2002 gen_rebuild_hflags(s); 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_PAN); 2014 } else { 2015 clear_pstate_bits(PSTATE_PAN); 2016 } 2017 gen_rebuild_hflags(s); 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2023 { 2024 if (s->current_el == 0) { 2025 return false; 2026 } 2027 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2028 s->base.is_jmp = DISAS_TOO_MANY; 2029 return true; 2030 } 2031 2032 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2033 { 2034 if (!dc_isar_feature(aa64_ssbs, s)) { 2035 return false; 2036 } 2037 if (a->imm & 1) { 2038 set_pstate_bits(PSTATE_SSBS); 2039 } else { 2040 clear_pstate_bits(PSTATE_SSBS); 2041 } 2042 /* Don't need to rebuild hflags since SSBS is a nop */ 2043 s->base.is_jmp = DISAS_TOO_MANY; 2044 return true; 2045 } 2046 2047 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2048 { 2049 if (!dc_isar_feature(aa64_dit, s)) { 2050 return false; 2051 } 2052 if (a->imm & 1) { 2053 set_pstate_bits(PSTATE_DIT); 2054 } else { 2055 clear_pstate_bits(PSTATE_DIT); 2056 } 2057 /* There's no need to rebuild hflags because DIT is a nop */ 2058 s->base.is_jmp = DISAS_TOO_MANY; 2059 return true; 2060 } 2061 2062 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2063 { 2064 if (dc_isar_feature(aa64_mte, s)) { 2065 /* Full MTE is enabled -- set the TCO bit as directed. */ 2066 if (a->imm & 1) { 2067 set_pstate_bits(PSTATE_TCO); 2068 } else { 2069 clear_pstate_bits(PSTATE_TCO); 2070 } 2071 gen_rebuild_hflags(s); 2072 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2073 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2074 return true; 2075 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2076 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2077 return true; 2078 } else { 2079 /* Insn not present */ 2080 return false; 2081 } 2082 } 2083 2084 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2085 { 2086 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2087 s->base.is_jmp = DISAS_TOO_MANY; 2088 return true; 2089 } 2090 2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2092 { 2093 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2094 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2095 s->base.is_jmp = DISAS_UPDATE_EXIT; 2096 return true; 2097 } 2098 2099 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2100 { 2101 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2102 return false; 2103 } 2104 2105 if (a->imm == 0) { 2106 clear_pstate_bits(PSTATE_ALLINT); 2107 } else if (s->current_el > 1) { 2108 set_pstate_bits(PSTATE_ALLINT); 2109 } else { 2110 gen_helper_msr_set_allint_el1(tcg_env); 2111 } 2112 2113 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2114 s->base.is_jmp = DISAS_UPDATE_EXIT; 2115 return true; 2116 } 2117 2118 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2119 { 2120 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2121 return false; 2122 } 2123 if (sme_access_check(s)) { 2124 int old = s->pstate_sm | (s->pstate_za << 1); 2125 int new = a->imm * 3; 2126 2127 if ((old ^ new) & a->mask) { 2128 /* At least one bit changes. */ 2129 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2130 tcg_constant_i32(a->mask)); 2131 s->base.is_jmp = DISAS_TOO_MANY; 2132 } 2133 } 2134 return true; 2135 } 2136 2137 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2138 { 2139 TCGv_i32 tmp = tcg_temp_new_i32(); 2140 TCGv_i32 nzcv = tcg_temp_new_i32(); 2141 2142 /* build bit 31, N */ 2143 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2144 /* build bit 30, Z */ 2145 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2146 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2147 /* build bit 29, C */ 2148 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2149 /* build bit 28, V */ 2150 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2151 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2152 /* generate result */ 2153 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2154 } 2155 2156 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2157 { 2158 TCGv_i32 nzcv = tcg_temp_new_i32(); 2159 2160 /* take NZCV from R[t] */ 2161 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2162 2163 /* bit 31, N */ 2164 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2165 /* bit 30, Z */ 2166 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2167 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2168 /* bit 29, C */ 2169 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2170 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2171 /* bit 28, V */ 2172 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2173 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2174 } 2175 2176 static void gen_sysreg_undef(DisasContext *s, bool isread, 2177 uint8_t op0, uint8_t op1, uint8_t op2, 2178 uint8_t crn, uint8_t crm, uint8_t rt) 2179 { 2180 /* 2181 * Generate code to emit an UNDEF with correct syndrome 2182 * information for a failed system register access. 2183 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2184 * but if FEAT_IDST is implemented then read accesses to registers 2185 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2186 * syndrome. 2187 */ 2188 uint32_t syndrome; 2189 2190 if (isread && dc_isar_feature(aa64_ids, s) && 2191 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2192 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2193 } else { 2194 syndrome = syn_uncategorized(); 2195 } 2196 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2197 } 2198 2199 /* MRS - move from system register 2200 * MSR (register) - move to system register 2201 * SYS 2202 * SYSL 2203 * These are all essentially the same insn in 'read' and 'write' 2204 * versions, with varying op0 fields. 2205 */ 2206 static void handle_sys(DisasContext *s, bool isread, 2207 unsigned int op0, unsigned int op1, unsigned int op2, 2208 unsigned int crn, unsigned int crm, unsigned int rt) 2209 { 2210 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2211 crn, crm, op0, op1, op2); 2212 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2213 bool need_exit_tb = false; 2214 bool nv_trap_to_el2 = false; 2215 bool nv_redirect_reg = false; 2216 bool skip_fp_access_checks = false; 2217 bool nv2_mem_redirect = false; 2218 TCGv_ptr tcg_ri = NULL; 2219 TCGv_i64 tcg_rt; 2220 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2221 2222 if (crn == 11 || crn == 15) { 2223 /* 2224 * Check for TIDCP trap, which must take precedence over 2225 * the UNDEF for "no such register" etc. 2226 */ 2227 switch (s->current_el) { 2228 case 0: 2229 if (dc_isar_feature(aa64_tidcp1, s)) { 2230 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2231 } 2232 break; 2233 case 1: 2234 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2235 break; 2236 } 2237 } 2238 2239 if (!ri) { 2240 /* Unknown register; this might be a guest error or a QEMU 2241 * unimplemented feature. 2242 */ 2243 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2244 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2245 isread ? "read" : "write", op0, op1, crn, crm, op2); 2246 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2247 return; 2248 } 2249 2250 if (s->nv2 && ri->nv2_redirect_offset) { 2251 /* 2252 * Some registers always redirect to memory; some only do so if 2253 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2254 * pairs which share an offset; see the table in R_CSRPQ). 2255 */ 2256 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2257 nv2_mem_redirect = s->nv1; 2258 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2259 nv2_mem_redirect = !s->nv1; 2260 } else { 2261 nv2_mem_redirect = true; 2262 } 2263 } 2264 2265 /* Check access permissions */ 2266 if (!cp_access_ok(s->current_el, ri, isread)) { 2267 /* 2268 * FEAT_NV/NV2 handling does not do the usual FP access checks 2269 * for registers only accessible at EL2 (though it *does* do them 2270 * for registers accessible at EL1). 2271 */ 2272 skip_fp_access_checks = true; 2273 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2274 /* 2275 * This is one of the few EL2 registers which should redirect 2276 * to the equivalent EL1 register. We do that after running 2277 * the EL2 register's accessfn. 2278 */ 2279 nv_redirect_reg = true; 2280 assert(!nv2_mem_redirect); 2281 } else if (nv2_mem_redirect) { 2282 /* 2283 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2284 * UNDEF to EL1. 2285 */ 2286 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2287 /* 2288 * This register / instruction exists and is an EL2 register, so 2289 * we must trap to EL2 if accessed in nested virtualization EL1 2290 * instead of UNDEFing. We'll do that after the usual access checks. 2291 * (This makes a difference only for a couple of registers like 2292 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2293 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2294 * an accessfn which does nothing when called from EL1, because 2295 * the trap-to-EL3 controls which would apply to that register 2296 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2297 */ 2298 nv_trap_to_el2 = true; 2299 } else { 2300 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2301 return; 2302 } 2303 } 2304 2305 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2306 /* Emit code to perform further access permissions checks at 2307 * runtime; this may result in an exception. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 tcg_ri = tcg_temp_new_ptr(); 2311 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2312 tcg_constant_i32(key), 2313 tcg_constant_i32(syndrome), 2314 tcg_constant_i32(isread)); 2315 } else if (ri->type & ARM_CP_RAISES_EXC) { 2316 /* 2317 * The readfn or writefn might raise an exception; 2318 * synchronize the CPU state in case it does. 2319 */ 2320 gen_a64_update_pc(s, 0); 2321 } 2322 2323 if (!skip_fp_access_checks) { 2324 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2325 return; 2326 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2327 return; 2328 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2329 return; 2330 } 2331 } 2332 2333 if (nv_trap_to_el2) { 2334 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2335 return; 2336 } 2337 2338 if (nv_redirect_reg) { 2339 /* 2340 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2341 * Conveniently in all cases the encoding of the EL1 register is 2342 * identical to the EL2 register except that opc1 is 0. 2343 * Get the reginfo for the EL1 register to use for the actual access. 2344 * We don't use the EL1 register's access function, and 2345 * fine-grained-traps on EL1 also do not apply here. 2346 */ 2347 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2348 crn, crm, op0, 0, op2); 2349 ri = get_arm_cp_reginfo(s->cp_regs, key); 2350 assert(ri); 2351 assert(cp_access_ok(s->current_el, ri, isread)); 2352 /* 2353 * We might not have done an update_pc earlier, so check we don't 2354 * need it. We could support this in future if necessary. 2355 */ 2356 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2357 } 2358 2359 if (nv2_mem_redirect) { 2360 /* 2361 * This system register is being redirected into an EL2 memory access. 2362 * This means it is not an IO operation, doesn't change hflags, 2363 * and need not end the TB, because it has no side effects. 2364 * 2365 * The access is 64-bit single copy atomic, guaranteed aligned because 2366 * of the definition of VCNR_EL2. Its endianness depends on 2367 * SCTLR_EL2.EE, not on the data endianness of EL1. 2368 * It is done under either the EL2 translation regime or the EL2&0 2369 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2370 * PSTATE.PAN is 0. 2371 */ 2372 TCGv_i64 ptr = tcg_temp_new_i64(); 2373 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2374 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2375 int memidx = arm_to_core_mmu_idx(armmemidx); 2376 uint32_t syn; 2377 2378 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2379 2380 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2381 tcg_gen_addi_i64(ptr, ptr, 2382 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2383 tcg_rt = cpu_reg(s, rt); 2384 2385 syn = syn_data_abort_vncr(0, !isread, 0); 2386 disas_set_insn_syndrome(s, syn); 2387 if (isread) { 2388 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2389 } else { 2390 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2391 } 2392 return; 2393 } 2394 2395 /* Handle special cases first */ 2396 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2397 case 0: 2398 break; 2399 case ARM_CP_NOP: 2400 return; 2401 case ARM_CP_NZCV: 2402 tcg_rt = cpu_reg(s, rt); 2403 if (isread) { 2404 gen_get_nzcv(tcg_rt); 2405 } else { 2406 gen_set_nzcv(tcg_rt); 2407 } 2408 return; 2409 case ARM_CP_CURRENTEL: 2410 { 2411 /* 2412 * Reads as current EL value from pstate, which is 2413 * guaranteed to be constant by the tb flags. 2414 * For nested virt we should report EL2. 2415 */ 2416 int el = s->nv ? 2 : s->current_el; 2417 tcg_rt = cpu_reg(s, rt); 2418 tcg_gen_movi_i64(tcg_rt, el << 2); 2419 return; 2420 } 2421 case ARM_CP_DC_ZVA: 2422 /* Writes clear the aligned block of memory which rt points into. */ 2423 if (s->mte_active[0]) { 2424 int desc = 0; 2425 2426 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2427 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2428 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2429 2430 tcg_rt = tcg_temp_new_i64(); 2431 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2432 tcg_constant_i32(desc), cpu_reg(s, rt)); 2433 } else { 2434 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2435 } 2436 gen_helper_dc_zva(tcg_env, tcg_rt); 2437 return; 2438 case ARM_CP_DC_GVA: 2439 { 2440 TCGv_i64 clean_addr, tag; 2441 2442 /* 2443 * DC_GVA, like DC_ZVA, requires that we supply the original 2444 * pointer for an invalid page. Probe that address first. 2445 */ 2446 tcg_rt = cpu_reg(s, rt); 2447 clean_addr = clean_data_tbi(s, tcg_rt); 2448 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2449 2450 if (s->ata[0]) { 2451 /* Extract the tag from the register to match STZGM. */ 2452 tag = tcg_temp_new_i64(); 2453 tcg_gen_shri_i64(tag, tcg_rt, 56); 2454 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2455 } 2456 } 2457 return; 2458 case ARM_CP_DC_GZVA: 2459 { 2460 TCGv_i64 clean_addr, tag; 2461 2462 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2463 tcg_rt = cpu_reg(s, rt); 2464 clean_addr = clean_data_tbi(s, tcg_rt); 2465 gen_helper_dc_zva(tcg_env, clean_addr); 2466 2467 if (s->ata[0]) { 2468 /* Extract the tag from the register to match STZGM. */ 2469 tag = tcg_temp_new_i64(); 2470 tcg_gen_shri_i64(tag, tcg_rt, 56); 2471 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2472 } 2473 } 2474 return; 2475 default: 2476 g_assert_not_reached(); 2477 } 2478 2479 if (ri->type & ARM_CP_IO) { 2480 /* I/O operations must end the TB here (whether read or write) */ 2481 need_exit_tb = translator_io_start(&s->base); 2482 } 2483 2484 tcg_rt = cpu_reg(s, rt); 2485 2486 if (isread) { 2487 if (ri->type & ARM_CP_CONST) { 2488 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2489 } else if (ri->readfn) { 2490 if (!tcg_ri) { 2491 tcg_ri = gen_lookup_cp_reg(key); 2492 } 2493 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2494 } else { 2495 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2496 } 2497 } else { 2498 if (ri->type & ARM_CP_CONST) { 2499 /* If not forbidden by access permissions, treat as WI */ 2500 return; 2501 } else if (ri->writefn) { 2502 if (!tcg_ri) { 2503 tcg_ri = gen_lookup_cp_reg(key); 2504 } 2505 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2506 } else { 2507 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2508 } 2509 } 2510 2511 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2512 /* 2513 * A write to any coprocessor register that ends a TB 2514 * must rebuild the hflags for the next TB. 2515 */ 2516 gen_rebuild_hflags(s); 2517 /* 2518 * We default to ending the TB on a coprocessor register write, 2519 * but allow this to be suppressed by the register definition 2520 * (usually only necessary to work around guest bugs). 2521 */ 2522 need_exit_tb = true; 2523 } 2524 if (need_exit_tb) { 2525 s->base.is_jmp = DISAS_UPDATE_EXIT; 2526 } 2527 } 2528 2529 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2530 { 2531 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2532 return true; 2533 } 2534 2535 static bool trans_SVC(DisasContext *s, arg_i *a) 2536 { 2537 /* 2538 * For SVC, HVC and SMC we advance the single-step state 2539 * machine before taking the exception. This is architecturally 2540 * mandated, to ensure that single-stepping a system call 2541 * instruction works properly. 2542 */ 2543 uint32_t syndrome = syn_aa64_svc(a->imm); 2544 if (s->fgt_svc) { 2545 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2546 return true; 2547 } 2548 gen_ss_advance(s); 2549 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2550 return true; 2551 } 2552 2553 static bool trans_HVC(DisasContext *s, arg_i *a) 2554 { 2555 int target_el = s->current_el == 3 ? 3 : 2; 2556 2557 if (s->current_el == 0) { 2558 unallocated_encoding(s); 2559 return true; 2560 } 2561 /* 2562 * The pre HVC helper handles cases when HVC gets trapped 2563 * as an undefined insn by runtime configuration. 2564 */ 2565 gen_a64_update_pc(s, 0); 2566 gen_helper_pre_hvc(tcg_env); 2567 /* Architecture requires ss advance before we do the actual work */ 2568 gen_ss_advance(s); 2569 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2570 return true; 2571 } 2572 2573 static bool trans_SMC(DisasContext *s, arg_i *a) 2574 { 2575 if (s->current_el == 0) { 2576 unallocated_encoding(s); 2577 return true; 2578 } 2579 gen_a64_update_pc(s, 0); 2580 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2581 /* Architecture requires ss advance before we do the actual work */ 2582 gen_ss_advance(s); 2583 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2584 return true; 2585 } 2586 2587 static bool trans_BRK(DisasContext *s, arg_i *a) 2588 { 2589 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2590 return true; 2591 } 2592 2593 static bool trans_HLT(DisasContext *s, arg_i *a) 2594 { 2595 /* 2596 * HLT. This has two purposes. 2597 * Architecturally, it is an external halting debug instruction. 2598 * Since QEMU doesn't implement external debug, we treat this as 2599 * it is required for halting debug disabled: it will UNDEF. 2600 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2601 */ 2602 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2603 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2604 } else { 2605 unallocated_encoding(s); 2606 } 2607 return true; 2608 } 2609 2610 /* 2611 * Load/Store exclusive instructions are implemented by remembering 2612 * the value/address loaded, and seeing if these are the same 2613 * when the store is performed. This is not actually the architecturally 2614 * mandated semantics, but it works for typical guest code sequences 2615 * and avoids having to monitor regular stores. 2616 * 2617 * The store exclusive uses the atomic cmpxchg primitives to avoid 2618 * races in multi-threaded linux-user and when MTTCG softmmu is 2619 * enabled. 2620 */ 2621 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2622 int size, bool is_pair) 2623 { 2624 int idx = get_mem_index(s); 2625 TCGv_i64 dirty_addr, clean_addr; 2626 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2627 2628 s->is_ldex = true; 2629 dirty_addr = cpu_reg_sp(s, rn); 2630 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2631 2632 g_assert(size <= 3); 2633 if (is_pair) { 2634 g_assert(size >= 2); 2635 if (size == 2) { 2636 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2637 if (s->be_data == MO_LE) { 2638 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2639 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2640 } else { 2641 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2642 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2643 } 2644 } else { 2645 TCGv_i128 t16 = tcg_temp_new_i128(); 2646 2647 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2648 2649 if (s->be_data == MO_LE) { 2650 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2651 cpu_exclusive_high, t16); 2652 } else { 2653 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2654 cpu_exclusive_val, t16); 2655 } 2656 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2657 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2658 } 2659 } else { 2660 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2661 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2662 } 2663 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2664 } 2665 2666 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2667 int rn, int size, int is_pair) 2668 { 2669 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2670 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2671 * [addr] = {Rt}; 2672 * if (is_pair) { 2673 * [addr + datasize] = {Rt2}; 2674 * } 2675 * {Rd} = 0; 2676 * } else { 2677 * {Rd} = 1; 2678 * } 2679 * env->exclusive_addr = -1; 2680 */ 2681 TCGLabel *fail_label = gen_new_label(); 2682 TCGLabel *done_label = gen_new_label(); 2683 TCGv_i64 tmp, clean_addr; 2684 MemOp memop; 2685 2686 /* 2687 * FIXME: We are out of spec here. We have recorded only the address 2688 * from load_exclusive, not the entire range, and we assume that the 2689 * size of the access on both sides match. The architecture allows the 2690 * store to be smaller than the load, so long as the stored bytes are 2691 * within the range recorded by the load. 2692 */ 2693 2694 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2695 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2696 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2697 2698 /* 2699 * The write, and any associated faults, only happen if the virtual 2700 * and physical addresses pass the exclusive monitor check. These 2701 * faults are exceedingly unlikely, because normally the guest uses 2702 * the exact same address register for the load_exclusive, and we 2703 * would have recognized these faults there. 2704 * 2705 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2706 * unaligned 4-byte write within the range of an aligned 8-byte load. 2707 * With LSE2, the store would need to cross a 16-byte boundary when the 2708 * load did not, which would mean the store is outside the range 2709 * recorded for the monitor, which would have failed a corrected monitor 2710 * check above. For now, we assume no size change and retain the 2711 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2712 * 2713 * It is possible to trigger an MTE fault, by performing the load with 2714 * a virtual address with a valid tag and performing the store with the 2715 * same virtual address and a different invalid tag. 2716 */ 2717 memop = size + is_pair; 2718 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2719 memop |= MO_ALIGN; 2720 } 2721 memop = finalize_memop(s, memop); 2722 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2723 2724 tmp = tcg_temp_new_i64(); 2725 if (is_pair) { 2726 if (size == 2) { 2727 if (s->be_data == MO_LE) { 2728 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2729 } else { 2730 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2731 } 2732 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2733 cpu_exclusive_val, tmp, 2734 get_mem_index(s), memop); 2735 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2736 } else { 2737 TCGv_i128 t16 = tcg_temp_new_i128(); 2738 TCGv_i128 c16 = tcg_temp_new_i128(); 2739 TCGv_i64 a, b; 2740 2741 if (s->be_data == MO_LE) { 2742 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2743 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2744 cpu_exclusive_high); 2745 } else { 2746 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2747 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2748 cpu_exclusive_val); 2749 } 2750 2751 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2752 get_mem_index(s), memop); 2753 2754 a = tcg_temp_new_i64(); 2755 b = tcg_temp_new_i64(); 2756 if (s->be_data == MO_LE) { 2757 tcg_gen_extr_i128_i64(a, b, t16); 2758 } else { 2759 tcg_gen_extr_i128_i64(b, a, t16); 2760 } 2761 2762 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2763 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2764 tcg_gen_or_i64(tmp, a, b); 2765 2766 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2767 } 2768 } else { 2769 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2770 cpu_reg(s, rt), get_mem_index(s), memop); 2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2772 } 2773 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2774 tcg_gen_br(done_label); 2775 2776 gen_set_label(fail_label); 2777 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2778 gen_set_label(done_label); 2779 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2780 } 2781 2782 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2783 int rn, int size) 2784 { 2785 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2786 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2787 int memidx = get_mem_index(s); 2788 TCGv_i64 clean_addr; 2789 MemOp memop; 2790 2791 if (rn == 31) { 2792 gen_check_sp_alignment(s); 2793 } 2794 memop = check_atomic_align(s, rn, size); 2795 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2796 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2797 memidx, memop); 2798 } 2799 2800 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2801 int rn, int size) 2802 { 2803 TCGv_i64 s1 = cpu_reg(s, rs); 2804 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2805 TCGv_i64 t1 = cpu_reg(s, rt); 2806 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2807 TCGv_i64 clean_addr; 2808 int memidx = get_mem_index(s); 2809 MemOp memop; 2810 2811 if (rn == 31) { 2812 gen_check_sp_alignment(s); 2813 } 2814 2815 /* This is a single atomic access, despite the "pair". */ 2816 memop = check_atomic_align(s, rn, size + 1); 2817 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2818 2819 if (size == 2) { 2820 TCGv_i64 cmp = tcg_temp_new_i64(); 2821 TCGv_i64 val = tcg_temp_new_i64(); 2822 2823 if (s->be_data == MO_LE) { 2824 tcg_gen_concat32_i64(val, t1, t2); 2825 tcg_gen_concat32_i64(cmp, s1, s2); 2826 } else { 2827 tcg_gen_concat32_i64(val, t2, t1); 2828 tcg_gen_concat32_i64(cmp, s2, s1); 2829 } 2830 2831 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2832 2833 if (s->be_data == MO_LE) { 2834 tcg_gen_extr32_i64(s1, s2, cmp); 2835 } else { 2836 tcg_gen_extr32_i64(s2, s1, cmp); 2837 } 2838 } else { 2839 TCGv_i128 cmp = tcg_temp_new_i128(); 2840 TCGv_i128 val = tcg_temp_new_i128(); 2841 2842 if (s->be_data == MO_LE) { 2843 tcg_gen_concat_i64_i128(val, t1, t2); 2844 tcg_gen_concat_i64_i128(cmp, s1, s2); 2845 } else { 2846 tcg_gen_concat_i64_i128(val, t2, t1); 2847 tcg_gen_concat_i64_i128(cmp, s2, s1); 2848 } 2849 2850 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2851 2852 if (s->be_data == MO_LE) { 2853 tcg_gen_extr_i128_i64(s1, s2, cmp); 2854 } else { 2855 tcg_gen_extr_i128_i64(s2, s1, cmp); 2856 } 2857 } 2858 } 2859 2860 /* 2861 * Compute the ISS.SF bit for syndrome information if an exception 2862 * is taken on a load or store. This indicates whether the instruction 2863 * is accessing a 32-bit or 64-bit register. This logic is derived 2864 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2865 */ 2866 static bool ldst_iss_sf(int size, bool sign, bool ext) 2867 { 2868 2869 if (sign) { 2870 /* 2871 * Signed loads are 64 bit results if we are not going to 2872 * do a zero-extend from 32 to 64 after the load. 2873 * (For a store, sign and ext are always false.) 2874 */ 2875 return !ext; 2876 } else { 2877 /* Unsigned loads/stores work at the specified size */ 2878 return size == MO_64; 2879 } 2880 } 2881 2882 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2883 { 2884 if (a->rn == 31) { 2885 gen_check_sp_alignment(s); 2886 } 2887 if (a->lasr) { 2888 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2889 } 2890 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2891 return true; 2892 } 2893 2894 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2895 { 2896 if (a->rn == 31) { 2897 gen_check_sp_alignment(s); 2898 } 2899 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2900 if (a->lasr) { 2901 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2902 } 2903 return true; 2904 } 2905 2906 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2907 { 2908 TCGv_i64 clean_addr; 2909 MemOp memop; 2910 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2911 2912 /* 2913 * StoreLORelease is the same as Store-Release for QEMU, but 2914 * needs the feature-test. 2915 */ 2916 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2917 return false; 2918 } 2919 /* Generate ISS for non-exclusive accesses including LASR. */ 2920 if (a->rn == 31) { 2921 gen_check_sp_alignment(s); 2922 } 2923 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2924 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2925 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2926 true, a->rn != 31, memop); 2927 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2928 iss_sf, a->lasr); 2929 return true; 2930 } 2931 2932 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2933 { 2934 TCGv_i64 clean_addr; 2935 MemOp memop; 2936 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2937 2938 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2939 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2940 return false; 2941 } 2942 /* Generate ISS for non-exclusive accesses including LASR. */ 2943 if (a->rn == 31) { 2944 gen_check_sp_alignment(s); 2945 } 2946 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2947 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2948 false, a->rn != 31, memop); 2949 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2950 a->rt, iss_sf, a->lasr); 2951 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2952 return true; 2953 } 2954 2955 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2956 { 2957 if (a->rn == 31) { 2958 gen_check_sp_alignment(s); 2959 } 2960 if (a->lasr) { 2961 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2962 } 2963 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2964 return true; 2965 } 2966 2967 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2968 { 2969 if (a->rn == 31) { 2970 gen_check_sp_alignment(s); 2971 } 2972 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2973 if (a->lasr) { 2974 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2975 } 2976 return true; 2977 } 2978 2979 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2980 { 2981 if (!dc_isar_feature(aa64_atomics, s)) { 2982 return false; 2983 } 2984 if (((a->rt | a->rs) & 1) != 0) { 2985 return false; 2986 } 2987 2988 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2989 return true; 2990 } 2991 2992 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2993 { 2994 if (!dc_isar_feature(aa64_atomics, s)) { 2995 return false; 2996 } 2997 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2998 return true; 2999 } 3000 3001 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3002 { 3003 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3004 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3005 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3006 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3007 3008 gen_pc_plus_diff(s, clean_addr, a->imm); 3009 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3010 false, true, a->rt, iss_sf, false); 3011 return true; 3012 } 3013 3014 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3015 { 3016 /* Load register (literal), vector version */ 3017 TCGv_i64 clean_addr; 3018 MemOp memop; 3019 3020 if (!fp_access_check(s)) { 3021 return true; 3022 } 3023 memop = finalize_memop_asimd(s, a->sz); 3024 clean_addr = tcg_temp_new_i64(); 3025 gen_pc_plus_diff(s, clean_addr, a->imm); 3026 do_fp_ld(s, a->rt, clean_addr, memop); 3027 return true; 3028 } 3029 3030 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3031 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3032 uint64_t offset, bool is_store, MemOp mop) 3033 { 3034 if (a->rn == 31) { 3035 gen_check_sp_alignment(s); 3036 } 3037 3038 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3039 if (!a->p) { 3040 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3041 } 3042 3043 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3044 (a->w || a->rn != 31), 2 << a->sz, mop); 3045 } 3046 3047 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3048 TCGv_i64 dirty_addr, uint64_t offset) 3049 { 3050 if (a->w) { 3051 if (a->p) { 3052 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3053 } 3054 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3055 } 3056 } 3057 3058 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3059 { 3060 uint64_t offset = a->imm << a->sz; 3061 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3062 MemOp mop = finalize_memop(s, a->sz); 3063 3064 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3065 tcg_rt = cpu_reg(s, a->rt); 3066 tcg_rt2 = cpu_reg(s, a->rt2); 3067 /* 3068 * We built mop above for the single logical access -- rebuild it 3069 * now for the paired operation. 3070 * 3071 * With LSE2, non-sign-extending pairs are treated atomically if 3072 * aligned, and if unaligned one of the pair will be completely 3073 * within a 16-byte block and that element will be atomic. 3074 * Otherwise each element is separately atomic. 3075 * In all cases, issue one operation with the correct atomicity. 3076 */ 3077 mop = a->sz + 1; 3078 if (s->align_mem) { 3079 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3080 } 3081 mop = finalize_memop_pair(s, mop); 3082 if (a->sz == 2) { 3083 TCGv_i64 tmp = tcg_temp_new_i64(); 3084 3085 if (s->be_data == MO_LE) { 3086 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3087 } else { 3088 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3089 } 3090 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3091 } else { 3092 TCGv_i128 tmp = tcg_temp_new_i128(); 3093 3094 if (s->be_data == MO_LE) { 3095 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3096 } else { 3097 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3098 } 3099 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3100 } 3101 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3102 return true; 3103 } 3104 3105 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3106 { 3107 uint64_t offset = a->imm << a->sz; 3108 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3109 MemOp mop = finalize_memop(s, a->sz); 3110 3111 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3112 tcg_rt = cpu_reg(s, a->rt); 3113 tcg_rt2 = cpu_reg(s, a->rt2); 3114 3115 /* 3116 * We built mop above for the single logical access -- rebuild it 3117 * now for the paired operation. 3118 * 3119 * With LSE2, non-sign-extending pairs are treated atomically if 3120 * aligned, and if unaligned one of the pair will be completely 3121 * within a 16-byte block and that element will be atomic. 3122 * Otherwise each element is separately atomic. 3123 * In all cases, issue one operation with the correct atomicity. 3124 * 3125 * This treats sign-extending loads like zero-extending loads, 3126 * since that reuses the most code below. 3127 */ 3128 mop = a->sz + 1; 3129 if (s->align_mem) { 3130 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3131 } 3132 mop = finalize_memop_pair(s, mop); 3133 if (a->sz == 2) { 3134 int o2 = s->be_data == MO_LE ? 32 : 0; 3135 int o1 = o2 ^ 32; 3136 3137 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3138 if (a->sign) { 3139 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3140 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3141 } else { 3142 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3143 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3144 } 3145 } else { 3146 TCGv_i128 tmp = tcg_temp_new_i128(); 3147 3148 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3149 if (s->be_data == MO_LE) { 3150 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3151 } else { 3152 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3153 } 3154 } 3155 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3156 return true; 3157 } 3158 3159 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3160 { 3161 uint64_t offset = a->imm << a->sz; 3162 TCGv_i64 clean_addr, dirty_addr; 3163 MemOp mop; 3164 3165 if (!fp_access_check(s)) { 3166 return true; 3167 } 3168 3169 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3170 mop = finalize_memop_asimd(s, a->sz); 3171 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3172 do_fp_st(s, a->rt, clean_addr, mop); 3173 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3174 do_fp_st(s, a->rt2, clean_addr, mop); 3175 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3176 return true; 3177 } 3178 3179 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3180 { 3181 uint64_t offset = a->imm << a->sz; 3182 TCGv_i64 clean_addr, dirty_addr; 3183 MemOp mop; 3184 3185 if (!fp_access_check(s)) { 3186 return true; 3187 } 3188 3189 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3190 mop = finalize_memop_asimd(s, a->sz); 3191 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3192 do_fp_ld(s, a->rt, clean_addr, mop); 3193 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3194 do_fp_ld(s, a->rt2, clean_addr, mop); 3195 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3196 return true; 3197 } 3198 3199 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3200 { 3201 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3202 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3203 MemOp mop; 3204 TCGv_i128 tmp; 3205 3206 /* STGP only comes in one size. */ 3207 tcg_debug_assert(a->sz == MO_64); 3208 3209 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3210 return false; 3211 } 3212 3213 if (a->rn == 31) { 3214 gen_check_sp_alignment(s); 3215 } 3216 3217 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3218 if (!a->p) { 3219 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3220 } 3221 3222 clean_addr = clean_data_tbi(s, dirty_addr); 3223 tcg_rt = cpu_reg(s, a->rt); 3224 tcg_rt2 = cpu_reg(s, a->rt2); 3225 3226 /* 3227 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3228 * and one tag operation. We implement it as one single aligned 16-byte 3229 * memory operation for convenience. Note that the alignment ensures 3230 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3231 */ 3232 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3233 3234 tmp = tcg_temp_new_i128(); 3235 if (s->be_data == MO_LE) { 3236 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3237 } else { 3238 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3239 } 3240 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3241 3242 /* Perform the tag store, if tag access enabled. */ 3243 if (s->ata[0]) { 3244 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3245 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3246 } else { 3247 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3248 } 3249 } 3250 3251 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3252 return true; 3253 } 3254 3255 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3256 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3257 uint64_t offset, bool is_store, MemOp mop) 3258 { 3259 int memidx; 3260 3261 if (a->rn == 31) { 3262 gen_check_sp_alignment(s); 3263 } 3264 3265 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3266 if (!a->p) { 3267 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3268 } 3269 memidx = get_a64_user_mem_index(s, a->unpriv); 3270 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3271 a->w || a->rn != 31, 3272 mop, a->unpriv, memidx); 3273 } 3274 3275 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3276 TCGv_i64 dirty_addr, uint64_t offset) 3277 { 3278 if (a->w) { 3279 if (a->p) { 3280 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3281 } 3282 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3283 } 3284 } 3285 3286 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3287 { 3288 bool iss_sf, iss_valid = !a->w; 3289 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3290 int memidx = get_a64_user_mem_index(s, a->unpriv); 3291 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3292 3293 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3294 3295 tcg_rt = cpu_reg(s, a->rt); 3296 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3297 3298 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3299 iss_valid, a->rt, iss_sf, false); 3300 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3301 return true; 3302 } 3303 3304 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3305 { 3306 bool iss_sf, iss_valid = !a->w; 3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3308 int memidx = get_a64_user_mem_index(s, a->unpriv); 3309 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3310 3311 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3312 3313 tcg_rt = cpu_reg(s, a->rt); 3314 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3315 3316 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3317 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3318 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3319 return true; 3320 } 3321 3322 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3323 { 3324 TCGv_i64 clean_addr, dirty_addr; 3325 MemOp mop; 3326 3327 if (!fp_access_check(s)) { 3328 return true; 3329 } 3330 mop = finalize_memop_asimd(s, a->sz); 3331 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3332 do_fp_st(s, a->rt, clean_addr, mop); 3333 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3334 return true; 3335 } 3336 3337 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3338 { 3339 TCGv_i64 clean_addr, dirty_addr; 3340 MemOp mop; 3341 3342 if (!fp_access_check(s)) { 3343 return true; 3344 } 3345 mop = finalize_memop_asimd(s, a->sz); 3346 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3347 do_fp_ld(s, a->rt, clean_addr, mop); 3348 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3349 return true; 3350 } 3351 3352 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3353 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3354 bool is_store, MemOp memop) 3355 { 3356 TCGv_i64 tcg_rm; 3357 3358 if (a->rn == 31) { 3359 gen_check_sp_alignment(s); 3360 } 3361 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3362 3363 tcg_rm = read_cpu_reg(s, a->rm, 1); 3364 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3365 3366 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3367 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3368 } 3369 3370 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3371 { 3372 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3373 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3374 MemOp memop; 3375 3376 if (extract32(a->opt, 1, 1) == 0) { 3377 return false; 3378 } 3379 3380 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3381 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3382 tcg_rt = cpu_reg(s, a->rt); 3383 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3384 a->ext, true, a->rt, iss_sf, false); 3385 return true; 3386 } 3387 3388 static bool trans_STR(DisasContext *s, arg_ldst *a) 3389 { 3390 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3391 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3392 MemOp memop; 3393 3394 if (extract32(a->opt, 1, 1) == 0) { 3395 return false; 3396 } 3397 3398 memop = finalize_memop(s, a->sz); 3399 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3400 tcg_rt = cpu_reg(s, a->rt); 3401 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3402 return true; 3403 } 3404 3405 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3406 { 3407 TCGv_i64 clean_addr, dirty_addr; 3408 MemOp memop; 3409 3410 if (extract32(a->opt, 1, 1) == 0) { 3411 return false; 3412 } 3413 3414 if (!fp_access_check(s)) { 3415 return true; 3416 } 3417 3418 memop = finalize_memop_asimd(s, a->sz); 3419 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3420 do_fp_ld(s, a->rt, clean_addr, memop); 3421 return true; 3422 } 3423 3424 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3425 { 3426 TCGv_i64 clean_addr, dirty_addr; 3427 MemOp memop; 3428 3429 if (extract32(a->opt, 1, 1) == 0) { 3430 return false; 3431 } 3432 3433 if (!fp_access_check(s)) { 3434 return true; 3435 } 3436 3437 memop = finalize_memop_asimd(s, a->sz); 3438 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3439 do_fp_st(s, a->rt, clean_addr, memop); 3440 return true; 3441 } 3442 3443 3444 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3445 int sign, bool invert) 3446 { 3447 MemOp mop = a->sz | sign; 3448 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3449 3450 if (a->rn == 31) { 3451 gen_check_sp_alignment(s); 3452 } 3453 mop = check_atomic_align(s, a->rn, mop); 3454 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3455 a->rn != 31, mop); 3456 tcg_rs = read_cpu_reg(s, a->rs, true); 3457 tcg_rt = cpu_reg(s, a->rt); 3458 if (invert) { 3459 tcg_gen_not_i64(tcg_rs, tcg_rs); 3460 } 3461 /* 3462 * The tcg atomic primitives are all full barriers. Therefore we 3463 * can ignore the Acquire and Release bits of this instruction. 3464 */ 3465 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3466 3467 if (mop & MO_SIGN) { 3468 switch (a->sz) { 3469 case MO_8: 3470 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3471 break; 3472 case MO_16: 3473 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3474 break; 3475 case MO_32: 3476 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3477 break; 3478 case MO_64: 3479 break; 3480 default: 3481 g_assert_not_reached(); 3482 } 3483 } 3484 return true; 3485 } 3486 3487 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3488 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3489 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3490 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3491 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3492 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3493 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3494 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3495 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3496 3497 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3498 { 3499 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3500 TCGv_i64 clean_addr; 3501 MemOp mop; 3502 3503 if (!dc_isar_feature(aa64_atomics, s) || 3504 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3505 return false; 3506 } 3507 if (a->rn == 31) { 3508 gen_check_sp_alignment(s); 3509 } 3510 mop = check_atomic_align(s, a->rn, a->sz); 3511 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3512 a->rn != 31, mop); 3513 /* 3514 * LDAPR* are a special case because they are a simple load, not a 3515 * fetch-and-do-something op. 3516 * The architectural consistency requirements here are weaker than 3517 * full load-acquire (we only need "load-acquire processor consistent"), 3518 * but we choose to implement them as full LDAQ. 3519 */ 3520 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3521 true, a->rt, iss_sf, true); 3522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3523 return true; 3524 } 3525 3526 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3527 { 3528 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3529 MemOp memop; 3530 3531 /* Load with pointer authentication */ 3532 if (!dc_isar_feature(aa64_pauth, s)) { 3533 return false; 3534 } 3535 3536 if (a->rn == 31) { 3537 gen_check_sp_alignment(s); 3538 } 3539 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3540 3541 if (s->pauth_active) { 3542 if (!a->m) { 3543 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3544 tcg_constant_i64(0)); 3545 } else { 3546 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3547 tcg_constant_i64(0)); 3548 } 3549 } 3550 3551 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3552 3553 memop = finalize_memop(s, MO_64); 3554 3555 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3556 clean_addr = gen_mte_check1(s, dirty_addr, false, 3557 a->w || a->rn != 31, memop); 3558 3559 tcg_rt = cpu_reg(s, a->rt); 3560 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3561 /* extend */ false, /* iss_valid */ !a->w, 3562 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3563 3564 if (a->w) { 3565 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3566 } 3567 return true; 3568 } 3569 3570 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3571 { 3572 TCGv_i64 clean_addr, dirty_addr; 3573 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3574 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3575 3576 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3577 return false; 3578 } 3579 3580 if (a->rn == 31) { 3581 gen_check_sp_alignment(s); 3582 } 3583 3584 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3585 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3586 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3587 clean_addr = clean_data_tbi(s, dirty_addr); 3588 3589 /* 3590 * Load-AcquirePC semantics; we implement as the slightly more 3591 * restrictive Load-Acquire. 3592 */ 3593 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3594 a->rt, iss_sf, true); 3595 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3596 return true; 3597 } 3598 3599 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3600 { 3601 TCGv_i64 clean_addr, dirty_addr; 3602 MemOp mop = a->sz; 3603 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3604 3605 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3606 return false; 3607 } 3608 3609 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3610 3611 if (a->rn == 31) { 3612 gen_check_sp_alignment(s); 3613 } 3614 3615 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3616 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3617 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3618 clean_addr = clean_data_tbi(s, dirty_addr); 3619 3620 /* Store-Release semantics */ 3621 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3622 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3623 return true; 3624 } 3625 3626 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3627 { 3628 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3629 MemOp endian, align, mop; 3630 3631 int total; /* total bytes */ 3632 int elements; /* elements per vector */ 3633 int r; 3634 int size = a->sz; 3635 3636 if (!a->p && a->rm != 0) { 3637 /* For non-postindexed accesses the Rm field must be 0 */ 3638 return false; 3639 } 3640 if (size == 3 && !a->q && a->selem != 1) { 3641 return false; 3642 } 3643 if (!fp_access_check(s)) { 3644 return true; 3645 } 3646 3647 if (a->rn == 31) { 3648 gen_check_sp_alignment(s); 3649 } 3650 3651 /* For our purposes, bytes are always little-endian. */ 3652 endian = s->be_data; 3653 if (size == 0) { 3654 endian = MO_LE; 3655 } 3656 3657 total = a->rpt * a->selem * (a->q ? 16 : 8); 3658 tcg_rn = cpu_reg_sp(s, a->rn); 3659 3660 /* 3661 * Issue the MTE check vs the logical repeat count, before we 3662 * promote consecutive little-endian elements below. 3663 */ 3664 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3665 finalize_memop_asimd(s, size)); 3666 3667 /* 3668 * Consecutive little-endian elements from a single register 3669 * can be promoted to a larger little-endian operation. 3670 */ 3671 align = MO_ALIGN; 3672 if (a->selem == 1 && endian == MO_LE) { 3673 align = pow2_align(size); 3674 size = 3; 3675 } 3676 if (!s->align_mem) { 3677 align = 0; 3678 } 3679 mop = endian | size | align; 3680 3681 elements = (a->q ? 16 : 8) >> size; 3682 tcg_ebytes = tcg_constant_i64(1 << size); 3683 for (r = 0; r < a->rpt; r++) { 3684 int e; 3685 for (e = 0; e < elements; e++) { 3686 int xs; 3687 for (xs = 0; xs < a->selem; xs++) { 3688 int tt = (a->rt + r + xs) % 32; 3689 do_vec_ld(s, tt, e, clean_addr, mop); 3690 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3691 } 3692 } 3693 } 3694 3695 /* 3696 * For non-quad operations, setting a slice of the low 64 bits of 3697 * the register clears the high 64 bits (in the ARM ARM pseudocode 3698 * this is implicit in the fact that 'rval' is a 64 bit wide 3699 * variable). For quad operations, we might still need to zero 3700 * the high bits of SVE. 3701 */ 3702 for (r = 0; r < a->rpt * a->selem; r++) { 3703 int tt = (a->rt + r) % 32; 3704 clear_vec_high(s, a->q, tt); 3705 } 3706 3707 if (a->p) { 3708 if (a->rm == 31) { 3709 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3710 } else { 3711 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3712 } 3713 } 3714 return true; 3715 } 3716 3717 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3718 { 3719 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3720 MemOp endian, align, mop; 3721 3722 int total; /* total bytes */ 3723 int elements; /* elements per vector */ 3724 int r; 3725 int size = a->sz; 3726 3727 if (!a->p && a->rm != 0) { 3728 /* For non-postindexed accesses the Rm field must be 0 */ 3729 return false; 3730 } 3731 if (size == 3 && !a->q && a->selem != 1) { 3732 return false; 3733 } 3734 if (!fp_access_check(s)) { 3735 return true; 3736 } 3737 3738 if (a->rn == 31) { 3739 gen_check_sp_alignment(s); 3740 } 3741 3742 /* For our purposes, bytes are always little-endian. */ 3743 endian = s->be_data; 3744 if (size == 0) { 3745 endian = MO_LE; 3746 } 3747 3748 total = a->rpt * a->selem * (a->q ? 16 : 8); 3749 tcg_rn = cpu_reg_sp(s, a->rn); 3750 3751 /* 3752 * Issue the MTE check vs the logical repeat count, before we 3753 * promote consecutive little-endian elements below. 3754 */ 3755 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3756 finalize_memop_asimd(s, size)); 3757 3758 /* 3759 * Consecutive little-endian elements from a single register 3760 * can be promoted to a larger little-endian operation. 3761 */ 3762 align = MO_ALIGN; 3763 if (a->selem == 1 && endian == MO_LE) { 3764 align = pow2_align(size); 3765 size = 3; 3766 } 3767 if (!s->align_mem) { 3768 align = 0; 3769 } 3770 mop = endian | size | align; 3771 3772 elements = (a->q ? 16 : 8) >> size; 3773 tcg_ebytes = tcg_constant_i64(1 << size); 3774 for (r = 0; r < a->rpt; r++) { 3775 int e; 3776 for (e = 0; e < elements; e++) { 3777 int xs; 3778 for (xs = 0; xs < a->selem; xs++) { 3779 int tt = (a->rt + r + xs) % 32; 3780 do_vec_st(s, tt, e, clean_addr, mop); 3781 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3782 } 3783 } 3784 } 3785 3786 if (a->p) { 3787 if (a->rm == 31) { 3788 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3789 } else { 3790 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3791 } 3792 } 3793 return true; 3794 } 3795 3796 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3797 { 3798 int xs, total, rt; 3799 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3800 MemOp mop; 3801 3802 if (!a->p && a->rm != 0) { 3803 return false; 3804 } 3805 if (!fp_access_check(s)) { 3806 return true; 3807 } 3808 3809 if (a->rn == 31) { 3810 gen_check_sp_alignment(s); 3811 } 3812 3813 total = a->selem << a->scale; 3814 tcg_rn = cpu_reg_sp(s, a->rn); 3815 3816 mop = finalize_memop_asimd(s, a->scale); 3817 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3818 total, mop); 3819 3820 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3821 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3822 do_vec_st(s, rt, a->index, clean_addr, mop); 3823 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3824 } 3825 3826 if (a->p) { 3827 if (a->rm == 31) { 3828 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3829 } else { 3830 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3831 } 3832 } 3833 return true; 3834 } 3835 3836 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3837 { 3838 int xs, total, rt; 3839 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3840 MemOp mop; 3841 3842 if (!a->p && a->rm != 0) { 3843 return false; 3844 } 3845 if (!fp_access_check(s)) { 3846 return true; 3847 } 3848 3849 if (a->rn == 31) { 3850 gen_check_sp_alignment(s); 3851 } 3852 3853 total = a->selem << a->scale; 3854 tcg_rn = cpu_reg_sp(s, a->rn); 3855 3856 mop = finalize_memop_asimd(s, a->scale); 3857 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3858 total, mop); 3859 3860 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3861 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3862 do_vec_ld(s, rt, a->index, clean_addr, mop); 3863 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3864 } 3865 3866 if (a->p) { 3867 if (a->rm == 31) { 3868 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3869 } else { 3870 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3871 } 3872 } 3873 return true; 3874 } 3875 3876 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3877 { 3878 int xs, total, rt; 3879 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3880 MemOp mop; 3881 3882 if (!a->p && a->rm != 0) { 3883 return false; 3884 } 3885 if (!fp_access_check(s)) { 3886 return true; 3887 } 3888 3889 if (a->rn == 31) { 3890 gen_check_sp_alignment(s); 3891 } 3892 3893 total = a->selem << a->scale; 3894 tcg_rn = cpu_reg_sp(s, a->rn); 3895 3896 mop = finalize_memop_asimd(s, a->scale); 3897 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3898 total, mop); 3899 3900 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3901 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3902 /* Load and replicate to all elements */ 3903 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3904 3905 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3906 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3907 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3908 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3909 } 3910 3911 if (a->p) { 3912 if (a->rm == 31) { 3913 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3914 } else { 3915 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3916 } 3917 } 3918 return true; 3919 } 3920 3921 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3922 { 3923 TCGv_i64 addr, clean_addr, tcg_rt; 3924 int size = 4 << s->dcz_blocksize; 3925 3926 if (!dc_isar_feature(aa64_mte, s)) { 3927 return false; 3928 } 3929 if (s->current_el == 0) { 3930 return false; 3931 } 3932 3933 if (a->rn == 31) { 3934 gen_check_sp_alignment(s); 3935 } 3936 3937 addr = read_cpu_reg_sp(s, a->rn, true); 3938 tcg_gen_addi_i64(addr, addr, a->imm); 3939 tcg_rt = cpu_reg(s, a->rt); 3940 3941 if (s->ata[0]) { 3942 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3943 } 3944 /* 3945 * The non-tags portion of STZGM is mostly like DC_ZVA, 3946 * except the alignment happens before the access. 3947 */ 3948 clean_addr = clean_data_tbi(s, addr); 3949 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3950 gen_helper_dc_zva(tcg_env, clean_addr); 3951 return true; 3952 } 3953 3954 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3955 { 3956 TCGv_i64 addr, clean_addr, tcg_rt; 3957 3958 if (!dc_isar_feature(aa64_mte, s)) { 3959 return false; 3960 } 3961 if (s->current_el == 0) { 3962 return false; 3963 } 3964 3965 if (a->rn == 31) { 3966 gen_check_sp_alignment(s); 3967 } 3968 3969 addr = read_cpu_reg_sp(s, a->rn, true); 3970 tcg_gen_addi_i64(addr, addr, a->imm); 3971 tcg_rt = cpu_reg(s, a->rt); 3972 3973 if (s->ata[0]) { 3974 gen_helper_stgm(tcg_env, addr, tcg_rt); 3975 } else { 3976 MMUAccessType acc = MMU_DATA_STORE; 3977 int size = 4 << s->gm_blocksize; 3978 3979 clean_addr = clean_data_tbi(s, addr); 3980 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3981 gen_probe_access(s, clean_addr, acc, size); 3982 } 3983 return true; 3984 } 3985 3986 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3987 { 3988 TCGv_i64 addr, clean_addr, tcg_rt; 3989 3990 if (!dc_isar_feature(aa64_mte, s)) { 3991 return false; 3992 } 3993 if (s->current_el == 0) { 3994 return false; 3995 } 3996 3997 if (a->rn == 31) { 3998 gen_check_sp_alignment(s); 3999 } 4000 4001 addr = read_cpu_reg_sp(s, a->rn, true); 4002 tcg_gen_addi_i64(addr, addr, a->imm); 4003 tcg_rt = cpu_reg(s, a->rt); 4004 4005 if (s->ata[0]) { 4006 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4007 } else { 4008 MMUAccessType acc = MMU_DATA_LOAD; 4009 int size = 4 << s->gm_blocksize; 4010 4011 clean_addr = clean_data_tbi(s, addr); 4012 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4013 gen_probe_access(s, clean_addr, acc, size); 4014 /* The result tags are zeros. */ 4015 tcg_gen_movi_i64(tcg_rt, 0); 4016 } 4017 return true; 4018 } 4019 4020 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4021 { 4022 TCGv_i64 addr, clean_addr, tcg_rt; 4023 4024 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4025 return false; 4026 } 4027 4028 if (a->rn == 31) { 4029 gen_check_sp_alignment(s); 4030 } 4031 4032 addr = read_cpu_reg_sp(s, a->rn, true); 4033 if (!a->p) { 4034 /* pre-index or signed offset */ 4035 tcg_gen_addi_i64(addr, addr, a->imm); 4036 } 4037 4038 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4039 tcg_rt = cpu_reg(s, a->rt); 4040 if (s->ata[0]) { 4041 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4042 } else { 4043 /* 4044 * Tag access disabled: we must check for aborts on the load 4045 * load from [rn+offset], and then insert a 0 tag into rt. 4046 */ 4047 clean_addr = clean_data_tbi(s, addr); 4048 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4049 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4050 } 4051 4052 if (a->w) { 4053 /* pre-index or post-index */ 4054 if (a->p) { 4055 /* post-index */ 4056 tcg_gen_addi_i64(addr, addr, a->imm); 4057 } 4058 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4059 } 4060 return true; 4061 } 4062 4063 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4064 { 4065 TCGv_i64 addr, tcg_rt; 4066 4067 if (a->rn == 31) { 4068 gen_check_sp_alignment(s); 4069 } 4070 4071 addr = read_cpu_reg_sp(s, a->rn, true); 4072 if (!a->p) { 4073 /* pre-index or signed offset */ 4074 tcg_gen_addi_i64(addr, addr, a->imm); 4075 } 4076 tcg_rt = cpu_reg_sp(s, a->rt); 4077 if (!s->ata[0]) { 4078 /* 4079 * For STG and ST2G, we need to check alignment and probe memory. 4080 * TODO: For STZG and STZ2G, we could rely on the stores below, 4081 * at least for system mode; user-only won't enforce alignment. 4082 */ 4083 if (is_pair) { 4084 gen_helper_st2g_stub(tcg_env, addr); 4085 } else { 4086 gen_helper_stg_stub(tcg_env, addr); 4087 } 4088 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4089 if (is_pair) { 4090 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4091 } else { 4092 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4093 } 4094 } else { 4095 if (is_pair) { 4096 gen_helper_st2g(tcg_env, addr, tcg_rt); 4097 } else { 4098 gen_helper_stg(tcg_env, addr, tcg_rt); 4099 } 4100 } 4101 4102 if (is_zero) { 4103 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4104 TCGv_i64 zero64 = tcg_constant_i64(0); 4105 TCGv_i128 zero128 = tcg_temp_new_i128(); 4106 int mem_index = get_mem_index(s); 4107 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4108 4109 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4110 4111 /* This is 1 or 2 atomic 16-byte operations. */ 4112 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4113 if (is_pair) { 4114 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4115 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4116 } 4117 } 4118 4119 if (a->w) { 4120 /* pre-index or post-index */ 4121 if (a->p) { 4122 /* post-index */ 4123 tcg_gen_addi_i64(addr, addr, a->imm); 4124 } 4125 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4126 } 4127 return true; 4128 } 4129 4130 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4131 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4132 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4133 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4134 4135 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4136 4137 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4138 bool is_setg, SetFn fn) 4139 { 4140 int memidx; 4141 uint32_t syndrome, desc = 0; 4142 4143 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4144 return false; 4145 } 4146 4147 /* 4148 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4149 * us to pull this check before the CheckMOPSEnabled() test 4150 * (which we do in the helper function) 4151 */ 4152 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4153 a->rd == 31 || a->rn == 31) { 4154 return false; 4155 } 4156 4157 memidx = get_a64_user_mem_index(s, a->unpriv); 4158 4159 /* 4160 * We pass option_a == true, matching our implementation; 4161 * we pass wrong_option == false: helper function may set that bit. 4162 */ 4163 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4164 is_epilogue, false, true, a->rd, a->rs, a->rn); 4165 4166 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4167 /* We may need to do MTE tag checking, so assemble the descriptor */ 4168 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4169 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4170 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4171 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4172 } 4173 /* The helper function always needs the memidx even with MTE disabled */ 4174 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4175 4176 /* 4177 * The helper needs the register numbers, but since they're in 4178 * the syndrome anyway, we let it extract them from there rather 4179 * than passing in an extra three integer arguments. 4180 */ 4181 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4182 return true; 4183 } 4184 4185 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4186 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4187 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4188 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4189 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4190 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4191 4192 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4193 4194 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4195 { 4196 int rmemidx, wmemidx; 4197 uint32_t syndrome, rdesc = 0, wdesc = 0; 4198 bool wunpriv = extract32(a->options, 0, 1); 4199 bool runpriv = extract32(a->options, 1, 1); 4200 4201 /* 4202 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4203 * us to pull this check before the CheckMOPSEnabled() test 4204 * (which we do in the helper function) 4205 */ 4206 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4207 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4208 return false; 4209 } 4210 4211 rmemidx = get_a64_user_mem_index(s, runpriv); 4212 wmemidx = get_a64_user_mem_index(s, wunpriv); 4213 4214 /* 4215 * We pass option_a == true, matching our implementation; 4216 * we pass wrong_option == false: helper function may set that bit. 4217 */ 4218 syndrome = syn_mop(false, false, a->options, is_epilogue, 4219 false, true, a->rd, a->rs, a->rn); 4220 4221 /* If we need to do MTE tag checking, assemble the descriptors */ 4222 if (s->mte_active[runpriv]) { 4223 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4224 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4225 } 4226 if (s->mte_active[wunpriv]) { 4227 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4228 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4229 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4230 } 4231 /* The helper function needs these parts of the descriptor regardless */ 4232 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4233 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4234 4235 /* 4236 * The helper needs the register numbers, but since they're in 4237 * the syndrome anyway, we let it extract them from there rather 4238 * than passing in an extra three integer arguments. 4239 */ 4240 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4241 tcg_constant_i32(rdesc)); 4242 return true; 4243 } 4244 4245 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4246 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4247 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4248 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4249 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4250 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4251 4252 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4253 4254 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4255 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4256 { 4257 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4258 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4259 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4260 4261 fn(tcg_rd, tcg_rn, tcg_imm); 4262 if (!a->sf) { 4263 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4264 } 4265 return true; 4266 } 4267 4268 /* 4269 * PC-rel. addressing 4270 */ 4271 4272 static bool trans_ADR(DisasContext *s, arg_ri *a) 4273 { 4274 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4275 return true; 4276 } 4277 4278 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4279 { 4280 int64_t offset = (int64_t)a->imm << 12; 4281 4282 /* The page offset is ok for CF_PCREL. */ 4283 offset -= s->pc_curr & 0xfff; 4284 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4285 return true; 4286 } 4287 4288 /* 4289 * Add/subtract (immediate) 4290 */ 4291 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4292 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4293 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4294 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4295 4296 /* 4297 * Add/subtract (immediate, with tags) 4298 */ 4299 4300 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4301 bool sub_op) 4302 { 4303 TCGv_i64 tcg_rn, tcg_rd; 4304 int imm; 4305 4306 imm = a->uimm6 << LOG2_TAG_GRANULE; 4307 if (sub_op) { 4308 imm = -imm; 4309 } 4310 4311 tcg_rn = cpu_reg_sp(s, a->rn); 4312 tcg_rd = cpu_reg_sp(s, a->rd); 4313 4314 if (s->ata[0]) { 4315 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4316 tcg_constant_i32(imm), 4317 tcg_constant_i32(a->uimm4)); 4318 } else { 4319 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4320 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4321 } 4322 return true; 4323 } 4324 4325 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4326 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4327 4328 /* The input should be a value in the bottom e bits (with higher 4329 * bits zero); returns that value replicated into every element 4330 * of size e in a 64 bit integer. 4331 */ 4332 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4333 { 4334 assert(e != 0); 4335 while (e < 64) { 4336 mask |= mask << e; 4337 e *= 2; 4338 } 4339 return mask; 4340 } 4341 4342 /* 4343 * Logical (immediate) 4344 */ 4345 4346 /* 4347 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4348 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4349 * value (ie should cause a guest UNDEF exception), and true if they are 4350 * valid, in which case the decoded bit pattern is written to result. 4351 */ 4352 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4353 unsigned int imms, unsigned int immr) 4354 { 4355 uint64_t mask; 4356 unsigned e, levels, s, r; 4357 int len; 4358 4359 assert(immn < 2 && imms < 64 && immr < 64); 4360 4361 /* The bit patterns we create here are 64 bit patterns which 4362 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4363 * 64 bits each. Each element contains the same value: a run 4364 * of between 1 and e-1 non-zero bits, rotated within the 4365 * element by between 0 and e-1 bits. 4366 * 4367 * The element size and run length are encoded into immn (1 bit) 4368 * and imms (6 bits) as follows: 4369 * 64 bit elements: immn = 1, imms = <length of run - 1> 4370 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4371 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4372 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4373 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4374 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4375 * Notice that immn = 0, imms = 11111x is the only combination 4376 * not covered by one of the above options; this is reserved. 4377 * Further, <length of run - 1> all-ones is a reserved pattern. 4378 * 4379 * In all cases the rotation is by immr % e (and immr is 6 bits). 4380 */ 4381 4382 /* First determine the element size */ 4383 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4384 if (len < 1) { 4385 /* This is the immn == 0, imms == 0x11111x case */ 4386 return false; 4387 } 4388 e = 1 << len; 4389 4390 levels = e - 1; 4391 s = imms & levels; 4392 r = immr & levels; 4393 4394 if (s == levels) { 4395 /* <length of run - 1> mustn't be all-ones. */ 4396 return false; 4397 } 4398 4399 /* Create the value of one element: s+1 set bits rotated 4400 * by r within the element (which is e bits wide)... 4401 */ 4402 mask = MAKE_64BIT_MASK(0, s + 1); 4403 if (r) { 4404 mask = (mask >> r) | (mask << (e - r)); 4405 mask &= MAKE_64BIT_MASK(0, e); 4406 } 4407 /* ...then replicate the element over the whole 64 bit value */ 4408 mask = bitfield_replicate(mask, e); 4409 *result = mask; 4410 return true; 4411 } 4412 4413 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4414 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4415 { 4416 TCGv_i64 tcg_rd, tcg_rn; 4417 uint64_t imm; 4418 4419 /* Some immediate field values are reserved. */ 4420 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4421 extract32(a->dbm, 0, 6), 4422 extract32(a->dbm, 6, 6))) { 4423 return false; 4424 } 4425 if (!a->sf) { 4426 imm &= 0xffffffffull; 4427 } 4428 4429 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4430 tcg_rn = cpu_reg(s, a->rn); 4431 4432 fn(tcg_rd, tcg_rn, imm); 4433 if (set_cc) { 4434 gen_logic_CC(a->sf, tcg_rd); 4435 } 4436 if (!a->sf) { 4437 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4438 } 4439 return true; 4440 } 4441 4442 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4443 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4444 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4445 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4446 4447 /* 4448 * Move wide (immediate) 4449 */ 4450 4451 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4452 { 4453 int pos = a->hw << 4; 4454 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4455 return true; 4456 } 4457 4458 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4459 { 4460 int pos = a->hw << 4; 4461 uint64_t imm = a->imm; 4462 4463 imm = ~(imm << pos); 4464 if (!a->sf) { 4465 imm = (uint32_t)imm; 4466 } 4467 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4468 return true; 4469 } 4470 4471 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4472 { 4473 int pos = a->hw << 4; 4474 TCGv_i64 tcg_rd, tcg_im; 4475 4476 tcg_rd = cpu_reg(s, a->rd); 4477 tcg_im = tcg_constant_i64(a->imm); 4478 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4479 if (!a->sf) { 4480 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4481 } 4482 return true; 4483 } 4484 4485 /* 4486 * Bitfield 4487 */ 4488 4489 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4490 { 4491 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4492 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4493 unsigned int bitsize = a->sf ? 64 : 32; 4494 unsigned int ri = a->immr; 4495 unsigned int si = a->imms; 4496 unsigned int pos, len; 4497 4498 if (si >= ri) { 4499 /* Wd<s-r:0> = Wn<s:r> */ 4500 len = (si - ri) + 1; 4501 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4502 if (!a->sf) { 4503 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4504 } 4505 } else { 4506 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4507 len = si + 1; 4508 pos = (bitsize - ri) & (bitsize - 1); 4509 4510 if (len < ri) { 4511 /* 4512 * Sign extend the destination field from len to fill the 4513 * balance of the word. Let the deposit below insert all 4514 * of those sign bits. 4515 */ 4516 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4517 len = ri; 4518 } 4519 4520 /* 4521 * We start with zero, and we haven't modified any bits outside 4522 * bitsize, therefore no final zero-extension is unneeded for !sf. 4523 */ 4524 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4525 } 4526 return true; 4527 } 4528 4529 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4530 { 4531 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4532 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4533 unsigned int bitsize = a->sf ? 64 : 32; 4534 unsigned int ri = a->immr; 4535 unsigned int si = a->imms; 4536 unsigned int pos, len; 4537 4538 tcg_rd = cpu_reg(s, a->rd); 4539 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4540 4541 if (si >= ri) { 4542 /* Wd<s-r:0> = Wn<s:r> */ 4543 len = (si - ri) + 1; 4544 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4545 } else { 4546 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4547 len = si + 1; 4548 pos = (bitsize - ri) & (bitsize - 1); 4549 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4550 } 4551 return true; 4552 } 4553 4554 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4555 { 4556 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4557 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4558 unsigned int bitsize = a->sf ? 64 : 32; 4559 unsigned int ri = a->immr; 4560 unsigned int si = a->imms; 4561 unsigned int pos, len; 4562 4563 tcg_rd = cpu_reg(s, a->rd); 4564 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4565 4566 if (si >= ri) { 4567 /* Wd<s-r:0> = Wn<s:r> */ 4568 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4569 len = (si - ri) + 1; 4570 pos = 0; 4571 } else { 4572 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4573 len = si + 1; 4574 pos = (bitsize - ri) & (bitsize - 1); 4575 } 4576 4577 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4578 if (!a->sf) { 4579 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4580 } 4581 return true; 4582 } 4583 4584 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4585 { 4586 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4587 4588 tcg_rd = cpu_reg(s, a->rd); 4589 4590 if (unlikely(a->imm == 0)) { 4591 /* 4592 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4593 * so an extract from bit 0 is a special case. 4594 */ 4595 if (a->sf) { 4596 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4597 } else { 4598 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4599 } 4600 } else { 4601 tcg_rm = cpu_reg(s, a->rm); 4602 tcg_rn = cpu_reg(s, a->rn); 4603 4604 if (a->sf) { 4605 /* Specialization to ROR happens in EXTRACT2. */ 4606 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4607 } else { 4608 TCGv_i32 t0 = tcg_temp_new_i32(); 4609 4610 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4611 if (a->rm == a->rn) { 4612 tcg_gen_rotri_i32(t0, t0, a->imm); 4613 } else { 4614 TCGv_i32 t1 = tcg_temp_new_i32(); 4615 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4616 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4617 } 4618 tcg_gen_extu_i32_i64(tcg_rd, t0); 4619 } 4620 } 4621 return true; 4622 } 4623 4624 /* 4625 * Cryptographic AES, SHA, SHA512 4626 */ 4627 4628 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4629 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4630 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4631 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4632 4633 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4634 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4635 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4636 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4637 4638 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4639 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4640 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4641 4642 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4643 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4644 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4645 4646 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4647 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4648 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4649 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4650 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4651 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4652 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4653 4654 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4655 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4656 4657 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4658 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4659 4660 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4661 { 4662 if (!dc_isar_feature(aa64_sm3, s)) { 4663 return false; 4664 } 4665 if (fp_access_check(s)) { 4666 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4667 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4668 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4669 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4670 unsigned vsz, dofs; 4671 4672 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4673 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4674 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4675 4676 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4677 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4678 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4679 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4680 4681 /* Clear the whole register first, then store bits [127:96]. */ 4682 vsz = vec_full_reg_size(s); 4683 dofs = vec_full_reg_offset(s, a->rd); 4684 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4685 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4686 } 4687 return true; 4688 } 4689 4690 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4691 { 4692 if (fp_access_check(s)) { 4693 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4694 } 4695 return true; 4696 } 4697 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4698 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4699 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4700 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4701 4702 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4703 { 4704 if (!dc_isar_feature(aa64_sha3, s)) { 4705 return false; 4706 } 4707 if (fp_access_check(s)) { 4708 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4709 vec_full_reg_offset(s, a->rn), 4710 vec_full_reg_offset(s, a->rm), a->imm, 16, 4711 vec_full_reg_size(s)); 4712 } 4713 return true; 4714 } 4715 4716 /* 4717 * Advanced SIMD copy 4718 */ 4719 4720 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4721 { 4722 unsigned esz = ctz32(imm); 4723 if (esz <= MO_64) { 4724 *pesz = esz; 4725 *pidx = imm >> (esz + 1); 4726 return true; 4727 } 4728 return false; 4729 } 4730 4731 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4732 { 4733 MemOp esz; 4734 unsigned idx; 4735 4736 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4737 return false; 4738 } 4739 if (fp_access_check(s)) { 4740 /* 4741 * This instruction just extracts the specified element and 4742 * zero-extends it into the bottom of the destination register. 4743 */ 4744 TCGv_i64 tmp = tcg_temp_new_i64(); 4745 read_vec_element(s, tmp, a->rn, idx, esz); 4746 write_fp_dreg(s, a->rd, tmp); 4747 } 4748 return true; 4749 } 4750 4751 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4752 { 4753 MemOp esz; 4754 unsigned idx; 4755 4756 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4757 return false; 4758 } 4759 if (esz == MO_64 && !a->q) { 4760 return false; 4761 } 4762 if (fp_access_check(s)) { 4763 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4764 vec_reg_offset(s, a->rn, idx, esz), 4765 a->q ? 16 : 8, vec_full_reg_size(s)); 4766 } 4767 return true; 4768 } 4769 4770 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4771 { 4772 MemOp esz; 4773 unsigned idx; 4774 4775 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4776 return false; 4777 } 4778 if (esz == MO_64 && !a->q) { 4779 return false; 4780 } 4781 if (fp_access_check(s)) { 4782 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4783 a->q ? 16 : 8, vec_full_reg_size(s), 4784 cpu_reg(s, a->rn)); 4785 } 4786 return true; 4787 } 4788 4789 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4790 { 4791 MemOp esz; 4792 unsigned idx; 4793 4794 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4795 return false; 4796 } 4797 if (is_signed) { 4798 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4799 return false; 4800 } 4801 } else { 4802 if (esz == MO_64 ? !a->q : a->q) { 4803 return false; 4804 } 4805 } 4806 if (fp_access_check(s)) { 4807 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4808 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4809 if (is_signed && !a->q) { 4810 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4811 } 4812 } 4813 return true; 4814 } 4815 4816 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4817 TRANS(UMOV, do_smov_umov, a, 0) 4818 4819 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4820 { 4821 MemOp esz; 4822 unsigned idx; 4823 4824 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4825 return false; 4826 } 4827 if (fp_access_check(s)) { 4828 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4829 clear_vec_high(s, true, a->rd); 4830 } 4831 return true; 4832 } 4833 4834 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4835 { 4836 MemOp esz; 4837 unsigned didx, sidx; 4838 4839 if (!decode_esz_idx(a->di, &esz, &didx)) { 4840 return false; 4841 } 4842 sidx = a->si >> esz; 4843 if (fp_access_check(s)) { 4844 TCGv_i64 tmp = tcg_temp_new_i64(); 4845 4846 read_vec_element(s, tmp, a->rn, sidx, esz); 4847 write_vec_element(s, tmp, a->rd, didx, esz); 4848 4849 /* INS is considered a 128-bit write for SVE. */ 4850 clear_vec_high(s, true, a->rd); 4851 } 4852 return true; 4853 } 4854 4855 /* 4856 * Advanced SIMD three same 4857 */ 4858 4859 typedef struct FPScalar { 4860 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4861 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4862 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4863 } FPScalar; 4864 4865 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4866 { 4867 switch (a->esz) { 4868 case MO_64: 4869 if (fp_access_check(s)) { 4870 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4871 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4872 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4873 write_fp_dreg(s, a->rd, t0); 4874 } 4875 break; 4876 case MO_32: 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4880 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 case MO_16: 4885 if (!dc_isar_feature(aa64_fp16, s)) { 4886 return false; 4887 } 4888 if (fp_access_check(s)) { 4889 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4890 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4891 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4892 write_fp_sreg(s, a->rd, t0); 4893 } 4894 break; 4895 default: 4896 return false; 4897 } 4898 return true; 4899 } 4900 4901 static const FPScalar f_scalar_fadd = { 4902 gen_helper_vfp_addh, 4903 gen_helper_vfp_adds, 4904 gen_helper_vfp_addd, 4905 }; 4906 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4907 4908 static const FPScalar f_scalar_fsub = { 4909 gen_helper_vfp_subh, 4910 gen_helper_vfp_subs, 4911 gen_helper_vfp_subd, 4912 }; 4913 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4914 4915 static const FPScalar f_scalar_fdiv = { 4916 gen_helper_vfp_divh, 4917 gen_helper_vfp_divs, 4918 gen_helper_vfp_divd, 4919 }; 4920 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4921 4922 static const FPScalar f_scalar_fmul = { 4923 gen_helper_vfp_mulh, 4924 gen_helper_vfp_muls, 4925 gen_helper_vfp_muld, 4926 }; 4927 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4928 4929 static const FPScalar f_scalar_fmax = { 4930 gen_helper_advsimd_maxh, 4931 gen_helper_vfp_maxs, 4932 gen_helper_vfp_maxd, 4933 }; 4934 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4935 4936 static const FPScalar f_scalar_fmin = { 4937 gen_helper_advsimd_minh, 4938 gen_helper_vfp_mins, 4939 gen_helper_vfp_mind, 4940 }; 4941 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4942 4943 static const FPScalar f_scalar_fmaxnm = { 4944 gen_helper_advsimd_maxnumh, 4945 gen_helper_vfp_maxnums, 4946 gen_helper_vfp_maxnumd, 4947 }; 4948 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4949 4950 static const FPScalar f_scalar_fminnm = { 4951 gen_helper_advsimd_minnumh, 4952 gen_helper_vfp_minnums, 4953 gen_helper_vfp_minnumd, 4954 }; 4955 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4956 4957 static const FPScalar f_scalar_fmulx = { 4958 gen_helper_advsimd_mulxh, 4959 gen_helper_vfp_mulxs, 4960 gen_helper_vfp_mulxd, 4961 }; 4962 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4963 4964 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4965 { 4966 gen_helper_vfp_mulh(d, n, m, s); 4967 gen_vfp_negh(d, d); 4968 } 4969 4970 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4971 { 4972 gen_helper_vfp_muls(d, n, m, s); 4973 gen_vfp_negs(d, d); 4974 } 4975 4976 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4977 { 4978 gen_helper_vfp_muld(d, n, m, s); 4979 gen_vfp_negd(d, d); 4980 } 4981 4982 static const FPScalar f_scalar_fnmul = { 4983 gen_fnmul_h, 4984 gen_fnmul_s, 4985 gen_fnmul_d, 4986 }; 4987 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4988 4989 static const FPScalar f_scalar_fcmeq = { 4990 gen_helper_advsimd_ceq_f16, 4991 gen_helper_neon_ceq_f32, 4992 gen_helper_neon_ceq_f64, 4993 }; 4994 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4995 4996 static const FPScalar f_scalar_fcmge = { 4997 gen_helper_advsimd_cge_f16, 4998 gen_helper_neon_cge_f32, 4999 gen_helper_neon_cge_f64, 5000 }; 5001 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 5002 5003 static const FPScalar f_scalar_fcmgt = { 5004 gen_helper_advsimd_cgt_f16, 5005 gen_helper_neon_cgt_f32, 5006 gen_helper_neon_cgt_f64, 5007 }; 5008 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 5009 5010 static const FPScalar f_scalar_facge = { 5011 gen_helper_advsimd_acge_f16, 5012 gen_helper_neon_acge_f32, 5013 gen_helper_neon_acge_f64, 5014 }; 5015 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5016 5017 static const FPScalar f_scalar_facgt = { 5018 gen_helper_advsimd_acgt_f16, 5019 gen_helper_neon_acgt_f32, 5020 gen_helper_neon_acgt_f64, 5021 }; 5022 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5023 5024 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5025 { 5026 gen_helper_vfp_subh(d, n, m, s); 5027 gen_vfp_absh(d, d); 5028 } 5029 5030 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5031 { 5032 gen_helper_vfp_subs(d, n, m, s); 5033 gen_vfp_abss(d, d); 5034 } 5035 5036 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5037 { 5038 gen_helper_vfp_subd(d, n, m, s); 5039 gen_vfp_absd(d, d); 5040 } 5041 5042 static const FPScalar f_scalar_fabd = { 5043 gen_fabd_h, 5044 gen_fabd_s, 5045 gen_fabd_d, 5046 }; 5047 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5048 5049 static const FPScalar f_scalar_frecps = { 5050 gen_helper_recpsf_f16, 5051 gen_helper_recpsf_f32, 5052 gen_helper_recpsf_f64, 5053 }; 5054 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5055 5056 static const FPScalar f_scalar_frsqrts = { 5057 gen_helper_rsqrtsf_f16, 5058 gen_helper_rsqrtsf_f32, 5059 gen_helper_rsqrtsf_f64, 5060 }; 5061 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5062 5063 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5064 gen_helper_gvec_3_ptr * const fns[3]) 5065 { 5066 MemOp esz = a->esz; 5067 5068 switch (esz) { 5069 case MO_64: 5070 if (!a->q) { 5071 return false; 5072 } 5073 break; 5074 case MO_32: 5075 break; 5076 case MO_16: 5077 if (!dc_isar_feature(aa64_fp16, s)) { 5078 return false; 5079 } 5080 break; 5081 default: 5082 return false; 5083 } 5084 if (fp_access_check(s)) { 5085 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5086 esz == MO_16, 0, fns[esz - 1]); 5087 } 5088 return true; 5089 } 5090 5091 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5092 gen_helper_gvec_fadd_h, 5093 gen_helper_gvec_fadd_s, 5094 gen_helper_gvec_fadd_d, 5095 }; 5096 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5097 5098 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5099 gen_helper_gvec_fsub_h, 5100 gen_helper_gvec_fsub_s, 5101 gen_helper_gvec_fsub_d, 5102 }; 5103 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5104 5105 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5106 gen_helper_gvec_fdiv_h, 5107 gen_helper_gvec_fdiv_s, 5108 gen_helper_gvec_fdiv_d, 5109 }; 5110 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5111 5112 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5113 gen_helper_gvec_fmul_h, 5114 gen_helper_gvec_fmul_s, 5115 gen_helper_gvec_fmul_d, 5116 }; 5117 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5118 5119 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5120 gen_helper_gvec_fmax_h, 5121 gen_helper_gvec_fmax_s, 5122 gen_helper_gvec_fmax_d, 5123 }; 5124 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5125 5126 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5127 gen_helper_gvec_fmin_h, 5128 gen_helper_gvec_fmin_s, 5129 gen_helper_gvec_fmin_d, 5130 }; 5131 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5132 5133 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5134 gen_helper_gvec_fmaxnum_h, 5135 gen_helper_gvec_fmaxnum_s, 5136 gen_helper_gvec_fmaxnum_d, 5137 }; 5138 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5139 5140 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5141 gen_helper_gvec_fminnum_h, 5142 gen_helper_gvec_fminnum_s, 5143 gen_helper_gvec_fminnum_d, 5144 }; 5145 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5146 5147 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5148 gen_helper_gvec_fmulx_h, 5149 gen_helper_gvec_fmulx_s, 5150 gen_helper_gvec_fmulx_d, 5151 }; 5152 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5153 5154 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5155 gen_helper_gvec_vfma_h, 5156 gen_helper_gvec_vfma_s, 5157 gen_helper_gvec_vfma_d, 5158 }; 5159 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5160 5161 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5162 gen_helper_gvec_vfms_h, 5163 gen_helper_gvec_vfms_s, 5164 gen_helper_gvec_vfms_d, 5165 }; 5166 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5167 5168 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5169 gen_helper_gvec_fceq_h, 5170 gen_helper_gvec_fceq_s, 5171 gen_helper_gvec_fceq_d, 5172 }; 5173 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5174 5175 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5176 gen_helper_gvec_fcge_h, 5177 gen_helper_gvec_fcge_s, 5178 gen_helper_gvec_fcge_d, 5179 }; 5180 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5181 5182 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5183 gen_helper_gvec_fcgt_h, 5184 gen_helper_gvec_fcgt_s, 5185 gen_helper_gvec_fcgt_d, 5186 }; 5187 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5188 5189 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5190 gen_helper_gvec_facge_h, 5191 gen_helper_gvec_facge_s, 5192 gen_helper_gvec_facge_d, 5193 }; 5194 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5195 5196 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5197 gen_helper_gvec_facgt_h, 5198 gen_helper_gvec_facgt_s, 5199 gen_helper_gvec_facgt_d, 5200 }; 5201 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5202 5203 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5204 gen_helper_gvec_fabd_h, 5205 gen_helper_gvec_fabd_s, 5206 gen_helper_gvec_fabd_d, 5207 }; 5208 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5209 5210 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5211 gen_helper_gvec_recps_h, 5212 gen_helper_gvec_recps_s, 5213 gen_helper_gvec_recps_d, 5214 }; 5215 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5216 5217 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5218 gen_helper_gvec_rsqrts_h, 5219 gen_helper_gvec_rsqrts_s, 5220 gen_helper_gvec_rsqrts_d, 5221 }; 5222 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5223 5224 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5225 gen_helper_gvec_faddp_h, 5226 gen_helper_gvec_faddp_s, 5227 gen_helper_gvec_faddp_d, 5228 }; 5229 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5230 5231 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5232 gen_helper_gvec_fmaxp_h, 5233 gen_helper_gvec_fmaxp_s, 5234 gen_helper_gvec_fmaxp_d, 5235 }; 5236 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) 5237 5238 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5239 gen_helper_gvec_fminp_h, 5240 gen_helper_gvec_fminp_s, 5241 gen_helper_gvec_fminp_d, 5242 }; 5243 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) 5244 5245 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5246 gen_helper_gvec_fmaxnump_h, 5247 gen_helper_gvec_fmaxnump_s, 5248 gen_helper_gvec_fmaxnump_d, 5249 }; 5250 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) 5251 5252 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5253 gen_helper_gvec_fminnump_h, 5254 gen_helper_gvec_fminnump_s, 5255 gen_helper_gvec_fminnump_d, 5256 }; 5257 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) 5258 5259 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5260 { 5261 if (fp_access_check(s)) { 5262 int data = (is_2 << 1) | is_s; 5263 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5264 vec_full_reg_offset(s, a->rn), 5265 vec_full_reg_offset(s, a->rm), tcg_env, 5266 a->q ? 16 : 8, vec_full_reg_size(s), 5267 data, gen_helper_gvec_fmlal_a64); 5268 } 5269 return true; 5270 } 5271 5272 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5273 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5274 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5275 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5276 5277 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5278 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 5279 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 5280 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 5281 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 5282 5283 /* 5284 * Advanced SIMD scalar/vector x indexed element 5285 */ 5286 5287 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5288 { 5289 switch (a->esz) { 5290 case MO_64: 5291 if (fp_access_check(s)) { 5292 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5293 TCGv_i64 t1 = tcg_temp_new_i64(); 5294 5295 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5296 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5297 write_fp_dreg(s, a->rd, t0); 5298 } 5299 break; 5300 case MO_32: 5301 if (fp_access_check(s)) { 5302 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5303 TCGv_i32 t1 = tcg_temp_new_i32(); 5304 5305 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5306 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5307 write_fp_sreg(s, a->rd, t0); 5308 } 5309 break; 5310 case MO_16: 5311 if (!dc_isar_feature(aa64_fp16, s)) { 5312 return false; 5313 } 5314 if (fp_access_check(s)) { 5315 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5316 TCGv_i32 t1 = tcg_temp_new_i32(); 5317 5318 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5319 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5320 write_fp_sreg(s, a->rd, t0); 5321 } 5322 break; 5323 default: 5324 g_assert_not_reached(); 5325 } 5326 return true; 5327 } 5328 5329 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5330 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5331 5332 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5333 { 5334 switch (a->esz) { 5335 case MO_64: 5336 if (fp_access_check(s)) { 5337 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5338 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5339 TCGv_i64 t2 = tcg_temp_new_i64(); 5340 5341 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5342 if (neg) { 5343 gen_vfp_negd(t1, t1); 5344 } 5345 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5346 write_fp_dreg(s, a->rd, t0); 5347 } 5348 break; 5349 case MO_32: 5350 if (fp_access_check(s)) { 5351 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5352 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5353 TCGv_i32 t2 = tcg_temp_new_i32(); 5354 5355 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5356 if (neg) { 5357 gen_vfp_negs(t1, t1); 5358 } 5359 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5360 write_fp_sreg(s, a->rd, t0); 5361 } 5362 break; 5363 case MO_16: 5364 if (!dc_isar_feature(aa64_fp16, s)) { 5365 return false; 5366 } 5367 if (fp_access_check(s)) { 5368 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5369 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5370 TCGv_i32 t2 = tcg_temp_new_i32(); 5371 5372 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5373 if (neg) { 5374 gen_vfp_negh(t1, t1); 5375 } 5376 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5377 fpstatus_ptr(FPST_FPCR_F16)); 5378 write_fp_sreg(s, a->rd, t0); 5379 } 5380 break; 5381 default: 5382 g_assert_not_reached(); 5383 } 5384 return true; 5385 } 5386 5387 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5388 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5389 5390 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5391 gen_helper_gvec_3_ptr * const fns[3]) 5392 { 5393 MemOp esz = a->esz; 5394 5395 switch (esz) { 5396 case MO_64: 5397 if (!a->q) { 5398 return false; 5399 } 5400 break; 5401 case MO_32: 5402 break; 5403 case MO_16: 5404 if (!dc_isar_feature(aa64_fp16, s)) { 5405 return false; 5406 } 5407 break; 5408 default: 5409 g_assert_not_reached(); 5410 } 5411 if (fp_access_check(s)) { 5412 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5413 esz == MO_16, a->idx, fns[esz - 1]); 5414 } 5415 return true; 5416 } 5417 5418 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5419 gen_helper_gvec_fmul_idx_h, 5420 gen_helper_gvec_fmul_idx_s, 5421 gen_helper_gvec_fmul_idx_d, 5422 }; 5423 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5424 5425 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5426 gen_helper_gvec_fmulx_idx_h, 5427 gen_helper_gvec_fmulx_idx_s, 5428 gen_helper_gvec_fmulx_idx_d, 5429 }; 5430 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5431 5432 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5433 { 5434 static gen_helper_gvec_4_ptr * const fns[3] = { 5435 gen_helper_gvec_fmla_idx_h, 5436 gen_helper_gvec_fmla_idx_s, 5437 gen_helper_gvec_fmla_idx_d, 5438 }; 5439 MemOp esz = a->esz; 5440 5441 switch (esz) { 5442 case MO_64: 5443 if (!a->q) { 5444 return false; 5445 } 5446 break; 5447 case MO_32: 5448 break; 5449 case MO_16: 5450 if (!dc_isar_feature(aa64_fp16, s)) { 5451 return false; 5452 } 5453 break; 5454 default: 5455 g_assert_not_reached(); 5456 } 5457 if (fp_access_check(s)) { 5458 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5459 esz == MO_16, (a->idx << 1) | neg, 5460 fns[esz - 1]); 5461 } 5462 return true; 5463 } 5464 5465 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5466 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5467 5468 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 5469 { 5470 if (fp_access_check(s)) { 5471 int data = (a->idx << 2) | (is_2 << 1) | is_s; 5472 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5473 vec_full_reg_offset(s, a->rn), 5474 vec_full_reg_offset(s, a->rm), tcg_env, 5475 a->q ? 16 : 8, vec_full_reg_size(s), 5476 data, gen_helper_gvec_fmlal_idx_a64); 5477 } 5478 return true; 5479 } 5480 5481 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 5482 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 5483 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 5484 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 5485 5486 /* 5487 * Advanced SIMD scalar pairwise 5488 */ 5489 5490 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5491 { 5492 switch (a->esz) { 5493 case MO_64: 5494 if (fp_access_check(s)) { 5495 TCGv_i64 t0 = tcg_temp_new_i64(); 5496 TCGv_i64 t1 = tcg_temp_new_i64(); 5497 5498 read_vec_element(s, t0, a->rn, 0, MO_64); 5499 read_vec_element(s, t1, a->rn, 1, MO_64); 5500 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5501 write_fp_dreg(s, a->rd, t0); 5502 } 5503 break; 5504 case MO_32: 5505 if (fp_access_check(s)) { 5506 TCGv_i32 t0 = tcg_temp_new_i32(); 5507 TCGv_i32 t1 = tcg_temp_new_i32(); 5508 5509 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5510 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5511 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5512 write_fp_sreg(s, a->rd, t0); 5513 } 5514 break; 5515 case MO_16: 5516 if (!dc_isar_feature(aa64_fp16, s)) { 5517 return false; 5518 } 5519 if (fp_access_check(s)) { 5520 TCGv_i32 t0 = tcg_temp_new_i32(); 5521 TCGv_i32 t1 = tcg_temp_new_i32(); 5522 5523 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5524 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5525 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5526 write_fp_sreg(s, a->rd, t0); 5527 } 5528 break; 5529 default: 5530 g_assert_not_reached(); 5531 } 5532 return true; 5533 } 5534 5535 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5536 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) 5537 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) 5538 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 5539 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 5540 5541 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 5542 { 5543 if (fp_access_check(s)) { 5544 TCGv_i64 t0 = tcg_temp_new_i64(); 5545 TCGv_i64 t1 = tcg_temp_new_i64(); 5546 5547 read_vec_element(s, t0, a->rn, 0, MO_64); 5548 read_vec_element(s, t1, a->rn, 1, MO_64); 5549 tcg_gen_add_i64(t0, t0, t1); 5550 write_fp_dreg(s, a->rd, t0); 5551 } 5552 return true; 5553 } 5554 5555 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5556 * Note that it is the caller's responsibility to ensure that the 5557 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5558 * mandated semantics for out of range shifts. 5559 */ 5560 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5561 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5562 { 5563 switch (shift_type) { 5564 case A64_SHIFT_TYPE_LSL: 5565 tcg_gen_shl_i64(dst, src, shift_amount); 5566 break; 5567 case A64_SHIFT_TYPE_LSR: 5568 tcg_gen_shr_i64(dst, src, shift_amount); 5569 break; 5570 case A64_SHIFT_TYPE_ASR: 5571 if (!sf) { 5572 tcg_gen_ext32s_i64(dst, src); 5573 } 5574 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5575 break; 5576 case A64_SHIFT_TYPE_ROR: 5577 if (sf) { 5578 tcg_gen_rotr_i64(dst, src, shift_amount); 5579 } else { 5580 TCGv_i32 t0, t1; 5581 t0 = tcg_temp_new_i32(); 5582 t1 = tcg_temp_new_i32(); 5583 tcg_gen_extrl_i64_i32(t0, src); 5584 tcg_gen_extrl_i64_i32(t1, shift_amount); 5585 tcg_gen_rotr_i32(t0, t0, t1); 5586 tcg_gen_extu_i32_i64(dst, t0); 5587 } 5588 break; 5589 default: 5590 assert(FALSE); /* all shift types should be handled */ 5591 break; 5592 } 5593 5594 if (!sf) { /* zero extend final result */ 5595 tcg_gen_ext32u_i64(dst, dst); 5596 } 5597 } 5598 5599 /* Shift a TCGv src by immediate, put result in dst. 5600 * The shift amount must be in range (this should always be true as the 5601 * relevant instructions will UNDEF on bad shift immediates). 5602 */ 5603 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5604 enum a64_shift_type shift_type, unsigned int shift_i) 5605 { 5606 assert(shift_i < (sf ? 64 : 32)); 5607 5608 if (shift_i == 0) { 5609 tcg_gen_mov_i64(dst, src); 5610 } else { 5611 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5612 } 5613 } 5614 5615 /* Logical (shifted register) 5616 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5617 * +----+-----+-----------+-------+---+------+--------+------+------+ 5618 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5619 * +----+-----+-----------+-------+---+------+--------+------+------+ 5620 */ 5621 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5622 { 5623 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5624 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5625 5626 sf = extract32(insn, 31, 1); 5627 opc = extract32(insn, 29, 2); 5628 shift_type = extract32(insn, 22, 2); 5629 invert = extract32(insn, 21, 1); 5630 rm = extract32(insn, 16, 5); 5631 shift_amount = extract32(insn, 10, 6); 5632 rn = extract32(insn, 5, 5); 5633 rd = extract32(insn, 0, 5); 5634 5635 if (!sf && (shift_amount & (1 << 5))) { 5636 unallocated_encoding(s); 5637 return; 5638 } 5639 5640 tcg_rd = cpu_reg(s, rd); 5641 5642 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5643 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5644 * register-register MOV and MVN, so it is worth special casing. 5645 */ 5646 tcg_rm = cpu_reg(s, rm); 5647 if (invert) { 5648 tcg_gen_not_i64(tcg_rd, tcg_rm); 5649 if (!sf) { 5650 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5651 } 5652 } else { 5653 if (sf) { 5654 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5655 } else { 5656 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5657 } 5658 } 5659 return; 5660 } 5661 5662 tcg_rm = read_cpu_reg(s, rm, sf); 5663 5664 if (shift_amount) { 5665 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5666 } 5667 5668 tcg_rn = cpu_reg(s, rn); 5669 5670 switch (opc | (invert << 2)) { 5671 case 0: /* AND */ 5672 case 3: /* ANDS */ 5673 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5674 break; 5675 case 1: /* ORR */ 5676 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5677 break; 5678 case 2: /* EOR */ 5679 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5680 break; 5681 case 4: /* BIC */ 5682 case 7: /* BICS */ 5683 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5684 break; 5685 case 5: /* ORN */ 5686 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5687 break; 5688 case 6: /* EON */ 5689 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5690 break; 5691 default: 5692 assert(FALSE); 5693 break; 5694 } 5695 5696 if (!sf) { 5697 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5698 } 5699 5700 if (opc == 3) { 5701 gen_logic_CC(sf, tcg_rd); 5702 } 5703 } 5704 5705 /* 5706 * Add/subtract (extended register) 5707 * 5708 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5709 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5710 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5711 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5712 * 5713 * sf: 0 -> 32bit, 1 -> 64bit 5714 * op: 0 -> add , 1 -> sub 5715 * S: 1 -> set flags 5716 * opt: 00 5717 * option: extension type (see DecodeRegExtend) 5718 * imm3: optional shift to Rm 5719 * 5720 * Rd = Rn + LSL(extend(Rm), amount) 5721 */ 5722 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5723 { 5724 int rd = extract32(insn, 0, 5); 5725 int rn = extract32(insn, 5, 5); 5726 int imm3 = extract32(insn, 10, 3); 5727 int option = extract32(insn, 13, 3); 5728 int rm = extract32(insn, 16, 5); 5729 int opt = extract32(insn, 22, 2); 5730 bool setflags = extract32(insn, 29, 1); 5731 bool sub_op = extract32(insn, 30, 1); 5732 bool sf = extract32(insn, 31, 1); 5733 5734 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5735 TCGv_i64 tcg_rd; 5736 TCGv_i64 tcg_result; 5737 5738 if (imm3 > 4 || opt != 0) { 5739 unallocated_encoding(s); 5740 return; 5741 } 5742 5743 /* non-flag setting ops may use SP */ 5744 if (!setflags) { 5745 tcg_rd = cpu_reg_sp(s, rd); 5746 } else { 5747 tcg_rd = cpu_reg(s, rd); 5748 } 5749 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5750 5751 tcg_rm = read_cpu_reg(s, rm, sf); 5752 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5753 5754 tcg_result = tcg_temp_new_i64(); 5755 5756 if (!setflags) { 5757 if (sub_op) { 5758 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5759 } else { 5760 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5761 } 5762 } else { 5763 if (sub_op) { 5764 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5765 } else { 5766 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5767 } 5768 } 5769 5770 if (sf) { 5771 tcg_gen_mov_i64(tcg_rd, tcg_result); 5772 } else { 5773 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5774 } 5775 } 5776 5777 /* 5778 * Add/subtract (shifted register) 5779 * 5780 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5781 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5782 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5783 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5784 * 5785 * sf: 0 -> 32bit, 1 -> 64bit 5786 * op: 0 -> add , 1 -> sub 5787 * S: 1 -> set flags 5788 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5789 * imm6: Shift amount to apply to Rm before the add/sub 5790 */ 5791 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5792 { 5793 int rd = extract32(insn, 0, 5); 5794 int rn = extract32(insn, 5, 5); 5795 int imm6 = extract32(insn, 10, 6); 5796 int rm = extract32(insn, 16, 5); 5797 int shift_type = extract32(insn, 22, 2); 5798 bool setflags = extract32(insn, 29, 1); 5799 bool sub_op = extract32(insn, 30, 1); 5800 bool sf = extract32(insn, 31, 1); 5801 5802 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5803 TCGv_i64 tcg_rn, tcg_rm; 5804 TCGv_i64 tcg_result; 5805 5806 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5807 unallocated_encoding(s); 5808 return; 5809 } 5810 5811 tcg_rn = read_cpu_reg(s, rn, sf); 5812 tcg_rm = read_cpu_reg(s, rm, sf); 5813 5814 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5815 5816 tcg_result = tcg_temp_new_i64(); 5817 5818 if (!setflags) { 5819 if (sub_op) { 5820 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5821 } else { 5822 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5823 } 5824 } else { 5825 if (sub_op) { 5826 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5827 } else { 5828 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5829 } 5830 } 5831 5832 if (sf) { 5833 tcg_gen_mov_i64(tcg_rd, tcg_result); 5834 } else { 5835 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5836 } 5837 } 5838 5839 /* Data-processing (3 source) 5840 * 5841 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5842 * +--+------+-----------+------+------+----+------+------+------+ 5843 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5844 * +--+------+-----------+------+------+----+------+------+------+ 5845 */ 5846 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5847 { 5848 int rd = extract32(insn, 0, 5); 5849 int rn = extract32(insn, 5, 5); 5850 int ra = extract32(insn, 10, 5); 5851 int rm = extract32(insn, 16, 5); 5852 int op_id = (extract32(insn, 29, 3) << 4) | 5853 (extract32(insn, 21, 3) << 1) | 5854 extract32(insn, 15, 1); 5855 bool sf = extract32(insn, 31, 1); 5856 bool is_sub = extract32(op_id, 0, 1); 5857 bool is_high = extract32(op_id, 2, 1); 5858 bool is_signed = false; 5859 TCGv_i64 tcg_op1; 5860 TCGv_i64 tcg_op2; 5861 TCGv_i64 tcg_tmp; 5862 5863 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5864 switch (op_id) { 5865 case 0x42: /* SMADDL */ 5866 case 0x43: /* SMSUBL */ 5867 case 0x44: /* SMULH */ 5868 is_signed = true; 5869 break; 5870 case 0x0: /* MADD (32bit) */ 5871 case 0x1: /* MSUB (32bit) */ 5872 case 0x40: /* MADD (64bit) */ 5873 case 0x41: /* MSUB (64bit) */ 5874 case 0x4a: /* UMADDL */ 5875 case 0x4b: /* UMSUBL */ 5876 case 0x4c: /* UMULH */ 5877 break; 5878 default: 5879 unallocated_encoding(s); 5880 return; 5881 } 5882 5883 if (is_high) { 5884 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5885 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5886 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5887 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5888 5889 if (is_signed) { 5890 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5891 } else { 5892 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5893 } 5894 return; 5895 } 5896 5897 tcg_op1 = tcg_temp_new_i64(); 5898 tcg_op2 = tcg_temp_new_i64(); 5899 tcg_tmp = tcg_temp_new_i64(); 5900 5901 if (op_id < 0x42) { 5902 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5903 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5904 } else { 5905 if (is_signed) { 5906 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5907 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5908 } else { 5909 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5910 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5911 } 5912 } 5913 5914 if (ra == 31 && !is_sub) { 5915 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5916 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5917 } else { 5918 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5919 if (is_sub) { 5920 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5921 } else { 5922 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5923 } 5924 } 5925 5926 if (!sf) { 5927 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5928 } 5929 } 5930 5931 /* Add/subtract (with carry) 5932 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5933 * +--+--+--+------------------------+------+-------------+------+-----+ 5934 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5935 * +--+--+--+------------------------+------+-------------+------+-----+ 5936 */ 5937 5938 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5939 { 5940 unsigned int sf, op, setflags, rm, rn, rd; 5941 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5942 5943 sf = extract32(insn, 31, 1); 5944 op = extract32(insn, 30, 1); 5945 setflags = extract32(insn, 29, 1); 5946 rm = extract32(insn, 16, 5); 5947 rn = extract32(insn, 5, 5); 5948 rd = extract32(insn, 0, 5); 5949 5950 tcg_rd = cpu_reg(s, rd); 5951 tcg_rn = cpu_reg(s, rn); 5952 5953 if (op) { 5954 tcg_y = tcg_temp_new_i64(); 5955 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5956 } else { 5957 tcg_y = cpu_reg(s, rm); 5958 } 5959 5960 if (setflags) { 5961 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5962 } else { 5963 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5964 } 5965 } 5966 5967 /* 5968 * Rotate right into flags 5969 * 31 30 29 21 15 10 5 4 0 5970 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5971 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5972 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5973 */ 5974 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5975 { 5976 int mask = extract32(insn, 0, 4); 5977 int o2 = extract32(insn, 4, 1); 5978 int rn = extract32(insn, 5, 5); 5979 int imm6 = extract32(insn, 15, 6); 5980 int sf_op_s = extract32(insn, 29, 3); 5981 TCGv_i64 tcg_rn; 5982 TCGv_i32 nzcv; 5983 5984 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5985 unallocated_encoding(s); 5986 return; 5987 } 5988 5989 tcg_rn = read_cpu_reg(s, rn, 1); 5990 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5991 5992 nzcv = tcg_temp_new_i32(); 5993 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5994 5995 if (mask & 8) { /* N */ 5996 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5997 } 5998 if (mask & 4) { /* Z */ 5999 tcg_gen_not_i32(cpu_ZF, nzcv); 6000 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 6001 } 6002 if (mask & 2) { /* C */ 6003 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 6004 } 6005 if (mask & 1) { /* V */ 6006 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 6007 } 6008 } 6009 6010 /* 6011 * Evaluate into flags 6012 * 31 30 29 21 15 14 10 5 4 0 6013 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6014 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 6015 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 6016 */ 6017 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 6018 { 6019 int o3_mask = extract32(insn, 0, 5); 6020 int rn = extract32(insn, 5, 5); 6021 int o2 = extract32(insn, 15, 6); 6022 int sz = extract32(insn, 14, 1); 6023 int sf_op_s = extract32(insn, 29, 3); 6024 TCGv_i32 tmp; 6025 int shift; 6026 6027 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 6028 !dc_isar_feature(aa64_condm_4, s)) { 6029 unallocated_encoding(s); 6030 return; 6031 } 6032 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 6033 6034 tmp = tcg_temp_new_i32(); 6035 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 6036 tcg_gen_shli_i32(cpu_NF, tmp, shift); 6037 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 6038 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 6039 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 6040 } 6041 6042 /* Conditional compare (immediate / register) 6043 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6044 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6045 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 6046 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 6047 * [1] y [0] [0] 6048 */ 6049 static void disas_cc(DisasContext *s, uint32_t insn) 6050 { 6051 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 6052 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 6053 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 6054 DisasCompare c; 6055 6056 if (!extract32(insn, 29, 1)) { 6057 unallocated_encoding(s); 6058 return; 6059 } 6060 if (insn & (1 << 10 | 1 << 4)) { 6061 unallocated_encoding(s); 6062 return; 6063 } 6064 sf = extract32(insn, 31, 1); 6065 op = extract32(insn, 30, 1); 6066 is_imm = extract32(insn, 11, 1); 6067 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 6068 cond = extract32(insn, 12, 4); 6069 rn = extract32(insn, 5, 5); 6070 nzcv = extract32(insn, 0, 4); 6071 6072 /* Set T0 = !COND. */ 6073 tcg_t0 = tcg_temp_new_i32(); 6074 arm_test_cc(&c, cond); 6075 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 6076 6077 /* Load the arguments for the new comparison. */ 6078 if (is_imm) { 6079 tcg_y = tcg_temp_new_i64(); 6080 tcg_gen_movi_i64(tcg_y, y); 6081 } else { 6082 tcg_y = cpu_reg(s, y); 6083 } 6084 tcg_rn = cpu_reg(s, rn); 6085 6086 /* Set the flags for the new comparison. */ 6087 tcg_tmp = tcg_temp_new_i64(); 6088 if (op) { 6089 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6090 } else { 6091 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 6092 } 6093 6094 /* If COND was false, force the flags to #nzcv. Compute two masks 6095 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 6096 * For tcg hosts that support ANDC, we can make do with just T1. 6097 * In either case, allow the tcg optimizer to delete any unused mask. 6098 */ 6099 tcg_t1 = tcg_temp_new_i32(); 6100 tcg_t2 = tcg_temp_new_i32(); 6101 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6102 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6103 6104 if (nzcv & 8) { /* N */ 6105 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6106 } else { 6107 if (TCG_TARGET_HAS_andc_i32) { 6108 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6109 } else { 6110 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6111 } 6112 } 6113 if (nzcv & 4) { /* Z */ 6114 if (TCG_TARGET_HAS_andc_i32) { 6115 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6116 } else { 6117 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6118 } 6119 } else { 6120 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6121 } 6122 if (nzcv & 2) { /* C */ 6123 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6124 } else { 6125 if (TCG_TARGET_HAS_andc_i32) { 6126 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6127 } else { 6128 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6129 } 6130 } 6131 if (nzcv & 1) { /* V */ 6132 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6133 } else { 6134 if (TCG_TARGET_HAS_andc_i32) { 6135 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6136 } else { 6137 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6138 } 6139 } 6140 } 6141 6142 /* Conditional select 6143 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6144 * +----+----+---+-----------------+------+------+-----+------+------+ 6145 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6146 * +----+----+---+-----------------+------+------+-----+------+------+ 6147 */ 6148 static void disas_cond_select(DisasContext *s, uint32_t insn) 6149 { 6150 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6151 TCGv_i64 tcg_rd, zero; 6152 DisasCompare64 c; 6153 6154 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6155 /* S == 1 or op2<1> == 1 */ 6156 unallocated_encoding(s); 6157 return; 6158 } 6159 sf = extract32(insn, 31, 1); 6160 else_inv = extract32(insn, 30, 1); 6161 rm = extract32(insn, 16, 5); 6162 cond = extract32(insn, 12, 4); 6163 else_inc = extract32(insn, 10, 1); 6164 rn = extract32(insn, 5, 5); 6165 rd = extract32(insn, 0, 5); 6166 6167 tcg_rd = cpu_reg(s, rd); 6168 6169 a64_test_cc(&c, cond); 6170 zero = tcg_constant_i64(0); 6171 6172 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6173 /* CSET & CSETM. */ 6174 if (else_inv) { 6175 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6176 tcg_rd, c.value, zero); 6177 } else { 6178 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6179 tcg_rd, c.value, zero); 6180 } 6181 } else { 6182 TCGv_i64 t_true = cpu_reg(s, rn); 6183 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6184 if (else_inv && else_inc) { 6185 tcg_gen_neg_i64(t_false, t_false); 6186 } else if (else_inv) { 6187 tcg_gen_not_i64(t_false, t_false); 6188 } else if (else_inc) { 6189 tcg_gen_addi_i64(t_false, t_false, 1); 6190 } 6191 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6192 } 6193 6194 if (!sf) { 6195 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6196 } 6197 } 6198 6199 static void handle_clz(DisasContext *s, unsigned int sf, 6200 unsigned int rn, unsigned int rd) 6201 { 6202 TCGv_i64 tcg_rd, tcg_rn; 6203 tcg_rd = cpu_reg(s, rd); 6204 tcg_rn = cpu_reg(s, rn); 6205 6206 if (sf) { 6207 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6208 } else { 6209 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6210 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6211 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6212 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6213 } 6214 } 6215 6216 static void handle_cls(DisasContext *s, unsigned int sf, 6217 unsigned int rn, unsigned int rd) 6218 { 6219 TCGv_i64 tcg_rd, tcg_rn; 6220 tcg_rd = cpu_reg(s, rd); 6221 tcg_rn = cpu_reg(s, rn); 6222 6223 if (sf) { 6224 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6225 } else { 6226 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6227 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6228 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6229 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6230 } 6231 } 6232 6233 static void handle_rbit(DisasContext *s, unsigned int sf, 6234 unsigned int rn, unsigned int rd) 6235 { 6236 TCGv_i64 tcg_rd, tcg_rn; 6237 tcg_rd = cpu_reg(s, rd); 6238 tcg_rn = cpu_reg(s, rn); 6239 6240 if (sf) { 6241 gen_helper_rbit64(tcg_rd, tcg_rn); 6242 } else { 6243 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6244 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6245 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6246 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6247 } 6248 } 6249 6250 /* REV with sf==1, opcode==3 ("REV64") */ 6251 static void handle_rev64(DisasContext *s, unsigned int sf, 6252 unsigned int rn, unsigned int rd) 6253 { 6254 if (!sf) { 6255 unallocated_encoding(s); 6256 return; 6257 } 6258 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6259 } 6260 6261 /* REV with sf==0, opcode==2 6262 * REV32 (sf==1, opcode==2) 6263 */ 6264 static void handle_rev32(DisasContext *s, unsigned int sf, 6265 unsigned int rn, unsigned int rd) 6266 { 6267 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6268 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6269 6270 if (sf) { 6271 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6272 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6273 } else { 6274 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6275 } 6276 } 6277 6278 /* REV16 (opcode==1) */ 6279 static void handle_rev16(DisasContext *s, unsigned int sf, 6280 unsigned int rn, unsigned int rd) 6281 { 6282 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6283 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6284 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6285 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6286 6287 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6288 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6289 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6290 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6291 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6292 } 6293 6294 /* Data-processing (1 source) 6295 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6296 * +----+---+---+-----------------+---------+--------+------+------+ 6297 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6298 * +----+---+---+-----------------+---------+--------+------+------+ 6299 */ 6300 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6301 { 6302 unsigned int sf, opcode, opcode2, rn, rd; 6303 TCGv_i64 tcg_rd; 6304 6305 if (extract32(insn, 29, 1)) { 6306 unallocated_encoding(s); 6307 return; 6308 } 6309 6310 sf = extract32(insn, 31, 1); 6311 opcode = extract32(insn, 10, 6); 6312 opcode2 = extract32(insn, 16, 5); 6313 rn = extract32(insn, 5, 5); 6314 rd = extract32(insn, 0, 5); 6315 6316 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6317 6318 switch (MAP(sf, opcode2, opcode)) { 6319 case MAP(0, 0x00, 0x00): /* RBIT */ 6320 case MAP(1, 0x00, 0x00): 6321 handle_rbit(s, sf, rn, rd); 6322 break; 6323 case MAP(0, 0x00, 0x01): /* REV16 */ 6324 case MAP(1, 0x00, 0x01): 6325 handle_rev16(s, sf, rn, rd); 6326 break; 6327 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6328 case MAP(1, 0x00, 0x02): 6329 handle_rev32(s, sf, rn, rd); 6330 break; 6331 case MAP(1, 0x00, 0x03): /* REV64 */ 6332 handle_rev64(s, sf, rn, rd); 6333 break; 6334 case MAP(0, 0x00, 0x04): /* CLZ */ 6335 case MAP(1, 0x00, 0x04): 6336 handle_clz(s, sf, rn, rd); 6337 break; 6338 case MAP(0, 0x00, 0x05): /* CLS */ 6339 case MAP(1, 0x00, 0x05): 6340 handle_cls(s, sf, rn, rd); 6341 break; 6342 case MAP(1, 0x01, 0x00): /* PACIA */ 6343 if (s->pauth_active) { 6344 tcg_rd = cpu_reg(s, rd); 6345 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6346 } else if (!dc_isar_feature(aa64_pauth, s)) { 6347 goto do_unallocated; 6348 } 6349 break; 6350 case MAP(1, 0x01, 0x01): /* PACIB */ 6351 if (s->pauth_active) { 6352 tcg_rd = cpu_reg(s, rd); 6353 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6354 } else if (!dc_isar_feature(aa64_pauth, s)) { 6355 goto do_unallocated; 6356 } 6357 break; 6358 case MAP(1, 0x01, 0x02): /* PACDA */ 6359 if (s->pauth_active) { 6360 tcg_rd = cpu_reg(s, rd); 6361 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6362 } else if (!dc_isar_feature(aa64_pauth, s)) { 6363 goto do_unallocated; 6364 } 6365 break; 6366 case MAP(1, 0x01, 0x03): /* PACDB */ 6367 if (s->pauth_active) { 6368 tcg_rd = cpu_reg(s, rd); 6369 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6370 } else if (!dc_isar_feature(aa64_pauth, s)) { 6371 goto do_unallocated; 6372 } 6373 break; 6374 case MAP(1, 0x01, 0x04): /* AUTIA */ 6375 if (s->pauth_active) { 6376 tcg_rd = cpu_reg(s, rd); 6377 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6378 } else if (!dc_isar_feature(aa64_pauth, s)) { 6379 goto do_unallocated; 6380 } 6381 break; 6382 case MAP(1, 0x01, 0x05): /* AUTIB */ 6383 if (s->pauth_active) { 6384 tcg_rd = cpu_reg(s, rd); 6385 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6386 } else if (!dc_isar_feature(aa64_pauth, s)) { 6387 goto do_unallocated; 6388 } 6389 break; 6390 case MAP(1, 0x01, 0x06): /* AUTDA */ 6391 if (s->pauth_active) { 6392 tcg_rd = cpu_reg(s, rd); 6393 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6394 } else if (!dc_isar_feature(aa64_pauth, s)) { 6395 goto do_unallocated; 6396 } 6397 break; 6398 case MAP(1, 0x01, 0x07): /* AUTDB */ 6399 if (s->pauth_active) { 6400 tcg_rd = cpu_reg(s, rd); 6401 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6402 } else if (!dc_isar_feature(aa64_pauth, s)) { 6403 goto do_unallocated; 6404 } 6405 break; 6406 case MAP(1, 0x01, 0x08): /* PACIZA */ 6407 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6408 goto do_unallocated; 6409 } else if (s->pauth_active) { 6410 tcg_rd = cpu_reg(s, rd); 6411 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6412 } 6413 break; 6414 case MAP(1, 0x01, 0x09): /* PACIZB */ 6415 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6416 goto do_unallocated; 6417 } else if (s->pauth_active) { 6418 tcg_rd = cpu_reg(s, rd); 6419 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6420 } 6421 break; 6422 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6423 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6424 goto do_unallocated; 6425 } else if (s->pauth_active) { 6426 tcg_rd = cpu_reg(s, rd); 6427 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6428 } 6429 break; 6430 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6431 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6432 goto do_unallocated; 6433 } else if (s->pauth_active) { 6434 tcg_rd = cpu_reg(s, rd); 6435 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6436 } 6437 break; 6438 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6439 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6440 goto do_unallocated; 6441 } else if (s->pauth_active) { 6442 tcg_rd = cpu_reg(s, rd); 6443 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6444 } 6445 break; 6446 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6447 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6448 goto do_unallocated; 6449 } else if (s->pauth_active) { 6450 tcg_rd = cpu_reg(s, rd); 6451 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6452 } 6453 break; 6454 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6455 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6456 goto do_unallocated; 6457 } else if (s->pauth_active) { 6458 tcg_rd = cpu_reg(s, rd); 6459 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6460 } 6461 break; 6462 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6463 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6464 goto do_unallocated; 6465 } else if (s->pauth_active) { 6466 tcg_rd = cpu_reg(s, rd); 6467 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6468 } 6469 break; 6470 case MAP(1, 0x01, 0x10): /* XPACI */ 6471 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6472 goto do_unallocated; 6473 } else if (s->pauth_active) { 6474 tcg_rd = cpu_reg(s, rd); 6475 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6476 } 6477 break; 6478 case MAP(1, 0x01, 0x11): /* XPACD */ 6479 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6480 goto do_unallocated; 6481 } else if (s->pauth_active) { 6482 tcg_rd = cpu_reg(s, rd); 6483 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6484 } 6485 break; 6486 default: 6487 do_unallocated: 6488 unallocated_encoding(s); 6489 break; 6490 } 6491 6492 #undef MAP 6493 } 6494 6495 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6496 unsigned int rm, unsigned int rn, unsigned int rd) 6497 { 6498 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6499 tcg_rd = cpu_reg(s, rd); 6500 6501 if (!sf && is_signed) { 6502 tcg_n = tcg_temp_new_i64(); 6503 tcg_m = tcg_temp_new_i64(); 6504 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6505 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6506 } else { 6507 tcg_n = read_cpu_reg(s, rn, sf); 6508 tcg_m = read_cpu_reg(s, rm, sf); 6509 } 6510 6511 if (is_signed) { 6512 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6513 } else { 6514 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6515 } 6516 6517 if (!sf) { /* zero extend final result */ 6518 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6519 } 6520 } 6521 6522 /* LSLV, LSRV, ASRV, RORV */ 6523 static void handle_shift_reg(DisasContext *s, 6524 enum a64_shift_type shift_type, unsigned int sf, 6525 unsigned int rm, unsigned int rn, unsigned int rd) 6526 { 6527 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6528 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6529 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6530 6531 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6532 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6533 } 6534 6535 /* CRC32[BHWX], CRC32C[BHWX] */ 6536 static void handle_crc32(DisasContext *s, 6537 unsigned int sf, unsigned int sz, bool crc32c, 6538 unsigned int rm, unsigned int rn, unsigned int rd) 6539 { 6540 TCGv_i64 tcg_acc, tcg_val; 6541 TCGv_i32 tcg_bytes; 6542 6543 if (!dc_isar_feature(aa64_crc32, s) 6544 || (sf == 1 && sz != 3) 6545 || (sf == 0 && sz == 3)) { 6546 unallocated_encoding(s); 6547 return; 6548 } 6549 6550 if (sz == 3) { 6551 tcg_val = cpu_reg(s, rm); 6552 } else { 6553 uint64_t mask; 6554 switch (sz) { 6555 case 0: 6556 mask = 0xFF; 6557 break; 6558 case 1: 6559 mask = 0xFFFF; 6560 break; 6561 case 2: 6562 mask = 0xFFFFFFFF; 6563 break; 6564 default: 6565 g_assert_not_reached(); 6566 } 6567 tcg_val = tcg_temp_new_i64(); 6568 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6569 } 6570 6571 tcg_acc = cpu_reg(s, rn); 6572 tcg_bytes = tcg_constant_i32(1 << sz); 6573 6574 if (crc32c) { 6575 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6576 } else { 6577 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6578 } 6579 } 6580 6581 /* Data-processing (2 source) 6582 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6583 * +----+---+---+-----------------+------+--------+------+------+ 6584 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6585 * +----+---+---+-----------------+------+--------+------+------+ 6586 */ 6587 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6588 { 6589 unsigned int sf, rm, opcode, rn, rd, setflag; 6590 sf = extract32(insn, 31, 1); 6591 setflag = extract32(insn, 29, 1); 6592 rm = extract32(insn, 16, 5); 6593 opcode = extract32(insn, 10, 6); 6594 rn = extract32(insn, 5, 5); 6595 rd = extract32(insn, 0, 5); 6596 6597 if (setflag && opcode != 0) { 6598 unallocated_encoding(s); 6599 return; 6600 } 6601 6602 switch (opcode) { 6603 case 0: /* SUBP(S) */ 6604 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6605 goto do_unallocated; 6606 } else { 6607 TCGv_i64 tcg_n, tcg_m, tcg_d; 6608 6609 tcg_n = read_cpu_reg_sp(s, rn, true); 6610 tcg_m = read_cpu_reg_sp(s, rm, true); 6611 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6612 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6613 tcg_d = cpu_reg(s, rd); 6614 6615 if (setflag) { 6616 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6617 } else { 6618 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6619 } 6620 } 6621 break; 6622 case 2: /* UDIV */ 6623 handle_div(s, false, sf, rm, rn, rd); 6624 break; 6625 case 3: /* SDIV */ 6626 handle_div(s, true, sf, rm, rn, rd); 6627 break; 6628 case 4: /* IRG */ 6629 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6630 goto do_unallocated; 6631 } 6632 if (s->ata[0]) { 6633 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6634 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6635 } else { 6636 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6637 cpu_reg_sp(s, rn)); 6638 } 6639 break; 6640 case 5: /* GMI */ 6641 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6642 goto do_unallocated; 6643 } else { 6644 TCGv_i64 t = tcg_temp_new_i64(); 6645 6646 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6647 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6648 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6649 } 6650 break; 6651 case 8: /* LSLV */ 6652 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6653 break; 6654 case 9: /* LSRV */ 6655 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6656 break; 6657 case 10: /* ASRV */ 6658 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6659 break; 6660 case 11: /* RORV */ 6661 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6662 break; 6663 case 12: /* PACGA */ 6664 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6665 goto do_unallocated; 6666 } 6667 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6668 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6669 break; 6670 case 16: 6671 case 17: 6672 case 18: 6673 case 19: 6674 case 20: 6675 case 21: 6676 case 22: 6677 case 23: /* CRC32 */ 6678 { 6679 int sz = extract32(opcode, 0, 2); 6680 bool crc32c = extract32(opcode, 2, 1); 6681 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6682 break; 6683 } 6684 default: 6685 do_unallocated: 6686 unallocated_encoding(s); 6687 break; 6688 } 6689 } 6690 6691 /* 6692 * Data processing - register 6693 * 31 30 29 28 25 21 20 16 10 0 6694 * +--+---+--+---+-------+-----+-------+-------+---------+ 6695 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6696 * +--+---+--+---+-------+-----+-------+-------+---------+ 6697 */ 6698 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6699 { 6700 int op0 = extract32(insn, 30, 1); 6701 int op1 = extract32(insn, 28, 1); 6702 int op2 = extract32(insn, 21, 4); 6703 int op3 = extract32(insn, 10, 6); 6704 6705 if (!op1) { 6706 if (op2 & 8) { 6707 if (op2 & 1) { 6708 /* Add/sub (extended register) */ 6709 disas_add_sub_ext_reg(s, insn); 6710 } else { 6711 /* Add/sub (shifted register) */ 6712 disas_add_sub_reg(s, insn); 6713 } 6714 } else { 6715 /* Logical (shifted register) */ 6716 disas_logic_reg(s, insn); 6717 } 6718 return; 6719 } 6720 6721 switch (op2) { 6722 case 0x0: 6723 switch (op3) { 6724 case 0x00: /* Add/subtract (with carry) */ 6725 disas_adc_sbc(s, insn); 6726 break; 6727 6728 case 0x01: /* Rotate right into flags */ 6729 case 0x21: 6730 disas_rotate_right_into_flags(s, insn); 6731 break; 6732 6733 case 0x02: /* Evaluate into flags */ 6734 case 0x12: 6735 case 0x22: 6736 case 0x32: 6737 disas_evaluate_into_flags(s, insn); 6738 break; 6739 6740 default: 6741 goto do_unallocated; 6742 } 6743 break; 6744 6745 case 0x2: /* Conditional compare */ 6746 disas_cc(s, insn); /* both imm and reg forms */ 6747 break; 6748 6749 case 0x4: /* Conditional select */ 6750 disas_cond_select(s, insn); 6751 break; 6752 6753 case 0x6: /* Data-processing */ 6754 if (op0) { /* (1 source) */ 6755 disas_data_proc_1src(s, insn); 6756 } else { /* (2 source) */ 6757 disas_data_proc_2src(s, insn); 6758 } 6759 break; 6760 case 0x8 ... 0xf: /* (3 source) */ 6761 disas_data_proc_3src(s, insn); 6762 break; 6763 6764 default: 6765 do_unallocated: 6766 unallocated_encoding(s); 6767 break; 6768 } 6769 } 6770 6771 static void handle_fp_compare(DisasContext *s, int size, 6772 unsigned int rn, unsigned int rm, 6773 bool cmp_with_zero, bool signal_all_nans) 6774 { 6775 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6776 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6777 6778 if (size == MO_64) { 6779 TCGv_i64 tcg_vn, tcg_vm; 6780 6781 tcg_vn = read_fp_dreg(s, rn); 6782 if (cmp_with_zero) { 6783 tcg_vm = tcg_constant_i64(0); 6784 } else { 6785 tcg_vm = read_fp_dreg(s, rm); 6786 } 6787 if (signal_all_nans) { 6788 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6789 } else { 6790 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6791 } 6792 } else { 6793 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6794 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6795 6796 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6797 if (cmp_with_zero) { 6798 tcg_gen_movi_i32(tcg_vm, 0); 6799 } else { 6800 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6801 } 6802 6803 switch (size) { 6804 case MO_32: 6805 if (signal_all_nans) { 6806 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6807 } else { 6808 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6809 } 6810 break; 6811 case MO_16: 6812 if (signal_all_nans) { 6813 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6814 } else { 6815 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6816 } 6817 break; 6818 default: 6819 g_assert_not_reached(); 6820 } 6821 } 6822 6823 gen_set_nzcv(tcg_flags); 6824 } 6825 6826 /* Floating point compare 6827 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6828 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6829 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6830 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6831 */ 6832 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6833 { 6834 unsigned int mos, type, rm, op, rn, opc, op2r; 6835 int size; 6836 6837 mos = extract32(insn, 29, 3); 6838 type = extract32(insn, 22, 2); 6839 rm = extract32(insn, 16, 5); 6840 op = extract32(insn, 14, 2); 6841 rn = extract32(insn, 5, 5); 6842 opc = extract32(insn, 3, 2); 6843 op2r = extract32(insn, 0, 3); 6844 6845 if (mos || op || op2r) { 6846 unallocated_encoding(s); 6847 return; 6848 } 6849 6850 switch (type) { 6851 case 0: 6852 size = MO_32; 6853 break; 6854 case 1: 6855 size = MO_64; 6856 break; 6857 case 3: 6858 size = MO_16; 6859 if (dc_isar_feature(aa64_fp16, s)) { 6860 break; 6861 } 6862 /* fallthru */ 6863 default: 6864 unallocated_encoding(s); 6865 return; 6866 } 6867 6868 if (!fp_access_check(s)) { 6869 return; 6870 } 6871 6872 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6873 } 6874 6875 /* Floating point conditional compare 6876 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6877 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6878 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6879 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6880 */ 6881 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6882 { 6883 unsigned int mos, type, rm, cond, rn, op, nzcv; 6884 TCGLabel *label_continue = NULL; 6885 int size; 6886 6887 mos = extract32(insn, 29, 3); 6888 type = extract32(insn, 22, 2); 6889 rm = extract32(insn, 16, 5); 6890 cond = extract32(insn, 12, 4); 6891 rn = extract32(insn, 5, 5); 6892 op = extract32(insn, 4, 1); 6893 nzcv = extract32(insn, 0, 4); 6894 6895 if (mos) { 6896 unallocated_encoding(s); 6897 return; 6898 } 6899 6900 switch (type) { 6901 case 0: 6902 size = MO_32; 6903 break; 6904 case 1: 6905 size = MO_64; 6906 break; 6907 case 3: 6908 size = MO_16; 6909 if (dc_isar_feature(aa64_fp16, s)) { 6910 break; 6911 } 6912 /* fallthru */ 6913 default: 6914 unallocated_encoding(s); 6915 return; 6916 } 6917 6918 if (!fp_access_check(s)) { 6919 return; 6920 } 6921 6922 if (cond < 0x0e) { /* not always */ 6923 TCGLabel *label_match = gen_new_label(); 6924 label_continue = gen_new_label(); 6925 arm_gen_test_cc(cond, label_match); 6926 /* nomatch: */ 6927 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6928 tcg_gen_br(label_continue); 6929 gen_set_label(label_match); 6930 } 6931 6932 handle_fp_compare(s, size, rn, rm, false, op); 6933 6934 if (cond < 0x0e) { 6935 gen_set_label(label_continue); 6936 } 6937 } 6938 6939 /* Floating point conditional select 6940 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6941 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6942 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6943 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6944 */ 6945 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6946 { 6947 unsigned int mos, type, rm, cond, rn, rd; 6948 TCGv_i64 t_true, t_false; 6949 DisasCompare64 c; 6950 MemOp sz; 6951 6952 mos = extract32(insn, 29, 3); 6953 type = extract32(insn, 22, 2); 6954 rm = extract32(insn, 16, 5); 6955 cond = extract32(insn, 12, 4); 6956 rn = extract32(insn, 5, 5); 6957 rd = extract32(insn, 0, 5); 6958 6959 if (mos) { 6960 unallocated_encoding(s); 6961 return; 6962 } 6963 6964 switch (type) { 6965 case 0: 6966 sz = MO_32; 6967 break; 6968 case 1: 6969 sz = MO_64; 6970 break; 6971 case 3: 6972 sz = MO_16; 6973 if (dc_isar_feature(aa64_fp16, s)) { 6974 break; 6975 } 6976 /* fallthru */ 6977 default: 6978 unallocated_encoding(s); 6979 return; 6980 } 6981 6982 if (!fp_access_check(s)) { 6983 return; 6984 } 6985 6986 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6987 t_true = tcg_temp_new_i64(); 6988 t_false = tcg_temp_new_i64(); 6989 read_vec_element(s, t_true, rn, 0, sz); 6990 read_vec_element(s, t_false, rm, 0, sz); 6991 6992 a64_test_cc(&c, cond); 6993 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6994 t_true, t_false); 6995 6996 /* Note that sregs & hregs write back zeros to the high bits, 6997 and we've already done the zero-extension. */ 6998 write_fp_dreg(s, rd, t_true); 6999 } 7000 7001 /* Floating-point data-processing (1 source) - half precision */ 7002 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 7003 { 7004 TCGv_ptr fpst = NULL; 7005 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 7006 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7007 7008 switch (opcode) { 7009 case 0x0: /* FMOV */ 7010 tcg_gen_mov_i32(tcg_res, tcg_op); 7011 break; 7012 case 0x1: /* FABS */ 7013 gen_vfp_absh(tcg_res, tcg_op); 7014 break; 7015 case 0x2: /* FNEG */ 7016 gen_vfp_negh(tcg_res, tcg_op); 7017 break; 7018 case 0x3: /* FSQRT */ 7019 fpst = fpstatus_ptr(FPST_FPCR_F16); 7020 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 7021 break; 7022 case 0x8: /* FRINTN */ 7023 case 0x9: /* FRINTP */ 7024 case 0xa: /* FRINTM */ 7025 case 0xb: /* FRINTZ */ 7026 case 0xc: /* FRINTA */ 7027 { 7028 TCGv_i32 tcg_rmode; 7029 7030 fpst = fpstatus_ptr(FPST_FPCR_F16); 7031 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 7032 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7033 gen_restore_rmode(tcg_rmode, fpst); 7034 break; 7035 } 7036 case 0xe: /* FRINTX */ 7037 fpst = fpstatus_ptr(FPST_FPCR_F16); 7038 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 7039 break; 7040 case 0xf: /* FRINTI */ 7041 fpst = fpstatus_ptr(FPST_FPCR_F16); 7042 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 7043 break; 7044 default: 7045 g_assert_not_reached(); 7046 } 7047 7048 write_fp_sreg(s, rd, tcg_res); 7049 } 7050 7051 /* Floating-point data-processing (1 source) - single precision */ 7052 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 7053 { 7054 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 7055 TCGv_i32 tcg_op, tcg_res; 7056 TCGv_ptr fpst; 7057 int rmode = -1; 7058 7059 tcg_op = read_fp_sreg(s, rn); 7060 tcg_res = tcg_temp_new_i32(); 7061 7062 switch (opcode) { 7063 case 0x0: /* FMOV */ 7064 tcg_gen_mov_i32(tcg_res, tcg_op); 7065 goto done; 7066 case 0x1: /* FABS */ 7067 gen_vfp_abss(tcg_res, tcg_op); 7068 goto done; 7069 case 0x2: /* FNEG */ 7070 gen_vfp_negs(tcg_res, tcg_op); 7071 goto done; 7072 case 0x3: /* FSQRT */ 7073 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 7074 goto done; 7075 case 0x6: /* BFCVT */ 7076 gen_fpst = gen_helper_bfcvt; 7077 break; 7078 case 0x8: /* FRINTN */ 7079 case 0x9: /* FRINTP */ 7080 case 0xa: /* FRINTM */ 7081 case 0xb: /* FRINTZ */ 7082 case 0xc: /* FRINTA */ 7083 rmode = opcode & 7; 7084 gen_fpst = gen_helper_rints; 7085 break; 7086 case 0xe: /* FRINTX */ 7087 gen_fpst = gen_helper_rints_exact; 7088 break; 7089 case 0xf: /* FRINTI */ 7090 gen_fpst = gen_helper_rints; 7091 break; 7092 case 0x10: /* FRINT32Z */ 7093 rmode = FPROUNDING_ZERO; 7094 gen_fpst = gen_helper_frint32_s; 7095 break; 7096 case 0x11: /* FRINT32X */ 7097 gen_fpst = gen_helper_frint32_s; 7098 break; 7099 case 0x12: /* FRINT64Z */ 7100 rmode = FPROUNDING_ZERO; 7101 gen_fpst = gen_helper_frint64_s; 7102 break; 7103 case 0x13: /* FRINT64X */ 7104 gen_fpst = gen_helper_frint64_s; 7105 break; 7106 default: 7107 g_assert_not_reached(); 7108 } 7109 7110 fpst = fpstatus_ptr(FPST_FPCR); 7111 if (rmode >= 0) { 7112 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7113 gen_fpst(tcg_res, tcg_op, fpst); 7114 gen_restore_rmode(tcg_rmode, fpst); 7115 } else { 7116 gen_fpst(tcg_res, tcg_op, fpst); 7117 } 7118 7119 done: 7120 write_fp_sreg(s, rd, tcg_res); 7121 } 7122 7123 /* Floating-point data-processing (1 source) - double precision */ 7124 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7125 { 7126 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7127 TCGv_i64 tcg_op, tcg_res; 7128 TCGv_ptr fpst; 7129 int rmode = -1; 7130 7131 switch (opcode) { 7132 case 0x0: /* FMOV */ 7133 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7134 return; 7135 } 7136 7137 tcg_op = read_fp_dreg(s, rn); 7138 tcg_res = tcg_temp_new_i64(); 7139 7140 switch (opcode) { 7141 case 0x1: /* FABS */ 7142 gen_vfp_absd(tcg_res, tcg_op); 7143 goto done; 7144 case 0x2: /* FNEG */ 7145 gen_vfp_negd(tcg_res, tcg_op); 7146 goto done; 7147 case 0x3: /* FSQRT */ 7148 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7149 goto done; 7150 case 0x8: /* FRINTN */ 7151 case 0x9: /* FRINTP */ 7152 case 0xa: /* FRINTM */ 7153 case 0xb: /* FRINTZ */ 7154 case 0xc: /* FRINTA */ 7155 rmode = opcode & 7; 7156 gen_fpst = gen_helper_rintd; 7157 break; 7158 case 0xe: /* FRINTX */ 7159 gen_fpst = gen_helper_rintd_exact; 7160 break; 7161 case 0xf: /* FRINTI */ 7162 gen_fpst = gen_helper_rintd; 7163 break; 7164 case 0x10: /* FRINT32Z */ 7165 rmode = FPROUNDING_ZERO; 7166 gen_fpst = gen_helper_frint32_d; 7167 break; 7168 case 0x11: /* FRINT32X */ 7169 gen_fpst = gen_helper_frint32_d; 7170 break; 7171 case 0x12: /* FRINT64Z */ 7172 rmode = FPROUNDING_ZERO; 7173 gen_fpst = gen_helper_frint64_d; 7174 break; 7175 case 0x13: /* FRINT64X */ 7176 gen_fpst = gen_helper_frint64_d; 7177 break; 7178 default: 7179 g_assert_not_reached(); 7180 } 7181 7182 fpst = fpstatus_ptr(FPST_FPCR); 7183 if (rmode >= 0) { 7184 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7185 gen_fpst(tcg_res, tcg_op, fpst); 7186 gen_restore_rmode(tcg_rmode, fpst); 7187 } else { 7188 gen_fpst(tcg_res, tcg_op, fpst); 7189 } 7190 7191 done: 7192 write_fp_dreg(s, rd, tcg_res); 7193 } 7194 7195 static void handle_fp_fcvt(DisasContext *s, int opcode, 7196 int rd, int rn, int dtype, int ntype) 7197 { 7198 switch (ntype) { 7199 case 0x0: 7200 { 7201 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7202 if (dtype == 1) { 7203 /* Single to double */ 7204 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7205 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7206 write_fp_dreg(s, rd, tcg_rd); 7207 } else { 7208 /* Single to half */ 7209 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7210 TCGv_i32 ahp = get_ahp_flag(); 7211 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7212 7213 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7214 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7215 write_fp_sreg(s, rd, tcg_rd); 7216 } 7217 break; 7218 } 7219 case 0x1: 7220 { 7221 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7222 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7223 if (dtype == 0) { 7224 /* Double to single */ 7225 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7226 } else { 7227 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7228 TCGv_i32 ahp = get_ahp_flag(); 7229 /* Double to half */ 7230 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7231 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7232 } 7233 write_fp_sreg(s, rd, tcg_rd); 7234 break; 7235 } 7236 case 0x3: 7237 { 7238 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7239 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7240 TCGv_i32 tcg_ahp = get_ahp_flag(); 7241 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7242 if (dtype == 0) { 7243 /* Half to single */ 7244 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7245 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7246 write_fp_sreg(s, rd, tcg_rd); 7247 } else { 7248 /* Half to double */ 7249 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7250 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7251 write_fp_dreg(s, rd, tcg_rd); 7252 } 7253 break; 7254 } 7255 default: 7256 g_assert_not_reached(); 7257 } 7258 } 7259 7260 /* Floating point data-processing (1 source) 7261 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7262 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7263 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7264 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7265 */ 7266 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7267 { 7268 int mos = extract32(insn, 29, 3); 7269 int type = extract32(insn, 22, 2); 7270 int opcode = extract32(insn, 15, 6); 7271 int rn = extract32(insn, 5, 5); 7272 int rd = extract32(insn, 0, 5); 7273 7274 if (mos) { 7275 goto do_unallocated; 7276 } 7277 7278 switch (opcode) { 7279 case 0x4: case 0x5: case 0x7: 7280 { 7281 /* FCVT between half, single and double precision */ 7282 int dtype = extract32(opcode, 0, 2); 7283 if (type == 2 || dtype == type) { 7284 goto do_unallocated; 7285 } 7286 if (!fp_access_check(s)) { 7287 return; 7288 } 7289 7290 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7291 break; 7292 } 7293 7294 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7295 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7296 goto do_unallocated; 7297 } 7298 /* fall through */ 7299 case 0x0 ... 0x3: 7300 case 0x8 ... 0xc: 7301 case 0xe ... 0xf: 7302 /* 32-to-32 and 64-to-64 ops */ 7303 switch (type) { 7304 case 0: 7305 if (!fp_access_check(s)) { 7306 return; 7307 } 7308 handle_fp_1src_single(s, opcode, rd, rn); 7309 break; 7310 case 1: 7311 if (!fp_access_check(s)) { 7312 return; 7313 } 7314 handle_fp_1src_double(s, opcode, rd, rn); 7315 break; 7316 case 3: 7317 if (!dc_isar_feature(aa64_fp16, s)) { 7318 goto do_unallocated; 7319 } 7320 7321 if (!fp_access_check(s)) { 7322 return; 7323 } 7324 handle_fp_1src_half(s, opcode, rd, rn); 7325 break; 7326 default: 7327 goto do_unallocated; 7328 } 7329 break; 7330 7331 case 0x6: 7332 switch (type) { 7333 case 1: /* BFCVT */ 7334 if (!dc_isar_feature(aa64_bf16, s)) { 7335 goto do_unallocated; 7336 } 7337 if (!fp_access_check(s)) { 7338 return; 7339 } 7340 handle_fp_1src_single(s, opcode, rd, rn); 7341 break; 7342 default: 7343 goto do_unallocated; 7344 } 7345 break; 7346 7347 default: 7348 do_unallocated: 7349 unallocated_encoding(s); 7350 break; 7351 } 7352 } 7353 7354 /* Floating-point data-processing (3 source) - single precision */ 7355 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7356 int rd, int rn, int rm, int ra) 7357 { 7358 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7359 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7360 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7361 7362 tcg_op1 = read_fp_sreg(s, rn); 7363 tcg_op2 = read_fp_sreg(s, rm); 7364 tcg_op3 = read_fp_sreg(s, ra); 7365 7366 /* These are fused multiply-add, and must be done as one 7367 * floating point operation with no rounding between the 7368 * multiplication and addition steps. 7369 * NB that doing the negations here as separate steps is 7370 * correct : an input NaN should come out with its sign bit 7371 * flipped if it is a negated-input. 7372 */ 7373 if (o1 == true) { 7374 gen_vfp_negs(tcg_op3, tcg_op3); 7375 } 7376 7377 if (o0 != o1) { 7378 gen_vfp_negs(tcg_op1, tcg_op1); 7379 } 7380 7381 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7382 7383 write_fp_sreg(s, rd, tcg_res); 7384 } 7385 7386 /* Floating-point data-processing (3 source) - double precision */ 7387 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7388 int rd, int rn, int rm, int ra) 7389 { 7390 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7391 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7392 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7393 7394 tcg_op1 = read_fp_dreg(s, rn); 7395 tcg_op2 = read_fp_dreg(s, rm); 7396 tcg_op3 = read_fp_dreg(s, ra); 7397 7398 /* These are fused multiply-add, and must be done as one 7399 * floating point operation with no rounding between the 7400 * multiplication and addition steps. 7401 * NB that doing the negations here as separate steps is 7402 * correct : an input NaN should come out with its sign bit 7403 * flipped if it is a negated-input. 7404 */ 7405 if (o1 == true) { 7406 gen_vfp_negd(tcg_op3, tcg_op3); 7407 } 7408 7409 if (o0 != o1) { 7410 gen_vfp_negd(tcg_op1, tcg_op1); 7411 } 7412 7413 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7414 7415 write_fp_dreg(s, rd, tcg_res); 7416 } 7417 7418 /* Floating-point data-processing (3 source) - half precision */ 7419 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7420 int rd, int rn, int rm, int ra) 7421 { 7422 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7423 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7424 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7425 7426 tcg_op1 = read_fp_hreg(s, rn); 7427 tcg_op2 = read_fp_hreg(s, rm); 7428 tcg_op3 = read_fp_hreg(s, ra); 7429 7430 /* These are fused multiply-add, and must be done as one 7431 * floating point operation with no rounding between the 7432 * multiplication and addition steps. 7433 * NB that doing the negations here as separate steps is 7434 * correct : an input NaN should come out with its sign bit 7435 * flipped if it is a negated-input. 7436 */ 7437 if (o1 == true) { 7438 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7439 } 7440 7441 if (o0 != o1) { 7442 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7443 } 7444 7445 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7446 7447 write_fp_sreg(s, rd, tcg_res); 7448 } 7449 7450 /* Floating point data-processing (3 source) 7451 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7452 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7453 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7454 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7455 */ 7456 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7457 { 7458 int mos = extract32(insn, 29, 3); 7459 int type = extract32(insn, 22, 2); 7460 int rd = extract32(insn, 0, 5); 7461 int rn = extract32(insn, 5, 5); 7462 int ra = extract32(insn, 10, 5); 7463 int rm = extract32(insn, 16, 5); 7464 bool o0 = extract32(insn, 15, 1); 7465 bool o1 = extract32(insn, 21, 1); 7466 7467 if (mos) { 7468 unallocated_encoding(s); 7469 return; 7470 } 7471 7472 switch (type) { 7473 case 0: 7474 if (!fp_access_check(s)) { 7475 return; 7476 } 7477 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7478 break; 7479 case 1: 7480 if (!fp_access_check(s)) { 7481 return; 7482 } 7483 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7484 break; 7485 case 3: 7486 if (!dc_isar_feature(aa64_fp16, s)) { 7487 unallocated_encoding(s); 7488 return; 7489 } 7490 if (!fp_access_check(s)) { 7491 return; 7492 } 7493 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7494 break; 7495 default: 7496 unallocated_encoding(s); 7497 } 7498 } 7499 7500 /* Floating point immediate 7501 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7502 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7503 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7504 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7505 */ 7506 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7507 { 7508 int rd = extract32(insn, 0, 5); 7509 int imm5 = extract32(insn, 5, 5); 7510 int imm8 = extract32(insn, 13, 8); 7511 int type = extract32(insn, 22, 2); 7512 int mos = extract32(insn, 29, 3); 7513 uint64_t imm; 7514 MemOp sz; 7515 7516 if (mos || imm5) { 7517 unallocated_encoding(s); 7518 return; 7519 } 7520 7521 switch (type) { 7522 case 0: 7523 sz = MO_32; 7524 break; 7525 case 1: 7526 sz = MO_64; 7527 break; 7528 case 3: 7529 sz = MO_16; 7530 if (dc_isar_feature(aa64_fp16, s)) { 7531 break; 7532 } 7533 /* fallthru */ 7534 default: 7535 unallocated_encoding(s); 7536 return; 7537 } 7538 7539 if (!fp_access_check(s)) { 7540 return; 7541 } 7542 7543 imm = vfp_expand_imm(sz, imm8); 7544 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7545 } 7546 7547 /* Handle floating point <=> fixed point conversions. Note that we can 7548 * also deal with fp <=> integer conversions as a special case (scale == 64) 7549 * OPTME: consider handling that special case specially or at least skipping 7550 * the call to scalbn in the helpers for zero shifts. 7551 */ 7552 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7553 bool itof, int rmode, int scale, int sf, int type) 7554 { 7555 bool is_signed = !(opcode & 1); 7556 TCGv_ptr tcg_fpstatus; 7557 TCGv_i32 tcg_shift, tcg_single; 7558 TCGv_i64 tcg_double; 7559 7560 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7561 7562 tcg_shift = tcg_constant_i32(64 - scale); 7563 7564 if (itof) { 7565 TCGv_i64 tcg_int = cpu_reg(s, rn); 7566 if (!sf) { 7567 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7568 7569 if (is_signed) { 7570 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7571 } else { 7572 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7573 } 7574 7575 tcg_int = tcg_extend; 7576 } 7577 7578 switch (type) { 7579 case 1: /* float64 */ 7580 tcg_double = tcg_temp_new_i64(); 7581 if (is_signed) { 7582 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7583 tcg_shift, tcg_fpstatus); 7584 } else { 7585 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7586 tcg_shift, tcg_fpstatus); 7587 } 7588 write_fp_dreg(s, rd, tcg_double); 7589 break; 7590 7591 case 0: /* float32 */ 7592 tcg_single = tcg_temp_new_i32(); 7593 if (is_signed) { 7594 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7595 tcg_shift, tcg_fpstatus); 7596 } else { 7597 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7598 tcg_shift, tcg_fpstatus); 7599 } 7600 write_fp_sreg(s, rd, tcg_single); 7601 break; 7602 7603 case 3: /* float16 */ 7604 tcg_single = tcg_temp_new_i32(); 7605 if (is_signed) { 7606 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7607 tcg_shift, tcg_fpstatus); 7608 } else { 7609 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7610 tcg_shift, tcg_fpstatus); 7611 } 7612 write_fp_sreg(s, rd, tcg_single); 7613 break; 7614 7615 default: 7616 g_assert_not_reached(); 7617 } 7618 } else { 7619 TCGv_i64 tcg_int = cpu_reg(s, rd); 7620 TCGv_i32 tcg_rmode; 7621 7622 if (extract32(opcode, 2, 1)) { 7623 /* There are too many rounding modes to all fit into rmode, 7624 * so FCVTA[US] is a special case. 7625 */ 7626 rmode = FPROUNDING_TIEAWAY; 7627 } 7628 7629 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7630 7631 switch (type) { 7632 case 1: /* float64 */ 7633 tcg_double = read_fp_dreg(s, rn); 7634 if (is_signed) { 7635 if (!sf) { 7636 gen_helper_vfp_tosld(tcg_int, tcg_double, 7637 tcg_shift, tcg_fpstatus); 7638 } else { 7639 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7640 tcg_shift, tcg_fpstatus); 7641 } 7642 } else { 7643 if (!sf) { 7644 gen_helper_vfp_tould(tcg_int, tcg_double, 7645 tcg_shift, tcg_fpstatus); 7646 } else { 7647 gen_helper_vfp_touqd(tcg_int, tcg_double, 7648 tcg_shift, tcg_fpstatus); 7649 } 7650 } 7651 if (!sf) { 7652 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7653 } 7654 break; 7655 7656 case 0: /* float32 */ 7657 tcg_single = read_fp_sreg(s, rn); 7658 if (sf) { 7659 if (is_signed) { 7660 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7661 tcg_shift, tcg_fpstatus); 7662 } else { 7663 gen_helper_vfp_touqs(tcg_int, tcg_single, 7664 tcg_shift, tcg_fpstatus); 7665 } 7666 } else { 7667 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7668 if (is_signed) { 7669 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7670 tcg_shift, tcg_fpstatus); 7671 } else { 7672 gen_helper_vfp_touls(tcg_dest, tcg_single, 7673 tcg_shift, tcg_fpstatus); 7674 } 7675 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7676 } 7677 break; 7678 7679 case 3: /* float16 */ 7680 tcg_single = read_fp_sreg(s, rn); 7681 if (sf) { 7682 if (is_signed) { 7683 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7684 tcg_shift, tcg_fpstatus); 7685 } else { 7686 gen_helper_vfp_touqh(tcg_int, tcg_single, 7687 tcg_shift, tcg_fpstatus); 7688 } 7689 } else { 7690 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7691 if (is_signed) { 7692 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7693 tcg_shift, tcg_fpstatus); 7694 } else { 7695 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7696 tcg_shift, tcg_fpstatus); 7697 } 7698 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7699 } 7700 break; 7701 7702 default: 7703 g_assert_not_reached(); 7704 } 7705 7706 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7707 } 7708 } 7709 7710 /* Floating point <-> fixed point conversions 7711 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7712 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7713 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7714 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7715 */ 7716 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7717 { 7718 int rd = extract32(insn, 0, 5); 7719 int rn = extract32(insn, 5, 5); 7720 int scale = extract32(insn, 10, 6); 7721 int opcode = extract32(insn, 16, 3); 7722 int rmode = extract32(insn, 19, 2); 7723 int type = extract32(insn, 22, 2); 7724 bool sbit = extract32(insn, 29, 1); 7725 bool sf = extract32(insn, 31, 1); 7726 bool itof; 7727 7728 if (sbit || (!sf && scale < 32)) { 7729 unallocated_encoding(s); 7730 return; 7731 } 7732 7733 switch (type) { 7734 case 0: /* float32 */ 7735 case 1: /* float64 */ 7736 break; 7737 case 3: /* float16 */ 7738 if (dc_isar_feature(aa64_fp16, s)) { 7739 break; 7740 } 7741 /* fallthru */ 7742 default: 7743 unallocated_encoding(s); 7744 return; 7745 } 7746 7747 switch ((rmode << 3) | opcode) { 7748 case 0x2: /* SCVTF */ 7749 case 0x3: /* UCVTF */ 7750 itof = true; 7751 break; 7752 case 0x18: /* FCVTZS */ 7753 case 0x19: /* FCVTZU */ 7754 itof = false; 7755 break; 7756 default: 7757 unallocated_encoding(s); 7758 return; 7759 } 7760 7761 if (!fp_access_check(s)) { 7762 return; 7763 } 7764 7765 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7766 } 7767 7768 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7769 { 7770 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7771 * without conversion. 7772 */ 7773 7774 if (itof) { 7775 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7776 TCGv_i64 tmp; 7777 7778 switch (type) { 7779 case 0: 7780 /* 32 bit */ 7781 tmp = tcg_temp_new_i64(); 7782 tcg_gen_ext32u_i64(tmp, tcg_rn); 7783 write_fp_dreg(s, rd, tmp); 7784 break; 7785 case 1: 7786 /* 64 bit */ 7787 write_fp_dreg(s, rd, tcg_rn); 7788 break; 7789 case 2: 7790 /* 64 bit to top half. */ 7791 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7792 clear_vec_high(s, true, rd); 7793 break; 7794 case 3: 7795 /* 16 bit */ 7796 tmp = tcg_temp_new_i64(); 7797 tcg_gen_ext16u_i64(tmp, tcg_rn); 7798 write_fp_dreg(s, rd, tmp); 7799 break; 7800 default: 7801 g_assert_not_reached(); 7802 } 7803 } else { 7804 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7805 7806 switch (type) { 7807 case 0: 7808 /* 32 bit */ 7809 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7810 break; 7811 case 1: 7812 /* 64 bit */ 7813 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7814 break; 7815 case 2: 7816 /* 64 bits from top half */ 7817 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7818 break; 7819 case 3: 7820 /* 16 bit */ 7821 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7822 break; 7823 default: 7824 g_assert_not_reached(); 7825 } 7826 } 7827 } 7828 7829 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7830 { 7831 TCGv_i64 t = read_fp_dreg(s, rn); 7832 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7833 7834 gen_helper_fjcvtzs(t, t, fpstatus); 7835 7836 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7837 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7838 tcg_gen_movi_i32(cpu_CF, 0); 7839 tcg_gen_movi_i32(cpu_NF, 0); 7840 tcg_gen_movi_i32(cpu_VF, 0); 7841 } 7842 7843 /* Floating point <-> integer conversions 7844 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7845 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7846 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7847 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7848 */ 7849 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7850 { 7851 int rd = extract32(insn, 0, 5); 7852 int rn = extract32(insn, 5, 5); 7853 int opcode = extract32(insn, 16, 3); 7854 int rmode = extract32(insn, 19, 2); 7855 int type = extract32(insn, 22, 2); 7856 bool sbit = extract32(insn, 29, 1); 7857 bool sf = extract32(insn, 31, 1); 7858 bool itof = false; 7859 7860 if (sbit) { 7861 goto do_unallocated; 7862 } 7863 7864 switch (opcode) { 7865 case 2: /* SCVTF */ 7866 case 3: /* UCVTF */ 7867 itof = true; 7868 /* fallthru */ 7869 case 4: /* FCVTAS */ 7870 case 5: /* FCVTAU */ 7871 if (rmode != 0) { 7872 goto do_unallocated; 7873 } 7874 /* fallthru */ 7875 case 0: /* FCVT[NPMZ]S */ 7876 case 1: /* FCVT[NPMZ]U */ 7877 switch (type) { 7878 case 0: /* float32 */ 7879 case 1: /* float64 */ 7880 break; 7881 case 3: /* float16 */ 7882 if (!dc_isar_feature(aa64_fp16, s)) { 7883 goto do_unallocated; 7884 } 7885 break; 7886 default: 7887 goto do_unallocated; 7888 } 7889 if (!fp_access_check(s)) { 7890 return; 7891 } 7892 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7893 break; 7894 7895 default: 7896 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7897 case 0b01100110: /* FMOV half <-> 32-bit int */ 7898 case 0b01100111: 7899 case 0b11100110: /* FMOV half <-> 64-bit int */ 7900 case 0b11100111: 7901 if (!dc_isar_feature(aa64_fp16, s)) { 7902 goto do_unallocated; 7903 } 7904 /* fallthru */ 7905 case 0b00000110: /* FMOV 32-bit */ 7906 case 0b00000111: 7907 case 0b10100110: /* FMOV 64-bit */ 7908 case 0b10100111: 7909 case 0b11001110: /* FMOV top half of 128-bit */ 7910 case 0b11001111: 7911 if (!fp_access_check(s)) { 7912 return; 7913 } 7914 itof = opcode & 1; 7915 handle_fmov(s, rd, rn, type, itof); 7916 break; 7917 7918 case 0b00111110: /* FJCVTZS */ 7919 if (!dc_isar_feature(aa64_jscvt, s)) { 7920 goto do_unallocated; 7921 } else if (fp_access_check(s)) { 7922 handle_fjcvtzs(s, rd, rn); 7923 } 7924 break; 7925 7926 default: 7927 do_unallocated: 7928 unallocated_encoding(s); 7929 return; 7930 } 7931 break; 7932 } 7933 } 7934 7935 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7936 * 31 30 29 28 25 24 0 7937 * +---+---+---+---------+-----------------------------+ 7938 * | | 0 | | 1 1 1 1 | | 7939 * +---+---+---+---------+-----------------------------+ 7940 */ 7941 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7942 { 7943 if (extract32(insn, 24, 1)) { 7944 /* Floating point data-processing (3 source) */ 7945 disas_fp_3src(s, insn); 7946 } else if (extract32(insn, 21, 1) == 0) { 7947 /* Floating point to fixed point conversions */ 7948 disas_fp_fixed_conv(s, insn); 7949 } else { 7950 switch (extract32(insn, 10, 2)) { 7951 case 1: 7952 /* Floating point conditional compare */ 7953 disas_fp_ccomp(s, insn); 7954 break; 7955 case 2: 7956 /* Floating point data-processing (2 source) */ 7957 unallocated_encoding(s); /* in decodetree */ 7958 break; 7959 case 3: 7960 /* Floating point conditional select */ 7961 disas_fp_csel(s, insn); 7962 break; 7963 case 0: 7964 switch (ctz32(extract32(insn, 12, 4))) { 7965 case 0: /* [15:12] == xxx1 */ 7966 /* Floating point immediate */ 7967 disas_fp_imm(s, insn); 7968 break; 7969 case 1: /* [15:12] == xx10 */ 7970 /* Floating point compare */ 7971 disas_fp_compare(s, insn); 7972 break; 7973 case 2: /* [15:12] == x100 */ 7974 /* Floating point data-processing (1 source) */ 7975 disas_fp_1src(s, insn); 7976 break; 7977 case 3: /* [15:12] == 1000 */ 7978 unallocated_encoding(s); 7979 break; 7980 default: /* [15:12] == 0000 */ 7981 /* Floating point <-> integer conversions */ 7982 disas_fp_int_conv(s, insn); 7983 break; 7984 } 7985 break; 7986 } 7987 } 7988 } 7989 7990 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7991 int pos) 7992 { 7993 /* Extract 64 bits from the middle of two concatenated 64 bit 7994 * vector register slices left:right. The extracted bits start 7995 * at 'pos' bits into the right (least significant) side. 7996 * We return the result in tcg_right, and guarantee not to 7997 * trash tcg_left. 7998 */ 7999 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8000 assert(pos > 0 && pos < 64); 8001 8002 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 8003 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 8004 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 8005 } 8006 8007 /* EXT 8008 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 8009 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8010 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 8011 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 8012 */ 8013 static void disas_simd_ext(DisasContext *s, uint32_t insn) 8014 { 8015 int is_q = extract32(insn, 30, 1); 8016 int op2 = extract32(insn, 22, 2); 8017 int imm4 = extract32(insn, 11, 4); 8018 int rm = extract32(insn, 16, 5); 8019 int rn = extract32(insn, 5, 5); 8020 int rd = extract32(insn, 0, 5); 8021 int pos = imm4 << 3; 8022 TCGv_i64 tcg_resl, tcg_resh; 8023 8024 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 8025 unallocated_encoding(s); 8026 return; 8027 } 8028 8029 if (!fp_access_check(s)) { 8030 return; 8031 } 8032 8033 tcg_resh = tcg_temp_new_i64(); 8034 tcg_resl = tcg_temp_new_i64(); 8035 8036 /* Vd gets bits starting at pos bits into Vm:Vn. This is 8037 * either extracting 128 bits from a 128:128 concatenation, or 8038 * extracting 64 bits from a 64:64 concatenation. 8039 */ 8040 if (!is_q) { 8041 read_vec_element(s, tcg_resl, rn, 0, MO_64); 8042 if (pos != 0) { 8043 read_vec_element(s, tcg_resh, rm, 0, MO_64); 8044 do_ext64(s, tcg_resh, tcg_resl, pos); 8045 } 8046 } else { 8047 TCGv_i64 tcg_hh; 8048 typedef struct { 8049 int reg; 8050 int elt; 8051 } EltPosns; 8052 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 8053 EltPosns *elt = eltposns; 8054 8055 if (pos >= 64) { 8056 elt++; 8057 pos -= 64; 8058 } 8059 8060 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 8061 elt++; 8062 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 8063 elt++; 8064 if (pos != 0) { 8065 do_ext64(s, tcg_resh, tcg_resl, pos); 8066 tcg_hh = tcg_temp_new_i64(); 8067 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 8068 do_ext64(s, tcg_hh, tcg_resh, pos); 8069 } 8070 } 8071 8072 write_vec_element(s, tcg_resl, rd, 0, MO_64); 8073 if (is_q) { 8074 write_vec_element(s, tcg_resh, rd, 1, MO_64); 8075 } 8076 clear_vec_high(s, is_q, rd); 8077 } 8078 8079 /* TBL/TBX 8080 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 8081 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8082 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 8083 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 8084 */ 8085 static void disas_simd_tb(DisasContext *s, uint32_t insn) 8086 { 8087 int op2 = extract32(insn, 22, 2); 8088 int is_q = extract32(insn, 30, 1); 8089 int rm = extract32(insn, 16, 5); 8090 int rn = extract32(insn, 5, 5); 8091 int rd = extract32(insn, 0, 5); 8092 int is_tbx = extract32(insn, 12, 1); 8093 int len = (extract32(insn, 13, 2) + 1) * 16; 8094 8095 if (op2 != 0) { 8096 unallocated_encoding(s); 8097 return; 8098 } 8099 8100 if (!fp_access_check(s)) { 8101 return; 8102 } 8103 8104 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8105 vec_full_reg_offset(s, rm), tcg_env, 8106 is_q ? 16 : 8, vec_full_reg_size(s), 8107 (len << 6) | (is_tbx << 5) | rn, 8108 gen_helper_simd_tblx); 8109 } 8110 8111 /* ZIP/UZP/TRN 8112 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8113 * +---+---+-------------+------+---+------+---+------------------+------+ 8114 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8115 * +---+---+-------------+------+---+------+---+------------------+------+ 8116 */ 8117 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8118 { 8119 int rd = extract32(insn, 0, 5); 8120 int rn = extract32(insn, 5, 5); 8121 int rm = extract32(insn, 16, 5); 8122 int size = extract32(insn, 22, 2); 8123 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8124 * bit 2 indicates 1 vs 2 variant of the insn. 8125 */ 8126 int opcode = extract32(insn, 12, 2); 8127 bool part = extract32(insn, 14, 1); 8128 bool is_q = extract32(insn, 30, 1); 8129 int esize = 8 << size; 8130 int i; 8131 int datasize = is_q ? 128 : 64; 8132 int elements = datasize / esize; 8133 TCGv_i64 tcg_res[2], tcg_ele; 8134 8135 if (opcode == 0 || (size == 3 && !is_q)) { 8136 unallocated_encoding(s); 8137 return; 8138 } 8139 8140 if (!fp_access_check(s)) { 8141 return; 8142 } 8143 8144 tcg_res[0] = tcg_temp_new_i64(); 8145 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8146 tcg_ele = tcg_temp_new_i64(); 8147 8148 for (i = 0; i < elements; i++) { 8149 int o, w; 8150 8151 switch (opcode) { 8152 case 1: /* UZP1/2 */ 8153 { 8154 int midpoint = elements / 2; 8155 if (i < midpoint) { 8156 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8157 } else { 8158 read_vec_element(s, tcg_ele, rm, 8159 2 * (i - midpoint) + part, size); 8160 } 8161 break; 8162 } 8163 case 2: /* TRN1/2 */ 8164 if (i & 1) { 8165 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8166 } else { 8167 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8168 } 8169 break; 8170 case 3: /* ZIP1/2 */ 8171 { 8172 int base = part * elements / 2; 8173 if (i & 1) { 8174 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8175 } else { 8176 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8177 } 8178 break; 8179 } 8180 default: 8181 g_assert_not_reached(); 8182 } 8183 8184 w = (i * esize) / 64; 8185 o = (i * esize) % 64; 8186 if (o == 0) { 8187 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8188 } else { 8189 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8190 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8191 } 8192 } 8193 8194 for (i = 0; i <= is_q; ++i) { 8195 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8196 } 8197 clear_vec_high(s, is_q, rd); 8198 } 8199 8200 /* 8201 * do_reduction_op helper 8202 * 8203 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8204 * important for correct NaN propagation that we do these 8205 * operations in exactly the order specified by the pseudocode. 8206 * 8207 * This is a recursive function, TCG temps should be freed by the 8208 * calling function once it is done with the values. 8209 */ 8210 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8211 int esize, int size, int vmap, TCGv_ptr fpst) 8212 { 8213 if (esize == size) { 8214 int element; 8215 MemOp msize = esize == 16 ? MO_16 : MO_32; 8216 TCGv_i32 tcg_elem; 8217 8218 /* We should have one register left here */ 8219 assert(ctpop8(vmap) == 1); 8220 element = ctz32(vmap); 8221 assert(element < 8); 8222 8223 tcg_elem = tcg_temp_new_i32(); 8224 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8225 return tcg_elem; 8226 } else { 8227 int bits = size / 2; 8228 int shift = ctpop8(vmap) / 2; 8229 int vmap_lo = (vmap >> shift) & vmap; 8230 int vmap_hi = (vmap & ~vmap_lo); 8231 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8232 8233 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8234 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8235 tcg_res = tcg_temp_new_i32(); 8236 8237 switch (fpopcode) { 8238 case 0x0c: /* fmaxnmv half-precision */ 8239 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8240 break; 8241 case 0x0f: /* fmaxv half-precision */ 8242 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8243 break; 8244 case 0x1c: /* fminnmv half-precision */ 8245 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8246 break; 8247 case 0x1f: /* fminv half-precision */ 8248 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8249 break; 8250 case 0x2c: /* fmaxnmv */ 8251 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8252 break; 8253 case 0x2f: /* fmaxv */ 8254 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8255 break; 8256 case 0x3c: /* fminnmv */ 8257 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8258 break; 8259 case 0x3f: /* fminv */ 8260 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8261 break; 8262 default: 8263 g_assert_not_reached(); 8264 } 8265 return tcg_res; 8266 } 8267 } 8268 8269 /* AdvSIMD across lanes 8270 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8271 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8272 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8273 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8274 */ 8275 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8276 { 8277 int rd = extract32(insn, 0, 5); 8278 int rn = extract32(insn, 5, 5); 8279 int size = extract32(insn, 22, 2); 8280 int opcode = extract32(insn, 12, 5); 8281 bool is_q = extract32(insn, 30, 1); 8282 bool is_u = extract32(insn, 29, 1); 8283 bool is_fp = false; 8284 bool is_min = false; 8285 int esize; 8286 int elements; 8287 int i; 8288 TCGv_i64 tcg_res, tcg_elt; 8289 8290 switch (opcode) { 8291 case 0x1b: /* ADDV */ 8292 if (is_u) { 8293 unallocated_encoding(s); 8294 return; 8295 } 8296 /* fall through */ 8297 case 0x3: /* SADDLV, UADDLV */ 8298 case 0xa: /* SMAXV, UMAXV */ 8299 case 0x1a: /* SMINV, UMINV */ 8300 if (size == 3 || (size == 2 && !is_q)) { 8301 unallocated_encoding(s); 8302 return; 8303 } 8304 break; 8305 case 0xc: /* FMAXNMV, FMINNMV */ 8306 case 0xf: /* FMAXV, FMINV */ 8307 /* Bit 1 of size field encodes min vs max and the actual size 8308 * depends on the encoding of the U bit. If not set (and FP16 8309 * enabled) then we do half-precision float instead of single 8310 * precision. 8311 */ 8312 is_min = extract32(size, 1, 1); 8313 is_fp = true; 8314 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8315 size = 1; 8316 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8317 unallocated_encoding(s); 8318 return; 8319 } else { 8320 size = 2; 8321 } 8322 break; 8323 default: 8324 unallocated_encoding(s); 8325 return; 8326 } 8327 8328 if (!fp_access_check(s)) { 8329 return; 8330 } 8331 8332 esize = 8 << size; 8333 elements = (is_q ? 128 : 64) / esize; 8334 8335 tcg_res = tcg_temp_new_i64(); 8336 tcg_elt = tcg_temp_new_i64(); 8337 8338 /* These instructions operate across all lanes of a vector 8339 * to produce a single result. We can guarantee that a 64 8340 * bit intermediate is sufficient: 8341 * + for [US]ADDLV the maximum element size is 32 bits, and 8342 * the result type is 64 bits 8343 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8344 * same as the element size, which is 32 bits at most 8345 * For the integer operations we can choose to work at 64 8346 * or 32 bits and truncate at the end; for simplicity 8347 * we use 64 bits always. The floating point 8348 * ops do require 32 bit intermediates, though. 8349 */ 8350 if (!is_fp) { 8351 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8352 8353 for (i = 1; i < elements; i++) { 8354 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8355 8356 switch (opcode) { 8357 case 0x03: /* SADDLV / UADDLV */ 8358 case 0x1b: /* ADDV */ 8359 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8360 break; 8361 case 0x0a: /* SMAXV / UMAXV */ 8362 if (is_u) { 8363 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8364 } else { 8365 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8366 } 8367 break; 8368 case 0x1a: /* SMINV / UMINV */ 8369 if (is_u) { 8370 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8371 } else { 8372 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8373 } 8374 break; 8375 default: 8376 g_assert_not_reached(); 8377 } 8378 8379 } 8380 } else { 8381 /* Floating point vector reduction ops which work across 32 8382 * bit (single) or 16 bit (half-precision) intermediates. 8383 * Note that correct NaN propagation requires that we do these 8384 * operations in exactly the order specified by the pseudocode. 8385 */ 8386 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8387 int fpopcode = opcode | is_min << 4 | is_u << 5; 8388 int vmap = (1 << elements) - 1; 8389 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8390 (is_q ? 128 : 64), vmap, fpst); 8391 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8392 } 8393 8394 /* Now truncate the result to the width required for the final output */ 8395 if (opcode == 0x03) { 8396 /* SADDLV, UADDLV: result is 2*esize */ 8397 size++; 8398 } 8399 8400 switch (size) { 8401 case 0: 8402 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8403 break; 8404 case 1: 8405 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8406 break; 8407 case 2: 8408 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8409 break; 8410 case 3: 8411 break; 8412 default: 8413 g_assert_not_reached(); 8414 } 8415 8416 write_fp_dreg(s, rd, tcg_res); 8417 } 8418 8419 /* AdvSIMD modified immediate 8420 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8421 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8422 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8423 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8424 * 8425 * There are a number of operations that can be carried out here: 8426 * MOVI - move (shifted) imm into register 8427 * MVNI - move inverted (shifted) imm into register 8428 * ORR - bitwise OR of (shifted) imm with register 8429 * BIC - bitwise clear of (shifted) imm with register 8430 * With ARMv8.2 we also have: 8431 * FMOV half-precision 8432 */ 8433 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8434 { 8435 int rd = extract32(insn, 0, 5); 8436 int cmode = extract32(insn, 12, 4); 8437 int o2 = extract32(insn, 11, 1); 8438 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8439 bool is_neg = extract32(insn, 29, 1); 8440 bool is_q = extract32(insn, 30, 1); 8441 uint64_t imm = 0; 8442 8443 if (o2) { 8444 if (cmode != 0xf || is_neg) { 8445 unallocated_encoding(s); 8446 return; 8447 } 8448 /* FMOV (vector, immediate) - half-precision */ 8449 if (!dc_isar_feature(aa64_fp16, s)) { 8450 unallocated_encoding(s); 8451 return; 8452 } 8453 imm = vfp_expand_imm(MO_16, abcdefgh); 8454 /* now duplicate across the lanes */ 8455 imm = dup_const(MO_16, imm); 8456 } else { 8457 if (cmode == 0xf && is_neg && !is_q) { 8458 unallocated_encoding(s); 8459 return; 8460 } 8461 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8462 } 8463 8464 if (!fp_access_check(s)) { 8465 return; 8466 } 8467 8468 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8469 /* MOVI or MVNI, with MVNI negation handled above. */ 8470 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8471 vec_full_reg_size(s), imm); 8472 } else { 8473 /* ORR or BIC, with BIC negation to AND handled above. */ 8474 if (is_neg) { 8475 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8476 } else { 8477 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8478 } 8479 } 8480 } 8481 8482 /* 8483 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8484 * 8485 * This code is handles the common shifting code and is used by both 8486 * the vector and scalar code. 8487 */ 8488 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8489 TCGv_i64 tcg_rnd, bool accumulate, 8490 bool is_u, int size, int shift) 8491 { 8492 bool extended_result = false; 8493 bool round = tcg_rnd != NULL; 8494 int ext_lshift = 0; 8495 TCGv_i64 tcg_src_hi; 8496 8497 if (round && size == 3) { 8498 extended_result = true; 8499 ext_lshift = 64 - shift; 8500 tcg_src_hi = tcg_temp_new_i64(); 8501 } else if (shift == 64) { 8502 if (!accumulate && is_u) { 8503 /* result is zero */ 8504 tcg_gen_movi_i64(tcg_res, 0); 8505 return; 8506 } 8507 } 8508 8509 /* Deal with the rounding step */ 8510 if (round) { 8511 if (extended_result) { 8512 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8513 if (!is_u) { 8514 /* take care of sign extending tcg_res */ 8515 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8516 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8517 tcg_src, tcg_src_hi, 8518 tcg_rnd, tcg_zero); 8519 } else { 8520 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8521 tcg_src, tcg_zero, 8522 tcg_rnd, tcg_zero); 8523 } 8524 } else { 8525 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8526 } 8527 } 8528 8529 /* Now do the shift right */ 8530 if (round && extended_result) { 8531 /* extended case, >64 bit precision required */ 8532 if (ext_lshift == 0) { 8533 /* special case, only high bits matter */ 8534 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8535 } else { 8536 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8537 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8538 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8539 } 8540 } else { 8541 if (is_u) { 8542 if (shift == 64) { 8543 /* essentially shifting in 64 zeros */ 8544 tcg_gen_movi_i64(tcg_src, 0); 8545 } else { 8546 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8547 } 8548 } else { 8549 if (shift == 64) { 8550 /* effectively extending the sign-bit */ 8551 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8552 } else { 8553 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8554 } 8555 } 8556 } 8557 8558 if (accumulate) { 8559 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8560 } else { 8561 tcg_gen_mov_i64(tcg_res, tcg_src); 8562 } 8563 } 8564 8565 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8566 static void handle_scalar_simd_shri(DisasContext *s, 8567 bool is_u, int immh, int immb, 8568 int opcode, int rn, int rd) 8569 { 8570 const int size = 3; 8571 int immhb = immh << 3 | immb; 8572 int shift = 2 * (8 << size) - immhb; 8573 bool accumulate = false; 8574 bool round = false; 8575 bool insert = false; 8576 TCGv_i64 tcg_rn; 8577 TCGv_i64 tcg_rd; 8578 TCGv_i64 tcg_round; 8579 8580 if (!extract32(immh, 3, 1)) { 8581 unallocated_encoding(s); 8582 return; 8583 } 8584 8585 if (!fp_access_check(s)) { 8586 return; 8587 } 8588 8589 switch (opcode) { 8590 case 0x02: /* SSRA / USRA (accumulate) */ 8591 accumulate = true; 8592 break; 8593 case 0x04: /* SRSHR / URSHR (rounding) */ 8594 round = true; 8595 break; 8596 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8597 accumulate = round = true; 8598 break; 8599 case 0x08: /* SRI */ 8600 insert = true; 8601 break; 8602 } 8603 8604 if (round) { 8605 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8606 } else { 8607 tcg_round = NULL; 8608 } 8609 8610 tcg_rn = read_fp_dreg(s, rn); 8611 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8612 8613 if (insert) { 8614 /* shift count same as element size is valid but does nothing; 8615 * special case to avoid potential shift by 64. 8616 */ 8617 int esize = 8 << size; 8618 if (shift != esize) { 8619 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8620 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8621 } 8622 } else { 8623 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8624 accumulate, is_u, size, shift); 8625 } 8626 8627 write_fp_dreg(s, rd, tcg_rd); 8628 } 8629 8630 /* SHL/SLI - Scalar shift left */ 8631 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8632 int immh, int immb, int opcode, 8633 int rn, int rd) 8634 { 8635 int size = 32 - clz32(immh) - 1; 8636 int immhb = immh << 3 | immb; 8637 int shift = immhb - (8 << size); 8638 TCGv_i64 tcg_rn; 8639 TCGv_i64 tcg_rd; 8640 8641 if (!extract32(immh, 3, 1)) { 8642 unallocated_encoding(s); 8643 return; 8644 } 8645 8646 if (!fp_access_check(s)) { 8647 return; 8648 } 8649 8650 tcg_rn = read_fp_dreg(s, rn); 8651 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8652 8653 if (insert) { 8654 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8655 } else { 8656 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8657 } 8658 8659 write_fp_dreg(s, rd, tcg_rd); 8660 } 8661 8662 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8663 * (signed/unsigned) narrowing */ 8664 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8665 bool is_u_shift, bool is_u_narrow, 8666 int immh, int immb, int opcode, 8667 int rn, int rd) 8668 { 8669 int immhb = immh << 3 | immb; 8670 int size = 32 - clz32(immh) - 1; 8671 int esize = 8 << size; 8672 int shift = (2 * esize) - immhb; 8673 int elements = is_scalar ? 1 : (64 / esize); 8674 bool round = extract32(opcode, 0, 1); 8675 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8676 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8677 TCGv_i32 tcg_rd_narrowed; 8678 TCGv_i64 tcg_final; 8679 8680 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8681 { gen_helper_neon_narrow_sat_s8, 8682 gen_helper_neon_unarrow_sat8 }, 8683 { gen_helper_neon_narrow_sat_s16, 8684 gen_helper_neon_unarrow_sat16 }, 8685 { gen_helper_neon_narrow_sat_s32, 8686 gen_helper_neon_unarrow_sat32 }, 8687 { NULL, NULL }, 8688 }; 8689 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8690 gen_helper_neon_narrow_sat_u8, 8691 gen_helper_neon_narrow_sat_u16, 8692 gen_helper_neon_narrow_sat_u32, 8693 NULL 8694 }; 8695 NeonGenNarrowEnvFn *narrowfn; 8696 8697 int i; 8698 8699 assert(size < 4); 8700 8701 if (extract32(immh, 3, 1)) { 8702 unallocated_encoding(s); 8703 return; 8704 } 8705 8706 if (!fp_access_check(s)) { 8707 return; 8708 } 8709 8710 if (is_u_shift) { 8711 narrowfn = unsigned_narrow_fns[size]; 8712 } else { 8713 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8714 } 8715 8716 tcg_rn = tcg_temp_new_i64(); 8717 tcg_rd = tcg_temp_new_i64(); 8718 tcg_rd_narrowed = tcg_temp_new_i32(); 8719 tcg_final = tcg_temp_new_i64(); 8720 8721 if (round) { 8722 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8723 } else { 8724 tcg_round = NULL; 8725 } 8726 8727 for (i = 0; i < elements; i++) { 8728 read_vec_element(s, tcg_rn, rn, i, ldop); 8729 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8730 false, is_u_shift, size+1, shift); 8731 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8732 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8733 if (i == 0) { 8734 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8735 } else { 8736 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8737 } 8738 } 8739 8740 if (!is_q) { 8741 write_vec_element(s, tcg_final, rd, 0, MO_64); 8742 } else { 8743 write_vec_element(s, tcg_final, rd, 1, MO_64); 8744 } 8745 clear_vec_high(s, is_q, rd); 8746 } 8747 8748 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8749 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8750 bool src_unsigned, bool dst_unsigned, 8751 int immh, int immb, int rn, int rd) 8752 { 8753 int immhb = immh << 3 | immb; 8754 int size = 32 - clz32(immh) - 1; 8755 int shift = immhb - (8 << size); 8756 int pass; 8757 8758 assert(immh != 0); 8759 assert(!(scalar && is_q)); 8760 8761 if (!scalar) { 8762 if (!is_q && extract32(immh, 3, 1)) { 8763 unallocated_encoding(s); 8764 return; 8765 } 8766 8767 /* Since we use the variable-shift helpers we must 8768 * replicate the shift count into each element of 8769 * the tcg_shift value. 8770 */ 8771 switch (size) { 8772 case 0: 8773 shift |= shift << 8; 8774 /* fall through */ 8775 case 1: 8776 shift |= shift << 16; 8777 break; 8778 case 2: 8779 case 3: 8780 break; 8781 default: 8782 g_assert_not_reached(); 8783 } 8784 } 8785 8786 if (!fp_access_check(s)) { 8787 return; 8788 } 8789 8790 if (size == 3) { 8791 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8792 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8793 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8794 { NULL, gen_helper_neon_qshl_u64 }, 8795 }; 8796 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8797 int maxpass = is_q ? 2 : 1; 8798 8799 for (pass = 0; pass < maxpass; pass++) { 8800 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8801 8802 read_vec_element(s, tcg_op, rn, pass, MO_64); 8803 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8804 write_vec_element(s, tcg_op, rd, pass, MO_64); 8805 } 8806 clear_vec_high(s, is_q, rd); 8807 } else { 8808 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8809 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8810 { 8811 { gen_helper_neon_qshl_s8, 8812 gen_helper_neon_qshl_s16, 8813 gen_helper_neon_qshl_s32 }, 8814 { gen_helper_neon_qshlu_s8, 8815 gen_helper_neon_qshlu_s16, 8816 gen_helper_neon_qshlu_s32 } 8817 }, { 8818 { NULL, NULL, NULL }, 8819 { gen_helper_neon_qshl_u8, 8820 gen_helper_neon_qshl_u16, 8821 gen_helper_neon_qshl_u32 } 8822 } 8823 }; 8824 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8825 MemOp memop = scalar ? size : MO_32; 8826 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8827 8828 for (pass = 0; pass < maxpass; pass++) { 8829 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8830 8831 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8832 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8833 if (scalar) { 8834 switch (size) { 8835 case 0: 8836 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8837 break; 8838 case 1: 8839 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8840 break; 8841 case 2: 8842 break; 8843 default: 8844 g_assert_not_reached(); 8845 } 8846 write_fp_sreg(s, rd, tcg_op); 8847 } else { 8848 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8849 } 8850 } 8851 8852 if (!scalar) { 8853 clear_vec_high(s, is_q, rd); 8854 } 8855 } 8856 } 8857 8858 /* Common vector code for handling integer to FP conversion */ 8859 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8860 int elements, int is_signed, 8861 int fracbits, int size) 8862 { 8863 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8864 TCGv_i32 tcg_shift = NULL; 8865 8866 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8867 int pass; 8868 8869 if (fracbits || size == MO_64) { 8870 tcg_shift = tcg_constant_i32(fracbits); 8871 } 8872 8873 if (size == MO_64) { 8874 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8875 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8876 8877 for (pass = 0; pass < elements; pass++) { 8878 read_vec_element(s, tcg_int64, rn, pass, mop); 8879 8880 if (is_signed) { 8881 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8882 tcg_shift, tcg_fpst); 8883 } else { 8884 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8885 tcg_shift, tcg_fpst); 8886 } 8887 if (elements == 1) { 8888 write_fp_dreg(s, rd, tcg_double); 8889 } else { 8890 write_vec_element(s, tcg_double, rd, pass, MO_64); 8891 } 8892 } 8893 } else { 8894 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8895 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8896 8897 for (pass = 0; pass < elements; pass++) { 8898 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8899 8900 switch (size) { 8901 case MO_32: 8902 if (fracbits) { 8903 if (is_signed) { 8904 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8905 tcg_shift, tcg_fpst); 8906 } else { 8907 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8908 tcg_shift, tcg_fpst); 8909 } 8910 } else { 8911 if (is_signed) { 8912 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8913 } else { 8914 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8915 } 8916 } 8917 break; 8918 case MO_16: 8919 if (fracbits) { 8920 if (is_signed) { 8921 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8922 tcg_shift, tcg_fpst); 8923 } else { 8924 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8925 tcg_shift, tcg_fpst); 8926 } 8927 } else { 8928 if (is_signed) { 8929 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8930 } else { 8931 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8932 } 8933 } 8934 break; 8935 default: 8936 g_assert_not_reached(); 8937 } 8938 8939 if (elements == 1) { 8940 write_fp_sreg(s, rd, tcg_float); 8941 } else { 8942 write_vec_element_i32(s, tcg_float, rd, pass, size); 8943 } 8944 } 8945 } 8946 8947 clear_vec_high(s, elements << size == 16, rd); 8948 } 8949 8950 /* UCVTF/SCVTF - Integer to FP conversion */ 8951 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8952 bool is_q, bool is_u, 8953 int immh, int immb, int opcode, 8954 int rn, int rd) 8955 { 8956 int size, elements, fracbits; 8957 int immhb = immh << 3 | immb; 8958 8959 if (immh & 8) { 8960 size = MO_64; 8961 if (!is_scalar && !is_q) { 8962 unallocated_encoding(s); 8963 return; 8964 } 8965 } else if (immh & 4) { 8966 size = MO_32; 8967 } else if (immh & 2) { 8968 size = MO_16; 8969 if (!dc_isar_feature(aa64_fp16, s)) { 8970 unallocated_encoding(s); 8971 return; 8972 } 8973 } else { 8974 /* immh == 0 would be a failure of the decode logic */ 8975 g_assert(immh == 1); 8976 unallocated_encoding(s); 8977 return; 8978 } 8979 8980 if (is_scalar) { 8981 elements = 1; 8982 } else { 8983 elements = (8 << is_q) >> size; 8984 } 8985 fracbits = (16 << size) - immhb; 8986 8987 if (!fp_access_check(s)) { 8988 return; 8989 } 8990 8991 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8992 } 8993 8994 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8995 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8996 bool is_q, bool is_u, 8997 int immh, int immb, int rn, int rd) 8998 { 8999 int immhb = immh << 3 | immb; 9000 int pass, size, fracbits; 9001 TCGv_ptr tcg_fpstatus; 9002 TCGv_i32 tcg_rmode, tcg_shift; 9003 9004 if (immh & 0x8) { 9005 size = MO_64; 9006 if (!is_scalar && !is_q) { 9007 unallocated_encoding(s); 9008 return; 9009 } 9010 } else if (immh & 0x4) { 9011 size = MO_32; 9012 } else if (immh & 0x2) { 9013 size = MO_16; 9014 if (!dc_isar_feature(aa64_fp16, s)) { 9015 unallocated_encoding(s); 9016 return; 9017 } 9018 } else { 9019 /* Should have split out AdvSIMD modified immediate earlier. */ 9020 assert(immh == 1); 9021 unallocated_encoding(s); 9022 return; 9023 } 9024 9025 if (!fp_access_check(s)) { 9026 return; 9027 } 9028 9029 assert(!(is_scalar && is_q)); 9030 9031 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9032 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9033 fracbits = (16 << size) - immhb; 9034 tcg_shift = tcg_constant_i32(fracbits); 9035 9036 if (size == MO_64) { 9037 int maxpass = is_scalar ? 1 : 2; 9038 9039 for (pass = 0; pass < maxpass; pass++) { 9040 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9041 9042 read_vec_element(s, tcg_op, rn, pass, MO_64); 9043 if (is_u) { 9044 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9045 } else { 9046 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9047 } 9048 write_vec_element(s, tcg_op, rd, pass, MO_64); 9049 } 9050 clear_vec_high(s, is_q, rd); 9051 } else { 9052 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9053 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9054 9055 switch (size) { 9056 case MO_16: 9057 if (is_u) { 9058 fn = gen_helper_vfp_touhh; 9059 } else { 9060 fn = gen_helper_vfp_toshh; 9061 } 9062 break; 9063 case MO_32: 9064 if (is_u) { 9065 fn = gen_helper_vfp_touls; 9066 } else { 9067 fn = gen_helper_vfp_tosls; 9068 } 9069 break; 9070 default: 9071 g_assert_not_reached(); 9072 } 9073 9074 for (pass = 0; pass < maxpass; pass++) { 9075 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9076 9077 read_vec_element_i32(s, tcg_op, rn, pass, size); 9078 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9079 if (is_scalar) { 9080 if (size == MO_16 && !is_u) { 9081 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9082 } 9083 write_fp_sreg(s, rd, tcg_op); 9084 } else { 9085 write_vec_element_i32(s, tcg_op, rd, pass, size); 9086 } 9087 } 9088 if (!is_scalar) { 9089 clear_vec_high(s, is_q, rd); 9090 } 9091 } 9092 9093 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9094 } 9095 9096 /* AdvSIMD scalar shift by immediate 9097 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9098 * +-----+---+-------------+------+------+--------+---+------+------+ 9099 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9100 * +-----+---+-------------+------+------+--------+---+------+------+ 9101 * 9102 * This is the scalar version so it works on a fixed sized registers 9103 */ 9104 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9105 { 9106 int rd = extract32(insn, 0, 5); 9107 int rn = extract32(insn, 5, 5); 9108 int opcode = extract32(insn, 11, 5); 9109 int immb = extract32(insn, 16, 3); 9110 int immh = extract32(insn, 19, 4); 9111 bool is_u = extract32(insn, 29, 1); 9112 9113 if (immh == 0) { 9114 unallocated_encoding(s); 9115 return; 9116 } 9117 9118 switch (opcode) { 9119 case 0x08: /* SRI */ 9120 if (!is_u) { 9121 unallocated_encoding(s); 9122 return; 9123 } 9124 /* fall through */ 9125 case 0x00: /* SSHR / USHR */ 9126 case 0x02: /* SSRA / USRA */ 9127 case 0x04: /* SRSHR / URSHR */ 9128 case 0x06: /* SRSRA / URSRA */ 9129 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9130 break; 9131 case 0x0a: /* SHL / SLI */ 9132 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9133 break; 9134 case 0x1c: /* SCVTF, UCVTF */ 9135 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9136 opcode, rn, rd); 9137 break; 9138 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9139 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9140 if (!is_u) { 9141 unallocated_encoding(s); 9142 return; 9143 } 9144 handle_vec_simd_sqshrn(s, true, false, false, true, 9145 immh, immb, opcode, rn, rd); 9146 break; 9147 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9148 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9149 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9150 immh, immb, opcode, rn, rd); 9151 break; 9152 case 0xc: /* SQSHLU */ 9153 if (!is_u) { 9154 unallocated_encoding(s); 9155 return; 9156 } 9157 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9158 break; 9159 case 0xe: /* SQSHL, UQSHL */ 9160 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9161 break; 9162 case 0x1f: /* FCVTZS, FCVTZU */ 9163 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9164 break; 9165 default: 9166 unallocated_encoding(s); 9167 break; 9168 } 9169 } 9170 9171 /* AdvSIMD scalar three different 9172 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9173 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9174 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9175 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9176 */ 9177 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9178 { 9179 bool is_u = extract32(insn, 29, 1); 9180 int size = extract32(insn, 22, 2); 9181 int opcode = extract32(insn, 12, 4); 9182 int rm = extract32(insn, 16, 5); 9183 int rn = extract32(insn, 5, 5); 9184 int rd = extract32(insn, 0, 5); 9185 9186 if (is_u) { 9187 unallocated_encoding(s); 9188 return; 9189 } 9190 9191 switch (opcode) { 9192 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9193 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9194 case 0xd: /* SQDMULL, SQDMULL2 */ 9195 if (size == 0 || size == 3) { 9196 unallocated_encoding(s); 9197 return; 9198 } 9199 break; 9200 default: 9201 unallocated_encoding(s); 9202 return; 9203 } 9204 9205 if (!fp_access_check(s)) { 9206 return; 9207 } 9208 9209 if (size == 2) { 9210 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9211 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9212 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9213 9214 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9215 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9216 9217 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9218 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9219 9220 switch (opcode) { 9221 case 0xd: /* SQDMULL, SQDMULL2 */ 9222 break; 9223 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9224 tcg_gen_neg_i64(tcg_res, tcg_res); 9225 /* fall through */ 9226 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9227 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9228 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9229 tcg_res, tcg_op1); 9230 break; 9231 default: 9232 g_assert_not_reached(); 9233 } 9234 9235 write_fp_dreg(s, rd, tcg_res); 9236 } else { 9237 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9238 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9239 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9240 9241 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9242 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9243 9244 switch (opcode) { 9245 case 0xd: /* SQDMULL, SQDMULL2 */ 9246 break; 9247 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9248 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9249 /* fall through */ 9250 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9251 { 9252 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9253 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9254 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9255 tcg_res, tcg_op3); 9256 break; 9257 } 9258 default: 9259 g_assert_not_reached(); 9260 } 9261 9262 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9263 write_fp_dreg(s, rd, tcg_res); 9264 } 9265 } 9266 9267 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9268 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9269 { 9270 /* Handle 64x64->64 opcodes which are shared between the scalar 9271 * and vector 3-same groups. We cover every opcode where size == 3 9272 * is valid in either the three-reg-same (integer, not pairwise) 9273 * or scalar-three-reg-same groups. 9274 */ 9275 TCGCond cond; 9276 9277 switch (opcode) { 9278 case 0x1: /* SQADD */ 9279 if (u) { 9280 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9281 } else { 9282 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9283 } 9284 break; 9285 case 0x5: /* SQSUB */ 9286 if (u) { 9287 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9288 } else { 9289 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9290 } 9291 break; 9292 case 0x6: /* CMGT, CMHI */ 9293 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9294 do_cmop: 9295 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9296 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9297 break; 9298 case 0x7: /* CMGE, CMHS */ 9299 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9300 goto do_cmop; 9301 case 0x11: /* CMTST, CMEQ */ 9302 if (u) { 9303 cond = TCG_COND_EQ; 9304 goto do_cmop; 9305 } 9306 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9307 break; 9308 case 0x8: /* SSHL, USHL */ 9309 if (u) { 9310 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9311 } else { 9312 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9313 } 9314 break; 9315 case 0x9: /* SQSHL, UQSHL */ 9316 if (u) { 9317 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9318 } else { 9319 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9320 } 9321 break; 9322 case 0xa: /* SRSHL, URSHL */ 9323 if (u) { 9324 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9325 } else { 9326 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9327 } 9328 break; 9329 case 0xb: /* SQRSHL, UQRSHL */ 9330 if (u) { 9331 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9332 } else { 9333 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9334 } 9335 break; 9336 case 0x10: /* ADD, SUB */ 9337 if (u) { 9338 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9339 } else { 9340 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9341 } 9342 break; 9343 default: 9344 g_assert_not_reached(); 9345 } 9346 } 9347 9348 /* AdvSIMD scalar three same 9349 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9350 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9351 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9352 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9353 */ 9354 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9355 { 9356 int rd = extract32(insn, 0, 5); 9357 int rn = extract32(insn, 5, 5); 9358 int opcode = extract32(insn, 11, 5); 9359 int rm = extract32(insn, 16, 5); 9360 int size = extract32(insn, 22, 2); 9361 bool u = extract32(insn, 29, 1); 9362 TCGv_i64 tcg_rd; 9363 9364 switch (opcode) { 9365 case 0x1: /* SQADD, UQADD */ 9366 case 0x5: /* SQSUB, UQSUB */ 9367 case 0x9: /* SQSHL, UQSHL */ 9368 case 0xb: /* SQRSHL, UQRSHL */ 9369 break; 9370 case 0x8: /* SSHL, USHL */ 9371 case 0xa: /* SRSHL, URSHL */ 9372 case 0x6: /* CMGT, CMHI */ 9373 case 0x7: /* CMGE, CMHS */ 9374 case 0x11: /* CMTST, CMEQ */ 9375 case 0x10: /* ADD, SUB (vector) */ 9376 if (size != 3) { 9377 unallocated_encoding(s); 9378 return; 9379 } 9380 break; 9381 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9382 if (size != 1 && size != 2) { 9383 unallocated_encoding(s); 9384 return; 9385 } 9386 break; 9387 default: 9388 unallocated_encoding(s); 9389 return; 9390 } 9391 9392 if (!fp_access_check(s)) { 9393 return; 9394 } 9395 9396 tcg_rd = tcg_temp_new_i64(); 9397 9398 if (size == 3) { 9399 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9400 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9401 9402 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9403 } else { 9404 /* Do a single operation on the lowest element in the vector. 9405 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9406 * no side effects for all these operations. 9407 * OPTME: special-purpose helpers would avoid doing some 9408 * unnecessary work in the helper for the 8 and 16 bit cases. 9409 */ 9410 NeonGenTwoOpEnvFn *genenvfn; 9411 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9412 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9413 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9414 9415 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9416 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9417 9418 switch (opcode) { 9419 case 0x1: /* SQADD, UQADD */ 9420 { 9421 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9422 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9423 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9424 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9425 }; 9426 genenvfn = fns[size][u]; 9427 break; 9428 } 9429 case 0x5: /* SQSUB, UQSUB */ 9430 { 9431 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9432 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9433 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9434 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9435 }; 9436 genenvfn = fns[size][u]; 9437 break; 9438 } 9439 case 0x9: /* SQSHL, UQSHL */ 9440 { 9441 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9442 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9443 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9444 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9445 }; 9446 genenvfn = fns[size][u]; 9447 break; 9448 } 9449 case 0xb: /* SQRSHL, UQRSHL */ 9450 { 9451 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9452 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9453 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9454 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9455 }; 9456 genenvfn = fns[size][u]; 9457 break; 9458 } 9459 case 0x16: /* SQDMULH, SQRDMULH */ 9460 { 9461 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9462 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9463 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9464 }; 9465 assert(size == 1 || size == 2); 9466 genenvfn = fns[size - 1][u]; 9467 break; 9468 } 9469 default: 9470 g_assert_not_reached(); 9471 } 9472 9473 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9474 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9475 } 9476 9477 write_fp_dreg(s, rd, tcg_rd); 9478 } 9479 9480 /* AdvSIMD scalar three same extra 9481 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9482 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9483 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9484 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9485 */ 9486 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9487 uint32_t insn) 9488 { 9489 int rd = extract32(insn, 0, 5); 9490 int rn = extract32(insn, 5, 5); 9491 int opcode = extract32(insn, 11, 4); 9492 int rm = extract32(insn, 16, 5); 9493 int size = extract32(insn, 22, 2); 9494 bool u = extract32(insn, 29, 1); 9495 TCGv_i32 ele1, ele2, ele3; 9496 TCGv_i64 res; 9497 bool feature; 9498 9499 switch (u * 16 + opcode) { 9500 case 0x10: /* SQRDMLAH (vector) */ 9501 case 0x11: /* SQRDMLSH (vector) */ 9502 if (size != 1 && size != 2) { 9503 unallocated_encoding(s); 9504 return; 9505 } 9506 feature = dc_isar_feature(aa64_rdm, s); 9507 break; 9508 default: 9509 unallocated_encoding(s); 9510 return; 9511 } 9512 if (!feature) { 9513 unallocated_encoding(s); 9514 return; 9515 } 9516 if (!fp_access_check(s)) { 9517 return; 9518 } 9519 9520 /* Do a single operation on the lowest element in the vector. 9521 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9522 * with no side effects for all these operations. 9523 * OPTME: special-purpose helpers would avoid doing some 9524 * unnecessary work in the helper for the 16 bit cases. 9525 */ 9526 ele1 = tcg_temp_new_i32(); 9527 ele2 = tcg_temp_new_i32(); 9528 ele3 = tcg_temp_new_i32(); 9529 9530 read_vec_element_i32(s, ele1, rn, 0, size); 9531 read_vec_element_i32(s, ele2, rm, 0, size); 9532 read_vec_element_i32(s, ele3, rd, 0, size); 9533 9534 switch (opcode) { 9535 case 0x0: /* SQRDMLAH */ 9536 if (size == 1) { 9537 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9538 } else { 9539 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9540 } 9541 break; 9542 case 0x1: /* SQRDMLSH */ 9543 if (size == 1) { 9544 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9545 } else { 9546 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9547 } 9548 break; 9549 default: 9550 g_assert_not_reached(); 9551 } 9552 9553 res = tcg_temp_new_i64(); 9554 tcg_gen_extu_i32_i64(res, ele3); 9555 write_fp_dreg(s, rd, res); 9556 } 9557 9558 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9559 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9560 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9561 { 9562 /* Handle 64->64 opcodes which are shared between the scalar and 9563 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9564 * is valid in either group and also the double-precision fp ops. 9565 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9566 * requires them. 9567 */ 9568 TCGCond cond; 9569 9570 switch (opcode) { 9571 case 0x4: /* CLS, CLZ */ 9572 if (u) { 9573 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9574 } else { 9575 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9576 } 9577 break; 9578 case 0x5: /* NOT */ 9579 /* This opcode is shared with CNT and RBIT but we have earlier 9580 * enforced that size == 3 if and only if this is the NOT insn. 9581 */ 9582 tcg_gen_not_i64(tcg_rd, tcg_rn); 9583 break; 9584 case 0x7: /* SQABS, SQNEG */ 9585 if (u) { 9586 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9587 } else { 9588 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9589 } 9590 break; 9591 case 0xa: /* CMLT */ 9592 cond = TCG_COND_LT; 9593 do_cmop: 9594 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9595 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9596 break; 9597 case 0x8: /* CMGT, CMGE */ 9598 cond = u ? TCG_COND_GE : TCG_COND_GT; 9599 goto do_cmop; 9600 case 0x9: /* CMEQ, CMLE */ 9601 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9602 goto do_cmop; 9603 case 0xb: /* ABS, NEG */ 9604 if (u) { 9605 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9606 } else { 9607 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9608 } 9609 break; 9610 case 0x2f: /* FABS */ 9611 gen_vfp_absd(tcg_rd, tcg_rn); 9612 break; 9613 case 0x6f: /* FNEG */ 9614 gen_vfp_negd(tcg_rd, tcg_rn); 9615 break; 9616 case 0x7f: /* FSQRT */ 9617 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9618 break; 9619 case 0x1a: /* FCVTNS */ 9620 case 0x1b: /* FCVTMS */ 9621 case 0x1c: /* FCVTAS */ 9622 case 0x3a: /* FCVTPS */ 9623 case 0x3b: /* FCVTZS */ 9624 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9625 break; 9626 case 0x5a: /* FCVTNU */ 9627 case 0x5b: /* FCVTMU */ 9628 case 0x5c: /* FCVTAU */ 9629 case 0x7a: /* FCVTPU */ 9630 case 0x7b: /* FCVTZU */ 9631 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9632 break; 9633 case 0x18: /* FRINTN */ 9634 case 0x19: /* FRINTM */ 9635 case 0x38: /* FRINTP */ 9636 case 0x39: /* FRINTZ */ 9637 case 0x58: /* FRINTA */ 9638 case 0x79: /* FRINTI */ 9639 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9640 break; 9641 case 0x59: /* FRINTX */ 9642 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9643 break; 9644 case 0x1e: /* FRINT32Z */ 9645 case 0x5e: /* FRINT32X */ 9646 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9647 break; 9648 case 0x1f: /* FRINT64Z */ 9649 case 0x5f: /* FRINT64X */ 9650 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9651 break; 9652 default: 9653 g_assert_not_reached(); 9654 } 9655 } 9656 9657 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9658 bool is_scalar, bool is_u, bool is_q, 9659 int size, int rn, int rd) 9660 { 9661 bool is_double = (size == MO_64); 9662 TCGv_ptr fpst; 9663 9664 if (!fp_access_check(s)) { 9665 return; 9666 } 9667 9668 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9669 9670 if (is_double) { 9671 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9672 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9673 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9674 NeonGenTwoDoubleOpFn *genfn; 9675 bool swap = false; 9676 int pass; 9677 9678 switch (opcode) { 9679 case 0x2e: /* FCMLT (zero) */ 9680 swap = true; 9681 /* fallthrough */ 9682 case 0x2c: /* FCMGT (zero) */ 9683 genfn = gen_helper_neon_cgt_f64; 9684 break; 9685 case 0x2d: /* FCMEQ (zero) */ 9686 genfn = gen_helper_neon_ceq_f64; 9687 break; 9688 case 0x6d: /* FCMLE (zero) */ 9689 swap = true; 9690 /* fall through */ 9691 case 0x6c: /* FCMGE (zero) */ 9692 genfn = gen_helper_neon_cge_f64; 9693 break; 9694 default: 9695 g_assert_not_reached(); 9696 } 9697 9698 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9699 read_vec_element(s, tcg_op, rn, pass, MO_64); 9700 if (swap) { 9701 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9702 } else { 9703 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9704 } 9705 write_vec_element(s, tcg_res, rd, pass, MO_64); 9706 } 9707 9708 clear_vec_high(s, !is_scalar, rd); 9709 } else { 9710 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9711 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9712 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9713 NeonGenTwoSingleOpFn *genfn; 9714 bool swap = false; 9715 int pass, maxpasses; 9716 9717 if (size == MO_16) { 9718 switch (opcode) { 9719 case 0x2e: /* FCMLT (zero) */ 9720 swap = true; 9721 /* fall through */ 9722 case 0x2c: /* FCMGT (zero) */ 9723 genfn = gen_helper_advsimd_cgt_f16; 9724 break; 9725 case 0x2d: /* FCMEQ (zero) */ 9726 genfn = gen_helper_advsimd_ceq_f16; 9727 break; 9728 case 0x6d: /* FCMLE (zero) */ 9729 swap = true; 9730 /* fall through */ 9731 case 0x6c: /* FCMGE (zero) */ 9732 genfn = gen_helper_advsimd_cge_f16; 9733 break; 9734 default: 9735 g_assert_not_reached(); 9736 } 9737 } else { 9738 switch (opcode) { 9739 case 0x2e: /* FCMLT (zero) */ 9740 swap = true; 9741 /* fall through */ 9742 case 0x2c: /* FCMGT (zero) */ 9743 genfn = gen_helper_neon_cgt_f32; 9744 break; 9745 case 0x2d: /* FCMEQ (zero) */ 9746 genfn = gen_helper_neon_ceq_f32; 9747 break; 9748 case 0x6d: /* FCMLE (zero) */ 9749 swap = true; 9750 /* fall through */ 9751 case 0x6c: /* FCMGE (zero) */ 9752 genfn = gen_helper_neon_cge_f32; 9753 break; 9754 default: 9755 g_assert_not_reached(); 9756 } 9757 } 9758 9759 if (is_scalar) { 9760 maxpasses = 1; 9761 } else { 9762 int vector_size = 8 << is_q; 9763 maxpasses = vector_size >> size; 9764 } 9765 9766 for (pass = 0; pass < maxpasses; pass++) { 9767 read_vec_element_i32(s, tcg_op, rn, pass, size); 9768 if (swap) { 9769 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9770 } else { 9771 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9772 } 9773 if (is_scalar) { 9774 write_fp_sreg(s, rd, tcg_res); 9775 } else { 9776 write_vec_element_i32(s, tcg_res, rd, pass, size); 9777 } 9778 } 9779 9780 if (!is_scalar) { 9781 clear_vec_high(s, is_q, rd); 9782 } 9783 } 9784 } 9785 9786 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9787 bool is_scalar, bool is_u, bool is_q, 9788 int size, int rn, int rd) 9789 { 9790 bool is_double = (size == 3); 9791 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9792 9793 if (is_double) { 9794 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9795 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9796 int pass; 9797 9798 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9799 read_vec_element(s, tcg_op, rn, pass, MO_64); 9800 switch (opcode) { 9801 case 0x3d: /* FRECPE */ 9802 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9803 break; 9804 case 0x3f: /* FRECPX */ 9805 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9806 break; 9807 case 0x7d: /* FRSQRTE */ 9808 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9809 break; 9810 default: 9811 g_assert_not_reached(); 9812 } 9813 write_vec_element(s, tcg_res, rd, pass, MO_64); 9814 } 9815 clear_vec_high(s, !is_scalar, rd); 9816 } else { 9817 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9818 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9819 int pass, maxpasses; 9820 9821 if (is_scalar) { 9822 maxpasses = 1; 9823 } else { 9824 maxpasses = is_q ? 4 : 2; 9825 } 9826 9827 for (pass = 0; pass < maxpasses; pass++) { 9828 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9829 9830 switch (opcode) { 9831 case 0x3c: /* URECPE */ 9832 gen_helper_recpe_u32(tcg_res, tcg_op); 9833 break; 9834 case 0x3d: /* FRECPE */ 9835 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9836 break; 9837 case 0x3f: /* FRECPX */ 9838 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9839 break; 9840 case 0x7d: /* FRSQRTE */ 9841 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9842 break; 9843 default: 9844 g_assert_not_reached(); 9845 } 9846 9847 if (is_scalar) { 9848 write_fp_sreg(s, rd, tcg_res); 9849 } else { 9850 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9851 } 9852 } 9853 if (!is_scalar) { 9854 clear_vec_high(s, is_q, rd); 9855 } 9856 } 9857 } 9858 9859 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9860 int opcode, bool u, bool is_q, 9861 int size, int rn, int rd) 9862 { 9863 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9864 * in the source becomes a size element in the destination). 9865 */ 9866 int pass; 9867 TCGv_i32 tcg_res[2]; 9868 int destelt = is_q ? 2 : 0; 9869 int passes = scalar ? 1 : 2; 9870 9871 if (scalar) { 9872 tcg_res[1] = tcg_constant_i32(0); 9873 } 9874 9875 for (pass = 0; pass < passes; pass++) { 9876 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9877 NeonGenNarrowFn *genfn = NULL; 9878 NeonGenNarrowEnvFn *genenvfn = NULL; 9879 9880 if (scalar) { 9881 read_vec_element(s, tcg_op, rn, pass, size + 1); 9882 } else { 9883 read_vec_element(s, tcg_op, rn, pass, MO_64); 9884 } 9885 tcg_res[pass] = tcg_temp_new_i32(); 9886 9887 switch (opcode) { 9888 case 0x12: /* XTN, SQXTUN */ 9889 { 9890 static NeonGenNarrowFn * const xtnfns[3] = { 9891 gen_helper_neon_narrow_u8, 9892 gen_helper_neon_narrow_u16, 9893 tcg_gen_extrl_i64_i32, 9894 }; 9895 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9896 gen_helper_neon_unarrow_sat8, 9897 gen_helper_neon_unarrow_sat16, 9898 gen_helper_neon_unarrow_sat32, 9899 }; 9900 if (u) { 9901 genenvfn = sqxtunfns[size]; 9902 } else { 9903 genfn = xtnfns[size]; 9904 } 9905 break; 9906 } 9907 case 0x14: /* SQXTN, UQXTN */ 9908 { 9909 static NeonGenNarrowEnvFn * const fns[3][2] = { 9910 { gen_helper_neon_narrow_sat_s8, 9911 gen_helper_neon_narrow_sat_u8 }, 9912 { gen_helper_neon_narrow_sat_s16, 9913 gen_helper_neon_narrow_sat_u16 }, 9914 { gen_helper_neon_narrow_sat_s32, 9915 gen_helper_neon_narrow_sat_u32 }, 9916 }; 9917 genenvfn = fns[size][u]; 9918 break; 9919 } 9920 case 0x16: /* FCVTN, FCVTN2 */ 9921 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9922 if (size == 2) { 9923 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9924 } else { 9925 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9926 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9927 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9928 TCGv_i32 ahp = get_ahp_flag(); 9929 9930 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9931 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9932 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9933 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9934 } 9935 break; 9936 case 0x36: /* BFCVTN, BFCVTN2 */ 9937 { 9938 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9939 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9940 } 9941 break; 9942 case 0x56: /* FCVTXN, FCVTXN2 */ 9943 /* 64 bit to 32 bit float conversion 9944 * with von Neumann rounding (round to odd) 9945 */ 9946 assert(size == 2); 9947 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9948 break; 9949 default: 9950 g_assert_not_reached(); 9951 } 9952 9953 if (genfn) { 9954 genfn(tcg_res[pass], tcg_op); 9955 } else if (genenvfn) { 9956 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9957 } 9958 } 9959 9960 for (pass = 0; pass < 2; pass++) { 9961 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9962 } 9963 clear_vec_high(s, is_q, rd); 9964 } 9965 9966 /* Remaining saturating accumulating ops */ 9967 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9968 bool is_q, int size, int rn, int rd) 9969 { 9970 bool is_double = (size == 3); 9971 9972 if (is_double) { 9973 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9974 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9975 int pass; 9976 9977 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9978 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9979 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9980 9981 if (is_u) { /* USQADD */ 9982 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9983 } else { /* SUQADD */ 9984 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 9985 } 9986 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9987 } 9988 clear_vec_high(s, !is_scalar, rd); 9989 } else { 9990 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9991 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9992 int pass, maxpasses; 9993 9994 if (is_scalar) { 9995 maxpasses = 1; 9996 } else { 9997 maxpasses = is_q ? 4 : 2; 9998 } 9999 10000 for (pass = 0; pass < maxpasses; pass++) { 10001 if (is_scalar) { 10002 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10003 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10004 } else { 10005 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10006 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10007 } 10008 10009 if (is_u) { /* USQADD */ 10010 switch (size) { 10011 case 0: 10012 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10013 break; 10014 case 1: 10015 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10016 break; 10017 case 2: 10018 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10019 break; 10020 default: 10021 g_assert_not_reached(); 10022 } 10023 } else { /* SUQADD */ 10024 switch (size) { 10025 case 0: 10026 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10027 break; 10028 case 1: 10029 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10030 break; 10031 case 2: 10032 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10033 break; 10034 default: 10035 g_assert_not_reached(); 10036 } 10037 } 10038 10039 if (is_scalar) { 10040 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10041 } 10042 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10043 } 10044 clear_vec_high(s, is_q, rd); 10045 } 10046 } 10047 10048 /* AdvSIMD scalar two reg misc 10049 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10050 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10051 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10052 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10053 */ 10054 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10055 { 10056 int rd = extract32(insn, 0, 5); 10057 int rn = extract32(insn, 5, 5); 10058 int opcode = extract32(insn, 12, 5); 10059 int size = extract32(insn, 22, 2); 10060 bool u = extract32(insn, 29, 1); 10061 bool is_fcvt = false; 10062 int rmode; 10063 TCGv_i32 tcg_rmode; 10064 TCGv_ptr tcg_fpstatus; 10065 10066 switch (opcode) { 10067 case 0x3: /* USQADD / SUQADD*/ 10068 if (!fp_access_check(s)) { 10069 return; 10070 } 10071 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10072 return; 10073 case 0x7: /* SQABS / SQNEG */ 10074 break; 10075 case 0xa: /* CMLT */ 10076 if (u) { 10077 unallocated_encoding(s); 10078 return; 10079 } 10080 /* fall through */ 10081 case 0x8: /* CMGT, CMGE */ 10082 case 0x9: /* CMEQ, CMLE */ 10083 case 0xb: /* ABS, NEG */ 10084 if (size != 3) { 10085 unallocated_encoding(s); 10086 return; 10087 } 10088 break; 10089 case 0x12: /* SQXTUN */ 10090 if (!u) { 10091 unallocated_encoding(s); 10092 return; 10093 } 10094 /* fall through */ 10095 case 0x14: /* SQXTN, UQXTN */ 10096 if (size == 3) { 10097 unallocated_encoding(s); 10098 return; 10099 } 10100 if (!fp_access_check(s)) { 10101 return; 10102 } 10103 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10104 return; 10105 case 0xc ... 0xf: 10106 case 0x16 ... 0x1d: 10107 case 0x1f: 10108 /* Floating point: U, size[1] and opcode indicate operation; 10109 * size[0] indicates single or double precision. 10110 */ 10111 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10112 size = extract32(size, 0, 1) ? 3 : 2; 10113 switch (opcode) { 10114 case 0x2c: /* FCMGT (zero) */ 10115 case 0x2d: /* FCMEQ (zero) */ 10116 case 0x2e: /* FCMLT (zero) */ 10117 case 0x6c: /* FCMGE (zero) */ 10118 case 0x6d: /* FCMLE (zero) */ 10119 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10120 return; 10121 case 0x1d: /* SCVTF */ 10122 case 0x5d: /* UCVTF */ 10123 { 10124 bool is_signed = (opcode == 0x1d); 10125 if (!fp_access_check(s)) { 10126 return; 10127 } 10128 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10129 return; 10130 } 10131 case 0x3d: /* FRECPE */ 10132 case 0x3f: /* FRECPX */ 10133 case 0x7d: /* FRSQRTE */ 10134 if (!fp_access_check(s)) { 10135 return; 10136 } 10137 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10138 return; 10139 case 0x1a: /* FCVTNS */ 10140 case 0x1b: /* FCVTMS */ 10141 case 0x3a: /* FCVTPS */ 10142 case 0x3b: /* FCVTZS */ 10143 case 0x5a: /* FCVTNU */ 10144 case 0x5b: /* FCVTMU */ 10145 case 0x7a: /* FCVTPU */ 10146 case 0x7b: /* FCVTZU */ 10147 is_fcvt = true; 10148 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10149 break; 10150 case 0x1c: /* FCVTAS */ 10151 case 0x5c: /* FCVTAU */ 10152 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10153 is_fcvt = true; 10154 rmode = FPROUNDING_TIEAWAY; 10155 break; 10156 case 0x56: /* FCVTXN, FCVTXN2 */ 10157 if (size == 2) { 10158 unallocated_encoding(s); 10159 return; 10160 } 10161 if (!fp_access_check(s)) { 10162 return; 10163 } 10164 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10165 return; 10166 default: 10167 unallocated_encoding(s); 10168 return; 10169 } 10170 break; 10171 default: 10172 unallocated_encoding(s); 10173 return; 10174 } 10175 10176 if (!fp_access_check(s)) { 10177 return; 10178 } 10179 10180 if (is_fcvt) { 10181 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10182 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10183 } else { 10184 tcg_fpstatus = NULL; 10185 tcg_rmode = NULL; 10186 } 10187 10188 if (size == 3) { 10189 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10190 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10191 10192 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10193 write_fp_dreg(s, rd, tcg_rd); 10194 } else { 10195 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10196 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10197 10198 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10199 10200 switch (opcode) { 10201 case 0x7: /* SQABS, SQNEG */ 10202 { 10203 NeonGenOneOpEnvFn *genfn; 10204 static NeonGenOneOpEnvFn * const fns[3][2] = { 10205 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10206 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10207 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10208 }; 10209 genfn = fns[size][u]; 10210 genfn(tcg_rd, tcg_env, tcg_rn); 10211 break; 10212 } 10213 case 0x1a: /* FCVTNS */ 10214 case 0x1b: /* FCVTMS */ 10215 case 0x1c: /* FCVTAS */ 10216 case 0x3a: /* FCVTPS */ 10217 case 0x3b: /* FCVTZS */ 10218 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10219 tcg_fpstatus); 10220 break; 10221 case 0x5a: /* FCVTNU */ 10222 case 0x5b: /* FCVTMU */ 10223 case 0x5c: /* FCVTAU */ 10224 case 0x7a: /* FCVTPU */ 10225 case 0x7b: /* FCVTZU */ 10226 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10227 tcg_fpstatus); 10228 break; 10229 default: 10230 g_assert_not_reached(); 10231 } 10232 10233 write_fp_sreg(s, rd, tcg_rd); 10234 } 10235 10236 if (is_fcvt) { 10237 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10238 } 10239 } 10240 10241 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10242 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10243 int immh, int immb, int opcode, int rn, int rd) 10244 { 10245 int size = 32 - clz32(immh) - 1; 10246 int immhb = immh << 3 | immb; 10247 int shift = 2 * (8 << size) - immhb; 10248 GVecGen2iFn *gvec_fn; 10249 10250 if (extract32(immh, 3, 1) && !is_q) { 10251 unallocated_encoding(s); 10252 return; 10253 } 10254 tcg_debug_assert(size <= 3); 10255 10256 if (!fp_access_check(s)) { 10257 return; 10258 } 10259 10260 switch (opcode) { 10261 case 0x02: /* SSRA / USRA (accumulate) */ 10262 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10263 break; 10264 10265 case 0x08: /* SRI */ 10266 gvec_fn = gen_gvec_sri; 10267 break; 10268 10269 case 0x00: /* SSHR / USHR */ 10270 if (is_u) { 10271 if (shift == 8 << size) { 10272 /* Shift count the same size as element size produces zero. */ 10273 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10274 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10275 return; 10276 } 10277 gvec_fn = tcg_gen_gvec_shri; 10278 } else { 10279 /* Shift count the same size as element size produces all sign. */ 10280 if (shift == 8 << size) { 10281 shift -= 1; 10282 } 10283 gvec_fn = tcg_gen_gvec_sari; 10284 } 10285 break; 10286 10287 case 0x04: /* SRSHR / URSHR (rounding) */ 10288 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10289 break; 10290 10291 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10292 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10293 break; 10294 10295 default: 10296 g_assert_not_reached(); 10297 } 10298 10299 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10300 } 10301 10302 /* SHL/SLI - Vector shift left */ 10303 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10304 int immh, int immb, int opcode, int rn, int rd) 10305 { 10306 int size = 32 - clz32(immh) - 1; 10307 int immhb = immh << 3 | immb; 10308 int shift = immhb - (8 << size); 10309 10310 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10311 assert(size >= 0 && size <= 3); 10312 10313 if (extract32(immh, 3, 1) && !is_q) { 10314 unallocated_encoding(s); 10315 return; 10316 } 10317 10318 if (!fp_access_check(s)) { 10319 return; 10320 } 10321 10322 if (insert) { 10323 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10324 } else { 10325 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10326 } 10327 } 10328 10329 /* USHLL/SHLL - Vector shift left with widening */ 10330 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10331 int immh, int immb, int opcode, int rn, int rd) 10332 { 10333 int size = 32 - clz32(immh) - 1; 10334 int immhb = immh << 3 | immb; 10335 int shift = immhb - (8 << size); 10336 int dsize = 64; 10337 int esize = 8 << size; 10338 int elements = dsize/esize; 10339 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10340 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10341 int i; 10342 10343 if (size >= 3) { 10344 unallocated_encoding(s); 10345 return; 10346 } 10347 10348 if (!fp_access_check(s)) { 10349 return; 10350 } 10351 10352 /* For the LL variants the store is larger than the load, 10353 * so if rd == rn we would overwrite parts of our input. 10354 * So load everything right now and use shifts in the main loop. 10355 */ 10356 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10357 10358 for (i = 0; i < elements; i++) { 10359 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10360 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10361 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10362 write_vec_element(s, tcg_rd, rd, i, size + 1); 10363 } 10364 } 10365 10366 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10367 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10368 int immh, int immb, int opcode, int rn, int rd) 10369 { 10370 int immhb = immh << 3 | immb; 10371 int size = 32 - clz32(immh) - 1; 10372 int dsize = 64; 10373 int esize = 8 << size; 10374 int elements = dsize/esize; 10375 int shift = (2 * esize) - immhb; 10376 bool round = extract32(opcode, 0, 1); 10377 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10378 TCGv_i64 tcg_round; 10379 int i; 10380 10381 if (extract32(immh, 3, 1)) { 10382 unallocated_encoding(s); 10383 return; 10384 } 10385 10386 if (!fp_access_check(s)) { 10387 return; 10388 } 10389 10390 tcg_rn = tcg_temp_new_i64(); 10391 tcg_rd = tcg_temp_new_i64(); 10392 tcg_final = tcg_temp_new_i64(); 10393 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10394 10395 if (round) { 10396 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10397 } else { 10398 tcg_round = NULL; 10399 } 10400 10401 for (i = 0; i < elements; i++) { 10402 read_vec_element(s, tcg_rn, rn, i, size+1); 10403 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10404 false, true, size+1, shift); 10405 10406 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10407 } 10408 10409 if (!is_q) { 10410 write_vec_element(s, tcg_final, rd, 0, MO_64); 10411 } else { 10412 write_vec_element(s, tcg_final, rd, 1, MO_64); 10413 } 10414 10415 clear_vec_high(s, is_q, rd); 10416 } 10417 10418 10419 /* AdvSIMD shift by immediate 10420 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10421 * +---+---+---+-------------+------+------+--------+---+------+------+ 10422 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10423 * +---+---+---+-------------+------+------+--------+---+------+------+ 10424 */ 10425 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10426 { 10427 int rd = extract32(insn, 0, 5); 10428 int rn = extract32(insn, 5, 5); 10429 int opcode = extract32(insn, 11, 5); 10430 int immb = extract32(insn, 16, 3); 10431 int immh = extract32(insn, 19, 4); 10432 bool is_u = extract32(insn, 29, 1); 10433 bool is_q = extract32(insn, 30, 1); 10434 10435 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10436 assert(immh != 0); 10437 10438 switch (opcode) { 10439 case 0x08: /* SRI */ 10440 if (!is_u) { 10441 unallocated_encoding(s); 10442 return; 10443 } 10444 /* fall through */ 10445 case 0x00: /* SSHR / USHR */ 10446 case 0x02: /* SSRA / USRA (accumulate) */ 10447 case 0x04: /* SRSHR / URSHR (rounding) */ 10448 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10449 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10450 break; 10451 case 0x0a: /* SHL / SLI */ 10452 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10453 break; 10454 case 0x10: /* SHRN */ 10455 case 0x11: /* RSHRN / SQRSHRUN */ 10456 if (is_u) { 10457 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10458 opcode, rn, rd); 10459 } else { 10460 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10461 } 10462 break; 10463 case 0x12: /* SQSHRN / UQSHRN */ 10464 case 0x13: /* SQRSHRN / UQRSHRN */ 10465 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10466 opcode, rn, rd); 10467 break; 10468 case 0x14: /* SSHLL / USHLL */ 10469 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10470 break; 10471 case 0x1c: /* SCVTF / UCVTF */ 10472 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10473 opcode, rn, rd); 10474 break; 10475 case 0xc: /* SQSHLU */ 10476 if (!is_u) { 10477 unallocated_encoding(s); 10478 return; 10479 } 10480 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10481 break; 10482 case 0xe: /* SQSHL, UQSHL */ 10483 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10484 break; 10485 case 0x1f: /* FCVTZS/ FCVTZU */ 10486 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10487 return; 10488 default: 10489 unallocated_encoding(s); 10490 return; 10491 } 10492 } 10493 10494 /* Generate code to do a "long" addition or subtraction, ie one done in 10495 * TCGv_i64 on vector lanes twice the width specified by size. 10496 */ 10497 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10498 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10499 { 10500 static NeonGenTwo64OpFn * const fns[3][2] = { 10501 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10502 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10503 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10504 }; 10505 NeonGenTwo64OpFn *genfn; 10506 assert(size < 3); 10507 10508 genfn = fns[size][is_sub]; 10509 genfn(tcg_res, tcg_op1, tcg_op2); 10510 } 10511 10512 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10513 int opcode, int rd, int rn, int rm) 10514 { 10515 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10516 TCGv_i64 tcg_res[2]; 10517 int pass, accop; 10518 10519 tcg_res[0] = tcg_temp_new_i64(); 10520 tcg_res[1] = tcg_temp_new_i64(); 10521 10522 /* Does this op do an adding accumulate, a subtracting accumulate, 10523 * or no accumulate at all? 10524 */ 10525 switch (opcode) { 10526 case 5: 10527 case 8: 10528 case 9: 10529 accop = 1; 10530 break; 10531 case 10: 10532 case 11: 10533 accop = -1; 10534 break; 10535 default: 10536 accop = 0; 10537 break; 10538 } 10539 10540 if (accop != 0) { 10541 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10542 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10543 } 10544 10545 /* size == 2 means two 32x32->64 operations; this is worth special 10546 * casing because we can generally handle it inline. 10547 */ 10548 if (size == 2) { 10549 for (pass = 0; pass < 2; pass++) { 10550 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10551 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10552 TCGv_i64 tcg_passres; 10553 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10554 10555 int elt = pass + is_q * 2; 10556 10557 read_vec_element(s, tcg_op1, rn, elt, memop); 10558 read_vec_element(s, tcg_op2, rm, elt, memop); 10559 10560 if (accop == 0) { 10561 tcg_passres = tcg_res[pass]; 10562 } else { 10563 tcg_passres = tcg_temp_new_i64(); 10564 } 10565 10566 switch (opcode) { 10567 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10568 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10569 break; 10570 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10571 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10572 break; 10573 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10574 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10575 { 10576 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10577 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10578 10579 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10580 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10581 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10582 tcg_passres, 10583 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10584 break; 10585 } 10586 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10587 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10588 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10589 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10590 break; 10591 case 9: /* SQDMLAL, SQDMLAL2 */ 10592 case 11: /* SQDMLSL, SQDMLSL2 */ 10593 case 13: /* SQDMULL, SQDMULL2 */ 10594 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10595 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10596 tcg_passres, tcg_passres); 10597 break; 10598 default: 10599 g_assert_not_reached(); 10600 } 10601 10602 if (opcode == 9 || opcode == 11) { 10603 /* saturating accumulate ops */ 10604 if (accop < 0) { 10605 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10606 } 10607 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10608 tcg_res[pass], tcg_passres); 10609 } else if (accop > 0) { 10610 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10611 } else if (accop < 0) { 10612 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10613 } 10614 } 10615 } else { 10616 /* size 0 or 1, generally helper functions */ 10617 for (pass = 0; pass < 2; pass++) { 10618 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10619 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10620 TCGv_i64 tcg_passres; 10621 int elt = pass + is_q * 2; 10622 10623 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10624 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10625 10626 if (accop == 0) { 10627 tcg_passres = tcg_res[pass]; 10628 } else { 10629 tcg_passres = tcg_temp_new_i64(); 10630 } 10631 10632 switch (opcode) { 10633 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10634 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10635 { 10636 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10637 static NeonGenWidenFn * const widenfns[2][2] = { 10638 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10639 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10640 }; 10641 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10642 10643 widenfn(tcg_op2_64, tcg_op2); 10644 widenfn(tcg_passres, tcg_op1); 10645 gen_neon_addl(size, (opcode == 2), tcg_passres, 10646 tcg_passres, tcg_op2_64); 10647 break; 10648 } 10649 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10650 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10651 if (size == 0) { 10652 if (is_u) { 10653 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10654 } else { 10655 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10656 } 10657 } else { 10658 if (is_u) { 10659 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10660 } else { 10661 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10662 } 10663 } 10664 break; 10665 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10666 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10667 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10668 if (size == 0) { 10669 if (is_u) { 10670 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10671 } else { 10672 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10673 } 10674 } else { 10675 if (is_u) { 10676 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10677 } else { 10678 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10679 } 10680 } 10681 break; 10682 case 9: /* SQDMLAL, SQDMLAL2 */ 10683 case 11: /* SQDMLSL, SQDMLSL2 */ 10684 case 13: /* SQDMULL, SQDMULL2 */ 10685 assert(size == 1); 10686 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10687 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10688 tcg_passres, tcg_passres); 10689 break; 10690 default: 10691 g_assert_not_reached(); 10692 } 10693 10694 if (accop != 0) { 10695 if (opcode == 9 || opcode == 11) { 10696 /* saturating accumulate ops */ 10697 if (accop < 0) { 10698 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10699 } 10700 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10701 tcg_res[pass], 10702 tcg_passres); 10703 } else { 10704 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10705 tcg_res[pass], tcg_passres); 10706 } 10707 } 10708 } 10709 } 10710 10711 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10712 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10713 } 10714 10715 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10716 int opcode, int rd, int rn, int rm) 10717 { 10718 TCGv_i64 tcg_res[2]; 10719 int part = is_q ? 2 : 0; 10720 int pass; 10721 10722 for (pass = 0; pass < 2; pass++) { 10723 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10724 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10725 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10726 static NeonGenWidenFn * const widenfns[3][2] = { 10727 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10728 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10729 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10730 }; 10731 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10732 10733 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10734 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10735 widenfn(tcg_op2_wide, tcg_op2); 10736 tcg_res[pass] = tcg_temp_new_i64(); 10737 gen_neon_addl(size, (opcode == 3), 10738 tcg_res[pass], tcg_op1, tcg_op2_wide); 10739 } 10740 10741 for (pass = 0; pass < 2; pass++) { 10742 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10743 } 10744 } 10745 10746 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10747 { 10748 tcg_gen_addi_i64(in, in, 1U << 31); 10749 tcg_gen_extrh_i64_i32(res, in); 10750 } 10751 10752 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10753 int opcode, int rd, int rn, int rm) 10754 { 10755 TCGv_i32 tcg_res[2]; 10756 int part = is_q ? 2 : 0; 10757 int pass; 10758 10759 for (pass = 0; pass < 2; pass++) { 10760 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10761 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10762 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10763 static NeonGenNarrowFn * const narrowfns[3][2] = { 10764 { gen_helper_neon_narrow_high_u8, 10765 gen_helper_neon_narrow_round_high_u8 }, 10766 { gen_helper_neon_narrow_high_u16, 10767 gen_helper_neon_narrow_round_high_u16 }, 10768 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10769 }; 10770 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10771 10772 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10773 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10774 10775 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10776 10777 tcg_res[pass] = tcg_temp_new_i32(); 10778 gennarrow(tcg_res[pass], tcg_wideres); 10779 } 10780 10781 for (pass = 0; pass < 2; pass++) { 10782 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10783 } 10784 clear_vec_high(s, is_q, rd); 10785 } 10786 10787 /* AdvSIMD three different 10788 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10789 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10790 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10791 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10792 */ 10793 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10794 { 10795 /* Instructions in this group fall into three basic classes 10796 * (in each case with the operation working on each element in 10797 * the input vectors): 10798 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10799 * 128 bit input) 10800 * (2) wide 64 x 128 -> 128 10801 * (3) narrowing 128 x 128 -> 64 10802 * Here we do initial decode, catch unallocated cases and 10803 * dispatch to separate functions for each class. 10804 */ 10805 int is_q = extract32(insn, 30, 1); 10806 int is_u = extract32(insn, 29, 1); 10807 int size = extract32(insn, 22, 2); 10808 int opcode = extract32(insn, 12, 4); 10809 int rm = extract32(insn, 16, 5); 10810 int rn = extract32(insn, 5, 5); 10811 int rd = extract32(insn, 0, 5); 10812 10813 switch (opcode) { 10814 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10815 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10816 /* 64 x 128 -> 128 */ 10817 if (size == 3) { 10818 unallocated_encoding(s); 10819 return; 10820 } 10821 if (!fp_access_check(s)) { 10822 return; 10823 } 10824 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10825 break; 10826 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10827 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10828 /* 128 x 128 -> 64 */ 10829 if (size == 3) { 10830 unallocated_encoding(s); 10831 return; 10832 } 10833 if (!fp_access_check(s)) { 10834 return; 10835 } 10836 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10837 break; 10838 case 14: /* PMULL, PMULL2 */ 10839 if (is_u) { 10840 unallocated_encoding(s); 10841 return; 10842 } 10843 switch (size) { 10844 case 0: /* PMULL.P8 */ 10845 if (!fp_access_check(s)) { 10846 return; 10847 } 10848 /* The Q field specifies lo/hi half input for this insn. */ 10849 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10850 gen_helper_neon_pmull_h); 10851 break; 10852 10853 case 3: /* PMULL.P64 */ 10854 if (!dc_isar_feature(aa64_pmull, s)) { 10855 unallocated_encoding(s); 10856 return; 10857 } 10858 if (!fp_access_check(s)) { 10859 return; 10860 } 10861 /* The Q field specifies lo/hi half input for this insn. */ 10862 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10863 gen_helper_gvec_pmull_q); 10864 break; 10865 10866 default: 10867 unallocated_encoding(s); 10868 break; 10869 } 10870 return; 10871 case 9: /* SQDMLAL, SQDMLAL2 */ 10872 case 11: /* SQDMLSL, SQDMLSL2 */ 10873 case 13: /* SQDMULL, SQDMULL2 */ 10874 if (is_u || size == 0) { 10875 unallocated_encoding(s); 10876 return; 10877 } 10878 /* fall through */ 10879 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10880 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10881 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10882 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10883 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10884 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10885 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10886 /* 64 x 64 -> 128 */ 10887 if (size == 3) { 10888 unallocated_encoding(s); 10889 return; 10890 } 10891 if (!fp_access_check(s)) { 10892 return; 10893 } 10894 10895 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10896 break; 10897 default: 10898 /* opcode 15 not allocated */ 10899 unallocated_encoding(s); 10900 break; 10901 } 10902 } 10903 10904 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10905 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10906 { 10907 int rd = extract32(insn, 0, 5); 10908 int rn = extract32(insn, 5, 5); 10909 int rm = extract32(insn, 16, 5); 10910 int size = extract32(insn, 22, 2); 10911 bool is_u = extract32(insn, 29, 1); 10912 bool is_q = extract32(insn, 30, 1); 10913 10914 if (!fp_access_check(s)) { 10915 return; 10916 } 10917 10918 switch (size + 4 * is_u) { 10919 case 0: /* AND */ 10920 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10921 return; 10922 case 1: /* BIC */ 10923 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10924 return; 10925 case 2: /* ORR */ 10926 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10927 return; 10928 case 3: /* ORN */ 10929 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10930 return; 10931 case 4: /* EOR */ 10932 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10933 return; 10934 10935 case 5: /* BSL bitwise select */ 10936 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10937 return; 10938 case 6: /* BIT, bitwise insert if true */ 10939 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10940 return; 10941 case 7: /* BIF, bitwise insert if false */ 10942 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10943 return; 10944 10945 default: 10946 g_assert_not_reached(); 10947 } 10948 } 10949 10950 /* Integer op subgroup of C3.6.16. */ 10951 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10952 { 10953 int is_q = extract32(insn, 30, 1); 10954 int u = extract32(insn, 29, 1); 10955 int size = extract32(insn, 22, 2); 10956 int opcode = extract32(insn, 11, 5); 10957 int rm = extract32(insn, 16, 5); 10958 int rn = extract32(insn, 5, 5); 10959 int rd = extract32(insn, 0, 5); 10960 int pass; 10961 TCGCond cond; 10962 10963 switch (opcode) { 10964 case 0x13: /* MUL, PMUL */ 10965 if (u && size != 0) { 10966 unallocated_encoding(s); 10967 return; 10968 } 10969 /* fall through */ 10970 case 0x0: /* SHADD, UHADD */ 10971 case 0x2: /* SRHADD, URHADD */ 10972 case 0x4: /* SHSUB, UHSUB */ 10973 case 0xc: /* SMAX, UMAX */ 10974 case 0xd: /* SMIN, UMIN */ 10975 case 0xe: /* SABD, UABD */ 10976 case 0xf: /* SABA, UABA */ 10977 case 0x12: /* MLA, MLS */ 10978 if (size == 3) { 10979 unallocated_encoding(s); 10980 return; 10981 } 10982 break; 10983 case 0x16: /* SQDMULH, SQRDMULH */ 10984 if (size == 0 || size == 3) { 10985 unallocated_encoding(s); 10986 return; 10987 } 10988 break; 10989 default: 10990 if (size == 3 && !is_q) { 10991 unallocated_encoding(s); 10992 return; 10993 } 10994 break; 10995 } 10996 10997 if (!fp_access_check(s)) { 10998 return; 10999 } 11000 11001 switch (opcode) { 11002 case 0x01: /* SQADD, UQADD */ 11003 if (u) { 11004 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11005 } else { 11006 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11007 } 11008 return; 11009 case 0x05: /* SQSUB, UQSUB */ 11010 if (u) { 11011 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11012 } else { 11013 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11014 } 11015 return; 11016 case 0x08: /* SSHL, USHL */ 11017 if (u) { 11018 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11019 } else { 11020 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11021 } 11022 return; 11023 case 0x0c: /* SMAX, UMAX */ 11024 if (u) { 11025 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11026 } else { 11027 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11028 } 11029 return; 11030 case 0x0d: /* SMIN, UMIN */ 11031 if (u) { 11032 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11033 } else { 11034 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11035 } 11036 return; 11037 case 0xe: /* SABD, UABD */ 11038 if (u) { 11039 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11040 } else { 11041 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11042 } 11043 return; 11044 case 0xf: /* SABA, UABA */ 11045 if (u) { 11046 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11047 } else { 11048 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11049 } 11050 return; 11051 case 0x10: /* ADD, SUB */ 11052 if (u) { 11053 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11054 } else { 11055 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11056 } 11057 return; 11058 case 0x13: /* MUL, PMUL */ 11059 if (!u) { /* MUL */ 11060 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11061 } else { /* PMUL */ 11062 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11063 } 11064 return; 11065 case 0x12: /* MLA, MLS */ 11066 if (u) { 11067 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11068 } else { 11069 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11070 } 11071 return; 11072 case 0x16: /* SQDMULH, SQRDMULH */ 11073 { 11074 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11075 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11076 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11077 }; 11078 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11079 } 11080 return; 11081 case 0x11: 11082 if (!u) { /* CMTST */ 11083 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11084 return; 11085 } 11086 /* else CMEQ */ 11087 cond = TCG_COND_EQ; 11088 goto do_gvec_cmp; 11089 case 0x06: /* CMGT, CMHI */ 11090 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11091 goto do_gvec_cmp; 11092 case 0x07: /* CMGE, CMHS */ 11093 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11094 do_gvec_cmp: 11095 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11096 vec_full_reg_offset(s, rn), 11097 vec_full_reg_offset(s, rm), 11098 is_q ? 16 : 8, vec_full_reg_size(s)); 11099 return; 11100 } 11101 11102 if (size == 3) { 11103 assert(is_q); 11104 for (pass = 0; pass < 2; pass++) { 11105 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11106 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11107 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11108 11109 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11110 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11111 11112 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11113 11114 write_vec_element(s, tcg_res, rd, pass, MO_64); 11115 } 11116 } else { 11117 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11118 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11119 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11120 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11121 NeonGenTwoOpFn *genfn = NULL; 11122 NeonGenTwoOpEnvFn *genenvfn = NULL; 11123 11124 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11125 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11126 11127 switch (opcode) { 11128 case 0x0: /* SHADD, UHADD */ 11129 { 11130 static NeonGenTwoOpFn * const fns[3][2] = { 11131 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11132 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11133 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11134 }; 11135 genfn = fns[size][u]; 11136 break; 11137 } 11138 case 0x2: /* SRHADD, URHADD */ 11139 { 11140 static NeonGenTwoOpFn * const fns[3][2] = { 11141 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11142 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11143 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11144 }; 11145 genfn = fns[size][u]; 11146 break; 11147 } 11148 case 0x4: /* SHSUB, UHSUB */ 11149 { 11150 static NeonGenTwoOpFn * const fns[3][2] = { 11151 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11152 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11153 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11154 }; 11155 genfn = fns[size][u]; 11156 break; 11157 } 11158 case 0x9: /* SQSHL, UQSHL */ 11159 { 11160 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11161 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11162 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11163 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11164 }; 11165 genenvfn = fns[size][u]; 11166 break; 11167 } 11168 case 0xa: /* SRSHL, URSHL */ 11169 { 11170 static NeonGenTwoOpFn * const fns[3][2] = { 11171 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11172 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11173 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11174 }; 11175 genfn = fns[size][u]; 11176 break; 11177 } 11178 case 0xb: /* SQRSHL, UQRSHL */ 11179 { 11180 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11181 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11182 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11183 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11184 }; 11185 genenvfn = fns[size][u]; 11186 break; 11187 } 11188 default: 11189 g_assert_not_reached(); 11190 } 11191 11192 if (genenvfn) { 11193 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11194 } else { 11195 genfn(tcg_res, tcg_op1, tcg_op2); 11196 } 11197 11198 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11199 } 11200 } 11201 clear_vec_high(s, is_q, rd); 11202 } 11203 11204 /* AdvSIMD three same 11205 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11206 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11207 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11208 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11209 */ 11210 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11211 { 11212 int opcode = extract32(insn, 11, 5); 11213 11214 switch (opcode) { 11215 case 0x3: /* logic ops */ 11216 disas_simd_3same_logic(s, insn); 11217 break; 11218 default: 11219 disas_simd_3same_int(s, insn); 11220 break; 11221 case 0x14: /* SMAXP, UMAXP */ 11222 case 0x15: /* SMINP, UMINP */ 11223 case 0x17: /* ADDP */ 11224 case 0x18 ... 0x31: /* floating point ops */ 11225 unallocated_encoding(s); 11226 break; 11227 } 11228 } 11229 11230 /* AdvSIMD three same extra 11231 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11232 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11233 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11234 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11235 */ 11236 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11237 { 11238 int rd = extract32(insn, 0, 5); 11239 int rn = extract32(insn, 5, 5); 11240 int opcode = extract32(insn, 11, 4); 11241 int rm = extract32(insn, 16, 5); 11242 int size = extract32(insn, 22, 2); 11243 bool u = extract32(insn, 29, 1); 11244 bool is_q = extract32(insn, 30, 1); 11245 bool feature; 11246 int rot; 11247 11248 switch (u * 16 + opcode) { 11249 case 0x10: /* SQRDMLAH (vector) */ 11250 case 0x11: /* SQRDMLSH (vector) */ 11251 if (size != 1 && size != 2) { 11252 unallocated_encoding(s); 11253 return; 11254 } 11255 feature = dc_isar_feature(aa64_rdm, s); 11256 break; 11257 case 0x02: /* SDOT (vector) */ 11258 case 0x12: /* UDOT (vector) */ 11259 if (size != MO_32) { 11260 unallocated_encoding(s); 11261 return; 11262 } 11263 feature = dc_isar_feature(aa64_dp, s); 11264 break; 11265 case 0x03: /* USDOT */ 11266 if (size != MO_32) { 11267 unallocated_encoding(s); 11268 return; 11269 } 11270 feature = dc_isar_feature(aa64_i8mm, s); 11271 break; 11272 case 0x04: /* SMMLA */ 11273 case 0x14: /* UMMLA */ 11274 case 0x05: /* USMMLA */ 11275 if (!is_q || size != MO_32) { 11276 unallocated_encoding(s); 11277 return; 11278 } 11279 feature = dc_isar_feature(aa64_i8mm, s); 11280 break; 11281 case 0x18: /* FCMLA, #0 */ 11282 case 0x19: /* FCMLA, #90 */ 11283 case 0x1a: /* FCMLA, #180 */ 11284 case 0x1b: /* FCMLA, #270 */ 11285 case 0x1c: /* FCADD, #90 */ 11286 case 0x1e: /* FCADD, #270 */ 11287 if (size == 0 11288 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11289 || (size == 3 && !is_q)) { 11290 unallocated_encoding(s); 11291 return; 11292 } 11293 feature = dc_isar_feature(aa64_fcma, s); 11294 break; 11295 case 0x1d: /* BFMMLA */ 11296 if (size != MO_16 || !is_q) { 11297 unallocated_encoding(s); 11298 return; 11299 } 11300 feature = dc_isar_feature(aa64_bf16, s); 11301 break; 11302 case 0x1f: 11303 switch (size) { 11304 case 1: /* BFDOT */ 11305 case 3: /* BFMLAL{B,T} */ 11306 feature = dc_isar_feature(aa64_bf16, s); 11307 break; 11308 default: 11309 unallocated_encoding(s); 11310 return; 11311 } 11312 break; 11313 default: 11314 unallocated_encoding(s); 11315 return; 11316 } 11317 if (!feature) { 11318 unallocated_encoding(s); 11319 return; 11320 } 11321 if (!fp_access_check(s)) { 11322 return; 11323 } 11324 11325 switch (opcode) { 11326 case 0x0: /* SQRDMLAH (vector) */ 11327 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11328 return; 11329 11330 case 0x1: /* SQRDMLSH (vector) */ 11331 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11332 return; 11333 11334 case 0x2: /* SDOT / UDOT */ 11335 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11336 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11337 return; 11338 11339 case 0x3: /* USDOT */ 11340 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11341 return; 11342 11343 case 0x04: /* SMMLA, UMMLA */ 11344 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11345 u ? gen_helper_gvec_ummla_b 11346 : gen_helper_gvec_smmla_b); 11347 return; 11348 case 0x05: /* USMMLA */ 11349 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11350 return; 11351 11352 case 0x8: /* FCMLA, #0 */ 11353 case 0x9: /* FCMLA, #90 */ 11354 case 0xa: /* FCMLA, #180 */ 11355 case 0xb: /* FCMLA, #270 */ 11356 rot = extract32(opcode, 0, 2); 11357 switch (size) { 11358 case 1: 11359 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11360 gen_helper_gvec_fcmlah); 11361 break; 11362 case 2: 11363 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11364 gen_helper_gvec_fcmlas); 11365 break; 11366 case 3: 11367 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11368 gen_helper_gvec_fcmlad); 11369 break; 11370 default: 11371 g_assert_not_reached(); 11372 } 11373 return; 11374 11375 case 0xc: /* FCADD, #90 */ 11376 case 0xe: /* FCADD, #270 */ 11377 rot = extract32(opcode, 1, 1); 11378 switch (size) { 11379 case 1: 11380 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11381 gen_helper_gvec_fcaddh); 11382 break; 11383 case 2: 11384 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11385 gen_helper_gvec_fcadds); 11386 break; 11387 case 3: 11388 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11389 gen_helper_gvec_fcaddd); 11390 break; 11391 default: 11392 g_assert_not_reached(); 11393 } 11394 return; 11395 11396 case 0xd: /* BFMMLA */ 11397 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11398 return; 11399 case 0xf: 11400 switch (size) { 11401 case 1: /* BFDOT */ 11402 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11403 break; 11404 case 3: /* BFMLAL{B,T} */ 11405 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11406 gen_helper_gvec_bfmlal); 11407 break; 11408 default: 11409 g_assert_not_reached(); 11410 } 11411 return; 11412 11413 default: 11414 g_assert_not_reached(); 11415 } 11416 } 11417 11418 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11419 int size, int rn, int rd) 11420 { 11421 /* Handle 2-reg-misc ops which are widening (so each size element 11422 * in the source becomes a 2*size element in the destination. 11423 * The only instruction like this is FCVTL. 11424 */ 11425 int pass; 11426 11427 if (size == 3) { 11428 /* 32 -> 64 bit fp conversion */ 11429 TCGv_i64 tcg_res[2]; 11430 int srcelt = is_q ? 2 : 0; 11431 11432 for (pass = 0; pass < 2; pass++) { 11433 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11434 tcg_res[pass] = tcg_temp_new_i64(); 11435 11436 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11437 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11438 } 11439 for (pass = 0; pass < 2; pass++) { 11440 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11441 } 11442 } else { 11443 /* 16 -> 32 bit fp conversion */ 11444 int srcelt = is_q ? 4 : 0; 11445 TCGv_i32 tcg_res[4]; 11446 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11447 TCGv_i32 ahp = get_ahp_flag(); 11448 11449 for (pass = 0; pass < 4; pass++) { 11450 tcg_res[pass] = tcg_temp_new_i32(); 11451 11452 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11453 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11454 fpst, ahp); 11455 } 11456 for (pass = 0; pass < 4; pass++) { 11457 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11458 } 11459 } 11460 } 11461 11462 static void handle_rev(DisasContext *s, int opcode, bool u, 11463 bool is_q, int size, int rn, int rd) 11464 { 11465 int op = (opcode << 1) | u; 11466 int opsz = op + size; 11467 int grp_size = 3 - opsz; 11468 int dsize = is_q ? 128 : 64; 11469 int i; 11470 11471 if (opsz >= 3) { 11472 unallocated_encoding(s); 11473 return; 11474 } 11475 11476 if (!fp_access_check(s)) { 11477 return; 11478 } 11479 11480 if (size == 0) { 11481 /* Special case bytes, use bswap op on each group of elements */ 11482 int groups = dsize / (8 << grp_size); 11483 11484 for (i = 0; i < groups; i++) { 11485 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11486 11487 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11488 switch (grp_size) { 11489 case MO_16: 11490 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11491 break; 11492 case MO_32: 11493 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11494 break; 11495 case MO_64: 11496 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11497 break; 11498 default: 11499 g_assert_not_reached(); 11500 } 11501 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11502 } 11503 clear_vec_high(s, is_q, rd); 11504 } else { 11505 int revmask = (1 << grp_size) - 1; 11506 int esize = 8 << size; 11507 int elements = dsize / esize; 11508 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11509 TCGv_i64 tcg_rd[2]; 11510 11511 for (i = 0; i < 2; i++) { 11512 tcg_rd[i] = tcg_temp_new_i64(); 11513 tcg_gen_movi_i64(tcg_rd[i], 0); 11514 } 11515 11516 for (i = 0; i < elements; i++) { 11517 int e_rev = (i & 0xf) ^ revmask; 11518 int w = (e_rev * esize) / 64; 11519 int o = (e_rev * esize) % 64; 11520 11521 read_vec_element(s, tcg_rn, rn, i, size); 11522 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11523 } 11524 11525 for (i = 0; i < 2; i++) { 11526 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11527 } 11528 clear_vec_high(s, true, rd); 11529 } 11530 } 11531 11532 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11533 bool is_q, int size, int rn, int rd) 11534 { 11535 /* Implement the pairwise operations from 2-misc: 11536 * SADDLP, UADDLP, SADALP, UADALP. 11537 * These all add pairs of elements in the input to produce a 11538 * double-width result element in the output (possibly accumulating). 11539 */ 11540 bool accum = (opcode == 0x6); 11541 int maxpass = is_q ? 2 : 1; 11542 int pass; 11543 TCGv_i64 tcg_res[2]; 11544 11545 if (size == 2) { 11546 /* 32 + 32 -> 64 op */ 11547 MemOp memop = size + (u ? 0 : MO_SIGN); 11548 11549 for (pass = 0; pass < maxpass; pass++) { 11550 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11551 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11552 11553 tcg_res[pass] = tcg_temp_new_i64(); 11554 11555 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11556 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11557 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11558 if (accum) { 11559 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11560 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11561 } 11562 } 11563 } else { 11564 for (pass = 0; pass < maxpass; pass++) { 11565 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11566 NeonGenOne64OpFn *genfn; 11567 static NeonGenOne64OpFn * const fns[2][2] = { 11568 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11569 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11570 }; 11571 11572 genfn = fns[size][u]; 11573 11574 tcg_res[pass] = tcg_temp_new_i64(); 11575 11576 read_vec_element(s, tcg_op, rn, pass, MO_64); 11577 genfn(tcg_res[pass], tcg_op); 11578 11579 if (accum) { 11580 read_vec_element(s, tcg_op, rd, pass, MO_64); 11581 if (size == 0) { 11582 gen_helper_neon_addl_u16(tcg_res[pass], 11583 tcg_res[pass], tcg_op); 11584 } else { 11585 gen_helper_neon_addl_u32(tcg_res[pass], 11586 tcg_res[pass], tcg_op); 11587 } 11588 } 11589 } 11590 } 11591 if (!is_q) { 11592 tcg_res[1] = tcg_constant_i64(0); 11593 } 11594 for (pass = 0; pass < 2; pass++) { 11595 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11596 } 11597 } 11598 11599 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11600 { 11601 /* Implement SHLL and SHLL2 */ 11602 int pass; 11603 int part = is_q ? 2 : 0; 11604 TCGv_i64 tcg_res[2]; 11605 11606 for (pass = 0; pass < 2; pass++) { 11607 static NeonGenWidenFn * const widenfns[3] = { 11608 gen_helper_neon_widen_u8, 11609 gen_helper_neon_widen_u16, 11610 tcg_gen_extu_i32_i64, 11611 }; 11612 NeonGenWidenFn *widenfn = widenfns[size]; 11613 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11614 11615 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11616 tcg_res[pass] = tcg_temp_new_i64(); 11617 widenfn(tcg_res[pass], tcg_op); 11618 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11619 } 11620 11621 for (pass = 0; pass < 2; pass++) { 11622 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11623 } 11624 } 11625 11626 /* AdvSIMD two reg misc 11627 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11628 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11629 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11630 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11631 */ 11632 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11633 { 11634 int size = extract32(insn, 22, 2); 11635 int opcode = extract32(insn, 12, 5); 11636 bool u = extract32(insn, 29, 1); 11637 bool is_q = extract32(insn, 30, 1); 11638 int rn = extract32(insn, 5, 5); 11639 int rd = extract32(insn, 0, 5); 11640 bool need_fpstatus = false; 11641 int rmode = -1; 11642 TCGv_i32 tcg_rmode; 11643 TCGv_ptr tcg_fpstatus; 11644 11645 switch (opcode) { 11646 case 0x0: /* REV64, REV32 */ 11647 case 0x1: /* REV16 */ 11648 handle_rev(s, opcode, u, is_q, size, rn, rd); 11649 return; 11650 case 0x5: /* CNT, NOT, RBIT */ 11651 if (u && size == 0) { 11652 /* NOT */ 11653 break; 11654 } else if (u && size == 1) { 11655 /* RBIT */ 11656 break; 11657 } else if (!u && size == 0) { 11658 /* CNT */ 11659 break; 11660 } 11661 unallocated_encoding(s); 11662 return; 11663 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11664 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11665 if (size == 3) { 11666 unallocated_encoding(s); 11667 return; 11668 } 11669 if (!fp_access_check(s)) { 11670 return; 11671 } 11672 11673 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11674 return; 11675 case 0x4: /* CLS, CLZ */ 11676 if (size == 3) { 11677 unallocated_encoding(s); 11678 return; 11679 } 11680 break; 11681 case 0x2: /* SADDLP, UADDLP */ 11682 case 0x6: /* SADALP, UADALP */ 11683 if (size == 3) { 11684 unallocated_encoding(s); 11685 return; 11686 } 11687 if (!fp_access_check(s)) { 11688 return; 11689 } 11690 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11691 return; 11692 case 0x13: /* SHLL, SHLL2 */ 11693 if (u == 0 || size == 3) { 11694 unallocated_encoding(s); 11695 return; 11696 } 11697 if (!fp_access_check(s)) { 11698 return; 11699 } 11700 handle_shll(s, is_q, size, rn, rd); 11701 return; 11702 case 0xa: /* CMLT */ 11703 if (u == 1) { 11704 unallocated_encoding(s); 11705 return; 11706 } 11707 /* fall through */ 11708 case 0x8: /* CMGT, CMGE */ 11709 case 0x9: /* CMEQ, CMLE */ 11710 case 0xb: /* ABS, NEG */ 11711 if (size == 3 && !is_q) { 11712 unallocated_encoding(s); 11713 return; 11714 } 11715 break; 11716 case 0x3: /* SUQADD, USQADD */ 11717 if (size == 3 && !is_q) { 11718 unallocated_encoding(s); 11719 return; 11720 } 11721 if (!fp_access_check(s)) { 11722 return; 11723 } 11724 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11725 return; 11726 case 0x7: /* SQABS, SQNEG */ 11727 if (size == 3 && !is_q) { 11728 unallocated_encoding(s); 11729 return; 11730 } 11731 break; 11732 case 0xc ... 0xf: 11733 case 0x16 ... 0x1f: 11734 { 11735 /* Floating point: U, size[1] and opcode indicate operation; 11736 * size[0] indicates single or double precision. 11737 */ 11738 int is_double = extract32(size, 0, 1); 11739 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11740 size = is_double ? 3 : 2; 11741 switch (opcode) { 11742 case 0x2f: /* FABS */ 11743 case 0x6f: /* FNEG */ 11744 if (size == 3 && !is_q) { 11745 unallocated_encoding(s); 11746 return; 11747 } 11748 break; 11749 case 0x1d: /* SCVTF */ 11750 case 0x5d: /* UCVTF */ 11751 { 11752 bool is_signed = (opcode == 0x1d) ? true : false; 11753 int elements = is_double ? 2 : is_q ? 4 : 2; 11754 if (is_double && !is_q) { 11755 unallocated_encoding(s); 11756 return; 11757 } 11758 if (!fp_access_check(s)) { 11759 return; 11760 } 11761 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11762 return; 11763 } 11764 case 0x2c: /* FCMGT (zero) */ 11765 case 0x2d: /* FCMEQ (zero) */ 11766 case 0x2e: /* FCMLT (zero) */ 11767 case 0x6c: /* FCMGE (zero) */ 11768 case 0x6d: /* FCMLE (zero) */ 11769 if (size == 3 && !is_q) { 11770 unallocated_encoding(s); 11771 return; 11772 } 11773 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11774 return; 11775 case 0x7f: /* FSQRT */ 11776 if (size == 3 && !is_q) { 11777 unallocated_encoding(s); 11778 return; 11779 } 11780 break; 11781 case 0x1a: /* FCVTNS */ 11782 case 0x1b: /* FCVTMS */ 11783 case 0x3a: /* FCVTPS */ 11784 case 0x3b: /* FCVTZS */ 11785 case 0x5a: /* FCVTNU */ 11786 case 0x5b: /* FCVTMU */ 11787 case 0x7a: /* FCVTPU */ 11788 case 0x7b: /* FCVTZU */ 11789 need_fpstatus = true; 11790 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11791 if (size == 3 && !is_q) { 11792 unallocated_encoding(s); 11793 return; 11794 } 11795 break; 11796 case 0x5c: /* FCVTAU */ 11797 case 0x1c: /* FCVTAS */ 11798 need_fpstatus = true; 11799 rmode = FPROUNDING_TIEAWAY; 11800 if (size == 3 && !is_q) { 11801 unallocated_encoding(s); 11802 return; 11803 } 11804 break; 11805 case 0x3c: /* URECPE */ 11806 if (size == 3) { 11807 unallocated_encoding(s); 11808 return; 11809 } 11810 /* fall through */ 11811 case 0x3d: /* FRECPE */ 11812 case 0x7d: /* FRSQRTE */ 11813 if (size == 3 && !is_q) { 11814 unallocated_encoding(s); 11815 return; 11816 } 11817 if (!fp_access_check(s)) { 11818 return; 11819 } 11820 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11821 return; 11822 case 0x56: /* FCVTXN, FCVTXN2 */ 11823 if (size == 2) { 11824 unallocated_encoding(s); 11825 return; 11826 } 11827 /* fall through */ 11828 case 0x16: /* FCVTN, FCVTN2 */ 11829 /* handle_2misc_narrow does a 2*size -> size operation, but these 11830 * instructions encode the source size rather than dest size. 11831 */ 11832 if (!fp_access_check(s)) { 11833 return; 11834 } 11835 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11836 return; 11837 case 0x36: /* BFCVTN, BFCVTN2 */ 11838 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11839 unallocated_encoding(s); 11840 return; 11841 } 11842 if (!fp_access_check(s)) { 11843 return; 11844 } 11845 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11846 return; 11847 case 0x17: /* FCVTL, FCVTL2 */ 11848 if (!fp_access_check(s)) { 11849 return; 11850 } 11851 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11852 return; 11853 case 0x18: /* FRINTN */ 11854 case 0x19: /* FRINTM */ 11855 case 0x38: /* FRINTP */ 11856 case 0x39: /* FRINTZ */ 11857 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11858 /* fall through */ 11859 case 0x59: /* FRINTX */ 11860 case 0x79: /* FRINTI */ 11861 need_fpstatus = true; 11862 if (size == 3 && !is_q) { 11863 unallocated_encoding(s); 11864 return; 11865 } 11866 break; 11867 case 0x58: /* FRINTA */ 11868 rmode = FPROUNDING_TIEAWAY; 11869 need_fpstatus = true; 11870 if (size == 3 && !is_q) { 11871 unallocated_encoding(s); 11872 return; 11873 } 11874 break; 11875 case 0x7c: /* URSQRTE */ 11876 if (size == 3) { 11877 unallocated_encoding(s); 11878 return; 11879 } 11880 break; 11881 case 0x1e: /* FRINT32Z */ 11882 case 0x1f: /* FRINT64Z */ 11883 rmode = FPROUNDING_ZERO; 11884 /* fall through */ 11885 case 0x5e: /* FRINT32X */ 11886 case 0x5f: /* FRINT64X */ 11887 need_fpstatus = true; 11888 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 11889 unallocated_encoding(s); 11890 return; 11891 } 11892 break; 11893 default: 11894 unallocated_encoding(s); 11895 return; 11896 } 11897 break; 11898 } 11899 default: 11900 unallocated_encoding(s); 11901 return; 11902 } 11903 11904 if (!fp_access_check(s)) { 11905 return; 11906 } 11907 11908 if (need_fpstatus || rmode >= 0) { 11909 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 11910 } else { 11911 tcg_fpstatus = NULL; 11912 } 11913 if (rmode >= 0) { 11914 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 11915 } else { 11916 tcg_rmode = NULL; 11917 } 11918 11919 switch (opcode) { 11920 case 0x5: 11921 if (u && size == 0) { /* NOT */ 11922 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 11923 return; 11924 } 11925 break; 11926 case 0x8: /* CMGT, CMGE */ 11927 if (u) { 11928 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 11929 } else { 11930 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 11931 } 11932 return; 11933 case 0x9: /* CMEQ, CMLE */ 11934 if (u) { 11935 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 11936 } else { 11937 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 11938 } 11939 return; 11940 case 0xa: /* CMLT */ 11941 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 11942 return; 11943 case 0xb: 11944 if (u) { /* ABS, NEG */ 11945 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 11946 } else { 11947 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 11948 } 11949 return; 11950 } 11951 11952 if (size == 3) { 11953 /* All 64-bit element operations can be shared with scalar 2misc */ 11954 int pass; 11955 11956 /* Coverity claims (size == 3 && !is_q) has been eliminated 11957 * from all paths leading to here. 11958 */ 11959 tcg_debug_assert(is_q); 11960 for (pass = 0; pass < 2; pass++) { 11961 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11962 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11963 11964 read_vec_element(s, tcg_op, rn, pass, MO_64); 11965 11966 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 11967 tcg_rmode, tcg_fpstatus); 11968 11969 write_vec_element(s, tcg_res, rd, pass, MO_64); 11970 } 11971 } else { 11972 int pass; 11973 11974 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11975 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11976 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11977 11978 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 11979 11980 if (size == 2) { 11981 /* Special cases for 32 bit elements */ 11982 switch (opcode) { 11983 case 0x4: /* CLS */ 11984 if (u) { 11985 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 11986 } else { 11987 tcg_gen_clrsb_i32(tcg_res, tcg_op); 11988 } 11989 break; 11990 case 0x7: /* SQABS, SQNEG */ 11991 if (u) { 11992 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 11993 } else { 11994 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 11995 } 11996 break; 11997 case 0x2f: /* FABS */ 11998 gen_vfp_abss(tcg_res, tcg_op); 11999 break; 12000 case 0x6f: /* FNEG */ 12001 gen_vfp_negs(tcg_res, tcg_op); 12002 break; 12003 case 0x7f: /* FSQRT */ 12004 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12005 break; 12006 case 0x1a: /* FCVTNS */ 12007 case 0x1b: /* FCVTMS */ 12008 case 0x1c: /* FCVTAS */ 12009 case 0x3a: /* FCVTPS */ 12010 case 0x3b: /* FCVTZS */ 12011 gen_helper_vfp_tosls(tcg_res, tcg_op, 12012 tcg_constant_i32(0), tcg_fpstatus); 12013 break; 12014 case 0x5a: /* FCVTNU */ 12015 case 0x5b: /* FCVTMU */ 12016 case 0x5c: /* FCVTAU */ 12017 case 0x7a: /* FCVTPU */ 12018 case 0x7b: /* FCVTZU */ 12019 gen_helper_vfp_touls(tcg_res, tcg_op, 12020 tcg_constant_i32(0), tcg_fpstatus); 12021 break; 12022 case 0x18: /* FRINTN */ 12023 case 0x19: /* FRINTM */ 12024 case 0x38: /* FRINTP */ 12025 case 0x39: /* FRINTZ */ 12026 case 0x58: /* FRINTA */ 12027 case 0x79: /* FRINTI */ 12028 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12029 break; 12030 case 0x59: /* FRINTX */ 12031 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12032 break; 12033 case 0x7c: /* URSQRTE */ 12034 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12035 break; 12036 case 0x1e: /* FRINT32Z */ 12037 case 0x5e: /* FRINT32X */ 12038 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12039 break; 12040 case 0x1f: /* FRINT64Z */ 12041 case 0x5f: /* FRINT64X */ 12042 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12043 break; 12044 default: 12045 g_assert_not_reached(); 12046 } 12047 } else { 12048 /* Use helpers for 8 and 16 bit elements */ 12049 switch (opcode) { 12050 case 0x5: /* CNT, RBIT */ 12051 /* For these two insns size is part of the opcode specifier 12052 * (handled earlier); they always operate on byte elements. 12053 */ 12054 if (u) { 12055 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12056 } else { 12057 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12058 } 12059 break; 12060 case 0x7: /* SQABS, SQNEG */ 12061 { 12062 NeonGenOneOpEnvFn *genfn; 12063 static NeonGenOneOpEnvFn * const fns[2][2] = { 12064 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12065 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12066 }; 12067 genfn = fns[size][u]; 12068 genfn(tcg_res, tcg_env, tcg_op); 12069 break; 12070 } 12071 case 0x4: /* CLS, CLZ */ 12072 if (u) { 12073 if (size == 0) { 12074 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12075 } else { 12076 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12077 } 12078 } else { 12079 if (size == 0) { 12080 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12081 } else { 12082 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12083 } 12084 } 12085 break; 12086 default: 12087 g_assert_not_reached(); 12088 } 12089 } 12090 12091 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12092 } 12093 } 12094 clear_vec_high(s, is_q, rd); 12095 12096 if (tcg_rmode) { 12097 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12098 } 12099 } 12100 12101 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12102 * 12103 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12104 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12105 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12106 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12107 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12108 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12109 * 12110 * This actually covers two groups where scalar access is governed by 12111 * bit 28. A bunch of the instructions (float to integral) only exist 12112 * in the vector form and are un-allocated for the scalar decode. Also 12113 * in the scalar decode Q is always 1. 12114 */ 12115 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12116 { 12117 int fpop, opcode, a, u; 12118 int rn, rd; 12119 bool is_q; 12120 bool is_scalar; 12121 bool only_in_vector = false; 12122 12123 int pass; 12124 TCGv_i32 tcg_rmode = NULL; 12125 TCGv_ptr tcg_fpstatus = NULL; 12126 bool need_fpst = true; 12127 int rmode = -1; 12128 12129 if (!dc_isar_feature(aa64_fp16, s)) { 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 12134 rd = extract32(insn, 0, 5); 12135 rn = extract32(insn, 5, 5); 12136 12137 a = extract32(insn, 23, 1); 12138 u = extract32(insn, 29, 1); 12139 is_scalar = extract32(insn, 28, 1); 12140 is_q = extract32(insn, 30, 1); 12141 12142 opcode = extract32(insn, 12, 5); 12143 fpop = deposit32(opcode, 5, 1, a); 12144 fpop = deposit32(fpop, 6, 1, u); 12145 12146 switch (fpop) { 12147 case 0x1d: /* SCVTF */ 12148 case 0x5d: /* UCVTF */ 12149 { 12150 int elements; 12151 12152 if (is_scalar) { 12153 elements = 1; 12154 } else { 12155 elements = (is_q ? 8 : 4); 12156 } 12157 12158 if (!fp_access_check(s)) { 12159 return; 12160 } 12161 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12162 return; 12163 } 12164 break; 12165 case 0x2c: /* FCMGT (zero) */ 12166 case 0x2d: /* FCMEQ (zero) */ 12167 case 0x2e: /* FCMLT (zero) */ 12168 case 0x6c: /* FCMGE (zero) */ 12169 case 0x6d: /* FCMLE (zero) */ 12170 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12171 return; 12172 case 0x3d: /* FRECPE */ 12173 case 0x3f: /* FRECPX */ 12174 break; 12175 case 0x18: /* FRINTN */ 12176 only_in_vector = true; 12177 rmode = FPROUNDING_TIEEVEN; 12178 break; 12179 case 0x19: /* FRINTM */ 12180 only_in_vector = true; 12181 rmode = FPROUNDING_NEGINF; 12182 break; 12183 case 0x38: /* FRINTP */ 12184 only_in_vector = true; 12185 rmode = FPROUNDING_POSINF; 12186 break; 12187 case 0x39: /* FRINTZ */ 12188 only_in_vector = true; 12189 rmode = FPROUNDING_ZERO; 12190 break; 12191 case 0x58: /* FRINTA */ 12192 only_in_vector = true; 12193 rmode = FPROUNDING_TIEAWAY; 12194 break; 12195 case 0x59: /* FRINTX */ 12196 case 0x79: /* FRINTI */ 12197 only_in_vector = true; 12198 /* current rounding mode */ 12199 break; 12200 case 0x1a: /* FCVTNS */ 12201 rmode = FPROUNDING_TIEEVEN; 12202 break; 12203 case 0x1b: /* FCVTMS */ 12204 rmode = FPROUNDING_NEGINF; 12205 break; 12206 case 0x1c: /* FCVTAS */ 12207 rmode = FPROUNDING_TIEAWAY; 12208 break; 12209 case 0x3a: /* FCVTPS */ 12210 rmode = FPROUNDING_POSINF; 12211 break; 12212 case 0x3b: /* FCVTZS */ 12213 rmode = FPROUNDING_ZERO; 12214 break; 12215 case 0x5a: /* FCVTNU */ 12216 rmode = FPROUNDING_TIEEVEN; 12217 break; 12218 case 0x5b: /* FCVTMU */ 12219 rmode = FPROUNDING_NEGINF; 12220 break; 12221 case 0x5c: /* FCVTAU */ 12222 rmode = FPROUNDING_TIEAWAY; 12223 break; 12224 case 0x7a: /* FCVTPU */ 12225 rmode = FPROUNDING_POSINF; 12226 break; 12227 case 0x7b: /* FCVTZU */ 12228 rmode = FPROUNDING_ZERO; 12229 break; 12230 case 0x2f: /* FABS */ 12231 case 0x6f: /* FNEG */ 12232 need_fpst = false; 12233 break; 12234 case 0x7d: /* FRSQRTE */ 12235 case 0x7f: /* FSQRT (vector) */ 12236 break; 12237 default: 12238 unallocated_encoding(s); 12239 return; 12240 } 12241 12242 12243 /* Check additional constraints for the scalar encoding */ 12244 if (is_scalar) { 12245 if (!is_q) { 12246 unallocated_encoding(s); 12247 return; 12248 } 12249 /* FRINTxx is only in the vector form */ 12250 if (only_in_vector) { 12251 unallocated_encoding(s); 12252 return; 12253 } 12254 } 12255 12256 if (!fp_access_check(s)) { 12257 return; 12258 } 12259 12260 if (rmode >= 0 || need_fpst) { 12261 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12262 } 12263 12264 if (rmode >= 0) { 12265 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12266 } 12267 12268 if (is_scalar) { 12269 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12270 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12271 12272 switch (fpop) { 12273 case 0x1a: /* FCVTNS */ 12274 case 0x1b: /* FCVTMS */ 12275 case 0x1c: /* FCVTAS */ 12276 case 0x3a: /* FCVTPS */ 12277 case 0x3b: /* FCVTZS */ 12278 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12279 break; 12280 case 0x3d: /* FRECPE */ 12281 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12282 break; 12283 case 0x3f: /* FRECPX */ 12284 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12285 break; 12286 case 0x5a: /* FCVTNU */ 12287 case 0x5b: /* FCVTMU */ 12288 case 0x5c: /* FCVTAU */ 12289 case 0x7a: /* FCVTPU */ 12290 case 0x7b: /* FCVTZU */ 12291 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12292 break; 12293 case 0x6f: /* FNEG */ 12294 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12295 break; 12296 case 0x7d: /* FRSQRTE */ 12297 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12298 break; 12299 default: 12300 g_assert_not_reached(); 12301 } 12302 12303 /* limit any sign extension going on */ 12304 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12305 write_fp_sreg(s, rd, tcg_res); 12306 } else { 12307 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12308 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12309 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12310 12311 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12312 12313 switch (fpop) { 12314 case 0x1a: /* FCVTNS */ 12315 case 0x1b: /* FCVTMS */ 12316 case 0x1c: /* FCVTAS */ 12317 case 0x3a: /* FCVTPS */ 12318 case 0x3b: /* FCVTZS */ 12319 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12320 break; 12321 case 0x3d: /* FRECPE */ 12322 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12323 break; 12324 case 0x5a: /* FCVTNU */ 12325 case 0x5b: /* FCVTMU */ 12326 case 0x5c: /* FCVTAU */ 12327 case 0x7a: /* FCVTPU */ 12328 case 0x7b: /* FCVTZU */ 12329 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12330 break; 12331 case 0x18: /* FRINTN */ 12332 case 0x19: /* FRINTM */ 12333 case 0x38: /* FRINTP */ 12334 case 0x39: /* FRINTZ */ 12335 case 0x58: /* FRINTA */ 12336 case 0x79: /* FRINTI */ 12337 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12338 break; 12339 case 0x59: /* FRINTX */ 12340 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12341 break; 12342 case 0x2f: /* FABS */ 12343 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12344 break; 12345 case 0x6f: /* FNEG */ 12346 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12347 break; 12348 case 0x7d: /* FRSQRTE */ 12349 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12350 break; 12351 case 0x7f: /* FSQRT */ 12352 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12353 break; 12354 default: 12355 g_assert_not_reached(); 12356 } 12357 12358 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12359 } 12360 12361 clear_vec_high(s, is_q, rd); 12362 } 12363 12364 if (tcg_rmode) { 12365 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12366 } 12367 } 12368 12369 /* AdvSIMD scalar x indexed element 12370 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12371 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12372 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12373 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12374 * AdvSIMD vector x indexed element 12375 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12376 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12377 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12378 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12379 */ 12380 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12381 { 12382 /* This encoding has two kinds of instruction: 12383 * normal, where we perform elt x idxelt => elt for each 12384 * element in the vector 12385 * long, where we perform elt x idxelt and generate a result of 12386 * double the width of the input element 12387 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12388 */ 12389 bool is_scalar = extract32(insn, 28, 1); 12390 bool is_q = extract32(insn, 30, 1); 12391 bool u = extract32(insn, 29, 1); 12392 int size = extract32(insn, 22, 2); 12393 int l = extract32(insn, 21, 1); 12394 int m = extract32(insn, 20, 1); 12395 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12396 int rm = extract32(insn, 16, 4); 12397 int opcode = extract32(insn, 12, 4); 12398 int h = extract32(insn, 11, 1); 12399 int rn = extract32(insn, 5, 5); 12400 int rd = extract32(insn, 0, 5); 12401 bool is_long = false; 12402 int is_fp = 0; 12403 bool is_fp16 = false; 12404 int index; 12405 TCGv_ptr fpst; 12406 12407 switch (16 * u + opcode) { 12408 case 0x08: /* MUL */ 12409 case 0x10: /* MLA */ 12410 case 0x14: /* MLS */ 12411 if (is_scalar) { 12412 unallocated_encoding(s); 12413 return; 12414 } 12415 break; 12416 case 0x02: /* SMLAL, SMLAL2 */ 12417 case 0x12: /* UMLAL, UMLAL2 */ 12418 case 0x06: /* SMLSL, SMLSL2 */ 12419 case 0x16: /* UMLSL, UMLSL2 */ 12420 case 0x0a: /* SMULL, SMULL2 */ 12421 case 0x1a: /* UMULL, UMULL2 */ 12422 if (is_scalar) { 12423 unallocated_encoding(s); 12424 return; 12425 } 12426 is_long = true; 12427 break; 12428 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12429 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12430 case 0x0b: /* SQDMULL, SQDMULL2 */ 12431 is_long = true; 12432 break; 12433 case 0x0c: /* SQDMULH */ 12434 case 0x0d: /* SQRDMULH */ 12435 break; 12436 case 0x1d: /* SQRDMLAH */ 12437 case 0x1f: /* SQRDMLSH */ 12438 if (!dc_isar_feature(aa64_rdm, s)) { 12439 unallocated_encoding(s); 12440 return; 12441 } 12442 break; 12443 case 0x0e: /* SDOT */ 12444 case 0x1e: /* UDOT */ 12445 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12446 unallocated_encoding(s); 12447 return; 12448 } 12449 break; 12450 case 0x0f: 12451 switch (size) { 12452 case 0: /* SUDOT */ 12453 case 2: /* USDOT */ 12454 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12455 unallocated_encoding(s); 12456 return; 12457 } 12458 size = MO_32; 12459 break; 12460 case 1: /* BFDOT */ 12461 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12462 unallocated_encoding(s); 12463 return; 12464 } 12465 size = MO_32; 12466 break; 12467 case 3: /* BFMLAL{B,T} */ 12468 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12469 unallocated_encoding(s); 12470 return; 12471 } 12472 /* can't set is_fp without other incorrect size checks */ 12473 size = MO_16; 12474 break; 12475 default: 12476 unallocated_encoding(s); 12477 return; 12478 } 12479 break; 12480 case 0x11: /* FCMLA #0 */ 12481 case 0x13: /* FCMLA #90 */ 12482 case 0x15: /* FCMLA #180 */ 12483 case 0x17: /* FCMLA #270 */ 12484 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12485 unallocated_encoding(s); 12486 return; 12487 } 12488 is_fp = 2; 12489 break; 12490 default: 12491 case 0x00: /* FMLAL */ 12492 case 0x01: /* FMLA */ 12493 case 0x04: /* FMLSL */ 12494 case 0x05: /* FMLS */ 12495 case 0x09: /* FMUL */ 12496 case 0x18: /* FMLAL2 */ 12497 case 0x19: /* FMULX */ 12498 case 0x1c: /* FMLSL2 */ 12499 unallocated_encoding(s); 12500 return; 12501 } 12502 12503 switch (is_fp) { 12504 case 1: /* normal fp */ 12505 unallocated_encoding(s); /* in decodetree */ 12506 return; 12507 12508 case 2: /* complex fp */ 12509 /* Each indexable element is a complex pair. */ 12510 size += 1; 12511 switch (size) { 12512 case MO_32: 12513 if (h && !is_q) { 12514 unallocated_encoding(s); 12515 return; 12516 } 12517 is_fp16 = true; 12518 break; 12519 case MO_64: 12520 break; 12521 default: 12522 unallocated_encoding(s); 12523 return; 12524 } 12525 break; 12526 12527 default: /* integer */ 12528 switch (size) { 12529 case MO_8: 12530 case MO_64: 12531 unallocated_encoding(s); 12532 return; 12533 } 12534 break; 12535 } 12536 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12537 unallocated_encoding(s); 12538 return; 12539 } 12540 12541 /* Given MemOp size, adjust register and indexing. */ 12542 switch (size) { 12543 case MO_16: 12544 index = h << 2 | l << 1 | m; 12545 break; 12546 case MO_32: 12547 index = h << 1 | l; 12548 rm |= m << 4; 12549 break; 12550 case MO_64: 12551 if (l || !is_q) { 12552 unallocated_encoding(s); 12553 return; 12554 } 12555 index = h; 12556 rm |= m << 4; 12557 break; 12558 default: 12559 g_assert_not_reached(); 12560 } 12561 12562 if (!fp_access_check(s)) { 12563 return; 12564 } 12565 12566 if (is_fp) { 12567 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12568 } else { 12569 fpst = NULL; 12570 } 12571 12572 switch (16 * u + opcode) { 12573 case 0x0e: /* SDOT */ 12574 case 0x1e: /* UDOT */ 12575 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12576 u ? gen_helper_gvec_udot_idx_b 12577 : gen_helper_gvec_sdot_idx_b); 12578 return; 12579 case 0x0f: 12580 switch (extract32(insn, 22, 2)) { 12581 case 0: /* SUDOT */ 12582 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12583 gen_helper_gvec_sudot_idx_b); 12584 return; 12585 case 1: /* BFDOT */ 12586 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12587 gen_helper_gvec_bfdot_idx); 12588 return; 12589 case 2: /* USDOT */ 12590 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12591 gen_helper_gvec_usdot_idx_b); 12592 return; 12593 case 3: /* BFMLAL{B,T} */ 12594 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12595 gen_helper_gvec_bfmlal_idx); 12596 return; 12597 } 12598 g_assert_not_reached(); 12599 case 0x11: /* FCMLA #0 */ 12600 case 0x13: /* FCMLA #90 */ 12601 case 0x15: /* FCMLA #180 */ 12602 case 0x17: /* FCMLA #270 */ 12603 { 12604 int rot = extract32(insn, 13, 2); 12605 int data = (index << 2) | rot; 12606 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12607 vec_full_reg_offset(s, rn), 12608 vec_full_reg_offset(s, rm), 12609 vec_full_reg_offset(s, rd), fpst, 12610 is_q ? 16 : 8, vec_full_reg_size(s), data, 12611 size == MO_64 12612 ? gen_helper_gvec_fcmlas_idx 12613 : gen_helper_gvec_fcmlah_idx); 12614 } 12615 return; 12616 12617 case 0x08: /* MUL */ 12618 if (!is_long && !is_scalar) { 12619 static gen_helper_gvec_3 * const fns[3] = { 12620 gen_helper_gvec_mul_idx_h, 12621 gen_helper_gvec_mul_idx_s, 12622 gen_helper_gvec_mul_idx_d, 12623 }; 12624 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12625 vec_full_reg_offset(s, rn), 12626 vec_full_reg_offset(s, rm), 12627 is_q ? 16 : 8, vec_full_reg_size(s), 12628 index, fns[size - 1]); 12629 return; 12630 } 12631 break; 12632 12633 case 0x10: /* MLA */ 12634 if (!is_long && !is_scalar) { 12635 static gen_helper_gvec_4 * const fns[3] = { 12636 gen_helper_gvec_mla_idx_h, 12637 gen_helper_gvec_mla_idx_s, 12638 gen_helper_gvec_mla_idx_d, 12639 }; 12640 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12641 vec_full_reg_offset(s, rn), 12642 vec_full_reg_offset(s, rm), 12643 vec_full_reg_offset(s, rd), 12644 is_q ? 16 : 8, vec_full_reg_size(s), 12645 index, fns[size - 1]); 12646 return; 12647 } 12648 break; 12649 12650 case 0x14: /* MLS */ 12651 if (!is_long && !is_scalar) { 12652 static gen_helper_gvec_4 * const fns[3] = { 12653 gen_helper_gvec_mls_idx_h, 12654 gen_helper_gvec_mls_idx_s, 12655 gen_helper_gvec_mls_idx_d, 12656 }; 12657 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12658 vec_full_reg_offset(s, rn), 12659 vec_full_reg_offset(s, rm), 12660 vec_full_reg_offset(s, rd), 12661 is_q ? 16 : 8, vec_full_reg_size(s), 12662 index, fns[size - 1]); 12663 return; 12664 } 12665 break; 12666 } 12667 12668 if (size == 3) { 12669 g_assert_not_reached(); 12670 } else if (!is_long) { 12671 /* 32 bit floating point, or 16 or 32 bit integer. 12672 * For the 16 bit scalar case we use the usual Neon helpers and 12673 * rely on the fact that 0 op 0 == 0 with no side effects. 12674 */ 12675 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12676 int pass, maxpasses; 12677 12678 if (is_scalar) { 12679 maxpasses = 1; 12680 } else { 12681 maxpasses = is_q ? 4 : 2; 12682 } 12683 12684 read_vec_element_i32(s, tcg_idx, rm, index, size); 12685 12686 if (size == 1 && !is_scalar) { 12687 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12688 * the index into both halves of the 32 bit tcg_idx and then use 12689 * the usual Neon helpers. 12690 */ 12691 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12692 } 12693 12694 for (pass = 0; pass < maxpasses; pass++) { 12695 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12696 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12697 12698 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12699 12700 switch (16 * u + opcode) { 12701 case 0x08: /* MUL */ 12702 case 0x10: /* MLA */ 12703 case 0x14: /* MLS */ 12704 { 12705 static NeonGenTwoOpFn * const fns[2][2] = { 12706 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12707 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12708 }; 12709 NeonGenTwoOpFn *genfn; 12710 bool is_sub = opcode == 0x4; 12711 12712 if (size == 1) { 12713 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12714 } else { 12715 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12716 } 12717 if (opcode == 0x8) { 12718 break; 12719 } 12720 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12721 genfn = fns[size - 1][is_sub]; 12722 genfn(tcg_res, tcg_op, tcg_res); 12723 break; 12724 } 12725 case 0x0c: /* SQDMULH */ 12726 if (size == 1) { 12727 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 12728 tcg_op, tcg_idx); 12729 } else { 12730 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 12731 tcg_op, tcg_idx); 12732 } 12733 break; 12734 case 0x0d: /* SQRDMULH */ 12735 if (size == 1) { 12736 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 12737 tcg_op, tcg_idx); 12738 } else { 12739 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 12740 tcg_op, tcg_idx); 12741 } 12742 break; 12743 case 0x1d: /* SQRDMLAH */ 12744 read_vec_element_i32(s, tcg_res, rd, pass, 12745 is_scalar ? size : MO_32); 12746 if (size == 1) { 12747 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 12748 tcg_op, tcg_idx, tcg_res); 12749 } else { 12750 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 12751 tcg_op, tcg_idx, tcg_res); 12752 } 12753 break; 12754 case 0x1f: /* SQRDMLSH */ 12755 read_vec_element_i32(s, tcg_res, rd, pass, 12756 is_scalar ? size : MO_32); 12757 if (size == 1) { 12758 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 12759 tcg_op, tcg_idx, tcg_res); 12760 } else { 12761 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 12762 tcg_op, tcg_idx, tcg_res); 12763 } 12764 break; 12765 default: 12766 case 0x01: /* FMLA */ 12767 case 0x05: /* FMLS */ 12768 case 0x09: /* FMUL */ 12769 case 0x19: /* FMULX */ 12770 g_assert_not_reached(); 12771 } 12772 12773 if (is_scalar) { 12774 write_fp_sreg(s, rd, tcg_res); 12775 } else { 12776 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12777 } 12778 } 12779 12780 clear_vec_high(s, is_q, rd); 12781 } else { 12782 /* long ops: 16x16->32 or 32x32->64 */ 12783 TCGv_i64 tcg_res[2]; 12784 int pass; 12785 bool satop = extract32(opcode, 0, 1); 12786 MemOp memop = MO_32; 12787 12788 if (satop || !u) { 12789 memop |= MO_SIGN; 12790 } 12791 12792 if (size == 2) { 12793 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12794 12795 read_vec_element(s, tcg_idx, rm, index, memop); 12796 12797 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12798 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12799 TCGv_i64 tcg_passres; 12800 int passelt; 12801 12802 if (is_scalar) { 12803 passelt = 0; 12804 } else { 12805 passelt = pass + (is_q * 2); 12806 } 12807 12808 read_vec_element(s, tcg_op, rn, passelt, memop); 12809 12810 tcg_res[pass] = tcg_temp_new_i64(); 12811 12812 if (opcode == 0xa || opcode == 0xb) { 12813 /* Non-accumulating ops */ 12814 tcg_passres = tcg_res[pass]; 12815 } else { 12816 tcg_passres = tcg_temp_new_i64(); 12817 } 12818 12819 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 12820 12821 if (satop) { 12822 /* saturating, doubling */ 12823 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 12824 tcg_passres, tcg_passres); 12825 } 12826 12827 if (opcode == 0xa || opcode == 0xb) { 12828 continue; 12829 } 12830 12831 /* Accumulating op: handle accumulate step */ 12832 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12833 12834 switch (opcode) { 12835 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12836 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12837 break; 12838 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12839 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 12840 break; 12841 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12842 tcg_gen_neg_i64(tcg_passres, tcg_passres); 12843 /* fall through */ 12844 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12845 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 12846 tcg_res[pass], 12847 tcg_passres); 12848 break; 12849 default: 12850 g_assert_not_reached(); 12851 } 12852 } 12853 12854 clear_vec_high(s, !is_scalar, rd); 12855 } else { 12856 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12857 12858 assert(size == 1); 12859 read_vec_element_i32(s, tcg_idx, rm, index, size); 12860 12861 if (!is_scalar) { 12862 /* The simplest way to handle the 16x16 indexed ops is to 12863 * duplicate the index into both halves of the 32 bit tcg_idx 12864 * and then use the usual Neon helpers. 12865 */ 12866 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12867 } 12868 12869 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12870 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12871 TCGv_i64 tcg_passres; 12872 12873 if (is_scalar) { 12874 read_vec_element_i32(s, tcg_op, rn, pass, size); 12875 } else { 12876 read_vec_element_i32(s, tcg_op, rn, 12877 pass + (is_q * 2), MO_32); 12878 } 12879 12880 tcg_res[pass] = tcg_temp_new_i64(); 12881 12882 if (opcode == 0xa || opcode == 0xb) { 12883 /* Non-accumulating ops */ 12884 tcg_passres = tcg_res[pass]; 12885 } else { 12886 tcg_passres = tcg_temp_new_i64(); 12887 } 12888 12889 if (memop & MO_SIGN) { 12890 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 12891 } else { 12892 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 12893 } 12894 if (satop) { 12895 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 12896 tcg_passres, tcg_passres); 12897 } 12898 12899 if (opcode == 0xa || opcode == 0xb) { 12900 continue; 12901 } 12902 12903 /* Accumulating op: handle accumulate step */ 12904 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12905 12906 switch (opcode) { 12907 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 12908 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 12909 tcg_passres); 12910 break; 12911 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 12912 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 12913 tcg_passres); 12914 break; 12915 case 0x7: /* SQDMLSL, SQDMLSL2 */ 12916 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 12917 /* fall through */ 12918 case 0x3: /* SQDMLAL, SQDMLAL2 */ 12919 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 12920 tcg_res[pass], 12921 tcg_passres); 12922 break; 12923 default: 12924 g_assert_not_reached(); 12925 } 12926 } 12927 12928 if (is_scalar) { 12929 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 12930 } 12931 } 12932 12933 if (is_scalar) { 12934 tcg_res[1] = tcg_constant_i64(0); 12935 } 12936 12937 for (pass = 0; pass < 2; pass++) { 12938 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12939 } 12940 } 12941 } 12942 12943 /* C3.6 Data processing - SIMD, inc Crypto 12944 * 12945 * As the decode gets a little complex we are using a table based 12946 * approach for this part of the decode. 12947 */ 12948 static const AArch64DecodeTable data_proc_simd[] = { 12949 /* pattern , mask , fn */ 12950 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 12951 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 12952 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 12953 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 12954 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 12955 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 12956 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 12957 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 12958 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 12959 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 12960 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 12961 { 0x2e000000, 0xbf208400, disas_simd_ext }, 12962 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 12963 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 12964 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 12965 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 12966 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 12967 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 12968 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 12969 { 0x00000000, 0x00000000, NULL } 12970 }; 12971 12972 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 12973 { 12974 /* Note that this is called with all non-FP cases from 12975 * table C3-6 so it must UNDEF for entries not specifically 12976 * allocated to instructions in that table. 12977 */ 12978 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 12979 if (fn) { 12980 fn(s, insn); 12981 } else { 12982 unallocated_encoding(s); 12983 } 12984 } 12985 12986 /* C3.6 Data processing - SIMD and floating point */ 12987 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 12988 { 12989 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 12990 disas_data_proc_fp(s, insn); 12991 } else { 12992 /* SIMD, including crypto */ 12993 disas_data_proc_simd(s, insn); 12994 } 12995 } 12996 12997 static bool trans_OK(DisasContext *s, arg_OK *a) 12998 { 12999 return true; 13000 } 13001 13002 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13003 { 13004 s->is_nonstreaming = true; 13005 return true; 13006 } 13007 13008 /** 13009 * is_guarded_page: 13010 * @env: The cpu environment 13011 * @s: The DisasContext 13012 * 13013 * Return true if the page is guarded. 13014 */ 13015 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13016 { 13017 uint64_t addr = s->base.pc_first; 13018 #ifdef CONFIG_USER_ONLY 13019 return page_get_flags(addr) & PAGE_BTI; 13020 #else 13021 CPUTLBEntryFull *full; 13022 void *host; 13023 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13024 int flags; 13025 13026 /* 13027 * We test this immediately after reading an insn, which means 13028 * that the TLB entry must be present and valid, and thus this 13029 * access will never raise an exception. 13030 */ 13031 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13032 false, &host, &full, 0); 13033 assert(!(flags & TLB_INVALID_MASK)); 13034 13035 return full->extra.arm.guarded; 13036 #endif 13037 } 13038 13039 /** 13040 * btype_destination_ok: 13041 * @insn: The instruction at the branch destination 13042 * @bt: SCTLR_ELx.BT 13043 * @btype: PSTATE.BTYPE, and is non-zero 13044 * 13045 * On a guarded page, there are a limited number of insns 13046 * that may be present at the branch target: 13047 * - branch target identifiers, 13048 * - paciasp, pacibsp, 13049 * - BRK insn 13050 * - HLT insn 13051 * Anything else causes a Branch Target Exception. 13052 * 13053 * Return true if the branch is compatible, false to raise BTITRAP. 13054 */ 13055 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13056 { 13057 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13058 /* HINT space */ 13059 switch (extract32(insn, 5, 7)) { 13060 case 0b011001: /* PACIASP */ 13061 case 0b011011: /* PACIBSP */ 13062 /* 13063 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13064 * with btype == 3. Otherwise all btype are ok. 13065 */ 13066 return !bt || btype != 3; 13067 case 0b100000: /* BTI */ 13068 /* Not compatible with any btype. */ 13069 return false; 13070 case 0b100010: /* BTI c */ 13071 /* Not compatible with btype == 3 */ 13072 return btype != 3; 13073 case 0b100100: /* BTI j */ 13074 /* Not compatible with btype == 2 */ 13075 return btype != 2; 13076 case 0b100110: /* BTI jc */ 13077 /* Compatible with any btype. */ 13078 return true; 13079 } 13080 } else { 13081 switch (insn & 0xffe0001fu) { 13082 case 0xd4200000u: /* BRK */ 13083 case 0xd4400000u: /* HLT */ 13084 /* Give priority to the breakpoint exception. */ 13085 return true; 13086 } 13087 } 13088 return false; 13089 } 13090 13091 /* C3.1 A64 instruction index by encoding */ 13092 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13093 { 13094 switch (extract32(insn, 25, 4)) { 13095 case 0x5: 13096 case 0xd: /* Data processing - register */ 13097 disas_data_proc_reg(s, insn); 13098 break; 13099 case 0x7: 13100 case 0xf: /* Data processing - SIMD and floating point */ 13101 disas_data_proc_simd_fp(s, insn); 13102 break; 13103 default: 13104 unallocated_encoding(s); 13105 break; 13106 } 13107 } 13108 13109 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13110 CPUState *cpu) 13111 { 13112 DisasContext *dc = container_of(dcbase, DisasContext, base); 13113 CPUARMState *env = cpu_env(cpu); 13114 ARMCPU *arm_cpu = env_archcpu(env); 13115 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13116 int bound, core_mmu_idx; 13117 13118 dc->isar = &arm_cpu->isar; 13119 dc->condjmp = 0; 13120 dc->pc_save = dc->base.pc_first; 13121 dc->aarch64 = true; 13122 dc->thumb = false; 13123 dc->sctlr_b = 0; 13124 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13125 dc->condexec_mask = 0; 13126 dc->condexec_cond = 0; 13127 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13128 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13129 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13130 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13131 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13132 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13133 #if !defined(CONFIG_USER_ONLY) 13134 dc->user = (dc->current_el == 0); 13135 #endif 13136 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13137 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13138 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13139 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13140 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13141 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13142 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13143 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13144 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13145 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13146 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13147 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13148 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13149 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13150 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13151 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13152 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13153 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13154 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13155 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13156 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13157 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13158 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13159 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13160 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13161 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13162 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13163 dc->vec_len = 0; 13164 dc->vec_stride = 0; 13165 dc->cp_regs = arm_cpu->cp_regs; 13166 dc->features = env->features; 13167 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13168 dc->gm_blocksize = arm_cpu->gm_blocksize; 13169 13170 #ifdef CONFIG_USER_ONLY 13171 /* In sve_probe_page, we assume TBI is enabled. */ 13172 tcg_debug_assert(dc->tbid & 1); 13173 #endif 13174 13175 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13176 13177 /* Single step state. The code-generation logic here is: 13178 * SS_ACTIVE == 0: 13179 * generate code with no special handling for single-stepping (except 13180 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13181 * this happens anyway because those changes are all system register or 13182 * PSTATE writes). 13183 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13184 * emit code for one insn 13185 * emit code to clear PSTATE.SS 13186 * emit code to generate software step exception for completed step 13187 * end TB (as usual for having generated an exception) 13188 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13189 * emit code to generate a software step exception 13190 * end the TB 13191 */ 13192 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13193 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13194 dc->is_ldex = false; 13195 13196 /* Bound the number of insns to execute to those left on the page. */ 13197 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13198 13199 /* If architectural single step active, limit to 1. */ 13200 if (dc->ss_active) { 13201 bound = 1; 13202 } 13203 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13204 } 13205 13206 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13207 { 13208 } 13209 13210 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13211 { 13212 DisasContext *dc = container_of(dcbase, DisasContext, base); 13213 target_ulong pc_arg = dc->base.pc_next; 13214 13215 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13216 pc_arg &= ~TARGET_PAGE_MASK; 13217 } 13218 tcg_gen_insn_start(pc_arg, 0, 0); 13219 dc->insn_start_updated = false; 13220 } 13221 13222 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13223 { 13224 DisasContext *s = container_of(dcbase, DisasContext, base); 13225 CPUARMState *env = cpu_env(cpu); 13226 uint64_t pc = s->base.pc_next; 13227 uint32_t insn; 13228 13229 /* Singlestep exceptions have the highest priority. */ 13230 if (s->ss_active && !s->pstate_ss) { 13231 /* Singlestep state is Active-pending. 13232 * If we're in this state at the start of a TB then either 13233 * a) we just took an exception to an EL which is being debugged 13234 * and this is the first insn in the exception handler 13235 * b) debug exceptions were masked and we just unmasked them 13236 * without changing EL (eg by clearing PSTATE.D) 13237 * In either case we're going to take a swstep exception in the 13238 * "did not step an insn" case, and so the syndrome ISV and EX 13239 * bits should be zero. 13240 */ 13241 assert(s->base.num_insns == 1); 13242 gen_swstep_exception(s, 0, 0); 13243 s->base.is_jmp = DISAS_NORETURN; 13244 s->base.pc_next = pc + 4; 13245 return; 13246 } 13247 13248 if (pc & 3) { 13249 /* 13250 * PC alignment fault. This has priority over the instruction abort 13251 * that we would receive from a translation fault via arm_ldl_code. 13252 * This should only be possible after an indirect branch, at the 13253 * start of the TB. 13254 */ 13255 assert(s->base.num_insns == 1); 13256 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13257 s->base.is_jmp = DISAS_NORETURN; 13258 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13259 return; 13260 } 13261 13262 s->pc_curr = pc; 13263 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13264 s->insn = insn; 13265 s->base.pc_next = pc + 4; 13266 13267 s->fp_access_checked = false; 13268 s->sve_access_checked = false; 13269 13270 if (s->pstate_il) { 13271 /* 13272 * Illegal execution state. This has priority over BTI 13273 * exceptions, but comes after instruction abort exceptions. 13274 */ 13275 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13276 return; 13277 } 13278 13279 if (dc_isar_feature(aa64_bti, s)) { 13280 if (s->base.num_insns == 1) { 13281 /* 13282 * At the first insn of the TB, compute s->guarded_page. 13283 * We delayed computing this until successfully reading 13284 * the first insn of the TB, above. This (mostly) ensures 13285 * that the softmmu tlb entry has been populated, and the 13286 * page table GP bit is available. 13287 * 13288 * Note that we need to compute this even if btype == 0, 13289 * because this value is used for BR instructions later 13290 * where ENV is not available. 13291 */ 13292 s->guarded_page = is_guarded_page(env, s); 13293 13294 /* First insn can have btype set to non-zero. */ 13295 tcg_debug_assert(s->btype >= 0); 13296 13297 /* 13298 * Note that the Branch Target Exception has fairly high 13299 * priority -- below debugging exceptions but above most 13300 * everything else. This allows us to handle this now 13301 * instead of waiting until the insn is otherwise decoded. 13302 */ 13303 if (s->btype != 0 13304 && s->guarded_page 13305 && !btype_destination_ok(insn, s->bt, s->btype)) { 13306 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13307 return; 13308 } 13309 } else { 13310 /* Not the first insn: btype must be 0. */ 13311 tcg_debug_assert(s->btype == 0); 13312 } 13313 } 13314 13315 s->is_nonstreaming = false; 13316 if (s->sme_trap_nonstreaming) { 13317 disas_sme_fa64(s, insn); 13318 } 13319 13320 if (!disas_a64(s, insn) && 13321 !disas_sme(s, insn) && 13322 !disas_sve(s, insn)) { 13323 disas_a64_legacy(s, insn); 13324 } 13325 13326 /* 13327 * After execution of most insns, btype is reset to 0. 13328 * Note that we set btype == -1 when the insn sets btype. 13329 */ 13330 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13331 reset_btype(s); 13332 } 13333 } 13334 13335 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13336 { 13337 DisasContext *dc = container_of(dcbase, DisasContext, base); 13338 13339 if (unlikely(dc->ss_active)) { 13340 /* Note that this means single stepping WFI doesn't halt the CPU. 13341 * For conditional branch insns this is harmless unreachable code as 13342 * gen_goto_tb() has already handled emitting the debug exception 13343 * (and thus a tb-jump is not possible when singlestepping). 13344 */ 13345 switch (dc->base.is_jmp) { 13346 default: 13347 gen_a64_update_pc(dc, 4); 13348 /* fall through */ 13349 case DISAS_EXIT: 13350 case DISAS_JUMP: 13351 gen_step_complete_exception(dc); 13352 break; 13353 case DISAS_NORETURN: 13354 break; 13355 } 13356 } else { 13357 switch (dc->base.is_jmp) { 13358 case DISAS_NEXT: 13359 case DISAS_TOO_MANY: 13360 gen_goto_tb(dc, 1, 4); 13361 break; 13362 default: 13363 case DISAS_UPDATE_EXIT: 13364 gen_a64_update_pc(dc, 4); 13365 /* fall through */ 13366 case DISAS_EXIT: 13367 tcg_gen_exit_tb(NULL, 0); 13368 break; 13369 case DISAS_UPDATE_NOCHAIN: 13370 gen_a64_update_pc(dc, 4); 13371 /* fall through */ 13372 case DISAS_JUMP: 13373 tcg_gen_lookup_and_goto_ptr(); 13374 break; 13375 case DISAS_NORETURN: 13376 case DISAS_SWI: 13377 break; 13378 case DISAS_WFE: 13379 gen_a64_update_pc(dc, 4); 13380 gen_helper_wfe(tcg_env); 13381 break; 13382 case DISAS_YIELD: 13383 gen_a64_update_pc(dc, 4); 13384 gen_helper_yield(tcg_env); 13385 break; 13386 case DISAS_WFI: 13387 /* 13388 * This is a special case because we don't want to just halt 13389 * the CPU if trying to debug across a WFI. 13390 */ 13391 gen_a64_update_pc(dc, 4); 13392 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13393 /* 13394 * The helper doesn't necessarily throw an exception, but we 13395 * must go back to the main loop to check for interrupts anyway. 13396 */ 13397 tcg_gen_exit_tb(NULL, 0); 13398 break; 13399 } 13400 } 13401 } 13402 13403 const TranslatorOps aarch64_translator_ops = { 13404 .init_disas_context = aarch64_tr_init_disas_context, 13405 .tb_start = aarch64_tr_tb_start, 13406 .insn_start = aarch64_tr_insn_start, 13407 .translate_insn = aarch64_tr_translate_insn, 13408 .tb_stop = aarch64_tr_tb_stop, 13409 }; 13410