xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 57801ca0)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static const FPScalar f_scalar_fcmeq = {
4979     gen_helper_advsimd_ceq_f16,
4980     gen_helper_neon_ceq_f32,
4981     gen_helper_neon_ceq_f64,
4982 };
4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4984 
4985 static const FPScalar f_scalar_fcmge = {
4986     gen_helper_advsimd_cge_f16,
4987     gen_helper_neon_cge_f32,
4988     gen_helper_neon_cge_f64,
4989 };
4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
4991 
4992 static const FPScalar f_scalar_fcmgt = {
4993     gen_helper_advsimd_cgt_f16,
4994     gen_helper_neon_cgt_f32,
4995     gen_helper_neon_cgt_f64,
4996 };
4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
4998 
4999 static const FPScalar f_scalar_facge = {
5000     gen_helper_advsimd_acge_f16,
5001     gen_helper_neon_acge_f32,
5002     gen_helper_neon_acge_f64,
5003 };
5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5005 
5006 static const FPScalar f_scalar_facgt = {
5007     gen_helper_advsimd_acgt_f16,
5008     gen_helper_neon_acgt_f32,
5009     gen_helper_neon_acgt_f64,
5010 };
5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5012 
5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5014 {
5015     gen_helper_vfp_subh(d, n, m, s);
5016     gen_vfp_absh(d, d);
5017 }
5018 
5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5020 {
5021     gen_helper_vfp_subs(d, n, m, s);
5022     gen_vfp_abss(d, d);
5023 }
5024 
5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5026 {
5027     gen_helper_vfp_subd(d, n, m, s);
5028     gen_vfp_absd(d, d);
5029 }
5030 
5031 static const FPScalar f_scalar_fabd = {
5032     gen_fabd_h,
5033     gen_fabd_s,
5034     gen_fabd_d,
5035 };
5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5037 
5038 static const FPScalar f_scalar_frecps = {
5039     gen_helper_recpsf_f16,
5040     gen_helper_recpsf_f32,
5041     gen_helper_recpsf_f64,
5042 };
5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5044 
5045 static const FPScalar f_scalar_frsqrts = {
5046     gen_helper_rsqrtsf_f16,
5047     gen_helper_rsqrtsf_f32,
5048     gen_helper_rsqrtsf_f64,
5049 };
5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5051 
5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5053                           gen_helper_gvec_3_ptr * const fns[3])
5054 {
5055     MemOp esz = a->esz;
5056 
5057     switch (esz) {
5058     case MO_64:
5059         if (!a->q) {
5060             return false;
5061         }
5062         break;
5063     case MO_32:
5064         break;
5065     case MO_16:
5066         if (!dc_isar_feature(aa64_fp16, s)) {
5067             return false;
5068         }
5069         break;
5070     default:
5071         return false;
5072     }
5073     if (fp_access_check(s)) {
5074         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5075                           esz == MO_16, 0, fns[esz - 1]);
5076     }
5077     return true;
5078 }
5079 
5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5081     gen_helper_gvec_fadd_h,
5082     gen_helper_gvec_fadd_s,
5083     gen_helper_gvec_fadd_d,
5084 };
5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5086 
5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5088     gen_helper_gvec_fsub_h,
5089     gen_helper_gvec_fsub_s,
5090     gen_helper_gvec_fsub_d,
5091 };
5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5093 
5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5095     gen_helper_gvec_fdiv_h,
5096     gen_helper_gvec_fdiv_s,
5097     gen_helper_gvec_fdiv_d,
5098 };
5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5100 
5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5102     gen_helper_gvec_fmul_h,
5103     gen_helper_gvec_fmul_s,
5104     gen_helper_gvec_fmul_d,
5105 };
5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5107 
5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5109     gen_helper_gvec_fmax_h,
5110     gen_helper_gvec_fmax_s,
5111     gen_helper_gvec_fmax_d,
5112 };
5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5114 
5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5116     gen_helper_gvec_fmin_h,
5117     gen_helper_gvec_fmin_s,
5118     gen_helper_gvec_fmin_d,
5119 };
5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5121 
5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5123     gen_helper_gvec_fmaxnum_h,
5124     gen_helper_gvec_fmaxnum_s,
5125     gen_helper_gvec_fmaxnum_d,
5126 };
5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5128 
5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5130     gen_helper_gvec_fminnum_h,
5131     gen_helper_gvec_fminnum_s,
5132     gen_helper_gvec_fminnum_d,
5133 };
5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5135 
5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5137     gen_helper_gvec_fmulx_h,
5138     gen_helper_gvec_fmulx_s,
5139     gen_helper_gvec_fmulx_d,
5140 };
5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5142 
5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5144     gen_helper_gvec_vfma_h,
5145     gen_helper_gvec_vfma_s,
5146     gen_helper_gvec_vfma_d,
5147 };
5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5149 
5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5151     gen_helper_gvec_vfms_h,
5152     gen_helper_gvec_vfms_s,
5153     gen_helper_gvec_vfms_d,
5154 };
5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5156 
5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5158     gen_helper_gvec_fceq_h,
5159     gen_helper_gvec_fceq_s,
5160     gen_helper_gvec_fceq_d,
5161 };
5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5163 
5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5165     gen_helper_gvec_fcge_h,
5166     gen_helper_gvec_fcge_s,
5167     gen_helper_gvec_fcge_d,
5168 };
5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5170 
5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5172     gen_helper_gvec_fcgt_h,
5173     gen_helper_gvec_fcgt_s,
5174     gen_helper_gvec_fcgt_d,
5175 };
5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5177 
5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5179     gen_helper_gvec_facge_h,
5180     gen_helper_gvec_facge_s,
5181     gen_helper_gvec_facge_d,
5182 };
5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5184 
5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5186     gen_helper_gvec_facgt_h,
5187     gen_helper_gvec_facgt_s,
5188     gen_helper_gvec_facgt_d,
5189 };
5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5191 
5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5193     gen_helper_gvec_fabd_h,
5194     gen_helper_gvec_fabd_s,
5195     gen_helper_gvec_fabd_d,
5196 };
5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
5198 
5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5200     gen_helper_gvec_recps_h,
5201     gen_helper_gvec_recps_s,
5202     gen_helper_gvec_recps_d,
5203 };
5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
5205 
5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5207     gen_helper_gvec_rsqrts_h,
5208     gen_helper_gvec_rsqrts_s,
5209     gen_helper_gvec_rsqrts_d,
5210 };
5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
5212 
5213 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5214     gen_helper_gvec_faddp_h,
5215     gen_helper_gvec_faddp_s,
5216     gen_helper_gvec_faddp_d,
5217 };
5218 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
5219 
5220 /*
5221  * Advanced SIMD scalar/vector x indexed element
5222  */
5223 
5224 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5225 {
5226     switch (a->esz) {
5227     case MO_64:
5228         if (fp_access_check(s)) {
5229             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5230             TCGv_i64 t1 = tcg_temp_new_i64();
5231 
5232             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5233             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5234             write_fp_dreg(s, a->rd, t0);
5235         }
5236         break;
5237     case MO_32:
5238         if (fp_access_check(s)) {
5239             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5240             TCGv_i32 t1 = tcg_temp_new_i32();
5241 
5242             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5243             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5244             write_fp_sreg(s, a->rd, t0);
5245         }
5246         break;
5247     case MO_16:
5248         if (!dc_isar_feature(aa64_fp16, s)) {
5249             return false;
5250         }
5251         if (fp_access_check(s)) {
5252             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5253             TCGv_i32 t1 = tcg_temp_new_i32();
5254 
5255             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5256             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5257             write_fp_sreg(s, a->rd, t0);
5258         }
5259         break;
5260     default:
5261         g_assert_not_reached();
5262     }
5263     return true;
5264 }
5265 
5266 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5267 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5268 
5269 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5270 {
5271     switch (a->esz) {
5272     case MO_64:
5273         if (fp_access_check(s)) {
5274             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5275             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5276             TCGv_i64 t2 = tcg_temp_new_i64();
5277 
5278             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5279             if (neg) {
5280                 gen_vfp_negd(t1, t1);
5281             }
5282             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5283             write_fp_dreg(s, a->rd, t0);
5284         }
5285         break;
5286     case MO_32:
5287         if (fp_access_check(s)) {
5288             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5289             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5290             TCGv_i32 t2 = tcg_temp_new_i32();
5291 
5292             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5293             if (neg) {
5294                 gen_vfp_negs(t1, t1);
5295             }
5296             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5297             write_fp_sreg(s, a->rd, t0);
5298         }
5299         break;
5300     case MO_16:
5301         if (!dc_isar_feature(aa64_fp16, s)) {
5302             return false;
5303         }
5304         if (fp_access_check(s)) {
5305             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5306             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5307             TCGv_i32 t2 = tcg_temp_new_i32();
5308 
5309             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5310             if (neg) {
5311                 gen_vfp_negh(t1, t1);
5312             }
5313             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5314                                        fpstatus_ptr(FPST_FPCR_F16));
5315             write_fp_sreg(s, a->rd, t0);
5316         }
5317         break;
5318     default:
5319         g_assert_not_reached();
5320     }
5321     return true;
5322 }
5323 
5324 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5325 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5326 
5327 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5328                               gen_helper_gvec_3_ptr * const fns[3])
5329 {
5330     MemOp esz = a->esz;
5331 
5332     switch (esz) {
5333     case MO_64:
5334         if (!a->q) {
5335             return false;
5336         }
5337         break;
5338     case MO_32:
5339         break;
5340     case MO_16:
5341         if (!dc_isar_feature(aa64_fp16, s)) {
5342             return false;
5343         }
5344         break;
5345     default:
5346         g_assert_not_reached();
5347     }
5348     if (fp_access_check(s)) {
5349         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5350                           esz == MO_16, a->idx, fns[esz - 1]);
5351     }
5352     return true;
5353 }
5354 
5355 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5356     gen_helper_gvec_fmul_idx_h,
5357     gen_helper_gvec_fmul_idx_s,
5358     gen_helper_gvec_fmul_idx_d,
5359 };
5360 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5361 
5362 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5363     gen_helper_gvec_fmulx_idx_h,
5364     gen_helper_gvec_fmulx_idx_s,
5365     gen_helper_gvec_fmulx_idx_d,
5366 };
5367 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5368 
5369 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5370 {
5371     static gen_helper_gvec_4_ptr * const fns[3] = {
5372         gen_helper_gvec_fmla_idx_h,
5373         gen_helper_gvec_fmla_idx_s,
5374         gen_helper_gvec_fmla_idx_d,
5375     };
5376     MemOp esz = a->esz;
5377 
5378     switch (esz) {
5379     case MO_64:
5380         if (!a->q) {
5381             return false;
5382         }
5383         break;
5384     case MO_32:
5385         break;
5386     case MO_16:
5387         if (!dc_isar_feature(aa64_fp16, s)) {
5388             return false;
5389         }
5390         break;
5391     default:
5392         g_assert_not_reached();
5393     }
5394     if (fp_access_check(s)) {
5395         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5396                           esz == MO_16, (a->idx << 1) | neg,
5397                           fns[esz - 1]);
5398     }
5399     return true;
5400 }
5401 
5402 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5403 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5404 
5405 /*
5406  * Advanced SIMD scalar pairwise
5407  */
5408 
5409 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
5410 {
5411     switch (a->esz) {
5412     case MO_64:
5413         if (fp_access_check(s)) {
5414             TCGv_i64 t0 = tcg_temp_new_i64();
5415             TCGv_i64 t1 = tcg_temp_new_i64();
5416 
5417             read_vec_element(s, t0, a->rn, 0, MO_64);
5418             read_vec_element(s, t1, a->rn, 1, MO_64);
5419             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5420             write_fp_dreg(s, a->rd, t0);
5421         }
5422         break;
5423     case MO_32:
5424         if (fp_access_check(s)) {
5425             TCGv_i32 t0 = tcg_temp_new_i32();
5426             TCGv_i32 t1 = tcg_temp_new_i32();
5427 
5428             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
5429             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
5430             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5431             write_fp_sreg(s, a->rd, t0);
5432         }
5433         break;
5434     case MO_16:
5435         if (!dc_isar_feature(aa64_fp16, s)) {
5436             return false;
5437         }
5438         if (fp_access_check(s)) {
5439             TCGv_i32 t0 = tcg_temp_new_i32();
5440             TCGv_i32 t1 = tcg_temp_new_i32();
5441 
5442             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
5443             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
5444             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5445             write_fp_sreg(s, a->rd, t0);
5446         }
5447         break;
5448     default:
5449         g_assert_not_reached();
5450     }
5451     return true;
5452 }
5453 
5454 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
5455 
5456 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5457  * Note that it is the caller's responsibility to ensure that the
5458  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5459  * mandated semantics for out of range shifts.
5460  */
5461 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5462                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5463 {
5464     switch (shift_type) {
5465     case A64_SHIFT_TYPE_LSL:
5466         tcg_gen_shl_i64(dst, src, shift_amount);
5467         break;
5468     case A64_SHIFT_TYPE_LSR:
5469         tcg_gen_shr_i64(dst, src, shift_amount);
5470         break;
5471     case A64_SHIFT_TYPE_ASR:
5472         if (!sf) {
5473             tcg_gen_ext32s_i64(dst, src);
5474         }
5475         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5476         break;
5477     case A64_SHIFT_TYPE_ROR:
5478         if (sf) {
5479             tcg_gen_rotr_i64(dst, src, shift_amount);
5480         } else {
5481             TCGv_i32 t0, t1;
5482             t0 = tcg_temp_new_i32();
5483             t1 = tcg_temp_new_i32();
5484             tcg_gen_extrl_i64_i32(t0, src);
5485             tcg_gen_extrl_i64_i32(t1, shift_amount);
5486             tcg_gen_rotr_i32(t0, t0, t1);
5487             tcg_gen_extu_i32_i64(dst, t0);
5488         }
5489         break;
5490     default:
5491         assert(FALSE); /* all shift types should be handled */
5492         break;
5493     }
5494 
5495     if (!sf) { /* zero extend final result */
5496         tcg_gen_ext32u_i64(dst, dst);
5497     }
5498 }
5499 
5500 /* Shift a TCGv src by immediate, put result in dst.
5501  * The shift amount must be in range (this should always be true as the
5502  * relevant instructions will UNDEF on bad shift immediates).
5503  */
5504 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5505                           enum a64_shift_type shift_type, unsigned int shift_i)
5506 {
5507     assert(shift_i < (sf ? 64 : 32));
5508 
5509     if (shift_i == 0) {
5510         tcg_gen_mov_i64(dst, src);
5511     } else {
5512         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5513     }
5514 }
5515 
5516 /* Logical (shifted register)
5517  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5518  * +----+-----+-----------+-------+---+------+--------+------+------+
5519  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5520  * +----+-----+-----------+-------+---+------+--------+------+------+
5521  */
5522 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5523 {
5524     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5525     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5526 
5527     sf = extract32(insn, 31, 1);
5528     opc = extract32(insn, 29, 2);
5529     shift_type = extract32(insn, 22, 2);
5530     invert = extract32(insn, 21, 1);
5531     rm = extract32(insn, 16, 5);
5532     shift_amount = extract32(insn, 10, 6);
5533     rn = extract32(insn, 5, 5);
5534     rd = extract32(insn, 0, 5);
5535 
5536     if (!sf && (shift_amount & (1 << 5))) {
5537         unallocated_encoding(s);
5538         return;
5539     }
5540 
5541     tcg_rd = cpu_reg(s, rd);
5542 
5543     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5544         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5545          * register-register MOV and MVN, so it is worth special casing.
5546          */
5547         tcg_rm = cpu_reg(s, rm);
5548         if (invert) {
5549             tcg_gen_not_i64(tcg_rd, tcg_rm);
5550             if (!sf) {
5551                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5552             }
5553         } else {
5554             if (sf) {
5555                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5556             } else {
5557                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5558             }
5559         }
5560         return;
5561     }
5562 
5563     tcg_rm = read_cpu_reg(s, rm, sf);
5564 
5565     if (shift_amount) {
5566         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5567     }
5568 
5569     tcg_rn = cpu_reg(s, rn);
5570 
5571     switch (opc | (invert << 2)) {
5572     case 0: /* AND */
5573     case 3: /* ANDS */
5574         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5575         break;
5576     case 1: /* ORR */
5577         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5578         break;
5579     case 2: /* EOR */
5580         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5581         break;
5582     case 4: /* BIC */
5583     case 7: /* BICS */
5584         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5585         break;
5586     case 5: /* ORN */
5587         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5588         break;
5589     case 6: /* EON */
5590         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5591         break;
5592     default:
5593         assert(FALSE);
5594         break;
5595     }
5596 
5597     if (!sf) {
5598         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5599     }
5600 
5601     if (opc == 3) {
5602         gen_logic_CC(sf, tcg_rd);
5603     }
5604 }
5605 
5606 /*
5607  * Add/subtract (extended register)
5608  *
5609  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5610  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5611  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5612  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5613  *
5614  *  sf: 0 -> 32bit, 1 -> 64bit
5615  *  op: 0 -> add  , 1 -> sub
5616  *   S: 1 -> set flags
5617  * opt: 00
5618  * option: extension type (see DecodeRegExtend)
5619  * imm3: optional shift to Rm
5620  *
5621  * Rd = Rn + LSL(extend(Rm), amount)
5622  */
5623 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5624 {
5625     int rd = extract32(insn, 0, 5);
5626     int rn = extract32(insn, 5, 5);
5627     int imm3 = extract32(insn, 10, 3);
5628     int option = extract32(insn, 13, 3);
5629     int rm = extract32(insn, 16, 5);
5630     int opt = extract32(insn, 22, 2);
5631     bool setflags = extract32(insn, 29, 1);
5632     bool sub_op = extract32(insn, 30, 1);
5633     bool sf = extract32(insn, 31, 1);
5634 
5635     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5636     TCGv_i64 tcg_rd;
5637     TCGv_i64 tcg_result;
5638 
5639     if (imm3 > 4 || opt != 0) {
5640         unallocated_encoding(s);
5641         return;
5642     }
5643 
5644     /* non-flag setting ops may use SP */
5645     if (!setflags) {
5646         tcg_rd = cpu_reg_sp(s, rd);
5647     } else {
5648         tcg_rd = cpu_reg(s, rd);
5649     }
5650     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5651 
5652     tcg_rm = read_cpu_reg(s, rm, sf);
5653     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5654 
5655     tcg_result = tcg_temp_new_i64();
5656 
5657     if (!setflags) {
5658         if (sub_op) {
5659             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5660         } else {
5661             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5662         }
5663     } else {
5664         if (sub_op) {
5665             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5666         } else {
5667             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5668         }
5669     }
5670 
5671     if (sf) {
5672         tcg_gen_mov_i64(tcg_rd, tcg_result);
5673     } else {
5674         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5675     }
5676 }
5677 
5678 /*
5679  * Add/subtract (shifted register)
5680  *
5681  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5682  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5683  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5684  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5685  *
5686  *    sf: 0 -> 32bit, 1 -> 64bit
5687  *    op: 0 -> add  , 1 -> sub
5688  *     S: 1 -> set flags
5689  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5690  *  imm6: Shift amount to apply to Rm before the add/sub
5691  */
5692 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5693 {
5694     int rd = extract32(insn, 0, 5);
5695     int rn = extract32(insn, 5, 5);
5696     int imm6 = extract32(insn, 10, 6);
5697     int rm = extract32(insn, 16, 5);
5698     int shift_type = extract32(insn, 22, 2);
5699     bool setflags = extract32(insn, 29, 1);
5700     bool sub_op = extract32(insn, 30, 1);
5701     bool sf = extract32(insn, 31, 1);
5702 
5703     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5704     TCGv_i64 tcg_rn, tcg_rm;
5705     TCGv_i64 tcg_result;
5706 
5707     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5708         unallocated_encoding(s);
5709         return;
5710     }
5711 
5712     tcg_rn = read_cpu_reg(s, rn, sf);
5713     tcg_rm = read_cpu_reg(s, rm, sf);
5714 
5715     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5716 
5717     tcg_result = tcg_temp_new_i64();
5718 
5719     if (!setflags) {
5720         if (sub_op) {
5721             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5722         } else {
5723             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5724         }
5725     } else {
5726         if (sub_op) {
5727             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5728         } else {
5729             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5730         }
5731     }
5732 
5733     if (sf) {
5734         tcg_gen_mov_i64(tcg_rd, tcg_result);
5735     } else {
5736         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5737     }
5738 }
5739 
5740 /* Data-processing (3 source)
5741  *
5742  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5743  *  +--+------+-----------+------+------+----+------+------+------+
5744  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5745  *  +--+------+-----------+------+------+----+------+------+------+
5746  */
5747 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5748 {
5749     int rd = extract32(insn, 0, 5);
5750     int rn = extract32(insn, 5, 5);
5751     int ra = extract32(insn, 10, 5);
5752     int rm = extract32(insn, 16, 5);
5753     int op_id = (extract32(insn, 29, 3) << 4) |
5754         (extract32(insn, 21, 3) << 1) |
5755         extract32(insn, 15, 1);
5756     bool sf = extract32(insn, 31, 1);
5757     bool is_sub = extract32(op_id, 0, 1);
5758     bool is_high = extract32(op_id, 2, 1);
5759     bool is_signed = false;
5760     TCGv_i64 tcg_op1;
5761     TCGv_i64 tcg_op2;
5762     TCGv_i64 tcg_tmp;
5763 
5764     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5765     switch (op_id) {
5766     case 0x42: /* SMADDL */
5767     case 0x43: /* SMSUBL */
5768     case 0x44: /* SMULH */
5769         is_signed = true;
5770         break;
5771     case 0x0: /* MADD (32bit) */
5772     case 0x1: /* MSUB (32bit) */
5773     case 0x40: /* MADD (64bit) */
5774     case 0x41: /* MSUB (64bit) */
5775     case 0x4a: /* UMADDL */
5776     case 0x4b: /* UMSUBL */
5777     case 0x4c: /* UMULH */
5778         break;
5779     default:
5780         unallocated_encoding(s);
5781         return;
5782     }
5783 
5784     if (is_high) {
5785         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5786         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5787         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5788         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5789 
5790         if (is_signed) {
5791             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5792         } else {
5793             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5794         }
5795         return;
5796     }
5797 
5798     tcg_op1 = tcg_temp_new_i64();
5799     tcg_op2 = tcg_temp_new_i64();
5800     tcg_tmp = tcg_temp_new_i64();
5801 
5802     if (op_id < 0x42) {
5803         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5804         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5805     } else {
5806         if (is_signed) {
5807             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5808             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5809         } else {
5810             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5811             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5812         }
5813     }
5814 
5815     if (ra == 31 && !is_sub) {
5816         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5817         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5818     } else {
5819         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5820         if (is_sub) {
5821             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5822         } else {
5823             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5824         }
5825     }
5826 
5827     if (!sf) {
5828         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5829     }
5830 }
5831 
5832 /* Add/subtract (with carry)
5833  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5834  * +--+--+--+------------------------+------+-------------+------+-----+
5835  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5836  * +--+--+--+------------------------+------+-------------+------+-----+
5837  */
5838 
5839 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5840 {
5841     unsigned int sf, op, setflags, rm, rn, rd;
5842     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5843 
5844     sf = extract32(insn, 31, 1);
5845     op = extract32(insn, 30, 1);
5846     setflags = extract32(insn, 29, 1);
5847     rm = extract32(insn, 16, 5);
5848     rn = extract32(insn, 5, 5);
5849     rd = extract32(insn, 0, 5);
5850 
5851     tcg_rd = cpu_reg(s, rd);
5852     tcg_rn = cpu_reg(s, rn);
5853 
5854     if (op) {
5855         tcg_y = tcg_temp_new_i64();
5856         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5857     } else {
5858         tcg_y = cpu_reg(s, rm);
5859     }
5860 
5861     if (setflags) {
5862         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5863     } else {
5864         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5865     }
5866 }
5867 
5868 /*
5869  * Rotate right into flags
5870  *  31 30 29                21       15          10      5  4      0
5871  * +--+--+--+-----------------+--------+-----------+------+--+------+
5872  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5873  * +--+--+--+-----------------+--------+-----------+------+--+------+
5874  */
5875 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5876 {
5877     int mask = extract32(insn, 0, 4);
5878     int o2 = extract32(insn, 4, 1);
5879     int rn = extract32(insn, 5, 5);
5880     int imm6 = extract32(insn, 15, 6);
5881     int sf_op_s = extract32(insn, 29, 3);
5882     TCGv_i64 tcg_rn;
5883     TCGv_i32 nzcv;
5884 
5885     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5886         unallocated_encoding(s);
5887         return;
5888     }
5889 
5890     tcg_rn = read_cpu_reg(s, rn, 1);
5891     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5892 
5893     nzcv = tcg_temp_new_i32();
5894     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5895 
5896     if (mask & 8) { /* N */
5897         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5898     }
5899     if (mask & 4) { /* Z */
5900         tcg_gen_not_i32(cpu_ZF, nzcv);
5901         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5902     }
5903     if (mask & 2) { /* C */
5904         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5905     }
5906     if (mask & 1) { /* V */
5907         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5908     }
5909 }
5910 
5911 /*
5912  * Evaluate into flags
5913  *  31 30 29                21        15   14        10      5  4      0
5914  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5915  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5916  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5917  */
5918 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5919 {
5920     int o3_mask = extract32(insn, 0, 5);
5921     int rn = extract32(insn, 5, 5);
5922     int o2 = extract32(insn, 15, 6);
5923     int sz = extract32(insn, 14, 1);
5924     int sf_op_s = extract32(insn, 29, 3);
5925     TCGv_i32 tmp;
5926     int shift;
5927 
5928     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5929         !dc_isar_feature(aa64_condm_4, s)) {
5930         unallocated_encoding(s);
5931         return;
5932     }
5933     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5934 
5935     tmp = tcg_temp_new_i32();
5936     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5937     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5938     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5939     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5940     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5941 }
5942 
5943 /* Conditional compare (immediate / register)
5944  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5945  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5946  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5947  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5948  *        [1]                             y                [0]       [0]
5949  */
5950 static void disas_cc(DisasContext *s, uint32_t insn)
5951 {
5952     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5953     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5954     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5955     DisasCompare c;
5956 
5957     if (!extract32(insn, 29, 1)) {
5958         unallocated_encoding(s);
5959         return;
5960     }
5961     if (insn & (1 << 10 | 1 << 4)) {
5962         unallocated_encoding(s);
5963         return;
5964     }
5965     sf = extract32(insn, 31, 1);
5966     op = extract32(insn, 30, 1);
5967     is_imm = extract32(insn, 11, 1);
5968     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5969     cond = extract32(insn, 12, 4);
5970     rn = extract32(insn, 5, 5);
5971     nzcv = extract32(insn, 0, 4);
5972 
5973     /* Set T0 = !COND.  */
5974     tcg_t0 = tcg_temp_new_i32();
5975     arm_test_cc(&c, cond);
5976     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5977 
5978     /* Load the arguments for the new comparison.  */
5979     if (is_imm) {
5980         tcg_y = tcg_temp_new_i64();
5981         tcg_gen_movi_i64(tcg_y, y);
5982     } else {
5983         tcg_y = cpu_reg(s, y);
5984     }
5985     tcg_rn = cpu_reg(s, rn);
5986 
5987     /* Set the flags for the new comparison.  */
5988     tcg_tmp = tcg_temp_new_i64();
5989     if (op) {
5990         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5991     } else {
5992         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5993     }
5994 
5995     /* If COND was false, force the flags to #nzcv.  Compute two masks
5996      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5997      * For tcg hosts that support ANDC, we can make do with just T1.
5998      * In either case, allow the tcg optimizer to delete any unused mask.
5999      */
6000     tcg_t1 = tcg_temp_new_i32();
6001     tcg_t2 = tcg_temp_new_i32();
6002     tcg_gen_neg_i32(tcg_t1, tcg_t0);
6003     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
6004 
6005     if (nzcv & 8) { /* N */
6006         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
6007     } else {
6008         if (TCG_TARGET_HAS_andc_i32) {
6009             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
6010         } else {
6011             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
6012         }
6013     }
6014     if (nzcv & 4) { /* Z */
6015         if (TCG_TARGET_HAS_andc_i32) {
6016             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
6017         } else {
6018             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
6019         }
6020     } else {
6021         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
6022     }
6023     if (nzcv & 2) { /* C */
6024         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
6025     } else {
6026         if (TCG_TARGET_HAS_andc_i32) {
6027             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
6028         } else {
6029             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
6030         }
6031     }
6032     if (nzcv & 1) { /* V */
6033         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
6034     } else {
6035         if (TCG_TARGET_HAS_andc_i32) {
6036             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
6037         } else {
6038             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
6039         }
6040     }
6041 }
6042 
6043 /* Conditional select
6044  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
6045  * +----+----+---+-----------------+------+------+-----+------+------+
6046  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
6047  * +----+----+---+-----------------+------+------+-----+------+------+
6048  */
6049 static void disas_cond_select(DisasContext *s, uint32_t insn)
6050 {
6051     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
6052     TCGv_i64 tcg_rd, zero;
6053     DisasCompare64 c;
6054 
6055     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
6056         /* S == 1 or op2<1> == 1 */
6057         unallocated_encoding(s);
6058         return;
6059     }
6060     sf = extract32(insn, 31, 1);
6061     else_inv = extract32(insn, 30, 1);
6062     rm = extract32(insn, 16, 5);
6063     cond = extract32(insn, 12, 4);
6064     else_inc = extract32(insn, 10, 1);
6065     rn = extract32(insn, 5, 5);
6066     rd = extract32(insn, 0, 5);
6067 
6068     tcg_rd = cpu_reg(s, rd);
6069 
6070     a64_test_cc(&c, cond);
6071     zero = tcg_constant_i64(0);
6072 
6073     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
6074         /* CSET & CSETM.  */
6075         if (else_inv) {
6076             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
6077                                    tcg_rd, c.value, zero);
6078         } else {
6079             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
6080                                 tcg_rd, c.value, zero);
6081         }
6082     } else {
6083         TCGv_i64 t_true = cpu_reg(s, rn);
6084         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
6085         if (else_inv && else_inc) {
6086             tcg_gen_neg_i64(t_false, t_false);
6087         } else if (else_inv) {
6088             tcg_gen_not_i64(t_false, t_false);
6089         } else if (else_inc) {
6090             tcg_gen_addi_i64(t_false, t_false, 1);
6091         }
6092         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
6093     }
6094 
6095     if (!sf) {
6096         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6097     }
6098 }
6099 
6100 static void handle_clz(DisasContext *s, unsigned int sf,
6101                        unsigned int rn, unsigned int rd)
6102 {
6103     TCGv_i64 tcg_rd, tcg_rn;
6104     tcg_rd = cpu_reg(s, rd);
6105     tcg_rn = cpu_reg(s, rn);
6106 
6107     if (sf) {
6108         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
6109     } else {
6110         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6111         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6112         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
6113         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6114     }
6115 }
6116 
6117 static void handle_cls(DisasContext *s, unsigned int sf,
6118                        unsigned int rn, unsigned int rd)
6119 {
6120     TCGv_i64 tcg_rd, tcg_rn;
6121     tcg_rd = cpu_reg(s, rd);
6122     tcg_rn = cpu_reg(s, rn);
6123 
6124     if (sf) {
6125         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6126     } else {
6127         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6128         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6129         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6130         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6131     }
6132 }
6133 
6134 static void handle_rbit(DisasContext *s, unsigned int sf,
6135                         unsigned int rn, unsigned int rd)
6136 {
6137     TCGv_i64 tcg_rd, tcg_rn;
6138     tcg_rd = cpu_reg(s, rd);
6139     tcg_rn = cpu_reg(s, rn);
6140 
6141     if (sf) {
6142         gen_helper_rbit64(tcg_rd, tcg_rn);
6143     } else {
6144         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6145         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6146         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6147         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6148     }
6149 }
6150 
6151 /* REV with sf==1, opcode==3 ("REV64") */
6152 static void handle_rev64(DisasContext *s, unsigned int sf,
6153                          unsigned int rn, unsigned int rd)
6154 {
6155     if (!sf) {
6156         unallocated_encoding(s);
6157         return;
6158     }
6159     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6160 }
6161 
6162 /* REV with sf==0, opcode==2
6163  * REV32 (sf==1, opcode==2)
6164  */
6165 static void handle_rev32(DisasContext *s, unsigned int sf,
6166                          unsigned int rn, unsigned int rd)
6167 {
6168     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6169     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6170 
6171     if (sf) {
6172         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6173         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6174     } else {
6175         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6176     }
6177 }
6178 
6179 /* REV16 (opcode==1) */
6180 static void handle_rev16(DisasContext *s, unsigned int sf,
6181                          unsigned int rn, unsigned int rd)
6182 {
6183     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6184     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6185     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6186     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6187 
6188     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6189     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6190     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6191     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6192     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6193 }
6194 
6195 /* Data-processing (1 source)
6196  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6197  * +----+---+---+-----------------+---------+--------+------+------+
6198  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6199  * +----+---+---+-----------------+---------+--------+------+------+
6200  */
6201 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6202 {
6203     unsigned int sf, opcode, opcode2, rn, rd;
6204     TCGv_i64 tcg_rd;
6205 
6206     if (extract32(insn, 29, 1)) {
6207         unallocated_encoding(s);
6208         return;
6209     }
6210 
6211     sf = extract32(insn, 31, 1);
6212     opcode = extract32(insn, 10, 6);
6213     opcode2 = extract32(insn, 16, 5);
6214     rn = extract32(insn, 5, 5);
6215     rd = extract32(insn, 0, 5);
6216 
6217 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6218 
6219     switch (MAP(sf, opcode2, opcode)) {
6220     case MAP(0, 0x00, 0x00): /* RBIT */
6221     case MAP(1, 0x00, 0x00):
6222         handle_rbit(s, sf, rn, rd);
6223         break;
6224     case MAP(0, 0x00, 0x01): /* REV16 */
6225     case MAP(1, 0x00, 0x01):
6226         handle_rev16(s, sf, rn, rd);
6227         break;
6228     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6229     case MAP(1, 0x00, 0x02):
6230         handle_rev32(s, sf, rn, rd);
6231         break;
6232     case MAP(1, 0x00, 0x03): /* REV64 */
6233         handle_rev64(s, sf, rn, rd);
6234         break;
6235     case MAP(0, 0x00, 0x04): /* CLZ */
6236     case MAP(1, 0x00, 0x04):
6237         handle_clz(s, sf, rn, rd);
6238         break;
6239     case MAP(0, 0x00, 0x05): /* CLS */
6240     case MAP(1, 0x00, 0x05):
6241         handle_cls(s, sf, rn, rd);
6242         break;
6243     case MAP(1, 0x01, 0x00): /* PACIA */
6244         if (s->pauth_active) {
6245             tcg_rd = cpu_reg(s, rd);
6246             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6247         } else if (!dc_isar_feature(aa64_pauth, s)) {
6248             goto do_unallocated;
6249         }
6250         break;
6251     case MAP(1, 0x01, 0x01): /* PACIB */
6252         if (s->pauth_active) {
6253             tcg_rd = cpu_reg(s, rd);
6254             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6255         } else if (!dc_isar_feature(aa64_pauth, s)) {
6256             goto do_unallocated;
6257         }
6258         break;
6259     case MAP(1, 0x01, 0x02): /* PACDA */
6260         if (s->pauth_active) {
6261             tcg_rd = cpu_reg(s, rd);
6262             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6263         } else if (!dc_isar_feature(aa64_pauth, s)) {
6264             goto do_unallocated;
6265         }
6266         break;
6267     case MAP(1, 0x01, 0x03): /* PACDB */
6268         if (s->pauth_active) {
6269             tcg_rd = cpu_reg(s, rd);
6270             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6271         } else if (!dc_isar_feature(aa64_pauth, s)) {
6272             goto do_unallocated;
6273         }
6274         break;
6275     case MAP(1, 0x01, 0x04): /* AUTIA */
6276         if (s->pauth_active) {
6277             tcg_rd = cpu_reg(s, rd);
6278             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6279         } else if (!dc_isar_feature(aa64_pauth, s)) {
6280             goto do_unallocated;
6281         }
6282         break;
6283     case MAP(1, 0x01, 0x05): /* AUTIB */
6284         if (s->pauth_active) {
6285             tcg_rd = cpu_reg(s, rd);
6286             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6287         } else if (!dc_isar_feature(aa64_pauth, s)) {
6288             goto do_unallocated;
6289         }
6290         break;
6291     case MAP(1, 0x01, 0x06): /* AUTDA */
6292         if (s->pauth_active) {
6293             tcg_rd = cpu_reg(s, rd);
6294             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6295         } else if (!dc_isar_feature(aa64_pauth, s)) {
6296             goto do_unallocated;
6297         }
6298         break;
6299     case MAP(1, 0x01, 0x07): /* AUTDB */
6300         if (s->pauth_active) {
6301             tcg_rd = cpu_reg(s, rd);
6302             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6303         } else if (!dc_isar_feature(aa64_pauth, s)) {
6304             goto do_unallocated;
6305         }
6306         break;
6307     case MAP(1, 0x01, 0x08): /* PACIZA */
6308         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6309             goto do_unallocated;
6310         } else if (s->pauth_active) {
6311             tcg_rd = cpu_reg(s, rd);
6312             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6313         }
6314         break;
6315     case MAP(1, 0x01, 0x09): /* PACIZB */
6316         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6317             goto do_unallocated;
6318         } else if (s->pauth_active) {
6319             tcg_rd = cpu_reg(s, rd);
6320             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6321         }
6322         break;
6323     case MAP(1, 0x01, 0x0a): /* PACDZA */
6324         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6325             goto do_unallocated;
6326         } else if (s->pauth_active) {
6327             tcg_rd = cpu_reg(s, rd);
6328             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6329         }
6330         break;
6331     case MAP(1, 0x01, 0x0b): /* PACDZB */
6332         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6333             goto do_unallocated;
6334         } else if (s->pauth_active) {
6335             tcg_rd = cpu_reg(s, rd);
6336             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6337         }
6338         break;
6339     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6340         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6341             goto do_unallocated;
6342         } else if (s->pauth_active) {
6343             tcg_rd = cpu_reg(s, rd);
6344             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6345         }
6346         break;
6347     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6348         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6349             goto do_unallocated;
6350         } else if (s->pauth_active) {
6351             tcg_rd = cpu_reg(s, rd);
6352             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6353         }
6354         break;
6355     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6356         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6357             goto do_unallocated;
6358         } else if (s->pauth_active) {
6359             tcg_rd = cpu_reg(s, rd);
6360             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6361         }
6362         break;
6363     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6364         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6365             goto do_unallocated;
6366         } else if (s->pauth_active) {
6367             tcg_rd = cpu_reg(s, rd);
6368             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6369         }
6370         break;
6371     case MAP(1, 0x01, 0x10): /* XPACI */
6372         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6373             goto do_unallocated;
6374         } else if (s->pauth_active) {
6375             tcg_rd = cpu_reg(s, rd);
6376             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6377         }
6378         break;
6379     case MAP(1, 0x01, 0x11): /* XPACD */
6380         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6381             goto do_unallocated;
6382         } else if (s->pauth_active) {
6383             tcg_rd = cpu_reg(s, rd);
6384             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6385         }
6386         break;
6387     default:
6388     do_unallocated:
6389         unallocated_encoding(s);
6390         break;
6391     }
6392 
6393 #undef MAP
6394 }
6395 
6396 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6397                        unsigned int rm, unsigned int rn, unsigned int rd)
6398 {
6399     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6400     tcg_rd = cpu_reg(s, rd);
6401 
6402     if (!sf && is_signed) {
6403         tcg_n = tcg_temp_new_i64();
6404         tcg_m = tcg_temp_new_i64();
6405         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6406         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6407     } else {
6408         tcg_n = read_cpu_reg(s, rn, sf);
6409         tcg_m = read_cpu_reg(s, rm, sf);
6410     }
6411 
6412     if (is_signed) {
6413         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6414     } else {
6415         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6416     }
6417 
6418     if (!sf) { /* zero extend final result */
6419         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6420     }
6421 }
6422 
6423 /* LSLV, LSRV, ASRV, RORV */
6424 static void handle_shift_reg(DisasContext *s,
6425                              enum a64_shift_type shift_type, unsigned int sf,
6426                              unsigned int rm, unsigned int rn, unsigned int rd)
6427 {
6428     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6429     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6430     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6431 
6432     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6433     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6434 }
6435 
6436 /* CRC32[BHWX], CRC32C[BHWX] */
6437 static void handle_crc32(DisasContext *s,
6438                          unsigned int sf, unsigned int sz, bool crc32c,
6439                          unsigned int rm, unsigned int rn, unsigned int rd)
6440 {
6441     TCGv_i64 tcg_acc, tcg_val;
6442     TCGv_i32 tcg_bytes;
6443 
6444     if (!dc_isar_feature(aa64_crc32, s)
6445         || (sf == 1 && sz != 3)
6446         || (sf == 0 && sz == 3)) {
6447         unallocated_encoding(s);
6448         return;
6449     }
6450 
6451     if (sz == 3) {
6452         tcg_val = cpu_reg(s, rm);
6453     } else {
6454         uint64_t mask;
6455         switch (sz) {
6456         case 0:
6457             mask = 0xFF;
6458             break;
6459         case 1:
6460             mask = 0xFFFF;
6461             break;
6462         case 2:
6463             mask = 0xFFFFFFFF;
6464             break;
6465         default:
6466             g_assert_not_reached();
6467         }
6468         tcg_val = tcg_temp_new_i64();
6469         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6470     }
6471 
6472     tcg_acc = cpu_reg(s, rn);
6473     tcg_bytes = tcg_constant_i32(1 << sz);
6474 
6475     if (crc32c) {
6476         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6477     } else {
6478         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6479     }
6480 }
6481 
6482 /* Data-processing (2 source)
6483  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6484  * +----+---+---+-----------------+------+--------+------+------+
6485  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6486  * +----+---+---+-----------------+------+--------+------+------+
6487  */
6488 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6489 {
6490     unsigned int sf, rm, opcode, rn, rd, setflag;
6491     sf = extract32(insn, 31, 1);
6492     setflag = extract32(insn, 29, 1);
6493     rm = extract32(insn, 16, 5);
6494     opcode = extract32(insn, 10, 6);
6495     rn = extract32(insn, 5, 5);
6496     rd = extract32(insn, 0, 5);
6497 
6498     if (setflag && opcode != 0) {
6499         unallocated_encoding(s);
6500         return;
6501     }
6502 
6503     switch (opcode) {
6504     case 0: /* SUBP(S) */
6505         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6506             goto do_unallocated;
6507         } else {
6508             TCGv_i64 tcg_n, tcg_m, tcg_d;
6509 
6510             tcg_n = read_cpu_reg_sp(s, rn, true);
6511             tcg_m = read_cpu_reg_sp(s, rm, true);
6512             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6513             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6514             tcg_d = cpu_reg(s, rd);
6515 
6516             if (setflag) {
6517                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6518             } else {
6519                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6520             }
6521         }
6522         break;
6523     case 2: /* UDIV */
6524         handle_div(s, false, sf, rm, rn, rd);
6525         break;
6526     case 3: /* SDIV */
6527         handle_div(s, true, sf, rm, rn, rd);
6528         break;
6529     case 4: /* IRG */
6530         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6531             goto do_unallocated;
6532         }
6533         if (s->ata[0]) {
6534             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6535                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6536         } else {
6537             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6538                                              cpu_reg_sp(s, rn));
6539         }
6540         break;
6541     case 5: /* GMI */
6542         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6543             goto do_unallocated;
6544         } else {
6545             TCGv_i64 t = tcg_temp_new_i64();
6546 
6547             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6548             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6549             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6550         }
6551         break;
6552     case 8: /* LSLV */
6553         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6554         break;
6555     case 9: /* LSRV */
6556         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6557         break;
6558     case 10: /* ASRV */
6559         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6560         break;
6561     case 11: /* RORV */
6562         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6563         break;
6564     case 12: /* PACGA */
6565         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6566             goto do_unallocated;
6567         }
6568         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6569                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6570         break;
6571     case 16:
6572     case 17:
6573     case 18:
6574     case 19:
6575     case 20:
6576     case 21:
6577     case 22:
6578     case 23: /* CRC32 */
6579     {
6580         int sz = extract32(opcode, 0, 2);
6581         bool crc32c = extract32(opcode, 2, 1);
6582         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6583         break;
6584     }
6585     default:
6586     do_unallocated:
6587         unallocated_encoding(s);
6588         break;
6589     }
6590 }
6591 
6592 /*
6593  * Data processing - register
6594  *  31  30 29  28      25    21  20  16      10         0
6595  * +--+---+--+---+-------+-----+-------+-------+---------+
6596  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6597  * +--+---+--+---+-------+-----+-------+-------+---------+
6598  */
6599 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6600 {
6601     int op0 = extract32(insn, 30, 1);
6602     int op1 = extract32(insn, 28, 1);
6603     int op2 = extract32(insn, 21, 4);
6604     int op3 = extract32(insn, 10, 6);
6605 
6606     if (!op1) {
6607         if (op2 & 8) {
6608             if (op2 & 1) {
6609                 /* Add/sub (extended register) */
6610                 disas_add_sub_ext_reg(s, insn);
6611             } else {
6612                 /* Add/sub (shifted register) */
6613                 disas_add_sub_reg(s, insn);
6614             }
6615         } else {
6616             /* Logical (shifted register) */
6617             disas_logic_reg(s, insn);
6618         }
6619         return;
6620     }
6621 
6622     switch (op2) {
6623     case 0x0:
6624         switch (op3) {
6625         case 0x00: /* Add/subtract (with carry) */
6626             disas_adc_sbc(s, insn);
6627             break;
6628 
6629         case 0x01: /* Rotate right into flags */
6630         case 0x21:
6631             disas_rotate_right_into_flags(s, insn);
6632             break;
6633 
6634         case 0x02: /* Evaluate into flags */
6635         case 0x12:
6636         case 0x22:
6637         case 0x32:
6638             disas_evaluate_into_flags(s, insn);
6639             break;
6640 
6641         default:
6642             goto do_unallocated;
6643         }
6644         break;
6645 
6646     case 0x2: /* Conditional compare */
6647         disas_cc(s, insn); /* both imm and reg forms */
6648         break;
6649 
6650     case 0x4: /* Conditional select */
6651         disas_cond_select(s, insn);
6652         break;
6653 
6654     case 0x6: /* Data-processing */
6655         if (op0) {    /* (1 source) */
6656             disas_data_proc_1src(s, insn);
6657         } else {      /* (2 source) */
6658             disas_data_proc_2src(s, insn);
6659         }
6660         break;
6661     case 0x8 ... 0xf: /* (3 source) */
6662         disas_data_proc_3src(s, insn);
6663         break;
6664 
6665     default:
6666     do_unallocated:
6667         unallocated_encoding(s);
6668         break;
6669     }
6670 }
6671 
6672 static void handle_fp_compare(DisasContext *s, int size,
6673                               unsigned int rn, unsigned int rm,
6674                               bool cmp_with_zero, bool signal_all_nans)
6675 {
6676     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6677     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6678 
6679     if (size == MO_64) {
6680         TCGv_i64 tcg_vn, tcg_vm;
6681 
6682         tcg_vn = read_fp_dreg(s, rn);
6683         if (cmp_with_zero) {
6684             tcg_vm = tcg_constant_i64(0);
6685         } else {
6686             tcg_vm = read_fp_dreg(s, rm);
6687         }
6688         if (signal_all_nans) {
6689             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6690         } else {
6691             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6692         }
6693     } else {
6694         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6695         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6696 
6697         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6698         if (cmp_with_zero) {
6699             tcg_gen_movi_i32(tcg_vm, 0);
6700         } else {
6701             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6702         }
6703 
6704         switch (size) {
6705         case MO_32:
6706             if (signal_all_nans) {
6707                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6708             } else {
6709                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6710             }
6711             break;
6712         case MO_16:
6713             if (signal_all_nans) {
6714                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6715             } else {
6716                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6717             }
6718             break;
6719         default:
6720             g_assert_not_reached();
6721         }
6722     }
6723 
6724     gen_set_nzcv(tcg_flags);
6725 }
6726 
6727 /* Floating point compare
6728  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6729  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6730  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6731  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6732  */
6733 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6734 {
6735     unsigned int mos, type, rm, op, rn, opc, op2r;
6736     int size;
6737 
6738     mos = extract32(insn, 29, 3);
6739     type = extract32(insn, 22, 2);
6740     rm = extract32(insn, 16, 5);
6741     op = extract32(insn, 14, 2);
6742     rn = extract32(insn, 5, 5);
6743     opc = extract32(insn, 3, 2);
6744     op2r = extract32(insn, 0, 3);
6745 
6746     if (mos || op || op2r) {
6747         unallocated_encoding(s);
6748         return;
6749     }
6750 
6751     switch (type) {
6752     case 0:
6753         size = MO_32;
6754         break;
6755     case 1:
6756         size = MO_64;
6757         break;
6758     case 3:
6759         size = MO_16;
6760         if (dc_isar_feature(aa64_fp16, s)) {
6761             break;
6762         }
6763         /* fallthru */
6764     default:
6765         unallocated_encoding(s);
6766         return;
6767     }
6768 
6769     if (!fp_access_check(s)) {
6770         return;
6771     }
6772 
6773     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6774 }
6775 
6776 /* Floating point conditional compare
6777  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6778  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6779  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6780  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6781  */
6782 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6783 {
6784     unsigned int mos, type, rm, cond, rn, op, nzcv;
6785     TCGLabel *label_continue = NULL;
6786     int size;
6787 
6788     mos = extract32(insn, 29, 3);
6789     type = extract32(insn, 22, 2);
6790     rm = extract32(insn, 16, 5);
6791     cond = extract32(insn, 12, 4);
6792     rn = extract32(insn, 5, 5);
6793     op = extract32(insn, 4, 1);
6794     nzcv = extract32(insn, 0, 4);
6795 
6796     if (mos) {
6797         unallocated_encoding(s);
6798         return;
6799     }
6800 
6801     switch (type) {
6802     case 0:
6803         size = MO_32;
6804         break;
6805     case 1:
6806         size = MO_64;
6807         break;
6808     case 3:
6809         size = MO_16;
6810         if (dc_isar_feature(aa64_fp16, s)) {
6811             break;
6812         }
6813         /* fallthru */
6814     default:
6815         unallocated_encoding(s);
6816         return;
6817     }
6818 
6819     if (!fp_access_check(s)) {
6820         return;
6821     }
6822 
6823     if (cond < 0x0e) { /* not always */
6824         TCGLabel *label_match = gen_new_label();
6825         label_continue = gen_new_label();
6826         arm_gen_test_cc(cond, label_match);
6827         /* nomatch: */
6828         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6829         tcg_gen_br(label_continue);
6830         gen_set_label(label_match);
6831     }
6832 
6833     handle_fp_compare(s, size, rn, rm, false, op);
6834 
6835     if (cond < 0x0e) {
6836         gen_set_label(label_continue);
6837     }
6838 }
6839 
6840 /* Floating point conditional select
6841  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6842  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6843  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6844  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6845  */
6846 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6847 {
6848     unsigned int mos, type, rm, cond, rn, rd;
6849     TCGv_i64 t_true, t_false;
6850     DisasCompare64 c;
6851     MemOp sz;
6852 
6853     mos = extract32(insn, 29, 3);
6854     type = extract32(insn, 22, 2);
6855     rm = extract32(insn, 16, 5);
6856     cond = extract32(insn, 12, 4);
6857     rn = extract32(insn, 5, 5);
6858     rd = extract32(insn, 0, 5);
6859 
6860     if (mos) {
6861         unallocated_encoding(s);
6862         return;
6863     }
6864 
6865     switch (type) {
6866     case 0:
6867         sz = MO_32;
6868         break;
6869     case 1:
6870         sz = MO_64;
6871         break;
6872     case 3:
6873         sz = MO_16;
6874         if (dc_isar_feature(aa64_fp16, s)) {
6875             break;
6876         }
6877         /* fallthru */
6878     default:
6879         unallocated_encoding(s);
6880         return;
6881     }
6882 
6883     if (!fp_access_check(s)) {
6884         return;
6885     }
6886 
6887     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6888     t_true = tcg_temp_new_i64();
6889     t_false = tcg_temp_new_i64();
6890     read_vec_element(s, t_true, rn, 0, sz);
6891     read_vec_element(s, t_false, rm, 0, sz);
6892 
6893     a64_test_cc(&c, cond);
6894     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6895                         t_true, t_false);
6896 
6897     /* Note that sregs & hregs write back zeros to the high bits,
6898        and we've already done the zero-extension.  */
6899     write_fp_dreg(s, rd, t_true);
6900 }
6901 
6902 /* Floating-point data-processing (1 source) - half precision */
6903 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6904 {
6905     TCGv_ptr fpst = NULL;
6906     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6907     TCGv_i32 tcg_res = tcg_temp_new_i32();
6908 
6909     switch (opcode) {
6910     case 0x0: /* FMOV */
6911         tcg_gen_mov_i32(tcg_res, tcg_op);
6912         break;
6913     case 0x1: /* FABS */
6914         gen_vfp_absh(tcg_res, tcg_op);
6915         break;
6916     case 0x2: /* FNEG */
6917         gen_vfp_negh(tcg_res, tcg_op);
6918         break;
6919     case 0x3: /* FSQRT */
6920         fpst = fpstatus_ptr(FPST_FPCR_F16);
6921         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6922         break;
6923     case 0x8: /* FRINTN */
6924     case 0x9: /* FRINTP */
6925     case 0xa: /* FRINTM */
6926     case 0xb: /* FRINTZ */
6927     case 0xc: /* FRINTA */
6928     {
6929         TCGv_i32 tcg_rmode;
6930 
6931         fpst = fpstatus_ptr(FPST_FPCR_F16);
6932         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6933         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6934         gen_restore_rmode(tcg_rmode, fpst);
6935         break;
6936     }
6937     case 0xe: /* FRINTX */
6938         fpst = fpstatus_ptr(FPST_FPCR_F16);
6939         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6940         break;
6941     case 0xf: /* FRINTI */
6942         fpst = fpstatus_ptr(FPST_FPCR_F16);
6943         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6944         break;
6945     default:
6946         g_assert_not_reached();
6947     }
6948 
6949     write_fp_sreg(s, rd, tcg_res);
6950 }
6951 
6952 /* Floating-point data-processing (1 source) - single precision */
6953 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6954 {
6955     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6956     TCGv_i32 tcg_op, tcg_res;
6957     TCGv_ptr fpst;
6958     int rmode = -1;
6959 
6960     tcg_op = read_fp_sreg(s, rn);
6961     tcg_res = tcg_temp_new_i32();
6962 
6963     switch (opcode) {
6964     case 0x0: /* FMOV */
6965         tcg_gen_mov_i32(tcg_res, tcg_op);
6966         goto done;
6967     case 0x1: /* FABS */
6968         gen_vfp_abss(tcg_res, tcg_op);
6969         goto done;
6970     case 0x2: /* FNEG */
6971         gen_vfp_negs(tcg_res, tcg_op);
6972         goto done;
6973     case 0x3: /* FSQRT */
6974         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6975         goto done;
6976     case 0x6: /* BFCVT */
6977         gen_fpst = gen_helper_bfcvt;
6978         break;
6979     case 0x8: /* FRINTN */
6980     case 0x9: /* FRINTP */
6981     case 0xa: /* FRINTM */
6982     case 0xb: /* FRINTZ */
6983     case 0xc: /* FRINTA */
6984         rmode = opcode & 7;
6985         gen_fpst = gen_helper_rints;
6986         break;
6987     case 0xe: /* FRINTX */
6988         gen_fpst = gen_helper_rints_exact;
6989         break;
6990     case 0xf: /* FRINTI */
6991         gen_fpst = gen_helper_rints;
6992         break;
6993     case 0x10: /* FRINT32Z */
6994         rmode = FPROUNDING_ZERO;
6995         gen_fpst = gen_helper_frint32_s;
6996         break;
6997     case 0x11: /* FRINT32X */
6998         gen_fpst = gen_helper_frint32_s;
6999         break;
7000     case 0x12: /* FRINT64Z */
7001         rmode = FPROUNDING_ZERO;
7002         gen_fpst = gen_helper_frint64_s;
7003         break;
7004     case 0x13: /* FRINT64X */
7005         gen_fpst = gen_helper_frint64_s;
7006         break;
7007     default:
7008         g_assert_not_reached();
7009     }
7010 
7011     fpst = fpstatus_ptr(FPST_FPCR);
7012     if (rmode >= 0) {
7013         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7014         gen_fpst(tcg_res, tcg_op, fpst);
7015         gen_restore_rmode(tcg_rmode, fpst);
7016     } else {
7017         gen_fpst(tcg_res, tcg_op, fpst);
7018     }
7019 
7020  done:
7021     write_fp_sreg(s, rd, tcg_res);
7022 }
7023 
7024 /* Floating-point data-processing (1 source) - double precision */
7025 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
7026 {
7027     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
7028     TCGv_i64 tcg_op, tcg_res;
7029     TCGv_ptr fpst;
7030     int rmode = -1;
7031 
7032     switch (opcode) {
7033     case 0x0: /* FMOV */
7034         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
7035         return;
7036     }
7037 
7038     tcg_op = read_fp_dreg(s, rn);
7039     tcg_res = tcg_temp_new_i64();
7040 
7041     switch (opcode) {
7042     case 0x1: /* FABS */
7043         gen_vfp_absd(tcg_res, tcg_op);
7044         goto done;
7045     case 0x2: /* FNEG */
7046         gen_vfp_negd(tcg_res, tcg_op);
7047         goto done;
7048     case 0x3: /* FSQRT */
7049         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
7050         goto done;
7051     case 0x8: /* FRINTN */
7052     case 0x9: /* FRINTP */
7053     case 0xa: /* FRINTM */
7054     case 0xb: /* FRINTZ */
7055     case 0xc: /* FRINTA */
7056         rmode = opcode & 7;
7057         gen_fpst = gen_helper_rintd;
7058         break;
7059     case 0xe: /* FRINTX */
7060         gen_fpst = gen_helper_rintd_exact;
7061         break;
7062     case 0xf: /* FRINTI */
7063         gen_fpst = gen_helper_rintd;
7064         break;
7065     case 0x10: /* FRINT32Z */
7066         rmode = FPROUNDING_ZERO;
7067         gen_fpst = gen_helper_frint32_d;
7068         break;
7069     case 0x11: /* FRINT32X */
7070         gen_fpst = gen_helper_frint32_d;
7071         break;
7072     case 0x12: /* FRINT64Z */
7073         rmode = FPROUNDING_ZERO;
7074         gen_fpst = gen_helper_frint64_d;
7075         break;
7076     case 0x13: /* FRINT64X */
7077         gen_fpst = gen_helper_frint64_d;
7078         break;
7079     default:
7080         g_assert_not_reached();
7081     }
7082 
7083     fpst = fpstatus_ptr(FPST_FPCR);
7084     if (rmode >= 0) {
7085         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
7086         gen_fpst(tcg_res, tcg_op, fpst);
7087         gen_restore_rmode(tcg_rmode, fpst);
7088     } else {
7089         gen_fpst(tcg_res, tcg_op, fpst);
7090     }
7091 
7092  done:
7093     write_fp_dreg(s, rd, tcg_res);
7094 }
7095 
7096 static void handle_fp_fcvt(DisasContext *s, int opcode,
7097                            int rd, int rn, int dtype, int ntype)
7098 {
7099     switch (ntype) {
7100     case 0x0:
7101     {
7102         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7103         if (dtype == 1) {
7104             /* Single to double */
7105             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7106             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
7107             write_fp_dreg(s, rd, tcg_rd);
7108         } else {
7109             /* Single to half */
7110             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7111             TCGv_i32 ahp = get_ahp_flag();
7112             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7113 
7114             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7115             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7116             write_fp_sreg(s, rd, tcg_rd);
7117         }
7118         break;
7119     }
7120     case 0x1:
7121     {
7122         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7123         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7124         if (dtype == 0) {
7125             /* Double to single */
7126             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7127         } else {
7128             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7129             TCGv_i32 ahp = get_ahp_flag();
7130             /* Double to half */
7131             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7132             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7133         }
7134         write_fp_sreg(s, rd, tcg_rd);
7135         break;
7136     }
7137     case 0x3:
7138     {
7139         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7140         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7141         TCGv_i32 tcg_ahp = get_ahp_flag();
7142         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7143         if (dtype == 0) {
7144             /* Half to single */
7145             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7146             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7147             write_fp_sreg(s, rd, tcg_rd);
7148         } else {
7149             /* Half to double */
7150             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7151             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7152             write_fp_dreg(s, rd, tcg_rd);
7153         }
7154         break;
7155     }
7156     default:
7157         g_assert_not_reached();
7158     }
7159 }
7160 
7161 /* Floating point data-processing (1 source)
7162  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7163  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7164  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7165  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7166  */
7167 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7168 {
7169     int mos = extract32(insn, 29, 3);
7170     int type = extract32(insn, 22, 2);
7171     int opcode = extract32(insn, 15, 6);
7172     int rn = extract32(insn, 5, 5);
7173     int rd = extract32(insn, 0, 5);
7174 
7175     if (mos) {
7176         goto do_unallocated;
7177     }
7178 
7179     switch (opcode) {
7180     case 0x4: case 0x5: case 0x7:
7181     {
7182         /* FCVT between half, single and double precision */
7183         int dtype = extract32(opcode, 0, 2);
7184         if (type == 2 || dtype == type) {
7185             goto do_unallocated;
7186         }
7187         if (!fp_access_check(s)) {
7188             return;
7189         }
7190 
7191         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7192         break;
7193     }
7194 
7195     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7196         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7197             goto do_unallocated;
7198         }
7199         /* fall through */
7200     case 0x0 ... 0x3:
7201     case 0x8 ... 0xc:
7202     case 0xe ... 0xf:
7203         /* 32-to-32 and 64-to-64 ops */
7204         switch (type) {
7205         case 0:
7206             if (!fp_access_check(s)) {
7207                 return;
7208             }
7209             handle_fp_1src_single(s, opcode, rd, rn);
7210             break;
7211         case 1:
7212             if (!fp_access_check(s)) {
7213                 return;
7214             }
7215             handle_fp_1src_double(s, opcode, rd, rn);
7216             break;
7217         case 3:
7218             if (!dc_isar_feature(aa64_fp16, s)) {
7219                 goto do_unallocated;
7220             }
7221 
7222             if (!fp_access_check(s)) {
7223                 return;
7224             }
7225             handle_fp_1src_half(s, opcode, rd, rn);
7226             break;
7227         default:
7228             goto do_unallocated;
7229         }
7230         break;
7231 
7232     case 0x6:
7233         switch (type) {
7234         case 1: /* BFCVT */
7235             if (!dc_isar_feature(aa64_bf16, s)) {
7236                 goto do_unallocated;
7237             }
7238             if (!fp_access_check(s)) {
7239                 return;
7240             }
7241             handle_fp_1src_single(s, opcode, rd, rn);
7242             break;
7243         default:
7244             goto do_unallocated;
7245         }
7246         break;
7247 
7248     default:
7249     do_unallocated:
7250         unallocated_encoding(s);
7251         break;
7252     }
7253 }
7254 
7255 /* Floating-point data-processing (3 source) - single precision */
7256 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7257                                   int rd, int rn, int rm, int ra)
7258 {
7259     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7260     TCGv_i32 tcg_res = tcg_temp_new_i32();
7261     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7262 
7263     tcg_op1 = read_fp_sreg(s, rn);
7264     tcg_op2 = read_fp_sreg(s, rm);
7265     tcg_op3 = read_fp_sreg(s, ra);
7266 
7267     /* These are fused multiply-add, and must be done as one
7268      * floating point operation with no rounding between the
7269      * multiplication and addition steps.
7270      * NB that doing the negations here as separate steps is
7271      * correct : an input NaN should come out with its sign bit
7272      * flipped if it is a negated-input.
7273      */
7274     if (o1 == true) {
7275         gen_vfp_negs(tcg_op3, tcg_op3);
7276     }
7277 
7278     if (o0 != o1) {
7279         gen_vfp_negs(tcg_op1, tcg_op1);
7280     }
7281 
7282     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7283 
7284     write_fp_sreg(s, rd, tcg_res);
7285 }
7286 
7287 /* Floating-point data-processing (3 source) - double precision */
7288 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7289                                   int rd, int rn, int rm, int ra)
7290 {
7291     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7292     TCGv_i64 tcg_res = tcg_temp_new_i64();
7293     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7294 
7295     tcg_op1 = read_fp_dreg(s, rn);
7296     tcg_op2 = read_fp_dreg(s, rm);
7297     tcg_op3 = read_fp_dreg(s, ra);
7298 
7299     /* These are fused multiply-add, and must be done as one
7300      * floating point operation with no rounding between the
7301      * multiplication and addition steps.
7302      * NB that doing the negations here as separate steps is
7303      * correct : an input NaN should come out with its sign bit
7304      * flipped if it is a negated-input.
7305      */
7306     if (o1 == true) {
7307         gen_vfp_negd(tcg_op3, tcg_op3);
7308     }
7309 
7310     if (o0 != o1) {
7311         gen_vfp_negd(tcg_op1, tcg_op1);
7312     }
7313 
7314     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7315 
7316     write_fp_dreg(s, rd, tcg_res);
7317 }
7318 
7319 /* Floating-point data-processing (3 source) - half precision */
7320 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7321                                 int rd, int rn, int rm, int ra)
7322 {
7323     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7324     TCGv_i32 tcg_res = tcg_temp_new_i32();
7325     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7326 
7327     tcg_op1 = read_fp_hreg(s, rn);
7328     tcg_op2 = read_fp_hreg(s, rm);
7329     tcg_op3 = read_fp_hreg(s, ra);
7330 
7331     /* These are fused multiply-add, and must be done as one
7332      * floating point operation with no rounding between the
7333      * multiplication and addition steps.
7334      * NB that doing the negations here as separate steps is
7335      * correct : an input NaN should come out with its sign bit
7336      * flipped if it is a negated-input.
7337      */
7338     if (o1 == true) {
7339         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7340     }
7341 
7342     if (o0 != o1) {
7343         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7344     }
7345 
7346     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7347 
7348     write_fp_sreg(s, rd, tcg_res);
7349 }
7350 
7351 /* Floating point data-processing (3 source)
7352  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7353  * +---+---+---+-----------+------+----+------+----+------+------+------+
7354  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7355  * +---+---+---+-----------+------+----+------+----+------+------+------+
7356  */
7357 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7358 {
7359     int mos = extract32(insn, 29, 3);
7360     int type = extract32(insn, 22, 2);
7361     int rd = extract32(insn, 0, 5);
7362     int rn = extract32(insn, 5, 5);
7363     int ra = extract32(insn, 10, 5);
7364     int rm = extract32(insn, 16, 5);
7365     bool o0 = extract32(insn, 15, 1);
7366     bool o1 = extract32(insn, 21, 1);
7367 
7368     if (mos) {
7369         unallocated_encoding(s);
7370         return;
7371     }
7372 
7373     switch (type) {
7374     case 0:
7375         if (!fp_access_check(s)) {
7376             return;
7377         }
7378         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7379         break;
7380     case 1:
7381         if (!fp_access_check(s)) {
7382             return;
7383         }
7384         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7385         break;
7386     case 3:
7387         if (!dc_isar_feature(aa64_fp16, s)) {
7388             unallocated_encoding(s);
7389             return;
7390         }
7391         if (!fp_access_check(s)) {
7392             return;
7393         }
7394         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7395         break;
7396     default:
7397         unallocated_encoding(s);
7398     }
7399 }
7400 
7401 /* Floating point immediate
7402  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7403  * +---+---+---+-----------+------+---+------------+-------+------+------+
7404  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7405  * +---+---+---+-----------+------+---+------------+-------+------+------+
7406  */
7407 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7408 {
7409     int rd = extract32(insn, 0, 5);
7410     int imm5 = extract32(insn, 5, 5);
7411     int imm8 = extract32(insn, 13, 8);
7412     int type = extract32(insn, 22, 2);
7413     int mos = extract32(insn, 29, 3);
7414     uint64_t imm;
7415     MemOp sz;
7416 
7417     if (mos || imm5) {
7418         unallocated_encoding(s);
7419         return;
7420     }
7421 
7422     switch (type) {
7423     case 0:
7424         sz = MO_32;
7425         break;
7426     case 1:
7427         sz = MO_64;
7428         break;
7429     case 3:
7430         sz = MO_16;
7431         if (dc_isar_feature(aa64_fp16, s)) {
7432             break;
7433         }
7434         /* fallthru */
7435     default:
7436         unallocated_encoding(s);
7437         return;
7438     }
7439 
7440     if (!fp_access_check(s)) {
7441         return;
7442     }
7443 
7444     imm = vfp_expand_imm(sz, imm8);
7445     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7446 }
7447 
7448 /* Handle floating point <=> fixed point conversions. Note that we can
7449  * also deal with fp <=> integer conversions as a special case (scale == 64)
7450  * OPTME: consider handling that special case specially or at least skipping
7451  * the call to scalbn in the helpers for zero shifts.
7452  */
7453 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7454                            bool itof, int rmode, int scale, int sf, int type)
7455 {
7456     bool is_signed = !(opcode & 1);
7457     TCGv_ptr tcg_fpstatus;
7458     TCGv_i32 tcg_shift, tcg_single;
7459     TCGv_i64 tcg_double;
7460 
7461     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7462 
7463     tcg_shift = tcg_constant_i32(64 - scale);
7464 
7465     if (itof) {
7466         TCGv_i64 tcg_int = cpu_reg(s, rn);
7467         if (!sf) {
7468             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7469 
7470             if (is_signed) {
7471                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7472             } else {
7473                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7474             }
7475 
7476             tcg_int = tcg_extend;
7477         }
7478 
7479         switch (type) {
7480         case 1: /* float64 */
7481             tcg_double = tcg_temp_new_i64();
7482             if (is_signed) {
7483                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7484                                      tcg_shift, tcg_fpstatus);
7485             } else {
7486                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7487                                      tcg_shift, tcg_fpstatus);
7488             }
7489             write_fp_dreg(s, rd, tcg_double);
7490             break;
7491 
7492         case 0: /* float32 */
7493             tcg_single = tcg_temp_new_i32();
7494             if (is_signed) {
7495                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7496                                      tcg_shift, tcg_fpstatus);
7497             } else {
7498                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7499                                      tcg_shift, tcg_fpstatus);
7500             }
7501             write_fp_sreg(s, rd, tcg_single);
7502             break;
7503 
7504         case 3: /* float16 */
7505             tcg_single = tcg_temp_new_i32();
7506             if (is_signed) {
7507                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7508                                      tcg_shift, tcg_fpstatus);
7509             } else {
7510                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7511                                      tcg_shift, tcg_fpstatus);
7512             }
7513             write_fp_sreg(s, rd, tcg_single);
7514             break;
7515 
7516         default:
7517             g_assert_not_reached();
7518         }
7519     } else {
7520         TCGv_i64 tcg_int = cpu_reg(s, rd);
7521         TCGv_i32 tcg_rmode;
7522 
7523         if (extract32(opcode, 2, 1)) {
7524             /* There are too many rounding modes to all fit into rmode,
7525              * so FCVTA[US] is a special case.
7526              */
7527             rmode = FPROUNDING_TIEAWAY;
7528         }
7529 
7530         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7531 
7532         switch (type) {
7533         case 1: /* float64 */
7534             tcg_double = read_fp_dreg(s, rn);
7535             if (is_signed) {
7536                 if (!sf) {
7537                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7538                                          tcg_shift, tcg_fpstatus);
7539                 } else {
7540                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7541                                          tcg_shift, tcg_fpstatus);
7542                 }
7543             } else {
7544                 if (!sf) {
7545                     gen_helper_vfp_tould(tcg_int, tcg_double,
7546                                          tcg_shift, tcg_fpstatus);
7547                 } else {
7548                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7549                                          tcg_shift, tcg_fpstatus);
7550                 }
7551             }
7552             if (!sf) {
7553                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7554             }
7555             break;
7556 
7557         case 0: /* float32 */
7558             tcg_single = read_fp_sreg(s, rn);
7559             if (sf) {
7560                 if (is_signed) {
7561                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7562                                          tcg_shift, tcg_fpstatus);
7563                 } else {
7564                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7565                                          tcg_shift, tcg_fpstatus);
7566                 }
7567             } else {
7568                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7569                 if (is_signed) {
7570                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7571                                          tcg_shift, tcg_fpstatus);
7572                 } else {
7573                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7574                                          tcg_shift, tcg_fpstatus);
7575                 }
7576                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7577             }
7578             break;
7579 
7580         case 3: /* float16 */
7581             tcg_single = read_fp_sreg(s, rn);
7582             if (sf) {
7583                 if (is_signed) {
7584                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7585                                          tcg_shift, tcg_fpstatus);
7586                 } else {
7587                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7588                                          tcg_shift, tcg_fpstatus);
7589                 }
7590             } else {
7591                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7592                 if (is_signed) {
7593                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7594                                          tcg_shift, tcg_fpstatus);
7595                 } else {
7596                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7597                                          tcg_shift, tcg_fpstatus);
7598                 }
7599                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7600             }
7601             break;
7602 
7603         default:
7604             g_assert_not_reached();
7605         }
7606 
7607         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7608     }
7609 }
7610 
7611 /* Floating point <-> fixed point conversions
7612  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7613  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7614  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7615  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7616  */
7617 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7618 {
7619     int rd = extract32(insn, 0, 5);
7620     int rn = extract32(insn, 5, 5);
7621     int scale = extract32(insn, 10, 6);
7622     int opcode = extract32(insn, 16, 3);
7623     int rmode = extract32(insn, 19, 2);
7624     int type = extract32(insn, 22, 2);
7625     bool sbit = extract32(insn, 29, 1);
7626     bool sf = extract32(insn, 31, 1);
7627     bool itof;
7628 
7629     if (sbit || (!sf && scale < 32)) {
7630         unallocated_encoding(s);
7631         return;
7632     }
7633 
7634     switch (type) {
7635     case 0: /* float32 */
7636     case 1: /* float64 */
7637         break;
7638     case 3: /* float16 */
7639         if (dc_isar_feature(aa64_fp16, s)) {
7640             break;
7641         }
7642         /* fallthru */
7643     default:
7644         unallocated_encoding(s);
7645         return;
7646     }
7647 
7648     switch ((rmode << 3) | opcode) {
7649     case 0x2: /* SCVTF */
7650     case 0x3: /* UCVTF */
7651         itof = true;
7652         break;
7653     case 0x18: /* FCVTZS */
7654     case 0x19: /* FCVTZU */
7655         itof = false;
7656         break;
7657     default:
7658         unallocated_encoding(s);
7659         return;
7660     }
7661 
7662     if (!fp_access_check(s)) {
7663         return;
7664     }
7665 
7666     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7667 }
7668 
7669 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7670 {
7671     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7672      * without conversion.
7673      */
7674 
7675     if (itof) {
7676         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7677         TCGv_i64 tmp;
7678 
7679         switch (type) {
7680         case 0:
7681             /* 32 bit */
7682             tmp = tcg_temp_new_i64();
7683             tcg_gen_ext32u_i64(tmp, tcg_rn);
7684             write_fp_dreg(s, rd, tmp);
7685             break;
7686         case 1:
7687             /* 64 bit */
7688             write_fp_dreg(s, rd, tcg_rn);
7689             break;
7690         case 2:
7691             /* 64 bit to top half. */
7692             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7693             clear_vec_high(s, true, rd);
7694             break;
7695         case 3:
7696             /* 16 bit */
7697             tmp = tcg_temp_new_i64();
7698             tcg_gen_ext16u_i64(tmp, tcg_rn);
7699             write_fp_dreg(s, rd, tmp);
7700             break;
7701         default:
7702             g_assert_not_reached();
7703         }
7704     } else {
7705         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7706 
7707         switch (type) {
7708         case 0:
7709             /* 32 bit */
7710             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7711             break;
7712         case 1:
7713             /* 64 bit */
7714             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7715             break;
7716         case 2:
7717             /* 64 bits from top half */
7718             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7719             break;
7720         case 3:
7721             /* 16 bit */
7722             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7723             break;
7724         default:
7725             g_assert_not_reached();
7726         }
7727     }
7728 }
7729 
7730 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7731 {
7732     TCGv_i64 t = read_fp_dreg(s, rn);
7733     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7734 
7735     gen_helper_fjcvtzs(t, t, fpstatus);
7736 
7737     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7738     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7739     tcg_gen_movi_i32(cpu_CF, 0);
7740     tcg_gen_movi_i32(cpu_NF, 0);
7741     tcg_gen_movi_i32(cpu_VF, 0);
7742 }
7743 
7744 /* Floating point <-> integer conversions
7745  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7746  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7747  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7748  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7749  */
7750 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7751 {
7752     int rd = extract32(insn, 0, 5);
7753     int rn = extract32(insn, 5, 5);
7754     int opcode = extract32(insn, 16, 3);
7755     int rmode = extract32(insn, 19, 2);
7756     int type = extract32(insn, 22, 2);
7757     bool sbit = extract32(insn, 29, 1);
7758     bool sf = extract32(insn, 31, 1);
7759     bool itof = false;
7760 
7761     if (sbit) {
7762         goto do_unallocated;
7763     }
7764 
7765     switch (opcode) {
7766     case 2: /* SCVTF */
7767     case 3: /* UCVTF */
7768         itof = true;
7769         /* fallthru */
7770     case 4: /* FCVTAS */
7771     case 5: /* FCVTAU */
7772         if (rmode != 0) {
7773             goto do_unallocated;
7774         }
7775         /* fallthru */
7776     case 0: /* FCVT[NPMZ]S */
7777     case 1: /* FCVT[NPMZ]U */
7778         switch (type) {
7779         case 0: /* float32 */
7780         case 1: /* float64 */
7781             break;
7782         case 3: /* float16 */
7783             if (!dc_isar_feature(aa64_fp16, s)) {
7784                 goto do_unallocated;
7785             }
7786             break;
7787         default:
7788             goto do_unallocated;
7789         }
7790         if (!fp_access_check(s)) {
7791             return;
7792         }
7793         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7794         break;
7795 
7796     default:
7797         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7798         case 0b01100110: /* FMOV half <-> 32-bit int */
7799         case 0b01100111:
7800         case 0b11100110: /* FMOV half <-> 64-bit int */
7801         case 0b11100111:
7802             if (!dc_isar_feature(aa64_fp16, s)) {
7803                 goto do_unallocated;
7804             }
7805             /* fallthru */
7806         case 0b00000110: /* FMOV 32-bit */
7807         case 0b00000111:
7808         case 0b10100110: /* FMOV 64-bit */
7809         case 0b10100111:
7810         case 0b11001110: /* FMOV top half of 128-bit */
7811         case 0b11001111:
7812             if (!fp_access_check(s)) {
7813                 return;
7814             }
7815             itof = opcode & 1;
7816             handle_fmov(s, rd, rn, type, itof);
7817             break;
7818 
7819         case 0b00111110: /* FJCVTZS */
7820             if (!dc_isar_feature(aa64_jscvt, s)) {
7821                 goto do_unallocated;
7822             } else if (fp_access_check(s)) {
7823                 handle_fjcvtzs(s, rd, rn);
7824             }
7825             break;
7826 
7827         default:
7828         do_unallocated:
7829             unallocated_encoding(s);
7830             return;
7831         }
7832         break;
7833     }
7834 }
7835 
7836 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7837  *   31  30  29 28     25 24                          0
7838  * +---+---+---+---------+-----------------------------+
7839  * |   | 0 |   | 1 1 1 1 |                             |
7840  * +---+---+---+---------+-----------------------------+
7841  */
7842 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7843 {
7844     if (extract32(insn, 24, 1)) {
7845         /* Floating point data-processing (3 source) */
7846         disas_fp_3src(s, insn);
7847     } else if (extract32(insn, 21, 1) == 0) {
7848         /* Floating point to fixed point conversions */
7849         disas_fp_fixed_conv(s, insn);
7850     } else {
7851         switch (extract32(insn, 10, 2)) {
7852         case 1:
7853             /* Floating point conditional compare */
7854             disas_fp_ccomp(s, insn);
7855             break;
7856         case 2:
7857             /* Floating point data-processing (2 source) */
7858             unallocated_encoding(s); /* in decodetree */
7859             break;
7860         case 3:
7861             /* Floating point conditional select */
7862             disas_fp_csel(s, insn);
7863             break;
7864         case 0:
7865             switch (ctz32(extract32(insn, 12, 4))) {
7866             case 0: /* [15:12] == xxx1 */
7867                 /* Floating point immediate */
7868                 disas_fp_imm(s, insn);
7869                 break;
7870             case 1: /* [15:12] == xx10 */
7871                 /* Floating point compare */
7872                 disas_fp_compare(s, insn);
7873                 break;
7874             case 2: /* [15:12] == x100 */
7875                 /* Floating point data-processing (1 source) */
7876                 disas_fp_1src(s, insn);
7877                 break;
7878             case 3: /* [15:12] == 1000 */
7879                 unallocated_encoding(s);
7880                 break;
7881             default: /* [15:12] == 0000 */
7882                 /* Floating point <-> integer conversions */
7883                 disas_fp_int_conv(s, insn);
7884                 break;
7885             }
7886             break;
7887         }
7888     }
7889 }
7890 
7891 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7892                      int pos)
7893 {
7894     /* Extract 64 bits from the middle of two concatenated 64 bit
7895      * vector register slices left:right. The extracted bits start
7896      * at 'pos' bits into the right (least significant) side.
7897      * We return the result in tcg_right, and guarantee not to
7898      * trash tcg_left.
7899      */
7900     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7901     assert(pos > 0 && pos < 64);
7902 
7903     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7904     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7905     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7906 }
7907 
7908 /* EXT
7909  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7910  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7911  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7912  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7913  */
7914 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7915 {
7916     int is_q = extract32(insn, 30, 1);
7917     int op2 = extract32(insn, 22, 2);
7918     int imm4 = extract32(insn, 11, 4);
7919     int rm = extract32(insn, 16, 5);
7920     int rn = extract32(insn, 5, 5);
7921     int rd = extract32(insn, 0, 5);
7922     int pos = imm4 << 3;
7923     TCGv_i64 tcg_resl, tcg_resh;
7924 
7925     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7926         unallocated_encoding(s);
7927         return;
7928     }
7929 
7930     if (!fp_access_check(s)) {
7931         return;
7932     }
7933 
7934     tcg_resh = tcg_temp_new_i64();
7935     tcg_resl = tcg_temp_new_i64();
7936 
7937     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7938      * either extracting 128 bits from a 128:128 concatenation, or
7939      * extracting 64 bits from a 64:64 concatenation.
7940      */
7941     if (!is_q) {
7942         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7943         if (pos != 0) {
7944             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7945             do_ext64(s, tcg_resh, tcg_resl, pos);
7946         }
7947     } else {
7948         TCGv_i64 tcg_hh;
7949         typedef struct {
7950             int reg;
7951             int elt;
7952         } EltPosns;
7953         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7954         EltPosns *elt = eltposns;
7955 
7956         if (pos >= 64) {
7957             elt++;
7958             pos -= 64;
7959         }
7960 
7961         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7962         elt++;
7963         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7964         elt++;
7965         if (pos != 0) {
7966             do_ext64(s, tcg_resh, tcg_resl, pos);
7967             tcg_hh = tcg_temp_new_i64();
7968             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7969             do_ext64(s, tcg_hh, tcg_resh, pos);
7970         }
7971     }
7972 
7973     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7974     if (is_q) {
7975         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7976     }
7977     clear_vec_high(s, is_q, rd);
7978 }
7979 
7980 /* TBL/TBX
7981  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7982  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7983  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7984  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7985  */
7986 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7987 {
7988     int op2 = extract32(insn, 22, 2);
7989     int is_q = extract32(insn, 30, 1);
7990     int rm = extract32(insn, 16, 5);
7991     int rn = extract32(insn, 5, 5);
7992     int rd = extract32(insn, 0, 5);
7993     int is_tbx = extract32(insn, 12, 1);
7994     int len = (extract32(insn, 13, 2) + 1) * 16;
7995 
7996     if (op2 != 0) {
7997         unallocated_encoding(s);
7998         return;
7999     }
8000 
8001     if (!fp_access_check(s)) {
8002         return;
8003     }
8004 
8005     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8006                        vec_full_reg_offset(s, rm), tcg_env,
8007                        is_q ? 16 : 8, vec_full_reg_size(s),
8008                        (len << 6) | (is_tbx << 5) | rn,
8009                        gen_helper_simd_tblx);
8010 }
8011 
8012 /* ZIP/UZP/TRN
8013  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
8014  * +---+---+-------------+------+---+------+---+------------------+------+
8015  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
8016  * +---+---+-------------+------+---+------+---+------------------+------+
8017  */
8018 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8019 {
8020     int rd = extract32(insn, 0, 5);
8021     int rn = extract32(insn, 5, 5);
8022     int rm = extract32(insn, 16, 5);
8023     int size = extract32(insn, 22, 2);
8024     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8025      * bit 2 indicates 1 vs 2 variant of the insn.
8026      */
8027     int opcode = extract32(insn, 12, 2);
8028     bool part = extract32(insn, 14, 1);
8029     bool is_q = extract32(insn, 30, 1);
8030     int esize = 8 << size;
8031     int i;
8032     int datasize = is_q ? 128 : 64;
8033     int elements = datasize / esize;
8034     TCGv_i64 tcg_res[2], tcg_ele;
8035 
8036     if (opcode == 0 || (size == 3 && !is_q)) {
8037         unallocated_encoding(s);
8038         return;
8039     }
8040 
8041     if (!fp_access_check(s)) {
8042         return;
8043     }
8044 
8045     tcg_res[0] = tcg_temp_new_i64();
8046     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
8047     tcg_ele = tcg_temp_new_i64();
8048 
8049     for (i = 0; i < elements; i++) {
8050         int o, w;
8051 
8052         switch (opcode) {
8053         case 1: /* UZP1/2 */
8054         {
8055             int midpoint = elements / 2;
8056             if (i < midpoint) {
8057                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
8058             } else {
8059                 read_vec_element(s, tcg_ele, rm,
8060                                  2 * (i - midpoint) + part, size);
8061             }
8062             break;
8063         }
8064         case 2: /* TRN1/2 */
8065             if (i & 1) {
8066                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
8067             } else {
8068                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
8069             }
8070             break;
8071         case 3: /* ZIP1/2 */
8072         {
8073             int base = part * elements / 2;
8074             if (i & 1) {
8075                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
8076             } else {
8077                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
8078             }
8079             break;
8080         }
8081         default:
8082             g_assert_not_reached();
8083         }
8084 
8085         w = (i * esize) / 64;
8086         o = (i * esize) % 64;
8087         if (o == 0) {
8088             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
8089         } else {
8090             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
8091             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
8092         }
8093     }
8094 
8095     for (i = 0; i <= is_q; ++i) {
8096         write_vec_element(s, tcg_res[i], rd, i, MO_64);
8097     }
8098     clear_vec_high(s, is_q, rd);
8099 }
8100 
8101 /*
8102  * do_reduction_op helper
8103  *
8104  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
8105  * important for correct NaN propagation that we do these
8106  * operations in exactly the order specified by the pseudocode.
8107  *
8108  * This is a recursive function, TCG temps should be freed by the
8109  * calling function once it is done with the values.
8110  */
8111 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
8112                                 int esize, int size, int vmap, TCGv_ptr fpst)
8113 {
8114     if (esize == size) {
8115         int element;
8116         MemOp msize = esize == 16 ? MO_16 : MO_32;
8117         TCGv_i32 tcg_elem;
8118 
8119         /* We should have one register left here */
8120         assert(ctpop8(vmap) == 1);
8121         element = ctz32(vmap);
8122         assert(element < 8);
8123 
8124         tcg_elem = tcg_temp_new_i32();
8125         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8126         return tcg_elem;
8127     } else {
8128         int bits = size / 2;
8129         int shift = ctpop8(vmap) / 2;
8130         int vmap_lo = (vmap >> shift) & vmap;
8131         int vmap_hi = (vmap & ~vmap_lo);
8132         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8133 
8134         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8135         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8136         tcg_res = tcg_temp_new_i32();
8137 
8138         switch (fpopcode) {
8139         case 0x0c: /* fmaxnmv half-precision */
8140             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8141             break;
8142         case 0x0f: /* fmaxv half-precision */
8143             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8144             break;
8145         case 0x1c: /* fminnmv half-precision */
8146             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8147             break;
8148         case 0x1f: /* fminv half-precision */
8149             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8150             break;
8151         case 0x2c: /* fmaxnmv */
8152             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8153             break;
8154         case 0x2f: /* fmaxv */
8155             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8156             break;
8157         case 0x3c: /* fminnmv */
8158             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8159             break;
8160         case 0x3f: /* fminv */
8161             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8162             break;
8163         default:
8164             g_assert_not_reached();
8165         }
8166         return tcg_res;
8167     }
8168 }
8169 
8170 /* AdvSIMD across lanes
8171  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8172  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8173  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8174  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8175  */
8176 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8177 {
8178     int rd = extract32(insn, 0, 5);
8179     int rn = extract32(insn, 5, 5);
8180     int size = extract32(insn, 22, 2);
8181     int opcode = extract32(insn, 12, 5);
8182     bool is_q = extract32(insn, 30, 1);
8183     bool is_u = extract32(insn, 29, 1);
8184     bool is_fp = false;
8185     bool is_min = false;
8186     int esize;
8187     int elements;
8188     int i;
8189     TCGv_i64 tcg_res, tcg_elt;
8190 
8191     switch (opcode) {
8192     case 0x1b: /* ADDV */
8193         if (is_u) {
8194             unallocated_encoding(s);
8195             return;
8196         }
8197         /* fall through */
8198     case 0x3: /* SADDLV, UADDLV */
8199     case 0xa: /* SMAXV, UMAXV */
8200     case 0x1a: /* SMINV, UMINV */
8201         if (size == 3 || (size == 2 && !is_q)) {
8202             unallocated_encoding(s);
8203             return;
8204         }
8205         break;
8206     case 0xc: /* FMAXNMV, FMINNMV */
8207     case 0xf: /* FMAXV, FMINV */
8208         /* Bit 1 of size field encodes min vs max and the actual size
8209          * depends on the encoding of the U bit. If not set (and FP16
8210          * enabled) then we do half-precision float instead of single
8211          * precision.
8212          */
8213         is_min = extract32(size, 1, 1);
8214         is_fp = true;
8215         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8216             size = 1;
8217         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8218             unallocated_encoding(s);
8219             return;
8220         } else {
8221             size = 2;
8222         }
8223         break;
8224     default:
8225         unallocated_encoding(s);
8226         return;
8227     }
8228 
8229     if (!fp_access_check(s)) {
8230         return;
8231     }
8232 
8233     esize = 8 << size;
8234     elements = (is_q ? 128 : 64) / esize;
8235 
8236     tcg_res = tcg_temp_new_i64();
8237     tcg_elt = tcg_temp_new_i64();
8238 
8239     /* These instructions operate across all lanes of a vector
8240      * to produce a single result. We can guarantee that a 64
8241      * bit intermediate is sufficient:
8242      *  + for [US]ADDLV the maximum element size is 32 bits, and
8243      *    the result type is 64 bits
8244      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8245      *    same as the element size, which is 32 bits at most
8246      * For the integer operations we can choose to work at 64
8247      * or 32 bits and truncate at the end; for simplicity
8248      * we use 64 bits always. The floating point
8249      * ops do require 32 bit intermediates, though.
8250      */
8251     if (!is_fp) {
8252         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8253 
8254         for (i = 1; i < elements; i++) {
8255             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8256 
8257             switch (opcode) {
8258             case 0x03: /* SADDLV / UADDLV */
8259             case 0x1b: /* ADDV */
8260                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8261                 break;
8262             case 0x0a: /* SMAXV / UMAXV */
8263                 if (is_u) {
8264                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8265                 } else {
8266                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8267                 }
8268                 break;
8269             case 0x1a: /* SMINV / UMINV */
8270                 if (is_u) {
8271                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8272                 } else {
8273                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8274                 }
8275                 break;
8276             default:
8277                 g_assert_not_reached();
8278             }
8279 
8280         }
8281     } else {
8282         /* Floating point vector reduction ops which work across 32
8283          * bit (single) or 16 bit (half-precision) intermediates.
8284          * Note that correct NaN propagation requires that we do these
8285          * operations in exactly the order specified by the pseudocode.
8286          */
8287         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8288         int fpopcode = opcode | is_min << 4 | is_u << 5;
8289         int vmap = (1 << elements) - 1;
8290         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8291                                              (is_q ? 128 : 64), vmap, fpst);
8292         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8293     }
8294 
8295     /* Now truncate the result to the width required for the final output */
8296     if (opcode == 0x03) {
8297         /* SADDLV, UADDLV: result is 2*esize */
8298         size++;
8299     }
8300 
8301     switch (size) {
8302     case 0:
8303         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8304         break;
8305     case 1:
8306         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8307         break;
8308     case 2:
8309         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8310         break;
8311     case 3:
8312         break;
8313     default:
8314         g_assert_not_reached();
8315     }
8316 
8317     write_fp_dreg(s, rd, tcg_res);
8318 }
8319 
8320 /* AdvSIMD modified immediate
8321  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8322  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8323  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8324  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8325  *
8326  * There are a number of operations that can be carried out here:
8327  *   MOVI - move (shifted) imm into register
8328  *   MVNI - move inverted (shifted) imm into register
8329  *   ORR  - bitwise OR of (shifted) imm with register
8330  *   BIC  - bitwise clear of (shifted) imm with register
8331  * With ARMv8.2 we also have:
8332  *   FMOV half-precision
8333  */
8334 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8335 {
8336     int rd = extract32(insn, 0, 5);
8337     int cmode = extract32(insn, 12, 4);
8338     int o2 = extract32(insn, 11, 1);
8339     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8340     bool is_neg = extract32(insn, 29, 1);
8341     bool is_q = extract32(insn, 30, 1);
8342     uint64_t imm = 0;
8343 
8344     if (o2) {
8345         if (cmode != 0xf || is_neg) {
8346             unallocated_encoding(s);
8347             return;
8348         }
8349         /* FMOV (vector, immediate) - half-precision */
8350         if (!dc_isar_feature(aa64_fp16, s)) {
8351             unallocated_encoding(s);
8352             return;
8353         }
8354         imm = vfp_expand_imm(MO_16, abcdefgh);
8355         /* now duplicate across the lanes */
8356         imm = dup_const(MO_16, imm);
8357     } else {
8358         if (cmode == 0xf && is_neg && !is_q) {
8359             unallocated_encoding(s);
8360             return;
8361         }
8362         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8363     }
8364 
8365     if (!fp_access_check(s)) {
8366         return;
8367     }
8368 
8369     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8370         /* MOVI or MVNI, with MVNI negation handled above.  */
8371         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8372                              vec_full_reg_size(s), imm);
8373     } else {
8374         /* ORR or BIC, with BIC negation to AND handled above.  */
8375         if (is_neg) {
8376             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8377         } else {
8378             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8379         }
8380     }
8381 }
8382 
8383 /* AdvSIMD scalar pairwise
8384  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8385  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8386  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8387  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8388  */
8389 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8390 {
8391     int u = extract32(insn, 29, 1);
8392     int size = extract32(insn, 22, 2);
8393     int opcode = extract32(insn, 12, 5);
8394     int rn = extract32(insn, 5, 5);
8395     int rd = extract32(insn, 0, 5);
8396     TCGv_ptr fpst;
8397 
8398     /* For some ops (the FP ones), size[1] is part of the encoding.
8399      * For ADDP strictly it is not but size[1] is always 1 for valid
8400      * encodings.
8401      */
8402     opcode |= (extract32(size, 1, 1) << 5);
8403 
8404     switch (opcode) {
8405     case 0x3b: /* ADDP */
8406         if (u || size != 3) {
8407             unallocated_encoding(s);
8408             return;
8409         }
8410         if (!fp_access_check(s)) {
8411             return;
8412         }
8413 
8414         fpst = NULL;
8415         break;
8416     case 0xc: /* FMAXNMP */
8417     case 0xf: /* FMAXP */
8418     case 0x2c: /* FMINNMP */
8419     case 0x2f: /* FMINP */
8420         /* FP op, size[0] is 32 or 64 bit*/
8421         if (!u) {
8422             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8423                 unallocated_encoding(s);
8424                 return;
8425             } else {
8426                 size = MO_16;
8427             }
8428         } else {
8429             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8430         }
8431 
8432         if (!fp_access_check(s)) {
8433             return;
8434         }
8435 
8436         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8437         break;
8438     default:
8439     case 0xd: /* FADDP */
8440         unallocated_encoding(s);
8441         return;
8442     }
8443 
8444     if (size == MO_64) {
8445         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8446         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8447         TCGv_i64 tcg_res = tcg_temp_new_i64();
8448 
8449         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8450         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8451 
8452         switch (opcode) {
8453         case 0x3b: /* ADDP */
8454             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8455             break;
8456         case 0xc: /* FMAXNMP */
8457             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8458             break;
8459         case 0xf: /* FMAXP */
8460             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8461             break;
8462         case 0x2c: /* FMINNMP */
8463             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8464             break;
8465         case 0x2f: /* FMINP */
8466             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8467             break;
8468         default:
8469         case 0xd: /* FADDP */
8470             g_assert_not_reached();
8471         }
8472 
8473         write_fp_dreg(s, rd, tcg_res);
8474     } else {
8475         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8476         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8477         TCGv_i32 tcg_res = tcg_temp_new_i32();
8478 
8479         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8480         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8481 
8482         if (size == MO_16) {
8483             switch (opcode) {
8484             case 0xc: /* FMAXNMP */
8485                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8486                 break;
8487             case 0xf: /* FMAXP */
8488                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8489                 break;
8490             case 0x2c: /* FMINNMP */
8491                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8492                 break;
8493             case 0x2f: /* FMINP */
8494                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8495                 break;
8496             default:
8497             case 0xd: /* FADDP */
8498                 g_assert_not_reached();
8499             }
8500         } else {
8501             switch (opcode) {
8502             case 0xc: /* FMAXNMP */
8503                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8504                 break;
8505             case 0xf: /* FMAXP */
8506                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8507                 break;
8508             case 0x2c: /* FMINNMP */
8509                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8510                 break;
8511             case 0x2f: /* FMINP */
8512                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8513                 break;
8514             default:
8515             case 0xd: /* FADDP */
8516                 g_assert_not_reached();
8517             }
8518         }
8519 
8520         write_fp_sreg(s, rd, tcg_res);
8521     }
8522 }
8523 
8524 /*
8525  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8526  *
8527  * This code is handles the common shifting code and is used by both
8528  * the vector and scalar code.
8529  */
8530 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8531                                     TCGv_i64 tcg_rnd, bool accumulate,
8532                                     bool is_u, int size, int shift)
8533 {
8534     bool extended_result = false;
8535     bool round = tcg_rnd != NULL;
8536     int ext_lshift = 0;
8537     TCGv_i64 tcg_src_hi;
8538 
8539     if (round && size == 3) {
8540         extended_result = true;
8541         ext_lshift = 64 - shift;
8542         tcg_src_hi = tcg_temp_new_i64();
8543     } else if (shift == 64) {
8544         if (!accumulate && is_u) {
8545             /* result is zero */
8546             tcg_gen_movi_i64(tcg_res, 0);
8547             return;
8548         }
8549     }
8550 
8551     /* Deal with the rounding step */
8552     if (round) {
8553         if (extended_result) {
8554             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8555             if (!is_u) {
8556                 /* take care of sign extending tcg_res */
8557                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8558                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8559                                  tcg_src, tcg_src_hi,
8560                                  tcg_rnd, tcg_zero);
8561             } else {
8562                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8563                                  tcg_src, tcg_zero,
8564                                  tcg_rnd, tcg_zero);
8565             }
8566         } else {
8567             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8568         }
8569     }
8570 
8571     /* Now do the shift right */
8572     if (round && extended_result) {
8573         /* extended case, >64 bit precision required */
8574         if (ext_lshift == 0) {
8575             /* special case, only high bits matter */
8576             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8577         } else {
8578             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8579             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8580             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8581         }
8582     } else {
8583         if (is_u) {
8584             if (shift == 64) {
8585                 /* essentially shifting in 64 zeros */
8586                 tcg_gen_movi_i64(tcg_src, 0);
8587             } else {
8588                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8589             }
8590         } else {
8591             if (shift == 64) {
8592                 /* effectively extending the sign-bit */
8593                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8594             } else {
8595                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8596             }
8597         }
8598     }
8599 
8600     if (accumulate) {
8601         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8602     } else {
8603         tcg_gen_mov_i64(tcg_res, tcg_src);
8604     }
8605 }
8606 
8607 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8608 static void handle_scalar_simd_shri(DisasContext *s,
8609                                     bool is_u, int immh, int immb,
8610                                     int opcode, int rn, int rd)
8611 {
8612     const int size = 3;
8613     int immhb = immh << 3 | immb;
8614     int shift = 2 * (8 << size) - immhb;
8615     bool accumulate = false;
8616     bool round = false;
8617     bool insert = false;
8618     TCGv_i64 tcg_rn;
8619     TCGv_i64 tcg_rd;
8620     TCGv_i64 tcg_round;
8621 
8622     if (!extract32(immh, 3, 1)) {
8623         unallocated_encoding(s);
8624         return;
8625     }
8626 
8627     if (!fp_access_check(s)) {
8628         return;
8629     }
8630 
8631     switch (opcode) {
8632     case 0x02: /* SSRA / USRA (accumulate) */
8633         accumulate = true;
8634         break;
8635     case 0x04: /* SRSHR / URSHR (rounding) */
8636         round = true;
8637         break;
8638     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8639         accumulate = round = true;
8640         break;
8641     case 0x08: /* SRI */
8642         insert = true;
8643         break;
8644     }
8645 
8646     if (round) {
8647         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8648     } else {
8649         tcg_round = NULL;
8650     }
8651 
8652     tcg_rn = read_fp_dreg(s, rn);
8653     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8654 
8655     if (insert) {
8656         /* shift count same as element size is valid but does nothing;
8657          * special case to avoid potential shift by 64.
8658          */
8659         int esize = 8 << size;
8660         if (shift != esize) {
8661             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8662             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8663         }
8664     } else {
8665         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8666                                 accumulate, is_u, size, shift);
8667     }
8668 
8669     write_fp_dreg(s, rd, tcg_rd);
8670 }
8671 
8672 /* SHL/SLI - Scalar shift left */
8673 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8674                                     int immh, int immb, int opcode,
8675                                     int rn, int rd)
8676 {
8677     int size = 32 - clz32(immh) - 1;
8678     int immhb = immh << 3 | immb;
8679     int shift = immhb - (8 << size);
8680     TCGv_i64 tcg_rn;
8681     TCGv_i64 tcg_rd;
8682 
8683     if (!extract32(immh, 3, 1)) {
8684         unallocated_encoding(s);
8685         return;
8686     }
8687 
8688     if (!fp_access_check(s)) {
8689         return;
8690     }
8691 
8692     tcg_rn = read_fp_dreg(s, rn);
8693     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8694 
8695     if (insert) {
8696         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8697     } else {
8698         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8699     }
8700 
8701     write_fp_dreg(s, rd, tcg_rd);
8702 }
8703 
8704 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8705  * (signed/unsigned) narrowing */
8706 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8707                                    bool is_u_shift, bool is_u_narrow,
8708                                    int immh, int immb, int opcode,
8709                                    int rn, int rd)
8710 {
8711     int immhb = immh << 3 | immb;
8712     int size = 32 - clz32(immh) - 1;
8713     int esize = 8 << size;
8714     int shift = (2 * esize) - immhb;
8715     int elements = is_scalar ? 1 : (64 / esize);
8716     bool round = extract32(opcode, 0, 1);
8717     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8718     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8719     TCGv_i32 tcg_rd_narrowed;
8720     TCGv_i64 tcg_final;
8721 
8722     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8723         { gen_helper_neon_narrow_sat_s8,
8724           gen_helper_neon_unarrow_sat8 },
8725         { gen_helper_neon_narrow_sat_s16,
8726           gen_helper_neon_unarrow_sat16 },
8727         { gen_helper_neon_narrow_sat_s32,
8728           gen_helper_neon_unarrow_sat32 },
8729         { NULL, NULL },
8730     };
8731     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8732         gen_helper_neon_narrow_sat_u8,
8733         gen_helper_neon_narrow_sat_u16,
8734         gen_helper_neon_narrow_sat_u32,
8735         NULL
8736     };
8737     NeonGenNarrowEnvFn *narrowfn;
8738 
8739     int i;
8740 
8741     assert(size < 4);
8742 
8743     if (extract32(immh, 3, 1)) {
8744         unallocated_encoding(s);
8745         return;
8746     }
8747 
8748     if (!fp_access_check(s)) {
8749         return;
8750     }
8751 
8752     if (is_u_shift) {
8753         narrowfn = unsigned_narrow_fns[size];
8754     } else {
8755         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8756     }
8757 
8758     tcg_rn = tcg_temp_new_i64();
8759     tcg_rd = tcg_temp_new_i64();
8760     tcg_rd_narrowed = tcg_temp_new_i32();
8761     tcg_final = tcg_temp_new_i64();
8762 
8763     if (round) {
8764         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8765     } else {
8766         tcg_round = NULL;
8767     }
8768 
8769     for (i = 0; i < elements; i++) {
8770         read_vec_element(s, tcg_rn, rn, i, ldop);
8771         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8772                                 false, is_u_shift, size+1, shift);
8773         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8774         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8775         if (i == 0) {
8776             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8777         } else {
8778             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8779         }
8780     }
8781 
8782     if (!is_q) {
8783         write_vec_element(s, tcg_final, rd, 0, MO_64);
8784     } else {
8785         write_vec_element(s, tcg_final, rd, 1, MO_64);
8786     }
8787     clear_vec_high(s, is_q, rd);
8788 }
8789 
8790 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8791 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8792                              bool src_unsigned, bool dst_unsigned,
8793                              int immh, int immb, int rn, int rd)
8794 {
8795     int immhb = immh << 3 | immb;
8796     int size = 32 - clz32(immh) - 1;
8797     int shift = immhb - (8 << size);
8798     int pass;
8799 
8800     assert(immh != 0);
8801     assert(!(scalar && is_q));
8802 
8803     if (!scalar) {
8804         if (!is_q && extract32(immh, 3, 1)) {
8805             unallocated_encoding(s);
8806             return;
8807         }
8808 
8809         /* Since we use the variable-shift helpers we must
8810          * replicate the shift count into each element of
8811          * the tcg_shift value.
8812          */
8813         switch (size) {
8814         case 0:
8815             shift |= shift << 8;
8816             /* fall through */
8817         case 1:
8818             shift |= shift << 16;
8819             break;
8820         case 2:
8821         case 3:
8822             break;
8823         default:
8824             g_assert_not_reached();
8825         }
8826     }
8827 
8828     if (!fp_access_check(s)) {
8829         return;
8830     }
8831 
8832     if (size == 3) {
8833         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8834         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8835             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8836             { NULL, gen_helper_neon_qshl_u64 },
8837         };
8838         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8839         int maxpass = is_q ? 2 : 1;
8840 
8841         for (pass = 0; pass < maxpass; pass++) {
8842             TCGv_i64 tcg_op = tcg_temp_new_i64();
8843 
8844             read_vec_element(s, tcg_op, rn, pass, MO_64);
8845             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8846             write_vec_element(s, tcg_op, rd, pass, MO_64);
8847         }
8848         clear_vec_high(s, is_q, rd);
8849     } else {
8850         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8851         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8852             {
8853                 { gen_helper_neon_qshl_s8,
8854                   gen_helper_neon_qshl_s16,
8855                   gen_helper_neon_qshl_s32 },
8856                 { gen_helper_neon_qshlu_s8,
8857                   gen_helper_neon_qshlu_s16,
8858                   gen_helper_neon_qshlu_s32 }
8859             }, {
8860                 { NULL, NULL, NULL },
8861                 { gen_helper_neon_qshl_u8,
8862                   gen_helper_neon_qshl_u16,
8863                   gen_helper_neon_qshl_u32 }
8864             }
8865         };
8866         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8867         MemOp memop = scalar ? size : MO_32;
8868         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8869 
8870         for (pass = 0; pass < maxpass; pass++) {
8871             TCGv_i32 tcg_op = tcg_temp_new_i32();
8872 
8873             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8874             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8875             if (scalar) {
8876                 switch (size) {
8877                 case 0:
8878                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8879                     break;
8880                 case 1:
8881                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8882                     break;
8883                 case 2:
8884                     break;
8885                 default:
8886                     g_assert_not_reached();
8887                 }
8888                 write_fp_sreg(s, rd, tcg_op);
8889             } else {
8890                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8891             }
8892         }
8893 
8894         if (!scalar) {
8895             clear_vec_high(s, is_q, rd);
8896         }
8897     }
8898 }
8899 
8900 /* Common vector code for handling integer to FP conversion */
8901 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8902                                    int elements, int is_signed,
8903                                    int fracbits, int size)
8904 {
8905     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8906     TCGv_i32 tcg_shift = NULL;
8907 
8908     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8909     int pass;
8910 
8911     if (fracbits || size == MO_64) {
8912         tcg_shift = tcg_constant_i32(fracbits);
8913     }
8914 
8915     if (size == MO_64) {
8916         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8917         TCGv_i64 tcg_double = tcg_temp_new_i64();
8918 
8919         for (pass = 0; pass < elements; pass++) {
8920             read_vec_element(s, tcg_int64, rn, pass, mop);
8921 
8922             if (is_signed) {
8923                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8924                                      tcg_shift, tcg_fpst);
8925             } else {
8926                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8927                                      tcg_shift, tcg_fpst);
8928             }
8929             if (elements == 1) {
8930                 write_fp_dreg(s, rd, tcg_double);
8931             } else {
8932                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8933             }
8934         }
8935     } else {
8936         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8937         TCGv_i32 tcg_float = tcg_temp_new_i32();
8938 
8939         for (pass = 0; pass < elements; pass++) {
8940             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8941 
8942             switch (size) {
8943             case MO_32:
8944                 if (fracbits) {
8945                     if (is_signed) {
8946                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8947                                              tcg_shift, tcg_fpst);
8948                     } else {
8949                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8950                                              tcg_shift, tcg_fpst);
8951                     }
8952                 } else {
8953                     if (is_signed) {
8954                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8955                     } else {
8956                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8957                     }
8958                 }
8959                 break;
8960             case MO_16:
8961                 if (fracbits) {
8962                     if (is_signed) {
8963                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8964                                              tcg_shift, tcg_fpst);
8965                     } else {
8966                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8967                                              tcg_shift, tcg_fpst);
8968                     }
8969                 } else {
8970                     if (is_signed) {
8971                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8972                     } else {
8973                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8974                     }
8975                 }
8976                 break;
8977             default:
8978                 g_assert_not_reached();
8979             }
8980 
8981             if (elements == 1) {
8982                 write_fp_sreg(s, rd, tcg_float);
8983             } else {
8984                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8985             }
8986         }
8987     }
8988 
8989     clear_vec_high(s, elements << size == 16, rd);
8990 }
8991 
8992 /* UCVTF/SCVTF - Integer to FP conversion */
8993 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8994                                          bool is_q, bool is_u,
8995                                          int immh, int immb, int opcode,
8996                                          int rn, int rd)
8997 {
8998     int size, elements, fracbits;
8999     int immhb = immh << 3 | immb;
9000 
9001     if (immh & 8) {
9002         size = MO_64;
9003         if (!is_scalar && !is_q) {
9004             unallocated_encoding(s);
9005             return;
9006         }
9007     } else if (immh & 4) {
9008         size = MO_32;
9009     } else if (immh & 2) {
9010         size = MO_16;
9011         if (!dc_isar_feature(aa64_fp16, s)) {
9012             unallocated_encoding(s);
9013             return;
9014         }
9015     } else {
9016         /* immh == 0 would be a failure of the decode logic */
9017         g_assert(immh == 1);
9018         unallocated_encoding(s);
9019         return;
9020     }
9021 
9022     if (is_scalar) {
9023         elements = 1;
9024     } else {
9025         elements = (8 << is_q) >> size;
9026     }
9027     fracbits = (16 << size) - immhb;
9028 
9029     if (!fp_access_check(s)) {
9030         return;
9031     }
9032 
9033     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9034 }
9035 
9036 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9037 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9038                                          bool is_q, bool is_u,
9039                                          int immh, int immb, int rn, int rd)
9040 {
9041     int immhb = immh << 3 | immb;
9042     int pass, size, fracbits;
9043     TCGv_ptr tcg_fpstatus;
9044     TCGv_i32 tcg_rmode, tcg_shift;
9045 
9046     if (immh & 0x8) {
9047         size = MO_64;
9048         if (!is_scalar && !is_q) {
9049             unallocated_encoding(s);
9050             return;
9051         }
9052     } else if (immh & 0x4) {
9053         size = MO_32;
9054     } else if (immh & 0x2) {
9055         size = MO_16;
9056         if (!dc_isar_feature(aa64_fp16, s)) {
9057             unallocated_encoding(s);
9058             return;
9059         }
9060     } else {
9061         /* Should have split out AdvSIMD modified immediate earlier.  */
9062         assert(immh == 1);
9063         unallocated_encoding(s);
9064         return;
9065     }
9066 
9067     if (!fp_access_check(s)) {
9068         return;
9069     }
9070 
9071     assert(!(is_scalar && is_q));
9072 
9073     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9074     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9075     fracbits = (16 << size) - immhb;
9076     tcg_shift = tcg_constant_i32(fracbits);
9077 
9078     if (size == MO_64) {
9079         int maxpass = is_scalar ? 1 : 2;
9080 
9081         for (pass = 0; pass < maxpass; pass++) {
9082             TCGv_i64 tcg_op = tcg_temp_new_i64();
9083 
9084             read_vec_element(s, tcg_op, rn, pass, MO_64);
9085             if (is_u) {
9086                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9087             } else {
9088                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9089             }
9090             write_vec_element(s, tcg_op, rd, pass, MO_64);
9091         }
9092         clear_vec_high(s, is_q, rd);
9093     } else {
9094         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9095         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9096 
9097         switch (size) {
9098         case MO_16:
9099             if (is_u) {
9100                 fn = gen_helper_vfp_touhh;
9101             } else {
9102                 fn = gen_helper_vfp_toshh;
9103             }
9104             break;
9105         case MO_32:
9106             if (is_u) {
9107                 fn = gen_helper_vfp_touls;
9108             } else {
9109                 fn = gen_helper_vfp_tosls;
9110             }
9111             break;
9112         default:
9113             g_assert_not_reached();
9114         }
9115 
9116         for (pass = 0; pass < maxpass; pass++) {
9117             TCGv_i32 tcg_op = tcg_temp_new_i32();
9118 
9119             read_vec_element_i32(s, tcg_op, rn, pass, size);
9120             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9121             if (is_scalar) {
9122                 if (size == MO_16 && !is_u) {
9123                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9124                 }
9125                 write_fp_sreg(s, rd, tcg_op);
9126             } else {
9127                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9128             }
9129         }
9130         if (!is_scalar) {
9131             clear_vec_high(s, is_q, rd);
9132         }
9133     }
9134 
9135     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9136 }
9137 
9138 /* AdvSIMD scalar shift by immediate
9139  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9140  * +-----+---+-------------+------+------+--------+---+------+------+
9141  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9142  * +-----+---+-------------+------+------+--------+---+------+------+
9143  *
9144  * This is the scalar version so it works on a fixed sized registers
9145  */
9146 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9147 {
9148     int rd = extract32(insn, 0, 5);
9149     int rn = extract32(insn, 5, 5);
9150     int opcode = extract32(insn, 11, 5);
9151     int immb = extract32(insn, 16, 3);
9152     int immh = extract32(insn, 19, 4);
9153     bool is_u = extract32(insn, 29, 1);
9154 
9155     if (immh == 0) {
9156         unallocated_encoding(s);
9157         return;
9158     }
9159 
9160     switch (opcode) {
9161     case 0x08: /* SRI */
9162         if (!is_u) {
9163             unallocated_encoding(s);
9164             return;
9165         }
9166         /* fall through */
9167     case 0x00: /* SSHR / USHR */
9168     case 0x02: /* SSRA / USRA */
9169     case 0x04: /* SRSHR / URSHR */
9170     case 0x06: /* SRSRA / URSRA */
9171         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9172         break;
9173     case 0x0a: /* SHL / SLI */
9174         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9175         break;
9176     case 0x1c: /* SCVTF, UCVTF */
9177         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9178                                      opcode, rn, rd);
9179         break;
9180     case 0x10: /* SQSHRUN, SQSHRUN2 */
9181     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9182         if (!is_u) {
9183             unallocated_encoding(s);
9184             return;
9185         }
9186         handle_vec_simd_sqshrn(s, true, false, false, true,
9187                                immh, immb, opcode, rn, rd);
9188         break;
9189     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9190     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9191         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9192                                immh, immb, opcode, rn, rd);
9193         break;
9194     case 0xc: /* SQSHLU */
9195         if (!is_u) {
9196             unallocated_encoding(s);
9197             return;
9198         }
9199         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9200         break;
9201     case 0xe: /* SQSHL, UQSHL */
9202         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9203         break;
9204     case 0x1f: /* FCVTZS, FCVTZU */
9205         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9206         break;
9207     default:
9208         unallocated_encoding(s);
9209         break;
9210     }
9211 }
9212 
9213 /* AdvSIMD scalar three different
9214  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9215  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9216  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9217  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9218  */
9219 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9220 {
9221     bool is_u = extract32(insn, 29, 1);
9222     int size = extract32(insn, 22, 2);
9223     int opcode = extract32(insn, 12, 4);
9224     int rm = extract32(insn, 16, 5);
9225     int rn = extract32(insn, 5, 5);
9226     int rd = extract32(insn, 0, 5);
9227 
9228     if (is_u) {
9229         unallocated_encoding(s);
9230         return;
9231     }
9232 
9233     switch (opcode) {
9234     case 0x9: /* SQDMLAL, SQDMLAL2 */
9235     case 0xb: /* SQDMLSL, SQDMLSL2 */
9236     case 0xd: /* SQDMULL, SQDMULL2 */
9237         if (size == 0 || size == 3) {
9238             unallocated_encoding(s);
9239             return;
9240         }
9241         break;
9242     default:
9243         unallocated_encoding(s);
9244         return;
9245     }
9246 
9247     if (!fp_access_check(s)) {
9248         return;
9249     }
9250 
9251     if (size == 2) {
9252         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9253         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9254         TCGv_i64 tcg_res = tcg_temp_new_i64();
9255 
9256         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9257         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9258 
9259         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9260         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9261 
9262         switch (opcode) {
9263         case 0xd: /* SQDMULL, SQDMULL2 */
9264             break;
9265         case 0xb: /* SQDMLSL, SQDMLSL2 */
9266             tcg_gen_neg_i64(tcg_res, tcg_res);
9267             /* fall through */
9268         case 0x9: /* SQDMLAL, SQDMLAL2 */
9269             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9270             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9271                                               tcg_res, tcg_op1);
9272             break;
9273         default:
9274             g_assert_not_reached();
9275         }
9276 
9277         write_fp_dreg(s, rd, tcg_res);
9278     } else {
9279         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9280         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9281         TCGv_i64 tcg_res = tcg_temp_new_i64();
9282 
9283         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9284         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9285 
9286         switch (opcode) {
9287         case 0xd: /* SQDMULL, SQDMULL2 */
9288             break;
9289         case 0xb: /* SQDMLSL, SQDMLSL2 */
9290             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9291             /* fall through */
9292         case 0x9: /* SQDMLAL, SQDMLAL2 */
9293         {
9294             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9295             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9296             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9297                                               tcg_res, tcg_op3);
9298             break;
9299         }
9300         default:
9301             g_assert_not_reached();
9302         }
9303 
9304         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9305         write_fp_dreg(s, rd, tcg_res);
9306     }
9307 }
9308 
9309 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9310                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9311 {
9312     /* Handle 64x64->64 opcodes which are shared between the scalar
9313      * and vector 3-same groups. We cover every opcode where size == 3
9314      * is valid in either the three-reg-same (integer, not pairwise)
9315      * or scalar-three-reg-same groups.
9316      */
9317     TCGCond cond;
9318 
9319     switch (opcode) {
9320     case 0x1: /* SQADD */
9321         if (u) {
9322             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9323         } else {
9324             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9325         }
9326         break;
9327     case 0x5: /* SQSUB */
9328         if (u) {
9329             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9330         } else {
9331             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9332         }
9333         break;
9334     case 0x6: /* CMGT, CMHI */
9335         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9336     do_cmop:
9337         /* 64 bit integer comparison, result = test ? -1 : 0. */
9338         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9339         break;
9340     case 0x7: /* CMGE, CMHS */
9341         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9342         goto do_cmop;
9343     case 0x11: /* CMTST, CMEQ */
9344         if (u) {
9345             cond = TCG_COND_EQ;
9346             goto do_cmop;
9347         }
9348         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9349         break;
9350     case 0x8: /* SSHL, USHL */
9351         if (u) {
9352             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9353         } else {
9354             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9355         }
9356         break;
9357     case 0x9: /* SQSHL, UQSHL */
9358         if (u) {
9359             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9360         } else {
9361             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9362         }
9363         break;
9364     case 0xa: /* SRSHL, URSHL */
9365         if (u) {
9366             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9367         } else {
9368             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9369         }
9370         break;
9371     case 0xb: /* SQRSHL, UQRSHL */
9372         if (u) {
9373             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9374         } else {
9375             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9376         }
9377         break;
9378     case 0x10: /* ADD, SUB */
9379         if (u) {
9380             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9381         } else {
9382             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9383         }
9384         break;
9385     default:
9386         g_assert_not_reached();
9387     }
9388 }
9389 
9390 /* AdvSIMD scalar three same
9391  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9392  * +-----+---+-----------+------+---+------+--------+---+------+------+
9393  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9394  * +-----+---+-----------+------+---+------+--------+---+------+------+
9395  */
9396 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9397 {
9398     int rd = extract32(insn, 0, 5);
9399     int rn = extract32(insn, 5, 5);
9400     int opcode = extract32(insn, 11, 5);
9401     int rm = extract32(insn, 16, 5);
9402     int size = extract32(insn, 22, 2);
9403     bool u = extract32(insn, 29, 1);
9404     TCGv_i64 tcg_rd;
9405 
9406     switch (opcode) {
9407     case 0x1: /* SQADD, UQADD */
9408     case 0x5: /* SQSUB, UQSUB */
9409     case 0x9: /* SQSHL, UQSHL */
9410     case 0xb: /* SQRSHL, UQRSHL */
9411         break;
9412     case 0x8: /* SSHL, USHL */
9413     case 0xa: /* SRSHL, URSHL */
9414     case 0x6: /* CMGT, CMHI */
9415     case 0x7: /* CMGE, CMHS */
9416     case 0x11: /* CMTST, CMEQ */
9417     case 0x10: /* ADD, SUB (vector) */
9418         if (size != 3) {
9419             unallocated_encoding(s);
9420             return;
9421         }
9422         break;
9423     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9424         if (size != 1 && size != 2) {
9425             unallocated_encoding(s);
9426             return;
9427         }
9428         break;
9429     default:
9430         unallocated_encoding(s);
9431         return;
9432     }
9433 
9434     if (!fp_access_check(s)) {
9435         return;
9436     }
9437 
9438     tcg_rd = tcg_temp_new_i64();
9439 
9440     if (size == 3) {
9441         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9442         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9443 
9444         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9445     } else {
9446         /* Do a single operation on the lowest element in the vector.
9447          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9448          * no side effects for all these operations.
9449          * OPTME: special-purpose helpers would avoid doing some
9450          * unnecessary work in the helper for the 8 and 16 bit cases.
9451          */
9452         NeonGenTwoOpEnvFn *genenvfn;
9453         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9454         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9455         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9456 
9457         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9458         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9459 
9460         switch (opcode) {
9461         case 0x1: /* SQADD, UQADD */
9462         {
9463             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9464                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9465                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9466                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9467             };
9468             genenvfn = fns[size][u];
9469             break;
9470         }
9471         case 0x5: /* SQSUB, UQSUB */
9472         {
9473             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9474                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9475                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9476                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9477             };
9478             genenvfn = fns[size][u];
9479             break;
9480         }
9481         case 0x9: /* SQSHL, UQSHL */
9482         {
9483             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9484                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9485                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9486                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9487             };
9488             genenvfn = fns[size][u];
9489             break;
9490         }
9491         case 0xb: /* SQRSHL, UQRSHL */
9492         {
9493             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9494                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9495                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9496                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9497             };
9498             genenvfn = fns[size][u];
9499             break;
9500         }
9501         case 0x16: /* SQDMULH, SQRDMULH */
9502         {
9503             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9504                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9505                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9506             };
9507             assert(size == 1 || size == 2);
9508             genenvfn = fns[size - 1][u];
9509             break;
9510         }
9511         default:
9512             g_assert_not_reached();
9513         }
9514 
9515         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9516         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9517     }
9518 
9519     write_fp_dreg(s, rd, tcg_rd);
9520 }
9521 
9522 /* AdvSIMD scalar three same extra
9523  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9524  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9525  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9526  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9527  */
9528 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9529                                                    uint32_t insn)
9530 {
9531     int rd = extract32(insn, 0, 5);
9532     int rn = extract32(insn, 5, 5);
9533     int opcode = extract32(insn, 11, 4);
9534     int rm = extract32(insn, 16, 5);
9535     int size = extract32(insn, 22, 2);
9536     bool u = extract32(insn, 29, 1);
9537     TCGv_i32 ele1, ele2, ele3;
9538     TCGv_i64 res;
9539     bool feature;
9540 
9541     switch (u * 16 + opcode) {
9542     case 0x10: /* SQRDMLAH (vector) */
9543     case 0x11: /* SQRDMLSH (vector) */
9544         if (size != 1 && size != 2) {
9545             unallocated_encoding(s);
9546             return;
9547         }
9548         feature = dc_isar_feature(aa64_rdm, s);
9549         break;
9550     default:
9551         unallocated_encoding(s);
9552         return;
9553     }
9554     if (!feature) {
9555         unallocated_encoding(s);
9556         return;
9557     }
9558     if (!fp_access_check(s)) {
9559         return;
9560     }
9561 
9562     /* Do a single operation on the lowest element in the vector.
9563      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9564      * with no side effects for all these operations.
9565      * OPTME: special-purpose helpers would avoid doing some
9566      * unnecessary work in the helper for the 16 bit cases.
9567      */
9568     ele1 = tcg_temp_new_i32();
9569     ele2 = tcg_temp_new_i32();
9570     ele3 = tcg_temp_new_i32();
9571 
9572     read_vec_element_i32(s, ele1, rn, 0, size);
9573     read_vec_element_i32(s, ele2, rm, 0, size);
9574     read_vec_element_i32(s, ele3, rd, 0, size);
9575 
9576     switch (opcode) {
9577     case 0x0: /* SQRDMLAH */
9578         if (size == 1) {
9579             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9580         } else {
9581             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9582         }
9583         break;
9584     case 0x1: /* SQRDMLSH */
9585         if (size == 1) {
9586             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9587         } else {
9588             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9589         }
9590         break;
9591     default:
9592         g_assert_not_reached();
9593     }
9594 
9595     res = tcg_temp_new_i64();
9596     tcg_gen_extu_i32_i64(res, ele3);
9597     write_fp_dreg(s, rd, res);
9598 }
9599 
9600 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9601                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9602                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9603 {
9604     /* Handle 64->64 opcodes which are shared between the scalar and
9605      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9606      * is valid in either group and also the double-precision fp ops.
9607      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9608      * requires them.
9609      */
9610     TCGCond cond;
9611 
9612     switch (opcode) {
9613     case 0x4: /* CLS, CLZ */
9614         if (u) {
9615             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9616         } else {
9617             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9618         }
9619         break;
9620     case 0x5: /* NOT */
9621         /* This opcode is shared with CNT and RBIT but we have earlier
9622          * enforced that size == 3 if and only if this is the NOT insn.
9623          */
9624         tcg_gen_not_i64(tcg_rd, tcg_rn);
9625         break;
9626     case 0x7: /* SQABS, SQNEG */
9627         if (u) {
9628             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9629         } else {
9630             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9631         }
9632         break;
9633     case 0xa: /* CMLT */
9634         cond = TCG_COND_LT;
9635     do_cmop:
9636         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9637         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9638         break;
9639     case 0x8: /* CMGT, CMGE */
9640         cond = u ? TCG_COND_GE : TCG_COND_GT;
9641         goto do_cmop;
9642     case 0x9: /* CMEQ, CMLE */
9643         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9644         goto do_cmop;
9645     case 0xb: /* ABS, NEG */
9646         if (u) {
9647             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9648         } else {
9649             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9650         }
9651         break;
9652     case 0x2f: /* FABS */
9653         gen_vfp_absd(tcg_rd, tcg_rn);
9654         break;
9655     case 0x6f: /* FNEG */
9656         gen_vfp_negd(tcg_rd, tcg_rn);
9657         break;
9658     case 0x7f: /* FSQRT */
9659         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9660         break;
9661     case 0x1a: /* FCVTNS */
9662     case 0x1b: /* FCVTMS */
9663     case 0x1c: /* FCVTAS */
9664     case 0x3a: /* FCVTPS */
9665     case 0x3b: /* FCVTZS */
9666         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9667         break;
9668     case 0x5a: /* FCVTNU */
9669     case 0x5b: /* FCVTMU */
9670     case 0x5c: /* FCVTAU */
9671     case 0x7a: /* FCVTPU */
9672     case 0x7b: /* FCVTZU */
9673         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9674         break;
9675     case 0x18: /* FRINTN */
9676     case 0x19: /* FRINTM */
9677     case 0x38: /* FRINTP */
9678     case 0x39: /* FRINTZ */
9679     case 0x58: /* FRINTA */
9680     case 0x79: /* FRINTI */
9681         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9682         break;
9683     case 0x59: /* FRINTX */
9684         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9685         break;
9686     case 0x1e: /* FRINT32Z */
9687     case 0x5e: /* FRINT32X */
9688         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9689         break;
9690     case 0x1f: /* FRINT64Z */
9691     case 0x5f: /* FRINT64X */
9692         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9693         break;
9694     default:
9695         g_assert_not_reached();
9696     }
9697 }
9698 
9699 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9700                                    bool is_scalar, bool is_u, bool is_q,
9701                                    int size, int rn, int rd)
9702 {
9703     bool is_double = (size == MO_64);
9704     TCGv_ptr fpst;
9705 
9706     if (!fp_access_check(s)) {
9707         return;
9708     }
9709 
9710     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9711 
9712     if (is_double) {
9713         TCGv_i64 tcg_op = tcg_temp_new_i64();
9714         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9715         TCGv_i64 tcg_res = tcg_temp_new_i64();
9716         NeonGenTwoDoubleOpFn *genfn;
9717         bool swap = false;
9718         int pass;
9719 
9720         switch (opcode) {
9721         case 0x2e: /* FCMLT (zero) */
9722             swap = true;
9723             /* fallthrough */
9724         case 0x2c: /* FCMGT (zero) */
9725             genfn = gen_helper_neon_cgt_f64;
9726             break;
9727         case 0x2d: /* FCMEQ (zero) */
9728             genfn = gen_helper_neon_ceq_f64;
9729             break;
9730         case 0x6d: /* FCMLE (zero) */
9731             swap = true;
9732             /* fall through */
9733         case 0x6c: /* FCMGE (zero) */
9734             genfn = gen_helper_neon_cge_f64;
9735             break;
9736         default:
9737             g_assert_not_reached();
9738         }
9739 
9740         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9741             read_vec_element(s, tcg_op, rn, pass, MO_64);
9742             if (swap) {
9743                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9744             } else {
9745                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9746             }
9747             write_vec_element(s, tcg_res, rd, pass, MO_64);
9748         }
9749 
9750         clear_vec_high(s, !is_scalar, rd);
9751     } else {
9752         TCGv_i32 tcg_op = tcg_temp_new_i32();
9753         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9754         TCGv_i32 tcg_res = tcg_temp_new_i32();
9755         NeonGenTwoSingleOpFn *genfn;
9756         bool swap = false;
9757         int pass, maxpasses;
9758 
9759         if (size == MO_16) {
9760             switch (opcode) {
9761             case 0x2e: /* FCMLT (zero) */
9762                 swap = true;
9763                 /* fall through */
9764             case 0x2c: /* FCMGT (zero) */
9765                 genfn = gen_helper_advsimd_cgt_f16;
9766                 break;
9767             case 0x2d: /* FCMEQ (zero) */
9768                 genfn = gen_helper_advsimd_ceq_f16;
9769                 break;
9770             case 0x6d: /* FCMLE (zero) */
9771                 swap = true;
9772                 /* fall through */
9773             case 0x6c: /* FCMGE (zero) */
9774                 genfn = gen_helper_advsimd_cge_f16;
9775                 break;
9776             default:
9777                 g_assert_not_reached();
9778             }
9779         } else {
9780             switch (opcode) {
9781             case 0x2e: /* FCMLT (zero) */
9782                 swap = true;
9783                 /* fall through */
9784             case 0x2c: /* FCMGT (zero) */
9785                 genfn = gen_helper_neon_cgt_f32;
9786                 break;
9787             case 0x2d: /* FCMEQ (zero) */
9788                 genfn = gen_helper_neon_ceq_f32;
9789                 break;
9790             case 0x6d: /* FCMLE (zero) */
9791                 swap = true;
9792                 /* fall through */
9793             case 0x6c: /* FCMGE (zero) */
9794                 genfn = gen_helper_neon_cge_f32;
9795                 break;
9796             default:
9797                 g_assert_not_reached();
9798             }
9799         }
9800 
9801         if (is_scalar) {
9802             maxpasses = 1;
9803         } else {
9804             int vector_size = 8 << is_q;
9805             maxpasses = vector_size >> size;
9806         }
9807 
9808         for (pass = 0; pass < maxpasses; pass++) {
9809             read_vec_element_i32(s, tcg_op, rn, pass, size);
9810             if (swap) {
9811                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9812             } else {
9813                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9814             }
9815             if (is_scalar) {
9816                 write_fp_sreg(s, rd, tcg_res);
9817             } else {
9818                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9819             }
9820         }
9821 
9822         if (!is_scalar) {
9823             clear_vec_high(s, is_q, rd);
9824         }
9825     }
9826 }
9827 
9828 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9829                                     bool is_scalar, bool is_u, bool is_q,
9830                                     int size, int rn, int rd)
9831 {
9832     bool is_double = (size == 3);
9833     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9834 
9835     if (is_double) {
9836         TCGv_i64 tcg_op = tcg_temp_new_i64();
9837         TCGv_i64 tcg_res = tcg_temp_new_i64();
9838         int pass;
9839 
9840         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9841             read_vec_element(s, tcg_op, rn, pass, MO_64);
9842             switch (opcode) {
9843             case 0x3d: /* FRECPE */
9844                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9845                 break;
9846             case 0x3f: /* FRECPX */
9847                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9848                 break;
9849             case 0x7d: /* FRSQRTE */
9850                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9851                 break;
9852             default:
9853                 g_assert_not_reached();
9854             }
9855             write_vec_element(s, tcg_res, rd, pass, MO_64);
9856         }
9857         clear_vec_high(s, !is_scalar, rd);
9858     } else {
9859         TCGv_i32 tcg_op = tcg_temp_new_i32();
9860         TCGv_i32 tcg_res = tcg_temp_new_i32();
9861         int pass, maxpasses;
9862 
9863         if (is_scalar) {
9864             maxpasses = 1;
9865         } else {
9866             maxpasses = is_q ? 4 : 2;
9867         }
9868 
9869         for (pass = 0; pass < maxpasses; pass++) {
9870             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9871 
9872             switch (opcode) {
9873             case 0x3c: /* URECPE */
9874                 gen_helper_recpe_u32(tcg_res, tcg_op);
9875                 break;
9876             case 0x3d: /* FRECPE */
9877                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9878                 break;
9879             case 0x3f: /* FRECPX */
9880                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9881                 break;
9882             case 0x7d: /* FRSQRTE */
9883                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9884                 break;
9885             default:
9886                 g_assert_not_reached();
9887             }
9888 
9889             if (is_scalar) {
9890                 write_fp_sreg(s, rd, tcg_res);
9891             } else {
9892                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9893             }
9894         }
9895         if (!is_scalar) {
9896             clear_vec_high(s, is_q, rd);
9897         }
9898     }
9899 }
9900 
9901 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9902                                 int opcode, bool u, bool is_q,
9903                                 int size, int rn, int rd)
9904 {
9905     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9906      * in the source becomes a size element in the destination).
9907      */
9908     int pass;
9909     TCGv_i32 tcg_res[2];
9910     int destelt = is_q ? 2 : 0;
9911     int passes = scalar ? 1 : 2;
9912 
9913     if (scalar) {
9914         tcg_res[1] = tcg_constant_i32(0);
9915     }
9916 
9917     for (pass = 0; pass < passes; pass++) {
9918         TCGv_i64 tcg_op = tcg_temp_new_i64();
9919         NeonGenNarrowFn *genfn = NULL;
9920         NeonGenNarrowEnvFn *genenvfn = NULL;
9921 
9922         if (scalar) {
9923             read_vec_element(s, tcg_op, rn, pass, size + 1);
9924         } else {
9925             read_vec_element(s, tcg_op, rn, pass, MO_64);
9926         }
9927         tcg_res[pass] = tcg_temp_new_i32();
9928 
9929         switch (opcode) {
9930         case 0x12: /* XTN, SQXTUN */
9931         {
9932             static NeonGenNarrowFn * const xtnfns[3] = {
9933                 gen_helper_neon_narrow_u8,
9934                 gen_helper_neon_narrow_u16,
9935                 tcg_gen_extrl_i64_i32,
9936             };
9937             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9938                 gen_helper_neon_unarrow_sat8,
9939                 gen_helper_neon_unarrow_sat16,
9940                 gen_helper_neon_unarrow_sat32,
9941             };
9942             if (u) {
9943                 genenvfn = sqxtunfns[size];
9944             } else {
9945                 genfn = xtnfns[size];
9946             }
9947             break;
9948         }
9949         case 0x14: /* SQXTN, UQXTN */
9950         {
9951             static NeonGenNarrowEnvFn * const fns[3][2] = {
9952                 { gen_helper_neon_narrow_sat_s8,
9953                   gen_helper_neon_narrow_sat_u8 },
9954                 { gen_helper_neon_narrow_sat_s16,
9955                   gen_helper_neon_narrow_sat_u16 },
9956                 { gen_helper_neon_narrow_sat_s32,
9957                   gen_helper_neon_narrow_sat_u32 },
9958             };
9959             genenvfn = fns[size][u];
9960             break;
9961         }
9962         case 0x16: /* FCVTN, FCVTN2 */
9963             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9964             if (size == 2) {
9965                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9966             } else {
9967                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9968                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9969                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9970                 TCGv_i32 ahp = get_ahp_flag();
9971 
9972                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9973                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9974                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9975                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9976             }
9977             break;
9978         case 0x36: /* BFCVTN, BFCVTN2 */
9979             {
9980                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9981                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9982             }
9983             break;
9984         case 0x56:  /* FCVTXN, FCVTXN2 */
9985             /* 64 bit to 32 bit float conversion
9986              * with von Neumann rounding (round to odd)
9987              */
9988             assert(size == 2);
9989             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9990             break;
9991         default:
9992             g_assert_not_reached();
9993         }
9994 
9995         if (genfn) {
9996             genfn(tcg_res[pass], tcg_op);
9997         } else if (genenvfn) {
9998             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9999         }
10000     }
10001 
10002     for (pass = 0; pass < 2; pass++) {
10003         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10004     }
10005     clear_vec_high(s, is_q, rd);
10006 }
10007 
10008 /* Remaining saturating accumulating ops */
10009 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10010                                 bool is_q, int size, int rn, int rd)
10011 {
10012     bool is_double = (size == 3);
10013 
10014     if (is_double) {
10015         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10016         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10017         int pass;
10018 
10019         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10020             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10021             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10022 
10023             if (is_u) { /* USQADD */
10024                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10025             } else { /* SUQADD */
10026                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10027             }
10028             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10029         }
10030         clear_vec_high(s, !is_scalar, rd);
10031     } else {
10032         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10033         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10034         int pass, maxpasses;
10035 
10036         if (is_scalar) {
10037             maxpasses = 1;
10038         } else {
10039             maxpasses = is_q ? 4 : 2;
10040         }
10041 
10042         for (pass = 0; pass < maxpasses; pass++) {
10043             if (is_scalar) {
10044                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10045                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10046             } else {
10047                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10048                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10049             }
10050 
10051             if (is_u) { /* USQADD */
10052                 switch (size) {
10053                 case 0:
10054                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10055                     break;
10056                 case 1:
10057                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10058                     break;
10059                 case 2:
10060                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10061                     break;
10062                 default:
10063                     g_assert_not_reached();
10064                 }
10065             } else { /* SUQADD */
10066                 switch (size) {
10067                 case 0:
10068                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10069                     break;
10070                 case 1:
10071                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10072                     break;
10073                 case 2:
10074                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10075                     break;
10076                 default:
10077                     g_assert_not_reached();
10078                 }
10079             }
10080 
10081             if (is_scalar) {
10082                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10083             }
10084             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10085         }
10086         clear_vec_high(s, is_q, rd);
10087     }
10088 }
10089 
10090 /* AdvSIMD scalar two reg misc
10091  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10092  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10093  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10094  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10095  */
10096 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10097 {
10098     int rd = extract32(insn, 0, 5);
10099     int rn = extract32(insn, 5, 5);
10100     int opcode = extract32(insn, 12, 5);
10101     int size = extract32(insn, 22, 2);
10102     bool u = extract32(insn, 29, 1);
10103     bool is_fcvt = false;
10104     int rmode;
10105     TCGv_i32 tcg_rmode;
10106     TCGv_ptr tcg_fpstatus;
10107 
10108     switch (opcode) {
10109     case 0x3: /* USQADD / SUQADD*/
10110         if (!fp_access_check(s)) {
10111             return;
10112         }
10113         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10114         return;
10115     case 0x7: /* SQABS / SQNEG */
10116         break;
10117     case 0xa: /* CMLT */
10118         if (u) {
10119             unallocated_encoding(s);
10120             return;
10121         }
10122         /* fall through */
10123     case 0x8: /* CMGT, CMGE */
10124     case 0x9: /* CMEQ, CMLE */
10125     case 0xb: /* ABS, NEG */
10126         if (size != 3) {
10127             unallocated_encoding(s);
10128             return;
10129         }
10130         break;
10131     case 0x12: /* SQXTUN */
10132         if (!u) {
10133             unallocated_encoding(s);
10134             return;
10135         }
10136         /* fall through */
10137     case 0x14: /* SQXTN, UQXTN */
10138         if (size == 3) {
10139             unallocated_encoding(s);
10140             return;
10141         }
10142         if (!fp_access_check(s)) {
10143             return;
10144         }
10145         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10146         return;
10147     case 0xc ... 0xf:
10148     case 0x16 ... 0x1d:
10149     case 0x1f:
10150         /* Floating point: U, size[1] and opcode indicate operation;
10151          * size[0] indicates single or double precision.
10152          */
10153         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10154         size = extract32(size, 0, 1) ? 3 : 2;
10155         switch (opcode) {
10156         case 0x2c: /* FCMGT (zero) */
10157         case 0x2d: /* FCMEQ (zero) */
10158         case 0x2e: /* FCMLT (zero) */
10159         case 0x6c: /* FCMGE (zero) */
10160         case 0x6d: /* FCMLE (zero) */
10161             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10162             return;
10163         case 0x1d: /* SCVTF */
10164         case 0x5d: /* UCVTF */
10165         {
10166             bool is_signed = (opcode == 0x1d);
10167             if (!fp_access_check(s)) {
10168                 return;
10169             }
10170             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10171             return;
10172         }
10173         case 0x3d: /* FRECPE */
10174         case 0x3f: /* FRECPX */
10175         case 0x7d: /* FRSQRTE */
10176             if (!fp_access_check(s)) {
10177                 return;
10178             }
10179             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10180             return;
10181         case 0x1a: /* FCVTNS */
10182         case 0x1b: /* FCVTMS */
10183         case 0x3a: /* FCVTPS */
10184         case 0x3b: /* FCVTZS */
10185         case 0x5a: /* FCVTNU */
10186         case 0x5b: /* FCVTMU */
10187         case 0x7a: /* FCVTPU */
10188         case 0x7b: /* FCVTZU */
10189             is_fcvt = true;
10190             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10191             break;
10192         case 0x1c: /* FCVTAS */
10193         case 0x5c: /* FCVTAU */
10194             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10195             is_fcvt = true;
10196             rmode = FPROUNDING_TIEAWAY;
10197             break;
10198         case 0x56: /* FCVTXN, FCVTXN2 */
10199             if (size == 2) {
10200                 unallocated_encoding(s);
10201                 return;
10202             }
10203             if (!fp_access_check(s)) {
10204                 return;
10205             }
10206             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10207             return;
10208         default:
10209             unallocated_encoding(s);
10210             return;
10211         }
10212         break;
10213     default:
10214         unallocated_encoding(s);
10215         return;
10216     }
10217 
10218     if (!fp_access_check(s)) {
10219         return;
10220     }
10221 
10222     if (is_fcvt) {
10223         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10224         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10225     } else {
10226         tcg_fpstatus = NULL;
10227         tcg_rmode = NULL;
10228     }
10229 
10230     if (size == 3) {
10231         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10232         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10233 
10234         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10235         write_fp_dreg(s, rd, tcg_rd);
10236     } else {
10237         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10238         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10239 
10240         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10241 
10242         switch (opcode) {
10243         case 0x7: /* SQABS, SQNEG */
10244         {
10245             NeonGenOneOpEnvFn *genfn;
10246             static NeonGenOneOpEnvFn * const fns[3][2] = {
10247                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10248                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10249                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10250             };
10251             genfn = fns[size][u];
10252             genfn(tcg_rd, tcg_env, tcg_rn);
10253             break;
10254         }
10255         case 0x1a: /* FCVTNS */
10256         case 0x1b: /* FCVTMS */
10257         case 0x1c: /* FCVTAS */
10258         case 0x3a: /* FCVTPS */
10259         case 0x3b: /* FCVTZS */
10260             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10261                                  tcg_fpstatus);
10262             break;
10263         case 0x5a: /* FCVTNU */
10264         case 0x5b: /* FCVTMU */
10265         case 0x5c: /* FCVTAU */
10266         case 0x7a: /* FCVTPU */
10267         case 0x7b: /* FCVTZU */
10268             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10269                                  tcg_fpstatus);
10270             break;
10271         default:
10272             g_assert_not_reached();
10273         }
10274 
10275         write_fp_sreg(s, rd, tcg_rd);
10276     }
10277 
10278     if (is_fcvt) {
10279         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10280     }
10281 }
10282 
10283 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10284 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10285                                  int immh, int immb, int opcode, int rn, int rd)
10286 {
10287     int size = 32 - clz32(immh) - 1;
10288     int immhb = immh << 3 | immb;
10289     int shift = 2 * (8 << size) - immhb;
10290     GVecGen2iFn *gvec_fn;
10291 
10292     if (extract32(immh, 3, 1) && !is_q) {
10293         unallocated_encoding(s);
10294         return;
10295     }
10296     tcg_debug_assert(size <= 3);
10297 
10298     if (!fp_access_check(s)) {
10299         return;
10300     }
10301 
10302     switch (opcode) {
10303     case 0x02: /* SSRA / USRA (accumulate) */
10304         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10305         break;
10306 
10307     case 0x08: /* SRI */
10308         gvec_fn = gen_gvec_sri;
10309         break;
10310 
10311     case 0x00: /* SSHR / USHR */
10312         if (is_u) {
10313             if (shift == 8 << size) {
10314                 /* Shift count the same size as element size produces zero.  */
10315                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10316                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10317                 return;
10318             }
10319             gvec_fn = tcg_gen_gvec_shri;
10320         } else {
10321             /* Shift count the same size as element size produces all sign.  */
10322             if (shift == 8 << size) {
10323                 shift -= 1;
10324             }
10325             gvec_fn = tcg_gen_gvec_sari;
10326         }
10327         break;
10328 
10329     case 0x04: /* SRSHR / URSHR (rounding) */
10330         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10331         break;
10332 
10333     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10334         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10335         break;
10336 
10337     default:
10338         g_assert_not_reached();
10339     }
10340 
10341     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10342 }
10343 
10344 /* SHL/SLI - Vector shift left */
10345 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10346                                  int immh, int immb, int opcode, int rn, int rd)
10347 {
10348     int size = 32 - clz32(immh) - 1;
10349     int immhb = immh << 3 | immb;
10350     int shift = immhb - (8 << size);
10351 
10352     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10353     assert(size >= 0 && size <= 3);
10354 
10355     if (extract32(immh, 3, 1) && !is_q) {
10356         unallocated_encoding(s);
10357         return;
10358     }
10359 
10360     if (!fp_access_check(s)) {
10361         return;
10362     }
10363 
10364     if (insert) {
10365         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10366     } else {
10367         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10368     }
10369 }
10370 
10371 /* USHLL/SHLL - Vector shift left with widening */
10372 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10373                                  int immh, int immb, int opcode, int rn, int rd)
10374 {
10375     int size = 32 - clz32(immh) - 1;
10376     int immhb = immh << 3 | immb;
10377     int shift = immhb - (8 << size);
10378     int dsize = 64;
10379     int esize = 8 << size;
10380     int elements = dsize/esize;
10381     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10382     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10383     int i;
10384 
10385     if (size >= 3) {
10386         unallocated_encoding(s);
10387         return;
10388     }
10389 
10390     if (!fp_access_check(s)) {
10391         return;
10392     }
10393 
10394     /* For the LL variants the store is larger than the load,
10395      * so if rd == rn we would overwrite parts of our input.
10396      * So load everything right now and use shifts in the main loop.
10397      */
10398     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10399 
10400     for (i = 0; i < elements; i++) {
10401         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10402         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10403         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10404         write_vec_element(s, tcg_rd, rd, i, size + 1);
10405     }
10406 }
10407 
10408 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10409 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10410                                  int immh, int immb, int opcode, int rn, int rd)
10411 {
10412     int immhb = immh << 3 | immb;
10413     int size = 32 - clz32(immh) - 1;
10414     int dsize = 64;
10415     int esize = 8 << size;
10416     int elements = dsize/esize;
10417     int shift = (2 * esize) - immhb;
10418     bool round = extract32(opcode, 0, 1);
10419     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10420     TCGv_i64 tcg_round;
10421     int i;
10422 
10423     if (extract32(immh, 3, 1)) {
10424         unallocated_encoding(s);
10425         return;
10426     }
10427 
10428     if (!fp_access_check(s)) {
10429         return;
10430     }
10431 
10432     tcg_rn = tcg_temp_new_i64();
10433     tcg_rd = tcg_temp_new_i64();
10434     tcg_final = tcg_temp_new_i64();
10435     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10436 
10437     if (round) {
10438         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10439     } else {
10440         tcg_round = NULL;
10441     }
10442 
10443     for (i = 0; i < elements; i++) {
10444         read_vec_element(s, tcg_rn, rn, i, size+1);
10445         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10446                                 false, true, size+1, shift);
10447 
10448         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10449     }
10450 
10451     if (!is_q) {
10452         write_vec_element(s, tcg_final, rd, 0, MO_64);
10453     } else {
10454         write_vec_element(s, tcg_final, rd, 1, MO_64);
10455     }
10456 
10457     clear_vec_high(s, is_q, rd);
10458 }
10459 
10460 
10461 /* AdvSIMD shift by immediate
10462  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10463  * +---+---+---+-------------+------+------+--------+---+------+------+
10464  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10465  * +---+---+---+-------------+------+------+--------+---+------+------+
10466  */
10467 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10468 {
10469     int rd = extract32(insn, 0, 5);
10470     int rn = extract32(insn, 5, 5);
10471     int opcode = extract32(insn, 11, 5);
10472     int immb = extract32(insn, 16, 3);
10473     int immh = extract32(insn, 19, 4);
10474     bool is_u = extract32(insn, 29, 1);
10475     bool is_q = extract32(insn, 30, 1);
10476 
10477     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10478     assert(immh != 0);
10479 
10480     switch (opcode) {
10481     case 0x08: /* SRI */
10482         if (!is_u) {
10483             unallocated_encoding(s);
10484             return;
10485         }
10486         /* fall through */
10487     case 0x00: /* SSHR / USHR */
10488     case 0x02: /* SSRA / USRA (accumulate) */
10489     case 0x04: /* SRSHR / URSHR (rounding) */
10490     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10491         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10492         break;
10493     case 0x0a: /* SHL / SLI */
10494         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10495         break;
10496     case 0x10: /* SHRN */
10497     case 0x11: /* RSHRN / SQRSHRUN */
10498         if (is_u) {
10499             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10500                                    opcode, rn, rd);
10501         } else {
10502             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10503         }
10504         break;
10505     case 0x12: /* SQSHRN / UQSHRN */
10506     case 0x13: /* SQRSHRN / UQRSHRN */
10507         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10508                                opcode, rn, rd);
10509         break;
10510     case 0x14: /* SSHLL / USHLL */
10511         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10512         break;
10513     case 0x1c: /* SCVTF / UCVTF */
10514         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10515                                      opcode, rn, rd);
10516         break;
10517     case 0xc: /* SQSHLU */
10518         if (!is_u) {
10519             unallocated_encoding(s);
10520             return;
10521         }
10522         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10523         break;
10524     case 0xe: /* SQSHL, UQSHL */
10525         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10526         break;
10527     case 0x1f: /* FCVTZS/ FCVTZU */
10528         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10529         return;
10530     default:
10531         unallocated_encoding(s);
10532         return;
10533     }
10534 }
10535 
10536 /* Generate code to do a "long" addition or subtraction, ie one done in
10537  * TCGv_i64 on vector lanes twice the width specified by size.
10538  */
10539 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10540                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10541 {
10542     static NeonGenTwo64OpFn * const fns[3][2] = {
10543         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10544         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10545         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10546     };
10547     NeonGenTwo64OpFn *genfn;
10548     assert(size < 3);
10549 
10550     genfn = fns[size][is_sub];
10551     genfn(tcg_res, tcg_op1, tcg_op2);
10552 }
10553 
10554 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10555                                 int opcode, int rd, int rn, int rm)
10556 {
10557     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10558     TCGv_i64 tcg_res[2];
10559     int pass, accop;
10560 
10561     tcg_res[0] = tcg_temp_new_i64();
10562     tcg_res[1] = tcg_temp_new_i64();
10563 
10564     /* Does this op do an adding accumulate, a subtracting accumulate,
10565      * or no accumulate at all?
10566      */
10567     switch (opcode) {
10568     case 5:
10569     case 8:
10570     case 9:
10571         accop = 1;
10572         break;
10573     case 10:
10574     case 11:
10575         accop = -1;
10576         break;
10577     default:
10578         accop = 0;
10579         break;
10580     }
10581 
10582     if (accop != 0) {
10583         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10584         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10585     }
10586 
10587     /* size == 2 means two 32x32->64 operations; this is worth special
10588      * casing because we can generally handle it inline.
10589      */
10590     if (size == 2) {
10591         for (pass = 0; pass < 2; pass++) {
10592             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10593             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10594             TCGv_i64 tcg_passres;
10595             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10596 
10597             int elt = pass + is_q * 2;
10598 
10599             read_vec_element(s, tcg_op1, rn, elt, memop);
10600             read_vec_element(s, tcg_op2, rm, elt, memop);
10601 
10602             if (accop == 0) {
10603                 tcg_passres = tcg_res[pass];
10604             } else {
10605                 tcg_passres = tcg_temp_new_i64();
10606             }
10607 
10608             switch (opcode) {
10609             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10610                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10611                 break;
10612             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10613                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10614                 break;
10615             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10616             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10617             {
10618                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10619                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10620 
10621                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10622                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10623                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10624                                     tcg_passres,
10625                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10626                 break;
10627             }
10628             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10629             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10630             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10631                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10632                 break;
10633             case 9: /* SQDMLAL, SQDMLAL2 */
10634             case 11: /* SQDMLSL, SQDMLSL2 */
10635             case 13: /* SQDMULL, SQDMULL2 */
10636                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10637                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10638                                                   tcg_passres, tcg_passres);
10639                 break;
10640             default:
10641                 g_assert_not_reached();
10642             }
10643 
10644             if (opcode == 9 || opcode == 11) {
10645                 /* saturating accumulate ops */
10646                 if (accop < 0) {
10647                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10648                 }
10649                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10650                                                   tcg_res[pass], tcg_passres);
10651             } else if (accop > 0) {
10652                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10653             } else if (accop < 0) {
10654                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10655             }
10656         }
10657     } else {
10658         /* size 0 or 1, generally helper functions */
10659         for (pass = 0; pass < 2; pass++) {
10660             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10661             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10662             TCGv_i64 tcg_passres;
10663             int elt = pass + is_q * 2;
10664 
10665             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10666             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10667 
10668             if (accop == 0) {
10669                 tcg_passres = tcg_res[pass];
10670             } else {
10671                 tcg_passres = tcg_temp_new_i64();
10672             }
10673 
10674             switch (opcode) {
10675             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10676             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10677             {
10678                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10679                 static NeonGenWidenFn * const widenfns[2][2] = {
10680                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10681                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10682                 };
10683                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10684 
10685                 widenfn(tcg_op2_64, tcg_op2);
10686                 widenfn(tcg_passres, tcg_op1);
10687                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10688                               tcg_passres, tcg_op2_64);
10689                 break;
10690             }
10691             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10692             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10693                 if (size == 0) {
10694                     if (is_u) {
10695                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10696                     } else {
10697                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10698                     }
10699                 } else {
10700                     if (is_u) {
10701                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10702                     } else {
10703                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10704                     }
10705                 }
10706                 break;
10707             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10708             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10709             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10710                 if (size == 0) {
10711                     if (is_u) {
10712                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10713                     } else {
10714                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10715                     }
10716                 } else {
10717                     if (is_u) {
10718                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10719                     } else {
10720                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10721                     }
10722                 }
10723                 break;
10724             case 9: /* SQDMLAL, SQDMLAL2 */
10725             case 11: /* SQDMLSL, SQDMLSL2 */
10726             case 13: /* SQDMULL, SQDMULL2 */
10727                 assert(size == 1);
10728                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10729                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10730                                                   tcg_passres, tcg_passres);
10731                 break;
10732             default:
10733                 g_assert_not_reached();
10734             }
10735 
10736             if (accop != 0) {
10737                 if (opcode == 9 || opcode == 11) {
10738                     /* saturating accumulate ops */
10739                     if (accop < 0) {
10740                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10741                     }
10742                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10743                                                       tcg_res[pass],
10744                                                       tcg_passres);
10745                 } else {
10746                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10747                                   tcg_res[pass], tcg_passres);
10748                 }
10749             }
10750         }
10751     }
10752 
10753     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10754     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10755 }
10756 
10757 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10758                             int opcode, int rd, int rn, int rm)
10759 {
10760     TCGv_i64 tcg_res[2];
10761     int part = is_q ? 2 : 0;
10762     int pass;
10763 
10764     for (pass = 0; pass < 2; pass++) {
10765         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10766         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10767         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10768         static NeonGenWidenFn * const widenfns[3][2] = {
10769             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10770             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10771             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10772         };
10773         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10774 
10775         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10776         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10777         widenfn(tcg_op2_wide, tcg_op2);
10778         tcg_res[pass] = tcg_temp_new_i64();
10779         gen_neon_addl(size, (opcode == 3),
10780                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10781     }
10782 
10783     for (pass = 0; pass < 2; pass++) {
10784         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10785     }
10786 }
10787 
10788 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10789 {
10790     tcg_gen_addi_i64(in, in, 1U << 31);
10791     tcg_gen_extrh_i64_i32(res, in);
10792 }
10793 
10794 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10795                                  int opcode, int rd, int rn, int rm)
10796 {
10797     TCGv_i32 tcg_res[2];
10798     int part = is_q ? 2 : 0;
10799     int pass;
10800 
10801     for (pass = 0; pass < 2; pass++) {
10802         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10803         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10804         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10805         static NeonGenNarrowFn * const narrowfns[3][2] = {
10806             { gen_helper_neon_narrow_high_u8,
10807               gen_helper_neon_narrow_round_high_u8 },
10808             { gen_helper_neon_narrow_high_u16,
10809               gen_helper_neon_narrow_round_high_u16 },
10810             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10811         };
10812         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10813 
10814         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10815         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10816 
10817         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10818 
10819         tcg_res[pass] = tcg_temp_new_i32();
10820         gennarrow(tcg_res[pass], tcg_wideres);
10821     }
10822 
10823     for (pass = 0; pass < 2; pass++) {
10824         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10825     }
10826     clear_vec_high(s, is_q, rd);
10827 }
10828 
10829 /* AdvSIMD three different
10830  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10831  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10832  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10833  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10834  */
10835 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10836 {
10837     /* Instructions in this group fall into three basic classes
10838      * (in each case with the operation working on each element in
10839      * the input vectors):
10840      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10841      *     128 bit input)
10842      * (2) wide 64 x 128 -> 128
10843      * (3) narrowing 128 x 128 -> 64
10844      * Here we do initial decode, catch unallocated cases and
10845      * dispatch to separate functions for each class.
10846      */
10847     int is_q = extract32(insn, 30, 1);
10848     int is_u = extract32(insn, 29, 1);
10849     int size = extract32(insn, 22, 2);
10850     int opcode = extract32(insn, 12, 4);
10851     int rm = extract32(insn, 16, 5);
10852     int rn = extract32(insn, 5, 5);
10853     int rd = extract32(insn, 0, 5);
10854 
10855     switch (opcode) {
10856     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10857     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10858         /* 64 x 128 -> 128 */
10859         if (size == 3) {
10860             unallocated_encoding(s);
10861             return;
10862         }
10863         if (!fp_access_check(s)) {
10864             return;
10865         }
10866         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10867         break;
10868     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10869     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10870         /* 128 x 128 -> 64 */
10871         if (size == 3) {
10872             unallocated_encoding(s);
10873             return;
10874         }
10875         if (!fp_access_check(s)) {
10876             return;
10877         }
10878         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10879         break;
10880     case 14: /* PMULL, PMULL2 */
10881         if (is_u) {
10882             unallocated_encoding(s);
10883             return;
10884         }
10885         switch (size) {
10886         case 0: /* PMULL.P8 */
10887             if (!fp_access_check(s)) {
10888                 return;
10889             }
10890             /* The Q field specifies lo/hi half input for this insn.  */
10891             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10892                              gen_helper_neon_pmull_h);
10893             break;
10894 
10895         case 3: /* PMULL.P64 */
10896             if (!dc_isar_feature(aa64_pmull, s)) {
10897                 unallocated_encoding(s);
10898                 return;
10899             }
10900             if (!fp_access_check(s)) {
10901                 return;
10902             }
10903             /* The Q field specifies lo/hi half input for this insn.  */
10904             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10905                              gen_helper_gvec_pmull_q);
10906             break;
10907 
10908         default:
10909             unallocated_encoding(s);
10910             break;
10911         }
10912         return;
10913     case 9: /* SQDMLAL, SQDMLAL2 */
10914     case 11: /* SQDMLSL, SQDMLSL2 */
10915     case 13: /* SQDMULL, SQDMULL2 */
10916         if (is_u || size == 0) {
10917             unallocated_encoding(s);
10918             return;
10919         }
10920         /* fall through */
10921     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10922     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10923     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10924     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10925     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10926     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10927     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10928         /* 64 x 64 -> 128 */
10929         if (size == 3) {
10930             unallocated_encoding(s);
10931             return;
10932         }
10933         if (!fp_access_check(s)) {
10934             return;
10935         }
10936 
10937         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10938         break;
10939     default:
10940         /* opcode 15 not allocated */
10941         unallocated_encoding(s);
10942         break;
10943     }
10944 }
10945 
10946 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10947 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10948 {
10949     int rd = extract32(insn, 0, 5);
10950     int rn = extract32(insn, 5, 5);
10951     int rm = extract32(insn, 16, 5);
10952     int size = extract32(insn, 22, 2);
10953     bool is_u = extract32(insn, 29, 1);
10954     bool is_q = extract32(insn, 30, 1);
10955 
10956     if (!fp_access_check(s)) {
10957         return;
10958     }
10959 
10960     switch (size + 4 * is_u) {
10961     case 0: /* AND */
10962         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10963         return;
10964     case 1: /* BIC */
10965         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10966         return;
10967     case 2: /* ORR */
10968         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10969         return;
10970     case 3: /* ORN */
10971         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10972         return;
10973     case 4: /* EOR */
10974         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10975         return;
10976 
10977     case 5: /* BSL bitwise select */
10978         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10979         return;
10980     case 6: /* BIT, bitwise insert if true */
10981         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10982         return;
10983     case 7: /* BIF, bitwise insert if false */
10984         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10985         return;
10986 
10987     default:
10988         g_assert_not_reached();
10989     }
10990 }
10991 
10992 /* Pairwise op subgroup of C3.6.16.
10993  *
10994  * This is called directly for float pairwise
10995  * operations where the opcode and size are calculated differently.
10996  */
10997 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10998                                    int size, int rn, int rm, int rd)
10999 {
11000     TCGv_ptr fpst;
11001     int pass;
11002 
11003     /* Floating point operations need fpst */
11004     if (opcode >= 0x58) {
11005         fpst = fpstatus_ptr(FPST_FPCR);
11006     } else {
11007         fpst = NULL;
11008     }
11009 
11010     if (!fp_access_check(s)) {
11011         return;
11012     }
11013 
11014     /* These operations work on the concatenated rm:rn, with each pair of
11015      * adjacent elements being operated on to produce an element in the result.
11016      */
11017     if (size == 3) {
11018         TCGv_i64 tcg_res[2];
11019 
11020         for (pass = 0; pass < 2; pass++) {
11021             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11022             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11023             int passreg = (pass == 0) ? rn : rm;
11024 
11025             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11026             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11027             tcg_res[pass] = tcg_temp_new_i64();
11028 
11029             switch (opcode) {
11030             case 0x17: /* ADDP */
11031                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11032                 break;
11033             case 0x58: /* FMAXNMP */
11034                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11035                 break;
11036             case 0x5e: /* FMAXP */
11037                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11038                 break;
11039             case 0x78: /* FMINNMP */
11040                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11041                 break;
11042             case 0x7e: /* FMINP */
11043                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11044                 break;
11045             default:
11046             case 0x5a: /* FADDP */
11047                 g_assert_not_reached();
11048             }
11049         }
11050 
11051         for (pass = 0; pass < 2; pass++) {
11052             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11053         }
11054     } else {
11055         int maxpass = is_q ? 4 : 2;
11056         TCGv_i32 tcg_res[4];
11057 
11058         for (pass = 0; pass < maxpass; pass++) {
11059             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11060             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11061             NeonGenTwoOpFn *genfn = NULL;
11062             int passreg = pass < (maxpass / 2) ? rn : rm;
11063             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11064 
11065             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11066             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11067             tcg_res[pass] = tcg_temp_new_i32();
11068 
11069             switch (opcode) {
11070             case 0x17: /* ADDP */
11071             {
11072                 static NeonGenTwoOpFn * const fns[3] = {
11073                     gen_helper_neon_padd_u8,
11074                     gen_helper_neon_padd_u16,
11075                     tcg_gen_add_i32,
11076                 };
11077                 genfn = fns[size];
11078                 break;
11079             }
11080             case 0x14: /* SMAXP, UMAXP */
11081             {
11082                 static NeonGenTwoOpFn * const fns[3][2] = {
11083                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11084                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11085                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11086                 };
11087                 genfn = fns[size][u];
11088                 break;
11089             }
11090             case 0x15: /* SMINP, UMINP */
11091             {
11092                 static NeonGenTwoOpFn * const fns[3][2] = {
11093                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11094                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11095                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11096                 };
11097                 genfn = fns[size][u];
11098                 break;
11099             }
11100             /* The FP operations are all on single floats (32 bit) */
11101             case 0x58: /* FMAXNMP */
11102                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11103                 break;
11104             case 0x5e: /* FMAXP */
11105                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11106                 break;
11107             case 0x78: /* FMINNMP */
11108                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11109                 break;
11110             case 0x7e: /* FMINP */
11111                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11112                 break;
11113             default:
11114             case 0x5a: /* FADDP */
11115                 g_assert_not_reached();
11116             }
11117 
11118             /* FP ops called directly, otherwise call now */
11119             if (genfn) {
11120                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11121             }
11122         }
11123 
11124         for (pass = 0; pass < maxpass; pass++) {
11125             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11126         }
11127         clear_vec_high(s, is_q, rd);
11128     }
11129 }
11130 
11131 /* Floating point op subgroup of C3.6.16. */
11132 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11133 {
11134     /* For floating point ops, the U, size[1] and opcode bits
11135      * together indicate the operation. size[0] indicates single
11136      * or double.
11137      */
11138     int fpopcode = extract32(insn, 11, 5)
11139         | (extract32(insn, 23, 1) << 5)
11140         | (extract32(insn, 29, 1) << 6);
11141     int is_q = extract32(insn, 30, 1);
11142     int size = extract32(insn, 22, 1);
11143     int rm = extract32(insn, 16, 5);
11144     int rn = extract32(insn, 5, 5);
11145     int rd = extract32(insn, 0, 5);
11146 
11147     if (size == 1 && !is_q) {
11148         unallocated_encoding(s);
11149         return;
11150     }
11151 
11152     switch (fpopcode) {
11153     case 0x58: /* FMAXNMP */
11154     case 0x5e: /* FMAXP */
11155     case 0x78: /* FMINNMP */
11156     case 0x7e: /* FMINP */
11157         if (size && !is_q) {
11158             unallocated_encoding(s);
11159             return;
11160         }
11161         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11162                                rn, rm, rd);
11163         return;
11164 
11165     case 0x1d: /* FMLAL  */
11166     case 0x3d: /* FMLSL  */
11167     case 0x59: /* FMLAL2 */
11168     case 0x79: /* FMLSL2 */
11169         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11170             unallocated_encoding(s);
11171             return;
11172         }
11173         if (fp_access_check(s)) {
11174             int is_s = extract32(insn, 23, 1);
11175             int is_2 = extract32(insn, 29, 1);
11176             int data = (is_2 << 1) | is_s;
11177             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11178                                vec_full_reg_offset(s, rn),
11179                                vec_full_reg_offset(s, rm), tcg_env,
11180                                is_q ? 16 : 8, vec_full_reg_size(s),
11181                                data, gen_helper_gvec_fmlal_a64);
11182         }
11183         return;
11184 
11185     default:
11186     case 0x18: /* FMAXNM */
11187     case 0x19: /* FMLA */
11188     case 0x1a: /* FADD */
11189     case 0x1b: /* FMULX */
11190     case 0x1c: /* FCMEQ */
11191     case 0x1e: /* FMAX */
11192     case 0x1f: /* FRECPS */
11193     case 0x38: /* FMINNM */
11194     case 0x39: /* FMLS */
11195     case 0x3a: /* FSUB */
11196     case 0x3e: /* FMIN */
11197     case 0x3f: /* FRSQRTS */
11198     case 0x5a: /* FADDP */
11199     case 0x5b: /* FMUL */
11200     case 0x5c: /* FCMGE */
11201     case 0x5d: /* FACGE */
11202     case 0x5f: /* FDIV */
11203     case 0x7a: /* FABD */
11204     case 0x7d: /* FACGT */
11205     case 0x7c: /* FCMGT */
11206         unallocated_encoding(s);
11207         return;
11208     }
11209 }
11210 
11211 /* Integer op subgroup of C3.6.16. */
11212 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11213 {
11214     int is_q = extract32(insn, 30, 1);
11215     int u = extract32(insn, 29, 1);
11216     int size = extract32(insn, 22, 2);
11217     int opcode = extract32(insn, 11, 5);
11218     int rm = extract32(insn, 16, 5);
11219     int rn = extract32(insn, 5, 5);
11220     int rd = extract32(insn, 0, 5);
11221     int pass;
11222     TCGCond cond;
11223 
11224     switch (opcode) {
11225     case 0x13: /* MUL, PMUL */
11226         if (u && size != 0) {
11227             unallocated_encoding(s);
11228             return;
11229         }
11230         /* fall through */
11231     case 0x0: /* SHADD, UHADD */
11232     case 0x2: /* SRHADD, URHADD */
11233     case 0x4: /* SHSUB, UHSUB */
11234     case 0xc: /* SMAX, UMAX */
11235     case 0xd: /* SMIN, UMIN */
11236     case 0xe: /* SABD, UABD */
11237     case 0xf: /* SABA, UABA */
11238     case 0x12: /* MLA, MLS */
11239         if (size == 3) {
11240             unallocated_encoding(s);
11241             return;
11242         }
11243         break;
11244     case 0x16: /* SQDMULH, SQRDMULH */
11245         if (size == 0 || size == 3) {
11246             unallocated_encoding(s);
11247             return;
11248         }
11249         break;
11250     default:
11251         if (size == 3 && !is_q) {
11252             unallocated_encoding(s);
11253             return;
11254         }
11255         break;
11256     }
11257 
11258     if (!fp_access_check(s)) {
11259         return;
11260     }
11261 
11262     switch (opcode) {
11263     case 0x01: /* SQADD, UQADD */
11264         if (u) {
11265             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11266         } else {
11267             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11268         }
11269         return;
11270     case 0x05: /* SQSUB, UQSUB */
11271         if (u) {
11272             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11273         } else {
11274             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11275         }
11276         return;
11277     case 0x08: /* SSHL, USHL */
11278         if (u) {
11279             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11280         } else {
11281             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11282         }
11283         return;
11284     case 0x0c: /* SMAX, UMAX */
11285         if (u) {
11286             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11287         } else {
11288             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11289         }
11290         return;
11291     case 0x0d: /* SMIN, UMIN */
11292         if (u) {
11293             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11294         } else {
11295             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11296         }
11297         return;
11298     case 0xe: /* SABD, UABD */
11299         if (u) {
11300             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11301         } else {
11302             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11303         }
11304         return;
11305     case 0xf: /* SABA, UABA */
11306         if (u) {
11307             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11308         } else {
11309             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11310         }
11311         return;
11312     case 0x10: /* ADD, SUB */
11313         if (u) {
11314             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11315         } else {
11316             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11317         }
11318         return;
11319     case 0x13: /* MUL, PMUL */
11320         if (!u) { /* MUL */
11321             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11322         } else {  /* PMUL */
11323             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11324         }
11325         return;
11326     case 0x12: /* MLA, MLS */
11327         if (u) {
11328             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11329         } else {
11330             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11331         }
11332         return;
11333     case 0x16: /* SQDMULH, SQRDMULH */
11334         {
11335             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11336                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11337                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11338             };
11339             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11340         }
11341         return;
11342     case 0x11:
11343         if (!u) { /* CMTST */
11344             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11345             return;
11346         }
11347         /* else CMEQ */
11348         cond = TCG_COND_EQ;
11349         goto do_gvec_cmp;
11350     case 0x06: /* CMGT, CMHI */
11351         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11352         goto do_gvec_cmp;
11353     case 0x07: /* CMGE, CMHS */
11354         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11355     do_gvec_cmp:
11356         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11357                          vec_full_reg_offset(s, rn),
11358                          vec_full_reg_offset(s, rm),
11359                          is_q ? 16 : 8, vec_full_reg_size(s));
11360         return;
11361     }
11362 
11363     if (size == 3) {
11364         assert(is_q);
11365         for (pass = 0; pass < 2; pass++) {
11366             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11367             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11368             TCGv_i64 tcg_res = tcg_temp_new_i64();
11369 
11370             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11371             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11372 
11373             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11374 
11375             write_vec_element(s, tcg_res, rd, pass, MO_64);
11376         }
11377     } else {
11378         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11379             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11380             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11381             TCGv_i32 tcg_res = tcg_temp_new_i32();
11382             NeonGenTwoOpFn *genfn = NULL;
11383             NeonGenTwoOpEnvFn *genenvfn = NULL;
11384 
11385             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11386             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11387 
11388             switch (opcode) {
11389             case 0x0: /* SHADD, UHADD */
11390             {
11391                 static NeonGenTwoOpFn * const fns[3][2] = {
11392                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11393                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11394                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11395                 };
11396                 genfn = fns[size][u];
11397                 break;
11398             }
11399             case 0x2: /* SRHADD, URHADD */
11400             {
11401                 static NeonGenTwoOpFn * const fns[3][2] = {
11402                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11403                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11404                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11405                 };
11406                 genfn = fns[size][u];
11407                 break;
11408             }
11409             case 0x4: /* SHSUB, UHSUB */
11410             {
11411                 static NeonGenTwoOpFn * const fns[3][2] = {
11412                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11413                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11414                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11415                 };
11416                 genfn = fns[size][u];
11417                 break;
11418             }
11419             case 0x9: /* SQSHL, UQSHL */
11420             {
11421                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11422                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11423                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11424                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11425                 };
11426                 genenvfn = fns[size][u];
11427                 break;
11428             }
11429             case 0xa: /* SRSHL, URSHL */
11430             {
11431                 static NeonGenTwoOpFn * const fns[3][2] = {
11432                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11433                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11434                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11435                 };
11436                 genfn = fns[size][u];
11437                 break;
11438             }
11439             case 0xb: /* SQRSHL, UQRSHL */
11440             {
11441                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11442                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11443                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11444                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11445                 };
11446                 genenvfn = fns[size][u];
11447                 break;
11448             }
11449             default:
11450                 g_assert_not_reached();
11451             }
11452 
11453             if (genenvfn) {
11454                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11455             } else {
11456                 genfn(tcg_res, tcg_op1, tcg_op2);
11457             }
11458 
11459             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11460         }
11461     }
11462     clear_vec_high(s, is_q, rd);
11463 }
11464 
11465 /* AdvSIMD three same
11466  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11467  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11468  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11469  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11470  */
11471 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11472 {
11473     int opcode = extract32(insn, 11, 5);
11474 
11475     switch (opcode) {
11476     case 0x3: /* logic ops */
11477         disas_simd_3same_logic(s, insn);
11478         break;
11479     case 0x17: /* ADDP */
11480     case 0x14: /* SMAXP, UMAXP */
11481     case 0x15: /* SMINP, UMINP */
11482     {
11483         /* Pairwise operations */
11484         int is_q = extract32(insn, 30, 1);
11485         int u = extract32(insn, 29, 1);
11486         int size = extract32(insn, 22, 2);
11487         int rm = extract32(insn, 16, 5);
11488         int rn = extract32(insn, 5, 5);
11489         int rd = extract32(insn, 0, 5);
11490         if (opcode == 0x17) {
11491             if (u || (size == 3 && !is_q)) {
11492                 unallocated_encoding(s);
11493                 return;
11494             }
11495         } else {
11496             if (size == 3) {
11497                 unallocated_encoding(s);
11498                 return;
11499             }
11500         }
11501         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11502         break;
11503     }
11504     case 0x18 ... 0x31:
11505         /* floating point ops, sz[1] and U are part of opcode */
11506         disas_simd_3same_float(s, insn);
11507         break;
11508     default:
11509         disas_simd_3same_int(s, insn);
11510         break;
11511     }
11512 }
11513 
11514 /*
11515  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11516  *
11517  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11518  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11519  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11520  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11521  *
11522  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11523  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11524  *
11525  */
11526 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11527 {
11528     int opcode = extract32(insn, 11, 3);
11529     int u = extract32(insn, 29, 1);
11530     int a = extract32(insn, 23, 1);
11531     int is_q = extract32(insn, 30, 1);
11532     int rm = extract32(insn, 16, 5);
11533     int rn = extract32(insn, 5, 5);
11534     int rd = extract32(insn, 0, 5);
11535     /*
11536      * For these floating point ops, the U, a and opcode bits
11537      * together indicate the operation.
11538      */
11539     int fpopcode = opcode | (a << 3) | (u << 4);
11540     bool pairwise;
11541     TCGv_ptr fpst;
11542     int pass;
11543 
11544     switch (fpopcode) {
11545     case 0x10: /* FMAXNMP */
11546     case 0x16: /* FMAXP */
11547     case 0x18: /* FMINNMP */
11548     case 0x1e: /* FMINP */
11549         pairwise = true;
11550         break;
11551     default:
11552     case 0x0: /* FMAXNM */
11553     case 0x1: /* FMLA */
11554     case 0x2: /* FADD */
11555     case 0x3: /* FMULX */
11556     case 0x4: /* FCMEQ */
11557     case 0x6: /* FMAX */
11558     case 0x7: /* FRECPS */
11559     case 0x8: /* FMINNM */
11560     case 0x9: /* FMLS */
11561     case 0xa: /* FSUB */
11562     case 0xe: /* FMIN */
11563     case 0xf: /* FRSQRTS */
11564     case 0x12: /* FADDP */
11565     case 0x13: /* FMUL */
11566     case 0x14: /* FCMGE */
11567     case 0x15: /* FACGE */
11568     case 0x17: /* FDIV */
11569     case 0x1a: /* FABD */
11570     case 0x1c: /* FCMGT */
11571     case 0x1d: /* FACGT */
11572         unallocated_encoding(s);
11573         return;
11574     }
11575 
11576     if (!dc_isar_feature(aa64_fp16, s)) {
11577         unallocated_encoding(s);
11578         return;
11579     }
11580 
11581     if (!fp_access_check(s)) {
11582         return;
11583     }
11584 
11585     fpst = fpstatus_ptr(FPST_FPCR_F16);
11586 
11587     if (pairwise) {
11588         int maxpass = is_q ? 8 : 4;
11589         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11590         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11591         TCGv_i32 tcg_res[8];
11592 
11593         for (pass = 0; pass < maxpass; pass++) {
11594             int passreg = pass < (maxpass / 2) ? rn : rm;
11595             int passelt = (pass << 1) & (maxpass - 1);
11596 
11597             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11598             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11599             tcg_res[pass] = tcg_temp_new_i32();
11600 
11601             switch (fpopcode) {
11602             case 0x10: /* FMAXNMP */
11603                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11604                                            fpst);
11605                 break;
11606             case 0x16: /* FMAXP */
11607                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11608                 break;
11609             case 0x18: /* FMINNMP */
11610                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11611                                            fpst);
11612                 break;
11613             case 0x1e: /* FMINP */
11614                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11615                 break;
11616             default:
11617             case 0x12: /* FADDP */
11618                 g_assert_not_reached();
11619             }
11620         }
11621 
11622         for (pass = 0; pass < maxpass; pass++) {
11623             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11624         }
11625     } else {
11626         g_assert_not_reached();
11627     }
11628 
11629     clear_vec_high(s, is_q, rd);
11630 }
11631 
11632 /* AdvSIMD three same extra
11633  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11634  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11635  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11636  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11637  */
11638 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11639 {
11640     int rd = extract32(insn, 0, 5);
11641     int rn = extract32(insn, 5, 5);
11642     int opcode = extract32(insn, 11, 4);
11643     int rm = extract32(insn, 16, 5);
11644     int size = extract32(insn, 22, 2);
11645     bool u = extract32(insn, 29, 1);
11646     bool is_q = extract32(insn, 30, 1);
11647     bool feature;
11648     int rot;
11649 
11650     switch (u * 16 + opcode) {
11651     case 0x10: /* SQRDMLAH (vector) */
11652     case 0x11: /* SQRDMLSH (vector) */
11653         if (size != 1 && size != 2) {
11654             unallocated_encoding(s);
11655             return;
11656         }
11657         feature = dc_isar_feature(aa64_rdm, s);
11658         break;
11659     case 0x02: /* SDOT (vector) */
11660     case 0x12: /* UDOT (vector) */
11661         if (size != MO_32) {
11662             unallocated_encoding(s);
11663             return;
11664         }
11665         feature = dc_isar_feature(aa64_dp, s);
11666         break;
11667     case 0x03: /* USDOT */
11668         if (size != MO_32) {
11669             unallocated_encoding(s);
11670             return;
11671         }
11672         feature = dc_isar_feature(aa64_i8mm, s);
11673         break;
11674     case 0x04: /* SMMLA */
11675     case 0x14: /* UMMLA */
11676     case 0x05: /* USMMLA */
11677         if (!is_q || size != MO_32) {
11678             unallocated_encoding(s);
11679             return;
11680         }
11681         feature = dc_isar_feature(aa64_i8mm, s);
11682         break;
11683     case 0x18: /* FCMLA, #0 */
11684     case 0x19: /* FCMLA, #90 */
11685     case 0x1a: /* FCMLA, #180 */
11686     case 0x1b: /* FCMLA, #270 */
11687     case 0x1c: /* FCADD, #90 */
11688     case 0x1e: /* FCADD, #270 */
11689         if (size == 0
11690             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11691             || (size == 3 && !is_q)) {
11692             unallocated_encoding(s);
11693             return;
11694         }
11695         feature = dc_isar_feature(aa64_fcma, s);
11696         break;
11697     case 0x1d: /* BFMMLA */
11698         if (size != MO_16 || !is_q) {
11699             unallocated_encoding(s);
11700             return;
11701         }
11702         feature = dc_isar_feature(aa64_bf16, s);
11703         break;
11704     case 0x1f:
11705         switch (size) {
11706         case 1: /* BFDOT */
11707         case 3: /* BFMLAL{B,T} */
11708             feature = dc_isar_feature(aa64_bf16, s);
11709             break;
11710         default:
11711             unallocated_encoding(s);
11712             return;
11713         }
11714         break;
11715     default:
11716         unallocated_encoding(s);
11717         return;
11718     }
11719     if (!feature) {
11720         unallocated_encoding(s);
11721         return;
11722     }
11723     if (!fp_access_check(s)) {
11724         return;
11725     }
11726 
11727     switch (opcode) {
11728     case 0x0: /* SQRDMLAH (vector) */
11729         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11730         return;
11731 
11732     case 0x1: /* SQRDMLSH (vector) */
11733         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11734         return;
11735 
11736     case 0x2: /* SDOT / UDOT */
11737         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11738                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11739         return;
11740 
11741     case 0x3: /* USDOT */
11742         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11743         return;
11744 
11745     case 0x04: /* SMMLA, UMMLA */
11746         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11747                          u ? gen_helper_gvec_ummla_b
11748                          : gen_helper_gvec_smmla_b);
11749         return;
11750     case 0x05: /* USMMLA */
11751         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11752         return;
11753 
11754     case 0x8: /* FCMLA, #0 */
11755     case 0x9: /* FCMLA, #90 */
11756     case 0xa: /* FCMLA, #180 */
11757     case 0xb: /* FCMLA, #270 */
11758         rot = extract32(opcode, 0, 2);
11759         switch (size) {
11760         case 1:
11761             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11762                               gen_helper_gvec_fcmlah);
11763             break;
11764         case 2:
11765             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11766                               gen_helper_gvec_fcmlas);
11767             break;
11768         case 3:
11769             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11770                               gen_helper_gvec_fcmlad);
11771             break;
11772         default:
11773             g_assert_not_reached();
11774         }
11775         return;
11776 
11777     case 0xc: /* FCADD, #90 */
11778     case 0xe: /* FCADD, #270 */
11779         rot = extract32(opcode, 1, 1);
11780         switch (size) {
11781         case 1:
11782             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11783                               gen_helper_gvec_fcaddh);
11784             break;
11785         case 2:
11786             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11787                               gen_helper_gvec_fcadds);
11788             break;
11789         case 3:
11790             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11791                               gen_helper_gvec_fcaddd);
11792             break;
11793         default:
11794             g_assert_not_reached();
11795         }
11796         return;
11797 
11798     case 0xd: /* BFMMLA */
11799         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11800         return;
11801     case 0xf:
11802         switch (size) {
11803         case 1: /* BFDOT */
11804             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11805             break;
11806         case 3: /* BFMLAL{B,T} */
11807             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11808                               gen_helper_gvec_bfmlal);
11809             break;
11810         default:
11811             g_assert_not_reached();
11812         }
11813         return;
11814 
11815     default:
11816         g_assert_not_reached();
11817     }
11818 }
11819 
11820 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11821                                   int size, int rn, int rd)
11822 {
11823     /* Handle 2-reg-misc ops which are widening (so each size element
11824      * in the source becomes a 2*size element in the destination.
11825      * The only instruction like this is FCVTL.
11826      */
11827     int pass;
11828 
11829     if (size == 3) {
11830         /* 32 -> 64 bit fp conversion */
11831         TCGv_i64 tcg_res[2];
11832         int srcelt = is_q ? 2 : 0;
11833 
11834         for (pass = 0; pass < 2; pass++) {
11835             TCGv_i32 tcg_op = tcg_temp_new_i32();
11836             tcg_res[pass] = tcg_temp_new_i64();
11837 
11838             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11839             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11840         }
11841         for (pass = 0; pass < 2; pass++) {
11842             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11843         }
11844     } else {
11845         /* 16 -> 32 bit fp conversion */
11846         int srcelt = is_q ? 4 : 0;
11847         TCGv_i32 tcg_res[4];
11848         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11849         TCGv_i32 ahp = get_ahp_flag();
11850 
11851         for (pass = 0; pass < 4; pass++) {
11852             tcg_res[pass] = tcg_temp_new_i32();
11853 
11854             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11855             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11856                                            fpst, ahp);
11857         }
11858         for (pass = 0; pass < 4; pass++) {
11859             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11860         }
11861     }
11862 }
11863 
11864 static void handle_rev(DisasContext *s, int opcode, bool u,
11865                        bool is_q, int size, int rn, int rd)
11866 {
11867     int op = (opcode << 1) | u;
11868     int opsz = op + size;
11869     int grp_size = 3 - opsz;
11870     int dsize = is_q ? 128 : 64;
11871     int i;
11872 
11873     if (opsz >= 3) {
11874         unallocated_encoding(s);
11875         return;
11876     }
11877 
11878     if (!fp_access_check(s)) {
11879         return;
11880     }
11881 
11882     if (size == 0) {
11883         /* Special case bytes, use bswap op on each group of elements */
11884         int groups = dsize / (8 << grp_size);
11885 
11886         for (i = 0; i < groups; i++) {
11887             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11888 
11889             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11890             switch (grp_size) {
11891             case MO_16:
11892                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11893                 break;
11894             case MO_32:
11895                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11896                 break;
11897             case MO_64:
11898                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11899                 break;
11900             default:
11901                 g_assert_not_reached();
11902             }
11903             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11904         }
11905         clear_vec_high(s, is_q, rd);
11906     } else {
11907         int revmask = (1 << grp_size) - 1;
11908         int esize = 8 << size;
11909         int elements = dsize / esize;
11910         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11911         TCGv_i64 tcg_rd[2];
11912 
11913         for (i = 0; i < 2; i++) {
11914             tcg_rd[i] = tcg_temp_new_i64();
11915             tcg_gen_movi_i64(tcg_rd[i], 0);
11916         }
11917 
11918         for (i = 0; i < elements; i++) {
11919             int e_rev = (i & 0xf) ^ revmask;
11920             int w = (e_rev * esize) / 64;
11921             int o = (e_rev * esize) % 64;
11922 
11923             read_vec_element(s, tcg_rn, rn, i, size);
11924             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11925         }
11926 
11927         for (i = 0; i < 2; i++) {
11928             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11929         }
11930         clear_vec_high(s, true, rd);
11931     }
11932 }
11933 
11934 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11935                                   bool is_q, int size, int rn, int rd)
11936 {
11937     /* Implement the pairwise operations from 2-misc:
11938      * SADDLP, UADDLP, SADALP, UADALP.
11939      * These all add pairs of elements in the input to produce a
11940      * double-width result element in the output (possibly accumulating).
11941      */
11942     bool accum = (opcode == 0x6);
11943     int maxpass = is_q ? 2 : 1;
11944     int pass;
11945     TCGv_i64 tcg_res[2];
11946 
11947     if (size == 2) {
11948         /* 32 + 32 -> 64 op */
11949         MemOp memop = size + (u ? 0 : MO_SIGN);
11950 
11951         for (pass = 0; pass < maxpass; pass++) {
11952             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11953             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11954 
11955             tcg_res[pass] = tcg_temp_new_i64();
11956 
11957             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11958             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11959             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11960             if (accum) {
11961                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11962                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11963             }
11964         }
11965     } else {
11966         for (pass = 0; pass < maxpass; pass++) {
11967             TCGv_i64 tcg_op = tcg_temp_new_i64();
11968             NeonGenOne64OpFn *genfn;
11969             static NeonGenOne64OpFn * const fns[2][2] = {
11970                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11971                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11972             };
11973 
11974             genfn = fns[size][u];
11975 
11976             tcg_res[pass] = tcg_temp_new_i64();
11977 
11978             read_vec_element(s, tcg_op, rn, pass, MO_64);
11979             genfn(tcg_res[pass], tcg_op);
11980 
11981             if (accum) {
11982                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11983                 if (size == 0) {
11984                     gen_helper_neon_addl_u16(tcg_res[pass],
11985                                              tcg_res[pass], tcg_op);
11986                 } else {
11987                     gen_helper_neon_addl_u32(tcg_res[pass],
11988                                              tcg_res[pass], tcg_op);
11989                 }
11990             }
11991         }
11992     }
11993     if (!is_q) {
11994         tcg_res[1] = tcg_constant_i64(0);
11995     }
11996     for (pass = 0; pass < 2; pass++) {
11997         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11998     }
11999 }
12000 
12001 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12002 {
12003     /* Implement SHLL and SHLL2 */
12004     int pass;
12005     int part = is_q ? 2 : 0;
12006     TCGv_i64 tcg_res[2];
12007 
12008     for (pass = 0; pass < 2; pass++) {
12009         static NeonGenWidenFn * const widenfns[3] = {
12010             gen_helper_neon_widen_u8,
12011             gen_helper_neon_widen_u16,
12012             tcg_gen_extu_i32_i64,
12013         };
12014         NeonGenWidenFn *widenfn = widenfns[size];
12015         TCGv_i32 tcg_op = tcg_temp_new_i32();
12016 
12017         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12018         tcg_res[pass] = tcg_temp_new_i64();
12019         widenfn(tcg_res[pass], tcg_op);
12020         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12021     }
12022 
12023     for (pass = 0; pass < 2; pass++) {
12024         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12025     }
12026 }
12027 
12028 /* AdvSIMD two reg misc
12029  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12030  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12031  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12032  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12033  */
12034 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12035 {
12036     int size = extract32(insn, 22, 2);
12037     int opcode = extract32(insn, 12, 5);
12038     bool u = extract32(insn, 29, 1);
12039     bool is_q = extract32(insn, 30, 1);
12040     int rn = extract32(insn, 5, 5);
12041     int rd = extract32(insn, 0, 5);
12042     bool need_fpstatus = false;
12043     int rmode = -1;
12044     TCGv_i32 tcg_rmode;
12045     TCGv_ptr tcg_fpstatus;
12046 
12047     switch (opcode) {
12048     case 0x0: /* REV64, REV32 */
12049     case 0x1: /* REV16 */
12050         handle_rev(s, opcode, u, is_q, size, rn, rd);
12051         return;
12052     case 0x5: /* CNT, NOT, RBIT */
12053         if (u && size == 0) {
12054             /* NOT */
12055             break;
12056         } else if (u && size == 1) {
12057             /* RBIT */
12058             break;
12059         } else if (!u && size == 0) {
12060             /* CNT */
12061             break;
12062         }
12063         unallocated_encoding(s);
12064         return;
12065     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12066     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12067         if (size == 3) {
12068             unallocated_encoding(s);
12069             return;
12070         }
12071         if (!fp_access_check(s)) {
12072             return;
12073         }
12074 
12075         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12076         return;
12077     case 0x4: /* CLS, CLZ */
12078         if (size == 3) {
12079             unallocated_encoding(s);
12080             return;
12081         }
12082         break;
12083     case 0x2: /* SADDLP, UADDLP */
12084     case 0x6: /* SADALP, UADALP */
12085         if (size == 3) {
12086             unallocated_encoding(s);
12087             return;
12088         }
12089         if (!fp_access_check(s)) {
12090             return;
12091         }
12092         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12093         return;
12094     case 0x13: /* SHLL, SHLL2 */
12095         if (u == 0 || size == 3) {
12096             unallocated_encoding(s);
12097             return;
12098         }
12099         if (!fp_access_check(s)) {
12100             return;
12101         }
12102         handle_shll(s, is_q, size, rn, rd);
12103         return;
12104     case 0xa: /* CMLT */
12105         if (u == 1) {
12106             unallocated_encoding(s);
12107             return;
12108         }
12109         /* fall through */
12110     case 0x8: /* CMGT, CMGE */
12111     case 0x9: /* CMEQ, CMLE */
12112     case 0xb: /* ABS, NEG */
12113         if (size == 3 && !is_q) {
12114             unallocated_encoding(s);
12115             return;
12116         }
12117         break;
12118     case 0x3: /* SUQADD, USQADD */
12119         if (size == 3 && !is_q) {
12120             unallocated_encoding(s);
12121             return;
12122         }
12123         if (!fp_access_check(s)) {
12124             return;
12125         }
12126         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12127         return;
12128     case 0x7: /* SQABS, SQNEG */
12129         if (size == 3 && !is_q) {
12130             unallocated_encoding(s);
12131             return;
12132         }
12133         break;
12134     case 0xc ... 0xf:
12135     case 0x16 ... 0x1f:
12136     {
12137         /* Floating point: U, size[1] and opcode indicate operation;
12138          * size[0] indicates single or double precision.
12139          */
12140         int is_double = extract32(size, 0, 1);
12141         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12142         size = is_double ? 3 : 2;
12143         switch (opcode) {
12144         case 0x2f: /* FABS */
12145         case 0x6f: /* FNEG */
12146             if (size == 3 && !is_q) {
12147                 unallocated_encoding(s);
12148                 return;
12149             }
12150             break;
12151         case 0x1d: /* SCVTF */
12152         case 0x5d: /* UCVTF */
12153         {
12154             bool is_signed = (opcode == 0x1d) ? true : false;
12155             int elements = is_double ? 2 : is_q ? 4 : 2;
12156             if (is_double && !is_q) {
12157                 unallocated_encoding(s);
12158                 return;
12159             }
12160             if (!fp_access_check(s)) {
12161                 return;
12162             }
12163             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12164             return;
12165         }
12166         case 0x2c: /* FCMGT (zero) */
12167         case 0x2d: /* FCMEQ (zero) */
12168         case 0x2e: /* FCMLT (zero) */
12169         case 0x6c: /* FCMGE (zero) */
12170         case 0x6d: /* FCMLE (zero) */
12171             if (size == 3 && !is_q) {
12172                 unallocated_encoding(s);
12173                 return;
12174             }
12175             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12176             return;
12177         case 0x7f: /* FSQRT */
12178             if (size == 3 && !is_q) {
12179                 unallocated_encoding(s);
12180                 return;
12181             }
12182             break;
12183         case 0x1a: /* FCVTNS */
12184         case 0x1b: /* FCVTMS */
12185         case 0x3a: /* FCVTPS */
12186         case 0x3b: /* FCVTZS */
12187         case 0x5a: /* FCVTNU */
12188         case 0x5b: /* FCVTMU */
12189         case 0x7a: /* FCVTPU */
12190         case 0x7b: /* FCVTZU */
12191             need_fpstatus = true;
12192             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12193             if (size == 3 && !is_q) {
12194                 unallocated_encoding(s);
12195                 return;
12196             }
12197             break;
12198         case 0x5c: /* FCVTAU */
12199         case 0x1c: /* FCVTAS */
12200             need_fpstatus = true;
12201             rmode = FPROUNDING_TIEAWAY;
12202             if (size == 3 && !is_q) {
12203                 unallocated_encoding(s);
12204                 return;
12205             }
12206             break;
12207         case 0x3c: /* URECPE */
12208             if (size == 3) {
12209                 unallocated_encoding(s);
12210                 return;
12211             }
12212             /* fall through */
12213         case 0x3d: /* FRECPE */
12214         case 0x7d: /* FRSQRTE */
12215             if (size == 3 && !is_q) {
12216                 unallocated_encoding(s);
12217                 return;
12218             }
12219             if (!fp_access_check(s)) {
12220                 return;
12221             }
12222             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12223             return;
12224         case 0x56: /* FCVTXN, FCVTXN2 */
12225             if (size == 2) {
12226                 unallocated_encoding(s);
12227                 return;
12228             }
12229             /* fall through */
12230         case 0x16: /* FCVTN, FCVTN2 */
12231             /* handle_2misc_narrow does a 2*size -> size operation, but these
12232              * instructions encode the source size rather than dest size.
12233              */
12234             if (!fp_access_check(s)) {
12235                 return;
12236             }
12237             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12238             return;
12239         case 0x36: /* BFCVTN, BFCVTN2 */
12240             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12241                 unallocated_encoding(s);
12242                 return;
12243             }
12244             if (!fp_access_check(s)) {
12245                 return;
12246             }
12247             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12248             return;
12249         case 0x17: /* FCVTL, FCVTL2 */
12250             if (!fp_access_check(s)) {
12251                 return;
12252             }
12253             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12254             return;
12255         case 0x18: /* FRINTN */
12256         case 0x19: /* FRINTM */
12257         case 0x38: /* FRINTP */
12258         case 0x39: /* FRINTZ */
12259             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12260             /* fall through */
12261         case 0x59: /* FRINTX */
12262         case 0x79: /* FRINTI */
12263             need_fpstatus = true;
12264             if (size == 3 && !is_q) {
12265                 unallocated_encoding(s);
12266                 return;
12267             }
12268             break;
12269         case 0x58: /* FRINTA */
12270             rmode = FPROUNDING_TIEAWAY;
12271             need_fpstatus = true;
12272             if (size == 3 && !is_q) {
12273                 unallocated_encoding(s);
12274                 return;
12275             }
12276             break;
12277         case 0x7c: /* URSQRTE */
12278             if (size == 3) {
12279                 unallocated_encoding(s);
12280                 return;
12281             }
12282             break;
12283         case 0x1e: /* FRINT32Z */
12284         case 0x1f: /* FRINT64Z */
12285             rmode = FPROUNDING_ZERO;
12286             /* fall through */
12287         case 0x5e: /* FRINT32X */
12288         case 0x5f: /* FRINT64X */
12289             need_fpstatus = true;
12290             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12291                 unallocated_encoding(s);
12292                 return;
12293             }
12294             break;
12295         default:
12296             unallocated_encoding(s);
12297             return;
12298         }
12299         break;
12300     }
12301     default:
12302         unallocated_encoding(s);
12303         return;
12304     }
12305 
12306     if (!fp_access_check(s)) {
12307         return;
12308     }
12309 
12310     if (need_fpstatus || rmode >= 0) {
12311         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12312     } else {
12313         tcg_fpstatus = NULL;
12314     }
12315     if (rmode >= 0) {
12316         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12317     } else {
12318         tcg_rmode = NULL;
12319     }
12320 
12321     switch (opcode) {
12322     case 0x5:
12323         if (u && size == 0) { /* NOT */
12324             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12325             return;
12326         }
12327         break;
12328     case 0x8: /* CMGT, CMGE */
12329         if (u) {
12330             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12331         } else {
12332             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12333         }
12334         return;
12335     case 0x9: /* CMEQ, CMLE */
12336         if (u) {
12337             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12338         } else {
12339             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12340         }
12341         return;
12342     case 0xa: /* CMLT */
12343         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12344         return;
12345     case 0xb:
12346         if (u) { /* ABS, NEG */
12347             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12348         } else {
12349             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12350         }
12351         return;
12352     }
12353 
12354     if (size == 3) {
12355         /* All 64-bit element operations can be shared with scalar 2misc */
12356         int pass;
12357 
12358         /* Coverity claims (size == 3 && !is_q) has been eliminated
12359          * from all paths leading to here.
12360          */
12361         tcg_debug_assert(is_q);
12362         for (pass = 0; pass < 2; pass++) {
12363             TCGv_i64 tcg_op = tcg_temp_new_i64();
12364             TCGv_i64 tcg_res = tcg_temp_new_i64();
12365 
12366             read_vec_element(s, tcg_op, rn, pass, MO_64);
12367 
12368             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12369                             tcg_rmode, tcg_fpstatus);
12370 
12371             write_vec_element(s, tcg_res, rd, pass, MO_64);
12372         }
12373     } else {
12374         int pass;
12375 
12376         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12377             TCGv_i32 tcg_op = tcg_temp_new_i32();
12378             TCGv_i32 tcg_res = tcg_temp_new_i32();
12379 
12380             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12381 
12382             if (size == 2) {
12383                 /* Special cases for 32 bit elements */
12384                 switch (opcode) {
12385                 case 0x4: /* CLS */
12386                     if (u) {
12387                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12388                     } else {
12389                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12390                     }
12391                     break;
12392                 case 0x7: /* SQABS, SQNEG */
12393                     if (u) {
12394                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12395                     } else {
12396                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12397                     }
12398                     break;
12399                 case 0x2f: /* FABS */
12400                     gen_vfp_abss(tcg_res, tcg_op);
12401                     break;
12402                 case 0x6f: /* FNEG */
12403                     gen_vfp_negs(tcg_res, tcg_op);
12404                     break;
12405                 case 0x7f: /* FSQRT */
12406                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12407                     break;
12408                 case 0x1a: /* FCVTNS */
12409                 case 0x1b: /* FCVTMS */
12410                 case 0x1c: /* FCVTAS */
12411                 case 0x3a: /* FCVTPS */
12412                 case 0x3b: /* FCVTZS */
12413                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12414                                          tcg_constant_i32(0), tcg_fpstatus);
12415                     break;
12416                 case 0x5a: /* FCVTNU */
12417                 case 0x5b: /* FCVTMU */
12418                 case 0x5c: /* FCVTAU */
12419                 case 0x7a: /* FCVTPU */
12420                 case 0x7b: /* FCVTZU */
12421                     gen_helper_vfp_touls(tcg_res, tcg_op,
12422                                          tcg_constant_i32(0), tcg_fpstatus);
12423                     break;
12424                 case 0x18: /* FRINTN */
12425                 case 0x19: /* FRINTM */
12426                 case 0x38: /* FRINTP */
12427                 case 0x39: /* FRINTZ */
12428                 case 0x58: /* FRINTA */
12429                 case 0x79: /* FRINTI */
12430                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12431                     break;
12432                 case 0x59: /* FRINTX */
12433                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12434                     break;
12435                 case 0x7c: /* URSQRTE */
12436                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12437                     break;
12438                 case 0x1e: /* FRINT32Z */
12439                 case 0x5e: /* FRINT32X */
12440                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12441                     break;
12442                 case 0x1f: /* FRINT64Z */
12443                 case 0x5f: /* FRINT64X */
12444                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12445                     break;
12446                 default:
12447                     g_assert_not_reached();
12448                 }
12449             } else {
12450                 /* Use helpers for 8 and 16 bit elements */
12451                 switch (opcode) {
12452                 case 0x5: /* CNT, RBIT */
12453                     /* For these two insns size is part of the opcode specifier
12454                      * (handled earlier); they always operate on byte elements.
12455                      */
12456                     if (u) {
12457                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12458                     } else {
12459                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12460                     }
12461                     break;
12462                 case 0x7: /* SQABS, SQNEG */
12463                 {
12464                     NeonGenOneOpEnvFn *genfn;
12465                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12466                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12467                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12468                     };
12469                     genfn = fns[size][u];
12470                     genfn(tcg_res, tcg_env, tcg_op);
12471                     break;
12472                 }
12473                 case 0x4: /* CLS, CLZ */
12474                     if (u) {
12475                         if (size == 0) {
12476                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12477                         } else {
12478                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12479                         }
12480                     } else {
12481                         if (size == 0) {
12482                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12483                         } else {
12484                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12485                         }
12486                     }
12487                     break;
12488                 default:
12489                     g_assert_not_reached();
12490                 }
12491             }
12492 
12493             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12494         }
12495     }
12496     clear_vec_high(s, is_q, rd);
12497 
12498     if (tcg_rmode) {
12499         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12500     }
12501 }
12502 
12503 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12504  *
12505  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12506  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12507  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12508  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12509  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12510  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12511  *
12512  * This actually covers two groups where scalar access is governed by
12513  * bit 28. A bunch of the instructions (float to integral) only exist
12514  * in the vector form and are un-allocated for the scalar decode. Also
12515  * in the scalar decode Q is always 1.
12516  */
12517 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12518 {
12519     int fpop, opcode, a, u;
12520     int rn, rd;
12521     bool is_q;
12522     bool is_scalar;
12523     bool only_in_vector = false;
12524 
12525     int pass;
12526     TCGv_i32 tcg_rmode = NULL;
12527     TCGv_ptr tcg_fpstatus = NULL;
12528     bool need_fpst = true;
12529     int rmode = -1;
12530 
12531     if (!dc_isar_feature(aa64_fp16, s)) {
12532         unallocated_encoding(s);
12533         return;
12534     }
12535 
12536     rd = extract32(insn, 0, 5);
12537     rn = extract32(insn, 5, 5);
12538 
12539     a = extract32(insn, 23, 1);
12540     u = extract32(insn, 29, 1);
12541     is_scalar = extract32(insn, 28, 1);
12542     is_q = extract32(insn, 30, 1);
12543 
12544     opcode = extract32(insn, 12, 5);
12545     fpop = deposit32(opcode, 5, 1, a);
12546     fpop = deposit32(fpop, 6, 1, u);
12547 
12548     switch (fpop) {
12549     case 0x1d: /* SCVTF */
12550     case 0x5d: /* UCVTF */
12551     {
12552         int elements;
12553 
12554         if (is_scalar) {
12555             elements = 1;
12556         } else {
12557             elements = (is_q ? 8 : 4);
12558         }
12559 
12560         if (!fp_access_check(s)) {
12561             return;
12562         }
12563         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12564         return;
12565     }
12566     break;
12567     case 0x2c: /* FCMGT (zero) */
12568     case 0x2d: /* FCMEQ (zero) */
12569     case 0x2e: /* FCMLT (zero) */
12570     case 0x6c: /* FCMGE (zero) */
12571     case 0x6d: /* FCMLE (zero) */
12572         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12573         return;
12574     case 0x3d: /* FRECPE */
12575     case 0x3f: /* FRECPX */
12576         break;
12577     case 0x18: /* FRINTN */
12578         only_in_vector = true;
12579         rmode = FPROUNDING_TIEEVEN;
12580         break;
12581     case 0x19: /* FRINTM */
12582         only_in_vector = true;
12583         rmode = FPROUNDING_NEGINF;
12584         break;
12585     case 0x38: /* FRINTP */
12586         only_in_vector = true;
12587         rmode = FPROUNDING_POSINF;
12588         break;
12589     case 0x39: /* FRINTZ */
12590         only_in_vector = true;
12591         rmode = FPROUNDING_ZERO;
12592         break;
12593     case 0x58: /* FRINTA */
12594         only_in_vector = true;
12595         rmode = FPROUNDING_TIEAWAY;
12596         break;
12597     case 0x59: /* FRINTX */
12598     case 0x79: /* FRINTI */
12599         only_in_vector = true;
12600         /* current rounding mode */
12601         break;
12602     case 0x1a: /* FCVTNS */
12603         rmode = FPROUNDING_TIEEVEN;
12604         break;
12605     case 0x1b: /* FCVTMS */
12606         rmode = FPROUNDING_NEGINF;
12607         break;
12608     case 0x1c: /* FCVTAS */
12609         rmode = FPROUNDING_TIEAWAY;
12610         break;
12611     case 0x3a: /* FCVTPS */
12612         rmode = FPROUNDING_POSINF;
12613         break;
12614     case 0x3b: /* FCVTZS */
12615         rmode = FPROUNDING_ZERO;
12616         break;
12617     case 0x5a: /* FCVTNU */
12618         rmode = FPROUNDING_TIEEVEN;
12619         break;
12620     case 0x5b: /* FCVTMU */
12621         rmode = FPROUNDING_NEGINF;
12622         break;
12623     case 0x5c: /* FCVTAU */
12624         rmode = FPROUNDING_TIEAWAY;
12625         break;
12626     case 0x7a: /* FCVTPU */
12627         rmode = FPROUNDING_POSINF;
12628         break;
12629     case 0x7b: /* FCVTZU */
12630         rmode = FPROUNDING_ZERO;
12631         break;
12632     case 0x2f: /* FABS */
12633     case 0x6f: /* FNEG */
12634         need_fpst = false;
12635         break;
12636     case 0x7d: /* FRSQRTE */
12637     case 0x7f: /* FSQRT (vector) */
12638         break;
12639     default:
12640         unallocated_encoding(s);
12641         return;
12642     }
12643 
12644 
12645     /* Check additional constraints for the scalar encoding */
12646     if (is_scalar) {
12647         if (!is_q) {
12648             unallocated_encoding(s);
12649             return;
12650         }
12651         /* FRINTxx is only in the vector form */
12652         if (only_in_vector) {
12653             unallocated_encoding(s);
12654             return;
12655         }
12656     }
12657 
12658     if (!fp_access_check(s)) {
12659         return;
12660     }
12661 
12662     if (rmode >= 0 || need_fpst) {
12663         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12664     }
12665 
12666     if (rmode >= 0) {
12667         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12668     }
12669 
12670     if (is_scalar) {
12671         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12672         TCGv_i32 tcg_res = tcg_temp_new_i32();
12673 
12674         switch (fpop) {
12675         case 0x1a: /* FCVTNS */
12676         case 0x1b: /* FCVTMS */
12677         case 0x1c: /* FCVTAS */
12678         case 0x3a: /* FCVTPS */
12679         case 0x3b: /* FCVTZS */
12680             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12681             break;
12682         case 0x3d: /* FRECPE */
12683             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12684             break;
12685         case 0x3f: /* FRECPX */
12686             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12687             break;
12688         case 0x5a: /* FCVTNU */
12689         case 0x5b: /* FCVTMU */
12690         case 0x5c: /* FCVTAU */
12691         case 0x7a: /* FCVTPU */
12692         case 0x7b: /* FCVTZU */
12693             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12694             break;
12695         case 0x6f: /* FNEG */
12696             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12697             break;
12698         case 0x7d: /* FRSQRTE */
12699             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12700             break;
12701         default:
12702             g_assert_not_reached();
12703         }
12704 
12705         /* limit any sign extension going on */
12706         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12707         write_fp_sreg(s, rd, tcg_res);
12708     } else {
12709         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12710             TCGv_i32 tcg_op = tcg_temp_new_i32();
12711             TCGv_i32 tcg_res = tcg_temp_new_i32();
12712 
12713             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12714 
12715             switch (fpop) {
12716             case 0x1a: /* FCVTNS */
12717             case 0x1b: /* FCVTMS */
12718             case 0x1c: /* FCVTAS */
12719             case 0x3a: /* FCVTPS */
12720             case 0x3b: /* FCVTZS */
12721                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12722                 break;
12723             case 0x3d: /* FRECPE */
12724                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12725                 break;
12726             case 0x5a: /* FCVTNU */
12727             case 0x5b: /* FCVTMU */
12728             case 0x5c: /* FCVTAU */
12729             case 0x7a: /* FCVTPU */
12730             case 0x7b: /* FCVTZU */
12731                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12732                 break;
12733             case 0x18: /* FRINTN */
12734             case 0x19: /* FRINTM */
12735             case 0x38: /* FRINTP */
12736             case 0x39: /* FRINTZ */
12737             case 0x58: /* FRINTA */
12738             case 0x79: /* FRINTI */
12739                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12740                 break;
12741             case 0x59: /* FRINTX */
12742                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12743                 break;
12744             case 0x2f: /* FABS */
12745                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12746                 break;
12747             case 0x6f: /* FNEG */
12748                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12749                 break;
12750             case 0x7d: /* FRSQRTE */
12751                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12752                 break;
12753             case 0x7f: /* FSQRT */
12754                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12755                 break;
12756             default:
12757                 g_assert_not_reached();
12758             }
12759 
12760             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12761         }
12762 
12763         clear_vec_high(s, is_q, rd);
12764     }
12765 
12766     if (tcg_rmode) {
12767         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12768     }
12769 }
12770 
12771 /* AdvSIMD scalar x indexed element
12772  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12773  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12774  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12775  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12776  * AdvSIMD vector x indexed element
12777  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12778  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12779  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12780  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12781  */
12782 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12783 {
12784     /* This encoding has two kinds of instruction:
12785      *  normal, where we perform elt x idxelt => elt for each
12786      *     element in the vector
12787      *  long, where we perform elt x idxelt and generate a result of
12788      *     double the width of the input element
12789      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12790      */
12791     bool is_scalar = extract32(insn, 28, 1);
12792     bool is_q = extract32(insn, 30, 1);
12793     bool u = extract32(insn, 29, 1);
12794     int size = extract32(insn, 22, 2);
12795     int l = extract32(insn, 21, 1);
12796     int m = extract32(insn, 20, 1);
12797     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12798     int rm = extract32(insn, 16, 4);
12799     int opcode = extract32(insn, 12, 4);
12800     int h = extract32(insn, 11, 1);
12801     int rn = extract32(insn, 5, 5);
12802     int rd = extract32(insn, 0, 5);
12803     bool is_long = false;
12804     int is_fp = 0;
12805     bool is_fp16 = false;
12806     int index;
12807     TCGv_ptr fpst;
12808 
12809     switch (16 * u + opcode) {
12810     case 0x08: /* MUL */
12811     case 0x10: /* MLA */
12812     case 0x14: /* MLS */
12813         if (is_scalar) {
12814             unallocated_encoding(s);
12815             return;
12816         }
12817         break;
12818     case 0x02: /* SMLAL, SMLAL2 */
12819     case 0x12: /* UMLAL, UMLAL2 */
12820     case 0x06: /* SMLSL, SMLSL2 */
12821     case 0x16: /* UMLSL, UMLSL2 */
12822     case 0x0a: /* SMULL, SMULL2 */
12823     case 0x1a: /* UMULL, UMULL2 */
12824         if (is_scalar) {
12825             unallocated_encoding(s);
12826             return;
12827         }
12828         is_long = true;
12829         break;
12830     case 0x03: /* SQDMLAL, SQDMLAL2 */
12831     case 0x07: /* SQDMLSL, SQDMLSL2 */
12832     case 0x0b: /* SQDMULL, SQDMULL2 */
12833         is_long = true;
12834         break;
12835     case 0x0c: /* SQDMULH */
12836     case 0x0d: /* SQRDMULH */
12837         break;
12838     case 0x1d: /* SQRDMLAH */
12839     case 0x1f: /* SQRDMLSH */
12840         if (!dc_isar_feature(aa64_rdm, s)) {
12841             unallocated_encoding(s);
12842             return;
12843         }
12844         break;
12845     case 0x0e: /* SDOT */
12846     case 0x1e: /* UDOT */
12847         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12848             unallocated_encoding(s);
12849             return;
12850         }
12851         break;
12852     case 0x0f:
12853         switch (size) {
12854         case 0: /* SUDOT */
12855         case 2: /* USDOT */
12856             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12857                 unallocated_encoding(s);
12858                 return;
12859             }
12860             size = MO_32;
12861             break;
12862         case 1: /* BFDOT */
12863             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12864                 unallocated_encoding(s);
12865                 return;
12866             }
12867             size = MO_32;
12868             break;
12869         case 3: /* BFMLAL{B,T} */
12870             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12871                 unallocated_encoding(s);
12872                 return;
12873             }
12874             /* can't set is_fp without other incorrect size checks */
12875             size = MO_16;
12876             break;
12877         default:
12878             unallocated_encoding(s);
12879             return;
12880         }
12881         break;
12882     case 0x11: /* FCMLA #0 */
12883     case 0x13: /* FCMLA #90 */
12884     case 0x15: /* FCMLA #180 */
12885     case 0x17: /* FCMLA #270 */
12886         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12887             unallocated_encoding(s);
12888             return;
12889         }
12890         is_fp = 2;
12891         break;
12892     case 0x00: /* FMLAL */
12893     case 0x04: /* FMLSL */
12894     case 0x18: /* FMLAL2 */
12895     case 0x1c: /* FMLSL2 */
12896         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12897             unallocated_encoding(s);
12898             return;
12899         }
12900         size = MO_16;
12901         /* is_fp, but we pass tcg_env not fp_status.  */
12902         break;
12903     default:
12904     case 0x01: /* FMLA */
12905     case 0x05: /* FMLS */
12906     case 0x09: /* FMUL */
12907     case 0x19: /* FMULX */
12908         unallocated_encoding(s);
12909         return;
12910     }
12911 
12912     switch (is_fp) {
12913     case 1: /* normal fp */
12914         unallocated_encoding(s); /* in decodetree */
12915         return;
12916 
12917     case 2: /* complex fp */
12918         /* Each indexable element is a complex pair.  */
12919         size += 1;
12920         switch (size) {
12921         case MO_32:
12922             if (h && !is_q) {
12923                 unallocated_encoding(s);
12924                 return;
12925             }
12926             is_fp16 = true;
12927             break;
12928         case MO_64:
12929             break;
12930         default:
12931             unallocated_encoding(s);
12932             return;
12933         }
12934         break;
12935 
12936     default: /* integer */
12937         switch (size) {
12938         case MO_8:
12939         case MO_64:
12940             unallocated_encoding(s);
12941             return;
12942         }
12943         break;
12944     }
12945     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12946         unallocated_encoding(s);
12947         return;
12948     }
12949 
12950     /* Given MemOp size, adjust register and indexing.  */
12951     switch (size) {
12952     case MO_16:
12953         index = h << 2 | l << 1 | m;
12954         break;
12955     case MO_32:
12956         index = h << 1 | l;
12957         rm |= m << 4;
12958         break;
12959     case MO_64:
12960         if (l || !is_q) {
12961             unallocated_encoding(s);
12962             return;
12963         }
12964         index = h;
12965         rm |= m << 4;
12966         break;
12967     default:
12968         g_assert_not_reached();
12969     }
12970 
12971     if (!fp_access_check(s)) {
12972         return;
12973     }
12974 
12975     if (is_fp) {
12976         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12977     } else {
12978         fpst = NULL;
12979     }
12980 
12981     switch (16 * u + opcode) {
12982     case 0x0e: /* SDOT */
12983     case 0x1e: /* UDOT */
12984         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12985                          u ? gen_helper_gvec_udot_idx_b
12986                          : gen_helper_gvec_sdot_idx_b);
12987         return;
12988     case 0x0f:
12989         switch (extract32(insn, 22, 2)) {
12990         case 0: /* SUDOT */
12991             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12992                              gen_helper_gvec_sudot_idx_b);
12993             return;
12994         case 1: /* BFDOT */
12995             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12996                              gen_helper_gvec_bfdot_idx);
12997             return;
12998         case 2: /* USDOT */
12999             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13000                              gen_helper_gvec_usdot_idx_b);
13001             return;
13002         case 3: /* BFMLAL{B,T} */
13003             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13004                               gen_helper_gvec_bfmlal_idx);
13005             return;
13006         }
13007         g_assert_not_reached();
13008     case 0x11: /* FCMLA #0 */
13009     case 0x13: /* FCMLA #90 */
13010     case 0x15: /* FCMLA #180 */
13011     case 0x17: /* FCMLA #270 */
13012         {
13013             int rot = extract32(insn, 13, 2);
13014             int data = (index << 2) | rot;
13015             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13016                                vec_full_reg_offset(s, rn),
13017                                vec_full_reg_offset(s, rm),
13018                                vec_full_reg_offset(s, rd), fpst,
13019                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13020                                size == MO_64
13021                                ? gen_helper_gvec_fcmlas_idx
13022                                : gen_helper_gvec_fcmlah_idx);
13023         }
13024         return;
13025 
13026     case 0x00: /* FMLAL */
13027     case 0x04: /* FMLSL */
13028     case 0x18: /* FMLAL2 */
13029     case 0x1c: /* FMLSL2 */
13030         {
13031             int is_s = extract32(opcode, 2, 1);
13032             int is_2 = u;
13033             int data = (index << 2) | (is_2 << 1) | is_s;
13034             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13035                                vec_full_reg_offset(s, rn),
13036                                vec_full_reg_offset(s, rm), tcg_env,
13037                                is_q ? 16 : 8, vec_full_reg_size(s),
13038                                data, gen_helper_gvec_fmlal_idx_a64);
13039         }
13040         return;
13041 
13042     case 0x08: /* MUL */
13043         if (!is_long && !is_scalar) {
13044             static gen_helper_gvec_3 * const fns[3] = {
13045                 gen_helper_gvec_mul_idx_h,
13046                 gen_helper_gvec_mul_idx_s,
13047                 gen_helper_gvec_mul_idx_d,
13048             };
13049             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13050                                vec_full_reg_offset(s, rn),
13051                                vec_full_reg_offset(s, rm),
13052                                is_q ? 16 : 8, vec_full_reg_size(s),
13053                                index, fns[size - 1]);
13054             return;
13055         }
13056         break;
13057 
13058     case 0x10: /* MLA */
13059         if (!is_long && !is_scalar) {
13060             static gen_helper_gvec_4 * const fns[3] = {
13061                 gen_helper_gvec_mla_idx_h,
13062                 gen_helper_gvec_mla_idx_s,
13063                 gen_helper_gvec_mla_idx_d,
13064             };
13065             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13066                                vec_full_reg_offset(s, rn),
13067                                vec_full_reg_offset(s, rm),
13068                                vec_full_reg_offset(s, rd),
13069                                is_q ? 16 : 8, vec_full_reg_size(s),
13070                                index, fns[size - 1]);
13071             return;
13072         }
13073         break;
13074 
13075     case 0x14: /* MLS */
13076         if (!is_long && !is_scalar) {
13077             static gen_helper_gvec_4 * const fns[3] = {
13078                 gen_helper_gvec_mls_idx_h,
13079                 gen_helper_gvec_mls_idx_s,
13080                 gen_helper_gvec_mls_idx_d,
13081             };
13082             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13083                                vec_full_reg_offset(s, rn),
13084                                vec_full_reg_offset(s, rm),
13085                                vec_full_reg_offset(s, rd),
13086                                is_q ? 16 : 8, vec_full_reg_size(s),
13087                                index, fns[size - 1]);
13088             return;
13089         }
13090         break;
13091     }
13092 
13093     if (size == 3) {
13094         g_assert_not_reached();
13095     } else if (!is_long) {
13096         /* 32 bit floating point, or 16 or 32 bit integer.
13097          * For the 16 bit scalar case we use the usual Neon helpers and
13098          * rely on the fact that 0 op 0 == 0 with no side effects.
13099          */
13100         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13101         int pass, maxpasses;
13102 
13103         if (is_scalar) {
13104             maxpasses = 1;
13105         } else {
13106             maxpasses = is_q ? 4 : 2;
13107         }
13108 
13109         read_vec_element_i32(s, tcg_idx, rm, index, size);
13110 
13111         if (size == 1 && !is_scalar) {
13112             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13113              * the index into both halves of the 32 bit tcg_idx and then use
13114              * the usual Neon helpers.
13115              */
13116             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13117         }
13118 
13119         for (pass = 0; pass < maxpasses; pass++) {
13120             TCGv_i32 tcg_op = tcg_temp_new_i32();
13121             TCGv_i32 tcg_res = tcg_temp_new_i32();
13122 
13123             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13124 
13125             switch (16 * u + opcode) {
13126             case 0x08: /* MUL */
13127             case 0x10: /* MLA */
13128             case 0x14: /* MLS */
13129             {
13130                 static NeonGenTwoOpFn * const fns[2][2] = {
13131                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13132                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13133                 };
13134                 NeonGenTwoOpFn *genfn;
13135                 bool is_sub = opcode == 0x4;
13136 
13137                 if (size == 1) {
13138                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13139                 } else {
13140                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13141                 }
13142                 if (opcode == 0x8) {
13143                     break;
13144                 }
13145                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13146                 genfn = fns[size - 1][is_sub];
13147                 genfn(tcg_res, tcg_op, tcg_res);
13148                 break;
13149             }
13150             case 0x0c: /* SQDMULH */
13151                 if (size == 1) {
13152                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13153                                                tcg_op, tcg_idx);
13154                 } else {
13155                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13156                                                tcg_op, tcg_idx);
13157                 }
13158                 break;
13159             case 0x0d: /* SQRDMULH */
13160                 if (size == 1) {
13161                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13162                                                 tcg_op, tcg_idx);
13163                 } else {
13164                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13165                                                 tcg_op, tcg_idx);
13166                 }
13167                 break;
13168             case 0x1d: /* SQRDMLAH */
13169                 read_vec_element_i32(s, tcg_res, rd, pass,
13170                                      is_scalar ? size : MO_32);
13171                 if (size == 1) {
13172                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13173                                                 tcg_op, tcg_idx, tcg_res);
13174                 } else {
13175                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13176                                                 tcg_op, tcg_idx, tcg_res);
13177                 }
13178                 break;
13179             case 0x1f: /* SQRDMLSH */
13180                 read_vec_element_i32(s, tcg_res, rd, pass,
13181                                      is_scalar ? size : MO_32);
13182                 if (size == 1) {
13183                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13184                                                 tcg_op, tcg_idx, tcg_res);
13185                 } else {
13186                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13187                                                 tcg_op, tcg_idx, tcg_res);
13188                 }
13189                 break;
13190             default:
13191             case 0x01: /* FMLA */
13192             case 0x05: /* FMLS */
13193             case 0x09: /* FMUL */
13194             case 0x19: /* FMULX */
13195                 g_assert_not_reached();
13196             }
13197 
13198             if (is_scalar) {
13199                 write_fp_sreg(s, rd, tcg_res);
13200             } else {
13201                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13202             }
13203         }
13204 
13205         clear_vec_high(s, is_q, rd);
13206     } else {
13207         /* long ops: 16x16->32 or 32x32->64 */
13208         TCGv_i64 tcg_res[2];
13209         int pass;
13210         bool satop = extract32(opcode, 0, 1);
13211         MemOp memop = MO_32;
13212 
13213         if (satop || !u) {
13214             memop |= MO_SIGN;
13215         }
13216 
13217         if (size == 2) {
13218             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13219 
13220             read_vec_element(s, tcg_idx, rm, index, memop);
13221 
13222             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13223                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13224                 TCGv_i64 tcg_passres;
13225                 int passelt;
13226 
13227                 if (is_scalar) {
13228                     passelt = 0;
13229                 } else {
13230                     passelt = pass + (is_q * 2);
13231                 }
13232 
13233                 read_vec_element(s, tcg_op, rn, passelt, memop);
13234 
13235                 tcg_res[pass] = tcg_temp_new_i64();
13236 
13237                 if (opcode == 0xa || opcode == 0xb) {
13238                     /* Non-accumulating ops */
13239                     tcg_passres = tcg_res[pass];
13240                 } else {
13241                     tcg_passres = tcg_temp_new_i64();
13242                 }
13243 
13244                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13245 
13246                 if (satop) {
13247                     /* saturating, doubling */
13248                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13249                                                       tcg_passres, tcg_passres);
13250                 }
13251 
13252                 if (opcode == 0xa || opcode == 0xb) {
13253                     continue;
13254                 }
13255 
13256                 /* Accumulating op: handle accumulate step */
13257                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13258 
13259                 switch (opcode) {
13260                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13261                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13262                     break;
13263                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13264                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13265                     break;
13266                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13267                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13268                     /* fall through */
13269                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13270                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13271                                                       tcg_res[pass],
13272                                                       tcg_passres);
13273                     break;
13274                 default:
13275                     g_assert_not_reached();
13276                 }
13277             }
13278 
13279             clear_vec_high(s, !is_scalar, rd);
13280         } else {
13281             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13282 
13283             assert(size == 1);
13284             read_vec_element_i32(s, tcg_idx, rm, index, size);
13285 
13286             if (!is_scalar) {
13287                 /* The simplest way to handle the 16x16 indexed ops is to
13288                  * duplicate the index into both halves of the 32 bit tcg_idx
13289                  * and then use the usual Neon helpers.
13290                  */
13291                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13292             }
13293 
13294             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13295                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13296                 TCGv_i64 tcg_passres;
13297 
13298                 if (is_scalar) {
13299                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13300                 } else {
13301                     read_vec_element_i32(s, tcg_op, rn,
13302                                          pass + (is_q * 2), MO_32);
13303                 }
13304 
13305                 tcg_res[pass] = tcg_temp_new_i64();
13306 
13307                 if (opcode == 0xa || opcode == 0xb) {
13308                     /* Non-accumulating ops */
13309                     tcg_passres = tcg_res[pass];
13310                 } else {
13311                     tcg_passres = tcg_temp_new_i64();
13312                 }
13313 
13314                 if (memop & MO_SIGN) {
13315                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13316                 } else {
13317                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13318                 }
13319                 if (satop) {
13320                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13321                                                       tcg_passres, tcg_passres);
13322                 }
13323 
13324                 if (opcode == 0xa || opcode == 0xb) {
13325                     continue;
13326                 }
13327 
13328                 /* Accumulating op: handle accumulate step */
13329                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13330 
13331                 switch (opcode) {
13332                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13333                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13334                                              tcg_passres);
13335                     break;
13336                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13337                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13338                                              tcg_passres);
13339                     break;
13340                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13341                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13342                     /* fall through */
13343                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13344                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13345                                                       tcg_res[pass],
13346                                                       tcg_passres);
13347                     break;
13348                 default:
13349                     g_assert_not_reached();
13350                 }
13351             }
13352 
13353             if (is_scalar) {
13354                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13355             }
13356         }
13357 
13358         if (is_scalar) {
13359             tcg_res[1] = tcg_constant_i64(0);
13360         }
13361 
13362         for (pass = 0; pass < 2; pass++) {
13363             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13364         }
13365     }
13366 }
13367 
13368 /* C3.6 Data processing - SIMD, inc Crypto
13369  *
13370  * As the decode gets a little complex we are using a table based
13371  * approach for this part of the decode.
13372  */
13373 static const AArch64DecodeTable data_proc_simd[] = {
13374     /* pattern  ,  mask     ,  fn                        */
13375     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13376     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13377     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13378     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13379     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13380     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13381     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13382     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13383     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13384     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13385     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13386     { 0x2e000000, 0xbf208400, disas_simd_ext },
13387     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13388     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13389     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13390     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13391     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13392     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13393     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13394     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13395     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13396     { 0x00000000, 0x00000000, NULL }
13397 };
13398 
13399 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13400 {
13401     /* Note that this is called with all non-FP cases from
13402      * table C3-6 so it must UNDEF for entries not specifically
13403      * allocated to instructions in that table.
13404      */
13405     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13406     if (fn) {
13407         fn(s, insn);
13408     } else {
13409         unallocated_encoding(s);
13410     }
13411 }
13412 
13413 /* C3.6 Data processing - SIMD and floating point */
13414 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13415 {
13416     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13417         disas_data_proc_fp(s, insn);
13418     } else {
13419         /* SIMD, including crypto */
13420         disas_data_proc_simd(s, insn);
13421     }
13422 }
13423 
13424 static bool trans_OK(DisasContext *s, arg_OK *a)
13425 {
13426     return true;
13427 }
13428 
13429 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13430 {
13431     s->is_nonstreaming = true;
13432     return true;
13433 }
13434 
13435 /**
13436  * is_guarded_page:
13437  * @env: The cpu environment
13438  * @s: The DisasContext
13439  *
13440  * Return true if the page is guarded.
13441  */
13442 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13443 {
13444     uint64_t addr = s->base.pc_first;
13445 #ifdef CONFIG_USER_ONLY
13446     return page_get_flags(addr) & PAGE_BTI;
13447 #else
13448     CPUTLBEntryFull *full;
13449     void *host;
13450     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13451     int flags;
13452 
13453     /*
13454      * We test this immediately after reading an insn, which means
13455      * that the TLB entry must be present and valid, and thus this
13456      * access will never raise an exception.
13457      */
13458     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13459                               false, &host, &full, 0);
13460     assert(!(flags & TLB_INVALID_MASK));
13461 
13462     return full->extra.arm.guarded;
13463 #endif
13464 }
13465 
13466 /**
13467  * btype_destination_ok:
13468  * @insn: The instruction at the branch destination
13469  * @bt: SCTLR_ELx.BT
13470  * @btype: PSTATE.BTYPE, and is non-zero
13471  *
13472  * On a guarded page, there are a limited number of insns
13473  * that may be present at the branch target:
13474  *   - branch target identifiers,
13475  *   - paciasp, pacibsp,
13476  *   - BRK insn
13477  *   - HLT insn
13478  * Anything else causes a Branch Target Exception.
13479  *
13480  * Return true if the branch is compatible, false to raise BTITRAP.
13481  */
13482 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13483 {
13484     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13485         /* HINT space */
13486         switch (extract32(insn, 5, 7)) {
13487         case 0b011001: /* PACIASP */
13488         case 0b011011: /* PACIBSP */
13489             /*
13490              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13491              * with btype == 3.  Otherwise all btype are ok.
13492              */
13493             return !bt || btype != 3;
13494         case 0b100000: /* BTI */
13495             /* Not compatible with any btype.  */
13496             return false;
13497         case 0b100010: /* BTI c */
13498             /* Not compatible with btype == 3 */
13499             return btype != 3;
13500         case 0b100100: /* BTI j */
13501             /* Not compatible with btype == 2 */
13502             return btype != 2;
13503         case 0b100110: /* BTI jc */
13504             /* Compatible with any btype.  */
13505             return true;
13506         }
13507     } else {
13508         switch (insn & 0xffe0001fu) {
13509         case 0xd4200000u: /* BRK */
13510         case 0xd4400000u: /* HLT */
13511             /* Give priority to the breakpoint exception.  */
13512             return true;
13513         }
13514     }
13515     return false;
13516 }
13517 
13518 /* C3.1 A64 instruction index by encoding */
13519 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13520 {
13521     switch (extract32(insn, 25, 4)) {
13522     case 0x5:
13523     case 0xd:      /* Data processing - register */
13524         disas_data_proc_reg(s, insn);
13525         break;
13526     case 0x7:
13527     case 0xf:      /* Data processing - SIMD and floating point */
13528         disas_data_proc_simd_fp(s, insn);
13529         break;
13530     default:
13531         unallocated_encoding(s);
13532         break;
13533     }
13534 }
13535 
13536 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13537                                           CPUState *cpu)
13538 {
13539     DisasContext *dc = container_of(dcbase, DisasContext, base);
13540     CPUARMState *env = cpu_env(cpu);
13541     ARMCPU *arm_cpu = env_archcpu(env);
13542     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13543     int bound, core_mmu_idx;
13544 
13545     dc->isar = &arm_cpu->isar;
13546     dc->condjmp = 0;
13547     dc->pc_save = dc->base.pc_first;
13548     dc->aarch64 = true;
13549     dc->thumb = false;
13550     dc->sctlr_b = 0;
13551     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13552     dc->condexec_mask = 0;
13553     dc->condexec_cond = 0;
13554     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13555     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13556     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13557     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13558     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13559     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13560 #if !defined(CONFIG_USER_ONLY)
13561     dc->user = (dc->current_el == 0);
13562 #endif
13563     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13564     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13565     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13566     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13567     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13568     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13569     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13570     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13571     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13572     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13573     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13574     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13575     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13576     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13577     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13578     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13579     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13580     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13581     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13582     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13583     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13584     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13585     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13586     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13587     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13588     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13589     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13590     dc->vec_len = 0;
13591     dc->vec_stride = 0;
13592     dc->cp_regs = arm_cpu->cp_regs;
13593     dc->features = env->features;
13594     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13595     dc->gm_blocksize = arm_cpu->gm_blocksize;
13596 
13597 #ifdef CONFIG_USER_ONLY
13598     /* In sve_probe_page, we assume TBI is enabled. */
13599     tcg_debug_assert(dc->tbid & 1);
13600 #endif
13601 
13602     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13603 
13604     /* Single step state. The code-generation logic here is:
13605      *  SS_ACTIVE == 0:
13606      *   generate code with no special handling for single-stepping (except
13607      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13608      *   this happens anyway because those changes are all system register or
13609      *   PSTATE writes).
13610      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13611      *   emit code for one insn
13612      *   emit code to clear PSTATE.SS
13613      *   emit code to generate software step exception for completed step
13614      *   end TB (as usual for having generated an exception)
13615      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13616      *   emit code to generate a software step exception
13617      *   end the TB
13618      */
13619     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13620     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13621     dc->is_ldex = false;
13622 
13623     /* Bound the number of insns to execute to those left on the page.  */
13624     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13625 
13626     /* If architectural single step active, limit to 1.  */
13627     if (dc->ss_active) {
13628         bound = 1;
13629     }
13630     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13631 }
13632 
13633 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13634 {
13635 }
13636 
13637 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13638 {
13639     DisasContext *dc = container_of(dcbase, DisasContext, base);
13640     target_ulong pc_arg = dc->base.pc_next;
13641 
13642     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13643         pc_arg &= ~TARGET_PAGE_MASK;
13644     }
13645     tcg_gen_insn_start(pc_arg, 0, 0);
13646     dc->insn_start_updated = false;
13647 }
13648 
13649 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13650 {
13651     DisasContext *s = container_of(dcbase, DisasContext, base);
13652     CPUARMState *env = cpu_env(cpu);
13653     uint64_t pc = s->base.pc_next;
13654     uint32_t insn;
13655 
13656     /* Singlestep exceptions have the highest priority. */
13657     if (s->ss_active && !s->pstate_ss) {
13658         /* Singlestep state is Active-pending.
13659          * If we're in this state at the start of a TB then either
13660          *  a) we just took an exception to an EL which is being debugged
13661          *     and this is the first insn in the exception handler
13662          *  b) debug exceptions were masked and we just unmasked them
13663          *     without changing EL (eg by clearing PSTATE.D)
13664          * In either case we're going to take a swstep exception in the
13665          * "did not step an insn" case, and so the syndrome ISV and EX
13666          * bits should be zero.
13667          */
13668         assert(s->base.num_insns == 1);
13669         gen_swstep_exception(s, 0, 0);
13670         s->base.is_jmp = DISAS_NORETURN;
13671         s->base.pc_next = pc + 4;
13672         return;
13673     }
13674 
13675     if (pc & 3) {
13676         /*
13677          * PC alignment fault.  This has priority over the instruction abort
13678          * that we would receive from a translation fault via arm_ldl_code.
13679          * This should only be possible after an indirect branch, at the
13680          * start of the TB.
13681          */
13682         assert(s->base.num_insns == 1);
13683         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13684         s->base.is_jmp = DISAS_NORETURN;
13685         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13686         return;
13687     }
13688 
13689     s->pc_curr = pc;
13690     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13691     s->insn = insn;
13692     s->base.pc_next = pc + 4;
13693 
13694     s->fp_access_checked = false;
13695     s->sve_access_checked = false;
13696 
13697     if (s->pstate_il) {
13698         /*
13699          * Illegal execution state. This has priority over BTI
13700          * exceptions, but comes after instruction abort exceptions.
13701          */
13702         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13703         return;
13704     }
13705 
13706     if (dc_isar_feature(aa64_bti, s)) {
13707         if (s->base.num_insns == 1) {
13708             /*
13709              * At the first insn of the TB, compute s->guarded_page.
13710              * We delayed computing this until successfully reading
13711              * the first insn of the TB, above.  This (mostly) ensures
13712              * that the softmmu tlb entry has been populated, and the
13713              * page table GP bit is available.
13714              *
13715              * Note that we need to compute this even if btype == 0,
13716              * because this value is used for BR instructions later
13717              * where ENV is not available.
13718              */
13719             s->guarded_page = is_guarded_page(env, s);
13720 
13721             /* First insn can have btype set to non-zero.  */
13722             tcg_debug_assert(s->btype >= 0);
13723 
13724             /*
13725              * Note that the Branch Target Exception has fairly high
13726              * priority -- below debugging exceptions but above most
13727              * everything else.  This allows us to handle this now
13728              * instead of waiting until the insn is otherwise decoded.
13729              */
13730             if (s->btype != 0
13731                 && s->guarded_page
13732                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13733                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13734                 return;
13735             }
13736         } else {
13737             /* Not the first insn: btype must be 0.  */
13738             tcg_debug_assert(s->btype == 0);
13739         }
13740     }
13741 
13742     s->is_nonstreaming = false;
13743     if (s->sme_trap_nonstreaming) {
13744         disas_sme_fa64(s, insn);
13745     }
13746 
13747     if (!disas_a64(s, insn) &&
13748         !disas_sme(s, insn) &&
13749         !disas_sve(s, insn)) {
13750         disas_a64_legacy(s, insn);
13751     }
13752 
13753     /*
13754      * After execution of most insns, btype is reset to 0.
13755      * Note that we set btype == -1 when the insn sets btype.
13756      */
13757     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13758         reset_btype(s);
13759     }
13760 }
13761 
13762 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13763 {
13764     DisasContext *dc = container_of(dcbase, DisasContext, base);
13765 
13766     if (unlikely(dc->ss_active)) {
13767         /* Note that this means single stepping WFI doesn't halt the CPU.
13768          * For conditional branch insns this is harmless unreachable code as
13769          * gen_goto_tb() has already handled emitting the debug exception
13770          * (and thus a tb-jump is not possible when singlestepping).
13771          */
13772         switch (dc->base.is_jmp) {
13773         default:
13774             gen_a64_update_pc(dc, 4);
13775             /* fall through */
13776         case DISAS_EXIT:
13777         case DISAS_JUMP:
13778             gen_step_complete_exception(dc);
13779             break;
13780         case DISAS_NORETURN:
13781             break;
13782         }
13783     } else {
13784         switch (dc->base.is_jmp) {
13785         case DISAS_NEXT:
13786         case DISAS_TOO_MANY:
13787             gen_goto_tb(dc, 1, 4);
13788             break;
13789         default:
13790         case DISAS_UPDATE_EXIT:
13791             gen_a64_update_pc(dc, 4);
13792             /* fall through */
13793         case DISAS_EXIT:
13794             tcg_gen_exit_tb(NULL, 0);
13795             break;
13796         case DISAS_UPDATE_NOCHAIN:
13797             gen_a64_update_pc(dc, 4);
13798             /* fall through */
13799         case DISAS_JUMP:
13800             tcg_gen_lookup_and_goto_ptr();
13801             break;
13802         case DISAS_NORETURN:
13803         case DISAS_SWI:
13804             break;
13805         case DISAS_WFE:
13806             gen_a64_update_pc(dc, 4);
13807             gen_helper_wfe(tcg_env);
13808             break;
13809         case DISAS_YIELD:
13810             gen_a64_update_pc(dc, 4);
13811             gen_helper_yield(tcg_env);
13812             break;
13813         case DISAS_WFI:
13814             /*
13815              * This is a special case because we don't want to just halt
13816              * the CPU if trying to debug across a WFI.
13817              */
13818             gen_a64_update_pc(dc, 4);
13819             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13820             /*
13821              * The helper doesn't necessarily throw an exception, but we
13822              * must go back to the main loop to check for interrupts anyway.
13823              */
13824             tcg_gen_exit_tb(NULL, 0);
13825             break;
13826         }
13827     }
13828 }
13829 
13830 const TranslatorOps aarch64_translator_ops = {
13831     .init_disas_context = aarch64_tr_init_disas_context,
13832     .tb_start           = aarch64_tr_tb_start,
13833     .insn_start         = aarch64_tr_insn_start,
13834     .translate_insn     = aarch64_tr_translate_insn,
13835     .tb_stop            = aarch64_tr_tb_stop,
13836 };
13837