1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(cpu_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 109 */ 110 static int get_a64_user_mem_index(DisasContext *s) 111 { 112 /* 113 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 114 * which is the usual mmu_idx for this cpu state. 115 */ 116 ARMMMUIdx useridx = s->mmu_idx; 117 118 if (s->unpriv) { 119 /* 120 * We have pre-computed the condition for AccType_UNPRIV. 121 * Therefore we should never get here with a mmu_idx for 122 * which we do not know the corresponding user mmu_idx. 123 */ 124 switch (useridx) { 125 case ARMMMUIdx_E10_1: 126 case ARMMMUIdx_E10_1_PAN: 127 useridx = ARMMMUIdx_E10_0; 128 break; 129 case ARMMMUIdx_E20_2: 130 case ARMMMUIdx_E20_2_PAN: 131 useridx = ARMMMUIdx_E20_0; 132 break; 133 default: 134 g_assert_not_reached(); 135 } 136 } 137 return arm_to_core_mmu_idx(useridx); 138 } 139 140 static void set_btype_raw(int val) 141 { 142 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 143 offsetof(CPUARMState, btype)); 144 } 145 146 static void set_btype(DisasContext *s, int val) 147 { 148 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 149 tcg_debug_assert(val >= 1 && val <= 3); 150 set_btype_raw(val); 151 s->btype = -1; 152 } 153 154 static void reset_btype(DisasContext *s) 155 { 156 if (s->btype != 0) { 157 set_btype_raw(0); 158 s->btype = 0; 159 } 160 } 161 162 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 163 { 164 assert(s->pc_save != -1); 165 if (tb_cflags(s->base.tb) & CF_PCREL) { 166 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 167 } else { 168 tcg_gen_movi_i64(dest, s->pc_curr + diff); 169 } 170 } 171 172 void gen_a64_update_pc(DisasContext *s, target_long diff) 173 { 174 gen_pc_plus_diff(s, cpu_pc, diff); 175 s->pc_save = s->pc_curr + diff; 176 } 177 178 /* 179 * Handle Top Byte Ignore (TBI) bits. 180 * 181 * If address tagging is enabled via the TCR TBI bits: 182 * + for EL2 and EL3 there is only one TBI bit, and if it is set 183 * then the address is zero-extended, clearing bits [63:56] 184 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 185 * and TBI1 controls addresses with bit 55 == 1. 186 * If the appropriate TBI bit is set for the address then 187 * the address is sign-extended from bit 55 into bits [63:56] 188 * 189 * Here We have concatenated TBI{1,0} into tbi. 190 */ 191 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 192 TCGv_i64 src, int tbi) 193 { 194 if (tbi == 0) { 195 /* Load unmodified address */ 196 tcg_gen_mov_i64(dst, src); 197 } else if (!regime_has_2_ranges(s->mmu_idx)) { 198 /* Force tag byte to all zero */ 199 tcg_gen_extract_i64(dst, src, 0, 56); 200 } else { 201 /* Sign-extend from bit 55. */ 202 tcg_gen_sextract_i64(dst, src, 0, 56); 203 204 switch (tbi) { 205 case 1: 206 /* tbi0 but !tbi1: only use the extension if positive */ 207 tcg_gen_and_i64(dst, dst, src); 208 break; 209 case 2: 210 /* !tbi0 but tbi1: only use the extension if negative */ 211 tcg_gen_or_i64(dst, dst, src); 212 break; 213 case 3: 214 /* tbi0 and tbi1: always use the extension */ 215 break; 216 default: 217 g_assert_not_reached(); 218 } 219 } 220 } 221 222 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 223 { 224 /* 225 * If address tagging is enabled for instructions via the TCR TBI bits, 226 * then loading an address into the PC will clear out any tag. 227 */ 228 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 229 s->pc_save = -1; 230 } 231 232 /* 233 * Handle MTE and/or TBI. 234 * 235 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 236 * for the tag to be present in the FAR_ELx register. But for user-only 237 * mode we do not have a TLB with which to implement this, so we must 238 * remove the top byte now. 239 * 240 * Always return a fresh temporary that we can increment independently 241 * of the write-back address. 242 */ 243 244 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 245 { 246 TCGv_i64 clean = tcg_temp_new_i64(); 247 #ifdef CONFIG_USER_ONLY 248 gen_top_byte_ignore(s, clean, addr, s->tbid); 249 #else 250 tcg_gen_mov_i64(clean, addr); 251 #endif 252 return clean; 253 } 254 255 /* Insert a zero tag into src, with the result at dst. */ 256 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 257 { 258 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 259 } 260 261 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 262 MMUAccessType acc, int log2_size) 263 { 264 gen_helper_probe_access(cpu_env, ptr, 265 tcg_constant_i32(acc), 266 tcg_constant_i32(get_mem_index(s)), 267 tcg_constant_i32(1 << log2_size)); 268 } 269 270 /* 271 * For MTE, check a single logical or atomic access. This probes a single 272 * address, the exact one specified. The size and alignment of the access 273 * is not relevant to MTE, per se, but watchpoints do require the size, 274 * and we want to recognize those before making any other changes to state. 275 */ 276 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 277 bool is_write, bool tag_checked, 278 MemOp memop, bool is_unpriv, 279 int core_idx) 280 { 281 if (tag_checked && s->mte_active[is_unpriv]) { 282 TCGv_i64 ret; 283 int desc = 0; 284 285 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 286 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 287 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 288 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 289 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 290 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 291 292 ret = tcg_temp_new_i64(); 293 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 294 295 return ret; 296 } 297 return clean_data_tbi(s, addr); 298 } 299 300 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 301 bool tag_checked, MemOp memop) 302 { 303 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 304 false, get_mem_index(s)); 305 } 306 307 /* 308 * For MTE, check multiple logical sequential accesses. 309 */ 310 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 311 bool tag_checked, int total_size, MemOp single_mop) 312 { 313 if (tag_checked && s->mte_active[0]) { 314 TCGv_i64 ret; 315 int desc = 0; 316 317 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 318 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 319 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 320 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 321 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 322 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 323 324 ret = tcg_temp_new_i64(); 325 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 326 327 return ret; 328 } 329 return clean_data_tbi(s, addr); 330 } 331 332 /* 333 * Generate the special alignment check that applies to AccType_ATOMIC 334 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 335 * naturally aligned, but it must not cross a 16-byte boundary. 336 * See AArch64.CheckAlignment(). 337 */ 338 static void check_lse2_align(DisasContext *s, int rn, int imm, 339 bool is_write, MemOp mop) 340 { 341 TCGv_i32 tmp; 342 TCGv_i64 addr; 343 TCGLabel *over_label; 344 MMUAccessType type; 345 int mmu_idx; 346 347 tmp = tcg_temp_new_i32(); 348 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 349 tcg_gen_addi_i32(tmp, tmp, imm & 15); 350 tcg_gen_andi_i32(tmp, tmp, 15); 351 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 352 353 over_label = gen_new_label(); 354 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 355 356 addr = tcg_temp_new_i64(); 357 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 358 359 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 360 mmu_idx = get_mem_index(s); 361 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 362 tcg_constant_i32(mmu_idx)); 363 364 gen_set_label(over_label); 365 366 } 367 368 /* Handle the alignment check for AccType_ATOMIC instructions. */ 369 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 370 { 371 MemOp size = mop & MO_SIZE; 372 373 if (size == MO_8) { 374 return mop; 375 } 376 377 /* 378 * If size == MO_128, this is a LDXP, and the operation is single-copy 379 * atomic for each doubleword, not the entire quadword; it still must 380 * be quadword aligned. 381 */ 382 if (size == MO_128) { 383 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 384 MO_ATOM_IFALIGN_PAIR); 385 } 386 if (dc_isar_feature(aa64_lse2, s)) { 387 check_lse2_align(s, rn, 0, true, mop); 388 } else { 389 mop |= MO_ALIGN; 390 } 391 return finalize_memop(s, mop); 392 } 393 394 /* Handle the alignment check for AccType_ORDERED instructions. */ 395 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 396 bool is_write, MemOp mop) 397 { 398 MemOp size = mop & MO_SIZE; 399 400 if (size == MO_8) { 401 return mop; 402 } 403 if (size == MO_128) { 404 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 405 MO_ATOM_IFALIGN_PAIR); 406 } 407 if (!dc_isar_feature(aa64_lse2, s)) { 408 mop |= MO_ALIGN; 409 } else if (!s->naa) { 410 check_lse2_align(s, rn, imm, is_write, mop); 411 } 412 return finalize_memop(s, mop); 413 } 414 415 typedef struct DisasCompare64 { 416 TCGCond cond; 417 TCGv_i64 value; 418 } DisasCompare64; 419 420 static void a64_test_cc(DisasCompare64 *c64, int cc) 421 { 422 DisasCompare c32; 423 424 arm_test_cc(&c32, cc); 425 426 /* 427 * Sign-extend the 32-bit value so that the GE/LT comparisons work 428 * properly. The NE/EQ comparisons are also fine with this choice. 429 */ 430 c64->cond = c32.cond; 431 c64->value = tcg_temp_new_i64(); 432 tcg_gen_ext_i32_i64(c64->value, c32.value); 433 } 434 435 static void gen_rebuild_hflags(DisasContext *s) 436 { 437 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 438 } 439 440 static void gen_exception_internal(int excp) 441 { 442 assert(excp_is_internal(excp)); 443 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 444 } 445 446 static void gen_exception_internal_insn(DisasContext *s, int excp) 447 { 448 gen_a64_update_pc(s, 0); 449 gen_exception_internal(excp); 450 s->base.is_jmp = DISAS_NORETURN; 451 } 452 453 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 454 { 455 gen_a64_update_pc(s, 0); 456 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 457 s->base.is_jmp = DISAS_NORETURN; 458 } 459 460 static void gen_step_complete_exception(DisasContext *s) 461 { 462 /* We just completed step of an insn. Move from Active-not-pending 463 * to Active-pending, and then also take the swstep exception. 464 * This corresponds to making the (IMPDEF) choice to prioritize 465 * swstep exceptions over asynchronous exceptions taken to an exception 466 * level where debug is disabled. This choice has the advantage that 467 * we do not need to maintain internal state corresponding to the 468 * ISV/EX syndrome bits between completion of the step and generation 469 * of the exception, and our syndrome information is always correct. 470 */ 471 gen_ss_advance(s); 472 gen_swstep_exception(s, 1, s->is_ldex); 473 s->base.is_jmp = DISAS_NORETURN; 474 } 475 476 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 477 { 478 if (s->ss_active) { 479 return false; 480 } 481 return translator_use_goto_tb(&s->base, dest); 482 } 483 484 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 485 { 486 if (use_goto_tb(s, s->pc_curr + diff)) { 487 /* 488 * For pcrel, the pc must always be up-to-date on entry to 489 * the linked TB, so that it can use simple additions for all 490 * further adjustments. For !pcrel, the linked TB is compiled 491 * to know its full virtual address, so we can delay the 492 * update to pc to the unlinked path. A long chain of links 493 * can thus avoid many updates to the PC. 494 */ 495 if (tb_cflags(s->base.tb) & CF_PCREL) { 496 gen_a64_update_pc(s, diff); 497 tcg_gen_goto_tb(n); 498 } else { 499 tcg_gen_goto_tb(n); 500 gen_a64_update_pc(s, diff); 501 } 502 tcg_gen_exit_tb(s->base.tb, n); 503 s->base.is_jmp = DISAS_NORETURN; 504 } else { 505 gen_a64_update_pc(s, diff); 506 if (s->ss_active) { 507 gen_step_complete_exception(s); 508 } else { 509 tcg_gen_lookup_and_goto_ptr(); 510 s->base.is_jmp = DISAS_NORETURN; 511 } 512 } 513 } 514 515 /* 516 * Register access functions 517 * 518 * These functions are used for directly accessing a register in where 519 * changes to the final register value are likely to be made. If you 520 * need to use a register for temporary calculation (e.g. index type 521 * operations) use the read_* form. 522 * 523 * B1.2.1 Register mappings 524 * 525 * In instruction register encoding 31 can refer to ZR (zero register) or 526 * the SP (stack pointer) depending on context. In QEMU's case we map SP 527 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 528 * This is the point of the _sp forms. 529 */ 530 TCGv_i64 cpu_reg(DisasContext *s, int reg) 531 { 532 if (reg == 31) { 533 TCGv_i64 t = tcg_temp_new_i64(); 534 tcg_gen_movi_i64(t, 0); 535 return t; 536 } else { 537 return cpu_X[reg]; 538 } 539 } 540 541 /* register access for when 31 == SP */ 542 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 543 { 544 return cpu_X[reg]; 545 } 546 547 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 548 * representing the register contents. This TCGv is an auto-freed 549 * temporary so it need not be explicitly freed, and may be modified. 550 */ 551 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 552 { 553 TCGv_i64 v = tcg_temp_new_i64(); 554 if (reg != 31) { 555 if (sf) { 556 tcg_gen_mov_i64(v, cpu_X[reg]); 557 } else { 558 tcg_gen_ext32u_i64(v, cpu_X[reg]); 559 } 560 } else { 561 tcg_gen_movi_i64(v, 0); 562 } 563 return v; 564 } 565 566 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 567 { 568 TCGv_i64 v = tcg_temp_new_i64(); 569 if (sf) { 570 tcg_gen_mov_i64(v, cpu_X[reg]); 571 } else { 572 tcg_gen_ext32u_i64(v, cpu_X[reg]); 573 } 574 return v; 575 } 576 577 /* Return the offset into CPUARMState of a slice (from 578 * the least significant end) of FP register Qn (ie 579 * Dn, Sn, Hn or Bn). 580 * (Note that this is not the same mapping as for A32; see cpu.h) 581 */ 582 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 583 { 584 return vec_reg_offset(s, regno, 0, size); 585 } 586 587 /* Offset of the high half of the 128 bit vector Qn */ 588 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 589 { 590 return vec_reg_offset(s, regno, 1, MO_64); 591 } 592 593 /* Convenience accessors for reading and writing single and double 594 * FP registers. Writing clears the upper parts of the associated 595 * 128 bit vector register, as required by the architecture. 596 * Note that unlike the GP register accessors, the values returned 597 * by the read functions must be manually freed. 598 */ 599 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 600 { 601 TCGv_i64 v = tcg_temp_new_i64(); 602 603 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 604 return v; 605 } 606 607 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 608 { 609 TCGv_i32 v = tcg_temp_new_i32(); 610 611 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 620 return v; 621 } 622 623 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 624 * If SVE is not enabled, then there are only 128 bits in the vector. 625 */ 626 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 627 { 628 unsigned ofs = fp_reg_offset(s, rd, MO_64); 629 unsigned vsz = vec_full_reg_size(s); 630 631 /* Nop move, with side effect of clearing the tail. */ 632 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 633 } 634 635 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 636 { 637 unsigned ofs = fp_reg_offset(s, reg, MO_64); 638 639 tcg_gen_st_i64(v, cpu_env, ofs); 640 clear_vec_high(s, false, reg); 641 } 642 643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 644 { 645 TCGv_i64 tmp = tcg_temp_new_i64(); 646 647 tcg_gen_extu_i32_i64(tmp, v); 648 write_fp_dreg(s, reg, tmp); 649 } 650 651 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 652 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 653 GVecGen2Fn *gvec_fn, int vece) 654 { 655 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 656 is_q ? 16 : 8, vec_full_reg_size(s)); 657 } 658 659 /* Expand a 2-operand + immediate AdvSIMD vector operation using 660 * an expander function. 661 */ 662 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 663 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 664 { 665 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 666 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 667 } 668 669 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 670 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 671 GVecGen3Fn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 int rx, GVecGen4Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 683 is_q ? 16 : 8, vec_full_reg_size(s)); 684 } 685 686 /* Expand a 2-operand operation using an out-of-line helper. */ 687 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 688 int rn, int data, gen_helper_gvec_2 *fn) 689 { 690 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 691 vec_full_reg_offset(s, rn), 692 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 693 } 694 695 /* Expand a 3-operand operation using an out-of-line helper. */ 696 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 697 int rn, int rm, int data, gen_helper_gvec_3 *fn) 698 { 699 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 700 vec_full_reg_offset(s, rn), 701 vec_full_reg_offset(s, rm), 702 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 703 } 704 705 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 706 * an out-of-line helper. 707 */ 708 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 709 int rm, bool is_fp16, int data, 710 gen_helper_gvec_3_ptr *fn) 711 { 712 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 713 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 714 vec_full_reg_offset(s, rn), 715 vec_full_reg_offset(s, rm), fpst, 716 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 717 } 718 719 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 720 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 721 int rm, gen_helper_gvec_3_ptr *fn) 722 { 723 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 724 725 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 726 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 727 vec_full_reg_offset(s, rn), 728 vec_full_reg_offset(s, rm), qc_ptr, 729 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 730 } 731 732 /* Expand a 4-operand operation using an out-of-line helper. */ 733 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 734 int rm, int ra, int data, gen_helper_gvec_4 *fn) 735 { 736 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 737 vec_full_reg_offset(s, rn), 738 vec_full_reg_offset(s, rm), 739 vec_full_reg_offset(s, ra), 740 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 741 } 742 743 /* 744 * Expand a 4-operand + fpstatus pointer + simd data value operation using 745 * an out-of-line helper. 746 */ 747 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 748 int rm, int ra, bool is_fp16, int data, 749 gen_helper_gvec_4_ptr *fn) 750 { 751 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 752 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 753 vec_full_reg_offset(s, rn), 754 vec_full_reg_offset(s, rm), 755 vec_full_reg_offset(s, ra), fpst, 756 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 757 } 758 759 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 760 * than the 32 bit equivalent. 761 */ 762 static inline void gen_set_NZ64(TCGv_i64 result) 763 { 764 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 765 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 766 } 767 768 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 769 static inline void gen_logic_CC(int sf, TCGv_i64 result) 770 { 771 if (sf) { 772 gen_set_NZ64(result); 773 } else { 774 tcg_gen_extrl_i64_i32(cpu_ZF, result); 775 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 776 } 777 tcg_gen_movi_i32(cpu_CF, 0); 778 tcg_gen_movi_i32(cpu_VF, 0); 779 } 780 781 /* dest = T0 + T1; compute C, N, V and Z flags */ 782 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i64 result, flag, tmp; 785 result = tcg_temp_new_i64(); 786 flag = tcg_temp_new_i64(); 787 tmp = tcg_temp_new_i64(); 788 789 tcg_gen_movi_i64(tmp, 0); 790 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 791 792 tcg_gen_extrl_i64_i32(cpu_CF, flag); 793 794 gen_set_NZ64(result); 795 796 tcg_gen_xor_i64(flag, result, t0); 797 tcg_gen_xor_i64(tmp, t0, t1); 798 tcg_gen_andc_i64(flag, flag, tmp); 799 tcg_gen_extrh_i64_i32(cpu_VF, flag); 800 801 tcg_gen_mov_i64(dest, result); 802 } 803 804 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 805 { 806 TCGv_i32 t0_32 = tcg_temp_new_i32(); 807 TCGv_i32 t1_32 = tcg_temp_new_i32(); 808 TCGv_i32 tmp = tcg_temp_new_i32(); 809 810 tcg_gen_movi_i32(tmp, 0); 811 tcg_gen_extrl_i64_i32(t0_32, t0); 812 tcg_gen_extrl_i64_i32(t1_32, t1); 813 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 814 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 815 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 816 tcg_gen_xor_i32(tmp, t0_32, t1_32); 817 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 818 tcg_gen_extu_i32_i64(dest, cpu_NF); 819 } 820 821 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 822 { 823 if (sf) { 824 gen_add64_CC(dest, t0, t1); 825 } else { 826 gen_add32_CC(dest, t0, t1); 827 } 828 } 829 830 /* dest = T0 - T1; compute C, N, V and Z flags */ 831 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 64 bit arithmetic */ 834 TCGv_i64 result, flag, tmp; 835 836 result = tcg_temp_new_i64(); 837 flag = tcg_temp_new_i64(); 838 tcg_gen_sub_i64(result, t0, t1); 839 840 gen_set_NZ64(result); 841 842 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 843 tcg_gen_extrl_i64_i32(cpu_CF, flag); 844 845 tcg_gen_xor_i64(flag, result, t0); 846 tmp = tcg_temp_new_i64(); 847 tcg_gen_xor_i64(tmp, t0, t1); 848 tcg_gen_and_i64(flag, flag, tmp); 849 tcg_gen_extrh_i64_i32(cpu_VF, flag); 850 tcg_gen_mov_i64(dest, result); 851 } 852 853 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 854 { 855 /* 32 bit arithmetic */ 856 TCGv_i32 t0_32 = tcg_temp_new_i32(); 857 TCGv_i32 t1_32 = tcg_temp_new_i32(); 858 TCGv_i32 tmp; 859 860 tcg_gen_extrl_i64_i32(t0_32, t0); 861 tcg_gen_extrl_i64_i32(t1_32, t1); 862 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 863 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 864 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 865 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 866 tmp = tcg_temp_new_i32(); 867 tcg_gen_xor_i32(tmp, t0_32, t1_32); 868 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 869 tcg_gen_extu_i32_i64(dest, cpu_NF); 870 } 871 872 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 873 { 874 if (sf) { 875 gen_sub64_CC(dest, t0, t1); 876 } else { 877 gen_sub32_CC(dest, t0, t1); 878 } 879 } 880 881 /* dest = T0 + T1 + CF; do not compute flags. */ 882 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 883 { 884 TCGv_i64 flag = tcg_temp_new_i64(); 885 tcg_gen_extu_i32_i64(flag, cpu_CF); 886 tcg_gen_add_i64(dest, t0, t1); 887 tcg_gen_add_i64(dest, dest, flag); 888 889 if (!sf) { 890 tcg_gen_ext32u_i64(dest, dest); 891 } 892 } 893 894 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 895 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 896 { 897 if (sf) { 898 TCGv_i64 result = tcg_temp_new_i64(); 899 TCGv_i64 cf_64 = tcg_temp_new_i64(); 900 TCGv_i64 vf_64 = tcg_temp_new_i64(); 901 TCGv_i64 tmp = tcg_temp_new_i64(); 902 TCGv_i64 zero = tcg_constant_i64(0); 903 904 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 905 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 906 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 907 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 908 gen_set_NZ64(result); 909 910 tcg_gen_xor_i64(vf_64, result, t0); 911 tcg_gen_xor_i64(tmp, t0, t1); 912 tcg_gen_andc_i64(vf_64, vf_64, tmp); 913 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 914 915 tcg_gen_mov_i64(dest, result); 916 } else { 917 TCGv_i32 t0_32 = tcg_temp_new_i32(); 918 TCGv_i32 t1_32 = tcg_temp_new_i32(); 919 TCGv_i32 tmp = tcg_temp_new_i32(); 920 TCGv_i32 zero = tcg_constant_i32(0); 921 922 tcg_gen_extrl_i64_i32(t0_32, t0); 923 tcg_gen_extrl_i64_i32(t1_32, t1); 924 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 925 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 926 927 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 928 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 929 tcg_gen_xor_i32(tmp, t0_32, t1_32); 930 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 931 tcg_gen_extu_i32_i64(dest, cpu_NF); 932 } 933 } 934 935 /* 936 * Load/Store generators 937 */ 938 939 /* 940 * Store from GPR register to memory. 941 */ 942 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, int memidx, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 949 950 if (iss_valid) { 951 uint32_t syn; 952 953 syn = syn_data_abort_with_iss(0, 954 (memop & MO_SIZE), 955 false, 956 iss_srt, 957 iss_sf, 958 iss_ar, 959 0, 0, 0, 0, 0, false); 960 disas_set_insn_syndrome(s, syn); 961 } 962 } 963 964 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 965 TCGv_i64 tcg_addr, MemOp memop, 966 bool iss_valid, 967 unsigned int iss_srt, 968 bool iss_sf, bool iss_ar) 969 { 970 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 971 iss_valid, iss_srt, iss_sf, iss_ar); 972 } 973 974 /* 975 * Load from memory to GPR register 976 */ 977 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 978 MemOp memop, bool extend, int memidx, 979 bool iss_valid, unsigned int iss_srt, 980 bool iss_sf, bool iss_ar) 981 { 982 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 983 984 if (extend && (memop & MO_SIGN)) { 985 g_assert((memop & MO_SIZE) <= MO_32); 986 tcg_gen_ext32u_i64(dest, dest); 987 } 988 989 if (iss_valid) { 990 uint32_t syn; 991 992 syn = syn_data_abort_with_iss(0, 993 (memop & MO_SIZE), 994 (memop & MO_SIGN) != 0, 995 iss_srt, 996 iss_sf, 997 iss_ar, 998 0, 0, 0, 0, 0, false); 999 disas_set_insn_syndrome(s, syn); 1000 } 1001 } 1002 1003 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1004 MemOp memop, bool extend, 1005 bool iss_valid, unsigned int iss_srt, 1006 bool iss_sf, bool iss_ar) 1007 { 1008 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1009 iss_valid, iss_srt, iss_sf, iss_ar); 1010 } 1011 1012 /* 1013 * Store from FP register to memory 1014 */ 1015 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1016 { 1017 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1018 TCGv_i64 tmplo = tcg_temp_new_i64(); 1019 1020 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i64 tmphi = tcg_temp_new_i64(); 1026 TCGv_i128 t16 = tcg_temp_new_i128(); 1027 1028 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1029 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1030 1031 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1032 } 1033 } 1034 1035 /* 1036 * Load from memory to FP register 1037 */ 1038 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1039 { 1040 /* This always zero-extends and writes to a full 128 bit wide vector */ 1041 TCGv_i64 tmplo = tcg_temp_new_i64(); 1042 TCGv_i64 tmphi = NULL; 1043 1044 if ((mop & MO_SIZE) < MO_128) { 1045 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1046 } else { 1047 TCGv_i128 t16 = tcg_temp_new_i128(); 1048 1049 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1050 1051 tmphi = tcg_temp_new_i64(); 1052 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1053 } 1054 1055 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1056 1057 if (tmphi) { 1058 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1059 } 1060 clear_vec_high(s, tmphi != NULL, destidx); 1061 } 1062 1063 /* 1064 * Vector load/store helpers. 1065 * 1066 * The principal difference between this and a FP load is that we don't 1067 * zero extend as we are filling a partial chunk of the vector register. 1068 * These functions don't support 128 bit loads/stores, which would be 1069 * normal load/store operations. 1070 * 1071 * The _i32 versions are useful when operating on 32 bit quantities 1072 * (eg for floating point single or using Neon helper functions). 1073 */ 1074 1075 /* Get value of an element within a vector register */ 1076 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1077 int element, MemOp memop) 1078 { 1079 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1080 switch ((unsigned)memop) { 1081 case MO_8: 1082 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1083 break; 1084 case MO_16: 1085 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1086 break; 1087 case MO_32: 1088 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1089 break; 1090 case MO_8|MO_SIGN: 1091 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1092 break; 1093 case MO_16|MO_SIGN: 1094 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1095 break; 1096 case MO_32|MO_SIGN: 1097 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1098 break; 1099 case MO_64: 1100 case MO_64|MO_SIGN: 1101 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1102 break; 1103 default: 1104 g_assert_not_reached(); 1105 } 1106 } 1107 1108 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1109 int element, MemOp memop) 1110 { 1111 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1112 switch (memop) { 1113 case MO_8: 1114 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1115 break; 1116 case MO_16: 1117 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1118 break; 1119 case MO_8|MO_SIGN: 1120 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1121 break; 1122 case MO_16|MO_SIGN: 1123 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1124 break; 1125 case MO_32: 1126 case MO_32|MO_SIGN: 1127 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1128 break; 1129 default: 1130 g_assert_not_reached(); 1131 } 1132 } 1133 1134 /* Set value of an element within a vector register */ 1135 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1136 int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1148 break; 1149 case MO_64: 1150 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1151 break; 1152 default: 1153 g_assert_not_reached(); 1154 } 1155 } 1156 1157 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1158 int destidx, int element, MemOp memop) 1159 { 1160 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1161 switch (memop) { 1162 case MO_8: 1163 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1164 break; 1165 case MO_16: 1166 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1167 break; 1168 case MO_32: 1169 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1170 break; 1171 default: 1172 g_assert_not_reached(); 1173 } 1174 } 1175 1176 /* Store from vector register to memory */ 1177 static void do_vec_st(DisasContext *s, int srcidx, int element, 1178 TCGv_i64 tcg_addr, MemOp mop) 1179 { 1180 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1181 1182 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1183 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1184 } 1185 1186 /* Load from memory to vector register */ 1187 static void do_vec_ld(DisasContext *s, int destidx, int element, 1188 TCGv_i64 tcg_addr, MemOp mop) 1189 { 1190 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1191 1192 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1193 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1194 } 1195 1196 /* Check that FP/Neon access is enabled. If it is, return 1197 * true. If not, emit code to generate an appropriate exception, 1198 * and return false; the caller should not emit any code for 1199 * the instruction. Note that this check must happen after all 1200 * unallocated-encoding checks (otherwise the syndrome information 1201 * for the resulting exception will be incorrect). 1202 */ 1203 static bool fp_access_check_only(DisasContext *s) 1204 { 1205 if (s->fp_excp_el) { 1206 assert(!s->fp_access_checked); 1207 s->fp_access_checked = true; 1208 1209 gen_exception_insn_el(s, 0, EXCP_UDEF, 1210 syn_fp_access_trap(1, 0xe, false, 0), 1211 s->fp_excp_el); 1212 return false; 1213 } 1214 s->fp_access_checked = true; 1215 return true; 1216 } 1217 1218 static bool fp_access_check(DisasContext *s) 1219 { 1220 if (!fp_access_check_only(s)) { 1221 return false; 1222 } 1223 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1224 gen_exception_insn(s, 0, EXCP_UDEF, 1225 syn_smetrap(SME_ET_Streaming, false)); 1226 return false; 1227 } 1228 return true; 1229 } 1230 1231 /* 1232 * Check that SVE access is enabled. If it is, return true. 1233 * If not, emit code to generate an appropriate exception and return false. 1234 * This function corresponds to CheckSVEEnabled(). 1235 */ 1236 bool sve_access_check(DisasContext *s) 1237 { 1238 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1239 assert(dc_isar_feature(aa64_sme, s)); 1240 if (!sme_sm_enabled_check(s)) { 1241 goto fail_exit; 1242 } 1243 } else if (s->sve_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_sve_access_trap(), s->sve_excp_el); 1246 goto fail_exit; 1247 } 1248 s->sve_access_checked = true; 1249 return fp_access_check(s); 1250 1251 fail_exit: 1252 /* Assert that we only raise one exception per instruction. */ 1253 assert(!s->sve_access_checked); 1254 s->sve_access_checked = true; 1255 return false; 1256 } 1257 1258 /* 1259 * Check that SME access is enabled, raise an exception if not. 1260 * Note that this function corresponds to CheckSMEAccess and is 1261 * only used directly for cpregs. 1262 */ 1263 static bool sme_access_check(DisasContext *s) 1264 { 1265 if (s->sme_excp_el) { 1266 gen_exception_insn_el(s, 0, EXCP_UDEF, 1267 syn_smetrap(SME_ET_AccessTrap, false), 1268 s->sme_excp_el); 1269 return false; 1270 } 1271 return true; 1272 } 1273 1274 /* This function corresponds to CheckSMEEnabled. */ 1275 bool sme_enabled_check(DisasContext *s) 1276 { 1277 /* 1278 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1279 * to be zero when fp_excp_el has priority. This is because we need 1280 * sme_excp_el by itself for cpregs access checks. 1281 */ 1282 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1283 s->fp_access_checked = true; 1284 return sme_access_check(s); 1285 } 1286 return fp_access_check_only(s); 1287 } 1288 1289 /* Common subroutine for CheckSMEAnd*Enabled. */ 1290 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1291 { 1292 if (!sme_enabled_check(s)) { 1293 return false; 1294 } 1295 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1296 gen_exception_insn(s, 0, EXCP_UDEF, 1297 syn_smetrap(SME_ET_NotStreaming, false)); 1298 return false; 1299 } 1300 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1301 gen_exception_insn(s, 0, EXCP_UDEF, 1302 syn_smetrap(SME_ET_InactiveZA, false)); 1303 return false; 1304 } 1305 return true; 1306 } 1307 1308 /* 1309 * This utility function is for doing register extension with an 1310 * optional shift. You will likely want to pass a temporary for the 1311 * destination register. See DecodeRegExtend() in the ARM ARM. 1312 */ 1313 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1314 int option, unsigned int shift) 1315 { 1316 int extsize = extract32(option, 0, 2); 1317 bool is_signed = extract32(option, 2, 1); 1318 1319 if (is_signed) { 1320 switch (extsize) { 1321 case 0: 1322 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1323 break; 1324 case 1: 1325 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1326 break; 1327 case 2: 1328 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1329 break; 1330 case 3: 1331 tcg_gen_mov_i64(tcg_out, tcg_in); 1332 break; 1333 } 1334 } else { 1335 switch (extsize) { 1336 case 0: 1337 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1338 break; 1339 case 1: 1340 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1341 break; 1342 case 2: 1343 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1344 break; 1345 case 3: 1346 tcg_gen_mov_i64(tcg_out, tcg_in); 1347 break; 1348 } 1349 } 1350 1351 if (shift) { 1352 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1353 } 1354 } 1355 1356 static inline void gen_check_sp_alignment(DisasContext *s) 1357 { 1358 /* The AArch64 architecture mandates that (if enabled via PSTATE 1359 * or SCTLR bits) there is a check that SP is 16-aligned on every 1360 * SP-relative load or store (with an exception generated if it is not). 1361 * In line with general QEMU practice regarding misaligned accesses, 1362 * we omit these checks for the sake of guest program performance. 1363 * This function is provided as a hook so we can more easily add these 1364 * checks in future (possibly as a "favour catching guest program bugs 1365 * over speed" user selectable option). 1366 */ 1367 } 1368 1369 /* 1370 * This provides a simple table based table lookup decoder. It is 1371 * intended to be used when the relevant bits for decode are too 1372 * awkwardly placed and switch/if based logic would be confusing and 1373 * deeply nested. Since it's a linear search through the table, tables 1374 * should be kept small. 1375 * 1376 * It returns the first handler where insn & mask == pattern, or 1377 * NULL if there is no match. 1378 * The table is terminated by an empty mask (i.e. 0) 1379 */ 1380 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1381 uint32_t insn) 1382 { 1383 const AArch64DecodeTable *tptr = table; 1384 1385 while (tptr->mask) { 1386 if ((insn & tptr->mask) == tptr->pattern) { 1387 return tptr->disas_fn; 1388 } 1389 tptr++; 1390 } 1391 return NULL; 1392 } 1393 1394 /* 1395 * The instruction disassembly implemented here matches 1396 * the instruction encoding classifications in chapter C4 1397 * of the ARM Architecture Reference Manual (DDI0487B_a); 1398 * classification names and decode diagrams here should generally 1399 * match up with those in the manual. 1400 */ 1401 1402 static bool trans_B(DisasContext *s, arg_i *a) 1403 { 1404 reset_btype(s); 1405 gen_goto_tb(s, 0, a->imm); 1406 return true; 1407 } 1408 1409 static bool trans_BL(DisasContext *s, arg_i *a) 1410 { 1411 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1412 reset_btype(s); 1413 gen_goto_tb(s, 0, a->imm); 1414 return true; 1415 } 1416 1417 1418 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1419 { 1420 DisasLabel match; 1421 TCGv_i64 tcg_cmp; 1422 1423 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1424 reset_btype(s); 1425 1426 match = gen_disas_label(s); 1427 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1428 tcg_cmp, 0, match.label); 1429 gen_goto_tb(s, 0, 4); 1430 set_disas_label(s, match); 1431 gen_goto_tb(s, 1, a->imm); 1432 return true; 1433 } 1434 1435 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1436 { 1437 DisasLabel match; 1438 TCGv_i64 tcg_cmp; 1439 1440 tcg_cmp = tcg_temp_new_i64(); 1441 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1442 1443 reset_btype(s); 1444 1445 match = gen_disas_label(s); 1446 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1447 tcg_cmp, 0, match.label); 1448 gen_goto_tb(s, 0, 4); 1449 set_disas_label(s, match); 1450 gen_goto_tb(s, 1, a->imm); 1451 return true; 1452 } 1453 1454 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1455 { 1456 reset_btype(s); 1457 if (a->cond < 0x0e) { 1458 /* genuinely conditional branches */ 1459 DisasLabel match = gen_disas_label(s); 1460 arm_gen_test_cc(a->cond, match.label); 1461 gen_goto_tb(s, 0, 4); 1462 set_disas_label(s, match); 1463 gen_goto_tb(s, 1, a->imm); 1464 } else { 1465 /* 0xe and 0xf are both "always" conditions */ 1466 gen_goto_tb(s, 0, a->imm); 1467 } 1468 return true; 1469 } 1470 1471 static void set_btype_for_br(DisasContext *s, int rn) 1472 { 1473 if (dc_isar_feature(aa64_bti, s)) { 1474 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1475 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1476 } 1477 } 1478 1479 static void set_btype_for_blr(DisasContext *s) 1480 { 1481 if (dc_isar_feature(aa64_bti, s)) { 1482 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1483 set_btype(s, 2); 1484 } 1485 } 1486 1487 static bool trans_BR(DisasContext *s, arg_r *a) 1488 { 1489 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1490 set_btype_for_br(s, a->rn); 1491 s->base.is_jmp = DISAS_JUMP; 1492 return true; 1493 } 1494 1495 static bool trans_BLR(DisasContext *s, arg_r *a) 1496 { 1497 TCGv_i64 dst = cpu_reg(s, a->rn); 1498 TCGv_i64 lr = cpu_reg(s, 30); 1499 if (dst == lr) { 1500 TCGv_i64 tmp = tcg_temp_new_i64(); 1501 tcg_gen_mov_i64(tmp, dst); 1502 dst = tmp; 1503 } 1504 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1505 gen_a64_set_pc(s, dst); 1506 set_btype_for_blr(s); 1507 s->base.is_jmp = DISAS_JUMP; 1508 return true; 1509 } 1510 1511 static bool trans_RET(DisasContext *s, arg_r *a) 1512 { 1513 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1514 s->base.is_jmp = DISAS_JUMP; 1515 return true; 1516 } 1517 1518 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1519 TCGv_i64 modifier, bool use_key_a) 1520 { 1521 TCGv_i64 truedst; 1522 /* 1523 * Return the branch target for a BRAA/RETA/etc, which is either 1524 * just the destination dst, or that value with the pauth check 1525 * done and the code removed from the high bits. 1526 */ 1527 if (!s->pauth_active) { 1528 return dst; 1529 } 1530 1531 truedst = tcg_temp_new_i64(); 1532 if (use_key_a) { 1533 gen_helper_autia(truedst, cpu_env, dst, modifier); 1534 } else { 1535 gen_helper_autib(truedst, cpu_env, dst, modifier); 1536 } 1537 return truedst; 1538 } 1539 1540 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1541 { 1542 TCGv_i64 dst; 1543 1544 if (!dc_isar_feature(aa64_pauth, s)) { 1545 return false; 1546 } 1547 1548 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_br(s, a->rn); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1556 { 1557 TCGv_i64 dst, lr; 1558 1559 if (!dc_isar_feature(aa64_pauth, s)) { 1560 return false; 1561 } 1562 1563 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1564 lr = cpu_reg(s, 30); 1565 if (dst == lr) { 1566 TCGv_i64 tmp = tcg_temp_new_i64(); 1567 tcg_gen_mov_i64(tmp, dst); 1568 dst = tmp; 1569 } 1570 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1571 gen_a64_set_pc(s, dst); 1572 set_btype_for_blr(s); 1573 s->base.is_jmp = DISAS_JUMP; 1574 return true; 1575 } 1576 1577 static bool trans_RETA(DisasContext *s, arg_reta *a) 1578 { 1579 TCGv_i64 dst; 1580 1581 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1582 gen_a64_set_pc(s, dst); 1583 s->base.is_jmp = DISAS_JUMP; 1584 return true; 1585 } 1586 1587 static bool trans_BRA(DisasContext *s, arg_bra *a) 1588 { 1589 TCGv_i64 dst; 1590 1591 if (!dc_isar_feature(aa64_pauth, s)) { 1592 return false; 1593 } 1594 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1595 gen_a64_set_pc(s, dst); 1596 set_btype_for_br(s, a->rn); 1597 s->base.is_jmp = DISAS_JUMP; 1598 return true; 1599 } 1600 1601 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1602 { 1603 TCGv_i64 dst, lr; 1604 1605 if (!dc_isar_feature(aa64_pauth, s)) { 1606 return false; 1607 } 1608 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1609 lr = cpu_reg(s, 30); 1610 if (dst == lr) { 1611 TCGv_i64 tmp = tcg_temp_new_i64(); 1612 tcg_gen_mov_i64(tmp, dst); 1613 dst = tmp; 1614 } 1615 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1616 gen_a64_set_pc(s, dst); 1617 set_btype_for_blr(s); 1618 s->base.is_jmp = DISAS_JUMP; 1619 return true; 1620 } 1621 1622 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1623 { 1624 TCGv_i64 dst; 1625 1626 if (s->current_el == 0) { 1627 return false; 1628 } 1629 if (s->fgt_eret) { 1630 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1631 return true; 1632 } 1633 dst = tcg_temp_new_i64(); 1634 tcg_gen_ld_i64(dst, cpu_env, 1635 offsetof(CPUARMState, elr_el[s->current_el])); 1636 1637 translator_io_start(&s->base); 1638 1639 gen_helper_exception_return(cpu_env, dst); 1640 /* Must exit loop to check un-masked IRQs */ 1641 s->base.is_jmp = DISAS_EXIT; 1642 return true; 1643 } 1644 1645 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1646 { 1647 TCGv_i64 dst; 1648 1649 if (!dc_isar_feature(aa64_pauth, s)) { 1650 return false; 1651 } 1652 if (s->current_el == 0) { 1653 return false; 1654 } 1655 /* The FGT trap takes precedence over an auth trap. */ 1656 if (s->fgt_eret) { 1657 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1658 return true; 1659 } 1660 dst = tcg_temp_new_i64(); 1661 tcg_gen_ld_i64(dst, cpu_env, 1662 offsetof(CPUARMState, elr_el[s->current_el])); 1663 1664 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(cpu_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1675 { 1676 return true; 1677 } 1678 1679 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1680 { 1681 /* 1682 * When running in MTTCG we don't generate jumps to the yield and 1683 * WFE helpers as it won't affect the scheduling of other vCPUs. 1684 * If we wanted to more completely model WFE/SEV so we don't busy 1685 * spin unnecessarily we would need to do something more involved. 1686 */ 1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1688 s->base.is_jmp = DISAS_YIELD; 1689 } 1690 return true; 1691 } 1692 1693 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1694 { 1695 s->base.is_jmp = DISAS_WFI; 1696 return true; 1697 } 1698 1699 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1700 { 1701 /* 1702 * When running in MTTCG we don't generate jumps to the yield and 1703 * WFE helpers as it won't affect the scheduling of other vCPUs. 1704 * If we wanted to more completely model WFE/SEV so we don't busy 1705 * spin unnecessarily we would need to do something more involved. 1706 */ 1707 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1708 s->base.is_jmp = DISAS_WFE; 1709 } 1710 return true; 1711 } 1712 1713 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1714 { 1715 if (s->pauth_active) { 1716 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1717 } 1718 return true; 1719 } 1720 1721 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1722 { 1723 if (s->pauth_active) { 1724 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1725 } 1726 return true; 1727 } 1728 1729 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1730 { 1731 if (s->pauth_active) { 1732 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1733 } 1734 return true; 1735 } 1736 1737 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1738 { 1739 if (s->pauth_active) { 1740 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1741 } 1742 return true; 1743 } 1744 1745 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1746 { 1747 if (s->pauth_active) { 1748 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1749 } 1750 return true; 1751 } 1752 1753 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1754 { 1755 /* Without RAS, we must implement this as NOP. */ 1756 if (dc_isar_feature(aa64_ras, s)) { 1757 /* 1758 * QEMU does not have a source of physical SErrors, 1759 * so we are only concerned with virtual SErrors. 1760 * The pseudocode in the ARM for this case is 1761 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1762 * AArch64.vESBOperation(); 1763 * Most of the condition can be evaluated at translation time. 1764 * Test for EL2 present, and defer test for SEL2 to runtime. 1765 */ 1766 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1767 gen_helper_vesb(cpu_env); 1768 } 1769 } 1770 return true; 1771 } 1772 1773 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1774 { 1775 if (s->pauth_active) { 1776 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1777 } 1778 return true; 1779 } 1780 1781 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1782 { 1783 if (s->pauth_active) { 1784 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1785 } 1786 return true; 1787 } 1788 1789 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1790 { 1791 if (s->pauth_active) { 1792 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1793 } 1794 return true; 1795 } 1796 1797 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1798 { 1799 if (s->pauth_active) { 1800 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1801 } 1802 return true; 1803 } 1804 1805 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1806 { 1807 if (s->pauth_active) { 1808 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1809 } 1810 return true; 1811 } 1812 1813 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1814 { 1815 if (s->pauth_active) { 1816 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1817 } 1818 return true; 1819 } 1820 1821 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1822 { 1823 if (s->pauth_active) { 1824 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], tcg_constant_i64(0)); 1825 } 1826 return true; 1827 } 1828 1829 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1830 { 1831 if (s->pauth_active) { 1832 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1833 } 1834 return true; 1835 } 1836 1837 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1838 { 1839 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1840 return true; 1841 } 1842 1843 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1844 { 1845 /* We handle DSB and DMB the same way */ 1846 TCGBar bar; 1847 1848 switch (a->types) { 1849 case 1: /* MBReqTypes_Reads */ 1850 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1851 break; 1852 case 2: /* MBReqTypes_Writes */ 1853 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1854 break; 1855 default: /* MBReqTypes_All */ 1856 bar = TCG_BAR_SC | TCG_MO_ALL; 1857 break; 1858 } 1859 tcg_gen_mb(bar); 1860 return true; 1861 } 1862 1863 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1864 { 1865 /* 1866 * We need to break the TB after this insn to execute 1867 * self-modifying code correctly and also to take 1868 * any pending interrupts immediately. 1869 */ 1870 reset_btype(s); 1871 gen_goto_tb(s, 0, 4); 1872 return true; 1873 } 1874 1875 static bool trans_SB(DisasContext *s, arg_SB *a) 1876 { 1877 if (!dc_isar_feature(aa64_sb, s)) { 1878 return false; 1879 } 1880 /* 1881 * TODO: There is no speculation barrier opcode for TCG; 1882 * MB and end the TB instead. 1883 */ 1884 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1885 gen_goto_tb(s, 0, 4); 1886 return true; 1887 } 1888 1889 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1890 { 1891 if (!dc_isar_feature(aa64_condm_4, s)) { 1892 return false; 1893 } 1894 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1895 return true; 1896 } 1897 1898 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1899 { 1900 TCGv_i32 z; 1901 1902 if (!dc_isar_feature(aa64_condm_5, s)) { 1903 return false; 1904 } 1905 1906 z = tcg_temp_new_i32(); 1907 1908 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1909 1910 /* 1911 * (!C & !Z) << 31 1912 * (!(C | Z)) << 31 1913 * ~((C | Z) << 31) 1914 * ~-(C | Z) 1915 * (C | Z) - 1 1916 */ 1917 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1918 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1919 1920 /* !(Z & C) */ 1921 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1922 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1923 1924 /* (!C & Z) << 31 -> -(Z & ~C) */ 1925 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1926 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1927 1928 /* C | Z */ 1929 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1930 1931 return true; 1932 } 1933 1934 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1935 { 1936 if (!dc_isar_feature(aa64_condm_5, s)) { 1937 return false; 1938 } 1939 1940 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1941 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1942 1943 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1944 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1945 1946 tcg_gen_movi_i32(cpu_NF, 0); 1947 tcg_gen_movi_i32(cpu_VF, 0); 1948 1949 return true; 1950 } 1951 1952 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1953 { 1954 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1955 return false; 1956 } 1957 if (a->imm & 1) { 1958 set_pstate_bits(PSTATE_UAO); 1959 } else { 1960 clear_pstate_bits(PSTATE_UAO); 1961 } 1962 gen_rebuild_hflags(s); 1963 s->base.is_jmp = DISAS_TOO_MANY; 1964 return true; 1965 } 1966 1967 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1968 { 1969 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1970 return false; 1971 } 1972 if (a->imm & 1) { 1973 set_pstate_bits(PSTATE_PAN); 1974 } else { 1975 clear_pstate_bits(PSTATE_PAN); 1976 } 1977 gen_rebuild_hflags(s); 1978 s->base.is_jmp = DISAS_TOO_MANY; 1979 return true; 1980 } 1981 1982 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 1983 { 1984 if (s->current_el == 0) { 1985 return false; 1986 } 1987 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(a->imm & PSTATE_SP)); 1988 s->base.is_jmp = DISAS_TOO_MANY; 1989 return true; 1990 } 1991 1992 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 1993 { 1994 if (!dc_isar_feature(aa64_ssbs, s)) { 1995 return false; 1996 } 1997 if (a->imm & 1) { 1998 set_pstate_bits(PSTATE_SSBS); 1999 } else { 2000 clear_pstate_bits(PSTATE_SSBS); 2001 } 2002 /* Don't need to rebuild hflags since SSBS is a nop */ 2003 s->base.is_jmp = DISAS_TOO_MANY; 2004 return true; 2005 } 2006 2007 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2008 { 2009 if (!dc_isar_feature(aa64_dit, s)) { 2010 return false; 2011 } 2012 if (a->imm & 1) { 2013 set_pstate_bits(PSTATE_DIT); 2014 } else { 2015 clear_pstate_bits(PSTATE_DIT); 2016 } 2017 /* There's no need to rebuild hflags because DIT is a nop */ 2018 s->base.is_jmp = DISAS_TOO_MANY; 2019 return true; 2020 } 2021 2022 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2023 { 2024 if (dc_isar_feature(aa64_mte, s)) { 2025 /* Full MTE is enabled -- set the TCO bit as directed. */ 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_TCO); 2028 } else { 2029 clear_pstate_bits(PSTATE_TCO); 2030 } 2031 gen_rebuild_hflags(s); 2032 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2033 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2034 return true; 2035 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2036 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2037 return true; 2038 } else { 2039 /* Insn not present */ 2040 return false; 2041 } 2042 } 2043 2044 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2045 { 2046 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(a->imm)); 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2052 { 2053 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(a->imm)); 2054 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2055 s->base.is_jmp = DISAS_UPDATE_EXIT; 2056 return true; 2057 } 2058 2059 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2060 { 2061 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2062 return false; 2063 } 2064 if (sme_access_check(s)) { 2065 int old = s->pstate_sm | (s->pstate_za << 1); 2066 int new = a->imm * 3; 2067 2068 if ((old ^ new) & a->mask) { 2069 /* At least one bit changes. */ 2070 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2071 tcg_constant_i32(a->mask)); 2072 s->base.is_jmp = DISAS_TOO_MANY; 2073 } 2074 } 2075 return true; 2076 } 2077 2078 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2079 { 2080 TCGv_i32 tmp = tcg_temp_new_i32(); 2081 TCGv_i32 nzcv = tcg_temp_new_i32(); 2082 2083 /* build bit 31, N */ 2084 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2085 /* build bit 30, Z */ 2086 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2087 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2088 /* build bit 29, C */ 2089 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2090 /* build bit 28, V */ 2091 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2092 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2093 /* generate result */ 2094 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2095 } 2096 2097 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2098 { 2099 TCGv_i32 nzcv = tcg_temp_new_i32(); 2100 2101 /* take NZCV from R[t] */ 2102 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2103 2104 /* bit 31, N */ 2105 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2106 /* bit 30, Z */ 2107 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2108 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2109 /* bit 29, C */ 2110 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2111 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2112 /* bit 28, V */ 2113 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2114 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2115 } 2116 2117 static void gen_sysreg_undef(DisasContext *s, bool isread, 2118 uint8_t op0, uint8_t op1, uint8_t op2, 2119 uint8_t crn, uint8_t crm, uint8_t rt) 2120 { 2121 /* 2122 * Generate code to emit an UNDEF with correct syndrome 2123 * information for a failed system register access. 2124 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2125 * but if FEAT_IDST is implemented then read accesses to registers 2126 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2127 * syndrome. 2128 */ 2129 uint32_t syndrome; 2130 2131 if (isread && dc_isar_feature(aa64_ids, s) && 2132 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2133 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2134 } else { 2135 syndrome = syn_uncategorized(); 2136 } 2137 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2138 } 2139 2140 /* MRS - move from system register 2141 * MSR (register) - move to system register 2142 * SYS 2143 * SYSL 2144 * These are all essentially the same insn in 'read' and 'write' 2145 * versions, with varying op0 fields. 2146 */ 2147 static void handle_sys(DisasContext *s, bool isread, 2148 unsigned int op0, unsigned int op1, unsigned int op2, 2149 unsigned int crn, unsigned int crm, unsigned int rt) 2150 { 2151 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2152 crn, crm, op0, op1, op2); 2153 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2154 bool need_exit_tb = false; 2155 TCGv_ptr tcg_ri = NULL; 2156 TCGv_i64 tcg_rt; 2157 2158 if (!ri) { 2159 /* Unknown register; this might be a guest error or a QEMU 2160 * unimplemented feature. 2161 */ 2162 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2163 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2164 isread ? "read" : "write", op0, op1, crn, crm, op2); 2165 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2166 return; 2167 } 2168 2169 /* Check access permissions */ 2170 if (!cp_access_ok(s->current_el, ri, isread)) { 2171 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2172 return; 2173 } 2174 2175 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2176 /* Emit code to perform further access permissions checks at 2177 * runtime; this may result in an exception. 2178 */ 2179 uint32_t syndrome; 2180 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 gen_a64_update_pc(s, 0); 2183 tcg_ri = tcg_temp_new_ptr(); 2184 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2185 tcg_constant_i32(key), 2186 tcg_constant_i32(syndrome), 2187 tcg_constant_i32(isread)); 2188 } else if (ri->type & ARM_CP_RAISES_EXC) { 2189 /* 2190 * The readfn or writefn might raise an exception; 2191 * synchronize the CPU state in case it does. 2192 */ 2193 gen_a64_update_pc(s, 0); 2194 } 2195 2196 /* Handle special cases first */ 2197 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2198 case 0: 2199 break; 2200 case ARM_CP_NOP: 2201 return; 2202 case ARM_CP_NZCV: 2203 tcg_rt = cpu_reg(s, rt); 2204 if (isread) { 2205 gen_get_nzcv(tcg_rt); 2206 } else { 2207 gen_set_nzcv(tcg_rt); 2208 } 2209 return; 2210 case ARM_CP_CURRENTEL: 2211 /* Reads as current EL value from pstate, which is 2212 * guaranteed to be constant by the tb flags. 2213 */ 2214 tcg_rt = cpu_reg(s, rt); 2215 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2216 return; 2217 case ARM_CP_DC_ZVA: 2218 /* Writes clear the aligned block of memory which rt points into. */ 2219 if (s->mte_active[0]) { 2220 int desc = 0; 2221 2222 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2223 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2224 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2225 2226 tcg_rt = tcg_temp_new_i64(); 2227 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2228 tcg_constant_i32(desc), cpu_reg(s, rt)); 2229 } else { 2230 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2231 } 2232 gen_helper_dc_zva(cpu_env, tcg_rt); 2233 return; 2234 case ARM_CP_DC_GVA: 2235 { 2236 TCGv_i64 clean_addr, tag; 2237 2238 /* 2239 * DC_GVA, like DC_ZVA, requires that we supply the original 2240 * pointer for an invalid page. Probe that address first. 2241 */ 2242 tcg_rt = cpu_reg(s, rt); 2243 clean_addr = clean_data_tbi(s, tcg_rt); 2244 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2245 2246 if (s->ata) { 2247 /* Extract the tag from the register to match STZGM. */ 2248 tag = tcg_temp_new_i64(); 2249 tcg_gen_shri_i64(tag, tcg_rt, 56); 2250 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2251 } 2252 } 2253 return; 2254 case ARM_CP_DC_GZVA: 2255 { 2256 TCGv_i64 clean_addr, tag; 2257 2258 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2259 tcg_rt = cpu_reg(s, rt); 2260 clean_addr = clean_data_tbi(s, tcg_rt); 2261 gen_helper_dc_zva(cpu_env, clean_addr); 2262 2263 if (s->ata) { 2264 /* Extract the tag from the register to match STZGM. */ 2265 tag = tcg_temp_new_i64(); 2266 tcg_gen_shri_i64(tag, tcg_rt, 56); 2267 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2268 } 2269 } 2270 return; 2271 default: 2272 g_assert_not_reached(); 2273 } 2274 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2275 return; 2276 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2277 return; 2278 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2279 return; 2280 } 2281 2282 if (ri->type & ARM_CP_IO) { 2283 /* I/O operations must end the TB here (whether read or write) */ 2284 need_exit_tb = translator_io_start(&s->base); 2285 } 2286 2287 tcg_rt = cpu_reg(s, rt); 2288 2289 if (isread) { 2290 if (ri->type & ARM_CP_CONST) { 2291 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2292 } else if (ri->readfn) { 2293 if (!tcg_ri) { 2294 tcg_ri = gen_lookup_cp_reg(key); 2295 } 2296 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2297 } else { 2298 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2299 } 2300 } else { 2301 if (ri->type & ARM_CP_CONST) { 2302 /* If not forbidden by access permissions, treat as WI */ 2303 return; 2304 } else if (ri->writefn) { 2305 if (!tcg_ri) { 2306 tcg_ri = gen_lookup_cp_reg(key); 2307 } 2308 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2309 } else { 2310 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2311 } 2312 } 2313 2314 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2315 /* 2316 * A write to any coprocessor register that ends a TB 2317 * must rebuild the hflags for the next TB. 2318 */ 2319 gen_rebuild_hflags(s); 2320 /* 2321 * We default to ending the TB on a coprocessor register write, 2322 * but allow this to be suppressed by the register definition 2323 * (usually only necessary to work around guest bugs). 2324 */ 2325 need_exit_tb = true; 2326 } 2327 if (need_exit_tb) { 2328 s->base.is_jmp = DISAS_UPDATE_EXIT; 2329 } 2330 } 2331 2332 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2333 { 2334 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2335 return true; 2336 } 2337 2338 static bool trans_SVC(DisasContext *s, arg_i *a) 2339 { 2340 /* 2341 * For SVC, HVC and SMC we advance the single-step state 2342 * machine before taking the exception. This is architecturally 2343 * mandated, to ensure that single-stepping a system call 2344 * instruction works properly. 2345 */ 2346 uint32_t syndrome = syn_aa64_svc(a->imm); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 return true; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 return true; 2354 } 2355 2356 static bool trans_HVC(DisasContext *s, arg_i *a) 2357 { 2358 if (s->current_el == 0) { 2359 unallocated_encoding(s); 2360 return true; 2361 } 2362 /* 2363 * The pre HVC helper handles cases when HVC gets trapped 2364 * as an undefined insn by runtime configuration. 2365 */ 2366 gen_a64_update_pc(s, 0); 2367 gen_helper_pre_hvc(cpu_env); 2368 /* Architecture requires ss advance before we do the actual work */ 2369 gen_ss_advance(s); 2370 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2); 2371 return true; 2372 } 2373 2374 static bool trans_SMC(DisasContext *s, arg_i *a) 2375 { 2376 if (s->current_el == 0) { 2377 unallocated_encoding(s); 2378 return true; 2379 } 2380 gen_a64_update_pc(s, 0); 2381 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2382 /* Architecture requires ss advance before we do the actual work */ 2383 gen_ss_advance(s); 2384 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2385 return true; 2386 } 2387 2388 static bool trans_BRK(DisasContext *s, arg_i *a) 2389 { 2390 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2391 return true; 2392 } 2393 2394 static bool trans_HLT(DisasContext *s, arg_i *a) 2395 { 2396 /* 2397 * HLT. This has two purposes. 2398 * Architecturally, it is an external halting debug instruction. 2399 * Since QEMU doesn't implement external debug, we treat this as 2400 * it is required for halting debug disabled: it will UNDEF. 2401 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2402 */ 2403 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2404 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2405 } else { 2406 unallocated_encoding(s); 2407 } 2408 return true; 2409 } 2410 2411 /* 2412 * Load/Store exclusive instructions are implemented by remembering 2413 * the value/address loaded, and seeing if these are the same 2414 * when the store is performed. This is not actually the architecturally 2415 * mandated semantics, but it works for typical guest code sequences 2416 * and avoids having to monitor regular stores. 2417 * 2418 * The store exclusive uses the atomic cmpxchg primitives to avoid 2419 * races in multi-threaded linux-user and when MTTCG softmmu is 2420 * enabled. 2421 */ 2422 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2423 int size, bool is_pair) 2424 { 2425 int idx = get_mem_index(s); 2426 TCGv_i64 dirty_addr, clean_addr; 2427 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2428 2429 s->is_ldex = true; 2430 dirty_addr = cpu_reg_sp(s, rn); 2431 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2432 2433 g_assert(size <= 3); 2434 if (is_pair) { 2435 g_assert(size >= 2); 2436 if (size == 2) { 2437 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2438 if (s->be_data == MO_LE) { 2439 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2440 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2441 } else { 2442 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2443 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2444 } 2445 } else { 2446 TCGv_i128 t16 = tcg_temp_new_i128(); 2447 2448 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2449 2450 if (s->be_data == MO_LE) { 2451 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2452 cpu_exclusive_high, t16); 2453 } else { 2454 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2455 cpu_exclusive_val, t16); 2456 } 2457 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2458 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2459 } 2460 } else { 2461 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2462 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2463 } 2464 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2465 } 2466 2467 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2468 int rn, int size, int is_pair) 2469 { 2470 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2471 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2472 * [addr] = {Rt}; 2473 * if (is_pair) { 2474 * [addr + datasize] = {Rt2}; 2475 * } 2476 * {Rd} = 0; 2477 * } else { 2478 * {Rd} = 1; 2479 * } 2480 * env->exclusive_addr = -1; 2481 */ 2482 TCGLabel *fail_label = gen_new_label(); 2483 TCGLabel *done_label = gen_new_label(); 2484 TCGv_i64 tmp, clean_addr; 2485 MemOp memop; 2486 2487 /* 2488 * FIXME: We are out of spec here. We have recorded only the address 2489 * from load_exclusive, not the entire range, and we assume that the 2490 * size of the access on both sides match. The architecture allows the 2491 * store to be smaller than the load, so long as the stored bytes are 2492 * within the range recorded by the load. 2493 */ 2494 2495 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2496 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2497 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2498 2499 /* 2500 * The write, and any associated faults, only happen if the virtual 2501 * and physical addresses pass the exclusive monitor check. These 2502 * faults are exceedingly unlikely, because normally the guest uses 2503 * the exact same address register for the load_exclusive, and we 2504 * would have recognized these faults there. 2505 * 2506 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2507 * unaligned 4-byte write within the range of an aligned 8-byte load. 2508 * With LSE2, the store would need to cross a 16-byte boundary when the 2509 * load did not, which would mean the store is outside the range 2510 * recorded for the monitor, which would have failed a corrected monitor 2511 * check above. For now, we assume no size change and retain the 2512 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2513 * 2514 * It is possible to trigger an MTE fault, by performing the load with 2515 * a virtual address with a valid tag and performing the store with the 2516 * same virtual address and a different invalid tag. 2517 */ 2518 memop = size + is_pair; 2519 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2520 memop |= MO_ALIGN; 2521 } 2522 memop = finalize_memop(s, memop); 2523 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2524 2525 tmp = tcg_temp_new_i64(); 2526 if (is_pair) { 2527 if (size == 2) { 2528 if (s->be_data == MO_LE) { 2529 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2530 } else { 2531 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2532 } 2533 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2534 cpu_exclusive_val, tmp, 2535 get_mem_index(s), memop); 2536 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2537 } else { 2538 TCGv_i128 t16 = tcg_temp_new_i128(); 2539 TCGv_i128 c16 = tcg_temp_new_i128(); 2540 TCGv_i64 a, b; 2541 2542 if (s->be_data == MO_LE) { 2543 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2544 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2545 cpu_exclusive_high); 2546 } else { 2547 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2548 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2549 cpu_exclusive_val); 2550 } 2551 2552 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2553 get_mem_index(s), memop); 2554 2555 a = tcg_temp_new_i64(); 2556 b = tcg_temp_new_i64(); 2557 if (s->be_data == MO_LE) { 2558 tcg_gen_extr_i128_i64(a, b, t16); 2559 } else { 2560 tcg_gen_extr_i128_i64(b, a, t16); 2561 } 2562 2563 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2564 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2565 tcg_gen_or_i64(tmp, a, b); 2566 2567 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2568 } 2569 } else { 2570 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2571 cpu_reg(s, rt), get_mem_index(s), memop); 2572 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2573 } 2574 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2575 tcg_gen_br(done_label); 2576 2577 gen_set_label(fail_label); 2578 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2579 gen_set_label(done_label); 2580 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2581 } 2582 2583 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2584 int rn, int size) 2585 { 2586 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2587 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2588 int memidx = get_mem_index(s); 2589 TCGv_i64 clean_addr; 2590 MemOp memop; 2591 2592 if (rn == 31) { 2593 gen_check_sp_alignment(s); 2594 } 2595 memop = check_atomic_align(s, rn, size); 2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2597 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2598 memidx, memop); 2599 } 2600 2601 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2602 int rn, int size) 2603 { 2604 TCGv_i64 s1 = cpu_reg(s, rs); 2605 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2606 TCGv_i64 t1 = cpu_reg(s, rt); 2607 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2608 TCGv_i64 clean_addr; 2609 int memidx = get_mem_index(s); 2610 MemOp memop; 2611 2612 if (rn == 31) { 2613 gen_check_sp_alignment(s); 2614 } 2615 2616 /* This is a single atomic access, despite the "pair". */ 2617 memop = check_atomic_align(s, rn, size + 1); 2618 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2619 2620 if (size == 2) { 2621 TCGv_i64 cmp = tcg_temp_new_i64(); 2622 TCGv_i64 val = tcg_temp_new_i64(); 2623 2624 if (s->be_data == MO_LE) { 2625 tcg_gen_concat32_i64(val, t1, t2); 2626 tcg_gen_concat32_i64(cmp, s1, s2); 2627 } else { 2628 tcg_gen_concat32_i64(val, t2, t1); 2629 tcg_gen_concat32_i64(cmp, s2, s1); 2630 } 2631 2632 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2633 2634 if (s->be_data == MO_LE) { 2635 tcg_gen_extr32_i64(s1, s2, cmp); 2636 } else { 2637 tcg_gen_extr32_i64(s2, s1, cmp); 2638 } 2639 } else { 2640 TCGv_i128 cmp = tcg_temp_new_i128(); 2641 TCGv_i128 val = tcg_temp_new_i128(); 2642 2643 if (s->be_data == MO_LE) { 2644 tcg_gen_concat_i64_i128(val, t1, t2); 2645 tcg_gen_concat_i64_i128(cmp, s1, s2); 2646 } else { 2647 tcg_gen_concat_i64_i128(val, t2, t1); 2648 tcg_gen_concat_i64_i128(cmp, s2, s1); 2649 } 2650 2651 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2652 2653 if (s->be_data == MO_LE) { 2654 tcg_gen_extr_i128_i64(s1, s2, cmp); 2655 } else { 2656 tcg_gen_extr_i128_i64(s2, s1, cmp); 2657 } 2658 } 2659 } 2660 2661 /* 2662 * Compute the ISS.SF bit for syndrome information if an exception 2663 * is taken on a load or store. This indicates whether the instruction 2664 * is accessing a 32-bit or 64-bit register. This logic is derived 2665 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2666 */ 2667 static bool ldst_iss_sf(int size, bool sign, bool ext) 2668 { 2669 2670 if (sign) { 2671 /* 2672 * Signed loads are 64 bit results if we are not going to 2673 * do a zero-extend from 32 to 64 after the load. 2674 * (For a store, sign and ext are always false.) 2675 */ 2676 return !ext; 2677 } else { 2678 /* Unsigned loads/stores work at the specified size */ 2679 return size == MO_64; 2680 } 2681 } 2682 2683 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2684 { 2685 if (a->rn == 31) { 2686 gen_check_sp_alignment(s); 2687 } 2688 if (a->lasr) { 2689 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2690 } 2691 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2692 return true; 2693 } 2694 2695 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2696 { 2697 if (a->rn == 31) { 2698 gen_check_sp_alignment(s); 2699 } 2700 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2701 if (a->lasr) { 2702 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2703 } 2704 return true; 2705 } 2706 2707 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2708 { 2709 TCGv_i64 clean_addr; 2710 MemOp memop; 2711 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2712 2713 /* 2714 * StoreLORelease is the same as Store-Release for QEMU, but 2715 * needs the feature-test. 2716 */ 2717 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2718 return false; 2719 } 2720 /* Generate ISS for non-exclusive accesses including LASR. */ 2721 if (a->rn == 31) { 2722 gen_check_sp_alignment(s); 2723 } 2724 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2725 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2726 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2727 true, a->rn != 31, memop); 2728 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2729 iss_sf, a->lasr); 2730 return true; 2731 } 2732 2733 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2734 { 2735 TCGv_i64 clean_addr; 2736 MemOp memop; 2737 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2738 2739 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2740 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2741 return false; 2742 } 2743 /* Generate ISS for non-exclusive accesses including LASR. */ 2744 if (a->rn == 31) { 2745 gen_check_sp_alignment(s); 2746 } 2747 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2749 false, a->rn != 31, memop); 2750 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2751 a->rt, iss_sf, a->lasr); 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 return true; 2754 } 2755 2756 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2757 { 2758 if (a->rn == 31) { 2759 gen_check_sp_alignment(s); 2760 } 2761 if (a->lasr) { 2762 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2763 } 2764 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2765 return true; 2766 } 2767 2768 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2769 { 2770 if (a->rn == 31) { 2771 gen_check_sp_alignment(s); 2772 } 2773 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2774 if (a->lasr) { 2775 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2776 } 2777 return true; 2778 } 2779 2780 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2781 { 2782 if (!dc_isar_feature(aa64_atomics, s)) { 2783 return false; 2784 } 2785 if (((a->rt | a->rs) & 1) != 0) { 2786 return false; 2787 } 2788 2789 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2790 return true; 2791 } 2792 2793 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2794 { 2795 if (!dc_isar_feature(aa64_atomics, s)) { 2796 return false; 2797 } 2798 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2799 return true; 2800 } 2801 2802 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2803 { 2804 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2805 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2806 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2807 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2808 2809 gen_pc_plus_diff(s, clean_addr, a->imm); 2810 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2811 false, true, a->rt, iss_sf, false); 2812 return true; 2813 } 2814 2815 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 2816 { 2817 /* Load register (literal), vector version */ 2818 TCGv_i64 clean_addr; 2819 MemOp memop; 2820 2821 if (!fp_access_check(s)) { 2822 return true; 2823 } 2824 memop = finalize_memop_asimd(s, a->sz); 2825 clean_addr = tcg_temp_new_i64(); 2826 gen_pc_plus_diff(s, clean_addr, a->imm); 2827 do_fp_ld(s, a->rt, clean_addr, memop); 2828 return true; 2829 } 2830 2831 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 2832 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 2833 uint64_t offset, bool is_store, MemOp mop) 2834 { 2835 if (a->rn == 31) { 2836 gen_check_sp_alignment(s); 2837 } 2838 2839 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 2840 if (!a->p) { 2841 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 2842 } 2843 2844 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 2845 (a->w || a->rn != 31), 2 << a->sz, mop); 2846 } 2847 2848 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 2849 TCGv_i64 dirty_addr, uint64_t offset) 2850 { 2851 if (a->w) { 2852 if (a->p) { 2853 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2854 } 2855 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 2856 } 2857 } 2858 2859 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 2860 { 2861 uint64_t offset = a->imm << a->sz; 2862 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2863 MemOp mop = finalize_memop(s, a->sz); 2864 2865 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2866 tcg_rt = cpu_reg(s, a->rt); 2867 tcg_rt2 = cpu_reg(s, a->rt2); 2868 /* 2869 * We built mop above for the single logical access -- rebuild it 2870 * now for the paired operation. 2871 * 2872 * With LSE2, non-sign-extending pairs are treated atomically if 2873 * aligned, and if unaligned one of the pair will be completely 2874 * within a 16-byte block and that element will be atomic. 2875 * Otherwise each element is separately atomic. 2876 * In all cases, issue one operation with the correct atomicity. 2877 */ 2878 mop = a->sz + 1; 2879 if (s->align_mem) { 2880 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2881 } 2882 mop = finalize_memop_pair(s, mop); 2883 if (a->sz == 2) { 2884 TCGv_i64 tmp = tcg_temp_new_i64(); 2885 2886 if (s->be_data == MO_LE) { 2887 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 2888 } else { 2889 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 2890 } 2891 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 2892 } else { 2893 TCGv_i128 tmp = tcg_temp_new_i128(); 2894 2895 if (s->be_data == MO_LE) { 2896 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 2897 } else { 2898 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 2899 } 2900 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 2901 } 2902 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2903 return true; 2904 } 2905 2906 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 2907 { 2908 uint64_t offset = a->imm << a->sz; 2909 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 2910 MemOp mop = finalize_memop(s, a->sz); 2911 2912 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2913 tcg_rt = cpu_reg(s, a->rt); 2914 tcg_rt2 = cpu_reg(s, a->rt2); 2915 2916 /* 2917 * We built mop above for the single logical access -- rebuild it 2918 * now for the paired operation. 2919 * 2920 * With LSE2, non-sign-extending pairs are treated atomically if 2921 * aligned, and if unaligned one of the pair will be completely 2922 * within a 16-byte block and that element will be atomic. 2923 * Otherwise each element is separately atomic. 2924 * In all cases, issue one operation with the correct atomicity. 2925 * 2926 * This treats sign-extending loads like zero-extending loads, 2927 * since that reuses the most code below. 2928 */ 2929 mop = a->sz + 1; 2930 if (s->align_mem) { 2931 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 2932 } 2933 mop = finalize_memop_pair(s, mop); 2934 if (a->sz == 2) { 2935 int o2 = s->be_data == MO_LE ? 32 : 0; 2936 int o1 = o2 ^ 32; 2937 2938 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 2939 if (a->sign) { 2940 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 2941 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 2942 } else { 2943 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 2944 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 2945 } 2946 } else { 2947 TCGv_i128 tmp = tcg_temp_new_i128(); 2948 2949 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 2950 if (s->be_data == MO_LE) { 2951 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 2952 } else { 2953 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 2954 } 2955 } 2956 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2957 return true; 2958 } 2959 2960 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 2961 { 2962 uint64_t offset = a->imm << a->sz; 2963 TCGv_i64 clean_addr, dirty_addr; 2964 MemOp mop; 2965 2966 if (!fp_access_check(s)) { 2967 return true; 2968 } 2969 2970 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2971 mop = finalize_memop_asimd(s, a->sz); 2972 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 2973 do_fp_st(s, a->rt, clean_addr, mop); 2974 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2975 do_fp_st(s, a->rt2, clean_addr, mop); 2976 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2977 return true; 2978 } 2979 2980 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 2981 { 2982 uint64_t offset = a->imm << a->sz; 2983 TCGv_i64 clean_addr, dirty_addr; 2984 MemOp mop; 2985 2986 if (!fp_access_check(s)) { 2987 return true; 2988 } 2989 2990 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 2991 mop = finalize_memop_asimd(s, a->sz); 2992 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 2993 do_fp_ld(s, a->rt, clean_addr, mop); 2994 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 2995 do_fp_ld(s, a->rt2, clean_addr, mop); 2996 op_addr_ldstpair_post(s, a, dirty_addr, offset); 2997 return true; 2998 } 2999 3000 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3001 { 3002 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3003 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3004 MemOp mop; 3005 TCGv_i128 tmp; 3006 3007 /* STGP only comes in one size. */ 3008 tcg_debug_assert(a->sz == MO_64); 3009 3010 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3011 return false; 3012 } 3013 3014 if (a->rn == 31) { 3015 gen_check_sp_alignment(s); 3016 } 3017 3018 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3019 if (!a->p) { 3020 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3021 } 3022 3023 if (!s->ata) { 3024 /* 3025 * TODO: We could rely on the stores below, at least for 3026 * system mode, if we arrange to add MO_ALIGN_16. 3027 */ 3028 gen_helper_stg_stub(cpu_env, dirty_addr); 3029 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3030 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3031 } else { 3032 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3033 } 3034 3035 mop = finalize_memop(s, MO_64); 3036 clean_addr = gen_mte_checkN(s, dirty_addr, true, false, 2 << MO_64, mop); 3037 3038 tcg_rt = cpu_reg(s, a->rt); 3039 tcg_rt2 = cpu_reg(s, a->rt2); 3040 3041 /* 3042 * STGP is defined as two 8-byte memory operations and one tag operation. 3043 * We implement it as one single 16-byte memory operation for convenience. 3044 * Rebuild mop as for STP. 3045 * TODO: The atomicity with LSE2 is stronger than required. 3046 * Need a form of MO_ATOM_WITHIN16_PAIR that never requires 3047 * 16-byte atomicity. 3048 */ 3049 mop = MO_128; 3050 if (s->align_mem) { 3051 mop |= MO_ALIGN_8; 3052 } 3053 mop = finalize_memop_pair(s, mop); 3054 3055 tmp = tcg_temp_new_i128(); 3056 if (s->be_data == MO_LE) { 3057 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3058 } else { 3059 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3060 } 3061 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3062 3063 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3064 return true; 3065 } 3066 3067 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3068 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3069 uint64_t offset, bool is_store, MemOp mop) 3070 { 3071 int memidx; 3072 3073 if (a->rn == 31) { 3074 gen_check_sp_alignment(s); 3075 } 3076 3077 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3078 if (!a->p) { 3079 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3080 } 3081 memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3082 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3083 a->w || a->rn != 31, 3084 mop, a->unpriv, memidx); 3085 } 3086 3087 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3088 TCGv_i64 dirty_addr, uint64_t offset) 3089 { 3090 if (a->w) { 3091 if (a->p) { 3092 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3093 } 3094 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3095 } 3096 } 3097 3098 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3099 { 3100 bool iss_sf, iss_valid = !a->w; 3101 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3102 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3103 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3104 3105 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3106 3107 tcg_rt = cpu_reg(s, a->rt); 3108 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3109 3110 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3111 iss_valid, a->rt, iss_sf, false); 3112 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3113 return true; 3114 } 3115 3116 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3117 { 3118 bool iss_sf, iss_valid = !a->w; 3119 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3120 int memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3121 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3122 3123 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3124 3125 tcg_rt = cpu_reg(s, a->rt); 3126 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3127 3128 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3129 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3130 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3131 return true; 3132 } 3133 3134 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3135 { 3136 TCGv_i64 clean_addr, dirty_addr; 3137 MemOp mop; 3138 3139 if (!fp_access_check(s)) { 3140 return true; 3141 } 3142 mop = finalize_memop_asimd(s, a->sz); 3143 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3144 do_fp_st(s, a->rt, clean_addr, mop); 3145 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3146 return true; 3147 } 3148 3149 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3150 { 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 mop = finalize_memop_asimd(s, a->sz); 3158 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3159 do_fp_ld(s, a->rt, clean_addr, mop); 3160 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3161 return true; 3162 } 3163 3164 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3165 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3166 bool is_store, MemOp memop) 3167 { 3168 TCGv_i64 tcg_rm; 3169 3170 if (a->rn == 31) { 3171 gen_check_sp_alignment(s); 3172 } 3173 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3174 3175 tcg_rm = read_cpu_reg(s, a->rm, 1); 3176 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3177 3178 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3179 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3180 } 3181 3182 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3183 { 3184 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3185 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3186 MemOp memop; 3187 3188 if (extract32(a->opt, 1, 1) == 0) { 3189 return false; 3190 } 3191 3192 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3193 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3194 tcg_rt = cpu_reg(s, a->rt); 3195 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3196 a->ext, true, a->rt, iss_sf, false); 3197 return true; 3198 } 3199 3200 static bool trans_STR(DisasContext *s, arg_ldst *a) 3201 { 3202 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3203 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3204 MemOp memop; 3205 3206 if (extract32(a->opt, 1, 1) == 0) { 3207 return false; 3208 } 3209 3210 memop = finalize_memop(s, a->sz); 3211 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3214 return true; 3215 } 3216 3217 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3218 { 3219 TCGv_i64 clean_addr, dirty_addr; 3220 MemOp memop; 3221 3222 if (extract32(a->opt, 1, 1) == 0) { 3223 return false; 3224 } 3225 3226 if (!fp_access_check(s)) { 3227 return true; 3228 } 3229 3230 memop = finalize_memop_asimd(s, a->sz); 3231 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3232 do_fp_ld(s, a->rt, clean_addr, memop); 3233 return true; 3234 } 3235 3236 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3237 { 3238 TCGv_i64 clean_addr, dirty_addr; 3239 MemOp memop; 3240 3241 if (extract32(a->opt, 1, 1) == 0) { 3242 return false; 3243 } 3244 3245 if (!fp_access_check(s)) { 3246 return true; 3247 } 3248 3249 memop = finalize_memop_asimd(s, a->sz); 3250 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3251 do_fp_st(s, a->rt, clean_addr, memop); 3252 return true; 3253 } 3254 3255 3256 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3257 int sign, bool invert) 3258 { 3259 MemOp mop = a->sz | sign; 3260 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3261 3262 if (a->rn == 31) { 3263 gen_check_sp_alignment(s); 3264 } 3265 mop = check_atomic_align(s, a->rn, mop); 3266 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3267 a->rn != 31, mop); 3268 tcg_rs = read_cpu_reg(s, a->rs, true); 3269 tcg_rt = cpu_reg(s, a->rt); 3270 if (invert) { 3271 tcg_gen_not_i64(tcg_rs, tcg_rs); 3272 } 3273 /* 3274 * The tcg atomic primitives are all full barriers. Therefore we 3275 * can ignore the Acquire and Release bits of this instruction. 3276 */ 3277 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3278 3279 if (mop & MO_SIGN) { 3280 switch (a->sz) { 3281 case MO_8: 3282 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3283 break; 3284 case MO_16: 3285 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3286 break; 3287 case MO_32: 3288 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3289 break; 3290 case MO_64: 3291 break; 3292 default: 3293 g_assert_not_reached(); 3294 } 3295 } 3296 return true; 3297 } 3298 3299 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3300 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3301 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3302 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3303 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3304 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3305 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3306 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3307 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3308 3309 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3310 { 3311 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3312 TCGv_i64 clean_addr; 3313 MemOp mop; 3314 3315 if (!dc_isar_feature(aa64_atomics, s) || 3316 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3317 return false; 3318 } 3319 if (a->rn == 31) { 3320 gen_check_sp_alignment(s); 3321 } 3322 mop = check_atomic_align(s, a->rn, a->sz); 3323 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3324 a->rn != 31, mop); 3325 /* 3326 * LDAPR* are a special case because they are a simple load, not a 3327 * fetch-and-do-something op. 3328 * The architectural consistency requirements here are weaker than 3329 * full load-acquire (we only need "load-acquire processor consistent"), 3330 * but we choose to implement them as full LDAQ. 3331 */ 3332 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3333 true, a->rt, iss_sf, true); 3334 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3335 return true; 3336 } 3337 3338 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3339 { 3340 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3341 MemOp memop; 3342 3343 /* Load with pointer authentication */ 3344 if (!dc_isar_feature(aa64_pauth, s)) { 3345 return false; 3346 } 3347 3348 if (a->rn == 31) { 3349 gen_check_sp_alignment(s); 3350 } 3351 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3352 3353 if (s->pauth_active) { 3354 if (!a->m) { 3355 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3356 tcg_constant_i64(0)); 3357 } else { 3358 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3359 tcg_constant_i64(0)); 3360 } 3361 } 3362 3363 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3364 3365 memop = finalize_memop(s, MO_64); 3366 3367 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3368 clean_addr = gen_mte_check1(s, dirty_addr, false, 3369 a->w || a->rn != 31, memop); 3370 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 /* extend */ false, /* iss_valid */ !a->w, 3374 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3375 3376 if (a->w) { 3377 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3378 } 3379 return true; 3380 } 3381 3382 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3383 { 3384 TCGv_i64 clean_addr, dirty_addr; 3385 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3386 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3387 3388 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3389 return false; 3390 } 3391 3392 if (a->rn == 31) { 3393 gen_check_sp_alignment(s); 3394 } 3395 3396 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3397 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3398 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3399 clean_addr = clean_data_tbi(s, dirty_addr); 3400 3401 /* 3402 * Load-AcquirePC semantics; we implement as the slightly more 3403 * restrictive Load-Acquire. 3404 */ 3405 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3406 a->rt, iss_sf, true); 3407 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3408 return true; 3409 } 3410 3411 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3412 { 3413 TCGv_i64 clean_addr, dirty_addr; 3414 MemOp mop = a->sz; 3415 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3416 3417 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3418 return false; 3419 } 3420 3421 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3422 3423 if (a->rn == 31) { 3424 gen_check_sp_alignment(s); 3425 } 3426 3427 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3428 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3429 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3430 clean_addr = clean_data_tbi(s, dirty_addr); 3431 3432 /* Store-Release semantics */ 3433 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3434 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3435 return true; 3436 } 3437 3438 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3439 { 3440 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3441 MemOp endian, align, mop; 3442 3443 int total; /* total bytes */ 3444 int elements; /* elements per vector */ 3445 int r; 3446 int size = a->sz; 3447 3448 if (!a->p && a->rm != 0) { 3449 /* For non-postindexed accesses the Rm field must be 0 */ 3450 return false; 3451 } 3452 if (size == 3 && !a->q && a->selem != 1) { 3453 return false; 3454 } 3455 if (!fp_access_check(s)) { 3456 return true; 3457 } 3458 3459 if (a->rn == 31) { 3460 gen_check_sp_alignment(s); 3461 } 3462 3463 /* For our purposes, bytes are always little-endian. */ 3464 endian = s->be_data; 3465 if (size == 0) { 3466 endian = MO_LE; 3467 } 3468 3469 total = a->rpt * a->selem * (a->q ? 16 : 8); 3470 tcg_rn = cpu_reg_sp(s, a->rn); 3471 3472 /* 3473 * Issue the MTE check vs the logical repeat count, before we 3474 * promote consecutive little-endian elements below. 3475 */ 3476 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3477 finalize_memop_asimd(s, size)); 3478 3479 /* 3480 * Consecutive little-endian elements from a single register 3481 * can be promoted to a larger little-endian operation. 3482 */ 3483 align = MO_ALIGN; 3484 if (a->selem == 1 && endian == MO_LE) { 3485 align = pow2_align(size); 3486 size = 3; 3487 } 3488 if (!s->align_mem) { 3489 align = 0; 3490 } 3491 mop = endian | size | align; 3492 3493 elements = (a->q ? 16 : 8) >> size; 3494 tcg_ebytes = tcg_constant_i64(1 << size); 3495 for (r = 0; r < a->rpt; r++) { 3496 int e; 3497 for (e = 0; e < elements; e++) { 3498 int xs; 3499 for (xs = 0; xs < a->selem; xs++) { 3500 int tt = (a->rt + r + xs) % 32; 3501 do_vec_ld(s, tt, e, clean_addr, mop); 3502 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3503 } 3504 } 3505 } 3506 3507 /* 3508 * For non-quad operations, setting a slice of the low 64 bits of 3509 * the register clears the high 64 bits (in the ARM ARM pseudocode 3510 * this is implicit in the fact that 'rval' is a 64 bit wide 3511 * variable). For quad operations, we might still need to zero 3512 * the high bits of SVE. 3513 */ 3514 for (r = 0; r < a->rpt * a->selem; r++) { 3515 int tt = (a->rt + r) % 32; 3516 clear_vec_high(s, a->q, tt); 3517 } 3518 3519 if (a->p) { 3520 if (a->rm == 31) { 3521 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3522 } else { 3523 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3524 } 3525 } 3526 return true; 3527 } 3528 3529 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3530 { 3531 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3532 MemOp endian, align, mop; 3533 3534 int total; /* total bytes */ 3535 int elements; /* elements per vector */ 3536 int r; 3537 int size = a->sz; 3538 3539 if (!a->p && a->rm != 0) { 3540 /* For non-postindexed accesses the Rm field must be 0 */ 3541 return false; 3542 } 3543 if (size == 3 && !a->q && a->selem != 1) { 3544 return false; 3545 } 3546 if (!fp_access_check(s)) { 3547 return true; 3548 } 3549 3550 if (a->rn == 31) { 3551 gen_check_sp_alignment(s); 3552 } 3553 3554 /* For our purposes, bytes are always little-endian. */ 3555 endian = s->be_data; 3556 if (size == 0) { 3557 endian = MO_LE; 3558 } 3559 3560 total = a->rpt * a->selem * (a->q ? 16 : 8); 3561 tcg_rn = cpu_reg_sp(s, a->rn); 3562 3563 /* 3564 * Issue the MTE check vs the logical repeat count, before we 3565 * promote consecutive little-endian elements below. 3566 */ 3567 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3568 finalize_memop_asimd(s, size)); 3569 3570 /* 3571 * Consecutive little-endian elements from a single register 3572 * can be promoted to a larger little-endian operation. 3573 */ 3574 align = MO_ALIGN; 3575 if (a->selem == 1 && endian == MO_LE) { 3576 align = pow2_align(size); 3577 size = 3; 3578 } 3579 if (!s->align_mem) { 3580 align = 0; 3581 } 3582 mop = endian | size | align; 3583 3584 elements = (a->q ? 16 : 8) >> size; 3585 tcg_ebytes = tcg_constant_i64(1 << size); 3586 for (r = 0; r < a->rpt; r++) { 3587 int e; 3588 for (e = 0; e < elements; e++) { 3589 int xs; 3590 for (xs = 0; xs < a->selem; xs++) { 3591 int tt = (a->rt + r + xs) % 32; 3592 do_vec_st(s, tt, e, clean_addr, mop); 3593 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3594 } 3595 } 3596 } 3597 3598 if (a->p) { 3599 if (a->rm == 31) { 3600 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3601 } else { 3602 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3603 } 3604 } 3605 return true; 3606 } 3607 3608 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3609 { 3610 int xs, total, rt; 3611 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3612 MemOp mop; 3613 3614 if (!a->p && a->rm != 0) { 3615 return false; 3616 } 3617 if (!fp_access_check(s)) { 3618 return true; 3619 } 3620 3621 if (a->rn == 31) { 3622 gen_check_sp_alignment(s); 3623 } 3624 3625 total = a->selem << a->scale; 3626 tcg_rn = cpu_reg_sp(s, a->rn); 3627 3628 mop = finalize_memop_asimd(s, a->scale); 3629 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3630 total, mop); 3631 3632 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3633 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3634 do_vec_st(s, rt, a->index, clean_addr, mop); 3635 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3636 } 3637 3638 if (a->p) { 3639 if (a->rm == 31) { 3640 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3641 } else { 3642 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3643 } 3644 } 3645 return true; 3646 } 3647 3648 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3649 { 3650 int xs, total, rt; 3651 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3652 MemOp mop; 3653 3654 if (!a->p && a->rm != 0) { 3655 return false; 3656 } 3657 if (!fp_access_check(s)) { 3658 return true; 3659 } 3660 3661 if (a->rn == 31) { 3662 gen_check_sp_alignment(s); 3663 } 3664 3665 total = a->selem << a->scale; 3666 tcg_rn = cpu_reg_sp(s, a->rn); 3667 3668 mop = finalize_memop_asimd(s, a->scale); 3669 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3670 total, mop); 3671 3672 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3673 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3674 do_vec_ld(s, rt, a->index, clean_addr, mop); 3675 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3676 } 3677 3678 if (a->p) { 3679 if (a->rm == 31) { 3680 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3681 } else { 3682 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3683 } 3684 } 3685 return true; 3686 } 3687 3688 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3689 { 3690 int xs, total, rt; 3691 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3692 MemOp mop; 3693 3694 if (!a->p && a->rm != 0) { 3695 return false; 3696 } 3697 if (!fp_access_check(s)) { 3698 return true; 3699 } 3700 3701 if (a->rn == 31) { 3702 gen_check_sp_alignment(s); 3703 } 3704 3705 total = a->selem << a->scale; 3706 tcg_rn = cpu_reg_sp(s, a->rn); 3707 3708 mop = finalize_memop_asimd(s, a->scale); 3709 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3710 total, mop); 3711 3712 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3713 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3714 /* Load and replicate to all elements */ 3715 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3716 3717 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3718 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3719 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3720 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3721 } 3722 3723 if (a->p) { 3724 if (a->rm == 31) { 3725 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3726 } else { 3727 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3728 } 3729 } 3730 return true; 3731 } 3732 3733 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3734 { 3735 TCGv_i64 addr, clean_addr, tcg_rt; 3736 int size = 4 << s->dcz_blocksize; 3737 3738 if (!dc_isar_feature(aa64_mte, s)) { 3739 return false; 3740 } 3741 if (s->current_el == 0) { 3742 return false; 3743 } 3744 3745 if (a->rn == 31) { 3746 gen_check_sp_alignment(s); 3747 } 3748 3749 addr = read_cpu_reg_sp(s, a->rn, true); 3750 tcg_gen_addi_i64(addr, addr, a->imm); 3751 tcg_rt = cpu_reg(s, a->rt); 3752 3753 if (s->ata) { 3754 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3755 } 3756 /* 3757 * The non-tags portion of STZGM is mostly like DC_ZVA, 3758 * except the alignment happens before the access. 3759 */ 3760 clean_addr = clean_data_tbi(s, addr); 3761 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3762 gen_helper_dc_zva(cpu_env, clean_addr); 3763 return true; 3764 } 3765 3766 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3767 { 3768 TCGv_i64 addr, clean_addr, tcg_rt; 3769 3770 if (!dc_isar_feature(aa64_mte, s)) { 3771 return false; 3772 } 3773 if (s->current_el == 0) { 3774 return false; 3775 } 3776 3777 if (a->rn == 31) { 3778 gen_check_sp_alignment(s); 3779 } 3780 3781 addr = read_cpu_reg_sp(s, a->rn, true); 3782 tcg_gen_addi_i64(addr, addr, a->imm); 3783 tcg_rt = cpu_reg(s, a->rt); 3784 3785 if (s->ata) { 3786 gen_helper_stgm(cpu_env, addr, tcg_rt); 3787 } else { 3788 MMUAccessType acc = MMU_DATA_STORE; 3789 int size = 4 << GMID_EL1_BS; 3790 3791 clean_addr = clean_data_tbi(s, addr); 3792 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3793 gen_probe_access(s, clean_addr, acc, size); 3794 } 3795 return true; 3796 } 3797 3798 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3799 { 3800 TCGv_i64 addr, clean_addr, tcg_rt; 3801 3802 if (!dc_isar_feature(aa64_mte, s)) { 3803 return false; 3804 } 3805 if (s->current_el == 0) { 3806 return false; 3807 } 3808 3809 if (a->rn == 31) { 3810 gen_check_sp_alignment(s); 3811 } 3812 3813 addr = read_cpu_reg_sp(s, a->rn, true); 3814 tcg_gen_addi_i64(addr, addr, a->imm); 3815 tcg_rt = cpu_reg(s, a->rt); 3816 3817 if (s->ata) { 3818 gen_helper_ldgm(tcg_rt, cpu_env, addr); 3819 } else { 3820 MMUAccessType acc = MMU_DATA_LOAD; 3821 int size = 4 << GMID_EL1_BS; 3822 3823 clean_addr = clean_data_tbi(s, addr); 3824 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3825 gen_probe_access(s, clean_addr, acc, size); 3826 /* The result tags are zeros. */ 3827 tcg_gen_movi_i64(tcg_rt, 0); 3828 } 3829 return true; 3830 } 3831 3832 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 3833 { 3834 TCGv_i64 addr, clean_addr, tcg_rt; 3835 3836 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3837 return false; 3838 } 3839 3840 if (a->rn == 31) { 3841 gen_check_sp_alignment(s); 3842 } 3843 3844 addr = read_cpu_reg_sp(s, a->rn, true); 3845 if (!a->p) { 3846 /* pre-index or signed offset */ 3847 tcg_gen_addi_i64(addr, addr, a->imm); 3848 } 3849 3850 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 3851 tcg_rt = cpu_reg(s, a->rt); 3852 if (s->ata) { 3853 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 3854 } else { 3855 /* 3856 * Tag access disabled: we must check for aborts on the load 3857 * load from [rn+offset], and then insert a 0 tag into rt. 3858 */ 3859 clean_addr = clean_data_tbi(s, addr); 3860 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 3861 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 3862 } 3863 3864 if (a->w) { 3865 /* pre-index or post-index */ 3866 if (a->p) { 3867 /* post-index */ 3868 tcg_gen_addi_i64(addr, addr, a->imm); 3869 } 3870 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3871 } 3872 return true; 3873 } 3874 3875 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 3876 { 3877 TCGv_i64 addr, tcg_rt; 3878 3879 if (a->rn == 31) { 3880 gen_check_sp_alignment(s); 3881 } 3882 3883 addr = read_cpu_reg_sp(s, a->rn, true); 3884 if (!a->p) { 3885 /* pre-index or signed offset */ 3886 tcg_gen_addi_i64(addr, addr, a->imm); 3887 } 3888 tcg_rt = cpu_reg_sp(s, a->rt); 3889 if (!s->ata) { 3890 /* 3891 * For STG and ST2G, we need to check alignment and probe memory. 3892 * TODO: For STZG and STZ2G, we could rely on the stores below, 3893 * at least for system mode; user-only won't enforce alignment. 3894 */ 3895 if (is_pair) { 3896 gen_helper_st2g_stub(cpu_env, addr); 3897 } else { 3898 gen_helper_stg_stub(cpu_env, addr); 3899 } 3900 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3901 if (is_pair) { 3902 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 3903 } else { 3904 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 3905 } 3906 } else { 3907 if (is_pair) { 3908 gen_helper_st2g(cpu_env, addr, tcg_rt); 3909 } else { 3910 gen_helper_stg(cpu_env, addr, tcg_rt); 3911 } 3912 } 3913 3914 if (is_zero) { 3915 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 3916 TCGv_i64 zero64 = tcg_constant_i64(0); 3917 TCGv_i128 zero128 = tcg_temp_new_i128(); 3918 int mem_index = get_mem_index(s); 3919 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 3920 3921 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 3922 3923 /* This is 1 or 2 atomic 16-byte operations. */ 3924 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3925 if (is_pair) { 3926 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 3927 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 3928 } 3929 } 3930 3931 if (a->w) { 3932 /* pre-index or post-index */ 3933 if (a->p) { 3934 /* post-index */ 3935 tcg_gen_addi_i64(addr, addr, a->imm); 3936 } 3937 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 3938 } 3939 return true; 3940 } 3941 3942 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 3943 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 3944 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 3945 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 3946 3947 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 3948 3949 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 3950 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 3951 { 3952 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 3953 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 3954 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 3955 3956 fn(tcg_rd, tcg_rn, tcg_imm); 3957 if (!a->sf) { 3958 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 3959 } 3960 return true; 3961 } 3962 3963 /* 3964 * PC-rel. addressing 3965 */ 3966 3967 static bool trans_ADR(DisasContext *s, arg_ri *a) 3968 { 3969 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 3970 return true; 3971 } 3972 3973 static bool trans_ADRP(DisasContext *s, arg_ri *a) 3974 { 3975 int64_t offset = (int64_t)a->imm << 12; 3976 3977 /* The page offset is ok for CF_PCREL. */ 3978 offset -= s->pc_curr & 0xfff; 3979 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 3980 return true; 3981 } 3982 3983 /* 3984 * Add/subtract (immediate) 3985 */ 3986 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 3987 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 3988 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 3989 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 3990 3991 /* 3992 * Add/subtract (immediate, with tags) 3993 */ 3994 3995 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 3996 bool sub_op) 3997 { 3998 TCGv_i64 tcg_rn, tcg_rd; 3999 int imm; 4000 4001 imm = a->uimm6 << LOG2_TAG_GRANULE; 4002 if (sub_op) { 4003 imm = -imm; 4004 } 4005 4006 tcg_rn = cpu_reg_sp(s, a->rn); 4007 tcg_rd = cpu_reg_sp(s, a->rd); 4008 4009 if (s->ata) { 4010 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4011 tcg_constant_i32(imm), 4012 tcg_constant_i32(a->uimm4)); 4013 } else { 4014 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4015 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4016 } 4017 return true; 4018 } 4019 4020 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4021 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4022 4023 /* The input should be a value in the bottom e bits (with higher 4024 * bits zero); returns that value replicated into every element 4025 * of size e in a 64 bit integer. 4026 */ 4027 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4028 { 4029 assert(e != 0); 4030 while (e < 64) { 4031 mask |= mask << e; 4032 e *= 2; 4033 } 4034 return mask; 4035 } 4036 4037 /* 4038 * Logical (immediate) 4039 */ 4040 4041 /* 4042 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4043 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4044 * value (ie should cause a guest UNDEF exception), and true if they are 4045 * valid, in which case the decoded bit pattern is written to result. 4046 */ 4047 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4048 unsigned int imms, unsigned int immr) 4049 { 4050 uint64_t mask; 4051 unsigned e, levels, s, r; 4052 int len; 4053 4054 assert(immn < 2 && imms < 64 && immr < 64); 4055 4056 /* The bit patterns we create here are 64 bit patterns which 4057 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4058 * 64 bits each. Each element contains the same value: a run 4059 * of between 1 and e-1 non-zero bits, rotated within the 4060 * element by between 0 and e-1 bits. 4061 * 4062 * The element size and run length are encoded into immn (1 bit) 4063 * and imms (6 bits) as follows: 4064 * 64 bit elements: immn = 1, imms = <length of run - 1> 4065 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4066 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4067 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4068 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4069 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4070 * Notice that immn = 0, imms = 11111x is the only combination 4071 * not covered by one of the above options; this is reserved. 4072 * Further, <length of run - 1> all-ones is a reserved pattern. 4073 * 4074 * In all cases the rotation is by immr % e (and immr is 6 bits). 4075 */ 4076 4077 /* First determine the element size */ 4078 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4079 if (len < 1) { 4080 /* This is the immn == 0, imms == 0x11111x case */ 4081 return false; 4082 } 4083 e = 1 << len; 4084 4085 levels = e - 1; 4086 s = imms & levels; 4087 r = immr & levels; 4088 4089 if (s == levels) { 4090 /* <length of run - 1> mustn't be all-ones. */ 4091 return false; 4092 } 4093 4094 /* Create the value of one element: s+1 set bits rotated 4095 * by r within the element (which is e bits wide)... 4096 */ 4097 mask = MAKE_64BIT_MASK(0, s + 1); 4098 if (r) { 4099 mask = (mask >> r) | (mask << (e - r)); 4100 mask &= MAKE_64BIT_MASK(0, e); 4101 } 4102 /* ...then replicate the element over the whole 64 bit value */ 4103 mask = bitfield_replicate(mask, e); 4104 *result = mask; 4105 return true; 4106 } 4107 4108 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4109 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4110 { 4111 TCGv_i64 tcg_rd, tcg_rn; 4112 uint64_t imm; 4113 4114 /* Some immediate field values are reserved. */ 4115 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4116 extract32(a->dbm, 0, 6), 4117 extract32(a->dbm, 6, 6))) { 4118 return false; 4119 } 4120 if (!a->sf) { 4121 imm &= 0xffffffffull; 4122 } 4123 4124 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4125 tcg_rn = cpu_reg(s, a->rn); 4126 4127 fn(tcg_rd, tcg_rn, imm); 4128 if (set_cc) { 4129 gen_logic_CC(a->sf, tcg_rd); 4130 } 4131 if (!a->sf) { 4132 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4133 } 4134 return true; 4135 } 4136 4137 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4138 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4139 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4140 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4141 4142 /* 4143 * Move wide (immediate) 4144 */ 4145 4146 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4147 { 4148 int pos = a->hw << 4; 4149 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4150 return true; 4151 } 4152 4153 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4154 { 4155 int pos = a->hw << 4; 4156 uint64_t imm = a->imm; 4157 4158 imm = ~(imm << pos); 4159 if (!a->sf) { 4160 imm = (uint32_t)imm; 4161 } 4162 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4163 return true; 4164 } 4165 4166 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4167 { 4168 int pos = a->hw << 4; 4169 TCGv_i64 tcg_rd, tcg_im; 4170 4171 tcg_rd = cpu_reg(s, a->rd); 4172 tcg_im = tcg_constant_i64(a->imm); 4173 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4174 if (!a->sf) { 4175 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4176 } 4177 return true; 4178 } 4179 4180 /* 4181 * Bitfield 4182 */ 4183 4184 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4185 { 4186 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4187 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4188 unsigned int bitsize = a->sf ? 64 : 32; 4189 unsigned int ri = a->immr; 4190 unsigned int si = a->imms; 4191 unsigned int pos, len; 4192 4193 if (si >= ri) { 4194 /* Wd<s-r:0> = Wn<s:r> */ 4195 len = (si - ri) + 1; 4196 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4197 if (!a->sf) { 4198 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4199 } 4200 } else { 4201 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4202 len = si + 1; 4203 pos = (bitsize - ri) & (bitsize - 1); 4204 4205 if (len < ri) { 4206 /* 4207 * Sign extend the destination field from len to fill the 4208 * balance of the word. Let the deposit below insert all 4209 * of those sign bits. 4210 */ 4211 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4212 len = ri; 4213 } 4214 4215 /* 4216 * We start with zero, and we haven't modified any bits outside 4217 * bitsize, therefore no final zero-extension is unneeded for !sf. 4218 */ 4219 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4220 } 4221 return true; 4222 } 4223 4224 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4225 { 4226 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4227 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4228 unsigned int bitsize = a->sf ? 64 : 32; 4229 unsigned int ri = a->immr; 4230 unsigned int si = a->imms; 4231 unsigned int pos, len; 4232 4233 tcg_rd = cpu_reg(s, a->rd); 4234 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4235 4236 if (si >= ri) { 4237 /* Wd<s-r:0> = Wn<s:r> */ 4238 len = (si - ri) + 1; 4239 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4240 } else { 4241 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4242 len = si + 1; 4243 pos = (bitsize - ri) & (bitsize - 1); 4244 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4245 } 4246 return true; 4247 } 4248 4249 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4250 { 4251 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4252 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4253 unsigned int bitsize = a->sf ? 64 : 32; 4254 unsigned int ri = a->immr; 4255 unsigned int si = a->imms; 4256 unsigned int pos, len; 4257 4258 tcg_rd = cpu_reg(s, a->rd); 4259 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4260 4261 if (si >= ri) { 4262 /* Wd<s-r:0> = Wn<s:r> */ 4263 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4264 len = (si - ri) + 1; 4265 pos = 0; 4266 } else { 4267 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4268 len = si + 1; 4269 pos = (bitsize - ri) & (bitsize - 1); 4270 } 4271 4272 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4273 if (!a->sf) { 4274 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4275 } 4276 return true; 4277 } 4278 4279 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4280 { 4281 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4282 4283 tcg_rd = cpu_reg(s, a->rd); 4284 4285 if (unlikely(a->imm == 0)) { 4286 /* 4287 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4288 * so an extract from bit 0 is a special case. 4289 */ 4290 if (a->sf) { 4291 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4292 } else { 4293 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4294 } 4295 } else { 4296 tcg_rm = cpu_reg(s, a->rm); 4297 tcg_rn = cpu_reg(s, a->rn); 4298 4299 if (a->sf) { 4300 /* Specialization to ROR happens in EXTRACT2. */ 4301 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4302 } else { 4303 TCGv_i32 t0 = tcg_temp_new_i32(); 4304 4305 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4306 if (a->rm == a->rn) { 4307 tcg_gen_rotri_i32(t0, t0, a->imm); 4308 } else { 4309 TCGv_i32 t1 = tcg_temp_new_i32(); 4310 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4311 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4312 } 4313 tcg_gen_extu_i32_i64(tcg_rd, t0); 4314 } 4315 } 4316 return true; 4317 } 4318 4319 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4320 * Note that it is the caller's responsibility to ensure that the 4321 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4322 * mandated semantics for out of range shifts. 4323 */ 4324 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4325 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4326 { 4327 switch (shift_type) { 4328 case A64_SHIFT_TYPE_LSL: 4329 tcg_gen_shl_i64(dst, src, shift_amount); 4330 break; 4331 case A64_SHIFT_TYPE_LSR: 4332 tcg_gen_shr_i64(dst, src, shift_amount); 4333 break; 4334 case A64_SHIFT_TYPE_ASR: 4335 if (!sf) { 4336 tcg_gen_ext32s_i64(dst, src); 4337 } 4338 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4339 break; 4340 case A64_SHIFT_TYPE_ROR: 4341 if (sf) { 4342 tcg_gen_rotr_i64(dst, src, shift_amount); 4343 } else { 4344 TCGv_i32 t0, t1; 4345 t0 = tcg_temp_new_i32(); 4346 t1 = tcg_temp_new_i32(); 4347 tcg_gen_extrl_i64_i32(t0, src); 4348 tcg_gen_extrl_i64_i32(t1, shift_amount); 4349 tcg_gen_rotr_i32(t0, t0, t1); 4350 tcg_gen_extu_i32_i64(dst, t0); 4351 } 4352 break; 4353 default: 4354 assert(FALSE); /* all shift types should be handled */ 4355 break; 4356 } 4357 4358 if (!sf) { /* zero extend final result */ 4359 tcg_gen_ext32u_i64(dst, dst); 4360 } 4361 } 4362 4363 /* Shift a TCGv src by immediate, put result in dst. 4364 * The shift amount must be in range (this should always be true as the 4365 * relevant instructions will UNDEF on bad shift immediates). 4366 */ 4367 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4368 enum a64_shift_type shift_type, unsigned int shift_i) 4369 { 4370 assert(shift_i < (sf ? 64 : 32)); 4371 4372 if (shift_i == 0) { 4373 tcg_gen_mov_i64(dst, src); 4374 } else { 4375 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4376 } 4377 } 4378 4379 /* Logical (shifted register) 4380 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4381 * +----+-----+-----------+-------+---+------+--------+------+------+ 4382 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4383 * +----+-----+-----------+-------+---+------+--------+------+------+ 4384 */ 4385 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4386 { 4387 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4388 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4389 4390 sf = extract32(insn, 31, 1); 4391 opc = extract32(insn, 29, 2); 4392 shift_type = extract32(insn, 22, 2); 4393 invert = extract32(insn, 21, 1); 4394 rm = extract32(insn, 16, 5); 4395 shift_amount = extract32(insn, 10, 6); 4396 rn = extract32(insn, 5, 5); 4397 rd = extract32(insn, 0, 5); 4398 4399 if (!sf && (shift_amount & (1 << 5))) { 4400 unallocated_encoding(s); 4401 return; 4402 } 4403 4404 tcg_rd = cpu_reg(s, rd); 4405 4406 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4407 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4408 * register-register MOV and MVN, so it is worth special casing. 4409 */ 4410 tcg_rm = cpu_reg(s, rm); 4411 if (invert) { 4412 tcg_gen_not_i64(tcg_rd, tcg_rm); 4413 if (!sf) { 4414 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4415 } 4416 } else { 4417 if (sf) { 4418 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4419 } else { 4420 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4421 } 4422 } 4423 return; 4424 } 4425 4426 tcg_rm = read_cpu_reg(s, rm, sf); 4427 4428 if (shift_amount) { 4429 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4430 } 4431 4432 tcg_rn = cpu_reg(s, rn); 4433 4434 switch (opc | (invert << 2)) { 4435 case 0: /* AND */ 4436 case 3: /* ANDS */ 4437 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4438 break; 4439 case 1: /* ORR */ 4440 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4441 break; 4442 case 2: /* EOR */ 4443 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4444 break; 4445 case 4: /* BIC */ 4446 case 7: /* BICS */ 4447 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4448 break; 4449 case 5: /* ORN */ 4450 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4451 break; 4452 case 6: /* EON */ 4453 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4454 break; 4455 default: 4456 assert(FALSE); 4457 break; 4458 } 4459 4460 if (!sf) { 4461 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4462 } 4463 4464 if (opc == 3) { 4465 gen_logic_CC(sf, tcg_rd); 4466 } 4467 } 4468 4469 /* 4470 * Add/subtract (extended register) 4471 * 4472 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4473 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4474 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4475 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4476 * 4477 * sf: 0 -> 32bit, 1 -> 64bit 4478 * op: 0 -> add , 1 -> sub 4479 * S: 1 -> set flags 4480 * opt: 00 4481 * option: extension type (see DecodeRegExtend) 4482 * imm3: optional shift to Rm 4483 * 4484 * Rd = Rn + LSL(extend(Rm), amount) 4485 */ 4486 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4487 { 4488 int rd = extract32(insn, 0, 5); 4489 int rn = extract32(insn, 5, 5); 4490 int imm3 = extract32(insn, 10, 3); 4491 int option = extract32(insn, 13, 3); 4492 int rm = extract32(insn, 16, 5); 4493 int opt = extract32(insn, 22, 2); 4494 bool setflags = extract32(insn, 29, 1); 4495 bool sub_op = extract32(insn, 30, 1); 4496 bool sf = extract32(insn, 31, 1); 4497 4498 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4499 TCGv_i64 tcg_rd; 4500 TCGv_i64 tcg_result; 4501 4502 if (imm3 > 4 || opt != 0) { 4503 unallocated_encoding(s); 4504 return; 4505 } 4506 4507 /* non-flag setting ops may use SP */ 4508 if (!setflags) { 4509 tcg_rd = cpu_reg_sp(s, rd); 4510 } else { 4511 tcg_rd = cpu_reg(s, rd); 4512 } 4513 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4514 4515 tcg_rm = read_cpu_reg(s, rm, sf); 4516 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4517 4518 tcg_result = tcg_temp_new_i64(); 4519 4520 if (!setflags) { 4521 if (sub_op) { 4522 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4523 } else { 4524 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4525 } 4526 } else { 4527 if (sub_op) { 4528 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4529 } else { 4530 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4531 } 4532 } 4533 4534 if (sf) { 4535 tcg_gen_mov_i64(tcg_rd, tcg_result); 4536 } else { 4537 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4538 } 4539 } 4540 4541 /* 4542 * Add/subtract (shifted register) 4543 * 4544 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4545 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4546 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4547 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4548 * 4549 * sf: 0 -> 32bit, 1 -> 64bit 4550 * op: 0 -> add , 1 -> sub 4551 * S: 1 -> set flags 4552 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4553 * imm6: Shift amount to apply to Rm before the add/sub 4554 */ 4555 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4556 { 4557 int rd = extract32(insn, 0, 5); 4558 int rn = extract32(insn, 5, 5); 4559 int imm6 = extract32(insn, 10, 6); 4560 int rm = extract32(insn, 16, 5); 4561 int shift_type = extract32(insn, 22, 2); 4562 bool setflags = extract32(insn, 29, 1); 4563 bool sub_op = extract32(insn, 30, 1); 4564 bool sf = extract32(insn, 31, 1); 4565 4566 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4567 TCGv_i64 tcg_rn, tcg_rm; 4568 TCGv_i64 tcg_result; 4569 4570 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4571 unallocated_encoding(s); 4572 return; 4573 } 4574 4575 tcg_rn = read_cpu_reg(s, rn, sf); 4576 tcg_rm = read_cpu_reg(s, rm, sf); 4577 4578 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4579 4580 tcg_result = tcg_temp_new_i64(); 4581 4582 if (!setflags) { 4583 if (sub_op) { 4584 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4585 } else { 4586 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4587 } 4588 } else { 4589 if (sub_op) { 4590 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4591 } else { 4592 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4593 } 4594 } 4595 4596 if (sf) { 4597 tcg_gen_mov_i64(tcg_rd, tcg_result); 4598 } else { 4599 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4600 } 4601 } 4602 4603 /* Data-processing (3 source) 4604 * 4605 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4606 * +--+------+-----------+------+------+----+------+------+------+ 4607 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4608 * +--+------+-----------+------+------+----+------+------+------+ 4609 */ 4610 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4611 { 4612 int rd = extract32(insn, 0, 5); 4613 int rn = extract32(insn, 5, 5); 4614 int ra = extract32(insn, 10, 5); 4615 int rm = extract32(insn, 16, 5); 4616 int op_id = (extract32(insn, 29, 3) << 4) | 4617 (extract32(insn, 21, 3) << 1) | 4618 extract32(insn, 15, 1); 4619 bool sf = extract32(insn, 31, 1); 4620 bool is_sub = extract32(op_id, 0, 1); 4621 bool is_high = extract32(op_id, 2, 1); 4622 bool is_signed = false; 4623 TCGv_i64 tcg_op1; 4624 TCGv_i64 tcg_op2; 4625 TCGv_i64 tcg_tmp; 4626 4627 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4628 switch (op_id) { 4629 case 0x42: /* SMADDL */ 4630 case 0x43: /* SMSUBL */ 4631 case 0x44: /* SMULH */ 4632 is_signed = true; 4633 break; 4634 case 0x0: /* MADD (32bit) */ 4635 case 0x1: /* MSUB (32bit) */ 4636 case 0x40: /* MADD (64bit) */ 4637 case 0x41: /* MSUB (64bit) */ 4638 case 0x4a: /* UMADDL */ 4639 case 0x4b: /* UMSUBL */ 4640 case 0x4c: /* UMULH */ 4641 break; 4642 default: 4643 unallocated_encoding(s); 4644 return; 4645 } 4646 4647 if (is_high) { 4648 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4649 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4650 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4651 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4652 4653 if (is_signed) { 4654 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4655 } else { 4656 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4657 } 4658 return; 4659 } 4660 4661 tcg_op1 = tcg_temp_new_i64(); 4662 tcg_op2 = tcg_temp_new_i64(); 4663 tcg_tmp = tcg_temp_new_i64(); 4664 4665 if (op_id < 0x42) { 4666 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4667 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4668 } else { 4669 if (is_signed) { 4670 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4671 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4672 } else { 4673 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4674 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4675 } 4676 } 4677 4678 if (ra == 31 && !is_sub) { 4679 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4680 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4681 } else { 4682 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4683 if (is_sub) { 4684 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4685 } else { 4686 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4687 } 4688 } 4689 4690 if (!sf) { 4691 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4692 } 4693 } 4694 4695 /* Add/subtract (with carry) 4696 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4697 * +--+--+--+------------------------+------+-------------+------+-----+ 4698 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4699 * +--+--+--+------------------------+------+-------------+------+-----+ 4700 */ 4701 4702 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4703 { 4704 unsigned int sf, op, setflags, rm, rn, rd; 4705 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4706 4707 sf = extract32(insn, 31, 1); 4708 op = extract32(insn, 30, 1); 4709 setflags = extract32(insn, 29, 1); 4710 rm = extract32(insn, 16, 5); 4711 rn = extract32(insn, 5, 5); 4712 rd = extract32(insn, 0, 5); 4713 4714 tcg_rd = cpu_reg(s, rd); 4715 tcg_rn = cpu_reg(s, rn); 4716 4717 if (op) { 4718 tcg_y = tcg_temp_new_i64(); 4719 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4720 } else { 4721 tcg_y = cpu_reg(s, rm); 4722 } 4723 4724 if (setflags) { 4725 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4726 } else { 4727 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4728 } 4729 } 4730 4731 /* 4732 * Rotate right into flags 4733 * 31 30 29 21 15 10 5 4 0 4734 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4735 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4736 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4737 */ 4738 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4739 { 4740 int mask = extract32(insn, 0, 4); 4741 int o2 = extract32(insn, 4, 1); 4742 int rn = extract32(insn, 5, 5); 4743 int imm6 = extract32(insn, 15, 6); 4744 int sf_op_s = extract32(insn, 29, 3); 4745 TCGv_i64 tcg_rn; 4746 TCGv_i32 nzcv; 4747 4748 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4749 unallocated_encoding(s); 4750 return; 4751 } 4752 4753 tcg_rn = read_cpu_reg(s, rn, 1); 4754 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4755 4756 nzcv = tcg_temp_new_i32(); 4757 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4758 4759 if (mask & 8) { /* N */ 4760 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4761 } 4762 if (mask & 4) { /* Z */ 4763 tcg_gen_not_i32(cpu_ZF, nzcv); 4764 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4765 } 4766 if (mask & 2) { /* C */ 4767 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4768 } 4769 if (mask & 1) { /* V */ 4770 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4771 } 4772 } 4773 4774 /* 4775 * Evaluate into flags 4776 * 31 30 29 21 15 14 10 5 4 0 4777 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4778 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4779 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4780 */ 4781 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4782 { 4783 int o3_mask = extract32(insn, 0, 5); 4784 int rn = extract32(insn, 5, 5); 4785 int o2 = extract32(insn, 15, 6); 4786 int sz = extract32(insn, 14, 1); 4787 int sf_op_s = extract32(insn, 29, 3); 4788 TCGv_i32 tmp; 4789 int shift; 4790 4791 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4792 !dc_isar_feature(aa64_condm_4, s)) { 4793 unallocated_encoding(s); 4794 return; 4795 } 4796 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4797 4798 tmp = tcg_temp_new_i32(); 4799 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4800 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4801 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4802 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4803 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4804 } 4805 4806 /* Conditional compare (immediate / register) 4807 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4808 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4809 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4810 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4811 * [1] y [0] [0] 4812 */ 4813 static void disas_cc(DisasContext *s, uint32_t insn) 4814 { 4815 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4816 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4817 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4818 DisasCompare c; 4819 4820 if (!extract32(insn, 29, 1)) { 4821 unallocated_encoding(s); 4822 return; 4823 } 4824 if (insn & (1 << 10 | 1 << 4)) { 4825 unallocated_encoding(s); 4826 return; 4827 } 4828 sf = extract32(insn, 31, 1); 4829 op = extract32(insn, 30, 1); 4830 is_imm = extract32(insn, 11, 1); 4831 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 4832 cond = extract32(insn, 12, 4); 4833 rn = extract32(insn, 5, 5); 4834 nzcv = extract32(insn, 0, 4); 4835 4836 /* Set T0 = !COND. */ 4837 tcg_t0 = tcg_temp_new_i32(); 4838 arm_test_cc(&c, cond); 4839 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 4840 4841 /* Load the arguments for the new comparison. */ 4842 if (is_imm) { 4843 tcg_y = tcg_temp_new_i64(); 4844 tcg_gen_movi_i64(tcg_y, y); 4845 } else { 4846 tcg_y = cpu_reg(s, y); 4847 } 4848 tcg_rn = cpu_reg(s, rn); 4849 4850 /* Set the flags for the new comparison. */ 4851 tcg_tmp = tcg_temp_new_i64(); 4852 if (op) { 4853 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4854 } else { 4855 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 4856 } 4857 4858 /* If COND was false, force the flags to #nzcv. Compute two masks 4859 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 4860 * For tcg hosts that support ANDC, we can make do with just T1. 4861 * In either case, allow the tcg optimizer to delete any unused mask. 4862 */ 4863 tcg_t1 = tcg_temp_new_i32(); 4864 tcg_t2 = tcg_temp_new_i32(); 4865 tcg_gen_neg_i32(tcg_t1, tcg_t0); 4866 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 4867 4868 if (nzcv & 8) { /* N */ 4869 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 4870 } else { 4871 if (TCG_TARGET_HAS_andc_i32) { 4872 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 4873 } else { 4874 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 4875 } 4876 } 4877 if (nzcv & 4) { /* Z */ 4878 if (TCG_TARGET_HAS_andc_i32) { 4879 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 4880 } else { 4881 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 4882 } 4883 } else { 4884 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 4885 } 4886 if (nzcv & 2) { /* C */ 4887 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 4888 } else { 4889 if (TCG_TARGET_HAS_andc_i32) { 4890 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 4891 } else { 4892 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 4893 } 4894 } 4895 if (nzcv & 1) { /* V */ 4896 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 4897 } else { 4898 if (TCG_TARGET_HAS_andc_i32) { 4899 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 4900 } else { 4901 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 4902 } 4903 } 4904 } 4905 4906 /* Conditional select 4907 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 4908 * +----+----+---+-----------------+------+------+-----+------+------+ 4909 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 4910 * +----+----+---+-----------------+------+------+-----+------+------+ 4911 */ 4912 static void disas_cond_select(DisasContext *s, uint32_t insn) 4913 { 4914 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 4915 TCGv_i64 tcg_rd, zero; 4916 DisasCompare64 c; 4917 4918 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 4919 /* S == 1 or op2<1> == 1 */ 4920 unallocated_encoding(s); 4921 return; 4922 } 4923 sf = extract32(insn, 31, 1); 4924 else_inv = extract32(insn, 30, 1); 4925 rm = extract32(insn, 16, 5); 4926 cond = extract32(insn, 12, 4); 4927 else_inc = extract32(insn, 10, 1); 4928 rn = extract32(insn, 5, 5); 4929 rd = extract32(insn, 0, 5); 4930 4931 tcg_rd = cpu_reg(s, rd); 4932 4933 a64_test_cc(&c, cond); 4934 zero = tcg_constant_i64(0); 4935 4936 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 4937 /* CSET & CSETM. */ 4938 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 4939 if (else_inv) { 4940 tcg_gen_neg_i64(tcg_rd, tcg_rd); 4941 } 4942 } else { 4943 TCGv_i64 t_true = cpu_reg(s, rn); 4944 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 4945 if (else_inv && else_inc) { 4946 tcg_gen_neg_i64(t_false, t_false); 4947 } else if (else_inv) { 4948 tcg_gen_not_i64(t_false, t_false); 4949 } else if (else_inc) { 4950 tcg_gen_addi_i64(t_false, t_false, 1); 4951 } 4952 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 4953 } 4954 4955 if (!sf) { 4956 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4957 } 4958 } 4959 4960 static void handle_clz(DisasContext *s, unsigned int sf, 4961 unsigned int rn, unsigned int rd) 4962 { 4963 TCGv_i64 tcg_rd, tcg_rn; 4964 tcg_rd = cpu_reg(s, rd); 4965 tcg_rn = cpu_reg(s, rn); 4966 4967 if (sf) { 4968 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 4969 } else { 4970 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4971 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4972 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 4973 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4974 } 4975 } 4976 4977 static void handle_cls(DisasContext *s, unsigned int sf, 4978 unsigned int rn, unsigned int rd) 4979 { 4980 TCGv_i64 tcg_rd, tcg_rn; 4981 tcg_rd = cpu_reg(s, rd); 4982 tcg_rn = cpu_reg(s, rn); 4983 4984 if (sf) { 4985 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 4986 } else { 4987 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 4988 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 4989 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 4990 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 4991 } 4992 } 4993 4994 static void handle_rbit(DisasContext *s, unsigned int sf, 4995 unsigned int rn, unsigned int rd) 4996 { 4997 TCGv_i64 tcg_rd, tcg_rn; 4998 tcg_rd = cpu_reg(s, rd); 4999 tcg_rn = cpu_reg(s, rn); 5000 5001 if (sf) { 5002 gen_helper_rbit64(tcg_rd, tcg_rn); 5003 } else { 5004 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5005 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5006 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5007 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5008 } 5009 } 5010 5011 /* REV with sf==1, opcode==3 ("REV64") */ 5012 static void handle_rev64(DisasContext *s, unsigned int sf, 5013 unsigned int rn, unsigned int rd) 5014 { 5015 if (!sf) { 5016 unallocated_encoding(s); 5017 return; 5018 } 5019 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5020 } 5021 5022 /* REV with sf==0, opcode==2 5023 * REV32 (sf==1, opcode==2) 5024 */ 5025 static void handle_rev32(DisasContext *s, unsigned int sf, 5026 unsigned int rn, unsigned int rd) 5027 { 5028 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5029 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5030 5031 if (sf) { 5032 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5033 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5034 } else { 5035 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5036 } 5037 } 5038 5039 /* REV16 (opcode==1) */ 5040 static void handle_rev16(DisasContext *s, unsigned int sf, 5041 unsigned int rn, unsigned int rd) 5042 { 5043 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5044 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5045 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5046 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5047 5048 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5049 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5050 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5051 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5052 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5053 } 5054 5055 /* Data-processing (1 source) 5056 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5057 * +----+---+---+-----------------+---------+--------+------+------+ 5058 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5059 * +----+---+---+-----------------+---------+--------+------+------+ 5060 */ 5061 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5062 { 5063 unsigned int sf, opcode, opcode2, rn, rd; 5064 TCGv_i64 tcg_rd; 5065 5066 if (extract32(insn, 29, 1)) { 5067 unallocated_encoding(s); 5068 return; 5069 } 5070 5071 sf = extract32(insn, 31, 1); 5072 opcode = extract32(insn, 10, 6); 5073 opcode2 = extract32(insn, 16, 5); 5074 rn = extract32(insn, 5, 5); 5075 rd = extract32(insn, 0, 5); 5076 5077 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5078 5079 switch (MAP(sf, opcode2, opcode)) { 5080 case MAP(0, 0x00, 0x00): /* RBIT */ 5081 case MAP(1, 0x00, 0x00): 5082 handle_rbit(s, sf, rn, rd); 5083 break; 5084 case MAP(0, 0x00, 0x01): /* REV16 */ 5085 case MAP(1, 0x00, 0x01): 5086 handle_rev16(s, sf, rn, rd); 5087 break; 5088 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5089 case MAP(1, 0x00, 0x02): 5090 handle_rev32(s, sf, rn, rd); 5091 break; 5092 case MAP(1, 0x00, 0x03): /* REV64 */ 5093 handle_rev64(s, sf, rn, rd); 5094 break; 5095 case MAP(0, 0x00, 0x04): /* CLZ */ 5096 case MAP(1, 0x00, 0x04): 5097 handle_clz(s, sf, rn, rd); 5098 break; 5099 case MAP(0, 0x00, 0x05): /* CLS */ 5100 case MAP(1, 0x00, 0x05): 5101 handle_cls(s, sf, rn, rd); 5102 break; 5103 case MAP(1, 0x01, 0x00): /* PACIA */ 5104 if (s->pauth_active) { 5105 tcg_rd = cpu_reg(s, rd); 5106 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5107 } else if (!dc_isar_feature(aa64_pauth, s)) { 5108 goto do_unallocated; 5109 } 5110 break; 5111 case MAP(1, 0x01, 0x01): /* PACIB */ 5112 if (s->pauth_active) { 5113 tcg_rd = cpu_reg(s, rd); 5114 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5115 } else if (!dc_isar_feature(aa64_pauth, s)) { 5116 goto do_unallocated; 5117 } 5118 break; 5119 case MAP(1, 0x01, 0x02): /* PACDA */ 5120 if (s->pauth_active) { 5121 tcg_rd = cpu_reg(s, rd); 5122 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5123 } else if (!dc_isar_feature(aa64_pauth, s)) { 5124 goto do_unallocated; 5125 } 5126 break; 5127 case MAP(1, 0x01, 0x03): /* PACDB */ 5128 if (s->pauth_active) { 5129 tcg_rd = cpu_reg(s, rd); 5130 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5131 } else if (!dc_isar_feature(aa64_pauth, s)) { 5132 goto do_unallocated; 5133 } 5134 break; 5135 case MAP(1, 0x01, 0x04): /* AUTIA */ 5136 if (s->pauth_active) { 5137 tcg_rd = cpu_reg(s, rd); 5138 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5139 } else if (!dc_isar_feature(aa64_pauth, s)) { 5140 goto do_unallocated; 5141 } 5142 break; 5143 case MAP(1, 0x01, 0x05): /* AUTIB */ 5144 if (s->pauth_active) { 5145 tcg_rd = cpu_reg(s, rd); 5146 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5147 } else if (!dc_isar_feature(aa64_pauth, s)) { 5148 goto do_unallocated; 5149 } 5150 break; 5151 case MAP(1, 0x01, 0x06): /* AUTDA */ 5152 if (s->pauth_active) { 5153 tcg_rd = cpu_reg(s, rd); 5154 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5155 } else if (!dc_isar_feature(aa64_pauth, s)) { 5156 goto do_unallocated; 5157 } 5158 break; 5159 case MAP(1, 0x01, 0x07): /* AUTDB */ 5160 if (s->pauth_active) { 5161 tcg_rd = cpu_reg(s, rd); 5162 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5163 } else if (!dc_isar_feature(aa64_pauth, s)) { 5164 goto do_unallocated; 5165 } 5166 break; 5167 case MAP(1, 0x01, 0x08): /* PACIZA */ 5168 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5169 goto do_unallocated; 5170 } else if (s->pauth_active) { 5171 tcg_rd = cpu_reg(s, rd); 5172 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5173 } 5174 break; 5175 case MAP(1, 0x01, 0x09): /* PACIZB */ 5176 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5177 goto do_unallocated; 5178 } else if (s->pauth_active) { 5179 tcg_rd = cpu_reg(s, rd); 5180 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5181 } 5182 break; 5183 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5184 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5185 goto do_unallocated; 5186 } else if (s->pauth_active) { 5187 tcg_rd = cpu_reg(s, rd); 5188 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5189 } 5190 break; 5191 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5192 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5193 goto do_unallocated; 5194 } else if (s->pauth_active) { 5195 tcg_rd = cpu_reg(s, rd); 5196 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5197 } 5198 break; 5199 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5200 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5201 goto do_unallocated; 5202 } else if (s->pauth_active) { 5203 tcg_rd = cpu_reg(s, rd); 5204 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5205 } 5206 break; 5207 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5208 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5209 goto do_unallocated; 5210 } else if (s->pauth_active) { 5211 tcg_rd = cpu_reg(s, rd); 5212 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5213 } 5214 break; 5215 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5216 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5217 goto do_unallocated; 5218 } else if (s->pauth_active) { 5219 tcg_rd = cpu_reg(s, rd); 5220 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5221 } 5222 break; 5223 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5224 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5225 goto do_unallocated; 5226 } else if (s->pauth_active) { 5227 tcg_rd = cpu_reg(s, rd); 5228 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5229 } 5230 break; 5231 case MAP(1, 0x01, 0x10): /* XPACI */ 5232 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5233 goto do_unallocated; 5234 } else if (s->pauth_active) { 5235 tcg_rd = cpu_reg(s, rd); 5236 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5237 } 5238 break; 5239 case MAP(1, 0x01, 0x11): /* XPACD */ 5240 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5241 goto do_unallocated; 5242 } else if (s->pauth_active) { 5243 tcg_rd = cpu_reg(s, rd); 5244 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5245 } 5246 break; 5247 default: 5248 do_unallocated: 5249 unallocated_encoding(s); 5250 break; 5251 } 5252 5253 #undef MAP 5254 } 5255 5256 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5257 unsigned int rm, unsigned int rn, unsigned int rd) 5258 { 5259 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5260 tcg_rd = cpu_reg(s, rd); 5261 5262 if (!sf && is_signed) { 5263 tcg_n = tcg_temp_new_i64(); 5264 tcg_m = tcg_temp_new_i64(); 5265 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5266 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5267 } else { 5268 tcg_n = read_cpu_reg(s, rn, sf); 5269 tcg_m = read_cpu_reg(s, rm, sf); 5270 } 5271 5272 if (is_signed) { 5273 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5274 } else { 5275 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5276 } 5277 5278 if (!sf) { /* zero extend final result */ 5279 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5280 } 5281 } 5282 5283 /* LSLV, LSRV, ASRV, RORV */ 5284 static void handle_shift_reg(DisasContext *s, 5285 enum a64_shift_type shift_type, unsigned int sf, 5286 unsigned int rm, unsigned int rn, unsigned int rd) 5287 { 5288 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5289 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5290 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5291 5292 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5293 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5294 } 5295 5296 /* CRC32[BHWX], CRC32C[BHWX] */ 5297 static void handle_crc32(DisasContext *s, 5298 unsigned int sf, unsigned int sz, bool crc32c, 5299 unsigned int rm, unsigned int rn, unsigned int rd) 5300 { 5301 TCGv_i64 tcg_acc, tcg_val; 5302 TCGv_i32 tcg_bytes; 5303 5304 if (!dc_isar_feature(aa64_crc32, s) 5305 || (sf == 1 && sz != 3) 5306 || (sf == 0 && sz == 3)) { 5307 unallocated_encoding(s); 5308 return; 5309 } 5310 5311 if (sz == 3) { 5312 tcg_val = cpu_reg(s, rm); 5313 } else { 5314 uint64_t mask; 5315 switch (sz) { 5316 case 0: 5317 mask = 0xFF; 5318 break; 5319 case 1: 5320 mask = 0xFFFF; 5321 break; 5322 case 2: 5323 mask = 0xFFFFFFFF; 5324 break; 5325 default: 5326 g_assert_not_reached(); 5327 } 5328 tcg_val = tcg_temp_new_i64(); 5329 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5330 } 5331 5332 tcg_acc = cpu_reg(s, rn); 5333 tcg_bytes = tcg_constant_i32(1 << sz); 5334 5335 if (crc32c) { 5336 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5337 } else { 5338 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5339 } 5340 } 5341 5342 /* Data-processing (2 source) 5343 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5344 * +----+---+---+-----------------+------+--------+------+------+ 5345 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5346 * +----+---+---+-----------------+------+--------+------+------+ 5347 */ 5348 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5349 { 5350 unsigned int sf, rm, opcode, rn, rd, setflag; 5351 sf = extract32(insn, 31, 1); 5352 setflag = extract32(insn, 29, 1); 5353 rm = extract32(insn, 16, 5); 5354 opcode = extract32(insn, 10, 6); 5355 rn = extract32(insn, 5, 5); 5356 rd = extract32(insn, 0, 5); 5357 5358 if (setflag && opcode != 0) { 5359 unallocated_encoding(s); 5360 return; 5361 } 5362 5363 switch (opcode) { 5364 case 0: /* SUBP(S) */ 5365 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5366 goto do_unallocated; 5367 } else { 5368 TCGv_i64 tcg_n, tcg_m, tcg_d; 5369 5370 tcg_n = read_cpu_reg_sp(s, rn, true); 5371 tcg_m = read_cpu_reg_sp(s, rm, true); 5372 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5373 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5374 tcg_d = cpu_reg(s, rd); 5375 5376 if (setflag) { 5377 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5378 } else { 5379 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5380 } 5381 } 5382 break; 5383 case 2: /* UDIV */ 5384 handle_div(s, false, sf, rm, rn, rd); 5385 break; 5386 case 3: /* SDIV */ 5387 handle_div(s, true, sf, rm, rn, rd); 5388 break; 5389 case 4: /* IRG */ 5390 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5391 goto do_unallocated; 5392 } 5393 if (s->ata) { 5394 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5395 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5396 } else { 5397 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5398 cpu_reg_sp(s, rn)); 5399 } 5400 break; 5401 case 5: /* GMI */ 5402 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5403 goto do_unallocated; 5404 } else { 5405 TCGv_i64 t = tcg_temp_new_i64(); 5406 5407 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5408 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5409 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5410 } 5411 break; 5412 case 8: /* LSLV */ 5413 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5414 break; 5415 case 9: /* LSRV */ 5416 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5417 break; 5418 case 10: /* ASRV */ 5419 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5420 break; 5421 case 11: /* RORV */ 5422 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5423 break; 5424 case 12: /* PACGA */ 5425 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5426 goto do_unallocated; 5427 } 5428 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5429 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5430 break; 5431 case 16: 5432 case 17: 5433 case 18: 5434 case 19: 5435 case 20: 5436 case 21: 5437 case 22: 5438 case 23: /* CRC32 */ 5439 { 5440 int sz = extract32(opcode, 0, 2); 5441 bool crc32c = extract32(opcode, 2, 1); 5442 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5443 break; 5444 } 5445 default: 5446 do_unallocated: 5447 unallocated_encoding(s); 5448 break; 5449 } 5450 } 5451 5452 /* 5453 * Data processing - register 5454 * 31 30 29 28 25 21 20 16 10 0 5455 * +--+---+--+---+-------+-----+-------+-------+---------+ 5456 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5457 * +--+---+--+---+-------+-----+-------+-------+---------+ 5458 */ 5459 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5460 { 5461 int op0 = extract32(insn, 30, 1); 5462 int op1 = extract32(insn, 28, 1); 5463 int op2 = extract32(insn, 21, 4); 5464 int op3 = extract32(insn, 10, 6); 5465 5466 if (!op1) { 5467 if (op2 & 8) { 5468 if (op2 & 1) { 5469 /* Add/sub (extended register) */ 5470 disas_add_sub_ext_reg(s, insn); 5471 } else { 5472 /* Add/sub (shifted register) */ 5473 disas_add_sub_reg(s, insn); 5474 } 5475 } else { 5476 /* Logical (shifted register) */ 5477 disas_logic_reg(s, insn); 5478 } 5479 return; 5480 } 5481 5482 switch (op2) { 5483 case 0x0: 5484 switch (op3) { 5485 case 0x00: /* Add/subtract (with carry) */ 5486 disas_adc_sbc(s, insn); 5487 break; 5488 5489 case 0x01: /* Rotate right into flags */ 5490 case 0x21: 5491 disas_rotate_right_into_flags(s, insn); 5492 break; 5493 5494 case 0x02: /* Evaluate into flags */ 5495 case 0x12: 5496 case 0x22: 5497 case 0x32: 5498 disas_evaluate_into_flags(s, insn); 5499 break; 5500 5501 default: 5502 goto do_unallocated; 5503 } 5504 break; 5505 5506 case 0x2: /* Conditional compare */ 5507 disas_cc(s, insn); /* both imm and reg forms */ 5508 break; 5509 5510 case 0x4: /* Conditional select */ 5511 disas_cond_select(s, insn); 5512 break; 5513 5514 case 0x6: /* Data-processing */ 5515 if (op0) { /* (1 source) */ 5516 disas_data_proc_1src(s, insn); 5517 } else { /* (2 source) */ 5518 disas_data_proc_2src(s, insn); 5519 } 5520 break; 5521 case 0x8 ... 0xf: /* (3 source) */ 5522 disas_data_proc_3src(s, insn); 5523 break; 5524 5525 default: 5526 do_unallocated: 5527 unallocated_encoding(s); 5528 break; 5529 } 5530 } 5531 5532 static void handle_fp_compare(DisasContext *s, int size, 5533 unsigned int rn, unsigned int rm, 5534 bool cmp_with_zero, bool signal_all_nans) 5535 { 5536 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5537 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5538 5539 if (size == MO_64) { 5540 TCGv_i64 tcg_vn, tcg_vm; 5541 5542 tcg_vn = read_fp_dreg(s, rn); 5543 if (cmp_with_zero) { 5544 tcg_vm = tcg_constant_i64(0); 5545 } else { 5546 tcg_vm = read_fp_dreg(s, rm); 5547 } 5548 if (signal_all_nans) { 5549 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5550 } else { 5551 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5552 } 5553 } else { 5554 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5555 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5556 5557 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5558 if (cmp_with_zero) { 5559 tcg_gen_movi_i32(tcg_vm, 0); 5560 } else { 5561 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5562 } 5563 5564 switch (size) { 5565 case MO_32: 5566 if (signal_all_nans) { 5567 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5568 } else { 5569 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5570 } 5571 break; 5572 case MO_16: 5573 if (signal_all_nans) { 5574 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5575 } else { 5576 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5577 } 5578 break; 5579 default: 5580 g_assert_not_reached(); 5581 } 5582 } 5583 5584 gen_set_nzcv(tcg_flags); 5585 } 5586 5587 /* Floating point compare 5588 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5589 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5590 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5591 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5592 */ 5593 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5594 { 5595 unsigned int mos, type, rm, op, rn, opc, op2r; 5596 int size; 5597 5598 mos = extract32(insn, 29, 3); 5599 type = extract32(insn, 22, 2); 5600 rm = extract32(insn, 16, 5); 5601 op = extract32(insn, 14, 2); 5602 rn = extract32(insn, 5, 5); 5603 opc = extract32(insn, 3, 2); 5604 op2r = extract32(insn, 0, 3); 5605 5606 if (mos || op || op2r) { 5607 unallocated_encoding(s); 5608 return; 5609 } 5610 5611 switch (type) { 5612 case 0: 5613 size = MO_32; 5614 break; 5615 case 1: 5616 size = MO_64; 5617 break; 5618 case 3: 5619 size = MO_16; 5620 if (dc_isar_feature(aa64_fp16, s)) { 5621 break; 5622 } 5623 /* fallthru */ 5624 default: 5625 unallocated_encoding(s); 5626 return; 5627 } 5628 5629 if (!fp_access_check(s)) { 5630 return; 5631 } 5632 5633 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5634 } 5635 5636 /* Floating point conditional compare 5637 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5638 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5639 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5640 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5641 */ 5642 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5643 { 5644 unsigned int mos, type, rm, cond, rn, op, nzcv; 5645 TCGLabel *label_continue = NULL; 5646 int size; 5647 5648 mos = extract32(insn, 29, 3); 5649 type = extract32(insn, 22, 2); 5650 rm = extract32(insn, 16, 5); 5651 cond = extract32(insn, 12, 4); 5652 rn = extract32(insn, 5, 5); 5653 op = extract32(insn, 4, 1); 5654 nzcv = extract32(insn, 0, 4); 5655 5656 if (mos) { 5657 unallocated_encoding(s); 5658 return; 5659 } 5660 5661 switch (type) { 5662 case 0: 5663 size = MO_32; 5664 break; 5665 case 1: 5666 size = MO_64; 5667 break; 5668 case 3: 5669 size = MO_16; 5670 if (dc_isar_feature(aa64_fp16, s)) { 5671 break; 5672 } 5673 /* fallthru */ 5674 default: 5675 unallocated_encoding(s); 5676 return; 5677 } 5678 5679 if (!fp_access_check(s)) { 5680 return; 5681 } 5682 5683 if (cond < 0x0e) { /* not always */ 5684 TCGLabel *label_match = gen_new_label(); 5685 label_continue = gen_new_label(); 5686 arm_gen_test_cc(cond, label_match); 5687 /* nomatch: */ 5688 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5689 tcg_gen_br(label_continue); 5690 gen_set_label(label_match); 5691 } 5692 5693 handle_fp_compare(s, size, rn, rm, false, op); 5694 5695 if (cond < 0x0e) { 5696 gen_set_label(label_continue); 5697 } 5698 } 5699 5700 /* Floating point conditional select 5701 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5702 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5703 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5704 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5705 */ 5706 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5707 { 5708 unsigned int mos, type, rm, cond, rn, rd; 5709 TCGv_i64 t_true, t_false; 5710 DisasCompare64 c; 5711 MemOp sz; 5712 5713 mos = extract32(insn, 29, 3); 5714 type = extract32(insn, 22, 2); 5715 rm = extract32(insn, 16, 5); 5716 cond = extract32(insn, 12, 4); 5717 rn = extract32(insn, 5, 5); 5718 rd = extract32(insn, 0, 5); 5719 5720 if (mos) { 5721 unallocated_encoding(s); 5722 return; 5723 } 5724 5725 switch (type) { 5726 case 0: 5727 sz = MO_32; 5728 break; 5729 case 1: 5730 sz = MO_64; 5731 break; 5732 case 3: 5733 sz = MO_16; 5734 if (dc_isar_feature(aa64_fp16, s)) { 5735 break; 5736 } 5737 /* fallthru */ 5738 default: 5739 unallocated_encoding(s); 5740 return; 5741 } 5742 5743 if (!fp_access_check(s)) { 5744 return; 5745 } 5746 5747 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5748 t_true = tcg_temp_new_i64(); 5749 t_false = tcg_temp_new_i64(); 5750 read_vec_element(s, t_true, rn, 0, sz); 5751 read_vec_element(s, t_false, rm, 0, sz); 5752 5753 a64_test_cc(&c, cond); 5754 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5755 t_true, t_false); 5756 5757 /* Note that sregs & hregs write back zeros to the high bits, 5758 and we've already done the zero-extension. */ 5759 write_fp_dreg(s, rd, t_true); 5760 } 5761 5762 /* Floating-point data-processing (1 source) - half precision */ 5763 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5764 { 5765 TCGv_ptr fpst = NULL; 5766 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5767 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5768 5769 switch (opcode) { 5770 case 0x0: /* FMOV */ 5771 tcg_gen_mov_i32(tcg_res, tcg_op); 5772 break; 5773 case 0x1: /* FABS */ 5774 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5775 break; 5776 case 0x2: /* FNEG */ 5777 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5778 break; 5779 case 0x3: /* FSQRT */ 5780 fpst = fpstatus_ptr(FPST_FPCR_F16); 5781 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5782 break; 5783 case 0x8: /* FRINTN */ 5784 case 0x9: /* FRINTP */ 5785 case 0xa: /* FRINTM */ 5786 case 0xb: /* FRINTZ */ 5787 case 0xc: /* FRINTA */ 5788 { 5789 TCGv_i32 tcg_rmode; 5790 5791 fpst = fpstatus_ptr(FPST_FPCR_F16); 5792 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5793 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5794 gen_restore_rmode(tcg_rmode, fpst); 5795 break; 5796 } 5797 case 0xe: /* FRINTX */ 5798 fpst = fpstatus_ptr(FPST_FPCR_F16); 5799 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5800 break; 5801 case 0xf: /* FRINTI */ 5802 fpst = fpstatus_ptr(FPST_FPCR_F16); 5803 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5804 break; 5805 default: 5806 g_assert_not_reached(); 5807 } 5808 5809 write_fp_sreg(s, rd, tcg_res); 5810 } 5811 5812 /* Floating-point data-processing (1 source) - single precision */ 5813 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5814 { 5815 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5816 TCGv_i32 tcg_op, tcg_res; 5817 TCGv_ptr fpst; 5818 int rmode = -1; 5819 5820 tcg_op = read_fp_sreg(s, rn); 5821 tcg_res = tcg_temp_new_i32(); 5822 5823 switch (opcode) { 5824 case 0x0: /* FMOV */ 5825 tcg_gen_mov_i32(tcg_res, tcg_op); 5826 goto done; 5827 case 0x1: /* FABS */ 5828 gen_helper_vfp_abss(tcg_res, tcg_op); 5829 goto done; 5830 case 0x2: /* FNEG */ 5831 gen_helper_vfp_negs(tcg_res, tcg_op); 5832 goto done; 5833 case 0x3: /* FSQRT */ 5834 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 5835 goto done; 5836 case 0x6: /* BFCVT */ 5837 gen_fpst = gen_helper_bfcvt; 5838 break; 5839 case 0x8: /* FRINTN */ 5840 case 0x9: /* FRINTP */ 5841 case 0xa: /* FRINTM */ 5842 case 0xb: /* FRINTZ */ 5843 case 0xc: /* FRINTA */ 5844 rmode = opcode & 7; 5845 gen_fpst = gen_helper_rints; 5846 break; 5847 case 0xe: /* FRINTX */ 5848 gen_fpst = gen_helper_rints_exact; 5849 break; 5850 case 0xf: /* FRINTI */ 5851 gen_fpst = gen_helper_rints; 5852 break; 5853 case 0x10: /* FRINT32Z */ 5854 rmode = FPROUNDING_ZERO; 5855 gen_fpst = gen_helper_frint32_s; 5856 break; 5857 case 0x11: /* FRINT32X */ 5858 gen_fpst = gen_helper_frint32_s; 5859 break; 5860 case 0x12: /* FRINT64Z */ 5861 rmode = FPROUNDING_ZERO; 5862 gen_fpst = gen_helper_frint64_s; 5863 break; 5864 case 0x13: /* FRINT64X */ 5865 gen_fpst = gen_helper_frint64_s; 5866 break; 5867 default: 5868 g_assert_not_reached(); 5869 } 5870 5871 fpst = fpstatus_ptr(FPST_FPCR); 5872 if (rmode >= 0) { 5873 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5874 gen_fpst(tcg_res, tcg_op, fpst); 5875 gen_restore_rmode(tcg_rmode, fpst); 5876 } else { 5877 gen_fpst(tcg_res, tcg_op, fpst); 5878 } 5879 5880 done: 5881 write_fp_sreg(s, rd, tcg_res); 5882 } 5883 5884 /* Floating-point data-processing (1 source) - double precision */ 5885 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 5886 { 5887 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 5888 TCGv_i64 tcg_op, tcg_res; 5889 TCGv_ptr fpst; 5890 int rmode = -1; 5891 5892 switch (opcode) { 5893 case 0x0: /* FMOV */ 5894 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 5895 return; 5896 } 5897 5898 tcg_op = read_fp_dreg(s, rn); 5899 tcg_res = tcg_temp_new_i64(); 5900 5901 switch (opcode) { 5902 case 0x1: /* FABS */ 5903 gen_helper_vfp_absd(tcg_res, tcg_op); 5904 goto done; 5905 case 0x2: /* FNEG */ 5906 gen_helper_vfp_negd(tcg_res, tcg_op); 5907 goto done; 5908 case 0x3: /* FSQRT */ 5909 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 5910 goto done; 5911 case 0x8: /* FRINTN */ 5912 case 0x9: /* FRINTP */ 5913 case 0xa: /* FRINTM */ 5914 case 0xb: /* FRINTZ */ 5915 case 0xc: /* FRINTA */ 5916 rmode = opcode & 7; 5917 gen_fpst = gen_helper_rintd; 5918 break; 5919 case 0xe: /* FRINTX */ 5920 gen_fpst = gen_helper_rintd_exact; 5921 break; 5922 case 0xf: /* FRINTI */ 5923 gen_fpst = gen_helper_rintd; 5924 break; 5925 case 0x10: /* FRINT32Z */ 5926 rmode = FPROUNDING_ZERO; 5927 gen_fpst = gen_helper_frint32_d; 5928 break; 5929 case 0x11: /* FRINT32X */ 5930 gen_fpst = gen_helper_frint32_d; 5931 break; 5932 case 0x12: /* FRINT64Z */ 5933 rmode = FPROUNDING_ZERO; 5934 gen_fpst = gen_helper_frint64_d; 5935 break; 5936 case 0x13: /* FRINT64X */ 5937 gen_fpst = gen_helper_frint64_d; 5938 break; 5939 default: 5940 g_assert_not_reached(); 5941 } 5942 5943 fpst = fpstatus_ptr(FPST_FPCR); 5944 if (rmode >= 0) { 5945 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 5946 gen_fpst(tcg_res, tcg_op, fpst); 5947 gen_restore_rmode(tcg_rmode, fpst); 5948 } else { 5949 gen_fpst(tcg_res, tcg_op, fpst); 5950 } 5951 5952 done: 5953 write_fp_dreg(s, rd, tcg_res); 5954 } 5955 5956 static void handle_fp_fcvt(DisasContext *s, int opcode, 5957 int rd, int rn, int dtype, int ntype) 5958 { 5959 switch (ntype) { 5960 case 0x0: 5961 { 5962 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 5963 if (dtype == 1) { 5964 /* Single to double */ 5965 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 5966 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 5967 write_fp_dreg(s, rd, tcg_rd); 5968 } else { 5969 /* Single to half */ 5970 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5971 TCGv_i32 ahp = get_ahp_flag(); 5972 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5973 5974 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5975 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5976 write_fp_sreg(s, rd, tcg_rd); 5977 } 5978 break; 5979 } 5980 case 0x1: 5981 { 5982 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 5983 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 5984 if (dtype == 0) { 5985 /* Double to single */ 5986 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 5987 } else { 5988 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 5989 TCGv_i32 ahp = get_ahp_flag(); 5990 /* Double to half */ 5991 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 5992 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 5993 } 5994 write_fp_sreg(s, rd, tcg_rd); 5995 break; 5996 } 5997 case 0x3: 5998 { 5999 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6000 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6001 TCGv_i32 tcg_ahp = get_ahp_flag(); 6002 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6003 if (dtype == 0) { 6004 /* Half to single */ 6005 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6006 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6007 write_fp_sreg(s, rd, tcg_rd); 6008 } else { 6009 /* Half to double */ 6010 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6011 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6012 write_fp_dreg(s, rd, tcg_rd); 6013 } 6014 break; 6015 } 6016 default: 6017 g_assert_not_reached(); 6018 } 6019 } 6020 6021 /* Floating point data-processing (1 source) 6022 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6023 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6024 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6025 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6026 */ 6027 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6028 { 6029 int mos = extract32(insn, 29, 3); 6030 int type = extract32(insn, 22, 2); 6031 int opcode = extract32(insn, 15, 6); 6032 int rn = extract32(insn, 5, 5); 6033 int rd = extract32(insn, 0, 5); 6034 6035 if (mos) { 6036 goto do_unallocated; 6037 } 6038 6039 switch (opcode) { 6040 case 0x4: case 0x5: case 0x7: 6041 { 6042 /* FCVT between half, single and double precision */ 6043 int dtype = extract32(opcode, 0, 2); 6044 if (type == 2 || dtype == type) { 6045 goto do_unallocated; 6046 } 6047 if (!fp_access_check(s)) { 6048 return; 6049 } 6050 6051 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6052 break; 6053 } 6054 6055 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6056 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6057 goto do_unallocated; 6058 } 6059 /* fall through */ 6060 case 0x0 ... 0x3: 6061 case 0x8 ... 0xc: 6062 case 0xe ... 0xf: 6063 /* 32-to-32 and 64-to-64 ops */ 6064 switch (type) { 6065 case 0: 6066 if (!fp_access_check(s)) { 6067 return; 6068 } 6069 handle_fp_1src_single(s, opcode, rd, rn); 6070 break; 6071 case 1: 6072 if (!fp_access_check(s)) { 6073 return; 6074 } 6075 handle_fp_1src_double(s, opcode, rd, rn); 6076 break; 6077 case 3: 6078 if (!dc_isar_feature(aa64_fp16, s)) { 6079 goto do_unallocated; 6080 } 6081 6082 if (!fp_access_check(s)) { 6083 return; 6084 } 6085 handle_fp_1src_half(s, opcode, rd, rn); 6086 break; 6087 default: 6088 goto do_unallocated; 6089 } 6090 break; 6091 6092 case 0x6: 6093 switch (type) { 6094 case 1: /* BFCVT */ 6095 if (!dc_isar_feature(aa64_bf16, s)) { 6096 goto do_unallocated; 6097 } 6098 if (!fp_access_check(s)) { 6099 return; 6100 } 6101 handle_fp_1src_single(s, opcode, rd, rn); 6102 break; 6103 default: 6104 goto do_unallocated; 6105 } 6106 break; 6107 6108 default: 6109 do_unallocated: 6110 unallocated_encoding(s); 6111 break; 6112 } 6113 } 6114 6115 /* Floating-point data-processing (2 source) - single precision */ 6116 static void handle_fp_2src_single(DisasContext *s, int opcode, 6117 int rd, int rn, int rm) 6118 { 6119 TCGv_i32 tcg_op1; 6120 TCGv_i32 tcg_op2; 6121 TCGv_i32 tcg_res; 6122 TCGv_ptr fpst; 6123 6124 tcg_res = tcg_temp_new_i32(); 6125 fpst = fpstatus_ptr(FPST_FPCR); 6126 tcg_op1 = read_fp_sreg(s, rn); 6127 tcg_op2 = read_fp_sreg(s, rm); 6128 6129 switch (opcode) { 6130 case 0x0: /* FMUL */ 6131 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6132 break; 6133 case 0x1: /* FDIV */ 6134 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6135 break; 6136 case 0x2: /* FADD */ 6137 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6138 break; 6139 case 0x3: /* FSUB */ 6140 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6141 break; 6142 case 0x4: /* FMAX */ 6143 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6144 break; 6145 case 0x5: /* FMIN */ 6146 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6147 break; 6148 case 0x6: /* FMAXNM */ 6149 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6150 break; 6151 case 0x7: /* FMINNM */ 6152 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6153 break; 6154 case 0x8: /* FNMUL */ 6155 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6156 gen_helper_vfp_negs(tcg_res, tcg_res); 6157 break; 6158 } 6159 6160 write_fp_sreg(s, rd, tcg_res); 6161 } 6162 6163 /* Floating-point data-processing (2 source) - double precision */ 6164 static void handle_fp_2src_double(DisasContext *s, int opcode, 6165 int rd, int rn, int rm) 6166 { 6167 TCGv_i64 tcg_op1; 6168 TCGv_i64 tcg_op2; 6169 TCGv_i64 tcg_res; 6170 TCGv_ptr fpst; 6171 6172 tcg_res = tcg_temp_new_i64(); 6173 fpst = fpstatus_ptr(FPST_FPCR); 6174 tcg_op1 = read_fp_dreg(s, rn); 6175 tcg_op2 = read_fp_dreg(s, rm); 6176 6177 switch (opcode) { 6178 case 0x0: /* FMUL */ 6179 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6180 break; 6181 case 0x1: /* FDIV */ 6182 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6183 break; 6184 case 0x2: /* FADD */ 6185 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6186 break; 6187 case 0x3: /* FSUB */ 6188 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6189 break; 6190 case 0x4: /* FMAX */ 6191 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6192 break; 6193 case 0x5: /* FMIN */ 6194 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6195 break; 6196 case 0x6: /* FMAXNM */ 6197 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6198 break; 6199 case 0x7: /* FMINNM */ 6200 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6201 break; 6202 case 0x8: /* FNMUL */ 6203 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6204 gen_helper_vfp_negd(tcg_res, tcg_res); 6205 break; 6206 } 6207 6208 write_fp_dreg(s, rd, tcg_res); 6209 } 6210 6211 /* Floating-point data-processing (2 source) - half precision */ 6212 static void handle_fp_2src_half(DisasContext *s, int opcode, 6213 int rd, int rn, int rm) 6214 { 6215 TCGv_i32 tcg_op1; 6216 TCGv_i32 tcg_op2; 6217 TCGv_i32 tcg_res; 6218 TCGv_ptr fpst; 6219 6220 tcg_res = tcg_temp_new_i32(); 6221 fpst = fpstatus_ptr(FPST_FPCR_F16); 6222 tcg_op1 = read_fp_hreg(s, rn); 6223 tcg_op2 = read_fp_hreg(s, rm); 6224 6225 switch (opcode) { 6226 case 0x0: /* FMUL */ 6227 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6228 break; 6229 case 0x1: /* FDIV */ 6230 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6231 break; 6232 case 0x2: /* FADD */ 6233 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6234 break; 6235 case 0x3: /* FSUB */ 6236 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6237 break; 6238 case 0x4: /* FMAX */ 6239 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6240 break; 6241 case 0x5: /* FMIN */ 6242 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6243 break; 6244 case 0x6: /* FMAXNM */ 6245 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6246 break; 6247 case 0x7: /* FMINNM */ 6248 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6249 break; 6250 case 0x8: /* FNMUL */ 6251 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6252 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6253 break; 6254 default: 6255 g_assert_not_reached(); 6256 } 6257 6258 write_fp_sreg(s, rd, tcg_res); 6259 } 6260 6261 /* Floating point data-processing (2 source) 6262 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6263 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6264 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6265 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6266 */ 6267 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6268 { 6269 int mos = extract32(insn, 29, 3); 6270 int type = extract32(insn, 22, 2); 6271 int rd = extract32(insn, 0, 5); 6272 int rn = extract32(insn, 5, 5); 6273 int rm = extract32(insn, 16, 5); 6274 int opcode = extract32(insn, 12, 4); 6275 6276 if (opcode > 8 || mos) { 6277 unallocated_encoding(s); 6278 return; 6279 } 6280 6281 switch (type) { 6282 case 0: 6283 if (!fp_access_check(s)) { 6284 return; 6285 } 6286 handle_fp_2src_single(s, opcode, rd, rn, rm); 6287 break; 6288 case 1: 6289 if (!fp_access_check(s)) { 6290 return; 6291 } 6292 handle_fp_2src_double(s, opcode, rd, rn, rm); 6293 break; 6294 case 3: 6295 if (!dc_isar_feature(aa64_fp16, s)) { 6296 unallocated_encoding(s); 6297 return; 6298 } 6299 if (!fp_access_check(s)) { 6300 return; 6301 } 6302 handle_fp_2src_half(s, opcode, rd, rn, rm); 6303 break; 6304 default: 6305 unallocated_encoding(s); 6306 } 6307 } 6308 6309 /* Floating-point data-processing (3 source) - single precision */ 6310 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6311 int rd, int rn, int rm, int ra) 6312 { 6313 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6314 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6315 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6316 6317 tcg_op1 = read_fp_sreg(s, rn); 6318 tcg_op2 = read_fp_sreg(s, rm); 6319 tcg_op3 = read_fp_sreg(s, ra); 6320 6321 /* These are fused multiply-add, and must be done as one 6322 * floating point operation with no rounding between the 6323 * multiplication and addition steps. 6324 * NB that doing the negations here as separate steps is 6325 * correct : an input NaN should come out with its sign bit 6326 * flipped if it is a negated-input. 6327 */ 6328 if (o1 == true) { 6329 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6330 } 6331 6332 if (o0 != o1) { 6333 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6334 } 6335 6336 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6337 6338 write_fp_sreg(s, rd, tcg_res); 6339 } 6340 6341 /* Floating-point data-processing (3 source) - double precision */ 6342 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6343 int rd, int rn, int rm, int ra) 6344 { 6345 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6346 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6347 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6348 6349 tcg_op1 = read_fp_dreg(s, rn); 6350 tcg_op2 = read_fp_dreg(s, rm); 6351 tcg_op3 = read_fp_dreg(s, ra); 6352 6353 /* These are fused multiply-add, and must be done as one 6354 * floating point operation with no rounding between the 6355 * multiplication and addition steps. 6356 * NB that doing the negations here as separate steps is 6357 * correct : an input NaN should come out with its sign bit 6358 * flipped if it is a negated-input. 6359 */ 6360 if (o1 == true) { 6361 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6362 } 6363 6364 if (o0 != o1) { 6365 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6366 } 6367 6368 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6369 6370 write_fp_dreg(s, rd, tcg_res); 6371 } 6372 6373 /* Floating-point data-processing (3 source) - half precision */ 6374 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6375 int rd, int rn, int rm, int ra) 6376 { 6377 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6378 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6379 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6380 6381 tcg_op1 = read_fp_hreg(s, rn); 6382 tcg_op2 = read_fp_hreg(s, rm); 6383 tcg_op3 = read_fp_hreg(s, ra); 6384 6385 /* These are fused multiply-add, and must be done as one 6386 * floating point operation with no rounding between the 6387 * multiplication and addition steps. 6388 * NB that doing the negations here as separate steps is 6389 * correct : an input NaN should come out with its sign bit 6390 * flipped if it is a negated-input. 6391 */ 6392 if (o1 == true) { 6393 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6394 } 6395 6396 if (o0 != o1) { 6397 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6398 } 6399 6400 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6401 6402 write_fp_sreg(s, rd, tcg_res); 6403 } 6404 6405 /* Floating point data-processing (3 source) 6406 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6407 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6408 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6409 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6410 */ 6411 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6412 { 6413 int mos = extract32(insn, 29, 3); 6414 int type = extract32(insn, 22, 2); 6415 int rd = extract32(insn, 0, 5); 6416 int rn = extract32(insn, 5, 5); 6417 int ra = extract32(insn, 10, 5); 6418 int rm = extract32(insn, 16, 5); 6419 bool o0 = extract32(insn, 15, 1); 6420 bool o1 = extract32(insn, 21, 1); 6421 6422 if (mos) { 6423 unallocated_encoding(s); 6424 return; 6425 } 6426 6427 switch (type) { 6428 case 0: 6429 if (!fp_access_check(s)) { 6430 return; 6431 } 6432 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6433 break; 6434 case 1: 6435 if (!fp_access_check(s)) { 6436 return; 6437 } 6438 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6439 break; 6440 case 3: 6441 if (!dc_isar_feature(aa64_fp16, s)) { 6442 unallocated_encoding(s); 6443 return; 6444 } 6445 if (!fp_access_check(s)) { 6446 return; 6447 } 6448 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6449 break; 6450 default: 6451 unallocated_encoding(s); 6452 } 6453 } 6454 6455 /* Floating point immediate 6456 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6457 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6458 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6459 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6460 */ 6461 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6462 { 6463 int rd = extract32(insn, 0, 5); 6464 int imm5 = extract32(insn, 5, 5); 6465 int imm8 = extract32(insn, 13, 8); 6466 int type = extract32(insn, 22, 2); 6467 int mos = extract32(insn, 29, 3); 6468 uint64_t imm; 6469 MemOp sz; 6470 6471 if (mos || imm5) { 6472 unallocated_encoding(s); 6473 return; 6474 } 6475 6476 switch (type) { 6477 case 0: 6478 sz = MO_32; 6479 break; 6480 case 1: 6481 sz = MO_64; 6482 break; 6483 case 3: 6484 sz = MO_16; 6485 if (dc_isar_feature(aa64_fp16, s)) { 6486 break; 6487 } 6488 /* fallthru */ 6489 default: 6490 unallocated_encoding(s); 6491 return; 6492 } 6493 6494 if (!fp_access_check(s)) { 6495 return; 6496 } 6497 6498 imm = vfp_expand_imm(sz, imm8); 6499 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6500 } 6501 6502 /* Handle floating point <=> fixed point conversions. Note that we can 6503 * also deal with fp <=> integer conversions as a special case (scale == 64) 6504 * OPTME: consider handling that special case specially or at least skipping 6505 * the call to scalbn in the helpers for zero shifts. 6506 */ 6507 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6508 bool itof, int rmode, int scale, int sf, int type) 6509 { 6510 bool is_signed = !(opcode & 1); 6511 TCGv_ptr tcg_fpstatus; 6512 TCGv_i32 tcg_shift, tcg_single; 6513 TCGv_i64 tcg_double; 6514 6515 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6516 6517 tcg_shift = tcg_constant_i32(64 - scale); 6518 6519 if (itof) { 6520 TCGv_i64 tcg_int = cpu_reg(s, rn); 6521 if (!sf) { 6522 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6523 6524 if (is_signed) { 6525 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6526 } else { 6527 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6528 } 6529 6530 tcg_int = tcg_extend; 6531 } 6532 6533 switch (type) { 6534 case 1: /* float64 */ 6535 tcg_double = tcg_temp_new_i64(); 6536 if (is_signed) { 6537 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6538 tcg_shift, tcg_fpstatus); 6539 } else { 6540 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6541 tcg_shift, tcg_fpstatus); 6542 } 6543 write_fp_dreg(s, rd, tcg_double); 6544 break; 6545 6546 case 0: /* float32 */ 6547 tcg_single = tcg_temp_new_i32(); 6548 if (is_signed) { 6549 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6550 tcg_shift, tcg_fpstatus); 6551 } else { 6552 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6553 tcg_shift, tcg_fpstatus); 6554 } 6555 write_fp_sreg(s, rd, tcg_single); 6556 break; 6557 6558 case 3: /* float16 */ 6559 tcg_single = tcg_temp_new_i32(); 6560 if (is_signed) { 6561 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6562 tcg_shift, tcg_fpstatus); 6563 } else { 6564 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6565 tcg_shift, tcg_fpstatus); 6566 } 6567 write_fp_sreg(s, rd, tcg_single); 6568 break; 6569 6570 default: 6571 g_assert_not_reached(); 6572 } 6573 } else { 6574 TCGv_i64 tcg_int = cpu_reg(s, rd); 6575 TCGv_i32 tcg_rmode; 6576 6577 if (extract32(opcode, 2, 1)) { 6578 /* There are too many rounding modes to all fit into rmode, 6579 * so FCVTA[US] is a special case. 6580 */ 6581 rmode = FPROUNDING_TIEAWAY; 6582 } 6583 6584 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6585 6586 switch (type) { 6587 case 1: /* float64 */ 6588 tcg_double = read_fp_dreg(s, rn); 6589 if (is_signed) { 6590 if (!sf) { 6591 gen_helper_vfp_tosld(tcg_int, tcg_double, 6592 tcg_shift, tcg_fpstatus); 6593 } else { 6594 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6595 tcg_shift, tcg_fpstatus); 6596 } 6597 } else { 6598 if (!sf) { 6599 gen_helper_vfp_tould(tcg_int, tcg_double, 6600 tcg_shift, tcg_fpstatus); 6601 } else { 6602 gen_helper_vfp_touqd(tcg_int, tcg_double, 6603 tcg_shift, tcg_fpstatus); 6604 } 6605 } 6606 if (!sf) { 6607 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6608 } 6609 break; 6610 6611 case 0: /* float32 */ 6612 tcg_single = read_fp_sreg(s, rn); 6613 if (sf) { 6614 if (is_signed) { 6615 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6616 tcg_shift, tcg_fpstatus); 6617 } else { 6618 gen_helper_vfp_touqs(tcg_int, tcg_single, 6619 tcg_shift, tcg_fpstatus); 6620 } 6621 } else { 6622 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6623 if (is_signed) { 6624 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6625 tcg_shift, tcg_fpstatus); 6626 } else { 6627 gen_helper_vfp_touls(tcg_dest, tcg_single, 6628 tcg_shift, tcg_fpstatus); 6629 } 6630 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6631 } 6632 break; 6633 6634 case 3: /* float16 */ 6635 tcg_single = read_fp_sreg(s, rn); 6636 if (sf) { 6637 if (is_signed) { 6638 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6639 tcg_shift, tcg_fpstatus); 6640 } else { 6641 gen_helper_vfp_touqh(tcg_int, tcg_single, 6642 tcg_shift, tcg_fpstatus); 6643 } 6644 } else { 6645 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6646 if (is_signed) { 6647 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6648 tcg_shift, tcg_fpstatus); 6649 } else { 6650 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6651 tcg_shift, tcg_fpstatus); 6652 } 6653 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6654 } 6655 break; 6656 6657 default: 6658 g_assert_not_reached(); 6659 } 6660 6661 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6662 } 6663 } 6664 6665 /* Floating point <-> fixed point conversions 6666 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6667 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6668 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6669 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6670 */ 6671 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6672 { 6673 int rd = extract32(insn, 0, 5); 6674 int rn = extract32(insn, 5, 5); 6675 int scale = extract32(insn, 10, 6); 6676 int opcode = extract32(insn, 16, 3); 6677 int rmode = extract32(insn, 19, 2); 6678 int type = extract32(insn, 22, 2); 6679 bool sbit = extract32(insn, 29, 1); 6680 bool sf = extract32(insn, 31, 1); 6681 bool itof; 6682 6683 if (sbit || (!sf && scale < 32)) { 6684 unallocated_encoding(s); 6685 return; 6686 } 6687 6688 switch (type) { 6689 case 0: /* float32 */ 6690 case 1: /* float64 */ 6691 break; 6692 case 3: /* float16 */ 6693 if (dc_isar_feature(aa64_fp16, s)) { 6694 break; 6695 } 6696 /* fallthru */ 6697 default: 6698 unallocated_encoding(s); 6699 return; 6700 } 6701 6702 switch ((rmode << 3) | opcode) { 6703 case 0x2: /* SCVTF */ 6704 case 0x3: /* UCVTF */ 6705 itof = true; 6706 break; 6707 case 0x18: /* FCVTZS */ 6708 case 0x19: /* FCVTZU */ 6709 itof = false; 6710 break; 6711 default: 6712 unallocated_encoding(s); 6713 return; 6714 } 6715 6716 if (!fp_access_check(s)) { 6717 return; 6718 } 6719 6720 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6721 } 6722 6723 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6724 { 6725 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6726 * without conversion. 6727 */ 6728 6729 if (itof) { 6730 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6731 TCGv_i64 tmp; 6732 6733 switch (type) { 6734 case 0: 6735 /* 32 bit */ 6736 tmp = tcg_temp_new_i64(); 6737 tcg_gen_ext32u_i64(tmp, tcg_rn); 6738 write_fp_dreg(s, rd, tmp); 6739 break; 6740 case 1: 6741 /* 64 bit */ 6742 write_fp_dreg(s, rd, tcg_rn); 6743 break; 6744 case 2: 6745 /* 64 bit to top half. */ 6746 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6747 clear_vec_high(s, true, rd); 6748 break; 6749 case 3: 6750 /* 16 bit */ 6751 tmp = tcg_temp_new_i64(); 6752 tcg_gen_ext16u_i64(tmp, tcg_rn); 6753 write_fp_dreg(s, rd, tmp); 6754 break; 6755 default: 6756 g_assert_not_reached(); 6757 } 6758 } else { 6759 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6760 6761 switch (type) { 6762 case 0: 6763 /* 32 bit */ 6764 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6765 break; 6766 case 1: 6767 /* 64 bit */ 6768 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6769 break; 6770 case 2: 6771 /* 64 bits from top half */ 6772 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6773 break; 6774 case 3: 6775 /* 16 bit */ 6776 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6777 break; 6778 default: 6779 g_assert_not_reached(); 6780 } 6781 } 6782 } 6783 6784 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6785 { 6786 TCGv_i64 t = read_fp_dreg(s, rn); 6787 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6788 6789 gen_helper_fjcvtzs(t, t, fpstatus); 6790 6791 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6792 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6793 tcg_gen_movi_i32(cpu_CF, 0); 6794 tcg_gen_movi_i32(cpu_NF, 0); 6795 tcg_gen_movi_i32(cpu_VF, 0); 6796 } 6797 6798 /* Floating point <-> integer conversions 6799 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6800 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6801 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6802 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6803 */ 6804 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6805 { 6806 int rd = extract32(insn, 0, 5); 6807 int rn = extract32(insn, 5, 5); 6808 int opcode = extract32(insn, 16, 3); 6809 int rmode = extract32(insn, 19, 2); 6810 int type = extract32(insn, 22, 2); 6811 bool sbit = extract32(insn, 29, 1); 6812 bool sf = extract32(insn, 31, 1); 6813 bool itof = false; 6814 6815 if (sbit) { 6816 goto do_unallocated; 6817 } 6818 6819 switch (opcode) { 6820 case 2: /* SCVTF */ 6821 case 3: /* UCVTF */ 6822 itof = true; 6823 /* fallthru */ 6824 case 4: /* FCVTAS */ 6825 case 5: /* FCVTAU */ 6826 if (rmode != 0) { 6827 goto do_unallocated; 6828 } 6829 /* fallthru */ 6830 case 0: /* FCVT[NPMZ]S */ 6831 case 1: /* FCVT[NPMZ]U */ 6832 switch (type) { 6833 case 0: /* float32 */ 6834 case 1: /* float64 */ 6835 break; 6836 case 3: /* float16 */ 6837 if (!dc_isar_feature(aa64_fp16, s)) { 6838 goto do_unallocated; 6839 } 6840 break; 6841 default: 6842 goto do_unallocated; 6843 } 6844 if (!fp_access_check(s)) { 6845 return; 6846 } 6847 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 6848 break; 6849 6850 default: 6851 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 6852 case 0b01100110: /* FMOV half <-> 32-bit int */ 6853 case 0b01100111: 6854 case 0b11100110: /* FMOV half <-> 64-bit int */ 6855 case 0b11100111: 6856 if (!dc_isar_feature(aa64_fp16, s)) { 6857 goto do_unallocated; 6858 } 6859 /* fallthru */ 6860 case 0b00000110: /* FMOV 32-bit */ 6861 case 0b00000111: 6862 case 0b10100110: /* FMOV 64-bit */ 6863 case 0b10100111: 6864 case 0b11001110: /* FMOV top half of 128-bit */ 6865 case 0b11001111: 6866 if (!fp_access_check(s)) { 6867 return; 6868 } 6869 itof = opcode & 1; 6870 handle_fmov(s, rd, rn, type, itof); 6871 break; 6872 6873 case 0b00111110: /* FJCVTZS */ 6874 if (!dc_isar_feature(aa64_jscvt, s)) { 6875 goto do_unallocated; 6876 } else if (fp_access_check(s)) { 6877 handle_fjcvtzs(s, rd, rn); 6878 } 6879 break; 6880 6881 default: 6882 do_unallocated: 6883 unallocated_encoding(s); 6884 return; 6885 } 6886 break; 6887 } 6888 } 6889 6890 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 6891 * 31 30 29 28 25 24 0 6892 * +---+---+---+---------+-----------------------------+ 6893 * | | 0 | | 1 1 1 1 | | 6894 * +---+---+---+---------+-----------------------------+ 6895 */ 6896 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 6897 { 6898 if (extract32(insn, 24, 1)) { 6899 /* Floating point data-processing (3 source) */ 6900 disas_fp_3src(s, insn); 6901 } else if (extract32(insn, 21, 1) == 0) { 6902 /* Floating point to fixed point conversions */ 6903 disas_fp_fixed_conv(s, insn); 6904 } else { 6905 switch (extract32(insn, 10, 2)) { 6906 case 1: 6907 /* Floating point conditional compare */ 6908 disas_fp_ccomp(s, insn); 6909 break; 6910 case 2: 6911 /* Floating point data-processing (2 source) */ 6912 disas_fp_2src(s, insn); 6913 break; 6914 case 3: 6915 /* Floating point conditional select */ 6916 disas_fp_csel(s, insn); 6917 break; 6918 case 0: 6919 switch (ctz32(extract32(insn, 12, 4))) { 6920 case 0: /* [15:12] == xxx1 */ 6921 /* Floating point immediate */ 6922 disas_fp_imm(s, insn); 6923 break; 6924 case 1: /* [15:12] == xx10 */ 6925 /* Floating point compare */ 6926 disas_fp_compare(s, insn); 6927 break; 6928 case 2: /* [15:12] == x100 */ 6929 /* Floating point data-processing (1 source) */ 6930 disas_fp_1src(s, insn); 6931 break; 6932 case 3: /* [15:12] == 1000 */ 6933 unallocated_encoding(s); 6934 break; 6935 default: /* [15:12] == 0000 */ 6936 /* Floating point <-> integer conversions */ 6937 disas_fp_int_conv(s, insn); 6938 break; 6939 } 6940 break; 6941 } 6942 } 6943 } 6944 6945 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 6946 int pos) 6947 { 6948 /* Extract 64 bits from the middle of two concatenated 64 bit 6949 * vector register slices left:right. The extracted bits start 6950 * at 'pos' bits into the right (least significant) side. 6951 * We return the result in tcg_right, and guarantee not to 6952 * trash tcg_left. 6953 */ 6954 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6955 assert(pos > 0 && pos < 64); 6956 6957 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 6958 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 6959 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 6960 } 6961 6962 /* EXT 6963 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 6964 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6965 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 6966 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 6967 */ 6968 static void disas_simd_ext(DisasContext *s, uint32_t insn) 6969 { 6970 int is_q = extract32(insn, 30, 1); 6971 int op2 = extract32(insn, 22, 2); 6972 int imm4 = extract32(insn, 11, 4); 6973 int rm = extract32(insn, 16, 5); 6974 int rn = extract32(insn, 5, 5); 6975 int rd = extract32(insn, 0, 5); 6976 int pos = imm4 << 3; 6977 TCGv_i64 tcg_resl, tcg_resh; 6978 6979 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 6980 unallocated_encoding(s); 6981 return; 6982 } 6983 6984 if (!fp_access_check(s)) { 6985 return; 6986 } 6987 6988 tcg_resh = tcg_temp_new_i64(); 6989 tcg_resl = tcg_temp_new_i64(); 6990 6991 /* Vd gets bits starting at pos bits into Vm:Vn. This is 6992 * either extracting 128 bits from a 128:128 concatenation, or 6993 * extracting 64 bits from a 64:64 concatenation. 6994 */ 6995 if (!is_q) { 6996 read_vec_element(s, tcg_resl, rn, 0, MO_64); 6997 if (pos != 0) { 6998 read_vec_element(s, tcg_resh, rm, 0, MO_64); 6999 do_ext64(s, tcg_resh, tcg_resl, pos); 7000 } 7001 } else { 7002 TCGv_i64 tcg_hh; 7003 typedef struct { 7004 int reg; 7005 int elt; 7006 } EltPosns; 7007 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7008 EltPosns *elt = eltposns; 7009 7010 if (pos >= 64) { 7011 elt++; 7012 pos -= 64; 7013 } 7014 7015 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7016 elt++; 7017 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7018 elt++; 7019 if (pos != 0) { 7020 do_ext64(s, tcg_resh, tcg_resl, pos); 7021 tcg_hh = tcg_temp_new_i64(); 7022 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7023 do_ext64(s, tcg_hh, tcg_resh, pos); 7024 } 7025 } 7026 7027 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7028 if (is_q) { 7029 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7030 } 7031 clear_vec_high(s, is_q, rd); 7032 } 7033 7034 /* TBL/TBX 7035 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7036 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7037 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7038 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7039 */ 7040 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7041 { 7042 int op2 = extract32(insn, 22, 2); 7043 int is_q = extract32(insn, 30, 1); 7044 int rm = extract32(insn, 16, 5); 7045 int rn = extract32(insn, 5, 5); 7046 int rd = extract32(insn, 0, 5); 7047 int is_tbx = extract32(insn, 12, 1); 7048 int len = (extract32(insn, 13, 2) + 1) * 16; 7049 7050 if (op2 != 0) { 7051 unallocated_encoding(s); 7052 return; 7053 } 7054 7055 if (!fp_access_check(s)) { 7056 return; 7057 } 7058 7059 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7060 vec_full_reg_offset(s, rm), cpu_env, 7061 is_q ? 16 : 8, vec_full_reg_size(s), 7062 (len << 6) | (is_tbx << 5) | rn, 7063 gen_helper_simd_tblx); 7064 } 7065 7066 /* ZIP/UZP/TRN 7067 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7068 * +---+---+-------------+------+---+------+---+------------------+------+ 7069 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7070 * +---+---+-------------+------+---+------+---+------------------+------+ 7071 */ 7072 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7073 { 7074 int rd = extract32(insn, 0, 5); 7075 int rn = extract32(insn, 5, 5); 7076 int rm = extract32(insn, 16, 5); 7077 int size = extract32(insn, 22, 2); 7078 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7079 * bit 2 indicates 1 vs 2 variant of the insn. 7080 */ 7081 int opcode = extract32(insn, 12, 2); 7082 bool part = extract32(insn, 14, 1); 7083 bool is_q = extract32(insn, 30, 1); 7084 int esize = 8 << size; 7085 int i; 7086 int datasize = is_q ? 128 : 64; 7087 int elements = datasize / esize; 7088 TCGv_i64 tcg_res[2], tcg_ele; 7089 7090 if (opcode == 0 || (size == 3 && !is_q)) { 7091 unallocated_encoding(s); 7092 return; 7093 } 7094 7095 if (!fp_access_check(s)) { 7096 return; 7097 } 7098 7099 tcg_res[0] = tcg_temp_new_i64(); 7100 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7101 tcg_ele = tcg_temp_new_i64(); 7102 7103 for (i = 0; i < elements; i++) { 7104 int o, w; 7105 7106 switch (opcode) { 7107 case 1: /* UZP1/2 */ 7108 { 7109 int midpoint = elements / 2; 7110 if (i < midpoint) { 7111 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7112 } else { 7113 read_vec_element(s, tcg_ele, rm, 7114 2 * (i - midpoint) + part, size); 7115 } 7116 break; 7117 } 7118 case 2: /* TRN1/2 */ 7119 if (i & 1) { 7120 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7121 } else { 7122 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7123 } 7124 break; 7125 case 3: /* ZIP1/2 */ 7126 { 7127 int base = part * elements / 2; 7128 if (i & 1) { 7129 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7130 } else { 7131 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7132 } 7133 break; 7134 } 7135 default: 7136 g_assert_not_reached(); 7137 } 7138 7139 w = (i * esize) / 64; 7140 o = (i * esize) % 64; 7141 if (o == 0) { 7142 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7143 } else { 7144 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7145 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7146 } 7147 } 7148 7149 for (i = 0; i <= is_q; ++i) { 7150 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7151 } 7152 clear_vec_high(s, is_q, rd); 7153 } 7154 7155 /* 7156 * do_reduction_op helper 7157 * 7158 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7159 * important for correct NaN propagation that we do these 7160 * operations in exactly the order specified by the pseudocode. 7161 * 7162 * This is a recursive function, TCG temps should be freed by the 7163 * calling function once it is done with the values. 7164 */ 7165 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7166 int esize, int size, int vmap, TCGv_ptr fpst) 7167 { 7168 if (esize == size) { 7169 int element; 7170 MemOp msize = esize == 16 ? MO_16 : MO_32; 7171 TCGv_i32 tcg_elem; 7172 7173 /* We should have one register left here */ 7174 assert(ctpop8(vmap) == 1); 7175 element = ctz32(vmap); 7176 assert(element < 8); 7177 7178 tcg_elem = tcg_temp_new_i32(); 7179 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7180 return tcg_elem; 7181 } else { 7182 int bits = size / 2; 7183 int shift = ctpop8(vmap) / 2; 7184 int vmap_lo = (vmap >> shift) & vmap; 7185 int vmap_hi = (vmap & ~vmap_lo); 7186 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7187 7188 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7189 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7190 tcg_res = tcg_temp_new_i32(); 7191 7192 switch (fpopcode) { 7193 case 0x0c: /* fmaxnmv half-precision */ 7194 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7195 break; 7196 case 0x0f: /* fmaxv half-precision */ 7197 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7198 break; 7199 case 0x1c: /* fminnmv half-precision */ 7200 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7201 break; 7202 case 0x1f: /* fminv half-precision */ 7203 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7204 break; 7205 case 0x2c: /* fmaxnmv */ 7206 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7207 break; 7208 case 0x2f: /* fmaxv */ 7209 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7210 break; 7211 case 0x3c: /* fminnmv */ 7212 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7213 break; 7214 case 0x3f: /* fminv */ 7215 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7216 break; 7217 default: 7218 g_assert_not_reached(); 7219 } 7220 return tcg_res; 7221 } 7222 } 7223 7224 /* AdvSIMD across lanes 7225 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7226 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7227 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7228 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7229 */ 7230 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7231 { 7232 int rd = extract32(insn, 0, 5); 7233 int rn = extract32(insn, 5, 5); 7234 int size = extract32(insn, 22, 2); 7235 int opcode = extract32(insn, 12, 5); 7236 bool is_q = extract32(insn, 30, 1); 7237 bool is_u = extract32(insn, 29, 1); 7238 bool is_fp = false; 7239 bool is_min = false; 7240 int esize; 7241 int elements; 7242 int i; 7243 TCGv_i64 tcg_res, tcg_elt; 7244 7245 switch (opcode) { 7246 case 0x1b: /* ADDV */ 7247 if (is_u) { 7248 unallocated_encoding(s); 7249 return; 7250 } 7251 /* fall through */ 7252 case 0x3: /* SADDLV, UADDLV */ 7253 case 0xa: /* SMAXV, UMAXV */ 7254 case 0x1a: /* SMINV, UMINV */ 7255 if (size == 3 || (size == 2 && !is_q)) { 7256 unallocated_encoding(s); 7257 return; 7258 } 7259 break; 7260 case 0xc: /* FMAXNMV, FMINNMV */ 7261 case 0xf: /* FMAXV, FMINV */ 7262 /* Bit 1 of size field encodes min vs max and the actual size 7263 * depends on the encoding of the U bit. If not set (and FP16 7264 * enabled) then we do half-precision float instead of single 7265 * precision. 7266 */ 7267 is_min = extract32(size, 1, 1); 7268 is_fp = true; 7269 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7270 size = 1; 7271 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7272 unallocated_encoding(s); 7273 return; 7274 } else { 7275 size = 2; 7276 } 7277 break; 7278 default: 7279 unallocated_encoding(s); 7280 return; 7281 } 7282 7283 if (!fp_access_check(s)) { 7284 return; 7285 } 7286 7287 esize = 8 << size; 7288 elements = (is_q ? 128 : 64) / esize; 7289 7290 tcg_res = tcg_temp_new_i64(); 7291 tcg_elt = tcg_temp_new_i64(); 7292 7293 /* These instructions operate across all lanes of a vector 7294 * to produce a single result. We can guarantee that a 64 7295 * bit intermediate is sufficient: 7296 * + for [US]ADDLV the maximum element size is 32 bits, and 7297 * the result type is 64 bits 7298 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7299 * same as the element size, which is 32 bits at most 7300 * For the integer operations we can choose to work at 64 7301 * or 32 bits and truncate at the end; for simplicity 7302 * we use 64 bits always. The floating point 7303 * ops do require 32 bit intermediates, though. 7304 */ 7305 if (!is_fp) { 7306 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7307 7308 for (i = 1; i < elements; i++) { 7309 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7310 7311 switch (opcode) { 7312 case 0x03: /* SADDLV / UADDLV */ 7313 case 0x1b: /* ADDV */ 7314 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7315 break; 7316 case 0x0a: /* SMAXV / UMAXV */ 7317 if (is_u) { 7318 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7319 } else { 7320 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7321 } 7322 break; 7323 case 0x1a: /* SMINV / UMINV */ 7324 if (is_u) { 7325 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7326 } else { 7327 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7328 } 7329 break; 7330 default: 7331 g_assert_not_reached(); 7332 } 7333 7334 } 7335 } else { 7336 /* Floating point vector reduction ops which work across 32 7337 * bit (single) or 16 bit (half-precision) intermediates. 7338 * Note that correct NaN propagation requires that we do these 7339 * operations in exactly the order specified by the pseudocode. 7340 */ 7341 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7342 int fpopcode = opcode | is_min << 4 | is_u << 5; 7343 int vmap = (1 << elements) - 1; 7344 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7345 (is_q ? 128 : 64), vmap, fpst); 7346 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7347 } 7348 7349 /* Now truncate the result to the width required for the final output */ 7350 if (opcode == 0x03) { 7351 /* SADDLV, UADDLV: result is 2*esize */ 7352 size++; 7353 } 7354 7355 switch (size) { 7356 case 0: 7357 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7358 break; 7359 case 1: 7360 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7361 break; 7362 case 2: 7363 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7364 break; 7365 case 3: 7366 break; 7367 default: 7368 g_assert_not_reached(); 7369 } 7370 7371 write_fp_dreg(s, rd, tcg_res); 7372 } 7373 7374 /* DUP (Element, Vector) 7375 * 7376 * 31 30 29 21 20 16 15 10 9 5 4 0 7377 * +---+---+-------------------+--------+-------------+------+------+ 7378 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7379 * +---+---+-------------------+--------+-------------+------+------+ 7380 * 7381 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7382 */ 7383 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7384 int imm5) 7385 { 7386 int size = ctz32(imm5); 7387 int index; 7388 7389 if (size > 3 || (size == 3 && !is_q)) { 7390 unallocated_encoding(s); 7391 return; 7392 } 7393 7394 if (!fp_access_check(s)) { 7395 return; 7396 } 7397 7398 index = imm5 >> (size + 1); 7399 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7400 vec_reg_offset(s, rn, index, size), 7401 is_q ? 16 : 8, vec_full_reg_size(s)); 7402 } 7403 7404 /* DUP (element, scalar) 7405 * 31 21 20 16 15 10 9 5 4 0 7406 * +-----------------------+--------+-------------+------+------+ 7407 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7408 * +-----------------------+--------+-------------+------+------+ 7409 */ 7410 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7411 int imm5) 7412 { 7413 int size = ctz32(imm5); 7414 int index; 7415 TCGv_i64 tmp; 7416 7417 if (size > 3) { 7418 unallocated_encoding(s); 7419 return; 7420 } 7421 7422 if (!fp_access_check(s)) { 7423 return; 7424 } 7425 7426 index = imm5 >> (size + 1); 7427 7428 /* This instruction just extracts the specified element and 7429 * zero-extends it into the bottom of the destination register. 7430 */ 7431 tmp = tcg_temp_new_i64(); 7432 read_vec_element(s, tmp, rn, index, size); 7433 write_fp_dreg(s, rd, tmp); 7434 } 7435 7436 /* DUP (General) 7437 * 7438 * 31 30 29 21 20 16 15 10 9 5 4 0 7439 * +---+---+-------------------+--------+-------------+------+------+ 7440 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7441 * +---+---+-------------------+--------+-------------+------+------+ 7442 * 7443 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7444 */ 7445 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7446 int imm5) 7447 { 7448 int size = ctz32(imm5); 7449 uint32_t dofs, oprsz, maxsz; 7450 7451 if (size > 3 || ((size == 3) && !is_q)) { 7452 unallocated_encoding(s); 7453 return; 7454 } 7455 7456 if (!fp_access_check(s)) { 7457 return; 7458 } 7459 7460 dofs = vec_full_reg_offset(s, rd); 7461 oprsz = is_q ? 16 : 8; 7462 maxsz = vec_full_reg_size(s); 7463 7464 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7465 } 7466 7467 /* INS (Element) 7468 * 7469 * 31 21 20 16 15 14 11 10 9 5 4 0 7470 * +-----------------------+--------+------------+---+------+------+ 7471 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7472 * +-----------------------+--------+------------+---+------+------+ 7473 * 7474 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7475 * index: encoded in imm5<4:size+1> 7476 */ 7477 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7478 int imm4, int imm5) 7479 { 7480 int size = ctz32(imm5); 7481 int src_index, dst_index; 7482 TCGv_i64 tmp; 7483 7484 if (size > 3) { 7485 unallocated_encoding(s); 7486 return; 7487 } 7488 7489 if (!fp_access_check(s)) { 7490 return; 7491 } 7492 7493 dst_index = extract32(imm5, 1+size, 5); 7494 src_index = extract32(imm4, size, 4); 7495 7496 tmp = tcg_temp_new_i64(); 7497 7498 read_vec_element(s, tmp, rn, src_index, size); 7499 write_vec_element(s, tmp, rd, dst_index, size); 7500 7501 /* INS is considered a 128-bit write for SVE. */ 7502 clear_vec_high(s, true, rd); 7503 } 7504 7505 7506 /* INS (General) 7507 * 7508 * 31 21 20 16 15 10 9 5 4 0 7509 * +-----------------------+--------+-------------+------+------+ 7510 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7511 * +-----------------------+--------+-------------+------+------+ 7512 * 7513 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7514 * index: encoded in imm5<4:size+1> 7515 */ 7516 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7517 { 7518 int size = ctz32(imm5); 7519 int idx; 7520 7521 if (size > 3) { 7522 unallocated_encoding(s); 7523 return; 7524 } 7525 7526 if (!fp_access_check(s)) { 7527 return; 7528 } 7529 7530 idx = extract32(imm5, 1 + size, 4 - size); 7531 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7532 7533 /* INS is considered a 128-bit write for SVE. */ 7534 clear_vec_high(s, true, rd); 7535 } 7536 7537 /* 7538 * UMOV (General) 7539 * SMOV (General) 7540 * 7541 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7542 * +---+---+-------------------+--------+-------------+------+------+ 7543 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7544 * +---+---+-------------------+--------+-------------+------+------+ 7545 * 7546 * U: unsigned when set 7547 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7548 */ 7549 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7550 int rn, int rd, int imm5) 7551 { 7552 int size = ctz32(imm5); 7553 int element; 7554 TCGv_i64 tcg_rd; 7555 7556 /* Check for UnallocatedEncodings */ 7557 if (is_signed) { 7558 if (size > 2 || (size == 2 && !is_q)) { 7559 unallocated_encoding(s); 7560 return; 7561 } 7562 } else { 7563 if (size > 3 7564 || (size < 3 && is_q) 7565 || (size == 3 && !is_q)) { 7566 unallocated_encoding(s); 7567 return; 7568 } 7569 } 7570 7571 if (!fp_access_check(s)) { 7572 return; 7573 } 7574 7575 element = extract32(imm5, 1+size, 4); 7576 7577 tcg_rd = cpu_reg(s, rd); 7578 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7579 if (is_signed && !is_q) { 7580 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7581 } 7582 } 7583 7584 /* AdvSIMD copy 7585 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7586 * +---+---+----+-----------------+------+---+------+---+------+------+ 7587 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7588 * +---+---+----+-----------------+------+---+------+---+------+------+ 7589 */ 7590 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7591 { 7592 int rd = extract32(insn, 0, 5); 7593 int rn = extract32(insn, 5, 5); 7594 int imm4 = extract32(insn, 11, 4); 7595 int op = extract32(insn, 29, 1); 7596 int is_q = extract32(insn, 30, 1); 7597 int imm5 = extract32(insn, 16, 5); 7598 7599 if (op) { 7600 if (is_q) { 7601 /* INS (element) */ 7602 handle_simd_inse(s, rd, rn, imm4, imm5); 7603 } else { 7604 unallocated_encoding(s); 7605 } 7606 } else { 7607 switch (imm4) { 7608 case 0: 7609 /* DUP (element - vector) */ 7610 handle_simd_dupe(s, is_q, rd, rn, imm5); 7611 break; 7612 case 1: 7613 /* DUP (general) */ 7614 handle_simd_dupg(s, is_q, rd, rn, imm5); 7615 break; 7616 case 3: 7617 if (is_q) { 7618 /* INS (general) */ 7619 handle_simd_insg(s, rd, rn, imm5); 7620 } else { 7621 unallocated_encoding(s); 7622 } 7623 break; 7624 case 5: 7625 case 7: 7626 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7627 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7628 break; 7629 default: 7630 unallocated_encoding(s); 7631 break; 7632 } 7633 } 7634 } 7635 7636 /* AdvSIMD modified immediate 7637 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7638 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7639 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7640 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7641 * 7642 * There are a number of operations that can be carried out here: 7643 * MOVI - move (shifted) imm into register 7644 * MVNI - move inverted (shifted) imm into register 7645 * ORR - bitwise OR of (shifted) imm with register 7646 * BIC - bitwise clear of (shifted) imm with register 7647 * With ARMv8.2 we also have: 7648 * FMOV half-precision 7649 */ 7650 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7651 { 7652 int rd = extract32(insn, 0, 5); 7653 int cmode = extract32(insn, 12, 4); 7654 int o2 = extract32(insn, 11, 1); 7655 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7656 bool is_neg = extract32(insn, 29, 1); 7657 bool is_q = extract32(insn, 30, 1); 7658 uint64_t imm = 0; 7659 7660 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7661 /* Check for FMOV (vector, immediate) - half-precision */ 7662 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7663 unallocated_encoding(s); 7664 return; 7665 } 7666 } 7667 7668 if (!fp_access_check(s)) { 7669 return; 7670 } 7671 7672 if (cmode == 15 && o2 && !is_neg) { 7673 /* FMOV (vector, immediate) - half-precision */ 7674 imm = vfp_expand_imm(MO_16, abcdefgh); 7675 /* now duplicate across the lanes */ 7676 imm = dup_const(MO_16, imm); 7677 } else { 7678 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7679 } 7680 7681 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7682 /* MOVI or MVNI, with MVNI negation handled above. */ 7683 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7684 vec_full_reg_size(s), imm); 7685 } else { 7686 /* ORR or BIC, with BIC negation to AND handled above. */ 7687 if (is_neg) { 7688 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7689 } else { 7690 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7691 } 7692 } 7693 } 7694 7695 /* AdvSIMD scalar copy 7696 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7697 * +-----+----+-----------------+------+---+------+---+------+------+ 7698 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7699 * +-----+----+-----------------+------+---+------+---+------+------+ 7700 */ 7701 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7702 { 7703 int rd = extract32(insn, 0, 5); 7704 int rn = extract32(insn, 5, 5); 7705 int imm4 = extract32(insn, 11, 4); 7706 int imm5 = extract32(insn, 16, 5); 7707 int op = extract32(insn, 29, 1); 7708 7709 if (op != 0 || imm4 != 0) { 7710 unallocated_encoding(s); 7711 return; 7712 } 7713 7714 /* DUP (element, scalar) */ 7715 handle_simd_dupes(s, rd, rn, imm5); 7716 } 7717 7718 /* AdvSIMD scalar pairwise 7719 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7720 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7721 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7722 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7723 */ 7724 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7725 { 7726 int u = extract32(insn, 29, 1); 7727 int size = extract32(insn, 22, 2); 7728 int opcode = extract32(insn, 12, 5); 7729 int rn = extract32(insn, 5, 5); 7730 int rd = extract32(insn, 0, 5); 7731 TCGv_ptr fpst; 7732 7733 /* For some ops (the FP ones), size[1] is part of the encoding. 7734 * For ADDP strictly it is not but size[1] is always 1 for valid 7735 * encodings. 7736 */ 7737 opcode |= (extract32(size, 1, 1) << 5); 7738 7739 switch (opcode) { 7740 case 0x3b: /* ADDP */ 7741 if (u || size != 3) { 7742 unallocated_encoding(s); 7743 return; 7744 } 7745 if (!fp_access_check(s)) { 7746 return; 7747 } 7748 7749 fpst = NULL; 7750 break; 7751 case 0xc: /* FMAXNMP */ 7752 case 0xd: /* FADDP */ 7753 case 0xf: /* FMAXP */ 7754 case 0x2c: /* FMINNMP */ 7755 case 0x2f: /* FMINP */ 7756 /* FP op, size[0] is 32 or 64 bit*/ 7757 if (!u) { 7758 if (!dc_isar_feature(aa64_fp16, s)) { 7759 unallocated_encoding(s); 7760 return; 7761 } else { 7762 size = MO_16; 7763 } 7764 } else { 7765 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7766 } 7767 7768 if (!fp_access_check(s)) { 7769 return; 7770 } 7771 7772 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7773 break; 7774 default: 7775 unallocated_encoding(s); 7776 return; 7777 } 7778 7779 if (size == MO_64) { 7780 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7781 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7782 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7783 7784 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7785 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7786 7787 switch (opcode) { 7788 case 0x3b: /* ADDP */ 7789 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7790 break; 7791 case 0xc: /* FMAXNMP */ 7792 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7793 break; 7794 case 0xd: /* FADDP */ 7795 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7796 break; 7797 case 0xf: /* FMAXP */ 7798 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7799 break; 7800 case 0x2c: /* FMINNMP */ 7801 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7802 break; 7803 case 0x2f: /* FMINP */ 7804 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7805 break; 7806 default: 7807 g_assert_not_reached(); 7808 } 7809 7810 write_fp_dreg(s, rd, tcg_res); 7811 } else { 7812 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7813 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7814 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7815 7816 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7817 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7818 7819 if (size == MO_16) { 7820 switch (opcode) { 7821 case 0xc: /* FMAXNMP */ 7822 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7823 break; 7824 case 0xd: /* FADDP */ 7825 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 7826 break; 7827 case 0xf: /* FMAXP */ 7828 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 7829 break; 7830 case 0x2c: /* FMINNMP */ 7831 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7832 break; 7833 case 0x2f: /* FMINP */ 7834 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 7835 break; 7836 default: 7837 g_assert_not_reached(); 7838 } 7839 } else { 7840 switch (opcode) { 7841 case 0xc: /* FMAXNMP */ 7842 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 7843 break; 7844 case 0xd: /* FADDP */ 7845 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 7846 break; 7847 case 0xf: /* FMAXP */ 7848 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 7849 break; 7850 case 0x2c: /* FMINNMP */ 7851 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 7852 break; 7853 case 0x2f: /* FMINP */ 7854 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 7855 break; 7856 default: 7857 g_assert_not_reached(); 7858 } 7859 } 7860 7861 write_fp_sreg(s, rd, tcg_res); 7862 } 7863 } 7864 7865 /* 7866 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 7867 * 7868 * This code is handles the common shifting code and is used by both 7869 * the vector and scalar code. 7870 */ 7871 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 7872 TCGv_i64 tcg_rnd, bool accumulate, 7873 bool is_u, int size, int shift) 7874 { 7875 bool extended_result = false; 7876 bool round = tcg_rnd != NULL; 7877 int ext_lshift = 0; 7878 TCGv_i64 tcg_src_hi; 7879 7880 if (round && size == 3) { 7881 extended_result = true; 7882 ext_lshift = 64 - shift; 7883 tcg_src_hi = tcg_temp_new_i64(); 7884 } else if (shift == 64) { 7885 if (!accumulate && is_u) { 7886 /* result is zero */ 7887 tcg_gen_movi_i64(tcg_res, 0); 7888 return; 7889 } 7890 } 7891 7892 /* Deal with the rounding step */ 7893 if (round) { 7894 if (extended_result) { 7895 TCGv_i64 tcg_zero = tcg_constant_i64(0); 7896 if (!is_u) { 7897 /* take care of sign extending tcg_res */ 7898 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 7899 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7900 tcg_src, tcg_src_hi, 7901 tcg_rnd, tcg_zero); 7902 } else { 7903 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 7904 tcg_src, tcg_zero, 7905 tcg_rnd, tcg_zero); 7906 } 7907 } else { 7908 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 7909 } 7910 } 7911 7912 /* Now do the shift right */ 7913 if (round && extended_result) { 7914 /* extended case, >64 bit precision required */ 7915 if (ext_lshift == 0) { 7916 /* special case, only high bits matter */ 7917 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 7918 } else { 7919 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7920 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 7921 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 7922 } 7923 } else { 7924 if (is_u) { 7925 if (shift == 64) { 7926 /* essentially shifting in 64 zeros */ 7927 tcg_gen_movi_i64(tcg_src, 0); 7928 } else { 7929 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 7930 } 7931 } else { 7932 if (shift == 64) { 7933 /* effectively extending the sign-bit */ 7934 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 7935 } else { 7936 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 7937 } 7938 } 7939 } 7940 7941 if (accumulate) { 7942 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 7943 } else { 7944 tcg_gen_mov_i64(tcg_res, tcg_src); 7945 } 7946 } 7947 7948 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 7949 static void handle_scalar_simd_shri(DisasContext *s, 7950 bool is_u, int immh, int immb, 7951 int opcode, int rn, int rd) 7952 { 7953 const int size = 3; 7954 int immhb = immh << 3 | immb; 7955 int shift = 2 * (8 << size) - immhb; 7956 bool accumulate = false; 7957 bool round = false; 7958 bool insert = false; 7959 TCGv_i64 tcg_rn; 7960 TCGv_i64 tcg_rd; 7961 TCGv_i64 tcg_round; 7962 7963 if (!extract32(immh, 3, 1)) { 7964 unallocated_encoding(s); 7965 return; 7966 } 7967 7968 if (!fp_access_check(s)) { 7969 return; 7970 } 7971 7972 switch (opcode) { 7973 case 0x02: /* SSRA / USRA (accumulate) */ 7974 accumulate = true; 7975 break; 7976 case 0x04: /* SRSHR / URSHR (rounding) */ 7977 round = true; 7978 break; 7979 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 7980 accumulate = round = true; 7981 break; 7982 case 0x08: /* SRI */ 7983 insert = true; 7984 break; 7985 } 7986 7987 if (round) { 7988 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 7989 } else { 7990 tcg_round = NULL; 7991 } 7992 7993 tcg_rn = read_fp_dreg(s, rn); 7994 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 7995 7996 if (insert) { 7997 /* shift count same as element size is valid but does nothing; 7998 * special case to avoid potential shift by 64. 7999 */ 8000 int esize = 8 << size; 8001 if (shift != esize) { 8002 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8003 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8004 } 8005 } else { 8006 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8007 accumulate, is_u, size, shift); 8008 } 8009 8010 write_fp_dreg(s, rd, tcg_rd); 8011 } 8012 8013 /* SHL/SLI - Scalar shift left */ 8014 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8015 int immh, int immb, int opcode, 8016 int rn, int rd) 8017 { 8018 int size = 32 - clz32(immh) - 1; 8019 int immhb = immh << 3 | immb; 8020 int shift = immhb - (8 << size); 8021 TCGv_i64 tcg_rn; 8022 TCGv_i64 tcg_rd; 8023 8024 if (!extract32(immh, 3, 1)) { 8025 unallocated_encoding(s); 8026 return; 8027 } 8028 8029 if (!fp_access_check(s)) { 8030 return; 8031 } 8032 8033 tcg_rn = read_fp_dreg(s, rn); 8034 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8035 8036 if (insert) { 8037 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8038 } else { 8039 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8040 } 8041 8042 write_fp_dreg(s, rd, tcg_rd); 8043 } 8044 8045 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8046 * (signed/unsigned) narrowing */ 8047 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8048 bool is_u_shift, bool is_u_narrow, 8049 int immh, int immb, int opcode, 8050 int rn, int rd) 8051 { 8052 int immhb = immh << 3 | immb; 8053 int size = 32 - clz32(immh) - 1; 8054 int esize = 8 << size; 8055 int shift = (2 * esize) - immhb; 8056 int elements = is_scalar ? 1 : (64 / esize); 8057 bool round = extract32(opcode, 0, 1); 8058 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8059 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8060 TCGv_i32 tcg_rd_narrowed; 8061 TCGv_i64 tcg_final; 8062 8063 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8064 { gen_helper_neon_narrow_sat_s8, 8065 gen_helper_neon_unarrow_sat8 }, 8066 { gen_helper_neon_narrow_sat_s16, 8067 gen_helper_neon_unarrow_sat16 }, 8068 { gen_helper_neon_narrow_sat_s32, 8069 gen_helper_neon_unarrow_sat32 }, 8070 { NULL, NULL }, 8071 }; 8072 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8073 gen_helper_neon_narrow_sat_u8, 8074 gen_helper_neon_narrow_sat_u16, 8075 gen_helper_neon_narrow_sat_u32, 8076 NULL 8077 }; 8078 NeonGenNarrowEnvFn *narrowfn; 8079 8080 int i; 8081 8082 assert(size < 4); 8083 8084 if (extract32(immh, 3, 1)) { 8085 unallocated_encoding(s); 8086 return; 8087 } 8088 8089 if (!fp_access_check(s)) { 8090 return; 8091 } 8092 8093 if (is_u_shift) { 8094 narrowfn = unsigned_narrow_fns[size]; 8095 } else { 8096 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8097 } 8098 8099 tcg_rn = tcg_temp_new_i64(); 8100 tcg_rd = tcg_temp_new_i64(); 8101 tcg_rd_narrowed = tcg_temp_new_i32(); 8102 tcg_final = tcg_temp_new_i64(); 8103 8104 if (round) { 8105 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8106 } else { 8107 tcg_round = NULL; 8108 } 8109 8110 for (i = 0; i < elements; i++) { 8111 read_vec_element(s, tcg_rn, rn, i, ldop); 8112 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8113 false, is_u_shift, size+1, shift); 8114 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8115 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8116 if (i == 0) { 8117 tcg_gen_mov_i64(tcg_final, tcg_rd); 8118 } else { 8119 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8120 } 8121 } 8122 8123 if (!is_q) { 8124 write_vec_element(s, tcg_final, rd, 0, MO_64); 8125 } else { 8126 write_vec_element(s, tcg_final, rd, 1, MO_64); 8127 } 8128 clear_vec_high(s, is_q, rd); 8129 } 8130 8131 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8132 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8133 bool src_unsigned, bool dst_unsigned, 8134 int immh, int immb, int rn, int rd) 8135 { 8136 int immhb = immh << 3 | immb; 8137 int size = 32 - clz32(immh) - 1; 8138 int shift = immhb - (8 << size); 8139 int pass; 8140 8141 assert(immh != 0); 8142 assert(!(scalar && is_q)); 8143 8144 if (!scalar) { 8145 if (!is_q && extract32(immh, 3, 1)) { 8146 unallocated_encoding(s); 8147 return; 8148 } 8149 8150 /* Since we use the variable-shift helpers we must 8151 * replicate the shift count into each element of 8152 * the tcg_shift value. 8153 */ 8154 switch (size) { 8155 case 0: 8156 shift |= shift << 8; 8157 /* fall through */ 8158 case 1: 8159 shift |= shift << 16; 8160 break; 8161 case 2: 8162 case 3: 8163 break; 8164 default: 8165 g_assert_not_reached(); 8166 } 8167 } 8168 8169 if (!fp_access_check(s)) { 8170 return; 8171 } 8172 8173 if (size == 3) { 8174 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8175 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8176 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8177 { NULL, gen_helper_neon_qshl_u64 }, 8178 }; 8179 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8180 int maxpass = is_q ? 2 : 1; 8181 8182 for (pass = 0; pass < maxpass; pass++) { 8183 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8184 8185 read_vec_element(s, tcg_op, rn, pass, MO_64); 8186 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8187 write_vec_element(s, tcg_op, rd, pass, MO_64); 8188 } 8189 clear_vec_high(s, is_q, rd); 8190 } else { 8191 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8192 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8193 { 8194 { gen_helper_neon_qshl_s8, 8195 gen_helper_neon_qshl_s16, 8196 gen_helper_neon_qshl_s32 }, 8197 { gen_helper_neon_qshlu_s8, 8198 gen_helper_neon_qshlu_s16, 8199 gen_helper_neon_qshlu_s32 } 8200 }, { 8201 { NULL, NULL, NULL }, 8202 { gen_helper_neon_qshl_u8, 8203 gen_helper_neon_qshl_u16, 8204 gen_helper_neon_qshl_u32 } 8205 } 8206 }; 8207 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8208 MemOp memop = scalar ? size : MO_32; 8209 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8210 8211 for (pass = 0; pass < maxpass; pass++) { 8212 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8213 8214 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8215 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8216 if (scalar) { 8217 switch (size) { 8218 case 0: 8219 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8220 break; 8221 case 1: 8222 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8223 break; 8224 case 2: 8225 break; 8226 default: 8227 g_assert_not_reached(); 8228 } 8229 write_fp_sreg(s, rd, tcg_op); 8230 } else { 8231 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8232 } 8233 } 8234 8235 if (!scalar) { 8236 clear_vec_high(s, is_q, rd); 8237 } 8238 } 8239 } 8240 8241 /* Common vector code for handling integer to FP conversion */ 8242 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8243 int elements, int is_signed, 8244 int fracbits, int size) 8245 { 8246 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8247 TCGv_i32 tcg_shift = NULL; 8248 8249 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8250 int pass; 8251 8252 if (fracbits || size == MO_64) { 8253 tcg_shift = tcg_constant_i32(fracbits); 8254 } 8255 8256 if (size == MO_64) { 8257 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8258 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8259 8260 for (pass = 0; pass < elements; pass++) { 8261 read_vec_element(s, tcg_int64, rn, pass, mop); 8262 8263 if (is_signed) { 8264 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8265 tcg_shift, tcg_fpst); 8266 } else { 8267 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8268 tcg_shift, tcg_fpst); 8269 } 8270 if (elements == 1) { 8271 write_fp_dreg(s, rd, tcg_double); 8272 } else { 8273 write_vec_element(s, tcg_double, rd, pass, MO_64); 8274 } 8275 } 8276 } else { 8277 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8278 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8279 8280 for (pass = 0; pass < elements; pass++) { 8281 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8282 8283 switch (size) { 8284 case MO_32: 8285 if (fracbits) { 8286 if (is_signed) { 8287 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8288 tcg_shift, tcg_fpst); 8289 } else { 8290 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8291 tcg_shift, tcg_fpst); 8292 } 8293 } else { 8294 if (is_signed) { 8295 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8296 } else { 8297 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8298 } 8299 } 8300 break; 8301 case MO_16: 8302 if (fracbits) { 8303 if (is_signed) { 8304 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8305 tcg_shift, tcg_fpst); 8306 } else { 8307 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8308 tcg_shift, tcg_fpst); 8309 } 8310 } else { 8311 if (is_signed) { 8312 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8313 } else { 8314 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8315 } 8316 } 8317 break; 8318 default: 8319 g_assert_not_reached(); 8320 } 8321 8322 if (elements == 1) { 8323 write_fp_sreg(s, rd, tcg_float); 8324 } else { 8325 write_vec_element_i32(s, tcg_float, rd, pass, size); 8326 } 8327 } 8328 } 8329 8330 clear_vec_high(s, elements << size == 16, rd); 8331 } 8332 8333 /* UCVTF/SCVTF - Integer to FP conversion */ 8334 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8335 bool is_q, bool is_u, 8336 int immh, int immb, int opcode, 8337 int rn, int rd) 8338 { 8339 int size, elements, fracbits; 8340 int immhb = immh << 3 | immb; 8341 8342 if (immh & 8) { 8343 size = MO_64; 8344 if (!is_scalar && !is_q) { 8345 unallocated_encoding(s); 8346 return; 8347 } 8348 } else if (immh & 4) { 8349 size = MO_32; 8350 } else if (immh & 2) { 8351 size = MO_16; 8352 if (!dc_isar_feature(aa64_fp16, s)) { 8353 unallocated_encoding(s); 8354 return; 8355 } 8356 } else { 8357 /* immh == 0 would be a failure of the decode logic */ 8358 g_assert(immh == 1); 8359 unallocated_encoding(s); 8360 return; 8361 } 8362 8363 if (is_scalar) { 8364 elements = 1; 8365 } else { 8366 elements = (8 << is_q) >> size; 8367 } 8368 fracbits = (16 << size) - immhb; 8369 8370 if (!fp_access_check(s)) { 8371 return; 8372 } 8373 8374 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8375 } 8376 8377 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8378 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8379 bool is_q, bool is_u, 8380 int immh, int immb, int rn, int rd) 8381 { 8382 int immhb = immh << 3 | immb; 8383 int pass, size, fracbits; 8384 TCGv_ptr tcg_fpstatus; 8385 TCGv_i32 tcg_rmode, tcg_shift; 8386 8387 if (immh & 0x8) { 8388 size = MO_64; 8389 if (!is_scalar && !is_q) { 8390 unallocated_encoding(s); 8391 return; 8392 } 8393 } else if (immh & 0x4) { 8394 size = MO_32; 8395 } else if (immh & 0x2) { 8396 size = MO_16; 8397 if (!dc_isar_feature(aa64_fp16, s)) { 8398 unallocated_encoding(s); 8399 return; 8400 } 8401 } else { 8402 /* Should have split out AdvSIMD modified immediate earlier. */ 8403 assert(immh == 1); 8404 unallocated_encoding(s); 8405 return; 8406 } 8407 8408 if (!fp_access_check(s)) { 8409 return; 8410 } 8411 8412 assert(!(is_scalar && is_q)); 8413 8414 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8415 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8416 fracbits = (16 << size) - immhb; 8417 tcg_shift = tcg_constant_i32(fracbits); 8418 8419 if (size == MO_64) { 8420 int maxpass = is_scalar ? 1 : 2; 8421 8422 for (pass = 0; pass < maxpass; pass++) { 8423 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8424 8425 read_vec_element(s, tcg_op, rn, pass, MO_64); 8426 if (is_u) { 8427 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8428 } else { 8429 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8430 } 8431 write_vec_element(s, tcg_op, rd, pass, MO_64); 8432 } 8433 clear_vec_high(s, is_q, rd); 8434 } else { 8435 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8436 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8437 8438 switch (size) { 8439 case MO_16: 8440 if (is_u) { 8441 fn = gen_helper_vfp_touhh; 8442 } else { 8443 fn = gen_helper_vfp_toshh; 8444 } 8445 break; 8446 case MO_32: 8447 if (is_u) { 8448 fn = gen_helper_vfp_touls; 8449 } else { 8450 fn = gen_helper_vfp_tosls; 8451 } 8452 break; 8453 default: 8454 g_assert_not_reached(); 8455 } 8456 8457 for (pass = 0; pass < maxpass; pass++) { 8458 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8459 8460 read_vec_element_i32(s, tcg_op, rn, pass, size); 8461 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8462 if (is_scalar) { 8463 write_fp_sreg(s, rd, tcg_op); 8464 } else { 8465 write_vec_element_i32(s, tcg_op, rd, pass, size); 8466 } 8467 } 8468 if (!is_scalar) { 8469 clear_vec_high(s, is_q, rd); 8470 } 8471 } 8472 8473 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8474 } 8475 8476 /* AdvSIMD scalar shift by immediate 8477 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8478 * +-----+---+-------------+------+------+--------+---+------+------+ 8479 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8480 * +-----+---+-------------+------+------+--------+---+------+------+ 8481 * 8482 * This is the scalar version so it works on a fixed sized registers 8483 */ 8484 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8485 { 8486 int rd = extract32(insn, 0, 5); 8487 int rn = extract32(insn, 5, 5); 8488 int opcode = extract32(insn, 11, 5); 8489 int immb = extract32(insn, 16, 3); 8490 int immh = extract32(insn, 19, 4); 8491 bool is_u = extract32(insn, 29, 1); 8492 8493 if (immh == 0) { 8494 unallocated_encoding(s); 8495 return; 8496 } 8497 8498 switch (opcode) { 8499 case 0x08: /* SRI */ 8500 if (!is_u) { 8501 unallocated_encoding(s); 8502 return; 8503 } 8504 /* fall through */ 8505 case 0x00: /* SSHR / USHR */ 8506 case 0x02: /* SSRA / USRA */ 8507 case 0x04: /* SRSHR / URSHR */ 8508 case 0x06: /* SRSRA / URSRA */ 8509 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8510 break; 8511 case 0x0a: /* SHL / SLI */ 8512 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8513 break; 8514 case 0x1c: /* SCVTF, UCVTF */ 8515 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8516 opcode, rn, rd); 8517 break; 8518 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8519 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8520 if (!is_u) { 8521 unallocated_encoding(s); 8522 return; 8523 } 8524 handle_vec_simd_sqshrn(s, true, false, false, true, 8525 immh, immb, opcode, rn, rd); 8526 break; 8527 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8528 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8529 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8530 immh, immb, opcode, rn, rd); 8531 break; 8532 case 0xc: /* SQSHLU */ 8533 if (!is_u) { 8534 unallocated_encoding(s); 8535 return; 8536 } 8537 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8538 break; 8539 case 0xe: /* SQSHL, UQSHL */ 8540 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8541 break; 8542 case 0x1f: /* FCVTZS, FCVTZU */ 8543 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8544 break; 8545 default: 8546 unallocated_encoding(s); 8547 break; 8548 } 8549 } 8550 8551 /* AdvSIMD scalar three different 8552 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8553 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8554 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8555 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8556 */ 8557 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8558 { 8559 bool is_u = extract32(insn, 29, 1); 8560 int size = extract32(insn, 22, 2); 8561 int opcode = extract32(insn, 12, 4); 8562 int rm = extract32(insn, 16, 5); 8563 int rn = extract32(insn, 5, 5); 8564 int rd = extract32(insn, 0, 5); 8565 8566 if (is_u) { 8567 unallocated_encoding(s); 8568 return; 8569 } 8570 8571 switch (opcode) { 8572 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8573 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8574 case 0xd: /* SQDMULL, SQDMULL2 */ 8575 if (size == 0 || size == 3) { 8576 unallocated_encoding(s); 8577 return; 8578 } 8579 break; 8580 default: 8581 unallocated_encoding(s); 8582 return; 8583 } 8584 8585 if (!fp_access_check(s)) { 8586 return; 8587 } 8588 8589 if (size == 2) { 8590 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8591 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8592 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8593 8594 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8595 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8596 8597 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8598 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8599 8600 switch (opcode) { 8601 case 0xd: /* SQDMULL, SQDMULL2 */ 8602 break; 8603 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8604 tcg_gen_neg_i64(tcg_res, tcg_res); 8605 /* fall through */ 8606 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8607 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8608 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8609 tcg_res, tcg_op1); 8610 break; 8611 default: 8612 g_assert_not_reached(); 8613 } 8614 8615 write_fp_dreg(s, rd, tcg_res); 8616 } else { 8617 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8618 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8619 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8620 8621 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8622 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8623 8624 switch (opcode) { 8625 case 0xd: /* SQDMULL, SQDMULL2 */ 8626 break; 8627 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8628 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8629 /* fall through */ 8630 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8631 { 8632 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8633 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8634 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8635 tcg_res, tcg_op3); 8636 break; 8637 } 8638 default: 8639 g_assert_not_reached(); 8640 } 8641 8642 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8643 write_fp_dreg(s, rd, tcg_res); 8644 } 8645 } 8646 8647 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8648 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8649 { 8650 /* Handle 64x64->64 opcodes which are shared between the scalar 8651 * and vector 3-same groups. We cover every opcode where size == 3 8652 * is valid in either the three-reg-same (integer, not pairwise) 8653 * or scalar-three-reg-same groups. 8654 */ 8655 TCGCond cond; 8656 8657 switch (opcode) { 8658 case 0x1: /* SQADD */ 8659 if (u) { 8660 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8661 } else { 8662 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8663 } 8664 break; 8665 case 0x5: /* SQSUB */ 8666 if (u) { 8667 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8668 } else { 8669 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8670 } 8671 break; 8672 case 0x6: /* CMGT, CMHI */ 8673 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8674 * We implement this using setcond (test) and then negating. 8675 */ 8676 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8677 do_cmop: 8678 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8679 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8680 break; 8681 case 0x7: /* CMGE, CMHS */ 8682 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8683 goto do_cmop; 8684 case 0x11: /* CMTST, CMEQ */ 8685 if (u) { 8686 cond = TCG_COND_EQ; 8687 goto do_cmop; 8688 } 8689 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8690 break; 8691 case 0x8: /* SSHL, USHL */ 8692 if (u) { 8693 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8694 } else { 8695 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8696 } 8697 break; 8698 case 0x9: /* SQSHL, UQSHL */ 8699 if (u) { 8700 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8701 } else { 8702 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8703 } 8704 break; 8705 case 0xa: /* SRSHL, URSHL */ 8706 if (u) { 8707 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8708 } else { 8709 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8710 } 8711 break; 8712 case 0xb: /* SQRSHL, UQRSHL */ 8713 if (u) { 8714 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8715 } else { 8716 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8717 } 8718 break; 8719 case 0x10: /* ADD, SUB */ 8720 if (u) { 8721 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8722 } else { 8723 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8724 } 8725 break; 8726 default: 8727 g_assert_not_reached(); 8728 } 8729 } 8730 8731 /* Handle the 3-same-operands float operations; shared by the scalar 8732 * and vector encodings. The caller must filter out any encodings 8733 * not allocated for the encoding it is dealing with. 8734 */ 8735 static void handle_3same_float(DisasContext *s, int size, int elements, 8736 int fpopcode, int rd, int rn, int rm) 8737 { 8738 int pass; 8739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8740 8741 for (pass = 0; pass < elements; pass++) { 8742 if (size) { 8743 /* Double */ 8744 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8745 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8746 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8747 8748 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8749 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8750 8751 switch (fpopcode) { 8752 case 0x39: /* FMLS */ 8753 /* As usual for ARM, separate negation for fused multiply-add */ 8754 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8755 /* fall through */ 8756 case 0x19: /* FMLA */ 8757 read_vec_element(s, tcg_res, rd, pass, MO_64); 8758 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8759 tcg_res, fpst); 8760 break; 8761 case 0x18: /* FMAXNM */ 8762 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8763 break; 8764 case 0x1a: /* FADD */ 8765 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8766 break; 8767 case 0x1b: /* FMULX */ 8768 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8769 break; 8770 case 0x1c: /* FCMEQ */ 8771 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8772 break; 8773 case 0x1e: /* FMAX */ 8774 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8775 break; 8776 case 0x1f: /* FRECPS */ 8777 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8778 break; 8779 case 0x38: /* FMINNM */ 8780 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8781 break; 8782 case 0x3a: /* FSUB */ 8783 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8784 break; 8785 case 0x3e: /* FMIN */ 8786 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8787 break; 8788 case 0x3f: /* FRSQRTS */ 8789 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8790 break; 8791 case 0x5b: /* FMUL */ 8792 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8793 break; 8794 case 0x5c: /* FCMGE */ 8795 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8796 break; 8797 case 0x5d: /* FACGE */ 8798 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8799 break; 8800 case 0x5f: /* FDIV */ 8801 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8802 break; 8803 case 0x7a: /* FABD */ 8804 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8805 gen_helper_vfp_absd(tcg_res, tcg_res); 8806 break; 8807 case 0x7c: /* FCMGT */ 8808 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8809 break; 8810 case 0x7d: /* FACGT */ 8811 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8812 break; 8813 default: 8814 g_assert_not_reached(); 8815 } 8816 8817 write_vec_element(s, tcg_res, rd, pass, MO_64); 8818 } else { 8819 /* Single */ 8820 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8821 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8822 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8823 8824 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 8825 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 8826 8827 switch (fpopcode) { 8828 case 0x39: /* FMLS */ 8829 /* As usual for ARM, separate negation for fused multiply-add */ 8830 gen_helper_vfp_negs(tcg_op1, tcg_op1); 8831 /* fall through */ 8832 case 0x19: /* FMLA */ 8833 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8834 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 8835 tcg_res, fpst); 8836 break; 8837 case 0x1a: /* FADD */ 8838 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8839 break; 8840 case 0x1b: /* FMULX */ 8841 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 8842 break; 8843 case 0x1c: /* FCMEQ */ 8844 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8845 break; 8846 case 0x1e: /* FMAX */ 8847 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8848 break; 8849 case 0x1f: /* FRECPS */ 8850 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8851 break; 8852 case 0x18: /* FMAXNM */ 8853 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8854 break; 8855 case 0x38: /* FMINNM */ 8856 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8857 break; 8858 case 0x3a: /* FSUB */ 8859 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8860 break; 8861 case 0x3e: /* FMIN */ 8862 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8863 break; 8864 case 0x3f: /* FRSQRTS */ 8865 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8866 break; 8867 case 0x5b: /* FMUL */ 8868 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 8869 break; 8870 case 0x5c: /* FCMGE */ 8871 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8872 break; 8873 case 0x5d: /* FACGE */ 8874 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8875 break; 8876 case 0x5f: /* FDIV */ 8877 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 8878 break; 8879 case 0x7a: /* FABD */ 8880 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 8881 gen_helper_vfp_abss(tcg_res, tcg_res); 8882 break; 8883 case 0x7c: /* FCMGT */ 8884 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8885 break; 8886 case 0x7d: /* FACGT */ 8887 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 8888 break; 8889 default: 8890 g_assert_not_reached(); 8891 } 8892 8893 if (elements == 1) { 8894 /* scalar single so clear high part */ 8895 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8896 8897 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 8898 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 8899 } else { 8900 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 8901 } 8902 } 8903 } 8904 8905 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 8906 } 8907 8908 /* AdvSIMD scalar three same 8909 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 8910 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8911 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 8912 * +-----+---+-----------+------+---+------+--------+---+------+------+ 8913 */ 8914 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 8915 { 8916 int rd = extract32(insn, 0, 5); 8917 int rn = extract32(insn, 5, 5); 8918 int opcode = extract32(insn, 11, 5); 8919 int rm = extract32(insn, 16, 5); 8920 int size = extract32(insn, 22, 2); 8921 bool u = extract32(insn, 29, 1); 8922 TCGv_i64 tcg_rd; 8923 8924 if (opcode >= 0x18) { 8925 /* Floating point: U, size[1] and opcode indicate operation */ 8926 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 8927 switch (fpopcode) { 8928 case 0x1b: /* FMULX */ 8929 case 0x1f: /* FRECPS */ 8930 case 0x3f: /* FRSQRTS */ 8931 case 0x5d: /* FACGE */ 8932 case 0x7d: /* FACGT */ 8933 case 0x1c: /* FCMEQ */ 8934 case 0x5c: /* FCMGE */ 8935 case 0x7c: /* FCMGT */ 8936 case 0x7a: /* FABD */ 8937 break; 8938 default: 8939 unallocated_encoding(s); 8940 return; 8941 } 8942 8943 if (!fp_access_check(s)) { 8944 return; 8945 } 8946 8947 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 8948 return; 8949 } 8950 8951 switch (opcode) { 8952 case 0x1: /* SQADD, UQADD */ 8953 case 0x5: /* SQSUB, UQSUB */ 8954 case 0x9: /* SQSHL, UQSHL */ 8955 case 0xb: /* SQRSHL, UQRSHL */ 8956 break; 8957 case 0x8: /* SSHL, USHL */ 8958 case 0xa: /* SRSHL, URSHL */ 8959 case 0x6: /* CMGT, CMHI */ 8960 case 0x7: /* CMGE, CMHS */ 8961 case 0x11: /* CMTST, CMEQ */ 8962 case 0x10: /* ADD, SUB (vector) */ 8963 if (size != 3) { 8964 unallocated_encoding(s); 8965 return; 8966 } 8967 break; 8968 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 8969 if (size != 1 && size != 2) { 8970 unallocated_encoding(s); 8971 return; 8972 } 8973 break; 8974 default: 8975 unallocated_encoding(s); 8976 return; 8977 } 8978 8979 if (!fp_access_check(s)) { 8980 return; 8981 } 8982 8983 tcg_rd = tcg_temp_new_i64(); 8984 8985 if (size == 3) { 8986 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 8987 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 8988 8989 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 8990 } else { 8991 /* Do a single operation on the lowest element in the vector. 8992 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 8993 * no side effects for all these operations. 8994 * OPTME: special-purpose helpers would avoid doing some 8995 * unnecessary work in the helper for the 8 and 16 bit cases. 8996 */ 8997 NeonGenTwoOpEnvFn *genenvfn; 8998 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 8999 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9000 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9001 9002 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9003 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9004 9005 switch (opcode) { 9006 case 0x1: /* SQADD, UQADD */ 9007 { 9008 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9009 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9010 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9011 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9012 }; 9013 genenvfn = fns[size][u]; 9014 break; 9015 } 9016 case 0x5: /* SQSUB, UQSUB */ 9017 { 9018 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9019 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9020 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9021 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9022 }; 9023 genenvfn = fns[size][u]; 9024 break; 9025 } 9026 case 0x9: /* SQSHL, UQSHL */ 9027 { 9028 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9029 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9030 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9031 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9032 }; 9033 genenvfn = fns[size][u]; 9034 break; 9035 } 9036 case 0xb: /* SQRSHL, UQRSHL */ 9037 { 9038 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9039 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9040 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9041 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9042 }; 9043 genenvfn = fns[size][u]; 9044 break; 9045 } 9046 case 0x16: /* SQDMULH, SQRDMULH */ 9047 { 9048 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9049 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9050 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9051 }; 9052 assert(size == 1 || size == 2); 9053 genenvfn = fns[size - 1][u]; 9054 break; 9055 } 9056 default: 9057 g_assert_not_reached(); 9058 } 9059 9060 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9061 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9062 } 9063 9064 write_fp_dreg(s, rd, tcg_rd); 9065 } 9066 9067 /* AdvSIMD scalar three same FP16 9068 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9069 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9070 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9071 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9072 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9073 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9074 */ 9075 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9076 uint32_t insn) 9077 { 9078 int rd = extract32(insn, 0, 5); 9079 int rn = extract32(insn, 5, 5); 9080 int opcode = extract32(insn, 11, 3); 9081 int rm = extract32(insn, 16, 5); 9082 bool u = extract32(insn, 29, 1); 9083 bool a = extract32(insn, 23, 1); 9084 int fpopcode = opcode | (a << 3) | (u << 4); 9085 TCGv_ptr fpst; 9086 TCGv_i32 tcg_op1; 9087 TCGv_i32 tcg_op2; 9088 TCGv_i32 tcg_res; 9089 9090 switch (fpopcode) { 9091 case 0x03: /* FMULX */ 9092 case 0x04: /* FCMEQ (reg) */ 9093 case 0x07: /* FRECPS */ 9094 case 0x0f: /* FRSQRTS */ 9095 case 0x14: /* FCMGE (reg) */ 9096 case 0x15: /* FACGE */ 9097 case 0x1a: /* FABD */ 9098 case 0x1c: /* FCMGT (reg) */ 9099 case 0x1d: /* FACGT */ 9100 break; 9101 default: 9102 unallocated_encoding(s); 9103 return; 9104 } 9105 9106 if (!dc_isar_feature(aa64_fp16, s)) { 9107 unallocated_encoding(s); 9108 } 9109 9110 if (!fp_access_check(s)) { 9111 return; 9112 } 9113 9114 fpst = fpstatus_ptr(FPST_FPCR_F16); 9115 9116 tcg_op1 = read_fp_hreg(s, rn); 9117 tcg_op2 = read_fp_hreg(s, rm); 9118 tcg_res = tcg_temp_new_i32(); 9119 9120 switch (fpopcode) { 9121 case 0x03: /* FMULX */ 9122 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 case 0x04: /* FCMEQ (reg) */ 9125 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9126 break; 9127 case 0x07: /* FRECPS */ 9128 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9129 break; 9130 case 0x0f: /* FRSQRTS */ 9131 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9132 break; 9133 case 0x14: /* FCMGE (reg) */ 9134 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9135 break; 9136 case 0x15: /* FACGE */ 9137 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9138 break; 9139 case 0x1a: /* FABD */ 9140 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9141 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9142 break; 9143 case 0x1c: /* FCMGT (reg) */ 9144 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9145 break; 9146 case 0x1d: /* FACGT */ 9147 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9148 break; 9149 default: 9150 g_assert_not_reached(); 9151 } 9152 9153 write_fp_sreg(s, rd, tcg_res); 9154 } 9155 9156 /* AdvSIMD scalar three same extra 9157 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9158 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9159 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9160 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9161 */ 9162 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9163 uint32_t insn) 9164 { 9165 int rd = extract32(insn, 0, 5); 9166 int rn = extract32(insn, 5, 5); 9167 int opcode = extract32(insn, 11, 4); 9168 int rm = extract32(insn, 16, 5); 9169 int size = extract32(insn, 22, 2); 9170 bool u = extract32(insn, 29, 1); 9171 TCGv_i32 ele1, ele2, ele3; 9172 TCGv_i64 res; 9173 bool feature; 9174 9175 switch (u * 16 + opcode) { 9176 case 0x10: /* SQRDMLAH (vector) */ 9177 case 0x11: /* SQRDMLSH (vector) */ 9178 if (size != 1 && size != 2) { 9179 unallocated_encoding(s); 9180 return; 9181 } 9182 feature = dc_isar_feature(aa64_rdm, s); 9183 break; 9184 default: 9185 unallocated_encoding(s); 9186 return; 9187 } 9188 if (!feature) { 9189 unallocated_encoding(s); 9190 return; 9191 } 9192 if (!fp_access_check(s)) { 9193 return; 9194 } 9195 9196 /* Do a single operation on the lowest element in the vector. 9197 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9198 * with no side effects for all these operations. 9199 * OPTME: special-purpose helpers would avoid doing some 9200 * unnecessary work in the helper for the 16 bit cases. 9201 */ 9202 ele1 = tcg_temp_new_i32(); 9203 ele2 = tcg_temp_new_i32(); 9204 ele3 = tcg_temp_new_i32(); 9205 9206 read_vec_element_i32(s, ele1, rn, 0, size); 9207 read_vec_element_i32(s, ele2, rm, 0, size); 9208 read_vec_element_i32(s, ele3, rd, 0, size); 9209 9210 switch (opcode) { 9211 case 0x0: /* SQRDMLAH */ 9212 if (size == 1) { 9213 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9214 } else { 9215 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9216 } 9217 break; 9218 case 0x1: /* SQRDMLSH */ 9219 if (size == 1) { 9220 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9221 } else { 9222 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9223 } 9224 break; 9225 default: 9226 g_assert_not_reached(); 9227 } 9228 9229 res = tcg_temp_new_i64(); 9230 tcg_gen_extu_i32_i64(res, ele3); 9231 write_fp_dreg(s, rd, res); 9232 } 9233 9234 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9235 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9236 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9237 { 9238 /* Handle 64->64 opcodes which are shared between the scalar and 9239 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9240 * is valid in either group and also the double-precision fp ops. 9241 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9242 * requires them. 9243 */ 9244 TCGCond cond; 9245 9246 switch (opcode) { 9247 case 0x4: /* CLS, CLZ */ 9248 if (u) { 9249 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9250 } else { 9251 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9252 } 9253 break; 9254 case 0x5: /* NOT */ 9255 /* This opcode is shared with CNT and RBIT but we have earlier 9256 * enforced that size == 3 if and only if this is the NOT insn. 9257 */ 9258 tcg_gen_not_i64(tcg_rd, tcg_rn); 9259 break; 9260 case 0x7: /* SQABS, SQNEG */ 9261 if (u) { 9262 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9263 } else { 9264 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9265 } 9266 break; 9267 case 0xa: /* CMLT */ 9268 /* 64 bit integer comparison against zero, result is 9269 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9270 * subtracting 1. 9271 */ 9272 cond = TCG_COND_LT; 9273 do_cmop: 9274 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9275 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9276 break; 9277 case 0x8: /* CMGT, CMGE */ 9278 cond = u ? TCG_COND_GE : TCG_COND_GT; 9279 goto do_cmop; 9280 case 0x9: /* CMEQ, CMLE */ 9281 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9282 goto do_cmop; 9283 case 0xb: /* ABS, NEG */ 9284 if (u) { 9285 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9286 } else { 9287 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9288 } 9289 break; 9290 case 0x2f: /* FABS */ 9291 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9292 break; 9293 case 0x6f: /* FNEG */ 9294 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9295 break; 9296 case 0x7f: /* FSQRT */ 9297 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9298 break; 9299 case 0x1a: /* FCVTNS */ 9300 case 0x1b: /* FCVTMS */ 9301 case 0x1c: /* FCVTAS */ 9302 case 0x3a: /* FCVTPS */ 9303 case 0x3b: /* FCVTZS */ 9304 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9305 break; 9306 case 0x5a: /* FCVTNU */ 9307 case 0x5b: /* FCVTMU */ 9308 case 0x5c: /* FCVTAU */ 9309 case 0x7a: /* FCVTPU */ 9310 case 0x7b: /* FCVTZU */ 9311 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9312 break; 9313 case 0x18: /* FRINTN */ 9314 case 0x19: /* FRINTM */ 9315 case 0x38: /* FRINTP */ 9316 case 0x39: /* FRINTZ */ 9317 case 0x58: /* FRINTA */ 9318 case 0x79: /* FRINTI */ 9319 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9320 break; 9321 case 0x59: /* FRINTX */ 9322 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9323 break; 9324 case 0x1e: /* FRINT32Z */ 9325 case 0x5e: /* FRINT32X */ 9326 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9327 break; 9328 case 0x1f: /* FRINT64Z */ 9329 case 0x5f: /* FRINT64X */ 9330 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9331 break; 9332 default: 9333 g_assert_not_reached(); 9334 } 9335 } 9336 9337 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9338 bool is_scalar, bool is_u, bool is_q, 9339 int size, int rn, int rd) 9340 { 9341 bool is_double = (size == MO_64); 9342 TCGv_ptr fpst; 9343 9344 if (!fp_access_check(s)) { 9345 return; 9346 } 9347 9348 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9349 9350 if (is_double) { 9351 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9352 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9353 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9354 NeonGenTwoDoubleOpFn *genfn; 9355 bool swap = false; 9356 int pass; 9357 9358 switch (opcode) { 9359 case 0x2e: /* FCMLT (zero) */ 9360 swap = true; 9361 /* fallthrough */ 9362 case 0x2c: /* FCMGT (zero) */ 9363 genfn = gen_helper_neon_cgt_f64; 9364 break; 9365 case 0x2d: /* FCMEQ (zero) */ 9366 genfn = gen_helper_neon_ceq_f64; 9367 break; 9368 case 0x6d: /* FCMLE (zero) */ 9369 swap = true; 9370 /* fall through */ 9371 case 0x6c: /* FCMGE (zero) */ 9372 genfn = gen_helper_neon_cge_f64; 9373 break; 9374 default: 9375 g_assert_not_reached(); 9376 } 9377 9378 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9379 read_vec_element(s, tcg_op, rn, pass, MO_64); 9380 if (swap) { 9381 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9382 } else { 9383 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9384 } 9385 write_vec_element(s, tcg_res, rd, pass, MO_64); 9386 } 9387 9388 clear_vec_high(s, !is_scalar, rd); 9389 } else { 9390 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9391 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9392 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9393 NeonGenTwoSingleOpFn *genfn; 9394 bool swap = false; 9395 int pass, maxpasses; 9396 9397 if (size == MO_16) { 9398 switch (opcode) { 9399 case 0x2e: /* FCMLT (zero) */ 9400 swap = true; 9401 /* fall through */ 9402 case 0x2c: /* FCMGT (zero) */ 9403 genfn = gen_helper_advsimd_cgt_f16; 9404 break; 9405 case 0x2d: /* FCMEQ (zero) */ 9406 genfn = gen_helper_advsimd_ceq_f16; 9407 break; 9408 case 0x6d: /* FCMLE (zero) */ 9409 swap = true; 9410 /* fall through */ 9411 case 0x6c: /* FCMGE (zero) */ 9412 genfn = gen_helper_advsimd_cge_f16; 9413 break; 9414 default: 9415 g_assert_not_reached(); 9416 } 9417 } else { 9418 switch (opcode) { 9419 case 0x2e: /* FCMLT (zero) */ 9420 swap = true; 9421 /* fall through */ 9422 case 0x2c: /* FCMGT (zero) */ 9423 genfn = gen_helper_neon_cgt_f32; 9424 break; 9425 case 0x2d: /* FCMEQ (zero) */ 9426 genfn = gen_helper_neon_ceq_f32; 9427 break; 9428 case 0x6d: /* FCMLE (zero) */ 9429 swap = true; 9430 /* fall through */ 9431 case 0x6c: /* FCMGE (zero) */ 9432 genfn = gen_helper_neon_cge_f32; 9433 break; 9434 default: 9435 g_assert_not_reached(); 9436 } 9437 } 9438 9439 if (is_scalar) { 9440 maxpasses = 1; 9441 } else { 9442 int vector_size = 8 << is_q; 9443 maxpasses = vector_size >> size; 9444 } 9445 9446 for (pass = 0; pass < maxpasses; pass++) { 9447 read_vec_element_i32(s, tcg_op, rn, pass, size); 9448 if (swap) { 9449 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9450 } else { 9451 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9452 } 9453 if (is_scalar) { 9454 write_fp_sreg(s, rd, tcg_res); 9455 } else { 9456 write_vec_element_i32(s, tcg_res, rd, pass, size); 9457 } 9458 } 9459 9460 if (!is_scalar) { 9461 clear_vec_high(s, is_q, rd); 9462 } 9463 } 9464 } 9465 9466 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9467 bool is_scalar, bool is_u, bool is_q, 9468 int size, int rn, int rd) 9469 { 9470 bool is_double = (size == 3); 9471 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9472 9473 if (is_double) { 9474 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9475 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9476 int pass; 9477 9478 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9479 read_vec_element(s, tcg_op, rn, pass, MO_64); 9480 switch (opcode) { 9481 case 0x3d: /* FRECPE */ 9482 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9483 break; 9484 case 0x3f: /* FRECPX */ 9485 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9486 break; 9487 case 0x7d: /* FRSQRTE */ 9488 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9489 break; 9490 default: 9491 g_assert_not_reached(); 9492 } 9493 write_vec_element(s, tcg_res, rd, pass, MO_64); 9494 } 9495 clear_vec_high(s, !is_scalar, rd); 9496 } else { 9497 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9498 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9499 int pass, maxpasses; 9500 9501 if (is_scalar) { 9502 maxpasses = 1; 9503 } else { 9504 maxpasses = is_q ? 4 : 2; 9505 } 9506 9507 for (pass = 0; pass < maxpasses; pass++) { 9508 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9509 9510 switch (opcode) { 9511 case 0x3c: /* URECPE */ 9512 gen_helper_recpe_u32(tcg_res, tcg_op); 9513 break; 9514 case 0x3d: /* FRECPE */ 9515 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9516 break; 9517 case 0x3f: /* FRECPX */ 9518 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9519 break; 9520 case 0x7d: /* FRSQRTE */ 9521 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9522 break; 9523 default: 9524 g_assert_not_reached(); 9525 } 9526 9527 if (is_scalar) { 9528 write_fp_sreg(s, rd, tcg_res); 9529 } else { 9530 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9531 } 9532 } 9533 if (!is_scalar) { 9534 clear_vec_high(s, is_q, rd); 9535 } 9536 } 9537 } 9538 9539 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9540 int opcode, bool u, bool is_q, 9541 int size, int rn, int rd) 9542 { 9543 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9544 * in the source becomes a size element in the destination). 9545 */ 9546 int pass; 9547 TCGv_i32 tcg_res[2]; 9548 int destelt = is_q ? 2 : 0; 9549 int passes = scalar ? 1 : 2; 9550 9551 if (scalar) { 9552 tcg_res[1] = tcg_constant_i32(0); 9553 } 9554 9555 for (pass = 0; pass < passes; pass++) { 9556 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9557 NeonGenNarrowFn *genfn = NULL; 9558 NeonGenNarrowEnvFn *genenvfn = NULL; 9559 9560 if (scalar) { 9561 read_vec_element(s, tcg_op, rn, pass, size + 1); 9562 } else { 9563 read_vec_element(s, tcg_op, rn, pass, MO_64); 9564 } 9565 tcg_res[pass] = tcg_temp_new_i32(); 9566 9567 switch (opcode) { 9568 case 0x12: /* XTN, SQXTUN */ 9569 { 9570 static NeonGenNarrowFn * const xtnfns[3] = { 9571 gen_helper_neon_narrow_u8, 9572 gen_helper_neon_narrow_u16, 9573 tcg_gen_extrl_i64_i32, 9574 }; 9575 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9576 gen_helper_neon_unarrow_sat8, 9577 gen_helper_neon_unarrow_sat16, 9578 gen_helper_neon_unarrow_sat32, 9579 }; 9580 if (u) { 9581 genenvfn = sqxtunfns[size]; 9582 } else { 9583 genfn = xtnfns[size]; 9584 } 9585 break; 9586 } 9587 case 0x14: /* SQXTN, UQXTN */ 9588 { 9589 static NeonGenNarrowEnvFn * const fns[3][2] = { 9590 { gen_helper_neon_narrow_sat_s8, 9591 gen_helper_neon_narrow_sat_u8 }, 9592 { gen_helper_neon_narrow_sat_s16, 9593 gen_helper_neon_narrow_sat_u16 }, 9594 { gen_helper_neon_narrow_sat_s32, 9595 gen_helper_neon_narrow_sat_u32 }, 9596 }; 9597 genenvfn = fns[size][u]; 9598 break; 9599 } 9600 case 0x16: /* FCVTN, FCVTN2 */ 9601 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9602 if (size == 2) { 9603 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9604 } else { 9605 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9606 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9607 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9608 TCGv_i32 ahp = get_ahp_flag(); 9609 9610 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9611 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9612 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9613 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9614 } 9615 break; 9616 case 0x36: /* BFCVTN, BFCVTN2 */ 9617 { 9618 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9619 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9620 } 9621 break; 9622 case 0x56: /* FCVTXN, FCVTXN2 */ 9623 /* 64 bit to 32 bit float conversion 9624 * with von Neumann rounding (round to odd) 9625 */ 9626 assert(size == 2); 9627 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9628 break; 9629 default: 9630 g_assert_not_reached(); 9631 } 9632 9633 if (genfn) { 9634 genfn(tcg_res[pass], tcg_op); 9635 } else if (genenvfn) { 9636 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9637 } 9638 } 9639 9640 for (pass = 0; pass < 2; pass++) { 9641 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9642 } 9643 clear_vec_high(s, is_q, rd); 9644 } 9645 9646 /* Remaining saturating accumulating ops */ 9647 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9648 bool is_q, int size, int rn, int rd) 9649 { 9650 bool is_double = (size == 3); 9651 9652 if (is_double) { 9653 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9654 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9655 int pass; 9656 9657 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9658 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9659 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9660 9661 if (is_u) { /* USQADD */ 9662 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9663 } else { /* SUQADD */ 9664 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9665 } 9666 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9667 } 9668 clear_vec_high(s, !is_scalar, rd); 9669 } else { 9670 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9671 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9672 int pass, maxpasses; 9673 9674 if (is_scalar) { 9675 maxpasses = 1; 9676 } else { 9677 maxpasses = is_q ? 4 : 2; 9678 } 9679 9680 for (pass = 0; pass < maxpasses; pass++) { 9681 if (is_scalar) { 9682 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9683 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9684 } else { 9685 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9686 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9687 } 9688 9689 if (is_u) { /* USQADD */ 9690 switch (size) { 9691 case 0: 9692 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9693 break; 9694 case 1: 9695 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9696 break; 9697 case 2: 9698 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9699 break; 9700 default: 9701 g_assert_not_reached(); 9702 } 9703 } else { /* SUQADD */ 9704 switch (size) { 9705 case 0: 9706 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9707 break; 9708 case 1: 9709 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9710 break; 9711 case 2: 9712 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9713 break; 9714 default: 9715 g_assert_not_reached(); 9716 } 9717 } 9718 9719 if (is_scalar) { 9720 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9721 } 9722 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9723 } 9724 clear_vec_high(s, is_q, rd); 9725 } 9726 } 9727 9728 /* AdvSIMD scalar two reg misc 9729 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9730 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9731 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9732 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9733 */ 9734 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9735 { 9736 int rd = extract32(insn, 0, 5); 9737 int rn = extract32(insn, 5, 5); 9738 int opcode = extract32(insn, 12, 5); 9739 int size = extract32(insn, 22, 2); 9740 bool u = extract32(insn, 29, 1); 9741 bool is_fcvt = false; 9742 int rmode; 9743 TCGv_i32 tcg_rmode; 9744 TCGv_ptr tcg_fpstatus; 9745 9746 switch (opcode) { 9747 case 0x3: /* USQADD / SUQADD*/ 9748 if (!fp_access_check(s)) { 9749 return; 9750 } 9751 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9752 return; 9753 case 0x7: /* SQABS / SQNEG */ 9754 break; 9755 case 0xa: /* CMLT */ 9756 if (u) { 9757 unallocated_encoding(s); 9758 return; 9759 } 9760 /* fall through */ 9761 case 0x8: /* CMGT, CMGE */ 9762 case 0x9: /* CMEQ, CMLE */ 9763 case 0xb: /* ABS, NEG */ 9764 if (size != 3) { 9765 unallocated_encoding(s); 9766 return; 9767 } 9768 break; 9769 case 0x12: /* SQXTUN */ 9770 if (!u) { 9771 unallocated_encoding(s); 9772 return; 9773 } 9774 /* fall through */ 9775 case 0x14: /* SQXTN, UQXTN */ 9776 if (size == 3) { 9777 unallocated_encoding(s); 9778 return; 9779 } 9780 if (!fp_access_check(s)) { 9781 return; 9782 } 9783 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9784 return; 9785 case 0xc ... 0xf: 9786 case 0x16 ... 0x1d: 9787 case 0x1f: 9788 /* Floating point: U, size[1] and opcode indicate operation; 9789 * size[0] indicates single or double precision. 9790 */ 9791 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9792 size = extract32(size, 0, 1) ? 3 : 2; 9793 switch (opcode) { 9794 case 0x2c: /* FCMGT (zero) */ 9795 case 0x2d: /* FCMEQ (zero) */ 9796 case 0x2e: /* FCMLT (zero) */ 9797 case 0x6c: /* FCMGE (zero) */ 9798 case 0x6d: /* FCMLE (zero) */ 9799 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9800 return; 9801 case 0x1d: /* SCVTF */ 9802 case 0x5d: /* UCVTF */ 9803 { 9804 bool is_signed = (opcode == 0x1d); 9805 if (!fp_access_check(s)) { 9806 return; 9807 } 9808 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9809 return; 9810 } 9811 case 0x3d: /* FRECPE */ 9812 case 0x3f: /* FRECPX */ 9813 case 0x7d: /* FRSQRTE */ 9814 if (!fp_access_check(s)) { 9815 return; 9816 } 9817 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9818 return; 9819 case 0x1a: /* FCVTNS */ 9820 case 0x1b: /* FCVTMS */ 9821 case 0x3a: /* FCVTPS */ 9822 case 0x3b: /* FCVTZS */ 9823 case 0x5a: /* FCVTNU */ 9824 case 0x5b: /* FCVTMU */ 9825 case 0x7a: /* FCVTPU */ 9826 case 0x7b: /* FCVTZU */ 9827 is_fcvt = true; 9828 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 9829 break; 9830 case 0x1c: /* FCVTAS */ 9831 case 0x5c: /* FCVTAU */ 9832 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 9833 is_fcvt = true; 9834 rmode = FPROUNDING_TIEAWAY; 9835 break; 9836 case 0x56: /* FCVTXN, FCVTXN2 */ 9837 if (size == 2) { 9838 unallocated_encoding(s); 9839 return; 9840 } 9841 if (!fp_access_check(s)) { 9842 return; 9843 } 9844 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 9845 return; 9846 default: 9847 unallocated_encoding(s); 9848 return; 9849 } 9850 break; 9851 default: 9852 unallocated_encoding(s); 9853 return; 9854 } 9855 9856 if (!fp_access_check(s)) { 9857 return; 9858 } 9859 9860 if (is_fcvt) { 9861 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 9862 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9863 } else { 9864 tcg_fpstatus = NULL; 9865 tcg_rmode = NULL; 9866 } 9867 9868 if (size == 3) { 9869 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9870 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9871 9872 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 9873 write_fp_dreg(s, rd, tcg_rd); 9874 } else { 9875 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9876 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9877 9878 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9879 9880 switch (opcode) { 9881 case 0x7: /* SQABS, SQNEG */ 9882 { 9883 NeonGenOneOpEnvFn *genfn; 9884 static NeonGenOneOpEnvFn * const fns[3][2] = { 9885 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 9886 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 9887 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 9888 }; 9889 genfn = fns[size][u]; 9890 genfn(tcg_rd, cpu_env, tcg_rn); 9891 break; 9892 } 9893 case 0x1a: /* FCVTNS */ 9894 case 0x1b: /* FCVTMS */ 9895 case 0x1c: /* FCVTAS */ 9896 case 0x3a: /* FCVTPS */ 9897 case 0x3b: /* FCVTZS */ 9898 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9899 tcg_fpstatus); 9900 break; 9901 case 0x5a: /* FCVTNU */ 9902 case 0x5b: /* FCVTMU */ 9903 case 0x5c: /* FCVTAU */ 9904 case 0x7a: /* FCVTPU */ 9905 case 0x7b: /* FCVTZU */ 9906 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 9907 tcg_fpstatus); 9908 break; 9909 default: 9910 g_assert_not_reached(); 9911 } 9912 9913 write_fp_sreg(s, rd, tcg_rd); 9914 } 9915 9916 if (is_fcvt) { 9917 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9918 } 9919 } 9920 9921 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 9922 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 9923 int immh, int immb, int opcode, int rn, int rd) 9924 { 9925 int size = 32 - clz32(immh) - 1; 9926 int immhb = immh << 3 | immb; 9927 int shift = 2 * (8 << size) - immhb; 9928 GVecGen2iFn *gvec_fn; 9929 9930 if (extract32(immh, 3, 1) && !is_q) { 9931 unallocated_encoding(s); 9932 return; 9933 } 9934 tcg_debug_assert(size <= 3); 9935 9936 if (!fp_access_check(s)) { 9937 return; 9938 } 9939 9940 switch (opcode) { 9941 case 0x02: /* SSRA / USRA (accumulate) */ 9942 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 9943 break; 9944 9945 case 0x08: /* SRI */ 9946 gvec_fn = gen_gvec_sri; 9947 break; 9948 9949 case 0x00: /* SSHR / USHR */ 9950 if (is_u) { 9951 if (shift == 8 << size) { 9952 /* Shift count the same size as element size produces zero. */ 9953 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 9954 is_q ? 16 : 8, vec_full_reg_size(s), 0); 9955 return; 9956 } 9957 gvec_fn = tcg_gen_gvec_shri; 9958 } else { 9959 /* Shift count the same size as element size produces all sign. */ 9960 if (shift == 8 << size) { 9961 shift -= 1; 9962 } 9963 gvec_fn = tcg_gen_gvec_sari; 9964 } 9965 break; 9966 9967 case 0x04: /* SRSHR / URSHR (rounding) */ 9968 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 9969 break; 9970 9971 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 9972 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 9973 break; 9974 9975 default: 9976 g_assert_not_reached(); 9977 } 9978 9979 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 9980 } 9981 9982 /* SHL/SLI - Vector shift left */ 9983 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 9984 int immh, int immb, int opcode, int rn, int rd) 9985 { 9986 int size = 32 - clz32(immh) - 1; 9987 int immhb = immh << 3 | immb; 9988 int shift = immhb - (8 << size); 9989 9990 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 9991 assert(size >= 0 && size <= 3); 9992 9993 if (extract32(immh, 3, 1) && !is_q) { 9994 unallocated_encoding(s); 9995 return; 9996 } 9997 9998 if (!fp_access_check(s)) { 9999 return; 10000 } 10001 10002 if (insert) { 10003 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10004 } else { 10005 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10006 } 10007 } 10008 10009 /* USHLL/SHLL - Vector shift left with widening */ 10010 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10011 int immh, int immb, int opcode, int rn, int rd) 10012 { 10013 int size = 32 - clz32(immh) - 1; 10014 int immhb = immh << 3 | immb; 10015 int shift = immhb - (8 << size); 10016 int dsize = 64; 10017 int esize = 8 << size; 10018 int elements = dsize/esize; 10019 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10020 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10021 int i; 10022 10023 if (size >= 3) { 10024 unallocated_encoding(s); 10025 return; 10026 } 10027 10028 if (!fp_access_check(s)) { 10029 return; 10030 } 10031 10032 /* For the LL variants the store is larger than the load, 10033 * so if rd == rn we would overwrite parts of our input. 10034 * So load everything right now and use shifts in the main loop. 10035 */ 10036 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10037 10038 for (i = 0; i < elements; i++) { 10039 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10040 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10041 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10042 write_vec_element(s, tcg_rd, rd, i, size + 1); 10043 } 10044 } 10045 10046 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10047 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10048 int immh, int immb, int opcode, int rn, int rd) 10049 { 10050 int immhb = immh << 3 | immb; 10051 int size = 32 - clz32(immh) - 1; 10052 int dsize = 64; 10053 int esize = 8 << size; 10054 int elements = dsize/esize; 10055 int shift = (2 * esize) - immhb; 10056 bool round = extract32(opcode, 0, 1); 10057 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10058 TCGv_i64 tcg_round; 10059 int i; 10060 10061 if (extract32(immh, 3, 1)) { 10062 unallocated_encoding(s); 10063 return; 10064 } 10065 10066 if (!fp_access_check(s)) { 10067 return; 10068 } 10069 10070 tcg_rn = tcg_temp_new_i64(); 10071 tcg_rd = tcg_temp_new_i64(); 10072 tcg_final = tcg_temp_new_i64(); 10073 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10074 10075 if (round) { 10076 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10077 } else { 10078 tcg_round = NULL; 10079 } 10080 10081 for (i = 0; i < elements; i++) { 10082 read_vec_element(s, tcg_rn, rn, i, size+1); 10083 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10084 false, true, size+1, shift); 10085 10086 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10087 } 10088 10089 if (!is_q) { 10090 write_vec_element(s, tcg_final, rd, 0, MO_64); 10091 } else { 10092 write_vec_element(s, tcg_final, rd, 1, MO_64); 10093 } 10094 10095 clear_vec_high(s, is_q, rd); 10096 } 10097 10098 10099 /* AdvSIMD shift by immediate 10100 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10101 * +---+---+---+-------------+------+------+--------+---+------+------+ 10102 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10103 * +---+---+---+-------------+------+------+--------+---+------+------+ 10104 */ 10105 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10106 { 10107 int rd = extract32(insn, 0, 5); 10108 int rn = extract32(insn, 5, 5); 10109 int opcode = extract32(insn, 11, 5); 10110 int immb = extract32(insn, 16, 3); 10111 int immh = extract32(insn, 19, 4); 10112 bool is_u = extract32(insn, 29, 1); 10113 bool is_q = extract32(insn, 30, 1); 10114 10115 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10116 assert(immh != 0); 10117 10118 switch (opcode) { 10119 case 0x08: /* SRI */ 10120 if (!is_u) { 10121 unallocated_encoding(s); 10122 return; 10123 } 10124 /* fall through */ 10125 case 0x00: /* SSHR / USHR */ 10126 case 0x02: /* SSRA / USRA (accumulate) */ 10127 case 0x04: /* SRSHR / URSHR (rounding) */ 10128 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10129 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10130 break; 10131 case 0x0a: /* SHL / SLI */ 10132 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10133 break; 10134 case 0x10: /* SHRN */ 10135 case 0x11: /* RSHRN / SQRSHRUN */ 10136 if (is_u) { 10137 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10138 opcode, rn, rd); 10139 } else { 10140 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10141 } 10142 break; 10143 case 0x12: /* SQSHRN / UQSHRN */ 10144 case 0x13: /* SQRSHRN / UQRSHRN */ 10145 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10146 opcode, rn, rd); 10147 break; 10148 case 0x14: /* SSHLL / USHLL */ 10149 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10150 break; 10151 case 0x1c: /* SCVTF / UCVTF */ 10152 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10153 opcode, rn, rd); 10154 break; 10155 case 0xc: /* SQSHLU */ 10156 if (!is_u) { 10157 unallocated_encoding(s); 10158 return; 10159 } 10160 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10161 break; 10162 case 0xe: /* SQSHL, UQSHL */ 10163 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10164 break; 10165 case 0x1f: /* FCVTZS/ FCVTZU */ 10166 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10167 return; 10168 default: 10169 unallocated_encoding(s); 10170 return; 10171 } 10172 } 10173 10174 /* Generate code to do a "long" addition or subtraction, ie one done in 10175 * TCGv_i64 on vector lanes twice the width specified by size. 10176 */ 10177 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10178 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10179 { 10180 static NeonGenTwo64OpFn * const fns[3][2] = { 10181 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10182 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10183 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10184 }; 10185 NeonGenTwo64OpFn *genfn; 10186 assert(size < 3); 10187 10188 genfn = fns[size][is_sub]; 10189 genfn(tcg_res, tcg_op1, tcg_op2); 10190 } 10191 10192 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10193 int opcode, int rd, int rn, int rm) 10194 { 10195 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10196 TCGv_i64 tcg_res[2]; 10197 int pass, accop; 10198 10199 tcg_res[0] = tcg_temp_new_i64(); 10200 tcg_res[1] = tcg_temp_new_i64(); 10201 10202 /* Does this op do an adding accumulate, a subtracting accumulate, 10203 * or no accumulate at all? 10204 */ 10205 switch (opcode) { 10206 case 5: 10207 case 8: 10208 case 9: 10209 accop = 1; 10210 break; 10211 case 10: 10212 case 11: 10213 accop = -1; 10214 break; 10215 default: 10216 accop = 0; 10217 break; 10218 } 10219 10220 if (accop != 0) { 10221 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10222 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10223 } 10224 10225 /* size == 2 means two 32x32->64 operations; this is worth special 10226 * casing because we can generally handle it inline. 10227 */ 10228 if (size == 2) { 10229 for (pass = 0; pass < 2; pass++) { 10230 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10231 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10232 TCGv_i64 tcg_passres; 10233 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10234 10235 int elt = pass + is_q * 2; 10236 10237 read_vec_element(s, tcg_op1, rn, elt, memop); 10238 read_vec_element(s, tcg_op2, rm, elt, memop); 10239 10240 if (accop == 0) { 10241 tcg_passres = tcg_res[pass]; 10242 } else { 10243 tcg_passres = tcg_temp_new_i64(); 10244 } 10245 10246 switch (opcode) { 10247 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10248 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10249 break; 10250 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10251 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10252 break; 10253 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10254 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10255 { 10256 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10257 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10258 10259 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10260 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10261 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10262 tcg_passres, 10263 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10264 break; 10265 } 10266 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10267 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10268 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10269 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10270 break; 10271 case 9: /* SQDMLAL, SQDMLAL2 */ 10272 case 11: /* SQDMLSL, SQDMLSL2 */ 10273 case 13: /* SQDMULL, SQDMULL2 */ 10274 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10275 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10276 tcg_passres, tcg_passres); 10277 break; 10278 default: 10279 g_assert_not_reached(); 10280 } 10281 10282 if (opcode == 9 || opcode == 11) { 10283 /* saturating accumulate ops */ 10284 if (accop < 0) { 10285 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10286 } 10287 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10288 tcg_res[pass], tcg_passres); 10289 } else if (accop > 0) { 10290 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10291 } else if (accop < 0) { 10292 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10293 } 10294 } 10295 } else { 10296 /* size 0 or 1, generally helper functions */ 10297 for (pass = 0; pass < 2; pass++) { 10298 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10299 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10300 TCGv_i64 tcg_passres; 10301 int elt = pass + is_q * 2; 10302 10303 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10304 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10305 10306 if (accop == 0) { 10307 tcg_passres = tcg_res[pass]; 10308 } else { 10309 tcg_passres = tcg_temp_new_i64(); 10310 } 10311 10312 switch (opcode) { 10313 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10314 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10315 { 10316 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10317 static NeonGenWidenFn * const widenfns[2][2] = { 10318 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10319 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10320 }; 10321 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10322 10323 widenfn(tcg_op2_64, tcg_op2); 10324 widenfn(tcg_passres, tcg_op1); 10325 gen_neon_addl(size, (opcode == 2), tcg_passres, 10326 tcg_passres, tcg_op2_64); 10327 break; 10328 } 10329 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10330 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10331 if (size == 0) { 10332 if (is_u) { 10333 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10334 } else { 10335 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10336 } 10337 } else { 10338 if (is_u) { 10339 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10340 } else { 10341 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10342 } 10343 } 10344 break; 10345 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10346 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10347 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10348 if (size == 0) { 10349 if (is_u) { 10350 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10351 } else { 10352 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10353 } 10354 } else { 10355 if (is_u) { 10356 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10357 } else { 10358 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10359 } 10360 } 10361 break; 10362 case 9: /* SQDMLAL, SQDMLAL2 */ 10363 case 11: /* SQDMLSL, SQDMLSL2 */ 10364 case 13: /* SQDMULL, SQDMULL2 */ 10365 assert(size == 1); 10366 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10367 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10368 tcg_passres, tcg_passres); 10369 break; 10370 default: 10371 g_assert_not_reached(); 10372 } 10373 10374 if (accop != 0) { 10375 if (opcode == 9 || opcode == 11) { 10376 /* saturating accumulate ops */ 10377 if (accop < 0) { 10378 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10379 } 10380 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10381 tcg_res[pass], 10382 tcg_passres); 10383 } else { 10384 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10385 tcg_res[pass], tcg_passres); 10386 } 10387 } 10388 } 10389 } 10390 10391 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10392 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10393 } 10394 10395 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10396 int opcode, int rd, int rn, int rm) 10397 { 10398 TCGv_i64 tcg_res[2]; 10399 int part = is_q ? 2 : 0; 10400 int pass; 10401 10402 for (pass = 0; pass < 2; pass++) { 10403 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10404 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10405 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10406 static NeonGenWidenFn * const widenfns[3][2] = { 10407 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10408 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10409 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10410 }; 10411 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10412 10413 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10414 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10415 widenfn(tcg_op2_wide, tcg_op2); 10416 tcg_res[pass] = tcg_temp_new_i64(); 10417 gen_neon_addl(size, (opcode == 3), 10418 tcg_res[pass], tcg_op1, tcg_op2_wide); 10419 } 10420 10421 for (pass = 0; pass < 2; pass++) { 10422 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10423 } 10424 } 10425 10426 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10427 { 10428 tcg_gen_addi_i64(in, in, 1U << 31); 10429 tcg_gen_extrh_i64_i32(res, in); 10430 } 10431 10432 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10433 int opcode, int rd, int rn, int rm) 10434 { 10435 TCGv_i32 tcg_res[2]; 10436 int part = is_q ? 2 : 0; 10437 int pass; 10438 10439 for (pass = 0; pass < 2; pass++) { 10440 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10441 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10442 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10443 static NeonGenNarrowFn * const narrowfns[3][2] = { 10444 { gen_helper_neon_narrow_high_u8, 10445 gen_helper_neon_narrow_round_high_u8 }, 10446 { gen_helper_neon_narrow_high_u16, 10447 gen_helper_neon_narrow_round_high_u16 }, 10448 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10449 }; 10450 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10451 10452 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10453 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10454 10455 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10456 10457 tcg_res[pass] = tcg_temp_new_i32(); 10458 gennarrow(tcg_res[pass], tcg_wideres); 10459 } 10460 10461 for (pass = 0; pass < 2; pass++) { 10462 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10463 } 10464 clear_vec_high(s, is_q, rd); 10465 } 10466 10467 /* AdvSIMD three different 10468 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10469 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10470 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10471 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10472 */ 10473 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10474 { 10475 /* Instructions in this group fall into three basic classes 10476 * (in each case with the operation working on each element in 10477 * the input vectors): 10478 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10479 * 128 bit input) 10480 * (2) wide 64 x 128 -> 128 10481 * (3) narrowing 128 x 128 -> 64 10482 * Here we do initial decode, catch unallocated cases and 10483 * dispatch to separate functions for each class. 10484 */ 10485 int is_q = extract32(insn, 30, 1); 10486 int is_u = extract32(insn, 29, 1); 10487 int size = extract32(insn, 22, 2); 10488 int opcode = extract32(insn, 12, 4); 10489 int rm = extract32(insn, 16, 5); 10490 int rn = extract32(insn, 5, 5); 10491 int rd = extract32(insn, 0, 5); 10492 10493 switch (opcode) { 10494 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10495 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10496 /* 64 x 128 -> 128 */ 10497 if (size == 3) { 10498 unallocated_encoding(s); 10499 return; 10500 } 10501 if (!fp_access_check(s)) { 10502 return; 10503 } 10504 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10505 break; 10506 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10507 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10508 /* 128 x 128 -> 64 */ 10509 if (size == 3) { 10510 unallocated_encoding(s); 10511 return; 10512 } 10513 if (!fp_access_check(s)) { 10514 return; 10515 } 10516 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10517 break; 10518 case 14: /* PMULL, PMULL2 */ 10519 if (is_u) { 10520 unallocated_encoding(s); 10521 return; 10522 } 10523 switch (size) { 10524 case 0: /* PMULL.P8 */ 10525 if (!fp_access_check(s)) { 10526 return; 10527 } 10528 /* The Q field specifies lo/hi half input for this insn. */ 10529 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10530 gen_helper_neon_pmull_h); 10531 break; 10532 10533 case 3: /* PMULL.P64 */ 10534 if (!dc_isar_feature(aa64_pmull, s)) { 10535 unallocated_encoding(s); 10536 return; 10537 } 10538 if (!fp_access_check(s)) { 10539 return; 10540 } 10541 /* The Q field specifies lo/hi half input for this insn. */ 10542 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10543 gen_helper_gvec_pmull_q); 10544 break; 10545 10546 default: 10547 unallocated_encoding(s); 10548 break; 10549 } 10550 return; 10551 case 9: /* SQDMLAL, SQDMLAL2 */ 10552 case 11: /* SQDMLSL, SQDMLSL2 */ 10553 case 13: /* SQDMULL, SQDMULL2 */ 10554 if (is_u || size == 0) { 10555 unallocated_encoding(s); 10556 return; 10557 } 10558 /* fall through */ 10559 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10560 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10561 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10562 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10563 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10564 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10565 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10566 /* 64 x 64 -> 128 */ 10567 if (size == 3) { 10568 unallocated_encoding(s); 10569 return; 10570 } 10571 if (!fp_access_check(s)) { 10572 return; 10573 } 10574 10575 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10576 break; 10577 default: 10578 /* opcode 15 not allocated */ 10579 unallocated_encoding(s); 10580 break; 10581 } 10582 } 10583 10584 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10585 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10586 { 10587 int rd = extract32(insn, 0, 5); 10588 int rn = extract32(insn, 5, 5); 10589 int rm = extract32(insn, 16, 5); 10590 int size = extract32(insn, 22, 2); 10591 bool is_u = extract32(insn, 29, 1); 10592 bool is_q = extract32(insn, 30, 1); 10593 10594 if (!fp_access_check(s)) { 10595 return; 10596 } 10597 10598 switch (size + 4 * is_u) { 10599 case 0: /* AND */ 10600 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10601 return; 10602 case 1: /* BIC */ 10603 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10604 return; 10605 case 2: /* ORR */ 10606 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10607 return; 10608 case 3: /* ORN */ 10609 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10610 return; 10611 case 4: /* EOR */ 10612 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10613 return; 10614 10615 case 5: /* BSL bitwise select */ 10616 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10617 return; 10618 case 6: /* BIT, bitwise insert if true */ 10619 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10620 return; 10621 case 7: /* BIF, bitwise insert if false */ 10622 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10623 return; 10624 10625 default: 10626 g_assert_not_reached(); 10627 } 10628 } 10629 10630 /* Pairwise op subgroup of C3.6.16. 10631 * 10632 * This is called directly or via the handle_3same_float for float pairwise 10633 * operations where the opcode and size are calculated differently. 10634 */ 10635 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10636 int size, int rn, int rm, int rd) 10637 { 10638 TCGv_ptr fpst; 10639 int pass; 10640 10641 /* Floating point operations need fpst */ 10642 if (opcode >= 0x58) { 10643 fpst = fpstatus_ptr(FPST_FPCR); 10644 } else { 10645 fpst = NULL; 10646 } 10647 10648 if (!fp_access_check(s)) { 10649 return; 10650 } 10651 10652 /* These operations work on the concatenated rm:rn, with each pair of 10653 * adjacent elements being operated on to produce an element in the result. 10654 */ 10655 if (size == 3) { 10656 TCGv_i64 tcg_res[2]; 10657 10658 for (pass = 0; pass < 2; pass++) { 10659 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10660 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10661 int passreg = (pass == 0) ? rn : rm; 10662 10663 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10664 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10665 tcg_res[pass] = tcg_temp_new_i64(); 10666 10667 switch (opcode) { 10668 case 0x17: /* ADDP */ 10669 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10670 break; 10671 case 0x58: /* FMAXNMP */ 10672 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10673 break; 10674 case 0x5a: /* FADDP */ 10675 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10676 break; 10677 case 0x5e: /* FMAXP */ 10678 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10679 break; 10680 case 0x78: /* FMINNMP */ 10681 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10682 break; 10683 case 0x7e: /* FMINP */ 10684 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10685 break; 10686 default: 10687 g_assert_not_reached(); 10688 } 10689 } 10690 10691 for (pass = 0; pass < 2; pass++) { 10692 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10693 } 10694 } else { 10695 int maxpass = is_q ? 4 : 2; 10696 TCGv_i32 tcg_res[4]; 10697 10698 for (pass = 0; pass < maxpass; pass++) { 10699 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10700 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10701 NeonGenTwoOpFn *genfn = NULL; 10702 int passreg = pass < (maxpass / 2) ? rn : rm; 10703 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10704 10705 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10706 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10707 tcg_res[pass] = tcg_temp_new_i32(); 10708 10709 switch (opcode) { 10710 case 0x17: /* ADDP */ 10711 { 10712 static NeonGenTwoOpFn * const fns[3] = { 10713 gen_helper_neon_padd_u8, 10714 gen_helper_neon_padd_u16, 10715 tcg_gen_add_i32, 10716 }; 10717 genfn = fns[size]; 10718 break; 10719 } 10720 case 0x14: /* SMAXP, UMAXP */ 10721 { 10722 static NeonGenTwoOpFn * const fns[3][2] = { 10723 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10724 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10725 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10726 }; 10727 genfn = fns[size][u]; 10728 break; 10729 } 10730 case 0x15: /* SMINP, UMINP */ 10731 { 10732 static NeonGenTwoOpFn * const fns[3][2] = { 10733 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10734 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10735 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10736 }; 10737 genfn = fns[size][u]; 10738 break; 10739 } 10740 /* The FP operations are all on single floats (32 bit) */ 10741 case 0x58: /* FMAXNMP */ 10742 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10743 break; 10744 case 0x5a: /* FADDP */ 10745 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10746 break; 10747 case 0x5e: /* FMAXP */ 10748 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10749 break; 10750 case 0x78: /* FMINNMP */ 10751 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10752 break; 10753 case 0x7e: /* FMINP */ 10754 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10755 break; 10756 default: 10757 g_assert_not_reached(); 10758 } 10759 10760 /* FP ops called directly, otherwise call now */ 10761 if (genfn) { 10762 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10763 } 10764 } 10765 10766 for (pass = 0; pass < maxpass; pass++) { 10767 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10768 } 10769 clear_vec_high(s, is_q, rd); 10770 } 10771 } 10772 10773 /* Floating point op subgroup of C3.6.16. */ 10774 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10775 { 10776 /* For floating point ops, the U, size[1] and opcode bits 10777 * together indicate the operation. size[0] indicates single 10778 * or double. 10779 */ 10780 int fpopcode = extract32(insn, 11, 5) 10781 | (extract32(insn, 23, 1) << 5) 10782 | (extract32(insn, 29, 1) << 6); 10783 int is_q = extract32(insn, 30, 1); 10784 int size = extract32(insn, 22, 1); 10785 int rm = extract32(insn, 16, 5); 10786 int rn = extract32(insn, 5, 5); 10787 int rd = extract32(insn, 0, 5); 10788 10789 int datasize = is_q ? 128 : 64; 10790 int esize = 32 << size; 10791 int elements = datasize / esize; 10792 10793 if (size == 1 && !is_q) { 10794 unallocated_encoding(s); 10795 return; 10796 } 10797 10798 switch (fpopcode) { 10799 case 0x58: /* FMAXNMP */ 10800 case 0x5a: /* FADDP */ 10801 case 0x5e: /* FMAXP */ 10802 case 0x78: /* FMINNMP */ 10803 case 0x7e: /* FMINP */ 10804 if (size && !is_q) { 10805 unallocated_encoding(s); 10806 return; 10807 } 10808 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10809 rn, rm, rd); 10810 return; 10811 case 0x1b: /* FMULX */ 10812 case 0x1f: /* FRECPS */ 10813 case 0x3f: /* FRSQRTS */ 10814 case 0x5d: /* FACGE */ 10815 case 0x7d: /* FACGT */ 10816 case 0x19: /* FMLA */ 10817 case 0x39: /* FMLS */ 10818 case 0x18: /* FMAXNM */ 10819 case 0x1a: /* FADD */ 10820 case 0x1c: /* FCMEQ */ 10821 case 0x1e: /* FMAX */ 10822 case 0x38: /* FMINNM */ 10823 case 0x3a: /* FSUB */ 10824 case 0x3e: /* FMIN */ 10825 case 0x5b: /* FMUL */ 10826 case 0x5c: /* FCMGE */ 10827 case 0x5f: /* FDIV */ 10828 case 0x7a: /* FABD */ 10829 case 0x7c: /* FCMGT */ 10830 if (!fp_access_check(s)) { 10831 return; 10832 } 10833 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 10834 return; 10835 10836 case 0x1d: /* FMLAL */ 10837 case 0x3d: /* FMLSL */ 10838 case 0x59: /* FMLAL2 */ 10839 case 0x79: /* FMLSL2 */ 10840 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 10841 unallocated_encoding(s); 10842 return; 10843 } 10844 if (fp_access_check(s)) { 10845 int is_s = extract32(insn, 23, 1); 10846 int is_2 = extract32(insn, 29, 1); 10847 int data = (is_2 << 1) | is_s; 10848 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 10849 vec_full_reg_offset(s, rn), 10850 vec_full_reg_offset(s, rm), cpu_env, 10851 is_q ? 16 : 8, vec_full_reg_size(s), 10852 data, gen_helper_gvec_fmlal_a64); 10853 } 10854 return; 10855 10856 default: 10857 unallocated_encoding(s); 10858 return; 10859 } 10860 } 10861 10862 /* Integer op subgroup of C3.6.16. */ 10863 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 10864 { 10865 int is_q = extract32(insn, 30, 1); 10866 int u = extract32(insn, 29, 1); 10867 int size = extract32(insn, 22, 2); 10868 int opcode = extract32(insn, 11, 5); 10869 int rm = extract32(insn, 16, 5); 10870 int rn = extract32(insn, 5, 5); 10871 int rd = extract32(insn, 0, 5); 10872 int pass; 10873 TCGCond cond; 10874 10875 switch (opcode) { 10876 case 0x13: /* MUL, PMUL */ 10877 if (u && size != 0) { 10878 unallocated_encoding(s); 10879 return; 10880 } 10881 /* fall through */ 10882 case 0x0: /* SHADD, UHADD */ 10883 case 0x2: /* SRHADD, URHADD */ 10884 case 0x4: /* SHSUB, UHSUB */ 10885 case 0xc: /* SMAX, UMAX */ 10886 case 0xd: /* SMIN, UMIN */ 10887 case 0xe: /* SABD, UABD */ 10888 case 0xf: /* SABA, UABA */ 10889 case 0x12: /* MLA, MLS */ 10890 if (size == 3) { 10891 unallocated_encoding(s); 10892 return; 10893 } 10894 break; 10895 case 0x16: /* SQDMULH, SQRDMULH */ 10896 if (size == 0 || size == 3) { 10897 unallocated_encoding(s); 10898 return; 10899 } 10900 break; 10901 default: 10902 if (size == 3 && !is_q) { 10903 unallocated_encoding(s); 10904 return; 10905 } 10906 break; 10907 } 10908 10909 if (!fp_access_check(s)) { 10910 return; 10911 } 10912 10913 switch (opcode) { 10914 case 0x01: /* SQADD, UQADD */ 10915 if (u) { 10916 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 10917 } else { 10918 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 10919 } 10920 return; 10921 case 0x05: /* SQSUB, UQSUB */ 10922 if (u) { 10923 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 10924 } else { 10925 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 10926 } 10927 return; 10928 case 0x08: /* SSHL, USHL */ 10929 if (u) { 10930 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 10931 } else { 10932 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 10933 } 10934 return; 10935 case 0x0c: /* SMAX, UMAX */ 10936 if (u) { 10937 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 10938 } else { 10939 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 10940 } 10941 return; 10942 case 0x0d: /* SMIN, UMIN */ 10943 if (u) { 10944 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 10945 } else { 10946 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 10947 } 10948 return; 10949 case 0xe: /* SABD, UABD */ 10950 if (u) { 10951 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 10952 } else { 10953 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 10954 } 10955 return; 10956 case 0xf: /* SABA, UABA */ 10957 if (u) { 10958 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 10959 } else { 10960 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 10961 } 10962 return; 10963 case 0x10: /* ADD, SUB */ 10964 if (u) { 10965 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 10966 } else { 10967 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 10968 } 10969 return; 10970 case 0x13: /* MUL, PMUL */ 10971 if (!u) { /* MUL */ 10972 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 10973 } else { /* PMUL */ 10974 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 10975 } 10976 return; 10977 case 0x12: /* MLA, MLS */ 10978 if (u) { 10979 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 10980 } else { 10981 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 10982 } 10983 return; 10984 case 0x16: /* SQDMULH, SQRDMULH */ 10985 { 10986 static gen_helper_gvec_3_ptr * const fns[2][2] = { 10987 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 10988 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 10989 }; 10990 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 10991 } 10992 return; 10993 case 0x11: 10994 if (!u) { /* CMTST */ 10995 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 10996 return; 10997 } 10998 /* else CMEQ */ 10999 cond = TCG_COND_EQ; 11000 goto do_gvec_cmp; 11001 case 0x06: /* CMGT, CMHI */ 11002 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11003 goto do_gvec_cmp; 11004 case 0x07: /* CMGE, CMHS */ 11005 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11006 do_gvec_cmp: 11007 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11008 vec_full_reg_offset(s, rn), 11009 vec_full_reg_offset(s, rm), 11010 is_q ? 16 : 8, vec_full_reg_size(s)); 11011 return; 11012 } 11013 11014 if (size == 3) { 11015 assert(is_q); 11016 for (pass = 0; pass < 2; pass++) { 11017 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11018 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11019 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11020 11021 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11022 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11023 11024 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11025 11026 write_vec_element(s, tcg_res, rd, pass, MO_64); 11027 } 11028 } else { 11029 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11030 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11031 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11032 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11033 NeonGenTwoOpFn *genfn = NULL; 11034 NeonGenTwoOpEnvFn *genenvfn = NULL; 11035 11036 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11037 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11038 11039 switch (opcode) { 11040 case 0x0: /* SHADD, UHADD */ 11041 { 11042 static NeonGenTwoOpFn * const fns[3][2] = { 11043 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11044 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11045 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11046 }; 11047 genfn = fns[size][u]; 11048 break; 11049 } 11050 case 0x2: /* SRHADD, URHADD */ 11051 { 11052 static NeonGenTwoOpFn * const fns[3][2] = { 11053 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11054 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11055 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11056 }; 11057 genfn = fns[size][u]; 11058 break; 11059 } 11060 case 0x4: /* SHSUB, UHSUB */ 11061 { 11062 static NeonGenTwoOpFn * const fns[3][2] = { 11063 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11064 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11065 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11066 }; 11067 genfn = fns[size][u]; 11068 break; 11069 } 11070 case 0x9: /* SQSHL, UQSHL */ 11071 { 11072 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11073 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11074 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11075 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11076 }; 11077 genenvfn = fns[size][u]; 11078 break; 11079 } 11080 case 0xa: /* SRSHL, URSHL */ 11081 { 11082 static NeonGenTwoOpFn * const fns[3][2] = { 11083 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11084 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11085 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11086 }; 11087 genfn = fns[size][u]; 11088 break; 11089 } 11090 case 0xb: /* SQRSHL, UQRSHL */ 11091 { 11092 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11093 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11094 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11095 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11096 }; 11097 genenvfn = fns[size][u]; 11098 break; 11099 } 11100 default: 11101 g_assert_not_reached(); 11102 } 11103 11104 if (genenvfn) { 11105 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11106 } else { 11107 genfn(tcg_res, tcg_op1, tcg_op2); 11108 } 11109 11110 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11111 } 11112 } 11113 clear_vec_high(s, is_q, rd); 11114 } 11115 11116 /* AdvSIMD three same 11117 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11118 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11119 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11120 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11121 */ 11122 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11123 { 11124 int opcode = extract32(insn, 11, 5); 11125 11126 switch (opcode) { 11127 case 0x3: /* logic ops */ 11128 disas_simd_3same_logic(s, insn); 11129 break; 11130 case 0x17: /* ADDP */ 11131 case 0x14: /* SMAXP, UMAXP */ 11132 case 0x15: /* SMINP, UMINP */ 11133 { 11134 /* Pairwise operations */ 11135 int is_q = extract32(insn, 30, 1); 11136 int u = extract32(insn, 29, 1); 11137 int size = extract32(insn, 22, 2); 11138 int rm = extract32(insn, 16, 5); 11139 int rn = extract32(insn, 5, 5); 11140 int rd = extract32(insn, 0, 5); 11141 if (opcode == 0x17) { 11142 if (u || (size == 3 && !is_q)) { 11143 unallocated_encoding(s); 11144 return; 11145 } 11146 } else { 11147 if (size == 3) { 11148 unallocated_encoding(s); 11149 return; 11150 } 11151 } 11152 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11153 break; 11154 } 11155 case 0x18 ... 0x31: 11156 /* floating point ops, sz[1] and U are part of opcode */ 11157 disas_simd_3same_float(s, insn); 11158 break; 11159 default: 11160 disas_simd_3same_int(s, insn); 11161 break; 11162 } 11163 } 11164 11165 /* 11166 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11167 * 11168 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11169 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11170 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11171 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11172 * 11173 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11174 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11175 * 11176 */ 11177 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11178 { 11179 int opcode = extract32(insn, 11, 3); 11180 int u = extract32(insn, 29, 1); 11181 int a = extract32(insn, 23, 1); 11182 int is_q = extract32(insn, 30, 1); 11183 int rm = extract32(insn, 16, 5); 11184 int rn = extract32(insn, 5, 5); 11185 int rd = extract32(insn, 0, 5); 11186 /* 11187 * For these floating point ops, the U, a and opcode bits 11188 * together indicate the operation. 11189 */ 11190 int fpopcode = opcode | (a << 3) | (u << 4); 11191 int datasize = is_q ? 128 : 64; 11192 int elements = datasize / 16; 11193 bool pairwise; 11194 TCGv_ptr fpst; 11195 int pass; 11196 11197 switch (fpopcode) { 11198 case 0x0: /* FMAXNM */ 11199 case 0x1: /* FMLA */ 11200 case 0x2: /* FADD */ 11201 case 0x3: /* FMULX */ 11202 case 0x4: /* FCMEQ */ 11203 case 0x6: /* FMAX */ 11204 case 0x7: /* FRECPS */ 11205 case 0x8: /* FMINNM */ 11206 case 0x9: /* FMLS */ 11207 case 0xa: /* FSUB */ 11208 case 0xe: /* FMIN */ 11209 case 0xf: /* FRSQRTS */ 11210 case 0x13: /* FMUL */ 11211 case 0x14: /* FCMGE */ 11212 case 0x15: /* FACGE */ 11213 case 0x17: /* FDIV */ 11214 case 0x1a: /* FABD */ 11215 case 0x1c: /* FCMGT */ 11216 case 0x1d: /* FACGT */ 11217 pairwise = false; 11218 break; 11219 case 0x10: /* FMAXNMP */ 11220 case 0x12: /* FADDP */ 11221 case 0x16: /* FMAXP */ 11222 case 0x18: /* FMINNMP */ 11223 case 0x1e: /* FMINP */ 11224 pairwise = true; 11225 break; 11226 default: 11227 unallocated_encoding(s); 11228 return; 11229 } 11230 11231 if (!dc_isar_feature(aa64_fp16, s)) { 11232 unallocated_encoding(s); 11233 return; 11234 } 11235 11236 if (!fp_access_check(s)) { 11237 return; 11238 } 11239 11240 fpst = fpstatus_ptr(FPST_FPCR_F16); 11241 11242 if (pairwise) { 11243 int maxpass = is_q ? 8 : 4; 11244 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11245 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11246 TCGv_i32 tcg_res[8]; 11247 11248 for (pass = 0; pass < maxpass; pass++) { 11249 int passreg = pass < (maxpass / 2) ? rn : rm; 11250 int passelt = (pass << 1) & (maxpass - 1); 11251 11252 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11253 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11254 tcg_res[pass] = tcg_temp_new_i32(); 11255 11256 switch (fpopcode) { 11257 case 0x10: /* FMAXNMP */ 11258 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11259 fpst); 11260 break; 11261 case 0x12: /* FADDP */ 11262 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11263 break; 11264 case 0x16: /* FMAXP */ 11265 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11266 break; 11267 case 0x18: /* FMINNMP */ 11268 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11269 fpst); 11270 break; 11271 case 0x1e: /* FMINP */ 11272 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11273 break; 11274 default: 11275 g_assert_not_reached(); 11276 } 11277 } 11278 11279 for (pass = 0; pass < maxpass; pass++) { 11280 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11281 } 11282 } else { 11283 for (pass = 0; pass < elements; pass++) { 11284 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11285 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11286 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11287 11288 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11289 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11290 11291 switch (fpopcode) { 11292 case 0x0: /* FMAXNM */ 11293 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11294 break; 11295 case 0x1: /* FMLA */ 11296 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11297 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11298 fpst); 11299 break; 11300 case 0x2: /* FADD */ 11301 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11302 break; 11303 case 0x3: /* FMULX */ 11304 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11305 break; 11306 case 0x4: /* FCMEQ */ 11307 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11308 break; 11309 case 0x6: /* FMAX */ 11310 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11311 break; 11312 case 0x7: /* FRECPS */ 11313 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11314 break; 11315 case 0x8: /* FMINNM */ 11316 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11317 break; 11318 case 0x9: /* FMLS */ 11319 /* As usual for ARM, separate negation for fused multiply-add */ 11320 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11321 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11322 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11323 fpst); 11324 break; 11325 case 0xa: /* FSUB */ 11326 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11327 break; 11328 case 0xe: /* FMIN */ 11329 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11330 break; 11331 case 0xf: /* FRSQRTS */ 11332 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11333 break; 11334 case 0x13: /* FMUL */ 11335 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11336 break; 11337 case 0x14: /* FCMGE */ 11338 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11339 break; 11340 case 0x15: /* FACGE */ 11341 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11342 break; 11343 case 0x17: /* FDIV */ 11344 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11345 break; 11346 case 0x1a: /* FABD */ 11347 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11348 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11349 break; 11350 case 0x1c: /* FCMGT */ 11351 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11352 break; 11353 case 0x1d: /* FACGT */ 11354 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11355 break; 11356 default: 11357 g_assert_not_reached(); 11358 } 11359 11360 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11361 } 11362 } 11363 11364 clear_vec_high(s, is_q, rd); 11365 } 11366 11367 /* AdvSIMD three same extra 11368 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11369 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11370 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11371 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11372 */ 11373 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11374 { 11375 int rd = extract32(insn, 0, 5); 11376 int rn = extract32(insn, 5, 5); 11377 int opcode = extract32(insn, 11, 4); 11378 int rm = extract32(insn, 16, 5); 11379 int size = extract32(insn, 22, 2); 11380 bool u = extract32(insn, 29, 1); 11381 bool is_q = extract32(insn, 30, 1); 11382 bool feature; 11383 int rot; 11384 11385 switch (u * 16 + opcode) { 11386 case 0x10: /* SQRDMLAH (vector) */ 11387 case 0x11: /* SQRDMLSH (vector) */ 11388 if (size != 1 && size != 2) { 11389 unallocated_encoding(s); 11390 return; 11391 } 11392 feature = dc_isar_feature(aa64_rdm, s); 11393 break; 11394 case 0x02: /* SDOT (vector) */ 11395 case 0x12: /* UDOT (vector) */ 11396 if (size != MO_32) { 11397 unallocated_encoding(s); 11398 return; 11399 } 11400 feature = dc_isar_feature(aa64_dp, s); 11401 break; 11402 case 0x03: /* USDOT */ 11403 if (size != MO_32) { 11404 unallocated_encoding(s); 11405 return; 11406 } 11407 feature = dc_isar_feature(aa64_i8mm, s); 11408 break; 11409 case 0x04: /* SMMLA */ 11410 case 0x14: /* UMMLA */ 11411 case 0x05: /* USMMLA */ 11412 if (!is_q || size != MO_32) { 11413 unallocated_encoding(s); 11414 return; 11415 } 11416 feature = dc_isar_feature(aa64_i8mm, s); 11417 break; 11418 case 0x18: /* FCMLA, #0 */ 11419 case 0x19: /* FCMLA, #90 */ 11420 case 0x1a: /* FCMLA, #180 */ 11421 case 0x1b: /* FCMLA, #270 */ 11422 case 0x1c: /* FCADD, #90 */ 11423 case 0x1e: /* FCADD, #270 */ 11424 if (size == 0 11425 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11426 || (size == 3 && !is_q)) { 11427 unallocated_encoding(s); 11428 return; 11429 } 11430 feature = dc_isar_feature(aa64_fcma, s); 11431 break; 11432 case 0x1d: /* BFMMLA */ 11433 if (size != MO_16 || !is_q) { 11434 unallocated_encoding(s); 11435 return; 11436 } 11437 feature = dc_isar_feature(aa64_bf16, s); 11438 break; 11439 case 0x1f: 11440 switch (size) { 11441 case 1: /* BFDOT */ 11442 case 3: /* BFMLAL{B,T} */ 11443 feature = dc_isar_feature(aa64_bf16, s); 11444 break; 11445 default: 11446 unallocated_encoding(s); 11447 return; 11448 } 11449 break; 11450 default: 11451 unallocated_encoding(s); 11452 return; 11453 } 11454 if (!feature) { 11455 unallocated_encoding(s); 11456 return; 11457 } 11458 if (!fp_access_check(s)) { 11459 return; 11460 } 11461 11462 switch (opcode) { 11463 case 0x0: /* SQRDMLAH (vector) */ 11464 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11465 return; 11466 11467 case 0x1: /* SQRDMLSH (vector) */ 11468 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11469 return; 11470 11471 case 0x2: /* SDOT / UDOT */ 11472 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11473 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11474 return; 11475 11476 case 0x3: /* USDOT */ 11477 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11478 return; 11479 11480 case 0x04: /* SMMLA, UMMLA */ 11481 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11482 u ? gen_helper_gvec_ummla_b 11483 : gen_helper_gvec_smmla_b); 11484 return; 11485 case 0x05: /* USMMLA */ 11486 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11487 return; 11488 11489 case 0x8: /* FCMLA, #0 */ 11490 case 0x9: /* FCMLA, #90 */ 11491 case 0xa: /* FCMLA, #180 */ 11492 case 0xb: /* FCMLA, #270 */ 11493 rot = extract32(opcode, 0, 2); 11494 switch (size) { 11495 case 1: 11496 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11497 gen_helper_gvec_fcmlah); 11498 break; 11499 case 2: 11500 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11501 gen_helper_gvec_fcmlas); 11502 break; 11503 case 3: 11504 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11505 gen_helper_gvec_fcmlad); 11506 break; 11507 default: 11508 g_assert_not_reached(); 11509 } 11510 return; 11511 11512 case 0xc: /* FCADD, #90 */ 11513 case 0xe: /* FCADD, #270 */ 11514 rot = extract32(opcode, 1, 1); 11515 switch (size) { 11516 case 1: 11517 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11518 gen_helper_gvec_fcaddh); 11519 break; 11520 case 2: 11521 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11522 gen_helper_gvec_fcadds); 11523 break; 11524 case 3: 11525 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11526 gen_helper_gvec_fcaddd); 11527 break; 11528 default: 11529 g_assert_not_reached(); 11530 } 11531 return; 11532 11533 case 0xd: /* BFMMLA */ 11534 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11535 return; 11536 case 0xf: 11537 switch (size) { 11538 case 1: /* BFDOT */ 11539 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11540 break; 11541 case 3: /* BFMLAL{B,T} */ 11542 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11543 gen_helper_gvec_bfmlal); 11544 break; 11545 default: 11546 g_assert_not_reached(); 11547 } 11548 return; 11549 11550 default: 11551 g_assert_not_reached(); 11552 } 11553 } 11554 11555 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11556 int size, int rn, int rd) 11557 { 11558 /* Handle 2-reg-misc ops which are widening (so each size element 11559 * in the source becomes a 2*size element in the destination. 11560 * The only instruction like this is FCVTL. 11561 */ 11562 int pass; 11563 11564 if (size == 3) { 11565 /* 32 -> 64 bit fp conversion */ 11566 TCGv_i64 tcg_res[2]; 11567 int srcelt = is_q ? 2 : 0; 11568 11569 for (pass = 0; pass < 2; pass++) { 11570 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11571 tcg_res[pass] = tcg_temp_new_i64(); 11572 11573 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11574 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11575 } 11576 for (pass = 0; pass < 2; pass++) { 11577 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11578 } 11579 } else { 11580 /* 16 -> 32 bit fp conversion */ 11581 int srcelt = is_q ? 4 : 0; 11582 TCGv_i32 tcg_res[4]; 11583 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11584 TCGv_i32 ahp = get_ahp_flag(); 11585 11586 for (pass = 0; pass < 4; pass++) { 11587 tcg_res[pass] = tcg_temp_new_i32(); 11588 11589 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11590 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11591 fpst, ahp); 11592 } 11593 for (pass = 0; pass < 4; pass++) { 11594 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11595 } 11596 } 11597 } 11598 11599 static void handle_rev(DisasContext *s, int opcode, bool u, 11600 bool is_q, int size, int rn, int rd) 11601 { 11602 int op = (opcode << 1) | u; 11603 int opsz = op + size; 11604 int grp_size = 3 - opsz; 11605 int dsize = is_q ? 128 : 64; 11606 int i; 11607 11608 if (opsz >= 3) { 11609 unallocated_encoding(s); 11610 return; 11611 } 11612 11613 if (!fp_access_check(s)) { 11614 return; 11615 } 11616 11617 if (size == 0) { 11618 /* Special case bytes, use bswap op on each group of elements */ 11619 int groups = dsize / (8 << grp_size); 11620 11621 for (i = 0; i < groups; i++) { 11622 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11623 11624 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11625 switch (grp_size) { 11626 case MO_16: 11627 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11628 break; 11629 case MO_32: 11630 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11631 break; 11632 case MO_64: 11633 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11634 break; 11635 default: 11636 g_assert_not_reached(); 11637 } 11638 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11639 } 11640 clear_vec_high(s, is_q, rd); 11641 } else { 11642 int revmask = (1 << grp_size) - 1; 11643 int esize = 8 << size; 11644 int elements = dsize / esize; 11645 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11646 TCGv_i64 tcg_rd[2]; 11647 11648 for (i = 0; i < 2; i++) { 11649 tcg_rd[i] = tcg_temp_new_i64(); 11650 tcg_gen_movi_i64(tcg_rd[i], 0); 11651 } 11652 11653 for (i = 0; i < elements; i++) { 11654 int e_rev = (i & 0xf) ^ revmask; 11655 int w = (e_rev * esize) / 64; 11656 int o = (e_rev * esize) % 64; 11657 11658 read_vec_element(s, tcg_rn, rn, i, size); 11659 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11660 } 11661 11662 for (i = 0; i < 2; i++) { 11663 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11664 } 11665 clear_vec_high(s, true, rd); 11666 } 11667 } 11668 11669 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11670 bool is_q, int size, int rn, int rd) 11671 { 11672 /* Implement the pairwise operations from 2-misc: 11673 * SADDLP, UADDLP, SADALP, UADALP. 11674 * These all add pairs of elements in the input to produce a 11675 * double-width result element in the output (possibly accumulating). 11676 */ 11677 bool accum = (opcode == 0x6); 11678 int maxpass = is_q ? 2 : 1; 11679 int pass; 11680 TCGv_i64 tcg_res[2]; 11681 11682 if (size == 2) { 11683 /* 32 + 32 -> 64 op */ 11684 MemOp memop = size + (u ? 0 : MO_SIGN); 11685 11686 for (pass = 0; pass < maxpass; pass++) { 11687 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11688 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11689 11690 tcg_res[pass] = tcg_temp_new_i64(); 11691 11692 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11693 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11694 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11695 if (accum) { 11696 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11697 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11698 } 11699 } 11700 } else { 11701 for (pass = 0; pass < maxpass; pass++) { 11702 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11703 NeonGenOne64OpFn *genfn; 11704 static NeonGenOne64OpFn * const fns[2][2] = { 11705 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11706 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11707 }; 11708 11709 genfn = fns[size][u]; 11710 11711 tcg_res[pass] = tcg_temp_new_i64(); 11712 11713 read_vec_element(s, tcg_op, rn, pass, MO_64); 11714 genfn(tcg_res[pass], tcg_op); 11715 11716 if (accum) { 11717 read_vec_element(s, tcg_op, rd, pass, MO_64); 11718 if (size == 0) { 11719 gen_helper_neon_addl_u16(tcg_res[pass], 11720 tcg_res[pass], tcg_op); 11721 } else { 11722 gen_helper_neon_addl_u32(tcg_res[pass], 11723 tcg_res[pass], tcg_op); 11724 } 11725 } 11726 } 11727 } 11728 if (!is_q) { 11729 tcg_res[1] = tcg_constant_i64(0); 11730 } 11731 for (pass = 0; pass < 2; pass++) { 11732 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11733 } 11734 } 11735 11736 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11737 { 11738 /* Implement SHLL and SHLL2 */ 11739 int pass; 11740 int part = is_q ? 2 : 0; 11741 TCGv_i64 tcg_res[2]; 11742 11743 for (pass = 0; pass < 2; pass++) { 11744 static NeonGenWidenFn * const widenfns[3] = { 11745 gen_helper_neon_widen_u8, 11746 gen_helper_neon_widen_u16, 11747 tcg_gen_extu_i32_i64, 11748 }; 11749 NeonGenWidenFn *widenfn = widenfns[size]; 11750 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11751 11752 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11753 tcg_res[pass] = tcg_temp_new_i64(); 11754 widenfn(tcg_res[pass], tcg_op); 11755 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11756 } 11757 11758 for (pass = 0; pass < 2; pass++) { 11759 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11760 } 11761 } 11762 11763 /* AdvSIMD two reg misc 11764 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11765 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11766 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11767 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11768 */ 11769 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11770 { 11771 int size = extract32(insn, 22, 2); 11772 int opcode = extract32(insn, 12, 5); 11773 bool u = extract32(insn, 29, 1); 11774 bool is_q = extract32(insn, 30, 1); 11775 int rn = extract32(insn, 5, 5); 11776 int rd = extract32(insn, 0, 5); 11777 bool need_fpstatus = false; 11778 int rmode = -1; 11779 TCGv_i32 tcg_rmode; 11780 TCGv_ptr tcg_fpstatus; 11781 11782 switch (opcode) { 11783 case 0x0: /* REV64, REV32 */ 11784 case 0x1: /* REV16 */ 11785 handle_rev(s, opcode, u, is_q, size, rn, rd); 11786 return; 11787 case 0x5: /* CNT, NOT, RBIT */ 11788 if (u && size == 0) { 11789 /* NOT */ 11790 break; 11791 } else if (u && size == 1) { 11792 /* RBIT */ 11793 break; 11794 } else if (!u && size == 0) { 11795 /* CNT */ 11796 break; 11797 } 11798 unallocated_encoding(s); 11799 return; 11800 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11801 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11802 if (size == 3) { 11803 unallocated_encoding(s); 11804 return; 11805 } 11806 if (!fp_access_check(s)) { 11807 return; 11808 } 11809 11810 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11811 return; 11812 case 0x4: /* CLS, CLZ */ 11813 if (size == 3) { 11814 unallocated_encoding(s); 11815 return; 11816 } 11817 break; 11818 case 0x2: /* SADDLP, UADDLP */ 11819 case 0x6: /* SADALP, UADALP */ 11820 if (size == 3) { 11821 unallocated_encoding(s); 11822 return; 11823 } 11824 if (!fp_access_check(s)) { 11825 return; 11826 } 11827 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 11828 return; 11829 case 0x13: /* SHLL, SHLL2 */ 11830 if (u == 0 || size == 3) { 11831 unallocated_encoding(s); 11832 return; 11833 } 11834 if (!fp_access_check(s)) { 11835 return; 11836 } 11837 handle_shll(s, is_q, size, rn, rd); 11838 return; 11839 case 0xa: /* CMLT */ 11840 if (u == 1) { 11841 unallocated_encoding(s); 11842 return; 11843 } 11844 /* fall through */ 11845 case 0x8: /* CMGT, CMGE */ 11846 case 0x9: /* CMEQ, CMLE */ 11847 case 0xb: /* ABS, NEG */ 11848 if (size == 3 && !is_q) { 11849 unallocated_encoding(s); 11850 return; 11851 } 11852 break; 11853 case 0x3: /* SUQADD, USQADD */ 11854 if (size == 3 && !is_q) { 11855 unallocated_encoding(s); 11856 return; 11857 } 11858 if (!fp_access_check(s)) { 11859 return; 11860 } 11861 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 11862 return; 11863 case 0x7: /* SQABS, SQNEG */ 11864 if (size == 3 && !is_q) { 11865 unallocated_encoding(s); 11866 return; 11867 } 11868 break; 11869 case 0xc ... 0xf: 11870 case 0x16 ... 0x1f: 11871 { 11872 /* Floating point: U, size[1] and opcode indicate operation; 11873 * size[0] indicates single or double precision. 11874 */ 11875 int is_double = extract32(size, 0, 1); 11876 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 11877 size = is_double ? 3 : 2; 11878 switch (opcode) { 11879 case 0x2f: /* FABS */ 11880 case 0x6f: /* FNEG */ 11881 if (size == 3 && !is_q) { 11882 unallocated_encoding(s); 11883 return; 11884 } 11885 break; 11886 case 0x1d: /* SCVTF */ 11887 case 0x5d: /* UCVTF */ 11888 { 11889 bool is_signed = (opcode == 0x1d) ? true : false; 11890 int elements = is_double ? 2 : is_q ? 4 : 2; 11891 if (is_double && !is_q) { 11892 unallocated_encoding(s); 11893 return; 11894 } 11895 if (!fp_access_check(s)) { 11896 return; 11897 } 11898 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 11899 return; 11900 } 11901 case 0x2c: /* FCMGT (zero) */ 11902 case 0x2d: /* FCMEQ (zero) */ 11903 case 0x2e: /* FCMLT (zero) */ 11904 case 0x6c: /* FCMGE (zero) */ 11905 case 0x6d: /* FCMLE (zero) */ 11906 if (size == 3 && !is_q) { 11907 unallocated_encoding(s); 11908 return; 11909 } 11910 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 11911 return; 11912 case 0x7f: /* FSQRT */ 11913 if (size == 3 && !is_q) { 11914 unallocated_encoding(s); 11915 return; 11916 } 11917 break; 11918 case 0x1a: /* FCVTNS */ 11919 case 0x1b: /* FCVTMS */ 11920 case 0x3a: /* FCVTPS */ 11921 case 0x3b: /* FCVTZS */ 11922 case 0x5a: /* FCVTNU */ 11923 case 0x5b: /* FCVTMU */ 11924 case 0x7a: /* FCVTPU */ 11925 case 0x7b: /* FCVTZU */ 11926 need_fpstatus = true; 11927 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11928 if (size == 3 && !is_q) { 11929 unallocated_encoding(s); 11930 return; 11931 } 11932 break; 11933 case 0x5c: /* FCVTAU */ 11934 case 0x1c: /* FCVTAS */ 11935 need_fpstatus = true; 11936 rmode = FPROUNDING_TIEAWAY; 11937 if (size == 3 && !is_q) { 11938 unallocated_encoding(s); 11939 return; 11940 } 11941 break; 11942 case 0x3c: /* URECPE */ 11943 if (size == 3) { 11944 unallocated_encoding(s); 11945 return; 11946 } 11947 /* fall through */ 11948 case 0x3d: /* FRECPE */ 11949 case 0x7d: /* FRSQRTE */ 11950 if (size == 3 && !is_q) { 11951 unallocated_encoding(s); 11952 return; 11953 } 11954 if (!fp_access_check(s)) { 11955 return; 11956 } 11957 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 11958 return; 11959 case 0x56: /* FCVTXN, FCVTXN2 */ 11960 if (size == 2) { 11961 unallocated_encoding(s); 11962 return; 11963 } 11964 /* fall through */ 11965 case 0x16: /* FCVTN, FCVTN2 */ 11966 /* handle_2misc_narrow does a 2*size -> size operation, but these 11967 * instructions encode the source size rather than dest size. 11968 */ 11969 if (!fp_access_check(s)) { 11970 return; 11971 } 11972 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11973 return; 11974 case 0x36: /* BFCVTN, BFCVTN2 */ 11975 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 11976 unallocated_encoding(s); 11977 return; 11978 } 11979 if (!fp_access_check(s)) { 11980 return; 11981 } 11982 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 11983 return; 11984 case 0x17: /* FCVTL, FCVTL2 */ 11985 if (!fp_access_check(s)) { 11986 return; 11987 } 11988 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 11989 return; 11990 case 0x18: /* FRINTN */ 11991 case 0x19: /* FRINTM */ 11992 case 0x38: /* FRINTP */ 11993 case 0x39: /* FRINTZ */ 11994 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 11995 /* fall through */ 11996 case 0x59: /* FRINTX */ 11997 case 0x79: /* FRINTI */ 11998 need_fpstatus = true; 11999 if (size == 3 && !is_q) { 12000 unallocated_encoding(s); 12001 return; 12002 } 12003 break; 12004 case 0x58: /* FRINTA */ 12005 rmode = FPROUNDING_TIEAWAY; 12006 need_fpstatus = true; 12007 if (size == 3 && !is_q) { 12008 unallocated_encoding(s); 12009 return; 12010 } 12011 break; 12012 case 0x7c: /* URSQRTE */ 12013 if (size == 3) { 12014 unallocated_encoding(s); 12015 return; 12016 } 12017 break; 12018 case 0x1e: /* FRINT32Z */ 12019 case 0x1f: /* FRINT64Z */ 12020 rmode = FPROUNDING_ZERO; 12021 /* fall through */ 12022 case 0x5e: /* FRINT32X */ 12023 case 0x5f: /* FRINT64X */ 12024 need_fpstatus = true; 12025 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12026 unallocated_encoding(s); 12027 return; 12028 } 12029 break; 12030 default: 12031 unallocated_encoding(s); 12032 return; 12033 } 12034 break; 12035 } 12036 default: 12037 unallocated_encoding(s); 12038 return; 12039 } 12040 12041 if (!fp_access_check(s)) { 12042 return; 12043 } 12044 12045 if (need_fpstatus || rmode >= 0) { 12046 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12047 } else { 12048 tcg_fpstatus = NULL; 12049 } 12050 if (rmode >= 0) { 12051 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12052 } else { 12053 tcg_rmode = NULL; 12054 } 12055 12056 switch (opcode) { 12057 case 0x5: 12058 if (u && size == 0) { /* NOT */ 12059 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12060 return; 12061 } 12062 break; 12063 case 0x8: /* CMGT, CMGE */ 12064 if (u) { 12065 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12066 } else { 12067 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12068 } 12069 return; 12070 case 0x9: /* CMEQ, CMLE */ 12071 if (u) { 12072 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12073 } else { 12074 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12075 } 12076 return; 12077 case 0xa: /* CMLT */ 12078 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12079 return; 12080 case 0xb: 12081 if (u) { /* ABS, NEG */ 12082 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12083 } else { 12084 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12085 } 12086 return; 12087 } 12088 12089 if (size == 3) { 12090 /* All 64-bit element operations can be shared with scalar 2misc */ 12091 int pass; 12092 12093 /* Coverity claims (size == 3 && !is_q) has been eliminated 12094 * from all paths leading to here. 12095 */ 12096 tcg_debug_assert(is_q); 12097 for (pass = 0; pass < 2; pass++) { 12098 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12099 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12100 12101 read_vec_element(s, tcg_op, rn, pass, MO_64); 12102 12103 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12104 tcg_rmode, tcg_fpstatus); 12105 12106 write_vec_element(s, tcg_res, rd, pass, MO_64); 12107 } 12108 } else { 12109 int pass; 12110 12111 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12112 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12113 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12114 12115 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12116 12117 if (size == 2) { 12118 /* Special cases for 32 bit elements */ 12119 switch (opcode) { 12120 case 0x4: /* CLS */ 12121 if (u) { 12122 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12123 } else { 12124 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12125 } 12126 break; 12127 case 0x7: /* SQABS, SQNEG */ 12128 if (u) { 12129 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12130 } else { 12131 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12132 } 12133 break; 12134 case 0x2f: /* FABS */ 12135 gen_helper_vfp_abss(tcg_res, tcg_op); 12136 break; 12137 case 0x6f: /* FNEG */ 12138 gen_helper_vfp_negs(tcg_res, tcg_op); 12139 break; 12140 case 0x7f: /* FSQRT */ 12141 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12142 break; 12143 case 0x1a: /* FCVTNS */ 12144 case 0x1b: /* FCVTMS */ 12145 case 0x1c: /* FCVTAS */ 12146 case 0x3a: /* FCVTPS */ 12147 case 0x3b: /* FCVTZS */ 12148 gen_helper_vfp_tosls(tcg_res, tcg_op, 12149 tcg_constant_i32(0), tcg_fpstatus); 12150 break; 12151 case 0x5a: /* FCVTNU */ 12152 case 0x5b: /* FCVTMU */ 12153 case 0x5c: /* FCVTAU */ 12154 case 0x7a: /* FCVTPU */ 12155 case 0x7b: /* FCVTZU */ 12156 gen_helper_vfp_touls(tcg_res, tcg_op, 12157 tcg_constant_i32(0), tcg_fpstatus); 12158 break; 12159 case 0x18: /* FRINTN */ 12160 case 0x19: /* FRINTM */ 12161 case 0x38: /* FRINTP */ 12162 case 0x39: /* FRINTZ */ 12163 case 0x58: /* FRINTA */ 12164 case 0x79: /* FRINTI */ 12165 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12166 break; 12167 case 0x59: /* FRINTX */ 12168 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12169 break; 12170 case 0x7c: /* URSQRTE */ 12171 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12172 break; 12173 case 0x1e: /* FRINT32Z */ 12174 case 0x5e: /* FRINT32X */ 12175 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12176 break; 12177 case 0x1f: /* FRINT64Z */ 12178 case 0x5f: /* FRINT64X */ 12179 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12180 break; 12181 default: 12182 g_assert_not_reached(); 12183 } 12184 } else { 12185 /* Use helpers for 8 and 16 bit elements */ 12186 switch (opcode) { 12187 case 0x5: /* CNT, RBIT */ 12188 /* For these two insns size is part of the opcode specifier 12189 * (handled earlier); they always operate on byte elements. 12190 */ 12191 if (u) { 12192 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12193 } else { 12194 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12195 } 12196 break; 12197 case 0x7: /* SQABS, SQNEG */ 12198 { 12199 NeonGenOneOpEnvFn *genfn; 12200 static NeonGenOneOpEnvFn * const fns[2][2] = { 12201 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12202 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12203 }; 12204 genfn = fns[size][u]; 12205 genfn(tcg_res, cpu_env, tcg_op); 12206 break; 12207 } 12208 case 0x4: /* CLS, CLZ */ 12209 if (u) { 12210 if (size == 0) { 12211 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12212 } else { 12213 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12214 } 12215 } else { 12216 if (size == 0) { 12217 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12218 } else { 12219 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12220 } 12221 } 12222 break; 12223 default: 12224 g_assert_not_reached(); 12225 } 12226 } 12227 12228 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12229 } 12230 } 12231 clear_vec_high(s, is_q, rd); 12232 12233 if (tcg_rmode) { 12234 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12235 } 12236 } 12237 12238 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12239 * 12240 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12241 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12242 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12243 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12244 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12245 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12246 * 12247 * This actually covers two groups where scalar access is governed by 12248 * bit 28. A bunch of the instructions (float to integral) only exist 12249 * in the vector form and are un-allocated for the scalar decode. Also 12250 * in the scalar decode Q is always 1. 12251 */ 12252 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12253 { 12254 int fpop, opcode, a, u; 12255 int rn, rd; 12256 bool is_q; 12257 bool is_scalar; 12258 bool only_in_vector = false; 12259 12260 int pass; 12261 TCGv_i32 tcg_rmode = NULL; 12262 TCGv_ptr tcg_fpstatus = NULL; 12263 bool need_fpst = true; 12264 int rmode = -1; 12265 12266 if (!dc_isar_feature(aa64_fp16, s)) { 12267 unallocated_encoding(s); 12268 return; 12269 } 12270 12271 rd = extract32(insn, 0, 5); 12272 rn = extract32(insn, 5, 5); 12273 12274 a = extract32(insn, 23, 1); 12275 u = extract32(insn, 29, 1); 12276 is_scalar = extract32(insn, 28, 1); 12277 is_q = extract32(insn, 30, 1); 12278 12279 opcode = extract32(insn, 12, 5); 12280 fpop = deposit32(opcode, 5, 1, a); 12281 fpop = deposit32(fpop, 6, 1, u); 12282 12283 switch (fpop) { 12284 case 0x1d: /* SCVTF */ 12285 case 0x5d: /* UCVTF */ 12286 { 12287 int elements; 12288 12289 if (is_scalar) { 12290 elements = 1; 12291 } else { 12292 elements = (is_q ? 8 : 4); 12293 } 12294 12295 if (!fp_access_check(s)) { 12296 return; 12297 } 12298 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12299 return; 12300 } 12301 break; 12302 case 0x2c: /* FCMGT (zero) */ 12303 case 0x2d: /* FCMEQ (zero) */ 12304 case 0x2e: /* FCMLT (zero) */ 12305 case 0x6c: /* FCMGE (zero) */ 12306 case 0x6d: /* FCMLE (zero) */ 12307 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12308 return; 12309 case 0x3d: /* FRECPE */ 12310 case 0x3f: /* FRECPX */ 12311 break; 12312 case 0x18: /* FRINTN */ 12313 only_in_vector = true; 12314 rmode = FPROUNDING_TIEEVEN; 12315 break; 12316 case 0x19: /* FRINTM */ 12317 only_in_vector = true; 12318 rmode = FPROUNDING_NEGINF; 12319 break; 12320 case 0x38: /* FRINTP */ 12321 only_in_vector = true; 12322 rmode = FPROUNDING_POSINF; 12323 break; 12324 case 0x39: /* FRINTZ */ 12325 only_in_vector = true; 12326 rmode = FPROUNDING_ZERO; 12327 break; 12328 case 0x58: /* FRINTA */ 12329 only_in_vector = true; 12330 rmode = FPROUNDING_TIEAWAY; 12331 break; 12332 case 0x59: /* FRINTX */ 12333 case 0x79: /* FRINTI */ 12334 only_in_vector = true; 12335 /* current rounding mode */ 12336 break; 12337 case 0x1a: /* FCVTNS */ 12338 rmode = FPROUNDING_TIEEVEN; 12339 break; 12340 case 0x1b: /* FCVTMS */ 12341 rmode = FPROUNDING_NEGINF; 12342 break; 12343 case 0x1c: /* FCVTAS */ 12344 rmode = FPROUNDING_TIEAWAY; 12345 break; 12346 case 0x3a: /* FCVTPS */ 12347 rmode = FPROUNDING_POSINF; 12348 break; 12349 case 0x3b: /* FCVTZS */ 12350 rmode = FPROUNDING_ZERO; 12351 break; 12352 case 0x5a: /* FCVTNU */ 12353 rmode = FPROUNDING_TIEEVEN; 12354 break; 12355 case 0x5b: /* FCVTMU */ 12356 rmode = FPROUNDING_NEGINF; 12357 break; 12358 case 0x5c: /* FCVTAU */ 12359 rmode = FPROUNDING_TIEAWAY; 12360 break; 12361 case 0x7a: /* FCVTPU */ 12362 rmode = FPROUNDING_POSINF; 12363 break; 12364 case 0x7b: /* FCVTZU */ 12365 rmode = FPROUNDING_ZERO; 12366 break; 12367 case 0x2f: /* FABS */ 12368 case 0x6f: /* FNEG */ 12369 need_fpst = false; 12370 break; 12371 case 0x7d: /* FRSQRTE */ 12372 case 0x7f: /* FSQRT (vector) */ 12373 break; 12374 default: 12375 unallocated_encoding(s); 12376 return; 12377 } 12378 12379 12380 /* Check additional constraints for the scalar encoding */ 12381 if (is_scalar) { 12382 if (!is_q) { 12383 unallocated_encoding(s); 12384 return; 12385 } 12386 /* FRINTxx is only in the vector form */ 12387 if (only_in_vector) { 12388 unallocated_encoding(s); 12389 return; 12390 } 12391 } 12392 12393 if (!fp_access_check(s)) { 12394 return; 12395 } 12396 12397 if (rmode >= 0 || need_fpst) { 12398 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12399 } 12400 12401 if (rmode >= 0) { 12402 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12403 } 12404 12405 if (is_scalar) { 12406 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12407 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12408 12409 switch (fpop) { 12410 case 0x1a: /* FCVTNS */ 12411 case 0x1b: /* FCVTMS */ 12412 case 0x1c: /* FCVTAS */ 12413 case 0x3a: /* FCVTPS */ 12414 case 0x3b: /* FCVTZS */ 12415 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12416 break; 12417 case 0x3d: /* FRECPE */ 12418 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12419 break; 12420 case 0x3f: /* FRECPX */ 12421 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12422 break; 12423 case 0x5a: /* FCVTNU */ 12424 case 0x5b: /* FCVTMU */ 12425 case 0x5c: /* FCVTAU */ 12426 case 0x7a: /* FCVTPU */ 12427 case 0x7b: /* FCVTZU */ 12428 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12429 break; 12430 case 0x6f: /* FNEG */ 12431 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12432 break; 12433 case 0x7d: /* FRSQRTE */ 12434 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12435 break; 12436 default: 12437 g_assert_not_reached(); 12438 } 12439 12440 /* limit any sign extension going on */ 12441 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12442 write_fp_sreg(s, rd, tcg_res); 12443 } else { 12444 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12445 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12446 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12447 12448 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12449 12450 switch (fpop) { 12451 case 0x1a: /* FCVTNS */ 12452 case 0x1b: /* FCVTMS */ 12453 case 0x1c: /* FCVTAS */ 12454 case 0x3a: /* FCVTPS */ 12455 case 0x3b: /* FCVTZS */ 12456 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12457 break; 12458 case 0x3d: /* FRECPE */ 12459 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12460 break; 12461 case 0x5a: /* FCVTNU */ 12462 case 0x5b: /* FCVTMU */ 12463 case 0x5c: /* FCVTAU */ 12464 case 0x7a: /* FCVTPU */ 12465 case 0x7b: /* FCVTZU */ 12466 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12467 break; 12468 case 0x18: /* FRINTN */ 12469 case 0x19: /* FRINTM */ 12470 case 0x38: /* FRINTP */ 12471 case 0x39: /* FRINTZ */ 12472 case 0x58: /* FRINTA */ 12473 case 0x79: /* FRINTI */ 12474 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12475 break; 12476 case 0x59: /* FRINTX */ 12477 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12478 break; 12479 case 0x2f: /* FABS */ 12480 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12481 break; 12482 case 0x6f: /* FNEG */ 12483 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12484 break; 12485 case 0x7d: /* FRSQRTE */ 12486 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12487 break; 12488 case 0x7f: /* FSQRT */ 12489 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12490 break; 12491 default: 12492 g_assert_not_reached(); 12493 } 12494 12495 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12496 } 12497 12498 clear_vec_high(s, is_q, rd); 12499 } 12500 12501 if (tcg_rmode) { 12502 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12503 } 12504 } 12505 12506 /* AdvSIMD scalar x indexed element 12507 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12508 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12509 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12510 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12511 * AdvSIMD vector x indexed element 12512 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12513 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12514 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12515 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12516 */ 12517 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12518 { 12519 /* This encoding has two kinds of instruction: 12520 * normal, where we perform elt x idxelt => elt for each 12521 * element in the vector 12522 * long, where we perform elt x idxelt and generate a result of 12523 * double the width of the input element 12524 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12525 */ 12526 bool is_scalar = extract32(insn, 28, 1); 12527 bool is_q = extract32(insn, 30, 1); 12528 bool u = extract32(insn, 29, 1); 12529 int size = extract32(insn, 22, 2); 12530 int l = extract32(insn, 21, 1); 12531 int m = extract32(insn, 20, 1); 12532 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12533 int rm = extract32(insn, 16, 4); 12534 int opcode = extract32(insn, 12, 4); 12535 int h = extract32(insn, 11, 1); 12536 int rn = extract32(insn, 5, 5); 12537 int rd = extract32(insn, 0, 5); 12538 bool is_long = false; 12539 int is_fp = 0; 12540 bool is_fp16 = false; 12541 int index; 12542 TCGv_ptr fpst; 12543 12544 switch (16 * u + opcode) { 12545 case 0x08: /* MUL */ 12546 case 0x10: /* MLA */ 12547 case 0x14: /* MLS */ 12548 if (is_scalar) { 12549 unallocated_encoding(s); 12550 return; 12551 } 12552 break; 12553 case 0x02: /* SMLAL, SMLAL2 */ 12554 case 0x12: /* UMLAL, UMLAL2 */ 12555 case 0x06: /* SMLSL, SMLSL2 */ 12556 case 0x16: /* UMLSL, UMLSL2 */ 12557 case 0x0a: /* SMULL, SMULL2 */ 12558 case 0x1a: /* UMULL, UMULL2 */ 12559 if (is_scalar) { 12560 unallocated_encoding(s); 12561 return; 12562 } 12563 is_long = true; 12564 break; 12565 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12566 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12567 case 0x0b: /* SQDMULL, SQDMULL2 */ 12568 is_long = true; 12569 break; 12570 case 0x0c: /* SQDMULH */ 12571 case 0x0d: /* SQRDMULH */ 12572 break; 12573 case 0x01: /* FMLA */ 12574 case 0x05: /* FMLS */ 12575 case 0x09: /* FMUL */ 12576 case 0x19: /* FMULX */ 12577 is_fp = 1; 12578 break; 12579 case 0x1d: /* SQRDMLAH */ 12580 case 0x1f: /* SQRDMLSH */ 12581 if (!dc_isar_feature(aa64_rdm, s)) { 12582 unallocated_encoding(s); 12583 return; 12584 } 12585 break; 12586 case 0x0e: /* SDOT */ 12587 case 0x1e: /* UDOT */ 12588 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12589 unallocated_encoding(s); 12590 return; 12591 } 12592 break; 12593 case 0x0f: 12594 switch (size) { 12595 case 0: /* SUDOT */ 12596 case 2: /* USDOT */ 12597 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12598 unallocated_encoding(s); 12599 return; 12600 } 12601 size = MO_32; 12602 break; 12603 case 1: /* BFDOT */ 12604 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12605 unallocated_encoding(s); 12606 return; 12607 } 12608 size = MO_32; 12609 break; 12610 case 3: /* BFMLAL{B,T} */ 12611 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12612 unallocated_encoding(s); 12613 return; 12614 } 12615 /* can't set is_fp without other incorrect size checks */ 12616 size = MO_16; 12617 break; 12618 default: 12619 unallocated_encoding(s); 12620 return; 12621 } 12622 break; 12623 case 0x11: /* FCMLA #0 */ 12624 case 0x13: /* FCMLA #90 */ 12625 case 0x15: /* FCMLA #180 */ 12626 case 0x17: /* FCMLA #270 */ 12627 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12628 unallocated_encoding(s); 12629 return; 12630 } 12631 is_fp = 2; 12632 break; 12633 case 0x00: /* FMLAL */ 12634 case 0x04: /* FMLSL */ 12635 case 0x18: /* FMLAL2 */ 12636 case 0x1c: /* FMLSL2 */ 12637 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12638 unallocated_encoding(s); 12639 return; 12640 } 12641 size = MO_16; 12642 /* is_fp, but we pass cpu_env not fp_status. */ 12643 break; 12644 default: 12645 unallocated_encoding(s); 12646 return; 12647 } 12648 12649 switch (is_fp) { 12650 case 1: /* normal fp */ 12651 /* convert insn encoded size to MemOp size */ 12652 switch (size) { 12653 case 0: /* half-precision */ 12654 size = MO_16; 12655 is_fp16 = true; 12656 break; 12657 case MO_32: /* single precision */ 12658 case MO_64: /* double precision */ 12659 break; 12660 default: 12661 unallocated_encoding(s); 12662 return; 12663 } 12664 break; 12665 12666 case 2: /* complex fp */ 12667 /* Each indexable element is a complex pair. */ 12668 size += 1; 12669 switch (size) { 12670 case MO_32: 12671 if (h && !is_q) { 12672 unallocated_encoding(s); 12673 return; 12674 } 12675 is_fp16 = true; 12676 break; 12677 case MO_64: 12678 break; 12679 default: 12680 unallocated_encoding(s); 12681 return; 12682 } 12683 break; 12684 12685 default: /* integer */ 12686 switch (size) { 12687 case MO_8: 12688 case MO_64: 12689 unallocated_encoding(s); 12690 return; 12691 } 12692 break; 12693 } 12694 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12695 unallocated_encoding(s); 12696 return; 12697 } 12698 12699 /* Given MemOp size, adjust register and indexing. */ 12700 switch (size) { 12701 case MO_16: 12702 index = h << 2 | l << 1 | m; 12703 break; 12704 case MO_32: 12705 index = h << 1 | l; 12706 rm |= m << 4; 12707 break; 12708 case MO_64: 12709 if (l || !is_q) { 12710 unallocated_encoding(s); 12711 return; 12712 } 12713 index = h; 12714 rm |= m << 4; 12715 break; 12716 default: 12717 g_assert_not_reached(); 12718 } 12719 12720 if (!fp_access_check(s)) { 12721 return; 12722 } 12723 12724 if (is_fp) { 12725 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12726 } else { 12727 fpst = NULL; 12728 } 12729 12730 switch (16 * u + opcode) { 12731 case 0x0e: /* SDOT */ 12732 case 0x1e: /* UDOT */ 12733 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12734 u ? gen_helper_gvec_udot_idx_b 12735 : gen_helper_gvec_sdot_idx_b); 12736 return; 12737 case 0x0f: 12738 switch (extract32(insn, 22, 2)) { 12739 case 0: /* SUDOT */ 12740 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12741 gen_helper_gvec_sudot_idx_b); 12742 return; 12743 case 1: /* BFDOT */ 12744 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12745 gen_helper_gvec_bfdot_idx); 12746 return; 12747 case 2: /* USDOT */ 12748 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12749 gen_helper_gvec_usdot_idx_b); 12750 return; 12751 case 3: /* BFMLAL{B,T} */ 12752 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12753 gen_helper_gvec_bfmlal_idx); 12754 return; 12755 } 12756 g_assert_not_reached(); 12757 case 0x11: /* FCMLA #0 */ 12758 case 0x13: /* FCMLA #90 */ 12759 case 0x15: /* FCMLA #180 */ 12760 case 0x17: /* FCMLA #270 */ 12761 { 12762 int rot = extract32(insn, 13, 2); 12763 int data = (index << 2) | rot; 12764 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12765 vec_full_reg_offset(s, rn), 12766 vec_full_reg_offset(s, rm), 12767 vec_full_reg_offset(s, rd), fpst, 12768 is_q ? 16 : 8, vec_full_reg_size(s), data, 12769 size == MO_64 12770 ? gen_helper_gvec_fcmlas_idx 12771 : gen_helper_gvec_fcmlah_idx); 12772 } 12773 return; 12774 12775 case 0x00: /* FMLAL */ 12776 case 0x04: /* FMLSL */ 12777 case 0x18: /* FMLAL2 */ 12778 case 0x1c: /* FMLSL2 */ 12779 { 12780 int is_s = extract32(opcode, 2, 1); 12781 int is_2 = u; 12782 int data = (index << 2) | (is_2 << 1) | is_s; 12783 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12784 vec_full_reg_offset(s, rn), 12785 vec_full_reg_offset(s, rm), cpu_env, 12786 is_q ? 16 : 8, vec_full_reg_size(s), 12787 data, gen_helper_gvec_fmlal_idx_a64); 12788 } 12789 return; 12790 12791 case 0x08: /* MUL */ 12792 if (!is_long && !is_scalar) { 12793 static gen_helper_gvec_3 * const fns[3] = { 12794 gen_helper_gvec_mul_idx_h, 12795 gen_helper_gvec_mul_idx_s, 12796 gen_helper_gvec_mul_idx_d, 12797 }; 12798 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12799 vec_full_reg_offset(s, rn), 12800 vec_full_reg_offset(s, rm), 12801 is_q ? 16 : 8, vec_full_reg_size(s), 12802 index, fns[size - 1]); 12803 return; 12804 } 12805 break; 12806 12807 case 0x10: /* MLA */ 12808 if (!is_long && !is_scalar) { 12809 static gen_helper_gvec_4 * const fns[3] = { 12810 gen_helper_gvec_mla_idx_h, 12811 gen_helper_gvec_mla_idx_s, 12812 gen_helper_gvec_mla_idx_d, 12813 }; 12814 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12815 vec_full_reg_offset(s, rn), 12816 vec_full_reg_offset(s, rm), 12817 vec_full_reg_offset(s, rd), 12818 is_q ? 16 : 8, vec_full_reg_size(s), 12819 index, fns[size - 1]); 12820 return; 12821 } 12822 break; 12823 12824 case 0x14: /* MLS */ 12825 if (!is_long && !is_scalar) { 12826 static gen_helper_gvec_4 * const fns[3] = { 12827 gen_helper_gvec_mls_idx_h, 12828 gen_helper_gvec_mls_idx_s, 12829 gen_helper_gvec_mls_idx_d, 12830 }; 12831 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12832 vec_full_reg_offset(s, rn), 12833 vec_full_reg_offset(s, rm), 12834 vec_full_reg_offset(s, rd), 12835 is_q ? 16 : 8, vec_full_reg_size(s), 12836 index, fns[size - 1]); 12837 return; 12838 } 12839 break; 12840 } 12841 12842 if (size == 3) { 12843 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 12844 int pass; 12845 12846 assert(is_fp && is_q && !is_long); 12847 12848 read_vec_element(s, tcg_idx, rm, index, MO_64); 12849 12850 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 12851 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12852 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12853 12854 read_vec_element(s, tcg_op, rn, pass, MO_64); 12855 12856 switch (16 * u + opcode) { 12857 case 0x05: /* FMLS */ 12858 /* As usual for ARM, separate negation for fused multiply-add */ 12859 gen_helper_vfp_negd(tcg_op, tcg_op); 12860 /* fall through */ 12861 case 0x01: /* FMLA */ 12862 read_vec_element(s, tcg_res, rd, pass, MO_64); 12863 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 12864 break; 12865 case 0x09: /* FMUL */ 12866 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 12867 break; 12868 case 0x19: /* FMULX */ 12869 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 12870 break; 12871 default: 12872 g_assert_not_reached(); 12873 } 12874 12875 write_vec_element(s, tcg_res, rd, pass, MO_64); 12876 } 12877 12878 clear_vec_high(s, !is_scalar, rd); 12879 } else if (!is_long) { 12880 /* 32 bit floating point, or 16 or 32 bit integer. 12881 * For the 16 bit scalar case we use the usual Neon helpers and 12882 * rely on the fact that 0 op 0 == 0 with no side effects. 12883 */ 12884 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 12885 int pass, maxpasses; 12886 12887 if (is_scalar) { 12888 maxpasses = 1; 12889 } else { 12890 maxpasses = is_q ? 4 : 2; 12891 } 12892 12893 read_vec_element_i32(s, tcg_idx, rm, index, size); 12894 12895 if (size == 1 && !is_scalar) { 12896 /* The simplest way to handle the 16x16 indexed ops is to duplicate 12897 * the index into both halves of the 32 bit tcg_idx and then use 12898 * the usual Neon helpers. 12899 */ 12900 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 12901 } 12902 12903 for (pass = 0; pass < maxpasses; pass++) { 12904 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12905 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12906 12907 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 12908 12909 switch (16 * u + opcode) { 12910 case 0x08: /* MUL */ 12911 case 0x10: /* MLA */ 12912 case 0x14: /* MLS */ 12913 { 12914 static NeonGenTwoOpFn * const fns[2][2] = { 12915 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 12916 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 12917 }; 12918 NeonGenTwoOpFn *genfn; 12919 bool is_sub = opcode == 0x4; 12920 12921 if (size == 1) { 12922 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 12923 } else { 12924 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 12925 } 12926 if (opcode == 0x8) { 12927 break; 12928 } 12929 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 12930 genfn = fns[size - 1][is_sub]; 12931 genfn(tcg_res, tcg_op, tcg_res); 12932 break; 12933 } 12934 case 0x05: /* FMLS */ 12935 case 0x01: /* FMLA */ 12936 read_vec_element_i32(s, tcg_res, rd, pass, 12937 is_scalar ? size : MO_32); 12938 switch (size) { 12939 case 1: 12940 if (opcode == 0x5) { 12941 /* As usual for ARM, separate negation for fused 12942 * multiply-add */ 12943 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 12944 } 12945 if (is_scalar) { 12946 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 12947 tcg_res, fpst); 12948 } else { 12949 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 12950 tcg_res, fpst); 12951 } 12952 break; 12953 case 2: 12954 if (opcode == 0x5) { 12955 /* As usual for ARM, separate negation for 12956 * fused multiply-add */ 12957 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 12958 } 12959 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 12960 tcg_res, fpst); 12961 break; 12962 default: 12963 g_assert_not_reached(); 12964 } 12965 break; 12966 case 0x09: /* FMUL */ 12967 switch (size) { 12968 case 1: 12969 if (is_scalar) { 12970 gen_helper_advsimd_mulh(tcg_res, tcg_op, 12971 tcg_idx, fpst); 12972 } else { 12973 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 12974 tcg_idx, fpst); 12975 } 12976 break; 12977 case 2: 12978 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 12979 break; 12980 default: 12981 g_assert_not_reached(); 12982 } 12983 break; 12984 case 0x19: /* FMULX */ 12985 switch (size) { 12986 case 1: 12987 if (is_scalar) { 12988 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 12989 tcg_idx, fpst); 12990 } else { 12991 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 12992 tcg_idx, fpst); 12993 } 12994 break; 12995 case 2: 12996 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 12997 break; 12998 default: 12999 g_assert_not_reached(); 13000 } 13001 break; 13002 case 0x0c: /* SQDMULH */ 13003 if (size == 1) { 13004 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13005 tcg_op, tcg_idx); 13006 } else { 13007 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13008 tcg_op, tcg_idx); 13009 } 13010 break; 13011 case 0x0d: /* SQRDMULH */ 13012 if (size == 1) { 13013 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13014 tcg_op, tcg_idx); 13015 } else { 13016 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13017 tcg_op, tcg_idx); 13018 } 13019 break; 13020 case 0x1d: /* SQRDMLAH */ 13021 read_vec_element_i32(s, tcg_res, rd, pass, 13022 is_scalar ? size : MO_32); 13023 if (size == 1) { 13024 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13025 tcg_op, tcg_idx, tcg_res); 13026 } else { 13027 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13028 tcg_op, tcg_idx, tcg_res); 13029 } 13030 break; 13031 case 0x1f: /* SQRDMLSH */ 13032 read_vec_element_i32(s, tcg_res, rd, pass, 13033 is_scalar ? size : MO_32); 13034 if (size == 1) { 13035 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13036 tcg_op, tcg_idx, tcg_res); 13037 } else { 13038 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13039 tcg_op, tcg_idx, tcg_res); 13040 } 13041 break; 13042 default: 13043 g_assert_not_reached(); 13044 } 13045 13046 if (is_scalar) { 13047 write_fp_sreg(s, rd, tcg_res); 13048 } else { 13049 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13050 } 13051 } 13052 13053 clear_vec_high(s, is_q, rd); 13054 } else { 13055 /* long ops: 16x16->32 or 32x32->64 */ 13056 TCGv_i64 tcg_res[2]; 13057 int pass; 13058 bool satop = extract32(opcode, 0, 1); 13059 MemOp memop = MO_32; 13060 13061 if (satop || !u) { 13062 memop |= MO_SIGN; 13063 } 13064 13065 if (size == 2) { 13066 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13067 13068 read_vec_element(s, tcg_idx, rm, index, memop); 13069 13070 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13071 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13072 TCGv_i64 tcg_passres; 13073 int passelt; 13074 13075 if (is_scalar) { 13076 passelt = 0; 13077 } else { 13078 passelt = pass + (is_q * 2); 13079 } 13080 13081 read_vec_element(s, tcg_op, rn, passelt, memop); 13082 13083 tcg_res[pass] = tcg_temp_new_i64(); 13084 13085 if (opcode == 0xa || opcode == 0xb) { 13086 /* Non-accumulating ops */ 13087 tcg_passres = tcg_res[pass]; 13088 } else { 13089 tcg_passres = tcg_temp_new_i64(); 13090 } 13091 13092 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13093 13094 if (satop) { 13095 /* saturating, doubling */ 13096 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13097 tcg_passres, tcg_passres); 13098 } 13099 13100 if (opcode == 0xa || opcode == 0xb) { 13101 continue; 13102 } 13103 13104 /* Accumulating op: handle accumulate step */ 13105 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13106 13107 switch (opcode) { 13108 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13109 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13110 break; 13111 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13112 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13113 break; 13114 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13115 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13116 /* fall through */ 13117 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13118 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13119 tcg_res[pass], 13120 tcg_passres); 13121 break; 13122 default: 13123 g_assert_not_reached(); 13124 } 13125 } 13126 13127 clear_vec_high(s, !is_scalar, rd); 13128 } else { 13129 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13130 13131 assert(size == 1); 13132 read_vec_element_i32(s, tcg_idx, rm, index, size); 13133 13134 if (!is_scalar) { 13135 /* The simplest way to handle the 16x16 indexed ops is to 13136 * duplicate the index into both halves of the 32 bit tcg_idx 13137 * and then use the usual Neon helpers. 13138 */ 13139 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13140 } 13141 13142 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13143 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13144 TCGv_i64 tcg_passres; 13145 13146 if (is_scalar) { 13147 read_vec_element_i32(s, tcg_op, rn, pass, size); 13148 } else { 13149 read_vec_element_i32(s, tcg_op, rn, 13150 pass + (is_q * 2), MO_32); 13151 } 13152 13153 tcg_res[pass] = tcg_temp_new_i64(); 13154 13155 if (opcode == 0xa || opcode == 0xb) { 13156 /* Non-accumulating ops */ 13157 tcg_passres = tcg_res[pass]; 13158 } else { 13159 tcg_passres = tcg_temp_new_i64(); 13160 } 13161 13162 if (memop & MO_SIGN) { 13163 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13164 } else { 13165 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13166 } 13167 if (satop) { 13168 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13169 tcg_passres, tcg_passres); 13170 } 13171 13172 if (opcode == 0xa || opcode == 0xb) { 13173 continue; 13174 } 13175 13176 /* Accumulating op: handle accumulate step */ 13177 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13178 13179 switch (opcode) { 13180 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13181 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13182 tcg_passres); 13183 break; 13184 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13185 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13186 tcg_passres); 13187 break; 13188 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13189 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13190 /* fall through */ 13191 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13192 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13193 tcg_res[pass], 13194 tcg_passres); 13195 break; 13196 default: 13197 g_assert_not_reached(); 13198 } 13199 } 13200 13201 if (is_scalar) { 13202 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13203 } 13204 } 13205 13206 if (is_scalar) { 13207 tcg_res[1] = tcg_constant_i64(0); 13208 } 13209 13210 for (pass = 0; pass < 2; pass++) { 13211 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13212 } 13213 } 13214 } 13215 13216 /* Crypto AES 13217 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13218 * +-----------------+------+-----------+--------+-----+------+------+ 13219 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13220 * +-----------------+------+-----------+--------+-----+------+------+ 13221 */ 13222 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13223 { 13224 int size = extract32(insn, 22, 2); 13225 int opcode = extract32(insn, 12, 5); 13226 int rn = extract32(insn, 5, 5); 13227 int rd = extract32(insn, 0, 5); 13228 gen_helper_gvec_2 *genfn2 = NULL; 13229 gen_helper_gvec_3 *genfn3 = NULL; 13230 13231 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13232 unallocated_encoding(s); 13233 return; 13234 } 13235 13236 switch (opcode) { 13237 case 0x4: /* AESE */ 13238 genfn3 = gen_helper_crypto_aese; 13239 break; 13240 case 0x6: /* AESMC */ 13241 genfn2 = gen_helper_crypto_aesmc; 13242 break; 13243 case 0x5: /* AESD */ 13244 genfn3 = gen_helper_crypto_aesd; 13245 break; 13246 case 0x7: /* AESIMC */ 13247 genfn2 = gen_helper_crypto_aesimc; 13248 break; 13249 default: 13250 unallocated_encoding(s); 13251 return; 13252 } 13253 13254 if (!fp_access_check(s)) { 13255 return; 13256 } 13257 if (genfn2) { 13258 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2); 13259 } else { 13260 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3); 13261 } 13262 } 13263 13264 /* Crypto three-reg SHA 13265 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13266 * +-----------------+------+---+------+---+--------+-----+------+------+ 13267 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13268 * +-----------------+------+---+------+---+--------+-----+------+------+ 13269 */ 13270 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13271 { 13272 int size = extract32(insn, 22, 2); 13273 int opcode = extract32(insn, 12, 3); 13274 int rm = extract32(insn, 16, 5); 13275 int rn = extract32(insn, 5, 5); 13276 int rd = extract32(insn, 0, 5); 13277 gen_helper_gvec_3 *genfn; 13278 bool feature; 13279 13280 if (size != 0) { 13281 unallocated_encoding(s); 13282 return; 13283 } 13284 13285 switch (opcode) { 13286 case 0: /* SHA1C */ 13287 genfn = gen_helper_crypto_sha1c; 13288 feature = dc_isar_feature(aa64_sha1, s); 13289 break; 13290 case 1: /* SHA1P */ 13291 genfn = gen_helper_crypto_sha1p; 13292 feature = dc_isar_feature(aa64_sha1, s); 13293 break; 13294 case 2: /* SHA1M */ 13295 genfn = gen_helper_crypto_sha1m; 13296 feature = dc_isar_feature(aa64_sha1, s); 13297 break; 13298 case 3: /* SHA1SU0 */ 13299 genfn = gen_helper_crypto_sha1su0; 13300 feature = dc_isar_feature(aa64_sha1, s); 13301 break; 13302 case 4: /* SHA256H */ 13303 genfn = gen_helper_crypto_sha256h; 13304 feature = dc_isar_feature(aa64_sha256, s); 13305 break; 13306 case 5: /* SHA256H2 */ 13307 genfn = gen_helper_crypto_sha256h2; 13308 feature = dc_isar_feature(aa64_sha256, s); 13309 break; 13310 case 6: /* SHA256SU1 */ 13311 genfn = gen_helper_crypto_sha256su1; 13312 feature = dc_isar_feature(aa64_sha256, s); 13313 break; 13314 default: 13315 unallocated_encoding(s); 13316 return; 13317 } 13318 13319 if (!feature) { 13320 unallocated_encoding(s); 13321 return; 13322 } 13323 13324 if (!fp_access_check(s)) { 13325 return; 13326 } 13327 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13328 } 13329 13330 /* Crypto two-reg SHA 13331 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13332 * +-----------------+------+-----------+--------+-----+------+------+ 13333 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13334 * +-----------------+------+-----------+--------+-----+------+------+ 13335 */ 13336 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13337 { 13338 int size = extract32(insn, 22, 2); 13339 int opcode = extract32(insn, 12, 5); 13340 int rn = extract32(insn, 5, 5); 13341 int rd = extract32(insn, 0, 5); 13342 gen_helper_gvec_2 *genfn; 13343 bool feature; 13344 13345 if (size != 0) { 13346 unallocated_encoding(s); 13347 return; 13348 } 13349 13350 switch (opcode) { 13351 case 0: /* SHA1H */ 13352 feature = dc_isar_feature(aa64_sha1, s); 13353 genfn = gen_helper_crypto_sha1h; 13354 break; 13355 case 1: /* SHA1SU1 */ 13356 feature = dc_isar_feature(aa64_sha1, s); 13357 genfn = gen_helper_crypto_sha1su1; 13358 break; 13359 case 2: /* SHA256SU0 */ 13360 feature = dc_isar_feature(aa64_sha256, s); 13361 genfn = gen_helper_crypto_sha256su0; 13362 break; 13363 default: 13364 unallocated_encoding(s); 13365 return; 13366 } 13367 13368 if (!feature) { 13369 unallocated_encoding(s); 13370 return; 13371 } 13372 13373 if (!fp_access_check(s)) { 13374 return; 13375 } 13376 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13377 } 13378 13379 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13380 { 13381 tcg_gen_rotli_i64(d, m, 1); 13382 tcg_gen_xor_i64(d, d, n); 13383 } 13384 13385 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13386 { 13387 tcg_gen_rotli_vec(vece, d, m, 1); 13388 tcg_gen_xor_vec(vece, d, d, n); 13389 } 13390 13391 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13392 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13393 { 13394 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13395 static const GVecGen3 op = { 13396 .fni8 = gen_rax1_i64, 13397 .fniv = gen_rax1_vec, 13398 .opt_opc = vecop_list, 13399 .fno = gen_helper_crypto_rax1, 13400 .vece = MO_64, 13401 }; 13402 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13403 } 13404 13405 /* Crypto three-reg SHA512 13406 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13407 * +-----------------------+------+---+---+-----+--------+------+------+ 13408 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13409 * +-----------------------+------+---+---+-----+--------+------+------+ 13410 */ 13411 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13412 { 13413 int opcode = extract32(insn, 10, 2); 13414 int o = extract32(insn, 14, 1); 13415 int rm = extract32(insn, 16, 5); 13416 int rn = extract32(insn, 5, 5); 13417 int rd = extract32(insn, 0, 5); 13418 bool feature; 13419 gen_helper_gvec_3 *oolfn = NULL; 13420 GVecGen3Fn *gvecfn = NULL; 13421 13422 if (o == 0) { 13423 switch (opcode) { 13424 case 0: /* SHA512H */ 13425 feature = dc_isar_feature(aa64_sha512, s); 13426 oolfn = gen_helper_crypto_sha512h; 13427 break; 13428 case 1: /* SHA512H2 */ 13429 feature = dc_isar_feature(aa64_sha512, s); 13430 oolfn = gen_helper_crypto_sha512h2; 13431 break; 13432 case 2: /* SHA512SU1 */ 13433 feature = dc_isar_feature(aa64_sha512, s); 13434 oolfn = gen_helper_crypto_sha512su1; 13435 break; 13436 case 3: /* RAX1 */ 13437 feature = dc_isar_feature(aa64_sha3, s); 13438 gvecfn = gen_gvec_rax1; 13439 break; 13440 default: 13441 g_assert_not_reached(); 13442 } 13443 } else { 13444 switch (opcode) { 13445 case 0: /* SM3PARTW1 */ 13446 feature = dc_isar_feature(aa64_sm3, s); 13447 oolfn = gen_helper_crypto_sm3partw1; 13448 break; 13449 case 1: /* SM3PARTW2 */ 13450 feature = dc_isar_feature(aa64_sm3, s); 13451 oolfn = gen_helper_crypto_sm3partw2; 13452 break; 13453 case 2: /* SM4EKEY */ 13454 feature = dc_isar_feature(aa64_sm4, s); 13455 oolfn = gen_helper_crypto_sm4ekey; 13456 break; 13457 default: 13458 unallocated_encoding(s); 13459 return; 13460 } 13461 } 13462 13463 if (!feature) { 13464 unallocated_encoding(s); 13465 return; 13466 } 13467 13468 if (!fp_access_check(s)) { 13469 return; 13470 } 13471 13472 if (oolfn) { 13473 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13474 } else { 13475 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13476 } 13477 } 13478 13479 /* Crypto two-reg SHA512 13480 * 31 12 11 10 9 5 4 0 13481 * +-----------------------------------------+--------+------+------+ 13482 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13483 * +-----------------------------------------+--------+------+------+ 13484 */ 13485 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13486 { 13487 int opcode = extract32(insn, 10, 2); 13488 int rn = extract32(insn, 5, 5); 13489 int rd = extract32(insn, 0, 5); 13490 bool feature; 13491 13492 switch (opcode) { 13493 case 0: /* SHA512SU0 */ 13494 feature = dc_isar_feature(aa64_sha512, s); 13495 break; 13496 case 1: /* SM4E */ 13497 feature = dc_isar_feature(aa64_sm4, s); 13498 break; 13499 default: 13500 unallocated_encoding(s); 13501 return; 13502 } 13503 13504 if (!feature) { 13505 unallocated_encoding(s); 13506 return; 13507 } 13508 13509 if (!fp_access_check(s)) { 13510 return; 13511 } 13512 13513 switch (opcode) { 13514 case 0: /* SHA512SU0 */ 13515 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13516 break; 13517 case 1: /* SM4E */ 13518 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13519 break; 13520 default: 13521 g_assert_not_reached(); 13522 } 13523 } 13524 13525 /* Crypto four-register 13526 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13527 * +-------------------+-----+------+---+------+------+------+ 13528 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13529 * +-------------------+-----+------+---+------+------+------+ 13530 */ 13531 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13532 { 13533 int op0 = extract32(insn, 21, 2); 13534 int rm = extract32(insn, 16, 5); 13535 int ra = extract32(insn, 10, 5); 13536 int rn = extract32(insn, 5, 5); 13537 int rd = extract32(insn, 0, 5); 13538 bool feature; 13539 13540 switch (op0) { 13541 case 0: /* EOR3 */ 13542 case 1: /* BCAX */ 13543 feature = dc_isar_feature(aa64_sha3, s); 13544 break; 13545 case 2: /* SM3SS1 */ 13546 feature = dc_isar_feature(aa64_sm3, s); 13547 break; 13548 default: 13549 unallocated_encoding(s); 13550 return; 13551 } 13552 13553 if (!feature) { 13554 unallocated_encoding(s); 13555 return; 13556 } 13557 13558 if (!fp_access_check(s)) { 13559 return; 13560 } 13561 13562 if (op0 < 2) { 13563 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13564 int pass; 13565 13566 tcg_op1 = tcg_temp_new_i64(); 13567 tcg_op2 = tcg_temp_new_i64(); 13568 tcg_op3 = tcg_temp_new_i64(); 13569 tcg_res[0] = tcg_temp_new_i64(); 13570 tcg_res[1] = tcg_temp_new_i64(); 13571 13572 for (pass = 0; pass < 2; pass++) { 13573 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13574 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13575 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13576 13577 if (op0 == 0) { 13578 /* EOR3 */ 13579 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13580 } else { 13581 /* BCAX */ 13582 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13583 } 13584 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13585 } 13586 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13587 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13588 } else { 13589 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13590 13591 tcg_op1 = tcg_temp_new_i32(); 13592 tcg_op2 = tcg_temp_new_i32(); 13593 tcg_op3 = tcg_temp_new_i32(); 13594 tcg_res = tcg_temp_new_i32(); 13595 tcg_zero = tcg_constant_i32(0); 13596 13597 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13598 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13599 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13600 13601 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13602 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13603 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13604 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13605 13606 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13607 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13608 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13609 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13610 } 13611 } 13612 13613 /* Crypto XAR 13614 * 31 21 20 16 15 10 9 5 4 0 13615 * +-----------------------+------+--------+------+------+ 13616 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13617 * +-----------------------+------+--------+------+------+ 13618 */ 13619 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13620 { 13621 int rm = extract32(insn, 16, 5); 13622 int imm6 = extract32(insn, 10, 6); 13623 int rn = extract32(insn, 5, 5); 13624 int rd = extract32(insn, 0, 5); 13625 13626 if (!dc_isar_feature(aa64_sha3, s)) { 13627 unallocated_encoding(s); 13628 return; 13629 } 13630 13631 if (!fp_access_check(s)) { 13632 return; 13633 } 13634 13635 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13636 vec_full_reg_offset(s, rn), 13637 vec_full_reg_offset(s, rm), imm6, 16, 13638 vec_full_reg_size(s)); 13639 } 13640 13641 /* Crypto three-reg imm2 13642 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13643 * +-----------------------+------+-----+------+--------+------+------+ 13644 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13645 * +-----------------------+------+-----+------+--------+------+------+ 13646 */ 13647 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13648 { 13649 static gen_helper_gvec_3 * const fns[4] = { 13650 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13651 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13652 }; 13653 int opcode = extract32(insn, 10, 2); 13654 int imm2 = extract32(insn, 12, 2); 13655 int rm = extract32(insn, 16, 5); 13656 int rn = extract32(insn, 5, 5); 13657 int rd = extract32(insn, 0, 5); 13658 13659 if (!dc_isar_feature(aa64_sm3, s)) { 13660 unallocated_encoding(s); 13661 return; 13662 } 13663 13664 if (!fp_access_check(s)) { 13665 return; 13666 } 13667 13668 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13669 } 13670 13671 /* C3.6 Data processing - SIMD, inc Crypto 13672 * 13673 * As the decode gets a little complex we are using a table based 13674 * approach for this part of the decode. 13675 */ 13676 static const AArch64DecodeTable data_proc_simd[] = { 13677 /* pattern , mask , fn */ 13678 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13679 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13680 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13681 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13682 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13683 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13684 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13685 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13686 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13687 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13688 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13689 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13690 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13691 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13692 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13693 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13694 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13695 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13696 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13697 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13698 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13699 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13700 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13701 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13702 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13703 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13704 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13705 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13706 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13707 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13708 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13709 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13710 { 0x00000000, 0x00000000, NULL } 13711 }; 13712 13713 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13714 { 13715 /* Note that this is called with all non-FP cases from 13716 * table C3-6 so it must UNDEF for entries not specifically 13717 * allocated to instructions in that table. 13718 */ 13719 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13720 if (fn) { 13721 fn(s, insn); 13722 } else { 13723 unallocated_encoding(s); 13724 } 13725 } 13726 13727 /* C3.6 Data processing - SIMD and floating point */ 13728 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13729 { 13730 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13731 disas_data_proc_fp(s, insn); 13732 } else { 13733 /* SIMD, including crypto */ 13734 disas_data_proc_simd(s, insn); 13735 } 13736 } 13737 13738 static bool trans_OK(DisasContext *s, arg_OK *a) 13739 { 13740 return true; 13741 } 13742 13743 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13744 { 13745 s->is_nonstreaming = true; 13746 return true; 13747 } 13748 13749 /** 13750 * is_guarded_page: 13751 * @env: The cpu environment 13752 * @s: The DisasContext 13753 * 13754 * Return true if the page is guarded. 13755 */ 13756 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13757 { 13758 uint64_t addr = s->base.pc_first; 13759 #ifdef CONFIG_USER_ONLY 13760 return page_get_flags(addr) & PAGE_BTI; 13761 #else 13762 CPUTLBEntryFull *full; 13763 void *host; 13764 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13765 int flags; 13766 13767 /* 13768 * We test this immediately after reading an insn, which means 13769 * that the TLB entry must be present and valid, and thus this 13770 * access will never raise an exception. 13771 */ 13772 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13773 false, &host, &full, 0); 13774 assert(!(flags & TLB_INVALID_MASK)); 13775 13776 return full->guarded; 13777 #endif 13778 } 13779 13780 /** 13781 * btype_destination_ok: 13782 * @insn: The instruction at the branch destination 13783 * @bt: SCTLR_ELx.BT 13784 * @btype: PSTATE.BTYPE, and is non-zero 13785 * 13786 * On a guarded page, there are a limited number of insns 13787 * that may be present at the branch target: 13788 * - branch target identifiers, 13789 * - paciasp, pacibsp, 13790 * - BRK insn 13791 * - HLT insn 13792 * Anything else causes a Branch Target Exception. 13793 * 13794 * Return true if the branch is compatible, false to raise BTITRAP. 13795 */ 13796 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13797 { 13798 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13799 /* HINT space */ 13800 switch (extract32(insn, 5, 7)) { 13801 case 0b011001: /* PACIASP */ 13802 case 0b011011: /* PACIBSP */ 13803 /* 13804 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13805 * with btype == 3. Otherwise all btype are ok. 13806 */ 13807 return !bt || btype != 3; 13808 case 0b100000: /* BTI */ 13809 /* Not compatible with any btype. */ 13810 return false; 13811 case 0b100010: /* BTI c */ 13812 /* Not compatible with btype == 3 */ 13813 return btype != 3; 13814 case 0b100100: /* BTI j */ 13815 /* Not compatible with btype == 2 */ 13816 return btype != 2; 13817 case 0b100110: /* BTI jc */ 13818 /* Compatible with any btype. */ 13819 return true; 13820 } 13821 } else { 13822 switch (insn & 0xffe0001fu) { 13823 case 0xd4200000u: /* BRK */ 13824 case 0xd4400000u: /* HLT */ 13825 /* Give priority to the breakpoint exception. */ 13826 return true; 13827 } 13828 } 13829 return false; 13830 } 13831 13832 /* C3.1 A64 instruction index by encoding */ 13833 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13834 { 13835 switch (extract32(insn, 25, 4)) { 13836 case 0x5: 13837 case 0xd: /* Data processing - register */ 13838 disas_data_proc_reg(s, insn); 13839 break; 13840 case 0x7: 13841 case 0xf: /* Data processing - SIMD and floating point */ 13842 disas_data_proc_simd_fp(s, insn); 13843 break; 13844 default: 13845 unallocated_encoding(s); 13846 break; 13847 } 13848 } 13849 13850 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13851 CPUState *cpu) 13852 { 13853 DisasContext *dc = container_of(dcbase, DisasContext, base); 13854 CPUARMState *env = cpu->env_ptr; 13855 ARMCPU *arm_cpu = env_archcpu(env); 13856 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13857 int bound, core_mmu_idx; 13858 13859 dc->isar = &arm_cpu->isar; 13860 dc->condjmp = 0; 13861 dc->pc_save = dc->base.pc_first; 13862 dc->aarch64 = true; 13863 dc->thumb = false; 13864 dc->sctlr_b = 0; 13865 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13866 dc->condexec_mask = 0; 13867 dc->condexec_cond = 0; 13868 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13869 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13870 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13871 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13872 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13873 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13874 #if !defined(CONFIG_USER_ONLY) 13875 dc->user = (dc->current_el == 0); 13876 #endif 13877 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13878 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13879 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13880 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13881 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13882 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 13883 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13884 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13885 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13886 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13887 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13888 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13889 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13890 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13891 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 13892 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13893 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13894 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13895 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13896 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13897 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13898 dc->vec_len = 0; 13899 dc->vec_stride = 0; 13900 dc->cp_regs = arm_cpu->cp_regs; 13901 dc->features = env->features; 13902 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13903 13904 #ifdef CONFIG_USER_ONLY 13905 /* In sve_probe_page, we assume TBI is enabled. */ 13906 tcg_debug_assert(dc->tbid & 1); 13907 #endif 13908 13909 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13910 13911 /* Single step state. The code-generation logic here is: 13912 * SS_ACTIVE == 0: 13913 * generate code with no special handling for single-stepping (except 13914 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13915 * this happens anyway because those changes are all system register or 13916 * PSTATE writes). 13917 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13918 * emit code for one insn 13919 * emit code to clear PSTATE.SS 13920 * emit code to generate software step exception for completed step 13921 * end TB (as usual for having generated an exception) 13922 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13923 * emit code to generate a software step exception 13924 * end the TB 13925 */ 13926 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13927 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13928 dc->is_ldex = false; 13929 13930 /* Bound the number of insns to execute to those left on the page. */ 13931 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13932 13933 /* If architectural single step active, limit to 1. */ 13934 if (dc->ss_active) { 13935 bound = 1; 13936 } 13937 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13938 } 13939 13940 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13941 { 13942 } 13943 13944 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13945 { 13946 DisasContext *dc = container_of(dcbase, DisasContext, base); 13947 target_ulong pc_arg = dc->base.pc_next; 13948 13949 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13950 pc_arg &= ~TARGET_PAGE_MASK; 13951 } 13952 tcg_gen_insn_start(pc_arg, 0, 0); 13953 dc->insn_start = tcg_last_op(); 13954 } 13955 13956 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13957 { 13958 DisasContext *s = container_of(dcbase, DisasContext, base); 13959 CPUARMState *env = cpu->env_ptr; 13960 uint64_t pc = s->base.pc_next; 13961 uint32_t insn; 13962 13963 /* Singlestep exceptions have the highest priority. */ 13964 if (s->ss_active && !s->pstate_ss) { 13965 /* Singlestep state is Active-pending. 13966 * If we're in this state at the start of a TB then either 13967 * a) we just took an exception to an EL which is being debugged 13968 * and this is the first insn in the exception handler 13969 * b) debug exceptions were masked and we just unmasked them 13970 * without changing EL (eg by clearing PSTATE.D) 13971 * In either case we're going to take a swstep exception in the 13972 * "did not step an insn" case, and so the syndrome ISV and EX 13973 * bits should be zero. 13974 */ 13975 assert(s->base.num_insns == 1); 13976 gen_swstep_exception(s, 0, 0); 13977 s->base.is_jmp = DISAS_NORETURN; 13978 s->base.pc_next = pc + 4; 13979 return; 13980 } 13981 13982 if (pc & 3) { 13983 /* 13984 * PC alignment fault. This has priority over the instruction abort 13985 * that we would receive from a translation fault via arm_ldl_code. 13986 * This should only be possible after an indirect branch, at the 13987 * start of the TB. 13988 */ 13989 assert(s->base.num_insns == 1); 13990 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 13991 s->base.is_jmp = DISAS_NORETURN; 13992 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13993 return; 13994 } 13995 13996 s->pc_curr = pc; 13997 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13998 s->insn = insn; 13999 s->base.pc_next = pc + 4; 14000 14001 s->fp_access_checked = false; 14002 s->sve_access_checked = false; 14003 14004 if (s->pstate_il) { 14005 /* 14006 * Illegal execution state. This has priority over BTI 14007 * exceptions, but comes after instruction abort exceptions. 14008 */ 14009 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14010 return; 14011 } 14012 14013 if (dc_isar_feature(aa64_bti, s)) { 14014 if (s->base.num_insns == 1) { 14015 /* 14016 * At the first insn of the TB, compute s->guarded_page. 14017 * We delayed computing this until successfully reading 14018 * the first insn of the TB, above. This (mostly) ensures 14019 * that the softmmu tlb entry has been populated, and the 14020 * page table GP bit is available. 14021 * 14022 * Note that we need to compute this even if btype == 0, 14023 * because this value is used for BR instructions later 14024 * where ENV is not available. 14025 */ 14026 s->guarded_page = is_guarded_page(env, s); 14027 14028 /* First insn can have btype set to non-zero. */ 14029 tcg_debug_assert(s->btype >= 0); 14030 14031 /* 14032 * Note that the Branch Target Exception has fairly high 14033 * priority -- below debugging exceptions but above most 14034 * everything else. This allows us to handle this now 14035 * instead of waiting until the insn is otherwise decoded. 14036 */ 14037 if (s->btype != 0 14038 && s->guarded_page 14039 && !btype_destination_ok(insn, s->bt, s->btype)) { 14040 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14041 return; 14042 } 14043 } else { 14044 /* Not the first insn: btype must be 0. */ 14045 tcg_debug_assert(s->btype == 0); 14046 } 14047 } 14048 14049 s->is_nonstreaming = false; 14050 if (s->sme_trap_nonstreaming) { 14051 disas_sme_fa64(s, insn); 14052 } 14053 14054 if (!disas_a64(s, insn) && 14055 !disas_sme(s, insn) && 14056 !disas_sve(s, insn)) { 14057 disas_a64_legacy(s, insn); 14058 } 14059 14060 /* 14061 * After execution of most insns, btype is reset to 0. 14062 * Note that we set btype == -1 when the insn sets btype. 14063 */ 14064 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14065 reset_btype(s); 14066 } 14067 } 14068 14069 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14070 { 14071 DisasContext *dc = container_of(dcbase, DisasContext, base); 14072 14073 if (unlikely(dc->ss_active)) { 14074 /* Note that this means single stepping WFI doesn't halt the CPU. 14075 * For conditional branch insns this is harmless unreachable code as 14076 * gen_goto_tb() has already handled emitting the debug exception 14077 * (and thus a tb-jump is not possible when singlestepping). 14078 */ 14079 switch (dc->base.is_jmp) { 14080 default: 14081 gen_a64_update_pc(dc, 4); 14082 /* fall through */ 14083 case DISAS_EXIT: 14084 case DISAS_JUMP: 14085 gen_step_complete_exception(dc); 14086 break; 14087 case DISAS_NORETURN: 14088 break; 14089 } 14090 } else { 14091 switch (dc->base.is_jmp) { 14092 case DISAS_NEXT: 14093 case DISAS_TOO_MANY: 14094 gen_goto_tb(dc, 1, 4); 14095 break; 14096 default: 14097 case DISAS_UPDATE_EXIT: 14098 gen_a64_update_pc(dc, 4); 14099 /* fall through */ 14100 case DISAS_EXIT: 14101 tcg_gen_exit_tb(NULL, 0); 14102 break; 14103 case DISAS_UPDATE_NOCHAIN: 14104 gen_a64_update_pc(dc, 4); 14105 /* fall through */ 14106 case DISAS_JUMP: 14107 tcg_gen_lookup_and_goto_ptr(); 14108 break; 14109 case DISAS_NORETURN: 14110 case DISAS_SWI: 14111 break; 14112 case DISAS_WFE: 14113 gen_a64_update_pc(dc, 4); 14114 gen_helper_wfe(cpu_env); 14115 break; 14116 case DISAS_YIELD: 14117 gen_a64_update_pc(dc, 4); 14118 gen_helper_yield(cpu_env); 14119 break; 14120 case DISAS_WFI: 14121 /* 14122 * This is a special case because we don't want to just halt 14123 * the CPU if trying to debug across a WFI. 14124 */ 14125 gen_a64_update_pc(dc, 4); 14126 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14127 /* 14128 * The helper doesn't necessarily throw an exception, but we 14129 * must go back to the main loop to check for interrupts anyway. 14130 */ 14131 tcg_gen_exit_tb(NULL, 0); 14132 break; 14133 } 14134 } 14135 } 14136 14137 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14138 CPUState *cpu, FILE *logfile) 14139 { 14140 DisasContext *dc = container_of(dcbase, DisasContext, base); 14141 14142 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14143 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14144 } 14145 14146 const TranslatorOps aarch64_translator_ops = { 14147 .init_disas_context = aarch64_tr_init_disas_context, 14148 .tb_start = aarch64_tr_tb_start, 14149 .insn_start = aarch64_tr_insn_start, 14150 .translate_insn = aarch64_tr_translate_insn, 14151 .tb_stop = aarch64_tr_tb_stop, 14152 .disas_log = aarch64_tr_disas_log, 14153 }; 14154