1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 int log2_size, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 268 269 ret = tcg_temp_new_i64(); 270 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 271 272 return ret; 273 } 274 return clean_data_tbi(s, addr); 275 } 276 277 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 278 bool tag_checked, int log2_size) 279 { 280 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 281 false, get_mem_index(s)); 282 } 283 284 /* 285 * For MTE, check multiple logical sequential accesses. 286 */ 287 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 288 bool tag_checked, int size) 289 { 290 if (tag_checked && s->mte_active[0]) { 291 TCGv_i64 ret; 292 int desc = 0; 293 294 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 typedef struct DisasCompare64 { 309 TCGCond cond; 310 TCGv_i64 value; 311 } DisasCompare64; 312 313 static void a64_test_cc(DisasCompare64 *c64, int cc) 314 { 315 DisasCompare c32; 316 317 arm_test_cc(&c32, cc); 318 319 /* 320 * Sign-extend the 32-bit value so that the GE/LT comparisons work 321 * properly. The NE/EQ comparisons are also fine with this choice. 322 */ 323 c64->cond = c32.cond; 324 c64->value = tcg_temp_new_i64(); 325 tcg_gen_ext_i32_i64(c64->value, c32.value); 326 } 327 328 static void gen_rebuild_hflags(DisasContext *s) 329 { 330 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 331 } 332 333 static void gen_exception_internal(int excp) 334 { 335 assert(excp_is_internal(excp)); 336 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 337 } 338 339 static void gen_exception_internal_insn(DisasContext *s, int excp) 340 { 341 gen_a64_update_pc(s, 0); 342 gen_exception_internal(excp); 343 s->base.is_jmp = DISAS_NORETURN; 344 } 345 346 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 347 { 348 gen_a64_update_pc(s, 0); 349 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 350 s->base.is_jmp = DISAS_NORETURN; 351 } 352 353 static void gen_step_complete_exception(DisasContext *s) 354 { 355 /* We just completed step of an insn. Move from Active-not-pending 356 * to Active-pending, and then also take the swstep exception. 357 * This corresponds to making the (IMPDEF) choice to prioritize 358 * swstep exceptions over asynchronous exceptions taken to an exception 359 * level where debug is disabled. This choice has the advantage that 360 * we do not need to maintain internal state corresponding to the 361 * ISV/EX syndrome bits between completion of the step and generation 362 * of the exception, and our syndrome information is always correct. 363 */ 364 gen_ss_advance(s); 365 gen_swstep_exception(s, 1, s->is_ldex); 366 s->base.is_jmp = DISAS_NORETURN; 367 } 368 369 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 370 { 371 if (s->ss_active) { 372 return false; 373 } 374 return translator_use_goto_tb(&s->base, dest); 375 } 376 377 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 378 { 379 if (use_goto_tb(s, s->pc_curr + diff)) { 380 /* 381 * For pcrel, the pc must always be up-to-date on entry to 382 * the linked TB, so that it can use simple additions for all 383 * further adjustments. For !pcrel, the linked TB is compiled 384 * to know its full virtual address, so we can delay the 385 * update to pc to the unlinked path. A long chain of links 386 * can thus avoid many updates to the PC. 387 */ 388 if (tb_cflags(s->base.tb) & CF_PCREL) { 389 gen_a64_update_pc(s, diff); 390 tcg_gen_goto_tb(n); 391 } else { 392 tcg_gen_goto_tb(n); 393 gen_a64_update_pc(s, diff); 394 } 395 tcg_gen_exit_tb(s->base.tb, n); 396 s->base.is_jmp = DISAS_NORETURN; 397 } else { 398 gen_a64_update_pc(s, diff); 399 if (s->ss_active) { 400 gen_step_complete_exception(s); 401 } else { 402 tcg_gen_lookup_and_goto_ptr(); 403 s->base.is_jmp = DISAS_NORETURN; 404 } 405 } 406 } 407 408 /* 409 * Register access functions 410 * 411 * These functions are used for directly accessing a register in where 412 * changes to the final register value are likely to be made. If you 413 * need to use a register for temporary calculation (e.g. index type 414 * operations) use the read_* form. 415 * 416 * B1.2.1 Register mappings 417 * 418 * In instruction register encoding 31 can refer to ZR (zero register) or 419 * the SP (stack pointer) depending on context. In QEMU's case we map SP 420 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 421 * This is the point of the _sp forms. 422 */ 423 TCGv_i64 cpu_reg(DisasContext *s, int reg) 424 { 425 if (reg == 31) { 426 TCGv_i64 t = tcg_temp_new_i64(); 427 tcg_gen_movi_i64(t, 0); 428 return t; 429 } else { 430 return cpu_X[reg]; 431 } 432 } 433 434 /* register access for when 31 == SP */ 435 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 436 { 437 return cpu_X[reg]; 438 } 439 440 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 441 * representing the register contents. This TCGv is an auto-freed 442 * temporary so it need not be explicitly freed, and may be modified. 443 */ 444 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 445 { 446 TCGv_i64 v = tcg_temp_new_i64(); 447 if (reg != 31) { 448 if (sf) { 449 tcg_gen_mov_i64(v, cpu_X[reg]); 450 } else { 451 tcg_gen_ext32u_i64(v, cpu_X[reg]); 452 } 453 } else { 454 tcg_gen_movi_i64(v, 0); 455 } 456 return v; 457 } 458 459 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 460 { 461 TCGv_i64 v = tcg_temp_new_i64(); 462 if (sf) { 463 tcg_gen_mov_i64(v, cpu_X[reg]); 464 } else { 465 tcg_gen_ext32u_i64(v, cpu_X[reg]); 466 } 467 return v; 468 } 469 470 /* Return the offset into CPUARMState of a slice (from 471 * the least significant end) of FP register Qn (ie 472 * Dn, Sn, Hn or Bn). 473 * (Note that this is not the same mapping as for A32; see cpu.h) 474 */ 475 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 476 { 477 return vec_reg_offset(s, regno, 0, size); 478 } 479 480 /* Offset of the high half of the 128 bit vector Qn */ 481 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 482 { 483 return vec_reg_offset(s, regno, 1, MO_64); 484 } 485 486 /* Convenience accessors for reading and writing single and double 487 * FP registers. Writing clears the upper parts of the associated 488 * 128 bit vector register, as required by the architecture. 489 * Note that unlike the GP register accessors, the values returned 490 * by the read functions must be manually freed. 491 */ 492 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 493 { 494 TCGv_i64 v = tcg_temp_new_i64(); 495 496 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 497 return v; 498 } 499 500 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 501 { 502 TCGv_i32 v = tcg_temp_new_i32(); 503 504 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 505 return v; 506 } 507 508 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 509 { 510 TCGv_i32 v = tcg_temp_new_i32(); 511 512 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 513 return v; 514 } 515 516 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 517 * If SVE is not enabled, then there are only 128 bits in the vector. 518 */ 519 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 520 { 521 unsigned ofs = fp_reg_offset(s, rd, MO_64); 522 unsigned vsz = vec_full_reg_size(s); 523 524 /* Nop move, with side effect of clearing the tail. */ 525 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 526 } 527 528 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 529 { 530 unsigned ofs = fp_reg_offset(s, reg, MO_64); 531 532 tcg_gen_st_i64(v, cpu_env, ofs); 533 clear_vec_high(s, false, reg); 534 } 535 536 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 537 { 538 TCGv_i64 tmp = tcg_temp_new_i64(); 539 540 tcg_gen_extu_i32_i64(tmp, v); 541 write_fp_dreg(s, reg, tmp); 542 } 543 544 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 545 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 546 GVecGen2Fn *gvec_fn, int vece) 547 { 548 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 549 is_q ? 16 : 8, vec_full_reg_size(s)); 550 } 551 552 /* Expand a 2-operand + immediate AdvSIMD vector operation using 553 * an expander function. 554 */ 555 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 556 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 557 { 558 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 559 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 560 } 561 562 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 563 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 564 GVecGen3Fn *gvec_fn, int vece) 565 { 566 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 567 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 568 } 569 570 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 571 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 572 int rx, GVecGen4Fn *gvec_fn, int vece) 573 { 574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 575 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 576 is_q ? 16 : 8, vec_full_reg_size(s)); 577 } 578 579 /* Expand a 2-operand operation using an out-of-line helper. */ 580 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 581 int rn, int data, gen_helper_gvec_2 *fn) 582 { 583 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 584 vec_full_reg_offset(s, rn), 585 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 586 } 587 588 /* Expand a 3-operand operation using an out-of-line helper. */ 589 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 590 int rn, int rm, int data, gen_helper_gvec_3 *fn) 591 { 592 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 593 vec_full_reg_offset(s, rn), 594 vec_full_reg_offset(s, rm), 595 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 596 } 597 598 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 599 * an out-of-line helper. 600 */ 601 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 602 int rm, bool is_fp16, int data, 603 gen_helper_gvec_3_ptr *fn) 604 { 605 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 606 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 607 vec_full_reg_offset(s, rn), 608 vec_full_reg_offset(s, rm), fpst, 609 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 610 } 611 612 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 613 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 614 int rm, gen_helper_gvec_3_ptr *fn) 615 { 616 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 617 618 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 619 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 620 vec_full_reg_offset(s, rn), 621 vec_full_reg_offset(s, rm), qc_ptr, 622 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 623 } 624 625 /* Expand a 4-operand operation using an out-of-line helper. */ 626 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 627 int rm, int ra, int data, gen_helper_gvec_4 *fn) 628 { 629 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 630 vec_full_reg_offset(s, rn), 631 vec_full_reg_offset(s, rm), 632 vec_full_reg_offset(s, ra), 633 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 634 } 635 636 /* 637 * Expand a 4-operand + fpstatus pointer + simd data value operation using 638 * an out-of-line helper. 639 */ 640 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 641 int rm, int ra, bool is_fp16, int data, 642 gen_helper_gvec_4_ptr *fn) 643 { 644 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 645 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 646 vec_full_reg_offset(s, rn), 647 vec_full_reg_offset(s, rm), 648 vec_full_reg_offset(s, ra), fpst, 649 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 650 } 651 652 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 653 * than the 32 bit equivalent. 654 */ 655 static inline void gen_set_NZ64(TCGv_i64 result) 656 { 657 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 658 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 659 } 660 661 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 662 static inline void gen_logic_CC(int sf, TCGv_i64 result) 663 { 664 if (sf) { 665 gen_set_NZ64(result); 666 } else { 667 tcg_gen_extrl_i64_i32(cpu_ZF, result); 668 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 669 } 670 tcg_gen_movi_i32(cpu_CF, 0); 671 tcg_gen_movi_i32(cpu_VF, 0); 672 } 673 674 /* dest = T0 + T1; compute C, N, V and Z flags */ 675 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 676 { 677 TCGv_i64 result, flag, tmp; 678 result = tcg_temp_new_i64(); 679 flag = tcg_temp_new_i64(); 680 tmp = tcg_temp_new_i64(); 681 682 tcg_gen_movi_i64(tmp, 0); 683 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 684 685 tcg_gen_extrl_i64_i32(cpu_CF, flag); 686 687 gen_set_NZ64(result); 688 689 tcg_gen_xor_i64(flag, result, t0); 690 tcg_gen_xor_i64(tmp, t0, t1); 691 tcg_gen_andc_i64(flag, flag, tmp); 692 tcg_gen_extrh_i64_i32(cpu_VF, flag); 693 694 tcg_gen_mov_i64(dest, result); 695 } 696 697 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 698 { 699 TCGv_i32 t0_32 = tcg_temp_new_i32(); 700 TCGv_i32 t1_32 = tcg_temp_new_i32(); 701 TCGv_i32 tmp = tcg_temp_new_i32(); 702 703 tcg_gen_movi_i32(tmp, 0); 704 tcg_gen_extrl_i64_i32(t0_32, t0); 705 tcg_gen_extrl_i64_i32(t1_32, t1); 706 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 707 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 708 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 709 tcg_gen_xor_i32(tmp, t0_32, t1_32); 710 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 711 tcg_gen_extu_i32_i64(dest, cpu_NF); 712 } 713 714 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 715 { 716 if (sf) { 717 gen_add64_CC(dest, t0, t1); 718 } else { 719 gen_add32_CC(dest, t0, t1); 720 } 721 } 722 723 /* dest = T0 - T1; compute C, N, V and Z flags */ 724 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 725 { 726 /* 64 bit arithmetic */ 727 TCGv_i64 result, flag, tmp; 728 729 result = tcg_temp_new_i64(); 730 flag = tcg_temp_new_i64(); 731 tcg_gen_sub_i64(result, t0, t1); 732 733 gen_set_NZ64(result); 734 735 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 736 tcg_gen_extrl_i64_i32(cpu_CF, flag); 737 738 tcg_gen_xor_i64(flag, result, t0); 739 tmp = tcg_temp_new_i64(); 740 tcg_gen_xor_i64(tmp, t0, t1); 741 tcg_gen_and_i64(flag, flag, tmp); 742 tcg_gen_extrh_i64_i32(cpu_VF, flag); 743 tcg_gen_mov_i64(dest, result); 744 } 745 746 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 747 { 748 /* 32 bit arithmetic */ 749 TCGv_i32 t0_32 = tcg_temp_new_i32(); 750 TCGv_i32 t1_32 = tcg_temp_new_i32(); 751 TCGv_i32 tmp; 752 753 tcg_gen_extrl_i64_i32(t0_32, t0); 754 tcg_gen_extrl_i64_i32(t1_32, t1); 755 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 756 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 757 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 758 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 759 tmp = tcg_temp_new_i32(); 760 tcg_gen_xor_i32(tmp, t0_32, t1_32); 761 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 762 tcg_gen_extu_i32_i64(dest, cpu_NF); 763 } 764 765 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 766 { 767 if (sf) { 768 gen_sub64_CC(dest, t0, t1); 769 } else { 770 gen_sub32_CC(dest, t0, t1); 771 } 772 } 773 774 /* dest = T0 + T1 + CF; do not compute flags. */ 775 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 776 { 777 TCGv_i64 flag = tcg_temp_new_i64(); 778 tcg_gen_extu_i32_i64(flag, cpu_CF); 779 tcg_gen_add_i64(dest, t0, t1); 780 tcg_gen_add_i64(dest, dest, flag); 781 782 if (!sf) { 783 tcg_gen_ext32u_i64(dest, dest); 784 } 785 } 786 787 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 788 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 789 { 790 if (sf) { 791 TCGv_i64 result = tcg_temp_new_i64(); 792 TCGv_i64 cf_64 = tcg_temp_new_i64(); 793 TCGv_i64 vf_64 = tcg_temp_new_i64(); 794 TCGv_i64 tmp = tcg_temp_new_i64(); 795 TCGv_i64 zero = tcg_constant_i64(0); 796 797 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 798 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 799 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 800 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 801 gen_set_NZ64(result); 802 803 tcg_gen_xor_i64(vf_64, result, t0); 804 tcg_gen_xor_i64(tmp, t0, t1); 805 tcg_gen_andc_i64(vf_64, vf_64, tmp); 806 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 807 808 tcg_gen_mov_i64(dest, result); 809 } else { 810 TCGv_i32 t0_32 = tcg_temp_new_i32(); 811 TCGv_i32 t1_32 = tcg_temp_new_i32(); 812 TCGv_i32 tmp = tcg_temp_new_i32(); 813 TCGv_i32 zero = tcg_constant_i32(0); 814 815 tcg_gen_extrl_i64_i32(t0_32, t0); 816 tcg_gen_extrl_i64_i32(t1_32, t1); 817 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 818 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 819 820 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 821 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 822 tcg_gen_xor_i32(tmp, t0_32, t1_32); 823 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 824 tcg_gen_extu_i32_i64(dest, cpu_NF); 825 } 826 } 827 828 /* 829 * Load/Store generators 830 */ 831 832 /* 833 * Store from GPR register to memory. 834 */ 835 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 836 TCGv_i64 tcg_addr, MemOp memop, int memidx, 837 bool iss_valid, 838 unsigned int iss_srt, 839 bool iss_sf, bool iss_ar) 840 { 841 memop = finalize_memop(s, memop); 842 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 843 844 if (iss_valid) { 845 uint32_t syn; 846 847 syn = syn_data_abort_with_iss(0, 848 (memop & MO_SIZE), 849 false, 850 iss_srt, 851 iss_sf, 852 iss_ar, 853 0, 0, 0, 0, 0, false); 854 disas_set_insn_syndrome(s, syn); 855 } 856 } 857 858 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 859 TCGv_i64 tcg_addr, MemOp memop, 860 bool iss_valid, 861 unsigned int iss_srt, 862 bool iss_sf, bool iss_ar) 863 { 864 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 865 iss_valid, iss_srt, iss_sf, iss_ar); 866 } 867 868 /* 869 * Load from memory to GPR register 870 */ 871 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 872 MemOp memop, bool extend, int memidx, 873 bool iss_valid, unsigned int iss_srt, 874 bool iss_sf, bool iss_ar) 875 { 876 memop = finalize_memop(s, memop); 877 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 878 879 if (extend && (memop & MO_SIGN)) { 880 g_assert((memop & MO_SIZE) <= MO_32); 881 tcg_gen_ext32u_i64(dest, dest); 882 } 883 884 if (iss_valid) { 885 uint32_t syn; 886 887 syn = syn_data_abort_with_iss(0, 888 (memop & MO_SIZE), 889 (memop & MO_SIGN) != 0, 890 iss_srt, 891 iss_sf, 892 iss_ar, 893 0, 0, 0, 0, 0, false); 894 disas_set_insn_syndrome(s, syn); 895 } 896 } 897 898 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 899 MemOp memop, bool extend, 900 bool iss_valid, unsigned int iss_srt, 901 bool iss_sf, bool iss_ar) 902 { 903 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 904 iss_valid, iss_srt, iss_sf, iss_ar); 905 } 906 907 /* 908 * Store from FP register to memory 909 */ 910 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 911 { 912 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 913 TCGv_i64 tmplo = tcg_temp_new_i64(); 914 MemOp mop = finalize_memop_asimd(s, size); 915 916 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 917 918 if (size < MO_128) { 919 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 920 } else { 921 TCGv_i64 tmphi = tcg_temp_new_i64(); 922 TCGv_i128 t16 = tcg_temp_new_i128(); 923 924 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 925 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 926 927 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 928 } 929 } 930 931 /* 932 * Load from memory to FP register 933 */ 934 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 935 { 936 /* This always zero-extends and writes to a full 128 bit wide vector */ 937 TCGv_i64 tmplo = tcg_temp_new_i64(); 938 TCGv_i64 tmphi = NULL; 939 MemOp mop = finalize_memop_asimd(s, size); 940 941 if (size < MO_128) { 942 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 943 } else { 944 TCGv_i128 t16 = tcg_temp_new_i128(); 945 946 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 947 948 tmphi = tcg_temp_new_i64(); 949 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 950 } 951 952 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 953 954 if (tmphi) { 955 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 956 } 957 clear_vec_high(s, tmphi != NULL, destidx); 958 } 959 960 /* 961 * Vector load/store helpers. 962 * 963 * The principal difference between this and a FP load is that we don't 964 * zero extend as we are filling a partial chunk of the vector register. 965 * These functions don't support 128 bit loads/stores, which would be 966 * normal load/store operations. 967 * 968 * The _i32 versions are useful when operating on 32 bit quantities 969 * (eg for floating point single or using Neon helper functions). 970 */ 971 972 /* Get value of an element within a vector register */ 973 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 974 int element, MemOp memop) 975 { 976 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 977 switch ((unsigned)memop) { 978 case MO_8: 979 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_16: 982 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_32: 985 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_8|MO_SIGN: 988 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_16|MO_SIGN: 991 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_32|MO_SIGN: 994 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 995 break; 996 case MO_64: 997 case MO_64|MO_SIGN: 998 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 999 break; 1000 default: 1001 g_assert_not_reached(); 1002 } 1003 } 1004 1005 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1006 int element, MemOp memop) 1007 { 1008 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1009 switch (memop) { 1010 case MO_8: 1011 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_16: 1014 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_8|MO_SIGN: 1017 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_16|MO_SIGN: 1020 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1021 break; 1022 case MO_32: 1023 case MO_32|MO_SIGN: 1024 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1025 break; 1026 default: 1027 g_assert_not_reached(); 1028 } 1029 } 1030 1031 /* Set value of an element within a vector register */ 1032 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1033 int element, MemOp memop) 1034 { 1035 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1036 switch (memop) { 1037 case MO_8: 1038 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_16: 1041 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_32: 1044 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 case MO_64: 1047 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1048 break; 1049 default: 1050 g_assert_not_reached(); 1051 } 1052 } 1053 1054 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1055 int destidx, int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1058 switch (memop) { 1059 case MO_8: 1060 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1067 break; 1068 default: 1069 g_assert_not_reached(); 1070 } 1071 } 1072 1073 /* Store from vector register to memory */ 1074 static void do_vec_st(DisasContext *s, int srcidx, int element, 1075 TCGv_i64 tcg_addr, MemOp mop) 1076 { 1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1078 1079 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1080 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1081 } 1082 1083 /* Load from memory to vector register */ 1084 static void do_vec_ld(DisasContext *s, int destidx, int element, 1085 TCGv_i64 tcg_addr, MemOp mop) 1086 { 1087 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1088 1089 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1090 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1091 } 1092 1093 /* Check that FP/Neon access is enabled. If it is, return 1094 * true. If not, emit code to generate an appropriate exception, 1095 * and return false; the caller should not emit any code for 1096 * the instruction. Note that this check must happen after all 1097 * unallocated-encoding checks (otherwise the syndrome information 1098 * for the resulting exception will be incorrect). 1099 */ 1100 static bool fp_access_check_only(DisasContext *s) 1101 { 1102 if (s->fp_excp_el) { 1103 assert(!s->fp_access_checked); 1104 s->fp_access_checked = true; 1105 1106 gen_exception_insn_el(s, 0, EXCP_UDEF, 1107 syn_fp_access_trap(1, 0xe, false, 0), 1108 s->fp_excp_el); 1109 return false; 1110 } 1111 s->fp_access_checked = true; 1112 return true; 1113 } 1114 1115 static bool fp_access_check(DisasContext *s) 1116 { 1117 if (!fp_access_check_only(s)) { 1118 return false; 1119 } 1120 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1121 gen_exception_insn(s, 0, EXCP_UDEF, 1122 syn_smetrap(SME_ET_Streaming, false)); 1123 return false; 1124 } 1125 return true; 1126 } 1127 1128 /* 1129 * Check that SVE access is enabled. If it is, return true. 1130 * If not, emit code to generate an appropriate exception and return false. 1131 * This function corresponds to CheckSVEEnabled(). 1132 */ 1133 bool sve_access_check(DisasContext *s) 1134 { 1135 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1136 assert(dc_isar_feature(aa64_sme, s)); 1137 if (!sme_sm_enabled_check(s)) { 1138 goto fail_exit; 1139 } 1140 } else if (s->sve_excp_el) { 1141 gen_exception_insn_el(s, 0, EXCP_UDEF, 1142 syn_sve_access_trap(), s->sve_excp_el); 1143 goto fail_exit; 1144 } 1145 s->sve_access_checked = true; 1146 return fp_access_check(s); 1147 1148 fail_exit: 1149 /* Assert that we only raise one exception per instruction. */ 1150 assert(!s->sve_access_checked); 1151 s->sve_access_checked = true; 1152 return false; 1153 } 1154 1155 /* 1156 * Check that SME access is enabled, raise an exception if not. 1157 * Note that this function corresponds to CheckSMEAccess and is 1158 * only used directly for cpregs. 1159 */ 1160 static bool sme_access_check(DisasContext *s) 1161 { 1162 if (s->sme_excp_el) { 1163 gen_exception_insn_el(s, 0, EXCP_UDEF, 1164 syn_smetrap(SME_ET_AccessTrap, false), 1165 s->sme_excp_el); 1166 return false; 1167 } 1168 return true; 1169 } 1170 1171 /* This function corresponds to CheckSMEEnabled. */ 1172 bool sme_enabled_check(DisasContext *s) 1173 { 1174 /* 1175 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1176 * to be zero when fp_excp_el has priority. This is because we need 1177 * sme_excp_el by itself for cpregs access checks. 1178 */ 1179 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1180 s->fp_access_checked = true; 1181 return sme_access_check(s); 1182 } 1183 return fp_access_check_only(s); 1184 } 1185 1186 /* Common subroutine for CheckSMEAnd*Enabled. */ 1187 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1188 { 1189 if (!sme_enabled_check(s)) { 1190 return false; 1191 } 1192 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1193 gen_exception_insn(s, 0, EXCP_UDEF, 1194 syn_smetrap(SME_ET_NotStreaming, false)); 1195 return false; 1196 } 1197 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1198 gen_exception_insn(s, 0, EXCP_UDEF, 1199 syn_smetrap(SME_ET_InactiveZA, false)); 1200 return false; 1201 } 1202 return true; 1203 } 1204 1205 /* 1206 * This utility function is for doing register extension with an 1207 * optional shift. You will likely want to pass a temporary for the 1208 * destination register. See DecodeRegExtend() in the ARM ARM. 1209 */ 1210 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1211 int option, unsigned int shift) 1212 { 1213 int extsize = extract32(option, 0, 2); 1214 bool is_signed = extract32(option, 2, 1); 1215 1216 if (is_signed) { 1217 switch (extsize) { 1218 case 0: 1219 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1220 break; 1221 case 1: 1222 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1223 break; 1224 case 2: 1225 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1226 break; 1227 case 3: 1228 tcg_gen_mov_i64(tcg_out, tcg_in); 1229 break; 1230 } 1231 } else { 1232 switch (extsize) { 1233 case 0: 1234 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1235 break; 1236 case 1: 1237 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1238 break; 1239 case 2: 1240 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1241 break; 1242 case 3: 1243 tcg_gen_mov_i64(tcg_out, tcg_in); 1244 break; 1245 } 1246 } 1247 1248 if (shift) { 1249 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1250 } 1251 } 1252 1253 static inline void gen_check_sp_alignment(DisasContext *s) 1254 { 1255 /* The AArch64 architecture mandates that (if enabled via PSTATE 1256 * or SCTLR bits) there is a check that SP is 16-aligned on every 1257 * SP-relative load or store (with an exception generated if it is not). 1258 * In line with general QEMU practice regarding misaligned accesses, 1259 * we omit these checks for the sake of guest program performance. 1260 * This function is provided as a hook so we can more easily add these 1261 * checks in future (possibly as a "favour catching guest program bugs 1262 * over speed" user selectable option). 1263 */ 1264 } 1265 1266 /* 1267 * This provides a simple table based table lookup decoder. It is 1268 * intended to be used when the relevant bits for decode are too 1269 * awkwardly placed and switch/if based logic would be confusing and 1270 * deeply nested. Since it's a linear search through the table, tables 1271 * should be kept small. 1272 * 1273 * It returns the first handler where insn & mask == pattern, or 1274 * NULL if there is no match. 1275 * The table is terminated by an empty mask (i.e. 0) 1276 */ 1277 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1278 uint32_t insn) 1279 { 1280 const AArch64DecodeTable *tptr = table; 1281 1282 while (tptr->mask) { 1283 if ((insn & tptr->mask) == tptr->pattern) { 1284 return tptr->disas_fn; 1285 } 1286 tptr++; 1287 } 1288 return NULL; 1289 } 1290 1291 /* 1292 * The instruction disassembly implemented here matches 1293 * the instruction encoding classifications in chapter C4 1294 * of the ARM Architecture Reference Manual (DDI0487B_a); 1295 * classification names and decode diagrams here should generally 1296 * match up with those in the manual. 1297 */ 1298 1299 static bool trans_B(DisasContext *s, arg_i *a) 1300 { 1301 reset_btype(s); 1302 gen_goto_tb(s, 0, a->imm); 1303 return true; 1304 } 1305 1306 static bool trans_BL(DisasContext *s, arg_i *a) 1307 { 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 reset_btype(s); 1310 gen_goto_tb(s, 0, a->imm); 1311 return true; 1312 } 1313 1314 1315 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1316 { 1317 DisasLabel match; 1318 TCGv_i64 tcg_cmp; 1319 1320 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1321 reset_btype(s); 1322 1323 match = gen_disas_label(s); 1324 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1325 tcg_cmp, 0, match.label); 1326 gen_goto_tb(s, 0, 4); 1327 set_disas_label(s, match); 1328 gen_goto_tb(s, 1, a->imm); 1329 return true; 1330 } 1331 1332 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1333 { 1334 DisasLabel match; 1335 TCGv_i64 tcg_cmp; 1336 1337 tcg_cmp = tcg_temp_new_i64(); 1338 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1339 1340 reset_btype(s); 1341 1342 match = gen_disas_label(s); 1343 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1344 tcg_cmp, 0, match.label); 1345 gen_goto_tb(s, 0, 4); 1346 set_disas_label(s, match); 1347 gen_goto_tb(s, 1, a->imm); 1348 return true; 1349 } 1350 1351 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1352 { 1353 reset_btype(s); 1354 if (a->cond < 0x0e) { 1355 /* genuinely conditional branches */ 1356 DisasLabel match = gen_disas_label(s); 1357 arm_gen_test_cc(a->cond, match.label); 1358 gen_goto_tb(s, 0, 4); 1359 set_disas_label(s, match); 1360 gen_goto_tb(s, 1, a->imm); 1361 } else { 1362 /* 0xe and 0xf are both "always" conditions */ 1363 gen_goto_tb(s, 0, a->imm); 1364 } 1365 return true; 1366 } 1367 1368 static void set_btype_for_br(DisasContext *s, int rn) 1369 { 1370 if (dc_isar_feature(aa64_bti, s)) { 1371 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1372 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1373 } 1374 } 1375 1376 static void set_btype_for_blr(DisasContext *s) 1377 { 1378 if (dc_isar_feature(aa64_bti, s)) { 1379 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1380 set_btype(s, 2); 1381 } 1382 } 1383 1384 static bool trans_BR(DisasContext *s, arg_r *a) 1385 { 1386 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1387 set_btype_for_br(s, a->rn); 1388 s->base.is_jmp = DISAS_JUMP; 1389 return true; 1390 } 1391 1392 static bool trans_BLR(DisasContext *s, arg_r *a) 1393 { 1394 TCGv_i64 dst = cpu_reg(s, a->rn); 1395 TCGv_i64 lr = cpu_reg(s, 30); 1396 if (dst == lr) { 1397 TCGv_i64 tmp = tcg_temp_new_i64(); 1398 tcg_gen_mov_i64(tmp, dst); 1399 dst = tmp; 1400 } 1401 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1402 gen_a64_set_pc(s, dst); 1403 set_btype_for_blr(s); 1404 s->base.is_jmp = DISAS_JUMP; 1405 return true; 1406 } 1407 1408 static bool trans_RET(DisasContext *s, arg_r *a) 1409 { 1410 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1411 s->base.is_jmp = DISAS_JUMP; 1412 return true; 1413 } 1414 1415 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1416 TCGv_i64 modifier, bool use_key_a) 1417 { 1418 TCGv_i64 truedst; 1419 /* 1420 * Return the branch target for a BRAA/RETA/etc, which is either 1421 * just the destination dst, or that value with the pauth check 1422 * done and the code removed from the high bits. 1423 */ 1424 if (!s->pauth_active) { 1425 return dst; 1426 } 1427 1428 truedst = tcg_temp_new_i64(); 1429 if (use_key_a) { 1430 gen_helper_autia(truedst, cpu_env, dst, modifier); 1431 } else { 1432 gen_helper_autib(truedst, cpu_env, dst, modifier); 1433 } 1434 return truedst; 1435 } 1436 1437 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1438 { 1439 TCGv_i64 dst; 1440 1441 if (!dc_isar_feature(aa64_pauth, s)) { 1442 return false; 1443 } 1444 1445 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1446 gen_a64_set_pc(s, dst); 1447 set_btype_for_br(s, a->rn); 1448 s->base.is_jmp = DISAS_JUMP; 1449 return true; 1450 } 1451 1452 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1453 { 1454 TCGv_i64 dst, lr; 1455 1456 if (!dc_isar_feature(aa64_pauth, s)) { 1457 return false; 1458 } 1459 1460 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1461 lr = cpu_reg(s, 30); 1462 if (dst == lr) { 1463 TCGv_i64 tmp = tcg_temp_new_i64(); 1464 tcg_gen_mov_i64(tmp, dst); 1465 dst = tmp; 1466 } 1467 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1468 gen_a64_set_pc(s, dst); 1469 set_btype_for_blr(s); 1470 s->base.is_jmp = DISAS_JUMP; 1471 return true; 1472 } 1473 1474 static bool trans_RETA(DisasContext *s, arg_reta *a) 1475 { 1476 TCGv_i64 dst; 1477 1478 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1479 gen_a64_set_pc(s, dst); 1480 s->base.is_jmp = DISAS_JUMP; 1481 return true; 1482 } 1483 1484 static bool trans_BRA(DisasContext *s, arg_bra *a) 1485 { 1486 TCGv_i64 dst; 1487 1488 if (!dc_isar_feature(aa64_pauth, s)) { 1489 return false; 1490 } 1491 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1492 gen_a64_set_pc(s, dst); 1493 set_btype_for_br(s, a->rn); 1494 s->base.is_jmp = DISAS_JUMP; 1495 return true; 1496 } 1497 1498 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1499 { 1500 TCGv_i64 dst, lr; 1501 1502 if (!dc_isar_feature(aa64_pauth, s)) { 1503 return false; 1504 } 1505 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1506 lr = cpu_reg(s, 30); 1507 if (dst == lr) { 1508 TCGv_i64 tmp = tcg_temp_new_i64(); 1509 tcg_gen_mov_i64(tmp, dst); 1510 dst = tmp; 1511 } 1512 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1513 gen_a64_set_pc(s, dst); 1514 set_btype_for_blr(s); 1515 s->base.is_jmp = DISAS_JUMP; 1516 return true; 1517 } 1518 1519 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1520 { 1521 TCGv_i64 dst; 1522 1523 if (s->current_el == 0) { 1524 return false; 1525 } 1526 if (s->fgt_eret) { 1527 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1528 return true; 1529 } 1530 dst = tcg_temp_new_i64(); 1531 tcg_gen_ld_i64(dst, cpu_env, 1532 offsetof(CPUARMState, elr_el[s->current_el])); 1533 1534 translator_io_start(&s->base); 1535 1536 gen_helper_exception_return(cpu_env, dst); 1537 /* Must exit loop to check un-masked IRQs */ 1538 s->base.is_jmp = DISAS_EXIT; 1539 return true; 1540 } 1541 1542 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1543 { 1544 TCGv_i64 dst; 1545 1546 if (!dc_isar_feature(aa64_pauth, s)) { 1547 return false; 1548 } 1549 if (s->current_el == 0) { 1550 return false; 1551 } 1552 /* The FGT trap takes precedence over an auth trap. */ 1553 if (s->fgt_eret) { 1554 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1555 return true; 1556 } 1557 dst = tcg_temp_new_i64(); 1558 tcg_gen_ld_i64(dst, cpu_env, 1559 offsetof(CPUARMState, elr_el[s->current_el])); 1560 1561 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1562 1563 translator_io_start(&s->base); 1564 1565 gen_helper_exception_return(cpu_env, dst); 1566 /* Must exit loop to check un-masked IRQs */ 1567 s->base.is_jmp = DISAS_EXIT; 1568 return true; 1569 } 1570 1571 /* HINT instruction group, including various allocated HINTs */ 1572 static void handle_hint(DisasContext *s, uint32_t insn, 1573 unsigned int op1, unsigned int op2, unsigned int crm) 1574 { 1575 unsigned int selector = crm << 3 | op2; 1576 1577 if (op1 != 3) { 1578 unallocated_encoding(s); 1579 return; 1580 } 1581 1582 switch (selector) { 1583 case 0b00000: /* NOP */ 1584 break; 1585 case 0b00011: /* WFI */ 1586 s->base.is_jmp = DISAS_WFI; 1587 break; 1588 case 0b00001: /* YIELD */ 1589 /* When running in MTTCG we don't generate jumps to the yield and 1590 * WFE helpers as it won't affect the scheduling of other vCPUs. 1591 * If we wanted to more completely model WFE/SEV so we don't busy 1592 * spin unnecessarily we would need to do something more involved. 1593 */ 1594 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1595 s->base.is_jmp = DISAS_YIELD; 1596 } 1597 break; 1598 case 0b00010: /* WFE */ 1599 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1600 s->base.is_jmp = DISAS_WFE; 1601 } 1602 break; 1603 case 0b00100: /* SEV */ 1604 case 0b00101: /* SEVL */ 1605 case 0b00110: /* DGH */ 1606 /* we treat all as NOP at least for now */ 1607 break; 1608 case 0b00111: /* XPACLRI */ 1609 if (s->pauth_active) { 1610 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1611 } 1612 break; 1613 case 0b01000: /* PACIA1716 */ 1614 if (s->pauth_active) { 1615 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1616 } 1617 break; 1618 case 0b01010: /* PACIB1716 */ 1619 if (s->pauth_active) { 1620 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1621 } 1622 break; 1623 case 0b01100: /* AUTIA1716 */ 1624 if (s->pauth_active) { 1625 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1626 } 1627 break; 1628 case 0b01110: /* AUTIB1716 */ 1629 if (s->pauth_active) { 1630 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1631 } 1632 break; 1633 case 0b10000: /* ESB */ 1634 /* Without RAS, we must implement this as NOP. */ 1635 if (dc_isar_feature(aa64_ras, s)) { 1636 /* 1637 * QEMU does not have a source of physical SErrors, 1638 * so we are only concerned with virtual SErrors. 1639 * The pseudocode in the ARM for this case is 1640 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1641 * AArch64.vESBOperation(); 1642 * Most of the condition can be evaluated at translation time. 1643 * Test for EL2 present, and defer test for SEL2 to runtime. 1644 */ 1645 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1646 gen_helper_vesb(cpu_env); 1647 } 1648 } 1649 break; 1650 case 0b11000: /* PACIAZ */ 1651 if (s->pauth_active) { 1652 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1653 tcg_constant_i64(0)); 1654 } 1655 break; 1656 case 0b11001: /* PACIASP */ 1657 if (s->pauth_active) { 1658 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1659 } 1660 break; 1661 case 0b11010: /* PACIBZ */ 1662 if (s->pauth_active) { 1663 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1664 tcg_constant_i64(0)); 1665 } 1666 break; 1667 case 0b11011: /* PACIBSP */ 1668 if (s->pauth_active) { 1669 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1670 } 1671 break; 1672 case 0b11100: /* AUTIAZ */ 1673 if (s->pauth_active) { 1674 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1675 tcg_constant_i64(0)); 1676 } 1677 break; 1678 case 0b11101: /* AUTIASP */ 1679 if (s->pauth_active) { 1680 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1681 } 1682 break; 1683 case 0b11110: /* AUTIBZ */ 1684 if (s->pauth_active) { 1685 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1686 tcg_constant_i64(0)); 1687 } 1688 break; 1689 case 0b11111: /* AUTIBSP */ 1690 if (s->pauth_active) { 1691 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1692 } 1693 break; 1694 default: 1695 /* default specified as NOP equivalent */ 1696 break; 1697 } 1698 } 1699 1700 static void gen_clrex(DisasContext *s, uint32_t insn) 1701 { 1702 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1703 } 1704 1705 /* CLREX, DSB, DMB, ISB */ 1706 static void handle_sync(DisasContext *s, uint32_t insn, 1707 unsigned int op1, unsigned int op2, unsigned int crm) 1708 { 1709 TCGBar bar; 1710 1711 if (op1 != 3) { 1712 unallocated_encoding(s); 1713 return; 1714 } 1715 1716 switch (op2) { 1717 case 2: /* CLREX */ 1718 gen_clrex(s, insn); 1719 return; 1720 case 4: /* DSB */ 1721 case 5: /* DMB */ 1722 switch (crm & 3) { 1723 case 1: /* MBReqTypes_Reads */ 1724 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1725 break; 1726 case 2: /* MBReqTypes_Writes */ 1727 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1728 break; 1729 default: /* MBReqTypes_All */ 1730 bar = TCG_BAR_SC | TCG_MO_ALL; 1731 break; 1732 } 1733 tcg_gen_mb(bar); 1734 return; 1735 case 6: /* ISB */ 1736 /* We need to break the TB after this insn to execute 1737 * a self-modified code correctly and also to take 1738 * any pending interrupts immediately. 1739 */ 1740 reset_btype(s); 1741 gen_goto_tb(s, 0, 4); 1742 return; 1743 1744 case 7: /* SB */ 1745 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1746 goto do_unallocated; 1747 } 1748 /* 1749 * TODO: There is no speculation barrier opcode for TCG; 1750 * MB and end the TB instead. 1751 */ 1752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1753 gen_goto_tb(s, 0, 4); 1754 return; 1755 1756 default: 1757 do_unallocated: 1758 unallocated_encoding(s); 1759 return; 1760 } 1761 } 1762 1763 static void gen_xaflag(void) 1764 { 1765 TCGv_i32 z = tcg_temp_new_i32(); 1766 1767 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1768 1769 /* 1770 * (!C & !Z) << 31 1771 * (!(C | Z)) << 31 1772 * ~((C | Z) << 31) 1773 * ~-(C | Z) 1774 * (C | Z) - 1 1775 */ 1776 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1777 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1778 1779 /* !(Z & C) */ 1780 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1781 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1782 1783 /* (!C & Z) << 31 -> -(Z & ~C) */ 1784 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1785 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1786 1787 /* C | Z */ 1788 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1789 } 1790 1791 static void gen_axflag(void) 1792 { 1793 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1794 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1795 1796 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1797 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1798 1799 tcg_gen_movi_i32(cpu_NF, 0); 1800 tcg_gen_movi_i32(cpu_VF, 0); 1801 } 1802 1803 /* MSR (immediate) - move immediate to processor state field */ 1804 static void handle_msr_i(DisasContext *s, uint32_t insn, 1805 unsigned int op1, unsigned int op2, unsigned int crm) 1806 { 1807 int op = op1 << 3 | op2; 1808 1809 /* End the TB by default, chaining is ok. */ 1810 s->base.is_jmp = DISAS_TOO_MANY; 1811 1812 switch (op) { 1813 case 0x00: /* CFINV */ 1814 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1815 goto do_unallocated; 1816 } 1817 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1818 s->base.is_jmp = DISAS_NEXT; 1819 break; 1820 1821 case 0x01: /* XAFlag */ 1822 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1823 goto do_unallocated; 1824 } 1825 gen_xaflag(); 1826 s->base.is_jmp = DISAS_NEXT; 1827 break; 1828 1829 case 0x02: /* AXFlag */ 1830 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1831 goto do_unallocated; 1832 } 1833 gen_axflag(); 1834 s->base.is_jmp = DISAS_NEXT; 1835 break; 1836 1837 case 0x03: /* UAO */ 1838 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1839 goto do_unallocated; 1840 } 1841 if (crm & 1) { 1842 set_pstate_bits(PSTATE_UAO); 1843 } else { 1844 clear_pstate_bits(PSTATE_UAO); 1845 } 1846 gen_rebuild_hflags(s); 1847 break; 1848 1849 case 0x04: /* PAN */ 1850 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1851 goto do_unallocated; 1852 } 1853 if (crm & 1) { 1854 set_pstate_bits(PSTATE_PAN); 1855 } else { 1856 clear_pstate_bits(PSTATE_PAN); 1857 } 1858 gen_rebuild_hflags(s); 1859 break; 1860 1861 case 0x05: /* SPSel */ 1862 if (s->current_el == 0) { 1863 goto do_unallocated; 1864 } 1865 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1866 break; 1867 1868 case 0x19: /* SSBS */ 1869 if (!dc_isar_feature(aa64_ssbs, s)) { 1870 goto do_unallocated; 1871 } 1872 if (crm & 1) { 1873 set_pstate_bits(PSTATE_SSBS); 1874 } else { 1875 clear_pstate_bits(PSTATE_SSBS); 1876 } 1877 /* Don't need to rebuild hflags since SSBS is a nop */ 1878 break; 1879 1880 case 0x1a: /* DIT */ 1881 if (!dc_isar_feature(aa64_dit, s)) { 1882 goto do_unallocated; 1883 } 1884 if (crm & 1) { 1885 set_pstate_bits(PSTATE_DIT); 1886 } else { 1887 clear_pstate_bits(PSTATE_DIT); 1888 } 1889 /* There's no need to rebuild hflags because DIT is a nop */ 1890 break; 1891 1892 case 0x1e: /* DAIFSet */ 1893 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1894 break; 1895 1896 case 0x1f: /* DAIFClear */ 1897 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1898 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1899 s->base.is_jmp = DISAS_UPDATE_EXIT; 1900 break; 1901 1902 case 0x1c: /* TCO */ 1903 if (dc_isar_feature(aa64_mte, s)) { 1904 /* Full MTE is enabled -- set the TCO bit as directed. */ 1905 if (crm & 1) { 1906 set_pstate_bits(PSTATE_TCO); 1907 } else { 1908 clear_pstate_bits(PSTATE_TCO); 1909 } 1910 gen_rebuild_hflags(s); 1911 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1912 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1913 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1914 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1915 s->base.is_jmp = DISAS_NEXT; 1916 } else { 1917 goto do_unallocated; 1918 } 1919 break; 1920 1921 case 0x1b: /* SVCR* */ 1922 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1923 goto do_unallocated; 1924 } 1925 if (sme_access_check(s)) { 1926 int old = s->pstate_sm | (s->pstate_za << 1); 1927 int new = (crm & 1) * 3; 1928 int msk = (crm >> 1) & 3; 1929 1930 if ((old ^ new) & msk) { 1931 /* At least one bit changes. */ 1932 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1933 tcg_constant_i32(msk)); 1934 } else { 1935 s->base.is_jmp = DISAS_NEXT; 1936 } 1937 } 1938 break; 1939 1940 default: 1941 do_unallocated: 1942 unallocated_encoding(s); 1943 return; 1944 } 1945 } 1946 1947 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1948 { 1949 TCGv_i32 tmp = tcg_temp_new_i32(); 1950 TCGv_i32 nzcv = tcg_temp_new_i32(); 1951 1952 /* build bit 31, N */ 1953 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1954 /* build bit 30, Z */ 1955 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1956 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1957 /* build bit 29, C */ 1958 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1959 /* build bit 28, V */ 1960 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1961 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1962 /* generate result */ 1963 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1964 } 1965 1966 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1967 { 1968 TCGv_i32 nzcv = tcg_temp_new_i32(); 1969 1970 /* take NZCV from R[t] */ 1971 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1972 1973 /* bit 31, N */ 1974 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1975 /* bit 30, Z */ 1976 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1977 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1978 /* bit 29, C */ 1979 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1980 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1981 /* bit 28, V */ 1982 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1983 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1984 } 1985 1986 static void gen_sysreg_undef(DisasContext *s, bool isread, 1987 uint8_t op0, uint8_t op1, uint8_t op2, 1988 uint8_t crn, uint8_t crm, uint8_t rt) 1989 { 1990 /* 1991 * Generate code to emit an UNDEF with correct syndrome 1992 * information for a failed system register access. 1993 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1994 * but if FEAT_IDST is implemented then read accesses to registers 1995 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1996 * syndrome. 1997 */ 1998 uint32_t syndrome; 1999 2000 if (isread && dc_isar_feature(aa64_ids, s) && 2001 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2002 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2003 } else { 2004 syndrome = syn_uncategorized(); 2005 } 2006 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2007 } 2008 2009 /* MRS - move from system register 2010 * MSR (register) - move to system register 2011 * SYS 2012 * SYSL 2013 * These are all essentially the same insn in 'read' and 'write' 2014 * versions, with varying op0 fields. 2015 */ 2016 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2017 unsigned int op0, unsigned int op1, unsigned int op2, 2018 unsigned int crn, unsigned int crm, unsigned int rt) 2019 { 2020 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2021 crn, crm, op0, op1, op2); 2022 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2023 bool need_exit_tb = false; 2024 TCGv_ptr tcg_ri = NULL; 2025 TCGv_i64 tcg_rt; 2026 2027 if (!ri) { 2028 /* Unknown register; this might be a guest error or a QEMU 2029 * unimplemented feature. 2030 */ 2031 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2032 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2033 isread ? "read" : "write", op0, op1, crn, crm, op2); 2034 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2035 return; 2036 } 2037 2038 /* Check access permissions */ 2039 if (!cp_access_ok(s->current_el, ri, isread)) { 2040 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2041 return; 2042 } 2043 2044 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2045 /* Emit code to perform further access permissions checks at 2046 * runtime; this may result in an exception. 2047 */ 2048 uint32_t syndrome; 2049 2050 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2051 gen_a64_update_pc(s, 0); 2052 tcg_ri = tcg_temp_new_ptr(); 2053 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2054 tcg_constant_i32(key), 2055 tcg_constant_i32(syndrome), 2056 tcg_constant_i32(isread)); 2057 } else if (ri->type & ARM_CP_RAISES_EXC) { 2058 /* 2059 * The readfn or writefn might raise an exception; 2060 * synchronize the CPU state in case it does. 2061 */ 2062 gen_a64_update_pc(s, 0); 2063 } 2064 2065 /* Handle special cases first */ 2066 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2067 case 0: 2068 break; 2069 case ARM_CP_NOP: 2070 return; 2071 case ARM_CP_NZCV: 2072 tcg_rt = cpu_reg(s, rt); 2073 if (isread) { 2074 gen_get_nzcv(tcg_rt); 2075 } else { 2076 gen_set_nzcv(tcg_rt); 2077 } 2078 return; 2079 case ARM_CP_CURRENTEL: 2080 /* Reads as current EL value from pstate, which is 2081 * guaranteed to be constant by the tb flags. 2082 */ 2083 tcg_rt = cpu_reg(s, rt); 2084 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2085 return; 2086 case ARM_CP_DC_ZVA: 2087 /* Writes clear the aligned block of memory which rt points into. */ 2088 if (s->mte_active[0]) { 2089 int desc = 0; 2090 2091 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2092 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2093 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2094 2095 tcg_rt = tcg_temp_new_i64(); 2096 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2097 tcg_constant_i32(desc), cpu_reg(s, rt)); 2098 } else { 2099 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2100 } 2101 gen_helper_dc_zva(cpu_env, tcg_rt); 2102 return; 2103 case ARM_CP_DC_GVA: 2104 { 2105 TCGv_i64 clean_addr, tag; 2106 2107 /* 2108 * DC_GVA, like DC_ZVA, requires that we supply the original 2109 * pointer for an invalid page. Probe that address first. 2110 */ 2111 tcg_rt = cpu_reg(s, rt); 2112 clean_addr = clean_data_tbi(s, tcg_rt); 2113 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2114 2115 if (s->ata) { 2116 /* Extract the tag from the register to match STZGM. */ 2117 tag = tcg_temp_new_i64(); 2118 tcg_gen_shri_i64(tag, tcg_rt, 56); 2119 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2120 } 2121 } 2122 return; 2123 case ARM_CP_DC_GZVA: 2124 { 2125 TCGv_i64 clean_addr, tag; 2126 2127 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2128 tcg_rt = cpu_reg(s, rt); 2129 clean_addr = clean_data_tbi(s, tcg_rt); 2130 gen_helper_dc_zva(cpu_env, clean_addr); 2131 2132 if (s->ata) { 2133 /* Extract the tag from the register to match STZGM. */ 2134 tag = tcg_temp_new_i64(); 2135 tcg_gen_shri_i64(tag, tcg_rt, 56); 2136 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2137 } 2138 } 2139 return; 2140 default: 2141 g_assert_not_reached(); 2142 } 2143 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2144 return; 2145 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2146 return; 2147 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2148 return; 2149 } 2150 2151 if (ri->type & ARM_CP_IO) { 2152 /* I/O operations must end the TB here (whether read or write) */ 2153 need_exit_tb = translator_io_start(&s->base); 2154 } 2155 2156 tcg_rt = cpu_reg(s, rt); 2157 2158 if (isread) { 2159 if (ri->type & ARM_CP_CONST) { 2160 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2161 } else if (ri->readfn) { 2162 if (!tcg_ri) { 2163 tcg_ri = gen_lookup_cp_reg(key); 2164 } 2165 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2166 } else { 2167 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2168 } 2169 } else { 2170 if (ri->type & ARM_CP_CONST) { 2171 /* If not forbidden by access permissions, treat as WI */ 2172 return; 2173 } else if (ri->writefn) { 2174 if (!tcg_ri) { 2175 tcg_ri = gen_lookup_cp_reg(key); 2176 } 2177 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2178 } else { 2179 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2180 } 2181 } 2182 2183 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2184 /* 2185 * A write to any coprocessor regiser that ends a TB 2186 * must rebuild the hflags for the next TB. 2187 */ 2188 gen_rebuild_hflags(s); 2189 /* 2190 * We default to ending the TB on a coprocessor register write, 2191 * but allow this to be suppressed by the register definition 2192 * (usually only necessary to work around guest bugs). 2193 */ 2194 need_exit_tb = true; 2195 } 2196 if (need_exit_tb) { 2197 s->base.is_jmp = DISAS_UPDATE_EXIT; 2198 } 2199 } 2200 2201 /* System 2202 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2203 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2204 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2205 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2206 */ 2207 static void disas_system(DisasContext *s, uint32_t insn) 2208 { 2209 unsigned int l, op0, op1, crn, crm, op2, rt; 2210 l = extract32(insn, 21, 1); 2211 op0 = extract32(insn, 19, 2); 2212 op1 = extract32(insn, 16, 3); 2213 crn = extract32(insn, 12, 4); 2214 crm = extract32(insn, 8, 4); 2215 op2 = extract32(insn, 5, 3); 2216 rt = extract32(insn, 0, 5); 2217 2218 if (op0 == 0) { 2219 if (l || rt != 31) { 2220 unallocated_encoding(s); 2221 return; 2222 } 2223 switch (crn) { 2224 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2225 handle_hint(s, insn, op1, op2, crm); 2226 break; 2227 case 3: /* CLREX, DSB, DMB, ISB */ 2228 handle_sync(s, insn, op1, op2, crm); 2229 break; 2230 case 4: /* MSR (immediate) */ 2231 handle_msr_i(s, insn, op1, op2, crm); 2232 break; 2233 default: 2234 unallocated_encoding(s); 2235 break; 2236 } 2237 return; 2238 } 2239 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2240 } 2241 2242 /* Exception generation 2243 * 2244 * 31 24 23 21 20 5 4 2 1 0 2245 * +-----------------+-----+------------------------+-----+----+ 2246 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2247 * +-----------------------+------------------------+----------+ 2248 */ 2249 static void disas_exc(DisasContext *s, uint32_t insn) 2250 { 2251 int opc = extract32(insn, 21, 3); 2252 int op2_ll = extract32(insn, 0, 5); 2253 int imm16 = extract32(insn, 5, 16); 2254 uint32_t syndrome; 2255 2256 switch (opc) { 2257 case 0: 2258 /* For SVC, HVC and SMC we advance the single-step state 2259 * machine before taking the exception. This is architecturally 2260 * mandated, to ensure that single-stepping a system call 2261 * instruction works properly. 2262 */ 2263 switch (op2_ll) { 2264 case 1: /* SVC */ 2265 syndrome = syn_aa64_svc(imm16); 2266 if (s->fgt_svc) { 2267 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2268 break; 2269 } 2270 gen_ss_advance(s); 2271 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2272 break; 2273 case 2: /* HVC */ 2274 if (s->current_el == 0) { 2275 unallocated_encoding(s); 2276 break; 2277 } 2278 /* The pre HVC helper handles cases when HVC gets trapped 2279 * as an undefined insn by runtime configuration. 2280 */ 2281 gen_a64_update_pc(s, 0); 2282 gen_helper_pre_hvc(cpu_env); 2283 gen_ss_advance(s); 2284 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2285 break; 2286 case 3: /* SMC */ 2287 if (s->current_el == 0) { 2288 unallocated_encoding(s); 2289 break; 2290 } 2291 gen_a64_update_pc(s, 0); 2292 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2293 gen_ss_advance(s); 2294 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2295 break; 2296 default: 2297 unallocated_encoding(s); 2298 break; 2299 } 2300 break; 2301 case 1: 2302 if (op2_ll != 0) { 2303 unallocated_encoding(s); 2304 break; 2305 } 2306 /* BRK */ 2307 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2308 break; 2309 case 2: 2310 if (op2_ll != 0) { 2311 unallocated_encoding(s); 2312 break; 2313 } 2314 /* HLT. This has two purposes. 2315 * Architecturally, it is an external halting debug instruction. 2316 * Since QEMU doesn't implement external debug, we treat this as 2317 * it is required for halting debug disabled: it will UNDEF. 2318 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2319 */ 2320 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2321 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2322 } else { 2323 unallocated_encoding(s); 2324 } 2325 break; 2326 case 5: 2327 if (op2_ll < 1 || op2_ll > 3) { 2328 unallocated_encoding(s); 2329 break; 2330 } 2331 /* DCPS1, DCPS2, DCPS3 */ 2332 unallocated_encoding(s); 2333 break; 2334 default: 2335 unallocated_encoding(s); 2336 break; 2337 } 2338 } 2339 2340 /* Branches, exception generating and system instructions */ 2341 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2342 { 2343 switch (extract32(insn, 25, 7)) { 2344 case 0x6a: /* Exception generation / System */ 2345 if (insn & (1 << 24)) { 2346 if (extract32(insn, 22, 2) == 0) { 2347 disas_system(s, insn); 2348 } else { 2349 unallocated_encoding(s); 2350 } 2351 } else { 2352 disas_exc(s, insn); 2353 } 2354 break; 2355 default: 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 } 2360 2361 /* 2362 * Load/Store exclusive instructions are implemented by remembering 2363 * the value/address loaded, and seeing if these are the same 2364 * when the store is performed. This is not actually the architecturally 2365 * mandated semantics, but it works for typical guest code sequences 2366 * and avoids having to monitor regular stores. 2367 * 2368 * The store exclusive uses the atomic cmpxchg primitives to avoid 2369 * races in multi-threaded linux-user and when MTTCG softmmu is 2370 * enabled. 2371 */ 2372 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2373 int size, bool is_pair) 2374 { 2375 int idx = get_mem_index(s); 2376 MemOp memop; 2377 TCGv_i64 dirty_addr, clean_addr; 2378 2379 s->is_ldex = true; 2380 dirty_addr = cpu_reg_sp(s, rn); 2381 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, size); 2382 2383 g_assert(size <= 3); 2384 if (is_pair) { 2385 g_assert(size >= 2); 2386 if (size == 2) { 2387 /* The pair must be single-copy atomic for the doubleword. */ 2388 memop = finalize_memop(s, MO_64 | MO_ALIGN); 2389 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2390 if (s->be_data == MO_LE) { 2391 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2392 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2393 } else { 2394 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2395 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2396 } 2397 } else { 2398 /* 2399 * The pair must be single-copy atomic for *each* doubleword, not 2400 * the entire quadword, however it must be quadword aligned. 2401 * Expose the complete load to tcg, for ease of tlb lookup, 2402 * but indicate that only 8-byte atomicity is required. 2403 */ 2404 TCGv_i128 t16 = tcg_temp_new_i128(); 2405 2406 memop = finalize_memop_atom(s, MO_128 | MO_ALIGN_16, 2407 MO_ATOM_IFALIGN_PAIR); 2408 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2409 2410 if (s->be_data == MO_LE) { 2411 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2412 cpu_exclusive_high, t16); 2413 } else { 2414 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2415 cpu_exclusive_val, t16); 2416 } 2417 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2418 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2419 } 2420 } else { 2421 memop = finalize_memop(s, size | MO_ALIGN); 2422 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2423 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2424 } 2425 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2426 } 2427 2428 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2429 int rn, int size, int is_pair) 2430 { 2431 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2432 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2433 * [addr] = {Rt}; 2434 * if (is_pair) { 2435 * [addr + datasize] = {Rt2}; 2436 * } 2437 * {Rd} = 0; 2438 * } else { 2439 * {Rd} = 1; 2440 * } 2441 * env->exclusive_addr = -1; 2442 */ 2443 TCGLabel *fail_label = gen_new_label(); 2444 TCGLabel *done_label = gen_new_label(); 2445 TCGv_i64 tmp, dirty_addr, clean_addr; 2446 2447 dirty_addr = cpu_reg_sp(s, rn); 2448 clean_addr = gen_mte_check1(s, dirty_addr, true, rn != 31, size); 2449 2450 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2451 2452 tmp = tcg_temp_new_i64(); 2453 if (is_pair) { 2454 if (size == 2) { 2455 if (s->be_data == MO_LE) { 2456 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2457 } else { 2458 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2459 } 2460 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2461 cpu_exclusive_val, tmp, 2462 get_mem_index(s), 2463 MO_64 | MO_ALIGN | s->be_data); 2464 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2465 } else { 2466 TCGv_i128 t16 = tcg_temp_new_i128(); 2467 TCGv_i128 c16 = tcg_temp_new_i128(); 2468 TCGv_i64 a, b; 2469 2470 if (s->be_data == MO_LE) { 2471 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2472 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2473 cpu_exclusive_high); 2474 } else { 2475 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2476 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2477 cpu_exclusive_val); 2478 } 2479 2480 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2481 get_mem_index(s), 2482 MO_128 | MO_ALIGN | s->be_data); 2483 2484 a = tcg_temp_new_i64(); 2485 b = tcg_temp_new_i64(); 2486 if (s->be_data == MO_LE) { 2487 tcg_gen_extr_i128_i64(a, b, t16); 2488 } else { 2489 tcg_gen_extr_i128_i64(b, a, t16); 2490 } 2491 2492 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2493 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2494 tcg_gen_or_i64(tmp, a, b); 2495 2496 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2497 } 2498 } else { 2499 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2500 cpu_reg(s, rt), get_mem_index(s), 2501 size | MO_ALIGN | s->be_data); 2502 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2503 } 2504 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2505 tcg_gen_br(done_label); 2506 2507 gen_set_label(fail_label); 2508 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2509 gen_set_label(done_label); 2510 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2511 } 2512 2513 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2514 int rn, int size) 2515 { 2516 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2517 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2518 int memidx = get_mem_index(s); 2519 TCGv_i64 clean_addr; 2520 2521 if (rn == 31) { 2522 gen_check_sp_alignment(s); 2523 } 2524 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2525 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2526 size | MO_ALIGN | s->be_data); 2527 } 2528 2529 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2530 int rn, int size) 2531 { 2532 TCGv_i64 s1 = cpu_reg(s, rs); 2533 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2534 TCGv_i64 t1 = cpu_reg(s, rt); 2535 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2536 TCGv_i64 clean_addr; 2537 int memidx = get_mem_index(s); 2538 2539 if (rn == 31) { 2540 gen_check_sp_alignment(s); 2541 } 2542 2543 /* This is a single atomic access, despite the "pair". */ 2544 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2545 2546 if (size == 2) { 2547 TCGv_i64 cmp = tcg_temp_new_i64(); 2548 TCGv_i64 val = tcg_temp_new_i64(); 2549 2550 if (s->be_data == MO_LE) { 2551 tcg_gen_concat32_i64(val, t1, t2); 2552 tcg_gen_concat32_i64(cmp, s1, s2); 2553 } else { 2554 tcg_gen_concat32_i64(val, t2, t1); 2555 tcg_gen_concat32_i64(cmp, s2, s1); 2556 } 2557 2558 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2559 MO_64 | MO_ALIGN | s->be_data); 2560 2561 if (s->be_data == MO_LE) { 2562 tcg_gen_extr32_i64(s1, s2, cmp); 2563 } else { 2564 tcg_gen_extr32_i64(s2, s1, cmp); 2565 } 2566 } else { 2567 TCGv_i128 cmp = tcg_temp_new_i128(); 2568 TCGv_i128 val = tcg_temp_new_i128(); 2569 2570 if (s->be_data == MO_LE) { 2571 tcg_gen_concat_i64_i128(val, t1, t2); 2572 tcg_gen_concat_i64_i128(cmp, s1, s2); 2573 } else { 2574 tcg_gen_concat_i64_i128(val, t2, t1); 2575 tcg_gen_concat_i64_i128(cmp, s2, s1); 2576 } 2577 2578 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2579 MO_128 | MO_ALIGN | s->be_data); 2580 2581 if (s->be_data == MO_LE) { 2582 tcg_gen_extr_i128_i64(s1, s2, cmp); 2583 } else { 2584 tcg_gen_extr_i128_i64(s2, s1, cmp); 2585 } 2586 } 2587 } 2588 2589 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2590 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2591 */ 2592 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2593 { 2594 int opc0 = extract32(opc, 0, 1); 2595 int regsize; 2596 2597 if (is_signed) { 2598 regsize = opc0 ? 32 : 64; 2599 } else { 2600 regsize = size == 3 ? 64 : 32; 2601 } 2602 return regsize == 64; 2603 } 2604 2605 /* Load/store exclusive 2606 * 2607 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2608 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2609 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2610 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2611 * 2612 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2613 * L: 0 -> store, 1 -> load 2614 * o2: 0 -> exclusive, 1 -> not 2615 * o1: 0 -> single register, 1 -> register pair 2616 * o0: 1 -> load-acquire/store-release, 0 -> not 2617 */ 2618 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2619 { 2620 int rt = extract32(insn, 0, 5); 2621 int rn = extract32(insn, 5, 5); 2622 int rt2 = extract32(insn, 10, 5); 2623 int rs = extract32(insn, 16, 5); 2624 int is_lasr = extract32(insn, 15, 1); 2625 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2626 int size = extract32(insn, 30, 2); 2627 TCGv_i64 clean_addr; 2628 2629 switch (o2_L_o1_o0) { 2630 case 0x0: /* STXR */ 2631 case 0x1: /* STLXR */ 2632 if (rn == 31) { 2633 gen_check_sp_alignment(s); 2634 } 2635 if (is_lasr) { 2636 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2637 } 2638 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2639 return; 2640 2641 case 0x4: /* LDXR */ 2642 case 0x5: /* LDAXR */ 2643 if (rn == 31) { 2644 gen_check_sp_alignment(s); 2645 } 2646 gen_load_exclusive(s, rt, rt2, rn, size, false); 2647 if (is_lasr) { 2648 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2649 } 2650 return; 2651 2652 case 0x8: /* STLLR */ 2653 if (!dc_isar_feature(aa64_lor, s)) { 2654 break; 2655 } 2656 /* StoreLORelease is the same as Store-Release for QEMU. */ 2657 /* fall through */ 2658 case 0x9: /* STLR */ 2659 /* Generate ISS for non-exclusive accesses including LASR. */ 2660 if (rn == 31) { 2661 gen_check_sp_alignment(s); 2662 } 2663 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2664 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2665 true, rn != 31, size); 2666 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2667 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2668 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2669 return; 2670 2671 case 0xc: /* LDLAR */ 2672 if (!dc_isar_feature(aa64_lor, s)) { 2673 break; 2674 } 2675 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2676 /* fall through */ 2677 case 0xd: /* LDAR */ 2678 /* Generate ISS for non-exclusive accesses including LASR. */ 2679 if (rn == 31) { 2680 gen_check_sp_alignment(s); 2681 } 2682 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2683 false, rn != 31, size); 2684 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2685 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2686 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2687 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2688 return; 2689 2690 case 0x2: case 0x3: /* CASP / STXP */ 2691 if (size & 2) { /* STXP / STLXP */ 2692 if (rn == 31) { 2693 gen_check_sp_alignment(s); 2694 } 2695 if (is_lasr) { 2696 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2697 } 2698 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2699 return; 2700 } 2701 if (rt2 == 31 2702 && ((rt | rs) & 1) == 0 2703 && dc_isar_feature(aa64_atomics, s)) { 2704 /* CASP / CASPL */ 2705 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2706 return; 2707 } 2708 break; 2709 2710 case 0x6: case 0x7: /* CASPA / LDXP */ 2711 if (size & 2) { /* LDXP / LDAXP */ 2712 if (rn == 31) { 2713 gen_check_sp_alignment(s); 2714 } 2715 gen_load_exclusive(s, rt, rt2, rn, size, true); 2716 if (is_lasr) { 2717 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2718 } 2719 return; 2720 } 2721 if (rt2 == 31 2722 && ((rt | rs) & 1) == 0 2723 && dc_isar_feature(aa64_atomics, s)) { 2724 /* CASPA / CASPAL */ 2725 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2726 return; 2727 } 2728 break; 2729 2730 case 0xa: /* CAS */ 2731 case 0xb: /* CASL */ 2732 case 0xe: /* CASA */ 2733 case 0xf: /* CASAL */ 2734 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2735 gen_compare_and_swap(s, rs, rt, rn, size); 2736 return; 2737 } 2738 break; 2739 } 2740 unallocated_encoding(s); 2741 } 2742 2743 /* 2744 * Load register (literal) 2745 * 2746 * 31 30 29 27 26 25 24 23 5 4 0 2747 * +-----+-------+---+-----+-------------------+-------+ 2748 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2749 * +-----+-------+---+-----+-------------------+-------+ 2750 * 2751 * V: 1 -> vector (simd/fp) 2752 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2753 * 10-> 32 bit signed, 11 -> prefetch 2754 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2755 */ 2756 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2757 { 2758 int rt = extract32(insn, 0, 5); 2759 int64_t imm = sextract32(insn, 5, 19) << 2; 2760 bool is_vector = extract32(insn, 26, 1); 2761 int opc = extract32(insn, 30, 2); 2762 bool is_signed = false; 2763 int size = 2; 2764 TCGv_i64 tcg_rt, clean_addr; 2765 2766 if (is_vector) { 2767 if (opc == 3) { 2768 unallocated_encoding(s); 2769 return; 2770 } 2771 size = 2 + opc; 2772 if (!fp_access_check(s)) { 2773 return; 2774 } 2775 } else { 2776 if (opc == 3) { 2777 /* PRFM (literal) : prefetch */ 2778 return; 2779 } 2780 size = 2 + extract32(opc, 0, 1); 2781 is_signed = extract32(opc, 1, 1); 2782 } 2783 2784 tcg_rt = cpu_reg(s, rt); 2785 2786 clean_addr = tcg_temp_new_i64(); 2787 gen_pc_plus_diff(s, clean_addr, imm); 2788 if (is_vector) { 2789 do_fp_ld(s, rt, clean_addr, size); 2790 } else { 2791 /* Only unsigned 32bit loads target 32bit registers. */ 2792 bool iss_sf = opc != 0; 2793 2794 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2795 false, true, rt, iss_sf, false); 2796 } 2797 } 2798 2799 /* 2800 * LDNP (Load Pair - non-temporal hint) 2801 * LDP (Load Pair - non vector) 2802 * LDPSW (Load Pair Signed Word - non vector) 2803 * STNP (Store Pair - non-temporal hint) 2804 * STP (Store Pair - non vector) 2805 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2806 * LDP (Load Pair of SIMD&FP) 2807 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2808 * STP (Store Pair of SIMD&FP) 2809 * 2810 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2811 * +-----+-------+---+---+-------+---+-----------------------------+ 2812 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2813 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2814 * 2815 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2816 * LDPSW/STGP 01 2817 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2818 * V: 0 -> GPR, 1 -> Vector 2819 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2820 * 10 -> signed offset, 11 -> pre-index 2821 * L: 0 -> Store 1 -> Load 2822 * 2823 * Rt, Rt2 = GPR or SIMD registers to be stored 2824 * Rn = general purpose register containing address 2825 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2826 */ 2827 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2828 { 2829 int rt = extract32(insn, 0, 5); 2830 int rn = extract32(insn, 5, 5); 2831 int rt2 = extract32(insn, 10, 5); 2832 uint64_t offset = sextract64(insn, 15, 7); 2833 int index = extract32(insn, 23, 2); 2834 bool is_vector = extract32(insn, 26, 1); 2835 bool is_load = extract32(insn, 22, 1); 2836 int opc = extract32(insn, 30, 2); 2837 2838 bool is_signed = false; 2839 bool postindex = false; 2840 bool wback = false; 2841 bool set_tag = false; 2842 2843 TCGv_i64 clean_addr, dirty_addr; 2844 2845 int size; 2846 2847 if (opc == 3) { 2848 unallocated_encoding(s); 2849 return; 2850 } 2851 2852 if (is_vector) { 2853 size = 2 + opc; 2854 } else if (opc == 1 && !is_load) { 2855 /* STGP */ 2856 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2857 unallocated_encoding(s); 2858 return; 2859 } 2860 size = 3; 2861 set_tag = true; 2862 } else { 2863 size = 2 + extract32(opc, 1, 1); 2864 is_signed = extract32(opc, 0, 1); 2865 if (!is_load && is_signed) { 2866 unallocated_encoding(s); 2867 return; 2868 } 2869 } 2870 2871 switch (index) { 2872 case 1: /* post-index */ 2873 postindex = true; 2874 wback = true; 2875 break; 2876 case 0: 2877 /* signed offset with "non-temporal" hint. Since we don't emulate 2878 * caches we don't care about hints to the cache system about 2879 * data access patterns, and handle this identically to plain 2880 * signed offset. 2881 */ 2882 if (is_signed) { 2883 /* There is no non-temporal-hint version of LDPSW */ 2884 unallocated_encoding(s); 2885 return; 2886 } 2887 postindex = false; 2888 break; 2889 case 2: /* signed offset, rn not updated */ 2890 postindex = false; 2891 break; 2892 case 3: /* pre-index */ 2893 postindex = false; 2894 wback = true; 2895 break; 2896 } 2897 2898 if (is_vector && !fp_access_check(s)) { 2899 return; 2900 } 2901 2902 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2903 2904 if (rn == 31) { 2905 gen_check_sp_alignment(s); 2906 } 2907 2908 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2909 if (!postindex) { 2910 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2911 } 2912 2913 if (set_tag) { 2914 if (!s->ata) { 2915 /* 2916 * TODO: We could rely on the stores below, at least for 2917 * system mode, if we arrange to add MO_ALIGN_16. 2918 */ 2919 gen_helper_stg_stub(cpu_env, dirty_addr); 2920 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2921 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2922 } else { 2923 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2924 } 2925 } 2926 2927 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2928 (wback || rn != 31) && !set_tag, 2 << size); 2929 2930 if (is_vector) { 2931 if (is_load) { 2932 do_fp_ld(s, rt, clean_addr, size); 2933 } else { 2934 do_fp_st(s, rt, clean_addr, size); 2935 } 2936 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2937 if (is_load) { 2938 do_fp_ld(s, rt2, clean_addr, size); 2939 } else { 2940 do_fp_st(s, rt2, clean_addr, size); 2941 } 2942 } else { 2943 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2944 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 2945 2946 if (is_load) { 2947 TCGv_i64 tmp = tcg_temp_new_i64(); 2948 2949 /* Do not modify tcg_rt before recognizing any exception 2950 * from the second load. 2951 */ 2952 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 2953 false, false, 0, false, false); 2954 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2955 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 2956 false, false, 0, false, false); 2957 2958 tcg_gen_mov_i64(tcg_rt, tmp); 2959 } else { 2960 do_gpr_st(s, tcg_rt, clean_addr, size, 2961 false, 0, false, false); 2962 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2963 do_gpr_st(s, tcg_rt2, clean_addr, size, 2964 false, 0, false, false); 2965 } 2966 } 2967 2968 if (wback) { 2969 if (postindex) { 2970 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2971 } 2972 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 2973 } 2974 } 2975 2976 /* 2977 * Load/store (immediate post-indexed) 2978 * Load/store (immediate pre-indexed) 2979 * Load/store (unscaled immediate) 2980 * 2981 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 2982 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2983 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 2984 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 2985 * 2986 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 2987 10 -> unprivileged 2988 * V = 0 -> non-vector 2989 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 2990 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 2991 */ 2992 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 2993 int opc, 2994 int size, 2995 int rt, 2996 bool is_vector) 2997 { 2998 int rn = extract32(insn, 5, 5); 2999 int imm9 = sextract32(insn, 12, 9); 3000 int idx = extract32(insn, 10, 2); 3001 bool is_signed = false; 3002 bool is_store = false; 3003 bool is_extended = false; 3004 bool is_unpriv = (idx == 2); 3005 bool iss_valid; 3006 bool post_index; 3007 bool writeback; 3008 int memidx; 3009 3010 TCGv_i64 clean_addr, dirty_addr; 3011 3012 if (is_vector) { 3013 size |= (opc & 2) << 1; 3014 if (size > 4 || is_unpriv) { 3015 unallocated_encoding(s); 3016 return; 3017 } 3018 is_store = ((opc & 1) == 0); 3019 if (!fp_access_check(s)) { 3020 return; 3021 } 3022 } else { 3023 if (size == 3 && opc == 2) { 3024 /* PRFM - prefetch */ 3025 if (idx != 0) { 3026 unallocated_encoding(s); 3027 return; 3028 } 3029 return; 3030 } 3031 if (opc == 3 && size > 1) { 3032 unallocated_encoding(s); 3033 return; 3034 } 3035 is_store = (opc == 0); 3036 is_signed = extract32(opc, 1, 1); 3037 is_extended = (size < 3) && extract32(opc, 0, 1); 3038 } 3039 3040 switch (idx) { 3041 case 0: 3042 case 2: 3043 post_index = false; 3044 writeback = false; 3045 break; 3046 case 1: 3047 post_index = true; 3048 writeback = true; 3049 break; 3050 case 3: 3051 post_index = false; 3052 writeback = true; 3053 break; 3054 default: 3055 g_assert_not_reached(); 3056 } 3057 3058 iss_valid = !is_vector && !writeback; 3059 3060 if (rn == 31) { 3061 gen_check_sp_alignment(s); 3062 } 3063 3064 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3065 if (!post_index) { 3066 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3067 } 3068 3069 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3070 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3071 writeback || rn != 31, 3072 size, is_unpriv, memidx); 3073 3074 if (is_vector) { 3075 if (is_store) { 3076 do_fp_st(s, rt, clean_addr, size); 3077 } else { 3078 do_fp_ld(s, rt, clean_addr, size); 3079 } 3080 } else { 3081 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3082 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3083 3084 if (is_store) { 3085 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3086 iss_valid, rt, iss_sf, false); 3087 } else { 3088 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3089 is_extended, memidx, 3090 iss_valid, rt, iss_sf, false); 3091 } 3092 } 3093 3094 if (writeback) { 3095 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3096 if (post_index) { 3097 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3098 } 3099 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3100 } 3101 } 3102 3103 /* 3104 * Load/store (register offset) 3105 * 3106 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3107 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3108 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3109 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3110 * 3111 * For non-vector: 3112 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3113 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3114 * For vector: 3115 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3116 * opc<0>: 0 -> store, 1 -> load 3117 * V: 1 -> vector/simd 3118 * opt: extend encoding (see DecodeRegExtend) 3119 * S: if S=1 then scale (essentially index by sizeof(size)) 3120 * Rt: register to transfer into/out of 3121 * Rn: address register or SP for base 3122 * Rm: offset register or ZR for offset 3123 */ 3124 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3125 int opc, 3126 int size, 3127 int rt, 3128 bool is_vector) 3129 { 3130 int rn = extract32(insn, 5, 5); 3131 int shift = extract32(insn, 12, 1); 3132 int rm = extract32(insn, 16, 5); 3133 int opt = extract32(insn, 13, 3); 3134 bool is_signed = false; 3135 bool is_store = false; 3136 bool is_extended = false; 3137 3138 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3139 3140 if (extract32(opt, 1, 1) == 0) { 3141 unallocated_encoding(s); 3142 return; 3143 } 3144 3145 if (is_vector) { 3146 size |= (opc & 2) << 1; 3147 if (size > 4) { 3148 unallocated_encoding(s); 3149 return; 3150 } 3151 is_store = !extract32(opc, 0, 1); 3152 if (!fp_access_check(s)) { 3153 return; 3154 } 3155 } else { 3156 if (size == 3 && opc == 2) { 3157 /* PRFM - prefetch */ 3158 return; 3159 } 3160 if (opc == 3 && size > 1) { 3161 unallocated_encoding(s); 3162 return; 3163 } 3164 is_store = (opc == 0); 3165 is_signed = extract32(opc, 1, 1); 3166 is_extended = (size < 3) && extract32(opc, 0, 1); 3167 } 3168 3169 if (rn == 31) { 3170 gen_check_sp_alignment(s); 3171 } 3172 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3173 3174 tcg_rm = read_cpu_reg(s, rm, 1); 3175 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3176 3177 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3178 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3179 3180 if (is_vector) { 3181 if (is_store) { 3182 do_fp_st(s, rt, clean_addr, size); 3183 } else { 3184 do_fp_ld(s, rt, clean_addr, size); 3185 } 3186 } else { 3187 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3188 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3189 if (is_store) { 3190 do_gpr_st(s, tcg_rt, clean_addr, size, 3191 true, rt, iss_sf, false); 3192 } else { 3193 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3194 is_extended, true, rt, iss_sf, false); 3195 } 3196 } 3197 } 3198 3199 /* 3200 * Load/store (unsigned immediate) 3201 * 3202 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3203 * +----+-------+---+-----+-----+------------+-------+------+ 3204 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3205 * +----+-------+---+-----+-----+------------+-------+------+ 3206 * 3207 * For non-vector: 3208 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3209 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3210 * For vector: 3211 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3212 * opc<0>: 0 -> store, 1 -> load 3213 * Rn: base address register (inc SP) 3214 * Rt: target register 3215 */ 3216 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3217 int opc, 3218 int size, 3219 int rt, 3220 bool is_vector) 3221 { 3222 int rn = extract32(insn, 5, 5); 3223 unsigned int imm12 = extract32(insn, 10, 12); 3224 unsigned int offset; 3225 3226 TCGv_i64 clean_addr, dirty_addr; 3227 3228 bool is_store; 3229 bool is_signed = false; 3230 bool is_extended = false; 3231 3232 if (is_vector) { 3233 size |= (opc & 2) << 1; 3234 if (size > 4) { 3235 unallocated_encoding(s); 3236 return; 3237 } 3238 is_store = !extract32(opc, 0, 1); 3239 if (!fp_access_check(s)) { 3240 return; 3241 } 3242 } else { 3243 if (size == 3 && opc == 2) { 3244 /* PRFM - prefetch */ 3245 return; 3246 } 3247 if (opc == 3 && size > 1) { 3248 unallocated_encoding(s); 3249 return; 3250 } 3251 is_store = (opc == 0); 3252 is_signed = extract32(opc, 1, 1); 3253 is_extended = (size < 3) && extract32(opc, 0, 1); 3254 } 3255 3256 if (rn == 31) { 3257 gen_check_sp_alignment(s); 3258 } 3259 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3260 offset = imm12 << size; 3261 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3262 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3263 3264 if (is_vector) { 3265 if (is_store) { 3266 do_fp_st(s, rt, clean_addr, size); 3267 } else { 3268 do_fp_ld(s, rt, clean_addr, size); 3269 } 3270 } else { 3271 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3272 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3273 if (is_store) { 3274 do_gpr_st(s, tcg_rt, clean_addr, size, 3275 true, rt, iss_sf, false); 3276 } else { 3277 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3278 is_extended, true, rt, iss_sf, false); 3279 } 3280 } 3281 } 3282 3283 /* Atomic memory operations 3284 * 3285 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3286 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3287 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3288 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3289 * 3290 * Rt: the result register 3291 * Rn: base address or SP 3292 * Rs: the source register for the operation 3293 * V: vector flag (always 0 as of v8.3) 3294 * A: acquire flag 3295 * R: release flag 3296 */ 3297 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3298 int size, int rt, bool is_vector) 3299 { 3300 int rs = extract32(insn, 16, 5); 3301 int rn = extract32(insn, 5, 5); 3302 int o3_opc = extract32(insn, 12, 4); 3303 bool r = extract32(insn, 22, 1); 3304 bool a = extract32(insn, 23, 1); 3305 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3306 AtomicThreeOpFn *fn = NULL; 3307 MemOp mop = s->be_data | size | MO_ALIGN; 3308 3309 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3310 unallocated_encoding(s); 3311 return; 3312 } 3313 switch (o3_opc) { 3314 case 000: /* LDADD */ 3315 fn = tcg_gen_atomic_fetch_add_i64; 3316 break; 3317 case 001: /* LDCLR */ 3318 fn = tcg_gen_atomic_fetch_and_i64; 3319 break; 3320 case 002: /* LDEOR */ 3321 fn = tcg_gen_atomic_fetch_xor_i64; 3322 break; 3323 case 003: /* LDSET */ 3324 fn = tcg_gen_atomic_fetch_or_i64; 3325 break; 3326 case 004: /* LDSMAX */ 3327 fn = tcg_gen_atomic_fetch_smax_i64; 3328 mop |= MO_SIGN; 3329 break; 3330 case 005: /* LDSMIN */ 3331 fn = tcg_gen_atomic_fetch_smin_i64; 3332 mop |= MO_SIGN; 3333 break; 3334 case 006: /* LDUMAX */ 3335 fn = tcg_gen_atomic_fetch_umax_i64; 3336 break; 3337 case 007: /* LDUMIN */ 3338 fn = tcg_gen_atomic_fetch_umin_i64; 3339 break; 3340 case 010: /* SWP */ 3341 fn = tcg_gen_atomic_xchg_i64; 3342 break; 3343 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3344 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3345 rs != 31 || a != 1 || r != 0) { 3346 unallocated_encoding(s); 3347 return; 3348 } 3349 break; 3350 default: 3351 unallocated_encoding(s); 3352 return; 3353 } 3354 3355 if (rn == 31) { 3356 gen_check_sp_alignment(s); 3357 } 3358 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3359 3360 if (o3_opc == 014) { 3361 /* 3362 * LDAPR* are a special case because they are a simple load, not a 3363 * fetch-and-do-something op. 3364 * The architectural consistency requirements here are weaker than 3365 * full load-acquire (we only need "load-acquire processor consistent"), 3366 * but we choose to implement them as full LDAQ. 3367 */ 3368 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3369 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3370 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3371 return; 3372 } 3373 3374 tcg_rs = read_cpu_reg(s, rs, true); 3375 tcg_rt = cpu_reg(s, rt); 3376 3377 if (o3_opc == 1) { /* LDCLR */ 3378 tcg_gen_not_i64(tcg_rs, tcg_rs); 3379 } 3380 3381 /* The tcg atomic primitives are all full barriers. Therefore we 3382 * can ignore the Acquire and Release bits of this instruction. 3383 */ 3384 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3385 3386 if ((mop & MO_SIGN) && size != MO_64) { 3387 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3388 } 3389 } 3390 3391 /* 3392 * PAC memory operations 3393 * 3394 * 31 30 27 26 24 22 21 12 11 10 5 0 3395 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3396 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3397 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3398 * 3399 * Rt: the result register 3400 * Rn: base address or SP 3401 * V: vector flag (always 0 as of v8.3) 3402 * M: clear for key DA, set for key DB 3403 * W: pre-indexing flag 3404 * S: sign for imm9. 3405 */ 3406 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3407 int size, int rt, bool is_vector) 3408 { 3409 int rn = extract32(insn, 5, 5); 3410 bool is_wback = extract32(insn, 11, 1); 3411 bool use_key_a = !extract32(insn, 23, 1); 3412 int offset; 3413 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3414 3415 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3416 unallocated_encoding(s); 3417 return; 3418 } 3419 3420 if (rn == 31) { 3421 gen_check_sp_alignment(s); 3422 } 3423 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3424 3425 if (s->pauth_active) { 3426 if (use_key_a) { 3427 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3428 tcg_constant_i64(0)); 3429 } else { 3430 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3431 tcg_constant_i64(0)); 3432 } 3433 } 3434 3435 /* Form the 10-bit signed, scaled offset. */ 3436 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3437 offset = sextract32(offset << size, 0, 10 + size); 3438 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3439 3440 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3441 clean_addr = gen_mte_check1(s, dirty_addr, false, 3442 is_wback || rn != 31, size); 3443 3444 tcg_rt = cpu_reg(s, rt); 3445 do_gpr_ld(s, tcg_rt, clean_addr, size, 3446 /* extend */ false, /* iss_valid */ !is_wback, 3447 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3448 3449 if (is_wback) { 3450 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3451 } 3452 } 3453 3454 /* 3455 * LDAPR/STLR (unscaled immediate) 3456 * 3457 * 31 30 24 22 21 12 10 5 0 3458 * +------+-------------+-----+---+--------+-----+----+-----+ 3459 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3460 * +------+-------------+-----+---+--------+-----+----+-----+ 3461 * 3462 * Rt: source or destination register 3463 * Rn: base register 3464 * imm9: unscaled immediate offset 3465 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3466 * size: size of load/store 3467 */ 3468 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3469 { 3470 int rt = extract32(insn, 0, 5); 3471 int rn = extract32(insn, 5, 5); 3472 int offset = sextract32(insn, 12, 9); 3473 int opc = extract32(insn, 22, 2); 3474 int size = extract32(insn, 30, 2); 3475 TCGv_i64 clean_addr, dirty_addr; 3476 bool is_store = false; 3477 bool extend = false; 3478 bool iss_sf; 3479 MemOp mop; 3480 3481 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3482 unallocated_encoding(s); 3483 return; 3484 } 3485 3486 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3487 mop = size | MO_ALIGN; 3488 3489 switch (opc) { 3490 case 0: /* STLURB */ 3491 is_store = true; 3492 break; 3493 case 1: /* LDAPUR* */ 3494 break; 3495 case 2: /* LDAPURS* 64-bit variant */ 3496 if (size == 3) { 3497 unallocated_encoding(s); 3498 return; 3499 } 3500 mop |= MO_SIGN; 3501 break; 3502 case 3: /* LDAPURS* 32-bit variant */ 3503 if (size > 1) { 3504 unallocated_encoding(s); 3505 return; 3506 } 3507 mop |= MO_SIGN; 3508 extend = true; /* zero-extend 32->64 after signed load */ 3509 break; 3510 default: 3511 g_assert_not_reached(); 3512 } 3513 3514 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3515 3516 if (rn == 31) { 3517 gen_check_sp_alignment(s); 3518 } 3519 3520 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3521 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3522 clean_addr = clean_data_tbi(s, dirty_addr); 3523 3524 if (is_store) { 3525 /* Store-Release semantics */ 3526 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3527 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3528 } else { 3529 /* 3530 * Load-AcquirePC semantics; we implement as the slightly more 3531 * restrictive Load-Acquire. 3532 */ 3533 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3534 extend, true, rt, iss_sf, true); 3535 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3536 } 3537 } 3538 3539 /* Load/store register (all forms) */ 3540 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3541 { 3542 int rt = extract32(insn, 0, 5); 3543 int opc = extract32(insn, 22, 2); 3544 bool is_vector = extract32(insn, 26, 1); 3545 int size = extract32(insn, 30, 2); 3546 3547 switch (extract32(insn, 24, 2)) { 3548 case 0: 3549 if (extract32(insn, 21, 1) == 0) { 3550 /* Load/store register (unscaled immediate) 3551 * Load/store immediate pre/post-indexed 3552 * Load/store register unprivileged 3553 */ 3554 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3555 return; 3556 } 3557 switch (extract32(insn, 10, 2)) { 3558 case 0: 3559 disas_ldst_atomic(s, insn, size, rt, is_vector); 3560 return; 3561 case 2: 3562 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3563 return; 3564 default: 3565 disas_ldst_pac(s, insn, size, rt, is_vector); 3566 return; 3567 } 3568 break; 3569 case 1: 3570 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3571 return; 3572 } 3573 unallocated_encoding(s); 3574 } 3575 3576 /* AdvSIMD load/store multiple structures 3577 * 3578 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3579 * +---+---+---------------+---+-------------+--------+------+------+------+ 3580 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3581 * +---+---+---------------+---+-------------+--------+------+------+------+ 3582 * 3583 * AdvSIMD load/store multiple structures (post-indexed) 3584 * 3585 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3586 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3587 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3588 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3589 * 3590 * Rt: first (or only) SIMD&FP register to be transferred 3591 * Rn: base address or SP 3592 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3593 */ 3594 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3595 { 3596 int rt = extract32(insn, 0, 5); 3597 int rn = extract32(insn, 5, 5); 3598 int rm = extract32(insn, 16, 5); 3599 int size = extract32(insn, 10, 2); 3600 int opcode = extract32(insn, 12, 4); 3601 bool is_store = !extract32(insn, 22, 1); 3602 bool is_postidx = extract32(insn, 23, 1); 3603 bool is_q = extract32(insn, 30, 1); 3604 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3605 MemOp endian, align, mop; 3606 3607 int total; /* total bytes */ 3608 int elements; /* elements per vector */ 3609 int rpt; /* num iterations */ 3610 int selem; /* structure elements */ 3611 int r; 3612 3613 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3614 unallocated_encoding(s); 3615 return; 3616 } 3617 3618 if (!is_postidx && rm != 0) { 3619 unallocated_encoding(s); 3620 return; 3621 } 3622 3623 /* From the shared decode logic */ 3624 switch (opcode) { 3625 case 0x0: 3626 rpt = 1; 3627 selem = 4; 3628 break; 3629 case 0x2: 3630 rpt = 4; 3631 selem = 1; 3632 break; 3633 case 0x4: 3634 rpt = 1; 3635 selem = 3; 3636 break; 3637 case 0x6: 3638 rpt = 3; 3639 selem = 1; 3640 break; 3641 case 0x7: 3642 rpt = 1; 3643 selem = 1; 3644 break; 3645 case 0x8: 3646 rpt = 1; 3647 selem = 2; 3648 break; 3649 case 0xa: 3650 rpt = 2; 3651 selem = 1; 3652 break; 3653 default: 3654 unallocated_encoding(s); 3655 return; 3656 } 3657 3658 if (size == 3 && !is_q && selem != 1) { 3659 /* reserved */ 3660 unallocated_encoding(s); 3661 return; 3662 } 3663 3664 if (!fp_access_check(s)) { 3665 return; 3666 } 3667 3668 if (rn == 31) { 3669 gen_check_sp_alignment(s); 3670 } 3671 3672 /* For our purposes, bytes are always little-endian. */ 3673 endian = s->be_data; 3674 if (size == 0) { 3675 endian = MO_LE; 3676 } 3677 3678 total = rpt * selem * (is_q ? 16 : 8); 3679 tcg_rn = cpu_reg_sp(s, rn); 3680 3681 /* 3682 * Issue the MTE check vs the logical repeat count, before we 3683 * promote consecutive little-endian elements below. 3684 */ 3685 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3686 total); 3687 3688 /* 3689 * Consecutive little-endian elements from a single register 3690 * can be promoted to a larger little-endian operation. 3691 */ 3692 align = MO_ALIGN; 3693 if (selem == 1 && endian == MO_LE) { 3694 align = pow2_align(size); 3695 size = 3; 3696 } 3697 if (!s->align_mem) { 3698 align = 0; 3699 } 3700 mop = endian | size | align; 3701 3702 elements = (is_q ? 16 : 8) >> size; 3703 tcg_ebytes = tcg_constant_i64(1 << size); 3704 for (r = 0; r < rpt; r++) { 3705 int e; 3706 for (e = 0; e < elements; e++) { 3707 int xs; 3708 for (xs = 0; xs < selem; xs++) { 3709 int tt = (rt + r + xs) % 32; 3710 if (is_store) { 3711 do_vec_st(s, tt, e, clean_addr, mop); 3712 } else { 3713 do_vec_ld(s, tt, e, clean_addr, mop); 3714 } 3715 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3716 } 3717 } 3718 } 3719 3720 if (!is_store) { 3721 /* For non-quad operations, setting a slice of the low 3722 * 64 bits of the register clears the high 64 bits (in 3723 * the ARM ARM pseudocode this is implicit in the fact 3724 * that 'rval' is a 64 bit wide variable). 3725 * For quad operations, we might still need to zero the 3726 * high bits of SVE. 3727 */ 3728 for (r = 0; r < rpt * selem; r++) { 3729 int tt = (rt + r) % 32; 3730 clear_vec_high(s, is_q, tt); 3731 } 3732 } 3733 3734 if (is_postidx) { 3735 if (rm == 31) { 3736 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3737 } else { 3738 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3739 } 3740 } 3741 } 3742 3743 /* AdvSIMD load/store single structure 3744 * 3745 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3746 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3747 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3748 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3749 * 3750 * AdvSIMD load/store single structure (post-indexed) 3751 * 3752 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3753 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3754 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3755 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3756 * 3757 * Rt: first (or only) SIMD&FP register to be transferred 3758 * Rn: base address or SP 3759 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3760 * index = encoded in Q:S:size dependent on size 3761 * 3762 * lane_size = encoded in R, opc 3763 * transfer width = encoded in opc, S, size 3764 */ 3765 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3766 { 3767 int rt = extract32(insn, 0, 5); 3768 int rn = extract32(insn, 5, 5); 3769 int rm = extract32(insn, 16, 5); 3770 int size = extract32(insn, 10, 2); 3771 int S = extract32(insn, 12, 1); 3772 int opc = extract32(insn, 13, 3); 3773 int R = extract32(insn, 21, 1); 3774 int is_load = extract32(insn, 22, 1); 3775 int is_postidx = extract32(insn, 23, 1); 3776 int is_q = extract32(insn, 30, 1); 3777 3778 int scale = extract32(opc, 1, 2); 3779 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3780 bool replicate = false; 3781 int index = is_q << 3 | S << 2 | size; 3782 int xs, total; 3783 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3784 MemOp mop; 3785 3786 if (extract32(insn, 31, 1)) { 3787 unallocated_encoding(s); 3788 return; 3789 } 3790 if (!is_postidx && rm != 0) { 3791 unallocated_encoding(s); 3792 return; 3793 } 3794 3795 switch (scale) { 3796 case 3: 3797 if (!is_load || S) { 3798 unallocated_encoding(s); 3799 return; 3800 } 3801 scale = size; 3802 replicate = true; 3803 break; 3804 case 0: 3805 break; 3806 case 1: 3807 if (extract32(size, 0, 1)) { 3808 unallocated_encoding(s); 3809 return; 3810 } 3811 index >>= 1; 3812 break; 3813 case 2: 3814 if (extract32(size, 1, 1)) { 3815 unallocated_encoding(s); 3816 return; 3817 } 3818 if (!extract32(size, 0, 1)) { 3819 index >>= 2; 3820 } else { 3821 if (S) { 3822 unallocated_encoding(s); 3823 return; 3824 } 3825 index >>= 3; 3826 scale = 3; 3827 } 3828 break; 3829 default: 3830 g_assert_not_reached(); 3831 } 3832 3833 if (!fp_access_check(s)) { 3834 return; 3835 } 3836 3837 if (rn == 31) { 3838 gen_check_sp_alignment(s); 3839 } 3840 3841 total = selem << scale; 3842 tcg_rn = cpu_reg_sp(s, rn); 3843 3844 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3845 total); 3846 mop = finalize_memop(s, scale); 3847 3848 tcg_ebytes = tcg_constant_i64(1 << scale); 3849 for (xs = 0; xs < selem; xs++) { 3850 if (replicate) { 3851 /* Load and replicate to all elements */ 3852 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3853 3854 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3855 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3856 (is_q + 1) * 8, vec_full_reg_size(s), 3857 tcg_tmp); 3858 } else { 3859 /* Load/store one element per register */ 3860 if (is_load) { 3861 do_vec_ld(s, rt, index, clean_addr, mop); 3862 } else { 3863 do_vec_st(s, rt, index, clean_addr, mop); 3864 } 3865 } 3866 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3867 rt = (rt + 1) % 32; 3868 } 3869 3870 if (is_postidx) { 3871 if (rm == 31) { 3872 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3873 } else { 3874 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3875 } 3876 } 3877 } 3878 3879 /* 3880 * Load/Store memory tags 3881 * 3882 * 31 30 29 24 22 21 12 10 5 0 3883 * +-----+-------------+-----+---+------+-----+------+------+ 3884 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3885 * +-----+-------------+-----+---+------+-----+------+------+ 3886 */ 3887 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3888 { 3889 int rt = extract32(insn, 0, 5); 3890 int rn = extract32(insn, 5, 5); 3891 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3892 int op2 = extract32(insn, 10, 2); 3893 int op1 = extract32(insn, 22, 2); 3894 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3895 int index = 0; 3896 TCGv_i64 addr, clean_addr, tcg_rt; 3897 3898 /* We checked insn bits [29:24,21] in the caller. */ 3899 if (extract32(insn, 30, 2) != 3) { 3900 goto do_unallocated; 3901 } 3902 3903 /* 3904 * @index is a tri-state variable which has 3 states: 3905 * < 0 : post-index, writeback 3906 * = 0 : signed offset 3907 * > 0 : pre-index, writeback 3908 */ 3909 switch (op1) { 3910 case 0: 3911 if (op2 != 0) { 3912 /* STG */ 3913 index = op2 - 2; 3914 } else { 3915 /* STZGM */ 3916 if (s->current_el == 0 || offset != 0) { 3917 goto do_unallocated; 3918 } 3919 is_mult = is_zero = true; 3920 } 3921 break; 3922 case 1: 3923 if (op2 != 0) { 3924 /* STZG */ 3925 is_zero = true; 3926 index = op2 - 2; 3927 } else { 3928 /* LDG */ 3929 is_load = true; 3930 } 3931 break; 3932 case 2: 3933 if (op2 != 0) { 3934 /* ST2G */ 3935 is_pair = true; 3936 index = op2 - 2; 3937 } else { 3938 /* STGM */ 3939 if (s->current_el == 0 || offset != 0) { 3940 goto do_unallocated; 3941 } 3942 is_mult = true; 3943 } 3944 break; 3945 case 3: 3946 if (op2 != 0) { 3947 /* STZ2G */ 3948 is_pair = is_zero = true; 3949 index = op2 - 2; 3950 } else { 3951 /* LDGM */ 3952 if (s->current_el == 0 || offset != 0) { 3953 goto do_unallocated; 3954 } 3955 is_mult = is_load = true; 3956 } 3957 break; 3958 3959 default: 3960 do_unallocated: 3961 unallocated_encoding(s); 3962 return; 3963 } 3964 3965 if (is_mult 3966 ? !dc_isar_feature(aa64_mte, s) 3967 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 3968 goto do_unallocated; 3969 } 3970 3971 if (rn == 31) { 3972 gen_check_sp_alignment(s); 3973 } 3974 3975 addr = read_cpu_reg_sp(s, rn, true); 3976 if (index >= 0) { 3977 /* pre-index or signed offset */ 3978 tcg_gen_addi_i64(addr, addr, offset); 3979 } 3980 3981 if (is_mult) { 3982 tcg_rt = cpu_reg(s, rt); 3983 3984 if (is_zero) { 3985 int size = 4 << s->dcz_blocksize; 3986 3987 if (s->ata) { 3988 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 3989 } 3990 /* 3991 * The non-tags portion of STZGM is mostly like DC_ZVA, 3992 * except the alignment happens before the access. 3993 */ 3994 clean_addr = clean_data_tbi(s, addr); 3995 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3996 gen_helper_dc_zva(cpu_env, clean_addr); 3997 } else if (s->ata) { 3998 if (is_load) { 3999 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4000 } else { 4001 gen_helper_stgm(cpu_env, addr, tcg_rt); 4002 } 4003 } else { 4004 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4005 int size = 4 << GMID_EL1_BS; 4006 4007 clean_addr = clean_data_tbi(s, addr); 4008 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4009 gen_probe_access(s, clean_addr, acc, size); 4010 4011 if (is_load) { 4012 /* The result tags are zeros. */ 4013 tcg_gen_movi_i64(tcg_rt, 0); 4014 } 4015 } 4016 return; 4017 } 4018 4019 if (is_load) { 4020 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4021 tcg_rt = cpu_reg(s, rt); 4022 if (s->ata) { 4023 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4024 } else { 4025 clean_addr = clean_data_tbi(s, addr); 4026 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4027 gen_address_with_allocation_tag0(tcg_rt, addr); 4028 } 4029 } else { 4030 tcg_rt = cpu_reg_sp(s, rt); 4031 if (!s->ata) { 4032 /* 4033 * For STG and ST2G, we need to check alignment and probe memory. 4034 * TODO: For STZG and STZ2G, we could rely on the stores below, 4035 * at least for system mode; user-only won't enforce alignment. 4036 */ 4037 if (is_pair) { 4038 gen_helper_st2g_stub(cpu_env, addr); 4039 } else { 4040 gen_helper_stg_stub(cpu_env, addr); 4041 } 4042 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4043 if (is_pair) { 4044 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4045 } else { 4046 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4047 } 4048 } else { 4049 if (is_pair) { 4050 gen_helper_st2g(cpu_env, addr, tcg_rt); 4051 } else { 4052 gen_helper_stg(cpu_env, addr, tcg_rt); 4053 } 4054 } 4055 } 4056 4057 if (is_zero) { 4058 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4059 TCGv_i64 zero64 = tcg_constant_i64(0); 4060 TCGv_i128 zero128 = tcg_temp_new_i128(); 4061 int mem_index = get_mem_index(s); 4062 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4063 4064 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4065 4066 /* This is 1 or 2 atomic 16-byte operations. */ 4067 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4068 if (is_pair) { 4069 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4070 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4071 } 4072 } 4073 4074 if (index != 0) { 4075 /* pre-index or post-index */ 4076 if (index < 0) { 4077 /* post-index */ 4078 tcg_gen_addi_i64(addr, addr, offset); 4079 } 4080 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4081 } 4082 } 4083 4084 /* Loads and stores */ 4085 static void disas_ldst(DisasContext *s, uint32_t insn) 4086 { 4087 switch (extract32(insn, 24, 6)) { 4088 case 0x08: /* Load/store exclusive */ 4089 disas_ldst_excl(s, insn); 4090 break; 4091 case 0x18: case 0x1c: /* Load register (literal) */ 4092 disas_ld_lit(s, insn); 4093 break; 4094 case 0x28: case 0x29: 4095 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4096 disas_ldst_pair(s, insn); 4097 break; 4098 case 0x38: case 0x39: 4099 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4100 disas_ldst_reg(s, insn); 4101 break; 4102 case 0x0c: /* AdvSIMD load/store multiple structures */ 4103 disas_ldst_multiple_struct(s, insn); 4104 break; 4105 case 0x0d: /* AdvSIMD load/store single structure */ 4106 disas_ldst_single_struct(s, insn); 4107 break; 4108 case 0x19: 4109 if (extract32(insn, 21, 1) != 0) { 4110 disas_ldst_tag(s, insn); 4111 } else if (extract32(insn, 10, 2) == 0) { 4112 disas_ldst_ldapr_stlr(s, insn); 4113 } else { 4114 unallocated_encoding(s); 4115 } 4116 break; 4117 default: 4118 unallocated_encoding(s); 4119 break; 4120 } 4121 } 4122 4123 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4124 4125 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4126 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4127 { 4128 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4129 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4130 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4131 4132 fn(tcg_rd, tcg_rn, tcg_imm); 4133 if (!a->sf) { 4134 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4135 } 4136 return true; 4137 } 4138 4139 /* 4140 * PC-rel. addressing 4141 */ 4142 4143 static bool trans_ADR(DisasContext *s, arg_ri *a) 4144 { 4145 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4146 return true; 4147 } 4148 4149 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4150 { 4151 int64_t offset = (int64_t)a->imm << 12; 4152 4153 /* The page offset is ok for CF_PCREL. */ 4154 offset -= s->pc_curr & 0xfff; 4155 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4156 return true; 4157 } 4158 4159 /* 4160 * Add/subtract (immediate) 4161 */ 4162 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4163 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4164 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4165 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4166 4167 /* 4168 * Add/subtract (immediate, with tags) 4169 */ 4170 4171 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4172 bool sub_op) 4173 { 4174 TCGv_i64 tcg_rn, tcg_rd; 4175 int imm; 4176 4177 imm = a->uimm6 << LOG2_TAG_GRANULE; 4178 if (sub_op) { 4179 imm = -imm; 4180 } 4181 4182 tcg_rn = cpu_reg_sp(s, a->rn); 4183 tcg_rd = cpu_reg_sp(s, a->rd); 4184 4185 if (s->ata) { 4186 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4187 tcg_constant_i32(imm), 4188 tcg_constant_i32(a->uimm4)); 4189 } else { 4190 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4191 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4192 } 4193 return true; 4194 } 4195 4196 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4197 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4198 4199 /* The input should be a value in the bottom e bits (with higher 4200 * bits zero); returns that value replicated into every element 4201 * of size e in a 64 bit integer. 4202 */ 4203 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4204 { 4205 assert(e != 0); 4206 while (e < 64) { 4207 mask |= mask << e; 4208 e *= 2; 4209 } 4210 return mask; 4211 } 4212 4213 /* 4214 * Logical (immediate) 4215 */ 4216 4217 /* 4218 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4219 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4220 * value (ie should cause a guest UNDEF exception), and true if they are 4221 * valid, in which case the decoded bit pattern is written to result. 4222 */ 4223 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4224 unsigned int imms, unsigned int immr) 4225 { 4226 uint64_t mask; 4227 unsigned e, levels, s, r; 4228 int len; 4229 4230 assert(immn < 2 && imms < 64 && immr < 64); 4231 4232 /* The bit patterns we create here are 64 bit patterns which 4233 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4234 * 64 bits each. Each element contains the same value: a run 4235 * of between 1 and e-1 non-zero bits, rotated within the 4236 * element by between 0 and e-1 bits. 4237 * 4238 * The element size and run length are encoded into immn (1 bit) 4239 * and imms (6 bits) as follows: 4240 * 64 bit elements: immn = 1, imms = <length of run - 1> 4241 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4242 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4243 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4244 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4245 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4246 * Notice that immn = 0, imms = 11111x is the only combination 4247 * not covered by one of the above options; this is reserved. 4248 * Further, <length of run - 1> all-ones is a reserved pattern. 4249 * 4250 * In all cases the rotation is by immr % e (and immr is 6 bits). 4251 */ 4252 4253 /* First determine the element size */ 4254 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4255 if (len < 1) { 4256 /* This is the immn == 0, imms == 0x11111x case */ 4257 return false; 4258 } 4259 e = 1 << len; 4260 4261 levels = e - 1; 4262 s = imms & levels; 4263 r = immr & levels; 4264 4265 if (s == levels) { 4266 /* <length of run - 1> mustn't be all-ones. */ 4267 return false; 4268 } 4269 4270 /* Create the value of one element: s+1 set bits rotated 4271 * by r within the element (which is e bits wide)... 4272 */ 4273 mask = MAKE_64BIT_MASK(0, s + 1); 4274 if (r) { 4275 mask = (mask >> r) | (mask << (e - r)); 4276 mask &= MAKE_64BIT_MASK(0, e); 4277 } 4278 /* ...then replicate the element over the whole 64 bit value */ 4279 mask = bitfield_replicate(mask, e); 4280 *result = mask; 4281 return true; 4282 } 4283 4284 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4285 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4286 { 4287 TCGv_i64 tcg_rd, tcg_rn; 4288 uint64_t imm; 4289 4290 /* Some immediate field values are reserved. */ 4291 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4292 extract32(a->dbm, 0, 6), 4293 extract32(a->dbm, 6, 6))) { 4294 return false; 4295 } 4296 if (!a->sf) { 4297 imm &= 0xffffffffull; 4298 } 4299 4300 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4301 tcg_rn = cpu_reg(s, a->rn); 4302 4303 fn(tcg_rd, tcg_rn, imm); 4304 if (set_cc) { 4305 gen_logic_CC(a->sf, tcg_rd); 4306 } 4307 if (!a->sf) { 4308 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4309 } 4310 return true; 4311 } 4312 4313 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4314 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4315 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4316 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4317 4318 /* 4319 * Move wide (immediate) 4320 */ 4321 4322 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4323 { 4324 int pos = a->hw << 4; 4325 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4326 return true; 4327 } 4328 4329 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4330 { 4331 int pos = a->hw << 4; 4332 uint64_t imm = a->imm; 4333 4334 imm = ~(imm << pos); 4335 if (!a->sf) { 4336 imm = (uint32_t)imm; 4337 } 4338 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4339 return true; 4340 } 4341 4342 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4343 { 4344 int pos = a->hw << 4; 4345 TCGv_i64 tcg_rd, tcg_im; 4346 4347 tcg_rd = cpu_reg(s, a->rd); 4348 tcg_im = tcg_constant_i64(a->imm); 4349 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4350 if (!a->sf) { 4351 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4352 } 4353 return true; 4354 } 4355 4356 /* 4357 * Bitfield 4358 */ 4359 4360 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4361 { 4362 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4363 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4364 unsigned int bitsize = a->sf ? 64 : 32; 4365 unsigned int ri = a->immr; 4366 unsigned int si = a->imms; 4367 unsigned int pos, len; 4368 4369 if (si >= ri) { 4370 /* Wd<s-r:0> = Wn<s:r> */ 4371 len = (si - ri) + 1; 4372 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4373 if (!a->sf) { 4374 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4375 } 4376 } else { 4377 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4378 len = si + 1; 4379 pos = (bitsize - ri) & (bitsize - 1); 4380 4381 if (len < ri) { 4382 /* 4383 * Sign extend the destination field from len to fill the 4384 * balance of the word. Let the deposit below insert all 4385 * of those sign bits. 4386 */ 4387 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4388 len = ri; 4389 } 4390 4391 /* 4392 * We start with zero, and we haven't modified any bits outside 4393 * bitsize, therefore no final zero-extension is unneeded for !sf. 4394 */ 4395 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4396 } 4397 return true; 4398 } 4399 4400 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4401 { 4402 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4403 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4404 unsigned int bitsize = a->sf ? 64 : 32; 4405 unsigned int ri = a->immr; 4406 unsigned int si = a->imms; 4407 unsigned int pos, len; 4408 4409 tcg_rd = cpu_reg(s, a->rd); 4410 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4411 4412 if (si >= ri) { 4413 /* Wd<s-r:0> = Wn<s:r> */ 4414 len = (si - ri) + 1; 4415 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4416 } else { 4417 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4418 len = si + 1; 4419 pos = (bitsize - ri) & (bitsize - 1); 4420 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4421 } 4422 return true; 4423 } 4424 4425 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4426 { 4427 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4428 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4429 unsigned int bitsize = a->sf ? 64 : 32; 4430 unsigned int ri = a->immr; 4431 unsigned int si = a->imms; 4432 unsigned int pos, len; 4433 4434 tcg_rd = cpu_reg(s, a->rd); 4435 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4436 4437 if (si >= ri) { 4438 /* Wd<s-r:0> = Wn<s:r> */ 4439 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4440 len = (si - ri) + 1; 4441 pos = 0; 4442 } else { 4443 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4444 len = si + 1; 4445 pos = (bitsize - ri) & (bitsize - 1); 4446 } 4447 4448 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4449 if (!a->sf) { 4450 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4451 } 4452 return true; 4453 } 4454 4455 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4456 { 4457 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4458 4459 tcg_rd = cpu_reg(s, a->rd); 4460 4461 if (unlikely(a->imm == 0)) { 4462 /* 4463 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4464 * so an extract from bit 0 is a special case. 4465 */ 4466 if (a->sf) { 4467 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4468 } else { 4469 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4470 } 4471 } else { 4472 tcg_rm = cpu_reg(s, a->rm); 4473 tcg_rn = cpu_reg(s, a->rn); 4474 4475 if (a->sf) { 4476 /* Specialization to ROR happens in EXTRACT2. */ 4477 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4478 } else { 4479 TCGv_i32 t0 = tcg_temp_new_i32(); 4480 4481 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4482 if (a->rm == a->rn) { 4483 tcg_gen_rotri_i32(t0, t0, a->imm); 4484 } else { 4485 TCGv_i32 t1 = tcg_temp_new_i32(); 4486 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4487 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4488 } 4489 tcg_gen_extu_i32_i64(tcg_rd, t0); 4490 } 4491 } 4492 return true; 4493 } 4494 4495 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4496 * Note that it is the caller's responsibility to ensure that the 4497 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4498 * mandated semantics for out of range shifts. 4499 */ 4500 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4501 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4502 { 4503 switch (shift_type) { 4504 case A64_SHIFT_TYPE_LSL: 4505 tcg_gen_shl_i64(dst, src, shift_amount); 4506 break; 4507 case A64_SHIFT_TYPE_LSR: 4508 tcg_gen_shr_i64(dst, src, shift_amount); 4509 break; 4510 case A64_SHIFT_TYPE_ASR: 4511 if (!sf) { 4512 tcg_gen_ext32s_i64(dst, src); 4513 } 4514 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4515 break; 4516 case A64_SHIFT_TYPE_ROR: 4517 if (sf) { 4518 tcg_gen_rotr_i64(dst, src, shift_amount); 4519 } else { 4520 TCGv_i32 t0, t1; 4521 t0 = tcg_temp_new_i32(); 4522 t1 = tcg_temp_new_i32(); 4523 tcg_gen_extrl_i64_i32(t0, src); 4524 tcg_gen_extrl_i64_i32(t1, shift_amount); 4525 tcg_gen_rotr_i32(t0, t0, t1); 4526 tcg_gen_extu_i32_i64(dst, t0); 4527 } 4528 break; 4529 default: 4530 assert(FALSE); /* all shift types should be handled */ 4531 break; 4532 } 4533 4534 if (!sf) { /* zero extend final result */ 4535 tcg_gen_ext32u_i64(dst, dst); 4536 } 4537 } 4538 4539 /* Shift a TCGv src by immediate, put result in dst. 4540 * The shift amount must be in range (this should always be true as the 4541 * relevant instructions will UNDEF on bad shift immediates). 4542 */ 4543 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4544 enum a64_shift_type shift_type, unsigned int shift_i) 4545 { 4546 assert(shift_i < (sf ? 64 : 32)); 4547 4548 if (shift_i == 0) { 4549 tcg_gen_mov_i64(dst, src); 4550 } else { 4551 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4552 } 4553 } 4554 4555 /* Logical (shifted register) 4556 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4557 * +----+-----+-----------+-------+---+------+--------+------+------+ 4558 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4559 * +----+-----+-----------+-------+---+------+--------+------+------+ 4560 */ 4561 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4562 { 4563 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4564 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4565 4566 sf = extract32(insn, 31, 1); 4567 opc = extract32(insn, 29, 2); 4568 shift_type = extract32(insn, 22, 2); 4569 invert = extract32(insn, 21, 1); 4570 rm = extract32(insn, 16, 5); 4571 shift_amount = extract32(insn, 10, 6); 4572 rn = extract32(insn, 5, 5); 4573 rd = extract32(insn, 0, 5); 4574 4575 if (!sf && (shift_amount & (1 << 5))) { 4576 unallocated_encoding(s); 4577 return; 4578 } 4579 4580 tcg_rd = cpu_reg(s, rd); 4581 4582 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4583 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4584 * register-register MOV and MVN, so it is worth special casing. 4585 */ 4586 tcg_rm = cpu_reg(s, rm); 4587 if (invert) { 4588 tcg_gen_not_i64(tcg_rd, tcg_rm); 4589 if (!sf) { 4590 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4591 } 4592 } else { 4593 if (sf) { 4594 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4595 } else { 4596 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4597 } 4598 } 4599 return; 4600 } 4601 4602 tcg_rm = read_cpu_reg(s, rm, sf); 4603 4604 if (shift_amount) { 4605 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4606 } 4607 4608 tcg_rn = cpu_reg(s, rn); 4609 4610 switch (opc | (invert << 2)) { 4611 case 0: /* AND */ 4612 case 3: /* ANDS */ 4613 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4614 break; 4615 case 1: /* ORR */ 4616 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4617 break; 4618 case 2: /* EOR */ 4619 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4620 break; 4621 case 4: /* BIC */ 4622 case 7: /* BICS */ 4623 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4624 break; 4625 case 5: /* ORN */ 4626 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4627 break; 4628 case 6: /* EON */ 4629 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4630 break; 4631 default: 4632 assert(FALSE); 4633 break; 4634 } 4635 4636 if (!sf) { 4637 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4638 } 4639 4640 if (opc == 3) { 4641 gen_logic_CC(sf, tcg_rd); 4642 } 4643 } 4644 4645 /* 4646 * Add/subtract (extended register) 4647 * 4648 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4649 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4650 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4651 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4652 * 4653 * sf: 0 -> 32bit, 1 -> 64bit 4654 * op: 0 -> add , 1 -> sub 4655 * S: 1 -> set flags 4656 * opt: 00 4657 * option: extension type (see DecodeRegExtend) 4658 * imm3: optional shift to Rm 4659 * 4660 * Rd = Rn + LSL(extend(Rm), amount) 4661 */ 4662 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4663 { 4664 int rd = extract32(insn, 0, 5); 4665 int rn = extract32(insn, 5, 5); 4666 int imm3 = extract32(insn, 10, 3); 4667 int option = extract32(insn, 13, 3); 4668 int rm = extract32(insn, 16, 5); 4669 int opt = extract32(insn, 22, 2); 4670 bool setflags = extract32(insn, 29, 1); 4671 bool sub_op = extract32(insn, 30, 1); 4672 bool sf = extract32(insn, 31, 1); 4673 4674 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4675 TCGv_i64 tcg_rd; 4676 TCGv_i64 tcg_result; 4677 4678 if (imm3 > 4 || opt != 0) { 4679 unallocated_encoding(s); 4680 return; 4681 } 4682 4683 /* non-flag setting ops may use SP */ 4684 if (!setflags) { 4685 tcg_rd = cpu_reg_sp(s, rd); 4686 } else { 4687 tcg_rd = cpu_reg(s, rd); 4688 } 4689 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4690 4691 tcg_rm = read_cpu_reg(s, rm, sf); 4692 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4693 4694 tcg_result = tcg_temp_new_i64(); 4695 4696 if (!setflags) { 4697 if (sub_op) { 4698 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4699 } else { 4700 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4701 } 4702 } else { 4703 if (sub_op) { 4704 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4705 } else { 4706 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4707 } 4708 } 4709 4710 if (sf) { 4711 tcg_gen_mov_i64(tcg_rd, tcg_result); 4712 } else { 4713 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4714 } 4715 } 4716 4717 /* 4718 * Add/subtract (shifted register) 4719 * 4720 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4721 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4722 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4723 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4724 * 4725 * sf: 0 -> 32bit, 1 -> 64bit 4726 * op: 0 -> add , 1 -> sub 4727 * S: 1 -> set flags 4728 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4729 * imm6: Shift amount to apply to Rm before the add/sub 4730 */ 4731 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4732 { 4733 int rd = extract32(insn, 0, 5); 4734 int rn = extract32(insn, 5, 5); 4735 int imm6 = extract32(insn, 10, 6); 4736 int rm = extract32(insn, 16, 5); 4737 int shift_type = extract32(insn, 22, 2); 4738 bool setflags = extract32(insn, 29, 1); 4739 bool sub_op = extract32(insn, 30, 1); 4740 bool sf = extract32(insn, 31, 1); 4741 4742 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4743 TCGv_i64 tcg_rn, tcg_rm; 4744 TCGv_i64 tcg_result; 4745 4746 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4747 unallocated_encoding(s); 4748 return; 4749 } 4750 4751 tcg_rn = read_cpu_reg(s, rn, sf); 4752 tcg_rm = read_cpu_reg(s, rm, sf); 4753 4754 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4755 4756 tcg_result = tcg_temp_new_i64(); 4757 4758 if (!setflags) { 4759 if (sub_op) { 4760 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4761 } else { 4762 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4763 } 4764 } else { 4765 if (sub_op) { 4766 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4767 } else { 4768 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4769 } 4770 } 4771 4772 if (sf) { 4773 tcg_gen_mov_i64(tcg_rd, tcg_result); 4774 } else { 4775 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4776 } 4777 } 4778 4779 /* Data-processing (3 source) 4780 * 4781 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4782 * +--+------+-----------+------+------+----+------+------+------+ 4783 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4784 * +--+------+-----------+------+------+----+------+------+------+ 4785 */ 4786 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4787 { 4788 int rd = extract32(insn, 0, 5); 4789 int rn = extract32(insn, 5, 5); 4790 int ra = extract32(insn, 10, 5); 4791 int rm = extract32(insn, 16, 5); 4792 int op_id = (extract32(insn, 29, 3) << 4) | 4793 (extract32(insn, 21, 3) << 1) | 4794 extract32(insn, 15, 1); 4795 bool sf = extract32(insn, 31, 1); 4796 bool is_sub = extract32(op_id, 0, 1); 4797 bool is_high = extract32(op_id, 2, 1); 4798 bool is_signed = false; 4799 TCGv_i64 tcg_op1; 4800 TCGv_i64 tcg_op2; 4801 TCGv_i64 tcg_tmp; 4802 4803 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4804 switch (op_id) { 4805 case 0x42: /* SMADDL */ 4806 case 0x43: /* SMSUBL */ 4807 case 0x44: /* SMULH */ 4808 is_signed = true; 4809 break; 4810 case 0x0: /* MADD (32bit) */ 4811 case 0x1: /* MSUB (32bit) */ 4812 case 0x40: /* MADD (64bit) */ 4813 case 0x41: /* MSUB (64bit) */ 4814 case 0x4a: /* UMADDL */ 4815 case 0x4b: /* UMSUBL */ 4816 case 0x4c: /* UMULH */ 4817 break; 4818 default: 4819 unallocated_encoding(s); 4820 return; 4821 } 4822 4823 if (is_high) { 4824 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4825 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4826 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4827 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4828 4829 if (is_signed) { 4830 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4831 } else { 4832 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4833 } 4834 return; 4835 } 4836 4837 tcg_op1 = tcg_temp_new_i64(); 4838 tcg_op2 = tcg_temp_new_i64(); 4839 tcg_tmp = tcg_temp_new_i64(); 4840 4841 if (op_id < 0x42) { 4842 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 4843 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 4844 } else { 4845 if (is_signed) { 4846 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 4847 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 4848 } else { 4849 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 4850 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 4851 } 4852 } 4853 4854 if (ra == 31 && !is_sub) { 4855 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 4856 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 4857 } else { 4858 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 4859 if (is_sub) { 4860 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4861 } else { 4862 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 4863 } 4864 } 4865 4866 if (!sf) { 4867 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 4868 } 4869 } 4870 4871 /* Add/subtract (with carry) 4872 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 4873 * +--+--+--+------------------------+------+-------------+------+-----+ 4874 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 4875 * +--+--+--+------------------------+------+-------------+------+-----+ 4876 */ 4877 4878 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 4879 { 4880 unsigned int sf, op, setflags, rm, rn, rd; 4881 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 4882 4883 sf = extract32(insn, 31, 1); 4884 op = extract32(insn, 30, 1); 4885 setflags = extract32(insn, 29, 1); 4886 rm = extract32(insn, 16, 5); 4887 rn = extract32(insn, 5, 5); 4888 rd = extract32(insn, 0, 5); 4889 4890 tcg_rd = cpu_reg(s, rd); 4891 tcg_rn = cpu_reg(s, rn); 4892 4893 if (op) { 4894 tcg_y = tcg_temp_new_i64(); 4895 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 4896 } else { 4897 tcg_y = cpu_reg(s, rm); 4898 } 4899 4900 if (setflags) { 4901 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 4902 } else { 4903 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 4904 } 4905 } 4906 4907 /* 4908 * Rotate right into flags 4909 * 31 30 29 21 15 10 5 4 0 4910 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4911 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 4912 * +--+--+--+-----------------+--------+-----------+------+--+------+ 4913 */ 4914 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 4915 { 4916 int mask = extract32(insn, 0, 4); 4917 int o2 = extract32(insn, 4, 1); 4918 int rn = extract32(insn, 5, 5); 4919 int imm6 = extract32(insn, 15, 6); 4920 int sf_op_s = extract32(insn, 29, 3); 4921 TCGv_i64 tcg_rn; 4922 TCGv_i32 nzcv; 4923 4924 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 4925 unallocated_encoding(s); 4926 return; 4927 } 4928 4929 tcg_rn = read_cpu_reg(s, rn, 1); 4930 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 4931 4932 nzcv = tcg_temp_new_i32(); 4933 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 4934 4935 if (mask & 8) { /* N */ 4936 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 4937 } 4938 if (mask & 4) { /* Z */ 4939 tcg_gen_not_i32(cpu_ZF, nzcv); 4940 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 4941 } 4942 if (mask & 2) { /* C */ 4943 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 4944 } 4945 if (mask & 1) { /* V */ 4946 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 4947 } 4948 } 4949 4950 /* 4951 * Evaluate into flags 4952 * 31 30 29 21 15 14 10 5 4 0 4953 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4954 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 4955 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 4956 */ 4957 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 4958 { 4959 int o3_mask = extract32(insn, 0, 5); 4960 int rn = extract32(insn, 5, 5); 4961 int o2 = extract32(insn, 15, 6); 4962 int sz = extract32(insn, 14, 1); 4963 int sf_op_s = extract32(insn, 29, 3); 4964 TCGv_i32 tmp; 4965 int shift; 4966 4967 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 4968 !dc_isar_feature(aa64_condm_4, s)) { 4969 unallocated_encoding(s); 4970 return; 4971 } 4972 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 4973 4974 tmp = tcg_temp_new_i32(); 4975 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 4976 tcg_gen_shli_i32(cpu_NF, tmp, shift); 4977 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 4978 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 4979 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 4980 } 4981 4982 /* Conditional compare (immediate / register) 4983 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 4984 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4985 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 4986 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 4987 * [1] y [0] [0] 4988 */ 4989 static void disas_cc(DisasContext *s, uint32_t insn) 4990 { 4991 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 4992 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 4993 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 4994 DisasCompare c; 4995 4996 if (!extract32(insn, 29, 1)) { 4997 unallocated_encoding(s); 4998 return; 4999 } 5000 if (insn & (1 << 10 | 1 << 4)) { 5001 unallocated_encoding(s); 5002 return; 5003 } 5004 sf = extract32(insn, 31, 1); 5005 op = extract32(insn, 30, 1); 5006 is_imm = extract32(insn, 11, 1); 5007 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5008 cond = extract32(insn, 12, 4); 5009 rn = extract32(insn, 5, 5); 5010 nzcv = extract32(insn, 0, 4); 5011 5012 /* Set T0 = !COND. */ 5013 tcg_t0 = tcg_temp_new_i32(); 5014 arm_test_cc(&c, cond); 5015 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5016 5017 /* Load the arguments for the new comparison. */ 5018 if (is_imm) { 5019 tcg_y = tcg_temp_new_i64(); 5020 tcg_gen_movi_i64(tcg_y, y); 5021 } else { 5022 tcg_y = cpu_reg(s, y); 5023 } 5024 tcg_rn = cpu_reg(s, rn); 5025 5026 /* Set the flags for the new comparison. */ 5027 tcg_tmp = tcg_temp_new_i64(); 5028 if (op) { 5029 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5030 } else { 5031 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5032 } 5033 5034 /* If COND was false, force the flags to #nzcv. Compute two masks 5035 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5036 * For tcg hosts that support ANDC, we can make do with just T1. 5037 * In either case, allow the tcg optimizer to delete any unused mask. 5038 */ 5039 tcg_t1 = tcg_temp_new_i32(); 5040 tcg_t2 = tcg_temp_new_i32(); 5041 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5042 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5043 5044 if (nzcv & 8) { /* N */ 5045 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5046 } else { 5047 if (TCG_TARGET_HAS_andc_i32) { 5048 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5049 } else { 5050 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5051 } 5052 } 5053 if (nzcv & 4) { /* Z */ 5054 if (TCG_TARGET_HAS_andc_i32) { 5055 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5056 } else { 5057 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5058 } 5059 } else { 5060 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5061 } 5062 if (nzcv & 2) { /* C */ 5063 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5064 } else { 5065 if (TCG_TARGET_HAS_andc_i32) { 5066 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5067 } else { 5068 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5069 } 5070 } 5071 if (nzcv & 1) { /* V */ 5072 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5073 } else { 5074 if (TCG_TARGET_HAS_andc_i32) { 5075 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5076 } else { 5077 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5078 } 5079 } 5080 } 5081 5082 /* Conditional select 5083 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5084 * +----+----+---+-----------------+------+------+-----+------+------+ 5085 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5086 * +----+----+---+-----------------+------+------+-----+------+------+ 5087 */ 5088 static void disas_cond_select(DisasContext *s, uint32_t insn) 5089 { 5090 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5091 TCGv_i64 tcg_rd, zero; 5092 DisasCompare64 c; 5093 5094 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5095 /* S == 1 or op2<1> == 1 */ 5096 unallocated_encoding(s); 5097 return; 5098 } 5099 sf = extract32(insn, 31, 1); 5100 else_inv = extract32(insn, 30, 1); 5101 rm = extract32(insn, 16, 5); 5102 cond = extract32(insn, 12, 4); 5103 else_inc = extract32(insn, 10, 1); 5104 rn = extract32(insn, 5, 5); 5105 rd = extract32(insn, 0, 5); 5106 5107 tcg_rd = cpu_reg(s, rd); 5108 5109 a64_test_cc(&c, cond); 5110 zero = tcg_constant_i64(0); 5111 5112 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5113 /* CSET & CSETM. */ 5114 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5115 if (else_inv) { 5116 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5117 } 5118 } else { 5119 TCGv_i64 t_true = cpu_reg(s, rn); 5120 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5121 if (else_inv && else_inc) { 5122 tcg_gen_neg_i64(t_false, t_false); 5123 } else if (else_inv) { 5124 tcg_gen_not_i64(t_false, t_false); 5125 } else if (else_inc) { 5126 tcg_gen_addi_i64(t_false, t_false, 1); 5127 } 5128 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5129 } 5130 5131 if (!sf) { 5132 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5133 } 5134 } 5135 5136 static void handle_clz(DisasContext *s, unsigned int sf, 5137 unsigned int rn, unsigned int rd) 5138 { 5139 TCGv_i64 tcg_rd, tcg_rn; 5140 tcg_rd = cpu_reg(s, rd); 5141 tcg_rn = cpu_reg(s, rn); 5142 5143 if (sf) { 5144 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5145 } else { 5146 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5147 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5148 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5149 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5150 } 5151 } 5152 5153 static void handle_cls(DisasContext *s, unsigned int sf, 5154 unsigned int rn, unsigned int rd) 5155 { 5156 TCGv_i64 tcg_rd, tcg_rn; 5157 tcg_rd = cpu_reg(s, rd); 5158 tcg_rn = cpu_reg(s, rn); 5159 5160 if (sf) { 5161 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5162 } else { 5163 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5164 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5165 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5166 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5167 } 5168 } 5169 5170 static void handle_rbit(DisasContext *s, unsigned int sf, 5171 unsigned int rn, unsigned int rd) 5172 { 5173 TCGv_i64 tcg_rd, tcg_rn; 5174 tcg_rd = cpu_reg(s, rd); 5175 tcg_rn = cpu_reg(s, rn); 5176 5177 if (sf) { 5178 gen_helper_rbit64(tcg_rd, tcg_rn); 5179 } else { 5180 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5181 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5182 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5183 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5184 } 5185 } 5186 5187 /* REV with sf==1, opcode==3 ("REV64") */ 5188 static void handle_rev64(DisasContext *s, unsigned int sf, 5189 unsigned int rn, unsigned int rd) 5190 { 5191 if (!sf) { 5192 unallocated_encoding(s); 5193 return; 5194 } 5195 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5196 } 5197 5198 /* REV with sf==0, opcode==2 5199 * REV32 (sf==1, opcode==2) 5200 */ 5201 static void handle_rev32(DisasContext *s, unsigned int sf, 5202 unsigned int rn, unsigned int rd) 5203 { 5204 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5205 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5206 5207 if (sf) { 5208 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5209 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5210 } else { 5211 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5212 } 5213 } 5214 5215 /* REV16 (opcode==1) */ 5216 static void handle_rev16(DisasContext *s, unsigned int sf, 5217 unsigned int rn, unsigned int rd) 5218 { 5219 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5220 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5221 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5222 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5223 5224 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5225 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5226 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5227 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5228 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5229 } 5230 5231 /* Data-processing (1 source) 5232 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5233 * +----+---+---+-----------------+---------+--------+------+------+ 5234 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5235 * +----+---+---+-----------------+---------+--------+------+------+ 5236 */ 5237 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5238 { 5239 unsigned int sf, opcode, opcode2, rn, rd; 5240 TCGv_i64 tcg_rd; 5241 5242 if (extract32(insn, 29, 1)) { 5243 unallocated_encoding(s); 5244 return; 5245 } 5246 5247 sf = extract32(insn, 31, 1); 5248 opcode = extract32(insn, 10, 6); 5249 opcode2 = extract32(insn, 16, 5); 5250 rn = extract32(insn, 5, 5); 5251 rd = extract32(insn, 0, 5); 5252 5253 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5254 5255 switch (MAP(sf, opcode2, opcode)) { 5256 case MAP(0, 0x00, 0x00): /* RBIT */ 5257 case MAP(1, 0x00, 0x00): 5258 handle_rbit(s, sf, rn, rd); 5259 break; 5260 case MAP(0, 0x00, 0x01): /* REV16 */ 5261 case MAP(1, 0x00, 0x01): 5262 handle_rev16(s, sf, rn, rd); 5263 break; 5264 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5265 case MAP(1, 0x00, 0x02): 5266 handle_rev32(s, sf, rn, rd); 5267 break; 5268 case MAP(1, 0x00, 0x03): /* REV64 */ 5269 handle_rev64(s, sf, rn, rd); 5270 break; 5271 case MAP(0, 0x00, 0x04): /* CLZ */ 5272 case MAP(1, 0x00, 0x04): 5273 handle_clz(s, sf, rn, rd); 5274 break; 5275 case MAP(0, 0x00, 0x05): /* CLS */ 5276 case MAP(1, 0x00, 0x05): 5277 handle_cls(s, sf, rn, rd); 5278 break; 5279 case MAP(1, 0x01, 0x00): /* PACIA */ 5280 if (s->pauth_active) { 5281 tcg_rd = cpu_reg(s, rd); 5282 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5283 } else if (!dc_isar_feature(aa64_pauth, s)) { 5284 goto do_unallocated; 5285 } 5286 break; 5287 case MAP(1, 0x01, 0x01): /* PACIB */ 5288 if (s->pauth_active) { 5289 tcg_rd = cpu_reg(s, rd); 5290 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5291 } else if (!dc_isar_feature(aa64_pauth, s)) { 5292 goto do_unallocated; 5293 } 5294 break; 5295 case MAP(1, 0x01, 0x02): /* PACDA */ 5296 if (s->pauth_active) { 5297 tcg_rd = cpu_reg(s, rd); 5298 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5299 } else if (!dc_isar_feature(aa64_pauth, s)) { 5300 goto do_unallocated; 5301 } 5302 break; 5303 case MAP(1, 0x01, 0x03): /* PACDB */ 5304 if (s->pauth_active) { 5305 tcg_rd = cpu_reg(s, rd); 5306 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5307 } else if (!dc_isar_feature(aa64_pauth, s)) { 5308 goto do_unallocated; 5309 } 5310 break; 5311 case MAP(1, 0x01, 0x04): /* AUTIA */ 5312 if (s->pauth_active) { 5313 tcg_rd = cpu_reg(s, rd); 5314 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5315 } else if (!dc_isar_feature(aa64_pauth, s)) { 5316 goto do_unallocated; 5317 } 5318 break; 5319 case MAP(1, 0x01, 0x05): /* AUTIB */ 5320 if (s->pauth_active) { 5321 tcg_rd = cpu_reg(s, rd); 5322 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5323 } else if (!dc_isar_feature(aa64_pauth, s)) { 5324 goto do_unallocated; 5325 } 5326 break; 5327 case MAP(1, 0x01, 0x06): /* AUTDA */ 5328 if (s->pauth_active) { 5329 tcg_rd = cpu_reg(s, rd); 5330 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5331 } else if (!dc_isar_feature(aa64_pauth, s)) { 5332 goto do_unallocated; 5333 } 5334 break; 5335 case MAP(1, 0x01, 0x07): /* AUTDB */ 5336 if (s->pauth_active) { 5337 tcg_rd = cpu_reg(s, rd); 5338 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5339 } else if (!dc_isar_feature(aa64_pauth, s)) { 5340 goto do_unallocated; 5341 } 5342 break; 5343 case MAP(1, 0x01, 0x08): /* PACIZA */ 5344 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5345 goto do_unallocated; 5346 } else if (s->pauth_active) { 5347 tcg_rd = cpu_reg(s, rd); 5348 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5349 } 5350 break; 5351 case MAP(1, 0x01, 0x09): /* PACIZB */ 5352 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5353 goto do_unallocated; 5354 } else if (s->pauth_active) { 5355 tcg_rd = cpu_reg(s, rd); 5356 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5357 } 5358 break; 5359 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5360 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5361 goto do_unallocated; 5362 } else if (s->pauth_active) { 5363 tcg_rd = cpu_reg(s, rd); 5364 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5365 } 5366 break; 5367 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5368 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5369 goto do_unallocated; 5370 } else if (s->pauth_active) { 5371 tcg_rd = cpu_reg(s, rd); 5372 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5373 } 5374 break; 5375 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5376 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5377 goto do_unallocated; 5378 } else if (s->pauth_active) { 5379 tcg_rd = cpu_reg(s, rd); 5380 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5381 } 5382 break; 5383 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5384 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5385 goto do_unallocated; 5386 } else if (s->pauth_active) { 5387 tcg_rd = cpu_reg(s, rd); 5388 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5389 } 5390 break; 5391 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5392 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5393 goto do_unallocated; 5394 } else if (s->pauth_active) { 5395 tcg_rd = cpu_reg(s, rd); 5396 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5397 } 5398 break; 5399 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5400 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5401 goto do_unallocated; 5402 } else if (s->pauth_active) { 5403 tcg_rd = cpu_reg(s, rd); 5404 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5405 } 5406 break; 5407 case MAP(1, 0x01, 0x10): /* XPACI */ 5408 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5409 goto do_unallocated; 5410 } else if (s->pauth_active) { 5411 tcg_rd = cpu_reg(s, rd); 5412 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5413 } 5414 break; 5415 case MAP(1, 0x01, 0x11): /* XPACD */ 5416 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5417 goto do_unallocated; 5418 } else if (s->pauth_active) { 5419 tcg_rd = cpu_reg(s, rd); 5420 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5421 } 5422 break; 5423 default: 5424 do_unallocated: 5425 unallocated_encoding(s); 5426 break; 5427 } 5428 5429 #undef MAP 5430 } 5431 5432 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5433 unsigned int rm, unsigned int rn, unsigned int rd) 5434 { 5435 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5436 tcg_rd = cpu_reg(s, rd); 5437 5438 if (!sf && is_signed) { 5439 tcg_n = tcg_temp_new_i64(); 5440 tcg_m = tcg_temp_new_i64(); 5441 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5442 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5443 } else { 5444 tcg_n = read_cpu_reg(s, rn, sf); 5445 tcg_m = read_cpu_reg(s, rm, sf); 5446 } 5447 5448 if (is_signed) { 5449 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5450 } else { 5451 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5452 } 5453 5454 if (!sf) { /* zero extend final result */ 5455 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5456 } 5457 } 5458 5459 /* LSLV, LSRV, ASRV, RORV */ 5460 static void handle_shift_reg(DisasContext *s, 5461 enum a64_shift_type shift_type, unsigned int sf, 5462 unsigned int rm, unsigned int rn, unsigned int rd) 5463 { 5464 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5465 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5466 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5467 5468 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5469 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5470 } 5471 5472 /* CRC32[BHWX], CRC32C[BHWX] */ 5473 static void handle_crc32(DisasContext *s, 5474 unsigned int sf, unsigned int sz, bool crc32c, 5475 unsigned int rm, unsigned int rn, unsigned int rd) 5476 { 5477 TCGv_i64 tcg_acc, tcg_val; 5478 TCGv_i32 tcg_bytes; 5479 5480 if (!dc_isar_feature(aa64_crc32, s) 5481 || (sf == 1 && sz != 3) 5482 || (sf == 0 && sz == 3)) { 5483 unallocated_encoding(s); 5484 return; 5485 } 5486 5487 if (sz == 3) { 5488 tcg_val = cpu_reg(s, rm); 5489 } else { 5490 uint64_t mask; 5491 switch (sz) { 5492 case 0: 5493 mask = 0xFF; 5494 break; 5495 case 1: 5496 mask = 0xFFFF; 5497 break; 5498 case 2: 5499 mask = 0xFFFFFFFF; 5500 break; 5501 default: 5502 g_assert_not_reached(); 5503 } 5504 tcg_val = tcg_temp_new_i64(); 5505 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5506 } 5507 5508 tcg_acc = cpu_reg(s, rn); 5509 tcg_bytes = tcg_constant_i32(1 << sz); 5510 5511 if (crc32c) { 5512 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5513 } else { 5514 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5515 } 5516 } 5517 5518 /* Data-processing (2 source) 5519 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5520 * +----+---+---+-----------------+------+--------+------+------+ 5521 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5522 * +----+---+---+-----------------+------+--------+------+------+ 5523 */ 5524 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5525 { 5526 unsigned int sf, rm, opcode, rn, rd, setflag; 5527 sf = extract32(insn, 31, 1); 5528 setflag = extract32(insn, 29, 1); 5529 rm = extract32(insn, 16, 5); 5530 opcode = extract32(insn, 10, 6); 5531 rn = extract32(insn, 5, 5); 5532 rd = extract32(insn, 0, 5); 5533 5534 if (setflag && opcode != 0) { 5535 unallocated_encoding(s); 5536 return; 5537 } 5538 5539 switch (opcode) { 5540 case 0: /* SUBP(S) */ 5541 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5542 goto do_unallocated; 5543 } else { 5544 TCGv_i64 tcg_n, tcg_m, tcg_d; 5545 5546 tcg_n = read_cpu_reg_sp(s, rn, true); 5547 tcg_m = read_cpu_reg_sp(s, rm, true); 5548 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5549 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5550 tcg_d = cpu_reg(s, rd); 5551 5552 if (setflag) { 5553 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5554 } else { 5555 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5556 } 5557 } 5558 break; 5559 case 2: /* UDIV */ 5560 handle_div(s, false, sf, rm, rn, rd); 5561 break; 5562 case 3: /* SDIV */ 5563 handle_div(s, true, sf, rm, rn, rd); 5564 break; 5565 case 4: /* IRG */ 5566 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5567 goto do_unallocated; 5568 } 5569 if (s->ata) { 5570 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5571 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5572 } else { 5573 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5574 cpu_reg_sp(s, rn)); 5575 } 5576 break; 5577 case 5: /* GMI */ 5578 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5579 goto do_unallocated; 5580 } else { 5581 TCGv_i64 t = tcg_temp_new_i64(); 5582 5583 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5584 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5585 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5586 } 5587 break; 5588 case 8: /* LSLV */ 5589 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5590 break; 5591 case 9: /* LSRV */ 5592 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5593 break; 5594 case 10: /* ASRV */ 5595 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5596 break; 5597 case 11: /* RORV */ 5598 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5599 break; 5600 case 12: /* PACGA */ 5601 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5602 goto do_unallocated; 5603 } 5604 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5605 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5606 break; 5607 case 16: 5608 case 17: 5609 case 18: 5610 case 19: 5611 case 20: 5612 case 21: 5613 case 22: 5614 case 23: /* CRC32 */ 5615 { 5616 int sz = extract32(opcode, 0, 2); 5617 bool crc32c = extract32(opcode, 2, 1); 5618 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5619 break; 5620 } 5621 default: 5622 do_unallocated: 5623 unallocated_encoding(s); 5624 break; 5625 } 5626 } 5627 5628 /* 5629 * Data processing - register 5630 * 31 30 29 28 25 21 20 16 10 0 5631 * +--+---+--+---+-------+-----+-------+-------+---------+ 5632 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5633 * +--+---+--+---+-------+-----+-------+-------+---------+ 5634 */ 5635 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5636 { 5637 int op0 = extract32(insn, 30, 1); 5638 int op1 = extract32(insn, 28, 1); 5639 int op2 = extract32(insn, 21, 4); 5640 int op3 = extract32(insn, 10, 6); 5641 5642 if (!op1) { 5643 if (op2 & 8) { 5644 if (op2 & 1) { 5645 /* Add/sub (extended register) */ 5646 disas_add_sub_ext_reg(s, insn); 5647 } else { 5648 /* Add/sub (shifted register) */ 5649 disas_add_sub_reg(s, insn); 5650 } 5651 } else { 5652 /* Logical (shifted register) */ 5653 disas_logic_reg(s, insn); 5654 } 5655 return; 5656 } 5657 5658 switch (op2) { 5659 case 0x0: 5660 switch (op3) { 5661 case 0x00: /* Add/subtract (with carry) */ 5662 disas_adc_sbc(s, insn); 5663 break; 5664 5665 case 0x01: /* Rotate right into flags */ 5666 case 0x21: 5667 disas_rotate_right_into_flags(s, insn); 5668 break; 5669 5670 case 0x02: /* Evaluate into flags */ 5671 case 0x12: 5672 case 0x22: 5673 case 0x32: 5674 disas_evaluate_into_flags(s, insn); 5675 break; 5676 5677 default: 5678 goto do_unallocated; 5679 } 5680 break; 5681 5682 case 0x2: /* Conditional compare */ 5683 disas_cc(s, insn); /* both imm and reg forms */ 5684 break; 5685 5686 case 0x4: /* Conditional select */ 5687 disas_cond_select(s, insn); 5688 break; 5689 5690 case 0x6: /* Data-processing */ 5691 if (op0) { /* (1 source) */ 5692 disas_data_proc_1src(s, insn); 5693 } else { /* (2 source) */ 5694 disas_data_proc_2src(s, insn); 5695 } 5696 break; 5697 case 0x8 ... 0xf: /* (3 source) */ 5698 disas_data_proc_3src(s, insn); 5699 break; 5700 5701 default: 5702 do_unallocated: 5703 unallocated_encoding(s); 5704 break; 5705 } 5706 } 5707 5708 static void handle_fp_compare(DisasContext *s, int size, 5709 unsigned int rn, unsigned int rm, 5710 bool cmp_with_zero, bool signal_all_nans) 5711 { 5712 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5713 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5714 5715 if (size == MO_64) { 5716 TCGv_i64 tcg_vn, tcg_vm; 5717 5718 tcg_vn = read_fp_dreg(s, rn); 5719 if (cmp_with_zero) { 5720 tcg_vm = tcg_constant_i64(0); 5721 } else { 5722 tcg_vm = read_fp_dreg(s, rm); 5723 } 5724 if (signal_all_nans) { 5725 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5726 } else { 5727 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5728 } 5729 } else { 5730 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5731 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5732 5733 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5734 if (cmp_with_zero) { 5735 tcg_gen_movi_i32(tcg_vm, 0); 5736 } else { 5737 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5738 } 5739 5740 switch (size) { 5741 case MO_32: 5742 if (signal_all_nans) { 5743 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5744 } else { 5745 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5746 } 5747 break; 5748 case MO_16: 5749 if (signal_all_nans) { 5750 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5751 } else { 5752 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5753 } 5754 break; 5755 default: 5756 g_assert_not_reached(); 5757 } 5758 } 5759 5760 gen_set_nzcv(tcg_flags); 5761 } 5762 5763 /* Floating point compare 5764 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5765 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5766 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5767 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5768 */ 5769 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5770 { 5771 unsigned int mos, type, rm, op, rn, opc, op2r; 5772 int size; 5773 5774 mos = extract32(insn, 29, 3); 5775 type = extract32(insn, 22, 2); 5776 rm = extract32(insn, 16, 5); 5777 op = extract32(insn, 14, 2); 5778 rn = extract32(insn, 5, 5); 5779 opc = extract32(insn, 3, 2); 5780 op2r = extract32(insn, 0, 3); 5781 5782 if (mos || op || op2r) { 5783 unallocated_encoding(s); 5784 return; 5785 } 5786 5787 switch (type) { 5788 case 0: 5789 size = MO_32; 5790 break; 5791 case 1: 5792 size = MO_64; 5793 break; 5794 case 3: 5795 size = MO_16; 5796 if (dc_isar_feature(aa64_fp16, s)) { 5797 break; 5798 } 5799 /* fallthru */ 5800 default: 5801 unallocated_encoding(s); 5802 return; 5803 } 5804 5805 if (!fp_access_check(s)) { 5806 return; 5807 } 5808 5809 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5810 } 5811 5812 /* Floating point conditional compare 5813 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5814 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5815 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5816 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5817 */ 5818 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5819 { 5820 unsigned int mos, type, rm, cond, rn, op, nzcv; 5821 TCGLabel *label_continue = NULL; 5822 int size; 5823 5824 mos = extract32(insn, 29, 3); 5825 type = extract32(insn, 22, 2); 5826 rm = extract32(insn, 16, 5); 5827 cond = extract32(insn, 12, 4); 5828 rn = extract32(insn, 5, 5); 5829 op = extract32(insn, 4, 1); 5830 nzcv = extract32(insn, 0, 4); 5831 5832 if (mos) { 5833 unallocated_encoding(s); 5834 return; 5835 } 5836 5837 switch (type) { 5838 case 0: 5839 size = MO_32; 5840 break; 5841 case 1: 5842 size = MO_64; 5843 break; 5844 case 3: 5845 size = MO_16; 5846 if (dc_isar_feature(aa64_fp16, s)) { 5847 break; 5848 } 5849 /* fallthru */ 5850 default: 5851 unallocated_encoding(s); 5852 return; 5853 } 5854 5855 if (!fp_access_check(s)) { 5856 return; 5857 } 5858 5859 if (cond < 0x0e) { /* not always */ 5860 TCGLabel *label_match = gen_new_label(); 5861 label_continue = gen_new_label(); 5862 arm_gen_test_cc(cond, label_match); 5863 /* nomatch: */ 5864 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 5865 tcg_gen_br(label_continue); 5866 gen_set_label(label_match); 5867 } 5868 5869 handle_fp_compare(s, size, rn, rm, false, op); 5870 5871 if (cond < 0x0e) { 5872 gen_set_label(label_continue); 5873 } 5874 } 5875 5876 /* Floating point conditional select 5877 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 5878 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5879 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 5880 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 5881 */ 5882 static void disas_fp_csel(DisasContext *s, uint32_t insn) 5883 { 5884 unsigned int mos, type, rm, cond, rn, rd; 5885 TCGv_i64 t_true, t_false; 5886 DisasCompare64 c; 5887 MemOp sz; 5888 5889 mos = extract32(insn, 29, 3); 5890 type = extract32(insn, 22, 2); 5891 rm = extract32(insn, 16, 5); 5892 cond = extract32(insn, 12, 4); 5893 rn = extract32(insn, 5, 5); 5894 rd = extract32(insn, 0, 5); 5895 5896 if (mos) { 5897 unallocated_encoding(s); 5898 return; 5899 } 5900 5901 switch (type) { 5902 case 0: 5903 sz = MO_32; 5904 break; 5905 case 1: 5906 sz = MO_64; 5907 break; 5908 case 3: 5909 sz = MO_16; 5910 if (dc_isar_feature(aa64_fp16, s)) { 5911 break; 5912 } 5913 /* fallthru */ 5914 default: 5915 unallocated_encoding(s); 5916 return; 5917 } 5918 5919 if (!fp_access_check(s)) { 5920 return; 5921 } 5922 5923 /* Zero extend sreg & hreg inputs to 64 bits now. */ 5924 t_true = tcg_temp_new_i64(); 5925 t_false = tcg_temp_new_i64(); 5926 read_vec_element(s, t_true, rn, 0, sz); 5927 read_vec_element(s, t_false, rm, 0, sz); 5928 5929 a64_test_cc(&c, cond); 5930 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 5931 t_true, t_false); 5932 5933 /* Note that sregs & hregs write back zeros to the high bits, 5934 and we've already done the zero-extension. */ 5935 write_fp_dreg(s, rd, t_true); 5936 } 5937 5938 /* Floating-point data-processing (1 source) - half precision */ 5939 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 5940 { 5941 TCGv_ptr fpst = NULL; 5942 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 5943 TCGv_i32 tcg_res = tcg_temp_new_i32(); 5944 5945 switch (opcode) { 5946 case 0x0: /* FMOV */ 5947 tcg_gen_mov_i32(tcg_res, tcg_op); 5948 break; 5949 case 0x1: /* FABS */ 5950 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 5951 break; 5952 case 0x2: /* FNEG */ 5953 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 5954 break; 5955 case 0x3: /* FSQRT */ 5956 fpst = fpstatus_ptr(FPST_FPCR_F16); 5957 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 5958 break; 5959 case 0x8: /* FRINTN */ 5960 case 0x9: /* FRINTP */ 5961 case 0xa: /* FRINTM */ 5962 case 0xb: /* FRINTZ */ 5963 case 0xc: /* FRINTA */ 5964 { 5965 TCGv_i32 tcg_rmode; 5966 5967 fpst = fpstatus_ptr(FPST_FPCR_F16); 5968 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 5969 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5970 gen_restore_rmode(tcg_rmode, fpst); 5971 break; 5972 } 5973 case 0xe: /* FRINTX */ 5974 fpst = fpstatus_ptr(FPST_FPCR_F16); 5975 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 5976 break; 5977 case 0xf: /* FRINTI */ 5978 fpst = fpstatus_ptr(FPST_FPCR_F16); 5979 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 5980 break; 5981 default: 5982 g_assert_not_reached(); 5983 } 5984 5985 write_fp_sreg(s, rd, tcg_res); 5986 } 5987 5988 /* Floating-point data-processing (1 source) - single precision */ 5989 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 5990 { 5991 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 5992 TCGv_i32 tcg_op, tcg_res; 5993 TCGv_ptr fpst; 5994 int rmode = -1; 5995 5996 tcg_op = read_fp_sreg(s, rn); 5997 tcg_res = tcg_temp_new_i32(); 5998 5999 switch (opcode) { 6000 case 0x0: /* FMOV */ 6001 tcg_gen_mov_i32(tcg_res, tcg_op); 6002 goto done; 6003 case 0x1: /* FABS */ 6004 gen_helper_vfp_abss(tcg_res, tcg_op); 6005 goto done; 6006 case 0x2: /* FNEG */ 6007 gen_helper_vfp_negs(tcg_res, tcg_op); 6008 goto done; 6009 case 0x3: /* FSQRT */ 6010 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6011 goto done; 6012 case 0x6: /* BFCVT */ 6013 gen_fpst = gen_helper_bfcvt; 6014 break; 6015 case 0x8: /* FRINTN */ 6016 case 0x9: /* FRINTP */ 6017 case 0xa: /* FRINTM */ 6018 case 0xb: /* FRINTZ */ 6019 case 0xc: /* FRINTA */ 6020 rmode = opcode & 7; 6021 gen_fpst = gen_helper_rints; 6022 break; 6023 case 0xe: /* FRINTX */ 6024 gen_fpst = gen_helper_rints_exact; 6025 break; 6026 case 0xf: /* FRINTI */ 6027 gen_fpst = gen_helper_rints; 6028 break; 6029 case 0x10: /* FRINT32Z */ 6030 rmode = FPROUNDING_ZERO; 6031 gen_fpst = gen_helper_frint32_s; 6032 break; 6033 case 0x11: /* FRINT32X */ 6034 gen_fpst = gen_helper_frint32_s; 6035 break; 6036 case 0x12: /* FRINT64Z */ 6037 rmode = FPROUNDING_ZERO; 6038 gen_fpst = gen_helper_frint64_s; 6039 break; 6040 case 0x13: /* FRINT64X */ 6041 gen_fpst = gen_helper_frint64_s; 6042 break; 6043 default: 6044 g_assert_not_reached(); 6045 } 6046 6047 fpst = fpstatus_ptr(FPST_FPCR); 6048 if (rmode >= 0) { 6049 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6050 gen_fpst(tcg_res, tcg_op, fpst); 6051 gen_restore_rmode(tcg_rmode, fpst); 6052 } else { 6053 gen_fpst(tcg_res, tcg_op, fpst); 6054 } 6055 6056 done: 6057 write_fp_sreg(s, rd, tcg_res); 6058 } 6059 6060 /* Floating-point data-processing (1 source) - double precision */ 6061 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6062 { 6063 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6064 TCGv_i64 tcg_op, tcg_res; 6065 TCGv_ptr fpst; 6066 int rmode = -1; 6067 6068 switch (opcode) { 6069 case 0x0: /* FMOV */ 6070 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6071 return; 6072 } 6073 6074 tcg_op = read_fp_dreg(s, rn); 6075 tcg_res = tcg_temp_new_i64(); 6076 6077 switch (opcode) { 6078 case 0x1: /* FABS */ 6079 gen_helper_vfp_absd(tcg_res, tcg_op); 6080 goto done; 6081 case 0x2: /* FNEG */ 6082 gen_helper_vfp_negd(tcg_res, tcg_op); 6083 goto done; 6084 case 0x3: /* FSQRT */ 6085 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6086 goto done; 6087 case 0x8: /* FRINTN */ 6088 case 0x9: /* FRINTP */ 6089 case 0xa: /* FRINTM */ 6090 case 0xb: /* FRINTZ */ 6091 case 0xc: /* FRINTA */ 6092 rmode = opcode & 7; 6093 gen_fpst = gen_helper_rintd; 6094 break; 6095 case 0xe: /* FRINTX */ 6096 gen_fpst = gen_helper_rintd_exact; 6097 break; 6098 case 0xf: /* FRINTI */ 6099 gen_fpst = gen_helper_rintd; 6100 break; 6101 case 0x10: /* FRINT32Z */ 6102 rmode = FPROUNDING_ZERO; 6103 gen_fpst = gen_helper_frint32_d; 6104 break; 6105 case 0x11: /* FRINT32X */ 6106 gen_fpst = gen_helper_frint32_d; 6107 break; 6108 case 0x12: /* FRINT64Z */ 6109 rmode = FPROUNDING_ZERO; 6110 gen_fpst = gen_helper_frint64_d; 6111 break; 6112 case 0x13: /* FRINT64X */ 6113 gen_fpst = gen_helper_frint64_d; 6114 break; 6115 default: 6116 g_assert_not_reached(); 6117 } 6118 6119 fpst = fpstatus_ptr(FPST_FPCR); 6120 if (rmode >= 0) { 6121 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6122 gen_fpst(tcg_res, tcg_op, fpst); 6123 gen_restore_rmode(tcg_rmode, fpst); 6124 } else { 6125 gen_fpst(tcg_res, tcg_op, fpst); 6126 } 6127 6128 done: 6129 write_fp_dreg(s, rd, tcg_res); 6130 } 6131 6132 static void handle_fp_fcvt(DisasContext *s, int opcode, 6133 int rd, int rn, int dtype, int ntype) 6134 { 6135 switch (ntype) { 6136 case 0x0: 6137 { 6138 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6139 if (dtype == 1) { 6140 /* Single to double */ 6141 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6142 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6143 write_fp_dreg(s, rd, tcg_rd); 6144 } else { 6145 /* Single to half */ 6146 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6147 TCGv_i32 ahp = get_ahp_flag(); 6148 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6149 6150 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6151 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6152 write_fp_sreg(s, rd, tcg_rd); 6153 } 6154 break; 6155 } 6156 case 0x1: 6157 { 6158 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6159 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6160 if (dtype == 0) { 6161 /* Double to single */ 6162 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6163 } else { 6164 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6165 TCGv_i32 ahp = get_ahp_flag(); 6166 /* Double to half */ 6167 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6168 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6169 } 6170 write_fp_sreg(s, rd, tcg_rd); 6171 break; 6172 } 6173 case 0x3: 6174 { 6175 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6176 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6177 TCGv_i32 tcg_ahp = get_ahp_flag(); 6178 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6179 if (dtype == 0) { 6180 /* Half to single */ 6181 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6182 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6183 write_fp_sreg(s, rd, tcg_rd); 6184 } else { 6185 /* Half to double */ 6186 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6187 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6188 write_fp_dreg(s, rd, tcg_rd); 6189 } 6190 break; 6191 } 6192 default: 6193 g_assert_not_reached(); 6194 } 6195 } 6196 6197 /* Floating point data-processing (1 source) 6198 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6199 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6200 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6201 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6202 */ 6203 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6204 { 6205 int mos = extract32(insn, 29, 3); 6206 int type = extract32(insn, 22, 2); 6207 int opcode = extract32(insn, 15, 6); 6208 int rn = extract32(insn, 5, 5); 6209 int rd = extract32(insn, 0, 5); 6210 6211 if (mos) { 6212 goto do_unallocated; 6213 } 6214 6215 switch (opcode) { 6216 case 0x4: case 0x5: case 0x7: 6217 { 6218 /* FCVT between half, single and double precision */ 6219 int dtype = extract32(opcode, 0, 2); 6220 if (type == 2 || dtype == type) { 6221 goto do_unallocated; 6222 } 6223 if (!fp_access_check(s)) { 6224 return; 6225 } 6226 6227 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6228 break; 6229 } 6230 6231 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6232 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6233 goto do_unallocated; 6234 } 6235 /* fall through */ 6236 case 0x0 ... 0x3: 6237 case 0x8 ... 0xc: 6238 case 0xe ... 0xf: 6239 /* 32-to-32 and 64-to-64 ops */ 6240 switch (type) { 6241 case 0: 6242 if (!fp_access_check(s)) { 6243 return; 6244 } 6245 handle_fp_1src_single(s, opcode, rd, rn); 6246 break; 6247 case 1: 6248 if (!fp_access_check(s)) { 6249 return; 6250 } 6251 handle_fp_1src_double(s, opcode, rd, rn); 6252 break; 6253 case 3: 6254 if (!dc_isar_feature(aa64_fp16, s)) { 6255 goto do_unallocated; 6256 } 6257 6258 if (!fp_access_check(s)) { 6259 return; 6260 } 6261 handle_fp_1src_half(s, opcode, rd, rn); 6262 break; 6263 default: 6264 goto do_unallocated; 6265 } 6266 break; 6267 6268 case 0x6: 6269 switch (type) { 6270 case 1: /* BFCVT */ 6271 if (!dc_isar_feature(aa64_bf16, s)) { 6272 goto do_unallocated; 6273 } 6274 if (!fp_access_check(s)) { 6275 return; 6276 } 6277 handle_fp_1src_single(s, opcode, rd, rn); 6278 break; 6279 default: 6280 goto do_unallocated; 6281 } 6282 break; 6283 6284 default: 6285 do_unallocated: 6286 unallocated_encoding(s); 6287 break; 6288 } 6289 } 6290 6291 /* Floating-point data-processing (2 source) - single precision */ 6292 static void handle_fp_2src_single(DisasContext *s, int opcode, 6293 int rd, int rn, int rm) 6294 { 6295 TCGv_i32 tcg_op1; 6296 TCGv_i32 tcg_op2; 6297 TCGv_i32 tcg_res; 6298 TCGv_ptr fpst; 6299 6300 tcg_res = tcg_temp_new_i32(); 6301 fpst = fpstatus_ptr(FPST_FPCR); 6302 tcg_op1 = read_fp_sreg(s, rn); 6303 tcg_op2 = read_fp_sreg(s, rm); 6304 6305 switch (opcode) { 6306 case 0x0: /* FMUL */ 6307 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6308 break; 6309 case 0x1: /* FDIV */ 6310 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6311 break; 6312 case 0x2: /* FADD */ 6313 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6314 break; 6315 case 0x3: /* FSUB */ 6316 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6317 break; 6318 case 0x4: /* FMAX */ 6319 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6320 break; 6321 case 0x5: /* FMIN */ 6322 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6323 break; 6324 case 0x6: /* FMAXNM */ 6325 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6326 break; 6327 case 0x7: /* FMINNM */ 6328 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6329 break; 6330 case 0x8: /* FNMUL */ 6331 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6332 gen_helper_vfp_negs(tcg_res, tcg_res); 6333 break; 6334 } 6335 6336 write_fp_sreg(s, rd, tcg_res); 6337 } 6338 6339 /* Floating-point data-processing (2 source) - double precision */ 6340 static void handle_fp_2src_double(DisasContext *s, int opcode, 6341 int rd, int rn, int rm) 6342 { 6343 TCGv_i64 tcg_op1; 6344 TCGv_i64 tcg_op2; 6345 TCGv_i64 tcg_res; 6346 TCGv_ptr fpst; 6347 6348 tcg_res = tcg_temp_new_i64(); 6349 fpst = fpstatus_ptr(FPST_FPCR); 6350 tcg_op1 = read_fp_dreg(s, rn); 6351 tcg_op2 = read_fp_dreg(s, rm); 6352 6353 switch (opcode) { 6354 case 0x0: /* FMUL */ 6355 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6356 break; 6357 case 0x1: /* FDIV */ 6358 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6359 break; 6360 case 0x2: /* FADD */ 6361 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6362 break; 6363 case 0x3: /* FSUB */ 6364 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6365 break; 6366 case 0x4: /* FMAX */ 6367 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6368 break; 6369 case 0x5: /* FMIN */ 6370 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6371 break; 6372 case 0x6: /* FMAXNM */ 6373 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6374 break; 6375 case 0x7: /* FMINNM */ 6376 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6377 break; 6378 case 0x8: /* FNMUL */ 6379 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6380 gen_helper_vfp_negd(tcg_res, tcg_res); 6381 break; 6382 } 6383 6384 write_fp_dreg(s, rd, tcg_res); 6385 } 6386 6387 /* Floating-point data-processing (2 source) - half precision */ 6388 static void handle_fp_2src_half(DisasContext *s, int opcode, 6389 int rd, int rn, int rm) 6390 { 6391 TCGv_i32 tcg_op1; 6392 TCGv_i32 tcg_op2; 6393 TCGv_i32 tcg_res; 6394 TCGv_ptr fpst; 6395 6396 tcg_res = tcg_temp_new_i32(); 6397 fpst = fpstatus_ptr(FPST_FPCR_F16); 6398 tcg_op1 = read_fp_hreg(s, rn); 6399 tcg_op2 = read_fp_hreg(s, rm); 6400 6401 switch (opcode) { 6402 case 0x0: /* FMUL */ 6403 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6404 break; 6405 case 0x1: /* FDIV */ 6406 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6407 break; 6408 case 0x2: /* FADD */ 6409 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6410 break; 6411 case 0x3: /* FSUB */ 6412 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6413 break; 6414 case 0x4: /* FMAX */ 6415 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6416 break; 6417 case 0x5: /* FMIN */ 6418 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6419 break; 6420 case 0x6: /* FMAXNM */ 6421 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6422 break; 6423 case 0x7: /* FMINNM */ 6424 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6425 break; 6426 case 0x8: /* FNMUL */ 6427 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6428 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6429 break; 6430 default: 6431 g_assert_not_reached(); 6432 } 6433 6434 write_fp_sreg(s, rd, tcg_res); 6435 } 6436 6437 /* Floating point data-processing (2 source) 6438 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6439 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6440 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6441 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6442 */ 6443 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6444 { 6445 int mos = extract32(insn, 29, 3); 6446 int type = extract32(insn, 22, 2); 6447 int rd = extract32(insn, 0, 5); 6448 int rn = extract32(insn, 5, 5); 6449 int rm = extract32(insn, 16, 5); 6450 int opcode = extract32(insn, 12, 4); 6451 6452 if (opcode > 8 || mos) { 6453 unallocated_encoding(s); 6454 return; 6455 } 6456 6457 switch (type) { 6458 case 0: 6459 if (!fp_access_check(s)) { 6460 return; 6461 } 6462 handle_fp_2src_single(s, opcode, rd, rn, rm); 6463 break; 6464 case 1: 6465 if (!fp_access_check(s)) { 6466 return; 6467 } 6468 handle_fp_2src_double(s, opcode, rd, rn, rm); 6469 break; 6470 case 3: 6471 if (!dc_isar_feature(aa64_fp16, s)) { 6472 unallocated_encoding(s); 6473 return; 6474 } 6475 if (!fp_access_check(s)) { 6476 return; 6477 } 6478 handle_fp_2src_half(s, opcode, rd, rn, rm); 6479 break; 6480 default: 6481 unallocated_encoding(s); 6482 } 6483 } 6484 6485 /* Floating-point data-processing (3 source) - single precision */ 6486 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6487 int rd, int rn, int rm, int ra) 6488 { 6489 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6490 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6491 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6492 6493 tcg_op1 = read_fp_sreg(s, rn); 6494 tcg_op2 = read_fp_sreg(s, rm); 6495 tcg_op3 = read_fp_sreg(s, ra); 6496 6497 /* These are fused multiply-add, and must be done as one 6498 * floating point operation with no rounding between the 6499 * multiplication and addition steps. 6500 * NB that doing the negations here as separate steps is 6501 * correct : an input NaN should come out with its sign bit 6502 * flipped if it is a negated-input. 6503 */ 6504 if (o1 == true) { 6505 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6506 } 6507 6508 if (o0 != o1) { 6509 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6510 } 6511 6512 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6513 6514 write_fp_sreg(s, rd, tcg_res); 6515 } 6516 6517 /* Floating-point data-processing (3 source) - double precision */ 6518 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6519 int rd, int rn, int rm, int ra) 6520 { 6521 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6522 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6523 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6524 6525 tcg_op1 = read_fp_dreg(s, rn); 6526 tcg_op2 = read_fp_dreg(s, rm); 6527 tcg_op3 = read_fp_dreg(s, ra); 6528 6529 /* These are fused multiply-add, and must be done as one 6530 * floating point operation with no rounding between the 6531 * multiplication and addition steps. 6532 * NB that doing the negations here as separate steps is 6533 * correct : an input NaN should come out with its sign bit 6534 * flipped if it is a negated-input. 6535 */ 6536 if (o1 == true) { 6537 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6538 } 6539 6540 if (o0 != o1) { 6541 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6542 } 6543 6544 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6545 6546 write_fp_dreg(s, rd, tcg_res); 6547 } 6548 6549 /* Floating-point data-processing (3 source) - half precision */ 6550 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6551 int rd, int rn, int rm, int ra) 6552 { 6553 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6554 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6555 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6556 6557 tcg_op1 = read_fp_hreg(s, rn); 6558 tcg_op2 = read_fp_hreg(s, rm); 6559 tcg_op3 = read_fp_hreg(s, ra); 6560 6561 /* These are fused multiply-add, and must be done as one 6562 * floating point operation with no rounding between the 6563 * multiplication and addition steps. 6564 * NB that doing the negations here as separate steps is 6565 * correct : an input NaN should come out with its sign bit 6566 * flipped if it is a negated-input. 6567 */ 6568 if (o1 == true) { 6569 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6570 } 6571 6572 if (o0 != o1) { 6573 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6574 } 6575 6576 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6577 6578 write_fp_sreg(s, rd, tcg_res); 6579 } 6580 6581 /* Floating point data-processing (3 source) 6582 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6583 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6584 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6585 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6586 */ 6587 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6588 { 6589 int mos = extract32(insn, 29, 3); 6590 int type = extract32(insn, 22, 2); 6591 int rd = extract32(insn, 0, 5); 6592 int rn = extract32(insn, 5, 5); 6593 int ra = extract32(insn, 10, 5); 6594 int rm = extract32(insn, 16, 5); 6595 bool o0 = extract32(insn, 15, 1); 6596 bool o1 = extract32(insn, 21, 1); 6597 6598 if (mos) { 6599 unallocated_encoding(s); 6600 return; 6601 } 6602 6603 switch (type) { 6604 case 0: 6605 if (!fp_access_check(s)) { 6606 return; 6607 } 6608 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6609 break; 6610 case 1: 6611 if (!fp_access_check(s)) { 6612 return; 6613 } 6614 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6615 break; 6616 case 3: 6617 if (!dc_isar_feature(aa64_fp16, s)) { 6618 unallocated_encoding(s); 6619 return; 6620 } 6621 if (!fp_access_check(s)) { 6622 return; 6623 } 6624 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6625 break; 6626 default: 6627 unallocated_encoding(s); 6628 } 6629 } 6630 6631 /* Floating point immediate 6632 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6633 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6634 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6635 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6636 */ 6637 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6638 { 6639 int rd = extract32(insn, 0, 5); 6640 int imm5 = extract32(insn, 5, 5); 6641 int imm8 = extract32(insn, 13, 8); 6642 int type = extract32(insn, 22, 2); 6643 int mos = extract32(insn, 29, 3); 6644 uint64_t imm; 6645 MemOp sz; 6646 6647 if (mos || imm5) { 6648 unallocated_encoding(s); 6649 return; 6650 } 6651 6652 switch (type) { 6653 case 0: 6654 sz = MO_32; 6655 break; 6656 case 1: 6657 sz = MO_64; 6658 break; 6659 case 3: 6660 sz = MO_16; 6661 if (dc_isar_feature(aa64_fp16, s)) { 6662 break; 6663 } 6664 /* fallthru */ 6665 default: 6666 unallocated_encoding(s); 6667 return; 6668 } 6669 6670 if (!fp_access_check(s)) { 6671 return; 6672 } 6673 6674 imm = vfp_expand_imm(sz, imm8); 6675 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6676 } 6677 6678 /* Handle floating point <=> fixed point conversions. Note that we can 6679 * also deal with fp <=> integer conversions as a special case (scale == 64) 6680 * OPTME: consider handling that special case specially or at least skipping 6681 * the call to scalbn in the helpers for zero shifts. 6682 */ 6683 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6684 bool itof, int rmode, int scale, int sf, int type) 6685 { 6686 bool is_signed = !(opcode & 1); 6687 TCGv_ptr tcg_fpstatus; 6688 TCGv_i32 tcg_shift, tcg_single; 6689 TCGv_i64 tcg_double; 6690 6691 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6692 6693 tcg_shift = tcg_constant_i32(64 - scale); 6694 6695 if (itof) { 6696 TCGv_i64 tcg_int = cpu_reg(s, rn); 6697 if (!sf) { 6698 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6699 6700 if (is_signed) { 6701 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6702 } else { 6703 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6704 } 6705 6706 tcg_int = tcg_extend; 6707 } 6708 6709 switch (type) { 6710 case 1: /* float64 */ 6711 tcg_double = tcg_temp_new_i64(); 6712 if (is_signed) { 6713 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6714 tcg_shift, tcg_fpstatus); 6715 } else { 6716 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6717 tcg_shift, tcg_fpstatus); 6718 } 6719 write_fp_dreg(s, rd, tcg_double); 6720 break; 6721 6722 case 0: /* float32 */ 6723 tcg_single = tcg_temp_new_i32(); 6724 if (is_signed) { 6725 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6726 tcg_shift, tcg_fpstatus); 6727 } else { 6728 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6729 tcg_shift, tcg_fpstatus); 6730 } 6731 write_fp_sreg(s, rd, tcg_single); 6732 break; 6733 6734 case 3: /* float16 */ 6735 tcg_single = tcg_temp_new_i32(); 6736 if (is_signed) { 6737 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6738 tcg_shift, tcg_fpstatus); 6739 } else { 6740 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6741 tcg_shift, tcg_fpstatus); 6742 } 6743 write_fp_sreg(s, rd, tcg_single); 6744 break; 6745 6746 default: 6747 g_assert_not_reached(); 6748 } 6749 } else { 6750 TCGv_i64 tcg_int = cpu_reg(s, rd); 6751 TCGv_i32 tcg_rmode; 6752 6753 if (extract32(opcode, 2, 1)) { 6754 /* There are too many rounding modes to all fit into rmode, 6755 * so FCVTA[US] is a special case. 6756 */ 6757 rmode = FPROUNDING_TIEAWAY; 6758 } 6759 6760 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6761 6762 switch (type) { 6763 case 1: /* float64 */ 6764 tcg_double = read_fp_dreg(s, rn); 6765 if (is_signed) { 6766 if (!sf) { 6767 gen_helper_vfp_tosld(tcg_int, tcg_double, 6768 tcg_shift, tcg_fpstatus); 6769 } else { 6770 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6771 tcg_shift, tcg_fpstatus); 6772 } 6773 } else { 6774 if (!sf) { 6775 gen_helper_vfp_tould(tcg_int, tcg_double, 6776 tcg_shift, tcg_fpstatus); 6777 } else { 6778 gen_helper_vfp_touqd(tcg_int, tcg_double, 6779 tcg_shift, tcg_fpstatus); 6780 } 6781 } 6782 if (!sf) { 6783 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6784 } 6785 break; 6786 6787 case 0: /* float32 */ 6788 tcg_single = read_fp_sreg(s, rn); 6789 if (sf) { 6790 if (is_signed) { 6791 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6792 tcg_shift, tcg_fpstatus); 6793 } else { 6794 gen_helper_vfp_touqs(tcg_int, tcg_single, 6795 tcg_shift, tcg_fpstatus); 6796 } 6797 } else { 6798 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6799 if (is_signed) { 6800 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6801 tcg_shift, tcg_fpstatus); 6802 } else { 6803 gen_helper_vfp_touls(tcg_dest, tcg_single, 6804 tcg_shift, tcg_fpstatus); 6805 } 6806 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6807 } 6808 break; 6809 6810 case 3: /* float16 */ 6811 tcg_single = read_fp_sreg(s, rn); 6812 if (sf) { 6813 if (is_signed) { 6814 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6815 tcg_shift, tcg_fpstatus); 6816 } else { 6817 gen_helper_vfp_touqh(tcg_int, tcg_single, 6818 tcg_shift, tcg_fpstatus); 6819 } 6820 } else { 6821 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6822 if (is_signed) { 6823 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6824 tcg_shift, tcg_fpstatus); 6825 } else { 6826 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6827 tcg_shift, tcg_fpstatus); 6828 } 6829 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6830 } 6831 break; 6832 6833 default: 6834 g_assert_not_reached(); 6835 } 6836 6837 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 6838 } 6839 } 6840 6841 /* Floating point <-> fixed point conversions 6842 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6843 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6844 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 6845 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 6846 */ 6847 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 6848 { 6849 int rd = extract32(insn, 0, 5); 6850 int rn = extract32(insn, 5, 5); 6851 int scale = extract32(insn, 10, 6); 6852 int opcode = extract32(insn, 16, 3); 6853 int rmode = extract32(insn, 19, 2); 6854 int type = extract32(insn, 22, 2); 6855 bool sbit = extract32(insn, 29, 1); 6856 bool sf = extract32(insn, 31, 1); 6857 bool itof; 6858 6859 if (sbit || (!sf && scale < 32)) { 6860 unallocated_encoding(s); 6861 return; 6862 } 6863 6864 switch (type) { 6865 case 0: /* float32 */ 6866 case 1: /* float64 */ 6867 break; 6868 case 3: /* float16 */ 6869 if (dc_isar_feature(aa64_fp16, s)) { 6870 break; 6871 } 6872 /* fallthru */ 6873 default: 6874 unallocated_encoding(s); 6875 return; 6876 } 6877 6878 switch ((rmode << 3) | opcode) { 6879 case 0x2: /* SCVTF */ 6880 case 0x3: /* UCVTF */ 6881 itof = true; 6882 break; 6883 case 0x18: /* FCVTZS */ 6884 case 0x19: /* FCVTZU */ 6885 itof = false; 6886 break; 6887 default: 6888 unallocated_encoding(s); 6889 return; 6890 } 6891 6892 if (!fp_access_check(s)) { 6893 return; 6894 } 6895 6896 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 6897 } 6898 6899 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 6900 { 6901 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 6902 * without conversion. 6903 */ 6904 6905 if (itof) { 6906 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6907 TCGv_i64 tmp; 6908 6909 switch (type) { 6910 case 0: 6911 /* 32 bit */ 6912 tmp = tcg_temp_new_i64(); 6913 tcg_gen_ext32u_i64(tmp, tcg_rn); 6914 write_fp_dreg(s, rd, tmp); 6915 break; 6916 case 1: 6917 /* 64 bit */ 6918 write_fp_dreg(s, rd, tcg_rn); 6919 break; 6920 case 2: 6921 /* 64 bit to top half. */ 6922 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 6923 clear_vec_high(s, true, rd); 6924 break; 6925 case 3: 6926 /* 16 bit */ 6927 tmp = tcg_temp_new_i64(); 6928 tcg_gen_ext16u_i64(tmp, tcg_rn); 6929 write_fp_dreg(s, rd, tmp); 6930 break; 6931 default: 6932 g_assert_not_reached(); 6933 } 6934 } else { 6935 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6936 6937 switch (type) { 6938 case 0: 6939 /* 32 bit */ 6940 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 6941 break; 6942 case 1: 6943 /* 64 bit */ 6944 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 6945 break; 6946 case 2: 6947 /* 64 bits from top half */ 6948 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 6949 break; 6950 case 3: 6951 /* 16 bit */ 6952 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 6953 break; 6954 default: 6955 g_assert_not_reached(); 6956 } 6957 } 6958 } 6959 6960 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 6961 { 6962 TCGv_i64 t = read_fp_dreg(s, rn); 6963 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 6964 6965 gen_helper_fjcvtzs(t, t, fpstatus); 6966 6967 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 6968 tcg_gen_extrh_i64_i32(cpu_ZF, t); 6969 tcg_gen_movi_i32(cpu_CF, 0); 6970 tcg_gen_movi_i32(cpu_NF, 0); 6971 tcg_gen_movi_i32(cpu_VF, 0); 6972 } 6973 6974 /* Floating point <-> integer conversions 6975 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 6976 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6977 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 6978 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 6979 */ 6980 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 6981 { 6982 int rd = extract32(insn, 0, 5); 6983 int rn = extract32(insn, 5, 5); 6984 int opcode = extract32(insn, 16, 3); 6985 int rmode = extract32(insn, 19, 2); 6986 int type = extract32(insn, 22, 2); 6987 bool sbit = extract32(insn, 29, 1); 6988 bool sf = extract32(insn, 31, 1); 6989 bool itof = false; 6990 6991 if (sbit) { 6992 goto do_unallocated; 6993 } 6994 6995 switch (opcode) { 6996 case 2: /* SCVTF */ 6997 case 3: /* UCVTF */ 6998 itof = true; 6999 /* fallthru */ 7000 case 4: /* FCVTAS */ 7001 case 5: /* FCVTAU */ 7002 if (rmode != 0) { 7003 goto do_unallocated; 7004 } 7005 /* fallthru */ 7006 case 0: /* FCVT[NPMZ]S */ 7007 case 1: /* FCVT[NPMZ]U */ 7008 switch (type) { 7009 case 0: /* float32 */ 7010 case 1: /* float64 */ 7011 break; 7012 case 3: /* float16 */ 7013 if (!dc_isar_feature(aa64_fp16, s)) { 7014 goto do_unallocated; 7015 } 7016 break; 7017 default: 7018 goto do_unallocated; 7019 } 7020 if (!fp_access_check(s)) { 7021 return; 7022 } 7023 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7024 break; 7025 7026 default: 7027 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7028 case 0b01100110: /* FMOV half <-> 32-bit int */ 7029 case 0b01100111: 7030 case 0b11100110: /* FMOV half <-> 64-bit int */ 7031 case 0b11100111: 7032 if (!dc_isar_feature(aa64_fp16, s)) { 7033 goto do_unallocated; 7034 } 7035 /* fallthru */ 7036 case 0b00000110: /* FMOV 32-bit */ 7037 case 0b00000111: 7038 case 0b10100110: /* FMOV 64-bit */ 7039 case 0b10100111: 7040 case 0b11001110: /* FMOV top half of 128-bit */ 7041 case 0b11001111: 7042 if (!fp_access_check(s)) { 7043 return; 7044 } 7045 itof = opcode & 1; 7046 handle_fmov(s, rd, rn, type, itof); 7047 break; 7048 7049 case 0b00111110: /* FJCVTZS */ 7050 if (!dc_isar_feature(aa64_jscvt, s)) { 7051 goto do_unallocated; 7052 } else if (fp_access_check(s)) { 7053 handle_fjcvtzs(s, rd, rn); 7054 } 7055 break; 7056 7057 default: 7058 do_unallocated: 7059 unallocated_encoding(s); 7060 return; 7061 } 7062 break; 7063 } 7064 } 7065 7066 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7067 * 31 30 29 28 25 24 0 7068 * +---+---+---+---------+-----------------------------+ 7069 * | | 0 | | 1 1 1 1 | | 7070 * +---+---+---+---------+-----------------------------+ 7071 */ 7072 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7073 { 7074 if (extract32(insn, 24, 1)) { 7075 /* Floating point data-processing (3 source) */ 7076 disas_fp_3src(s, insn); 7077 } else if (extract32(insn, 21, 1) == 0) { 7078 /* Floating point to fixed point conversions */ 7079 disas_fp_fixed_conv(s, insn); 7080 } else { 7081 switch (extract32(insn, 10, 2)) { 7082 case 1: 7083 /* Floating point conditional compare */ 7084 disas_fp_ccomp(s, insn); 7085 break; 7086 case 2: 7087 /* Floating point data-processing (2 source) */ 7088 disas_fp_2src(s, insn); 7089 break; 7090 case 3: 7091 /* Floating point conditional select */ 7092 disas_fp_csel(s, insn); 7093 break; 7094 case 0: 7095 switch (ctz32(extract32(insn, 12, 4))) { 7096 case 0: /* [15:12] == xxx1 */ 7097 /* Floating point immediate */ 7098 disas_fp_imm(s, insn); 7099 break; 7100 case 1: /* [15:12] == xx10 */ 7101 /* Floating point compare */ 7102 disas_fp_compare(s, insn); 7103 break; 7104 case 2: /* [15:12] == x100 */ 7105 /* Floating point data-processing (1 source) */ 7106 disas_fp_1src(s, insn); 7107 break; 7108 case 3: /* [15:12] == 1000 */ 7109 unallocated_encoding(s); 7110 break; 7111 default: /* [15:12] == 0000 */ 7112 /* Floating point <-> integer conversions */ 7113 disas_fp_int_conv(s, insn); 7114 break; 7115 } 7116 break; 7117 } 7118 } 7119 } 7120 7121 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7122 int pos) 7123 { 7124 /* Extract 64 bits from the middle of two concatenated 64 bit 7125 * vector register slices left:right. The extracted bits start 7126 * at 'pos' bits into the right (least significant) side. 7127 * We return the result in tcg_right, and guarantee not to 7128 * trash tcg_left. 7129 */ 7130 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7131 assert(pos > 0 && pos < 64); 7132 7133 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7134 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7135 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7136 } 7137 7138 /* EXT 7139 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7140 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7141 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7142 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7143 */ 7144 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7145 { 7146 int is_q = extract32(insn, 30, 1); 7147 int op2 = extract32(insn, 22, 2); 7148 int imm4 = extract32(insn, 11, 4); 7149 int rm = extract32(insn, 16, 5); 7150 int rn = extract32(insn, 5, 5); 7151 int rd = extract32(insn, 0, 5); 7152 int pos = imm4 << 3; 7153 TCGv_i64 tcg_resl, tcg_resh; 7154 7155 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7156 unallocated_encoding(s); 7157 return; 7158 } 7159 7160 if (!fp_access_check(s)) { 7161 return; 7162 } 7163 7164 tcg_resh = tcg_temp_new_i64(); 7165 tcg_resl = tcg_temp_new_i64(); 7166 7167 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7168 * either extracting 128 bits from a 128:128 concatenation, or 7169 * extracting 64 bits from a 64:64 concatenation. 7170 */ 7171 if (!is_q) { 7172 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7173 if (pos != 0) { 7174 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7175 do_ext64(s, tcg_resh, tcg_resl, pos); 7176 } 7177 } else { 7178 TCGv_i64 tcg_hh; 7179 typedef struct { 7180 int reg; 7181 int elt; 7182 } EltPosns; 7183 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7184 EltPosns *elt = eltposns; 7185 7186 if (pos >= 64) { 7187 elt++; 7188 pos -= 64; 7189 } 7190 7191 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7192 elt++; 7193 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7194 elt++; 7195 if (pos != 0) { 7196 do_ext64(s, tcg_resh, tcg_resl, pos); 7197 tcg_hh = tcg_temp_new_i64(); 7198 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7199 do_ext64(s, tcg_hh, tcg_resh, pos); 7200 } 7201 } 7202 7203 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7204 if (is_q) { 7205 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7206 } 7207 clear_vec_high(s, is_q, rd); 7208 } 7209 7210 /* TBL/TBX 7211 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7212 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7213 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7214 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7215 */ 7216 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7217 { 7218 int op2 = extract32(insn, 22, 2); 7219 int is_q = extract32(insn, 30, 1); 7220 int rm = extract32(insn, 16, 5); 7221 int rn = extract32(insn, 5, 5); 7222 int rd = extract32(insn, 0, 5); 7223 int is_tbx = extract32(insn, 12, 1); 7224 int len = (extract32(insn, 13, 2) + 1) * 16; 7225 7226 if (op2 != 0) { 7227 unallocated_encoding(s); 7228 return; 7229 } 7230 7231 if (!fp_access_check(s)) { 7232 return; 7233 } 7234 7235 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7236 vec_full_reg_offset(s, rm), cpu_env, 7237 is_q ? 16 : 8, vec_full_reg_size(s), 7238 (len << 6) | (is_tbx << 5) | rn, 7239 gen_helper_simd_tblx); 7240 } 7241 7242 /* ZIP/UZP/TRN 7243 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7244 * +---+---+-------------+------+---+------+---+------------------+------+ 7245 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7246 * +---+---+-------------+------+---+------+---+------------------+------+ 7247 */ 7248 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7249 { 7250 int rd = extract32(insn, 0, 5); 7251 int rn = extract32(insn, 5, 5); 7252 int rm = extract32(insn, 16, 5); 7253 int size = extract32(insn, 22, 2); 7254 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7255 * bit 2 indicates 1 vs 2 variant of the insn. 7256 */ 7257 int opcode = extract32(insn, 12, 2); 7258 bool part = extract32(insn, 14, 1); 7259 bool is_q = extract32(insn, 30, 1); 7260 int esize = 8 << size; 7261 int i; 7262 int datasize = is_q ? 128 : 64; 7263 int elements = datasize / esize; 7264 TCGv_i64 tcg_res[2], tcg_ele; 7265 7266 if (opcode == 0 || (size == 3 && !is_q)) { 7267 unallocated_encoding(s); 7268 return; 7269 } 7270 7271 if (!fp_access_check(s)) { 7272 return; 7273 } 7274 7275 tcg_res[0] = tcg_temp_new_i64(); 7276 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7277 tcg_ele = tcg_temp_new_i64(); 7278 7279 for (i = 0; i < elements; i++) { 7280 int o, w; 7281 7282 switch (opcode) { 7283 case 1: /* UZP1/2 */ 7284 { 7285 int midpoint = elements / 2; 7286 if (i < midpoint) { 7287 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7288 } else { 7289 read_vec_element(s, tcg_ele, rm, 7290 2 * (i - midpoint) + part, size); 7291 } 7292 break; 7293 } 7294 case 2: /* TRN1/2 */ 7295 if (i & 1) { 7296 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7297 } else { 7298 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7299 } 7300 break; 7301 case 3: /* ZIP1/2 */ 7302 { 7303 int base = part * elements / 2; 7304 if (i & 1) { 7305 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7306 } else { 7307 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7308 } 7309 break; 7310 } 7311 default: 7312 g_assert_not_reached(); 7313 } 7314 7315 w = (i * esize) / 64; 7316 o = (i * esize) % 64; 7317 if (o == 0) { 7318 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7319 } else { 7320 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7321 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7322 } 7323 } 7324 7325 for (i = 0; i <= is_q; ++i) { 7326 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7327 } 7328 clear_vec_high(s, is_q, rd); 7329 } 7330 7331 /* 7332 * do_reduction_op helper 7333 * 7334 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7335 * important for correct NaN propagation that we do these 7336 * operations in exactly the order specified by the pseudocode. 7337 * 7338 * This is a recursive function, TCG temps should be freed by the 7339 * calling function once it is done with the values. 7340 */ 7341 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7342 int esize, int size, int vmap, TCGv_ptr fpst) 7343 { 7344 if (esize == size) { 7345 int element; 7346 MemOp msize = esize == 16 ? MO_16 : MO_32; 7347 TCGv_i32 tcg_elem; 7348 7349 /* We should have one register left here */ 7350 assert(ctpop8(vmap) == 1); 7351 element = ctz32(vmap); 7352 assert(element < 8); 7353 7354 tcg_elem = tcg_temp_new_i32(); 7355 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7356 return tcg_elem; 7357 } else { 7358 int bits = size / 2; 7359 int shift = ctpop8(vmap) / 2; 7360 int vmap_lo = (vmap >> shift) & vmap; 7361 int vmap_hi = (vmap & ~vmap_lo); 7362 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7363 7364 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7365 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7366 tcg_res = tcg_temp_new_i32(); 7367 7368 switch (fpopcode) { 7369 case 0x0c: /* fmaxnmv half-precision */ 7370 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7371 break; 7372 case 0x0f: /* fmaxv half-precision */ 7373 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7374 break; 7375 case 0x1c: /* fminnmv half-precision */ 7376 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7377 break; 7378 case 0x1f: /* fminv half-precision */ 7379 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7380 break; 7381 case 0x2c: /* fmaxnmv */ 7382 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7383 break; 7384 case 0x2f: /* fmaxv */ 7385 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7386 break; 7387 case 0x3c: /* fminnmv */ 7388 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7389 break; 7390 case 0x3f: /* fminv */ 7391 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7392 break; 7393 default: 7394 g_assert_not_reached(); 7395 } 7396 return tcg_res; 7397 } 7398 } 7399 7400 /* AdvSIMD across lanes 7401 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7402 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7403 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7404 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7405 */ 7406 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7407 { 7408 int rd = extract32(insn, 0, 5); 7409 int rn = extract32(insn, 5, 5); 7410 int size = extract32(insn, 22, 2); 7411 int opcode = extract32(insn, 12, 5); 7412 bool is_q = extract32(insn, 30, 1); 7413 bool is_u = extract32(insn, 29, 1); 7414 bool is_fp = false; 7415 bool is_min = false; 7416 int esize; 7417 int elements; 7418 int i; 7419 TCGv_i64 tcg_res, tcg_elt; 7420 7421 switch (opcode) { 7422 case 0x1b: /* ADDV */ 7423 if (is_u) { 7424 unallocated_encoding(s); 7425 return; 7426 } 7427 /* fall through */ 7428 case 0x3: /* SADDLV, UADDLV */ 7429 case 0xa: /* SMAXV, UMAXV */ 7430 case 0x1a: /* SMINV, UMINV */ 7431 if (size == 3 || (size == 2 && !is_q)) { 7432 unallocated_encoding(s); 7433 return; 7434 } 7435 break; 7436 case 0xc: /* FMAXNMV, FMINNMV */ 7437 case 0xf: /* FMAXV, FMINV */ 7438 /* Bit 1 of size field encodes min vs max and the actual size 7439 * depends on the encoding of the U bit. If not set (and FP16 7440 * enabled) then we do half-precision float instead of single 7441 * precision. 7442 */ 7443 is_min = extract32(size, 1, 1); 7444 is_fp = true; 7445 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7446 size = 1; 7447 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7448 unallocated_encoding(s); 7449 return; 7450 } else { 7451 size = 2; 7452 } 7453 break; 7454 default: 7455 unallocated_encoding(s); 7456 return; 7457 } 7458 7459 if (!fp_access_check(s)) { 7460 return; 7461 } 7462 7463 esize = 8 << size; 7464 elements = (is_q ? 128 : 64) / esize; 7465 7466 tcg_res = tcg_temp_new_i64(); 7467 tcg_elt = tcg_temp_new_i64(); 7468 7469 /* These instructions operate across all lanes of a vector 7470 * to produce a single result. We can guarantee that a 64 7471 * bit intermediate is sufficient: 7472 * + for [US]ADDLV the maximum element size is 32 bits, and 7473 * the result type is 64 bits 7474 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7475 * same as the element size, which is 32 bits at most 7476 * For the integer operations we can choose to work at 64 7477 * or 32 bits and truncate at the end; for simplicity 7478 * we use 64 bits always. The floating point 7479 * ops do require 32 bit intermediates, though. 7480 */ 7481 if (!is_fp) { 7482 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7483 7484 for (i = 1; i < elements; i++) { 7485 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7486 7487 switch (opcode) { 7488 case 0x03: /* SADDLV / UADDLV */ 7489 case 0x1b: /* ADDV */ 7490 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7491 break; 7492 case 0x0a: /* SMAXV / UMAXV */ 7493 if (is_u) { 7494 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7495 } else { 7496 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7497 } 7498 break; 7499 case 0x1a: /* SMINV / UMINV */ 7500 if (is_u) { 7501 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7502 } else { 7503 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7504 } 7505 break; 7506 default: 7507 g_assert_not_reached(); 7508 } 7509 7510 } 7511 } else { 7512 /* Floating point vector reduction ops which work across 32 7513 * bit (single) or 16 bit (half-precision) intermediates. 7514 * Note that correct NaN propagation requires that we do these 7515 * operations in exactly the order specified by the pseudocode. 7516 */ 7517 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7518 int fpopcode = opcode | is_min << 4 | is_u << 5; 7519 int vmap = (1 << elements) - 1; 7520 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7521 (is_q ? 128 : 64), vmap, fpst); 7522 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7523 } 7524 7525 /* Now truncate the result to the width required for the final output */ 7526 if (opcode == 0x03) { 7527 /* SADDLV, UADDLV: result is 2*esize */ 7528 size++; 7529 } 7530 7531 switch (size) { 7532 case 0: 7533 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7534 break; 7535 case 1: 7536 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7537 break; 7538 case 2: 7539 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7540 break; 7541 case 3: 7542 break; 7543 default: 7544 g_assert_not_reached(); 7545 } 7546 7547 write_fp_dreg(s, rd, tcg_res); 7548 } 7549 7550 /* DUP (Element, Vector) 7551 * 7552 * 31 30 29 21 20 16 15 10 9 5 4 0 7553 * +---+---+-------------------+--------+-------------+------+------+ 7554 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7555 * +---+---+-------------------+--------+-------------+------+------+ 7556 * 7557 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7558 */ 7559 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7560 int imm5) 7561 { 7562 int size = ctz32(imm5); 7563 int index; 7564 7565 if (size > 3 || (size == 3 && !is_q)) { 7566 unallocated_encoding(s); 7567 return; 7568 } 7569 7570 if (!fp_access_check(s)) { 7571 return; 7572 } 7573 7574 index = imm5 >> (size + 1); 7575 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7576 vec_reg_offset(s, rn, index, size), 7577 is_q ? 16 : 8, vec_full_reg_size(s)); 7578 } 7579 7580 /* DUP (element, scalar) 7581 * 31 21 20 16 15 10 9 5 4 0 7582 * +-----------------------+--------+-------------+------+------+ 7583 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7584 * +-----------------------+--------+-------------+------+------+ 7585 */ 7586 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7587 int imm5) 7588 { 7589 int size = ctz32(imm5); 7590 int index; 7591 TCGv_i64 tmp; 7592 7593 if (size > 3) { 7594 unallocated_encoding(s); 7595 return; 7596 } 7597 7598 if (!fp_access_check(s)) { 7599 return; 7600 } 7601 7602 index = imm5 >> (size + 1); 7603 7604 /* This instruction just extracts the specified element and 7605 * zero-extends it into the bottom of the destination register. 7606 */ 7607 tmp = tcg_temp_new_i64(); 7608 read_vec_element(s, tmp, rn, index, size); 7609 write_fp_dreg(s, rd, tmp); 7610 } 7611 7612 /* DUP (General) 7613 * 7614 * 31 30 29 21 20 16 15 10 9 5 4 0 7615 * +---+---+-------------------+--------+-------------+------+------+ 7616 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7617 * +---+---+-------------------+--------+-------------+------+------+ 7618 * 7619 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7620 */ 7621 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7622 int imm5) 7623 { 7624 int size = ctz32(imm5); 7625 uint32_t dofs, oprsz, maxsz; 7626 7627 if (size > 3 || ((size == 3) && !is_q)) { 7628 unallocated_encoding(s); 7629 return; 7630 } 7631 7632 if (!fp_access_check(s)) { 7633 return; 7634 } 7635 7636 dofs = vec_full_reg_offset(s, rd); 7637 oprsz = is_q ? 16 : 8; 7638 maxsz = vec_full_reg_size(s); 7639 7640 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7641 } 7642 7643 /* INS (Element) 7644 * 7645 * 31 21 20 16 15 14 11 10 9 5 4 0 7646 * +-----------------------+--------+------------+---+------+------+ 7647 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7648 * +-----------------------+--------+------------+---+------+------+ 7649 * 7650 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7651 * index: encoded in imm5<4:size+1> 7652 */ 7653 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7654 int imm4, int imm5) 7655 { 7656 int size = ctz32(imm5); 7657 int src_index, dst_index; 7658 TCGv_i64 tmp; 7659 7660 if (size > 3) { 7661 unallocated_encoding(s); 7662 return; 7663 } 7664 7665 if (!fp_access_check(s)) { 7666 return; 7667 } 7668 7669 dst_index = extract32(imm5, 1+size, 5); 7670 src_index = extract32(imm4, size, 4); 7671 7672 tmp = tcg_temp_new_i64(); 7673 7674 read_vec_element(s, tmp, rn, src_index, size); 7675 write_vec_element(s, tmp, rd, dst_index, size); 7676 7677 /* INS is considered a 128-bit write for SVE. */ 7678 clear_vec_high(s, true, rd); 7679 } 7680 7681 7682 /* INS (General) 7683 * 7684 * 31 21 20 16 15 10 9 5 4 0 7685 * +-----------------------+--------+-------------+------+------+ 7686 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7687 * +-----------------------+--------+-------------+------+------+ 7688 * 7689 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7690 * index: encoded in imm5<4:size+1> 7691 */ 7692 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7693 { 7694 int size = ctz32(imm5); 7695 int idx; 7696 7697 if (size > 3) { 7698 unallocated_encoding(s); 7699 return; 7700 } 7701 7702 if (!fp_access_check(s)) { 7703 return; 7704 } 7705 7706 idx = extract32(imm5, 1 + size, 4 - size); 7707 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7708 7709 /* INS is considered a 128-bit write for SVE. */ 7710 clear_vec_high(s, true, rd); 7711 } 7712 7713 /* 7714 * UMOV (General) 7715 * SMOV (General) 7716 * 7717 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7718 * +---+---+-------------------+--------+-------------+------+------+ 7719 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7720 * +---+---+-------------------+--------+-------------+------+------+ 7721 * 7722 * U: unsigned when set 7723 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7724 */ 7725 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7726 int rn, int rd, int imm5) 7727 { 7728 int size = ctz32(imm5); 7729 int element; 7730 TCGv_i64 tcg_rd; 7731 7732 /* Check for UnallocatedEncodings */ 7733 if (is_signed) { 7734 if (size > 2 || (size == 2 && !is_q)) { 7735 unallocated_encoding(s); 7736 return; 7737 } 7738 } else { 7739 if (size > 3 7740 || (size < 3 && is_q) 7741 || (size == 3 && !is_q)) { 7742 unallocated_encoding(s); 7743 return; 7744 } 7745 } 7746 7747 if (!fp_access_check(s)) { 7748 return; 7749 } 7750 7751 element = extract32(imm5, 1+size, 4); 7752 7753 tcg_rd = cpu_reg(s, rd); 7754 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7755 if (is_signed && !is_q) { 7756 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7757 } 7758 } 7759 7760 /* AdvSIMD copy 7761 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7762 * +---+---+----+-----------------+------+---+------+---+------+------+ 7763 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7764 * +---+---+----+-----------------+------+---+------+---+------+------+ 7765 */ 7766 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7767 { 7768 int rd = extract32(insn, 0, 5); 7769 int rn = extract32(insn, 5, 5); 7770 int imm4 = extract32(insn, 11, 4); 7771 int op = extract32(insn, 29, 1); 7772 int is_q = extract32(insn, 30, 1); 7773 int imm5 = extract32(insn, 16, 5); 7774 7775 if (op) { 7776 if (is_q) { 7777 /* INS (element) */ 7778 handle_simd_inse(s, rd, rn, imm4, imm5); 7779 } else { 7780 unallocated_encoding(s); 7781 } 7782 } else { 7783 switch (imm4) { 7784 case 0: 7785 /* DUP (element - vector) */ 7786 handle_simd_dupe(s, is_q, rd, rn, imm5); 7787 break; 7788 case 1: 7789 /* DUP (general) */ 7790 handle_simd_dupg(s, is_q, rd, rn, imm5); 7791 break; 7792 case 3: 7793 if (is_q) { 7794 /* INS (general) */ 7795 handle_simd_insg(s, rd, rn, imm5); 7796 } else { 7797 unallocated_encoding(s); 7798 } 7799 break; 7800 case 5: 7801 case 7: 7802 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7803 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7804 break; 7805 default: 7806 unallocated_encoding(s); 7807 break; 7808 } 7809 } 7810 } 7811 7812 /* AdvSIMD modified immediate 7813 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7814 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7815 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7816 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7817 * 7818 * There are a number of operations that can be carried out here: 7819 * MOVI - move (shifted) imm into register 7820 * MVNI - move inverted (shifted) imm into register 7821 * ORR - bitwise OR of (shifted) imm with register 7822 * BIC - bitwise clear of (shifted) imm with register 7823 * With ARMv8.2 we also have: 7824 * FMOV half-precision 7825 */ 7826 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7827 { 7828 int rd = extract32(insn, 0, 5); 7829 int cmode = extract32(insn, 12, 4); 7830 int o2 = extract32(insn, 11, 1); 7831 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7832 bool is_neg = extract32(insn, 29, 1); 7833 bool is_q = extract32(insn, 30, 1); 7834 uint64_t imm = 0; 7835 7836 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 7837 /* Check for FMOV (vector, immediate) - half-precision */ 7838 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 7839 unallocated_encoding(s); 7840 return; 7841 } 7842 } 7843 7844 if (!fp_access_check(s)) { 7845 return; 7846 } 7847 7848 if (cmode == 15 && o2 && !is_neg) { 7849 /* FMOV (vector, immediate) - half-precision */ 7850 imm = vfp_expand_imm(MO_16, abcdefgh); 7851 /* now duplicate across the lanes */ 7852 imm = dup_const(MO_16, imm); 7853 } else { 7854 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 7855 } 7856 7857 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 7858 /* MOVI or MVNI, with MVNI negation handled above. */ 7859 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 7860 vec_full_reg_size(s), imm); 7861 } else { 7862 /* ORR or BIC, with BIC negation to AND handled above. */ 7863 if (is_neg) { 7864 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 7865 } else { 7866 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 7867 } 7868 } 7869 } 7870 7871 /* AdvSIMD scalar copy 7872 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7873 * +-----+----+-----------------+------+---+------+---+------+------+ 7874 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7875 * +-----+----+-----------------+------+---+------+---+------+------+ 7876 */ 7877 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 7878 { 7879 int rd = extract32(insn, 0, 5); 7880 int rn = extract32(insn, 5, 5); 7881 int imm4 = extract32(insn, 11, 4); 7882 int imm5 = extract32(insn, 16, 5); 7883 int op = extract32(insn, 29, 1); 7884 7885 if (op != 0 || imm4 != 0) { 7886 unallocated_encoding(s); 7887 return; 7888 } 7889 7890 /* DUP (element, scalar) */ 7891 handle_simd_dupes(s, rd, rn, imm5); 7892 } 7893 7894 /* AdvSIMD scalar pairwise 7895 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7896 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7897 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7898 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 7899 */ 7900 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 7901 { 7902 int u = extract32(insn, 29, 1); 7903 int size = extract32(insn, 22, 2); 7904 int opcode = extract32(insn, 12, 5); 7905 int rn = extract32(insn, 5, 5); 7906 int rd = extract32(insn, 0, 5); 7907 TCGv_ptr fpst; 7908 7909 /* For some ops (the FP ones), size[1] is part of the encoding. 7910 * For ADDP strictly it is not but size[1] is always 1 for valid 7911 * encodings. 7912 */ 7913 opcode |= (extract32(size, 1, 1) << 5); 7914 7915 switch (opcode) { 7916 case 0x3b: /* ADDP */ 7917 if (u || size != 3) { 7918 unallocated_encoding(s); 7919 return; 7920 } 7921 if (!fp_access_check(s)) { 7922 return; 7923 } 7924 7925 fpst = NULL; 7926 break; 7927 case 0xc: /* FMAXNMP */ 7928 case 0xd: /* FADDP */ 7929 case 0xf: /* FMAXP */ 7930 case 0x2c: /* FMINNMP */ 7931 case 0x2f: /* FMINP */ 7932 /* FP op, size[0] is 32 or 64 bit*/ 7933 if (!u) { 7934 if (!dc_isar_feature(aa64_fp16, s)) { 7935 unallocated_encoding(s); 7936 return; 7937 } else { 7938 size = MO_16; 7939 } 7940 } else { 7941 size = extract32(size, 0, 1) ? MO_64 : MO_32; 7942 } 7943 7944 if (!fp_access_check(s)) { 7945 return; 7946 } 7947 7948 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7949 break; 7950 default: 7951 unallocated_encoding(s); 7952 return; 7953 } 7954 7955 if (size == MO_64) { 7956 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 7957 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 7958 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7959 7960 read_vec_element(s, tcg_op1, rn, 0, MO_64); 7961 read_vec_element(s, tcg_op2, rn, 1, MO_64); 7962 7963 switch (opcode) { 7964 case 0x3b: /* ADDP */ 7965 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 7966 break; 7967 case 0xc: /* FMAXNMP */ 7968 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7969 break; 7970 case 0xd: /* FADDP */ 7971 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 7972 break; 7973 case 0xf: /* FMAXP */ 7974 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 7975 break; 7976 case 0x2c: /* FMINNMP */ 7977 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 7978 break; 7979 case 0x2f: /* FMINP */ 7980 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 7981 break; 7982 default: 7983 g_assert_not_reached(); 7984 } 7985 7986 write_fp_dreg(s, rd, tcg_res); 7987 } else { 7988 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 7989 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 7990 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7991 7992 read_vec_element_i32(s, tcg_op1, rn, 0, size); 7993 read_vec_element_i32(s, tcg_op2, rn, 1, size); 7994 7995 if (size == MO_16) { 7996 switch (opcode) { 7997 case 0xc: /* FMAXNMP */ 7998 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 7999 break; 8000 case 0xd: /* FADDP */ 8001 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8002 break; 8003 case 0xf: /* FMAXP */ 8004 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8005 break; 8006 case 0x2c: /* FMINNMP */ 8007 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8008 break; 8009 case 0x2f: /* FMINP */ 8010 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8011 break; 8012 default: 8013 g_assert_not_reached(); 8014 } 8015 } else { 8016 switch (opcode) { 8017 case 0xc: /* FMAXNMP */ 8018 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8019 break; 8020 case 0xd: /* FADDP */ 8021 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8022 break; 8023 case 0xf: /* FMAXP */ 8024 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8025 break; 8026 case 0x2c: /* FMINNMP */ 8027 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8028 break; 8029 case 0x2f: /* FMINP */ 8030 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8031 break; 8032 default: 8033 g_assert_not_reached(); 8034 } 8035 } 8036 8037 write_fp_sreg(s, rd, tcg_res); 8038 } 8039 } 8040 8041 /* 8042 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8043 * 8044 * This code is handles the common shifting code and is used by both 8045 * the vector and scalar code. 8046 */ 8047 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8048 TCGv_i64 tcg_rnd, bool accumulate, 8049 bool is_u, int size, int shift) 8050 { 8051 bool extended_result = false; 8052 bool round = tcg_rnd != NULL; 8053 int ext_lshift = 0; 8054 TCGv_i64 tcg_src_hi; 8055 8056 if (round && size == 3) { 8057 extended_result = true; 8058 ext_lshift = 64 - shift; 8059 tcg_src_hi = tcg_temp_new_i64(); 8060 } else if (shift == 64) { 8061 if (!accumulate && is_u) { 8062 /* result is zero */ 8063 tcg_gen_movi_i64(tcg_res, 0); 8064 return; 8065 } 8066 } 8067 8068 /* Deal with the rounding step */ 8069 if (round) { 8070 if (extended_result) { 8071 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8072 if (!is_u) { 8073 /* take care of sign extending tcg_res */ 8074 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8075 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8076 tcg_src, tcg_src_hi, 8077 tcg_rnd, tcg_zero); 8078 } else { 8079 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8080 tcg_src, tcg_zero, 8081 tcg_rnd, tcg_zero); 8082 } 8083 } else { 8084 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8085 } 8086 } 8087 8088 /* Now do the shift right */ 8089 if (round && extended_result) { 8090 /* extended case, >64 bit precision required */ 8091 if (ext_lshift == 0) { 8092 /* special case, only high bits matter */ 8093 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8094 } else { 8095 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8096 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8097 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8098 } 8099 } else { 8100 if (is_u) { 8101 if (shift == 64) { 8102 /* essentially shifting in 64 zeros */ 8103 tcg_gen_movi_i64(tcg_src, 0); 8104 } else { 8105 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8106 } 8107 } else { 8108 if (shift == 64) { 8109 /* effectively extending the sign-bit */ 8110 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8111 } else { 8112 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8113 } 8114 } 8115 } 8116 8117 if (accumulate) { 8118 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8119 } else { 8120 tcg_gen_mov_i64(tcg_res, tcg_src); 8121 } 8122 } 8123 8124 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8125 static void handle_scalar_simd_shri(DisasContext *s, 8126 bool is_u, int immh, int immb, 8127 int opcode, int rn, int rd) 8128 { 8129 const int size = 3; 8130 int immhb = immh << 3 | immb; 8131 int shift = 2 * (8 << size) - immhb; 8132 bool accumulate = false; 8133 bool round = false; 8134 bool insert = false; 8135 TCGv_i64 tcg_rn; 8136 TCGv_i64 tcg_rd; 8137 TCGv_i64 tcg_round; 8138 8139 if (!extract32(immh, 3, 1)) { 8140 unallocated_encoding(s); 8141 return; 8142 } 8143 8144 if (!fp_access_check(s)) { 8145 return; 8146 } 8147 8148 switch (opcode) { 8149 case 0x02: /* SSRA / USRA (accumulate) */ 8150 accumulate = true; 8151 break; 8152 case 0x04: /* SRSHR / URSHR (rounding) */ 8153 round = true; 8154 break; 8155 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8156 accumulate = round = true; 8157 break; 8158 case 0x08: /* SRI */ 8159 insert = true; 8160 break; 8161 } 8162 8163 if (round) { 8164 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8165 } else { 8166 tcg_round = NULL; 8167 } 8168 8169 tcg_rn = read_fp_dreg(s, rn); 8170 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8171 8172 if (insert) { 8173 /* shift count same as element size is valid but does nothing; 8174 * special case to avoid potential shift by 64. 8175 */ 8176 int esize = 8 << size; 8177 if (shift != esize) { 8178 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8179 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8180 } 8181 } else { 8182 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8183 accumulate, is_u, size, shift); 8184 } 8185 8186 write_fp_dreg(s, rd, tcg_rd); 8187 } 8188 8189 /* SHL/SLI - Scalar shift left */ 8190 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8191 int immh, int immb, int opcode, 8192 int rn, int rd) 8193 { 8194 int size = 32 - clz32(immh) - 1; 8195 int immhb = immh << 3 | immb; 8196 int shift = immhb - (8 << size); 8197 TCGv_i64 tcg_rn; 8198 TCGv_i64 tcg_rd; 8199 8200 if (!extract32(immh, 3, 1)) { 8201 unallocated_encoding(s); 8202 return; 8203 } 8204 8205 if (!fp_access_check(s)) { 8206 return; 8207 } 8208 8209 tcg_rn = read_fp_dreg(s, rn); 8210 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8211 8212 if (insert) { 8213 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8214 } else { 8215 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8216 } 8217 8218 write_fp_dreg(s, rd, tcg_rd); 8219 } 8220 8221 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8222 * (signed/unsigned) narrowing */ 8223 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8224 bool is_u_shift, bool is_u_narrow, 8225 int immh, int immb, int opcode, 8226 int rn, int rd) 8227 { 8228 int immhb = immh << 3 | immb; 8229 int size = 32 - clz32(immh) - 1; 8230 int esize = 8 << size; 8231 int shift = (2 * esize) - immhb; 8232 int elements = is_scalar ? 1 : (64 / esize); 8233 bool round = extract32(opcode, 0, 1); 8234 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8235 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8236 TCGv_i32 tcg_rd_narrowed; 8237 TCGv_i64 tcg_final; 8238 8239 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8240 { gen_helper_neon_narrow_sat_s8, 8241 gen_helper_neon_unarrow_sat8 }, 8242 { gen_helper_neon_narrow_sat_s16, 8243 gen_helper_neon_unarrow_sat16 }, 8244 { gen_helper_neon_narrow_sat_s32, 8245 gen_helper_neon_unarrow_sat32 }, 8246 { NULL, NULL }, 8247 }; 8248 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8249 gen_helper_neon_narrow_sat_u8, 8250 gen_helper_neon_narrow_sat_u16, 8251 gen_helper_neon_narrow_sat_u32, 8252 NULL 8253 }; 8254 NeonGenNarrowEnvFn *narrowfn; 8255 8256 int i; 8257 8258 assert(size < 4); 8259 8260 if (extract32(immh, 3, 1)) { 8261 unallocated_encoding(s); 8262 return; 8263 } 8264 8265 if (!fp_access_check(s)) { 8266 return; 8267 } 8268 8269 if (is_u_shift) { 8270 narrowfn = unsigned_narrow_fns[size]; 8271 } else { 8272 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8273 } 8274 8275 tcg_rn = tcg_temp_new_i64(); 8276 tcg_rd = tcg_temp_new_i64(); 8277 tcg_rd_narrowed = tcg_temp_new_i32(); 8278 tcg_final = tcg_temp_new_i64(); 8279 8280 if (round) { 8281 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8282 } else { 8283 tcg_round = NULL; 8284 } 8285 8286 for (i = 0; i < elements; i++) { 8287 read_vec_element(s, tcg_rn, rn, i, ldop); 8288 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8289 false, is_u_shift, size+1, shift); 8290 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8291 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8292 if (i == 0) { 8293 tcg_gen_mov_i64(tcg_final, tcg_rd); 8294 } else { 8295 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8296 } 8297 } 8298 8299 if (!is_q) { 8300 write_vec_element(s, tcg_final, rd, 0, MO_64); 8301 } else { 8302 write_vec_element(s, tcg_final, rd, 1, MO_64); 8303 } 8304 clear_vec_high(s, is_q, rd); 8305 } 8306 8307 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8308 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8309 bool src_unsigned, bool dst_unsigned, 8310 int immh, int immb, int rn, int rd) 8311 { 8312 int immhb = immh << 3 | immb; 8313 int size = 32 - clz32(immh) - 1; 8314 int shift = immhb - (8 << size); 8315 int pass; 8316 8317 assert(immh != 0); 8318 assert(!(scalar && is_q)); 8319 8320 if (!scalar) { 8321 if (!is_q && extract32(immh, 3, 1)) { 8322 unallocated_encoding(s); 8323 return; 8324 } 8325 8326 /* Since we use the variable-shift helpers we must 8327 * replicate the shift count into each element of 8328 * the tcg_shift value. 8329 */ 8330 switch (size) { 8331 case 0: 8332 shift |= shift << 8; 8333 /* fall through */ 8334 case 1: 8335 shift |= shift << 16; 8336 break; 8337 case 2: 8338 case 3: 8339 break; 8340 default: 8341 g_assert_not_reached(); 8342 } 8343 } 8344 8345 if (!fp_access_check(s)) { 8346 return; 8347 } 8348 8349 if (size == 3) { 8350 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8351 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8352 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8353 { NULL, gen_helper_neon_qshl_u64 }, 8354 }; 8355 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8356 int maxpass = is_q ? 2 : 1; 8357 8358 for (pass = 0; pass < maxpass; pass++) { 8359 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8360 8361 read_vec_element(s, tcg_op, rn, pass, MO_64); 8362 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8363 write_vec_element(s, tcg_op, rd, pass, MO_64); 8364 } 8365 clear_vec_high(s, is_q, rd); 8366 } else { 8367 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8368 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8369 { 8370 { gen_helper_neon_qshl_s8, 8371 gen_helper_neon_qshl_s16, 8372 gen_helper_neon_qshl_s32 }, 8373 { gen_helper_neon_qshlu_s8, 8374 gen_helper_neon_qshlu_s16, 8375 gen_helper_neon_qshlu_s32 } 8376 }, { 8377 { NULL, NULL, NULL }, 8378 { gen_helper_neon_qshl_u8, 8379 gen_helper_neon_qshl_u16, 8380 gen_helper_neon_qshl_u32 } 8381 } 8382 }; 8383 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8384 MemOp memop = scalar ? size : MO_32; 8385 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8386 8387 for (pass = 0; pass < maxpass; pass++) { 8388 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8389 8390 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8391 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8392 if (scalar) { 8393 switch (size) { 8394 case 0: 8395 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8396 break; 8397 case 1: 8398 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8399 break; 8400 case 2: 8401 break; 8402 default: 8403 g_assert_not_reached(); 8404 } 8405 write_fp_sreg(s, rd, tcg_op); 8406 } else { 8407 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8408 } 8409 } 8410 8411 if (!scalar) { 8412 clear_vec_high(s, is_q, rd); 8413 } 8414 } 8415 } 8416 8417 /* Common vector code for handling integer to FP conversion */ 8418 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8419 int elements, int is_signed, 8420 int fracbits, int size) 8421 { 8422 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8423 TCGv_i32 tcg_shift = NULL; 8424 8425 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8426 int pass; 8427 8428 if (fracbits || size == MO_64) { 8429 tcg_shift = tcg_constant_i32(fracbits); 8430 } 8431 8432 if (size == MO_64) { 8433 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8434 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8435 8436 for (pass = 0; pass < elements; pass++) { 8437 read_vec_element(s, tcg_int64, rn, pass, mop); 8438 8439 if (is_signed) { 8440 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8441 tcg_shift, tcg_fpst); 8442 } else { 8443 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8444 tcg_shift, tcg_fpst); 8445 } 8446 if (elements == 1) { 8447 write_fp_dreg(s, rd, tcg_double); 8448 } else { 8449 write_vec_element(s, tcg_double, rd, pass, MO_64); 8450 } 8451 } 8452 } else { 8453 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8454 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8455 8456 for (pass = 0; pass < elements; pass++) { 8457 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8458 8459 switch (size) { 8460 case MO_32: 8461 if (fracbits) { 8462 if (is_signed) { 8463 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8464 tcg_shift, tcg_fpst); 8465 } else { 8466 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8467 tcg_shift, tcg_fpst); 8468 } 8469 } else { 8470 if (is_signed) { 8471 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8472 } else { 8473 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8474 } 8475 } 8476 break; 8477 case MO_16: 8478 if (fracbits) { 8479 if (is_signed) { 8480 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8481 tcg_shift, tcg_fpst); 8482 } else { 8483 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8484 tcg_shift, tcg_fpst); 8485 } 8486 } else { 8487 if (is_signed) { 8488 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8489 } else { 8490 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8491 } 8492 } 8493 break; 8494 default: 8495 g_assert_not_reached(); 8496 } 8497 8498 if (elements == 1) { 8499 write_fp_sreg(s, rd, tcg_float); 8500 } else { 8501 write_vec_element_i32(s, tcg_float, rd, pass, size); 8502 } 8503 } 8504 } 8505 8506 clear_vec_high(s, elements << size == 16, rd); 8507 } 8508 8509 /* UCVTF/SCVTF - Integer to FP conversion */ 8510 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8511 bool is_q, bool is_u, 8512 int immh, int immb, int opcode, 8513 int rn, int rd) 8514 { 8515 int size, elements, fracbits; 8516 int immhb = immh << 3 | immb; 8517 8518 if (immh & 8) { 8519 size = MO_64; 8520 if (!is_scalar && !is_q) { 8521 unallocated_encoding(s); 8522 return; 8523 } 8524 } else if (immh & 4) { 8525 size = MO_32; 8526 } else if (immh & 2) { 8527 size = MO_16; 8528 if (!dc_isar_feature(aa64_fp16, s)) { 8529 unallocated_encoding(s); 8530 return; 8531 } 8532 } else { 8533 /* immh == 0 would be a failure of the decode logic */ 8534 g_assert(immh == 1); 8535 unallocated_encoding(s); 8536 return; 8537 } 8538 8539 if (is_scalar) { 8540 elements = 1; 8541 } else { 8542 elements = (8 << is_q) >> size; 8543 } 8544 fracbits = (16 << size) - immhb; 8545 8546 if (!fp_access_check(s)) { 8547 return; 8548 } 8549 8550 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8551 } 8552 8553 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8554 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8555 bool is_q, bool is_u, 8556 int immh, int immb, int rn, int rd) 8557 { 8558 int immhb = immh << 3 | immb; 8559 int pass, size, fracbits; 8560 TCGv_ptr tcg_fpstatus; 8561 TCGv_i32 tcg_rmode, tcg_shift; 8562 8563 if (immh & 0x8) { 8564 size = MO_64; 8565 if (!is_scalar && !is_q) { 8566 unallocated_encoding(s); 8567 return; 8568 } 8569 } else if (immh & 0x4) { 8570 size = MO_32; 8571 } else if (immh & 0x2) { 8572 size = MO_16; 8573 if (!dc_isar_feature(aa64_fp16, s)) { 8574 unallocated_encoding(s); 8575 return; 8576 } 8577 } else { 8578 /* Should have split out AdvSIMD modified immediate earlier. */ 8579 assert(immh == 1); 8580 unallocated_encoding(s); 8581 return; 8582 } 8583 8584 if (!fp_access_check(s)) { 8585 return; 8586 } 8587 8588 assert(!(is_scalar && is_q)); 8589 8590 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8591 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8592 fracbits = (16 << size) - immhb; 8593 tcg_shift = tcg_constant_i32(fracbits); 8594 8595 if (size == MO_64) { 8596 int maxpass = is_scalar ? 1 : 2; 8597 8598 for (pass = 0; pass < maxpass; pass++) { 8599 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8600 8601 read_vec_element(s, tcg_op, rn, pass, MO_64); 8602 if (is_u) { 8603 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8604 } else { 8605 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8606 } 8607 write_vec_element(s, tcg_op, rd, pass, MO_64); 8608 } 8609 clear_vec_high(s, is_q, rd); 8610 } else { 8611 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8612 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8613 8614 switch (size) { 8615 case MO_16: 8616 if (is_u) { 8617 fn = gen_helper_vfp_touhh; 8618 } else { 8619 fn = gen_helper_vfp_toshh; 8620 } 8621 break; 8622 case MO_32: 8623 if (is_u) { 8624 fn = gen_helper_vfp_touls; 8625 } else { 8626 fn = gen_helper_vfp_tosls; 8627 } 8628 break; 8629 default: 8630 g_assert_not_reached(); 8631 } 8632 8633 for (pass = 0; pass < maxpass; pass++) { 8634 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8635 8636 read_vec_element_i32(s, tcg_op, rn, pass, size); 8637 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8638 if (is_scalar) { 8639 write_fp_sreg(s, rd, tcg_op); 8640 } else { 8641 write_vec_element_i32(s, tcg_op, rd, pass, size); 8642 } 8643 } 8644 if (!is_scalar) { 8645 clear_vec_high(s, is_q, rd); 8646 } 8647 } 8648 8649 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8650 } 8651 8652 /* AdvSIMD scalar shift by immediate 8653 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8654 * +-----+---+-------------+------+------+--------+---+------+------+ 8655 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8656 * +-----+---+-------------+------+------+--------+---+------+------+ 8657 * 8658 * This is the scalar version so it works on a fixed sized registers 8659 */ 8660 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8661 { 8662 int rd = extract32(insn, 0, 5); 8663 int rn = extract32(insn, 5, 5); 8664 int opcode = extract32(insn, 11, 5); 8665 int immb = extract32(insn, 16, 3); 8666 int immh = extract32(insn, 19, 4); 8667 bool is_u = extract32(insn, 29, 1); 8668 8669 if (immh == 0) { 8670 unallocated_encoding(s); 8671 return; 8672 } 8673 8674 switch (opcode) { 8675 case 0x08: /* SRI */ 8676 if (!is_u) { 8677 unallocated_encoding(s); 8678 return; 8679 } 8680 /* fall through */ 8681 case 0x00: /* SSHR / USHR */ 8682 case 0x02: /* SSRA / USRA */ 8683 case 0x04: /* SRSHR / URSHR */ 8684 case 0x06: /* SRSRA / URSRA */ 8685 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8686 break; 8687 case 0x0a: /* SHL / SLI */ 8688 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8689 break; 8690 case 0x1c: /* SCVTF, UCVTF */ 8691 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8692 opcode, rn, rd); 8693 break; 8694 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8695 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8696 if (!is_u) { 8697 unallocated_encoding(s); 8698 return; 8699 } 8700 handle_vec_simd_sqshrn(s, true, false, false, true, 8701 immh, immb, opcode, rn, rd); 8702 break; 8703 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8704 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8705 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8706 immh, immb, opcode, rn, rd); 8707 break; 8708 case 0xc: /* SQSHLU */ 8709 if (!is_u) { 8710 unallocated_encoding(s); 8711 return; 8712 } 8713 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8714 break; 8715 case 0xe: /* SQSHL, UQSHL */ 8716 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8717 break; 8718 case 0x1f: /* FCVTZS, FCVTZU */ 8719 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8720 break; 8721 default: 8722 unallocated_encoding(s); 8723 break; 8724 } 8725 } 8726 8727 /* AdvSIMD scalar three different 8728 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8729 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8730 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8731 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8732 */ 8733 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8734 { 8735 bool is_u = extract32(insn, 29, 1); 8736 int size = extract32(insn, 22, 2); 8737 int opcode = extract32(insn, 12, 4); 8738 int rm = extract32(insn, 16, 5); 8739 int rn = extract32(insn, 5, 5); 8740 int rd = extract32(insn, 0, 5); 8741 8742 if (is_u) { 8743 unallocated_encoding(s); 8744 return; 8745 } 8746 8747 switch (opcode) { 8748 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8749 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8750 case 0xd: /* SQDMULL, SQDMULL2 */ 8751 if (size == 0 || size == 3) { 8752 unallocated_encoding(s); 8753 return; 8754 } 8755 break; 8756 default: 8757 unallocated_encoding(s); 8758 return; 8759 } 8760 8761 if (!fp_access_check(s)) { 8762 return; 8763 } 8764 8765 if (size == 2) { 8766 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8767 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8768 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8769 8770 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8771 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8772 8773 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8774 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8775 8776 switch (opcode) { 8777 case 0xd: /* SQDMULL, SQDMULL2 */ 8778 break; 8779 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8780 tcg_gen_neg_i64(tcg_res, tcg_res); 8781 /* fall through */ 8782 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8783 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8784 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8785 tcg_res, tcg_op1); 8786 break; 8787 default: 8788 g_assert_not_reached(); 8789 } 8790 8791 write_fp_dreg(s, rd, tcg_res); 8792 } else { 8793 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8794 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8795 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8796 8797 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8798 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8799 8800 switch (opcode) { 8801 case 0xd: /* SQDMULL, SQDMULL2 */ 8802 break; 8803 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8804 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8805 /* fall through */ 8806 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8807 { 8808 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8809 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8810 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8811 tcg_res, tcg_op3); 8812 break; 8813 } 8814 default: 8815 g_assert_not_reached(); 8816 } 8817 8818 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8819 write_fp_dreg(s, rd, tcg_res); 8820 } 8821 } 8822 8823 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8824 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8825 { 8826 /* Handle 64x64->64 opcodes which are shared between the scalar 8827 * and vector 3-same groups. We cover every opcode where size == 3 8828 * is valid in either the three-reg-same (integer, not pairwise) 8829 * or scalar-three-reg-same groups. 8830 */ 8831 TCGCond cond; 8832 8833 switch (opcode) { 8834 case 0x1: /* SQADD */ 8835 if (u) { 8836 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8837 } else { 8838 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8839 } 8840 break; 8841 case 0x5: /* SQSUB */ 8842 if (u) { 8843 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8844 } else { 8845 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8846 } 8847 break; 8848 case 0x6: /* CMGT, CMHI */ 8849 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 8850 * We implement this using setcond (test) and then negating. 8851 */ 8852 cond = u ? TCG_COND_GTU : TCG_COND_GT; 8853 do_cmop: 8854 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 8855 tcg_gen_neg_i64(tcg_rd, tcg_rd); 8856 break; 8857 case 0x7: /* CMGE, CMHS */ 8858 cond = u ? TCG_COND_GEU : TCG_COND_GE; 8859 goto do_cmop; 8860 case 0x11: /* CMTST, CMEQ */ 8861 if (u) { 8862 cond = TCG_COND_EQ; 8863 goto do_cmop; 8864 } 8865 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 8866 break; 8867 case 0x8: /* SSHL, USHL */ 8868 if (u) { 8869 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 8870 } else { 8871 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 8872 } 8873 break; 8874 case 0x9: /* SQSHL, UQSHL */ 8875 if (u) { 8876 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8877 } else { 8878 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8879 } 8880 break; 8881 case 0xa: /* SRSHL, URSHL */ 8882 if (u) { 8883 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 8884 } else { 8885 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 8886 } 8887 break; 8888 case 0xb: /* SQRSHL, UQRSHL */ 8889 if (u) { 8890 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8891 } else { 8892 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 8893 } 8894 break; 8895 case 0x10: /* ADD, SUB */ 8896 if (u) { 8897 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 8898 } else { 8899 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 8900 } 8901 break; 8902 default: 8903 g_assert_not_reached(); 8904 } 8905 } 8906 8907 /* Handle the 3-same-operands float operations; shared by the scalar 8908 * and vector encodings. The caller must filter out any encodings 8909 * not allocated for the encoding it is dealing with. 8910 */ 8911 static void handle_3same_float(DisasContext *s, int size, int elements, 8912 int fpopcode, int rd, int rn, int rm) 8913 { 8914 int pass; 8915 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 8916 8917 for (pass = 0; pass < elements; pass++) { 8918 if (size) { 8919 /* Double */ 8920 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8921 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8922 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8923 8924 read_vec_element(s, tcg_op1, rn, pass, MO_64); 8925 read_vec_element(s, tcg_op2, rm, pass, MO_64); 8926 8927 switch (fpopcode) { 8928 case 0x39: /* FMLS */ 8929 /* As usual for ARM, separate negation for fused multiply-add */ 8930 gen_helper_vfp_negd(tcg_op1, tcg_op1); 8931 /* fall through */ 8932 case 0x19: /* FMLA */ 8933 read_vec_element(s, tcg_res, rd, pass, MO_64); 8934 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 8935 tcg_res, fpst); 8936 break; 8937 case 0x18: /* FMAXNM */ 8938 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8939 break; 8940 case 0x1a: /* FADD */ 8941 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8942 break; 8943 case 0x1b: /* FMULX */ 8944 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 8945 break; 8946 case 0x1c: /* FCMEQ */ 8947 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8948 break; 8949 case 0x1e: /* FMAX */ 8950 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8951 break; 8952 case 0x1f: /* FRECPS */ 8953 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8954 break; 8955 case 0x38: /* FMINNM */ 8956 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8957 break; 8958 case 0x3a: /* FSUB */ 8959 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8960 break; 8961 case 0x3e: /* FMIN */ 8962 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8963 break; 8964 case 0x3f: /* FRSQRTS */ 8965 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8966 break; 8967 case 0x5b: /* FMUL */ 8968 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 8969 break; 8970 case 0x5c: /* FCMGE */ 8971 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8972 break; 8973 case 0x5d: /* FACGE */ 8974 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8975 break; 8976 case 0x5f: /* FDIV */ 8977 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 8978 break; 8979 case 0x7a: /* FABD */ 8980 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 8981 gen_helper_vfp_absd(tcg_res, tcg_res); 8982 break; 8983 case 0x7c: /* FCMGT */ 8984 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8985 break; 8986 case 0x7d: /* FACGT */ 8987 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 8988 break; 8989 default: 8990 g_assert_not_reached(); 8991 } 8992 8993 write_vec_element(s, tcg_res, rd, pass, MO_64); 8994 } else { 8995 /* Single */ 8996 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8997 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8998 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8999 9000 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9001 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9002 9003 switch (fpopcode) { 9004 case 0x39: /* FMLS */ 9005 /* As usual for ARM, separate negation for fused multiply-add */ 9006 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9007 /* fall through */ 9008 case 0x19: /* FMLA */ 9009 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9010 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9011 tcg_res, fpst); 9012 break; 9013 case 0x1a: /* FADD */ 9014 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9015 break; 9016 case 0x1b: /* FMULX */ 9017 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9018 break; 9019 case 0x1c: /* FCMEQ */ 9020 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9021 break; 9022 case 0x1e: /* FMAX */ 9023 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9024 break; 9025 case 0x1f: /* FRECPS */ 9026 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9027 break; 9028 case 0x18: /* FMAXNM */ 9029 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9030 break; 9031 case 0x38: /* FMINNM */ 9032 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9033 break; 9034 case 0x3a: /* FSUB */ 9035 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9036 break; 9037 case 0x3e: /* FMIN */ 9038 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9039 break; 9040 case 0x3f: /* FRSQRTS */ 9041 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9042 break; 9043 case 0x5b: /* FMUL */ 9044 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9045 break; 9046 case 0x5c: /* FCMGE */ 9047 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9048 break; 9049 case 0x5d: /* FACGE */ 9050 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9051 break; 9052 case 0x5f: /* FDIV */ 9053 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9054 break; 9055 case 0x7a: /* FABD */ 9056 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9057 gen_helper_vfp_abss(tcg_res, tcg_res); 9058 break; 9059 case 0x7c: /* FCMGT */ 9060 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9061 break; 9062 case 0x7d: /* FACGT */ 9063 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9064 break; 9065 default: 9066 g_assert_not_reached(); 9067 } 9068 9069 if (elements == 1) { 9070 /* scalar single so clear high part */ 9071 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9072 9073 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9074 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9075 } else { 9076 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9077 } 9078 } 9079 } 9080 9081 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9082 } 9083 9084 /* AdvSIMD scalar three same 9085 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9086 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9087 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9088 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9089 */ 9090 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9091 { 9092 int rd = extract32(insn, 0, 5); 9093 int rn = extract32(insn, 5, 5); 9094 int opcode = extract32(insn, 11, 5); 9095 int rm = extract32(insn, 16, 5); 9096 int size = extract32(insn, 22, 2); 9097 bool u = extract32(insn, 29, 1); 9098 TCGv_i64 tcg_rd; 9099 9100 if (opcode >= 0x18) { 9101 /* Floating point: U, size[1] and opcode indicate operation */ 9102 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9103 switch (fpopcode) { 9104 case 0x1b: /* FMULX */ 9105 case 0x1f: /* FRECPS */ 9106 case 0x3f: /* FRSQRTS */ 9107 case 0x5d: /* FACGE */ 9108 case 0x7d: /* FACGT */ 9109 case 0x1c: /* FCMEQ */ 9110 case 0x5c: /* FCMGE */ 9111 case 0x7c: /* FCMGT */ 9112 case 0x7a: /* FABD */ 9113 break; 9114 default: 9115 unallocated_encoding(s); 9116 return; 9117 } 9118 9119 if (!fp_access_check(s)) { 9120 return; 9121 } 9122 9123 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9124 return; 9125 } 9126 9127 switch (opcode) { 9128 case 0x1: /* SQADD, UQADD */ 9129 case 0x5: /* SQSUB, UQSUB */ 9130 case 0x9: /* SQSHL, UQSHL */ 9131 case 0xb: /* SQRSHL, UQRSHL */ 9132 break; 9133 case 0x8: /* SSHL, USHL */ 9134 case 0xa: /* SRSHL, URSHL */ 9135 case 0x6: /* CMGT, CMHI */ 9136 case 0x7: /* CMGE, CMHS */ 9137 case 0x11: /* CMTST, CMEQ */ 9138 case 0x10: /* ADD, SUB (vector) */ 9139 if (size != 3) { 9140 unallocated_encoding(s); 9141 return; 9142 } 9143 break; 9144 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9145 if (size != 1 && size != 2) { 9146 unallocated_encoding(s); 9147 return; 9148 } 9149 break; 9150 default: 9151 unallocated_encoding(s); 9152 return; 9153 } 9154 9155 if (!fp_access_check(s)) { 9156 return; 9157 } 9158 9159 tcg_rd = tcg_temp_new_i64(); 9160 9161 if (size == 3) { 9162 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9163 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9164 9165 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9166 } else { 9167 /* Do a single operation on the lowest element in the vector. 9168 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9169 * no side effects for all these operations. 9170 * OPTME: special-purpose helpers would avoid doing some 9171 * unnecessary work in the helper for the 8 and 16 bit cases. 9172 */ 9173 NeonGenTwoOpEnvFn *genenvfn; 9174 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9175 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9176 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9177 9178 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9179 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9180 9181 switch (opcode) { 9182 case 0x1: /* SQADD, UQADD */ 9183 { 9184 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9185 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9186 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9187 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9188 }; 9189 genenvfn = fns[size][u]; 9190 break; 9191 } 9192 case 0x5: /* SQSUB, UQSUB */ 9193 { 9194 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9195 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9196 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9197 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9198 }; 9199 genenvfn = fns[size][u]; 9200 break; 9201 } 9202 case 0x9: /* SQSHL, UQSHL */ 9203 { 9204 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9205 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9206 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9207 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9208 }; 9209 genenvfn = fns[size][u]; 9210 break; 9211 } 9212 case 0xb: /* SQRSHL, UQRSHL */ 9213 { 9214 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9215 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9216 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9217 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9218 }; 9219 genenvfn = fns[size][u]; 9220 break; 9221 } 9222 case 0x16: /* SQDMULH, SQRDMULH */ 9223 { 9224 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9225 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9226 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9227 }; 9228 assert(size == 1 || size == 2); 9229 genenvfn = fns[size - 1][u]; 9230 break; 9231 } 9232 default: 9233 g_assert_not_reached(); 9234 } 9235 9236 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9237 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9238 } 9239 9240 write_fp_dreg(s, rd, tcg_rd); 9241 } 9242 9243 /* AdvSIMD scalar three same FP16 9244 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9245 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9246 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9247 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9248 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9249 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9250 */ 9251 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9252 uint32_t insn) 9253 { 9254 int rd = extract32(insn, 0, 5); 9255 int rn = extract32(insn, 5, 5); 9256 int opcode = extract32(insn, 11, 3); 9257 int rm = extract32(insn, 16, 5); 9258 bool u = extract32(insn, 29, 1); 9259 bool a = extract32(insn, 23, 1); 9260 int fpopcode = opcode | (a << 3) | (u << 4); 9261 TCGv_ptr fpst; 9262 TCGv_i32 tcg_op1; 9263 TCGv_i32 tcg_op2; 9264 TCGv_i32 tcg_res; 9265 9266 switch (fpopcode) { 9267 case 0x03: /* FMULX */ 9268 case 0x04: /* FCMEQ (reg) */ 9269 case 0x07: /* FRECPS */ 9270 case 0x0f: /* FRSQRTS */ 9271 case 0x14: /* FCMGE (reg) */ 9272 case 0x15: /* FACGE */ 9273 case 0x1a: /* FABD */ 9274 case 0x1c: /* FCMGT (reg) */ 9275 case 0x1d: /* FACGT */ 9276 break; 9277 default: 9278 unallocated_encoding(s); 9279 return; 9280 } 9281 9282 if (!dc_isar_feature(aa64_fp16, s)) { 9283 unallocated_encoding(s); 9284 } 9285 9286 if (!fp_access_check(s)) { 9287 return; 9288 } 9289 9290 fpst = fpstatus_ptr(FPST_FPCR_F16); 9291 9292 tcg_op1 = read_fp_hreg(s, rn); 9293 tcg_op2 = read_fp_hreg(s, rm); 9294 tcg_res = tcg_temp_new_i32(); 9295 9296 switch (fpopcode) { 9297 case 0x03: /* FMULX */ 9298 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9299 break; 9300 case 0x04: /* FCMEQ (reg) */ 9301 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9302 break; 9303 case 0x07: /* FRECPS */ 9304 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9305 break; 9306 case 0x0f: /* FRSQRTS */ 9307 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9308 break; 9309 case 0x14: /* FCMGE (reg) */ 9310 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9311 break; 9312 case 0x15: /* FACGE */ 9313 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9314 break; 9315 case 0x1a: /* FABD */ 9316 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9317 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9318 break; 9319 case 0x1c: /* FCMGT (reg) */ 9320 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9321 break; 9322 case 0x1d: /* FACGT */ 9323 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9324 break; 9325 default: 9326 g_assert_not_reached(); 9327 } 9328 9329 write_fp_sreg(s, rd, tcg_res); 9330 } 9331 9332 /* AdvSIMD scalar three same extra 9333 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9334 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9335 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9336 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9337 */ 9338 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9339 uint32_t insn) 9340 { 9341 int rd = extract32(insn, 0, 5); 9342 int rn = extract32(insn, 5, 5); 9343 int opcode = extract32(insn, 11, 4); 9344 int rm = extract32(insn, 16, 5); 9345 int size = extract32(insn, 22, 2); 9346 bool u = extract32(insn, 29, 1); 9347 TCGv_i32 ele1, ele2, ele3; 9348 TCGv_i64 res; 9349 bool feature; 9350 9351 switch (u * 16 + opcode) { 9352 case 0x10: /* SQRDMLAH (vector) */ 9353 case 0x11: /* SQRDMLSH (vector) */ 9354 if (size != 1 && size != 2) { 9355 unallocated_encoding(s); 9356 return; 9357 } 9358 feature = dc_isar_feature(aa64_rdm, s); 9359 break; 9360 default: 9361 unallocated_encoding(s); 9362 return; 9363 } 9364 if (!feature) { 9365 unallocated_encoding(s); 9366 return; 9367 } 9368 if (!fp_access_check(s)) { 9369 return; 9370 } 9371 9372 /* Do a single operation on the lowest element in the vector. 9373 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9374 * with no side effects for all these operations. 9375 * OPTME: special-purpose helpers would avoid doing some 9376 * unnecessary work in the helper for the 16 bit cases. 9377 */ 9378 ele1 = tcg_temp_new_i32(); 9379 ele2 = tcg_temp_new_i32(); 9380 ele3 = tcg_temp_new_i32(); 9381 9382 read_vec_element_i32(s, ele1, rn, 0, size); 9383 read_vec_element_i32(s, ele2, rm, 0, size); 9384 read_vec_element_i32(s, ele3, rd, 0, size); 9385 9386 switch (opcode) { 9387 case 0x0: /* SQRDMLAH */ 9388 if (size == 1) { 9389 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9390 } else { 9391 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9392 } 9393 break; 9394 case 0x1: /* SQRDMLSH */ 9395 if (size == 1) { 9396 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9397 } else { 9398 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9399 } 9400 break; 9401 default: 9402 g_assert_not_reached(); 9403 } 9404 9405 res = tcg_temp_new_i64(); 9406 tcg_gen_extu_i32_i64(res, ele3); 9407 write_fp_dreg(s, rd, res); 9408 } 9409 9410 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9411 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9412 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9413 { 9414 /* Handle 64->64 opcodes which are shared between the scalar and 9415 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9416 * is valid in either group and also the double-precision fp ops. 9417 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9418 * requires them. 9419 */ 9420 TCGCond cond; 9421 9422 switch (opcode) { 9423 case 0x4: /* CLS, CLZ */ 9424 if (u) { 9425 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9426 } else { 9427 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9428 } 9429 break; 9430 case 0x5: /* NOT */ 9431 /* This opcode is shared with CNT and RBIT but we have earlier 9432 * enforced that size == 3 if and only if this is the NOT insn. 9433 */ 9434 tcg_gen_not_i64(tcg_rd, tcg_rn); 9435 break; 9436 case 0x7: /* SQABS, SQNEG */ 9437 if (u) { 9438 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9439 } else { 9440 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9441 } 9442 break; 9443 case 0xa: /* CMLT */ 9444 /* 64 bit integer comparison against zero, result is 9445 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9446 * subtracting 1. 9447 */ 9448 cond = TCG_COND_LT; 9449 do_cmop: 9450 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9451 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9452 break; 9453 case 0x8: /* CMGT, CMGE */ 9454 cond = u ? TCG_COND_GE : TCG_COND_GT; 9455 goto do_cmop; 9456 case 0x9: /* CMEQ, CMLE */ 9457 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9458 goto do_cmop; 9459 case 0xb: /* ABS, NEG */ 9460 if (u) { 9461 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9462 } else { 9463 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9464 } 9465 break; 9466 case 0x2f: /* FABS */ 9467 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9468 break; 9469 case 0x6f: /* FNEG */ 9470 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9471 break; 9472 case 0x7f: /* FSQRT */ 9473 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9474 break; 9475 case 0x1a: /* FCVTNS */ 9476 case 0x1b: /* FCVTMS */ 9477 case 0x1c: /* FCVTAS */ 9478 case 0x3a: /* FCVTPS */ 9479 case 0x3b: /* FCVTZS */ 9480 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9481 break; 9482 case 0x5a: /* FCVTNU */ 9483 case 0x5b: /* FCVTMU */ 9484 case 0x5c: /* FCVTAU */ 9485 case 0x7a: /* FCVTPU */ 9486 case 0x7b: /* FCVTZU */ 9487 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9488 break; 9489 case 0x18: /* FRINTN */ 9490 case 0x19: /* FRINTM */ 9491 case 0x38: /* FRINTP */ 9492 case 0x39: /* FRINTZ */ 9493 case 0x58: /* FRINTA */ 9494 case 0x79: /* FRINTI */ 9495 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9496 break; 9497 case 0x59: /* FRINTX */ 9498 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9499 break; 9500 case 0x1e: /* FRINT32Z */ 9501 case 0x5e: /* FRINT32X */ 9502 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9503 break; 9504 case 0x1f: /* FRINT64Z */ 9505 case 0x5f: /* FRINT64X */ 9506 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9507 break; 9508 default: 9509 g_assert_not_reached(); 9510 } 9511 } 9512 9513 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9514 bool is_scalar, bool is_u, bool is_q, 9515 int size, int rn, int rd) 9516 { 9517 bool is_double = (size == MO_64); 9518 TCGv_ptr fpst; 9519 9520 if (!fp_access_check(s)) { 9521 return; 9522 } 9523 9524 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9525 9526 if (is_double) { 9527 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9528 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9529 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9530 NeonGenTwoDoubleOpFn *genfn; 9531 bool swap = false; 9532 int pass; 9533 9534 switch (opcode) { 9535 case 0x2e: /* FCMLT (zero) */ 9536 swap = true; 9537 /* fallthrough */ 9538 case 0x2c: /* FCMGT (zero) */ 9539 genfn = gen_helper_neon_cgt_f64; 9540 break; 9541 case 0x2d: /* FCMEQ (zero) */ 9542 genfn = gen_helper_neon_ceq_f64; 9543 break; 9544 case 0x6d: /* FCMLE (zero) */ 9545 swap = true; 9546 /* fall through */ 9547 case 0x6c: /* FCMGE (zero) */ 9548 genfn = gen_helper_neon_cge_f64; 9549 break; 9550 default: 9551 g_assert_not_reached(); 9552 } 9553 9554 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9555 read_vec_element(s, tcg_op, rn, pass, MO_64); 9556 if (swap) { 9557 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9558 } else { 9559 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9560 } 9561 write_vec_element(s, tcg_res, rd, pass, MO_64); 9562 } 9563 9564 clear_vec_high(s, !is_scalar, rd); 9565 } else { 9566 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9567 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9568 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9569 NeonGenTwoSingleOpFn *genfn; 9570 bool swap = false; 9571 int pass, maxpasses; 9572 9573 if (size == MO_16) { 9574 switch (opcode) { 9575 case 0x2e: /* FCMLT (zero) */ 9576 swap = true; 9577 /* fall through */ 9578 case 0x2c: /* FCMGT (zero) */ 9579 genfn = gen_helper_advsimd_cgt_f16; 9580 break; 9581 case 0x2d: /* FCMEQ (zero) */ 9582 genfn = gen_helper_advsimd_ceq_f16; 9583 break; 9584 case 0x6d: /* FCMLE (zero) */ 9585 swap = true; 9586 /* fall through */ 9587 case 0x6c: /* FCMGE (zero) */ 9588 genfn = gen_helper_advsimd_cge_f16; 9589 break; 9590 default: 9591 g_assert_not_reached(); 9592 } 9593 } else { 9594 switch (opcode) { 9595 case 0x2e: /* FCMLT (zero) */ 9596 swap = true; 9597 /* fall through */ 9598 case 0x2c: /* FCMGT (zero) */ 9599 genfn = gen_helper_neon_cgt_f32; 9600 break; 9601 case 0x2d: /* FCMEQ (zero) */ 9602 genfn = gen_helper_neon_ceq_f32; 9603 break; 9604 case 0x6d: /* FCMLE (zero) */ 9605 swap = true; 9606 /* fall through */ 9607 case 0x6c: /* FCMGE (zero) */ 9608 genfn = gen_helper_neon_cge_f32; 9609 break; 9610 default: 9611 g_assert_not_reached(); 9612 } 9613 } 9614 9615 if (is_scalar) { 9616 maxpasses = 1; 9617 } else { 9618 int vector_size = 8 << is_q; 9619 maxpasses = vector_size >> size; 9620 } 9621 9622 for (pass = 0; pass < maxpasses; pass++) { 9623 read_vec_element_i32(s, tcg_op, rn, pass, size); 9624 if (swap) { 9625 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9626 } else { 9627 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9628 } 9629 if (is_scalar) { 9630 write_fp_sreg(s, rd, tcg_res); 9631 } else { 9632 write_vec_element_i32(s, tcg_res, rd, pass, size); 9633 } 9634 } 9635 9636 if (!is_scalar) { 9637 clear_vec_high(s, is_q, rd); 9638 } 9639 } 9640 } 9641 9642 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9643 bool is_scalar, bool is_u, bool is_q, 9644 int size, int rn, int rd) 9645 { 9646 bool is_double = (size == 3); 9647 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9648 9649 if (is_double) { 9650 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9651 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9652 int pass; 9653 9654 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9655 read_vec_element(s, tcg_op, rn, pass, MO_64); 9656 switch (opcode) { 9657 case 0x3d: /* FRECPE */ 9658 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9659 break; 9660 case 0x3f: /* FRECPX */ 9661 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9662 break; 9663 case 0x7d: /* FRSQRTE */ 9664 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9665 break; 9666 default: 9667 g_assert_not_reached(); 9668 } 9669 write_vec_element(s, tcg_res, rd, pass, MO_64); 9670 } 9671 clear_vec_high(s, !is_scalar, rd); 9672 } else { 9673 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9674 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9675 int pass, maxpasses; 9676 9677 if (is_scalar) { 9678 maxpasses = 1; 9679 } else { 9680 maxpasses = is_q ? 4 : 2; 9681 } 9682 9683 for (pass = 0; pass < maxpasses; pass++) { 9684 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9685 9686 switch (opcode) { 9687 case 0x3c: /* URECPE */ 9688 gen_helper_recpe_u32(tcg_res, tcg_op); 9689 break; 9690 case 0x3d: /* FRECPE */ 9691 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9692 break; 9693 case 0x3f: /* FRECPX */ 9694 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9695 break; 9696 case 0x7d: /* FRSQRTE */ 9697 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9698 break; 9699 default: 9700 g_assert_not_reached(); 9701 } 9702 9703 if (is_scalar) { 9704 write_fp_sreg(s, rd, tcg_res); 9705 } else { 9706 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9707 } 9708 } 9709 if (!is_scalar) { 9710 clear_vec_high(s, is_q, rd); 9711 } 9712 } 9713 } 9714 9715 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9716 int opcode, bool u, bool is_q, 9717 int size, int rn, int rd) 9718 { 9719 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9720 * in the source becomes a size element in the destination). 9721 */ 9722 int pass; 9723 TCGv_i32 tcg_res[2]; 9724 int destelt = is_q ? 2 : 0; 9725 int passes = scalar ? 1 : 2; 9726 9727 if (scalar) { 9728 tcg_res[1] = tcg_constant_i32(0); 9729 } 9730 9731 for (pass = 0; pass < passes; pass++) { 9732 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9733 NeonGenNarrowFn *genfn = NULL; 9734 NeonGenNarrowEnvFn *genenvfn = NULL; 9735 9736 if (scalar) { 9737 read_vec_element(s, tcg_op, rn, pass, size + 1); 9738 } else { 9739 read_vec_element(s, tcg_op, rn, pass, MO_64); 9740 } 9741 tcg_res[pass] = tcg_temp_new_i32(); 9742 9743 switch (opcode) { 9744 case 0x12: /* XTN, SQXTUN */ 9745 { 9746 static NeonGenNarrowFn * const xtnfns[3] = { 9747 gen_helper_neon_narrow_u8, 9748 gen_helper_neon_narrow_u16, 9749 tcg_gen_extrl_i64_i32, 9750 }; 9751 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9752 gen_helper_neon_unarrow_sat8, 9753 gen_helper_neon_unarrow_sat16, 9754 gen_helper_neon_unarrow_sat32, 9755 }; 9756 if (u) { 9757 genenvfn = sqxtunfns[size]; 9758 } else { 9759 genfn = xtnfns[size]; 9760 } 9761 break; 9762 } 9763 case 0x14: /* SQXTN, UQXTN */ 9764 { 9765 static NeonGenNarrowEnvFn * const fns[3][2] = { 9766 { gen_helper_neon_narrow_sat_s8, 9767 gen_helper_neon_narrow_sat_u8 }, 9768 { gen_helper_neon_narrow_sat_s16, 9769 gen_helper_neon_narrow_sat_u16 }, 9770 { gen_helper_neon_narrow_sat_s32, 9771 gen_helper_neon_narrow_sat_u32 }, 9772 }; 9773 genenvfn = fns[size][u]; 9774 break; 9775 } 9776 case 0x16: /* FCVTN, FCVTN2 */ 9777 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9778 if (size == 2) { 9779 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9780 } else { 9781 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9782 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9783 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9784 TCGv_i32 ahp = get_ahp_flag(); 9785 9786 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9787 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9788 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9789 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9790 } 9791 break; 9792 case 0x36: /* BFCVTN, BFCVTN2 */ 9793 { 9794 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9795 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9796 } 9797 break; 9798 case 0x56: /* FCVTXN, FCVTXN2 */ 9799 /* 64 bit to 32 bit float conversion 9800 * with von Neumann rounding (round to odd) 9801 */ 9802 assert(size == 2); 9803 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9804 break; 9805 default: 9806 g_assert_not_reached(); 9807 } 9808 9809 if (genfn) { 9810 genfn(tcg_res[pass], tcg_op); 9811 } else if (genenvfn) { 9812 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9813 } 9814 } 9815 9816 for (pass = 0; pass < 2; pass++) { 9817 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9818 } 9819 clear_vec_high(s, is_q, rd); 9820 } 9821 9822 /* Remaining saturating accumulating ops */ 9823 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9824 bool is_q, int size, int rn, int rd) 9825 { 9826 bool is_double = (size == 3); 9827 9828 if (is_double) { 9829 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9830 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9831 int pass; 9832 9833 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9834 read_vec_element(s, tcg_rn, rn, pass, MO_64); 9835 read_vec_element(s, tcg_rd, rd, pass, MO_64); 9836 9837 if (is_u) { /* USQADD */ 9838 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9839 } else { /* SUQADD */ 9840 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9841 } 9842 write_vec_element(s, tcg_rd, rd, pass, MO_64); 9843 } 9844 clear_vec_high(s, !is_scalar, rd); 9845 } else { 9846 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9847 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 9848 int pass, maxpasses; 9849 9850 if (is_scalar) { 9851 maxpasses = 1; 9852 } else { 9853 maxpasses = is_q ? 4 : 2; 9854 } 9855 9856 for (pass = 0; pass < maxpasses; pass++) { 9857 if (is_scalar) { 9858 read_vec_element_i32(s, tcg_rn, rn, pass, size); 9859 read_vec_element_i32(s, tcg_rd, rd, pass, size); 9860 } else { 9861 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 9862 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9863 } 9864 9865 if (is_u) { /* USQADD */ 9866 switch (size) { 9867 case 0: 9868 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9869 break; 9870 case 1: 9871 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9872 break; 9873 case 2: 9874 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9875 break; 9876 default: 9877 g_assert_not_reached(); 9878 } 9879 } else { /* SUQADD */ 9880 switch (size) { 9881 case 0: 9882 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9883 break; 9884 case 1: 9885 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9886 break; 9887 case 2: 9888 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 9889 break; 9890 default: 9891 g_assert_not_reached(); 9892 } 9893 } 9894 9895 if (is_scalar) { 9896 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 9897 } 9898 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 9899 } 9900 clear_vec_high(s, is_q, rd); 9901 } 9902 } 9903 9904 /* AdvSIMD scalar two reg misc 9905 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 9906 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9907 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 9908 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 9909 */ 9910 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 9911 { 9912 int rd = extract32(insn, 0, 5); 9913 int rn = extract32(insn, 5, 5); 9914 int opcode = extract32(insn, 12, 5); 9915 int size = extract32(insn, 22, 2); 9916 bool u = extract32(insn, 29, 1); 9917 bool is_fcvt = false; 9918 int rmode; 9919 TCGv_i32 tcg_rmode; 9920 TCGv_ptr tcg_fpstatus; 9921 9922 switch (opcode) { 9923 case 0x3: /* USQADD / SUQADD*/ 9924 if (!fp_access_check(s)) { 9925 return; 9926 } 9927 handle_2misc_satacc(s, true, u, false, size, rn, rd); 9928 return; 9929 case 0x7: /* SQABS / SQNEG */ 9930 break; 9931 case 0xa: /* CMLT */ 9932 if (u) { 9933 unallocated_encoding(s); 9934 return; 9935 } 9936 /* fall through */ 9937 case 0x8: /* CMGT, CMGE */ 9938 case 0x9: /* CMEQ, CMLE */ 9939 case 0xb: /* ABS, NEG */ 9940 if (size != 3) { 9941 unallocated_encoding(s); 9942 return; 9943 } 9944 break; 9945 case 0x12: /* SQXTUN */ 9946 if (!u) { 9947 unallocated_encoding(s); 9948 return; 9949 } 9950 /* fall through */ 9951 case 0x14: /* SQXTN, UQXTN */ 9952 if (size == 3) { 9953 unallocated_encoding(s); 9954 return; 9955 } 9956 if (!fp_access_check(s)) { 9957 return; 9958 } 9959 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 9960 return; 9961 case 0xc ... 0xf: 9962 case 0x16 ... 0x1d: 9963 case 0x1f: 9964 /* Floating point: U, size[1] and opcode indicate operation; 9965 * size[0] indicates single or double precision. 9966 */ 9967 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 9968 size = extract32(size, 0, 1) ? 3 : 2; 9969 switch (opcode) { 9970 case 0x2c: /* FCMGT (zero) */ 9971 case 0x2d: /* FCMEQ (zero) */ 9972 case 0x2e: /* FCMLT (zero) */ 9973 case 0x6c: /* FCMGE (zero) */ 9974 case 0x6d: /* FCMLE (zero) */ 9975 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 9976 return; 9977 case 0x1d: /* SCVTF */ 9978 case 0x5d: /* UCVTF */ 9979 { 9980 bool is_signed = (opcode == 0x1d); 9981 if (!fp_access_check(s)) { 9982 return; 9983 } 9984 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 9985 return; 9986 } 9987 case 0x3d: /* FRECPE */ 9988 case 0x3f: /* FRECPX */ 9989 case 0x7d: /* FRSQRTE */ 9990 if (!fp_access_check(s)) { 9991 return; 9992 } 9993 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 9994 return; 9995 case 0x1a: /* FCVTNS */ 9996 case 0x1b: /* FCVTMS */ 9997 case 0x3a: /* FCVTPS */ 9998 case 0x3b: /* FCVTZS */ 9999 case 0x5a: /* FCVTNU */ 10000 case 0x5b: /* FCVTMU */ 10001 case 0x7a: /* FCVTPU */ 10002 case 0x7b: /* FCVTZU */ 10003 is_fcvt = true; 10004 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10005 break; 10006 case 0x1c: /* FCVTAS */ 10007 case 0x5c: /* FCVTAU */ 10008 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10009 is_fcvt = true; 10010 rmode = FPROUNDING_TIEAWAY; 10011 break; 10012 case 0x56: /* FCVTXN, FCVTXN2 */ 10013 if (size == 2) { 10014 unallocated_encoding(s); 10015 return; 10016 } 10017 if (!fp_access_check(s)) { 10018 return; 10019 } 10020 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10021 return; 10022 default: 10023 unallocated_encoding(s); 10024 return; 10025 } 10026 break; 10027 default: 10028 unallocated_encoding(s); 10029 return; 10030 } 10031 10032 if (!fp_access_check(s)) { 10033 return; 10034 } 10035 10036 if (is_fcvt) { 10037 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10038 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10039 } else { 10040 tcg_fpstatus = NULL; 10041 tcg_rmode = NULL; 10042 } 10043 10044 if (size == 3) { 10045 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10046 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10047 10048 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10049 write_fp_dreg(s, rd, tcg_rd); 10050 } else { 10051 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10052 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10053 10054 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10055 10056 switch (opcode) { 10057 case 0x7: /* SQABS, SQNEG */ 10058 { 10059 NeonGenOneOpEnvFn *genfn; 10060 static NeonGenOneOpEnvFn * const fns[3][2] = { 10061 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10062 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10063 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10064 }; 10065 genfn = fns[size][u]; 10066 genfn(tcg_rd, cpu_env, tcg_rn); 10067 break; 10068 } 10069 case 0x1a: /* FCVTNS */ 10070 case 0x1b: /* FCVTMS */ 10071 case 0x1c: /* FCVTAS */ 10072 case 0x3a: /* FCVTPS */ 10073 case 0x3b: /* FCVTZS */ 10074 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10075 tcg_fpstatus); 10076 break; 10077 case 0x5a: /* FCVTNU */ 10078 case 0x5b: /* FCVTMU */ 10079 case 0x5c: /* FCVTAU */ 10080 case 0x7a: /* FCVTPU */ 10081 case 0x7b: /* FCVTZU */ 10082 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10083 tcg_fpstatus); 10084 break; 10085 default: 10086 g_assert_not_reached(); 10087 } 10088 10089 write_fp_sreg(s, rd, tcg_rd); 10090 } 10091 10092 if (is_fcvt) { 10093 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10094 } 10095 } 10096 10097 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10098 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10099 int immh, int immb, int opcode, int rn, int rd) 10100 { 10101 int size = 32 - clz32(immh) - 1; 10102 int immhb = immh << 3 | immb; 10103 int shift = 2 * (8 << size) - immhb; 10104 GVecGen2iFn *gvec_fn; 10105 10106 if (extract32(immh, 3, 1) && !is_q) { 10107 unallocated_encoding(s); 10108 return; 10109 } 10110 tcg_debug_assert(size <= 3); 10111 10112 if (!fp_access_check(s)) { 10113 return; 10114 } 10115 10116 switch (opcode) { 10117 case 0x02: /* SSRA / USRA (accumulate) */ 10118 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10119 break; 10120 10121 case 0x08: /* SRI */ 10122 gvec_fn = gen_gvec_sri; 10123 break; 10124 10125 case 0x00: /* SSHR / USHR */ 10126 if (is_u) { 10127 if (shift == 8 << size) { 10128 /* Shift count the same size as element size produces zero. */ 10129 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10130 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10131 return; 10132 } 10133 gvec_fn = tcg_gen_gvec_shri; 10134 } else { 10135 /* Shift count the same size as element size produces all sign. */ 10136 if (shift == 8 << size) { 10137 shift -= 1; 10138 } 10139 gvec_fn = tcg_gen_gvec_sari; 10140 } 10141 break; 10142 10143 case 0x04: /* SRSHR / URSHR (rounding) */ 10144 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10145 break; 10146 10147 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10148 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10149 break; 10150 10151 default: 10152 g_assert_not_reached(); 10153 } 10154 10155 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10156 } 10157 10158 /* SHL/SLI - Vector shift left */ 10159 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10160 int immh, int immb, int opcode, int rn, int rd) 10161 { 10162 int size = 32 - clz32(immh) - 1; 10163 int immhb = immh << 3 | immb; 10164 int shift = immhb - (8 << size); 10165 10166 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10167 assert(size >= 0 && size <= 3); 10168 10169 if (extract32(immh, 3, 1) && !is_q) { 10170 unallocated_encoding(s); 10171 return; 10172 } 10173 10174 if (!fp_access_check(s)) { 10175 return; 10176 } 10177 10178 if (insert) { 10179 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10180 } else { 10181 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10182 } 10183 } 10184 10185 /* USHLL/SHLL - Vector shift left with widening */ 10186 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10187 int immh, int immb, int opcode, int rn, int rd) 10188 { 10189 int size = 32 - clz32(immh) - 1; 10190 int immhb = immh << 3 | immb; 10191 int shift = immhb - (8 << size); 10192 int dsize = 64; 10193 int esize = 8 << size; 10194 int elements = dsize/esize; 10195 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10196 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10197 int i; 10198 10199 if (size >= 3) { 10200 unallocated_encoding(s); 10201 return; 10202 } 10203 10204 if (!fp_access_check(s)) { 10205 return; 10206 } 10207 10208 /* For the LL variants the store is larger than the load, 10209 * so if rd == rn we would overwrite parts of our input. 10210 * So load everything right now and use shifts in the main loop. 10211 */ 10212 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10213 10214 for (i = 0; i < elements; i++) { 10215 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10216 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10217 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10218 write_vec_element(s, tcg_rd, rd, i, size + 1); 10219 } 10220 } 10221 10222 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10223 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10224 int immh, int immb, int opcode, int rn, int rd) 10225 { 10226 int immhb = immh << 3 | immb; 10227 int size = 32 - clz32(immh) - 1; 10228 int dsize = 64; 10229 int esize = 8 << size; 10230 int elements = dsize/esize; 10231 int shift = (2 * esize) - immhb; 10232 bool round = extract32(opcode, 0, 1); 10233 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10234 TCGv_i64 tcg_round; 10235 int i; 10236 10237 if (extract32(immh, 3, 1)) { 10238 unallocated_encoding(s); 10239 return; 10240 } 10241 10242 if (!fp_access_check(s)) { 10243 return; 10244 } 10245 10246 tcg_rn = tcg_temp_new_i64(); 10247 tcg_rd = tcg_temp_new_i64(); 10248 tcg_final = tcg_temp_new_i64(); 10249 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10250 10251 if (round) { 10252 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10253 } else { 10254 tcg_round = NULL; 10255 } 10256 10257 for (i = 0; i < elements; i++) { 10258 read_vec_element(s, tcg_rn, rn, i, size+1); 10259 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10260 false, true, size+1, shift); 10261 10262 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10263 } 10264 10265 if (!is_q) { 10266 write_vec_element(s, tcg_final, rd, 0, MO_64); 10267 } else { 10268 write_vec_element(s, tcg_final, rd, 1, MO_64); 10269 } 10270 10271 clear_vec_high(s, is_q, rd); 10272 } 10273 10274 10275 /* AdvSIMD shift by immediate 10276 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10277 * +---+---+---+-------------+------+------+--------+---+------+------+ 10278 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10279 * +---+---+---+-------------+------+------+--------+---+------+------+ 10280 */ 10281 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10282 { 10283 int rd = extract32(insn, 0, 5); 10284 int rn = extract32(insn, 5, 5); 10285 int opcode = extract32(insn, 11, 5); 10286 int immb = extract32(insn, 16, 3); 10287 int immh = extract32(insn, 19, 4); 10288 bool is_u = extract32(insn, 29, 1); 10289 bool is_q = extract32(insn, 30, 1); 10290 10291 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10292 assert(immh != 0); 10293 10294 switch (opcode) { 10295 case 0x08: /* SRI */ 10296 if (!is_u) { 10297 unallocated_encoding(s); 10298 return; 10299 } 10300 /* fall through */ 10301 case 0x00: /* SSHR / USHR */ 10302 case 0x02: /* SSRA / USRA (accumulate) */ 10303 case 0x04: /* SRSHR / URSHR (rounding) */ 10304 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10305 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10306 break; 10307 case 0x0a: /* SHL / SLI */ 10308 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10309 break; 10310 case 0x10: /* SHRN */ 10311 case 0x11: /* RSHRN / SQRSHRUN */ 10312 if (is_u) { 10313 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10314 opcode, rn, rd); 10315 } else { 10316 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10317 } 10318 break; 10319 case 0x12: /* SQSHRN / UQSHRN */ 10320 case 0x13: /* SQRSHRN / UQRSHRN */ 10321 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10322 opcode, rn, rd); 10323 break; 10324 case 0x14: /* SSHLL / USHLL */ 10325 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10326 break; 10327 case 0x1c: /* SCVTF / UCVTF */ 10328 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10329 opcode, rn, rd); 10330 break; 10331 case 0xc: /* SQSHLU */ 10332 if (!is_u) { 10333 unallocated_encoding(s); 10334 return; 10335 } 10336 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10337 break; 10338 case 0xe: /* SQSHL, UQSHL */ 10339 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10340 break; 10341 case 0x1f: /* FCVTZS/ FCVTZU */ 10342 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10343 return; 10344 default: 10345 unallocated_encoding(s); 10346 return; 10347 } 10348 } 10349 10350 /* Generate code to do a "long" addition or subtraction, ie one done in 10351 * TCGv_i64 on vector lanes twice the width specified by size. 10352 */ 10353 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10354 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10355 { 10356 static NeonGenTwo64OpFn * const fns[3][2] = { 10357 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10358 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10359 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10360 }; 10361 NeonGenTwo64OpFn *genfn; 10362 assert(size < 3); 10363 10364 genfn = fns[size][is_sub]; 10365 genfn(tcg_res, tcg_op1, tcg_op2); 10366 } 10367 10368 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10369 int opcode, int rd, int rn, int rm) 10370 { 10371 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10372 TCGv_i64 tcg_res[2]; 10373 int pass, accop; 10374 10375 tcg_res[0] = tcg_temp_new_i64(); 10376 tcg_res[1] = tcg_temp_new_i64(); 10377 10378 /* Does this op do an adding accumulate, a subtracting accumulate, 10379 * or no accumulate at all? 10380 */ 10381 switch (opcode) { 10382 case 5: 10383 case 8: 10384 case 9: 10385 accop = 1; 10386 break; 10387 case 10: 10388 case 11: 10389 accop = -1; 10390 break; 10391 default: 10392 accop = 0; 10393 break; 10394 } 10395 10396 if (accop != 0) { 10397 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10398 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10399 } 10400 10401 /* size == 2 means two 32x32->64 operations; this is worth special 10402 * casing because we can generally handle it inline. 10403 */ 10404 if (size == 2) { 10405 for (pass = 0; pass < 2; pass++) { 10406 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10407 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10408 TCGv_i64 tcg_passres; 10409 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10410 10411 int elt = pass + is_q * 2; 10412 10413 read_vec_element(s, tcg_op1, rn, elt, memop); 10414 read_vec_element(s, tcg_op2, rm, elt, memop); 10415 10416 if (accop == 0) { 10417 tcg_passres = tcg_res[pass]; 10418 } else { 10419 tcg_passres = tcg_temp_new_i64(); 10420 } 10421 10422 switch (opcode) { 10423 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10424 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10425 break; 10426 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10427 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10428 break; 10429 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10430 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10431 { 10432 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10433 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10434 10435 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10436 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10437 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10438 tcg_passres, 10439 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10440 break; 10441 } 10442 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10443 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10444 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10445 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10446 break; 10447 case 9: /* SQDMLAL, SQDMLAL2 */ 10448 case 11: /* SQDMLSL, SQDMLSL2 */ 10449 case 13: /* SQDMULL, SQDMULL2 */ 10450 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10451 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10452 tcg_passres, tcg_passres); 10453 break; 10454 default: 10455 g_assert_not_reached(); 10456 } 10457 10458 if (opcode == 9 || opcode == 11) { 10459 /* saturating accumulate ops */ 10460 if (accop < 0) { 10461 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10462 } 10463 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10464 tcg_res[pass], tcg_passres); 10465 } else if (accop > 0) { 10466 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10467 } else if (accop < 0) { 10468 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10469 } 10470 } 10471 } else { 10472 /* size 0 or 1, generally helper functions */ 10473 for (pass = 0; pass < 2; pass++) { 10474 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10475 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10476 TCGv_i64 tcg_passres; 10477 int elt = pass + is_q * 2; 10478 10479 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10480 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10481 10482 if (accop == 0) { 10483 tcg_passres = tcg_res[pass]; 10484 } else { 10485 tcg_passres = tcg_temp_new_i64(); 10486 } 10487 10488 switch (opcode) { 10489 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10490 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10491 { 10492 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10493 static NeonGenWidenFn * const widenfns[2][2] = { 10494 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10495 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10496 }; 10497 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10498 10499 widenfn(tcg_op2_64, tcg_op2); 10500 widenfn(tcg_passres, tcg_op1); 10501 gen_neon_addl(size, (opcode == 2), tcg_passres, 10502 tcg_passres, tcg_op2_64); 10503 break; 10504 } 10505 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10506 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10507 if (size == 0) { 10508 if (is_u) { 10509 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10510 } else { 10511 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10512 } 10513 } else { 10514 if (is_u) { 10515 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10516 } else { 10517 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10518 } 10519 } 10520 break; 10521 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10522 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10523 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10524 if (size == 0) { 10525 if (is_u) { 10526 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10527 } else { 10528 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10529 } 10530 } else { 10531 if (is_u) { 10532 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10533 } else { 10534 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10535 } 10536 } 10537 break; 10538 case 9: /* SQDMLAL, SQDMLAL2 */ 10539 case 11: /* SQDMLSL, SQDMLSL2 */ 10540 case 13: /* SQDMULL, SQDMULL2 */ 10541 assert(size == 1); 10542 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10543 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10544 tcg_passres, tcg_passres); 10545 break; 10546 default: 10547 g_assert_not_reached(); 10548 } 10549 10550 if (accop != 0) { 10551 if (opcode == 9 || opcode == 11) { 10552 /* saturating accumulate ops */ 10553 if (accop < 0) { 10554 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10555 } 10556 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10557 tcg_res[pass], 10558 tcg_passres); 10559 } else { 10560 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10561 tcg_res[pass], tcg_passres); 10562 } 10563 } 10564 } 10565 } 10566 10567 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10568 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10569 } 10570 10571 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10572 int opcode, int rd, int rn, int rm) 10573 { 10574 TCGv_i64 tcg_res[2]; 10575 int part = is_q ? 2 : 0; 10576 int pass; 10577 10578 for (pass = 0; pass < 2; pass++) { 10579 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10580 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10581 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10582 static NeonGenWidenFn * const widenfns[3][2] = { 10583 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10584 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10585 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10586 }; 10587 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10588 10589 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10590 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10591 widenfn(tcg_op2_wide, tcg_op2); 10592 tcg_res[pass] = tcg_temp_new_i64(); 10593 gen_neon_addl(size, (opcode == 3), 10594 tcg_res[pass], tcg_op1, tcg_op2_wide); 10595 } 10596 10597 for (pass = 0; pass < 2; pass++) { 10598 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10599 } 10600 } 10601 10602 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10603 { 10604 tcg_gen_addi_i64(in, in, 1U << 31); 10605 tcg_gen_extrh_i64_i32(res, in); 10606 } 10607 10608 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10609 int opcode, int rd, int rn, int rm) 10610 { 10611 TCGv_i32 tcg_res[2]; 10612 int part = is_q ? 2 : 0; 10613 int pass; 10614 10615 for (pass = 0; pass < 2; pass++) { 10616 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10617 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10618 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10619 static NeonGenNarrowFn * const narrowfns[3][2] = { 10620 { gen_helper_neon_narrow_high_u8, 10621 gen_helper_neon_narrow_round_high_u8 }, 10622 { gen_helper_neon_narrow_high_u16, 10623 gen_helper_neon_narrow_round_high_u16 }, 10624 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10625 }; 10626 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10627 10628 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10629 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10630 10631 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10632 10633 tcg_res[pass] = tcg_temp_new_i32(); 10634 gennarrow(tcg_res[pass], tcg_wideres); 10635 } 10636 10637 for (pass = 0; pass < 2; pass++) { 10638 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10639 } 10640 clear_vec_high(s, is_q, rd); 10641 } 10642 10643 /* AdvSIMD three different 10644 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10645 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10646 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10647 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10648 */ 10649 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10650 { 10651 /* Instructions in this group fall into three basic classes 10652 * (in each case with the operation working on each element in 10653 * the input vectors): 10654 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10655 * 128 bit input) 10656 * (2) wide 64 x 128 -> 128 10657 * (3) narrowing 128 x 128 -> 64 10658 * Here we do initial decode, catch unallocated cases and 10659 * dispatch to separate functions for each class. 10660 */ 10661 int is_q = extract32(insn, 30, 1); 10662 int is_u = extract32(insn, 29, 1); 10663 int size = extract32(insn, 22, 2); 10664 int opcode = extract32(insn, 12, 4); 10665 int rm = extract32(insn, 16, 5); 10666 int rn = extract32(insn, 5, 5); 10667 int rd = extract32(insn, 0, 5); 10668 10669 switch (opcode) { 10670 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10671 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10672 /* 64 x 128 -> 128 */ 10673 if (size == 3) { 10674 unallocated_encoding(s); 10675 return; 10676 } 10677 if (!fp_access_check(s)) { 10678 return; 10679 } 10680 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10681 break; 10682 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10683 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10684 /* 128 x 128 -> 64 */ 10685 if (size == 3) { 10686 unallocated_encoding(s); 10687 return; 10688 } 10689 if (!fp_access_check(s)) { 10690 return; 10691 } 10692 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10693 break; 10694 case 14: /* PMULL, PMULL2 */ 10695 if (is_u) { 10696 unallocated_encoding(s); 10697 return; 10698 } 10699 switch (size) { 10700 case 0: /* PMULL.P8 */ 10701 if (!fp_access_check(s)) { 10702 return; 10703 } 10704 /* The Q field specifies lo/hi half input for this insn. */ 10705 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10706 gen_helper_neon_pmull_h); 10707 break; 10708 10709 case 3: /* PMULL.P64 */ 10710 if (!dc_isar_feature(aa64_pmull, s)) { 10711 unallocated_encoding(s); 10712 return; 10713 } 10714 if (!fp_access_check(s)) { 10715 return; 10716 } 10717 /* The Q field specifies lo/hi half input for this insn. */ 10718 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10719 gen_helper_gvec_pmull_q); 10720 break; 10721 10722 default: 10723 unallocated_encoding(s); 10724 break; 10725 } 10726 return; 10727 case 9: /* SQDMLAL, SQDMLAL2 */ 10728 case 11: /* SQDMLSL, SQDMLSL2 */ 10729 case 13: /* SQDMULL, SQDMULL2 */ 10730 if (is_u || size == 0) { 10731 unallocated_encoding(s); 10732 return; 10733 } 10734 /* fall through */ 10735 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10736 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10737 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10738 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10739 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10740 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10741 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10742 /* 64 x 64 -> 128 */ 10743 if (size == 3) { 10744 unallocated_encoding(s); 10745 return; 10746 } 10747 if (!fp_access_check(s)) { 10748 return; 10749 } 10750 10751 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10752 break; 10753 default: 10754 /* opcode 15 not allocated */ 10755 unallocated_encoding(s); 10756 break; 10757 } 10758 } 10759 10760 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10761 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10762 { 10763 int rd = extract32(insn, 0, 5); 10764 int rn = extract32(insn, 5, 5); 10765 int rm = extract32(insn, 16, 5); 10766 int size = extract32(insn, 22, 2); 10767 bool is_u = extract32(insn, 29, 1); 10768 bool is_q = extract32(insn, 30, 1); 10769 10770 if (!fp_access_check(s)) { 10771 return; 10772 } 10773 10774 switch (size + 4 * is_u) { 10775 case 0: /* AND */ 10776 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10777 return; 10778 case 1: /* BIC */ 10779 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10780 return; 10781 case 2: /* ORR */ 10782 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10783 return; 10784 case 3: /* ORN */ 10785 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10786 return; 10787 case 4: /* EOR */ 10788 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10789 return; 10790 10791 case 5: /* BSL bitwise select */ 10792 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10793 return; 10794 case 6: /* BIT, bitwise insert if true */ 10795 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10796 return; 10797 case 7: /* BIF, bitwise insert if false */ 10798 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10799 return; 10800 10801 default: 10802 g_assert_not_reached(); 10803 } 10804 } 10805 10806 /* Pairwise op subgroup of C3.6.16. 10807 * 10808 * This is called directly or via the handle_3same_float for float pairwise 10809 * operations where the opcode and size are calculated differently. 10810 */ 10811 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10812 int size, int rn, int rm, int rd) 10813 { 10814 TCGv_ptr fpst; 10815 int pass; 10816 10817 /* Floating point operations need fpst */ 10818 if (opcode >= 0x58) { 10819 fpst = fpstatus_ptr(FPST_FPCR); 10820 } else { 10821 fpst = NULL; 10822 } 10823 10824 if (!fp_access_check(s)) { 10825 return; 10826 } 10827 10828 /* These operations work on the concatenated rm:rn, with each pair of 10829 * adjacent elements being operated on to produce an element in the result. 10830 */ 10831 if (size == 3) { 10832 TCGv_i64 tcg_res[2]; 10833 10834 for (pass = 0; pass < 2; pass++) { 10835 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10836 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10837 int passreg = (pass == 0) ? rn : rm; 10838 10839 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 10840 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 10841 tcg_res[pass] = tcg_temp_new_i64(); 10842 10843 switch (opcode) { 10844 case 0x17: /* ADDP */ 10845 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 10846 break; 10847 case 0x58: /* FMAXNMP */ 10848 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10849 break; 10850 case 0x5a: /* FADDP */ 10851 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10852 break; 10853 case 0x5e: /* FMAXP */ 10854 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10855 break; 10856 case 0x78: /* FMINNMP */ 10857 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10858 break; 10859 case 0x7e: /* FMINP */ 10860 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10861 break; 10862 default: 10863 g_assert_not_reached(); 10864 } 10865 } 10866 10867 for (pass = 0; pass < 2; pass++) { 10868 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10869 } 10870 } else { 10871 int maxpass = is_q ? 4 : 2; 10872 TCGv_i32 tcg_res[4]; 10873 10874 for (pass = 0; pass < maxpass; pass++) { 10875 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10876 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10877 NeonGenTwoOpFn *genfn = NULL; 10878 int passreg = pass < (maxpass / 2) ? rn : rm; 10879 int passelt = (is_q && (pass & 1)) ? 2 : 0; 10880 10881 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 10882 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 10883 tcg_res[pass] = tcg_temp_new_i32(); 10884 10885 switch (opcode) { 10886 case 0x17: /* ADDP */ 10887 { 10888 static NeonGenTwoOpFn * const fns[3] = { 10889 gen_helper_neon_padd_u8, 10890 gen_helper_neon_padd_u16, 10891 tcg_gen_add_i32, 10892 }; 10893 genfn = fns[size]; 10894 break; 10895 } 10896 case 0x14: /* SMAXP, UMAXP */ 10897 { 10898 static NeonGenTwoOpFn * const fns[3][2] = { 10899 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 10900 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 10901 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 10902 }; 10903 genfn = fns[size][u]; 10904 break; 10905 } 10906 case 0x15: /* SMINP, UMINP */ 10907 { 10908 static NeonGenTwoOpFn * const fns[3][2] = { 10909 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 10910 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 10911 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 10912 }; 10913 genfn = fns[size][u]; 10914 break; 10915 } 10916 /* The FP operations are all on single floats (32 bit) */ 10917 case 0x58: /* FMAXNMP */ 10918 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10919 break; 10920 case 0x5a: /* FADDP */ 10921 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10922 break; 10923 case 0x5e: /* FMAXP */ 10924 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10925 break; 10926 case 0x78: /* FMINNMP */ 10927 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10928 break; 10929 case 0x7e: /* FMINP */ 10930 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 10931 break; 10932 default: 10933 g_assert_not_reached(); 10934 } 10935 10936 /* FP ops called directly, otherwise call now */ 10937 if (genfn) { 10938 genfn(tcg_res[pass], tcg_op1, tcg_op2); 10939 } 10940 } 10941 10942 for (pass = 0; pass < maxpass; pass++) { 10943 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 10944 } 10945 clear_vec_high(s, is_q, rd); 10946 } 10947 } 10948 10949 /* Floating point op subgroup of C3.6.16. */ 10950 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 10951 { 10952 /* For floating point ops, the U, size[1] and opcode bits 10953 * together indicate the operation. size[0] indicates single 10954 * or double. 10955 */ 10956 int fpopcode = extract32(insn, 11, 5) 10957 | (extract32(insn, 23, 1) << 5) 10958 | (extract32(insn, 29, 1) << 6); 10959 int is_q = extract32(insn, 30, 1); 10960 int size = extract32(insn, 22, 1); 10961 int rm = extract32(insn, 16, 5); 10962 int rn = extract32(insn, 5, 5); 10963 int rd = extract32(insn, 0, 5); 10964 10965 int datasize = is_q ? 128 : 64; 10966 int esize = 32 << size; 10967 int elements = datasize / esize; 10968 10969 if (size == 1 && !is_q) { 10970 unallocated_encoding(s); 10971 return; 10972 } 10973 10974 switch (fpopcode) { 10975 case 0x58: /* FMAXNMP */ 10976 case 0x5a: /* FADDP */ 10977 case 0x5e: /* FMAXP */ 10978 case 0x78: /* FMINNMP */ 10979 case 0x7e: /* FMINP */ 10980 if (size && !is_q) { 10981 unallocated_encoding(s); 10982 return; 10983 } 10984 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 10985 rn, rm, rd); 10986 return; 10987 case 0x1b: /* FMULX */ 10988 case 0x1f: /* FRECPS */ 10989 case 0x3f: /* FRSQRTS */ 10990 case 0x5d: /* FACGE */ 10991 case 0x7d: /* FACGT */ 10992 case 0x19: /* FMLA */ 10993 case 0x39: /* FMLS */ 10994 case 0x18: /* FMAXNM */ 10995 case 0x1a: /* FADD */ 10996 case 0x1c: /* FCMEQ */ 10997 case 0x1e: /* FMAX */ 10998 case 0x38: /* FMINNM */ 10999 case 0x3a: /* FSUB */ 11000 case 0x3e: /* FMIN */ 11001 case 0x5b: /* FMUL */ 11002 case 0x5c: /* FCMGE */ 11003 case 0x5f: /* FDIV */ 11004 case 0x7a: /* FABD */ 11005 case 0x7c: /* FCMGT */ 11006 if (!fp_access_check(s)) { 11007 return; 11008 } 11009 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11010 return; 11011 11012 case 0x1d: /* FMLAL */ 11013 case 0x3d: /* FMLSL */ 11014 case 0x59: /* FMLAL2 */ 11015 case 0x79: /* FMLSL2 */ 11016 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11017 unallocated_encoding(s); 11018 return; 11019 } 11020 if (fp_access_check(s)) { 11021 int is_s = extract32(insn, 23, 1); 11022 int is_2 = extract32(insn, 29, 1); 11023 int data = (is_2 << 1) | is_s; 11024 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11025 vec_full_reg_offset(s, rn), 11026 vec_full_reg_offset(s, rm), cpu_env, 11027 is_q ? 16 : 8, vec_full_reg_size(s), 11028 data, gen_helper_gvec_fmlal_a64); 11029 } 11030 return; 11031 11032 default: 11033 unallocated_encoding(s); 11034 return; 11035 } 11036 } 11037 11038 /* Integer op subgroup of C3.6.16. */ 11039 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11040 { 11041 int is_q = extract32(insn, 30, 1); 11042 int u = extract32(insn, 29, 1); 11043 int size = extract32(insn, 22, 2); 11044 int opcode = extract32(insn, 11, 5); 11045 int rm = extract32(insn, 16, 5); 11046 int rn = extract32(insn, 5, 5); 11047 int rd = extract32(insn, 0, 5); 11048 int pass; 11049 TCGCond cond; 11050 11051 switch (opcode) { 11052 case 0x13: /* MUL, PMUL */ 11053 if (u && size != 0) { 11054 unallocated_encoding(s); 11055 return; 11056 } 11057 /* fall through */ 11058 case 0x0: /* SHADD, UHADD */ 11059 case 0x2: /* SRHADD, URHADD */ 11060 case 0x4: /* SHSUB, UHSUB */ 11061 case 0xc: /* SMAX, UMAX */ 11062 case 0xd: /* SMIN, UMIN */ 11063 case 0xe: /* SABD, UABD */ 11064 case 0xf: /* SABA, UABA */ 11065 case 0x12: /* MLA, MLS */ 11066 if (size == 3) { 11067 unallocated_encoding(s); 11068 return; 11069 } 11070 break; 11071 case 0x16: /* SQDMULH, SQRDMULH */ 11072 if (size == 0 || size == 3) { 11073 unallocated_encoding(s); 11074 return; 11075 } 11076 break; 11077 default: 11078 if (size == 3 && !is_q) { 11079 unallocated_encoding(s); 11080 return; 11081 } 11082 break; 11083 } 11084 11085 if (!fp_access_check(s)) { 11086 return; 11087 } 11088 11089 switch (opcode) { 11090 case 0x01: /* SQADD, UQADD */ 11091 if (u) { 11092 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11093 } else { 11094 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11095 } 11096 return; 11097 case 0x05: /* SQSUB, UQSUB */ 11098 if (u) { 11099 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11100 } else { 11101 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11102 } 11103 return; 11104 case 0x08: /* SSHL, USHL */ 11105 if (u) { 11106 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11107 } else { 11108 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11109 } 11110 return; 11111 case 0x0c: /* SMAX, UMAX */ 11112 if (u) { 11113 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11114 } else { 11115 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11116 } 11117 return; 11118 case 0x0d: /* SMIN, UMIN */ 11119 if (u) { 11120 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11121 } else { 11122 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11123 } 11124 return; 11125 case 0xe: /* SABD, UABD */ 11126 if (u) { 11127 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11128 } else { 11129 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11130 } 11131 return; 11132 case 0xf: /* SABA, UABA */ 11133 if (u) { 11134 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11135 } else { 11136 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11137 } 11138 return; 11139 case 0x10: /* ADD, SUB */ 11140 if (u) { 11141 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11142 } else { 11143 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11144 } 11145 return; 11146 case 0x13: /* MUL, PMUL */ 11147 if (!u) { /* MUL */ 11148 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11149 } else { /* PMUL */ 11150 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11151 } 11152 return; 11153 case 0x12: /* MLA, MLS */ 11154 if (u) { 11155 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11156 } else { 11157 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11158 } 11159 return; 11160 case 0x16: /* SQDMULH, SQRDMULH */ 11161 { 11162 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11163 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11164 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11165 }; 11166 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11167 } 11168 return; 11169 case 0x11: 11170 if (!u) { /* CMTST */ 11171 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11172 return; 11173 } 11174 /* else CMEQ */ 11175 cond = TCG_COND_EQ; 11176 goto do_gvec_cmp; 11177 case 0x06: /* CMGT, CMHI */ 11178 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11179 goto do_gvec_cmp; 11180 case 0x07: /* CMGE, CMHS */ 11181 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11182 do_gvec_cmp: 11183 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11184 vec_full_reg_offset(s, rn), 11185 vec_full_reg_offset(s, rm), 11186 is_q ? 16 : 8, vec_full_reg_size(s)); 11187 return; 11188 } 11189 11190 if (size == 3) { 11191 assert(is_q); 11192 for (pass = 0; pass < 2; pass++) { 11193 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11194 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11195 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11196 11197 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11198 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11199 11200 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11201 11202 write_vec_element(s, tcg_res, rd, pass, MO_64); 11203 } 11204 } else { 11205 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11206 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11207 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11208 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11209 NeonGenTwoOpFn *genfn = NULL; 11210 NeonGenTwoOpEnvFn *genenvfn = NULL; 11211 11212 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11213 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11214 11215 switch (opcode) { 11216 case 0x0: /* SHADD, UHADD */ 11217 { 11218 static NeonGenTwoOpFn * const fns[3][2] = { 11219 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11220 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11221 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11222 }; 11223 genfn = fns[size][u]; 11224 break; 11225 } 11226 case 0x2: /* SRHADD, URHADD */ 11227 { 11228 static NeonGenTwoOpFn * const fns[3][2] = { 11229 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11230 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11231 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11232 }; 11233 genfn = fns[size][u]; 11234 break; 11235 } 11236 case 0x4: /* SHSUB, UHSUB */ 11237 { 11238 static NeonGenTwoOpFn * const fns[3][2] = { 11239 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11240 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11241 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11242 }; 11243 genfn = fns[size][u]; 11244 break; 11245 } 11246 case 0x9: /* SQSHL, UQSHL */ 11247 { 11248 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11249 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11250 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11251 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11252 }; 11253 genenvfn = fns[size][u]; 11254 break; 11255 } 11256 case 0xa: /* SRSHL, URSHL */ 11257 { 11258 static NeonGenTwoOpFn * const fns[3][2] = { 11259 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11260 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11261 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11262 }; 11263 genfn = fns[size][u]; 11264 break; 11265 } 11266 case 0xb: /* SQRSHL, UQRSHL */ 11267 { 11268 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11269 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11270 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11271 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11272 }; 11273 genenvfn = fns[size][u]; 11274 break; 11275 } 11276 default: 11277 g_assert_not_reached(); 11278 } 11279 11280 if (genenvfn) { 11281 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11282 } else { 11283 genfn(tcg_res, tcg_op1, tcg_op2); 11284 } 11285 11286 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11287 } 11288 } 11289 clear_vec_high(s, is_q, rd); 11290 } 11291 11292 /* AdvSIMD three same 11293 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11294 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11295 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11296 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11297 */ 11298 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11299 { 11300 int opcode = extract32(insn, 11, 5); 11301 11302 switch (opcode) { 11303 case 0x3: /* logic ops */ 11304 disas_simd_3same_logic(s, insn); 11305 break; 11306 case 0x17: /* ADDP */ 11307 case 0x14: /* SMAXP, UMAXP */ 11308 case 0x15: /* SMINP, UMINP */ 11309 { 11310 /* Pairwise operations */ 11311 int is_q = extract32(insn, 30, 1); 11312 int u = extract32(insn, 29, 1); 11313 int size = extract32(insn, 22, 2); 11314 int rm = extract32(insn, 16, 5); 11315 int rn = extract32(insn, 5, 5); 11316 int rd = extract32(insn, 0, 5); 11317 if (opcode == 0x17) { 11318 if (u || (size == 3 && !is_q)) { 11319 unallocated_encoding(s); 11320 return; 11321 } 11322 } else { 11323 if (size == 3) { 11324 unallocated_encoding(s); 11325 return; 11326 } 11327 } 11328 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11329 break; 11330 } 11331 case 0x18 ... 0x31: 11332 /* floating point ops, sz[1] and U are part of opcode */ 11333 disas_simd_3same_float(s, insn); 11334 break; 11335 default: 11336 disas_simd_3same_int(s, insn); 11337 break; 11338 } 11339 } 11340 11341 /* 11342 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11343 * 11344 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11345 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11346 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11347 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11348 * 11349 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11350 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11351 * 11352 */ 11353 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11354 { 11355 int opcode = extract32(insn, 11, 3); 11356 int u = extract32(insn, 29, 1); 11357 int a = extract32(insn, 23, 1); 11358 int is_q = extract32(insn, 30, 1); 11359 int rm = extract32(insn, 16, 5); 11360 int rn = extract32(insn, 5, 5); 11361 int rd = extract32(insn, 0, 5); 11362 /* 11363 * For these floating point ops, the U, a and opcode bits 11364 * together indicate the operation. 11365 */ 11366 int fpopcode = opcode | (a << 3) | (u << 4); 11367 int datasize = is_q ? 128 : 64; 11368 int elements = datasize / 16; 11369 bool pairwise; 11370 TCGv_ptr fpst; 11371 int pass; 11372 11373 switch (fpopcode) { 11374 case 0x0: /* FMAXNM */ 11375 case 0x1: /* FMLA */ 11376 case 0x2: /* FADD */ 11377 case 0x3: /* FMULX */ 11378 case 0x4: /* FCMEQ */ 11379 case 0x6: /* FMAX */ 11380 case 0x7: /* FRECPS */ 11381 case 0x8: /* FMINNM */ 11382 case 0x9: /* FMLS */ 11383 case 0xa: /* FSUB */ 11384 case 0xe: /* FMIN */ 11385 case 0xf: /* FRSQRTS */ 11386 case 0x13: /* FMUL */ 11387 case 0x14: /* FCMGE */ 11388 case 0x15: /* FACGE */ 11389 case 0x17: /* FDIV */ 11390 case 0x1a: /* FABD */ 11391 case 0x1c: /* FCMGT */ 11392 case 0x1d: /* FACGT */ 11393 pairwise = false; 11394 break; 11395 case 0x10: /* FMAXNMP */ 11396 case 0x12: /* FADDP */ 11397 case 0x16: /* FMAXP */ 11398 case 0x18: /* FMINNMP */ 11399 case 0x1e: /* FMINP */ 11400 pairwise = true; 11401 break; 11402 default: 11403 unallocated_encoding(s); 11404 return; 11405 } 11406 11407 if (!dc_isar_feature(aa64_fp16, s)) { 11408 unallocated_encoding(s); 11409 return; 11410 } 11411 11412 if (!fp_access_check(s)) { 11413 return; 11414 } 11415 11416 fpst = fpstatus_ptr(FPST_FPCR_F16); 11417 11418 if (pairwise) { 11419 int maxpass = is_q ? 8 : 4; 11420 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11421 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11422 TCGv_i32 tcg_res[8]; 11423 11424 for (pass = 0; pass < maxpass; pass++) { 11425 int passreg = pass < (maxpass / 2) ? rn : rm; 11426 int passelt = (pass << 1) & (maxpass - 1); 11427 11428 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11429 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11430 tcg_res[pass] = tcg_temp_new_i32(); 11431 11432 switch (fpopcode) { 11433 case 0x10: /* FMAXNMP */ 11434 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11435 fpst); 11436 break; 11437 case 0x12: /* FADDP */ 11438 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11439 break; 11440 case 0x16: /* FMAXP */ 11441 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11442 break; 11443 case 0x18: /* FMINNMP */ 11444 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11445 fpst); 11446 break; 11447 case 0x1e: /* FMINP */ 11448 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11449 break; 11450 default: 11451 g_assert_not_reached(); 11452 } 11453 } 11454 11455 for (pass = 0; pass < maxpass; pass++) { 11456 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11457 } 11458 } else { 11459 for (pass = 0; pass < elements; pass++) { 11460 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11461 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11462 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11463 11464 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11465 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11466 11467 switch (fpopcode) { 11468 case 0x0: /* FMAXNM */ 11469 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11470 break; 11471 case 0x1: /* FMLA */ 11472 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11473 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11474 fpst); 11475 break; 11476 case 0x2: /* FADD */ 11477 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11478 break; 11479 case 0x3: /* FMULX */ 11480 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11481 break; 11482 case 0x4: /* FCMEQ */ 11483 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11484 break; 11485 case 0x6: /* FMAX */ 11486 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11487 break; 11488 case 0x7: /* FRECPS */ 11489 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11490 break; 11491 case 0x8: /* FMINNM */ 11492 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11493 break; 11494 case 0x9: /* FMLS */ 11495 /* As usual for ARM, separate negation for fused multiply-add */ 11496 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11497 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11498 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11499 fpst); 11500 break; 11501 case 0xa: /* FSUB */ 11502 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11503 break; 11504 case 0xe: /* FMIN */ 11505 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11506 break; 11507 case 0xf: /* FRSQRTS */ 11508 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11509 break; 11510 case 0x13: /* FMUL */ 11511 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11512 break; 11513 case 0x14: /* FCMGE */ 11514 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11515 break; 11516 case 0x15: /* FACGE */ 11517 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11518 break; 11519 case 0x17: /* FDIV */ 11520 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11521 break; 11522 case 0x1a: /* FABD */ 11523 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11524 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11525 break; 11526 case 0x1c: /* FCMGT */ 11527 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11528 break; 11529 case 0x1d: /* FACGT */ 11530 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11531 break; 11532 default: 11533 g_assert_not_reached(); 11534 } 11535 11536 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11537 } 11538 } 11539 11540 clear_vec_high(s, is_q, rd); 11541 } 11542 11543 /* AdvSIMD three same extra 11544 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11545 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11546 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11547 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11548 */ 11549 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11550 { 11551 int rd = extract32(insn, 0, 5); 11552 int rn = extract32(insn, 5, 5); 11553 int opcode = extract32(insn, 11, 4); 11554 int rm = extract32(insn, 16, 5); 11555 int size = extract32(insn, 22, 2); 11556 bool u = extract32(insn, 29, 1); 11557 bool is_q = extract32(insn, 30, 1); 11558 bool feature; 11559 int rot; 11560 11561 switch (u * 16 + opcode) { 11562 case 0x10: /* SQRDMLAH (vector) */ 11563 case 0x11: /* SQRDMLSH (vector) */ 11564 if (size != 1 && size != 2) { 11565 unallocated_encoding(s); 11566 return; 11567 } 11568 feature = dc_isar_feature(aa64_rdm, s); 11569 break; 11570 case 0x02: /* SDOT (vector) */ 11571 case 0x12: /* UDOT (vector) */ 11572 if (size != MO_32) { 11573 unallocated_encoding(s); 11574 return; 11575 } 11576 feature = dc_isar_feature(aa64_dp, s); 11577 break; 11578 case 0x03: /* USDOT */ 11579 if (size != MO_32) { 11580 unallocated_encoding(s); 11581 return; 11582 } 11583 feature = dc_isar_feature(aa64_i8mm, s); 11584 break; 11585 case 0x04: /* SMMLA */ 11586 case 0x14: /* UMMLA */ 11587 case 0x05: /* USMMLA */ 11588 if (!is_q || size != MO_32) { 11589 unallocated_encoding(s); 11590 return; 11591 } 11592 feature = dc_isar_feature(aa64_i8mm, s); 11593 break; 11594 case 0x18: /* FCMLA, #0 */ 11595 case 0x19: /* FCMLA, #90 */ 11596 case 0x1a: /* FCMLA, #180 */ 11597 case 0x1b: /* FCMLA, #270 */ 11598 case 0x1c: /* FCADD, #90 */ 11599 case 0x1e: /* FCADD, #270 */ 11600 if (size == 0 11601 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11602 || (size == 3 && !is_q)) { 11603 unallocated_encoding(s); 11604 return; 11605 } 11606 feature = dc_isar_feature(aa64_fcma, s); 11607 break; 11608 case 0x1d: /* BFMMLA */ 11609 if (size != MO_16 || !is_q) { 11610 unallocated_encoding(s); 11611 return; 11612 } 11613 feature = dc_isar_feature(aa64_bf16, s); 11614 break; 11615 case 0x1f: 11616 switch (size) { 11617 case 1: /* BFDOT */ 11618 case 3: /* BFMLAL{B,T} */ 11619 feature = dc_isar_feature(aa64_bf16, s); 11620 break; 11621 default: 11622 unallocated_encoding(s); 11623 return; 11624 } 11625 break; 11626 default: 11627 unallocated_encoding(s); 11628 return; 11629 } 11630 if (!feature) { 11631 unallocated_encoding(s); 11632 return; 11633 } 11634 if (!fp_access_check(s)) { 11635 return; 11636 } 11637 11638 switch (opcode) { 11639 case 0x0: /* SQRDMLAH (vector) */ 11640 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11641 return; 11642 11643 case 0x1: /* SQRDMLSH (vector) */ 11644 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11645 return; 11646 11647 case 0x2: /* SDOT / UDOT */ 11648 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11649 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11650 return; 11651 11652 case 0x3: /* USDOT */ 11653 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11654 return; 11655 11656 case 0x04: /* SMMLA, UMMLA */ 11657 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11658 u ? gen_helper_gvec_ummla_b 11659 : gen_helper_gvec_smmla_b); 11660 return; 11661 case 0x05: /* USMMLA */ 11662 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11663 return; 11664 11665 case 0x8: /* FCMLA, #0 */ 11666 case 0x9: /* FCMLA, #90 */ 11667 case 0xa: /* FCMLA, #180 */ 11668 case 0xb: /* FCMLA, #270 */ 11669 rot = extract32(opcode, 0, 2); 11670 switch (size) { 11671 case 1: 11672 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11673 gen_helper_gvec_fcmlah); 11674 break; 11675 case 2: 11676 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11677 gen_helper_gvec_fcmlas); 11678 break; 11679 case 3: 11680 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11681 gen_helper_gvec_fcmlad); 11682 break; 11683 default: 11684 g_assert_not_reached(); 11685 } 11686 return; 11687 11688 case 0xc: /* FCADD, #90 */ 11689 case 0xe: /* FCADD, #270 */ 11690 rot = extract32(opcode, 1, 1); 11691 switch (size) { 11692 case 1: 11693 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11694 gen_helper_gvec_fcaddh); 11695 break; 11696 case 2: 11697 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11698 gen_helper_gvec_fcadds); 11699 break; 11700 case 3: 11701 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11702 gen_helper_gvec_fcaddd); 11703 break; 11704 default: 11705 g_assert_not_reached(); 11706 } 11707 return; 11708 11709 case 0xd: /* BFMMLA */ 11710 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11711 return; 11712 case 0xf: 11713 switch (size) { 11714 case 1: /* BFDOT */ 11715 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11716 break; 11717 case 3: /* BFMLAL{B,T} */ 11718 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11719 gen_helper_gvec_bfmlal); 11720 break; 11721 default: 11722 g_assert_not_reached(); 11723 } 11724 return; 11725 11726 default: 11727 g_assert_not_reached(); 11728 } 11729 } 11730 11731 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11732 int size, int rn, int rd) 11733 { 11734 /* Handle 2-reg-misc ops which are widening (so each size element 11735 * in the source becomes a 2*size element in the destination. 11736 * The only instruction like this is FCVTL. 11737 */ 11738 int pass; 11739 11740 if (size == 3) { 11741 /* 32 -> 64 bit fp conversion */ 11742 TCGv_i64 tcg_res[2]; 11743 int srcelt = is_q ? 2 : 0; 11744 11745 for (pass = 0; pass < 2; pass++) { 11746 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11747 tcg_res[pass] = tcg_temp_new_i64(); 11748 11749 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11750 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11751 } 11752 for (pass = 0; pass < 2; pass++) { 11753 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11754 } 11755 } else { 11756 /* 16 -> 32 bit fp conversion */ 11757 int srcelt = is_q ? 4 : 0; 11758 TCGv_i32 tcg_res[4]; 11759 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11760 TCGv_i32 ahp = get_ahp_flag(); 11761 11762 for (pass = 0; pass < 4; pass++) { 11763 tcg_res[pass] = tcg_temp_new_i32(); 11764 11765 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11766 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11767 fpst, ahp); 11768 } 11769 for (pass = 0; pass < 4; pass++) { 11770 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11771 } 11772 } 11773 } 11774 11775 static void handle_rev(DisasContext *s, int opcode, bool u, 11776 bool is_q, int size, int rn, int rd) 11777 { 11778 int op = (opcode << 1) | u; 11779 int opsz = op + size; 11780 int grp_size = 3 - opsz; 11781 int dsize = is_q ? 128 : 64; 11782 int i; 11783 11784 if (opsz >= 3) { 11785 unallocated_encoding(s); 11786 return; 11787 } 11788 11789 if (!fp_access_check(s)) { 11790 return; 11791 } 11792 11793 if (size == 0) { 11794 /* Special case bytes, use bswap op on each group of elements */ 11795 int groups = dsize / (8 << grp_size); 11796 11797 for (i = 0; i < groups; i++) { 11798 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11799 11800 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11801 switch (grp_size) { 11802 case MO_16: 11803 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11804 break; 11805 case MO_32: 11806 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11807 break; 11808 case MO_64: 11809 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11810 break; 11811 default: 11812 g_assert_not_reached(); 11813 } 11814 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11815 } 11816 clear_vec_high(s, is_q, rd); 11817 } else { 11818 int revmask = (1 << grp_size) - 1; 11819 int esize = 8 << size; 11820 int elements = dsize / esize; 11821 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11822 TCGv_i64 tcg_rd[2]; 11823 11824 for (i = 0; i < 2; i++) { 11825 tcg_rd[i] = tcg_temp_new_i64(); 11826 tcg_gen_movi_i64(tcg_rd[i], 0); 11827 } 11828 11829 for (i = 0; i < elements; i++) { 11830 int e_rev = (i & 0xf) ^ revmask; 11831 int w = (e_rev * esize) / 64; 11832 int o = (e_rev * esize) % 64; 11833 11834 read_vec_element(s, tcg_rn, rn, i, size); 11835 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11836 } 11837 11838 for (i = 0; i < 2; i++) { 11839 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11840 } 11841 clear_vec_high(s, true, rd); 11842 } 11843 } 11844 11845 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11846 bool is_q, int size, int rn, int rd) 11847 { 11848 /* Implement the pairwise operations from 2-misc: 11849 * SADDLP, UADDLP, SADALP, UADALP. 11850 * These all add pairs of elements in the input to produce a 11851 * double-width result element in the output (possibly accumulating). 11852 */ 11853 bool accum = (opcode == 0x6); 11854 int maxpass = is_q ? 2 : 1; 11855 int pass; 11856 TCGv_i64 tcg_res[2]; 11857 11858 if (size == 2) { 11859 /* 32 + 32 -> 64 op */ 11860 MemOp memop = size + (u ? 0 : MO_SIGN); 11861 11862 for (pass = 0; pass < maxpass; pass++) { 11863 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11864 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11865 11866 tcg_res[pass] = tcg_temp_new_i64(); 11867 11868 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11869 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11870 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11871 if (accum) { 11872 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11873 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11874 } 11875 } 11876 } else { 11877 for (pass = 0; pass < maxpass; pass++) { 11878 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11879 NeonGenOne64OpFn *genfn; 11880 static NeonGenOne64OpFn * const fns[2][2] = { 11881 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11882 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11883 }; 11884 11885 genfn = fns[size][u]; 11886 11887 tcg_res[pass] = tcg_temp_new_i64(); 11888 11889 read_vec_element(s, tcg_op, rn, pass, MO_64); 11890 genfn(tcg_res[pass], tcg_op); 11891 11892 if (accum) { 11893 read_vec_element(s, tcg_op, rd, pass, MO_64); 11894 if (size == 0) { 11895 gen_helper_neon_addl_u16(tcg_res[pass], 11896 tcg_res[pass], tcg_op); 11897 } else { 11898 gen_helper_neon_addl_u32(tcg_res[pass], 11899 tcg_res[pass], tcg_op); 11900 } 11901 } 11902 } 11903 } 11904 if (!is_q) { 11905 tcg_res[1] = tcg_constant_i64(0); 11906 } 11907 for (pass = 0; pass < 2; pass++) { 11908 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11909 } 11910 } 11911 11912 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 11913 { 11914 /* Implement SHLL and SHLL2 */ 11915 int pass; 11916 int part = is_q ? 2 : 0; 11917 TCGv_i64 tcg_res[2]; 11918 11919 for (pass = 0; pass < 2; pass++) { 11920 static NeonGenWidenFn * const widenfns[3] = { 11921 gen_helper_neon_widen_u8, 11922 gen_helper_neon_widen_u16, 11923 tcg_gen_extu_i32_i64, 11924 }; 11925 NeonGenWidenFn *widenfn = widenfns[size]; 11926 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11927 11928 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 11929 tcg_res[pass] = tcg_temp_new_i64(); 11930 widenfn(tcg_res[pass], tcg_op); 11931 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 11932 } 11933 11934 for (pass = 0; pass < 2; pass++) { 11935 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11936 } 11937 } 11938 11939 /* AdvSIMD two reg misc 11940 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 11941 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11942 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 11943 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 11944 */ 11945 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 11946 { 11947 int size = extract32(insn, 22, 2); 11948 int opcode = extract32(insn, 12, 5); 11949 bool u = extract32(insn, 29, 1); 11950 bool is_q = extract32(insn, 30, 1); 11951 int rn = extract32(insn, 5, 5); 11952 int rd = extract32(insn, 0, 5); 11953 bool need_fpstatus = false; 11954 int rmode = -1; 11955 TCGv_i32 tcg_rmode; 11956 TCGv_ptr tcg_fpstatus; 11957 11958 switch (opcode) { 11959 case 0x0: /* REV64, REV32 */ 11960 case 0x1: /* REV16 */ 11961 handle_rev(s, opcode, u, is_q, size, rn, rd); 11962 return; 11963 case 0x5: /* CNT, NOT, RBIT */ 11964 if (u && size == 0) { 11965 /* NOT */ 11966 break; 11967 } else if (u && size == 1) { 11968 /* RBIT */ 11969 break; 11970 } else if (!u && size == 0) { 11971 /* CNT */ 11972 break; 11973 } 11974 unallocated_encoding(s); 11975 return; 11976 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 11977 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 11978 if (size == 3) { 11979 unallocated_encoding(s); 11980 return; 11981 } 11982 if (!fp_access_check(s)) { 11983 return; 11984 } 11985 11986 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 11987 return; 11988 case 0x4: /* CLS, CLZ */ 11989 if (size == 3) { 11990 unallocated_encoding(s); 11991 return; 11992 } 11993 break; 11994 case 0x2: /* SADDLP, UADDLP */ 11995 case 0x6: /* SADALP, UADALP */ 11996 if (size == 3) { 11997 unallocated_encoding(s); 11998 return; 11999 } 12000 if (!fp_access_check(s)) { 12001 return; 12002 } 12003 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12004 return; 12005 case 0x13: /* SHLL, SHLL2 */ 12006 if (u == 0 || size == 3) { 12007 unallocated_encoding(s); 12008 return; 12009 } 12010 if (!fp_access_check(s)) { 12011 return; 12012 } 12013 handle_shll(s, is_q, size, rn, rd); 12014 return; 12015 case 0xa: /* CMLT */ 12016 if (u == 1) { 12017 unallocated_encoding(s); 12018 return; 12019 } 12020 /* fall through */ 12021 case 0x8: /* CMGT, CMGE */ 12022 case 0x9: /* CMEQ, CMLE */ 12023 case 0xb: /* ABS, NEG */ 12024 if (size == 3 && !is_q) { 12025 unallocated_encoding(s); 12026 return; 12027 } 12028 break; 12029 case 0x3: /* SUQADD, USQADD */ 12030 if (size == 3 && !is_q) { 12031 unallocated_encoding(s); 12032 return; 12033 } 12034 if (!fp_access_check(s)) { 12035 return; 12036 } 12037 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12038 return; 12039 case 0x7: /* SQABS, SQNEG */ 12040 if (size == 3 && !is_q) { 12041 unallocated_encoding(s); 12042 return; 12043 } 12044 break; 12045 case 0xc ... 0xf: 12046 case 0x16 ... 0x1f: 12047 { 12048 /* Floating point: U, size[1] and opcode indicate operation; 12049 * size[0] indicates single or double precision. 12050 */ 12051 int is_double = extract32(size, 0, 1); 12052 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12053 size = is_double ? 3 : 2; 12054 switch (opcode) { 12055 case 0x2f: /* FABS */ 12056 case 0x6f: /* FNEG */ 12057 if (size == 3 && !is_q) { 12058 unallocated_encoding(s); 12059 return; 12060 } 12061 break; 12062 case 0x1d: /* SCVTF */ 12063 case 0x5d: /* UCVTF */ 12064 { 12065 bool is_signed = (opcode == 0x1d) ? true : false; 12066 int elements = is_double ? 2 : is_q ? 4 : 2; 12067 if (is_double && !is_q) { 12068 unallocated_encoding(s); 12069 return; 12070 } 12071 if (!fp_access_check(s)) { 12072 return; 12073 } 12074 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12075 return; 12076 } 12077 case 0x2c: /* FCMGT (zero) */ 12078 case 0x2d: /* FCMEQ (zero) */ 12079 case 0x2e: /* FCMLT (zero) */ 12080 case 0x6c: /* FCMGE (zero) */ 12081 case 0x6d: /* FCMLE (zero) */ 12082 if (size == 3 && !is_q) { 12083 unallocated_encoding(s); 12084 return; 12085 } 12086 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12087 return; 12088 case 0x7f: /* FSQRT */ 12089 if (size == 3 && !is_q) { 12090 unallocated_encoding(s); 12091 return; 12092 } 12093 break; 12094 case 0x1a: /* FCVTNS */ 12095 case 0x1b: /* FCVTMS */ 12096 case 0x3a: /* FCVTPS */ 12097 case 0x3b: /* FCVTZS */ 12098 case 0x5a: /* FCVTNU */ 12099 case 0x5b: /* FCVTMU */ 12100 case 0x7a: /* FCVTPU */ 12101 case 0x7b: /* FCVTZU */ 12102 need_fpstatus = true; 12103 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12104 if (size == 3 && !is_q) { 12105 unallocated_encoding(s); 12106 return; 12107 } 12108 break; 12109 case 0x5c: /* FCVTAU */ 12110 case 0x1c: /* FCVTAS */ 12111 need_fpstatus = true; 12112 rmode = FPROUNDING_TIEAWAY; 12113 if (size == 3 && !is_q) { 12114 unallocated_encoding(s); 12115 return; 12116 } 12117 break; 12118 case 0x3c: /* URECPE */ 12119 if (size == 3) { 12120 unallocated_encoding(s); 12121 return; 12122 } 12123 /* fall through */ 12124 case 0x3d: /* FRECPE */ 12125 case 0x7d: /* FRSQRTE */ 12126 if (size == 3 && !is_q) { 12127 unallocated_encoding(s); 12128 return; 12129 } 12130 if (!fp_access_check(s)) { 12131 return; 12132 } 12133 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12134 return; 12135 case 0x56: /* FCVTXN, FCVTXN2 */ 12136 if (size == 2) { 12137 unallocated_encoding(s); 12138 return; 12139 } 12140 /* fall through */ 12141 case 0x16: /* FCVTN, FCVTN2 */ 12142 /* handle_2misc_narrow does a 2*size -> size operation, but these 12143 * instructions encode the source size rather than dest size. 12144 */ 12145 if (!fp_access_check(s)) { 12146 return; 12147 } 12148 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12149 return; 12150 case 0x36: /* BFCVTN, BFCVTN2 */ 12151 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12152 unallocated_encoding(s); 12153 return; 12154 } 12155 if (!fp_access_check(s)) { 12156 return; 12157 } 12158 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12159 return; 12160 case 0x17: /* FCVTL, FCVTL2 */ 12161 if (!fp_access_check(s)) { 12162 return; 12163 } 12164 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12165 return; 12166 case 0x18: /* FRINTN */ 12167 case 0x19: /* FRINTM */ 12168 case 0x38: /* FRINTP */ 12169 case 0x39: /* FRINTZ */ 12170 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12171 /* fall through */ 12172 case 0x59: /* FRINTX */ 12173 case 0x79: /* FRINTI */ 12174 need_fpstatus = true; 12175 if (size == 3 && !is_q) { 12176 unallocated_encoding(s); 12177 return; 12178 } 12179 break; 12180 case 0x58: /* FRINTA */ 12181 rmode = FPROUNDING_TIEAWAY; 12182 need_fpstatus = true; 12183 if (size == 3 && !is_q) { 12184 unallocated_encoding(s); 12185 return; 12186 } 12187 break; 12188 case 0x7c: /* URSQRTE */ 12189 if (size == 3) { 12190 unallocated_encoding(s); 12191 return; 12192 } 12193 break; 12194 case 0x1e: /* FRINT32Z */ 12195 case 0x1f: /* FRINT64Z */ 12196 rmode = FPROUNDING_ZERO; 12197 /* fall through */ 12198 case 0x5e: /* FRINT32X */ 12199 case 0x5f: /* FRINT64X */ 12200 need_fpstatus = true; 12201 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12202 unallocated_encoding(s); 12203 return; 12204 } 12205 break; 12206 default: 12207 unallocated_encoding(s); 12208 return; 12209 } 12210 break; 12211 } 12212 default: 12213 unallocated_encoding(s); 12214 return; 12215 } 12216 12217 if (!fp_access_check(s)) { 12218 return; 12219 } 12220 12221 if (need_fpstatus || rmode >= 0) { 12222 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12223 } else { 12224 tcg_fpstatus = NULL; 12225 } 12226 if (rmode >= 0) { 12227 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12228 } else { 12229 tcg_rmode = NULL; 12230 } 12231 12232 switch (opcode) { 12233 case 0x5: 12234 if (u && size == 0) { /* NOT */ 12235 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12236 return; 12237 } 12238 break; 12239 case 0x8: /* CMGT, CMGE */ 12240 if (u) { 12241 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12242 } else { 12243 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12244 } 12245 return; 12246 case 0x9: /* CMEQ, CMLE */ 12247 if (u) { 12248 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12249 } else { 12250 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12251 } 12252 return; 12253 case 0xa: /* CMLT */ 12254 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12255 return; 12256 case 0xb: 12257 if (u) { /* ABS, NEG */ 12258 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12259 } else { 12260 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12261 } 12262 return; 12263 } 12264 12265 if (size == 3) { 12266 /* All 64-bit element operations can be shared with scalar 2misc */ 12267 int pass; 12268 12269 /* Coverity claims (size == 3 && !is_q) has been eliminated 12270 * from all paths leading to here. 12271 */ 12272 tcg_debug_assert(is_q); 12273 for (pass = 0; pass < 2; pass++) { 12274 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12275 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12276 12277 read_vec_element(s, tcg_op, rn, pass, MO_64); 12278 12279 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12280 tcg_rmode, tcg_fpstatus); 12281 12282 write_vec_element(s, tcg_res, rd, pass, MO_64); 12283 } 12284 } else { 12285 int pass; 12286 12287 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12288 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12289 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12290 12291 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12292 12293 if (size == 2) { 12294 /* Special cases for 32 bit elements */ 12295 switch (opcode) { 12296 case 0x4: /* CLS */ 12297 if (u) { 12298 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12299 } else { 12300 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12301 } 12302 break; 12303 case 0x7: /* SQABS, SQNEG */ 12304 if (u) { 12305 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12306 } else { 12307 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12308 } 12309 break; 12310 case 0x2f: /* FABS */ 12311 gen_helper_vfp_abss(tcg_res, tcg_op); 12312 break; 12313 case 0x6f: /* FNEG */ 12314 gen_helper_vfp_negs(tcg_res, tcg_op); 12315 break; 12316 case 0x7f: /* FSQRT */ 12317 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12318 break; 12319 case 0x1a: /* FCVTNS */ 12320 case 0x1b: /* FCVTMS */ 12321 case 0x1c: /* FCVTAS */ 12322 case 0x3a: /* FCVTPS */ 12323 case 0x3b: /* FCVTZS */ 12324 gen_helper_vfp_tosls(tcg_res, tcg_op, 12325 tcg_constant_i32(0), tcg_fpstatus); 12326 break; 12327 case 0x5a: /* FCVTNU */ 12328 case 0x5b: /* FCVTMU */ 12329 case 0x5c: /* FCVTAU */ 12330 case 0x7a: /* FCVTPU */ 12331 case 0x7b: /* FCVTZU */ 12332 gen_helper_vfp_touls(tcg_res, tcg_op, 12333 tcg_constant_i32(0), tcg_fpstatus); 12334 break; 12335 case 0x18: /* FRINTN */ 12336 case 0x19: /* FRINTM */ 12337 case 0x38: /* FRINTP */ 12338 case 0x39: /* FRINTZ */ 12339 case 0x58: /* FRINTA */ 12340 case 0x79: /* FRINTI */ 12341 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12342 break; 12343 case 0x59: /* FRINTX */ 12344 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12345 break; 12346 case 0x7c: /* URSQRTE */ 12347 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12348 break; 12349 case 0x1e: /* FRINT32Z */ 12350 case 0x5e: /* FRINT32X */ 12351 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12352 break; 12353 case 0x1f: /* FRINT64Z */ 12354 case 0x5f: /* FRINT64X */ 12355 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12356 break; 12357 default: 12358 g_assert_not_reached(); 12359 } 12360 } else { 12361 /* Use helpers for 8 and 16 bit elements */ 12362 switch (opcode) { 12363 case 0x5: /* CNT, RBIT */ 12364 /* For these two insns size is part of the opcode specifier 12365 * (handled earlier); they always operate on byte elements. 12366 */ 12367 if (u) { 12368 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12369 } else { 12370 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12371 } 12372 break; 12373 case 0x7: /* SQABS, SQNEG */ 12374 { 12375 NeonGenOneOpEnvFn *genfn; 12376 static NeonGenOneOpEnvFn * const fns[2][2] = { 12377 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12378 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12379 }; 12380 genfn = fns[size][u]; 12381 genfn(tcg_res, cpu_env, tcg_op); 12382 break; 12383 } 12384 case 0x4: /* CLS, CLZ */ 12385 if (u) { 12386 if (size == 0) { 12387 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12388 } else { 12389 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12390 } 12391 } else { 12392 if (size == 0) { 12393 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12394 } else { 12395 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12396 } 12397 } 12398 break; 12399 default: 12400 g_assert_not_reached(); 12401 } 12402 } 12403 12404 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12405 } 12406 } 12407 clear_vec_high(s, is_q, rd); 12408 12409 if (tcg_rmode) { 12410 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12411 } 12412 } 12413 12414 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12415 * 12416 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12417 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12418 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12419 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12420 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12421 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12422 * 12423 * This actually covers two groups where scalar access is governed by 12424 * bit 28. A bunch of the instructions (float to integral) only exist 12425 * in the vector form and are un-allocated for the scalar decode. Also 12426 * in the scalar decode Q is always 1. 12427 */ 12428 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12429 { 12430 int fpop, opcode, a, u; 12431 int rn, rd; 12432 bool is_q; 12433 bool is_scalar; 12434 bool only_in_vector = false; 12435 12436 int pass; 12437 TCGv_i32 tcg_rmode = NULL; 12438 TCGv_ptr tcg_fpstatus = NULL; 12439 bool need_fpst = true; 12440 int rmode = -1; 12441 12442 if (!dc_isar_feature(aa64_fp16, s)) { 12443 unallocated_encoding(s); 12444 return; 12445 } 12446 12447 rd = extract32(insn, 0, 5); 12448 rn = extract32(insn, 5, 5); 12449 12450 a = extract32(insn, 23, 1); 12451 u = extract32(insn, 29, 1); 12452 is_scalar = extract32(insn, 28, 1); 12453 is_q = extract32(insn, 30, 1); 12454 12455 opcode = extract32(insn, 12, 5); 12456 fpop = deposit32(opcode, 5, 1, a); 12457 fpop = deposit32(fpop, 6, 1, u); 12458 12459 switch (fpop) { 12460 case 0x1d: /* SCVTF */ 12461 case 0x5d: /* UCVTF */ 12462 { 12463 int elements; 12464 12465 if (is_scalar) { 12466 elements = 1; 12467 } else { 12468 elements = (is_q ? 8 : 4); 12469 } 12470 12471 if (!fp_access_check(s)) { 12472 return; 12473 } 12474 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12475 return; 12476 } 12477 break; 12478 case 0x2c: /* FCMGT (zero) */ 12479 case 0x2d: /* FCMEQ (zero) */ 12480 case 0x2e: /* FCMLT (zero) */ 12481 case 0x6c: /* FCMGE (zero) */ 12482 case 0x6d: /* FCMLE (zero) */ 12483 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12484 return; 12485 case 0x3d: /* FRECPE */ 12486 case 0x3f: /* FRECPX */ 12487 break; 12488 case 0x18: /* FRINTN */ 12489 only_in_vector = true; 12490 rmode = FPROUNDING_TIEEVEN; 12491 break; 12492 case 0x19: /* FRINTM */ 12493 only_in_vector = true; 12494 rmode = FPROUNDING_NEGINF; 12495 break; 12496 case 0x38: /* FRINTP */ 12497 only_in_vector = true; 12498 rmode = FPROUNDING_POSINF; 12499 break; 12500 case 0x39: /* FRINTZ */ 12501 only_in_vector = true; 12502 rmode = FPROUNDING_ZERO; 12503 break; 12504 case 0x58: /* FRINTA */ 12505 only_in_vector = true; 12506 rmode = FPROUNDING_TIEAWAY; 12507 break; 12508 case 0x59: /* FRINTX */ 12509 case 0x79: /* FRINTI */ 12510 only_in_vector = true; 12511 /* current rounding mode */ 12512 break; 12513 case 0x1a: /* FCVTNS */ 12514 rmode = FPROUNDING_TIEEVEN; 12515 break; 12516 case 0x1b: /* FCVTMS */ 12517 rmode = FPROUNDING_NEGINF; 12518 break; 12519 case 0x1c: /* FCVTAS */ 12520 rmode = FPROUNDING_TIEAWAY; 12521 break; 12522 case 0x3a: /* FCVTPS */ 12523 rmode = FPROUNDING_POSINF; 12524 break; 12525 case 0x3b: /* FCVTZS */ 12526 rmode = FPROUNDING_ZERO; 12527 break; 12528 case 0x5a: /* FCVTNU */ 12529 rmode = FPROUNDING_TIEEVEN; 12530 break; 12531 case 0x5b: /* FCVTMU */ 12532 rmode = FPROUNDING_NEGINF; 12533 break; 12534 case 0x5c: /* FCVTAU */ 12535 rmode = FPROUNDING_TIEAWAY; 12536 break; 12537 case 0x7a: /* FCVTPU */ 12538 rmode = FPROUNDING_POSINF; 12539 break; 12540 case 0x7b: /* FCVTZU */ 12541 rmode = FPROUNDING_ZERO; 12542 break; 12543 case 0x2f: /* FABS */ 12544 case 0x6f: /* FNEG */ 12545 need_fpst = false; 12546 break; 12547 case 0x7d: /* FRSQRTE */ 12548 case 0x7f: /* FSQRT (vector) */ 12549 break; 12550 default: 12551 unallocated_encoding(s); 12552 return; 12553 } 12554 12555 12556 /* Check additional constraints for the scalar encoding */ 12557 if (is_scalar) { 12558 if (!is_q) { 12559 unallocated_encoding(s); 12560 return; 12561 } 12562 /* FRINTxx is only in the vector form */ 12563 if (only_in_vector) { 12564 unallocated_encoding(s); 12565 return; 12566 } 12567 } 12568 12569 if (!fp_access_check(s)) { 12570 return; 12571 } 12572 12573 if (rmode >= 0 || need_fpst) { 12574 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12575 } 12576 12577 if (rmode >= 0) { 12578 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12579 } 12580 12581 if (is_scalar) { 12582 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12583 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12584 12585 switch (fpop) { 12586 case 0x1a: /* FCVTNS */ 12587 case 0x1b: /* FCVTMS */ 12588 case 0x1c: /* FCVTAS */ 12589 case 0x3a: /* FCVTPS */ 12590 case 0x3b: /* FCVTZS */ 12591 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12592 break; 12593 case 0x3d: /* FRECPE */ 12594 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12595 break; 12596 case 0x3f: /* FRECPX */ 12597 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12598 break; 12599 case 0x5a: /* FCVTNU */ 12600 case 0x5b: /* FCVTMU */ 12601 case 0x5c: /* FCVTAU */ 12602 case 0x7a: /* FCVTPU */ 12603 case 0x7b: /* FCVTZU */ 12604 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12605 break; 12606 case 0x6f: /* FNEG */ 12607 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12608 break; 12609 case 0x7d: /* FRSQRTE */ 12610 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12611 break; 12612 default: 12613 g_assert_not_reached(); 12614 } 12615 12616 /* limit any sign extension going on */ 12617 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12618 write_fp_sreg(s, rd, tcg_res); 12619 } else { 12620 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12621 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12622 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12623 12624 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12625 12626 switch (fpop) { 12627 case 0x1a: /* FCVTNS */ 12628 case 0x1b: /* FCVTMS */ 12629 case 0x1c: /* FCVTAS */ 12630 case 0x3a: /* FCVTPS */ 12631 case 0x3b: /* FCVTZS */ 12632 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12633 break; 12634 case 0x3d: /* FRECPE */ 12635 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12636 break; 12637 case 0x5a: /* FCVTNU */ 12638 case 0x5b: /* FCVTMU */ 12639 case 0x5c: /* FCVTAU */ 12640 case 0x7a: /* FCVTPU */ 12641 case 0x7b: /* FCVTZU */ 12642 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12643 break; 12644 case 0x18: /* FRINTN */ 12645 case 0x19: /* FRINTM */ 12646 case 0x38: /* FRINTP */ 12647 case 0x39: /* FRINTZ */ 12648 case 0x58: /* FRINTA */ 12649 case 0x79: /* FRINTI */ 12650 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12651 break; 12652 case 0x59: /* FRINTX */ 12653 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12654 break; 12655 case 0x2f: /* FABS */ 12656 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12657 break; 12658 case 0x6f: /* FNEG */ 12659 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12660 break; 12661 case 0x7d: /* FRSQRTE */ 12662 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12663 break; 12664 case 0x7f: /* FSQRT */ 12665 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12666 break; 12667 default: 12668 g_assert_not_reached(); 12669 } 12670 12671 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12672 } 12673 12674 clear_vec_high(s, is_q, rd); 12675 } 12676 12677 if (tcg_rmode) { 12678 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12679 } 12680 } 12681 12682 /* AdvSIMD scalar x indexed element 12683 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12684 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12685 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12686 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12687 * AdvSIMD vector x indexed element 12688 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12689 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12690 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12691 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12692 */ 12693 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12694 { 12695 /* This encoding has two kinds of instruction: 12696 * normal, where we perform elt x idxelt => elt for each 12697 * element in the vector 12698 * long, where we perform elt x idxelt and generate a result of 12699 * double the width of the input element 12700 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12701 */ 12702 bool is_scalar = extract32(insn, 28, 1); 12703 bool is_q = extract32(insn, 30, 1); 12704 bool u = extract32(insn, 29, 1); 12705 int size = extract32(insn, 22, 2); 12706 int l = extract32(insn, 21, 1); 12707 int m = extract32(insn, 20, 1); 12708 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12709 int rm = extract32(insn, 16, 4); 12710 int opcode = extract32(insn, 12, 4); 12711 int h = extract32(insn, 11, 1); 12712 int rn = extract32(insn, 5, 5); 12713 int rd = extract32(insn, 0, 5); 12714 bool is_long = false; 12715 int is_fp = 0; 12716 bool is_fp16 = false; 12717 int index; 12718 TCGv_ptr fpst; 12719 12720 switch (16 * u + opcode) { 12721 case 0x08: /* MUL */ 12722 case 0x10: /* MLA */ 12723 case 0x14: /* MLS */ 12724 if (is_scalar) { 12725 unallocated_encoding(s); 12726 return; 12727 } 12728 break; 12729 case 0x02: /* SMLAL, SMLAL2 */ 12730 case 0x12: /* UMLAL, UMLAL2 */ 12731 case 0x06: /* SMLSL, SMLSL2 */ 12732 case 0x16: /* UMLSL, UMLSL2 */ 12733 case 0x0a: /* SMULL, SMULL2 */ 12734 case 0x1a: /* UMULL, UMULL2 */ 12735 if (is_scalar) { 12736 unallocated_encoding(s); 12737 return; 12738 } 12739 is_long = true; 12740 break; 12741 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12742 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12743 case 0x0b: /* SQDMULL, SQDMULL2 */ 12744 is_long = true; 12745 break; 12746 case 0x0c: /* SQDMULH */ 12747 case 0x0d: /* SQRDMULH */ 12748 break; 12749 case 0x01: /* FMLA */ 12750 case 0x05: /* FMLS */ 12751 case 0x09: /* FMUL */ 12752 case 0x19: /* FMULX */ 12753 is_fp = 1; 12754 break; 12755 case 0x1d: /* SQRDMLAH */ 12756 case 0x1f: /* SQRDMLSH */ 12757 if (!dc_isar_feature(aa64_rdm, s)) { 12758 unallocated_encoding(s); 12759 return; 12760 } 12761 break; 12762 case 0x0e: /* SDOT */ 12763 case 0x1e: /* UDOT */ 12764 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12765 unallocated_encoding(s); 12766 return; 12767 } 12768 break; 12769 case 0x0f: 12770 switch (size) { 12771 case 0: /* SUDOT */ 12772 case 2: /* USDOT */ 12773 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12774 unallocated_encoding(s); 12775 return; 12776 } 12777 size = MO_32; 12778 break; 12779 case 1: /* BFDOT */ 12780 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12781 unallocated_encoding(s); 12782 return; 12783 } 12784 size = MO_32; 12785 break; 12786 case 3: /* BFMLAL{B,T} */ 12787 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12788 unallocated_encoding(s); 12789 return; 12790 } 12791 /* can't set is_fp without other incorrect size checks */ 12792 size = MO_16; 12793 break; 12794 default: 12795 unallocated_encoding(s); 12796 return; 12797 } 12798 break; 12799 case 0x11: /* FCMLA #0 */ 12800 case 0x13: /* FCMLA #90 */ 12801 case 0x15: /* FCMLA #180 */ 12802 case 0x17: /* FCMLA #270 */ 12803 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12804 unallocated_encoding(s); 12805 return; 12806 } 12807 is_fp = 2; 12808 break; 12809 case 0x00: /* FMLAL */ 12810 case 0x04: /* FMLSL */ 12811 case 0x18: /* FMLAL2 */ 12812 case 0x1c: /* FMLSL2 */ 12813 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12814 unallocated_encoding(s); 12815 return; 12816 } 12817 size = MO_16; 12818 /* is_fp, but we pass cpu_env not fp_status. */ 12819 break; 12820 default: 12821 unallocated_encoding(s); 12822 return; 12823 } 12824 12825 switch (is_fp) { 12826 case 1: /* normal fp */ 12827 /* convert insn encoded size to MemOp size */ 12828 switch (size) { 12829 case 0: /* half-precision */ 12830 size = MO_16; 12831 is_fp16 = true; 12832 break; 12833 case MO_32: /* single precision */ 12834 case MO_64: /* double precision */ 12835 break; 12836 default: 12837 unallocated_encoding(s); 12838 return; 12839 } 12840 break; 12841 12842 case 2: /* complex fp */ 12843 /* Each indexable element is a complex pair. */ 12844 size += 1; 12845 switch (size) { 12846 case MO_32: 12847 if (h && !is_q) { 12848 unallocated_encoding(s); 12849 return; 12850 } 12851 is_fp16 = true; 12852 break; 12853 case MO_64: 12854 break; 12855 default: 12856 unallocated_encoding(s); 12857 return; 12858 } 12859 break; 12860 12861 default: /* integer */ 12862 switch (size) { 12863 case MO_8: 12864 case MO_64: 12865 unallocated_encoding(s); 12866 return; 12867 } 12868 break; 12869 } 12870 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12871 unallocated_encoding(s); 12872 return; 12873 } 12874 12875 /* Given MemOp size, adjust register and indexing. */ 12876 switch (size) { 12877 case MO_16: 12878 index = h << 2 | l << 1 | m; 12879 break; 12880 case MO_32: 12881 index = h << 1 | l; 12882 rm |= m << 4; 12883 break; 12884 case MO_64: 12885 if (l || !is_q) { 12886 unallocated_encoding(s); 12887 return; 12888 } 12889 index = h; 12890 rm |= m << 4; 12891 break; 12892 default: 12893 g_assert_not_reached(); 12894 } 12895 12896 if (!fp_access_check(s)) { 12897 return; 12898 } 12899 12900 if (is_fp) { 12901 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12902 } else { 12903 fpst = NULL; 12904 } 12905 12906 switch (16 * u + opcode) { 12907 case 0x0e: /* SDOT */ 12908 case 0x1e: /* UDOT */ 12909 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12910 u ? gen_helper_gvec_udot_idx_b 12911 : gen_helper_gvec_sdot_idx_b); 12912 return; 12913 case 0x0f: 12914 switch (extract32(insn, 22, 2)) { 12915 case 0: /* SUDOT */ 12916 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12917 gen_helper_gvec_sudot_idx_b); 12918 return; 12919 case 1: /* BFDOT */ 12920 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12921 gen_helper_gvec_bfdot_idx); 12922 return; 12923 case 2: /* USDOT */ 12924 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12925 gen_helper_gvec_usdot_idx_b); 12926 return; 12927 case 3: /* BFMLAL{B,T} */ 12928 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 12929 gen_helper_gvec_bfmlal_idx); 12930 return; 12931 } 12932 g_assert_not_reached(); 12933 case 0x11: /* FCMLA #0 */ 12934 case 0x13: /* FCMLA #90 */ 12935 case 0x15: /* FCMLA #180 */ 12936 case 0x17: /* FCMLA #270 */ 12937 { 12938 int rot = extract32(insn, 13, 2); 12939 int data = (index << 2) | rot; 12940 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 12941 vec_full_reg_offset(s, rn), 12942 vec_full_reg_offset(s, rm), 12943 vec_full_reg_offset(s, rd), fpst, 12944 is_q ? 16 : 8, vec_full_reg_size(s), data, 12945 size == MO_64 12946 ? gen_helper_gvec_fcmlas_idx 12947 : gen_helper_gvec_fcmlah_idx); 12948 } 12949 return; 12950 12951 case 0x00: /* FMLAL */ 12952 case 0x04: /* FMLSL */ 12953 case 0x18: /* FMLAL2 */ 12954 case 0x1c: /* FMLSL2 */ 12955 { 12956 int is_s = extract32(opcode, 2, 1); 12957 int is_2 = u; 12958 int data = (index << 2) | (is_2 << 1) | is_s; 12959 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 12960 vec_full_reg_offset(s, rn), 12961 vec_full_reg_offset(s, rm), cpu_env, 12962 is_q ? 16 : 8, vec_full_reg_size(s), 12963 data, gen_helper_gvec_fmlal_idx_a64); 12964 } 12965 return; 12966 12967 case 0x08: /* MUL */ 12968 if (!is_long && !is_scalar) { 12969 static gen_helper_gvec_3 * const fns[3] = { 12970 gen_helper_gvec_mul_idx_h, 12971 gen_helper_gvec_mul_idx_s, 12972 gen_helper_gvec_mul_idx_d, 12973 }; 12974 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 12975 vec_full_reg_offset(s, rn), 12976 vec_full_reg_offset(s, rm), 12977 is_q ? 16 : 8, vec_full_reg_size(s), 12978 index, fns[size - 1]); 12979 return; 12980 } 12981 break; 12982 12983 case 0x10: /* MLA */ 12984 if (!is_long && !is_scalar) { 12985 static gen_helper_gvec_4 * const fns[3] = { 12986 gen_helper_gvec_mla_idx_h, 12987 gen_helper_gvec_mla_idx_s, 12988 gen_helper_gvec_mla_idx_d, 12989 }; 12990 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 12991 vec_full_reg_offset(s, rn), 12992 vec_full_reg_offset(s, rm), 12993 vec_full_reg_offset(s, rd), 12994 is_q ? 16 : 8, vec_full_reg_size(s), 12995 index, fns[size - 1]); 12996 return; 12997 } 12998 break; 12999 13000 case 0x14: /* MLS */ 13001 if (!is_long && !is_scalar) { 13002 static gen_helper_gvec_4 * const fns[3] = { 13003 gen_helper_gvec_mls_idx_h, 13004 gen_helper_gvec_mls_idx_s, 13005 gen_helper_gvec_mls_idx_d, 13006 }; 13007 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13008 vec_full_reg_offset(s, rn), 13009 vec_full_reg_offset(s, rm), 13010 vec_full_reg_offset(s, rd), 13011 is_q ? 16 : 8, vec_full_reg_size(s), 13012 index, fns[size - 1]); 13013 return; 13014 } 13015 break; 13016 } 13017 13018 if (size == 3) { 13019 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13020 int pass; 13021 13022 assert(is_fp && is_q && !is_long); 13023 13024 read_vec_element(s, tcg_idx, rm, index, MO_64); 13025 13026 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13027 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13028 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13029 13030 read_vec_element(s, tcg_op, rn, pass, MO_64); 13031 13032 switch (16 * u + opcode) { 13033 case 0x05: /* FMLS */ 13034 /* As usual for ARM, separate negation for fused multiply-add */ 13035 gen_helper_vfp_negd(tcg_op, tcg_op); 13036 /* fall through */ 13037 case 0x01: /* FMLA */ 13038 read_vec_element(s, tcg_res, rd, pass, MO_64); 13039 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13040 break; 13041 case 0x09: /* FMUL */ 13042 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13043 break; 13044 case 0x19: /* FMULX */ 13045 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13046 break; 13047 default: 13048 g_assert_not_reached(); 13049 } 13050 13051 write_vec_element(s, tcg_res, rd, pass, MO_64); 13052 } 13053 13054 clear_vec_high(s, !is_scalar, rd); 13055 } else if (!is_long) { 13056 /* 32 bit floating point, or 16 or 32 bit integer. 13057 * For the 16 bit scalar case we use the usual Neon helpers and 13058 * rely on the fact that 0 op 0 == 0 with no side effects. 13059 */ 13060 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13061 int pass, maxpasses; 13062 13063 if (is_scalar) { 13064 maxpasses = 1; 13065 } else { 13066 maxpasses = is_q ? 4 : 2; 13067 } 13068 13069 read_vec_element_i32(s, tcg_idx, rm, index, size); 13070 13071 if (size == 1 && !is_scalar) { 13072 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13073 * the index into both halves of the 32 bit tcg_idx and then use 13074 * the usual Neon helpers. 13075 */ 13076 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13077 } 13078 13079 for (pass = 0; pass < maxpasses; pass++) { 13080 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13081 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13082 13083 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13084 13085 switch (16 * u + opcode) { 13086 case 0x08: /* MUL */ 13087 case 0x10: /* MLA */ 13088 case 0x14: /* MLS */ 13089 { 13090 static NeonGenTwoOpFn * const fns[2][2] = { 13091 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13092 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13093 }; 13094 NeonGenTwoOpFn *genfn; 13095 bool is_sub = opcode == 0x4; 13096 13097 if (size == 1) { 13098 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13099 } else { 13100 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13101 } 13102 if (opcode == 0x8) { 13103 break; 13104 } 13105 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13106 genfn = fns[size - 1][is_sub]; 13107 genfn(tcg_res, tcg_op, tcg_res); 13108 break; 13109 } 13110 case 0x05: /* FMLS */ 13111 case 0x01: /* FMLA */ 13112 read_vec_element_i32(s, tcg_res, rd, pass, 13113 is_scalar ? size : MO_32); 13114 switch (size) { 13115 case 1: 13116 if (opcode == 0x5) { 13117 /* As usual for ARM, separate negation for fused 13118 * multiply-add */ 13119 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13120 } 13121 if (is_scalar) { 13122 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13123 tcg_res, fpst); 13124 } else { 13125 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13126 tcg_res, fpst); 13127 } 13128 break; 13129 case 2: 13130 if (opcode == 0x5) { 13131 /* As usual for ARM, separate negation for 13132 * fused multiply-add */ 13133 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13134 } 13135 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13136 tcg_res, fpst); 13137 break; 13138 default: 13139 g_assert_not_reached(); 13140 } 13141 break; 13142 case 0x09: /* FMUL */ 13143 switch (size) { 13144 case 1: 13145 if (is_scalar) { 13146 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13147 tcg_idx, fpst); 13148 } else { 13149 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13150 tcg_idx, fpst); 13151 } 13152 break; 13153 case 2: 13154 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13155 break; 13156 default: 13157 g_assert_not_reached(); 13158 } 13159 break; 13160 case 0x19: /* FMULX */ 13161 switch (size) { 13162 case 1: 13163 if (is_scalar) { 13164 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13165 tcg_idx, fpst); 13166 } else { 13167 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13168 tcg_idx, fpst); 13169 } 13170 break; 13171 case 2: 13172 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13173 break; 13174 default: 13175 g_assert_not_reached(); 13176 } 13177 break; 13178 case 0x0c: /* SQDMULH */ 13179 if (size == 1) { 13180 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13181 tcg_op, tcg_idx); 13182 } else { 13183 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13184 tcg_op, tcg_idx); 13185 } 13186 break; 13187 case 0x0d: /* SQRDMULH */ 13188 if (size == 1) { 13189 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13190 tcg_op, tcg_idx); 13191 } else { 13192 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13193 tcg_op, tcg_idx); 13194 } 13195 break; 13196 case 0x1d: /* SQRDMLAH */ 13197 read_vec_element_i32(s, tcg_res, rd, pass, 13198 is_scalar ? size : MO_32); 13199 if (size == 1) { 13200 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13201 tcg_op, tcg_idx, tcg_res); 13202 } else { 13203 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13204 tcg_op, tcg_idx, tcg_res); 13205 } 13206 break; 13207 case 0x1f: /* SQRDMLSH */ 13208 read_vec_element_i32(s, tcg_res, rd, pass, 13209 is_scalar ? size : MO_32); 13210 if (size == 1) { 13211 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13212 tcg_op, tcg_idx, tcg_res); 13213 } else { 13214 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13215 tcg_op, tcg_idx, tcg_res); 13216 } 13217 break; 13218 default: 13219 g_assert_not_reached(); 13220 } 13221 13222 if (is_scalar) { 13223 write_fp_sreg(s, rd, tcg_res); 13224 } else { 13225 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13226 } 13227 } 13228 13229 clear_vec_high(s, is_q, rd); 13230 } else { 13231 /* long ops: 16x16->32 or 32x32->64 */ 13232 TCGv_i64 tcg_res[2]; 13233 int pass; 13234 bool satop = extract32(opcode, 0, 1); 13235 MemOp memop = MO_32; 13236 13237 if (satop || !u) { 13238 memop |= MO_SIGN; 13239 } 13240 13241 if (size == 2) { 13242 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13243 13244 read_vec_element(s, tcg_idx, rm, index, memop); 13245 13246 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13247 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13248 TCGv_i64 tcg_passres; 13249 int passelt; 13250 13251 if (is_scalar) { 13252 passelt = 0; 13253 } else { 13254 passelt = pass + (is_q * 2); 13255 } 13256 13257 read_vec_element(s, tcg_op, rn, passelt, memop); 13258 13259 tcg_res[pass] = tcg_temp_new_i64(); 13260 13261 if (opcode == 0xa || opcode == 0xb) { 13262 /* Non-accumulating ops */ 13263 tcg_passres = tcg_res[pass]; 13264 } else { 13265 tcg_passres = tcg_temp_new_i64(); 13266 } 13267 13268 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13269 13270 if (satop) { 13271 /* saturating, doubling */ 13272 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13273 tcg_passres, tcg_passres); 13274 } 13275 13276 if (opcode == 0xa || opcode == 0xb) { 13277 continue; 13278 } 13279 13280 /* Accumulating op: handle accumulate step */ 13281 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13282 13283 switch (opcode) { 13284 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13285 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13286 break; 13287 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13288 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13289 break; 13290 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13291 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13292 /* fall through */ 13293 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13294 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13295 tcg_res[pass], 13296 tcg_passres); 13297 break; 13298 default: 13299 g_assert_not_reached(); 13300 } 13301 } 13302 13303 clear_vec_high(s, !is_scalar, rd); 13304 } else { 13305 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13306 13307 assert(size == 1); 13308 read_vec_element_i32(s, tcg_idx, rm, index, size); 13309 13310 if (!is_scalar) { 13311 /* The simplest way to handle the 16x16 indexed ops is to 13312 * duplicate the index into both halves of the 32 bit tcg_idx 13313 * and then use the usual Neon helpers. 13314 */ 13315 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13316 } 13317 13318 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13319 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13320 TCGv_i64 tcg_passres; 13321 13322 if (is_scalar) { 13323 read_vec_element_i32(s, tcg_op, rn, pass, size); 13324 } else { 13325 read_vec_element_i32(s, tcg_op, rn, 13326 pass + (is_q * 2), MO_32); 13327 } 13328 13329 tcg_res[pass] = tcg_temp_new_i64(); 13330 13331 if (opcode == 0xa || opcode == 0xb) { 13332 /* Non-accumulating ops */ 13333 tcg_passres = tcg_res[pass]; 13334 } else { 13335 tcg_passres = tcg_temp_new_i64(); 13336 } 13337 13338 if (memop & MO_SIGN) { 13339 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13340 } else { 13341 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13342 } 13343 if (satop) { 13344 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13345 tcg_passres, tcg_passres); 13346 } 13347 13348 if (opcode == 0xa || opcode == 0xb) { 13349 continue; 13350 } 13351 13352 /* Accumulating op: handle accumulate step */ 13353 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13354 13355 switch (opcode) { 13356 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13357 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13358 tcg_passres); 13359 break; 13360 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13361 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13362 tcg_passres); 13363 break; 13364 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13365 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13366 /* fall through */ 13367 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13368 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13369 tcg_res[pass], 13370 tcg_passres); 13371 break; 13372 default: 13373 g_assert_not_reached(); 13374 } 13375 } 13376 13377 if (is_scalar) { 13378 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13379 } 13380 } 13381 13382 if (is_scalar) { 13383 tcg_res[1] = tcg_constant_i64(0); 13384 } 13385 13386 for (pass = 0; pass < 2; pass++) { 13387 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13388 } 13389 } 13390 } 13391 13392 /* Crypto AES 13393 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13394 * +-----------------+------+-----------+--------+-----+------+------+ 13395 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13396 * +-----------------+------+-----------+--------+-----+------+------+ 13397 */ 13398 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13399 { 13400 int size = extract32(insn, 22, 2); 13401 int opcode = extract32(insn, 12, 5); 13402 int rn = extract32(insn, 5, 5); 13403 int rd = extract32(insn, 0, 5); 13404 int decrypt; 13405 gen_helper_gvec_2 *genfn2 = NULL; 13406 gen_helper_gvec_3 *genfn3 = NULL; 13407 13408 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13409 unallocated_encoding(s); 13410 return; 13411 } 13412 13413 switch (opcode) { 13414 case 0x4: /* AESE */ 13415 decrypt = 0; 13416 genfn3 = gen_helper_crypto_aese; 13417 break; 13418 case 0x6: /* AESMC */ 13419 decrypt = 0; 13420 genfn2 = gen_helper_crypto_aesmc; 13421 break; 13422 case 0x5: /* AESD */ 13423 decrypt = 1; 13424 genfn3 = gen_helper_crypto_aese; 13425 break; 13426 case 0x7: /* AESIMC */ 13427 decrypt = 1; 13428 genfn2 = gen_helper_crypto_aesmc; 13429 break; 13430 default: 13431 unallocated_encoding(s); 13432 return; 13433 } 13434 13435 if (!fp_access_check(s)) { 13436 return; 13437 } 13438 if (genfn2) { 13439 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13440 } else { 13441 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13442 } 13443 } 13444 13445 /* Crypto three-reg SHA 13446 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13447 * +-----------------+------+---+------+---+--------+-----+------+------+ 13448 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13449 * +-----------------+------+---+------+---+--------+-----+------+------+ 13450 */ 13451 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13452 { 13453 int size = extract32(insn, 22, 2); 13454 int opcode = extract32(insn, 12, 3); 13455 int rm = extract32(insn, 16, 5); 13456 int rn = extract32(insn, 5, 5); 13457 int rd = extract32(insn, 0, 5); 13458 gen_helper_gvec_3 *genfn; 13459 bool feature; 13460 13461 if (size != 0) { 13462 unallocated_encoding(s); 13463 return; 13464 } 13465 13466 switch (opcode) { 13467 case 0: /* SHA1C */ 13468 genfn = gen_helper_crypto_sha1c; 13469 feature = dc_isar_feature(aa64_sha1, s); 13470 break; 13471 case 1: /* SHA1P */ 13472 genfn = gen_helper_crypto_sha1p; 13473 feature = dc_isar_feature(aa64_sha1, s); 13474 break; 13475 case 2: /* SHA1M */ 13476 genfn = gen_helper_crypto_sha1m; 13477 feature = dc_isar_feature(aa64_sha1, s); 13478 break; 13479 case 3: /* SHA1SU0 */ 13480 genfn = gen_helper_crypto_sha1su0; 13481 feature = dc_isar_feature(aa64_sha1, s); 13482 break; 13483 case 4: /* SHA256H */ 13484 genfn = gen_helper_crypto_sha256h; 13485 feature = dc_isar_feature(aa64_sha256, s); 13486 break; 13487 case 5: /* SHA256H2 */ 13488 genfn = gen_helper_crypto_sha256h2; 13489 feature = dc_isar_feature(aa64_sha256, s); 13490 break; 13491 case 6: /* SHA256SU1 */ 13492 genfn = gen_helper_crypto_sha256su1; 13493 feature = dc_isar_feature(aa64_sha256, s); 13494 break; 13495 default: 13496 unallocated_encoding(s); 13497 return; 13498 } 13499 13500 if (!feature) { 13501 unallocated_encoding(s); 13502 return; 13503 } 13504 13505 if (!fp_access_check(s)) { 13506 return; 13507 } 13508 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13509 } 13510 13511 /* Crypto two-reg SHA 13512 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13513 * +-----------------+------+-----------+--------+-----+------+------+ 13514 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13515 * +-----------------+------+-----------+--------+-----+------+------+ 13516 */ 13517 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13518 { 13519 int size = extract32(insn, 22, 2); 13520 int opcode = extract32(insn, 12, 5); 13521 int rn = extract32(insn, 5, 5); 13522 int rd = extract32(insn, 0, 5); 13523 gen_helper_gvec_2 *genfn; 13524 bool feature; 13525 13526 if (size != 0) { 13527 unallocated_encoding(s); 13528 return; 13529 } 13530 13531 switch (opcode) { 13532 case 0: /* SHA1H */ 13533 feature = dc_isar_feature(aa64_sha1, s); 13534 genfn = gen_helper_crypto_sha1h; 13535 break; 13536 case 1: /* SHA1SU1 */ 13537 feature = dc_isar_feature(aa64_sha1, s); 13538 genfn = gen_helper_crypto_sha1su1; 13539 break; 13540 case 2: /* SHA256SU0 */ 13541 feature = dc_isar_feature(aa64_sha256, s); 13542 genfn = gen_helper_crypto_sha256su0; 13543 break; 13544 default: 13545 unallocated_encoding(s); 13546 return; 13547 } 13548 13549 if (!feature) { 13550 unallocated_encoding(s); 13551 return; 13552 } 13553 13554 if (!fp_access_check(s)) { 13555 return; 13556 } 13557 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13558 } 13559 13560 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13561 { 13562 tcg_gen_rotli_i64(d, m, 1); 13563 tcg_gen_xor_i64(d, d, n); 13564 } 13565 13566 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13567 { 13568 tcg_gen_rotli_vec(vece, d, m, 1); 13569 tcg_gen_xor_vec(vece, d, d, n); 13570 } 13571 13572 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13573 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13574 { 13575 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13576 static const GVecGen3 op = { 13577 .fni8 = gen_rax1_i64, 13578 .fniv = gen_rax1_vec, 13579 .opt_opc = vecop_list, 13580 .fno = gen_helper_crypto_rax1, 13581 .vece = MO_64, 13582 }; 13583 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13584 } 13585 13586 /* Crypto three-reg SHA512 13587 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13588 * +-----------------------+------+---+---+-----+--------+------+------+ 13589 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13590 * +-----------------------+------+---+---+-----+--------+------+------+ 13591 */ 13592 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13593 { 13594 int opcode = extract32(insn, 10, 2); 13595 int o = extract32(insn, 14, 1); 13596 int rm = extract32(insn, 16, 5); 13597 int rn = extract32(insn, 5, 5); 13598 int rd = extract32(insn, 0, 5); 13599 bool feature; 13600 gen_helper_gvec_3 *oolfn = NULL; 13601 GVecGen3Fn *gvecfn = NULL; 13602 13603 if (o == 0) { 13604 switch (opcode) { 13605 case 0: /* SHA512H */ 13606 feature = dc_isar_feature(aa64_sha512, s); 13607 oolfn = gen_helper_crypto_sha512h; 13608 break; 13609 case 1: /* SHA512H2 */ 13610 feature = dc_isar_feature(aa64_sha512, s); 13611 oolfn = gen_helper_crypto_sha512h2; 13612 break; 13613 case 2: /* SHA512SU1 */ 13614 feature = dc_isar_feature(aa64_sha512, s); 13615 oolfn = gen_helper_crypto_sha512su1; 13616 break; 13617 case 3: /* RAX1 */ 13618 feature = dc_isar_feature(aa64_sha3, s); 13619 gvecfn = gen_gvec_rax1; 13620 break; 13621 default: 13622 g_assert_not_reached(); 13623 } 13624 } else { 13625 switch (opcode) { 13626 case 0: /* SM3PARTW1 */ 13627 feature = dc_isar_feature(aa64_sm3, s); 13628 oolfn = gen_helper_crypto_sm3partw1; 13629 break; 13630 case 1: /* SM3PARTW2 */ 13631 feature = dc_isar_feature(aa64_sm3, s); 13632 oolfn = gen_helper_crypto_sm3partw2; 13633 break; 13634 case 2: /* SM4EKEY */ 13635 feature = dc_isar_feature(aa64_sm4, s); 13636 oolfn = gen_helper_crypto_sm4ekey; 13637 break; 13638 default: 13639 unallocated_encoding(s); 13640 return; 13641 } 13642 } 13643 13644 if (!feature) { 13645 unallocated_encoding(s); 13646 return; 13647 } 13648 13649 if (!fp_access_check(s)) { 13650 return; 13651 } 13652 13653 if (oolfn) { 13654 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13655 } else { 13656 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13657 } 13658 } 13659 13660 /* Crypto two-reg SHA512 13661 * 31 12 11 10 9 5 4 0 13662 * +-----------------------------------------+--------+------+------+ 13663 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13664 * +-----------------------------------------+--------+------+------+ 13665 */ 13666 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13667 { 13668 int opcode = extract32(insn, 10, 2); 13669 int rn = extract32(insn, 5, 5); 13670 int rd = extract32(insn, 0, 5); 13671 bool feature; 13672 13673 switch (opcode) { 13674 case 0: /* SHA512SU0 */ 13675 feature = dc_isar_feature(aa64_sha512, s); 13676 break; 13677 case 1: /* SM4E */ 13678 feature = dc_isar_feature(aa64_sm4, s); 13679 break; 13680 default: 13681 unallocated_encoding(s); 13682 return; 13683 } 13684 13685 if (!feature) { 13686 unallocated_encoding(s); 13687 return; 13688 } 13689 13690 if (!fp_access_check(s)) { 13691 return; 13692 } 13693 13694 switch (opcode) { 13695 case 0: /* SHA512SU0 */ 13696 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13697 break; 13698 case 1: /* SM4E */ 13699 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13700 break; 13701 default: 13702 g_assert_not_reached(); 13703 } 13704 } 13705 13706 /* Crypto four-register 13707 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13708 * +-------------------+-----+------+---+------+------+------+ 13709 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13710 * +-------------------+-----+------+---+------+------+------+ 13711 */ 13712 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13713 { 13714 int op0 = extract32(insn, 21, 2); 13715 int rm = extract32(insn, 16, 5); 13716 int ra = extract32(insn, 10, 5); 13717 int rn = extract32(insn, 5, 5); 13718 int rd = extract32(insn, 0, 5); 13719 bool feature; 13720 13721 switch (op0) { 13722 case 0: /* EOR3 */ 13723 case 1: /* BCAX */ 13724 feature = dc_isar_feature(aa64_sha3, s); 13725 break; 13726 case 2: /* SM3SS1 */ 13727 feature = dc_isar_feature(aa64_sm3, s); 13728 break; 13729 default: 13730 unallocated_encoding(s); 13731 return; 13732 } 13733 13734 if (!feature) { 13735 unallocated_encoding(s); 13736 return; 13737 } 13738 13739 if (!fp_access_check(s)) { 13740 return; 13741 } 13742 13743 if (op0 < 2) { 13744 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13745 int pass; 13746 13747 tcg_op1 = tcg_temp_new_i64(); 13748 tcg_op2 = tcg_temp_new_i64(); 13749 tcg_op3 = tcg_temp_new_i64(); 13750 tcg_res[0] = tcg_temp_new_i64(); 13751 tcg_res[1] = tcg_temp_new_i64(); 13752 13753 for (pass = 0; pass < 2; pass++) { 13754 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13755 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13756 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13757 13758 if (op0 == 0) { 13759 /* EOR3 */ 13760 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13761 } else { 13762 /* BCAX */ 13763 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13764 } 13765 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13766 } 13767 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13768 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13769 } else { 13770 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13771 13772 tcg_op1 = tcg_temp_new_i32(); 13773 tcg_op2 = tcg_temp_new_i32(); 13774 tcg_op3 = tcg_temp_new_i32(); 13775 tcg_res = tcg_temp_new_i32(); 13776 tcg_zero = tcg_constant_i32(0); 13777 13778 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13779 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13780 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13781 13782 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13783 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13784 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13785 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13786 13787 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13788 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13789 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13790 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13791 } 13792 } 13793 13794 /* Crypto XAR 13795 * 31 21 20 16 15 10 9 5 4 0 13796 * +-----------------------+------+--------+------+------+ 13797 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13798 * +-----------------------+------+--------+------+------+ 13799 */ 13800 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13801 { 13802 int rm = extract32(insn, 16, 5); 13803 int imm6 = extract32(insn, 10, 6); 13804 int rn = extract32(insn, 5, 5); 13805 int rd = extract32(insn, 0, 5); 13806 13807 if (!dc_isar_feature(aa64_sha3, s)) { 13808 unallocated_encoding(s); 13809 return; 13810 } 13811 13812 if (!fp_access_check(s)) { 13813 return; 13814 } 13815 13816 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13817 vec_full_reg_offset(s, rn), 13818 vec_full_reg_offset(s, rm), imm6, 16, 13819 vec_full_reg_size(s)); 13820 } 13821 13822 /* Crypto three-reg imm2 13823 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13824 * +-----------------------+------+-----+------+--------+------+------+ 13825 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13826 * +-----------------------+------+-----+------+--------+------+------+ 13827 */ 13828 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13829 { 13830 static gen_helper_gvec_3 * const fns[4] = { 13831 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13832 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13833 }; 13834 int opcode = extract32(insn, 10, 2); 13835 int imm2 = extract32(insn, 12, 2); 13836 int rm = extract32(insn, 16, 5); 13837 int rn = extract32(insn, 5, 5); 13838 int rd = extract32(insn, 0, 5); 13839 13840 if (!dc_isar_feature(aa64_sm3, s)) { 13841 unallocated_encoding(s); 13842 return; 13843 } 13844 13845 if (!fp_access_check(s)) { 13846 return; 13847 } 13848 13849 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 13850 } 13851 13852 /* C3.6 Data processing - SIMD, inc Crypto 13853 * 13854 * As the decode gets a little complex we are using a table based 13855 * approach for this part of the decode. 13856 */ 13857 static const AArch64DecodeTable data_proc_simd[] = { 13858 /* pattern , mask , fn */ 13859 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13860 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13861 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13862 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13863 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13864 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 13865 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13866 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13867 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13868 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13869 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13870 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13871 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13872 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13873 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13874 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13875 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13876 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13877 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 13878 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13879 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13880 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 13881 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 13882 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 13883 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 13884 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 13885 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 13886 { 0xce800000, 0xffe00000, disas_crypto_xar }, 13887 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 13888 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13889 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13890 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13891 { 0x00000000, 0x00000000, NULL } 13892 }; 13893 13894 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13895 { 13896 /* Note that this is called with all non-FP cases from 13897 * table C3-6 so it must UNDEF for entries not specifically 13898 * allocated to instructions in that table. 13899 */ 13900 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13901 if (fn) { 13902 fn(s, insn); 13903 } else { 13904 unallocated_encoding(s); 13905 } 13906 } 13907 13908 /* C3.6 Data processing - SIMD and floating point */ 13909 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13910 { 13911 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13912 disas_data_proc_fp(s, insn); 13913 } else { 13914 /* SIMD, including crypto */ 13915 disas_data_proc_simd(s, insn); 13916 } 13917 } 13918 13919 static bool trans_OK(DisasContext *s, arg_OK *a) 13920 { 13921 return true; 13922 } 13923 13924 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13925 { 13926 s->is_nonstreaming = true; 13927 return true; 13928 } 13929 13930 /** 13931 * is_guarded_page: 13932 * @env: The cpu environment 13933 * @s: The DisasContext 13934 * 13935 * Return true if the page is guarded. 13936 */ 13937 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13938 { 13939 uint64_t addr = s->base.pc_first; 13940 #ifdef CONFIG_USER_ONLY 13941 return page_get_flags(addr) & PAGE_BTI; 13942 #else 13943 CPUTLBEntryFull *full; 13944 void *host; 13945 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13946 int flags; 13947 13948 /* 13949 * We test this immediately after reading an insn, which means 13950 * that the TLB entry must be present and valid, and thus this 13951 * access will never raise an exception. 13952 */ 13953 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13954 false, &host, &full, 0); 13955 assert(!(flags & TLB_INVALID_MASK)); 13956 13957 return full->guarded; 13958 #endif 13959 } 13960 13961 /** 13962 * btype_destination_ok: 13963 * @insn: The instruction at the branch destination 13964 * @bt: SCTLR_ELx.BT 13965 * @btype: PSTATE.BTYPE, and is non-zero 13966 * 13967 * On a guarded page, there are a limited number of insns 13968 * that may be present at the branch target: 13969 * - branch target identifiers, 13970 * - paciasp, pacibsp, 13971 * - BRK insn 13972 * - HLT insn 13973 * Anything else causes a Branch Target Exception. 13974 * 13975 * Return true if the branch is compatible, false to raise BTITRAP. 13976 */ 13977 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13978 { 13979 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13980 /* HINT space */ 13981 switch (extract32(insn, 5, 7)) { 13982 case 0b011001: /* PACIASP */ 13983 case 0b011011: /* PACIBSP */ 13984 /* 13985 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13986 * with btype == 3. Otherwise all btype are ok. 13987 */ 13988 return !bt || btype != 3; 13989 case 0b100000: /* BTI */ 13990 /* Not compatible with any btype. */ 13991 return false; 13992 case 0b100010: /* BTI c */ 13993 /* Not compatible with btype == 3 */ 13994 return btype != 3; 13995 case 0b100100: /* BTI j */ 13996 /* Not compatible with btype == 2 */ 13997 return btype != 2; 13998 case 0b100110: /* BTI jc */ 13999 /* Compatible with any btype. */ 14000 return true; 14001 } 14002 } else { 14003 switch (insn & 0xffe0001fu) { 14004 case 0xd4200000u: /* BRK */ 14005 case 0xd4400000u: /* HLT */ 14006 /* Give priority to the breakpoint exception. */ 14007 return true; 14008 } 14009 } 14010 return false; 14011 } 14012 14013 /* C3.1 A64 instruction index by encoding */ 14014 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14015 { 14016 switch (extract32(insn, 25, 4)) { 14017 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14018 disas_b_exc_sys(s, insn); 14019 break; 14020 case 0x4: 14021 case 0x6: 14022 case 0xc: 14023 case 0xe: /* Loads and stores */ 14024 disas_ldst(s, insn); 14025 break; 14026 case 0x5: 14027 case 0xd: /* Data processing - register */ 14028 disas_data_proc_reg(s, insn); 14029 break; 14030 case 0x7: 14031 case 0xf: /* Data processing - SIMD and floating point */ 14032 disas_data_proc_simd_fp(s, insn); 14033 break; 14034 default: 14035 unallocated_encoding(s); 14036 break; 14037 } 14038 } 14039 14040 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14041 CPUState *cpu) 14042 { 14043 DisasContext *dc = container_of(dcbase, DisasContext, base); 14044 CPUARMState *env = cpu->env_ptr; 14045 ARMCPU *arm_cpu = env_archcpu(env); 14046 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14047 int bound, core_mmu_idx; 14048 14049 dc->isar = &arm_cpu->isar; 14050 dc->condjmp = 0; 14051 dc->pc_save = dc->base.pc_first; 14052 dc->aarch64 = true; 14053 dc->thumb = false; 14054 dc->sctlr_b = 0; 14055 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14056 dc->condexec_mask = 0; 14057 dc->condexec_cond = 0; 14058 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14059 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14060 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14061 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14062 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14063 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14064 #if !defined(CONFIG_USER_ONLY) 14065 dc->user = (dc->current_el == 0); 14066 #endif 14067 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14068 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14069 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14070 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14071 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14072 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14073 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14074 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14075 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14076 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14077 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14078 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14079 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14080 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14081 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14082 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14083 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14084 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14085 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14086 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14087 dc->vec_len = 0; 14088 dc->vec_stride = 0; 14089 dc->cp_regs = arm_cpu->cp_regs; 14090 dc->features = env->features; 14091 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14092 14093 #ifdef CONFIG_USER_ONLY 14094 /* In sve_probe_page, we assume TBI is enabled. */ 14095 tcg_debug_assert(dc->tbid & 1); 14096 #endif 14097 14098 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14099 14100 /* Single step state. The code-generation logic here is: 14101 * SS_ACTIVE == 0: 14102 * generate code with no special handling for single-stepping (except 14103 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14104 * this happens anyway because those changes are all system register or 14105 * PSTATE writes). 14106 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14107 * emit code for one insn 14108 * emit code to clear PSTATE.SS 14109 * emit code to generate software step exception for completed step 14110 * end TB (as usual for having generated an exception) 14111 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14112 * emit code to generate a software step exception 14113 * end the TB 14114 */ 14115 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14116 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14117 dc->is_ldex = false; 14118 14119 /* Bound the number of insns to execute to those left on the page. */ 14120 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14121 14122 /* If architectural single step active, limit to 1. */ 14123 if (dc->ss_active) { 14124 bound = 1; 14125 } 14126 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14127 } 14128 14129 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14130 { 14131 } 14132 14133 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14134 { 14135 DisasContext *dc = container_of(dcbase, DisasContext, base); 14136 target_ulong pc_arg = dc->base.pc_next; 14137 14138 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14139 pc_arg &= ~TARGET_PAGE_MASK; 14140 } 14141 tcg_gen_insn_start(pc_arg, 0, 0); 14142 dc->insn_start = tcg_last_op(); 14143 } 14144 14145 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14146 { 14147 DisasContext *s = container_of(dcbase, DisasContext, base); 14148 CPUARMState *env = cpu->env_ptr; 14149 uint64_t pc = s->base.pc_next; 14150 uint32_t insn; 14151 14152 /* Singlestep exceptions have the highest priority. */ 14153 if (s->ss_active && !s->pstate_ss) { 14154 /* Singlestep state is Active-pending. 14155 * If we're in this state at the start of a TB then either 14156 * a) we just took an exception to an EL which is being debugged 14157 * and this is the first insn in the exception handler 14158 * b) debug exceptions were masked and we just unmasked them 14159 * without changing EL (eg by clearing PSTATE.D) 14160 * In either case we're going to take a swstep exception in the 14161 * "did not step an insn" case, and so the syndrome ISV and EX 14162 * bits should be zero. 14163 */ 14164 assert(s->base.num_insns == 1); 14165 gen_swstep_exception(s, 0, 0); 14166 s->base.is_jmp = DISAS_NORETURN; 14167 s->base.pc_next = pc + 4; 14168 return; 14169 } 14170 14171 if (pc & 3) { 14172 /* 14173 * PC alignment fault. This has priority over the instruction abort 14174 * that we would receive from a translation fault via arm_ldl_code. 14175 * This should only be possible after an indirect branch, at the 14176 * start of the TB. 14177 */ 14178 assert(s->base.num_insns == 1); 14179 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14180 s->base.is_jmp = DISAS_NORETURN; 14181 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14182 return; 14183 } 14184 14185 s->pc_curr = pc; 14186 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14187 s->insn = insn; 14188 s->base.pc_next = pc + 4; 14189 14190 s->fp_access_checked = false; 14191 s->sve_access_checked = false; 14192 14193 if (s->pstate_il) { 14194 /* 14195 * Illegal execution state. This has priority over BTI 14196 * exceptions, but comes after instruction abort exceptions. 14197 */ 14198 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14199 return; 14200 } 14201 14202 if (dc_isar_feature(aa64_bti, s)) { 14203 if (s->base.num_insns == 1) { 14204 /* 14205 * At the first insn of the TB, compute s->guarded_page. 14206 * We delayed computing this until successfully reading 14207 * the first insn of the TB, above. This (mostly) ensures 14208 * that the softmmu tlb entry has been populated, and the 14209 * page table GP bit is available. 14210 * 14211 * Note that we need to compute this even if btype == 0, 14212 * because this value is used for BR instructions later 14213 * where ENV is not available. 14214 */ 14215 s->guarded_page = is_guarded_page(env, s); 14216 14217 /* First insn can have btype set to non-zero. */ 14218 tcg_debug_assert(s->btype >= 0); 14219 14220 /* 14221 * Note that the Branch Target Exception has fairly high 14222 * priority -- below debugging exceptions but above most 14223 * everything else. This allows us to handle this now 14224 * instead of waiting until the insn is otherwise decoded. 14225 */ 14226 if (s->btype != 0 14227 && s->guarded_page 14228 && !btype_destination_ok(insn, s->bt, s->btype)) { 14229 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14230 return; 14231 } 14232 } else { 14233 /* Not the first insn: btype must be 0. */ 14234 tcg_debug_assert(s->btype == 0); 14235 } 14236 } 14237 14238 s->is_nonstreaming = false; 14239 if (s->sme_trap_nonstreaming) { 14240 disas_sme_fa64(s, insn); 14241 } 14242 14243 if (!disas_a64(s, insn) && 14244 !disas_sme(s, insn) && 14245 !disas_sve(s, insn)) { 14246 disas_a64_legacy(s, insn); 14247 } 14248 14249 /* 14250 * After execution of most insns, btype is reset to 0. 14251 * Note that we set btype == -1 when the insn sets btype. 14252 */ 14253 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14254 reset_btype(s); 14255 } 14256 } 14257 14258 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14259 { 14260 DisasContext *dc = container_of(dcbase, DisasContext, base); 14261 14262 if (unlikely(dc->ss_active)) { 14263 /* Note that this means single stepping WFI doesn't halt the CPU. 14264 * For conditional branch insns this is harmless unreachable code as 14265 * gen_goto_tb() has already handled emitting the debug exception 14266 * (and thus a tb-jump is not possible when singlestepping). 14267 */ 14268 switch (dc->base.is_jmp) { 14269 default: 14270 gen_a64_update_pc(dc, 4); 14271 /* fall through */ 14272 case DISAS_EXIT: 14273 case DISAS_JUMP: 14274 gen_step_complete_exception(dc); 14275 break; 14276 case DISAS_NORETURN: 14277 break; 14278 } 14279 } else { 14280 switch (dc->base.is_jmp) { 14281 case DISAS_NEXT: 14282 case DISAS_TOO_MANY: 14283 gen_goto_tb(dc, 1, 4); 14284 break; 14285 default: 14286 case DISAS_UPDATE_EXIT: 14287 gen_a64_update_pc(dc, 4); 14288 /* fall through */ 14289 case DISAS_EXIT: 14290 tcg_gen_exit_tb(NULL, 0); 14291 break; 14292 case DISAS_UPDATE_NOCHAIN: 14293 gen_a64_update_pc(dc, 4); 14294 /* fall through */ 14295 case DISAS_JUMP: 14296 tcg_gen_lookup_and_goto_ptr(); 14297 break; 14298 case DISAS_NORETURN: 14299 case DISAS_SWI: 14300 break; 14301 case DISAS_WFE: 14302 gen_a64_update_pc(dc, 4); 14303 gen_helper_wfe(cpu_env); 14304 break; 14305 case DISAS_YIELD: 14306 gen_a64_update_pc(dc, 4); 14307 gen_helper_yield(cpu_env); 14308 break; 14309 case DISAS_WFI: 14310 /* 14311 * This is a special case because we don't want to just halt 14312 * the CPU if trying to debug across a WFI. 14313 */ 14314 gen_a64_update_pc(dc, 4); 14315 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14316 /* 14317 * The helper doesn't necessarily throw an exception, but we 14318 * must go back to the main loop to check for interrupts anyway. 14319 */ 14320 tcg_gen_exit_tb(NULL, 0); 14321 break; 14322 } 14323 } 14324 } 14325 14326 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14327 CPUState *cpu, FILE *logfile) 14328 { 14329 DisasContext *dc = container_of(dcbase, DisasContext, base); 14330 14331 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14332 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14333 } 14334 14335 const TranslatorOps aarch64_translator_ops = { 14336 .init_disas_context = aarch64_tr_init_disas_context, 14337 .tb_start = aarch64_tr_tb_start, 14338 .insn_start = aarch64_tr_insn_start, 14339 .translate_insn = aarch64_tr_translate_insn, 14340 .tb_stop = aarch64_tr_tb_stop, 14341 .disas_log = aarch64_tr_disas_log, 14342 }; 14343