xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 641d8231)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1356 {
1357     if (a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1367 {
1368     if (!a->q && a->esz == MO_64) {
1369         return false;
1370     }
1371     if (fp_access_check(s)) {
1372         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1373     }
1374     return true;
1375 }
1376 
1377 /*
1378  * This utility function is for doing register extension with an
1379  * optional shift. You will likely want to pass a temporary for the
1380  * destination register. See DecodeRegExtend() in the ARM ARM.
1381  */
1382 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1383                               int option, unsigned int shift)
1384 {
1385     int extsize = extract32(option, 0, 2);
1386     bool is_signed = extract32(option, 2, 1);
1387 
1388     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1389     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1390 }
1391 
1392 static inline void gen_check_sp_alignment(DisasContext *s)
1393 {
1394     /* The AArch64 architecture mandates that (if enabled via PSTATE
1395      * or SCTLR bits) there is a check that SP is 16-aligned on every
1396      * SP-relative load or store (with an exception generated if it is not).
1397      * In line with general QEMU practice regarding misaligned accesses,
1398      * we omit these checks for the sake of guest program performance.
1399      * This function is provided as a hook so we can more easily add these
1400      * checks in future (possibly as a "favour catching guest program bugs
1401      * over speed" user selectable option).
1402      */
1403 }
1404 
1405 /*
1406  * This provides a simple table based table lookup decoder. It is
1407  * intended to be used when the relevant bits for decode are too
1408  * awkwardly placed and switch/if based logic would be confusing and
1409  * deeply nested. Since it's a linear search through the table, tables
1410  * should be kept small.
1411  *
1412  * It returns the first handler where insn & mask == pattern, or
1413  * NULL if there is no match.
1414  * The table is terminated by an empty mask (i.e. 0)
1415  */
1416 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1417                                                uint32_t insn)
1418 {
1419     const AArch64DecodeTable *tptr = table;
1420 
1421     while (tptr->mask) {
1422         if ((insn & tptr->mask) == tptr->pattern) {
1423             return tptr->disas_fn;
1424         }
1425         tptr++;
1426     }
1427     return NULL;
1428 }
1429 
1430 /*
1431  * The instruction disassembly implemented here matches
1432  * the instruction encoding classifications in chapter C4
1433  * of the ARM Architecture Reference Manual (DDI0487B_a);
1434  * classification names and decode diagrams here should generally
1435  * match up with those in the manual.
1436  */
1437 
1438 static bool trans_B(DisasContext *s, arg_i *a)
1439 {
1440     reset_btype(s);
1441     gen_goto_tb(s, 0, a->imm);
1442     return true;
1443 }
1444 
1445 static bool trans_BL(DisasContext *s, arg_i *a)
1446 {
1447     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1448     reset_btype(s);
1449     gen_goto_tb(s, 0, a->imm);
1450     return true;
1451 }
1452 
1453 
1454 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1455 {
1456     DisasLabel match;
1457     TCGv_i64 tcg_cmp;
1458 
1459     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1460     reset_btype(s);
1461 
1462     match = gen_disas_label(s);
1463     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1464                         tcg_cmp, 0, match.label);
1465     gen_goto_tb(s, 0, 4);
1466     set_disas_label(s, match);
1467     gen_goto_tb(s, 1, a->imm);
1468     return true;
1469 }
1470 
1471 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1472 {
1473     DisasLabel match;
1474     TCGv_i64 tcg_cmp;
1475 
1476     tcg_cmp = tcg_temp_new_i64();
1477     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1478 
1479     reset_btype(s);
1480 
1481     match = gen_disas_label(s);
1482     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1483                         tcg_cmp, 0, match.label);
1484     gen_goto_tb(s, 0, 4);
1485     set_disas_label(s, match);
1486     gen_goto_tb(s, 1, a->imm);
1487     return true;
1488 }
1489 
1490 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1491 {
1492     /* BC.cond is only present with FEAT_HBC */
1493     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1494         return false;
1495     }
1496     reset_btype(s);
1497     if (a->cond < 0x0e) {
1498         /* genuinely conditional branches */
1499         DisasLabel match = gen_disas_label(s);
1500         arm_gen_test_cc(a->cond, match.label);
1501         gen_goto_tb(s, 0, 4);
1502         set_disas_label(s, match);
1503         gen_goto_tb(s, 1, a->imm);
1504     } else {
1505         /* 0xe and 0xf are both "always" conditions */
1506         gen_goto_tb(s, 0, a->imm);
1507     }
1508     return true;
1509 }
1510 
1511 static void set_btype_for_br(DisasContext *s, int rn)
1512 {
1513     if (dc_isar_feature(aa64_bti, s)) {
1514         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1515         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1516     }
1517 }
1518 
1519 static void set_btype_for_blr(DisasContext *s)
1520 {
1521     if (dc_isar_feature(aa64_bti, s)) {
1522         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1523         set_btype(s, 2);
1524     }
1525 }
1526 
1527 static bool trans_BR(DisasContext *s, arg_r *a)
1528 {
1529     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1530     set_btype_for_br(s, a->rn);
1531     s->base.is_jmp = DISAS_JUMP;
1532     return true;
1533 }
1534 
1535 static bool trans_BLR(DisasContext *s, arg_r *a)
1536 {
1537     TCGv_i64 dst = cpu_reg(s, a->rn);
1538     TCGv_i64 lr = cpu_reg(s, 30);
1539     if (dst == lr) {
1540         TCGv_i64 tmp = tcg_temp_new_i64();
1541         tcg_gen_mov_i64(tmp, dst);
1542         dst = tmp;
1543     }
1544     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1545     gen_a64_set_pc(s, dst);
1546     set_btype_for_blr(s);
1547     s->base.is_jmp = DISAS_JUMP;
1548     return true;
1549 }
1550 
1551 static bool trans_RET(DisasContext *s, arg_r *a)
1552 {
1553     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1554     s->base.is_jmp = DISAS_JUMP;
1555     return true;
1556 }
1557 
1558 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1559                                    TCGv_i64 modifier, bool use_key_a)
1560 {
1561     TCGv_i64 truedst;
1562     /*
1563      * Return the branch target for a BRAA/RETA/etc, which is either
1564      * just the destination dst, or that value with the pauth check
1565      * done and the code removed from the high bits.
1566      */
1567     if (!s->pauth_active) {
1568         return dst;
1569     }
1570 
1571     truedst = tcg_temp_new_i64();
1572     if (use_key_a) {
1573         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1574     } else {
1575         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1576     }
1577     return truedst;
1578 }
1579 
1580 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1581 {
1582     TCGv_i64 dst;
1583 
1584     if (!dc_isar_feature(aa64_pauth, s)) {
1585         return false;
1586     }
1587 
1588     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1589     gen_a64_set_pc(s, dst);
1590     set_btype_for_br(s, a->rn);
1591     s->base.is_jmp = DISAS_JUMP;
1592     return true;
1593 }
1594 
1595 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1596 {
1597     TCGv_i64 dst, lr;
1598 
1599     if (!dc_isar_feature(aa64_pauth, s)) {
1600         return false;
1601     }
1602 
1603     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1604     lr = cpu_reg(s, 30);
1605     if (dst == lr) {
1606         TCGv_i64 tmp = tcg_temp_new_i64();
1607         tcg_gen_mov_i64(tmp, dst);
1608         dst = tmp;
1609     }
1610     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1611     gen_a64_set_pc(s, dst);
1612     set_btype_for_blr(s);
1613     s->base.is_jmp = DISAS_JUMP;
1614     return true;
1615 }
1616 
1617 static bool trans_RETA(DisasContext *s, arg_reta *a)
1618 {
1619     TCGv_i64 dst;
1620 
1621     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1622     gen_a64_set_pc(s, dst);
1623     s->base.is_jmp = DISAS_JUMP;
1624     return true;
1625 }
1626 
1627 static bool trans_BRA(DisasContext *s, arg_bra *a)
1628 {
1629     TCGv_i64 dst;
1630 
1631     if (!dc_isar_feature(aa64_pauth, s)) {
1632         return false;
1633     }
1634     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1635     gen_a64_set_pc(s, dst);
1636     set_btype_for_br(s, a->rn);
1637     s->base.is_jmp = DISAS_JUMP;
1638     return true;
1639 }
1640 
1641 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1642 {
1643     TCGv_i64 dst, lr;
1644 
1645     if (!dc_isar_feature(aa64_pauth, s)) {
1646         return false;
1647     }
1648     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1649     lr = cpu_reg(s, 30);
1650     if (dst == lr) {
1651         TCGv_i64 tmp = tcg_temp_new_i64();
1652         tcg_gen_mov_i64(tmp, dst);
1653         dst = tmp;
1654     }
1655     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1656     gen_a64_set_pc(s, dst);
1657     set_btype_for_blr(s);
1658     s->base.is_jmp = DISAS_JUMP;
1659     return true;
1660 }
1661 
1662 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1663 {
1664     TCGv_i64 dst;
1665 
1666     if (s->current_el == 0) {
1667         return false;
1668     }
1669     if (s->trap_eret) {
1670         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1671         return true;
1672     }
1673     dst = tcg_temp_new_i64();
1674     tcg_gen_ld_i64(dst, tcg_env,
1675                    offsetof(CPUARMState, elr_el[s->current_el]));
1676 
1677     translator_io_start(&s->base);
1678 
1679     gen_helper_exception_return(tcg_env, dst);
1680     /* Must exit loop to check un-masked IRQs */
1681     s->base.is_jmp = DISAS_EXIT;
1682     return true;
1683 }
1684 
1685 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1686 {
1687     TCGv_i64 dst;
1688 
1689     if (!dc_isar_feature(aa64_pauth, s)) {
1690         return false;
1691     }
1692     if (s->current_el == 0) {
1693         return false;
1694     }
1695     /* The FGT trap takes precedence over an auth trap. */
1696     if (s->trap_eret) {
1697         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1698         return true;
1699     }
1700     dst = tcg_temp_new_i64();
1701     tcg_gen_ld_i64(dst, tcg_env,
1702                    offsetof(CPUARMState, elr_el[s->current_el]));
1703 
1704     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1705 
1706     translator_io_start(&s->base);
1707 
1708     gen_helper_exception_return(tcg_env, dst);
1709     /* Must exit loop to check un-masked IRQs */
1710     s->base.is_jmp = DISAS_EXIT;
1711     return true;
1712 }
1713 
1714 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1715 {
1716     return true;
1717 }
1718 
1719 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1720 {
1721     /*
1722      * When running in MTTCG we don't generate jumps to the yield and
1723      * WFE helpers as it won't affect the scheduling of other vCPUs.
1724      * If we wanted to more completely model WFE/SEV so we don't busy
1725      * spin unnecessarily we would need to do something more involved.
1726      */
1727     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1728         s->base.is_jmp = DISAS_YIELD;
1729     }
1730     return true;
1731 }
1732 
1733 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1734 {
1735     s->base.is_jmp = DISAS_WFI;
1736     return true;
1737 }
1738 
1739 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1740 {
1741     /*
1742      * When running in MTTCG we don't generate jumps to the yield and
1743      * WFE helpers as it won't affect the scheduling of other vCPUs.
1744      * If we wanted to more completely model WFE/SEV so we don't busy
1745      * spin unnecessarily we would need to do something more involved.
1746      */
1747     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1748         s->base.is_jmp = DISAS_WFE;
1749     }
1750     return true;
1751 }
1752 
1753 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1754 {
1755     if (s->pauth_active) {
1756         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1757     }
1758     return true;
1759 }
1760 
1761 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1762 {
1763     if (s->pauth_active) {
1764         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1765     }
1766     return true;
1767 }
1768 
1769 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1770 {
1771     if (s->pauth_active) {
1772         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1773     }
1774     return true;
1775 }
1776 
1777 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1778 {
1779     if (s->pauth_active) {
1780         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1781     }
1782     return true;
1783 }
1784 
1785 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1786 {
1787     if (s->pauth_active) {
1788         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1789     }
1790     return true;
1791 }
1792 
1793 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1794 {
1795     /* Without RAS, we must implement this as NOP. */
1796     if (dc_isar_feature(aa64_ras, s)) {
1797         /*
1798          * QEMU does not have a source of physical SErrors,
1799          * so we are only concerned with virtual SErrors.
1800          * The pseudocode in the ARM for this case is
1801          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1802          *      AArch64.vESBOperation();
1803          * Most of the condition can be evaluated at translation time.
1804          * Test for EL2 present, and defer test for SEL2 to runtime.
1805          */
1806         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1807             gen_helper_vesb(tcg_env);
1808         }
1809     }
1810     return true;
1811 }
1812 
1813 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1814 {
1815     if (s->pauth_active) {
1816         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1817     }
1818     return true;
1819 }
1820 
1821 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1822 {
1823     if (s->pauth_active) {
1824         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1825     }
1826     return true;
1827 }
1828 
1829 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1830 {
1831     if (s->pauth_active) {
1832         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1833     }
1834     return true;
1835 }
1836 
1837 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1838 {
1839     if (s->pauth_active) {
1840         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1841     }
1842     return true;
1843 }
1844 
1845 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1846 {
1847     if (s->pauth_active) {
1848         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1849     }
1850     return true;
1851 }
1852 
1853 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1854 {
1855     if (s->pauth_active) {
1856         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1857     }
1858     return true;
1859 }
1860 
1861 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1862 {
1863     if (s->pauth_active) {
1864         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1865     }
1866     return true;
1867 }
1868 
1869 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1870 {
1871     if (s->pauth_active) {
1872         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1873     }
1874     return true;
1875 }
1876 
1877 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1878 {
1879     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1880     return true;
1881 }
1882 
1883 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1884 {
1885     /* We handle DSB and DMB the same way */
1886     TCGBar bar;
1887 
1888     switch (a->types) {
1889     case 1: /* MBReqTypes_Reads */
1890         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1891         break;
1892     case 2: /* MBReqTypes_Writes */
1893         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1894         break;
1895     default: /* MBReqTypes_All */
1896         bar = TCG_BAR_SC | TCG_MO_ALL;
1897         break;
1898     }
1899     tcg_gen_mb(bar);
1900     return true;
1901 }
1902 
1903 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1904 {
1905     /*
1906      * We need to break the TB after this insn to execute
1907      * self-modifying code correctly and also to take
1908      * any pending interrupts immediately.
1909      */
1910     reset_btype(s);
1911     gen_goto_tb(s, 0, 4);
1912     return true;
1913 }
1914 
1915 static bool trans_SB(DisasContext *s, arg_SB *a)
1916 {
1917     if (!dc_isar_feature(aa64_sb, s)) {
1918         return false;
1919     }
1920     /*
1921      * TODO: There is no speculation barrier opcode for TCG;
1922      * MB and end the TB instead.
1923      */
1924     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1925     gen_goto_tb(s, 0, 4);
1926     return true;
1927 }
1928 
1929 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1930 {
1931     if (!dc_isar_feature(aa64_condm_4, s)) {
1932         return false;
1933     }
1934     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1935     return true;
1936 }
1937 
1938 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1939 {
1940     TCGv_i32 z;
1941 
1942     if (!dc_isar_feature(aa64_condm_5, s)) {
1943         return false;
1944     }
1945 
1946     z = tcg_temp_new_i32();
1947 
1948     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1949 
1950     /*
1951      * (!C & !Z) << 31
1952      * (!(C | Z)) << 31
1953      * ~((C | Z) << 31)
1954      * ~-(C | Z)
1955      * (C | Z) - 1
1956      */
1957     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1958     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1959 
1960     /* !(Z & C) */
1961     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1962     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1963 
1964     /* (!C & Z) << 31 -> -(Z & ~C) */
1965     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1966     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1967 
1968     /* C | Z */
1969     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1970 
1971     return true;
1972 }
1973 
1974 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1975 {
1976     if (!dc_isar_feature(aa64_condm_5, s)) {
1977         return false;
1978     }
1979 
1980     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1981     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1982 
1983     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1984     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1985 
1986     tcg_gen_movi_i32(cpu_NF, 0);
1987     tcg_gen_movi_i32(cpu_VF, 0);
1988 
1989     return true;
1990 }
1991 
1992 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1993 {
1994     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1995         return false;
1996     }
1997     if (a->imm & 1) {
1998         set_pstate_bits(PSTATE_UAO);
1999     } else {
2000         clear_pstate_bits(PSTATE_UAO);
2001     }
2002     gen_rebuild_hflags(s);
2003     s->base.is_jmp = DISAS_TOO_MANY;
2004     return true;
2005 }
2006 
2007 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2008 {
2009     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2010         return false;
2011     }
2012     if (a->imm & 1) {
2013         set_pstate_bits(PSTATE_PAN);
2014     } else {
2015         clear_pstate_bits(PSTATE_PAN);
2016     }
2017     gen_rebuild_hflags(s);
2018     s->base.is_jmp = DISAS_TOO_MANY;
2019     return true;
2020 }
2021 
2022 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2023 {
2024     if (s->current_el == 0) {
2025         return false;
2026     }
2027     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2028     s->base.is_jmp = DISAS_TOO_MANY;
2029     return true;
2030 }
2031 
2032 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2033 {
2034     if (!dc_isar_feature(aa64_ssbs, s)) {
2035         return false;
2036     }
2037     if (a->imm & 1) {
2038         set_pstate_bits(PSTATE_SSBS);
2039     } else {
2040         clear_pstate_bits(PSTATE_SSBS);
2041     }
2042     /* Don't need to rebuild hflags since SSBS is a nop */
2043     s->base.is_jmp = DISAS_TOO_MANY;
2044     return true;
2045 }
2046 
2047 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2048 {
2049     if (!dc_isar_feature(aa64_dit, s)) {
2050         return false;
2051     }
2052     if (a->imm & 1) {
2053         set_pstate_bits(PSTATE_DIT);
2054     } else {
2055         clear_pstate_bits(PSTATE_DIT);
2056     }
2057     /* There's no need to rebuild hflags because DIT is a nop */
2058     s->base.is_jmp = DISAS_TOO_MANY;
2059     return true;
2060 }
2061 
2062 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2063 {
2064     if (dc_isar_feature(aa64_mte, s)) {
2065         /* Full MTE is enabled -- set the TCO bit as directed. */
2066         if (a->imm & 1) {
2067             set_pstate_bits(PSTATE_TCO);
2068         } else {
2069             clear_pstate_bits(PSTATE_TCO);
2070         }
2071         gen_rebuild_hflags(s);
2072         /* Many factors, including TCO, go into MTE_ACTIVE. */
2073         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2074         return true;
2075     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2076         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2077         return true;
2078     } else {
2079         /* Insn not present */
2080         return false;
2081     }
2082 }
2083 
2084 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2085 {
2086     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2087     s->base.is_jmp = DISAS_TOO_MANY;
2088     return true;
2089 }
2090 
2091 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2092 {
2093     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2094     /* Exit the cpu loop to re-evaluate pending IRQs. */
2095     s->base.is_jmp = DISAS_UPDATE_EXIT;
2096     return true;
2097 }
2098 
2099 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2100 {
2101     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2102         return false;
2103     }
2104 
2105     if (a->imm == 0) {
2106         clear_pstate_bits(PSTATE_ALLINT);
2107     } else if (s->current_el > 1) {
2108         set_pstate_bits(PSTATE_ALLINT);
2109     } else {
2110         gen_helper_msr_set_allint_el1(tcg_env);
2111     }
2112 
2113     /* Exit the cpu loop to re-evaluate pending IRQs. */
2114     s->base.is_jmp = DISAS_UPDATE_EXIT;
2115     return true;
2116 }
2117 
2118 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2119 {
2120     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2121         return false;
2122     }
2123     if (sme_access_check(s)) {
2124         int old = s->pstate_sm | (s->pstate_za << 1);
2125         int new = a->imm * 3;
2126 
2127         if ((old ^ new) & a->mask) {
2128             /* At least one bit changes. */
2129             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2130                                 tcg_constant_i32(a->mask));
2131             s->base.is_jmp = DISAS_TOO_MANY;
2132         }
2133     }
2134     return true;
2135 }
2136 
2137 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2138 {
2139     TCGv_i32 tmp = tcg_temp_new_i32();
2140     TCGv_i32 nzcv = tcg_temp_new_i32();
2141 
2142     /* build bit 31, N */
2143     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2144     /* build bit 30, Z */
2145     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2146     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2147     /* build bit 29, C */
2148     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2149     /* build bit 28, V */
2150     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2151     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2152     /* generate result */
2153     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2154 }
2155 
2156 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2157 {
2158     TCGv_i32 nzcv = tcg_temp_new_i32();
2159 
2160     /* take NZCV from R[t] */
2161     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2162 
2163     /* bit 31, N */
2164     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2165     /* bit 30, Z */
2166     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2167     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2168     /* bit 29, C */
2169     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2170     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2171     /* bit 28, V */
2172     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2173     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2174 }
2175 
2176 static void gen_sysreg_undef(DisasContext *s, bool isread,
2177                              uint8_t op0, uint8_t op1, uint8_t op2,
2178                              uint8_t crn, uint8_t crm, uint8_t rt)
2179 {
2180     /*
2181      * Generate code to emit an UNDEF with correct syndrome
2182      * information for a failed system register access.
2183      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2184      * but if FEAT_IDST is implemented then read accesses to registers
2185      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2186      * syndrome.
2187      */
2188     uint32_t syndrome;
2189 
2190     if (isread && dc_isar_feature(aa64_ids, s) &&
2191         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2192         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2193     } else {
2194         syndrome = syn_uncategorized();
2195     }
2196     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2197 }
2198 
2199 /* MRS - move from system register
2200  * MSR (register) - move to system register
2201  * SYS
2202  * SYSL
2203  * These are all essentially the same insn in 'read' and 'write'
2204  * versions, with varying op0 fields.
2205  */
2206 static void handle_sys(DisasContext *s, bool isread,
2207                        unsigned int op0, unsigned int op1, unsigned int op2,
2208                        unsigned int crn, unsigned int crm, unsigned int rt)
2209 {
2210     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2211                                       crn, crm, op0, op1, op2);
2212     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2213     bool need_exit_tb = false;
2214     bool nv_trap_to_el2 = false;
2215     bool nv_redirect_reg = false;
2216     bool skip_fp_access_checks = false;
2217     bool nv2_mem_redirect = false;
2218     TCGv_ptr tcg_ri = NULL;
2219     TCGv_i64 tcg_rt;
2220     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2221 
2222     if (crn == 11 || crn == 15) {
2223         /*
2224          * Check for TIDCP trap, which must take precedence over
2225          * the UNDEF for "no such register" etc.
2226          */
2227         switch (s->current_el) {
2228         case 0:
2229             if (dc_isar_feature(aa64_tidcp1, s)) {
2230                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2231             }
2232             break;
2233         case 1:
2234             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2235             break;
2236         }
2237     }
2238 
2239     if (!ri) {
2240         /* Unknown register; this might be a guest error or a QEMU
2241          * unimplemented feature.
2242          */
2243         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2244                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2245                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2246         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2247         return;
2248     }
2249 
2250     if (s->nv2 && ri->nv2_redirect_offset) {
2251         /*
2252          * Some registers always redirect to memory; some only do so if
2253          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2254          * pairs which share an offset; see the table in R_CSRPQ).
2255          */
2256         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2257             nv2_mem_redirect = s->nv1;
2258         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2259             nv2_mem_redirect = !s->nv1;
2260         } else {
2261             nv2_mem_redirect = true;
2262         }
2263     }
2264 
2265     /* Check access permissions */
2266     if (!cp_access_ok(s->current_el, ri, isread)) {
2267         /*
2268          * FEAT_NV/NV2 handling does not do the usual FP access checks
2269          * for registers only accessible at EL2 (though it *does* do them
2270          * for registers accessible at EL1).
2271          */
2272         skip_fp_access_checks = true;
2273         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2274             /*
2275              * This is one of the few EL2 registers which should redirect
2276              * to the equivalent EL1 register. We do that after running
2277              * the EL2 register's accessfn.
2278              */
2279             nv_redirect_reg = true;
2280             assert(!nv2_mem_redirect);
2281         } else if (nv2_mem_redirect) {
2282             /*
2283              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2284              * UNDEF to EL1.
2285              */
2286         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2287             /*
2288              * This register / instruction exists and is an EL2 register, so
2289              * we must trap to EL2 if accessed in nested virtualization EL1
2290              * instead of UNDEFing. We'll do that after the usual access checks.
2291              * (This makes a difference only for a couple of registers like
2292              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2293              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2294              * an accessfn which does nothing when called from EL1, because
2295              * the trap-to-EL3 controls which would apply to that register
2296              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2297              */
2298             nv_trap_to_el2 = true;
2299         } else {
2300             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2301             return;
2302         }
2303     }
2304 
2305     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2306         /* Emit code to perform further access permissions checks at
2307          * runtime; this may result in an exception.
2308          */
2309         gen_a64_update_pc(s, 0);
2310         tcg_ri = tcg_temp_new_ptr();
2311         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2312                                        tcg_constant_i32(key),
2313                                        tcg_constant_i32(syndrome),
2314                                        tcg_constant_i32(isread));
2315     } else if (ri->type & ARM_CP_RAISES_EXC) {
2316         /*
2317          * The readfn or writefn might raise an exception;
2318          * synchronize the CPU state in case it does.
2319          */
2320         gen_a64_update_pc(s, 0);
2321     }
2322 
2323     if (!skip_fp_access_checks) {
2324         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2325             return;
2326         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2327             return;
2328         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2329             return;
2330         }
2331     }
2332 
2333     if (nv_trap_to_el2) {
2334         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2335         return;
2336     }
2337 
2338     if (nv_redirect_reg) {
2339         /*
2340          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2341          * Conveniently in all cases the encoding of the EL1 register is
2342          * identical to the EL2 register except that opc1 is 0.
2343          * Get the reginfo for the EL1 register to use for the actual access.
2344          * We don't use the EL1 register's access function, and
2345          * fine-grained-traps on EL1 also do not apply here.
2346          */
2347         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2348                                  crn, crm, op0, 0, op2);
2349         ri = get_arm_cp_reginfo(s->cp_regs, key);
2350         assert(ri);
2351         assert(cp_access_ok(s->current_el, ri, isread));
2352         /*
2353          * We might not have done an update_pc earlier, so check we don't
2354          * need it. We could support this in future if necessary.
2355          */
2356         assert(!(ri->type & ARM_CP_RAISES_EXC));
2357     }
2358 
2359     if (nv2_mem_redirect) {
2360         /*
2361          * This system register is being redirected into an EL2 memory access.
2362          * This means it is not an IO operation, doesn't change hflags,
2363          * and need not end the TB, because it has no side effects.
2364          *
2365          * The access is 64-bit single copy atomic, guaranteed aligned because
2366          * of the definition of VCNR_EL2. Its endianness depends on
2367          * SCTLR_EL2.EE, not on the data endianness of EL1.
2368          * It is done under either the EL2 translation regime or the EL2&0
2369          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2370          * PSTATE.PAN is 0.
2371          */
2372         TCGv_i64 ptr = tcg_temp_new_i64();
2373         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2374         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2375         int memidx = arm_to_core_mmu_idx(armmemidx);
2376         uint32_t syn;
2377 
2378         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2379 
2380         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2381         tcg_gen_addi_i64(ptr, ptr,
2382                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2383         tcg_rt = cpu_reg(s, rt);
2384 
2385         syn = syn_data_abort_vncr(0, !isread, 0);
2386         disas_set_insn_syndrome(s, syn);
2387         if (isread) {
2388             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2389         } else {
2390             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2391         }
2392         return;
2393     }
2394 
2395     /* Handle special cases first */
2396     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2397     case 0:
2398         break;
2399     case ARM_CP_NOP:
2400         return;
2401     case ARM_CP_NZCV:
2402         tcg_rt = cpu_reg(s, rt);
2403         if (isread) {
2404             gen_get_nzcv(tcg_rt);
2405         } else {
2406             gen_set_nzcv(tcg_rt);
2407         }
2408         return;
2409     case ARM_CP_CURRENTEL:
2410     {
2411         /*
2412          * Reads as current EL value from pstate, which is
2413          * guaranteed to be constant by the tb flags.
2414          * For nested virt we should report EL2.
2415          */
2416         int el = s->nv ? 2 : s->current_el;
2417         tcg_rt = cpu_reg(s, rt);
2418         tcg_gen_movi_i64(tcg_rt, el << 2);
2419         return;
2420     }
2421     case ARM_CP_DC_ZVA:
2422         /* Writes clear the aligned block of memory which rt points into. */
2423         if (s->mte_active[0]) {
2424             int desc = 0;
2425 
2426             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2427             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2428             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2429 
2430             tcg_rt = tcg_temp_new_i64();
2431             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2432                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2433         } else {
2434             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2435         }
2436         gen_helper_dc_zva(tcg_env, tcg_rt);
2437         return;
2438     case ARM_CP_DC_GVA:
2439         {
2440             TCGv_i64 clean_addr, tag;
2441 
2442             /*
2443              * DC_GVA, like DC_ZVA, requires that we supply the original
2444              * pointer for an invalid page.  Probe that address first.
2445              */
2446             tcg_rt = cpu_reg(s, rt);
2447             clean_addr = clean_data_tbi(s, tcg_rt);
2448             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2449 
2450             if (s->ata[0]) {
2451                 /* Extract the tag from the register to match STZGM.  */
2452                 tag = tcg_temp_new_i64();
2453                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2454                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2455             }
2456         }
2457         return;
2458     case ARM_CP_DC_GZVA:
2459         {
2460             TCGv_i64 clean_addr, tag;
2461 
2462             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2463             tcg_rt = cpu_reg(s, rt);
2464             clean_addr = clean_data_tbi(s, tcg_rt);
2465             gen_helper_dc_zva(tcg_env, clean_addr);
2466 
2467             if (s->ata[0]) {
2468                 /* Extract the tag from the register to match STZGM.  */
2469                 tag = tcg_temp_new_i64();
2470                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2471                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2472             }
2473         }
2474         return;
2475     default:
2476         g_assert_not_reached();
2477     }
2478 
2479     if (ri->type & ARM_CP_IO) {
2480         /* I/O operations must end the TB here (whether read or write) */
2481         need_exit_tb = translator_io_start(&s->base);
2482     }
2483 
2484     tcg_rt = cpu_reg(s, rt);
2485 
2486     if (isread) {
2487         if (ri->type & ARM_CP_CONST) {
2488             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2489         } else if (ri->readfn) {
2490             if (!tcg_ri) {
2491                 tcg_ri = gen_lookup_cp_reg(key);
2492             }
2493             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2494         } else {
2495             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2496         }
2497     } else {
2498         if (ri->type & ARM_CP_CONST) {
2499             /* If not forbidden by access permissions, treat as WI */
2500             return;
2501         } else if (ri->writefn) {
2502             if (!tcg_ri) {
2503                 tcg_ri = gen_lookup_cp_reg(key);
2504             }
2505             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2506         } else {
2507             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2508         }
2509     }
2510 
2511     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2512         /*
2513          * A write to any coprocessor register that ends a TB
2514          * must rebuild the hflags for the next TB.
2515          */
2516         gen_rebuild_hflags(s);
2517         /*
2518          * We default to ending the TB on a coprocessor register write,
2519          * but allow this to be suppressed by the register definition
2520          * (usually only necessary to work around guest bugs).
2521          */
2522         need_exit_tb = true;
2523     }
2524     if (need_exit_tb) {
2525         s->base.is_jmp = DISAS_UPDATE_EXIT;
2526     }
2527 }
2528 
2529 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2530 {
2531     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2532     return true;
2533 }
2534 
2535 static bool trans_SVC(DisasContext *s, arg_i *a)
2536 {
2537     /*
2538      * For SVC, HVC and SMC we advance the single-step state
2539      * machine before taking the exception. This is architecturally
2540      * mandated, to ensure that single-stepping a system call
2541      * instruction works properly.
2542      */
2543     uint32_t syndrome = syn_aa64_svc(a->imm);
2544     if (s->fgt_svc) {
2545         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2546         return true;
2547     }
2548     gen_ss_advance(s);
2549     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2550     return true;
2551 }
2552 
2553 static bool trans_HVC(DisasContext *s, arg_i *a)
2554 {
2555     int target_el = s->current_el == 3 ? 3 : 2;
2556 
2557     if (s->current_el == 0) {
2558         unallocated_encoding(s);
2559         return true;
2560     }
2561     /*
2562      * The pre HVC helper handles cases when HVC gets trapped
2563      * as an undefined insn by runtime configuration.
2564      */
2565     gen_a64_update_pc(s, 0);
2566     gen_helper_pre_hvc(tcg_env);
2567     /* Architecture requires ss advance before we do the actual work */
2568     gen_ss_advance(s);
2569     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2570     return true;
2571 }
2572 
2573 static bool trans_SMC(DisasContext *s, arg_i *a)
2574 {
2575     if (s->current_el == 0) {
2576         unallocated_encoding(s);
2577         return true;
2578     }
2579     gen_a64_update_pc(s, 0);
2580     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2581     /* Architecture requires ss advance before we do the actual work */
2582     gen_ss_advance(s);
2583     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2584     return true;
2585 }
2586 
2587 static bool trans_BRK(DisasContext *s, arg_i *a)
2588 {
2589     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2590     return true;
2591 }
2592 
2593 static bool trans_HLT(DisasContext *s, arg_i *a)
2594 {
2595     /*
2596      * HLT. This has two purposes.
2597      * Architecturally, it is an external halting debug instruction.
2598      * Since QEMU doesn't implement external debug, we treat this as
2599      * it is required for halting debug disabled: it will UNDEF.
2600      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2601      */
2602     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2603         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2604     } else {
2605         unallocated_encoding(s);
2606     }
2607     return true;
2608 }
2609 
2610 /*
2611  * Load/Store exclusive instructions are implemented by remembering
2612  * the value/address loaded, and seeing if these are the same
2613  * when the store is performed. This is not actually the architecturally
2614  * mandated semantics, but it works for typical guest code sequences
2615  * and avoids having to monitor regular stores.
2616  *
2617  * The store exclusive uses the atomic cmpxchg primitives to avoid
2618  * races in multi-threaded linux-user and when MTTCG softmmu is
2619  * enabled.
2620  */
2621 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2622                                int size, bool is_pair)
2623 {
2624     int idx = get_mem_index(s);
2625     TCGv_i64 dirty_addr, clean_addr;
2626     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2627 
2628     s->is_ldex = true;
2629     dirty_addr = cpu_reg_sp(s, rn);
2630     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2631 
2632     g_assert(size <= 3);
2633     if (is_pair) {
2634         g_assert(size >= 2);
2635         if (size == 2) {
2636             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2637             if (s->be_data == MO_LE) {
2638                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2639                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2640             } else {
2641                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2642                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2643             }
2644         } else {
2645             TCGv_i128 t16 = tcg_temp_new_i128();
2646 
2647             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2648 
2649             if (s->be_data == MO_LE) {
2650                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2651                                       cpu_exclusive_high, t16);
2652             } else {
2653                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2654                                       cpu_exclusive_val, t16);
2655             }
2656             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2657             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2658         }
2659     } else {
2660         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2661         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2662     }
2663     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2664 }
2665 
2666 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2667                                 int rn, int size, int is_pair)
2668 {
2669     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2670      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2671      *     [addr] = {Rt};
2672      *     if (is_pair) {
2673      *         [addr + datasize] = {Rt2};
2674      *     }
2675      *     {Rd} = 0;
2676      * } else {
2677      *     {Rd} = 1;
2678      * }
2679      * env->exclusive_addr = -1;
2680      */
2681     TCGLabel *fail_label = gen_new_label();
2682     TCGLabel *done_label = gen_new_label();
2683     TCGv_i64 tmp, clean_addr;
2684     MemOp memop;
2685 
2686     /*
2687      * FIXME: We are out of spec here.  We have recorded only the address
2688      * from load_exclusive, not the entire range, and we assume that the
2689      * size of the access on both sides match.  The architecture allows the
2690      * store to be smaller than the load, so long as the stored bytes are
2691      * within the range recorded by the load.
2692      */
2693 
2694     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2695     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2696     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2697 
2698     /*
2699      * The write, and any associated faults, only happen if the virtual
2700      * and physical addresses pass the exclusive monitor check.  These
2701      * faults are exceedingly unlikely, because normally the guest uses
2702      * the exact same address register for the load_exclusive, and we
2703      * would have recognized these faults there.
2704      *
2705      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2706      * unaligned 4-byte write within the range of an aligned 8-byte load.
2707      * With LSE2, the store would need to cross a 16-byte boundary when the
2708      * load did not, which would mean the store is outside the range
2709      * recorded for the monitor, which would have failed a corrected monitor
2710      * check above.  For now, we assume no size change and retain the
2711      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2712      *
2713      * It is possible to trigger an MTE fault, by performing the load with
2714      * a virtual address with a valid tag and performing the store with the
2715      * same virtual address and a different invalid tag.
2716      */
2717     memop = size + is_pair;
2718     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2719         memop |= MO_ALIGN;
2720     }
2721     memop = finalize_memop(s, memop);
2722     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2723 
2724     tmp = tcg_temp_new_i64();
2725     if (is_pair) {
2726         if (size == 2) {
2727             if (s->be_data == MO_LE) {
2728                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2729             } else {
2730                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2731             }
2732             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2733                                        cpu_exclusive_val, tmp,
2734                                        get_mem_index(s), memop);
2735             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2736         } else {
2737             TCGv_i128 t16 = tcg_temp_new_i128();
2738             TCGv_i128 c16 = tcg_temp_new_i128();
2739             TCGv_i64 a, b;
2740 
2741             if (s->be_data == MO_LE) {
2742                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2743                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2744                                         cpu_exclusive_high);
2745             } else {
2746                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2747                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2748                                         cpu_exclusive_val);
2749             }
2750 
2751             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2752                                         get_mem_index(s), memop);
2753 
2754             a = tcg_temp_new_i64();
2755             b = tcg_temp_new_i64();
2756             if (s->be_data == MO_LE) {
2757                 tcg_gen_extr_i128_i64(a, b, t16);
2758             } else {
2759                 tcg_gen_extr_i128_i64(b, a, t16);
2760             }
2761 
2762             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2763             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2764             tcg_gen_or_i64(tmp, a, b);
2765 
2766             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2767         }
2768     } else {
2769         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2770                                    cpu_reg(s, rt), get_mem_index(s), memop);
2771         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772     }
2773     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2774     tcg_gen_br(done_label);
2775 
2776     gen_set_label(fail_label);
2777     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2778     gen_set_label(done_label);
2779     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2780 }
2781 
2782 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2783                                  int rn, int size)
2784 {
2785     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2786     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2787     int memidx = get_mem_index(s);
2788     TCGv_i64 clean_addr;
2789     MemOp memop;
2790 
2791     if (rn == 31) {
2792         gen_check_sp_alignment(s);
2793     }
2794     memop = check_atomic_align(s, rn, size);
2795     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2796     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2797                                memidx, memop);
2798 }
2799 
2800 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2801                                       int rn, int size)
2802 {
2803     TCGv_i64 s1 = cpu_reg(s, rs);
2804     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2805     TCGv_i64 t1 = cpu_reg(s, rt);
2806     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2807     TCGv_i64 clean_addr;
2808     int memidx = get_mem_index(s);
2809     MemOp memop;
2810 
2811     if (rn == 31) {
2812         gen_check_sp_alignment(s);
2813     }
2814 
2815     /* This is a single atomic access, despite the "pair". */
2816     memop = check_atomic_align(s, rn, size + 1);
2817     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2818 
2819     if (size == 2) {
2820         TCGv_i64 cmp = tcg_temp_new_i64();
2821         TCGv_i64 val = tcg_temp_new_i64();
2822 
2823         if (s->be_data == MO_LE) {
2824             tcg_gen_concat32_i64(val, t1, t2);
2825             tcg_gen_concat32_i64(cmp, s1, s2);
2826         } else {
2827             tcg_gen_concat32_i64(val, t2, t1);
2828             tcg_gen_concat32_i64(cmp, s2, s1);
2829         }
2830 
2831         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2832 
2833         if (s->be_data == MO_LE) {
2834             tcg_gen_extr32_i64(s1, s2, cmp);
2835         } else {
2836             tcg_gen_extr32_i64(s2, s1, cmp);
2837         }
2838     } else {
2839         TCGv_i128 cmp = tcg_temp_new_i128();
2840         TCGv_i128 val = tcg_temp_new_i128();
2841 
2842         if (s->be_data == MO_LE) {
2843             tcg_gen_concat_i64_i128(val, t1, t2);
2844             tcg_gen_concat_i64_i128(cmp, s1, s2);
2845         } else {
2846             tcg_gen_concat_i64_i128(val, t2, t1);
2847             tcg_gen_concat_i64_i128(cmp, s2, s1);
2848         }
2849 
2850         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2851 
2852         if (s->be_data == MO_LE) {
2853             tcg_gen_extr_i128_i64(s1, s2, cmp);
2854         } else {
2855             tcg_gen_extr_i128_i64(s2, s1, cmp);
2856         }
2857     }
2858 }
2859 
2860 /*
2861  * Compute the ISS.SF bit for syndrome information if an exception
2862  * is taken on a load or store. This indicates whether the instruction
2863  * is accessing a 32-bit or 64-bit register. This logic is derived
2864  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2865  */
2866 static bool ldst_iss_sf(int size, bool sign, bool ext)
2867 {
2868 
2869     if (sign) {
2870         /*
2871          * Signed loads are 64 bit results if we are not going to
2872          * do a zero-extend from 32 to 64 after the load.
2873          * (For a store, sign and ext are always false.)
2874          */
2875         return !ext;
2876     } else {
2877         /* Unsigned loads/stores work at the specified size */
2878         return size == MO_64;
2879     }
2880 }
2881 
2882 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2883 {
2884     if (a->rn == 31) {
2885         gen_check_sp_alignment(s);
2886     }
2887     if (a->lasr) {
2888         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2889     }
2890     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2891     return true;
2892 }
2893 
2894 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2895 {
2896     if (a->rn == 31) {
2897         gen_check_sp_alignment(s);
2898     }
2899     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2900     if (a->lasr) {
2901         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2902     }
2903     return true;
2904 }
2905 
2906 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2907 {
2908     TCGv_i64 clean_addr;
2909     MemOp memop;
2910     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2911 
2912     /*
2913      * StoreLORelease is the same as Store-Release for QEMU, but
2914      * needs the feature-test.
2915      */
2916     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2917         return false;
2918     }
2919     /* Generate ISS for non-exclusive accesses including LASR.  */
2920     if (a->rn == 31) {
2921         gen_check_sp_alignment(s);
2922     }
2923     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2924     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2925     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2926                                 true, a->rn != 31, memop);
2927     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2928               iss_sf, a->lasr);
2929     return true;
2930 }
2931 
2932 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2933 {
2934     TCGv_i64 clean_addr;
2935     MemOp memop;
2936     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2937 
2938     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2939     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2940         return false;
2941     }
2942     /* Generate ISS for non-exclusive accesses including LASR.  */
2943     if (a->rn == 31) {
2944         gen_check_sp_alignment(s);
2945     }
2946     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2947     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2948                                 false, a->rn != 31, memop);
2949     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2950               a->rt, iss_sf, a->lasr);
2951     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2952     return true;
2953 }
2954 
2955 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2956 {
2957     if (a->rn == 31) {
2958         gen_check_sp_alignment(s);
2959     }
2960     if (a->lasr) {
2961         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2962     }
2963     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2964     return true;
2965 }
2966 
2967 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2968 {
2969     if (a->rn == 31) {
2970         gen_check_sp_alignment(s);
2971     }
2972     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2973     if (a->lasr) {
2974         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2975     }
2976     return true;
2977 }
2978 
2979 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2980 {
2981     if (!dc_isar_feature(aa64_atomics, s)) {
2982         return false;
2983     }
2984     if (((a->rt | a->rs) & 1) != 0) {
2985         return false;
2986     }
2987 
2988     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2989     return true;
2990 }
2991 
2992 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2993 {
2994     if (!dc_isar_feature(aa64_atomics, s)) {
2995         return false;
2996     }
2997     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2998     return true;
2999 }
3000 
3001 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3002 {
3003     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3004     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3005     TCGv_i64 clean_addr = tcg_temp_new_i64();
3006     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3007 
3008     gen_pc_plus_diff(s, clean_addr, a->imm);
3009     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3010               false, true, a->rt, iss_sf, false);
3011     return true;
3012 }
3013 
3014 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3015 {
3016     /* Load register (literal), vector version */
3017     TCGv_i64 clean_addr;
3018     MemOp memop;
3019 
3020     if (!fp_access_check(s)) {
3021         return true;
3022     }
3023     memop = finalize_memop_asimd(s, a->sz);
3024     clean_addr = tcg_temp_new_i64();
3025     gen_pc_plus_diff(s, clean_addr, a->imm);
3026     do_fp_ld(s, a->rt, clean_addr, memop);
3027     return true;
3028 }
3029 
3030 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3031                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3032                                  uint64_t offset, bool is_store, MemOp mop)
3033 {
3034     if (a->rn == 31) {
3035         gen_check_sp_alignment(s);
3036     }
3037 
3038     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3039     if (!a->p) {
3040         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3041     }
3042 
3043     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3044                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3045 }
3046 
3047 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3048                                   TCGv_i64 dirty_addr, uint64_t offset)
3049 {
3050     if (a->w) {
3051         if (a->p) {
3052             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3053         }
3054         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3055     }
3056 }
3057 
3058 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3059 {
3060     uint64_t offset = a->imm << a->sz;
3061     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3062     MemOp mop = finalize_memop(s, a->sz);
3063 
3064     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3065     tcg_rt = cpu_reg(s, a->rt);
3066     tcg_rt2 = cpu_reg(s, a->rt2);
3067     /*
3068      * We built mop above for the single logical access -- rebuild it
3069      * now for the paired operation.
3070      *
3071      * With LSE2, non-sign-extending pairs are treated atomically if
3072      * aligned, and if unaligned one of the pair will be completely
3073      * within a 16-byte block and that element will be atomic.
3074      * Otherwise each element is separately atomic.
3075      * In all cases, issue one operation with the correct atomicity.
3076      */
3077     mop = a->sz + 1;
3078     if (s->align_mem) {
3079         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3080     }
3081     mop = finalize_memop_pair(s, mop);
3082     if (a->sz == 2) {
3083         TCGv_i64 tmp = tcg_temp_new_i64();
3084 
3085         if (s->be_data == MO_LE) {
3086             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3087         } else {
3088             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3089         }
3090         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3091     } else {
3092         TCGv_i128 tmp = tcg_temp_new_i128();
3093 
3094         if (s->be_data == MO_LE) {
3095             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3096         } else {
3097             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3098         }
3099         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3100     }
3101     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3102     return true;
3103 }
3104 
3105 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3106 {
3107     uint64_t offset = a->imm << a->sz;
3108     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3109     MemOp mop = finalize_memop(s, a->sz);
3110 
3111     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3112     tcg_rt = cpu_reg(s, a->rt);
3113     tcg_rt2 = cpu_reg(s, a->rt2);
3114 
3115     /*
3116      * We built mop above for the single logical access -- rebuild it
3117      * now for the paired operation.
3118      *
3119      * With LSE2, non-sign-extending pairs are treated atomically if
3120      * aligned, and if unaligned one of the pair will be completely
3121      * within a 16-byte block and that element will be atomic.
3122      * Otherwise each element is separately atomic.
3123      * In all cases, issue one operation with the correct atomicity.
3124      *
3125      * This treats sign-extending loads like zero-extending loads,
3126      * since that reuses the most code below.
3127      */
3128     mop = a->sz + 1;
3129     if (s->align_mem) {
3130         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3131     }
3132     mop = finalize_memop_pair(s, mop);
3133     if (a->sz == 2) {
3134         int o2 = s->be_data == MO_LE ? 32 : 0;
3135         int o1 = o2 ^ 32;
3136 
3137         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3138         if (a->sign) {
3139             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3140             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3141         } else {
3142             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3143             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3144         }
3145     } else {
3146         TCGv_i128 tmp = tcg_temp_new_i128();
3147 
3148         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3149         if (s->be_data == MO_LE) {
3150             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3151         } else {
3152             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3153         }
3154     }
3155     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3156     return true;
3157 }
3158 
3159 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3160 {
3161     uint64_t offset = a->imm << a->sz;
3162     TCGv_i64 clean_addr, dirty_addr;
3163     MemOp mop;
3164 
3165     if (!fp_access_check(s)) {
3166         return true;
3167     }
3168 
3169     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3170     mop = finalize_memop_asimd(s, a->sz);
3171     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3172     do_fp_st(s, a->rt, clean_addr, mop);
3173     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3174     do_fp_st(s, a->rt2, clean_addr, mop);
3175     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3176     return true;
3177 }
3178 
3179 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3180 {
3181     uint64_t offset = a->imm << a->sz;
3182     TCGv_i64 clean_addr, dirty_addr;
3183     MemOp mop;
3184 
3185     if (!fp_access_check(s)) {
3186         return true;
3187     }
3188 
3189     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3190     mop = finalize_memop_asimd(s, a->sz);
3191     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3192     do_fp_ld(s, a->rt, clean_addr, mop);
3193     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3194     do_fp_ld(s, a->rt2, clean_addr, mop);
3195     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3196     return true;
3197 }
3198 
3199 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3200 {
3201     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3202     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3203     MemOp mop;
3204     TCGv_i128 tmp;
3205 
3206     /* STGP only comes in one size. */
3207     tcg_debug_assert(a->sz == MO_64);
3208 
3209     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3210         return false;
3211     }
3212 
3213     if (a->rn == 31) {
3214         gen_check_sp_alignment(s);
3215     }
3216 
3217     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3218     if (!a->p) {
3219         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3220     }
3221 
3222     clean_addr = clean_data_tbi(s, dirty_addr);
3223     tcg_rt = cpu_reg(s, a->rt);
3224     tcg_rt2 = cpu_reg(s, a->rt2);
3225 
3226     /*
3227      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3228      * and one tag operation.  We implement it as one single aligned 16-byte
3229      * memory operation for convenience.  Note that the alignment ensures
3230      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3231      */
3232     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3233 
3234     tmp = tcg_temp_new_i128();
3235     if (s->be_data == MO_LE) {
3236         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3237     } else {
3238         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3239     }
3240     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3241 
3242     /* Perform the tag store, if tag access enabled. */
3243     if (s->ata[0]) {
3244         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3245             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3246         } else {
3247             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3248         }
3249     }
3250 
3251     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3252     return true;
3253 }
3254 
3255 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3256                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3257                                  uint64_t offset, bool is_store, MemOp mop)
3258 {
3259     int memidx;
3260 
3261     if (a->rn == 31) {
3262         gen_check_sp_alignment(s);
3263     }
3264 
3265     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3266     if (!a->p) {
3267         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3268     }
3269     memidx = get_a64_user_mem_index(s, a->unpriv);
3270     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3271                                         a->w || a->rn != 31,
3272                                         mop, a->unpriv, memidx);
3273 }
3274 
3275 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3276                                   TCGv_i64 dirty_addr, uint64_t offset)
3277 {
3278     if (a->w) {
3279         if (a->p) {
3280             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3281         }
3282         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3283     }
3284 }
3285 
3286 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3287 {
3288     bool iss_sf, iss_valid = !a->w;
3289     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3290     int memidx = get_a64_user_mem_index(s, a->unpriv);
3291     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3292 
3293     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3294 
3295     tcg_rt = cpu_reg(s, a->rt);
3296     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3297 
3298     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3299                      iss_valid, a->rt, iss_sf, false);
3300     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3301     return true;
3302 }
3303 
3304 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3305 {
3306     bool iss_sf, iss_valid = !a->w;
3307     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3308     int memidx = get_a64_user_mem_index(s, a->unpriv);
3309     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3310 
3311     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3312 
3313     tcg_rt = cpu_reg(s, a->rt);
3314     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3315 
3316     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3317                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3318     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3319     return true;
3320 }
3321 
3322 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3323 {
3324     TCGv_i64 clean_addr, dirty_addr;
3325     MemOp mop;
3326 
3327     if (!fp_access_check(s)) {
3328         return true;
3329     }
3330     mop = finalize_memop_asimd(s, a->sz);
3331     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3332     do_fp_st(s, a->rt, clean_addr, mop);
3333     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3334     return true;
3335 }
3336 
3337 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3338 {
3339     TCGv_i64 clean_addr, dirty_addr;
3340     MemOp mop;
3341 
3342     if (!fp_access_check(s)) {
3343         return true;
3344     }
3345     mop = finalize_memop_asimd(s, a->sz);
3346     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3347     do_fp_ld(s, a->rt, clean_addr, mop);
3348     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3349     return true;
3350 }
3351 
3352 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3353                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3354                              bool is_store, MemOp memop)
3355 {
3356     TCGv_i64 tcg_rm;
3357 
3358     if (a->rn == 31) {
3359         gen_check_sp_alignment(s);
3360     }
3361     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3362 
3363     tcg_rm = read_cpu_reg(s, a->rm, 1);
3364     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3365 
3366     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3367     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3368 }
3369 
3370 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3371 {
3372     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3373     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3374     MemOp memop;
3375 
3376     if (extract32(a->opt, 1, 1) == 0) {
3377         return false;
3378     }
3379 
3380     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3381     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3382     tcg_rt = cpu_reg(s, a->rt);
3383     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3384               a->ext, true, a->rt, iss_sf, false);
3385     return true;
3386 }
3387 
3388 static bool trans_STR(DisasContext *s, arg_ldst *a)
3389 {
3390     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3391     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3392     MemOp memop;
3393 
3394     if (extract32(a->opt, 1, 1) == 0) {
3395         return false;
3396     }
3397 
3398     memop = finalize_memop(s, a->sz);
3399     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3400     tcg_rt = cpu_reg(s, a->rt);
3401     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3402     return true;
3403 }
3404 
3405 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3406 {
3407     TCGv_i64 clean_addr, dirty_addr;
3408     MemOp memop;
3409 
3410     if (extract32(a->opt, 1, 1) == 0) {
3411         return false;
3412     }
3413 
3414     if (!fp_access_check(s)) {
3415         return true;
3416     }
3417 
3418     memop = finalize_memop_asimd(s, a->sz);
3419     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3420     do_fp_ld(s, a->rt, clean_addr, memop);
3421     return true;
3422 }
3423 
3424 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3425 {
3426     TCGv_i64 clean_addr, dirty_addr;
3427     MemOp memop;
3428 
3429     if (extract32(a->opt, 1, 1) == 0) {
3430         return false;
3431     }
3432 
3433     if (!fp_access_check(s)) {
3434         return true;
3435     }
3436 
3437     memop = finalize_memop_asimd(s, a->sz);
3438     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3439     do_fp_st(s, a->rt, clean_addr, memop);
3440     return true;
3441 }
3442 
3443 
3444 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3445                          int sign, bool invert)
3446 {
3447     MemOp mop = a->sz | sign;
3448     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3449 
3450     if (a->rn == 31) {
3451         gen_check_sp_alignment(s);
3452     }
3453     mop = check_atomic_align(s, a->rn, mop);
3454     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3455                                 a->rn != 31, mop);
3456     tcg_rs = read_cpu_reg(s, a->rs, true);
3457     tcg_rt = cpu_reg(s, a->rt);
3458     if (invert) {
3459         tcg_gen_not_i64(tcg_rs, tcg_rs);
3460     }
3461     /*
3462      * The tcg atomic primitives are all full barriers.  Therefore we
3463      * can ignore the Acquire and Release bits of this instruction.
3464      */
3465     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3466 
3467     if (mop & MO_SIGN) {
3468         switch (a->sz) {
3469         case MO_8:
3470             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3471             break;
3472         case MO_16:
3473             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3474             break;
3475         case MO_32:
3476             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3477             break;
3478         case MO_64:
3479             break;
3480         default:
3481             g_assert_not_reached();
3482         }
3483     }
3484     return true;
3485 }
3486 
3487 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3488 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3489 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3490 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3491 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3492 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3493 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3494 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3495 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3496 
3497 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3498 {
3499     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3500     TCGv_i64 clean_addr;
3501     MemOp mop;
3502 
3503     if (!dc_isar_feature(aa64_atomics, s) ||
3504         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3505         return false;
3506     }
3507     if (a->rn == 31) {
3508         gen_check_sp_alignment(s);
3509     }
3510     mop = check_atomic_align(s, a->rn, a->sz);
3511     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3512                                 a->rn != 31, mop);
3513     /*
3514      * LDAPR* are a special case because they are a simple load, not a
3515      * fetch-and-do-something op.
3516      * The architectural consistency requirements here are weaker than
3517      * full load-acquire (we only need "load-acquire processor consistent"),
3518      * but we choose to implement them as full LDAQ.
3519      */
3520     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3521               true, a->rt, iss_sf, true);
3522     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3523     return true;
3524 }
3525 
3526 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3527 {
3528     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3529     MemOp memop;
3530 
3531     /* Load with pointer authentication */
3532     if (!dc_isar_feature(aa64_pauth, s)) {
3533         return false;
3534     }
3535 
3536     if (a->rn == 31) {
3537         gen_check_sp_alignment(s);
3538     }
3539     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3540 
3541     if (s->pauth_active) {
3542         if (!a->m) {
3543             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3544                                       tcg_constant_i64(0));
3545         } else {
3546             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3547                                       tcg_constant_i64(0));
3548         }
3549     }
3550 
3551     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3552 
3553     memop = finalize_memop(s, MO_64);
3554 
3555     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3556     clean_addr = gen_mte_check1(s, dirty_addr, false,
3557                                 a->w || a->rn != 31, memop);
3558 
3559     tcg_rt = cpu_reg(s, a->rt);
3560     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3561               /* extend */ false, /* iss_valid */ !a->w,
3562               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3563 
3564     if (a->w) {
3565         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3566     }
3567     return true;
3568 }
3569 
3570 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3571 {
3572     TCGv_i64 clean_addr, dirty_addr;
3573     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3574     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3575 
3576     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3577         return false;
3578     }
3579 
3580     if (a->rn == 31) {
3581         gen_check_sp_alignment(s);
3582     }
3583 
3584     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3585     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3586     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3587     clean_addr = clean_data_tbi(s, dirty_addr);
3588 
3589     /*
3590      * Load-AcquirePC semantics; we implement as the slightly more
3591      * restrictive Load-Acquire.
3592      */
3593     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3594               a->rt, iss_sf, true);
3595     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3596     return true;
3597 }
3598 
3599 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3600 {
3601     TCGv_i64 clean_addr, dirty_addr;
3602     MemOp mop = a->sz;
3603     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3604 
3605     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3606         return false;
3607     }
3608 
3609     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3610 
3611     if (a->rn == 31) {
3612         gen_check_sp_alignment(s);
3613     }
3614 
3615     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3616     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3617     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3618     clean_addr = clean_data_tbi(s, dirty_addr);
3619 
3620     /* Store-Release semantics */
3621     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3622     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3623     return true;
3624 }
3625 
3626 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3627 {
3628     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3629     MemOp endian, align, mop;
3630 
3631     int total;    /* total bytes */
3632     int elements; /* elements per vector */
3633     int r;
3634     int size = a->sz;
3635 
3636     if (!a->p && a->rm != 0) {
3637         /* For non-postindexed accesses the Rm field must be 0 */
3638         return false;
3639     }
3640     if (size == 3 && !a->q && a->selem != 1) {
3641         return false;
3642     }
3643     if (!fp_access_check(s)) {
3644         return true;
3645     }
3646 
3647     if (a->rn == 31) {
3648         gen_check_sp_alignment(s);
3649     }
3650 
3651     /* For our purposes, bytes are always little-endian.  */
3652     endian = s->be_data;
3653     if (size == 0) {
3654         endian = MO_LE;
3655     }
3656 
3657     total = a->rpt * a->selem * (a->q ? 16 : 8);
3658     tcg_rn = cpu_reg_sp(s, a->rn);
3659 
3660     /*
3661      * Issue the MTE check vs the logical repeat count, before we
3662      * promote consecutive little-endian elements below.
3663      */
3664     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3665                                 finalize_memop_asimd(s, size));
3666 
3667     /*
3668      * Consecutive little-endian elements from a single register
3669      * can be promoted to a larger little-endian operation.
3670      */
3671     align = MO_ALIGN;
3672     if (a->selem == 1 && endian == MO_LE) {
3673         align = pow2_align(size);
3674         size = 3;
3675     }
3676     if (!s->align_mem) {
3677         align = 0;
3678     }
3679     mop = endian | size | align;
3680 
3681     elements = (a->q ? 16 : 8) >> size;
3682     tcg_ebytes = tcg_constant_i64(1 << size);
3683     for (r = 0; r < a->rpt; r++) {
3684         int e;
3685         for (e = 0; e < elements; e++) {
3686             int xs;
3687             for (xs = 0; xs < a->selem; xs++) {
3688                 int tt = (a->rt + r + xs) % 32;
3689                 do_vec_ld(s, tt, e, clean_addr, mop);
3690                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3691             }
3692         }
3693     }
3694 
3695     /*
3696      * For non-quad operations, setting a slice of the low 64 bits of
3697      * the register clears the high 64 bits (in the ARM ARM pseudocode
3698      * this is implicit in the fact that 'rval' is a 64 bit wide
3699      * variable).  For quad operations, we might still need to zero
3700      * the high bits of SVE.
3701      */
3702     for (r = 0; r < a->rpt * a->selem; r++) {
3703         int tt = (a->rt + r) % 32;
3704         clear_vec_high(s, a->q, tt);
3705     }
3706 
3707     if (a->p) {
3708         if (a->rm == 31) {
3709             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3710         } else {
3711             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3712         }
3713     }
3714     return true;
3715 }
3716 
3717 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3718 {
3719     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3720     MemOp endian, align, mop;
3721 
3722     int total;    /* total bytes */
3723     int elements; /* elements per vector */
3724     int r;
3725     int size = a->sz;
3726 
3727     if (!a->p && a->rm != 0) {
3728         /* For non-postindexed accesses the Rm field must be 0 */
3729         return false;
3730     }
3731     if (size == 3 && !a->q && a->selem != 1) {
3732         return false;
3733     }
3734     if (!fp_access_check(s)) {
3735         return true;
3736     }
3737 
3738     if (a->rn == 31) {
3739         gen_check_sp_alignment(s);
3740     }
3741 
3742     /* For our purposes, bytes are always little-endian.  */
3743     endian = s->be_data;
3744     if (size == 0) {
3745         endian = MO_LE;
3746     }
3747 
3748     total = a->rpt * a->selem * (a->q ? 16 : 8);
3749     tcg_rn = cpu_reg_sp(s, a->rn);
3750 
3751     /*
3752      * Issue the MTE check vs the logical repeat count, before we
3753      * promote consecutive little-endian elements below.
3754      */
3755     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3756                                 finalize_memop_asimd(s, size));
3757 
3758     /*
3759      * Consecutive little-endian elements from a single register
3760      * can be promoted to a larger little-endian operation.
3761      */
3762     align = MO_ALIGN;
3763     if (a->selem == 1 && endian == MO_LE) {
3764         align = pow2_align(size);
3765         size = 3;
3766     }
3767     if (!s->align_mem) {
3768         align = 0;
3769     }
3770     mop = endian | size | align;
3771 
3772     elements = (a->q ? 16 : 8) >> size;
3773     tcg_ebytes = tcg_constant_i64(1 << size);
3774     for (r = 0; r < a->rpt; r++) {
3775         int e;
3776         for (e = 0; e < elements; e++) {
3777             int xs;
3778             for (xs = 0; xs < a->selem; xs++) {
3779                 int tt = (a->rt + r + xs) % 32;
3780                 do_vec_st(s, tt, e, clean_addr, mop);
3781                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3782             }
3783         }
3784     }
3785 
3786     if (a->p) {
3787         if (a->rm == 31) {
3788             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3789         } else {
3790             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3791         }
3792     }
3793     return true;
3794 }
3795 
3796 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3797 {
3798     int xs, total, rt;
3799     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3800     MemOp mop;
3801 
3802     if (!a->p && a->rm != 0) {
3803         return false;
3804     }
3805     if (!fp_access_check(s)) {
3806         return true;
3807     }
3808 
3809     if (a->rn == 31) {
3810         gen_check_sp_alignment(s);
3811     }
3812 
3813     total = a->selem << a->scale;
3814     tcg_rn = cpu_reg_sp(s, a->rn);
3815 
3816     mop = finalize_memop_asimd(s, a->scale);
3817     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3818                                 total, mop);
3819 
3820     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3821     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3822         do_vec_st(s, rt, a->index, clean_addr, mop);
3823         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3824     }
3825 
3826     if (a->p) {
3827         if (a->rm == 31) {
3828             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3829         } else {
3830             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3831         }
3832     }
3833     return true;
3834 }
3835 
3836 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3837 {
3838     int xs, total, rt;
3839     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3840     MemOp mop;
3841 
3842     if (!a->p && a->rm != 0) {
3843         return false;
3844     }
3845     if (!fp_access_check(s)) {
3846         return true;
3847     }
3848 
3849     if (a->rn == 31) {
3850         gen_check_sp_alignment(s);
3851     }
3852 
3853     total = a->selem << a->scale;
3854     tcg_rn = cpu_reg_sp(s, a->rn);
3855 
3856     mop = finalize_memop_asimd(s, a->scale);
3857     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3858                                 total, mop);
3859 
3860     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3861     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3862         do_vec_ld(s, rt, a->index, clean_addr, mop);
3863         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3864     }
3865 
3866     if (a->p) {
3867         if (a->rm == 31) {
3868             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3869         } else {
3870             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3871         }
3872     }
3873     return true;
3874 }
3875 
3876 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3877 {
3878     int xs, total, rt;
3879     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3880     MemOp mop;
3881 
3882     if (!a->p && a->rm != 0) {
3883         return false;
3884     }
3885     if (!fp_access_check(s)) {
3886         return true;
3887     }
3888 
3889     if (a->rn == 31) {
3890         gen_check_sp_alignment(s);
3891     }
3892 
3893     total = a->selem << a->scale;
3894     tcg_rn = cpu_reg_sp(s, a->rn);
3895 
3896     mop = finalize_memop_asimd(s, a->scale);
3897     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3898                                 total, mop);
3899 
3900     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3901     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3902         /* Load and replicate to all elements */
3903         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3904 
3905         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3906         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3907                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3908         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3909     }
3910 
3911     if (a->p) {
3912         if (a->rm == 31) {
3913             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3914         } else {
3915             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3916         }
3917     }
3918     return true;
3919 }
3920 
3921 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3922 {
3923     TCGv_i64 addr, clean_addr, tcg_rt;
3924     int size = 4 << s->dcz_blocksize;
3925 
3926     if (!dc_isar_feature(aa64_mte, s)) {
3927         return false;
3928     }
3929     if (s->current_el == 0) {
3930         return false;
3931     }
3932 
3933     if (a->rn == 31) {
3934         gen_check_sp_alignment(s);
3935     }
3936 
3937     addr = read_cpu_reg_sp(s, a->rn, true);
3938     tcg_gen_addi_i64(addr, addr, a->imm);
3939     tcg_rt = cpu_reg(s, a->rt);
3940 
3941     if (s->ata[0]) {
3942         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3943     }
3944     /*
3945      * The non-tags portion of STZGM is mostly like DC_ZVA,
3946      * except the alignment happens before the access.
3947      */
3948     clean_addr = clean_data_tbi(s, addr);
3949     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3950     gen_helper_dc_zva(tcg_env, clean_addr);
3951     return true;
3952 }
3953 
3954 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3955 {
3956     TCGv_i64 addr, clean_addr, tcg_rt;
3957 
3958     if (!dc_isar_feature(aa64_mte, s)) {
3959         return false;
3960     }
3961     if (s->current_el == 0) {
3962         return false;
3963     }
3964 
3965     if (a->rn == 31) {
3966         gen_check_sp_alignment(s);
3967     }
3968 
3969     addr = read_cpu_reg_sp(s, a->rn, true);
3970     tcg_gen_addi_i64(addr, addr, a->imm);
3971     tcg_rt = cpu_reg(s, a->rt);
3972 
3973     if (s->ata[0]) {
3974         gen_helper_stgm(tcg_env, addr, tcg_rt);
3975     } else {
3976         MMUAccessType acc = MMU_DATA_STORE;
3977         int size = 4 << s->gm_blocksize;
3978 
3979         clean_addr = clean_data_tbi(s, addr);
3980         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3981         gen_probe_access(s, clean_addr, acc, size);
3982     }
3983     return true;
3984 }
3985 
3986 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3987 {
3988     TCGv_i64 addr, clean_addr, tcg_rt;
3989 
3990     if (!dc_isar_feature(aa64_mte, s)) {
3991         return false;
3992     }
3993     if (s->current_el == 0) {
3994         return false;
3995     }
3996 
3997     if (a->rn == 31) {
3998         gen_check_sp_alignment(s);
3999     }
4000 
4001     addr = read_cpu_reg_sp(s, a->rn, true);
4002     tcg_gen_addi_i64(addr, addr, a->imm);
4003     tcg_rt = cpu_reg(s, a->rt);
4004 
4005     if (s->ata[0]) {
4006         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4007     } else {
4008         MMUAccessType acc = MMU_DATA_LOAD;
4009         int size = 4 << s->gm_blocksize;
4010 
4011         clean_addr = clean_data_tbi(s, addr);
4012         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4013         gen_probe_access(s, clean_addr, acc, size);
4014         /* The result tags are zeros.  */
4015         tcg_gen_movi_i64(tcg_rt, 0);
4016     }
4017     return true;
4018 }
4019 
4020 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4021 {
4022     TCGv_i64 addr, clean_addr, tcg_rt;
4023 
4024     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4025         return false;
4026     }
4027 
4028     if (a->rn == 31) {
4029         gen_check_sp_alignment(s);
4030     }
4031 
4032     addr = read_cpu_reg_sp(s, a->rn, true);
4033     if (!a->p) {
4034         /* pre-index or signed offset */
4035         tcg_gen_addi_i64(addr, addr, a->imm);
4036     }
4037 
4038     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4039     tcg_rt = cpu_reg(s, a->rt);
4040     if (s->ata[0]) {
4041         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4042     } else {
4043         /*
4044          * Tag access disabled: we must check for aborts on the load
4045          * load from [rn+offset], and then insert a 0 tag into rt.
4046          */
4047         clean_addr = clean_data_tbi(s, addr);
4048         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4049         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4050     }
4051 
4052     if (a->w) {
4053         /* pre-index or post-index */
4054         if (a->p) {
4055             /* post-index */
4056             tcg_gen_addi_i64(addr, addr, a->imm);
4057         }
4058         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4059     }
4060     return true;
4061 }
4062 
4063 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4064 {
4065     TCGv_i64 addr, tcg_rt;
4066 
4067     if (a->rn == 31) {
4068         gen_check_sp_alignment(s);
4069     }
4070 
4071     addr = read_cpu_reg_sp(s, a->rn, true);
4072     if (!a->p) {
4073         /* pre-index or signed offset */
4074         tcg_gen_addi_i64(addr, addr, a->imm);
4075     }
4076     tcg_rt = cpu_reg_sp(s, a->rt);
4077     if (!s->ata[0]) {
4078         /*
4079          * For STG and ST2G, we need to check alignment and probe memory.
4080          * TODO: For STZG and STZ2G, we could rely on the stores below,
4081          * at least for system mode; user-only won't enforce alignment.
4082          */
4083         if (is_pair) {
4084             gen_helper_st2g_stub(tcg_env, addr);
4085         } else {
4086             gen_helper_stg_stub(tcg_env, addr);
4087         }
4088     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4089         if (is_pair) {
4090             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4091         } else {
4092             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4093         }
4094     } else {
4095         if (is_pair) {
4096             gen_helper_st2g(tcg_env, addr, tcg_rt);
4097         } else {
4098             gen_helper_stg(tcg_env, addr, tcg_rt);
4099         }
4100     }
4101 
4102     if (is_zero) {
4103         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4104         TCGv_i64 zero64 = tcg_constant_i64(0);
4105         TCGv_i128 zero128 = tcg_temp_new_i128();
4106         int mem_index = get_mem_index(s);
4107         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4108 
4109         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4110 
4111         /* This is 1 or 2 atomic 16-byte operations. */
4112         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4113         if (is_pair) {
4114             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4115             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4116         }
4117     }
4118 
4119     if (a->w) {
4120         /* pre-index or post-index */
4121         if (a->p) {
4122             /* post-index */
4123             tcg_gen_addi_i64(addr, addr, a->imm);
4124         }
4125         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4126     }
4127     return true;
4128 }
4129 
4130 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4131 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4132 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4133 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4134 
4135 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4136 
4137 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4138                    bool is_setg, SetFn fn)
4139 {
4140     int memidx;
4141     uint32_t syndrome, desc = 0;
4142 
4143     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4144         return false;
4145     }
4146 
4147     /*
4148      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4149      * us to pull this check before the CheckMOPSEnabled() test
4150      * (which we do in the helper function)
4151      */
4152     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4153         a->rd == 31 || a->rn == 31) {
4154         return false;
4155     }
4156 
4157     memidx = get_a64_user_mem_index(s, a->unpriv);
4158 
4159     /*
4160      * We pass option_a == true, matching our implementation;
4161      * we pass wrong_option == false: helper function may set that bit.
4162      */
4163     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4164                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4165 
4166     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4167         /* We may need to do MTE tag checking, so assemble the descriptor */
4168         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4169         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4170         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4171         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4172     }
4173     /* The helper function always needs the memidx even with MTE disabled */
4174     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4175 
4176     /*
4177      * The helper needs the register numbers, but since they're in
4178      * the syndrome anyway, we let it extract them from there rather
4179      * than passing in an extra three integer arguments.
4180      */
4181     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4182     return true;
4183 }
4184 
4185 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4186 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4187 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4188 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4189 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4190 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4191 
4192 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4193 
4194 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4195 {
4196     int rmemidx, wmemidx;
4197     uint32_t syndrome, rdesc = 0, wdesc = 0;
4198     bool wunpriv = extract32(a->options, 0, 1);
4199     bool runpriv = extract32(a->options, 1, 1);
4200 
4201     /*
4202      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4203      * us to pull this check before the CheckMOPSEnabled() test
4204      * (which we do in the helper function)
4205      */
4206     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4207         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4208         return false;
4209     }
4210 
4211     rmemidx = get_a64_user_mem_index(s, runpriv);
4212     wmemidx = get_a64_user_mem_index(s, wunpriv);
4213 
4214     /*
4215      * We pass option_a == true, matching our implementation;
4216      * we pass wrong_option == false: helper function may set that bit.
4217      */
4218     syndrome = syn_mop(false, false, a->options, is_epilogue,
4219                        false, true, a->rd, a->rs, a->rn);
4220 
4221     /* If we need to do MTE tag checking, assemble the descriptors */
4222     if (s->mte_active[runpriv]) {
4223         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4224         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4225     }
4226     if (s->mte_active[wunpriv]) {
4227         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4228         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4229         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4230     }
4231     /* The helper function needs these parts of the descriptor regardless */
4232     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4233     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4234 
4235     /*
4236      * The helper needs the register numbers, but since they're in
4237      * the syndrome anyway, we let it extract them from there rather
4238      * than passing in an extra three integer arguments.
4239      */
4240     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4241        tcg_constant_i32(rdesc));
4242     return true;
4243 }
4244 
4245 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4246 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4247 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4248 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4249 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4250 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4251 
4252 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4253 
4254 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4255                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4256 {
4257     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4258     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4259     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4260 
4261     fn(tcg_rd, tcg_rn, tcg_imm);
4262     if (!a->sf) {
4263         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4264     }
4265     return true;
4266 }
4267 
4268 /*
4269  * PC-rel. addressing
4270  */
4271 
4272 static bool trans_ADR(DisasContext *s, arg_ri *a)
4273 {
4274     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4275     return true;
4276 }
4277 
4278 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4279 {
4280     int64_t offset = (int64_t)a->imm << 12;
4281 
4282     /* The page offset is ok for CF_PCREL. */
4283     offset -= s->pc_curr & 0xfff;
4284     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4285     return true;
4286 }
4287 
4288 /*
4289  * Add/subtract (immediate)
4290  */
4291 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4292 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4293 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4294 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4295 
4296 /*
4297  * Add/subtract (immediate, with tags)
4298  */
4299 
4300 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4301                                       bool sub_op)
4302 {
4303     TCGv_i64 tcg_rn, tcg_rd;
4304     int imm;
4305 
4306     imm = a->uimm6 << LOG2_TAG_GRANULE;
4307     if (sub_op) {
4308         imm = -imm;
4309     }
4310 
4311     tcg_rn = cpu_reg_sp(s, a->rn);
4312     tcg_rd = cpu_reg_sp(s, a->rd);
4313 
4314     if (s->ata[0]) {
4315         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4316                            tcg_constant_i32(imm),
4317                            tcg_constant_i32(a->uimm4));
4318     } else {
4319         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4320         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4321     }
4322     return true;
4323 }
4324 
4325 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4326 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4327 
4328 /* The input should be a value in the bottom e bits (with higher
4329  * bits zero); returns that value replicated into every element
4330  * of size e in a 64 bit integer.
4331  */
4332 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4333 {
4334     assert(e != 0);
4335     while (e < 64) {
4336         mask |= mask << e;
4337         e *= 2;
4338     }
4339     return mask;
4340 }
4341 
4342 /*
4343  * Logical (immediate)
4344  */
4345 
4346 /*
4347  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4348  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4349  * value (ie should cause a guest UNDEF exception), and true if they are
4350  * valid, in which case the decoded bit pattern is written to result.
4351  */
4352 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4353                             unsigned int imms, unsigned int immr)
4354 {
4355     uint64_t mask;
4356     unsigned e, levels, s, r;
4357     int len;
4358 
4359     assert(immn < 2 && imms < 64 && immr < 64);
4360 
4361     /* The bit patterns we create here are 64 bit patterns which
4362      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4363      * 64 bits each. Each element contains the same value: a run
4364      * of between 1 and e-1 non-zero bits, rotated within the
4365      * element by between 0 and e-1 bits.
4366      *
4367      * The element size and run length are encoded into immn (1 bit)
4368      * and imms (6 bits) as follows:
4369      * 64 bit elements: immn = 1, imms = <length of run - 1>
4370      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4371      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4372      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4373      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4374      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4375      * Notice that immn = 0, imms = 11111x is the only combination
4376      * not covered by one of the above options; this is reserved.
4377      * Further, <length of run - 1> all-ones is a reserved pattern.
4378      *
4379      * In all cases the rotation is by immr % e (and immr is 6 bits).
4380      */
4381 
4382     /* First determine the element size */
4383     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4384     if (len < 1) {
4385         /* This is the immn == 0, imms == 0x11111x case */
4386         return false;
4387     }
4388     e = 1 << len;
4389 
4390     levels = e - 1;
4391     s = imms & levels;
4392     r = immr & levels;
4393 
4394     if (s == levels) {
4395         /* <length of run - 1> mustn't be all-ones. */
4396         return false;
4397     }
4398 
4399     /* Create the value of one element: s+1 set bits rotated
4400      * by r within the element (which is e bits wide)...
4401      */
4402     mask = MAKE_64BIT_MASK(0, s + 1);
4403     if (r) {
4404         mask = (mask >> r) | (mask << (e - r));
4405         mask &= MAKE_64BIT_MASK(0, e);
4406     }
4407     /* ...then replicate the element over the whole 64 bit value */
4408     mask = bitfield_replicate(mask, e);
4409     *result = mask;
4410     return true;
4411 }
4412 
4413 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4414                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4415 {
4416     TCGv_i64 tcg_rd, tcg_rn;
4417     uint64_t imm;
4418 
4419     /* Some immediate field values are reserved. */
4420     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4421                                 extract32(a->dbm, 0, 6),
4422                                 extract32(a->dbm, 6, 6))) {
4423         return false;
4424     }
4425     if (!a->sf) {
4426         imm &= 0xffffffffull;
4427     }
4428 
4429     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4430     tcg_rn = cpu_reg(s, a->rn);
4431 
4432     fn(tcg_rd, tcg_rn, imm);
4433     if (set_cc) {
4434         gen_logic_CC(a->sf, tcg_rd);
4435     }
4436     if (!a->sf) {
4437         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4438     }
4439     return true;
4440 }
4441 
4442 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4443 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4444 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4445 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4446 
4447 /*
4448  * Move wide (immediate)
4449  */
4450 
4451 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4452 {
4453     int pos = a->hw << 4;
4454     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4455     return true;
4456 }
4457 
4458 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4459 {
4460     int pos = a->hw << 4;
4461     uint64_t imm = a->imm;
4462 
4463     imm = ~(imm << pos);
4464     if (!a->sf) {
4465         imm = (uint32_t)imm;
4466     }
4467     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4468     return true;
4469 }
4470 
4471 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4472 {
4473     int pos = a->hw << 4;
4474     TCGv_i64 tcg_rd, tcg_im;
4475 
4476     tcg_rd = cpu_reg(s, a->rd);
4477     tcg_im = tcg_constant_i64(a->imm);
4478     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4479     if (!a->sf) {
4480         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4481     }
4482     return true;
4483 }
4484 
4485 /*
4486  * Bitfield
4487  */
4488 
4489 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4490 {
4491     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4492     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4493     unsigned int bitsize = a->sf ? 64 : 32;
4494     unsigned int ri = a->immr;
4495     unsigned int si = a->imms;
4496     unsigned int pos, len;
4497 
4498     if (si >= ri) {
4499         /* Wd<s-r:0> = Wn<s:r> */
4500         len = (si - ri) + 1;
4501         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4502         if (!a->sf) {
4503             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4504         }
4505     } else {
4506         /* Wd<32+s-r,32-r> = Wn<s:0> */
4507         len = si + 1;
4508         pos = (bitsize - ri) & (bitsize - 1);
4509 
4510         if (len < ri) {
4511             /*
4512              * Sign extend the destination field from len to fill the
4513              * balance of the word.  Let the deposit below insert all
4514              * of those sign bits.
4515              */
4516             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4517             len = ri;
4518         }
4519 
4520         /*
4521          * We start with zero, and we haven't modified any bits outside
4522          * bitsize, therefore no final zero-extension is unneeded for !sf.
4523          */
4524         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4525     }
4526     return true;
4527 }
4528 
4529 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4530 {
4531     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4532     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4533     unsigned int bitsize = a->sf ? 64 : 32;
4534     unsigned int ri = a->immr;
4535     unsigned int si = a->imms;
4536     unsigned int pos, len;
4537 
4538     tcg_rd = cpu_reg(s, a->rd);
4539     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4540 
4541     if (si >= ri) {
4542         /* Wd<s-r:0> = Wn<s:r> */
4543         len = (si - ri) + 1;
4544         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4545     } else {
4546         /* Wd<32+s-r,32-r> = Wn<s:0> */
4547         len = si + 1;
4548         pos = (bitsize - ri) & (bitsize - 1);
4549         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4550     }
4551     return true;
4552 }
4553 
4554 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4555 {
4556     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4557     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4558     unsigned int bitsize = a->sf ? 64 : 32;
4559     unsigned int ri = a->immr;
4560     unsigned int si = a->imms;
4561     unsigned int pos, len;
4562 
4563     tcg_rd = cpu_reg(s, a->rd);
4564     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4565 
4566     if (si >= ri) {
4567         /* Wd<s-r:0> = Wn<s:r> */
4568         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4569         len = (si - ri) + 1;
4570         pos = 0;
4571     } else {
4572         /* Wd<32+s-r,32-r> = Wn<s:0> */
4573         len = si + 1;
4574         pos = (bitsize - ri) & (bitsize - 1);
4575     }
4576 
4577     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4578     if (!a->sf) {
4579         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4580     }
4581     return true;
4582 }
4583 
4584 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4585 {
4586     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4587 
4588     tcg_rd = cpu_reg(s, a->rd);
4589 
4590     if (unlikely(a->imm == 0)) {
4591         /*
4592          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4593          * so an extract from bit 0 is a special case.
4594          */
4595         if (a->sf) {
4596             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4597         } else {
4598             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4599         }
4600     } else {
4601         tcg_rm = cpu_reg(s, a->rm);
4602         tcg_rn = cpu_reg(s, a->rn);
4603 
4604         if (a->sf) {
4605             /* Specialization to ROR happens in EXTRACT2.  */
4606             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4607         } else {
4608             TCGv_i32 t0 = tcg_temp_new_i32();
4609 
4610             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4611             if (a->rm == a->rn) {
4612                 tcg_gen_rotri_i32(t0, t0, a->imm);
4613             } else {
4614                 TCGv_i32 t1 = tcg_temp_new_i32();
4615                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4616                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4617             }
4618             tcg_gen_extu_i32_i64(tcg_rd, t0);
4619         }
4620     }
4621     return true;
4622 }
4623 
4624 /*
4625  * Cryptographic AES, SHA, SHA512
4626  */
4627 
4628 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4629 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4630 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4631 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4632 
4633 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4634 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4635 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4636 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4637 
4638 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4639 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4640 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4641 
4642 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4643 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4644 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4645 
4646 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4647 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4648 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4649 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4650 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4651 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4652 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4653 
4654 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4655 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4656 
4657 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4658 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4659 
4660 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4661 {
4662     if (!dc_isar_feature(aa64_sm3, s)) {
4663         return false;
4664     }
4665     if (fp_access_check(s)) {
4666         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4667         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4668         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4669         TCGv_i32 tcg_res = tcg_temp_new_i32();
4670         unsigned vsz, dofs;
4671 
4672         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4673         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4674         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4675 
4676         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4677         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4678         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4679         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4680 
4681         /* Clear the whole register first, then store bits [127:96]. */
4682         vsz = vec_full_reg_size(s);
4683         dofs = vec_full_reg_offset(s, a->rd);
4684         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4685         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4686     }
4687     return true;
4688 }
4689 
4690 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4691 {
4692     if (fp_access_check(s)) {
4693         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4694     }
4695     return true;
4696 }
4697 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4698 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4699 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4700 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4701 
4702 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4703 {
4704     if (!dc_isar_feature(aa64_sha3, s)) {
4705         return false;
4706     }
4707     if (fp_access_check(s)) {
4708         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4709                      vec_full_reg_offset(s, a->rn),
4710                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4711                      vec_full_reg_size(s));
4712     }
4713     return true;
4714 }
4715 
4716 /*
4717  * Advanced SIMD copy
4718  */
4719 
4720 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4721 {
4722     unsigned esz = ctz32(imm);
4723     if (esz <= MO_64) {
4724         *pesz = esz;
4725         *pidx = imm >> (esz + 1);
4726         return true;
4727     }
4728     return false;
4729 }
4730 
4731 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4732 {
4733     MemOp esz;
4734     unsigned idx;
4735 
4736     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4737         return false;
4738     }
4739     if (fp_access_check(s)) {
4740         /*
4741          * This instruction just extracts the specified element and
4742          * zero-extends it into the bottom of the destination register.
4743          */
4744         TCGv_i64 tmp = tcg_temp_new_i64();
4745         read_vec_element(s, tmp, a->rn, idx, esz);
4746         write_fp_dreg(s, a->rd, tmp);
4747     }
4748     return true;
4749 }
4750 
4751 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4752 {
4753     MemOp esz;
4754     unsigned idx;
4755 
4756     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4757         return false;
4758     }
4759     if (esz == MO_64 && !a->q) {
4760         return false;
4761     }
4762     if (fp_access_check(s)) {
4763         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4764                              vec_reg_offset(s, a->rn, idx, esz),
4765                              a->q ? 16 : 8, vec_full_reg_size(s));
4766     }
4767     return true;
4768 }
4769 
4770 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4771 {
4772     MemOp esz;
4773     unsigned idx;
4774 
4775     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4776         return false;
4777     }
4778     if (esz == MO_64 && !a->q) {
4779         return false;
4780     }
4781     if (fp_access_check(s)) {
4782         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4783                              a->q ? 16 : 8, vec_full_reg_size(s),
4784                              cpu_reg(s, a->rn));
4785     }
4786     return true;
4787 }
4788 
4789 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4790 {
4791     MemOp esz;
4792     unsigned idx;
4793 
4794     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4795         return false;
4796     }
4797     if (is_signed) {
4798         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4799             return false;
4800         }
4801     } else {
4802         if (esz == MO_64 ? !a->q : a->q) {
4803             return false;
4804         }
4805     }
4806     if (fp_access_check(s)) {
4807         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4808         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4809         if (is_signed && !a->q) {
4810             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4811         }
4812     }
4813     return true;
4814 }
4815 
4816 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4817 TRANS(UMOV, do_smov_umov, a, 0)
4818 
4819 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4820 {
4821     MemOp esz;
4822     unsigned idx;
4823 
4824     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4825         return false;
4826     }
4827     if (fp_access_check(s)) {
4828         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4829         clear_vec_high(s, true, a->rd);
4830     }
4831     return true;
4832 }
4833 
4834 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4835 {
4836     MemOp esz;
4837     unsigned didx, sidx;
4838 
4839     if (!decode_esz_idx(a->di, &esz, &didx)) {
4840         return false;
4841     }
4842     sidx = a->si >> esz;
4843     if (fp_access_check(s)) {
4844         TCGv_i64 tmp = tcg_temp_new_i64();
4845 
4846         read_vec_element(s, tmp, a->rn, sidx, esz);
4847         write_vec_element(s, tmp, a->rd, didx, esz);
4848 
4849         /* INS is considered a 128-bit write for SVE. */
4850         clear_vec_high(s, true, a->rd);
4851     }
4852     return true;
4853 }
4854 
4855 /*
4856  * Advanced SIMD three same
4857  */
4858 
4859 typedef struct FPScalar {
4860     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4861     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4862     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4863 } FPScalar;
4864 
4865 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4866 {
4867     switch (a->esz) {
4868     case MO_64:
4869         if (fp_access_check(s)) {
4870             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4871             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4872             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4873             write_fp_dreg(s, a->rd, t0);
4874         }
4875         break;
4876     case MO_32:
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4880             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     case MO_16:
4885         if (!dc_isar_feature(aa64_fp16, s)) {
4886             return false;
4887         }
4888         if (fp_access_check(s)) {
4889             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4890             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4891             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4892             write_fp_sreg(s, a->rd, t0);
4893         }
4894         break;
4895     default:
4896         return false;
4897     }
4898     return true;
4899 }
4900 
4901 static const FPScalar f_scalar_fadd = {
4902     gen_helper_vfp_addh,
4903     gen_helper_vfp_adds,
4904     gen_helper_vfp_addd,
4905 };
4906 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4907 
4908 static const FPScalar f_scalar_fsub = {
4909     gen_helper_vfp_subh,
4910     gen_helper_vfp_subs,
4911     gen_helper_vfp_subd,
4912 };
4913 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4914 
4915 static const FPScalar f_scalar_fdiv = {
4916     gen_helper_vfp_divh,
4917     gen_helper_vfp_divs,
4918     gen_helper_vfp_divd,
4919 };
4920 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4921 
4922 static const FPScalar f_scalar_fmul = {
4923     gen_helper_vfp_mulh,
4924     gen_helper_vfp_muls,
4925     gen_helper_vfp_muld,
4926 };
4927 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4928 
4929 static const FPScalar f_scalar_fmax = {
4930     gen_helper_advsimd_maxh,
4931     gen_helper_vfp_maxs,
4932     gen_helper_vfp_maxd,
4933 };
4934 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4935 
4936 static const FPScalar f_scalar_fmin = {
4937     gen_helper_advsimd_minh,
4938     gen_helper_vfp_mins,
4939     gen_helper_vfp_mind,
4940 };
4941 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4942 
4943 static const FPScalar f_scalar_fmaxnm = {
4944     gen_helper_advsimd_maxnumh,
4945     gen_helper_vfp_maxnums,
4946     gen_helper_vfp_maxnumd,
4947 };
4948 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4949 
4950 static const FPScalar f_scalar_fminnm = {
4951     gen_helper_advsimd_minnumh,
4952     gen_helper_vfp_minnums,
4953     gen_helper_vfp_minnumd,
4954 };
4955 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4956 
4957 static const FPScalar f_scalar_fmulx = {
4958     gen_helper_advsimd_mulxh,
4959     gen_helper_vfp_mulxs,
4960     gen_helper_vfp_mulxd,
4961 };
4962 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4963 
4964 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4965 {
4966     gen_helper_vfp_mulh(d, n, m, s);
4967     gen_vfp_negh(d, d);
4968 }
4969 
4970 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4971 {
4972     gen_helper_vfp_muls(d, n, m, s);
4973     gen_vfp_negs(d, d);
4974 }
4975 
4976 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4977 {
4978     gen_helper_vfp_muld(d, n, m, s);
4979     gen_vfp_negd(d, d);
4980 }
4981 
4982 static const FPScalar f_scalar_fnmul = {
4983     gen_fnmul_h,
4984     gen_fnmul_s,
4985     gen_fnmul_d,
4986 };
4987 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4988 
4989 static const FPScalar f_scalar_fcmeq = {
4990     gen_helper_advsimd_ceq_f16,
4991     gen_helper_neon_ceq_f32,
4992     gen_helper_neon_ceq_f64,
4993 };
4994 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4995 
4996 static const FPScalar f_scalar_fcmge = {
4997     gen_helper_advsimd_cge_f16,
4998     gen_helper_neon_cge_f32,
4999     gen_helper_neon_cge_f64,
5000 };
5001 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5002 
5003 static const FPScalar f_scalar_fcmgt = {
5004     gen_helper_advsimd_cgt_f16,
5005     gen_helper_neon_cgt_f32,
5006     gen_helper_neon_cgt_f64,
5007 };
5008 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5009 
5010 static const FPScalar f_scalar_facge = {
5011     gen_helper_advsimd_acge_f16,
5012     gen_helper_neon_acge_f32,
5013     gen_helper_neon_acge_f64,
5014 };
5015 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5016 
5017 static const FPScalar f_scalar_facgt = {
5018     gen_helper_advsimd_acgt_f16,
5019     gen_helper_neon_acgt_f32,
5020     gen_helper_neon_acgt_f64,
5021 };
5022 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5023 
5024 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5025 {
5026     gen_helper_vfp_subh(d, n, m, s);
5027     gen_vfp_absh(d, d);
5028 }
5029 
5030 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5031 {
5032     gen_helper_vfp_subs(d, n, m, s);
5033     gen_vfp_abss(d, d);
5034 }
5035 
5036 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5037 {
5038     gen_helper_vfp_subd(d, n, m, s);
5039     gen_vfp_absd(d, d);
5040 }
5041 
5042 static const FPScalar f_scalar_fabd = {
5043     gen_fabd_h,
5044     gen_fabd_s,
5045     gen_fabd_d,
5046 };
5047 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5048 
5049 static const FPScalar f_scalar_frecps = {
5050     gen_helper_recpsf_f16,
5051     gen_helper_recpsf_f32,
5052     gen_helper_recpsf_f64,
5053 };
5054 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5055 
5056 static const FPScalar f_scalar_frsqrts = {
5057     gen_helper_rsqrtsf_f16,
5058     gen_helper_rsqrtsf_f32,
5059     gen_helper_rsqrtsf_f64,
5060 };
5061 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5062 
5063 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5064                           gen_helper_gvec_3_ptr * const fns[3])
5065 {
5066     MemOp esz = a->esz;
5067 
5068     switch (esz) {
5069     case MO_64:
5070         if (!a->q) {
5071             return false;
5072         }
5073         break;
5074     case MO_32:
5075         break;
5076     case MO_16:
5077         if (!dc_isar_feature(aa64_fp16, s)) {
5078             return false;
5079         }
5080         break;
5081     default:
5082         return false;
5083     }
5084     if (fp_access_check(s)) {
5085         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5086                           esz == MO_16, 0, fns[esz - 1]);
5087     }
5088     return true;
5089 }
5090 
5091 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5092     gen_helper_gvec_fadd_h,
5093     gen_helper_gvec_fadd_s,
5094     gen_helper_gvec_fadd_d,
5095 };
5096 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5097 
5098 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5099     gen_helper_gvec_fsub_h,
5100     gen_helper_gvec_fsub_s,
5101     gen_helper_gvec_fsub_d,
5102 };
5103 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5104 
5105 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5106     gen_helper_gvec_fdiv_h,
5107     gen_helper_gvec_fdiv_s,
5108     gen_helper_gvec_fdiv_d,
5109 };
5110 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5111 
5112 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5113     gen_helper_gvec_fmul_h,
5114     gen_helper_gvec_fmul_s,
5115     gen_helper_gvec_fmul_d,
5116 };
5117 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5118 
5119 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5120     gen_helper_gvec_fmax_h,
5121     gen_helper_gvec_fmax_s,
5122     gen_helper_gvec_fmax_d,
5123 };
5124 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5125 
5126 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5127     gen_helper_gvec_fmin_h,
5128     gen_helper_gvec_fmin_s,
5129     gen_helper_gvec_fmin_d,
5130 };
5131 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5132 
5133 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5134     gen_helper_gvec_fmaxnum_h,
5135     gen_helper_gvec_fmaxnum_s,
5136     gen_helper_gvec_fmaxnum_d,
5137 };
5138 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5139 
5140 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5141     gen_helper_gvec_fminnum_h,
5142     gen_helper_gvec_fminnum_s,
5143     gen_helper_gvec_fminnum_d,
5144 };
5145 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5146 
5147 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5148     gen_helper_gvec_fmulx_h,
5149     gen_helper_gvec_fmulx_s,
5150     gen_helper_gvec_fmulx_d,
5151 };
5152 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5153 
5154 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5155     gen_helper_gvec_vfma_h,
5156     gen_helper_gvec_vfma_s,
5157     gen_helper_gvec_vfma_d,
5158 };
5159 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5160 
5161 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5162     gen_helper_gvec_vfms_h,
5163     gen_helper_gvec_vfms_s,
5164     gen_helper_gvec_vfms_d,
5165 };
5166 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5167 
5168 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5169     gen_helper_gvec_fceq_h,
5170     gen_helper_gvec_fceq_s,
5171     gen_helper_gvec_fceq_d,
5172 };
5173 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5174 
5175 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5176     gen_helper_gvec_fcge_h,
5177     gen_helper_gvec_fcge_s,
5178     gen_helper_gvec_fcge_d,
5179 };
5180 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5181 
5182 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5183     gen_helper_gvec_fcgt_h,
5184     gen_helper_gvec_fcgt_s,
5185     gen_helper_gvec_fcgt_d,
5186 };
5187 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5188 
5189 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5190     gen_helper_gvec_facge_h,
5191     gen_helper_gvec_facge_s,
5192     gen_helper_gvec_facge_d,
5193 };
5194 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5195 
5196 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5197     gen_helper_gvec_facgt_h,
5198     gen_helper_gvec_facgt_s,
5199     gen_helper_gvec_facgt_d,
5200 };
5201 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5202 
5203 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5204     gen_helper_gvec_fabd_h,
5205     gen_helper_gvec_fabd_s,
5206     gen_helper_gvec_fabd_d,
5207 };
5208 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5209 
5210 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5211     gen_helper_gvec_recps_h,
5212     gen_helper_gvec_recps_s,
5213     gen_helper_gvec_recps_d,
5214 };
5215 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5216 
5217 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5218     gen_helper_gvec_rsqrts_h,
5219     gen_helper_gvec_rsqrts_s,
5220     gen_helper_gvec_rsqrts_d,
5221 };
5222 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5223 
5224 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5225     gen_helper_gvec_faddp_h,
5226     gen_helper_gvec_faddp_s,
5227     gen_helper_gvec_faddp_d,
5228 };
5229 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5230 
5231 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5232     gen_helper_gvec_fmaxp_h,
5233     gen_helper_gvec_fmaxp_s,
5234     gen_helper_gvec_fmaxp_d,
5235 };
5236 TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
5237 
5238 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5239     gen_helper_gvec_fminp_h,
5240     gen_helper_gvec_fminp_s,
5241     gen_helper_gvec_fminp_d,
5242 };
5243 TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
5244 
5245 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5246     gen_helper_gvec_fmaxnump_h,
5247     gen_helper_gvec_fmaxnump_s,
5248     gen_helper_gvec_fmaxnump_d,
5249 };
5250 TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
5251 
5252 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5253     gen_helper_gvec_fminnump_h,
5254     gen_helper_gvec_fminnump_s,
5255     gen_helper_gvec_fminnump_d,
5256 };
5257 TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
5258 
5259 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5260 {
5261     if (fp_access_check(s)) {
5262         int data = (is_2 << 1) | is_s;
5263         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5264                            vec_full_reg_offset(s, a->rn),
5265                            vec_full_reg_offset(s, a->rm), tcg_env,
5266                            a->q ? 16 : 8, vec_full_reg_size(s),
5267                            data, gen_helper_gvec_fmlal_a64);
5268     }
5269     return true;
5270 }
5271 
5272 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5273 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5274 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5275 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5276 
5277 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5278 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5279 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5280 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5281 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5282 
5283 /*
5284  * Advanced SIMD scalar/vector x indexed element
5285  */
5286 
5287 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5288 {
5289     switch (a->esz) {
5290     case MO_64:
5291         if (fp_access_check(s)) {
5292             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5293             TCGv_i64 t1 = tcg_temp_new_i64();
5294 
5295             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5296             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5297             write_fp_dreg(s, a->rd, t0);
5298         }
5299         break;
5300     case MO_32:
5301         if (fp_access_check(s)) {
5302             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5303             TCGv_i32 t1 = tcg_temp_new_i32();
5304 
5305             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5306             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5307             write_fp_sreg(s, a->rd, t0);
5308         }
5309         break;
5310     case MO_16:
5311         if (!dc_isar_feature(aa64_fp16, s)) {
5312             return false;
5313         }
5314         if (fp_access_check(s)) {
5315             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5316             TCGv_i32 t1 = tcg_temp_new_i32();
5317 
5318             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5319             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5320             write_fp_sreg(s, a->rd, t0);
5321         }
5322         break;
5323     default:
5324         g_assert_not_reached();
5325     }
5326     return true;
5327 }
5328 
5329 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5330 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5331 
5332 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5333 {
5334     switch (a->esz) {
5335     case MO_64:
5336         if (fp_access_check(s)) {
5337             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5338             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5339             TCGv_i64 t2 = tcg_temp_new_i64();
5340 
5341             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5342             if (neg) {
5343                 gen_vfp_negd(t1, t1);
5344             }
5345             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5346             write_fp_dreg(s, a->rd, t0);
5347         }
5348         break;
5349     case MO_32:
5350         if (fp_access_check(s)) {
5351             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5352             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5353             TCGv_i32 t2 = tcg_temp_new_i32();
5354 
5355             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5356             if (neg) {
5357                 gen_vfp_negs(t1, t1);
5358             }
5359             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5360             write_fp_sreg(s, a->rd, t0);
5361         }
5362         break;
5363     case MO_16:
5364         if (!dc_isar_feature(aa64_fp16, s)) {
5365             return false;
5366         }
5367         if (fp_access_check(s)) {
5368             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5369             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5370             TCGv_i32 t2 = tcg_temp_new_i32();
5371 
5372             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5373             if (neg) {
5374                 gen_vfp_negh(t1, t1);
5375             }
5376             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5377                                        fpstatus_ptr(FPST_FPCR_F16));
5378             write_fp_sreg(s, a->rd, t0);
5379         }
5380         break;
5381     default:
5382         g_assert_not_reached();
5383     }
5384     return true;
5385 }
5386 
5387 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5388 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5389 
5390 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5391                               gen_helper_gvec_3_ptr * const fns[3])
5392 {
5393     MemOp esz = a->esz;
5394 
5395     switch (esz) {
5396     case MO_64:
5397         if (!a->q) {
5398             return false;
5399         }
5400         break;
5401     case MO_32:
5402         break;
5403     case MO_16:
5404         if (!dc_isar_feature(aa64_fp16, s)) {
5405             return false;
5406         }
5407         break;
5408     default:
5409         g_assert_not_reached();
5410     }
5411     if (fp_access_check(s)) {
5412         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5413                           esz == MO_16, a->idx, fns[esz - 1]);
5414     }
5415     return true;
5416 }
5417 
5418 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5419     gen_helper_gvec_fmul_idx_h,
5420     gen_helper_gvec_fmul_idx_s,
5421     gen_helper_gvec_fmul_idx_d,
5422 };
5423 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5424 
5425 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5426     gen_helper_gvec_fmulx_idx_h,
5427     gen_helper_gvec_fmulx_idx_s,
5428     gen_helper_gvec_fmulx_idx_d,
5429 };
5430 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5431 
5432 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5433 {
5434     static gen_helper_gvec_4_ptr * const fns[3] = {
5435         gen_helper_gvec_fmla_idx_h,
5436         gen_helper_gvec_fmla_idx_s,
5437         gen_helper_gvec_fmla_idx_d,
5438     };
5439     MemOp esz = a->esz;
5440 
5441     switch (esz) {
5442     case MO_64:
5443         if (!a->q) {
5444             return false;
5445         }
5446         break;
5447     case MO_32:
5448         break;
5449     case MO_16:
5450         if (!dc_isar_feature(aa64_fp16, s)) {
5451             return false;
5452         }
5453         break;
5454     default:
5455         g_assert_not_reached();
5456     }
5457     if (fp_access_check(s)) {
5458         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5459                           esz == MO_16, (a->idx << 1) | neg,
5460                           fns[esz - 1]);
5461     }
5462     return true;
5463 }
5464 
5465 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5466 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5467 
5468 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
5469 {
5470     if (fp_access_check(s)) {
5471         int data = (a->idx << 2) | (is_2 << 1) | is_s;
5472         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5473                            vec_full_reg_offset(s, a->rn),
5474                            vec_full_reg_offset(s, a->rm), tcg_env,
5475                            a->q ? 16 : 8, vec_full_reg_size(s),
5476                            data, gen_helper_gvec_fmlal_idx_a64);
5477     }
5478     return true;
5479 }
5480 
5481 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
5482 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
5483 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
5484 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
5485 
5486 /*
5487  * Advanced SIMD scalar pairwise
5488  */
5489 
5490 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5491 {
5492     switch (a->esz) {
5493     case MO_64:
5494         if (fp_access_check(s)) {
5495             TCGv_i64 t0 = tcg_temp_new_i64();
5496             TCGv_i64 t1 = tcg_temp_new_i64();
5497 
5498             read_vec_element(s, t0, a->rn, 0, MO_64);
5499             read_vec_element(s, t1, a->rn, 1, MO_64);
5500             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5501             write_fp_dreg(s, a->rd, t0);
5502         }
5503         break;
5504     case MO_32:
5505         if (fp_access_check(s)) {
5506             TCGv_i32 t0 = tcg_temp_new_i32();
5507             TCGv_i32 t1 = tcg_temp_new_i32();
5508 
5509             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5510             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5511             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5512             write_fp_sreg(s, a->rd, t0);
5513         }
5514         break;
5515     case MO_16:
5516         if (!dc_isar_feature(aa64_fp16, s)) {
5517             return false;
5518         }
5519         if (fp_access_check(s)) {
5520             TCGv_i32 t0 = tcg_temp_new_i32();
5521             TCGv_i32 t1 = tcg_temp_new_i32();
5522 
5523             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5524             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5525             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5526             write_fp_sreg(s, a->rd, t0);
5527         }
5528         break;
5529     default:
5530         g_assert_not_reached();
5531     }
5532     return true;
5533 }
5534 
5535 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5536 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
5537 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
5538 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
5539 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
5540 
5541 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
5542 {
5543     if (fp_access_check(s)) {
5544         TCGv_i64 t0 = tcg_temp_new_i64();
5545         TCGv_i64 t1 = tcg_temp_new_i64();
5546 
5547         read_vec_element(s, t0, a->rn, 0, MO_64);
5548         read_vec_element(s, t1, a->rn, 1, MO_64);
5549         tcg_gen_add_i64(t0, t0, t1);
5550         write_fp_dreg(s, a->rd, t0);
5551     }
5552     return true;
5553 }
5554 
5555 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5556  * Note that it is the caller's responsibility to ensure that the
5557  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5558  * mandated semantics for out of range shifts.
5559  */
5560 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5561                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5562 {
5563     switch (shift_type) {
5564     case A64_SHIFT_TYPE_LSL:
5565         tcg_gen_shl_i64(dst, src, shift_amount);
5566         break;
5567     case A64_SHIFT_TYPE_LSR:
5568         tcg_gen_shr_i64(dst, src, shift_amount);
5569         break;
5570     case A64_SHIFT_TYPE_ASR:
5571         if (!sf) {
5572             tcg_gen_ext32s_i64(dst, src);
5573         }
5574         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5575         break;
5576     case A64_SHIFT_TYPE_ROR:
5577         if (sf) {
5578             tcg_gen_rotr_i64(dst, src, shift_amount);
5579         } else {
5580             TCGv_i32 t0, t1;
5581             t0 = tcg_temp_new_i32();
5582             t1 = tcg_temp_new_i32();
5583             tcg_gen_extrl_i64_i32(t0, src);
5584             tcg_gen_extrl_i64_i32(t1, shift_amount);
5585             tcg_gen_rotr_i32(t0, t0, t1);
5586             tcg_gen_extu_i32_i64(dst, t0);
5587         }
5588         break;
5589     default:
5590         assert(FALSE); /* all shift types should be handled */
5591         break;
5592     }
5593 
5594     if (!sf) { /* zero extend final result */
5595         tcg_gen_ext32u_i64(dst, dst);
5596     }
5597 }
5598 
5599 /* Shift a TCGv src by immediate, put result in dst.
5600  * The shift amount must be in range (this should always be true as the
5601  * relevant instructions will UNDEF on bad shift immediates).
5602  */
5603 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5604                           enum a64_shift_type shift_type, unsigned int shift_i)
5605 {
5606     assert(shift_i < (sf ? 64 : 32));
5607 
5608     if (shift_i == 0) {
5609         tcg_gen_mov_i64(dst, src);
5610     } else {
5611         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5612     }
5613 }
5614 
5615 /* Logical (shifted register)
5616  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5617  * +----+-----+-----------+-------+---+------+--------+------+------+
5618  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5619  * +----+-----+-----------+-------+---+------+--------+------+------+
5620  */
5621 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5622 {
5623     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5624     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5625 
5626     sf = extract32(insn, 31, 1);
5627     opc = extract32(insn, 29, 2);
5628     shift_type = extract32(insn, 22, 2);
5629     invert = extract32(insn, 21, 1);
5630     rm = extract32(insn, 16, 5);
5631     shift_amount = extract32(insn, 10, 6);
5632     rn = extract32(insn, 5, 5);
5633     rd = extract32(insn, 0, 5);
5634 
5635     if (!sf && (shift_amount & (1 << 5))) {
5636         unallocated_encoding(s);
5637         return;
5638     }
5639 
5640     tcg_rd = cpu_reg(s, rd);
5641 
5642     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5643         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5644          * register-register MOV and MVN, so it is worth special casing.
5645          */
5646         tcg_rm = cpu_reg(s, rm);
5647         if (invert) {
5648             tcg_gen_not_i64(tcg_rd, tcg_rm);
5649             if (!sf) {
5650                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5651             }
5652         } else {
5653             if (sf) {
5654                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5655             } else {
5656                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5657             }
5658         }
5659         return;
5660     }
5661 
5662     tcg_rm = read_cpu_reg(s, rm, sf);
5663 
5664     if (shift_amount) {
5665         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5666     }
5667 
5668     tcg_rn = cpu_reg(s, rn);
5669 
5670     switch (opc | (invert << 2)) {
5671     case 0: /* AND */
5672     case 3: /* ANDS */
5673         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5674         break;
5675     case 1: /* ORR */
5676         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5677         break;
5678     case 2: /* EOR */
5679         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5680         break;
5681     case 4: /* BIC */
5682     case 7: /* BICS */
5683         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5684         break;
5685     case 5: /* ORN */
5686         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5687         break;
5688     case 6: /* EON */
5689         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5690         break;
5691     default:
5692         assert(FALSE);
5693         break;
5694     }
5695 
5696     if (!sf) {
5697         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5698     }
5699 
5700     if (opc == 3) {
5701         gen_logic_CC(sf, tcg_rd);
5702     }
5703 }
5704 
5705 /*
5706  * Add/subtract (extended register)
5707  *
5708  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5709  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5710  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5711  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5712  *
5713  *  sf: 0 -> 32bit, 1 -> 64bit
5714  *  op: 0 -> add  , 1 -> sub
5715  *   S: 1 -> set flags
5716  * opt: 00
5717  * option: extension type (see DecodeRegExtend)
5718  * imm3: optional shift to Rm
5719  *
5720  * Rd = Rn + LSL(extend(Rm), amount)
5721  */
5722 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5723 {
5724     int rd = extract32(insn, 0, 5);
5725     int rn = extract32(insn, 5, 5);
5726     int imm3 = extract32(insn, 10, 3);
5727     int option = extract32(insn, 13, 3);
5728     int rm = extract32(insn, 16, 5);
5729     int opt = extract32(insn, 22, 2);
5730     bool setflags = extract32(insn, 29, 1);
5731     bool sub_op = extract32(insn, 30, 1);
5732     bool sf = extract32(insn, 31, 1);
5733 
5734     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5735     TCGv_i64 tcg_rd;
5736     TCGv_i64 tcg_result;
5737 
5738     if (imm3 > 4 || opt != 0) {
5739         unallocated_encoding(s);
5740         return;
5741     }
5742 
5743     /* non-flag setting ops may use SP */
5744     if (!setflags) {
5745         tcg_rd = cpu_reg_sp(s, rd);
5746     } else {
5747         tcg_rd = cpu_reg(s, rd);
5748     }
5749     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5750 
5751     tcg_rm = read_cpu_reg(s, rm, sf);
5752     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5753 
5754     tcg_result = tcg_temp_new_i64();
5755 
5756     if (!setflags) {
5757         if (sub_op) {
5758             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5759         } else {
5760             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5761         }
5762     } else {
5763         if (sub_op) {
5764             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5765         } else {
5766             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5767         }
5768     }
5769 
5770     if (sf) {
5771         tcg_gen_mov_i64(tcg_rd, tcg_result);
5772     } else {
5773         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5774     }
5775 }
5776 
5777 /*
5778  * Add/subtract (shifted register)
5779  *
5780  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5781  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5782  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5783  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5784  *
5785  *    sf: 0 -> 32bit, 1 -> 64bit
5786  *    op: 0 -> add  , 1 -> sub
5787  *     S: 1 -> set flags
5788  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5789  *  imm6: Shift amount to apply to Rm before the add/sub
5790  */
5791 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5792 {
5793     int rd = extract32(insn, 0, 5);
5794     int rn = extract32(insn, 5, 5);
5795     int imm6 = extract32(insn, 10, 6);
5796     int rm = extract32(insn, 16, 5);
5797     int shift_type = extract32(insn, 22, 2);
5798     bool setflags = extract32(insn, 29, 1);
5799     bool sub_op = extract32(insn, 30, 1);
5800     bool sf = extract32(insn, 31, 1);
5801 
5802     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5803     TCGv_i64 tcg_rn, tcg_rm;
5804     TCGv_i64 tcg_result;
5805 
5806     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5807         unallocated_encoding(s);
5808         return;
5809     }
5810 
5811     tcg_rn = read_cpu_reg(s, rn, sf);
5812     tcg_rm = read_cpu_reg(s, rm, sf);
5813 
5814     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5815 
5816     tcg_result = tcg_temp_new_i64();
5817 
5818     if (!setflags) {
5819         if (sub_op) {
5820             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5821         } else {
5822             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5823         }
5824     } else {
5825         if (sub_op) {
5826             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5827         } else {
5828             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5829         }
5830     }
5831 
5832     if (sf) {
5833         tcg_gen_mov_i64(tcg_rd, tcg_result);
5834     } else {
5835         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5836     }
5837 }
5838 
5839 /* Data-processing (3 source)
5840  *
5841  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5842  *  +--+------+-----------+------+------+----+------+------+------+
5843  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5844  *  +--+------+-----------+------+------+----+------+------+------+
5845  */
5846 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5847 {
5848     int rd = extract32(insn, 0, 5);
5849     int rn = extract32(insn, 5, 5);
5850     int ra = extract32(insn, 10, 5);
5851     int rm = extract32(insn, 16, 5);
5852     int op_id = (extract32(insn, 29, 3) << 4) |
5853         (extract32(insn, 21, 3) << 1) |
5854         extract32(insn, 15, 1);
5855     bool sf = extract32(insn, 31, 1);
5856     bool is_sub = extract32(op_id, 0, 1);
5857     bool is_high = extract32(op_id, 2, 1);
5858     bool is_signed = false;
5859     TCGv_i64 tcg_op1;
5860     TCGv_i64 tcg_op2;
5861     TCGv_i64 tcg_tmp;
5862 
5863     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5864     switch (op_id) {
5865     case 0x42: /* SMADDL */
5866     case 0x43: /* SMSUBL */
5867     case 0x44: /* SMULH */
5868         is_signed = true;
5869         break;
5870     case 0x0: /* MADD (32bit) */
5871     case 0x1: /* MSUB (32bit) */
5872     case 0x40: /* MADD (64bit) */
5873     case 0x41: /* MSUB (64bit) */
5874     case 0x4a: /* UMADDL */
5875     case 0x4b: /* UMSUBL */
5876     case 0x4c: /* UMULH */
5877         break;
5878     default:
5879         unallocated_encoding(s);
5880         return;
5881     }
5882 
5883     if (is_high) {
5884         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5885         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5886         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5887         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5888 
5889         if (is_signed) {
5890             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5891         } else {
5892             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5893         }
5894         return;
5895     }
5896 
5897     tcg_op1 = tcg_temp_new_i64();
5898     tcg_op2 = tcg_temp_new_i64();
5899     tcg_tmp = tcg_temp_new_i64();
5900 
5901     if (op_id < 0x42) {
5902         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5903         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5904     } else {
5905         if (is_signed) {
5906             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5907             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5908         } else {
5909             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5910             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5911         }
5912     }
5913 
5914     if (ra == 31 && !is_sub) {
5915         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5916         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5917     } else {
5918         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5919         if (is_sub) {
5920             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5921         } else {
5922             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5923         }
5924     }
5925 
5926     if (!sf) {
5927         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5928     }
5929 }
5930 
5931 /* Add/subtract (with carry)
5932  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5933  * +--+--+--+------------------------+------+-------------+------+-----+
5934  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5935  * +--+--+--+------------------------+------+-------------+------+-----+
5936  */
5937 
5938 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5939 {
5940     unsigned int sf, op, setflags, rm, rn, rd;
5941     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5942 
5943     sf = extract32(insn, 31, 1);
5944     op = extract32(insn, 30, 1);
5945     setflags = extract32(insn, 29, 1);
5946     rm = extract32(insn, 16, 5);
5947     rn = extract32(insn, 5, 5);
5948     rd = extract32(insn, 0, 5);
5949 
5950     tcg_rd = cpu_reg(s, rd);
5951     tcg_rn = cpu_reg(s, rn);
5952 
5953     if (op) {
5954         tcg_y = tcg_temp_new_i64();
5955         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5956     } else {
5957         tcg_y = cpu_reg(s, rm);
5958     }
5959 
5960     if (setflags) {
5961         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5962     } else {
5963         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5964     }
5965 }
5966 
5967 /*
5968  * Rotate right into flags
5969  *  31 30 29                21       15          10      5  4      0
5970  * +--+--+--+-----------------+--------+-----------+------+--+------+
5971  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5972  * +--+--+--+-----------------+--------+-----------+------+--+------+
5973  */
5974 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5975 {
5976     int mask = extract32(insn, 0, 4);
5977     int o2 = extract32(insn, 4, 1);
5978     int rn = extract32(insn, 5, 5);
5979     int imm6 = extract32(insn, 15, 6);
5980     int sf_op_s = extract32(insn, 29, 3);
5981     TCGv_i64 tcg_rn;
5982     TCGv_i32 nzcv;
5983 
5984     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5985         unallocated_encoding(s);
5986         return;
5987     }
5988 
5989     tcg_rn = read_cpu_reg(s, rn, 1);
5990     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5991 
5992     nzcv = tcg_temp_new_i32();
5993     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5994 
5995     if (mask & 8) { /* N */
5996         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5997     }
5998     if (mask & 4) { /* Z */
5999         tcg_gen_not_i32(cpu_ZF, nzcv);
6000         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
6001     }
6002     if (mask & 2) { /* C */
6003         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
6004     }
6005     if (mask & 1) { /* V */
6006         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
6007     }
6008 }
6009 
6010 /*
6011  * Evaluate into flags
6012  *  31 30 29                21        15   14        10      5  4      0
6013  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6014  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
6015  * +--+--+--+-----------------+---------+----+---------+------+--+------+
6016  */
6017 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
6018 {
6019     int o3_mask = extract32(insn, 0, 5);
6020     int rn = extract32(insn, 5, 5);
6021     int o2 = extract32(insn, 15, 6);
6022     int sz = extract32(insn, 14, 1);
6023     int sf_op_s = extract32(insn, 29, 3);
6024     TCGv_i32 tmp;
6025     int shift;
6026 
6027     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
6028         !dc_isar_feature(aa64_condm_4, s)) {
6029         unallocated_encoding(s);
6030         return;
6031     }
6032     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
6033 
6034     tmp = tcg_temp_new_i32();
6035     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
6036     tcg_gen_shli_i32(cpu_NF, tmp, shift);
6037     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
6038     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
6039     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
6040 }
6041 
6042 /* Conditional compare (immediate / register)
6043  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
6044  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6045  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
6046  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
6047  *        [1]                             y                [0]       [0]
6048  */
6049 static void disas_cc(DisasContext *s, uint32_t insn)
6050 {
6051     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
6052     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
6053     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
6054     DisasCompare c;
6055 
6056     if (!extract32(insn, 29, 1)) {
6057         unallocated_encoding(s);
6058         return;
6059     }
6060     if (insn & (1 << 10 | 1 << 4)) {
6061         unallocated_encoding(s);
6062         return;
6063     }
6064     sf = extract32(insn, 31, 1);
6065     op = extract32(insn, 30, 1);
6066     is_imm = extract32(insn, 11, 1);
6067     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
6068     cond = extract32(insn, 12, 4);
6069     rn = extract32(insn, 5, 5);
6070     nzcv = extract32(insn, 0, 4);
6071 
6072     /* Set T0 = !COND.  */
6073     tcg_t0 = tcg_temp_new_i32();
6074     arm_test_cc(&c, cond);
6075     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
6076 
6077     /* Load the arguments for the new comparison.  */
6078     if (is_imm) {
6079         tcg_y = tcg_temp_new_i64();
6080         tcg_gen_movi_i64(tcg_y, y);
6081     } else {
6082         tcg_y = cpu_reg(s, y);
6083     }
6084     tcg_rn = cpu_reg(s, rn);
6085 
6086     /* Set the flags for the new comparison.  */
6087     tcg_tmp = tcg_temp_new_i64();
6088     if (op) {
6089         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6090     } else {
6091         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
6092     }
6093 
6094     /* If COND was false, force the flags to #nzcv.  Compute two masks
6095      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
6096      * For tcg hosts that support ANDC, we can make do with just T1.
6097      * In either case, allow the tcg optimizer to delete any unused mask.
6098      */
6099     tcg_t1 = tcg_temp_new_i32();
6100     tcg_t2 = tcg_temp_new_i32();
6101     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6102     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6103 
6104     if (nzcv & 8) { /* N */
6105         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6106     } else {
6107         if (TCG_TARGET_HAS_andc_i32) {
6108             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6109         } else {
6110             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6111         }
6112     }
6113     if (nzcv & 4) { /* Z */
6114         if (TCG_TARGET_HAS_andc_i32) {
6115             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6116         } else {
6117             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6118         }
6119     } else {
6120         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6121     }
6122     if (nzcv & 2) { /* C */
6123         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6124     } else {
6125         if (TCG_TARGET_HAS_andc_i32) {
6126             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6127         } else {
6128             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6129         }
6130     }
6131     if (nzcv & 1) { /* V */
6132         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6133     } else {
6134         if (TCG_TARGET_HAS_andc_i32) {
6135             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6136         } else {
6137             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6138         }
6139     }
6140 }
6141 
6142 /* Conditional select
6143  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6144  * +----+----+---+-----------------+------+------+-----+------+------+
6145  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6146  * +----+----+---+-----------------+------+------+-----+------+------+
6147  */
6148 static void disas_cond_select(DisasContext *s, uint32_t insn)
6149 {
6150     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6151     TCGv_i64 tcg_rd, zero;
6152     DisasCompare64 c;
6153 
6154     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6155         /* S == 1 or op2<1> == 1 */
6156         unallocated_encoding(s);
6157         return;
6158     }
6159     sf = extract32(insn, 31, 1);
6160     else_inv = extract32(insn, 30, 1);
6161     rm = extract32(insn, 16, 5);
6162     cond = extract32(insn, 12, 4);
6163     else_inc = extract32(insn, 10, 1);
6164     rn = extract32(insn, 5, 5);
6165     rd = extract32(insn, 0, 5);
6166 
6167     tcg_rd = cpu_reg(s, rd);
6168 
6169     a64_test_cc(&c, cond);
6170     zero = tcg_constant_i64(0);
6171 
6172     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6173         /* CSET & CSETM.  */
6174         if (else_inv) {
6175             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6176                                    tcg_rd, c.value, zero);
6177         } else {
6178             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6179                                 tcg_rd, c.value, zero);
6180         }
6181     } else {
6182         TCGv_i64 t_true = cpu_reg(s, rn);
6183         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6184         if (else_inv && else_inc) {
6185             tcg_gen_neg_i64(t_false, t_false);
6186         } else if (else_inv) {
6187             tcg_gen_not_i64(t_false, t_false);
6188         } else if (else_inc) {
6189             tcg_gen_addi_i64(t_false, t_false, 1);
6190         }
6191         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6192     }
6193 
6194     if (!sf) {
6195         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6196     }
6197 }
6198 
6199 static void handle_clz(DisasContext *s, unsigned int sf,
6200                        unsigned int rn, unsigned int rd)
6201 {
6202     TCGv_i64 tcg_rd, tcg_rn;
6203     tcg_rd = cpu_reg(s, rd);
6204     tcg_rn = cpu_reg(s, rn);
6205 
6206     if (sf) {
6207         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6208     } else {
6209         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6210         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6211         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6212         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6213     }
6214 }
6215 
6216 static void handle_cls(DisasContext *s, unsigned int sf,
6217                        unsigned int rn, unsigned int rd)
6218 {
6219     TCGv_i64 tcg_rd, tcg_rn;
6220     tcg_rd = cpu_reg(s, rd);
6221     tcg_rn = cpu_reg(s, rn);
6222 
6223     if (sf) {
6224         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6225     } else {
6226         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6227         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6228         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6229         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6230     }
6231 }
6232 
6233 static void handle_rbit(DisasContext *s, unsigned int sf,
6234                         unsigned int rn, unsigned int rd)
6235 {
6236     TCGv_i64 tcg_rd, tcg_rn;
6237     tcg_rd = cpu_reg(s, rd);
6238     tcg_rn = cpu_reg(s, rn);
6239 
6240     if (sf) {
6241         gen_helper_rbit64(tcg_rd, tcg_rn);
6242     } else {
6243         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6244         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6245         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6246         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6247     }
6248 }
6249 
6250 /* REV with sf==1, opcode==3 ("REV64") */
6251 static void handle_rev64(DisasContext *s, unsigned int sf,
6252                          unsigned int rn, unsigned int rd)
6253 {
6254     if (!sf) {
6255         unallocated_encoding(s);
6256         return;
6257     }
6258     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6259 }
6260 
6261 /* REV with sf==0, opcode==2
6262  * REV32 (sf==1, opcode==2)
6263  */
6264 static void handle_rev32(DisasContext *s, unsigned int sf,
6265                          unsigned int rn, unsigned int rd)
6266 {
6267     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6268     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6269 
6270     if (sf) {
6271         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6272         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6273     } else {
6274         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6275     }
6276 }
6277 
6278 /* REV16 (opcode==1) */
6279 static void handle_rev16(DisasContext *s, unsigned int sf,
6280                          unsigned int rn, unsigned int rd)
6281 {
6282     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6283     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6284     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6285     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6286 
6287     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6288     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6289     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6290     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6291     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6292 }
6293 
6294 /* Data-processing (1 source)
6295  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6296  * +----+---+---+-----------------+---------+--------+------+------+
6297  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6298  * +----+---+---+-----------------+---------+--------+------+------+
6299  */
6300 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6301 {
6302     unsigned int sf, opcode, opcode2, rn, rd;
6303     TCGv_i64 tcg_rd;
6304 
6305     if (extract32(insn, 29, 1)) {
6306         unallocated_encoding(s);
6307         return;
6308     }
6309 
6310     sf = extract32(insn, 31, 1);
6311     opcode = extract32(insn, 10, 6);
6312     opcode2 = extract32(insn, 16, 5);
6313     rn = extract32(insn, 5, 5);
6314     rd = extract32(insn, 0, 5);
6315 
6316 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6317 
6318     switch (MAP(sf, opcode2, opcode)) {
6319     case MAP(0, 0x00, 0x00): /* RBIT */
6320     case MAP(1, 0x00, 0x00):
6321         handle_rbit(s, sf, rn, rd);
6322         break;
6323     case MAP(0, 0x00, 0x01): /* REV16 */
6324     case MAP(1, 0x00, 0x01):
6325         handle_rev16(s, sf, rn, rd);
6326         break;
6327     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6328     case MAP(1, 0x00, 0x02):
6329         handle_rev32(s, sf, rn, rd);
6330         break;
6331     case MAP(1, 0x00, 0x03): /* REV64 */
6332         handle_rev64(s, sf, rn, rd);
6333         break;
6334     case MAP(0, 0x00, 0x04): /* CLZ */
6335     case MAP(1, 0x00, 0x04):
6336         handle_clz(s, sf, rn, rd);
6337         break;
6338     case MAP(0, 0x00, 0x05): /* CLS */
6339     case MAP(1, 0x00, 0x05):
6340         handle_cls(s, sf, rn, rd);
6341         break;
6342     case MAP(1, 0x01, 0x00): /* PACIA */
6343         if (s->pauth_active) {
6344             tcg_rd = cpu_reg(s, rd);
6345             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6346         } else if (!dc_isar_feature(aa64_pauth, s)) {
6347             goto do_unallocated;
6348         }
6349         break;
6350     case MAP(1, 0x01, 0x01): /* PACIB */
6351         if (s->pauth_active) {
6352             tcg_rd = cpu_reg(s, rd);
6353             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6354         } else if (!dc_isar_feature(aa64_pauth, s)) {
6355             goto do_unallocated;
6356         }
6357         break;
6358     case MAP(1, 0x01, 0x02): /* PACDA */
6359         if (s->pauth_active) {
6360             tcg_rd = cpu_reg(s, rd);
6361             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6362         } else if (!dc_isar_feature(aa64_pauth, s)) {
6363             goto do_unallocated;
6364         }
6365         break;
6366     case MAP(1, 0x01, 0x03): /* PACDB */
6367         if (s->pauth_active) {
6368             tcg_rd = cpu_reg(s, rd);
6369             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6370         } else if (!dc_isar_feature(aa64_pauth, s)) {
6371             goto do_unallocated;
6372         }
6373         break;
6374     case MAP(1, 0x01, 0x04): /* AUTIA */
6375         if (s->pauth_active) {
6376             tcg_rd = cpu_reg(s, rd);
6377             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6378         } else if (!dc_isar_feature(aa64_pauth, s)) {
6379             goto do_unallocated;
6380         }
6381         break;
6382     case MAP(1, 0x01, 0x05): /* AUTIB */
6383         if (s->pauth_active) {
6384             tcg_rd = cpu_reg(s, rd);
6385             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6386         } else if (!dc_isar_feature(aa64_pauth, s)) {
6387             goto do_unallocated;
6388         }
6389         break;
6390     case MAP(1, 0x01, 0x06): /* AUTDA */
6391         if (s->pauth_active) {
6392             tcg_rd = cpu_reg(s, rd);
6393             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6394         } else if (!dc_isar_feature(aa64_pauth, s)) {
6395             goto do_unallocated;
6396         }
6397         break;
6398     case MAP(1, 0x01, 0x07): /* AUTDB */
6399         if (s->pauth_active) {
6400             tcg_rd = cpu_reg(s, rd);
6401             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6402         } else if (!dc_isar_feature(aa64_pauth, s)) {
6403             goto do_unallocated;
6404         }
6405         break;
6406     case MAP(1, 0x01, 0x08): /* PACIZA */
6407         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6408             goto do_unallocated;
6409         } else if (s->pauth_active) {
6410             tcg_rd = cpu_reg(s, rd);
6411             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6412         }
6413         break;
6414     case MAP(1, 0x01, 0x09): /* PACIZB */
6415         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6416             goto do_unallocated;
6417         } else if (s->pauth_active) {
6418             tcg_rd = cpu_reg(s, rd);
6419             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6420         }
6421         break;
6422     case MAP(1, 0x01, 0x0a): /* PACDZA */
6423         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6424             goto do_unallocated;
6425         } else if (s->pauth_active) {
6426             tcg_rd = cpu_reg(s, rd);
6427             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6428         }
6429         break;
6430     case MAP(1, 0x01, 0x0b): /* PACDZB */
6431         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6432             goto do_unallocated;
6433         } else if (s->pauth_active) {
6434             tcg_rd = cpu_reg(s, rd);
6435             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6436         }
6437         break;
6438     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6439         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6440             goto do_unallocated;
6441         } else if (s->pauth_active) {
6442             tcg_rd = cpu_reg(s, rd);
6443             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6444         }
6445         break;
6446     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6447         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6448             goto do_unallocated;
6449         } else if (s->pauth_active) {
6450             tcg_rd = cpu_reg(s, rd);
6451             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6452         }
6453         break;
6454     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6455         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6456             goto do_unallocated;
6457         } else if (s->pauth_active) {
6458             tcg_rd = cpu_reg(s, rd);
6459             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6460         }
6461         break;
6462     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6463         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6464             goto do_unallocated;
6465         } else if (s->pauth_active) {
6466             tcg_rd = cpu_reg(s, rd);
6467             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6468         }
6469         break;
6470     case MAP(1, 0x01, 0x10): /* XPACI */
6471         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6472             goto do_unallocated;
6473         } else if (s->pauth_active) {
6474             tcg_rd = cpu_reg(s, rd);
6475             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6476         }
6477         break;
6478     case MAP(1, 0x01, 0x11): /* XPACD */
6479         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6480             goto do_unallocated;
6481         } else if (s->pauth_active) {
6482             tcg_rd = cpu_reg(s, rd);
6483             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6484         }
6485         break;
6486     default:
6487     do_unallocated:
6488         unallocated_encoding(s);
6489         break;
6490     }
6491 
6492 #undef MAP
6493 }
6494 
6495 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6496                        unsigned int rm, unsigned int rn, unsigned int rd)
6497 {
6498     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6499     tcg_rd = cpu_reg(s, rd);
6500 
6501     if (!sf && is_signed) {
6502         tcg_n = tcg_temp_new_i64();
6503         tcg_m = tcg_temp_new_i64();
6504         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6505         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6506     } else {
6507         tcg_n = read_cpu_reg(s, rn, sf);
6508         tcg_m = read_cpu_reg(s, rm, sf);
6509     }
6510 
6511     if (is_signed) {
6512         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6513     } else {
6514         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6515     }
6516 
6517     if (!sf) { /* zero extend final result */
6518         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6519     }
6520 }
6521 
6522 /* LSLV, LSRV, ASRV, RORV */
6523 static void handle_shift_reg(DisasContext *s,
6524                              enum a64_shift_type shift_type, unsigned int sf,
6525                              unsigned int rm, unsigned int rn, unsigned int rd)
6526 {
6527     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6528     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6529     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6530 
6531     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6532     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6533 }
6534 
6535 /* CRC32[BHWX], CRC32C[BHWX] */
6536 static void handle_crc32(DisasContext *s,
6537                          unsigned int sf, unsigned int sz, bool crc32c,
6538                          unsigned int rm, unsigned int rn, unsigned int rd)
6539 {
6540     TCGv_i64 tcg_acc, tcg_val;
6541     TCGv_i32 tcg_bytes;
6542 
6543     if (!dc_isar_feature(aa64_crc32, s)
6544         || (sf == 1 && sz != 3)
6545         || (sf == 0 && sz == 3)) {
6546         unallocated_encoding(s);
6547         return;
6548     }
6549 
6550     if (sz == 3) {
6551         tcg_val = cpu_reg(s, rm);
6552     } else {
6553         uint64_t mask;
6554         switch (sz) {
6555         case 0:
6556             mask = 0xFF;
6557             break;
6558         case 1:
6559             mask = 0xFFFF;
6560             break;
6561         case 2:
6562             mask = 0xFFFFFFFF;
6563             break;
6564         default:
6565             g_assert_not_reached();
6566         }
6567         tcg_val = tcg_temp_new_i64();
6568         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6569     }
6570 
6571     tcg_acc = cpu_reg(s, rn);
6572     tcg_bytes = tcg_constant_i32(1 << sz);
6573 
6574     if (crc32c) {
6575         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6576     } else {
6577         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6578     }
6579 }
6580 
6581 /* Data-processing (2 source)
6582  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6583  * +----+---+---+-----------------+------+--------+------+------+
6584  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6585  * +----+---+---+-----------------+------+--------+------+------+
6586  */
6587 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6588 {
6589     unsigned int sf, rm, opcode, rn, rd, setflag;
6590     sf = extract32(insn, 31, 1);
6591     setflag = extract32(insn, 29, 1);
6592     rm = extract32(insn, 16, 5);
6593     opcode = extract32(insn, 10, 6);
6594     rn = extract32(insn, 5, 5);
6595     rd = extract32(insn, 0, 5);
6596 
6597     if (setflag && opcode != 0) {
6598         unallocated_encoding(s);
6599         return;
6600     }
6601 
6602     switch (opcode) {
6603     case 0: /* SUBP(S) */
6604         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6605             goto do_unallocated;
6606         } else {
6607             TCGv_i64 tcg_n, tcg_m, tcg_d;
6608 
6609             tcg_n = read_cpu_reg_sp(s, rn, true);
6610             tcg_m = read_cpu_reg_sp(s, rm, true);
6611             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6612             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6613             tcg_d = cpu_reg(s, rd);
6614 
6615             if (setflag) {
6616                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6617             } else {
6618                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6619             }
6620         }
6621         break;
6622     case 2: /* UDIV */
6623         handle_div(s, false, sf, rm, rn, rd);
6624         break;
6625     case 3: /* SDIV */
6626         handle_div(s, true, sf, rm, rn, rd);
6627         break;
6628     case 4: /* IRG */
6629         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6630             goto do_unallocated;
6631         }
6632         if (s->ata[0]) {
6633             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6634                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6635         } else {
6636             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6637                                              cpu_reg_sp(s, rn));
6638         }
6639         break;
6640     case 5: /* GMI */
6641         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6642             goto do_unallocated;
6643         } else {
6644             TCGv_i64 t = tcg_temp_new_i64();
6645 
6646             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6647             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6648             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6649         }
6650         break;
6651     case 8: /* LSLV */
6652         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6653         break;
6654     case 9: /* LSRV */
6655         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6656         break;
6657     case 10: /* ASRV */
6658         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6659         break;
6660     case 11: /* RORV */
6661         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6662         break;
6663     case 12: /* PACGA */
6664         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6665             goto do_unallocated;
6666         }
6667         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6668                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6669         break;
6670     case 16:
6671     case 17:
6672     case 18:
6673     case 19:
6674     case 20:
6675     case 21:
6676     case 22:
6677     case 23: /* CRC32 */
6678     {
6679         int sz = extract32(opcode, 0, 2);
6680         bool crc32c = extract32(opcode, 2, 1);
6681         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6682         break;
6683     }
6684     default:
6685     do_unallocated:
6686         unallocated_encoding(s);
6687         break;
6688     }
6689 }
6690 
6691 /*
6692  * Data processing - register
6693  *  31  30 29  28      25    21  20  16      10         0
6694  * +--+---+--+---+-------+-----+-------+-------+---------+
6695  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6696  * +--+---+--+---+-------+-----+-------+-------+---------+
6697  */
6698 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6699 {
6700     int op0 = extract32(insn, 30, 1);
6701     int op1 = extract32(insn, 28, 1);
6702     int op2 = extract32(insn, 21, 4);
6703     int op3 = extract32(insn, 10, 6);
6704 
6705     if (!op1) {
6706         if (op2 & 8) {
6707             if (op2 & 1) {
6708                 /* Add/sub (extended register) */
6709                 disas_add_sub_ext_reg(s, insn);
6710             } else {
6711                 /* Add/sub (shifted register) */
6712                 disas_add_sub_reg(s, insn);
6713             }
6714         } else {
6715             /* Logical (shifted register) */
6716             disas_logic_reg(s, insn);
6717         }
6718         return;
6719     }
6720 
6721     switch (op2) {
6722     case 0x0:
6723         switch (op3) {
6724         case 0x00: /* Add/subtract (with carry) */
6725             disas_adc_sbc(s, insn);
6726             break;
6727 
6728         case 0x01: /* Rotate right into flags */
6729         case 0x21:
6730             disas_rotate_right_into_flags(s, insn);
6731             break;
6732 
6733         case 0x02: /* Evaluate into flags */
6734         case 0x12:
6735         case 0x22:
6736         case 0x32:
6737             disas_evaluate_into_flags(s, insn);
6738             break;
6739 
6740         default:
6741             goto do_unallocated;
6742         }
6743         break;
6744 
6745     case 0x2: /* Conditional compare */
6746         disas_cc(s, insn); /* both imm and reg forms */
6747         break;
6748 
6749     case 0x4: /* Conditional select */
6750         disas_cond_select(s, insn);
6751         break;
6752 
6753     case 0x6: /* Data-processing */
6754         if (op0) {    /* (1 source) */
6755             disas_data_proc_1src(s, insn);
6756         } else {      /* (2 source) */
6757             disas_data_proc_2src(s, insn);
6758         }
6759         break;
6760     case 0x8 ... 0xf: /* (3 source) */
6761         disas_data_proc_3src(s, insn);
6762         break;
6763 
6764     default:
6765     do_unallocated:
6766         unallocated_encoding(s);
6767         break;
6768     }
6769 }
6770 
6771 static void handle_fp_compare(DisasContext *s, int size,
6772                               unsigned int rn, unsigned int rm,
6773                               bool cmp_with_zero, bool signal_all_nans)
6774 {
6775     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6776     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6777 
6778     if (size == MO_64) {
6779         TCGv_i64 tcg_vn, tcg_vm;
6780 
6781         tcg_vn = read_fp_dreg(s, rn);
6782         if (cmp_with_zero) {
6783             tcg_vm = tcg_constant_i64(0);
6784         } else {
6785             tcg_vm = read_fp_dreg(s, rm);
6786         }
6787         if (signal_all_nans) {
6788             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6789         } else {
6790             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6791         }
6792     } else {
6793         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6794         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6795 
6796         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6797         if (cmp_with_zero) {
6798             tcg_gen_movi_i32(tcg_vm, 0);
6799         } else {
6800             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6801         }
6802 
6803         switch (size) {
6804         case MO_32:
6805             if (signal_all_nans) {
6806                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6807             } else {
6808                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6809             }
6810             break;
6811         case MO_16:
6812             if (signal_all_nans) {
6813                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6814             } else {
6815                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6816             }
6817             break;
6818         default:
6819             g_assert_not_reached();
6820         }
6821     }
6822 
6823     gen_set_nzcv(tcg_flags);
6824 }
6825 
6826 /* Floating point compare
6827  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6828  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6829  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6830  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6831  */
6832 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6833 {
6834     unsigned int mos, type, rm, op, rn, opc, op2r;
6835     int size;
6836 
6837     mos = extract32(insn, 29, 3);
6838     type = extract32(insn, 22, 2);
6839     rm = extract32(insn, 16, 5);
6840     op = extract32(insn, 14, 2);
6841     rn = extract32(insn, 5, 5);
6842     opc = extract32(insn, 3, 2);
6843     op2r = extract32(insn, 0, 3);
6844 
6845     if (mos || op || op2r) {
6846         unallocated_encoding(s);
6847         return;
6848     }
6849 
6850     switch (type) {
6851     case 0:
6852         size = MO_32;
6853         break;
6854     case 1:
6855         size = MO_64;
6856         break;
6857     case 3:
6858         size = MO_16;
6859         if (dc_isar_feature(aa64_fp16, s)) {
6860             break;
6861         }
6862         /* fallthru */
6863     default:
6864         unallocated_encoding(s);
6865         return;
6866     }
6867 
6868     if (!fp_access_check(s)) {
6869         return;
6870     }
6871 
6872     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6873 }
6874 
6875 /* Floating point conditional compare
6876  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6877  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6878  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6879  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6880  */
6881 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6882 {
6883     unsigned int mos, type, rm, cond, rn, op, nzcv;
6884     TCGLabel *label_continue = NULL;
6885     int size;
6886 
6887     mos = extract32(insn, 29, 3);
6888     type = extract32(insn, 22, 2);
6889     rm = extract32(insn, 16, 5);
6890     cond = extract32(insn, 12, 4);
6891     rn = extract32(insn, 5, 5);
6892     op = extract32(insn, 4, 1);
6893     nzcv = extract32(insn, 0, 4);
6894 
6895     if (mos) {
6896         unallocated_encoding(s);
6897         return;
6898     }
6899 
6900     switch (type) {
6901     case 0:
6902         size = MO_32;
6903         break;
6904     case 1:
6905         size = MO_64;
6906         break;
6907     case 3:
6908         size = MO_16;
6909         if (dc_isar_feature(aa64_fp16, s)) {
6910             break;
6911         }
6912         /* fallthru */
6913     default:
6914         unallocated_encoding(s);
6915         return;
6916     }
6917 
6918     if (!fp_access_check(s)) {
6919         return;
6920     }
6921 
6922     if (cond < 0x0e) { /* not always */
6923         TCGLabel *label_match = gen_new_label();
6924         label_continue = gen_new_label();
6925         arm_gen_test_cc(cond, label_match);
6926         /* nomatch: */
6927         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6928         tcg_gen_br(label_continue);
6929         gen_set_label(label_match);
6930     }
6931 
6932     handle_fp_compare(s, size, rn, rm, false, op);
6933 
6934     if (cond < 0x0e) {
6935         gen_set_label(label_continue);
6936     }
6937 }
6938 
6939 /* Floating point conditional select
6940  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6941  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6942  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6943  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6944  */
6945 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6946 {
6947     unsigned int mos, type, rm, cond, rn, rd;
6948     TCGv_i64 t_true, t_false;
6949     DisasCompare64 c;
6950     MemOp sz;
6951 
6952     mos = extract32(insn, 29, 3);
6953     type = extract32(insn, 22, 2);
6954     rm = extract32(insn, 16, 5);
6955     cond = extract32(insn, 12, 4);
6956     rn = extract32(insn, 5, 5);
6957     rd = extract32(insn, 0, 5);
6958 
6959     if (mos) {
6960         unallocated_encoding(s);
6961         return;
6962     }
6963 
6964     switch (type) {
6965     case 0:
6966         sz = MO_32;
6967         break;
6968     case 1:
6969         sz = MO_64;
6970         break;
6971     case 3:
6972         sz = MO_16;
6973         if (dc_isar_feature(aa64_fp16, s)) {
6974             break;
6975         }
6976         /* fallthru */
6977     default:
6978         unallocated_encoding(s);
6979         return;
6980     }
6981 
6982     if (!fp_access_check(s)) {
6983         return;
6984     }
6985 
6986     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6987     t_true = tcg_temp_new_i64();
6988     t_false = tcg_temp_new_i64();
6989     read_vec_element(s, t_true, rn, 0, sz);
6990     read_vec_element(s, t_false, rm, 0, sz);
6991 
6992     a64_test_cc(&c, cond);
6993     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6994                         t_true, t_false);
6995 
6996     /* Note that sregs & hregs write back zeros to the high bits,
6997        and we've already done the zero-extension.  */
6998     write_fp_dreg(s, rd, t_true);
6999 }
7000 
7001 /* Floating-point data-processing (1 source) - half precision */
7002 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
7003 {
7004     TCGv_ptr fpst = NULL;
7005     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
7006     TCGv_i32 tcg_res = tcg_temp_new_i32();
7007 
7008     switch (opcode) {
7009     case 0x0: /* FMOV */
7010         tcg_gen_mov_i32(tcg_res, tcg_op);
7011         break;
7012     case 0x1: /* FABS */
7013         gen_vfp_absh(tcg_res, tcg_op);
7014         break;
7015     case 0x2: /* FNEG */
7016         gen_vfp_negh(tcg_res, tcg_op);
7017         break;
7018     case 0x3: /* FSQRT */
7019         fpst = fpstatus_ptr(FPST_FPCR_F16);
7020         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
7021         break;
7022     case 0x8: /* FRINTN */
7023     case 0x9: /* FRINTP */
7024     case 0xa: /* FRINTM */
7025     case 0xb: /* FRINTZ */
7026     case 0xc: /* FRINTA */
7027     {
7028         TCGv_i32 tcg_rmode;
7029 
7030         fpst = fpstatus_ptr(FPST_FPCR_F16);
7031         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
7032         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7033         gen_restore_rmode(tcg_rmode, fpst);
7034         break;
7035     }
7036     case 0xe: /* FRINTX */
7037         fpst = fpstatus_ptr(FPST_FPCR_F16);
7038         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
7039         break;
7040     case 0xf: /* FRINTI */
7041         fpst = fpstatus_ptr(FPST_FPCR_F16);
7042         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
7043         break;
7044     default:
7045         g_assert_not_reached();
7046     }
7047 
7048     write_fp_sreg(s, rd, tcg_res);
7049 }
7050 
7051 /* Floating-point data-processing (1 source) - single precision */
7052 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
7053 {
7054     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
7055     TCGv_i32 tcg_op, tcg_res;
7056     TCGv_ptr fpst;
7057     int rmode = -1;
7058 
7059     tcg_op = read_fp_sreg(s, rn);
7060     tcg_res = tcg_temp_new_i32();
7061 
7062     switch (opcode) {
7063     case 0x0: /* FMOV */
7064         tcg_gen_mov_i32(tcg_res, tcg_op);
7065         goto done;
7066     case 0x1: /* FABS */
7067         gen_vfp_abss(tcg_res, tcg_op);
7068         goto done;
7069     case 0x2: /* FNEG */
7070         gen_vfp_negs(tcg_res, tcg_op);
7071         goto done;
7072     case 0x3: /* FSQRT */
7073         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
7074         goto done;
7075     case 0x6: /* BFCVT */
7076         gen_fpst = gen_helper_bfcvt;
7077         break;
7078     case 0x8: /* FRINTN */
7079     case 0x9: /* FRINTP */
7080     case 0xa: /* FRINTM */
7081     case 0xb: /* FRINTZ */
7082     case 0xc: /* FRINTA */
7083         rmode = opcode & 7;
7084         gen_fpst = gen_helper_rints;
7085         break;
7086     case 0xe: /* FRINTX */
7087         gen_fpst = gen_helper_rints_exact;
7088         break;
7089     case 0xf: /* FRINTI */
7090         gen_fpst = gen_helper_rints;
7091         break;
7092     case 0x10: /* FRINT32Z */
7093         rmode = FPROUNDING_ZERO;
7094         gen_fpst = gen_helper_frint32_s;
7095         break;
7096     case 0x11: /* FRINT32X */
7097         gen_fpst = gen_helper_frint32_s;
7098         break;
7099     case 0x12: /* FRINT64Z */
7100         rmode = FPROUNDING_ZERO;
7101         gen_fpst = gen_helper_frint64_s;
7102         break;
7103     case 0x13: /* FRINT64X */
7104         gen_fpst = gen_helper_frint64_s;
7105         break;
7106     default:
7107         g_assert_not_reached();
7108     }
7109 
7110     fpst = fpstatus_ptr(FPST_FPCR);
7111     if (rmode >= 0) {
7112         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7113         gen_fpst(tcg_res, tcg_op, fpst);
7114         gen_restore_rmode(tcg_rmode, fpst);
7115     } else {
7116         gen_fpst(tcg_res, tcg_op, fpst);
7117     }
7118 
7119  done:
7120     write_fp_sreg(s, rd, tcg_res);
7121 }
7122 
7123 /* Floating-point data-processing (1 source) - double precision */
7124 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7125 {
7126     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7127     TCGv_i64 tcg_op, tcg_res;
7128     TCGv_ptr fpst;
7129     int rmode = -1;
7130 
7131     switch (opcode) {
7132     case 0x0: /* FMOV */
7133         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7134         return;
7135     }
7136 
7137     tcg_op = read_fp_dreg(s, rn);
7138     tcg_res = tcg_temp_new_i64();
7139 
7140     switch (opcode) {
7141     case 0x1: /* FABS */
7142         gen_vfp_absd(tcg_res, tcg_op);
7143         goto done;
7144     case 0x2: /* FNEG */
7145         gen_vfp_negd(tcg_res, tcg_op);
7146         goto done;
7147     case 0x3: /* FSQRT */
7148         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7149         goto done;
7150     case 0x8: /* FRINTN */
7151     case 0x9: /* FRINTP */
7152     case 0xa: /* FRINTM */
7153     case 0xb: /* FRINTZ */
7154     case 0xc: /* FRINTA */
7155         rmode = opcode & 7;
7156         gen_fpst = gen_helper_rintd;
7157         break;
7158     case 0xe: /* FRINTX */
7159         gen_fpst = gen_helper_rintd_exact;
7160         break;
7161     case 0xf: /* FRINTI */
7162         gen_fpst = gen_helper_rintd;
7163         break;
7164     case 0x10: /* FRINT32Z */
7165         rmode = FPROUNDING_ZERO;
7166         gen_fpst = gen_helper_frint32_d;
7167         break;
7168     case 0x11: /* FRINT32X */
7169         gen_fpst = gen_helper_frint32_d;
7170         break;
7171     case 0x12: /* FRINT64Z */
7172         rmode = FPROUNDING_ZERO;
7173         gen_fpst = gen_helper_frint64_d;
7174         break;
7175     case 0x13: /* FRINT64X */
7176         gen_fpst = gen_helper_frint64_d;
7177         break;
7178     default:
7179         g_assert_not_reached();
7180     }
7181 
7182     fpst = fpstatus_ptr(FPST_FPCR);
7183     if (rmode >= 0) {
7184         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7185         gen_fpst(tcg_res, tcg_op, fpst);
7186         gen_restore_rmode(tcg_rmode, fpst);
7187     } else {
7188         gen_fpst(tcg_res, tcg_op, fpst);
7189     }
7190 
7191  done:
7192     write_fp_dreg(s, rd, tcg_res);
7193 }
7194 
7195 static void handle_fp_fcvt(DisasContext *s, int opcode,
7196                            int rd, int rn, int dtype, int ntype)
7197 {
7198     switch (ntype) {
7199     case 0x0:
7200     {
7201         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7202         if (dtype == 1) {
7203             /* Single to double */
7204             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7205             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7206             write_fp_dreg(s, rd, tcg_rd);
7207         } else {
7208             /* Single to half */
7209             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7210             TCGv_i32 ahp = get_ahp_flag();
7211             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7212 
7213             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7214             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7215             write_fp_sreg(s, rd, tcg_rd);
7216         }
7217         break;
7218     }
7219     case 0x1:
7220     {
7221         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7222         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7223         if (dtype == 0) {
7224             /* Double to single */
7225             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7226         } else {
7227             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7228             TCGv_i32 ahp = get_ahp_flag();
7229             /* Double to half */
7230             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7231             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7232         }
7233         write_fp_sreg(s, rd, tcg_rd);
7234         break;
7235     }
7236     case 0x3:
7237     {
7238         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7239         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7240         TCGv_i32 tcg_ahp = get_ahp_flag();
7241         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7242         if (dtype == 0) {
7243             /* Half to single */
7244             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7245             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7246             write_fp_sreg(s, rd, tcg_rd);
7247         } else {
7248             /* Half to double */
7249             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7250             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7251             write_fp_dreg(s, rd, tcg_rd);
7252         }
7253         break;
7254     }
7255     default:
7256         g_assert_not_reached();
7257     }
7258 }
7259 
7260 /* Floating point data-processing (1 source)
7261  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7262  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7263  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7264  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7265  */
7266 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7267 {
7268     int mos = extract32(insn, 29, 3);
7269     int type = extract32(insn, 22, 2);
7270     int opcode = extract32(insn, 15, 6);
7271     int rn = extract32(insn, 5, 5);
7272     int rd = extract32(insn, 0, 5);
7273 
7274     if (mos) {
7275         goto do_unallocated;
7276     }
7277 
7278     switch (opcode) {
7279     case 0x4: case 0x5: case 0x7:
7280     {
7281         /* FCVT between half, single and double precision */
7282         int dtype = extract32(opcode, 0, 2);
7283         if (type == 2 || dtype == type) {
7284             goto do_unallocated;
7285         }
7286         if (!fp_access_check(s)) {
7287             return;
7288         }
7289 
7290         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7291         break;
7292     }
7293 
7294     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7295         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7296             goto do_unallocated;
7297         }
7298         /* fall through */
7299     case 0x0 ... 0x3:
7300     case 0x8 ... 0xc:
7301     case 0xe ... 0xf:
7302         /* 32-to-32 and 64-to-64 ops */
7303         switch (type) {
7304         case 0:
7305             if (!fp_access_check(s)) {
7306                 return;
7307             }
7308             handle_fp_1src_single(s, opcode, rd, rn);
7309             break;
7310         case 1:
7311             if (!fp_access_check(s)) {
7312                 return;
7313             }
7314             handle_fp_1src_double(s, opcode, rd, rn);
7315             break;
7316         case 3:
7317             if (!dc_isar_feature(aa64_fp16, s)) {
7318                 goto do_unallocated;
7319             }
7320 
7321             if (!fp_access_check(s)) {
7322                 return;
7323             }
7324             handle_fp_1src_half(s, opcode, rd, rn);
7325             break;
7326         default:
7327             goto do_unallocated;
7328         }
7329         break;
7330 
7331     case 0x6:
7332         switch (type) {
7333         case 1: /* BFCVT */
7334             if (!dc_isar_feature(aa64_bf16, s)) {
7335                 goto do_unallocated;
7336             }
7337             if (!fp_access_check(s)) {
7338                 return;
7339             }
7340             handle_fp_1src_single(s, opcode, rd, rn);
7341             break;
7342         default:
7343             goto do_unallocated;
7344         }
7345         break;
7346 
7347     default:
7348     do_unallocated:
7349         unallocated_encoding(s);
7350         break;
7351     }
7352 }
7353 
7354 /* Floating-point data-processing (3 source) - single precision */
7355 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7356                                   int rd, int rn, int rm, int ra)
7357 {
7358     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7359     TCGv_i32 tcg_res = tcg_temp_new_i32();
7360     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7361 
7362     tcg_op1 = read_fp_sreg(s, rn);
7363     tcg_op2 = read_fp_sreg(s, rm);
7364     tcg_op3 = read_fp_sreg(s, ra);
7365 
7366     /* These are fused multiply-add, and must be done as one
7367      * floating point operation with no rounding between the
7368      * multiplication and addition steps.
7369      * NB that doing the negations here as separate steps is
7370      * correct : an input NaN should come out with its sign bit
7371      * flipped if it is a negated-input.
7372      */
7373     if (o1 == true) {
7374         gen_vfp_negs(tcg_op3, tcg_op3);
7375     }
7376 
7377     if (o0 != o1) {
7378         gen_vfp_negs(tcg_op1, tcg_op1);
7379     }
7380 
7381     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7382 
7383     write_fp_sreg(s, rd, tcg_res);
7384 }
7385 
7386 /* Floating-point data-processing (3 source) - double precision */
7387 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7388                                   int rd, int rn, int rm, int ra)
7389 {
7390     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7391     TCGv_i64 tcg_res = tcg_temp_new_i64();
7392     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7393 
7394     tcg_op1 = read_fp_dreg(s, rn);
7395     tcg_op2 = read_fp_dreg(s, rm);
7396     tcg_op3 = read_fp_dreg(s, ra);
7397 
7398     /* These are fused multiply-add, and must be done as one
7399      * floating point operation with no rounding between the
7400      * multiplication and addition steps.
7401      * NB that doing the negations here as separate steps is
7402      * correct : an input NaN should come out with its sign bit
7403      * flipped if it is a negated-input.
7404      */
7405     if (o1 == true) {
7406         gen_vfp_negd(tcg_op3, tcg_op3);
7407     }
7408 
7409     if (o0 != o1) {
7410         gen_vfp_negd(tcg_op1, tcg_op1);
7411     }
7412 
7413     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7414 
7415     write_fp_dreg(s, rd, tcg_res);
7416 }
7417 
7418 /* Floating-point data-processing (3 source) - half precision */
7419 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7420                                 int rd, int rn, int rm, int ra)
7421 {
7422     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7423     TCGv_i32 tcg_res = tcg_temp_new_i32();
7424     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7425 
7426     tcg_op1 = read_fp_hreg(s, rn);
7427     tcg_op2 = read_fp_hreg(s, rm);
7428     tcg_op3 = read_fp_hreg(s, ra);
7429 
7430     /* These are fused multiply-add, and must be done as one
7431      * floating point operation with no rounding between the
7432      * multiplication and addition steps.
7433      * NB that doing the negations here as separate steps is
7434      * correct : an input NaN should come out with its sign bit
7435      * flipped if it is a negated-input.
7436      */
7437     if (o1 == true) {
7438         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7439     }
7440 
7441     if (o0 != o1) {
7442         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7443     }
7444 
7445     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7446 
7447     write_fp_sreg(s, rd, tcg_res);
7448 }
7449 
7450 /* Floating point data-processing (3 source)
7451  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7452  * +---+---+---+-----------+------+----+------+----+------+------+------+
7453  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7454  * +---+---+---+-----------+------+----+------+----+------+------+------+
7455  */
7456 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7457 {
7458     int mos = extract32(insn, 29, 3);
7459     int type = extract32(insn, 22, 2);
7460     int rd = extract32(insn, 0, 5);
7461     int rn = extract32(insn, 5, 5);
7462     int ra = extract32(insn, 10, 5);
7463     int rm = extract32(insn, 16, 5);
7464     bool o0 = extract32(insn, 15, 1);
7465     bool o1 = extract32(insn, 21, 1);
7466 
7467     if (mos) {
7468         unallocated_encoding(s);
7469         return;
7470     }
7471 
7472     switch (type) {
7473     case 0:
7474         if (!fp_access_check(s)) {
7475             return;
7476         }
7477         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7478         break;
7479     case 1:
7480         if (!fp_access_check(s)) {
7481             return;
7482         }
7483         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7484         break;
7485     case 3:
7486         if (!dc_isar_feature(aa64_fp16, s)) {
7487             unallocated_encoding(s);
7488             return;
7489         }
7490         if (!fp_access_check(s)) {
7491             return;
7492         }
7493         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7494         break;
7495     default:
7496         unallocated_encoding(s);
7497     }
7498 }
7499 
7500 /* Floating point immediate
7501  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7502  * +---+---+---+-----------+------+---+------------+-------+------+------+
7503  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7504  * +---+---+---+-----------+------+---+------------+-------+------+------+
7505  */
7506 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7507 {
7508     int rd = extract32(insn, 0, 5);
7509     int imm5 = extract32(insn, 5, 5);
7510     int imm8 = extract32(insn, 13, 8);
7511     int type = extract32(insn, 22, 2);
7512     int mos = extract32(insn, 29, 3);
7513     uint64_t imm;
7514     MemOp sz;
7515 
7516     if (mos || imm5) {
7517         unallocated_encoding(s);
7518         return;
7519     }
7520 
7521     switch (type) {
7522     case 0:
7523         sz = MO_32;
7524         break;
7525     case 1:
7526         sz = MO_64;
7527         break;
7528     case 3:
7529         sz = MO_16;
7530         if (dc_isar_feature(aa64_fp16, s)) {
7531             break;
7532         }
7533         /* fallthru */
7534     default:
7535         unallocated_encoding(s);
7536         return;
7537     }
7538 
7539     if (!fp_access_check(s)) {
7540         return;
7541     }
7542 
7543     imm = vfp_expand_imm(sz, imm8);
7544     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7545 }
7546 
7547 /* Handle floating point <=> fixed point conversions. Note that we can
7548  * also deal with fp <=> integer conversions as a special case (scale == 64)
7549  * OPTME: consider handling that special case specially or at least skipping
7550  * the call to scalbn in the helpers for zero shifts.
7551  */
7552 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7553                            bool itof, int rmode, int scale, int sf, int type)
7554 {
7555     bool is_signed = !(opcode & 1);
7556     TCGv_ptr tcg_fpstatus;
7557     TCGv_i32 tcg_shift, tcg_single;
7558     TCGv_i64 tcg_double;
7559 
7560     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7561 
7562     tcg_shift = tcg_constant_i32(64 - scale);
7563 
7564     if (itof) {
7565         TCGv_i64 tcg_int = cpu_reg(s, rn);
7566         if (!sf) {
7567             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7568 
7569             if (is_signed) {
7570                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7571             } else {
7572                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7573             }
7574 
7575             tcg_int = tcg_extend;
7576         }
7577 
7578         switch (type) {
7579         case 1: /* float64 */
7580             tcg_double = tcg_temp_new_i64();
7581             if (is_signed) {
7582                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7583                                      tcg_shift, tcg_fpstatus);
7584             } else {
7585                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7586                                      tcg_shift, tcg_fpstatus);
7587             }
7588             write_fp_dreg(s, rd, tcg_double);
7589             break;
7590 
7591         case 0: /* float32 */
7592             tcg_single = tcg_temp_new_i32();
7593             if (is_signed) {
7594                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7595                                      tcg_shift, tcg_fpstatus);
7596             } else {
7597                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7598                                      tcg_shift, tcg_fpstatus);
7599             }
7600             write_fp_sreg(s, rd, tcg_single);
7601             break;
7602 
7603         case 3: /* float16 */
7604             tcg_single = tcg_temp_new_i32();
7605             if (is_signed) {
7606                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7607                                      tcg_shift, tcg_fpstatus);
7608             } else {
7609                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7610                                      tcg_shift, tcg_fpstatus);
7611             }
7612             write_fp_sreg(s, rd, tcg_single);
7613             break;
7614 
7615         default:
7616             g_assert_not_reached();
7617         }
7618     } else {
7619         TCGv_i64 tcg_int = cpu_reg(s, rd);
7620         TCGv_i32 tcg_rmode;
7621 
7622         if (extract32(opcode, 2, 1)) {
7623             /* There are too many rounding modes to all fit into rmode,
7624              * so FCVTA[US] is a special case.
7625              */
7626             rmode = FPROUNDING_TIEAWAY;
7627         }
7628 
7629         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7630 
7631         switch (type) {
7632         case 1: /* float64 */
7633             tcg_double = read_fp_dreg(s, rn);
7634             if (is_signed) {
7635                 if (!sf) {
7636                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7637                                          tcg_shift, tcg_fpstatus);
7638                 } else {
7639                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7640                                          tcg_shift, tcg_fpstatus);
7641                 }
7642             } else {
7643                 if (!sf) {
7644                     gen_helper_vfp_tould(tcg_int, tcg_double,
7645                                          tcg_shift, tcg_fpstatus);
7646                 } else {
7647                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7648                                          tcg_shift, tcg_fpstatus);
7649                 }
7650             }
7651             if (!sf) {
7652                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7653             }
7654             break;
7655 
7656         case 0: /* float32 */
7657             tcg_single = read_fp_sreg(s, rn);
7658             if (sf) {
7659                 if (is_signed) {
7660                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7661                                          tcg_shift, tcg_fpstatus);
7662                 } else {
7663                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7664                                          tcg_shift, tcg_fpstatus);
7665                 }
7666             } else {
7667                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7668                 if (is_signed) {
7669                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7670                                          tcg_shift, tcg_fpstatus);
7671                 } else {
7672                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7673                                          tcg_shift, tcg_fpstatus);
7674                 }
7675                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7676             }
7677             break;
7678 
7679         case 3: /* float16 */
7680             tcg_single = read_fp_sreg(s, rn);
7681             if (sf) {
7682                 if (is_signed) {
7683                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7684                                          tcg_shift, tcg_fpstatus);
7685                 } else {
7686                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7687                                          tcg_shift, tcg_fpstatus);
7688                 }
7689             } else {
7690                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7691                 if (is_signed) {
7692                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7693                                          tcg_shift, tcg_fpstatus);
7694                 } else {
7695                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7696                                          tcg_shift, tcg_fpstatus);
7697                 }
7698                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7699             }
7700             break;
7701 
7702         default:
7703             g_assert_not_reached();
7704         }
7705 
7706         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7707     }
7708 }
7709 
7710 /* Floating point <-> fixed point conversions
7711  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7712  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7713  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7714  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7715  */
7716 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7717 {
7718     int rd = extract32(insn, 0, 5);
7719     int rn = extract32(insn, 5, 5);
7720     int scale = extract32(insn, 10, 6);
7721     int opcode = extract32(insn, 16, 3);
7722     int rmode = extract32(insn, 19, 2);
7723     int type = extract32(insn, 22, 2);
7724     bool sbit = extract32(insn, 29, 1);
7725     bool sf = extract32(insn, 31, 1);
7726     bool itof;
7727 
7728     if (sbit || (!sf && scale < 32)) {
7729         unallocated_encoding(s);
7730         return;
7731     }
7732 
7733     switch (type) {
7734     case 0: /* float32 */
7735     case 1: /* float64 */
7736         break;
7737     case 3: /* float16 */
7738         if (dc_isar_feature(aa64_fp16, s)) {
7739             break;
7740         }
7741         /* fallthru */
7742     default:
7743         unallocated_encoding(s);
7744         return;
7745     }
7746 
7747     switch ((rmode << 3) | opcode) {
7748     case 0x2: /* SCVTF */
7749     case 0x3: /* UCVTF */
7750         itof = true;
7751         break;
7752     case 0x18: /* FCVTZS */
7753     case 0x19: /* FCVTZU */
7754         itof = false;
7755         break;
7756     default:
7757         unallocated_encoding(s);
7758         return;
7759     }
7760 
7761     if (!fp_access_check(s)) {
7762         return;
7763     }
7764 
7765     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7766 }
7767 
7768 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7769 {
7770     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7771      * without conversion.
7772      */
7773 
7774     if (itof) {
7775         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7776         TCGv_i64 tmp;
7777 
7778         switch (type) {
7779         case 0:
7780             /* 32 bit */
7781             tmp = tcg_temp_new_i64();
7782             tcg_gen_ext32u_i64(tmp, tcg_rn);
7783             write_fp_dreg(s, rd, tmp);
7784             break;
7785         case 1:
7786             /* 64 bit */
7787             write_fp_dreg(s, rd, tcg_rn);
7788             break;
7789         case 2:
7790             /* 64 bit to top half. */
7791             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7792             clear_vec_high(s, true, rd);
7793             break;
7794         case 3:
7795             /* 16 bit */
7796             tmp = tcg_temp_new_i64();
7797             tcg_gen_ext16u_i64(tmp, tcg_rn);
7798             write_fp_dreg(s, rd, tmp);
7799             break;
7800         default:
7801             g_assert_not_reached();
7802         }
7803     } else {
7804         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7805 
7806         switch (type) {
7807         case 0:
7808             /* 32 bit */
7809             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7810             break;
7811         case 1:
7812             /* 64 bit */
7813             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7814             break;
7815         case 2:
7816             /* 64 bits from top half */
7817             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7818             break;
7819         case 3:
7820             /* 16 bit */
7821             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7822             break;
7823         default:
7824             g_assert_not_reached();
7825         }
7826     }
7827 }
7828 
7829 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7830 {
7831     TCGv_i64 t = read_fp_dreg(s, rn);
7832     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7833 
7834     gen_helper_fjcvtzs(t, t, fpstatus);
7835 
7836     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7837     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7838     tcg_gen_movi_i32(cpu_CF, 0);
7839     tcg_gen_movi_i32(cpu_NF, 0);
7840     tcg_gen_movi_i32(cpu_VF, 0);
7841 }
7842 
7843 /* Floating point <-> integer conversions
7844  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7845  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7846  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7847  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7848  */
7849 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7850 {
7851     int rd = extract32(insn, 0, 5);
7852     int rn = extract32(insn, 5, 5);
7853     int opcode = extract32(insn, 16, 3);
7854     int rmode = extract32(insn, 19, 2);
7855     int type = extract32(insn, 22, 2);
7856     bool sbit = extract32(insn, 29, 1);
7857     bool sf = extract32(insn, 31, 1);
7858     bool itof = false;
7859 
7860     if (sbit) {
7861         goto do_unallocated;
7862     }
7863 
7864     switch (opcode) {
7865     case 2: /* SCVTF */
7866     case 3: /* UCVTF */
7867         itof = true;
7868         /* fallthru */
7869     case 4: /* FCVTAS */
7870     case 5: /* FCVTAU */
7871         if (rmode != 0) {
7872             goto do_unallocated;
7873         }
7874         /* fallthru */
7875     case 0: /* FCVT[NPMZ]S */
7876     case 1: /* FCVT[NPMZ]U */
7877         switch (type) {
7878         case 0: /* float32 */
7879         case 1: /* float64 */
7880             break;
7881         case 3: /* float16 */
7882             if (!dc_isar_feature(aa64_fp16, s)) {
7883                 goto do_unallocated;
7884             }
7885             break;
7886         default:
7887             goto do_unallocated;
7888         }
7889         if (!fp_access_check(s)) {
7890             return;
7891         }
7892         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7893         break;
7894 
7895     default:
7896         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7897         case 0b01100110: /* FMOV half <-> 32-bit int */
7898         case 0b01100111:
7899         case 0b11100110: /* FMOV half <-> 64-bit int */
7900         case 0b11100111:
7901             if (!dc_isar_feature(aa64_fp16, s)) {
7902                 goto do_unallocated;
7903             }
7904             /* fallthru */
7905         case 0b00000110: /* FMOV 32-bit */
7906         case 0b00000111:
7907         case 0b10100110: /* FMOV 64-bit */
7908         case 0b10100111:
7909         case 0b11001110: /* FMOV top half of 128-bit */
7910         case 0b11001111:
7911             if (!fp_access_check(s)) {
7912                 return;
7913             }
7914             itof = opcode & 1;
7915             handle_fmov(s, rd, rn, type, itof);
7916             break;
7917 
7918         case 0b00111110: /* FJCVTZS */
7919             if (!dc_isar_feature(aa64_jscvt, s)) {
7920                 goto do_unallocated;
7921             } else if (fp_access_check(s)) {
7922                 handle_fjcvtzs(s, rd, rn);
7923             }
7924             break;
7925 
7926         default:
7927         do_unallocated:
7928             unallocated_encoding(s);
7929             return;
7930         }
7931         break;
7932     }
7933 }
7934 
7935 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7936  *   31  30  29 28     25 24                          0
7937  * +---+---+---+---------+-----------------------------+
7938  * |   | 0 |   | 1 1 1 1 |                             |
7939  * +---+---+---+---------+-----------------------------+
7940  */
7941 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7942 {
7943     if (extract32(insn, 24, 1)) {
7944         /* Floating point data-processing (3 source) */
7945         disas_fp_3src(s, insn);
7946     } else if (extract32(insn, 21, 1) == 0) {
7947         /* Floating point to fixed point conversions */
7948         disas_fp_fixed_conv(s, insn);
7949     } else {
7950         switch (extract32(insn, 10, 2)) {
7951         case 1:
7952             /* Floating point conditional compare */
7953             disas_fp_ccomp(s, insn);
7954             break;
7955         case 2:
7956             /* Floating point data-processing (2 source) */
7957             unallocated_encoding(s); /* in decodetree */
7958             break;
7959         case 3:
7960             /* Floating point conditional select */
7961             disas_fp_csel(s, insn);
7962             break;
7963         case 0:
7964             switch (ctz32(extract32(insn, 12, 4))) {
7965             case 0: /* [15:12] == xxx1 */
7966                 /* Floating point immediate */
7967                 disas_fp_imm(s, insn);
7968                 break;
7969             case 1: /* [15:12] == xx10 */
7970                 /* Floating point compare */
7971                 disas_fp_compare(s, insn);
7972                 break;
7973             case 2: /* [15:12] == x100 */
7974                 /* Floating point data-processing (1 source) */
7975                 disas_fp_1src(s, insn);
7976                 break;
7977             case 3: /* [15:12] == 1000 */
7978                 unallocated_encoding(s);
7979                 break;
7980             default: /* [15:12] == 0000 */
7981                 /* Floating point <-> integer conversions */
7982                 disas_fp_int_conv(s, insn);
7983                 break;
7984             }
7985             break;
7986         }
7987     }
7988 }
7989 
7990 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7991                      int pos)
7992 {
7993     /* Extract 64 bits from the middle of two concatenated 64 bit
7994      * vector register slices left:right. The extracted bits start
7995      * at 'pos' bits into the right (least significant) side.
7996      * We return the result in tcg_right, and guarantee not to
7997      * trash tcg_left.
7998      */
7999     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8000     assert(pos > 0 && pos < 64);
8001 
8002     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8003     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8004     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8005 }
8006 
8007 /* EXT
8008  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
8009  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8010  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
8011  * +---+---+-------------+-----+---+------+---+------+---+------+------+
8012  */
8013 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8014 {
8015     int is_q = extract32(insn, 30, 1);
8016     int op2 = extract32(insn, 22, 2);
8017     int imm4 = extract32(insn, 11, 4);
8018     int rm = extract32(insn, 16, 5);
8019     int rn = extract32(insn, 5, 5);
8020     int rd = extract32(insn, 0, 5);
8021     int pos = imm4 << 3;
8022     TCGv_i64 tcg_resl, tcg_resh;
8023 
8024     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8025         unallocated_encoding(s);
8026         return;
8027     }
8028 
8029     if (!fp_access_check(s)) {
8030         return;
8031     }
8032 
8033     tcg_resh = tcg_temp_new_i64();
8034     tcg_resl = tcg_temp_new_i64();
8035 
8036     /* Vd gets bits starting at pos bits into Vm:Vn. This is
8037      * either extracting 128 bits from a 128:128 concatenation, or
8038      * extracting 64 bits from a 64:64 concatenation.
8039      */
8040     if (!is_q) {
8041         read_vec_element(s, tcg_resl, rn, 0, MO_64);
8042         if (pos != 0) {
8043             read_vec_element(s, tcg_resh, rm, 0, MO_64);
8044             do_ext64(s, tcg_resh, tcg_resl, pos);
8045         }
8046     } else {
8047         TCGv_i64 tcg_hh;
8048         typedef struct {
8049             int reg;
8050             int elt;
8051         } EltPosns;
8052         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8053         EltPosns *elt = eltposns;
8054 
8055         if (pos >= 64) {
8056             elt++;
8057             pos -= 64;
8058         }
8059 
8060         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8061         elt++;
8062         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8063         elt++;
8064         if (pos != 0) {
8065             do_ext64(s, tcg_resh, tcg_resl, pos);
8066             tcg_hh = tcg_temp_new_i64();
8067             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8068             do_ext64(s, tcg_hh, tcg_resh, pos);
8069         }
8070     }
8071 
8072     write_vec_element(s, tcg_resl, rd, 0, MO_64);
8073     if (is_q) {
8074         write_vec_element(s, tcg_resh, rd, 1, MO_64);
8075     }
8076     clear_vec_high(s, is_q, rd);
8077 }
8078 
8079 /* TBL/TBX
8080  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
8081  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8082  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
8083  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8084  */
8085 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8086 {
8087     int op2 = extract32(insn, 22, 2);
8088     int is_q = extract32(insn, 30, 1);
8089     int rm = extract32(insn, 16, 5);
8090     int rn = extract32(insn, 5, 5);
8091     int rd = extract32(insn, 0, 5);
8092     int is_tbx = extract32(insn, 12, 1);
8093     int len = (extract32(insn, 13, 2) + 1) * 16;
8094 
8095     if (op2 != 0) {
8096         unallocated_encoding(s);
8097         return;
8098     }
8099 
8100     if (!fp_access_check(s)) {
8101         return;
8102     }
8103 
8104     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8105                        vec_full_reg_offset(s, rm), tcg_env,
8106                        is_q ? 16 : 8, vec_full_reg_size(s),
8107                        (len << 6) | (is_tbx << 5) | rn,
8108                        gen_helper_simd_tblx);
8109 }
8110 
8111 /* ZIP/UZP/TRN
8112  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8113  * +---+---+-------------+------+---+------+---+------------------+------+
8114  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8115  * +---+---+-------------+------+---+------+---+------------------+------+
8116  */
8117 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8118 {
8119     int rd = extract32(insn, 0, 5);
8120     int rn = extract32(insn, 5, 5);
8121     int rm = extract32(insn, 16, 5);
8122     int size = extract32(insn, 22, 2);
8123     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8124      * bit 2 indicates 1 vs 2 variant of the insn.
8125      */
8126     int opcode = extract32(insn, 12, 2);
8127     bool part = extract32(insn, 14, 1);
8128     bool is_q = extract32(insn, 30, 1);
8129     int esize = 8 << size;
8130     int i;
8131     int datasize = is_q ? 128 : 64;
8132     int elements = datasize / esize;
8133     TCGv_i64 tcg_res[2], tcg_ele;
8134 
8135     if (opcode == 0 || (size == 3 && !is_q)) {
8136         unallocated_encoding(s);
8137         return;
8138     }
8139 
8140     if (!fp_access_check(s)) {
8141         return;
8142     }
8143 
8144     tcg_res[0] = tcg_temp_new_i64();
8145     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8146     tcg_ele = tcg_temp_new_i64();
8147 
8148     for (i = 0; i < elements; i++) {
8149         int o, w;
8150 
8151         switch (opcode) {
8152         case 1: /* UZP1/2 */
8153         {
8154             int midpoint = elements / 2;
8155             if (i < midpoint) {
8156                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8157             } else {
8158                 read_vec_element(s, tcg_ele, rm,
8159                                  2 * (i - midpoint) + part, size);
8160             }
8161             break;
8162         }
8163         case 2: /* TRN1/2 */
8164             if (i & 1) {
8165                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8166             } else {
8167                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8168             }
8169             break;
8170         case 3: /* ZIP1/2 */
8171         {
8172             int base = part * elements / 2;
8173             if (i & 1) {
8174                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8175             } else {
8176                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8177             }
8178             break;
8179         }
8180         default:
8181             g_assert_not_reached();
8182         }
8183 
8184         w = (i * esize) / 64;
8185         o = (i * esize) % 64;
8186         if (o == 0) {
8187             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8188         } else {
8189             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8190             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8191         }
8192     }
8193 
8194     for (i = 0; i <= is_q; ++i) {
8195         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8196     }
8197     clear_vec_high(s, is_q, rd);
8198 }
8199 
8200 /*
8201  * do_reduction_op helper
8202  *
8203  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8204  * important for correct NaN propagation that we do these
8205  * operations in exactly the order specified by the pseudocode.
8206  *
8207  * This is a recursive function, TCG temps should be freed by the
8208  * calling function once it is done with the values.
8209  */
8210 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8211                                 int esize, int size, int vmap, TCGv_ptr fpst)
8212 {
8213     if (esize == size) {
8214         int element;
8215         MemOp msize = esize == 16 ? MO_16 : MO_32;
8216         TCGv_i32 tcg_elem;
8217 
8218         /* We should have one register left here */
8219         assert(ctpop8(vmap) == 1);
8220         element = ctz32(vmap);
8221         assert(element < 8);
8222 
8223         tcg_elem = tcg_temp_new_i32();
8224         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8225         return tcg_elem;
8226     } else {
8227         int bits = size / 2;
8228         int shift = ctpop8(vmap) / 2;
8229         int vmap_lo = (vmap >> shift) & vmap;
8230         int vmap_hi = (vmap & ~vmap_lo);
8231         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8232 
8233         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8234         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8235         tcg_res = tcg_temp_new_i32();
8236 
8237         switch (fpopcode) {
8238         case 0x0c: /* fmaxnmv half-precision */
8239             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8240             break;
8241         case 0x0f: /* fmaxv half-precision */
8242             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8243             break;
8244         case 0x1c: /* fminnmv half-precision */
8245             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8246             break;
8247         case 0x1f: /* fminv half-precision */
8248             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8249             break;
8250         case 0x2c: /* fmaxnmv */
8251             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8252             break;
8253         case 0x2f: /* fmaxv */
8254             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8255             break;
8256         case 0x3c: /* fminnmv */
8257             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8258             break;
8259         case 0x3f: /* fminv */
8260             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8261             break;
8262         default:
8263             g_assert_not_reached();
8264         }
8265         return tcg_res;
8266     }
8267 }
8268 
8269 /* AdvSIMD across lanes
8270  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8271  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8272  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8273  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8274  */
8275 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8276 {
8277     int rd = extract32(insn, 0, 5);
8278     int rn = extract32(insn, 5, 5);
8279     int size = extract32(insn, 22, 2);
8280     int opcode = extract32(insn, 12, 5);
8281     bool is_q = extract32(insn, 30, 1);
8282     bool is_u = extract32(insn, 29, 1);
8283     bool is_fp = false;
8284     bool is_min = false;
8285     int esize;
8286     int elements;
8287     int i;
8288     TCGv_i64 tcg_res, tcg_elt;
8289 
8290     switch (opcode) {
8291     case 0x1b: /* ADDV */
8292         if (is_u) {
8293             unallocated_encoding(s);
8294             return;
8295         }
8296         /* fall through */
8297     case 0x3: /* SADDLV, UADDLV */
8298     case 0xa: /* SMAXV, UMAXV */
8299     case 0x1a: /* SMINV, UMINV */
8300         if (size == 3 || (size == 2 && !is_q)) {
8301             unallocated_encoding(s);
8302             return;
8303         }
8304         break;
8305     case 0xc: /* FMAXNMV, FMINNMV */
8306     case 0xf: /* FMAXV, FMINV */
8307         /* Bit 1 of size field encodes min vs max and the actual size
8308          * depends on the encoding of the U bit. If not set (and FP16
8309          * enabled) then we do half-precision float instead of single
8310          * precision.
8311          */
8312         is_min = extract32(size, 1, 1);
8313         is_fp = true;
8314         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8315             size = 1;
8316         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8317             unallocated_encoding(s);
8318             return;
8319         } else {
8320             size = 2;
8321         }
8322         break;
8323     default:
8324         unallocated_encoding(s);
8325         return;
8326     }
8327 
8328     if (!fp_access_check(s)) {
8329         return;
8330     }
8331 
8332     esize = 8 << size;
8333     elements = (is_q ? 128 : 64) / esize;
8334 
8335     tcg_res = tcg_temp_new_i64();
8336     tcg_elt = tcg_temp_new_i64();
8337 
8338     /* These instructions operate across all lanes of a vector
8339      * to produce a single result. We can guarantee that a 64
8340      * bit intermediate is sufficient:
8341      *  + for [US]ADDLV the maximum element size is 32 bits, and
8342      *    the result type is 64 bits
8343      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8344      *    same as the element size, which is 32 bits at most
8345      * For the integer operations we can choose to work at 64
8346      * or 32 bits and truncate at the end; for simplicity
8347      * we use 64 bits always. The floating point
8348      * ops do require 32 bit intermediates, though.
8349      */
8350     if (!is_fp) {
8351         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8352 
8353         for (i = 1; i < elements; i++) {
8354             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8355 
8356             switch (opcode) {
8357             case 0x03: /* SADDLV / UADDLV */
8358             case 0x1b: /* ADDV */
8359                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8360                 break;
8361             case 0x0a: /* SMAXV / UMAXV */
8362                 if (is_u) {
8363                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8364                 } else {
8365                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8366                 }
8367                 break;
8368             case 0x1a: /* SMINV / UMINV */
8369                 if (is_u) {
8370                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8371                 } else {
8372                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8373                 }
8374                 break;
8375             default:
8376                 g_assert_not_reached();
8377             }
8378 
8379         }
8380     } else {
8381         /* Floating point vector reduction ops which work across 32
8382          * bit (single) or 16 bit (half-precision) intermediates.
8383          * Note that correct NaN propagation requires that we do these
8384          * operations in exactly the order specified by the pseudocode.
8385          */
8386         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8387         int fpopcode = opcode | is_min << 4 | is_u << 5;
8388         int vmap = (1 << elements) - 1;
8389         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8390                                              (is_q ? 128 : 64), vmap, fpst);
8391         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8392     }
8393 
8394     /* Now truncate the result to the width required for the final output */
8395     if (opcode == 0x03) {
8396         /* SADDLV, UADDLV: result is 2*esize */
8397         size++;
8398     }
8399 
8400     switch (size) {
8401     case 0:
8402         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8403         break;
8404     case 1:
8405         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8406         break;
8407     case 2:
8408         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8409         break;
8410     case 3:
8411         break;
8412     default:
8413         g_assert_not_reached();
8414     }
8415 
8416     write_fp_dreg(s, rd, tcg_res);
8417 }
8418 
8419 /* AdvSIMD modified immediate
8420  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8421  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8422  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8423  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8424  *
8425  * There are a number of operations that can be carried out here:
8426  *   MOVI - move (shifted) imm into register
8427  *   MVNI - move inverted (shifted) imm into register
8428  *   ORR  - bitwise OR of (shifted) imm with register
8429  *   BIC  - bitwise clear of (shifted) imm with register
8430  * With ARMv8.2 we also have:
8431  *   FMOV half-precision
8432  */
8433 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8434 {
8435     int rd = extract32(insn, 0, 5);
8436     int cmode = extract32(insn, 12, 4);
8437     int o2 = extract32(insn, 11, 1);
8438     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8439     bool is_neg = extract32(insn, 29, 1);
8440     bool is_q = extract32(insn, 30, 1);
8441     uint64_t imm = 0;
8442 
8443     if (o2) {
8444         if (cmode != 0xf || is_neg) {
8445             unallocated_encoding(s);
8446             return;
8447         }
8448         /* FMOV (vector, immediate) - half-precision */
8449         if (!dc_isar_feature(aa64_fp16, s)) {
8450             unallocated_encoding(s);
8451             return;
8452         }
8453         imm = vfp_expand_imm(MO_16, abcdefgh);
8454         /* now duplicate across the lanes */
8455         imm = dup_const(MO_16, imm);
8456     } else {
8457         if (cmode == 0xf && is_neg && !is_q) {
8458             unallocated_encoding(s);
8459             return;
8460         }
8461         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8462     }
8463 
8464     if (!fp_access_check(s)) {
8465         return;
8466     }
8467 
8468     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8469         /* MOVI or MVNI, with MVNI negation handled above.  */
8470         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8471                              vec_full_reg_size(s), imm);
8472     } else {
8473         /* ORR or BIC, with BIC negation to AND handled above.  */
8474         if (is_neg) {
8475             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8476         } else {
8477             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8478         }
8479     }
8480 }
8481 
8482 /*
8483  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8484  *
8485  * This code is handles the common shifting code and is used by both
8486  * the vector and scalar code.
8487  */
8488 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8489                                     TCGv_i64 tcg_rnd, bool accumulate,
8490                                     bool is_u, int size, int shift)
8491 {
8492     bool extended_result = false;
8493     bool round = tcg_rnd != NULL;
8494     int ext_lshift = 0;
8495     TCGv_i64 tcg_src_hi;
8496 
8497     if (round && size == 3) {
8498         extended_result = true;
8499         ext_lshift = 64 - shift;
8500         tcg_src_hi = tcg_temp_new_i64();
8501     } else if (shift == 64) {
8502         if (!accumulate && is_u) {
8503             /* result is zero */
8504             tcg_gen_movi_i64(tcg_res, 0);
8505             return;
8506         }
8507     }
8508 
8509     /* Deal with the rounding step */
8510     if (round) {
8511         if (extended_result) {
8512             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8513             if (!is_u) {
8514                 /* take care of sign extending tcg_res */
8515                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8516                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8517                                  tcg_src, tcg_src_hi,
8518                                  tcg_rnd, tcg_zero);
8519             } else {
8520                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8521                                  tcg_src, tcg_zero,
8522                                  tcg_rnd, tcg_zero);
8523             }
8524         } else {
8525             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8526         }
8527     }
8528 
8529     /* Now do the shift right */
8530     if (round && extended_result) {
8531         /* extended case, >64 bit precision required */
8532         if (ext_lshift == 0) {
8533             /* special case, only high bits matter */
8534             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8535         } else {
8536             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8537             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8538             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8539         }
8540     } else {
8541         if (is_u) {
8542             if (shift == 64) {
8543                 /* essentially shifting in 64 zeros */
8544                 tcg_gen_movi_i64(tcg_src, 0);
8545             } else {
8546                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8547             }
8548         } else {
8549             if (shift == 64) {
8550                 /* effectively extending the sign-bit */
8551                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8552             } else {
8553                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8554             }
8555         }
8556     }
8557 
8558     if (accumulate) {
8559         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8560     } else {
8561         tcg_gen_mov_i64(tcg_res, tcg_src);
8562     }
8563 }
8564 
8565 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8566 static void handle_scalar_simd_shri(DisasContext *s,
8567                                     bool is_u, int immh, int immb,
8568                                     int opcode, int rn, int rd)
8569 {
8570     const int size = 3;
8571     int immhb = immh << 3 | immb;
8572     int shift = 2 * (8 << size) - immhb;
8573     bool accumulate = false;
8574     bool round = false;
8575     bool insert = false;
8576     TCGv_i64 tcg_rn;
8577     TCGv_i64 tcg_rd;
8578     TCGv_i64 tcg_round;
8579 
8580     if (!extract32(immh, 3, 1)) {
8581         unallocated_encoding(s);
8582         return;
8583     }
8584 
8585     if (!fp_access_check(s)) {
8586         return;
8587     }
8588 
8589     switch (opcode) {
8590     case 0x02: /* SSRA / USRA (accumulate) */
8591         accumulate = true;
8592         break;
8593     case 0x04: /* SRSHR / URSHR (rounding) */
8594         round = true;
8595         break;
8596     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8597         accumulate = round = true;
8598         break;
8599     case 0x08: /* SRI */
8600         insert = true;
8601         break;
8602     }
8603 
8604     if (round) {
8605         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8606     } else {
8607         tcg_round = NULL;
8608     }
8609 
8610     tcg_rn = read_fp_dreg(s, rn);
8611     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8612 
8613     if (insert) {
8614         /* shift count same as element size is valid but does nothing;
8615          * special case to avoid potential shift by 64.
8616          */
8617         int esize = 8 << size;
8618         if (shift != esize) {
8619             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8620             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8621         }
8622     } else {
8623         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8624                                 accumulate, is_u, size, shift);
8625     }
8626 
8627     write_fp_dreg(s, rd, tcg_rd);
8628 }
8629 
8630 /* SHL/SLI - Scalar shift left */
8631 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8632                                     int immh, int immb, int opcode,
8633                                     int rn, int rd)
8634 {
8635     int size = 32 - clz32(immh) - 1;
8636     int immhb = immh << 3 | immb;
8637     int shift = immhb - (8 << size);
8638     TCGv_i64 tcg_rn;
8639     TCGv_i64 tcg_rd;
8640 
8641     if (!extract32(immh, 3, 1)) {
8642         unallocated_encoding(s);
8643         return;
8644     }
8645 
8646     if (!fp_access_check(s)) {
8647         return;
8648     }
8649 
8650     tcg_rn = read_fp_dreg(s, rn);
8651     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8652 
8653     if (insert) {
8654         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8655     } else {
8656         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8657     }
8658 
8659     write_fp_dreg(s, rd, tcg_rd);
8660 }
8661 
8662 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8663  * (signed/unsigned) narrowing */
8664 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8665                                    bool is_u_shift, bool is_u_narrow,
8666                                    int immh, int immb, int opcode,
8667                                    int rn, int rd)
8668 {
8669     int immhb = immh << 3 | immb;
8670     int size = 32 - clz32(immh) - 1;
8671     int esize = 8 << size;
8672     int shift = (2 * esize) - immhb;
8673     int elements = is_scalar ? 1 : (64 / esize);
8674     bool round = extract32(opcode, 0, 1);
8675     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8676     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8677     TCGv_i32 tcg_rd_narrowed;
8678     TCGv_i64 tcg_final;
8679 
8680     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8681         { gen_helper_neon_narrow_sat_s8,
8682           gen_helper_neon_unarrow_sat8 },
8683         { gen_helper_neon_narrow_sat_s16,
8684           gen_helper_neon_unarrow_sat16 },
8685         { gen_helper_neon_narrow_sat_s32,
8686           gen_helper_neon_unarrow_sat32 },
8687         { NULL, NULL },
8688     };
8689     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8690         gen_helper_neon_narrow_sat_u8,
8691         gen_helper_neon_narrow_sat_u16,
8692         gen_helper_neon_narrow_sat_u32,
8693         NULL
8694     };
8695     NeonGenNarrowEnvFn *narrowfn;
8696 
8697     int i;
8698 
8699     assert(size < 4);
8700 
8701     if (extract32(immh, 3, 1)) {
8702         unallocated_encoding(s);
8703         return;
8704     }
8705 
8706     if (!fp_access_check(s)) {
8707         return;
8708     }
8709 
8710     if (is_u_shift) {
8711         narrowfn = unsigned_narrow_fns[size];
8712     } else {
8713         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8714     }
8715 
8716     tcg_rn = tcg_temp_new_i64();
8717     tcg_rd = tcg_temp_new_i64();
8718     tcg_rd_narrowed = tcg_temp_new_i32();
8719     tcg_final = tcg_temp_new_i64();
8720 
8721     if (round) {
8722         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8723     } else {
8724         tcg_round = NULL;
8725     }
8726 
8727     for (i = 0; i < elements; i++) {
8728         read_vec_element(s, tcg_rn, rn, i, ldop);
8729         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8730                                 false, is_u_shift, size+1, shift);
8731         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8732         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8733         if (i == 0) {
8734             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8735         } else {
8736             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8737         }
8738     }
8739 
8740     if (!is_q) {
8741         write_vec_element(s, tcg_final, rd, 0, MO_64);
8742     } else {
8743         write_vec_element(s, tcg_final, rd, 1, MO_64);
8744     }
8745     clear_vec_high(s, is_q, rd);
8746 }
8747 
8748 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8749 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8750                              bool src_unsigned, bool dst_unsigned,
8751                              int immh, int immb, int rn, int rd)
8752 {
8753     int immhb = immh << 3 | immb;
8754     int size = 32 - clz32(immh) - 1;
8755     int shift = immhb - (8 << size);
8756     int pass;
8757 
8758     assert(immh != 0);
8759     assert(!(scalar && is_q));
8760 
8761     if (!scalar) {
8762         if (!is_q && extract32(immh, 3, 1)) {
8763             unallocated_encoding(s);
8764             return;
8765         }
8766 
8767         /* Since we use the variable-shift helpers we must
8768          * replicate the shift count into each element of
8769          * the tcg_shift value.
8770          */
8771         switch (size) {
8772         case 0:
8773             shift |= shift << 8;
8774             /* fall through */
8775         case 1:
8776             shift |= shift << 16;
8777             break;
8778         case 2:
8779         case 3:
8780             break;
8781         default:
8782             g_assert_not_reached();
8783         }
8784     }
8785 
8786     if (!fp_access_check(s)) {
8787         return;
8788     }
8789 
8790     if (size == 3) {
8791         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8792         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8793             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8794             { NULL, gen_helper_neon_qshl_u64 },
8795         };
8796         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8797         int maxpass = is_q ? 2 : 1;
8798 
8799         for (pass = 0; pass < maxpass; pass++) {
8800             TCGv_i64 tcg_op = tcg_temp_new_i64();
8801 
8802             read_vec_element(s, tcg_op, rn, pass, MO_64);
8803             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8804             write_vec_element(s, tcg_op, rd, pass, MO_64);
8805         }
8806         clear_vec_high(s, is_q, rd);
8807     } else {
8808         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8809         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8810             {
8811                 { gen_helper_neon_qshl_s8,
8812                   gen_helper_neon_qshl_s16,
8813                   gen_helper_neon_qshl_s32 },
8814                 { gen_helper_neon_qshlu_s8,
8815                   gen_helper_neon_qshlu_s16,
8816                   gen_helper_neon_qshlu_s32 }
8817             }, {
8818                 { NULL, NULL, NULL },
8819                 { gen_helper_neon_qshl_u8,
8820                   gen_helper_neon_qshl_u16,
8821                   gen_helper_neon_qshl_u32 }
8822             }
8823         };
8824         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8825         MemOp memop = scalar ? size : MO_32;
8826         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8827 
8828         for (pass = 0; pass < maxpass; pass++) {
8829             TCGv_i32 tcg_op = tcg_temp_new_i32();
8830 
8831             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8832             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8833             if (scalar) {
8834                 switch (size) {
8835                 case 0:
8836                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8837                     break;
8838                 case 1:
8839                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8840                     break;
8841                 case 2:
8842                     break;
8843                 default:
8844                     g_assert_not_reached();
8845                 }
8846                 write_fp_sreg(s, rd, tcg_op);
8847             } else {
8848                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8849             }
8850         }
8851 
8852         if (!scalar) {
8853             clear_vec_high(s, is_q, rd);
8854         }
8855     }
8856 }
8857 
8858 /* Common vector code for handling integer to FP conversion */
8859 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8860                                    int elements, int is_signed,
8861                                    int fracbits, int size)
8862 {
8863     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8864     TCGv_i32 tcg_shift = NULL;
8865 
8866     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8867     int pass;
8868 
8869     if (fracbits || size == MO_64) {
8870         tcg_shift = tcg_constant_i32(fracbits);
8871     }
8872 
8873     if (size == MO_64) {
8874         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8875         TCGv_i64 tcg_double = tcg_temp_new_i64();
8876 
8877         for (pass = 0; pass < elements; pass++) {
8878             read_vec_element(s, tcg_int64, rn, pass, mop);
8879 
8880             if (is_signed) {
8881                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8882                                      tcg_shift, tcg_fpst);
8883             } else {
8884                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8885                                      tcg_shift, tcg_fpst);
8886             }
8887             if (elements == 1) {
8888                 write_fp_dreg(s, rd, tcg_double);
8889             } else {
8890                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8891             }
8892         }
8893     } else {
8894         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8895         TCGv_i32 tcg_float = tcg_temp_new_i32();
8896 
8897         for (pass = 0; pass < elements; pass++) {
8898             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8899 
8900             switch (size) {
8901             case MO_32:
8902                 if (fracbits) {
8903                     if (is_signed) {
8904                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8905                                              tcg_shift, tcg_fpst);
8906                     } else {
8907                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8908                                              tcg_shift, tcg_fpst);
8909                     }
8910                 } else {
8911                     if (is_signed) {
8912                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8913                     } else {
8914                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8915                     }
8916                 }
8917                 break;
8918             case MO_16:
8919                 if (fracbits) {
8920                     if (is_signed) {
8921                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8922                                              tcg_shift, tcg_fpst);
8923                     } else {
8924                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8925                                              tcg_shift, tcg_fpst);
8926                     }
8927                 } else {
8928                     if (is_signed) {
8929                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8930                     } else {
8931                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8932                     }
8933                 }
8934                 break;
8935             default:
8936                 g_assert_not_reached();
8937             }
8938 
8939             if (elements == 1) {
8940                 write_fp_sreg(s, rd, tcg_float);
8941             } else {
8942                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8943             }
8944         }
8945     }
8946 
8947     clear_vec_high(s, elements << size == 16, rd);
8948 }
8949 
8950 /* UCVTF/SCVTF - Integer to FP conversion */
8951 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8952                                          bool is_q, bool is_u,
8953                                          int immh, int immb, int opcode,
8954                                          int rn, int rd)
8955 {
8956     int size, elements, fracbits;
8957     int immhb = immh << 3 | immb;
8958 
8959     if (immh & 8) {
8960         size = MO_64;
8961         if (!is_scalar && !is_q) {
8962             unallocated_encoding(s);
8963             return;
8964         }
8965     } else if (immh & 4) {
8966         size = MO_32;
8967     } else if (immh & 2) {
8968         size = MO_16;
8969         if (!dc_isar_feature(aa64_fp16, s)) {
8970             unallocated_encoding(s);
8971             return;
8972         }
8973     } else {
8974         /* immh == 0 would be a failure of the decode logic */
8975         g_assert(immh == 1);
8976         unallocated_encoding(s);
8977         return;
8978     }
8979 
8980     if (is_scalar) {
8981         elements = 1;
8982     } else {
8983         elements = (8 << is_q) >> size;
8984     }
8985     fracbits = (16 << size) - immhb;
8986 
8987     if (!fp_access_check(s)) {
8988         return;
8989     }
8990 
8991     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8992 }
8993 
8994 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8995 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8996                                          bool is_q, bool is_u,
8997                                          int immh, int immb, int rn, int rd)
8998 {
8999     int immhb = immh << 3 | immb;
9000     int pass, size, fracbits;
9001     TCGv_ptr tcg_fpstatus;
9002     TCGv_i32 tcg_rmode, tcg_shift;
9003 
9004     if (immh & 0x8) {
9005         size = MO_64;
9006         if (!is_scalar && !is_q) {
9007             unallocated_encoding(s);
9008             return;
9009         }
9010     } else if (immh & 0x4) {
9011         size = MO_32;
9012     } else if (immh & 0x2) {
9013         size = MO_16;
9014         if (!dc_isar_feature(aa64_fp16, s)) {
9015             unallocated_encoding(s);
9016             return;
9017         }
9018     } else {
9019         /* Should have split out AdvSIMD modified immediate earlier.  */
9020         assert(immh == 1);
9021         unallocated_encoding(s);
9022         return;
9023     }
9024 
9025     if (!fp_access_check(s)) {
9026         return;
9027     }
9028 
9029     assert(!(is_scalar && is_q));
9030 
9031     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9032     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9033     fracbits = (16 << size) - immhb;
9034     tcg_shift = tcg_constant_i32(fracbits);
9035 
9036     if (size == MO_64) {
9037         int maxpass = is_scalar ? 1 : 2;
9038 
9039         for (pass = 0; pass < maxpass; pass++) {
9040             TCGv_i64 tcg_op = tcg_temp_new_i64();
9041 
9042             read_vec_element(s, tcg_op, rn, pass, MO_64);
9043             if (is_u) {
9044                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9045             } else {
9046                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9047             }
9048             write_vec_element(s, tcg_op, rd, pass, MO_64);
9049         }
9050         clear_vec_high(s, is_q, rd);
9051     } else {
9052         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9053         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9054 
9055         switch (size) {
9056         case MO_16:
9057             if (is_u) {
9058                 fn = gen_helper_vfp_touhh;
9059             } else {
9060                 fn = gen_helper_vfp_toshh;
9061             }
9062             break;
9063         case MO_32:
9064             if (is_u) {
9065                 fn = gen_helper_vfp_touls;
9066             } else {
9067                 fn = gen_helper_vfp_tosls;
9068             }
9069             break;
9070         default:
9071             g_assert_not_reached();
9072         }
9073 
9074         for (pass = 0; pass < maxpass; pass++) {
9075             TCGv_i32 tcg_op = tcg_temp_new_i32();
9076 
9077             read_vec_element_i32(s, tcg_op, rn, pass, size);
9078             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9079             if (is_scalar) {
9080                 if (size == MO_16 && !is_u) {
9081                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9082                 }
9083                 write_fp_sreg(s, rd, tcg_op);
9084             } else {
9085                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9086             }
9087         }
9088         if (!is_scalar) {
9089             clear_vec_high(s, is_q, rd);
9090         }
9091     }
9092 
9093     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9094 }
9095 
9096 /* AdvSIMD scalar shift by immediate
9097  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9098  * +-----+---+-------------+------+------+--------+---+------+------+
9099  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9100  * +-----+---+-------------+------+------+--------+---+------+------+
9101  *
9102  * This is the scalar version so it works on a fixed sized registers
9103  */
9104 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9105 {
9106     int rd = extract32(insn, 0, 5);
9107     int rn = extract32(insn, 5, 5);
9108     int opcode = extract32(insn, 11, 5);
9109     int immb = extract32(insn, 16, 3);
9110     int immh = extract32(insn, 19, 4);
9111     bool is_u = extract32(insn, 29, 1);
9112 
9113     if (immh == 0) {
9114         unallocated_encoding(s);
9115         return;
9116     }
9117 
9118     switch (opcode) {
9119     case 0x08: /* SRI */
9120         if (!is_u) {
9121             unallocated_encoding(s);
9122             return;
9123         }
9124         /* fall through */
9125     case 0x00: /* SSHR / USHR */
9126     case 0x02: /* SSRA / USRA */
9127     case 0x04: /* SRSHR / URSHR */
9128     case 0x06: /* SRSRA / URSRA */
9129         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9130         break;
9131     case 0x0a: /* SHL / SLI */
9132         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9133         break;
9134     case 0x1c: /* SCVTF, UCVTF */
9135         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9136                                      opcode, rn, rd);
9137         break;
9138     case 0x10: /* SQSHRUN, SQSHRUN2 */
9139     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9140         if (!is_u) {
9141             unallocated_encoding(s);
9142             return;
9143         }
9144         handle_vec_simd_sqshrn(s, true, false, false, true,
9145                                immh, immb, opcode, rn, rd);
9146         break;
9147     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9148     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9149         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9150                                immh, immb, opcode, rn, rd);
9151         break;
9152     case 0xc: /* SQSHLU */
9153         if (!is_u) {
9154             unallocated_encoding(s);
9155             return;
9156         }
9157         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9158         break;
9159     case 0xe: /* SQSHL, UQSHL */
9160         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9161         break;
9162     case 0x1f: /* FCVTZS, FCVTZU */
9163         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9164         break;
9165     default:
9166         unallocated_encoding(s);
9167         break;
9168     }
9169 }
9170 
9171 /* AdvSIMD scalar three different
9172  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9173  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9174  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9175  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9176  */
9177 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9178 {
9179     bool is_u = extract32(insn, 29, 1);
9180     int size = extract32(insn, 22, 2);
9181     int opcode = extract32(insn, 12, 4);
9182     int rm = extract32(insn, 16, 5);
9183     int rn = extract32(insn, 5, 5);
9184     int rd = extract32(insn, 0, 5);
9185 
9186     if (is_u) {
9187         unallocated_encoding(s);
9188         return;
9189     }
9190 
9191     switch (opcode) {
9192     case 0x9: /* SQDMLAL, SQDMLAL2 */
9193     case 0xb: /* SQDMLSL, SQDMLSL2 */
9194     case 0xd: /* SQDMULL, SQDMULL2 */
9195         if (size == 0 || size == 3) {
9196             unallocated_encoding(s);
9197             return;
9198         }
9199         break;
9200     default:
9201         unallocated_encoding(s);
9202         return;
9203     }
9204 
9205     if (!fp_access_check(s)) {
9206         return;
9207     }
9208 
9209     if (size == 2) {
9210         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9211         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9212         TCGv_i64 tcg_res = tcg_temp_new_i64();
9213 
9214         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9215         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9216 
9217         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9218         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9219 
9220         switch (opcode) {
9221         case 0xd: /* SQDMULL, SQDMULL2 */
9222             break;
9223         case 0xb: /* SQDMLSL, SQDMLSL2 */
9224             tcg_gen_neg_i64(tcg_res, tcg_res);
9225             /* fall through */
9226         case 0x9: /* SQDMLAL, SQDMLAL2 */
9227             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9228             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9229                                               tcg_res, tcg_op1);
9230             break;
9231         default:
9232             g_assert_not_reached();
9233         }
9234 
9235         write_fp_dreg(s, rd, tcg_res);
9236     } else {
9237         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9238         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9239         TCGv_i64 tcg_res = tcg_temp_new_i64();
9240 
9241         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9242         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9243 
9244         switch (opcode) {
9245         case 0xd: /* SQDMULL, SQDMULL2 */
9246             break;
9247         case 0xb: /* SQDMLSL, SQDMLSL2 */
9248             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9249             /* fall through */
9250         case 0x9: /* SQDMLAL, SQDMLAL2 */
9251         {
9252             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9253             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9254             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9255                                               tcg_res, tcg_op3);
9256             break;
9257         }
9258         default:
9259             g_assert_not_reached();
9260         }
9261 
9262         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9263         write_fp_dreg(s, rd, tcg_res);
9264     }
9265 }
9266 
9267 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9268                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9269 {
9270     /* Handle 64x64->64 opcodes which are shared between the scalar
9271      * and vector 3-same groups. We cover every opcode where size == 3
9272      * is valid in either the three-reg-same (integer, not pairwise)
9273      * or scalar-three-reg-same groups.
9274      */
9275     TCGCond cond;
9276 
9277     switch (opcode) {
9278     case 0x1: /* SQADD */
9279         if (u) {
9280             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9281         } else {
9282             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9283         }
9284         break;
9285     case 0x5: /* SQSUB */
9286         if (u) {
9287             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9288         } else {
9289             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9290         }
9291         break;
9292     case 0x6: /* CMGT, CMHI */
9293         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9294     do_cmop:
9295         /* 64 bit integer comparison, result = test ? -1 : 0. */
9296         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9297         break;
9298     case 0x7: /* CMGE, CMHS */
9299         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9300         goto do_cmop;
9301     case 0x11: /* CMTST, CMEQ */
9302         if (u) {
9303             cond = TCG_COND_EQ;
9304             goto do_cmop;
9305         }
9306         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9307         break;
9308     case 0x8: /* SSHL, USHL */
9309         if (u) {
9310             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9311         } else {
9312             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9313         }
9314         break;
9315     case 0x9: /* SQSHL, UQSHL */
9316         if (u) {
9317             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9318         } else {
9319             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9320         }
9321         break;
9322     case 0xa: /* SRSHL, URSHL */
9323         if (u) {
9324             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9325         } else {
9326             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9327         }
9328         break;
9329     case 0xb: /* SQRSHL, UQRSHL */
9330         if (u) {
9331             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9332         } else {
9333             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9334         }
9335         break;
9336     case 0x10: /* ADD, SUB */
9337         if (u) {
9338             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9339         } else {
9340             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9341         }
9342         break;
9343     default:
9344         g_assert_not_reached();
9345     }
9346 }
9347 
9348 /* AdvSIMD scalar three same
9349  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9350  * +-----+---+-----------+------+---+------+--------+---+------+------+
9351  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9352  * +-----+---+-----------+------+---+------+--------+---+------+------+
9353  */
9354 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9355 {
9356     int rd = extract32(insn, 0, 5);
9357     int rn = extract32(insn, 5, 5);
9358     int opcode = extract32(insn, 11, 5);
9359     int rm = extract32(insn, 16, 5);
9360     int size = extract32(insn, 22, 2);
9361     bool u = extract32(insn, 29, 1);
9362     TCGv_i64 tcg_rd;
9363 
9364     switch (opcode) {
9365     case 0x1: /* SQADD, UQADD */
9366     case 0x5: /* SQSUB, UQSUB */
9367     case 0x9: /* SQSHL, UQSHL */
9368     case 0xb: /* SQRSHL, UQRSHL */
9369         break;
9370     case 0x8: /* SSHL, USHL */
9371     case 0xa: /* SRSHL, URSHL */
9372     case 0x6: /* CMGT, CMHI */
9373     case 0x7: /* CMGE, CMHS */
9374     case 0x11: /* CMTST, CMEQ */
9375     case 0x10: /* ADD, SUB (vector) */
9376         if (size != 3) {
9377             unallocated_encoding(s);
9378             return;
9379         }
9380         break;
9381     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9382         if (size != 1 && size != 2) {
9383             unallocated_encoding(s);
9384             return;
9385         }
9386         break;
9387     default:
9388         unallocated_encoding(s);
9389         return;
9390     }
9391 
9392     if (!fp_access_check(s)) {
9393         return;
9394     }
9395 
9396     tcg_rd = tcg_temp_new_i64();
9397 
9398     if (size == 3) {
9399         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9400         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9401 
9402         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9403     } else {
9404         /* Do a single operation on the lowest element in the vector.
9405          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9406          * no side effects for all these operations.
9407          * OPTME: special-purpose helpers would avoid doing some
9408          * unnecessary work in the helper for the 8 and 16 bit cases.
9409          */
9410         NeonGenTwoOpEnvFn *genenvfn;
9411         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9412         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9413         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9414 
9415         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9416         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9417 
9418         switch (opcode) {
9419         case 0x1: /* SQADD, UQADD */
9420         {
9421             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9422                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9423                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9424                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9425             };
9426             genenvfn = fns[size][u];
9427             break;
9428         }
9429         case 0x5: /* SQSUB, UQSUB */
9430         {
9431             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9432                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9433                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9434                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9435             };
9436             genenvfn = fns[size][u];
9437             break;
9438         }
9439         case 0x9: /* SQSHL, UQSHL */
9440         {
9441             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9442                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9443                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9444                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9445             };
9446             genenvfn = fns[size][u];
9447             break;
9448         }
9449         case 0xb: /* SQRSHL, UQRSHL */
9450         {
9451             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9452                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9453                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9454                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9455             };
9456             genenvfn = fns[size][u];
9457             break;
9458         }
9459         case 0x16: /* SQDMULH, SQRDMULH */
9460         {
9461             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9462                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9463                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9464             };
9465             assert(size == 1 || size == 2);
9466             genenvfn = fns[size - 1][u];
9467             break;
9468         }
9469         default:
9470             g_assert_not_reached();
9471         }
9472 
9473         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9474         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9475     }
9476 
9477     write_fp_dreg(s, rd, tcg_rd);
9478 }
9479 
9480 /* AdvSIMD scalar three same extra
9481  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9482  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9483  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9484  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9485  */
9486 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9487                                                    uint32_t insn)
9488 {
9489     int rd = extract32(insn, 0, 5);
9490     int rn = extract32(insn, 5, 5);
9491     int opcode = extract32(insn, 11, 4);
9492     int rm = extract32(insn, 16, 5);
9493     int size = extract32(insn, 22, 2);
9494     bool u = extract32(insn, 29, 1);
9495     TCGv_i32 ele1, ele2, ele3;
9496     TCGv_i64 res;
9497     bool feature;
9498 
9499     switch (u * 16 + opcode) {
9500     case 0x10: /* SQRDMLAH (vector) */
9501     case 0x11: /* SQRDMLSH (vector) */
9502         if (size != 1 && size != 2) {
9503             unallocated_encoding(s);
9504             return;
9505         }
9506         feature = dc_isar_feature(aa64_rdm, s);
9507         break;
9508     default:
9509         unallocated_encoding(s);
9510         return;
9511     }
9512     if (!feature) {
9513         unallocated_encoding(s);
9514         return;
9515     }
9516     if (!fp_access_check(s)) {
9517         return;
9518     }
9519 
9520     /* Do a single operation on the lowest element in the vector.
9521      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9522      * with no side effects for all these operations.
9523      * OPTME: special-purpose helpers would avoid doing some
9524      * unnecessary work in the helper for the 16 bit cases.
9525      */
9526     ele1 = tcg_temp_new_i32();
9527     ele2 = tcg_temp_new_i32();
9528     ele3 = tcg_temp_new_i32();
9529 
9530     read_vec_element_i32(s, ele1, rn, 0, size);
9531     read_vec_element_i32(s, ele2, rm, 0, size);
9532     read_vec_element_i32(s, ele3, rd, 0, size);
9533 
9534     switch (opcode) {
9535     case 0x0: /* SQRDMLAH */
9536         if (size == 1) {
9537             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9538         } else {
9539             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9540         }
9541         break;
9542     case 0x1: /* SQRDMLSH */
9543         if (size == 1) {
9544             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9545         } else {
9546             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9547         }
9548         break;
9549     default:
9550         g_assert_not_reached();
9551     }
9552 
9553     res = tcg_temp_new_i64();
9554     tcg_gen_extu_i32_i64(res, ele3);
9555     write_fp_dreg(s, rd, res);
9556 }
9557 
9558 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9559                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9560                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9561 {
9562     /* Handle 64->64 opcodes which are shared between the scalar and
9563      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9564      * is valid in either group and also the double-precision fp ops.
9565      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9566      * requires them.
9567      */
9568     TCGCond cond;
9569 
9570     switch (opcode) {
9571     case 0x4: /* CLS, CLZ */
9572         if (u) {
9573             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9574         } else {
9575             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9576         }
9577         break;
9578     case 0x5: /* NOT */
9579         /* This opcode is shared with CNT and RBIT but we have earlier
9580          * enforced that size == 3 if and only if this is the NOT insn.
9581          */
9582         tcg_gen_not_i64(tcg_rd, tcg_rn);
9583         break;
9584     case 0x7: /* SQABS, SQNEG */
9585         if (u) {
9586             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9587         } else {
9588             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9589         }
9590         break;
9591     case 0xa: /* CMLT */
9592         cond = TCG_COND_LT;
9593     do_cmop:
9594         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9595         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9596         break;
9597     case 0x8: /* CMGT, CMGE */
9598         cond = u ? TCG_COND_GE : TCG_COND_GT;
9599         goto do_cmop;
9600     case 0x9: /* CMEQ, CMLE */
9601         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9602         goto do_cmop;
9603     case 0xb: /* ABS, NEG */
9604         if (u) {
9605             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9606         } else {
9607             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9608         }
9609         break;
9610     case 0x2f: /* FABS */
9611         gen_vfp_absd(tcg_rd, tcg_rn);
9612         break;
9613     case 0x6f: /* FNEG */
9614         gen_vfp_negd(tcg_rd, tcg_rn);
9615         break;
9616     case 0x7f: /* FSQRT */
9617         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9618         break;
9619     case 0x1a: /* FCVTNS */
9620     case 0x1b: /* FCVTMS */
9621     case 0x1c: /* FCVTAS */
9622     case 0x3a: /* FCVTPS */
9623     case 0x3b: /* FCVTZS */
9624         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9625         break;
9626     case 0x5a: /* FCVTNU */
9627     case 0x5b: /* FCVTMU */
9628     case 0x5c: /* FCVTAU */
9629     case 0x7a: /* FCVTPU */
9630     case 0x7b: /* FCVTZU */
9631         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9632         break;
9633     case 0x18: /* FRINTN */
9634     case 0x19: /* FRINTM */
9635     case 0x38: /* FRINTP */
9636     case 0x39: /* FRINTZ */
9637     case 0x58: /* FRINTA */
9638     case 0x79: /* FRINTI */
9639         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9640         break;
9641     case 0x59: /* FRINTX */
9642         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9643         break;
9644     case 0x1e: /* FRINT32Z */
9645     case 0x5e: /* FRINT32X */
9646         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9647         break;
9648     case 0x1f: /* FRINT64Z */
9649     case 0x5f: /* FRINT64X */
9650         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9651         break;
9652     default:
9653         g_assert_not_reached();
9654     }
9655 }
9656 
9657 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9658                                    bool is_scalar, bool is_u, bool is_q,
9659                                    int size, int rn, int rd)
9660 {
9661     bool is_double = (size == MO_64);
9662     TCGv_ptr fpst;
9663 
9664     if (!fp_access_check(s)) {
9665         return;
9666     }
9667 
9668     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9669 
9670     if (is_double) {
9671         TCGv_i64 tcg_op = tcg_temp_new_i64();
9672         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9673         TCGv_i64 tcg_res = tcg_temp_new_i64();
9674         NeonGenTwoDoubleOpFn *genfn;
9675         bool swap = false;
9676         int pass;
9677 
9678         switch (opcode) {
9679         case 0x2e: /* FCMLT (zero) */
9680             swap = true;
9681             /* fallthrough */
9682         case 0x2c: /* FCMGT (zero) */
9683             genfn = gen_helper_neon_cgt_f64;
9684             break;
9685         case 0x2d: /* FCMEQ (zero) */
9686             genfn = gen_helper_neon_ceq_f64;
9687             break;
9688         case 0x6d: /* FCMLE (zero) */
9689             swap = true;
9690             /* fall through */
9691         case 0x6c: /* FCMGE (zero) */
9692             genfn = gen_helper_neon_cge_f64;
9693             break;
9694         default:
9695             g_assert_not_reached();
9696         }
9697 
9698         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9699             read_vec_element(s, tcg_op, rn, pass, MO_64);
9700             if (swap) {
9701                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9702             } else {
9703                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9704             }
9705             write_vec_element(s, tcg_res, rd, pass, MO_64);
9706         }
9707 
9708         clear_vec_high(s, !is_scalar, rd);
9709     } else {
9710         TCGv_i32 tcg_op = tcg_temp_new_i32();
9711         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9712         TCGv_i32 tcg_res = tcg_temp_new_i32();
9713         NeonGenTwoSingleOpFn *genfn;
9714         bool swap = false;
9715         int pass, maxpasses;
9716 
9717         if (size == MO_16) {
9718             switch (opcode) {
9719             case 0x2e: /* FCMLT (zero) */
9720                 swap = true;
9721                 /* fall through */
9722             case 0x2c: /* FCMGT (zero) */
9723                 genfn = gen_helper_advsimd_cgt_f16;
9724                 break;
9725             case 0x2d: /* FCMEQ (zero) */
9726                 genfn = gen_helper_advsimd_ceq_f16;
9727                 break;
9728             case 0x6d: /* FCMLE (zero) */
9729                 swap = true;
9730                 /* fall through */
9731             case 0x6c: /* FCMGE (zero) */
9732                 genfn = gen_helper_advsimd_cge_f16;
9733                 break;
9734             default:
9735                 g_assert_not_reached();
9736             }
9737         } else {
9738             switch (opcode) {
9739             case 0x2e: /* FCMLT (zero) */
9740                 swap = true;
9741                 /* fall through */
9742             case 0x2c: /* FCMGT (zero) */
9743                 genfn = gen_helper_neon_cgt_f32;
9744                 break;
9745             case 0x2d: /* FCMEQ (zero) */
9746                 genfn = gen_helper_neon_ceq_f32;
9747                 break;
9748             case 0x6d: /* FCMLE (zero) */
9749                 swap = true;
9750                 /* fall through */
9751             case 0x6c: /* FCMGE (zero) */
9752                 genfn = gen_helper_neon_cge_f32;
9753                 break;
9754             default:
9755                 g_assert_not_reached();
9756             }
9757         }
9758 
9759         if (is_scalar) {
9760             maxpasses = 1;
9761         } else {
9762             int vector_size = 8 << is_q;
9763             maxpasses = vector_size >> size;
9764         }
9765 
9766         for (pass = 0; pass < maxpasses; pass++) {
9767             read_vec_element_i32(s, tcg_op, rn, pass, size);
9768             if (swap) {
9769                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9770             } else {
9771                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9772             }
9773             if (is_scalar) {
9774                 write_fp_sreg(s, rd, tcg_res);
9775             } else {
9776                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9777             }
9778         }
9779 
9780         if (!is_scalar) {
9781             clear_vec_high(s, is_q, rd);
9782         }
9783     }
9784 }
9785 
9786 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9787                                     bool is_scalar, bool is_u, bool is_q,
9788                                     int size, int rn, int rd)
9789 {
9790     bool is_double = (size == 3);
9791     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9792 
9793     if (is_double) {
9794         TCGv_i64 tcg_op = tcg_temp_new_i64();
9795         TCGv_i64 tcg_res = tcg_temp_new_i64();
9796         int pass;
9797 
9798         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9799             read_vec_element(s, tcg_op, rn, pass, MO_64);
9800             switch (opcode) {
9801             case 0x3d: /* FRECPE */
9802                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9803                 break;
9804             case 0x3f: /* FRECPX */
9805                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9806                 break;
9807             case 0x7d: /* FRSQRTE */
9808                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9809                 break;
9810             default:
9811                 g_assert_not_reached();
9812             }
9813             write_vec_element(s, tcg_res, rd, pass, MO_64);
9814         }
9815         clear_vec_high(s, !is_scalar, rd);
9816     } else {
9817         TCGv_i32 tcg_op = tcg_temp_new_i32();
9818         TCGv_i32 tcg_res = tcg_temp_new_i32();
9819         int pass, maxpasses;
9820 
9821         if (is_scalar) {
9822             maxpasses = 1;
9823         } else {
9824             maxpasses = is_q ? 4 : 2;
9825         }
9826 
9827         for (pass = 0; pass < maxpasses; pass++) {
9828             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9829 
9830             switch (opcode) {
9831             case 0x3c: /* URECPE */
9832                 gen_helper_recpe_u32(tcg_res, tcg_op);
9833                 break;
9834             case 0x3d: /* FRECPE */
9835                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9836                 break;
9837             case 0x3f: /* FRECPX */
9838                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9839                 break;
9840             case 0x7d: /* FRSQRTE */
9841                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9842                 break;
9843             default:
9844                 g_assert_not_reached();
9845             }
9846 
9847             if (is_scalar) {
9848                 write_fp_sreg(s, rd, tcg_res);
9849             } else {
9850                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9851             }
9852         }
9853         if (!is_scalar) {
9854             clear_vec_high(s, is_q, rd);
9855         }
9856     }
9857 }
9858 
9859 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9860                                 int opcode, bool u, bool is_q,
9861                                 int size, int rn, int rd)
9862 {
9863     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9864      * in the source becomes a size element in the destination).
9865      */
9866     int pass;
9867     TCGv_i32 tcg_res[2];
9868     int destelt = is_q ? 2 : 0;
9869     int passes = scalar ? 1 : 2;
9870 
9871     if (scalar) {
9872         tcg_res[1] = tcg_constant_i32(0);
9873     }
9874 
9875     for (pass = 0; pass < passes; pass++) {
9876         TCGv_i64 tcg_op = tcg_temp_new_i64();
9877         NeonGenNarrowFn *genfn = NULL;
9878         NeonGenNarrowEnvFn *genenvfn = NULL;
9879 
9880         if (scalar) {
9881             read_vec_element(s, tcg_op, rn, pass, size + 1);
9882         } else {
9883             read_vec_element(s, tcg_op, rn, pass, MO_64);
9884         }
9885         tcg_res[pass] = tcg_temp_new_i32();
9886 
9887         switch (opcode) {
9888         case 0x12: /* XTN, SQXTUN */
9889         {
9890             static NeonGenNarrowFn * const xtnfns[3] = {
9891                 gen_helper_neon_narrow_u8,
9892                 gen_helper_neon_narrow_u16,
9893                 tcg_gen_extrl_i64_i32,
9894             };
9895             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9896                 gen_helper_neon_unarrow_sat8,
9897                 gen_helper_neon_unarrow_sat16,
9898                 gen_helper_neon_unarrow_sat32,
9899             };
9900             if (u) {
9901                 genenvfn = sqxtunfns[size];
9902             } else {
9903                 genfn = xtnfns[size];
9904             }
9905             break;
9906         }
9907         case 0x14: /* SQXTN, UQXTN */
9908         {
9909             static NeonGenNarrowEnvFn * const fns[3][2] = {
9910                 { gen_helper_neon_narrow_sat_s8,
9911                   gen_helper_neon_narrow_sat_u8 },
9912                 { gen_helper_neon_narrow_sat_s16,
9913                   gen_helper_neon_narrow_sat_u16 },
9914                 { gen_helper_neon_narrow_sat_s32,
9915                   gen_helper_neon_narrow_sat_u32 },
9916             };
9917             genenvfn = fns[size][u];
9918             break;
9919         }
9920         case 0x16: /* FCVTN, FCVTN2 */
9921             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9922             if (size == 2) {
9923                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9924             } else {
9925                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9926                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9927                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9928                 TCGv_i32 ahp = get_ahp_flag();
9929 
9930                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9931                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9932                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9933                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9934             }
9935             break;
9936         case 0x36: /* BFCVTN, BFCVTN2 */
9937             {
9938                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9939                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9940             }
9941             break;
9942         case 0x56:  /* FCVTXN, FCVTXN2 */
9943             /* 64 bit to 32 bit float conversion
9944              * with von Neumann rounding (round to odd)
9945              */
9946             assert(size == 2);
9947             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9948             break;
9949         default:
9950             g_assert_not_reached();
9951         }
9952 
9953         if (genfn) {
9954             genfn(tcg_res[pass], tcg_op);
9955         } else if (genenvfn) {
9956             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9957         }
9958     }
9959 
9960     for (pass = 0; pass < 2; pass++) {
9961         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9962     }
9963     clear_vec_high(s, is_q, rd);
9964 }
9965 
9966 /* Remaining saturating accumulating ops */
9967 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9968                                 bool is_q, int size, int rn, int rd)
9969 {
9970     bool is_double = (size == 3);
9971 
9972     if (is_double) {
9973         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9974         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9975         int pass;
9976 
9977         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9978             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9979             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9980 
9981             if (is_u) { /* USQADD */
9982                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9983             } else { /* SUQADD */
9984                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9985             }
9986             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9987         }
9988         clear_vec_high(s, !is_scalar, rd);
9989     } else {
9990         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9991         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9992         int pass, maxpasses;
9993 
9994         if (is_scalar) {
9995             maxpasses = 1;
9996         } else {
9997             maxpasses = is_q ? 4 : 2;
9998         }
9999 
10000         for (pass = 0; pass < maxpasses; pass++) {
10001             if (is_scalar) {
10002                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10003                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10004             } else {
10005                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10006                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10007             }
10008 
10009             if (is_u) { /* USQADD */
10010                 switch (size) {
10011                 case 0:
10012                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10013                     break;
10014                 case 1:
10015                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10016                     break;
10017                 case 2:
10018                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10019                     break;
10020                 default:
10021                     g_assert_not_reached();
10022                 }
10023             } else { /* SUQADD */
10024                 switch (size) {
10025                 case 0:
10026                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10027                     break;
10028                 case 1:
10029                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10030                     break;
10031                 case 2:
10032                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10033                     break;
10034                 default:
10035                     g_assert_not_reached();
10036                 }
10037             }
10038 
10039             if (is_scalar) {
10040                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10041             }
10042             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10043         }
10044         clear_vec_high(s, is_q, rd);
10045     }
10046 }
10047 
10048 /* AdvSIMD scalar two reg misc
10049  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10050  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10051  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10052  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10053  */
10054 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10055 {
10056     int rd = extract32(insn, 0, 5);
10057     int rn = extract32(insn, 5, 5);
10058     int opcode = extract32(insn, 12, 5);
10059     int size = extract32(insn, 22, 2);
10060     bool u = extract32(insn, 29, 1);
10061     bool is_fcvt = false;
10062     int rmode;
10063     TCGv_i32 tcg_rmode;
10064     TCGv_ptr tcg_fpstatus;
10065 
10066     switch (opcode) {
10067     case 0x3: /* USQADD / SUQADD*/
10068         if (!fp_access_check(s)) {
10069             return;
10070         }
10071         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10072         return;
10073     case 0x7: /* SQABS / SQNEG */
10074         break;
10075     case 0xa: /* CMLT */
10076         if (u) {
10077             unallocated_encoding(s);
10078             return;
10079         }
10080         /* fall through */
10081     case 0x8: /* CMGT, CMGE */
10082     case 0x9: /* CMEQ, CMLE */
10083     case 0xb: /* ABS, NEG */
10084         if (size != 3) {
10085             unallocated_encoding(s);
10086             return;
10087         }
10088         break;
10089     case 0x12: /* SQXTUN */
10090         if (!u) {
10091             unallocated_encoding(s);
10092             return;
10093         }
10094         /* fall through */
10095     case 0x14: /* SQXTN, UQXTN */
10096         if (size == 3) {
10097             unallocated_encoding(s);
10098             return;
10099         }
10100         if (!fp_access_check(s)) {
10101             return;
10102         }
10103         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10104         return;
10105     case 0xc ... 0xf:
10106     case 0x16 ... 0x1d:
10107     case 0x1f:
10108         /* Floating point: U, size[1] and opcode indicate operation;
10109          * size[0] indicates single or double precision.
10110          */
10111         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10112         size = extract32(size, 0, 1) ? 3 : 2;
10113         switch (opcode) {
10114         case 0x2c: /* FCMGT (zero) */
10115         case 0x2d: /* FCMEQ (zero) */
10116         case 0x2e: /* FCMLT (zero) */
10117         case 0x6c: /* FCMGE (zero) */
10118         case 0x6d: /* FCMLE (zero) */
10119             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10120             return;
10121         case 0x1d: /* SCVTF */
10122         case 0x5d: /* UCVTF */
10123         {
10124             bool is_signed = (opcode == 0x1d);
10125             if (!fp_access_check(s)) {
10126                 return;
10127             }
10128             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10129             return;
10130         }
10131         case 0x3d: /* FRECPE */
10132         case 0x3f: /* FRECPX */
10133         case 0x7d: /* FRSQRTE */
10134             if (!fp_access_check(s)) {
10135                 return;
10136             }
10137             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10138             return;
10139         case 0x1a: /* FCVTNS */
10140         case 0x1b: /* FCVTMS */
10141         case 0x3a: /* FCVTPS */
10142         case 0x3b: /* FCVTZS */
10143         case 0x5a: /* FCVTNU */
10144         case 0x5b: /* FCVTMU */
10145         case 0x7a: /* FCVTPU */
10146         case 0x7b: /* FCVTZU */
10147             is_fcvt = true;
10148             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10149             break;
10150         case 0x1c: /* FCVTAS */
10151         case 0x5c: /* FCVTAU */
10152             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10153             is_fcvt = true;
10154             rmode = FPROUNDING_TIEAWAY;
10155             break;
10156         case 0x56: /* FCVTXN, FCVTXN2 */
10157             if (size == 2) {
10158                 unallocated_encoding(s);
10159                 return;
10160             }
10161             if (!fp_access_check(s)) {
10162                 return;
10163             }
10164             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10165             return;
10166         default:
10167             unallocated_encoding(s);
10168             return;
10169         }
10170         break;
10171     default:
10172         unallocated_encoding(s);
10173         return;
10174     }
10175 
10176     if (!fp_access_check(s)) {
10177         return;
10178     }
10179 
10180     if (is_fcvt) {
10181         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10182         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10183     } else {
10184         tcg_fpstatus = NULL;
10185         tcg_rmode = NULL;
10186     }
10187 
10188     if (size == 3) {
10189         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10190         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10191 
10192         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10193         write_fp_dreg(s, rd, tcg_rd);
10194     } else {
10195         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10196         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10197 
10198         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10199 
10200         switch (opcode) {
10201         case 0x7: /* SQABS, SQNEG */
10202         {
10203             NeonGenOneOpEnvFn *genfn;
10204             static NeonGenOneOpEnvFn * const fns[3][2] = {
10205                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10206                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10207                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10208             };
10209             genfn = fns[size][u];
10210             genfn(tcg_rd, tcg_env, tcg_rn);
10211             break;
10212         }
10213         case 0x1a: /* FCVTNS */
10214         case 0x1b: /* FCVTMS */
10215         case 0x1c: /* FCVTAS */
10216         case 0x3a: /* FCVTPS */
10217         case 0x3b: /* FCVTZS */
10218             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10219                                  tcg_fpstatus);
10220             break;
10221         case 0x5a: /* FCVTNU */
10222         case 0x5b: /* FCVTMU */
10223         case 0x5c: /* FCVTAU */
10224         case 0x7a: /* FCVTPU */
10225         case 0x7b: /* FCVTZU */
10226             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10227                                  tcg_fpstatus);
10228             break;
10229         default:
10230             g_assert_not_reached();
10231         }
10232 
10233         write_fp_sreg(s, rd, tcg_rd);
10234     }
10235 
10236     if (is_fcvt) {
10237         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10238     }
10239 }
10240 
10241 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10242 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10243                                  int immh, int immb, int opcode, int rn, int rd)
10244 {
10245     int size = 32 - clz32(immh) - 1;
10246     int immhb = immh << 3 | immb;
10247     int shift = 2 * (8 << size) - immhb;
10248     GVecGen2iFn *gvec_fn;
10249 
10250     if (extract32(immh, 3, 1) && !is_q) {
10251         unallocated_encoding(s);
10252         return;
10253     }
10254     tcg_debug_assert(size <= 3);
10255 
10256     if (!fp_access_check(s)) {
10257         return;
10258     }
10259 
10260     switch (opcode) {
10261     case 0x02: /* SSRA / USRA (accumulate) */
10262         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10263         break;
10264 
10265     case 0x08: /* SRI */
10266         gvec_fn = gen_gvec_sri;
10267         break;
10268 
10269     case 0x00: /* SSHR / USHR */
10270         if (is_u) {
10271             if (shift == 8 << size) {
10272                 /* Shift count the same size as element size produces zero.  */
10273                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10274                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10275                 return;
10276             }
10277             gvec_fn = tcg_gen_gvec_shri;
10278         } else {
10279             /* Shift count the same size as element size produces all sign.  */
10280             if (shift == 8 << size) {
10281                 shift -= 1;
10282             }
10283             gvec_fn = tcg_gen_gvec_sari;
10284         }
10285         break;
10286 
10287     case 0x04: /* SRSHR / URSHR (rounding) */
10288         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10289         break;
10290 
10291     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10292         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10293         break;
10294 
10295     default:
10296         g_assert_not_reached();
10297     }
10298 
10299     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10300 }
10301 
10302 /* SHL/SLI - Vector shift left */
10303 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10304                                  int immh, int immb, int opcode, int rn, int rd)
10305 {
10306     int size = 32 - clz32(immh) - 1;
10307     int immhb = immh << 3 | immb;
10308     int shift = immhb - (8 << size);
10309 
10310     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10311     assert(size >= 0 && size <= 3);
10312 
10313     if (extract32(immh, 3, 1) && !is_q) {
10314         unallocated_encoding(s);
10315         return;
10316     }
10317 
10318     if (!fp_access_check(s)) {
10319         return;
10320     }
10321 
10322     if (insert) {
10323         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10324     } else {
10325         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10326     }
10327 }
10328 
10329 /* USHLL/SHLL - Vector shift left with widening */
10330 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10331                                  int immh, int immb, int opcode, int rn, int rd)
10332 {
10333     int size = 32 - clz32(immh) - 1;
10334     int immhb = immh << 3 | immb;
10335     int shift = immhb - (8 << size);
10336     int dsize = 64;
10337     int esize = 8 << size;
10338     int elements = dsize/esize;
10339     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10340     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10341     int i;
10342 
10343     if (size >= 3) {
10344         unallocated_encoding(s);
10345         return;
10346     }
10347 
10348     if (!fp_access_check(s)) {
10349         return;
10350     }
10351 
10352     /* For the LL variants the store is larger than the load,
10353      * so if rd == rn we would overwrite parts of our input.
10354      * So load everything right now and use shifts in the main loop.
10355      */
10356     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10357 
10358     for (i = 0; i < elements; i++) {
10359         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10360         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10361         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10362         write_vec_element(s, tcg_rd, rd, i, size + 1);
10363     }
10364 }
10365 
10366 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10367 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10368                                  int immh, int immb, int opcode, int rn, int rd)
10369 {
10370     int immhb = immh << 3 | immb;
10371     int size = 32 - clz32(immh) - 1;
10372     int dsize = 64;
10373     int esize = 8 << size;
10374     int elements = dsize/esize;
10375     int shift = (2 * esize) - immhb;
10376     bool round = extract32(opcode, 0, 1);
10377     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10378     TCGv_i64 tcg_round;
10379     int i;
10380 
10381     if (extract32(immh, 3, 1)) {
10382         unallocated_encoding(s);
10383         return;
10384     }
10385 
10386     if (!fp_access_check(s)) {
10387         return;
10388     }
10389 
10390     tcg_rn = tcg_temp_new_i64();
10391     tcg_rd = tcg_temp_new_i64();
10392     tcg_final = tcg_temp_new_i64();
10393     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10394 
10395     if (round) {
10396         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10397     } else {
10398         tcg_round = NULL;
10399     }
10400 
10401     for (i = 0; i < elements; i++) {
10402         read_vec_element(s, tcg_rn, rn, i, size+1);
10403         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10404                                 false, true, size+1, shift);
10405 
10406         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10407     }
10408 
10409     if (!is_q) {
10410         write_vec_element(s, tcg_final, rd, 0, MO_64);
10411     } else {
10412         write_vec_element(s, tcg_final, rd, 1, MO_64);
10413     }
10414 
10415     clear_vec_high(s, is_q, rd);
10416 }
10417 
10418 
10419 /* AdvSIMD shift by immediate
10420  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10421  * +---+---+---+-------------+------+------+--------+---+------+------+
10422  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10423  * +---+---+---+-------------+------+------+--------+---+------+------+
10424  */
10425 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10426 {
10427     int rd = extract32(insn, 0, 5);
10428     int rn = extract32(insn, 5, 5);
10429     int opcode = extract32(insn, 11, 5);
10430     int immb = extract32(insn, 16, 3);
10431     int immh = extract32(insn, 19, 4);
10432     bool is_u = extract32(insn, 29, 1);
10433     bool is_q = extract32(insn, 30, 1);
10434 
10435     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10436     assert(immh != 0);
10437 
10438     switch (opcode) {
10439     case 0x08: /* SRI */
10440         if (!is_u) {
10441             unallocated_encoding(s);
10442             return;
10443         }
10444         /* fall through */
10445     case 0x00: /* SSHR / USHR */
10446     case 0x02: /* SSRA / USRA (accumulate) */
10447     case 0x04: /* SRSHR / URSHR (rounding) */
10448     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10449         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10450         break;
10451     case 0x0a: /* SHL / SLI */
10452         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10453         break;
10454     case 0x10: /* SHRN */
10455     case 0x11: /* RSHRN / SQRSHRUN */
10456         if (is_u) {
10457             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10458                                    opcode, rn, rd);
10459         } else {
10460             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10461         }
10462         break;
10463     case 0x12: /* SQSHRN / UQSHRN */
10464     case 0x13: /* SQRSHRN / UQRSHRN */
10465         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10466                                opcode, rn, rd);
10467         break;
10468     case 0x14: /* SSHLL / USHLL */
10469         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10470         break;
10471     case 0x1c: /* SCVTF / UCVTF */
10472         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10473                                      opcode, rn, rd);
10474         break;
10475     case 0xc: /* SQSHLU */
10476         if (!is_u) {
10477             unallocated_encoding(s);
10478             return;
10479         }
10480         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10481         break;
10482     case 0xe: /* SQSHL, UQSHL */
10483         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10484         break;
10485     case 0x1f: /* FCVTZS/ FCVTZU */
10486         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10487         return;
10488     default:
10489         unallocated_encoding(s);
10490         return;
10491     }
10492 }
10493 
10494 /* Generate code to do a "long" addition or subtraction, ie one done in
10495  * TCGv_i64 on vector lanes twice the width specified by size.
10496  */
10497 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10498                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10499 {
10500     static NeonGenTwo64OpFn * const fns[3][2] = {
10501         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10502         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10503         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10504     };
10505     NeonGenTwo64OpFn *genfn;
10506     assert(size < 3);
10507 
10508     genfn = fns[size][is_sub];
10509     genfn(tcg_res, tcg_op1, tcg_op2);
10510 }
10511 
10512 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10513                                 int opcode, int rd, int rn, int rm)
10514 {
10515     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10516     TCGv_i64 tcg_res[2];
10517     int pass, accop;
10518 
10519     tcg_res[0] = tcg_temp_new_i64();
10520     tcg_res[1] = tcg_temp_new_i64();
10521 
10522     /* Does this op do an adding accumulate, a subtracting accumulate,
10523      * or no accumulate at all?
10524      */
10525     switch (opcode) {
10526     case 5:
10527     case 8:
10528     case 9:
10529         accop = 1;
10530         break;
10531     case 10:
10532     case 11:
10533         accop = -1;
10534         break;
10535     default:
10536         accop = 0;
10537         break;
10538     }
10539 
10540     if (accop != 0) {
10541         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10542         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10543     }
10544 
10545     /* size == 2 means two 32x32->64 operations; this is worth special
10546      * casing because we can generally handle it inline.
10547      */
10548     if (size == 2) {
10549         for (pass = 0; pass < 2; pass++) {
10550             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10551             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10552             TCGv_i64 tcg_passres;
10553             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10554 
10555             int elt = pass + is_q * 2;
10556 
10557             read_vec_element(s, tcg_op1, rn, elt, memop);
10558             read_vec_element(s, tcg_op2, rm, elt, memop);
10559 
10560             if (accop == 0) {
10561                 tcg_passres = tcg_res[pass];
10562             } else {
10563                 tcg_passres = tcg_temp_new_i64();
10564             }
10565 
10566             switch (opcode) {
10567             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10568                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10569                 break;
10570             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10571                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10572                 break;
10573             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10574             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10575             {
10576                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10577                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10578 
10579                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10580                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10581                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10582                                     tcg_passres,
10583                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10584                 break;
10585             }
10586             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10587             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10588             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10589                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10590                 break;
10591             case 9: /* SQDMLAL, SQDMLAL2 */
10592             case 11: /* SQDMLSL, SQDMLSL2 */
10593             case 13: /* SQDMULL, SQDMULL2 */
10594                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10595                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10596                                                   tcg_passres, tcg_passres);
10597                 break;
10598             default:
10599                 g_assert_not_reached();
10600             }
10601 
10602             if (opcode == 9 || opcode == 11) {
10603                 /* saturating accumulate ops */
10604                 if (accop < 0) {
10605                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10606                 }
10607                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10608                                                   tcg_res[pass], tcg_passres);
10609             } else if (accop > 0) {
10610                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10611             } else if (accop < 0) {
10612                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10613             }
10614         }
10615     } else {
10616         /* size 0 or 1, generally helper functions */
10617         for (pass = 0; pass < 2; pass++) {
10618             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10619             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10620             TCGv_i64 tcg_passres;
10621             int elt = pass + is_q * 2;
10622 
10623             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10624             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10625 
10626             if (accop == 0) {
10627                 tcg_passres = tcg_res[pass];
10628             } else {
10629                 tcg_passres = tcg_temp_new_i64();
10630             }
10631 
10632             switch (opcode) {
10633             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10634             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10635             {
10636                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10637                 static NeonGenWidenFn * const widenfns[2][2] = {
10638                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10639                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10640                 };
10641                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10642 
10643                 widenfn(tcg_op2_64, tcg_op2);
10644                 widenfn(tcg_passres, tcg_op1);
10645                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10646                               tcg_passres, tcg_op2_64);
10647                 break;
10648             }
10649             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10650             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10651                 if (size == 0) {
10652                     if (is_u) {
10653                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10654                     } else {
10655                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10656                     }
10657                 } else {
10658                     if (is_u) {
10659                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10660                     } else {
10661                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10662                     }
10663                 }
10664                 break;
10665             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10666             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10667             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10668                 if (size == 0) {
10669                     if (is_u) {
10670                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10671                     } else {
10672                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10673                     }
10674                 } else {
10675                     if (is_u) {
10676                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10677                     } else {
10678                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10679                     }
10680                 }
10681                 break;
10682             case 9: /* SQDMLAL, SQDMLAL2 */
10683             case 11: /* SQDMLSL, SQDMLSL2 */
10684             case 13: /* SQDMULL, SQDMULL2 */
10685                 assert(size == 1);
10686                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10687                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10688                                                   tcg_passres, tcg_passres);
10689                 break;
10690             default:
10691                 g_assert_not_reached();
10692             }
10693 
10694             if (accop != 0) {
10695                 if (opcode == 9 || opcode == 11) {
10696                     /* saturating accumulate ops */
10697                     if (accop < 0) {
10698                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10699                     }
10700                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10701                                                       tcg_res[pass],
10702                                                       tcg_passres);
10703                 } else {
10704                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10705                                   tcg_res[pass], tcg_passres);
10706                 }
10707             }
10708         }
10709     }
10710 
10711     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10712     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10713 }
10714 
10715 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10716                             int opcode, int rd, int rn, int rm)
10717 {
10718     TCGv_i64 tcg_res[2];
10719     int part = is_q ? 2 : 0;
10720     int pass;
10721 
10722     for (pass = 0; pass < 2; pass++) {
10723         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10724         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10725         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10726         static NeonGenWidenFn * const widenfns[3][2] = {
10727             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10728             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10729             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10730         };
10731         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10732 
10733         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10734         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10735         widenfn(tcg_op2_wide, tcg_op2);
10736         tcg_res[pass] = tcg_temp_new_i64();
10737         gen_neon_addl(size, (opcode == 3),
10738                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10739     }
10740 
10741     for (pass = 0; pass < 2; pass++) {
10742         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10743     }
10744 }
10745 
10746 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10747 {
10748     tcg_gen_addi_i64(in, in, 1U << 31);
10749     tcg_gen_extrh_i64_i32(res, in);
10750 }
10751 
10752 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10753                                  int opcode, int rd, int rn, int rm)
10754 {
10755     TCGv_i32 tcg_res[2];
10756     int part = is_q ? 2 : 0;
10757     int pass;
10758 
10759     for (pass = 0; pass < 2; pass++) {
10760         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10761         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10762         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10763         static NeonGenNarrowFn * const narrowfns[3][2] = {
10764             { gen_helper_neon_narrow_high_u8,
10765               gen_helper_neon_narrow_round_high_u8 },
10766             { gen_helper_neon_narrow_high_u16,
10767               gen_helper_neon_narrow_round_high_u16 },
10768             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10769         };
10770         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10771 
10772         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10773         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10774 
10775         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10776 
10777         tcg_res[pass] = tcg_temp_new_i32();
10778         gennarrow(tcg_res[pass], tcg_wideres);
10779     }
10780 
10781     for (pass = 0; pass < 2; pass++) {
10782         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10783     }
10784     clear_vec_high(s, is_q, rd);
10785 }
10786 
10787 /* AdvSIMD three different
10788  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10789  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10790  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10791  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10792  */
10793 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10794 {
10795     /* Instructions in this group fall into three basic classes
10796      * (in each case with the operation working on each element in
10797      * the input vectors):
10798      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10799      *     128 bit input)
10800      * (2) wide 64 x 128 -> 128
10801      * (3) narrowing 128 x 128 -> 64
10802      * Here we do initial decode, catch unallocated cases and
10803      * dispatch to separate functions for each class.
10804      */
10805     int is_q = extract32(insn, 30, 1);
10806     int is_u = extract32(insn, 29, 1);
10807     int size = extract32(insn, 22, 2);
10808     int opcode = extract32(insn, 12, 4);
10809     int rm = extract32(insn, 16, 5);
10810     int rn = extract32(insn, 5, 5);
10811     int rd = extract32(insn, 0, 5);
10812 
10813     switch (opcode) {
10814     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10815     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10816         /* 64 x 128 -> 128 */
10817         if (size == 3) {
10818             unallocated_encoding(s);
10819             return;
10820         }
10821         if (!fp_access_check(s)) {
10822             return;
10823         }
10824         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10825         break;
10826     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10827     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10828         /* 128 x 128 -> 64 */
10829         if (size == 3) {
10830             unallocated_encoding(s);
10831             return;
10832         }
10833         if (!fp_access_check(s)) {
10834             return;
10835         }
10836         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10837         break;
10838     case 14: /* PMULL, PMULL2 */
10839         if (is_u) {
10840             unallocated_encoding(s);
10841             return;
10842         }
10843         switch (size) {
10844         case 0: /* PMULL.P8 */
10845             if (!fp_access_check(s)) {
10846                 return;
10847             }
10848             /* The Q field specifies lo/hi half input for this insn.  */
10849             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10850                              gen_helper_neon_pmull_h);
10851             break;
10852 
10853         case 3: /* PMULL.P64 */
10854             if (!dc_isar_feature(aa64_pmull, s)) {
10855                 unallocated_encoding(s);
10856                 return;
10857             }
10858             if (!fp_access_check(s)) {
10859                 return;
10860             }
10861             /* The Q field specifies lo/hi half input for this insn.  */
10862             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10863                              gen_helper_gvec_pmull_q);
10864             break;
10865 
10866         default:
10867             unallocated_encoding(s);
10868             break;
10869         }
10870         return;
10871     case 9: /* SQDMLAL, SQDMLAL2 */
10872     case 11: /* SQDMLSL, SQDMLSL2 */
10873     case 13: /* SQDMULL, SQDMULL2 */
10874         if (is_u || size == 0) {
10875             unallocated_encoding(s);
10876             return;
10877         }
10878         /* fall through */
10879     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10880     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10881     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10882     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10883     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10884     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10885     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10886         /* 64 x 64 -> 128 */
10887         if (size == 3) {
10888             unallocated_encoding(s);
10889             return;
10890         }
10891         if (!fp_access_check(s)) {
10892             return;
10893         }
10894 
10895         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10896         break;
10897     default:
10898         /* opcode 15 not allocated */
10899         unallocated_encoding(s);
10900         break;
10901     }
10902 }
10903 
10904 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10905 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10906 {
10907     int rd = extract32(insn, 0, 5);
10908     int rn = extract32(insn, 5, 5);
10909     int rm = extract32(insn, 16, 5);
10910     int size = extract32(insn, 22, 2);
10911     bool is_u = extract32(insn, 29, 1);
10912     bool is_q = extract32(insn, 30, 1);
10913 
10914     if (!fp_access_check(s)) {
10915         return;
10916     }
10917 
10918     switch (size + 4 * is_u) {
10919     case 0: /* AND */
10920         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10921         return;
10922     case 1: /* BIC */
10923         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10924         return;
10925     case 2: /* ORR */
10926         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10927         return;
10928     case 3: /* ORN */
10929         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10930         return;
10931     case 4: /* EOR */
10932         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10933         return;
10934 
10935     case 5: /* BSL bitwise select */
10936         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10937         return;
10938     case 6: /* BIT, bitwise insert if true */
10939         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10940         return;
10941     case 7: /* BIF, bitwise insert if false */
10942         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10943         return;
10944 
10945     default:
10946         g_assert_not_reached();
10947     }
10948 }
10949 
10950 /* Integer op subgroup of C3.6.16. */
10951 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10952 {
10953     int is_q = extract32(insn, 30, 1);
10954     int u = extract32(insn, 29, 1);
10955     int size = extract32(insn, 22, 2);
10956     int opcode = extract32(insn, 11, 5);
10957     int rm = extract32(insn, 16, 5);
10958     int rn = extract32(insn, 5, 5);
10959     int rd = extract32(insn, 0, 5);
10960     int pass;
10961     TCGCond cond;
10962 
10963     switch (opcode) {
10964     case 0x13: /* MUL, PMUL */
10965         if (u && size != 0) {
10966             unallocated_encoding(s);
10967             return;
10968         }
10969         /* fall through */
10970     case 0x0: /* SHADD, UHADD */
10971     case 0x2: /* SRHADD, URHADD */
10972     case 0x4: /* SHSUB, UHSUB */
10973     case 0xc: /* SMAX, UMAX */
10974     case 0xd: /* SMIN, UMIN */
10975     case 0xe: /* SABD, UABD */
10976     case 0xf: /* SABA, UABA */
10977     case 0x12: /* MLA, MLS */
10978         if (size == 3) {
10979             unallocated_encoding(s);
10980             return;
10981         }
10982         break;
10983     case 0x16: /* SQDMULH, SQRDMULH */
10984         if (size == 0 || size == 3) {
10985             unallocated_encoding(s);
10986             return;
10987         }
10988         break;
10989     default:
10990         if (size == 3 && !is_q) {
10991             unallocated_encoding(s);
10992             return;
10993         }
10994         break;
10995     }
10996 
10997     if (!fp_access_check(s)) {
10998         return;
10999     }
11000 
11001     switch (opcode) {
11002     case 0x01: /* SQADD, UQADD */
11003         if (u) {
11004             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11005         } else {
11006             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11007         }
11008         return;
11009     case 0x05: /* SQSUB, UQSUB */
11010         if (u) {
11011             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11012         } else {
11013             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11014         }
11015         return;
11016     case 0x08: /* SSHL, USHL */
11017         if (u) {
11018             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11019         } else {
11020             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11021         }
11022         return;
11023     case 0x0c: /* SMAX, UMAX */
11024         if (u) {
11025             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11026         } else {
11027             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11028         }
11029         return;
11030     case 0x0d: /* SMIN, UMIN */
11031         if (u) {
11032             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11033         } else {
11034             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11035         }
11036         return;
11037     case 0xe: /* SABD, UABD */
11038         if (u) {
11039             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11040         } else {
11041             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11042         }
11043         return;
11044     case 0xf: /* SABA, UABA */
11045         if (u) {
11046             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11047         } else {
11048             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11049         }
11050         return;
11051     case 0x10: /* ADD, SUB */
11052         if (u) {
11053             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11054         } else {
11055             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11056         }
11057         return;
11058     case 0x13: /* MUL, PMUL */
11059         if (!u) { /* MUL */
11060             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11061         } else {  /* PMUL */
11062             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11063         }
11064         return;
11065     case 0x12: /* MLA, MLS */
11066         if (u) {
11067             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11068         } else {
11069             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11070         }
11071         return;
11072     case 0x16: /* SQDMULH, SQRDMULH */
11073         {
11074             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11075                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11076                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11077             };
11078             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11079         }
11080         return;
11081     case 0x11:
11082         if (!u) { /* CMTST */
11083             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11084             return;
11085         }
11086         /* else CMEQ */
11087         cond = TCG_COND_EQ;
11088         goto do_gvec_cmp;
11089     case 0x06: /* CMGT, CMHI */
11090         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11091         goto do_gvec_cmp;
11092     case 0x07: /* CMGE, CMHS */
11093         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11094     do_gvec_cmp:
11095         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11096                          vec_full_reg_offset(s, rn),
11097                          vec_full_reg_offset(s, rm),
11098                          is_q ? 16 : 8, vec_full_reg_size(s));
11099         return;
11100     }
11101 
11102     if (size == 3) {
11103         assert(is_q);
11104         for (pass = 0; pass < 2; pass++) {
11105             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11106             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11107             TCGv_i64 tcg_res = tcg_temp_new_i64();
11108 
11109             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11110             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11111 
11112             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11113 
11114             write_vec_element(s, tcg_res, rd, pass, MO_64);
11115         }
11116     } else {
11117         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11118             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11119             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11120             TCGv_i32 tcg_res = tcg_temp_new_i32();
11121             NeonGenTwoOpFn *genfn = NULL;
11122             NeonGenTwoOpEnvFn *genenvfn = NULL;
11123 
11124             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11125             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11126 
11127             switch (opcode) {
11128             case 0x0: /* SHADD, UHADD */
11129             {
11130                 static NeonGenTwoOpFn * const fns[3][2] = {
11131                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11132                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11133                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11134                 };
11135                 genfn = fns[size][u];
11136                 break;
11137             }
11138             case 0x2: /* SRHADD, URHADD */
11139             {
11140                 static NeonGenTwoOpFn * const fns[3][2] = {
11141                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11142                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11143                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11144                 };
11145                 genfn = fns[size][u];
11146                 break;
11147             }
11148             case 0x4: /* SHSUB, UHSUB */
11149             {
11150                 static NeonGenTwoOpFn * const fns[3][2] = {
11151                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11152                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11153                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11154                 };
11155                 genfn = fns[size][u];
11156                 break;
11157             }
11158             case 0x9: /* SQSHL, UQSHL */
11159             {
11160                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11161                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11162                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11163                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11164                 };
11165                 genenvfn = fns[size][u];
11166                 break;
11167             }
11168             case 0xa: /* SRSHL, URSHL */
11169             {
11170                 static NeonGenTwoOpFn * const fns[3][2] = {
11171                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11172                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11173                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11174                 };
11175                 genfn = fns[size][u];
11176                 break;
11177             }
11178             case 0xb: /* SQRSHL, UQRSHL */
11179             {
11180                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11181                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11182                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11183                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11184                 };
11185                 genenvfn = fns[size][u];
11186                 break;
11187             }
11188             default:
11189                 g_assert_not_reached();
11190             }
11191 
11192             if (genenvfn) {
11193                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11194             } else {
11195                 genfn(tcg_res, tcg_op1, tcg_op2);
11196             }
11197 
11198             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11199         }
11200     }
11201     clear_vec_high(s, is_q, rd);
11202 }
11203 
11204 /* AdvSIMD three same
11205  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11206  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11207  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11208  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11209  */
11210 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11211 {
11212     int opcode = extract32(insn, 11, 5);
11213 
11214     switch (opcode) {
11215     case 0x3: /* logic ops */
11216         disas_simd_3same_logic(s, insn);
11217         break;
11218     default:
11219         disas_simd_3same_int(s, insn);
11220         break;
11221     case 0x14: /* SMAXP, UMAXP */
11222     case 0x15: /* SMINP, UMINP */
11223     case 0x17: /* ADDP */
11224     case 0x18 ... 0x31: /* floating point ops */
11225         unallocated_encoding(s);
11226         break;
11227     }
11228 }
11229 
11230 /* AdvSIMD three same extra
11231  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11232  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11233  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11234  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11235  */
11236 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11237 {
11238     int rd = extract32(insn, 0, 5);
11239     int rn = extract32(insn, 5, 5);
11240     int opcode = extract32(insn, 11, 4);
11241     int rm = extract32(insn, 16, 5);
11242     int size = extract32(insn, 22, 2);
11243     bool u = extract32(insn, 29, 1);
11244     bool is_q = extract32(insn, 30, 1);
11245     bool feature;
11246     int rot;
11247 
11248     switch (u * 16 + opcode) {
11249     case 0x10: /* SQRDMLAH (vector) */
11250     case 0x11: /* SQRDMLSH (vector) */
11251         if (size != 1 && size != 2) {
11252             unallocated_encoding(s);
11253             return;
11254         }
11255         feature = dc_isar_feature(aa64_rdm, s);
11256         break;
11257     case 0x02: /* SDOT (vector) */
11258     case 0x12: /* UDOT (vector) */
11259         if (size != MO_32) {
11260             unallocated_encoding(s);
11261             return;
11262         }
11263         feature = dc_isar_feature(aa64_dp, s);
11264         break;
11265     case 0x03: /* USDOT */
11266         if (size != MO_32) {
11267             unallocated_encoding(s);
11268             return;
11269         }
11270         feature = dc_isar_feature(aa64_i8mm, s);
11271         break;
11272     case 0x04: /* SMMLA */
11273     case 0x14: /* UMMLA */
11274     case 0x05: /* USMMLA */
11275         if (!is_q || size != MO_32) {
11276             unallocated_encoding(s);
11277             return;
11278         }
11279         feature = dc_isar_feature(aa64_i8mm, s);
11280         break;
11281     case 0x18: /* FCMLA, #0 */
11282     case 0x19: /* FCMLA, #90 */
11283     case 0x1a: /* FCMLA, #180 */
11284     case 0x1b: /* FCMLA, #270 */
11285     case 0x1c: /* FCADD, #90 */
11286     case 0x1e: /* FCADD, #270 */
11287         if (size == 0
11288             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11289             || (size == 3 && !is_q)) {
11290             unallocated_encoding(s);
11291             return;
11292         }
11293         feature = dc_isar_feature(aa64_fcma, s);
11294         break;
11295     case 0x1d: /* BFMMLA */
11296         if (size != MO_16 || !is_q) {
11297             unallocated_encoding(s);
11298             return;
11299         }
11300         feature = dc_isar_feature(aa64_bf16, s);
11301         break;
11302     case 0x1f:
11303         switch (size) {
11304         case 1: /* BFDOT */
11305         case 3: /* BFMLAL{B,T} */
11306             feature = dc_isar_feature(aa64_bf16, s);
11307             break;
11308         default:
11309             unallocated_encoding(s);
11310             return;
11311         }
11312         break;
11313     default:
11314         unallocated_encoding(s);
11315         return;
11316     }
11317     if (!feature) {
11318         unallocated_encoding(s);
11319         return;
11320     }
11321     if (!fp_access_check(s)) {
11322         return;
11323     }
11324 
11325     switch (opcode) {
11326     case 0x0: /* SQRDMLAH (vector) */
11327         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11328         return;
11329 
11330     case 0x1: /* SQRDMLSH (vector) */
11331         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11332         return;
11333 
11334     case 0x2: /* SDOT / UDOT */
11335         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11336                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11337         return;
11338 
11339     case 0x3: /* USDOT */
11340         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11341         return;
11342 
11343     case 0x04: /* SMMLA, UMMLA */
11344         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11345                          u ? gen_helper_gvec_ummla_b
11346                          : gen_helper_gvec_smmla_b);
11347         return;
11348     case 0x05: /* USMMLA */
11349         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11350         return;
11351 
11352     case 0x8: /* FCMLA, #0 */
11353     case 0x9: /* FCMLA, #90 */
11354     case 0xa: /* FCMLA, #180 */
11355     case 0xb: /* FCMLA, #270 */
11356         rot = extract32(opcode, 0, 2);
11357         switch (size) {
11358         case 1:
11359             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11360                               gen_helper_gvec_fcmlah);
11361             break;
11362         case 2:
11363             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11364                               gen_helper_gvec_fcmlas);
11365             break;
11366         case 3:
11367             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11368                               gen_helper_gvec_fcmlad);
11369             break;
11370         default:
11371             g_assert_not_reached();
11372         }
11373         return;
11374 
11375     case 0xc: /* FCADD, #90 */
11376     case 0xe: /* FCADD, #270 */
11377         rot = extract32(opcode, 1, 1);
11378         switch (size) {
11379         case 1:
11380             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11381                               gen_helper_gvec_fcaddh);
11382             break;
11383         case 2:
11384             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11385                               gen_helper_gvec_fcadds);
11386             break;
11387         case 3:
11388             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11389                               gen_helper_gvec_fcaddd);
11390             break;
11391         default:
11392             g_assert_not_reached();
11393         }
11394         return;
11395 
11396     case 0xd: /* BFMMLA */
11397         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11398         return;
11399     case 0xf:
11400         switch (size) {
11401         case 1: /* BFDOT */
11402             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11403             break;
11404         case 3: /* BFMLAL{B,T} */
11405             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11406                               gen_helper_gvec_bfmlal);
11407             break;
11408         default:
11409             g_assert_not_reached();
11410         }
11411         return;
11412 
11413     default:
11414         g_assert_not_reached();
11415     }
11416 }
11417 
11418 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11419                                   int size, int rn, int rd)
11420 {
11421     /* Handle 2-reg-misc ops which are widening (so each size element
11422      * in the source becomes a 2*size element in the destination.
11423      * The only instruction like this is FCVTL.
11424      */
11425     int pass;
11426 
11427     if (size == 3) {
11428         /* 32 -> 64 bit fp conversion */
11429         TCGv_i64 tcg_res[2];
11430         int srcelt = is_q ? 2 : 0;
11431 
11432         for (pass = 0; pass < 2; pass++) {
11433             TCGv_i32 tcg_op = tcg_temp_new_i32();
11434             tcg_res[pass] = tcg_temp_new_i64();
11435 
11436             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11437             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11438         }
11439         for (pass = 0; pass < 2; pass++) {
11440             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11441         }
11442     } else {
11443         /* 16 -> 32 bit fp conversion */
11444         int srcelt = is_q ? 4 : 0;
11445         TCGv_i32 tcg_res[4];
11446         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11447         TCGv_i32 ahp = get_ahp_flag();
11448 
11449         for (pass = 0; pass < 4; pass++) {
11450             tcg_res[pass] = tcg_temp_new_i32();
11451 
11452             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11453             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11454                                            fpst, ahp);
11455         }
11456         for (pass = 0; pass < 4; pass++) {
11457             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11458         }
11459     }
11460 }
11461 
11462 static void handle_rev(DisasContext *s, int opcode, bool u,
11463                        bool is_q, int size, int rn, int rd)
11464 {
11465     int op = (opcode << 1) | u;
11466     int opsz = op + size;
11467     int grp_size = 3 - opsz;
11468     int dsize = is_q ? 128 : 64;
11469     int i;
11470 
11471     if (opsz >= 3) {
11472         unallocated_encoding(s);
11473         return;
11474     }
11475 
11476     if (!fp_access_check(s)) {
11477         return;
11478     }
11479 
11480     if (size == 0) {
11481         /* Special case bytes, use bswap op on each group of elements */
11482         int groups = dsize / (8 << grp_size);
11483 
11484         for (i = 0; i < groups; i++) {
11485             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11486 
11487             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11488             switch (grp_size) {
11489             case MO_16:
11490                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11491                 break;
11492             case MO_32:
11493                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11494                 break;
11495             case MO_64:
11496                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11497                 break;
11498             default:
11499                 g_assert_not_reached();
11500             }
11501             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11502         }
11503         clear_vec_high(s, is_q, rd);
11504     } else {
11505         int revmask = (1 << grp_size) - 1;
11506         int esize = 8 << size;
11507         int elements = dsize / esize;
11508         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11509         TCGv_i64 tcg_rd[2];
11510 
11511         for (i = 0; i < 2; i++) {
11512             tcg_rd[i] = tcg_temp_new_i64();
11513             tcg_gen_movi_i64(tcg_rd[i], 0);
11514         }
11515 
11516         for (i = 0; i < elements; i++) {
11517             int e_rev = (i & 0xf) ^ revmask;
11518             int w = (e_rev * esize) / 64;
11519             int o = (e_rev * esize) % 64;
11520 
11521             read_vec_element(s, tcg_rn, rn, i, size);
11522             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11523         }
11524 
11525         for (i = 0; i < 2; i++) {
11526             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11527         }
11528         clear_vec_high(s, true, rd);
11529     }
11530 }
11531 
11532 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11533                                   bool is_q, int size, int rn, int rd)
11534 {
11535     /* Implement the pairwise operations from 2-misc:
11536      * SADDLP, UADDLP, SADALP, UADALP.
11537      * These all add pairs of elements in the input to produce a
11538      * double-width result element in the output (possibly accumulating).
11539      */
11540     bool accum = (opcode == 0x6);
11541     int maxpass = is_q ? 2 : 1;
11542     int pass;
11543     TCGv_i64 tcg_res[2];
11544 
11545     if (size == 2) {
11546         /* 32 + 32 -> 64 op */
11547         MemOp memop = size + (u ? 0 : MO_SIGN);
11548 
11549         for (pass = 0; pass < maxpass; pass++) {
11550             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11551             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11552 
11553             tcg_res[pass] = tcg_temp_new_i64();
11554 
11555             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11556             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11557             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11558             if (accum) {
11559                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11560                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11561             }
11562         }
11563     } else {
11564         for (pass = 0; pass < maxpass; pass++) {
11565             TCGv_i64 tcg_op = tcg_temp_new_i64();
11566             NeonGenOne64OpFn *genfn;
11567             static NeonGenOne64OpFn * const fns[2][2] = {
11568                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11569                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11570             };
11571 
11572             genfn = fns[size][u];
11573 
11574             tcg_res[pass] = tcg_temp_new_i64();
11575 
11576             read_vec_element(s, tcg_op, rn, pass, MO_64);
11577             genfn(tcg_res[pass], tcg_op);
11578 
11579             if (accum) {
11580                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11581                 if (size == 0) {
11582                     gen_helper_neon_addl_u16(tcg_res[pass],
11583                                              tcg_res[pass], tcg_op);
11584                 } else {
11585                     gen_helper_neon_addl_u32(tcg_res[pass],
11586                                              tcg_res[pass], tcg_op);
11587                 }
11588             }
11589         }
11590     }
11591     if (!is_q) {
11592         tcg_res[1] = tcg_constant_i64(0);
11593     }
11594     for (pass = 0; pass < 2; pass++) {
11595         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11596     }
11597 }
11598 
11599 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11600 {
11601     /* Implement SHLL and SHLL2 */
11602     int pass;
11603     int part = is_q ? 2 : 0;
11604     TCGv_i64 tcg_res[2];
11605 
11606     for (pass = 0; pass < 2; pass++) {
11607         static NeonGenWidenFn * const widenfns[3] = {
11608             gen_helper_neon_widen_u8,
11609             gen_helper_neon_widen_u16,
11610             tcg_gen_extu_i32_i64,
11611         };
11612         NeonGenWidenFn *widenfn = widenfns[size];
11613         TCGv_i32 tcg_op = tcg_temp_new_i32();
11614 
11615         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11616         tcg_res[pass] = tcg_temp_new_i64();
11617         widenfn(tcg_res[pass], tcg_op);
11618         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11619     }
11620 
11621     for (pass = 0; pass < 2; pass++) {
11622         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11623     }
11624 }
11625 
11626 /* AdvSIMD two reg misc
11627  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11628  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11629  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11630  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11631  */
11632 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11633 {
11634     int size = extract32(insn, 22, 2);
11635     int opcode = extract32(insn, 12, 5);
11636     bool u = extract32(insn, 29, 1);
11637     bool is_q = extract32(insn, 30, 1);
11638     int rn = extract32(insn, 5, 5);
11639     int rd = extract32(insn, 0, 5);
11640     bool need_fpstatus = false;
11641     int rmode = -1;
11642     TCGv_i32 tcg_rmode;
11643     TCGv_ptr tcg_fpstatus;
11644 
11645     switch (opcode) {
11646     case 0x0: /* REV64, REV32 */
11647     case 0x1: /* REV16 */
11648         handle_rev(s, opcode, u, is_q, size, rn, rd);
11649         return;
11650     case 0x5: /* CNT, NOT, RBIT */
11651         if (u && size == 0) {
11652             /* NOT */
11653             break;
11654         } else if (u && size == 1) {
11655             /* RBIT */
11656             break;
11657         } else if (!u && size == 0) {
11658             /* CNT */
11659             break;
11660         }
11661         unallocated_encoding(s);
11662         return;
11663     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11664     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11665         if (size == 3) {
11666             unallocated_encoding(s);
11667             return;
11668         }
11669         if (!fp_access_check(s)) {
11670             return;
11671         }
11672 
11673         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11674         return;
11675     case 0x4: /* CLS, CLZ */
11676         if (size == 3) {
11677             unallocated_encoding(s);
11678             return;
11679         }
11680         break;
11681     case 0x2: /* SADDLP, UADDLP */
11682     case 0x6: /* SADALP, UADALP */
11683         if (size == 3) {
11684             unallocated_encoding(s);
11685             return;
11686         }
11687         if (!fp_access_check(s)) {
11688             return;
11689         }
11690         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11691         return;
11692     case 0x13: /* SHLL, SHLL2 */
11693         if (u == 0 || size == 3) {
11694             unallocated_encoding(s);
11695             return;
11696         }
11697         if (!fp_access_check(s)) {
11698             return;
11699         }
11700         handle_shll(s, is_q, size, rn, rd);
11701         return;
11702     case 0xa: /* CMLT */
11703         if (u == 1) {
11704             unallocated_encoding(s);
11705             return;
11706         }
11707         /* fall through */
11708     case 0x8: /* CMGT, CMGE */
11709     case 0x9: /* CMEQ, CMLE */
11710     case 0xb: /* ABS, NEG */
11711         if (size == 3 && !is_q) {
11712             unallocated_encoding(s);
11713             return;
11714         }
11715         break;
11716     case 0x3: /* SUQADD, USQADD */
11717         if (size == 3 && !is_q) {
11718             unallocated_encoding(s);
11719             return;
11720         }
11721         if (!fp_access_check(s)) {
11722             return;
11723         }
11724         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11725         return;
11726     case 0x7: /* SQABS, SQNEG */
11727         if (size == 3 && !is_q) {
11728             unallocated_encoding(s);
11729             return;
11730         }
11731         break;
11732     case 0xc ... 0xf:
11733     case 0x16 ... 0x1f:
11734     {
11735         /* Floating point: U, size[1] and opcode indicate operation;
11736          * size[0] indicates single or double precision.
11737          */
11738         int is_double = extract32(size, 0, 1);
11739         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11740         size = is_double ? 3 : 2;
11741         switch (opcode) {
11742         case 0x2f: /* FABS */
11743         case 0x6f: /* FNEG */
11744             if (size == 3 && !is_q) {
11745                 unallocated_encoding(s);
11746                 return;
11747             }
11748             break;
11749         case 0x1d: /* SCVTF */
11750         case 0x5d: /* UCVTF */
11751         {
11752             bool is_signed = (opcode == 0x1d) ? true : false;
11753             int elements = is_double ? 2 : is_q ? 4 : 2;
11754             if (is_double && !is_q) {
11755                 unallocated_encoding(s);
11756                 return;
11757             }
11758             if (!fp_access_check(s)) {
11759                 return;
11760             }
11761             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11762             return;
11763         }
11764         case 0x2c: /* FCMGT (zero) */
11765         case 0x2d: /* FCMEQ (zero) */
11766         case 0x2e: /* FCMLT (zero) */
11767         case 0x6c: /* FCMGE (zero) */
11768         case 0x6d: /* FCMLE (zero) */
11769             if (size == 3 && !is_q) {
11770                 unallocated_encoding(s);
11771                 return;
11772             }
11773             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11774             return;
11775         case 0x7f: /* FSQRT */
11776             if (size == 3 && !is_q) {
11777                 unallocated_encoding(s);
11778                 return;
11779             }
11780             break;
11781         case 0x1a: /* FCVTNS */
11782         case 0x1b: /* FCVTMS */
11783         case 0x3a: /* FCVTPS */
11784         case 0x3b: /* FCVTZS */
11785         case 0x5a: /* FCVTNU */
11786         case 0x5b: /* FCVTMU */
11787         case 0x7a: /* FCVTPU */
11788         case 0x7b: /* FCVTZU */
11789             need_fpstatus = true;
11790             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11791             if (size == 3 && !is_q) {
11792                 unallocated_encoding(s);
11793                 return;
11794             }
11795             break;
11796         case 0x5c: /* FCVTAU */
11797         case 0x1c: /* FCVTAS */
11798             need_fpstatus = true;
11799             rmode = FPROUNDING_TIEAWAY;
11800             if (size == 3 && !is_q) {
11801                 unallocated_encoding(s);
11802                 return;
11803             }
11804             break;
11805         case 0x3c: /* URECPE */
11806             if (size == 3) {
11807                 unallocated_encoding(s);
11808                 return;
11809             }
11810             /* fall through */
11811         case 0x3d: /* FRECPE */
11812         case 0x7d: /* FRSQRTE */
11813             if (size == 3 && !is_q) {
11814                 unallocated_encoding(s);
11815                 return;
11816             }
11817             if (!fp_access_check(s)) {
11818                 return;
11819             }
11820             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11821             return;
11822         case 0x56: /* FCVTXN, FCVTXN2 */
11823             if (size == 2) {
11824                 unallocated_encoding(s);
11825                 return;
11826             }
11827             /* fall through */
11828         case 0x16: /* FCVTN, FCVTN2 */
11829             /* handle_2misc_narrow does a 2*size -> size operation, but these
11830              * instructions encode the source size rather than dest size.
11831              */
11832             if (!fp_access_check(s)) {
11833                 return;
11834             }
11835             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11836             return;
11837         case 0x36: /* BFCVTN, BFCVTN2 */
11838             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11839                 unallocated_encoding(s);
11840                 return;
11841             }
11842             if (!fp_access_check(s)) {
11843                 return;
11844             }
11845             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11846             return;
11847         case 0x17: /* FCVTL, FCVTL2 */
11848             if (!fp_access_check(s)) {
11849                 return;
11850             }
11851             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11852             return;
11853         case 0x18: /* FRINTN */
11854         case 0x19: /* FRINTM */
11855         case 0x38: /* FRINTP */
11856         case 0x39: /* FRINTZ */
11857             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11858             /* fall through */
11859         case 0x59: /* FRINTX */
11860         case 0x79: /* FRINTI */
11861             need_fpstatus = true;
11862             if (size == 3 && !is_q) {
11863                 unallocated_encoding(s);
11864                 return;
11865             }
11866             break;
11867         case 0x58: /* FRINTA */
11868             rmode = FPROUNDING_TIEAWAY;
11869             need_fpstatus = true;
11870             if (size == 3 && !is_q) {
11871                 unallocated_encoding(s);
11872                 return;
11873             }
11874             break;
11875         case 0x7c: /* URSQRTE */
11876             if (size == 3) {
11877                 unallocated_encoding(s);
11878                 return;
11879             }
11880             break;
11881         case 0x1e: /* FRINT32Z */
11882         case 0x1f: /* FRINT64Z */
11883             rmode = FPROUNDING_ZERO;
11884             /* fall through */
11885         case 0x5e: /* FRINT32X */
11886         case 0x5f: /* FRINT64X */
11887             need_fpstatus = true;
11888             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11889                 unallocated_encoding(s);
11890                 return;
11891             }
11892             break;
11893         default:
11894             unallocated_encoding(s);
11895             return;
11896         }
11897         break;
11898     }
11899     default:
11900         unallocated_encoding(s);
11901         return;
11902     }
11903 
11904     if (!fp_access_check(s)) {
11905         return;
11906     }
11907 
11908     if (need_fpstatus || rmode >= 0) {
11909         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11910     } else {
11911         tcg_fpstatus = NULL;
11912     }
11913     if (rmode >= 0) {
11914         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11915     } else {
11916         tcg_rmode = NULL;
11917     }
11918 
11919     switch (opcode) {
11920     case 0x5:
11921         if (u && size == 0) { /* NOT */
11922             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11923             return;
11924         }
11925         break;
11926     case 0x8: /* CMGT, CMGE */
11927         if (u) {
11928             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11929         } else {
11930             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11931         }
11932         return;
11933     case 0x9: /* CMEQ, CMLE */
11934         if (u) {
11935             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11936         } else {
11937             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11938         }
11939         return;
11940     case 0xa: /* CMLT */
11941         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11942         return;
11943     case 0xb:
11944         if (u) { /* ABS, NEG */
11945             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11946         } else {
11947             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11948         }
11949         return;
11950     }
11951 
11952     if (size == 3) {
11953         /* All 64-bit element operations can be shared with scalar 2misc */
11954         int pass;
11955 
11956         /* Coverity claims (size == 3 && !is_q) has been eliminated
11957          * from all paths leading to here.
11958          */
11959         tcg_debug_assert(is_q);
11960         for (pass = 0; pass < 2; pass++) {
11961             TCGv_i64 tcg_op = tcg_temp_new_i64();
11962             TCGv_i64 tcg_res = tcg_temp_new_i64();
11963 
11964             read_vec_element(s, tcg_op, rn, pass, MO_64);
11965 
11966             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11967                             tcg_rmode, tcg_fpstatus);
11968 
11969             write_vec_element(s, tcg_res, rd, pass, MO_64);
11970         }
11971     } else {
11972         int pass;
11973 
11974         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11975             TCGv_i32 tcg_op = tcg_temp_new_i32();
11976             TCGv_i32 tcg_res = tcg_temp_new_i32();
11977 
11978             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11979 
11980             if (size == 2) {
11981                 /* Special cases for 32 bit elements */
11982                 switch (opcode) {
11983                 case 0x4: /* CLS */
11984                     if (u) {
11985                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11986                     } else {
11987                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
11988                     }
11989                     break;
11990                 case 0x7: /* SQABS, SQNEG */
11991                     if (u) {
11992                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11993                     } else {
11994                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11995                     }
11996                     break;
11997                 case 0x2f: /* FABS */
11998                     gen_vfp_abss(tcg_res, tcg_op);
11999                     break;
12000                 case 0x6f: /* FNEG */
12001                     gen_vfp_negs(tcg_res, tcg_op);
12002                     break;
12003                 case 0x7f: /* FSQRT */
12004                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12005                     break;
12006                 case 0x1a: /* FCVTNS */
12007                 case 0x1b: /* FCVTMS */
12008                 case 0x1c: /* FCVTAS */
12009                 case 0x3a: /* FCVTPS */
12010                 case 0x3b: /* FCVTZS */
12011                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12012                                          tcg_constant_i32(0), tcg_fpstatus);
12013                     break;
12014                 case 0x5a: /* FCVTNU */
12015                 case 0x5b: /* FCVTMU */
12016                 case 0x5c: /* FCVTAU */
12017                 case 0x7a: /* FCVTPU */
12018                 case 0x7b: /* FCVTZU */
12019                     gen_helper_vfp_touls(tcg_res, tcg_op,
12020                                          tcg_constant_i32(0), tcg_fpstatus);
12021                     break;
12022                 case 0x18: /* FRINTN */
12023                 case 0x19: /* FRINTM */
12024                 case 0x38: /* FRINTP */
12025                 case 0x39: /* FRINTZ */
12026                 case 0x58: /* FRINTA */
12027                 case 0x79: /* FRINTI */
12028                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12029                     break;
12030                 case 0x59: /* FRINTX */
12031                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12032                     break;
12033                 case 0x7c: /* URSQRTE */
12034                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12035                     break;
12036                 case 0x1e: /* FRINT32Z */
12037                 case 0x5e: /* FRINT32X */
12038                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12039                     break;
12040                 case 0x1f: /* FRINT64Z */
12041                 case 0x5f: /* FRINT64X */
12042                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12043                     break;
12044                 default:
12045                     g_assert_not_reached();
12046                 }
12047             } else {
12048                 /* Use helpers for 8 and 16 bit elements */
12049                 switch (opcode) {
12050                 case 0x5: /* CNT, RBIT */
12051                     /* For these two insns size is part of the opcode specifier
12052                      * (handled earlier); they always operate on byte elements.
12053                      */
12054                     if (u) {
12055                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12056                     } else {
12057                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12058                     }
12059                     break;
12060                 case 0x7: /* SQABS, SQNEG */
12061                 {
12062                     NeonGenOneOpEnvFn *genfn;
12063                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12064                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12065                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12066                     };
12067                     genfn = fns[size][u];
12068                     genfn(tcg_res, tcg_env, tcg_op);
12069                     break;
12070                 }
12071                 case 0x4: /* CLS, CLZ */
12072                     if (u) {
12073                         if (size == 0) {
12074                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12075                         } else {
12076                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12077                         }
12078                     } else {
12079                         if (size == 0) {
12080                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12081                         } else {
12082                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12083                         }
12084                     }
12085                     break;
12086                 default:
12087                     g_assert_not_reached();
12088                 }
12089             }
12090 
12091             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12092         }
12093     }
12094     clear_vec_high(s, is_q, rd);
12095 
12096     if (tcg_rmode) {
12097         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12098     }
12099 }
12100 
12101 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12102  *
12103  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12104  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12105  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12106  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12107  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12108  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12109  *
12110  * This actually covers two groups where scalar access is governed by
12111  * bit 28. A bunch of the instructions (float to integral) only exist
12112  * in the vector form and are un-allocated for the scalar decode. Also
12113  * in the scalar decode Q is always 1.
12114  */
12115 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12116 {
12117     int fpop, opcode, a, u;
12118     int rn, rd;
12119     bool is_q;
12120     bool is_scalar;
12121     bool only_in_vector = false;
12122 
12123     int pass;
12124     TCGv_i32 tcg_rmode = NULL;
12125     TCGv_ptr tcg_fpstatus = NULL;
12126     bool need_fpst = true;
12127     int rmode = -1;
12128 
12129     if (!dc_isar_feature(aa64_fp16, s)) {
12130         unallocated_encoding(s);
12131         return;
12132     }
12133 
12134     rd = extract32(insn, 0, 5);
12135     rn = extract32(insn, 5, 5);
12136 
12137     a = extract32(insn, 23, 1);
12138     u = extract32(insn, 29, 1);
12139     is_scalar = extract32(insn, 28, 1);
12140     is_q = extract32(insn, 30, 1);
12141 
12142     opcode = extract32(insn, 12, 5);
12143     fpop = deposit32(opcode, 5, 1, a);
12144     fpop = deposit32(fpop, 6, 1, u);
12145 
12146     switch (fpop) {
12147     case 0x1d: /* SCVTF */
12148     case 0x5d: /* UCVTF */
12149     {
12150         int elements;
12151 
12152         if (is_scalar) {
12153             elements = 1;
12154         } else {
12155             elements = (is_q ? 8 : 4);
12156         }
12157 
12158         if (!fp_access_check(s)) {
12159             return;
12160         }
12161         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12162         return;
12163     }
12164     break;
12165     case 0x2c: /* FCMGT (zero) */
12166     case 0x2d: /* FCMEQ (zero) */
12167     case 0x2e: /* FCMLT (zero) */
12168     case 0x6c: /* FCMGE (zero) */
12169     case 0x6d: /* FCMLE (zero) */
12170         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12171         return;
12172     case 0x3d: /* FRECPE */
12173     case 0x3f: /* FRECPX */
12174         break;
12175     case 0x18: /* FRINTN */
12176         only_in_vector = true;
12177         rmode = FPROUNDING_TIEEVEN;
12178         break;
12179     case 0x19: /* FRINTM */
12180         only_in_vector = true;
12181         rmode = FPROUNDING_NEGINF;
12182         break;
12183     case 0x38: /* FRINTP */
12184         only_in_vector = true;
12185         rmode = FPROUNDING_POSINF;
12186         break;
12187     case 0x39: /* FRINTZ */
12188         only_in_vector = true;
12189         rmode = FPROUNDING_ZERO;
12190         break;
12191     case 0x58: /* FRINTA */
12192         only_in_vector = true;
12193         rmode = FPROUNDING_TIEAWAY;
12194         break;
12195     case 0x59: /* FRINTX */
12196     case 0x79: /* FRINTI */
12197         only_in_vector = true;
12198         /* current rounding mode */
12199         break;
12200     case 0x1a: /* FCVTNS */
12201         rmode = FPROUNDING_TIEEVEN;
12202         break;
12203     case 0x1b: /* FCVTMS */
12204         rmode = FPROUNDING_NEGINF;
12205         break;
12206     case 0x1c: /* FCVTAS */
12207         rmode = FPROUNDING_TIEAWAY;
12208         break;
12209     case 0x3a: /* FCVTPS */
12210         rmode = FPROUNDING_POSINF;
12211         break;
12212     case 0x3b: /* FCVTZS */
12213         rmode = FPROUNDING_ZERO;
12214         break;
12215     case 0x5a: /* FCVTNU */
12216         rmode = FPROUNDING_TIEEVEN;
12217         break;
12218     case 0x5b: /* FCVTMU */
12219         rmode = FPROUNDING_NEGINF;
12220         break;
12221     case 0x5c: /* FCVTAU */
12222         rmode = FPROUNDING_TIEAWAY;
12223         break;
12224     case 0x7a: /* FCVTPU */
12225         rmode = FPROUNDING_POSINF;
12226         break;
12227     case 0x7b: /* FCVTZU */
12228         rmode = FPROUNDING_ZERO;
12229         break;
12230     case 0x2f: /* FABS */
12231     case 0x6f: /* FNEG */
12232         need_fpst = false;
12233         break;
12234     case 0x7d: /* FRSQRTE */
12235     case 0x7f: /* FSQRT (vector) */
12236         break;
12237     default:
12238         unallocated_encoding(s);
12239         return;
12240     }
12241 
12242 
12243     /* Check additional constraints for the scalar encoding */
12244     if (is_scalar) {
12245         if (!is_q) {
12246             unallocated_encoding(s);
12247             return;
12248         }
12249         /* FRINTxx is only in the vector form */
12250         if (only_in_vector) {
12251             unallocated_encoding(s);
12252             return;
12253         }
12254     }
12255 
12256     if (!fp_access_check(s)) {
12257         return;
12258     }
12259 
12260     if (rmode >= 0 || need_fpst) {
12261         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12262     }
12263 
12264     if (rmode >= 0) {
12265         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12266     }
12267 
12268     if (is_scalar) {
12269         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12270         TCGv_i32 tcg_res = tcg_temp_new_i32();
12271 
12272         switch (fpop) {
12273         case 0x1a: /* FCVTNS */
12274         case 0x1b: /* FCVTMS */
12275         case 0x1c: /* FCVTAS */
12276         case 0x3a: /* FCVTPS */
12277         case 0x3b: /* FCVTZS */
12278             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12279             break;
12280         case 0x3d: /* FRECPE */
12281             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12282             break;
12283         case 0x3f: /* FRECPX */
12284             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12285             break;
12286         case 0x5a: /* FCVTNU */
12287         case 0x5b: /* FCVTMU */
12288         case 0x5c: /* FCVTAU */
12289         case 0x7a: /* FCVTPU */
12290         case 0x7b: /* FCVTZU */
12291             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12292             break;
12293         case 0x6f: /* FNEG */
12294             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12295             break;
12296         case 0x7d: /* FRSQRTE */
12297             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12298             break;
12299         default:
12300             g_assert_not_reached();
12301         }
12302 
12303         /* limit any sign extension going on */
12304         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12305         write_fp_sreg(s, rd, tcg_res);
12306     } else {
12307         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12308             TCGv_i32 tcg_op = tcg_temp_new_i32();
12309             TCGv_i32 tcg_res = tcg_temp_new_i32();
12310 
12311             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12312 
12313             switch (fpop) {
12314             case 0x1a: /* FCVTNS */
12315             case 0x1b: /* FCVTMS */
12316             case 0x1c: /* FCVTAS */
12317             case 0x3a: /* FCVTPS */
12318             case 0x3b: /* FCVTZS */
12319                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12320                 break;
12321             case 0x3d: /* FRECPE */
12322                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12323                 break;
12324             case 0x5a: /* FCVTNU */
12325             case 0x5b: /* FCVTMU */
12326             case 0x5c: /* FCVTAU */
12327             case 0x7a: /* FCVTPU */
12328             case 0x7b: /* FCVTZU */
12329                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12330                 break;
12331             case 0x18: /* FRINTN */
12332             case 0x19: /* FRINTM */
12333             case 0x38: /* FRINTP */
12334             case 0x39: /* FRINTZ */
12335             case 0x58: /* FRINTA */
12336             case 0x79: /* FRINTI */
12337                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12338                 break;
12339             case 0x59: /* FRINTX */
12340                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12341                 break;
12342             case 0x2f: /* FABS */
12343                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12344                 break;
12345             case 0x6f: /* FNEG */
12346                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12347                 break;
12348             case 0x7d: /* FRSQRTE */
12349                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12350                 break;
12351             case 0x7f: /* FSQRT */
12352                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12353                 break;
12354             default:
12355                 g_assert_not_reached();
12356             }
12357 
12358             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12359         }
12360 
12361         clear_vec_high(s, is_q, rd);
12362     }
12363 
12364     if (tcg_rmode) {
12365         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12366     }
12367 }
12368 
12369 /* AdvSIMD scalar x indexed element
12370  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12371  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12372  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12373  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12374  * AdvSIMD vector x indexed element
12375  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12376  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12377  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12378  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12379  */
12380 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12381 {
12382     /* This encoding has two kinds of instruction:
12383      *  normal, where we perform elt x idxelt => elt for each
12384      *     element in the vector
12385      *  long, where we perform elt x idxelt and generate a result of
12386      *     double the width of the input element
12387      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12388      */
12389     bool is_scalar = extract32(insn, 28, 1);
12390     bool is_q = extract32(insn, 30, 1);
12391     bool u = extract32(insn, 29, 1);
12392     int size = extract32(insn, 22, 2);
12393     int l = extract32(insn, 21, 1);
12394     int m = extract32(insn, 20, 1);
12395     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12396     int rm = extract32(insn, 16, 4);
12397     int opcode = extract32(insn, 12, 4);
12398     int h = extract32(insn, 11, 1);
12399     int rn = extract32(insn, 5, 5);
12400     int rd = extract32(insn, 0, 5);
12401     bool is_long = false;
12402     int is_fp = 0;
12403     bool is_fp16 = false;
12404     int index;
12405     TCGv_ptr fpst;
12406 
12407     switch (16 * u + opcode) {
12408     case 0x08: /* MUL */
12409     case 0x10: /* MLA */
12410     case 0x14: /* MLS */
12411         if (is_scalar) {
12412             unallocated_encoding(s);
12413             return;
12414         }
12415         break;
12416     case 0x02: /* SMLAL, SMLAL2 */
12417     case 0x12: /* UMLAL, UMLAL2 */
12418     case 0x06: /* SMLSL, SMLSL2 */
12419     case 0x16: /* UMLSL, UMLSL2 */
12420     case 0x0a: /* SMULL, SMULL2 */
12421     case 0x1a: /* UMULL, UMULL2 */
12422         if (is_scalar) {
12423             unallocated_encoding(s);
12424             return;
12425         }
12426         is_long = true;
12427         break;
12428     case 0x03: /* SQDMLAL, SQDMLAL2 */
12429     case 0x07: /* SQDMLSL, SQDMLSL2 */
12430     case 0x0b: /* SQDMULL, SQDMULL2 */
12431         is_long = true;
12432         break;
12433     case 0x0c: /* SQDMULH */
12434     case 0x0d: /* SQRDMULH */
12435         break;
12436     case 0x1d: /* SQRDMLAH */
12437     case 0x1f: /* SQRDMLSH */
12438         if (!dc_isar_feature(aa64_rdm, s)) {
12439             unallocated_encoding(s);
12440             return;
12441         }
12442         break;
12443     case 0x0e: /* SDOT */
12444     case 0x1e: /* UDOT */
12445         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12446             unallocated_encoding(s);
12447             return;
12448         }
12449         break;
12450     case 0x0f:
12451         switch (size) {
12452         case 0: /* SUDOT */
12453         case 2: /* USDOT */
12454             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12455                 unallocated_encoding(s);
12456                 return;
12457             }
12458             size = MO_32;
12459             break;
12460         case 1: /* BFDOT */
12461             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12462                 unallocated_encoding(s);
12463                 return;
12464             }
12465             size = MO_32;
12466             break;
12467         case 3: /* BFMLAL{B,T} */
12468             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12469                 unallocated_encoding(s);
12470                 return;
12471             }
12472             /* can't set is_fp without other incorrect size checks */
12473             size = MO_16;
12474             break;
12475         default:
12476             unallocated_encoding(s);
12477             return;
12478         }
12479         break;
12480     case 0x11: /* FCMLA #0 */
12481     case 0x13: /* FCMLA #90 */
12482     case 0x15: /* FCMLA #180 */
12483     case 0x17: /* FCMLA #270 */
12484         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12485             unallocated_encoding(s);
12486             return;
12487         }
12488         is_fp = 2;
12489         break;
12490     default:
12491     case 0x00: /* FMLAL */
12492     case 0x01: /* FMLA */
12493     case 0x04: /* FMLSL */
12494     case 0x05: /* FMLS */
12495     case 0x09: /* FMUL */
12496     case 0x18: /* FMLAL2 */
12497     case 0x19: /* FMULX */
12498     case 0x1c: /* FMLSL2 */
12499         unallocated_encoding(s);
12500         return;
12501     }
12502 
12503     switch (is_fp) {
12504     case 1: /* normal fp */
12505         unallocated_encoding(s); /* in decodetree */
12506         return;
12507 
12508     case 2: /* complex fp */
12509         /* Each indexable element is a complex pair.  */
12510         size += 1;
12511         switch (size) {
12512         case MO_32:
12513             if (h && !is_q) {
12514                 unallocated_encoding(s);
12515                 return;
12516             }
12517             is_fp16 = true;
12518             break;
12519         case MO_64:
12520             break;
12521         default:
12522             unallocated_encoding(s);
12523             return;
12524         }
12525         break;
12526 
12527     default: /* integer */
12528         switch (size) {
12529         case MO_8:
12530         case MO_64:
12531             unallocated_encoding(s);
12532             return;
12533         }
12534         break;
12535     }
12536     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12537         unallocated_encoding(s);
12538         return;
12539     }
12540 
12541     /* Given MemOp size, adjust register and indexing.  */
12542     switch (size) {
12543     case MO_16:
12544         index = h << 2 | l << 1 | m;
12545         break;
12546     case MO_32:
12547         index = h << 1 | l;
12548         rm |= m << 4;
12549         break;
12550     case MO_64:
12551         if (l || !is_q) {
12552             unallocated_encoding(s);
12553             return;
12554         }
12555         index = h;
12556         rm |= m << 4;
12557         break;
12558     default:
12559         g_assert_not_reached();
12560     }
12561 
12562     if (!fp_access_check(s)) {
12563         return;
12564     }
12565 
12566     if (is_fp) {
12567         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12568     } else {
12569         fpst = NULL;
12570     }
12571 
12572     switch (16 * u + opcode) {
12573     case 0x0e: /* SDOT */
12574     case 0x1e: /* UDOT */
12575         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12576                          u ? gen_helper_gvec_udot_idx_b
12577                          : gen_helper_gvec_sdot_idx_b);
12578         return;
12579     case 0x0f:
12580         switch (extract32(insn, 22, 2)) {
12581         case 0: /* SUDOT */
12582             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12583                              gen_helper_gvec_sudot_idx_b);
12584             return;
12585         case 1: /* BFDOT */
12586             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12587                              gen_helper_gvec_bfdot_idx);
12588             return;
12589         case 2: /* USDOT */
12590             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12591                              gen_helper_gvec_usdot_idx_b);
12592             return;
12593         case 3: /* BFMLAL{B,T} */
12594             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12595                               gen_helper_gvec_bfmlal_idx);
12596             return;
12597         }
12598         g_assert_not_reached();
12599     case 0x11: /* FCMLA #0 */
12600     case 0x13: /* FCMLA #90 */
12601     case 0x15: /* FCMLA #180 */
12602     case 0x17: /* FCMLA #270 */
12603         {
12604             int rot = extract32(insn, 13, 2);
12605             int data = (index << 2) | rot;
12606             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12607                                vec_full_reg_offset(s, rn),
12608                                vec_full_reg_offset(s, rm),
12609                                vec_full_reg_offset(s, rd), fpst,
12610                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12611                                size == MO_64
12612                                ? gen_helper_gvec_fcmlas_idx
12613                                : gen_helper_gvec_fcmlah_idx);
12614         }
12615         return;
12616 
12617     case 0x08: /* MUL */
12618         if (!is_long && !is_scalar) {
12619             static gen_helper_gvec_3 * const fns[3] = {
12620                 gen_helper_gvec_mul_idx_h,
12621                 gen_helper_gvec_mul_idx_s,
12622                 gen_helper_gvec_mul_idx_d,
12623             };
12624             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12625                                vec_full_reg_offset(s, rn),
12626                                vec_full_reg_offset(s, rm),
12627                                is_q ? 16 : 8, vec_full_reg_size(s),
12628                                index, fns[size - 1]);
12629             return;
12630         }
12631         break;
12632 
12633     case 0x10: /* MLA */
12634         if (!is_long && !is_scalar) {
12635             static gen_helper_gvec_4 * const fns[3] = {
12636                 gen_helper_gvec_mla_idx_h,
12637                 gen_helper_gvec_mla_idx_s,
12638                 gen_helper_gvec_mla_idx_d,
12639             };
12640             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12641                                vec_full_reg_offset(s, rn),
12642                                vec_full_reg_offset(s, rm),
12643                                vec_full_reg_offset(s, rd),
12644                                is_q ? 16 : 8, vec_full_reg_size(s),
12645                                index, fns[size - 1]);
12646             return;
12647         }
12648         break;
12649 
12650     case 0x14: /* MLS */
12651         if (!is_long && !is_scalar) {
12652             static gen_helper_gvec_4 * const fns[3] = {
12653                 gen_helper_gvec_mls_idx_h,
12654                 gen_helper_gvec_mls_idx_s,
12655                 gen_helper_gvec_mls_idx_d,
12656             };
12657             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12658                                vec_full_reg_offset(s, rn),
12659                                vec_full_reg_offset(s, rm),
12660                                vec_full_reg_offset(s, rd),
12661                                is_q ? 16 : 8, vec_full_reg_size(s),
12662                                index, fns[size - 1]);
12663             return;
12664         }
12665         break;
12666     }
12667 
12668     if (size == 3) {
12669         g_assert_not_reached();
12670     } else if (!is_long) {
12671         /* 32 bit floating point, or 16 or 32 bit integer.
12672          * For the 16 bit scalar case we use the usual Neon helpers and
12673          * rely on the fact that 0 op 0 == 0 with no side effects.
12674          */
12675         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12676         int pass, maxpasses;
12677 
12678         if (is_scalar) {
12679             maxpasses = 1;
12680         } else {
12681             maxpasses = is_q ? 4 : 2;
12682         }
12683 
12684         read_vec_element_i32(s, tcg_idx, rm, index, size);
12685 
12686         if (size == 1 && !is_scalar) {
12687             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12688              * the index into both halves of the 32 bit tcg_idx and then use
12689              * the usual Neon helpers.
12690              */
12691             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12692         }
12693 
12694         for (pass = 0; pass < maxpasses; pass++) {
12695             TCGv_i32 tcg_op = tcg_temp_new_i32();
12696             TCGv_i32 tcg_res = tcg_temp_new_i32();
12697 
12698             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12699 
12700             switch (16 * u + opcode) {
12701             case 0x08: /* MUL */
12702             case 0x10: /* MLA */
12703             case 0x14: /* MLS */
12704             {
12705                 static NeonGenTwoOpFn * const fns[2][2] = {
12706                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12707                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
12708                 };
12709                 NeonGenTwoOpFn *genfn;
12710                 bool is_sub = opcode == 0x4;
12711 
12712                 if (size == 1) {
12713                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12714                 } else {
12715                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12716                 }
12717                 if (opcode == 0x8) {
12718                     break;
12719                 }
12720                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12721                 genfn = fns[size - 1][is_sub];
12722                 genfn(tcg_res, tcg_op, tcg_res);
12723                 break;
12724             }
12725             case 0x0c: /* SQDMULH */
12726                 if (size == 1) {
12727                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
12728                                                tcg_op, tcg_idx);
12729                 } else {
12730                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
12731                                                tcg_op, tcg_idx);
12732                 }
12733                 break;
12734             case 0x0d: /* SQRDMULH */
12735                 if (size == 1) {
12736                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
12737                                                 tcg_op, tcg_idx);
12738                 } else {
12739                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
12740                                                 tcg_op, tcg_idx);
12741                 }
12742                 break;
12743             case 0x1d: /* SQRDMLAH */
12744                 read_vec_element_i32(s, tcg_res, rd, pass,
12745                                      is_scalar ? size : MO_32);
12746                 if (size == 1) {
12747                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
12748                                                 tcg_op, tcg_idx, tcg_res);
12749                 } else {
12750                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
12751                                                 tcg_op, tcg_idx, tcg_res);
12752                 }
12753                 break;
12754             case 0x1f: /* SQRDMLSH */
12755                 read_vec_element_i32(s, tcg_res, rd, pass,
12756                                      is_scalar ? size : MO_32);
12757                 if (size == 1) {
12758                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
12759                                                 tcg_op, tcg_idx, tcg_res);
12760                 } else {
12761                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
12762                                                 tcg_op, tcg_idx, tcg_res);
12763                 }
12764                 break;
12765             default:
12766             case 0x01: /* FMLA */
12767             case 0x05: /* FMLS */
12768             case 0x09: /* FMUL */
12769             case 0x19: /* FMULX */
12770                 g_assert_not_reached();
12771             }
12772 
12773             if (is_scalar) {
12774                 write_fp_sreg(s, rd, tcg_res);
12775             } else {
12776                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12777             }
12778         }
12779 
12780         clear_vec_high(s, is_q, rd);
12781     } else {
12782         /* long ops: 16x16->32 or 32x32->64 */
12783         TCGv_i64 tcg_res[2];
12784         int pass;
12785         bool satop = extract32(opcode, 0, 1);
12786         MemOp memop = MO_32;
12787 
12788         if (satop || !u) {
12789             memop |= MO_SIGN;
12790         }
12791 
12792         if (size == 2) {
12793             TCGv_i64 tcg_idx = tcg_temp_new_i64();
12794 
12795             read_vec_element(s, tcg_idx, rm, index, memop);
12796 
12797             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12798                 TCGv_i64 tcg_op = tcg_temp_new_i64();
12799                 TCGv_i64 tcg_passres;
12800                 int passelt;
12801 
12802                 if (is_scalar) {
12803                     passelt = 0;
12804                 } else {
12805                     passelt = pass + (is_q * 2);
12806                 }
12807 
12808                 read_vec_element(s, tcg_op, rn, passelt, memop);
12809 
12810                 tcg_res[pass] = tcg_temp_new_i64();
12811 
12812                 if (opcode == 0xa || opcode == 0xb) {
12813                     /* Non-accumulating ops */
12814                     tcg_passres = tcg_res[pass];
12815                 } else {
12816                     tcg_passres = tcg_temp_new_i64();
12817                 }
12818 
12819                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12820 
12821                 if (satop) {
12822                     /* saturating, doubling */
12823                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
12824                                                       tcg_passres, tcg_passres);
12825                 }
12826 
12827                 if (opcode == 0xa || opcode == 0xb) {
12828                     continue;
12829                 }
12830 
12831                 /* Accumulating op: handle accumulate step */
12832                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12833 
12834                 switch (opcode) {
12835                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12836                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12837                     break;
12838                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12839                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12840                     break;
12841                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12842                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
12843                     /* fall through */
12844                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12845                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
12846                                                       tcg_res[pass],
12847                                                       tcg_passres);
12848                     break;
12849                 default:
12850                     g_assert_not_reached();
12851                 }
12852             }
12853 
12854             clear_vec_high(s, !is_scalar, rd);
12855         } else {
12856             TCGv_i32 tcg_idx = tcg_temp_new_i32();
12857 
12858             assert(size == 1);
12859             read_vec_element_i32(s, tcg_idx, rm, index, size);
12860 
12861             if (!is_scalar) {
12862                 /* The simplest way to handle the 16x16 indexed ops is to
12863                  * duplicate the index into both halves of the 32 bit tcg_idx
12864                  * and then use the usual Neon helpers.
12865                  */
12866                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12867             }
12868 
12869             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12870                 TCGv_i32 tcg_op = tcg_temp_new_i32();
12871                 TCGv_i64 tcg_passres;
12872 
12873                 if (is_scalar) {
12874                     read_vec_element_i32(s, tcg_op, rn, pass, size);
12875                 } else {
12876                     read_vec_element_i32(s, tcg_op, rn,
12877                                          pass + (is_q * 2), MO_32);
12878                 }
12879 
12880                 tcg_res[pass] = tcg_temp_new_i64();
12881 
12882                 if (opcode == 0xa || opcode == 0xb) {
12883                     /* Non-accumulating ops */
12884                     tcg_passres = tcg_res[pass];
12885                 } else {
12886                     tcg_passres = tcg_temp_new_i64();
12887                 }
12888 
12889                 if (memop & MO_SIGN) {
12890                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12891                 } else {
12892                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12893                 }
12894                 if (satop) {
12895                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
12896                                                       tcg_passres, tcg_passres);
12897                 }
12898 
12899                 if (opcode == 0xa || opcode == 0xb) {
12900                     continue;
12901                 }
12902 
12903                 /* Accumulating op: handle accumulate step */
12904                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12905 
12906                 switch (opcode) {
12907                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12908                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12909                                              tcg_passres);
12910                     break;
12911                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12912                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12913                                              tcg_passres);
12914                     break;
12915                 case 0x7: /* SQDMLSL, SQDMLSL2 */
12916                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12917                     /* fall through */
12918                 case 0x3: /* SQDMLAL, SQDMLAL2 */
12919                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
12920                                                       tcg_res[pass],
12921                                                       tcg_passres);
12922                     break;
12923                 default:
12924                     g_assert_not_reached();
12925                 }
12926             }
12927 
12928             if (is_scalar) {
12929                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12930             }
12931         }
12932 
12933         if (is_scalar) {
12934             tcg_res[1] = tcg_constant_i64(0);
12935         }
12936 
12937         for (pass = 0; pass < 2; pass++) {
12938             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12939         }
12940     }
12941 }
12942 
12943 /* C3.6 Data processing - SIMD, inc Crypto
12944  *
12945  * As the decode gets a little complex we are using a table based
12946  * approach for this part of the decode.
12947  */
12948 static const AArch64DecodeTable data_proc_simd[] = {
12949     /* pattern  ,  mask     ,  fn                        */
12950     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
12951     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
12952     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
12953     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
12954     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
12955     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
12956     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
12957     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
12958     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
12959     { 0x0e000000, 0xbf208c00, disas_simd_tb },
12960     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
12961     { 0x2e000000, 0xbf208400, disas_simd_ext },
12962     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
12963     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
12964     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
12965     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
12966     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
12967     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
12968     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
12969     { 0x00000000, 0x00000000, NULL }
12970 };
12971 
12972 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
12973 {
12974     /* Note that this is called with all non-FP cases from
12975      * table C3-6 so it must UNDEF for entries not specifically
12976      * allocated to instructions in that table.
12977      */
12978     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
12979     if (fn) {
12980         fn(s, insn);
12981     } else {
12982         unallocated_encoding(s);
12983     }
12984 }
12985 
12986 /* C3.6 Data processing - SIMD and floating point */
12987 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
12988 {
12989     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
12990         disas_data_proc_fp(s, insn);
12991     } else {
12992         /* SIMD, including crypto */
12993         disas_data_proc_simd(s, insn);
12994     }
12995 }
12996 
12997 static bool trans_OK(DisasContext *s, arg_OK *a)
12998 {
12999     return true;
13000 }
13001 
13002 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13003 {
13004     s->is_nonstreaming = true;
13005     return true;
13006 }
13007 
13008 /**
13009  * is_guarded_page:
13010  * @env: The cpu environment
13011  * @s: The DisasContext
13012  *
13013  * Return true if the page is guarded.
13014  */
13015 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13016 {
13017     uint64_t addr = s->base.pc_first;
13018 #ifdef CONFIG_USER_ONLY
13019     return page_get_flags(addr) & PAGE_BTI;
13020 #else
13021     CPUTLBEntryFull *full;
13022     void *host;
13023     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13024     int flags;
13025 
13026     /*
13027      * We test this immediately after reading an insn, which means
13028      * that the TLB entry must be present and valid, and thus this
13029      * access will never raise an exception.
13030      */
13031     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13032                               false, &host, &full, 0);
13033     assert(!(flags & TLB_INVALID_MASK));
13034 
13035     return full->extra.arm.guarded;
13036 #endif
13037 }
13038 
13039 /**
13040  * btype_destination_ok:
13041  * @insn: The instruction at the branch destination
13042  * @bt: SCTLR_ELx.BT
13043  * @btype: PSTATE.BTYPE, and is non-zero
13044  *
13045  * On a guarded page, there are a limited number of insns
13046  * that may be present at the branch target:
13047  *   - branch target identifiers,
13048  *   - paciasp, pacibsp,
13049  *   - BRK insn
13050  *   - HLT insn
13051  * Anything else causes a Branch Target Exception.
13052  *
13053  * Return true if the branch is compatible, false to raise BTITRAP.
13054  */
13055 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13056 {
13057     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13058         /* HINT space */
13059         switch (extract32(insn, 5, 7)) {
13060         case 0b011001: /* PACIASP */
13061         case 0b011011: /* PACIBSP */
13062             /*
13063              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13064              * with btype == 3.  Otherwise all btype are ok.
13065              */
13066             return !bt || btype != 3;
13067         case 0b100000: /* BTI */
13068             /* Not compatible with any btype.  */
13069             return false;
13070         case 0b100010: /* BTI c */
13071             /* Not compatible with btype == 3 */
13072             return btype != 3;
13073         case 0b100100: /* BTI j */
13074             /* Not compatible with btype == 2 */
13075             return btype != 2;
13076         case 0b100110: /* BTI jc */
13077             /* Compatible with any btype.  */
13078             return true;
13079         }
13080     } else {
13081         switch (insn & 0xffe0001fu) {
13082         case 0xd4200000u: /* BRK */
13083         case 0xd4400000u: /* HLT */
13084             /* Give priority to the breakpoint exception.  */
13085             return true;
13086         }
13087     }
13088     return false;
13089 }
13090 
13091 /* C3.1 A64 instruction index by encoding */
13092 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13093 {
13094     switch (extract32(insn, 25, 4)) {
13095     case 0x5:
13096     case 0xd:      /* Data processing - register */
13097         disas_data_proc_reg(s, insn);
13098         break;
13099     case 0x7:
13100     case 0xf:      /* Data processing - SIMD and floating point */
13101         disas_data_proc_simd_fp(s, insn);
13102         break;
13103     default:
13104         unallocated_encoding(s);
13105         break;
13106     }
13107 }
13108 
13109 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13110                                           CPUState *cpu)
13111 {
13112     DisasContext *dc = container_of(dcbase, DisasContext, base);
13113     CPUARMState *env = cpu_env(cpu);
13114     ARMCPU *arm_cpu = env_archcpu(env);
13115     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13116     int bound, core_mmu_idx;
13117 
13118     dc->isar = &arm_cpu->isar;
13119     dc->condjmp = 0;
13120     dc->pc_save = dc->base.pc_first;
13121     dc->aarch64 = true;
13122     dc->thumb = false;
13123     dc->sctlr_b = 0;
13124     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13125     dc->condexec_mask = 0;
13126     dc->condexec_cond = 0;
13127     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13128     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13129     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13130     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13131     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13132     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13133 #if !defined(CONFIG_USER_ONLY)
13134     dc->user = (dc->current_el == 0);
13135 #endif
13136     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13137     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13138     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13139     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13140     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13141     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13142     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13143     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13144     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13145     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13146     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13147     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13148     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13149     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13150     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13151     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13152     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13153     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13154     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13155     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13156     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13157     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13158     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13159     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13160     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13161     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13162     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13163     dc->vec_len = 0;
13164     dc->vec_stride = 0;
13165     dc->cp_regs = arm_cpu->cp_regs;
13166     dc->features = env->features;
13167     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13168     dc->gm_blocksize = arm_cpu->gm_blocksize;
13169 
13170 #ifdef CONFIG_USER_ONLY
13171     /* In sve_probe_page, we assume TBI is enabled. */
13172     tcg_debug_assert(dc->tbid & 1);
13173 #endif
13174 
13175     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13176 
13177     /* Single step state. The code-generation logic here is:
13178      *  SS_ACTIVE == 0:
13179      *   generate code with no special handling for single-stepping (except
13180      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13181      *   this happens anyway because those changes are all system register or
13182      *   PSTATE writes).
13183      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13184      *   emit code for one insn
13185      *   emit code to clear PSTATE.SS
13186      *   emit code to generate software step exception for completed step
13187      *   end TB (as usual for having generated an exception)
13188      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13189      *   emit code to generate a software step exception
13190      *   end the TB
13191      */
13192     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13193     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13194     dc->is_ldex = false;
13195 
13196     /* Bound the number of insns to execute to those left on the page.  */
13197     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13198 
13199     /* If architectural single step active, limit to 1.  */
13200     if (dc->ss_active) {
13201         bound = 1;
13202     }
13203     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13204 }
13205 
13206 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13207 {
13208 }
13209 
13210 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13211 {
13212     DisasContext *dc = container_of(dcbase, DisasContext, base);
13213     target_ulong pc_arg = dc->base.pc_next;
13214 
13215     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13216         pc_arg &= ~TARGET_PAGE_MASK;
13217     }
13218     tcg_gen_insn_start(pc_arg, 0, 0);
13219     dc->insn_start_updated = false;
13220 }
13221 
13222 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13223 {
13224     DisasContext *s = container_of(dcbase, DisasContext, base);
13225     CPUARMState *env = cpu_env(cpu);
13226     uint64_t pc = s->base.pc_next;
13227     uint32_t insn;
13228 
13229     /* Singlestep exceptions have the highest priority. */
13230     if (s->ss_active && !s->pstate_ss) {
13231         /* Singlestep state is Active-pending.
13232          * If we're in this state at the start of a TB then either
13233          *  a) we just took an exception to an EL which is being debugged
13234          *     and this is the first insn in the exception handler
13235          *  b) debug exceptions were masked and we just unmasked them
13236          *     without changing EL (eg by clearing PSTATE.D)
13237          * In either case we're going to take a swstep exception in the
13238          * "did not step an insn" case, and so the syndrome ISV and EX
13239          * bits should be zero.
13240          */
13241         assert(s->base.num_insns == 1);
13242         gen_swstep_exception(s, 0, 0);
13243         s->base.is_jmp = DISAS_NORETURN;
13244         s->base.pc_next = pc + 4;
13245         return;
13246     }
13247 
13248     if (pc & 3) {
13249         /*
13250          * PC alignment fault.  This has priority over the instruction abort
13251          * that we would receive from a translation fault via arm_ldl_code.
13252          * This should only be possible after an indirect branch, at the
13253          * start of the TB.
13254          */
13255         assert(s->base.num_insns == 1);
13256         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13257         s->base.is_jmp = DISAS_NORETURN;
13258         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13259         return;
13260     }
13261 
13262     s->pc_curr = pc;
13263     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13264     s->insn = insn;
13265     s->base.pc_next = pc + 4;
13266 
13267     s->fp_access_checked = false;
13268     s->sve_access_checked = false;
13269 
13270     if (s->pstate_il) {
13271         /*
13272          * Illegal execution state. This has priority over BTI
13273          * exceptions, but comes after instruction abort exceptions.
13274          */
13275         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13276         return;
13277     }
13278 
13279     if (dc_isar_feature(aa64_bti, s)) {
13280         if (s->base.num_insns == 1) {
13281             /*
13282              * At the first insn of the TB, compute s->guarded_page.
13283              * We delayed computing this until successfully reading
13284              * the first insn of the TB, above.  This (mostly) ensures
13285              * that the softmmu tlb entry has been populated, and the
13286              * page table GP bit is available.
13287              *
13288              * Note that we need to compute this even if btype == 0,
13289              * because this value is used for BR instructions later
13290              * where ENV is not available.
13291              */
13292             s->guarded_page = is_guarded_page(env, s);
13293 
13294             /* First insn can have btype set to non-zero.  */
13295             tcg_debug_assert(s->btype >= 0);
13296 
13297             /*
13298              * Note that the Branch Target Exception has fairly high
13299              * priority -- below debugging exceptions but above most
13300              * everything else.  This allows us to handle this now
13301              * instead of waiting until the insn is otherwise decoded.
13302              */
13303             if (s->btype != 0
13304                 && s->guarded_page
13305                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13306                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13307                 return;
13308             }
13309         } else {
13310             /* Not the first insn: btype must be 0.  */
13311             tcg_debug_assert(s->btype == 0);
13312         }
13313     }
13314 
13315     s->is_nonstreaming = false;
13316     if (s->sme_trap_nonstreaming) {
13317         disas_sme_fa64(s, insn);
13318     }
13319 
13320     if (!disas_a64(s, insn) &&
13321         !disas_sme(s, insn) &&
13322         !disas_sve(s, insn)) {
13323         disas_a64_legacy(s, insn);
13324     }
13325 
13326     /*
13327      * After execution of most insns, btype is reset to 0.
13328      * Note that we set btype == -1 when the insn sets btype.
13329      */
13330     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13331         reset_btype(s);
13332     }
13333 }
13334 
13335 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13336 {
13337     DisasContext *dc = container_of(dcbase, DisasContext, base);
13338 
13339     if (unlikely(dc->ss_active)) {
13340         /* Note that this means single stepping WFI doesn't halt the CPU.
13341          * For conditional branch insns this is harmless unreachable code as
13342          * gen_goto_tb() has already handled emitting the debug exception
13343          * (and thus a tb-jump is not possible when singlestepping).
13344          */
13345         switch (dc->base.is_jmp) {
13346         default:
13347             gen_a64_update_pc(dc, 4);
13348             /* fall through */
13349         case DISAS_EXIT:
13350         case DISAS_JUMP:
13351             gen_step_complete_exception(dc);
13352             break;
13353         case DISAS_NORETURN:
13354             break;
13355         }
13356     } else {
13357         switch (dc->base.is_jmp) {
13358         case DISAS_NEXT:
13359         case DISAS_TOO_MANY:
13360             gen_goto_tb(dc, 1, 4);
13361             break;
13362         default:
13363         case DISAS_UPDATE_EXIT:
13364             gen_a64_update_pc(dc, 4);
13365             /* fall through */
13366         case DISAS_EXIT:
13367             tcg_gen_exit_tb(NULL, 0);
13368             break;
13369         case DISAS_UPDATE_NOCHAIN:
13370             gen_a64_update_pc(dc, 4);
13371             /* fall through */
13372         case DISAS_JUMP:
13373             tcg_gen_lookup_and_goto_ptr();
13374             break;
13375         case DISAS_NORETURN:
13376         case DISAS_SWI:
13377             break;
13378         case DISAS_WFE:
13379             gen_a64_update_pc(dc, 4);
13380             gen_helper_wfe(tcg_env);
13381             break;
13382         case DISAS_YIELD:
13383             gen_a64_update_pc(dc, 4);
13384             gen_helper_yield(tcg_env);
13385             break;
13386         case DISAS_WFI:
13387             /*
13388              * This is a special case because we don't want to just halt
13389              * the CPU if trying to debug across a WFI.
13390              */
13391             gen_a64_update_pc(dc, 4);
13392             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13393             /*
13394              * The helper doesn't necessarily throw an exception, but we
13395              * must go back to the main loop to check for interrupts anyway.
13396              */
13397             tcg_gen_exit_tb(NULL, 0);
13398             break;
13399         }
13400     }
13401 }
13402 
13403 const TranslatorOps aarch64_translator_ops = {
13404     .init_disas_context = aarch64_tr_init_disas_context,
13405     .tb_start           = aarch64_tr_tb_start,
13406     .insn_start         = aarch64_tr_insn_start,
13407     .translate_insn     = aarch64_tr_translate_insn,
13408     .tb_stop            = aarch64_tr_tb_stop,
13409 };
13410