1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static const FPScalar f_scalar_fcmeq = { 4979 gen_helper_advsimd_ceq_f16, 4980 gen_helper_neon_ceq_f32, 4981 gen_helper_neon_ceq_f64, 4982 }; 4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4984 4985 static const FPScalar f_scalar_fcmge = { 4986 gen_helper_advsimd_cge_f16, 4987 gen_helper_neon_cge_f32, 4988 gen_helper_neon_cge_f64, 4989 }; 4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4991 4992 static const FPScalar f_scalar_fcmgt = { 4993 gen_helper_advsimd_cgt_f16, 4994 gen_helper_neon_cgt_f32, 4995 gen_helper_neon_cgt_f64, 4996 }; 4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 4998 4999 static const FPScalar f_scalar_facge = { 5000 gen_helper_advsimd_acge_f16, 5001 gen_helper_neon_acge_f32, 5002 gen_helper_neon_acge_f64, 5003 }; 5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5005 5006 static const FPScalar f_scalar_facgt = { 5007 gen_helper_advsimd_acgt_f16, 5008 gen_helper_neon_acgt_f32, 5009 gen_helper_neon_acgt_f64, 5010 }; 5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5012 5013 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5014 { 5015 gen_helper_vfp_subh(d, n, m, s); 5016 gen_vfp_absh(d, d); 5017 } 5018 5019 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5020 { 5021 gen_helper_vfp_subs(d, n, m, s); 5022 gen_vfp_abss(d, d); 5023 } 5024 5025 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5026 { 5027 gen_helper_vfp_subd(d, n, m, s); 5028 gen_vfp_absd(d, d); 5029 } 5030 5031 static const FPScalar f_scalar_fabd = { 5032 gen_fabd_h, 5033 gen_fabd_s, 5034 gen_fabd_d, 5035 }; 5036 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) 5037 5038 static const FPScalar f_scalar_frecps = { 5039 gen_helper_recpsf_f16, 5040 gen_helper_recpsf_f32, 5041 gen_helper_recpsf_f64, 5042 }; 5043 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) 5044 5045 static const FPScalar f_scalar_frsqrts = { 5046 gen_helper_rsqrtsf_f16, 5047 gen_helper_rsqrtsf_f32, 5048 gen_helper_rsqrtsf_f64, 5049 }; 5050 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) 5051 5052 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5053 gen_helper_gvec_3_ptr * const fns[3]) 5054 { 5055 MemOp esz = a->esz; 5056 5057 switch (esz) { 5058 case MO_64: 5059 if (!a->q) { 5060 return false; 5061 } 5062 break; 5063 case MO_32: 5064 break; 5065 case MO_16: 5066 if (!dc_isar_feature(aa64_fp16, s)) { 5067 return false; 5068 } 5069 break; 5070 default: 5071 return false; 5072 } 5073 if (fp_access_check(s)) { 5074 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5075 esz == MO_16, 0, fns[esz - 1]); 5076 } 5077 return true; 5078 } 5079 5080 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5081 gen_helper_gvec_fadd_h, 5082 gen_helper_gvec_fadd_s, 5083 gen_helper_gvec_fadd_d, 5084 }; 5085 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5086 5087 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5088 gen_helper_gvec_fsub_h, 5089 gen_helper_gvec_fsub_s, 5090 gen_helper_gvec_fsub_d, 5091 }; 5092 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5093 5094 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5095 gen_helper_gvec_fdiv_h, 5096 gen_helper_gvec_fdiv_s, 5097 gen_helper_gvec_fdiv_d, 5098 }; 5099 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5100 5101 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5102 gen_helper_gvec_fmul_h, 5103 gen_helper_gvec_fmul_s, 5104 gen_helper_gvec_fmul_d, 5105 }; 5106 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5107 5108 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5109 gen_helper_gvec_fmax_h, 5110 gen_helper_gvec_fmax_s, 5111 gen_helper_gvec_fmax_d, 5112 }; 5113 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5114 5115 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5116 gen_helper_gvec_fmin_h, 5117 gen_helper_gvec_fmin_s, 5118 gen_helper_gvec_fmin_d, 5119 }; 5120 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5121 5122 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5123 gen_helper_gvec_fmaxnum_h, 5124 gen_helper_gvec_fmaxnum_s, 5125 gen_helper_gvec_fmaxnum_d, 5126 }; 5127 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5128 5129 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5130 gen_helper_gvec_fminnum_h, 5131 gen_helper_gvec_fminnum_s, 5132 gen_helper_gvec_fminnum_d, 5133 }; 5134 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5135 5136 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5137 gen_helper_gvec_fmulx_h, 5138 gen_helper_gvec_fmulx_s, 5139 gen_helper_gvec_fmulx_d, 5140 }; 5141 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5142 5143 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5144 gen_helper_gvec_vfma_h, 5145 gen_helper_gvec_vfma_s, 5146 gen_helper_gvec_vfma_d, 5147 }; 5148 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5149 5150 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5151 gen_helper_gvec_vfms_h, 5152 gen_helper_gvec_vfms_s, 5153 gen_helper_gvec_vfms_d, 5154 }; 5155 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5156 5157 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5158 gen_helper_gvec_fceq_h, 5159 gen_helper_gvec_fceq_s, 5160 gen_helper_gvec_fceq_d, 5161 }; 5162 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5163 5164 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5165 gen_helper_gvec_fcge_h, 5166 gen_helper_gvec_fcge_s, 5167 gen_helper_gvec_fcge_d, 5168 }; 5169 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5170 5171 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5172 gen_helper_gvec_fcgt_h, 5173 gen_helper_gvec_fcgt_s, 5174 gen_helper_gvec_fcgt_d, 5175 }; 5176 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5177 5178 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5179 gen_helper_gvec_facge_h, 5180 gen_helper_gvec_facge_s, 5181 gen_helper_gvec_facge_d, 5182 }; 5183 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5184 5185 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5186 gen_helper_gvec_facgt_h, 5187 gen_helper_gvec_facgt_s, 5188 gen_helper_gvec_facgt_d, 5189 }; 5190 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5191 5192 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5193 gen_helper_gvec_fabd_h, 5194 gen_helper_gvec_fabd_s, 5195 gen_helper_gvec_fabd_d, 5196 }; 5197 TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) 5198 5199 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5200 gen_helper_gvec_recps_h, 5201 gen_helper_gvec_recps_s, 5202 gen_helper_gvec_recps_d, 5203 }; 5204 TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) 5205 5206 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5207 gen_helper_gvec_rsqrts_h, 5208 gen_helper_gvec_rsqrts_s, 5209 gen_helper_gvec_rsqrts_d, 5210 }; 5211 TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) 5212 5213 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5214 gen_helper_gvec_faddp_h, 5215 gen_helper_gvec_faddp_s, 5216 gen_helper_gvec_faddp_d, 5217 }; 5218 TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) 5219 5220 /* 5221 * Advanced SIMD scalar/vector x indexed element 5222 */ 5223 5224 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5225 { 5226 switch (a->esz) { 5227 case MO_64: 5228 if (fp_access_check(s)) { 5229 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5230 TCGv_i64 t1 = tcg_temp_new_i64(); 5231 5232 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5233 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5234 write_fp_dreg(s, a->rd, t0); 5235 } 5236 break; 5237 case MO_32: 5238 if (fp_access_check(s)) { 5239 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5240 TCGv_i32 t1 = tcg_temp_new_i32(); 5241 5242 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5243 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5244 write_fp_sreg(s, a->rd, t0); 5245 } 5246 break; 5247 case MO_16: 5248 if (!dc_isar_feature(aa64_fp16, s)) { 5249 return false; 5250 } 5251 if (fp_access_check(s)) { 5252 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5253 TCGv_i32 t1 = tcg_temp_new_i32(); 5254 5255 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5256 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5257 write_fp_sreg(s, a->rd, t0); 5258 } 5259 break; 5260 default: 5261 g_assert_not_reached(); 5262 } 5263 return true; 5264 } 5265 5266 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5267 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5268 5269 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5270 { 5271 switch (a->esz) { 5272 case MO_64: 5273 if (fp_access_check(s)) { 5274 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5275 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5276 TCGv_i64 t2 = tcg_temp_new_i64(); 5277 5278 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5279 if (neg) { 5280 gen_vfp_negd(t1, t1); 5281 } 5282 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5283 write_fp_dreg(s, a->rd, t0); 5284 } 5285 break; 5286 case MO_32: 5287 if (fp_access_check(s)) { 5288 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5289 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5290 TCGv_i32 t2 = tcg_temp_new_i32(); 5291 5292 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5293 if (neg) { 5294 gen_vfp_negs(t1, t1); 5295 } 5296 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5297 write_fp_sreg(s, a->rd, t0); 5298 } 5299 break; 5300 case MO_16: 5301 if (!dc_isar_feature(aa64_fp16, s)) { 5302 return false; 5303 } 5304 if (fp_access_check(s)) { 5305 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5306 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5307 TCGv_i32 t2 = tcg_temp_new_i32(); 5308 5309 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5310 if (neg) { 5311 gen_vfp_negh(t1, t1); 5312 } 5313 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5314 fpstatus_ptr(FPST_FPCR_F16)); 5315 write_fp_sreg(s, a->rd, t0); 5316 } 5317 break; 5318 default: 5319 g_assert_not_reached(); 5320 } 5321 return true; 5322 } 5323 5324 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5325 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5326 5327 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5328 gen_helper_gvec_3_ptr * const fns[3]) 5329 { 5330 MemOp esz = a->esz; 5331 5332 switch (esz) { 5333 case MO_64: 5334 if (!a->q) { 5335 return false; 5336 } 5337 break; 5338 case MO_32: 5339 break; 5340 case MO_16: 5341 if (!dc_isar_feature(aa64_fp16, s)) { 5342 return false; 5343 } 5344 break; 5345 default: 5346 g_assert_not_reached(); 5347 } 5348 if (fp_access_check(s)) { 5349 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5350 esz == MO_16, a->idx, fns[esz - 1]); 5351 } 5352 return true; 5353 } 5354 5355 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5356 gen_helper_gvec_fmul_idx_h, 5357 gen_helper_gvec_fmul_idx_s, 5358 gen_helper_gvec_fmul_idx_d, 5359 }; 5360 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5361 5362 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5363 gen_helper_gvec_fmulx_idx_h, 5364 gen_helper_gvec_fmulx_idx_s, 5365 gen_helper_gvec_fmulx_idx_d, 5366 }; 5367 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5368 5369 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5370 { 5371 static gen_helper_gvec_4_ptr * const fns[3] = { 5372 gen_helper_gvec_fmla_idx_h, 5373 gen_helper_gvec_fmla_idx_s, 5374 gen_helper_gvec_fmla_idx_d, 5375 }; 5376 MemOp esz = a->esz; 5377 5378 switch (esz) { 5379 case MO_64: 5380 if (!a->q) { 5381 return false; 5382 } 5383 break; 5384 case MO_32: 5385 break; 5386 case MO_16: 5387 if (!dc_isar_feature(aa64_fp16, s)) { 5388 return false; 5389 } 5390 break; 5391 default: 5392 g_assert_not_reached(); 5393 } 5394 if (fp_access_check(s)) { 5395 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5396 esz == MO_16, (a->idx << 1) | neg, 5397 fns[esz - 1]); 5398 } 5399 return true; 5400 } 5401 5402 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5403 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5404 5405 /* 5406 * Advanced SIMD scalar pairwise 5407 */ 5408 5409 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 5410 { 5411 switch (a->esz) { 5412 case MO_64: 5413 if (fp_access_check(s)) { 5414 TCGv_i64 t0 = tcg_temp_new_i64(); 5415 TCGv_i64 t1 = tcg_temp_new_i64(); 5416 5417 read_vec_element(s, t0, a->rn, 0, MO_64); 5418 read_vec_element(s, t1, a->rn, 1, MO_64); 5419 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5420 write_fp_dreg(s, a->rd, t0); 5421 } 5422 break; 5423 case MO_32: 5424 if (fp_access_check(s)) { 5425 TCGv_i32 t0 = tcg_temp_new_i32(); 5426 TCGv_i32 t1 = tcg_temp_new_i32(); 5427 5428 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 5429 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 5430 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5431 write_fp_sreg(s, a->rd, t0); 5432 } 5433 break; 5434 case MO_16: 5435 if (!dc_isar_feature(aa64_fp16, s)) { 5436 return false; 5437 } 5438 if (fp_access_check(s)) { 5439 TCGv_i32 t0 = tcg_temp_new_i32(); 5440 TCGv_i32 t1 = tcg_temp_new_i32(); 5441 5442 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 5443 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 5444 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5445 write_fp_sreg(s, a->rd, t0); 5446 } 5447 break; 5448 default: 5449 g_assert_not_reached(); 5450 } 5451 return true; 5452 } 5453 5454 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 5455 5456 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5457 * Note that it is the caller's responsibility to ensure that the 5458 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5459 * mandated semantics for out of range shifts. 5460 */ 5461 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5462 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5463 { 5464 switch (shift_type) { 5465 case A64_SHIFT_TYPE_LSL: 5466 tcg_gen_shl_i64(dst, src, shift_amount); 5467 break; 5468 case A64_SHIFT_TYPE_LSR: 5469 tcg_gen_shr_i64(dst, src, shift_amount); 5470 break; 5471 case A64_SHIFT_TYPE_ASR: 5472 if (!sf) { 5473 tcg_gen_ext32s_i64(dst, src); 5474 } 5475 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5476 break; 5477 case A64_SHIFT_TYPE_ROR: 5478 if (sf) { 5479 tcg_gen_rotr_i64(dst, src, shift_amount); 5480 } else { 5481 TCGv_i32 t0, t1; 5482 t0 = tcg_temp_new_i32(); 5483 t1 = tcg_temp_new_i32(); 5484 tcg_gen_extrl_i64_i32(t0, src); 5485 tcg_gen_extrl_i64_i32(t1, shift_amount); 5486 tcg_gen_rotr_i32(t0, t0, t1); 5487 tcg_gen_extu_i32_i64(dst, t0); 5488 } 5489 break; 5490 default: 5491 assert(FALSE); /* all shift types should be handled */ 5492 break; 5493 } 5494 5495 if (!sf) { /* zero extend final result */ 5496 tcg_gen_ext32u_i64(dst, dst); 5497 } 5498 } 5499 5500 /* Shift a TCGv src by immediate, put result in dst. 5501 * The shift amount must be in range (this should always be true as the 5502 * relevant instructions will UNDEF on bad shift immediates). 5503 */ 5504 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5505 enum a64_shift_type shift_type, unsigned int shift_i) 5506 { 5507 assert(shift_i < (sf ? 64 : 32)); 5508 5509 if (shift_i == 0) { 5510 tcg_gen_mov_i64(dst, src); 5511 } else { 5512 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5513 } 5514 } 5515 5516 /* Logical (shifted register) 5517 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5518 * +----+-----+-----------+-------+---+------+--------+------+------+ 5519 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5520 * +----+-----+-----------+-------+---+------+--------+------+------+ 5521 */ 5522 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5523 { 5524 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5525 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5526 5527 sf = extract32(insn, 31, 1); 5528 opc = extract32(insn, 29, 2); 5529 shift_type = extract32(insn, 22, 2); 5530 invert = extract32(insn, 21, 1); 5531 rm = extract32(insn, 16, 5); 5532 shift_amount = extract32(insn, 10, 6); 5533 rn = extract32(insn, 5, 5); 5534 rd = extract32(insn, 0, 5); 5535 5536 if (!sf && (shift_amount & (1 << 5))) { 5537 unallocated_encoding(s); 5538 return; 5539 } 5540 5541 tcg_rd = cpu_reg(s, rd); 5542 5543 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5544 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5545 * register-register MOV and MVN, so it is worth special casing. 5546 */ 5547 tcg_rm = cpu_reg(s, rm); 5548 if (invert) { 5549 tcg_gen_not_i64(tcg_rd, tcg_rm); 5550 if (!sf) { 5551 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5552 } 5553 } else { 5554 if (sf) { 5555 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5556 } else { 5557 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5558 } 5559 } 5560 return; 5561 } 5562 5563 tcg_rm = read_cpu_reg(s, rm, sf); 5564 5565 if (shift_amount) { 5566 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5567 } 5568 5569 tcg_rn = cpu_reg(s, rn); 5570 5571 switch (opc | (invert << 2)) { 5572 case 0: /* AND */ 5573 case 3: /* ANDS */ 5574 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5575 break; 5576 case 1: /* ORR */ 5577 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5578 break; 5579 case 2: /* EOR */ 5580 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5581 break; 5582 case 4: /* BIC */ 5583 case 7: /* BICS */ 5584 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5585 break; 5586 case 5: /* ORN */ 5587 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5588 break; 5589 case 6: /* EON */ 5590 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5591 break; 5592 default: 5593 assert(FALSE); 5594 break; 5595 } 5596 5597 if (!sf) { 5598 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5599 } 5600 5601 if (opc == 3) { 5602 gen_logic_CC(sf, tcg_rd); 5603 } 5604 } 5605 5606 /* 5607 * Add/subtract (extended register) 5608 * 5609 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5610 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5611 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5612 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5613 * 5614 * sf: 0 -> 32bit, 1 -> 64bit 5615 * op: 0 -> add , 1 -> sub 5616 * S: 1 -> set flags 5617 * opt: 00 5618 * option: extension type (see DecodeRegExtend) 5619 * imm3: optional shift to Rm 5620 * 5621 * Rd = Rn + LSL(extend(Rm), amount) 5622 */ 5623 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5624 { 5625 int rd = extract32(insn, 0, 5); 5626 int rn = extract32(insn, 5, 5); 5627 int imm3 = extract32(insn, 10, 3); 5628 int option = extract32(insn, 13, 3); 5629 int rm = extract32(insn, 16, 5); 5630 int opt = extract32(insn, 22, 2); 5631 bool setflags = extract32(insn, 29, 1); 5632 bool sub_op = extract32(insn, 30, 1); 5633 bool sf = extract32(insn, 31, 1); 5634 5635 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5636 TCGv_i64 tcg_rd; 5637 TCGv_i64 tcg_result; 5638 5639 if (imm3 > 4 || opt != 0) { 5640 unallocated_encoding(s); 5641 return; 5642 } 5643 5644 /* non-flag setting ops may use SP */ 5645 if (!setflags) { 5646 tcg_rd = cpu_reg_sp(s, rd); 5647 } else { 5648 tcg_rd = cpu_reg(s, rd); 5649 } 5650 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5651 5652 tcg_rm = read_cpu_reg(s, rm, sf); 5653 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5654 5655 tcg_result = tcg_temp_new_i64(); 5656 5657 if (!setflags) { 5658 if (sub_op) { 5659 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5660 } else { 5661 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5662 } 5663 } else { 5664 if (sub_op) { 5665 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5666 } else { 5667 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5668 } 5669 } 5670 5671 if (sf) { 5672 tcg_gen_mov_i64(tcg_rd, tcg_result); 5673 } else { 5674 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5675 } 5676 } 5677 5678 /* 5679 * Add/subtract (shifted register) 5680 * 5681 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5682 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5683 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5684 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5685 * 5686 * sf: 0 -> 32bit, 1 -> 64bit 5687 * op: 0 -> add , 1 -> sub 5688 * S: 1 -> set flags 5689 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5690 * imm6: Shift amount to apply to Rm before the add/sub 5691 */ 5692 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5693 { 5694 int rd = extract32(insn, 0, 5); 5695 int rn = extract32(insn, 5, 5); 5696 int imm6 = extract32(insn, 10, 6); 5697 int rm = extract32(insn, 16, 5); 5698 int shift_type = extract32(insn, 22, 2); 5699 bool setflags = extract32(insn, 29, 1); 5700 bool sub_op = extract32(insn, 30, 1); 5701 bool sf = extract32(insn, 31, 1); 5702 5703 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5704 TCGv_i64 tcg_rn, tcg_rm; 5705 TCGv_i64 tcg_result; 5706 5707 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5708 unallocated_encoding(s); 5709 return; 5710 } 5711 5712 tcg_rn = read_cpu_reg(s, rn, sf); 5713 tcg_rm = read_cpu_reg(s, rm, sf); 5714 5715 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5716 5717 tcg_result = tcg_temp_new_i64(); 5718 5719 if (!setflags) { 5720 if (sub_op) { 5721 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5722 } else { 5723 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5724 } 5725 } else { 5726 if (sub_op) { 5727 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5728 } else { 5729 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5730 } 5731 } 5732 5733 if (sf) { 5734 tcg_gen_mov_i64(tcg_rd, tcg_result); 5735 } else { 5736 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5737 } 5738 } 5739 5740 /* Data-processing (3 source) 5741 * 5742 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5743 * +--+------+-----------+------+------+----+------+------+------+ 5744 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5745 * +--+------+-----------+------+------+----+------+------+------+ 5746 */ 5747 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5748 { 5749 int rd = extract32(insn, 0, 5); 5750 int rn = extract32(insn, 5, 5); 5751 int ra = extract32(insn, 10, 5); 5752 int rm = extract32(insn, 16, 5); 5753 int op_id = (extract32(insn, 29, 3) << 4) | 5754 (extract32(insn, 21, 3) << 1) | 5755 extract32(insn, 15, 1); 5756 bool sf = extract32(insn, 31, 1); 5757 bool is_sub = extract32(op_id, 0, 1); 5758 bool is_high = extract32(op_id, 2, 1); 5759 bool is_signed = false; 5760 TCGv_i64 tcg_op1; 5761 TCGv_i64 tcg_op2; 5762 TCGv_i64 tcg_tmp; 5763 5764 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5765 switch (op_id) { 5766 case 0x42: /* SMADDL */ 5767 case 0x43: /* SMSUBL */ 5768 case 0x44: /* SMULH */ 5769 is_signed = true; 5770 break; 5771 case 0x0: /* MADD (32bit) */ 5772 case 0x1: /* MSUB (32bit) */ 5773 case 0x40: /* MADD (64bit) */ 5774 case 0x41: /* MSUB (64bit) */ 5775 case 0x4a: /* UMADDL */ 5776 case 0x4b: /* UMSUBL */ 5777 case 0x4c: /* UMULH */ 5778 break; 5779 default: 5780 unallocated_encoding(s); 5781 return; 5782 } 5783 5784 if (is_high) { 5785 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5786 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5787 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5788 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5789 5790 if (is_signed) { 5791 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5792 } else { 5793 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5794 } 5795 return; 5796 } 5797 5798 tcg_op1 = tcg_temp_new_i64(); 5799 tcg_op2 = tcg_temp_new_i64(); 5800 tcg_tmp = tcg_temp_new_i64(); 5801 5802 if (op_id < 0x42) { 5803 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5804 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5805 } else { 5806 if (is_signed) { 5807 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5808 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5809 } else { 5810 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5811 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5812 } 5813 } 5814 5815 if (ra == 31 && !is_sub) { 5816 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5817 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5818 } else { 5819 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5820 if (is_sub) { 5821 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5822 } else { 5823 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5824 } 5825 } 5826 5827 if (!sf) { 5828 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5829 } 5830 } 5831 5832 /* Add/subtract (with carry) 5833 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5834 * +--+--+--+------------------------+------+-------------+------+-----+ 5835 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5836 * +--+--+--+------------------------+------+-------------+------+-----+ 5837 */ 5838 5839 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5840 { 5841 unsigned int sf, op, setflags, rm, rn, rd; 5842 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5843 5844 sf = extract32(insn, 31, 1); 5845 op = extract32(insn, 30, 1); 5846 setflags = extract32(insn, 29, 1); 5847 rm = extract32(insn, 16, 5); 5848 rn = extract32(insn, 5, 5); 5849 rd = extract32(insn, 0, 5); 5850 5851 tcg_rd = cpu_reg(s, rd); 5852 tcg_rn = cpu_reg(s, rn); 5853 5854 if (op) { 5855 tcg_y = tcg_temp_new_i64(); 5856 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5857 } else { 5858 tcg_y = cpu_reg(s, rm); 5859 } 5860 5861 if (setflags) { 5862 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5863 } else { 5864 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5865 } 5866 } 5867 5868 /* 5869 * Rotate right into flags 5870 * 31 30 29 21 15 10 5 4 0 5871 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5872 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5873 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5874 */ 5875 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5876 { 5877 int mask = extract32(insn, 0, 4); 5878 int o2 = extract32(insn, 4, 1); 5879 int rn = extract32(insn, 5, 5); 5880 int imm6 = extract32(insn, 15, 6); 5881 int sf_op_s = extract32(insn, 29, 3); 5882 TCGv_i64 tcg_rn; 5883 TCGv_i32 nzcv; 5884 5885 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5886 unallocated_encoding(s); 5887 return; 5888 } 5889 5890 tcg_rn = read_cpu_reg(s, rn, 1); 5891 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5892 5893 nzcv = tcg_temp_new_i32(); 5894 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5895 5896 if (mask & 8) { /* N */ 5897 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5898 } 5899 if (mask & 4) { /* Z */ 5900 tcg_gen_not_i32(cpu_ZF, nzcv); 5901 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5902 } 5903 if (mask & 2) { /* C */ 5904 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5905 } 5906 if (mask & 1) { /* V */ 5907 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5908 } 5909 } 5910 5911 /* 5912 * Evaluate into flags 5913 * 31 30 29 21 15 14 10 5 4 0 5914 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5915 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5916 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5917 */ 5918 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5919 { 5920 int o3_mask = extract32(insn, 0, 5); 5921 int rn = extract32(insn, 5, 5); 5922 int o2 = extract32(insn, 15, 6); 5923 int sz = extract32(insn, 14, 1); 5924 int sf_op_s = extract32(insn, 29, 3); 5925 TCGv_i32 tmp; 5926 int shift; 5927 5928 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5929 !dc_isar_feature(aa64_condm_4, s)) { 5930 unallocated_encoding(s); 5931 return; 5932 } 5933 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5934 5935 tmp = tcg_temp_new_i32(); 5936 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5937 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5938 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5939 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5940 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5941 } 5942 5943 /* Conditional compare (immediate / register) 5944 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5945 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5946 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5947 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5948 * [1] y [0] [0] 5949 */ 5950 static void disas_cc(DisasContext *s, uint32_t insn) 5951 { 5952 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5953 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5954 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5955 DisasCompare c; 5956 5957 if (!extract32(insn, 29, 1)) { 5958 unallocated_encoding(s); 5959 return; 5960 } 5961 if (insn & (1 << 10 | 1 << 4)) { 5962 unallocated_encoding(s); 5963 return; 5964 } 5965 sf = extract32(insn, 31, 1); 5966 op = extract32(insn, 30, 1); 5967 is_imm = extract32(insn, 11, 1); 5968 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5969 cond = extract32(insn, 12, 4); 5970 rn = extract32(insn, 5, 5); 5971 nzcv = extract32(insn, 0, 4); 5972 5973 /* Set T0 = !COND. */ 5974 tcg_t0 = tcg_temp_new_i32(); 5975 arm_test_cc(&c, cond); 5976 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5977 5978 /* Load the arguments for the new comparison. */ 5979 if (is_imm) { 5980 tcg_y = tcg_temp_new_i64(); 5981 tcg_gen_movi_i64(tcg_y, y); 5982 } else { 5983 tcg_y = cpu_reg(s, y); 5984 } 5985 tcg_rn = cpu_reg(s, rn); 5986 5987 /* Set the flags for the new comparison. */ 5988 tcg_tmp = tcg_temp_new_i64(); 5989 if (op) { 5990 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5991 } else { 5992 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5993 } 5994 5995 /* If COND was false, force the flags to #nzcv. Compute two masks 5996 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5997 * For tcg hosts that support ANDC, we can make do with just T1. 5998 * In either case, allow the tcg optimizer to delete any unused mask. 5999 */ 6000 tcg_t1 = tcg_temp_new_i32(); 6001 tcg_t2 = tcg_temp_new_i32(); 6002 tcg_gen_neg_i32(tcg_t1, tcg_t0); 6003 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 6004 6005 if (nzcv & 8) { /* N */ 6006 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 6007 } else { 6008 if (TCG_TARGET_HAS_andc_i32) { 6009 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 6010 } else { 6011 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 6012 } 6013 } 6014 if (nzcv & 4) { /* Z */ 6015 if (TCG_TARGET_HAS_andc_i32) { 6016 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 6017 } else { 6018 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 6019 } 6020 } else { 6021 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 6022 } 6023 if (nzcv & 2) { /* C */ 6024 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 6025 } else { 6026 if (TCG_TARGET_HAS_andc_i32) { 6027 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 6028 } else { 6029 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 6030 } 6031 } 6032 if (nzcv & 1) { /* V */ 6033 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 6034 } else { 6035 if (TCG_TARGET_HAS_andc_i32) { 6036 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 6037 } else { 6038 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 6039 } 6040 } 6041 } 6042 6043 /* Conditional select 6044 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 6045 * +----+----+---+-----------------+------+------+-----+------+------+ 6046 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 6047 * +----+----+---+-----------------+------+------+-----+------+------+ 6048 */ 6049 static void disas_cond_select(DisasContext *s, uint32_t insn) 6050 { 6051 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 6052 TCGv_i64 tcg_rd, zero; 6053 DisasCompare64 c; 6054 6055 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 6056 /* S == 1 or op2<1> == 1 */ 6057 unallocated_encoding(s); 6058 return; 6059 } 6060 sf = extract32(insn, 31, 1); 6061 else_inv = extract32(insn, 30, 1); 6062 rm = extract32(insn, 16, 5); 6063 cond = extract32(insn, 12, 4); 6064 else_inc = extract32(insn, 10, 1); 6065 rn = extract32(insn, 5, 5); 6066 rd = extract32(insn, 0, 5); 6067 6068 tcg_rd = cpu_reg(s, rd); 6069 6070 a64_test_cc(&c, cond); 6071 zero = tcg_constant_i64(0); 6072 6073 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 6074 /* CSET & CSETM. */ 6075 if (else_inv) { 6076 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 6077 tcg_rd, c.value, zero); 6078 } else { 6079 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 6080 tcg_rd, c.value, zero); 6081 } 6082 } else { 6083 TCGv_i64 t_true = cpu_reg(s, rn); 6084 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 6085 if (else_inv && else_inc) { 6086 tcg_gen_neg_i64(t_false, t_false); 6087 } else if (else_inv) { 6088 tcg_gen_not_i64(t_false, t_false); 6089 } else if (else_inc) { 6090 tcg_gen_addi_i64(t_false, t_false, 1); 6091 } 6092 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 6093 } 6094 6095 if (!sf) { 6096 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6097 } 6098 } 6099 6100 static void handle_clz(DisasContext *s, unsigned int sf, 6101 unsigned int rn, unsigned int rd) 6102 { 6103 TCGv_i64 tcg_rd, tcg_rn; 6104 tcg_rd = cpu_reg(s, rd); 6105 tcg_rn = cpu_reg(s, rn); 6106 6107 if (sf) { 6108 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 6109 } else { 6110 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6111 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6112 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 6113 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6114 } 6115 } 6116 6117 static void handle_cls(DisasContext *s, unsigned int sf, 6118 unsigned int rn, unsigned int rd) 6119 { 6120 TCGv_i64 tcg_rd, tcg_rn; 6121 tcg_rd = cpu_reg(s, rd); 6122 tcg_rn = cpu_reg(s, rn); 6123 6124 if (sf) { 6125 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6126 } else { 6127 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6128 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6129 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6130 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6131 } 6132 } 6133 6134 static void handle_rbit(DisasContext *s, unsigned int sf, 6135 unsigned int rn, unsigned int rd) 6136 { 6137 TCGv_i64 tcg_rd, tcg_rn; 6138 tcg_rd = cpu_reg(s, rd); 6139 tcg_rn = cpu_reg(s, rn); 6140 6141 if (sf) { 6142 gen_helper_rbit64(tcg_rd, tcg_rn); 6143 } else { 6144 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6145 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6146 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6147 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6148 } 6149 } 6150 6151 /* REV with sf==1, opcode==3 ("REV64") */ 6152 static void handle_rev64(DisasContext *s, unsigned int sf, 6153 unsigned int rn, unsigned int rd) 6154 { 6155 if (!sf) { 6156 unallocated_encoding(s); 6157 return; 6158 } 6159 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6160 } 6161 6162 /* REV with sf==0, opcode==2 6163 * REV32 (sf==1, opcode==2) 6164 */ 6165 static void handle_rev32(DisasContext *s, unsigned int sf, 6166 unsigned int rn, unsigned int rd) 6167 { 6168 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6169 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6170 6171 if (sf) { 6172 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6173 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6174 } else { 6175 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6176 } 6177 } 6178 6179 /* REV16 (opcode==1) */ 6180 static void handle_rev16(DisasContext *s, unsigned int sf, 6181 unsigned int rn, unsigned int rd) 6182 { 6183 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6184 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6185 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6186 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6187 6188 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6189 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6190 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6191 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6192 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6193 } 6194 6195 /* Data-processing (1 source) 6196 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6197 * +----+---+---+-----------------+---------+--------+------+------+ 6198 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6199 * +----+---+---+-----------------+---------+--------+------+------+ 6200 */ 6201 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6202 { 6203 unsigned int sf, opcode, opcode2, rn, rd; 6204 TCGv_i64 tcg_rd; 6205 6206 if (extract32(insn, 29, 1)) { 6207 unallocated_encoding(s); 6208 return; 6209 } 6210 6211 sf = extract32(insn, 31, 1); 6212 opcode = extract32(insn, 10, 6); 6213 opcode2 = extract32(insn, 16, 5); 6214 rn = extract32(insn, 5, 5); 6215 rd = extract32(insn, 0, 5); 6216 6217 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6218 6219 switch (MAP(sf, opcode2, opcode)) { 6220 case MAP(0, 0x00, 0x00): /* RBIT */ 6221 case MAP(1, 0x00, 0x00): 6222 handle_rbit(s, sf, rn, rd); 6223 break; 6224 case MAP(0, 0x00, 0x01): /* REV16 */ 6225 case MAP(1, 0x00, 0x01): 6226 handle_rev16(s, sf, rn, rd); 6227 break; 6228 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6229 case MAP(1, 0x00, 0x02): 6230 handle_rev32(s, sf, rn, rd); 6231 break; 6232 case MAP(1, 0x00, 0x03): /* REV64 */ 6233 handle_rev64(s, sf, rn, rd); 6234 break; 6235 case MAP(0, 0x00, 0x04): /* CLZ */ 6236 case MAP(1, 0x00, 0x04): 6237 handle_clz(s, sf, rn, rd); 6238 break; 6239 case MAP(0, 0x00, 0x05): /* CLS */ 6240 case MAP(1, 0x00, 0x05): 6241 handle_cls(s, sf, rn, rd); 6242 break; 6243 case MAP(1, 0x01, 0x00): /* PACIA */ 6244 if (s->pauth_active) { 6245 tcg_rd = cpu_reg(s, rd); 6246 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6247 } else if (!dc_isar_feature(aa64_pauth, s)) { 6248 goto do_unallocated; 6249 } 6250 break; 6251 case MAP(1, 0x01, 0x01): /* PACIB */ 6252 if (s->pauth_active) { 6253 tcg_rd = cpu_reg(s, rd); 6254 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6255 } else if (!dc_isar_feature(aa64_pauth, s)) { 6256 goto do_unallocated; 6257 } 6258 break; 6259 case MAP(1, 0x01, 0x02): /* PACDA */ 6260 if (s->pauth_active) { 6261 tcg_rd = cpu_reg(s, rd); 6262 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6263 } else if (!dc_isar_feature(aa64_pauth, s)) { 6264 goto do_unallocated; 6265 } 6266 break; 6267 case MAP(1, 0x01, 0x03): /* PACDB */ 6268 if (s->pauth_active) { 6269 tcg_rd = cpu_reg(s, rd); 6270 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6271 } else if (!dc_isar_feature(aa64_pauth, s)) { 6272 goto do_unallocated; 6273 } 6274 break; 6275 case MAP(1, 0x01, 0x04): /* AUTIA */ 6276 if (s->pauth_active) { 6277 tcg_rd = cpu_reg(s, rd); 6278 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6279 } else if (!dc_isar_feature(aa64_pauth, s)) { 6280 goto do_unallocated; 6281 } 6282 break; 6283 case MAP(1, 0x01, 0x05): /* AUTIB */ 6284 if (s->pauth_active) { 6285 tcg_rd = cpu_reg(s, rd); 6286 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6287 } else if (!dc_isar_feature(aa64_pauth, s)) { 6288 goto do_unallocated; 6289 } 6290 break; 6291 case MAP(1, 0x01, 0x06): /* AUTDA */ 6292 if (s->pauth_active) { 6293 tcg_rd = cpu_reg(s, rd); 6294 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6295 } else if (!dc_isar_feature(aa64_pauth, s)) { 6296 goto do_unallocated; 6297 } 6298 break; 6299 case MAP(1, 0x01, 0x07): /* AUTDB */ 6300 if (s->pauth_active) { 6301 tcg_rd = cpu_reg(s, rd); 6302 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6303 } else if (!dc_isar_feature(aa64_pauth, s)) { 6304 goto do_unallocated; 6305 } 6306 break; 6307 case MAP(1, 0x01, 0x08): /* PACIZA */ 6308 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6309 goto do_unallocated; 6310 } else if (s->pauth_active) { 6311 tcg_rd = cpu_reg(s, rd); 6312 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6313 } 6314 break; 6315 case MAP(1, 0x01, 0x09): /* PACIZB */ 6316 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6317 goto do_unallocated; 6318 } else if (s->pauth_active) { 6319 tcg_rd = cpu_reg(s, rd); 6320 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6321 } 6322 break; 6323 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6324 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6325 goto do_unallocated; 6326 } else if (s->pauth_active) { 6327 tcg_rd = cpu_reg(s, rd); 6328 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6329 } 6330 break; 6331 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6332 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6333 goto do_unallocated; 6334 } else if (s->pauth_active) { 6335 tcg_rd = cpu_reg(s, rd); 6336 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6337 } 6338 break; 6339 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6340 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6341 goto do_unallocated; 6342 } else if (s->pauth_active) { 6343 tcg_rd = cpu_reg(s, rd); 6344 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6345 } 6346 break; 6347 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6348 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6349 goto do_unallocated; 6350 } else if (s->pauth_active) { 6351 tcg_rd = cpu_reg(s, rd); 6352 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6353 } 6354 break; 6355 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6356 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6357 goto do_unallocated; 6358 } else if (s->pauth_active) { 6359 tcg_rd = cpu_reg(s, rd); 6360 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6361 } 6362 break; 6363 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6364 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6365 goto do_unallocated; 6366 } else if (s->pauth_active) { 6367 tcg_rd = cpu_reg(s, rd); 6368 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6369 } 6370 break; 6371 case MAP(1, 0x01, 0x10): /* XPACI */ 6372 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6373 goto do_unallocated; 6374 } else if (s->pauth_active) { 6375 tcg_rd = cpu_reg(s, rd); 6376 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6377 } 6378 break; 6379 case MAP(1, 0x01, 0x11): /* XPACD */ 6380 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6381 goto do_unallocated; 6382 } else if (s->pauth_active) { 6383 tcg_rd = cpu_reg(s, rd); 6384 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6385 } 6386 break; 6387 default: 6388 do_unallocated: 6389 unallocated_encoding(s); 6390 break; 6391 } 6392 6393 #undef MAP 6394 } 6395 6396 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6397 unsigned int rm, unsigned int rn, unsigned int rd) 6398 { 6399 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6400 tcg_rd = cpu_reg(s, rd); 6401 6402 if (!sf && is_signed) { 6403 tcg_n = tcg_temp_new_i64(); 6404 tcg_m = tcg_temp_new_i64(); 6405 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6406 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6407 } else { 6408 tcg_n = read_cpu_reg(s, rn, sf); 6409 tcg_m = read_cpu_reg(s, rm, sf); 6410 } 6411 6412 if (is_signed) { 6413 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6414 } else { 6415 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6416 } 6417 6418 if (!sf) { /* zero extend final result */ 6419 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6420 } 6421 } 6422 6423 /* LSLV, LSRV, ASRV, RORV */ 6424 static void handle_shift_reg(DisasContext *s, 6425 enum a64_shift_type shift_type, unsigned int sf, 6426 unsigned int rm, unsigned int rn, unsigned int rd) 6427 { 6428 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6429 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6430 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6431 6432 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6433 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6434 } 6435 6436 /* CRC32[BHWX], CRC32C[BHWX] */ 6437 static void handle_crc32(DisasContext *s, 6438 unsigned int sf, unsigned int sz, bool crc32c, 6439 unsigned int rm, unsigned int rn, unsigned int rd) 6440 { 6441 TCGv_i64 tcg_acc, tcg_val; 6442 TCGv_i32 tcg_bytes; 6443 6444 if (!dc_isar_feature(aa64_crc32, s) 6445 || (sf == 1 && sz != 3) 6446 || (sf == 0 && sz == 3)) { 6447 unallocated_encoding(s); 6448 return; 6449 } 6450 6451 if (sz == 3) { 6452 tcg_val = cpu_reg(s, rm); 6453 } else { 6454 uint64_t mask; 6455 switch (sz) { 6456 case 0: 6457 mask = 0xFF; 6458 break; 6459 case 1: 6460 mask = 0xFFFF; 6461 break; 6462 case 2: 6463 mask = 0xFFFFFFFF; 6464 break; 6465 default: 6466 g_assert_not_reached(); 6467 } 6468 tcg_val = tcg_temp_new_i64(); 6469 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6470 } 6471 6472 tcg_acc = cpu_reg(s, rn); 6473 tcg_bytes = tcg_constant_i32(1 << sz); 6474 6475 if (crc32c) { 6476 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6477 } else { 6478 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6479 } 6480 } 6481 6482 /* Data-processing (2 source) 6483 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6484 * +----+---+---+-----------------+------+--------+------+------+ 6485 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6486 * +----+---+---+-----------------+------+--------+------+------+ 6487 */ 6488 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6489 { 6490 unsigned int sf, rm, opcode, rn, rd, setflag; 6491 sf = extract32(insn, 31, 1); 6492 setflag = extract32(insn, 29, 1); 6493 rm = extract32(insn, 16, 5); 6494 opcode = extract32(insn, 10, 6); 6495 rn = extract32(insn, 5, 5); 6496 rd = extract32(insn, 0, 5); 6497 6498 if (setflag && opcode != 0) { 6499 unallocated_encoding(s); 6500 return; 6501 } 6502 6503 switch (opcode) { 6504 case 0: /* SUBP(S) */ 6505 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6506 goto do_unallocated; 6507 } else { 6508 TCGv_i64 tcg_n, tcg_m, tcg_d; 6509 6510 tcg_n = read_cpu_reg_sp(s, rn, true); 6511 tcg_m = read_cpu_reg_sp(s, rm, true); 6512 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6513 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6514 tcg_d = cpu_reg(s, rd); 6515 6516 if (setflag) { 6517 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6518 } else { 6519 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6520 } 6521 } 6522 break; 6523 case 2: /* UDIV */ 6524 handle_div(s, false, sf, rm, rn, rd); 6525 break; 6526 case 3: /* SDIV */ 6527 handle_div(s, true, sf, rm, rn, rd); 6528 break; 6529 case 4: /* IRG */ 6530 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6531 goto do_unallocated; 6532 } 6533 if (s->ata[0]) { 6534 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6535 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6536 } else { 6537 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6538 cpu_reg_sp(s, rn)); 6539 } 6540 break; 6541 case 5: /* GMI */ 6542 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6543 goto do_unallocated; 6544 } else { 6545 TCGv_i64 t = tcg_temp_new_i64(); 6546 6547 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6548 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6549 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6550 } 6551 break; 6552 case 8: /* LSLV */ 6553 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6554 break; 6555 case 9: /* LSRV */ 6556 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6557 break; 6558 case 10: /* ASRV */ 6559 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6560 break; 6561 case 11: /* RORV */ 6562 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6563 break; 6564 case 12: /* PACGA */ 6565 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6566 goto do_unallocated; 6567 } 6568 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6569 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6570 break; 6571 case 16: 6572 case 17: 6573 case 18: 6574 case 19: 6575 case 20: 6576 case 21: 6577 case 22: 6578 case 23: /* CRC32 */ 6579 { 6580 int sz = extract32(opcode, 0, 2); 6581 bool crc32c = extract32(opcode, 2, 1); 6582 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6583 break; 6584 } 6585 default: 6586 do_unallocated: 6587 unallocated_encoding(s); 6588 break; 6589 } 6590 } 6591 6592 /* 6593 * Data processing - register 6594 * 31 30 29 28 25 21 20 16 10 0 6595 * +--+---+--+---+-------+-----+-------+-------+---------+ 6596 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6597 * +--+---+--+---+-------+-----+-------+-------+---------+ 6598 */ 6599 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6600 { 6601 int op0 = extract32(insn, 30, 1); 6602 int op1 = extract32(insn, 28, 1); 6603 int op2 = extract32(insn, 21, 4); 6604 int op3 = extract32(insn, 10, 6); 6605 6606 if (!op1) { 6607 if (op2 & 8) { 6608 if (op2 & 1) { 6609 /* Add/sub (extended register) */ 6610 disas_add_sub_ext_reg(s, insn); 6611 } else { 6612 /* Add/sub (shifted register) */ 6613 disas_add_sub_reg(s, insn); 6614 } 6615 } else { 6616 /* Logical (shifted register) */ 6617 disas_logic_reg(s, insn); 6618 } 6619 return; 6620 } 6621 6622 switch (op2) { 6623 case 0x0: 6624 switch (op3) { 6625 case 0x00: /* Add/subtract (with carry) */ 6626 disas_adc_sbc(s, insn); 6627 break; 6628 6629 case 0x01: /* Rotate right into flags */ 6630 case 0x21: 6631 disas_rotate_right_into_flags(s, insn); 6632 break; 6633 6634 case 0x02: /* Evaluate into flags */ 6635 case 0x12: 6636 case 0x22: 6637 case 0x32: 6638 disas_evaluate_into_flags(s, insn); 6639 break; 6640 6641 default: 6642 goto do_unallocated; 6643 } 6644 break; 6645 6646 case 0x2: /* Conditional compare */ 6647 disas_cc(s, insn); /* both imm and reg forms */ 6648 break; 6649 6650 case 0x4: /* Conditional select */ 6651 disas_cond_select(s, insn); 6652 break; 6653 6654 case 0x6: /* Data-processing */ 6655 if (op0) { /* (1 source) */ 6656 disas_data_proc_1src(s, insn); 6657 } else { /* (2 source) */ 6658 disas_data_proc_2src(s, insn); 6659 } 6660 break; 6661 case 0x8 ... 0xf: /* (3 source) */ 6662 disas_data_proc_3src(s, insn); 6663 break; 6664 6665 default: 6666 do_unallocated: 6667 unallocated_encoding(s); 6668 break; 6669 } 6670 } 6671 6672 static void handle_fp_compare(DisasContext *s, int size, 6673 unsigned int rn, unsigned int rm, 6674 bool cmp_with_zero, bool signal_all_nans) 6675 { 6676 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6677 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6678 6679 if (size == MO_64) { 6680 TCGv_i64 tcg_vn, tcg_vm; 6681 6682 tcg_vn = read_fp_dreg(s, rn); 6683 if (cmp_with_zero) { 6684 tcg_vm = tcg_constant_i64(0); 6685 } else { 6686 tcg_vm = read_fp_dreg(s, rm); 6687 } 6688 if (signal_all_nans) { 6689 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6690 } else { 6691 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6692 } 6693 } else { 6694 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6695 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6696 6697 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6698 if (cmp_with_zero) { 6699 tcg_gen_movi_i32(tcg_vm, 0); 6700 } else { 6701 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6702 } 6703 6704 switch (size) { 6705 case MO_32: 6706 if (signal_all_nans) { 6707 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6708 } else { 6709 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6710 } 6711 break; 6712 case MO_16: 6713 if (signal_all_nans) { 6714 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6715 } else { 6716 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6717 } 6718 break; 6719 default: 6720 g_assert_not_reached(); 6721 } 6722 } 6723 6724 gen_set_nzcv(tcg_flags); 6725 } 6726 6727 /* Floating point compare 6728 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6729 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6730 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6731 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6732 */ 6733 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6734 { 6735 unsigned int mos, type, rm, op, rn, opc, op2r; 6736 int size; 6737 6738 mos = extract32(insn, 29, 3); 6739 type = extract32(insn, 22, 2); 6740 rm = extract32(insn, 16, 5); 6741 op = extract32(insn, 14, 2); 6742 rn = extract32(insn, 5, 5); 6743 opc = extract32(insn, 3, 2); 6744 op2r = extract32(insn, 0, 3); 6745 6746 if (mos || op || op2r) { 6747 unallocated_encoding(s); 6748 return; 6749 } 6750 6751 switch (type) { 6752 case 0: 6753 size = MO_32; 6754 break; 6755 case 1: 6756 size = MO_64; 6757 break; 6758 case 3: 6759 size = MO_16; 6760 if (dc_isar_feature(aa64_fp16, s)) { 6761 break; 6762 } 6763 /* fallthru */ 6764 default: 6765 unallocated_encoding(s); 6766 return; 6767 } 6768 6769 if (!fp_access_check(s)) { 6770 return; 6771 } 6772 6773 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6774 } 6775 6776 /* Floating point conditional compare 6777 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6778 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6779 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6780 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6781 */ 6782 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6783 { 6784 unsigned int mos, type, rm, cond, rn, op, nzcv; 6785 TCGLabel *label_continue = NULL; 6786 int size; 6787 6788 mos = extract32(insn, 29, 3); 6789 type = extract32(insn, 22, 2); 6790 rm = extract32(insn, 16, 5); 6791 cond = extract32(insn, 12, 4); 6792 rn = extract32(insn, 5, 5); 6793 op = extract32(insn, 4, 1); 6794 nzcv = extract32(insn, 0, 4); 6795 6796 if (mos) { 6797 unallocated_encoding(s); 6798 return; 6799 } 6800 6801 switch (type) { 6802 case 0: 6803 size = MO_32; 6804 break; 6805 case 1: 6806 size = MO_64; 6807 break; 6808 case 3: 6809 size = MO_16; 6810 if (dc_isar_feature(aa64_fp16, s)) { 6811 break; 6812 } 6813 /* fallthru */ 6814 default: 6815 unallocated_encoding(s); 6816 return; 6817 } 6818 6819 if (!fp_access_check(s)) { 6820 return; 6821 } 6822 6823 if (cond < 0x0e) { /* not always */ 6824 TCGLabel *label_match = gen_new_label(); 6825 label_continue = gen_new_label(); 6826 arm_gen_test_cc(cond, label_match); 6827 /* nomatch: */ 6828 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6829 tcg_gen_br(label_continue); 6830 gen_set_label(label_match); 6831 } 6832 6833 handle_fp_compare(s, size, rn, rm, false, op); 6834 6835 if (cond < 0x0e) { 6836 gen_set_label(label_continue); 6837 } 6838 } 6839 6840 /* Floating point conditional select 6841 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6842 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6843 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6844 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6845 */ 6846 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6847 { 6848 unsigned int mos, type, rm, cond, rn, rd; 6849 TCGv_i64 t_true, t_false; 6850 DisasCompare64 c; 6851 MemOp sz; 6852 6853 mos = extract32(insn, 29, 3); 6854 type = extract32(insn, 22, 2); 6855 rm = extract32(insn, 16, 5); 6856 cond = extract32(insn, 12, 4); 6857 rn = extract32(insn, 5, 5); 6858 rd = extract32(insn, 0, 5); 6859 6860 if (mos) { 6861 unallocated_encoding(s); 6862 return; 6863 } 6864 6865 switch (type) { 6866 case 0: 6867 sz = MO_32; 6868 break; 6869 case 1: 6870 sz = MO_64; 6871 break; 6872 case 3: 6873 sz = MO_16; 6874 if (dc_isar_feature(aa64_fp16, s)) { 6875 break; 6876 } 6877 /* fallthru */ 6878 default: 6879 unallocated_encoding(s); 6880 return; 6881 } 6882 6883 if (!fp_access_check(s)) { 6884 return; 6885 } 6886 6887 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6888 t_true = tcg_temp_new_i64(); 6889 t_false = tcg_temp_new_i64(); 6890 read_vec_element(s, t_true, rn, 0, sz); 6891 read_vec_element(s, t_false, rm, 0, sz); 6892 6893 a64_test_cc(&c, cond); 6894 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6895 t_true, t_false); 6896 6897 /* Note that sregs & hregs write back zeros to the high bits, 6898 and we've already done the zero-extension. */ 6899 write_fp_dreg(s, rd, t_true); 6900 } 6901 6902 /* Floating-point data-processing (1 source) - half precision */ 6903 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6904 { 6905 TCGv_ptr fpst = NULL; 6906 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6907 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6908 6909 switch (opcode) { 6910 case 0x0: /* FMOV */ 6911 tcg_gen_mov_i32(tcg_res, tcg_op); 6912 break; 6913 case 0x1: /* FABS */ 6914 gen_vfp_absh(tcg_res, tcg_op); 6915 break; 6916 case 0x2: /* FNEG */ 6917 gen_vfp_negh(tcg_res, tcg_op); 6918 break; 6919 case 0x3: /* FSQRT */ 6920 fpst = fpstatus_ptr(FPST_FPCR_F16); 6921 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6922 break; 6923 case 0x8: /* FRINTN */ 6924 case 0x9: /* FRINTP */ 6925 case 0xa: /* FRINTM */ 6926 case 0xb: /* FRINTZ */ 6927 case 0xc: /* FRINTA */ 6928 { 6929 TCGv_i32 tcg_rmode; 6930 6931 fpst = fpstatus_ptr(FPST_FPCR_F16); 6932 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6933 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6934 gen_restore_rmode(tcg_rmode, fpst); 6935 break; 6936 } 6937 case 0xe: /* FRINTX */ 6938 fpst = fpstatus_ptr(FPST_FPCR_F16); 6939 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6940 break; 6941 case 0xf: /* FRINTI */ 6942 fpst = fpstatus_ptr(FPST_FPCR_F16); 6943 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6944 break; 6945 default: 6946 g_assert_not_reached(); 6947 } 6948 6949 write_fp_sreg(s, rd, tcg_res); 6950 } 6951 6952 /* Floating-point data-processing (1 source) - single precision */ 6953 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6954 { 6955 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6956 TCGv_i32 tcg_op, tcg_res; 6957 TCGv_ptr fpst; 6958 int rmode = -1; 6959 6960 tcg_op = read_fp_sreg(s, rn); 6961 tcg_res = tcg_temp_new_i32(); 6962 6963 switch (opcode) { 6964 case 0x0: /* FMOV */ 6965 tcg_gen_mov_i32(tcg_res, tcg_op); 6966 goto done; 6967 case 0x1: /* FABS */ 6968 gen_vfp_abss(tcg_res, tcg_op); 6969 goto done; 6970 case 0x2: /* FNEG */ 6971 gen_vfp_negs(tcg_res, tcg_op); 6972 goto done; 6973 case 0x3: /* FSQRT */ 6974 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6975 goto done; 6976 case 0x6: /* BFCVT */ 6977 gen_fpst = gen_helper_bfcvt; 6978 break; 6979 case 0x8: /* FRINTN */ 6980 case 0x9: /* FRINTP */ 6981 case 0xa: /* FRINTM */ 6982 case 0xb: /* FRINTZ */ 6983 case 0xc: /* FRINTA */ 6984 rmode = opcode & 7; 6985 gen_fpst = gen_helper_rints; 6986 break; 6987 case 0xe: /* FRINTX */ 6988 gen_fpst = gen_helper_rints_exact; 6989 break; 6990 case 0xf: /* FRINTI */ 6991 gen_fpst = gen_helper_rints; 6992 break; 6993 case 0x10: /* FRINT32Z */ 6994 rmode = FPROUNDING_ZERO; 6995 gen_fpst = gen_helper_frint32_s; 6996 break; 6997 case 0x11: /* FRINT32X */ 6998 gen_fpst = gen_helper_frint32_s; 6999 break; 7000 case 0x12: /* FRINT64Z */ 7001 rmode = FPROUNDING_ZERO; 7002 gen_fpst = gen_helper_frint64_s; 7003 break; 7004 case 0x13: /* FRINT64X */ 7005 gen_fpst = gen_helper_frint64_s; 7006 break; 7007 default: 7008 g_assert_not_reached(); 7009 } 7010 7011 fpst = fpstatus_ptr(FPST_FPCR); 7012 if (rmode >= 0) { 7013 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7014 gen_fpst(tcg_res, tcg_op, fpst); 7015 gen_restore_rmode(tcg_rmode, fpst); 7016 } else { 7017 gen_fpst(tcg_res, tcg_op, fpst); 7018 } 7019 7020 done: 7021 write_fp_sreg(s, rd, tcg_res); 7022 } 7023 7024 /* Floating-point data-processing (1 source) - double precision */ 7025 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 7026 { 7027 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 7028 TCGv_i64 tcg_op, tcg_res; 7029 TCGv_ptr fpst; 7030 int rmode = -1; 7031 7032 switch (opcode) { 7033 case 0x0: /* FMOV */ 7034 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 7035 return; 7036 } 7037 7038 tcg_op = read_fp_dreg(s, rn); 7039 tcg_res = tcg_temp_new_i64(); 7040 7041 switch (opcode) { 7042 case 0x1: /* FABS */ 7043 gen_vfp_absd(tcg_res, tcg_op); 7044 goto done; 7045 case 0x2: /* FNEG */ 7046 gen_vfp_negd(tcg_res, tcg_op); 7047 goto done; 7048 case 0x3: /* FSQRT */ 7049 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 7050 goto done; 7051 case 0x8: /* FRINTN */ 7052 case 0x9: /* FRINTP */ 7053 case 0xa: /* FRINTM */ 7054 case 0xb: /* FRINTZ */ 7055 case 0xc: /* FRINTA */ 7056 rmode = opcode & 7; 7057 gen_fpst = gen_helper_rintd; 7058 break; 7059 case 0xe: /* FRINTX */ 7060 gen_fpst = gen_helper_rintd_exact; 7061 break; 7062 case 0xf: /* FRINTI */ 7063 gen_fpst = gen_helper_rintd; 7064 break; 7065 case 0x10: /* FRINT32Z */ 7066 rmode = FPROUNDING_ZERO; 7067 gen_fpst = gen_helper_frint32_d; 7068 break; 7069 case 0x11: /* FRINT32X */ 7070 gen_fpst = gen_helper_frint32_d; 7071 break; 7072 case 0x12: /* FRINT64Z */ 7073 rmode = FPROUNDING_ZERO; 7074 gen_fpst = gen_helper_frint64_d; 7075 break; 7076 case 0x13: /* FRINT64X */ 7077 gen_fpst = gen_helper_frint64_d; 7078 break; 7079 default: 7080 g_assert_not_reached(); 7081 } 7082 7083 fpst = fpstatus_ptr(FPST_FPCR); 7084 if (rmode >= 0) { 7085 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 7086 gen_fpst(tcg_res, tcg_op, fpst); 7087 gen_restore_rmode(tcg_rmode, fpst); 7088 } else { 7089 gen_fpst(tcg_res, tcg_op, fpst); 7090 } 7091 7092 done: 7093 write_fp_dreg(s, rd, tcg_res); 7094 } 7095 7096 static void handle_fp_fcvt(DisasContext *s, int opcode, 7097 int rd, int rn, int dtype, int ntype) 7098 { 7099 switch (ntype) { 7100 case 0x0: 7101 { 7102 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7103 if (dtype == 1) { 7104 /* Single to double */ 7105 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7106 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 7107 write_fp_dreg(s, rd, tcg_rd); 7108 } else { 7109 /* Single to half */ 7110 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7111 TCGv_i32 ahp = get_ahp_flag(); 7112 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7113 7114 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7115 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7116 write_fp_sreg(s, rd, tcg_rd); 7117 } 7118 break; 7119 } 7120 case 0x1: 7121 { 7122 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7123 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7124 if (dtype == 0) { 7125 /* Double to single */ 7126 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7127 } else { 7128 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7129 TCGv_i32 ahp = get_ahp_flag(); 7130 /* Double to half */ 7131 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7132 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7133 } 7134 write_fp_sreg(s, rd, tcg_rd); 7135 break; 7136 } 7137 case 0x3: 7138 { 7139 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7140 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7141 TCGv_i32 tcg_ahp = get_ahp_flag(); 7142 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7143 if (dtype == 0) { 7144 /* Half to single */ 7145 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7146 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7147 write_fp_sreg(s, rd, tcg_rd); 7148 } else { 7149 /* Half to double */ 7150 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7151 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7152 write_fp_dreg(s, rd, tcg_rd); 7153 } 7154 break; 7155 } 7156 default: 7157 g_assert_not_reached(); 7158 } 7159 } 7160 7161 /* Floating point data-processing (1 source) 7162 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7163 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7164 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7165 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7166 */ 7167 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7168 { 7169 int mos = extract32(insn, 29, 3); 7170 int type = extract32(insn, 22, 2); 7171 int opcode = extract32(insn, 15, 6); 7172 int rn = extract32(insn, 5, 5); 7173 int rd = extract32(insn, 0, 5); 7174 7175 if (mos) { 7176 goto do_unallocated; 7177 } 7178 7179 switch (opcode) { 7180 case 0x4: case 0x5: case 0x7: 7181 { 7182 /* FCVT between half, single and double precision */ 7183 int dtype = extract32(opcode, 0, 2); 7184 if (type == 2 || dtype == type) { 7185 goto do_unallocated; 7186 } 7187 if (!fp_access_check(s)) { 7188 return; 7189 } 7190 7191 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7192 break; 7193 } 7194 7195 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7196 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7197 goto do_unallocated; 7198 } 7199 /* fall through */ 7200 case 0x0 ... 0x3: 7201 case 0x8 ... 0xc: 7202 case 0xe ... 0xf: 7203 /* 32-to-32 and 64-to-64 ops */ 7204 switch (type) { 7205 case 0: 7206 if (!fp_access_check(s)) { 7207 return; 7208 } 7209 handle_fp_1src_single(s, opcode, rd, rn); 7210 break; 7211 case 1: 7212 if (!fp_access_check(s)) { 7213 return; 7214 } 7215 handle_fp_1src_double(s, opcode, rd, rn); 7216 break; 7217 case 3: 7218 if (!dc_isar_feature(aa64_fp16, s)) { 7219 goto do_unallocated; 7220 } 7221 7222 if (!fp_access_check(s)) { 7223 return; 7224 } 7225 handle_fp_1src_half(s, opcode, rd, rn); 7226 break; 7227 default: 7228 goto do_unallocated; 7229 } 7230 break; 7231 7232 case 0x6: 7233 switch (type) { 7234 case 1: /* BFCVT */ 7235 if (!dc_isar_feature(aa64_bf16, s)) { 7236 goto do_unallocated; 7237 } 7238 if (!fp_access_check(s)) { 7239 return; 7240 } 7241 handle_fp_1src_single(s, opcode, rd, rn); 7242 break; 7243 default: 7244 goto do_unallocated; 7245 } 7246 break; 7247 7248 default: 7249 do_unallocated: 7250 unallocated_encoding(s); 7251 break; 7252 } 7253 } 7254 7255 /* Floating-point data-processing (3 source) - single precision */ 7256 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7257 int rd, int rn, int rm, int ra) 7258 { 7259 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7260 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7261 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7262 7263 tcg_op1 = read_fp_sreg(s, rn); 7264 tcg_op2 = read_fp_sreg(s, rm); 7265 tcg_op3 = read_fp_sreg(s, ra); 7266 7267 /* These are fused multiply-add, and must be done as one 7268 * floating point operation with no rounding between the 7269 * multiplication and addition steps. 7270 * NB that doing the negations here as separate steps is 7271 * correct : an input NaN should come out with its sign bit 7272 * flipped if it is a negated-input. 7273 */ 7274 if (o1 == true) { 7275 gen_vfp_negs(tcg_op3, tcg_op3); 7276 } 7277 7278 if (o0 != o1) { 7279 gen_vfp_negs(tcg_op1, tcg_op1); 7280 } 7281 7282 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7283 7284 write_fp_sreg(s, rd, tcg_res); 7285 } 7286 7287 /* Floating-point data-processing (3 source) - double precision */ 7288 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7289 int rd, int rn, int rm, int ra) 7290 { 7291 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7292 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7293 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7294 7295 tcg_op1 = read_fp_dreg(s, rn); 7296 tcg_op2 = read_fp_dreg(s, rm); 7297 tcg_op3 = read_fp_dreg(s, ra); 7298 7299 /* These are fused multiply-add, and must be done as one 7300 * floating point operation with no rounding between the 7301 * multiplication and addition steps. 7302 * NB that doing the negations here as separate steps is 7303 * correct : an input NaN should come out with its sign bit 7304 * flipped if it is a negated-input. 7305 */ 7306 if (o1 == true) { 7307 gen_vfp_negd(tcg_op3, tcg_op3); 7308 } 7309 7310 if (o0 != o1) { 7311 gen_vfp_negd(tcg_op1, tcg_op1); 7312 } 7313 7314 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7315 7316 write_fp_dreg(s, rd, tcg_res); 7317 } 7318 7319 /* Floating-point data-processing (3 source) - half precision */ 7320 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7321 int rd, int rn, int rm, int ra) 7322 { 7323 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7324 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7325 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7326 7327 tcg_op1 = read_fp_hreg(s, rn); 7328 tcg_op2 = read_fp_hreg(s, rm); 7329 tcg_op3 = read_fp_hreg(s, ra); 7330 7331 /* These are fused multiply-add, and must be done as one 7332 * floating point operation with no rounding between the 7333 * multiplication and addition steps. 7334 * NB that doing the negations here as separate steps is 7335 * correct : an input NaN should come out with its sign bit 7336 * flipped if it is a negated-input. 7337 */ 7338 if (o1 == true) { 7339 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7340 } 7341 7342 if (o0 != o1) { 7343 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7344 } 7345 7346 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7347 7348 write_fp_sreg(s, rd, tcg_res); 7349 } 7350 7351 /* Floating point data-processing (3 source) 7352 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7353 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7354 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7355 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7356 */ 7357 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7358 { 7359 int mos = extract32(insn, 29, 3); 7360 int type = extract32(insn, 22, 2); 7361 int rd = extract32(insn, 0, 5); 7362 int rn = extract32(insn, 5, 5); 7363 int ra = extract32(insn, 10, 5); 7364 int rm = extract32(insn, 16, 5); 7365 bool o0 = extract32(insn, 15, 1); 7366 bool o1 = extract32(insn, 21, 1); 7367 7368 if (mos) { 7369 unallocated_encoding(s); 7370 return; 7371 } 7372 7373 switch (type) { 7374 case 0: 7375 if (!fp_access_check(s)) { 7376 return; 7377 } 7378 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7379 break; 7380 case 1: 7381 if (!fp_access_check(s)) { 7382 return; 7383 } 7384 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7385 break; 7386 case 3: 7387 if (!dc_isar_feature(aa64_fp16, s)) { 7388 unallocated_encoding(s); 7389 return; 7390 } 7391 if (!fp_access_check(s)) { 7392 return; 7393 } 7394 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7395 break; 7396 default: 7397 unallocated_encoding(s); 7398 } 7399 } 7400 7401 /* Floating point immediate 7402 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7403 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7404 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7405 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7406 */ 7407 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7408 { 7409 int rd = extract32(insn, 0, 5); 7410 int imm5 = extract32(insn, 5, 5); 7411 int imm8 = extract32(insn, 13, 8); 7412 int type = extract32(insn, 22, 2); 7413 int mos = extract32(insn, 29, 3); 7414 uint64_t imm; 7415 MemOp sz; 7416 7417 if (mos || imm5) { 7418 unallocated_encoding(s); 7419 return; 7420 } 7421 7422 switch (type) { 7423 case 0: 7424 sz = MO_32; 7425 break; 7426 case 1: 7427 sz = MO_64; 7428 break; 7429 case 3: 7430 sz = MO_16; 7431 if (dc_isar_feature(aa64_fp16, s)) { 7432 break; 7433 } 7434 /* fallthru */ 7435 default: 7436 unallocated_encoding(s); 7437 return; 7438 } 7439 7440 if (!fp_access_check(s)) { 7441 return; 7442 } 7443 7444 imm = vfp_expand_imm(sz, imm8); 7445 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7446 } 7447 7448 /* Handle floating point <=> fixed point conversions. Note that we can 7449 * also deal with fp <=> integer conversions as a special case (scale == 64) 7450 * OPTME: consider handling that special case specially or at least skipping 7451 * the call to scalbn in the helpers for zero shifts. 7452 */ 7453 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7454 bool itof, int rmode, int scale, int sf, int type) 7455 { 7456 bool is_signed = !(opcode & 1); 7457 TCGv_ptr tcg_fpstatus; 7458 TCGv_i32 tcg_shift, tcg_single; 7459 TCGv_i64 tcg_double; 7460 7461 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7462 7463 tcg_shift = tcg_constant_i32(64 - scale); 7464 7465 if (itof) { 7466 TCGv_i64 tcg_int = cpu_reg(s, rn); 7467 if (!sf) { 7468 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7469 7470 if (is_signed) { 7471 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7472 } else { 7473 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7474 } 7475 7476 tcg_int = tcg_extend; 7477 } 7478 7479 switch (type) { 7480 case 1: /* float64 */ 7481 tcg_double = tcg_temp_new_i64(); 7482 if (is_signed) { 7483 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7484 tcg_shift, tcg_fpstatus); 7485 } else { 7486 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7487 tcg_shift, tcg_fpstatus); 7488 } 7489 write_fp_dreg(s, rd, tcg_double); 7490 break; 7491 7492 case 0: /* float32 */ 7493 tcg_single = tcg_temp_new_i32(); 7494 if (is_signed) { 7495 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7496 tcg_shift, tcg_fpstatus); 7497 } else { 7498 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7499 tcg_shift, tcg_fpstatus); 7500 } 7501 write_fp_sreg(s, rd, tcg_single); 7502 break; 7503 7504 case 3: /* float16 */ 7505 tcg_single = tcg_temp_new_i32(); 7506 if (is_signed) { 7507 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7508 tcg_shift, tcg_fpstatus); 7509 } else { 7510 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7511 tcg_shift, tcg_fpstatus); 7512 } 7513 write_fp_sreg(s, rd, tcg_single); 7514 break; 7515 7516 default: 7517 g_assert_not_reached(); 7518 } 7519 } else { 7520 TCGv_i64 tcg_int = cpu_reg(s, rd); 7521 TCGv_i32 tcg_rmode; 7522 7523 if (extract32(opcode, 2, 1)) { 7524 /* There are too many rounding modes to all fit into rmode, 7525 * so FCVTA[US] is a special case. 7526 */ 7527 rmode = FPROUNDING_TIEAWAY; 7528 } 7529 7530 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7531 7532 switch (type) { 7533 case 1: /* float64 */ 7534 tcg_double = read_fp_dreg(s, rn); 7535 if (is_signed) { 7536 if (!sf) { 7537 gen_helper_vfp_tosld(tcg_int, tcg_double, 7538 tcg_shift, tcg_fpstatus); 7539 } else { 7540 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7541 tcg_shift, tcg_fpstatus); 7542 } 7543 } else { 7544 if (!sf) { 7545 gen_helper_vfp_tould(tcg_int, tcg_double, 7546 tcg_shift, tcg_fpstatus); 7547 } else { 7548 gen_helper_vfp_touqd(tcg_int, tcg_double, 7549 tcg_shift, tcg_fpstatus); 7550 } 7551 } 7552 if (!sf) { 7553 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7554 } 7555 break; 7556 7557 case 0: /* float32 */ 7558 tcg_single = read_fp_sreg(s, rn); 7559 if (sf) { 7560 if (is_signed) { 7561 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7562 tcg_shift, tcg_fpstatus); 7563 } else { 7564 gen_helper_vfp_touqs(tcg_int, tcg_single, 7565 tcg_shift, tcg_fpstatus); 7566 } 7567 } else { 7568 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7569 if (is_signed) { 7570 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7571 tcg_shift, tcg_fpstatus); 7572 } else { 7573 gen_helper_vfp_touls(tcg_dest, tcg_single, 7574 tcg_shift, tcg_fpstatus); 7575 } 7576 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7577 } 7578 break; 7579 7580 case 3: /* float16 */ 7581 tcg_single = read_fp_sreg(s, rn); 7582 if (sf) { 7583 if (is_signed) { 7584 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7585 tcg_shift, tcg_fpstatus); 7586 } else { 7587 gen_helper_vfp_touqh(tcg_int, tcg_single, 7588 tcg_shift, tcg_fpstatus); 7589 } 7590 } else { 7591 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7592 if (is_signed) { 7593 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7594 tcg_shift, tcg_fpstatus); 7595 } else { 7596 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7597 tcg_shift, tcg_fpstatus); 7598 } 7599 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7600 } 7601 break; 7602 7603 default: 7604 g_assert_not_reached(); 7605 } 7606 7607 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7608 } 7609 } 7610 7611 /* Floating point <-> fixed point conversions 7612 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7613 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7614 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7615 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7616 */ 7617 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7618 { 7619 int rd = extract32(insn, 0, 5); 7620 int rn = extract32(insn, 5, 5); 7621 int scale = extract32(insn, 10, 6); 7622 int opcode = extract32(insn, 16, 3); 7623 int rmode = extract32(insn, 19, 2); 7624 int type = extract32(insn, 22, 2); 7625 bool sbit = extract32(insn, 29, 1); 7626 bool sf = extract32(insn, 31, 1); 7627 bool itof; 7628 7629 if (sbit || (!sf && scale < 32)) { 7630 unallocated_encoding(s); 7631 return; 7632 } 7633 7634 switch (type) { 7635 case 0: /* float32 */ 7636 case 1: /* float64 */ 7637 break; 7638 case 3: /* float16 */ 7639 if (dc_isar_feature(aa64_fp16, s)) { 7640 break; 7641 } 7642 /* fallthru */ 7643 default: 7644 unallocated_encoding(s); 7645 return; 7646 } 7647 7648 switch ((rmode << 3) | opcode) { 7649 case 0x2: /* SCVTF */ 7650 case 0x3: /* UCVTF */ 7651 itof = true; 7652 break; 7653 case 0x18: /* FCVTZS */ 7654 case 0x19: /* FCVTZU */ 7655 itof = false; 7656 break; 7657 default: 7658 unallocated_encoding(s); 7659 return; 7660 } 7661 7662 if (!fp_access_check(s)) { 7663 return; 7664 } 7665 7666 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7667 } 7668 7669 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7670 { 7671 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7672 * without conversion. 7673 */ 7674 7675 if (itof) { 7676 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7677 TCGv_i64 tmp; 7678 7679 switch (type) { 7680 case 0: 7681 /* 32 bit */ 7682 tmp = tcg_temp_new_i64(); 7683 tcg_gen_ext32u_i64(tmp, tcg_rn); 7684 write_fp_dreg(s, rd, tmp); 7685 break; 7686 case 1: 7687 /* 64 bit */ 7688 write_fp_dreg(s, rd, tcg_rn); 7689 break; 7690 case 2: 7691 /* 64 bit to top half. */ 7692 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7693 clear_vec_high(s, true, rd); 7694 break; 7695 case 3: 7696 /* 16 bit */ 7697 tmp = tcg_temp_new_i64(); 7698 tcg_gen_ext16u_i64(tmp, tcg_rn); 7699 write_fp_dreg(s, rd, tmp); 7700 break; 7701 default: 7702 g_assert_not_reached(); 7703 } 7704 } else { 7705 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7706 7707 switch (type) { 7708 case 0: 7709 /* 32 bit */ 7710 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7711 break; 7712 case 1: 7713 /* 64 bit */ 7714 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7715 break; 7716 case 2: 7717 /* 64 bits from top half */ 7718 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7719 break; 7720 case 3: 7721 /* 16 bit */ 7722 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7723 break; 7724 default: 7725 g_assert_not_reached(); 7726 } 7727 } 7728 } 7729 7730 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7731 { 7732 TCGv_i64 t = read_fp_dreg(s, rn); 7733 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7734 7735 gen_helper_fjcvtzs(t, t, fpstatus); 7736 7737 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7738 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7739 tcg_gen_movi_i32(cpu_CF, 0); 7740 tcg_gen_movi_i32(cpu_NF, 0); 7741 tcg_gen_movi_i32(cpu_VF, 0); 7742 } 7743 7744 /* Floating point <-> integer conversions 7745 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7746 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7747 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7748 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7749 */ 7750 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7751 { 7752 int rd = extract32(insn, 0, 5); 7753 int rn = extract32(insn, 5, 5); 7754 int opcode = extract32(insn, 16, 3); 7755 int rmode = extract32(insn, 19, 2); 7756 int type = extract32(insn, 22, 2); 7757 bool sbit = extract32(insn, 29, 1); 7758 bool sf = extract32(insn, 31, 1); 7759 bool itof = false; 7760 7761 if (sbit) { 7762 goto do_unallocated; 7763 } 7764 7765 switch (opcode) { 7766 case 2: /* SCVTF */ 7767 case 3: /* UCVTF */ 7768 itof = true; 7769 /* fallthru */ 7770 case 4: /* FCVTAS */ 7771 case 5: /* FCVTAU */ 7772 if (rmode != 0) { 7773 goto do_unallocated; 7774 } 7775 /* fallthru */ 7776 case 0: /* FCVT[NPMZ]S */ 7777 case 1: /* FCVT[NPMZ]U */ 7778 switch (type) { 7779 case 0: /* float32 */ 7780 case 1: /* float64 */ 7781 break; 7782 case 3: /* float16 */ 7783 if (!dc_isar_feature(aa64_fp16, s)) { 7784 goto do_unallocated; 7785 } 7786 break; 7787 default: 7788 goto do_unallocated; 7789 } 7790 if (!fp_access_check(s)) { 7791 return; 7792 } 7793 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7794 break; 7795 7796 default: 7797 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7798 case 0b01100110: /* FMOV half <-> 32-bit int */ 7799 case 0b01100111: 7800 case 0b11100110: /* FMOV half <-> 64-bit int */ 7801 case 0b11100111: 7802 if (!dc_isar_feature(aa64_fp16, s)) { 7803 goto do_unallocated; 7804 } 7805 /* fallthru */ 7806 case 0b00000110: /* FMOV 32-bit */ 7807 case 0b00000111: 7808 case 0b10100110: /* FMOV 64-bit */ 7809 case 0b10100111: 7810 case 0b11001110: /* FMOV top half of 128-bit */ 7811 case 0b11001111: 7812 if (!fp_access_check(s)) { 7813 return; 7814 } 7815 itof = opcode & 1; 7816 handle_fmov(s, rd, rn, type, itof); 7817 break; 7818 7819 case 0b00111110: /* FJCVTZS */ 7820 if (!dc_isar_feature(aa64_jscvt, s)) { 7821 goto do_unallocated; 7822 } else if (fp_access_check(s)) { 7823 handle_fjcvtzs(s, rd, rn); 7824 } 7825 break; 7826 7827 default: 7828 do_unallocated: 7829 unallocated_encoding(s); 7830 return; 7831 } 7832 break; 7833 } 7834 } 7835 7836 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7837 * 31 30 29 28 25 24 0 7838 * +---+---+---+---------+-----------------------------+ 7839 * | | 0 | | 1 1 1 1 | | 7840 * +---+---+---+---------+-----------------------------+ 7841 */ 7842 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7843 { 7844 if (extract32(insn, 24, 1)) { 7845 /* Floating point data-processing (3 source) */ 7846 disas_fp_3src(s, insn); 7847 } else if (extract32(insn, 21, 1) == 0) { 7848 /* Floating point to fixed point conversions */ 7849 disas_fp_fixed_conv(s, insn); 7850 } else { 7851 switch (extract32(insn, 10, 2)) { 7852 case 1: 7853 /* Floating point conditional compare */ 7854 disas_fp_ccomp(s, insn); 7855 break; 7856 case 2: 7857 /* Floating point data-processing (2 source) */ 7858 unallocated_encoding(s); /* in decodetree */ 7859 break; 7860 case 3: 7861 /* Floating point conditional select */ 7862 disas_fp_csel(s, insn); 7863 break; 7864 case 0: 7865 switch (ctz32(extract32(insn, 12, 4))) { 7866 case 0: /* [15:12] == xxx1 */ 7867 /* Floating point immediate */ 7868 disas_fp_imm(s, insn); 7869 break; 7870 case 1: /* [15:12] == xx10 */ 7871 /* Floating point compare */ 7872 disas_fp_compare(s, insn); 7873 break; 7874 case 2: /* [15:12] == x100 */ 7875 /* Floating point data-processing (1 source) */ 7876 disas_fp_1src(s, insn); 7877 break; 7878 case 3: /* [15:12] == 1000 */ 7879 unallocated_encoding(s); 7880 break; 7881 default: /* [15:12] == 0000 */ 7882 /* Floating point <-> integer conversions */ 7883 disas_fp_int_conv(s, insn); 7884 break; 7885 } 7886 break; 7887 } 7888 } 7889 } 7890 7891 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7892 int pos) 7893 { 7894 /* Extract 64 bits from the middle of two concatenated 64 bit 7895 * vector register slices left:right. The extracted bits start 7896 * at 'pos' bits into the right (least significant) side. 7897 * We return the result in tcg_right, and guarantee not to 7898 * trash tcg_left. 7899 */ 7900 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7901 assert(pos > 0 && pos < 64); 7902 7903 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7904 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7905 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7906 } 7907 7908 /* EXT 7909 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7910 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7911 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7912 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7913 */ 7914 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7915 { 7916 int is_q = extract32(insn, 30, 1); 7917 int op2 = extract32(insn, 22, 2); 7918 int imm4 = extract32(insn, 11, 4); 7919 int rm = extract32(insn, 16, 5); 7920 int rn = extract32(insn, 5, 5); 7921 int rd = extract32(insn, 0, 5); 7922 int pos = imm4 << 3; 7923 TCGv_i64 tcg_resl, tcg_resh; 7924 7925 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7926 unallocated_encoding(s); 7927 return; 7928 } 7929 7930 if (!fp_access_check(s)) { 7931 return; 7932 } 7933 7934 tcg_resh = tcg_temp_new_i64(); 7935 tcg_resl = tcg_temp_new_i64(); 7936 7937 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7938 * either extracting 128 bits from a 128:128 concatenation, or 7939 * extracting 64 bits from a 64:64 concatenation. 7940 */ 7941 if (!is_q) { 7942 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7943 if (pos != 0) { 7944 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7945 do_ext64(s, tcg_resh, tcg_resl, pos); 7946 } 7947 } else { 7948 TCGv_i64 tcg_hh; 7949 typedef struct { 7950 int reg; 7951 int elt; 7952 } EltPosns; 7953 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7954 EltPosns *elt = eltposns; 7955 7956 if (pos >= 64) { 7957 elt++; 7958 pos -= 64; 7959 } 7960 7961 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7962 elt++; 7963 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7964 elt++; 7965 if (pos != 0) { 7966 do_ext64(s, tcg_resh, tcg_resl, pos); 7967 tcg_hh = tcg_temp_new_i64(); 7968 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7969 do_ext64(s, tcg_hh, tcg_resh, pos); 7970 } 7971 } 7972 7973 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7974 if (is_q) { 7975 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7976 } 7977 clear_vec_high(s, is_q, rd); 7978 } 7979 7980 /* TBL/TBX 7981 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7982 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7983 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7984 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7985 */ 7986 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7987 { 7988 int op2 = extract32(insn, 22, 2); 7989 int is_q = extract32(insn, 30, 1); 7990 int rm = extract32(insn, 16, 5); 7991 int rn = extract32(insn, 5, 5); 7992 int rd = extract32(insn, 0, 5); 7993 int is_tbx = extract32(insn, 12, 1); 7994 int len = (extract32(insn, 13, 2) + 1) * 16; 7995 7996 if (op2 != 0) { 7997 unallocated_encoding(s); 7998 return; 7999 } 8000 8001 if (!fp_access_check(s)) { 8002 return; 8003 } 8004 8005 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 8006 vec_full_reg_offset(s, rm), tcg_env, 8007 is_q ? 16 : 8, vec_full_reg_size(s), 8008 (len << 6) | (is_tbx << 5) | rn, 8009 gen_helper_simd_tblx); 8010 } 8011 8012 /* ZIP/UZP/TRN 8013 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 8014 * +---+---+-------------+------+---+------+---+------------------+------+ 8015 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 8016 * +---+---+-------------+------+---+------+---+------------------+------+ 8017 */ 8018 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 8019 { 8020 int rd = extract32(insn, 0, 5); 8021 int rn = extract32(insn, 5, 5); 8022 int rm = extract32(insn, 16, 5); 8023 int size = extract32(insn, 22, 2); 8024 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 8025 * bit 2 indicates 1 vs 2 variant of the insn. 8026 */ 8027 int opcode = extract32(insn, 12, 2); 8028 bool part = extract32(insn, 14, 1); 8029 bool is_q = extract32(insn, 30, 1); 8030 int esize = 8 << size; 8031 int i; 8032 int datasize = is_q ? 128 : 64; 8033 int elements = datasize / esize; 8034 TCGv_i64 tcg_res[2], tcg_ele; 8035 8036 if (opcode == 0 || (size == 3 && !is_q)) { 8037 unallocated_encoding(s); 8038 return; 8039 } 8040 8041 if (!fp_access_check(s)) { 8042 return; 8043 } 8044 8045 tcg_res[0] = tcg_temp_new_i64(); 8046 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 8047 tcg_ele = tcg_temp_new_i64(); 8048 8049 for (i = 0; i < elements; i++) { 8050 int o, w; 8051 8052 switch (opcode) { 8053 case 1: /* UZP1/2 */ 8054 { 8055 int midpoint = elements / 2; 8056 if (i < midpoint) { 8057 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 8058 } else { 8059 read_vec_element(s, tcg_ele, rm, 8060 2 * (i - midpoint) + part, size); 8061 } 8062 break; 8063 } 8064 case 2: /* TRN1/2 */ 8065 if (i & 1) { 8066 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 8067 } else { 8068 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 8069 } 8070 break; 8071 case 3: /* ZIP1/2 */ 8072 { 8073 int base = part * elements / 2; 8074 if (i & 1) { 8075 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 8076 } else { 8077 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 8078 } 8079 break; 8080 } 8081 default: 8082 g_assert_not_reached(); 8083 } 8084 8085 w = (i * esize) / 64; 8086 o = (i * esize) % 64; 8087 if (o == 0) { 8088 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 8089 } else { 8090 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 8091 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 8092 } 8093 } 8094 8095 for (i = 0; i <= is_q; ++i) { 8096 write_vec_element(s, tcg_res[i], rd, i, MO_64); 8097 } 8098 clear_vec_high(s, is_q, rd); 8099 } 8100 8101 /* 8102 * do_reduction_op helper 8103 * 8104 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 8105 * important for correct NaN propagation that we do these 8106 * operations in exactly the order specified by the pseudocode. 8107 * 8108 * This is a recursive function, TCG temps should be freed by the 8109 * calling function once it is done with the values. 8110 */ 8111 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 8112 int esize, int size, int vmap, TCGv_ptr fpst) 8113 { 8114 if (esize == size) { 8115 int element; 8116 MemOp msize = esize == 16 ? MO_16 : MO_32; 8117 TCGv_i32 tcg_elem; 8118 8119 /* We should have one register left here */ 8120 assert(ctpop8(vmap) == 1); 8121 element = ctz32(vmap); 8122 assert(element < 8); 8123 8124 tcg_elem = tcg_temp_new_i32(); 8125 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8126 return tcg_elem; 8127 } else { 8128 int bits = size / 2; 8129 int shift = ctpop8(vmap) / 2; 8130 int vmap_lo = (vmap >> shift) & vmap; 8131 int vmap_hi = (vmap & ~vmap_lo); 8132 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8133 8134 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8135 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8136 tcg_res = tcg_temp_new_i32(); 8137 8138 switch (fpopcode) { 8139 case 0x0c: /* fmaxnmv half-precision */ 8140 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8141 break; 8142 case 0x0f: /* fmaxv half-precision */ 8143 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8144 break; 8145 case 0x1c: /* fminnmv half-precision */ 8146 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8147 break; 8148 case 0x1f: /* fminv half-precision */ 8149 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8150 break; 8151 case 0x2c: /* fmaxnmv */ 8152 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8153 break; 8154 case 0x2f: /* fmaxv */ 8155 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8156 break; 8157 case 0x3c: /* fminnmv */ 8158 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8159 break; 8160 case 0x3f: /* fminv */ 8161 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8162 break; 8163 default: 8164 g_assert_not_reached(); 8165 } 8166 return tcg_res; 8167 } 8168 } 8169 8170 /* AdvSIMD across lanes 8171 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8172 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8173 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8174 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8175 */ 8176 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8177 { 8178 int rd = extract32(insn, 0, 5); 8179 int rn = extract32(insn, 5, 5); 8180 int size = extract32(insn, 22, 2); 8181 int opcode = extract32(insn, 12, 5); 8182 bool is_q = extract32(insn, 30, 1); 8183 bool is_u = extract32(insn, 29, 1); 8184 bool is_fp = false; 8185 bool is_min = false; 8186 int esize; 8187 int elements; 8188 int i; 8189 TCGv_i64 tcg_res, tcg_elt; 8190 8191 switch (opcode) { 8192 case 0x1b: /* ADDV */ 8193 if (is_u) { 8194 unallocated_encoding(s); 8195 return; 8196 } 8197 /* fall through */ 8198 case 0x3: /* SADDLV, UADDLV */ 8199 case 0xa: /* SMAXV, UMAXV */ 8200 case 0x1a: /* SMINV, UMINV */ 8201 if (size == 3 || (size == 2 && !is_q)) { 8202 unallocated_encoding(s); 8203 return; 8204 } 8205 break; 8206 case 0xc: /* FMAXNMV, FMINNMV */ 8207 case 0xf: /* FMAXV, FMINV */ 8208 /* Bit 1 of size field encodes min vs max and the actual size 8209 * depends on the encoding of the U bit. If not set (and FP16 8210 * enabled) then we do half-precision float instead of single 8211 * precision. 8212 */ 8213 is_min = extract32(size, 1, 1); 8214 is_fp = true; 8215 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8216 size = 1; 8217 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8218 unallocated_encoding(s); 8219 return; 8220 } else { 8221 size = 2; 8222 } 8223 break; 8224 default: 8225 unallocated_encoding(s); 8226 return; 8227 } 8228 8229 if (!fp_access_check(s)) { 8230 return; 8231 } 8232 8233 esize = 8 << size; 8234 elements = (is_q ? 128 : 64) / esize; 8235 8236 tcg_res = tcg_temp_new_i64(); 8237 tcg_elt = tcg_temp_new_i64(); 8238 8239 /* These instructions operate across all lanes of a vector 8240 * to produce a single result. We can guarantee that a 64 8241 * bit intermediate is sufficient: 8242 * + for [US]ADDLV the maximum element size is 32 bits, and 8243 * the result type is 64 bits 8244 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8245 * same as the element size, which is 32 bits at most 8246 * For the integer operations we can choose to work at 64 8247 * or 32 bits and truncate at the end; for simplicity 8248 * we use 64 bits always. The floating point 8249 * ops do require 32 bit intermediates, though. 8250 */ 8251 if (!is_fp) { 8252 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8253 8254 for (i = 1; i < elements; i++) { 8255 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8256 8257 switch (opcode) { 8258 case 0x03: /* SADDLV / UADDLV */ 8259 case 0x1b: /* ADDV */ 8260 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8261 break; 8262 case 0x0a: /* SMAXV / UMAXV */ 8263 if (is_u) { 8264 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8265 } else { 8266 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8267 } 8268 break; 8269 case 0x1a: /* SMINV / UMINV */ 8270 if (is_u) { 8271 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8272 } else { 8273 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8274 } 8275 break; 8276 default: 8277 g_assert_not_reached(); 8278 } 8279 8280 } 8281 } else { 8282 /* Floating point vector reduction ops which work across 32 8283 * bit (single) or 16 bit (half-precision) intermediates. 8284 * Note that correct NaN propagation requires that we do these 8285 * operations in exactly the order specified by the pseudocode. 8286 */ 8287 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8288 int fpopcode = opcode | is_min << 4 | is_u << 5; 8289 int vmap = (1 << elements) - 1; 8290 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8291 (is_q ? 128 : 64), vmap, fpst); 8292 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8293 } 8294 8295 /* Now truncate the result to the width required for the final output */ 8296 if (opcode == 0x03) { 8297 /* SADDLV, UADDLV: result is 2*esize */ 8298 size++; 8299 } 8300 8301 switch (size) { 8302 case 0: 8303 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8304 break; 8305 case 1: 8306 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8307 break; 8308 case 2: 8309 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8310 break; 8311 case 3: 8312 break; 8313 default: 8314 g_assert_not_reached(); 8315 } 8316 8317 write_fp_dreg(s, rd, tcg_res); 8318 } 8319 8320 /* AdvSIMD modified immediate 8321 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8322 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8323 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8324 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8325 * 8326 * There are a number of operations that can be carried out here: 8327 * MOVI - move (shifted) imm into register 8328 * MVNI - move inverted (shifted) imm into register 8329 * ORR - bitwise OR of (shifted) imm with register 8330 * BIC - bitwise clear of (shifted) imm with register 8331 * With ARMv8.2 we also have: 8332 * FMOV half-precision 8333 */ 8334 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8335 { 8336 int rd = extract32(insn, 0, 5); 8337 int cmode = extract32(insn, 12, 4); 8338 int o2 = extract32(insn, 11, 1); 8339 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8340 bool is_neg = extract32(insn, 29, 1); 8341 bool is_q = extract32(insn, 30, 1); 8342 uint64_t imm = 0; 8343 8344 if (o2) { 8345 if (cmode != 0xf || is_neg) { 8346 unallocated_encoding(s); 8347 return; 8348 } 8349 /* FMOV (vector, immediate) - half-precision */ 8350 if (!dc_isar_feature(aa64_fp16, s)) { 8351 unallocated_encoding(s); 8352 return; 8353 } 8354 imm = vfp_expand_imm(MO_16, abcdefgh); 8355 /* now duplicate across the lanes */ 8356 imm = dup_const(MO_16, imm); 8357 } else { 8358 if (cmode == 0xf && is_neg && !is_q) { 8359 unallocated_encoding(s); 8360 return; 8361 } 8362 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8363 } 8364 8365 if (!fp_access_check(s)) { 8366 return; 8367 } 8368 8369 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8370 /* MOVI or MVNI, with MVNI negation handled above. */ 8371 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8372 vec_full_reg_size(s), imm); 8373 } else { 8374 /* ORR or BIC, with BIC negation to AND handled above. */ 8375 if (is_neg) { 8376 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8377 } else { 8378 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8379 } 8380 } 8381 } 8382 8383 /* AdvSIMD scalar pairwise 8384 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8385 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8386 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8387 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8388 */ 8389 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8390 { 8391 int u = extract32(insn, 29, 1); 8392 int size = extract32(insn, 22, 2); 8393 int opcode = extract32(insn, 12, 5); 8394 int rn = extract32(insn, 5, 5); 8395 int rd = extract32(insn, 0, 5); 8396 TCGv_ptr fpst; 8397 8398 /* For some ops (the FP ones), size[1] is part of the encoding. 8399 * For ADDP strictly it is not but size[1] is always 1 for valid 8400 * encodings. 8401 */ 8402 opcode |= (extract32(size, 1, 1) << 5); 8403 8404 switch (opcode) { 8405 case 0x3b: /* ADDP */ 8406 if (u || size != 3) { 8407 unallocated_encoding(s); 8408 return; 8409 } 8410 if (!fp_access_check(s)) { 8411 return; 8412 } 8413 8414 fpst = NULL; 8415 break; 8416 case 0xc: /* FMAXNMP */ 8417 case 0xf: /* FMAXP */ 8418 case 0x2c: /* FMINNMP */ 8419 case 0x2f: /* FMINP */ 8420 /* FP op, size[0] is 32 or 64 bit*/ 8421 if (!u) { 8422 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8423 unallocated_encoding(s); 8424 return; 8425 } else { 8426 size = MO_16; 8427 } 8428 } else { 8429 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8430 } 8431 8432 if (!fp_access_check(s)) { 8433 return; 8434 } 8435 8436 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8437 break; 8438 default: 8439 case 0xd: /* FADDP */ 8440 unallocated_encoding(s); 8441 return; 8442 } 8443 8444 if (size == MO_64) { 8445 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8446 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8447 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8448 8449 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8450 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8451 8452 switch (opcode) { 8453 case 0x3b: /* ADDP */ 8454 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8455 break; 8456 case 0xc: /* FMAXNMP */ 8457 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8458 break; 8459 case 0xf: /* FMAXP */ 8460 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8461 break; 8462 case 0x2c: /* FMINNMP */ 8463 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8464 break; 8465 case 0x2f: /* FMINP */ 8466 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8467 break; 8468 default: 8469 case 0xd: /* FADDP */ 8470 g_assert_not_reached(); 8471 } 8472 8473 write_fp_dreg(s, rd, tcg_res); 8474 } else { 8475 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8476 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8477 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8478 8479 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8480 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8481 8482 if (size == MO_16) { 8483 switch (opcode) { 8484 case 0xc: /* FMAXNMP */ 8485 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8486 break; 8487 case 0xf: /* FMAXP */ 8488 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8489 break; 8490 case 0x2c: /* FMINNMP */ 8491 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8492 break; 8493 case 0x2f: /* FMINP */ 8494 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8495 break; 8496 default: 8497 case 0xd: /* FADDP */ 8498 g_assert_not_reached(); 8499 } 8500 } else { 8501 switch (opcode) { 8502 case 0xc: /* FMAXNMP */ 8503 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8504 break; 8505 case 0xf: /* FMAXP */ 8506 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8507 break; 8508 case 0x2c: /* FMINNMP */ 8509 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8510 break; 8511 case 0x2f: /* FMINP */ 8512 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8513 break; 8514 default: 8515 case 0xd: /* FADDP */ 8516 g_assert_not_reached(); 8517 } 8518 } 8519 8520 write_fp_sreg(s, rd, tcg_res); 8521 } 8522 } 8523 8524 /* 8525 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8526 * 8527 * This code is handles the common shifting code and is used by both 8528 * the vector and scalar code. 8529 */ 8530 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8531 TCGv_i64 tcg_rnd, bool accumulate, 8532 bool is_u, int size, int shift) 8533 { 8534 bool extended_result = false; 8535 bool round = tcg_rnd != NULL; 8536 int ext_lshift = 0; 8537 TCGv_i64 tcg_src_hi; 8538 8539 if (round && size == 3) { 8540 extended_result = true; 8541 ext_lshift = 64 - shift; 8542 tcg_src_hi = tcg_temp_new_i64(); 8543 } else if (shift == 64) { 8544 if (!accumulate && is_u) { 8545 /* result is zero */ 8546 tcg_gen_movi_i64(tcg_res, 0); 8547 return; 8548 } 8549 } 8550 8551 /* Deal with the rounding step */ 8552 if (round) { 8553 if (extended_result) { 8554 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8555 if (!is_u) { 8556 /* take care of sign extending tcg_res */ 8557 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8558 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8559 tcg_src, tcg_src_hi, 8560 tcg_rnd, tcg_zero); 8561 } else { 8562 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8563 tcg_src, tcg_zero, 8564 tcg_rnd, tcg_zero); 8565 } 8566 } else { 8567 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8568 } 8569 } 8570 8571 /* Now do the shift right */ 8572 if (round && extended_result) { 8573 /* extended case, >64 bit precision required */ 8574 if (ext_lshift == 0) { 8575 /* special case, only high bits matter */ 8576 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8577 } else { 8578 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8579 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8580 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8581 } 8582 } else { 8583 if (is_u) { 8584 if (shift == 64) { 8585 /* essentially shifting in 64 zeros */ 8586 tcg_gen_movi_i64(tcg_src, 0); 8587 } else { 8588 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8589 } 8590 } else { 8591 if (shift == 64) { 8592 /* effectively extending the sign-bit */ 8593 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8594 } else { 8595 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8596 } 8597 } 8598 } 8599 8600 if (accumulate) { 8601 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8602 } else { 8603 tcg_gen_mov_i64(tcg_res, tcg_src); 8604 } 8605 } 8606 8607 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8608 static void handle_scalar_simd_shri(DisasContext *s, 8609 bool is_u, int immh, int immb, 8610 int opcode, int rn, int rd) 8611 { 8612 const int size = 3; 8613 int immhb = immh << 3 | immb; 8614 int shift = 2 * (8 << size) - immhb; 8615 bool accumulate = false; 8616 bool round = false; 8617 bool insert = false; 8618 TCGv_i64 tcg_rn; 8619 TCGv_i64 tcg_rd; 8620 TCGv_i64 tcg_round; 8621 8622 if (!extract32(immh, 3, 1)) { 8623 unallocated_encoding(s); 8624 return; 8625 } 8626 8627 if (!fp_access_check(s)) { 8628 return; 8629 } 8630 8631 switch (opcode) { 8632 case 0x02: /* SSRA / USRA (accumulate) */ 8633 accumulate = true; 8634 break; 8635 case 0x04: /* SRSHR / URSHR (rounding) */ 8636 round = true; 8637 break; 8638 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8639 accumulate = round = true; 8640 break; 8641 case 0x08: /* SRI */ 8642 insert = true; 8643 break; 8644 } 8645 8646 if (round) { 8647 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8648 } else { 8649 tcg_round = NULL; 8650 } 8651 8652 tcg_rn = read_fp_dreg(s, rn); 8653 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8654 8655 if (insert) { 8656 /* shift count same as element size is valid but does nothing; 8657 * special case to avoid potential shift by 64. 8658 */ 8659 int esize = 8 << size; 8660 if (shift != esize) { 8661 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8662 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8663 } 8664 } else { 8665 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8666 accumulate, is_u, size, shift); 8667 } 8668 8669 write_fp_dreg(s, rd, tcg_rd); 8670 } 8671 8672 /* SHL/SLI - Scalar shift left */ 8673 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8674 int immh, int immb, int opcode, 8675 int rn, int rd) 8676 { 8677 int size = 32 - clz32(immh) - 1; 8678 int immhb = immh << 3 | immb; 8679 int shift = immhb - (8 << size); 8680 TCGv_i64 tcg_rn; 8681 TCGv_i64 tcg_rd; 8682 8683 if (!extract32(immh, 3, 1)) { 8684 unallocated_encoding(s); 8685 return; 8686 } 8687 8688 if (!fp_access_check(s)) { 8689 return; 8690 } 8691 8692 tcg_rn = read_fp_dreg(s, rn); 8693 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8694 8695 if (insert) { 8696 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8697 } else { 8698 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8699 } 8700 8701 write_fp_dreg(s, rd, tcg_rd); 8702 } 8703 8704 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8705 * (signed/unsigned) narrowing */ 8706 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8707 bool is_u_shift, bool is_u_narrow, 8708 int immh, int immb, int opcode, 8709 int rn, int rd) 8710 { 8711 int immhb = immh << 3 | immb; 8712 int size = 32 - clz32(immh) - 1; 8713 int esize = 8 << size; 8714 int shift = (2 * esize) - immhb; 8715 int elements = is_scalar ? 1 : (64 / esize); 8716 bool round = extract32(opcode, 0, 1); 8717 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8718 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8719 TCGv_i32 tcg_rd_narrowed; 8720 TCGv_i64 tcg_final; 8721 8722 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8723 { gen_helper_neon_narrow_sat_s8, 8724 gen_helper_neon_unarrow_sat8 }, 8725 { gen_helper_neon_narrow_sat_s16, 8726 gen_helper_neon_unarrow_sat16 }, 8727 { gen_helper_neon_narrow_sat_s32, 8728 gen_helper_neon_unarrow_sat32 }, 8729 { NULL, NULL }, 8730 }; 8731 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8732 gen_helper_neon_narrow_sat_u8, 8733 gen_helper_neon_narrow_sat_u16, 8734 gen_helper_neon_narrow_sat_u32, 8735 NULL 8736 }; 8737 NeonGenNarrowEnvFn *narrowfn; 8738 8739 int i; 8740 8741 assert(size < 4); 8742 8743 if (extract32(immh, 3, 1)) { 8744 unallocated_encoding(s); 8745 return; 8746 } 8747 8748 if (!fp_access_check(s)) { 8749 return; 8750 } 8751 8752 if (is_u_shift) { 8753 narrowfn = unsigned_narrow_fns[size]; 8754 } else { 8755 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8756 } 8757 8758 tcg_rn = tcg_temp_new_i64(); 8759 tcg_rd = tcg_temp_new_i64(); 8760 tcg_rd_narrowed = tcg_temp_new_i32(); 8761 tcg_final = tcg_temp_new_i64(); 8762 8763 if (round) { 8764 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8765 } else { 8766 tcg_round = NULL; 8767 } 8768 8769 for (i = 0; i < elements; i++) { 8770 read_vec_element(s, tcg_rn, rn, i, ldop); 8771 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8772 false, is_u_shift, size+1, shift); 8773 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8774 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8775 if (i == 0) { 8776 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8777 } else { 8778 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8779 } 8780 } 8781 8782 if (!is_q) { 8783 write_vec_element(s, tcg_final, rd, 0, MO_64); 8784 } else { 8785 write_vec_element(s, tcg_final, rd, 1, MO_64); 8786 } 8787 clear_vec_high(s, is_q, rd); 8788 } 8789 8790 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8791 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8792 bool src_unsigned, bool dst_unsigned, 8793 int immh, int immb, int rn, int rd) 8794 { 8795 int immhb = immh << 3 | immb; 8796 int size = 32 - clz32(immh) - 1; 8797 int shift = immhb - (8 << size); 8798 int pass; 8799 8800 assert(immh != 0); 8801 assert(!(scalar && is_q)); 8802 8803 if (!scalar) { 8804 if (!is_q && extract32(immh, 3, 1)) { 8805 unallocated_encoding(s); 8806 return; 8807 } 8808 8809 /* Since we use the variable-shift helpers we must 8810 * replicate the shift count into each element of 8811 * the tcg_shift value. 8812 */ 8813 switch (size) { 8814 case 0: 8815 shift |= shift << 8; 8816 /* fall through */ 8817 case 1: 8818 shift |= shift << 16; 8819 break; 8820 case 2: 8821 case 3: 8822 break; 8823 default: 8824 g_assert_not_reached(); 8825 } 8826 } 8827 8828 if (!fp_access_check(s)) { 8829 return; 8830 } 8831 8832 if (size == 3) { 8833 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8834 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8835 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8836 { NULL, gen_helper_neon_qshl_u64 }, 8837 }; 8838 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8839 int maxpass = is_q ? 2 : 1; 8840 8841 for (pass = 0; pass < maxpass; pass++) { 8842 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8843 8844 read_vec_element(s, tcg_op, rn, pass, MO_64); 8845 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8846 write_vec_element(s, tcg_op, rd, pass, MO_64); 8847 } 8848 clear_vec_high(s, is_q, rd); 8849 } else { 8850 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8851 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8852 { 8853 { gen_helper_neon_qshl_s8, 8854 gen_helper_neon_qshl_s16, 8855 gen_helper_neon_qshl_s32 }, 8856 { gen_helper_neon_qshlu_s8, 8857 gen_helper_neon_qshlu_s16, 8858 gen_helper_neon_qshlu_s32 } 8859 }, { 8860 { NULL, NULL, NULL }, 8861 { gen_helper_neon_qshl_u8, 8862 gen_helper_neon_qshl_u16, 8863 gen_helper_neon_qshl_u32 } 8864 } 8865 }; 8866 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8867 MemOp memop = scalar ? size : MO_32; 8868 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8869 8870 for (pass = 0; pass < maxpass; pass++) { 8871 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8872 8873 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8874 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8875 if (scalar) { 8876 switch (size) { 8877 case 0: 8878 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8879 break; 8880 case 1: 8881 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8882 break; 8883 case 2: 8884 break; 8885 default: 8886 g_assert_not_reached(); 8887 } 8888 write_fp_sreg(s, rd, tcg_op); 8889 } else { 8890 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8891 } 8892 } 8893 8894 if (!scalar) { 8895 clear_vec_high(s, is_q, rd); 8896 } 8897 } 8898 } 8899 8900 /* Common vector code for handling integer to FP conversion */ 8901 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8902 int elements, int is_signed, 8903 int fracbits, int size) 8904 { 8905 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8906 TCGv_i32 tcg_shift = NULL; 8907 8908 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8909 int pass; 8910 8911 if (fracbits || size == MO_64) { 8912 tcg_shift = tcg_constant_i32(fracbits); 8913 } 8914 8915 if (size == MO_64) { 8916 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8917 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8918 8919 for (pass = 0; pass < elements; pass++) { 8920 read_vec_element(s, tcg_int64, rn, pass, mop); 8921 8922 if (is_signed) { 8923 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8924 tcg_shift, tcg_fpst); 8925 } else { 8926 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8927 tcg_shift, tcg_fpst); 8928 } 8929 if (elements == 1) { 8930 write_fp_dreg(s, rd, tcg_double); 8931 } else { 8932 write_vec_element(s, tcg_double, rd, pass, MO_64); 8933 } 8934 } 8935 } else { 8936 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8937 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8938 8939 for (pass = 0; pass < elements; pass++) { 8940 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8941 8942 switch (size) { 8943 case MO_32: 8944 if (fracbits) { 8945 if (is_signed) { 8946 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8947 tcg_shift, tcg_fpst); 8948 } else { 8949 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8950 tcg_shift, tcg_fpst); 8951 } 8952 } else { 8953 if (is_signed) { 8954 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8955 } else { 8956 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8957 } 8958 } 8959 break; 8960 case MO_16: 8961 if (fracbits) { 8962 if (is_signed) { 8963 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8964 tcg_shift, tcg_fpst); 8965 } else { 8966 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8967 tcg_shift, tcg_fpst); 8968 } 8969 } else { 8970 if (is_signed) { 8971 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8972 } else { 8973 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8974 } 8975 } 8976 break; 8977 default: 8978 g_assert_not_reached(); 8979 } 8980 8981 if (elements == 1) { 8982 write_fp_sreg(s, rd, tcg_float); 8983 } else { 8984 write_vec_element_i32(s, tcg_float, rd, pass, size); 8985 } 8986 } 8987 } 8988 8989 clear_vec_high(s, elements << size == 16, rd); 8990 } 8991 8992 /* UCVTF/SCVTF - Integer to FP conversion */ 8993 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8994 bool is_q, bool is_u, 8995 int immh, int immb, int opcode, 8996 int rn, int rd) 8997 { 8998 int size, elements, fracbits; 8999 int immhb = immh << 3 | immb; 9000 9001 if (immh & 8) { 9002 size = MO_64; 9003 if (!is_scalar && !is_q) { 9004 unallocated_encoding(s); 9005 return; 9006 } 9007 } else if (immh & 4) { 9008 size = MO_32; 9009 } else if (immh & 2) { 9010 size = MO_16; 9011 if (!dc_isar_feature(aa64_fp16, s)) { 9012 unallocated_encoding(s); 9013 return; 9014 } 9015 } else { 9016 /* immh == 0 would be a failure of the decode logic */ 9017 g_assert(immh == 1); 9018 unallocated_encoding(s); 9019 return; 9020 } 9021 9022 if (is_scalar) { 9023 elements = 1; 9024 } else { 9025 elements = (8 << is_q) >> size; 9026 } 9027 fracbits = (16 << size) - immhb; 9028 9029 if (!fp_access_check(s)) { 9030 return; 9031 } 9032 9033 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 9034 } 9035 9036 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 9037 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 9038 bool is_q, bool is_u, 9039 int immh, int immb, int rn, int rd) 9040 { 9041 int immhb = immh << 3 | immb; 9042 int pass, size, fracbits; 9043 TCGv_ptr tcg_fpstatus; 9044 TCGv_i32 tcg_rmode, tcg_shift; 9045 9046 if (immh & 0x8) { 9047 size = MO_64; 9048 if (!is_scalar && !is_q) { 9049 unallocated_encoding(s); 9050 return; 9051 } 9052 } else if (immh & 0x4) { 9053 size = MO_32; 9054 } else if (immh & 0x2) { 9055 size = MO_16; 9056 if (!dc_isar_feature(aa64_fp16, s)) { 9057 unallocated_encoding(s); 9058 return; 9059 } 9060 } else { 9061 /* Should have split out AdvSIMD modified immediate earlier. */ 9062 assert(immh == 1); 9063 unallocated_encoding(s); 9064 return; 9065 } 9066 9067 if (!fp_access_check(s)) { 9068 return; 9069 } 9070 9071 assert(!(is_scalar && is_q)); 9072 9073 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9074 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 9075 fracbits = (16 << size) - immhb; 9076 tcg_shift = tcg_constant_i32(fracbits); 9077 9078 if (size == MO_64) { 9079 int maxpass = is_scalar ? 1 : 2; 9080 9081 for (pass = 0; pass < maxpass; pass++) { 9082 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9083 9084 read_vec_element(s, tcg_op, rn, pass, MO_64); 9085 if (is_u) { 9086 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9087 } else { 9088 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9089 } 9090 write_vec_element(s, tcg_op, rd, pass, MO_64); 9091 } 9092 clear_vec_high(s, is_q, rd); 9093 } else { 9094 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 9095 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 9096 9097 switch (size) { 9098 case MO_16: 9099 if (is_u) { 9100 fn = gen_helper_vfp_touhh; 9101 } else { 9102 fn = gen_helper_vfp_toshh; 9103 } 9104 break; 9105 case MO_32: 9106 if (is_u) { 9107 fn = gen_helper_vfp_touls; 9108 } else { 9109 fn = gen_helper_vfp_tosls; 9110 } 9111 break; 9112 default: 9113 g_assert_not_reached(); 9114 } 9115 9116 for (pass = 0; pass < maxpass; pass++) { 9117 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9118 9119 read_vec_element_i32(s, tcg_op, rn, pass, size); 9120 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9121 if (is_scalar) { 9122 if (size == MO_16 && !is_u) { 9123 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9124 } 9125 write_fp_sreg(s, rd, tcg_op); 9126 } else { 9127 write_vec_element_i32(s, tcg_op, rd, pass, size); 9128 } 9129 } 9130 if (!is_scalar) { 9131 clear_vec_high(s, is_q, rd); 9132 } 9133 } 9134 9135 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9136 } 9137 9138 /* AdvSIMD scalar shift by immediate 9139 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9140 * +-----+---+-------------+------+------+--------+---+------+------+ 9141 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9142 * +-----+---+-------------+------+------+--------+---+------+------+ 9143 * 9144 * This is the scalar version so it works on a fixed sized registers 9145 */ 9146 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9147 { 9148 int rd = extract32(insn, 0, 5); 9149 int rn = extract32(insn, 5, 5); 9150 int opcode = extract32(insn, 11, 5); 9151 int immb = extract32(insn, 16, 3); 9152 int immh = extract32(insn, 19, 4); 9153 bool is_u = extract32(insn, 29, 1); 9154 9155 if (immh == 0) { 9156 unallocated_encoding(s); 9157 return; 9158 } 9159 9160 switch (opcode) { 9161 case 0x08: /* SRI */ 9162 if (!is_u) { 9163 unallocated_encoding(s); 9164 return; 9165 } 9166 /* fall through */ 9167 case 0x00: /* SSHR / USHR */ 9168 case 0x02: /* SSRA / USRA */ 9169 case 0x04: /* SRSHR / URSHR */ 9170 case 0x06: /* SRSRA / URSRA */ 9171 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9172 break; 9173 case 0x0a: /* SHL / SLI */ 9174 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9175 break; 9176 case 0x1c: /* SCVTF, UCVTF */ 9177 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9178 opcode, rn, rd); 9179 break; 9180 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9181 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9182 if (!is_u) { 9183 unallocated_encoding(s); 9184 return; 9185 } 9186 handle_vec_simd_sqshrn(s, true, false, false, true, 9187 immh, immb, opcode, rn, rd); 9188 break; 9189 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9190 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9191 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9192 immh, immb, opcode, rn, rd); 9193 break; 9194 case 0xc: /* SQSHLU */ 9195 if (!is_u) { 9196 unallocated_encoding(s); 9197 return; 9198 } 9199 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9200 break; 9201 case 0xe: /* SQSHL, UQSHL */ 9202 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9203 break; 9204 case 0x1f: /* FCVTZS, FCVTZU */ 9205 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9206 break; 9207 default: 9208 unallocated_encoding(s); 9209 break; 9210 } 9211 } 9212 9213 /* AdvSIMD scalar three different 9214 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9215 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9216 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9217 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9218 */ 9219 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9220 { 9221 bool is_u = extract32(insn, 29, 1); 9222 int size = extract32(insn, 22, 2); 9223 int opcode = extract32(insn, 12, 4); 9224 int rm = extract32(insn, 16, 5); 9225 int rn = extract32(insn, 5, 5); 9226 int rd = extract32(insn, 0, 5); 9227 9228 if (is_u) { 9229 unallocated_encoding(s); 9230 return; 9231 } 9232 9233 switch (opcode) { 9234 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9235 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9236 case 0xd: /* SQDMULL, SQDMULL2 */ 9237 if (size == 0 || size == 3) { 9238 unallocated_encoding(s); 9239 return; 9240 } 9241 break; 9242 default: 9243 unallocated_encoding(s); 9244 return; 9245 } 9246 9247 if (!fp_access_check(s)) { 9248 return; 9249 } 9250 9251 if (size == 2) { 9252 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9253 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9254 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9255 9256 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9257 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9258 9259 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9260 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9261 9262 switch (opcode) { 9263 case 0xd: /* SQDMULL, SQDMULL2 */ 9264 break; 9265 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9266 tcg_gen_neg_i64(tcg_res, tcg_res); 9267 /* fall through */ 9268 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9269 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9270 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9271 tcg_res, tcg_op1); 9272 break; 9273 default: 9274 g_assert_not_reached(); 9275 } 9276 9277 write_fp_dreg(s, rd, tcg_res); 9278 } else { 9279 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9280 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9281 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9282 9283 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9284 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9285 9286 switch (opcode) { 9287 case 0xd: /* SQDMULL, SQDMULL2 */ 9288 break; 9289 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9290 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9291 /* fall through */ 9292 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9293 { 9294 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9295 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9296 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9297 tcg_res, tcg_op3); 9298 break; 9299 } 9300 default: 9301 g_assert_not_reached(); 9302 } 9303 9304 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9305 write_fp_dreg(s, rd, tcg_res); 9306 } 9307 } 9308 9309 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9310 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9311 { 9312 /* Handle 64x64->64 opcodes which are shared between the scalar 9313 * and vector 3-same groups. We cover every opcode where size == 3 9314 * is valid in either the three-reg-same (integer, not pairwise) 9315 * or scalar-three-reg-same groups. 9316 */ 9317 TCGCond cond; 9318 9319 switch (opcode) { 9320 case 0x1: /* SQADD */ 9321 if (u) { 9322 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9323 } else { 9324 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9325 } 9326 break; 9327 case 0x5: /* SQSUB */ 9328 if (u) { 9329 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9330 } else { 9331 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9332 } 9333 break; 9334 case 0x6: /* CMGT, CMHI */ 9335 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9336 do_cmop: 9337 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9338 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9339 break; 9340 case 0x7: /* CMGE, CMHS */ 9341 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9342 goto do_cmop; 9343 case 0x11: /* CMTST, CMEQ */ 9344 if (u) { 9345 cond = TCG_COND_EQ; 9346 goto do_cmop; 9347 } 9348 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9349 break; 9350 case 0x8: /* SSHL, USHL */ 9351 if (u) { 9352 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9353 } else { 9354 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9355 } 9356 break; 9357 case 0x9: /* SQSHL, UQSHL */ 9358 if (u) { 9359 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9360 } else { 9361 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9362 } 9363 break; 9364 case 0xa: /* SRSHL, URSHL */ 9365 if (u) { 9366 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9367 } else { 9368 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9369 } 9370 break; 9371 case 0xb: /* SQRSHL, UQRSHL */ 9372 if (u) { 9373 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9374 } else { 9375 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9376 } 9377 break; 9378 case 0x10: /* ADD, SUB */ 9379 if (u) { 9380 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9381 } else { 9382 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9383 } 9384 break; 9385 default: 9386 g_assert_not_reached(); 9387 } 9388 } 9389 9390 /* AdvSIMD scalar three same 9391 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9392 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9393 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9394 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9395 */ 9396 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9397 { 9398 int rd = extract32(insn, 0, 5); 9399 int rn = extract32(insn, 5, 5); 9400 int opcode = extract32(insn, 11, 5); 9401 int rm = extract32(insn, 16, 5); 9402 int size = extract32(insn, 22, 2); 9403 bool u = extract32(insn, 29, 1); 9404 TCGv_i64 tcg_rd; 9405 9406 switch (opcode) { 9407 case 0x1: /* SQADD, UQADD */ 9408 case 0x5: /* SQSUB, UQSUB */ 9409 case 0x9: /* SQSHL, UQSHL */ 9410 case 0xb: /* SQRSHL, UQRSHL */ 9411 break; 9412 case 0x8: /* SSHL, USHL */ 9413 case 0xa: /* SRSHL, URSHL */ 9414 case 0x6: /* CMGT, CMHI */ 9415 case 0x7: /* CMGE, CMHS */ 9416 case 0x11: /* CMTST, CMEQ */ 9417 case 0x10: /* ADD, SUB (vector) */ 9418 if (size != 3) { 9419 unallocated_encoding(s); 9420 return; 9421 } 9422 break; 9423 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9424 if (size != 1 && size != 2) { 9425 unallocated_encoding(s); 9426 return; 9427 } 9428 break; 9429 default: 9430 unallocated_encoding(s); 9431 return; 9432 } 9433 9434 if (!fp_access_check(s)) { 9435 return; 9436 } 9437 9438 tcg_rd = tcg_temp_new_i64(); 9439 9440 if (size == 3) { 9441 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9442 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9443 9444 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9445 } else { 9446 /* Do a single operation on the lowest element in the vector. 9447 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9448 * no side effects for all these operations. 9449 * OPTME: special-purpose helpers would avoid doing some 9450 * unnecessary work in the helper for the 8 and 16 bit cases. 9451 */ 9452 NeonGenTwoOpEnvFn *genenvfn; 9453 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9454 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9455 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9456 9457 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9458 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9459 9460 switch (opcode) { 9461 case 0x1: /* SQADD, UQADD */ 9462 { 9463 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9464 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9465 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9466 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9467 }; 9468 genenvfn = fns[size][u]; 9469 break; 9470 } 9471 case 0x5: /* SQSUB, UQSUB */ 9472 { 9473 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9474 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9475 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9476 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9477 }; 9478 genenvfn = fns[size][u]; 9479 break; 9480 } 9481 case 0x9: /* SQSHL, UQSHL */ 9482 { 9483 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9484 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9485 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9486 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9487 }; 9488 genenvfn = fns[size][u]; 9489 break; 9490 } 9491 case 0xb: /* SQRSHL, UQRSHL */ 9492 { 9493 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9494 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9495 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9496 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9497 }; 9498 genenvfn = fns[size][u]; 9499 break; 9500 } 9501 case 0x16: /* SQDMULH, SQRDMULH */ 9502 { 9503 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9504 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9505 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9506 }; 9507 assert(size == 1 || size == 2); 9508 genenvfn = fns[size - 1][u]; 9509 break; 9510 } 9511 default: 9512 g_assert_not_reached(); 9513 } 9514 9515 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9516 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9517 } 9518 9519 write_fp_dreg(s, rd, tcg_rd); 9520 } 9521 9522 /* AdvSIMD scalar three same extra 9523 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9524 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9525 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9526 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9527 */ 9528 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9529 uint32_t insn) 9530 { 9531 int rd = extract32(insn, 0, 5); 9532 int rn = extract32(insn, 5, 5); 9533 int opcode = extract32(insn, 11, 4); 9534 int rm = extract32(insn, 16, 5); 9535 int size = extract32(insn, 22, 2); 9536 bool u = extract32(insn, 29, 1); 9537 TCGv_i32 ele1, ele2, ele3; 9538 TCGv_i64 res; 9539 bool feature; 9540 9541 switch (u * 16 + opcode) { 9542 case 0x10: /* SQRDMLAH (vector) */ 9543 case 0x11: /* SQRDMLSH (vector) */ 9544 if (size != 1 && size != 2) { 9545 unallocated_encoding(s); 9546 return; 9547 } 9548 feature = dc_isar_feature(aa64_rdm, s); 9549 break; 9550 default: 9551 unallocated_encoding(s); 9552 return; 9553 } 9554 if (!feature) { 9555 unallocated_encoding(s); 9556 return; 9557 } 9558 if (!fp_access_check(s)) { 9559 return; 9560 } 9561 9562 /* Do a single operation on the lowest element in the vector. 9563 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9564 * with no side effects for all these operations. 9565 * OPTME: special-purpose helpers would avoid doing some 9566 * unnecessary work in the helper for the 16 bit cases. 9567 */ 9568 ele1 = tcg_temp_new_i32(); 9569 ele2 = tcg_temp_new_i32(); 9570 ele3 = tcg_temp_new_i32(); 9571 9572 read_vec_element_i32(s, ele1, rn, 0, size); 9573 read_vec_element_i32(s, ele2, rm, 0, size); 9574 read_vec_element_i32(s, ele3, rd, 0, size); 9575 9576 switch (opcode) { 9577 case 0x0: /* SQRDMLAH */ 9578 if (size == 1) { 9579 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9580 } else { 9581 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9582 } 9583 break; 9584 case 0x1: /* SQRDMLSH */ 9585 if (size == 1) { 9586 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9587 } else { 9588 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9589 } 9590 break; 9591 default: 9592 g_assert_not_reached(); 9593 } 9594 9595 res = tcg_temp_new_i64(); 9596 tcg_gen_extu_i32_i64(res, ele3); 9597 write_fp_dreg(s, rd, res); 9598 } 9599 9600 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9601 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9602 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9603 { 9604 /* Handle 64->64 opcodes which are shared between the scalar and 9605 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9606 * is valid in either group and also the double-precision fp ops. 9607 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9608 * requires them. 9609 */ 9610 TCGCond cond; 9611 9612 switch (opcode) { 9613 case 0x4: /* CLS, CLZ */ 9614 if (u) { 9615 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9616 } else { 9617 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9618 } 9619 break; 9620 case 0x5: /* NOT */ 9621 /* This opcode is shared with CNT and RBIT but we have earlier 9622 * enforced that size == 3 if and only if this is the NOT insn. 9623 */ 9624 tcg_gen_not_i64(tcg_rd, tcg_rn); 9625 break; 9626 case 0x7: /* SQABS, SQNEG */ 9627 if (u) { 9628 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9629 } else { 9630 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9631 } 9632 break; 9633 case 0xa: /* CMLT */ 9634 cond = TCG_COND_LT; 9635 do_cmop: 9636 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9637 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9638 break; 9639 case 0x8: /* CMGT, CMGE */ 9640 cond = u ? TCG_COND_GE : TCG_COND_GT; 9641 goto do_cmop; 9642 case 0x9: /* CMEQ, CMLE */ 9643 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9644 goto do_cmop; 9645 case 0xb: /* ABS, NEG */ 9646 if (u) { 9647 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9648 } else { 9649 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9650 } 9651 break; 9652 case 0x2f: /* FABS */ 9653 gen_vfp_absd(tcg_rd, tcg_rn); 9654 break; 9655 case 0x6f: /* FNEG */ 9656 gen_vfp_negd(tcg_rd, tcg_rn); 9657 break; 9658 case 0x7f: /* FSQRT */ 9659 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9660 break; 9661 case 0x1a: /* FCVTNS */ 9662 case 0x1b: /* FCVTMS */ 9663 case 0x1c: /* FCVTAS */ 9664 case 0x3a: /* FCVTPS */ 9665 case 0x3b: /* FCVTZS */ 9666 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9667 break; 9668 case 0x5a: /* FCVTNU */ 9669 case 0x5b: /* FCVTMU */ 9670 case 0x5c: /* FCVTAU */ 9671 case 0x7a: /* FCVTPU */ 9672 case 0x7b: /* FCVTZU */ 9673 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9674 break; 9675 case 0x18: /* FRINTN */ 9676 case 0x19: /* FRINTM */ 9677 case 0x38: /* FRINTP */ 9678 case 0x39: /* FRINTZ */ 9679 case 0x58: /* FRINTA */ 9680 case 0x79: /* FRINTI */ 9681 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9682 break; 9683 case 0x59: /* FRINTX */ 9684 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9685 break; 9686 case 0x1e: /* FRINT32Z */ 9687 case 0x5e: /* FRINT32X */ 9688 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9689 break; 9690 case 0x1f: /* FRINT64Z */ 9691 case 0x5f: /* FRINT64X */ 9692 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9693 break; 9694 default: 9695 g_assert_not_reached(); 9696 } 9697 } 9698 9699 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9700 bool is_scalar, bool is_u, bool is_q, 9701 int size, int rn, int rd) 9702 { 9703 bool is_double = (size == MO_64); 9704 TCGv_ptr fpst; 9705 9706 if (!fp_access_check(s)) { 9707 return; 9708 } 9709 9710 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9711 9712 if (is_double) { 9713 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9714 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9715 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9716 NeonGenTwoDoubleOpFn *genfn; 9717 bool swap = false; 9718 int pass; 9719 9720 switch (opcode) { 9721 case 0x2e: /* FCMLT (zero) */ 9722 swap = true; 9723 /* fallthrough */ 9724 case 0x2c: /* FCMGT (zero) */ 9725 genfn = gen_helper_neon_cgt_f64; 9726 break; 9727 case 0x2d: /* FCMEQ (zero) */ 9728 genfn = gen_helper_neon_ceq_f64; 9729 break; 9730 case 0x6d: /* FCMLE (zero) */ 9731 swap = true; 9732 /* fall through */ 9733 case 0x6c: /* FCMGE (zero) */ 9734 genfn = gen_helper_neon_cge_f64; 9735 break; 9736 default: 9737 g_assert_not_reached(); 9738 } 9739 9740 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9741 read_vec_element(s, tcg_op, rn, pass, MO_64); 9742 if (swap) { 9743 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9744 } else { 9745 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9746 } 9747 write_vec_element(s, tcg_res, rd, pass, MO_64); 9748 } 9749 9750 clear_vec_high(s, !is_scalar, rd); 9751 } else { 9752 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9753 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9754 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9755 NeonGenTwoSingleOpFn *genfn; 9756 bool swap = false; 9757 int pass, maxpasses; 9758 9759 if (size == MO_16) { 9760 switch (opcode) { 9761 case 0x2e: /* FCMLT (zero) */ 9762 swap = true; 9763 /* fall through */ 9764 case 0x2c: /* FCMGT (zero) */ 9765 genfn = gen_helper_advsimd_cgt_f16; 9766 break; 9767 case 0x2d: /* FCMEQ (zero) */ 9768 genfn = gen_helper_advsimd_ceq_f16; 9769 break; 9770 case 0x6d: /* FCMLE (zero) */ 9771 swap = true; 9772 /* fall through */ 9773 case 0x6c: /* FCMGE (zero) */ 9774 genfn = gen_helper_advsimd_cge_f16; 9775 break; 9776 default: 9777 g_assert_not_reached(); 9778 } 9779 } else { 9780 switch (opcode) { 9781 case 0x2e: /* FCMLT (zero) */ 9782 swap = true; 9783 /* fall through */ 9784 case 0x2c: /* FCMGT (zero) */ 9785 genfn = gen_helper_neon_cgt_f32; 9786 break; 9787 case 0x2d: /* FCMEQ (zero) */ 9788 genfn = gen_helper_neon_ceq_f32; 9789 break; 9790 case 0x6d: /* FCMLE (zero) */ 9791 swap = true; 9792 /* fall through */ 9793 case 0x6c: /* FCMGE (zero) */ 9794 genfn = gen_helper_neon_cge_f32; 9795 break; 9796 default: 9797 g_assert_not_reached(); 9798 } 9799 } 9800 9801 if (is_scalar) { 9802 maxpasses = 1; 9803 } else { 9804 int vector_size = 8 << is_q; 9805 maxpasses = vector_size >> size; 9806 } 9807 9808 for (pass = 0; pass < maxpasses; pass++) { 9809 read_vec_element_i32(s, tcg_op, rn, pass, size); 9810 if (swap) { 9811 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9812 } else { 9813 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9814 } 9815 if (is_scalar) { 9816 write_fp_sreg(s, rd, tcg_res); 9817 } else { 9818 write_vec_element_i32(s, tcg_res, rd, pass, size); 9819 } 9820 } 9821 9822 if (!is_scalar) { 9823 clear_vec_high(s, is_q, rd); 9824 } 9825 } 9826 } 9827 9828 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9829 bool is_scalar, bool is_u, bool is_q, 9830 int size, int rn, int rd) 9831 { 9832 bool is_double = (size == 3); 9833 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9834 9835 if (is_double) { 9836 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9837 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9838 int pass; 9839 9840 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9841 read_vec_element(s, tcg_op, rn, pass, MO_64); 9842 switch (opcode) { 9843 case 0x3d: /* FRECPE */ 9844 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9845 break; 9846 case 0x3f: /* FRECPX */ 9847 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9848 break; 9849 case 0x7d: /* FRSQRTE */ 9850 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9851 break; 9852 default: 9853 g_assert_not_reached(); 9854 } 9855 write_vec_element(s, tcg_res, rd, pass, MO_64); 9856 } 9857 clear_vec_high(s, !is_scalar, rd); 9858 } else { 9859 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9860 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9861 int pass, maxpasses; 9862 9863 if (is_scalar) { 9864 maxpasses = 1; 9865 } else { 9866 maxpasses = is_q ? 4 : 2; 9867 } 9868 9869 for (pass = 0; pass < maxpasses; pass++) { 9870 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9871 9872 switch (opcode) { 9873 case 0x3c: /* URECPE */ 9874 gen_helper_recpe_u32(tcg_res, tcg_op); 9875 break; 9876 case 0x3d: /* FRECPE */ 9877 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9878 break; 9879 case 0x3f: /* FRECPX */ 9880 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9881 break; 9882 case 0x7d: /* FRSQRTE */ 9883 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9884 break; 9885 default: 9886 g_assert_not_reached(); 9887 } 9888 9889 if (is_scalar) { 9890 write_fp_sreg(s, rd, tcg_res); 9891 } else { 9892 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9893 } 9894 } 9895 if (!is_scalar) { 9896 clear_vec_high(s, is_q, rd); 9897 } 9898 } 9899 } 9900 9901 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9902 int opcode, bool u, bool is_q, 9903 int size, int rn, int rd) 9904 { 9905 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9906 * in the source becomes a size element in the destination). 9907 */ 9908 int pass; 9909 TCGv_i32 tcg_res[2]; 9910 int destelt = is_q ? 2 : 0; 9911 int passes = scalar ? 1 : 2; 9912 9913 if (scalar) { 9914 tcg_res[1] = tcg_constant_i32(0); 9915 } 9916 9917 for (pass = 0; pass < passes; pass++) { 9918 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9919 NeonGenNarrowFn *genfn = NULL; 9920 NeonGenNarrowEnvFn *genenvfn = NULL; 9921 9922 if (scalar) { 9923 read_vec_element(s, tcg_op, rn, pass, size + 1); 9924 } else { 9925 read_vec_element(s, tcg_op, rn, pass, MO_64); 9926 } 9927 tcg_res[pass] = tcg_temp_new_i32(); 9928 9929 switch (opcode) { 9930 case 0x12: /* XTN, SQXTUN */ 9931 { 9932 static NeonGenNarrowFn * const xtnfns[3] = { 9933 gen_helper_neon_narrow_u8, 9934 gen_helper_neon_narrow_u16, 9935 tcg_gen_extrl_i64_i32, 9936 }; 9937 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9938 gen_helper_neon_unarrow_sat8, 9939 gen_helper_neon_unarrow_sat16, 9940 gen_helper_neon_unarrow_sat32, 9941 }; 9942 if (u) { 9943 genenvfn = sqxtunfns[size]; 9944 } else { 9945 genfn = xtnfns[size]; 9946 } 9947 break; 9948 } 9949 case 0x14: /* SQXTN, UQXTN */ 9950 { 9951 static NeonGenNarrowEnvFn * const fns[3][2] = { 9952 { gen_helper_neon_narrow_sat_s8, 9953 gen_helper_neon_narrow_sat_u8 }, 9954 { gen_helper_neon_narrow_sat_s16, 9955 gen_helper_neon_narrow_sat_u16 }, 9956 { gen_helper_neon_narrow_sat_s32, 9957 gen_helper_neon_narrow_sat_u32 }, 9958 }; 9959 genenvfn = fns[size][u]; 9960 break; 9961 } 9962 case 0x16: /* FCVTN, FCVTN2 */ 9963 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9964 if (size == 2) { 9965 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 9966 } else { 9967 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9968 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9969 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9970 TCGv_i32 ahp = get_ahp_flag(); 9971 9972 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9973 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9974 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9975 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9976 } 9977 break; 9978 case 0x36: /* BFCVTN, BFCVTN2 */ 9979 { 9980 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9981 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9982 } 9983 break; 9984 case 0x56: /* FCVTXN, FCVTXN2 */ 9985 /* 64 bit to 32 bit float conversion 9986 * with von Neumann rounding (round to odd) 9987 */ 9988 assert(size == 2); 9989 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 9990 break; 9991 default: 9992 g_assert_not_reached(); 9993 } 9994 9995 if (genfn) { 9996 genfn(tcg_res[pass], tcg_op); 9997 } else if (genenvfn) { 9998 genenvfn(tcg_res[pass], tcg_env, tcg_op); 9999 } 10000 } 10001 10002 for (pass = 0; pass < 2; pass++) { 10003 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10004 } 10005 clear_vec_high(s, is_q, rd); 10006 } 10007 10008 /* Remaining saturating accumulating ops */ 10009 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10010 bool is_q, int size, int rn, int rd) 10011 { 10012 bool is_double = (size == 3); 10013 10014 if (is_double) { 10015 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10016 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10017 int pass; 10018 10019 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10020 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10021 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10022 10023 if (is_u) { /* USQADD */ 10024 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10025 } else { /* SUQADD */ 10026 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10027 } 10028 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10029 } 10030 clear_vec_high(s, !is_scalar, rd); 10031 } else { 10032 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10033 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10034 int pass, maxpasses; 10035 10036 if (is_scalar) { 10037 maxpasses = 1; 10038 } else { 10039 maxpasses = is_q ? 4 : 2; 10040 } 10041 10042 for (pass = 0; pass < maxpasses; pass++) { 10043 if (is_scalar) { 10044 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10045 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10046 } else { 10047 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10048 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10049 } 10050 10051 if (is_u) { /* USQADD */ 10052 switch (size) { 10053 case 0: 10054 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10055 break; 10056 case 1: 10057 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10058 break; 10059 case 2: 10060 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10061 break; 10062 default: 10063 g_assert_not_reached(); 10064 } 10065 } else { /* SUQADD */ 10066 switch (size) { 10067 case 0: 10068 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10069 break; 10070 case 1: 10071 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10072 break; 10073 case 2: 10074 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10075 break; 10076 default: 10077 g_assert_not_reached(); 10078 } 10079 } 10080 10081 if (is_scalar) { 10082 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10083 } 10084 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10085 } 10086 clear_vec_high(s, is_q, rd); 10087 } 10088 } 10089 10090 /* AdvSIMD scalar two reg misc 10091 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10092 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10093 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10094 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10095 */ 10096 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10097 { 10098 int rd = extract32(insn, 0, 5); 10099 int rn = extract32(insn, 5, 5); 10100 int opcode = extract32(insn, 12, 5); 10101 int size = extract32(insn, 22, 2); 10102 bool u = extract32(insn, 29, 1); 10103 bool is_fcvt = false; 10104 int rmode; 10105 TCGv_i32 tcg_rmode; 10106 TCGv_ptr tcg_fpstatus; 10107 10108 switch (opcode) { 10109 case 0x3: /* USQADD / SUQADD*/ 10110 if (!fp_access_check(s)) { 10111 return; 10112 } 10113 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10114 return; 10115 case 0x7: /* SQABS / SQNEG */ 10116 break; 10117 case 0xa: /* CMLT */ 10118 if (u) { 10119 unallocated_encoding(s); 10120 return; 10121 } 10122 /* fall through */ 10123 case 0x8: /* CMGT, CMGE */ 10124 case 0x9: /* CMEQ, CMLE */ 10125 case 0xb: /* ABS, NEG */ 10126 if (size != 3) { 10127 unallocated_encoding(s); 10128 return; 10129 } 10130 break; 10131 case 0x12: /* SQXTUN */ 10132 if (!u) { 10133 unallocated_encoding(s); 10134 return; 10135 } 10136 /* fall through */ 10137 case 0x14: /* SQXTN, UQXTN */ 10138 if (size == 3) { 10139 unallocated_encoding(s); 10140 return; 10141 } 10142 if (!fp_access_check(s)) { 10143 return; 10144 } 10145 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10146 return; 10147 case 0xc ... 0xf: 10148 case 0x16 ... 0x1d: 10149 case 0x1f: 10150 /* Floating point: U, size[1] and opcode indicate operation; 10151 * size[0] indicates single or double precision. 10152 */ 10153 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10154 size = extract32(size, 0, 1) ? 3 : 2; 10155 switch (opcode) { 10156 case 0x2c: /* FCMGT (zero) */ 10157 case 0x2d: /* FCMEQ (zero) */ 10158 case 0x2e: /* FCMLT (zero) */ 10159 case 0x6c: /* FCMGE (zero) */ 10160 case 0x6d: /* FCMLE (zero) */ 10161 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10162 return; 10163 case 0x1d: /* SCVTF */ 10164 case 0x5d: /* UCVTF */ 10165 { 10166 bool is_signed = (opcode == 0x1d); 10167 if (!fp_access_check(s)) { 10168 return; 10169 } 10170 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10171 return; 10172 } 10173 case 0x3d: /* FRECPE */ 10174 case 0x3f: /* FRECPX */ 10175 case 0x7d: /* FRSQRTE */ 10176 if (!fp_access_check(s)) { 10177 return; 10178 } 10179 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10180 return; 10181 case 0x1a: /* FCVTNS */ 10182 case 0x1b: /* FCVTMS */ 10183 case 0x3a: /* FCVTPS */ 10184 case 0x3b: /* FCVTZS */ 10185 case 0x5a: /* FCVTNU */ 10186 case 0x5b: /* FCVTMU */ 10187 case 0x7a: /* FCVTPU */ 10188 case 0x7b: /* FCVTZU */ 10189 is_fcvt = true; 10190 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10191 break; 10192 case 0x1c: /* FCVTAS */ 10193 case 0x5c: /* FCVTAU */ 10194 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10195 is_fcvt = true; 10196 rmode = FPROUNDING_TIEAWAY; 10197 break; 10198 case 0x56: /* FCVTXN, FCVTXN2 */ 10199 if (size == 2) { 10200 unallocated_encoding(s); 10201 return; 10202 } 10203 if (!fp_access_check(s)) { 10204 return; 10205 } 10206 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10207 return; 10208 default: 10209 unallocated_encoding(s); 10210 return; 10211 } 10212 break; 10213 default: 10214 unallocated_encoding(s); 10215 return; 10216 } 10217 10218 if (!fp_access_check(s)) { 10219 return; 10220 } 10221 10222 if (is_fcvt) { 10223 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10224 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10225 } else { 10226 tcg_fpstatus = NULL; 10227 tcg_rmode = NULL; 10228 } 10229 10230 if (size == 3) { 10231 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10232 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10233 10234 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10235 write_fp_dreg(s, rd, tcg_rd); 10236 } else { 10237 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10238 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10239 10240 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10241 10242 switch (opcode) { 10243 case 0x7: /* SQABS, SQNEG */ 10244 { 10245 NeonGenOneOpEnvFn *genfn; 10246 static NeonGenOneOpEnvFn * const fns[3][2] = { 10247 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10248 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10249 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10250 }; 10251 genfn = fns[size][u]; 10252 genfn(tcg_rd, tcg_env, tcg_rn); 10253 break; 10254 } 10255 case 0x1a: /* FCVTNS */ 10256 case 0x1b: /* FCVTMS */ 10257 case 0x1c: /* FCVTAS */ 10258 case 0x3a: /* FCVTPS */ 10259 case 0x3b: /* FCVTZS */ 10260 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10261 tcg_fpstatus); 10262 break; 10263 case 0x5a: /* FCVTNU */ 10264 case 0x5b: /* FCVTMU */ 10265 case 0x5c: /* FCVTAU */ 10266 case 0x7a: /* FCVTPU */ 10267 case 0x7b: /* FCVTZU */ 10268 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10269 tcg_fpstatus); 10270 break; 10271 default: 10272 g_assert_not_reached(); 10273 } 10274 10275 write_fp_sreg(s, rd, tcg_rd); 10276 } 10277 10278 if (is_fcvt) { 10279 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10280 } 10281 } 10282 10283 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10284 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10285 int immh, int immb, int opcode, int rn, int rd) 10286 { 10287 int size = 32 - clz32(immh) - 1; 10288 int immhb = immh << 3 | immb; 10289 int shift = 2 * (8 << size) - immhb; 10290 GVecGen2iFn *gvec_fn; 10291 10292 if (extract32(immh, 3, 1) && !is_q) { 10293 unallocated_encoding(s); 10294 return; 10295 } 10296 tcg_debug_assert(size <= 3); 10297 10298 if (!fp_access_check(s)) { 10299 return; 10300 } 10301 10302 switch (opcode) { 10303 case 0x02: /* SSRA / USRA (accumulate) */ 10304 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10305 break; 10306 10307 case 0x08: /* SRI */ 10308 gvec_fn = gen_gvec_sri; 10309 break; 10310 10311 case 0x00: /* SSHR / USHR */ 10312 if (is_u) { 10313 if (shift == 8 << size) { 10314 /* Shift count the same size as element size produces zero. */ 10315 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10316 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10317 return; 10318 } 10319 gvec_fn = tcg_gen_gvec_shri; 10320 } else { 10321 /* Shift count the same size as element size produces all sign. */ 10322 if (shift == 8 << size) { 10323 shift -= 1; 10324 } 10325 gvec_fn = tcg_gen_gvec_sari; 10326 } 10327 break; 10328 10329 case 0x04: /* SRSHR / URSHR (rounding) */ 10330 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10331 break; 10332 10333 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10334 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10335 break; 10336 10337 default: 10338 g_assert_not_reached(); 10339 } 10340 10341 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10342 } 10343 10344 /* SHL/SLI - Vector shift left */ 10345 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10346 int immh, int immb, int opcode, int rn, int rd) 10347 { 10348 int size = 32 - clz32(immh) - 1; 10349 int immhb = immh << 3 | immb; 10350 int shift = immhb - (8 << size); 10351 10352 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10353 assert(size >= 0 && size <= 3); 10354 10355 if (extract32(immh, 3, 1) && !is_q) { 10356 unallocated_encoding(s); 10357 return; 10358 } 10359 10360 if (!fp_access_check(s)) { 10361 return; 10362 } 10363 10364 if (insert) { 10365 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10366 } else { 10367 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10368 } 10369 } 10370 10371 /* USHLL/SHLL - Vector shift left with widening */ 10372 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10373 int immh, int immb, int opcode, int rn, int rd) 10374 { 10375 int size = 32 - clz32(immh) - 1; 10376 int immhb = immh << 3 | immb; 10377 int shift = immhb - (8 << size); 10378 int dsize = 64; 10379 int esize = 8 << size; 10380 int elements = dsize/esize; 10381 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10382 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10383 int i; 10384 10385 if (size >= 3) { 10386 unallocated_encoding(s); 10387 return; 10388 } 10389 10390 if (!fp_access_check(s)) { 10391 return; 10392 } 10393 10394 /* For the LL variants the store is larger than the load, 10395 * so if rd == rn we would overwrite parts of our input. 10396 * So load everything right now and use shifts in the main loop. 10397 */ 10398 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10399 10400 for (i = 0; i < elements; i++) { 10401 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10402 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10403 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10404 write_vec_element(s, tcg_rd, rd, i, size + 1); 10405 } 10406 } 10407 10408 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10409 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10410 int immh, int immb, int opcode, int rn, int rd) 10411 { 10412 int immhb = immh << 3 | immb; 10413 int size = 32 - clz32(immh) - 1; 10414 int dsize = 64; 10415 int esize = 8 << size; 10416 int elements = dsize/esize; 10417 int shift = (2 * esize) - immhb; 10418 bool round = extract32(opcode, 0, 1); 10419 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10420 TCGv_i64 tcg_round; 10421 int i; 10422 10423 if (extract32(immh, 3, 1)) { 10424 unallocated_encoding(s); 10425 return; 10426 } 10427 10428 if (!fp_access_check(s)) { 10429 return; 10430 } 10431 10432 tcg_rn = tcg_temp_new_i64(); 10433 tcg_rd = tcg_temp_new_i64(); 10434 tcg_final = tcg_temp_new_i64(); 10435 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10436 10437 if (round) { 10438 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10439 } else { 10440 tcg_round = NULL; 10441 } 10442 10443 for (i = 0; i < elements; i++) { 10444 read_vec_element(s, tcg_rn, rn, i, size+1); 10445 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10446 false, true, size+1, shift); 10447 10448 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10449 } 10450 10451 if (!is_q) { 10452 write_vec_element(s, tcg_final, rd, 0, MO_64); 10453 } else { 10454 write_vec_element(s, tcg_final, rd, 1, MO_64); 10455 } 10456 10457 clear_vec_high(s, is_q, rd); 10458 } 10459 10460 10461 /* AdvSIMD shift by immediate 10462 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10463 * +---+---+---+-------------+------+------+--------+---+------+------+ 10464 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10465 * +---+---+---+-------------+------+------+--------+---+------+------+ 10466 */ 10467 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10468 { 10469 int rd = extract32(insn, 0, 5); 10470 int rn = extract32(insn, 5, 5); 10471 int opcode = extract32(insn, 11, 5); 10472 int immb = extract32(insn, 16, 3); 10473 int immh = extract32(insn, 19, 4); 10474 bool is_u = extract32(insn, 29, 1); 10475 bool is_q = extract32(insn, 30, 1); 10476 10477 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10478 assert(immh != 0); 10479 10480 switch (opcode) { 10481 case 0x08: /* SRI */ 10482 if (!is_u) { 10483 unallocated_encoding(s); 10484 return; 10485 } 10486 /* fall through */ 10487 case 0x00: /* SSHR / USHR */ 10488 case 0x02: /* SSRA / USRA (accumulate) */ 10489 case 0x04: /* SRSHR / URSHR (rounding) */ 10490 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10491 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10492 break; 10493 case 0x0a: /* SHL / SLI */ 10494 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10495 break; 10496 case 0x10: /* SHRN */ 10497 case 0x11: /* RSHRN / SQRSHRUN */ 10498 if (is_u) { 10499 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10500 opcode, rn, rd); 10501 } else { 10502 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10503 } 10504 break; 10505 case 0x12: /* SQSHRN / UQSHRN */ 10506 case 0x13: /* SQRSHRN / UQRSHRN */ 10507 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10508 opcode, rn, rd); 10509 break; 10510 case 0x14: /* SSHLL / USHLL */ 10511 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10512 break; 10513 case 0x1c: /* SCVTF / UCVTF */ 10514 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10515 opcode, rn, rd); 10516 break; 10517 case 0xc: /* SQSHLU */ 10518 if (!is_u) { 10519 unallocated_encoding(s); 10520 return; 10521 } 10522 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10523 break; 10524 case 0xe: /* SQSHL, UQSHL */ 10525 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10526 break; 10527 case 0x1f: /* FCVTZS/ FCVTZU */ 10528 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10529 return; 10530 default: 10531 unallocated_encoding(s); 10532 return; 10533 } 10534 } 10535 10536 /* Generate code to do a "long" addition or subtraction, ie one done in 10537 * TCGv_i64 on vector lanes twice the width specified by size. 10538 */ 10539 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10540 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10541 { 10542 static NeonGenTwo64OpFn * const fns[3][2] = { 10543 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10544 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10545 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10546 }; 10547 NeonGenTwo64OpFn *genfn; 10548 assert(size < 3); 10549 10550 genfn = fns[size][is_sub]; 10551 genfn(tcg_res, tcg_op1, tcg_op2); 10552 } 10553 10554 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10555 int opcode, int rd, int rn, int rm) 10556 { 10557 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10558 TCGv_i64 tcg_res[2]; 10559 int pass, accop; 10560 10561 tcg_res[0] = tcg_temp_new_i64(); 10562 tcg_res[1] = tcg_temp_new_i64(); 10563 10564 /* Does this op do an adding accumulate, a subtracting accumulate, 10565 * or no accumulate at all? 10566 */ 10567 switch (opcode) { 10568 case 5: 10569 case 8: 10570 case 9: 10571 accop = 1; 10572 break; 10573 case 10: 10574 case 11: 10575 accop = -1; 10576 break; 10577 default: 10578 accop = 0; 10579 break; 10580 } 10581 10582 if (accop != 0) { 10583 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10584 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10585 } 10586 10587 /* size == 2 means two 32x32->64 operations; this is worth special 10588 * casing because we can generally handle it inline. 10589 */ 10590 if (size == 2) { 10591 for (pass = 0; pass < 2; pass++) { 10592 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10593 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10594 TCGv_i64 tcg_passres; 10595 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10596 10597 int elt = pass + is_q * 2; 10598 10599 read_vec_element(s, tcg_op1, rn, elt, memop); 10600 read_vec_element(s, tcg_op2, rm, elt, memop); 10601 10602 if (accop == 0) { 10603 tcg_passres = tcg_res[pass]; 10604 } else { 10605 tcg_passres = tcg_temp_new_i64(); 10606 } 10607 10608 switch (opcode) { 10609 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10610 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10611 break; 10612 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10613 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10614 break; 10615 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10616 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10617 { 10618 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10619 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10620 10621 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10622 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10623 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10624 tcg_passres, 10625 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10626 break; 10627 } 10628 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10629 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10630 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10631 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10632 break; 10633 case 9: /* SQDMLAL, SQDMLAL2 */ 10634 case 11: /* SQDMLSL, SQDMLSL2 */ 10635 case 13: /* SQDMULL, SQDMULL2 */ 10636 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10637 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10638 tcg_passres, tcg_passres); 10639 break; 10640 default: 10641 g_assert_not_reached(); 10642 } 10643 10644 if (opcode == 9 || opcode == 11) { 10645 /* saturating accumulate ops */ 10646 if (accop < 0) { 10647 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10648 } 10649 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10650 tcg_res[pass], tcg_passres); 10651 } else if (accop > 0) { 10652 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10653 } else if (accop < 0) { 10654 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10655 } 10656 } 10657 } else { 10658 /* size 0 or 1, generally helper functions */ 10659 for (pass = 0; pass < 2; pass++) { 10660 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10661 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10662 TCGv_i64 tcg_passres; 10663 int elt = pass + is_q * 2; 10664 10665 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10666 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10667 10668 if (accop == 0) { 10669 tcg_passres = tcg_res[pass]; 10670 } else { 10671 tcg_passres = tcg_temp_new_i64(); 10672 } 10673 10674 switch (opcode) { 10675 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10676 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10677 { 10678 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10679 static NeonGenWidenFn * const widenfns[2][2] = { 10680 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10681 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10682 }; 10683 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10684 10685 widenfn(tcg_op2_64, tcg_op2); 10686 widenfn(tcg_passres, tcg_op1); 10687 gen_neon_addl(size, (opcode == 2), tcg_passres, 10688 tcg_passres, tcg_op2_64); 10689 break; 10690 } 10691 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10692 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10693 if (size == 0) { 10694 if (is_u) { 10695 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10696 } else { 10697 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10698 } 10699 } else { 10700 if (is_u) { 10701 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10702 } else { 10703 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10704 } 10705 } 10706 break; 10707 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10708 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10709 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10710 if (size == 0) { 10711 if (is_u) { 10712 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10713 } else { 10714 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10715 } 10716 } else { 10717 if (is_u) { 10718 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10719 } else { 10720 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10721 } 10722 } 10723 break; 10724 case 9: /* SQDMLAL, SQDMLAL2 */ 10725 case 11: /* SQDMLSL, SQDMLSL2 */ 10726 case 13: /* SQDMULL, SQDMULL2 */ 10727 assert(size == 1); 10728 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10729 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10730 tcg_passres, tcg_passres); 10731 break; 10732 default: 10733 g_assert_not_reached(); 10734 } 10735 10736 if (accop != 0) { 10737 if (opcode == 9 || opcode == 11) { 10738 /* saturating accumulate ops */ 10739 if (accop < 0) { 10740 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10741 } 10742 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10743 tcg_res[pass], 10744 tcg_passres); 10745 } else { 10746 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10747 tcg_res[pass], tcg_passres); 10748 } 10749 } 10750 } 10751 } 10752 10753 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10754 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10755 } 10756 10757 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10758 int opcode, int rd, int rn, int rm) 10759 { 10760 TCGv_i64 tcg_res[2]; 10761 int part = is_q ? 2 : 0; 10762 int pass; 10763 10764 for (pass = 0; pass < 2; pass++) { 10765 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10766 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10767 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10768 static NeonGenWidenFn * const widenfns[3][2] = { 10769 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10770 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10771 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10772 }; 10773 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10774 10775 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10776 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10777 widenfn(tcg_op2_wide, tcg_op2); 10778 tcg_res[pass] = tcg_temp_new_i64(); 10779 gen_neon_addl(size, (opcode == 3), 10780 tcg_res[pass], tcg_op1, tcg_op2_wide); 10781 } 10782 10783 for (pass = 0; pass < 2; pass++) { 10784 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10785 } 10786 } 10787 10788 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10789 { 10790 tcg_gen_addi_i64(in, in, 1U << 31); 10791 tcg_gen_extrh_i64_i32(res, in); 10792 } 10793 10794 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10795 int opcode, int rd, int rn, int rm) 10796 { 10797 TCGv_i32 tcg_res[2]; 10798 int part = is_q ? 2 : 0; 10799 int pass; 10800 10801 for (pass = 0; pass < 2; pass++) { 10802 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10803 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10804 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10805 static NeonGenNarrowFn * const narrowfns[3][2] = { 10806 { gen_helper_neon_narrow_high_u8, 10807 gen_helper_neon_narrow_round_high_u8 }, 10808 { gen_helper_neon_narrow_high_u16, 10809 gen_helper_neon_narrow_round_high_u16 }, 10810 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10811 }; 10812 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10813 10814 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10815 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10816 10817 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10818 10819 tcg_res[pass] = tcg_temp_new_i32(); 10820 gennarrow(tcg_res[pass], tcg_wideres); 10821 } 10822 10823 for (pass = 0; pass < 2; pass++) { 10824 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10825 } 10826 clear_vec_high(s, is_q, rd); 10827 } 10828 10829 /* AdvSIMD three different 10830 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10831 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10832 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10833 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10834 */ 10835 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10836 { 10837 /* Instructions in this group fall into three basic classes 10838 * (in each case with the operation working on each element in 10839 * the input vectors): 10840 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10841 * 128 bit input) 10842 * (2) wide 64 x 128 -> 128 10843 * (3) narrowing 128 x 128 -> 64 10844 * Here we do initial decode, catch unallocated cases and 10845 * dispatch to separate functions for each class. 10846 */ 10847 int is_q = extract32(insn, 30, 1); 10848 int is_u = extract32(insn, 29, 1); 10849 int size = extract32(insn, 22, 2); 10850 int opcode = extract32(insn, 12, 4); 10851 int rm = extract32(insn, 16, 5); 10852 int rn = extract32(insn, 5, 5); 10853 int rd = extract32(insn, 0, 5); 10854 10855 switch (opcode) { 10856 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10857 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10858 /* 64 x 128 -> 128 */ 10859 if (size == 3) { 10860 unallocated_encoding(s); 10861 return; 10862 } 10863 if (!fp_access_check(s)) { 10864 return; 10865 } 10866 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10867 break; 10868 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10869 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10870 /* 128 x 128 -> 64 */ 10871 if (size == 3) { 10872 unallocated_encoding(s); 10873 return; 10874 } 10875 if (!fp_access_check(s)) { 10876 return; 10877 } 10878 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10879 break; 10880 case 14: /* PMULL, PMULL2 */ 10881 if (is_u) { 10882 unallocated_encoding(s); 10883 return; 10884 } 10885 switch (size) { 10886 case 0: /* PMULL.P8 */ 10887 if (!fp_access_check(s)) { 10888 return; 10889 } 10890 /* The Q field specifies lo/hi half input for this insn. */ 10891 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10892 gen_helper_neon_pmull_h); 10893 break; 10894 10895 case 3: /* PMULL.P64 */ 10896 if (!dc_isar_feature(aa64_pmull, s)) { 10897 unallocated_encoding(s); 10898 return; 10899 } 10900 if (!fp_access_check(s)) { 10901 return; 10902 } 10903 /* The Q field specifies lo/hi half input for this insn. */ 10904 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10905 gen_helper_gvec_pmull_q); 10906 break; 10907 10908 default: 10909 unallocated_encoding(s); 10910 break; 10911 } 10912 return; 10913 case 9: /* SQDMLAL, SQDMLAL2 */ 10914 case 11: /* SQDMLSL, SQDMLSL2 */ 10915 case 13: /* SQDMULL, SQDMULL2 */ 10916 if (is_u || size == 0) { 10917 unallocated_encoding(s); 10918 return; 10919 } 10920 /* fall through */ 10921 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10922 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10923 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10924 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10925 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10926 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10927 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10928 /* 64 x 64 -> 128 */ 10929 if (size == 3) { 10930 unallocated_encoding(s); 10931 return; 10932 } 10933 if (!fp_access_check(s)) { 10934 return; 10935 } 10936 10937 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10938 break; 10939 default: 10940 /* opcode 15 not allocated */ 10941 unallocated_encoding(s); 10942 break; 10943 } 10944 } 10945 10946 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10947 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10948 { 10949 int rd = extract32(insn, 0, 5); 10950 int rn = extract32(insn, 5, 5); 10951 int rm = extract32(insn, 16, 5); 10952 int size = extract32(insn, 22, 2); 10953 bool is_u = extract32(insn, 29, 1); 10954 bool is_q = extract32(insn, 30, 1); 10955 10956 if (!fp_access_check(s)) { 10957 return; 10958 } 10959 10960 switch (size + 4 * is_u) { 10961 case 0: /* AND */ 10962 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10963 return; 10964 case 1: /* BIC */ 10965 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10966 return; 10967 case 2: /* ORR */ 10968 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10969 return; 10970 case 3: /* ORN */ 10971 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10972 return; 10973 case 4: /* EOR */ 10974 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10975 return; 10976 10977 case 5: /* BSL bitwise select */ 10978 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10979 return; 10980 case 6: /* BIT, bitwise insert if true */ 10981 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10982 return; 10983 case 7: /* BIF, bitwise insert if false */ 10984 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10985 return; 10986 10987 default: 10988 g_assert_not_reached(); 10989 } 10990 } 10991 10992 /* Pairwise op subgroup of C3.6.16. 10993 * 10994 * This is called directly for float pairwise 10995 * operations where the opcode and size are calculated differently. 10996 */ 10997 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10998 int size, int rn, int rm, int rd) 10999 { 11000 TCGv_ptr fpst; 11001 int pass; 11002 11003 /* Floating point operations need fpst */ 11004 if (opcode >= 0x58) { 11005 fpst = fpstatus_ptr(FPST_FPCR); 11006 } else { 11007 fpst = NULL; 11008 } 11009 11010 if (!fp_access_check(s)) { 11011 return; 11012 } 11013 11014 /* These operations work on the concatenated rm:rn, with each pair of 11015 * adjacent elements being operated on to produce an element in the result. 11016 */ 11017 if (size == 3) { 11018 TCGv_i64 tcg_res[2]; 11019 11020 for (pass = 0; pass < 2; pass++) { 11021 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11022 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11023 int passreg = (pass == 0) ? rn : rm; 11024 11025 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11026 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11027 tcg_res[pass] = tcg_temp_new_i64(); 11028 11029 switch (opcode) { 11030 case 0x17: /* ADDP */ 11031 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11032 break; 11033 case 0x58: /* FMAXNMP */ 11034 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11035 break; 11036 case 0x5e: /* FMAXP */ 11037 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11038 break; 11039 case 0x78: /* FMINNMP */ 11040 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11041 break; 11042 case 0x7e: /* FMINP */ 11043 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11044 break; 11045 default: 11046 case 0x5a: /* FADDP */ 11047 g_assert_not_reached(); 11048 } 11049 } 11050 11051 for (pass = 0; pass < 2; pass++) { 11052 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11053 } 11054 } else { 11055 int maxpass = is_q ? 4 : 2; 11056 TCGv_i32 tcg_res[4]; 11057 11058 for (pass = 0; pass < maxpass; pass++) { 11059 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11060 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11061 NeonGenTwoOpFn *genfn = NULL; 11062 int passreg = pass < (maxpass / 2) ? rn : rm; 11063 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11064 11065 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11066 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11067 tcg_res[pass] = tcg_temp_new_i32(); 11068 11069 switch (opcode) { 11070 case 0x17: /* ADDP */ 11071 { 11072 static NeonGenTwoOpFn * const fns[3] = { 11073 gen_helper_neon_padd_u8, 11074 gen_helper_neon_padd_u16, 11075 tcg_gen_add_i32, 11076 }; 11077 genfn = fns[size]; 11078 break; 11079 } 11080 case 0x14: /* SMAXP, UMAXP */ 11081 { 11082 static NeonGenTwoOpFn * const fns[3][2] = { 11083 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11084 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11085 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11086 }; 11087 genfn = fns[size][u]; 11088 break; 11089 } 11090 case 0x15: /* SMINP, UMINP */ 11091 { 11092 static NeonGenTwoOpFn * const fns[3][2] = { 11093 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11094 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11095 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11096 }; 11097 genfn = fns[size][u]; 11098 break; 11099 } 11100 /* The FP operations are all on single floats (32 bit) */ 11101 case 0x58: /* FMAXNMP */ 11102 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11103 break; 11104 case 0x5e: /* FMAXP */ 11105 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11106 break; 11107 case 0x78: /* FMINNMP */ 11108 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11109 break; 11110 case 0x7e: /* FMINP */ 11111 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11112 break; 11113 default: 11114 case 0x5a: /* FADDP */ 11115 g_assert_not_reached(); 11116 } 11117 11118 /* FP ops called directly, otherwise call now */ 11119 if (genfn) { 11120 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11121 } 11122 } 11123 11124 for (pass = 0; pass < maxpass; pass++) { 11125 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11126 } 11127 clear_vec_high(s, is_q, rd); 11128 } 11129 } 11130 11131 /* Floating point op subgroup of C3.6.16. */ 11132 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11133 { 11134 /* For floating point ops, the U, size[1] and opcode bits 11135 * together indicate the operation. size[0] indicates single 11136 * or double. 11137 */ 11138 int fpopcode = extract32(insn, 11, 5) 11139 | (extract32(insn, 23, 1) << 5) 11140 | (extract32(insn, 29, 1) << 6); 11141 int is_q = extract32(insn, 30, 1); 11142 int size = extract32(insn, 22, 1); 11143 int rm = extract32(insn, 16, 5); 11144 int rn = extract32(insn, 5, 5); 11145 int rd = extract32(insn, 0, 5); 11146 11147 if (size == 1 && !is_q) { 11148 unallocated_encoding(s); 11149 return; 11150 } 11151 11152 switch (fpopcode) { 11153 case 0x58: /* FMAXNMP */ 11154 case 0x5e: /* FMAXP */ 11155 case 0x78: /* FMINNMP */ 11156 case 0x7e: /* FMINP */ 11157 if (size && !is_q) { 11158 unallocated_encoding(s); 11159 return; 11160 } 11161 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11162 rn, rm, rd); 11163 return; 11164 11165 case 0x1d: /* FMLAL */ 11166 case 0x3d: /* FMLSL */ 11167 case 0x59: /* FMLAL2 */ 11168 case 0x79: /* FMLSL2 */ 11169 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11170 unallocated_encoding(s); 11171 return; 11172 } 11173 if (fp_access_check(s)) { 11174 int is_s = extract32(insn, 23, 1); 11175 int is_2 = extract32(insn, 29, 1); 11176 int data = (is_2 << 1) | is_s; 11177 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11178 vec_full_reg_offset(s, rn), 11179 vec_full_reg_offset(s, rm), tcg_env, 11180 is_q ? 16 : 8, vec_full_reg_size(s), 11181 data, gen_helper_gvec_fmlal_a64); 11182 } 11183 return; 11184 11185 default: 11186 case 0x18: /* FMAXNM */ 11187 case 0x19: /* FMLA */ 11188 case 0x1a: /* FADD */ 11189 case 0x1b: /* FMULX */ 11190 case 0x1c: /* FCMEQ */ 11191 case 0x1e: /* FMAX */ 11192 case 0x1f: /* FRECPS */ 11193 case 0x38: /* FMINNM */ 11194 case 0x39: /* FMLS */ 11195 case 0x3a: /* FSUB */ 11196 case 0x3e: /* FMIN */ 11197 case 0x3f: /* FRSQRTS */ 11198 case 0x5a: /* FADDP */ 11199 case 0x5b: /* FMUL */ 11200 case 0x5c: /* FCMGE */ 11201 case 0x5d: /* FACGE */ 11202 case 0x5f: /* FDIV */ 11203 case 0x7a: /* FABD */ 11204 case 0x7d: /* FACGT */ 11205 case 0x7c: /* FCMGT */ 11206 unallocated_encoding(s); 11207 return; 11208 } 11209 } 11210 11211 /* Integer op subgroup of C3.6.16. */ 11212 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11213 { 11214 int is_q = extract32(insn, 30, 1); 11215 int u = extract32(insn, 29, 1); 11216 int size = extract32(insn, 22, 2); 11217 int opcode = extract32(insn, 11, 5); 11218 int rm = extract32(insn, 16, 5); 11219 int rn = extract32(insn, 5, 5); 11220 int rd = extract32(insn, 0, 5); 11221 int pass; 11222 TCGCond cond; 11223 11224 switch (opcode) { 11225 case 0x13: /* MUL, PMUL */ 11226 if (u && size != 0) { 11227 unallocated_encoding(s); 11228 return; 11229 } 11230 /* fall through */ 11231 case 0x0: /* SHADD, UHADD */ 11232 case 0x2: /* SRHADD, URHADD */ 11233 case 0x4: /* SHSUB, UHSUB */ 11234 case 0xc: /* SMAX, UMAX */ 11235 case 0xd: /* SMIN, UMIN */ 11236 case 0xe: /* SABD, UABD */ 11237 case 0xf: /* SABA, UABA */ 11238 case 0x12: /* MLA, MLS */ 11239 if (size == 3) { 11240 unallocated_encoding(s); 11241 return; 11242 } 11243 break; 11244 case 0x16: /* SQDMULH, SQRDMULH */ 11245 if (size == 0 || size == 3) { 11246 unallocated_encoding(s); 11247 return; 11248 } 11249 break; 11250 default: 11251 if (size == 3 && !is_q) { 11252 unallocated_encoding(s); 11253 return; 11254 } 11255 break; 11256 } 11257 11258 if (!fp_access_check(s)) { 11259 return; 11260 } 11261 11262 switch (opcode) { 11263 case 0x01: /* SQADD, UQADD */ 11264 if (u) { 11265 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11266 } else { 11267 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11268 } 11269 return; 11270 case 0x05: /* SQSUB, UQSUB */ 11271 if (u) { 11272 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11273 } else { 11274 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11275 } 11276 return; 11277 case 0x08: /* SSHL, USHL */ 11278 if (u) { 11279 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11280 } else { 11281 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11282 } 11283 return; 11284 case 0x0c: /* SMAX, UMAX */ 11285 if (u) { 11286 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11287 } else { 11288 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11289 } 11290 return; 11291 case 0x0d: /* SMIN, UMIN */ 11292 if (u) { 11293 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11294 } else { 11295 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11296 } 11297 return; 11298 case 0xe: /* SABD, UABD */ 11299 if (u) { 11300 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11301 } else { 11302 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11303 } 11304 return; 11305 case 0xf: /* SABA, UABA */ 11306 if (u) { 11307 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11308 } else { 11309 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11310 } 11311 return; 11312 case 0x10: /* ADD, SUB */ 11313 if (u) { 11314 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11315 } else { 11316 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11317 } 11318 return; 11319 case 0x13: /* MUL, PMUL */ 11320 if (!u) { /* MUL */ 11321 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11322 } else { /* PMUL */ 11323 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11324 } 11325 return; 11326 case 0x12: /* MLA, MLS */ 11327 if (u) { 11328 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11329 } else { 11330 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11331 } 11332 return; 11333 case 0x16: /* SQDMULH, SQRDMULH */ 11334 { 11335 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11336 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11337 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11338 }; 11339 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11340 } 11341 return; 11342 case 0x11: 11343 if (!u) { /* CMTST */ 11344 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11345 return; 11346 } 11347 /* else CMEQ */ 11348 cond = TCG_COND_EQ; 11349 goto do_gvec_cmp; 11350 case 0x06: /* CMGT, CMHI */ 11351 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11352 goto do_gvec_cmp; 11353 case 0x07: /* CMGE, CMHS */ 11354 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11355 do_gvec_cmp: 11356 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11357 vec_full_reg_offset(s, rn), 11358 vec_full_reg_offset(s, rm), 11359 is_q ? 16 : 8, vec_full_reg_size(s)); 11360 return; 11361 } 11362 11363 if (size == 3) { 11364 assert(is_q); 11365 for (pass = 0; pass < 2; pass++) { 11366 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11367 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11368 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11369 11370 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11371 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11372 11373 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11374 11375 write_vec_element(s, tcg_res, rd, pass, MO_64); 11376 } 11377 } else { 11378 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11379 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11380 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11381 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11382 NeonGenTwoOpFn *genfn = NULL; 11383 NeonGenTwoOpEnvFn *genenvfn = NULL; 11384 11385 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11386 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11387 11388 switch (opcode) { 11389 case 0x0: /* SHADD, UHADD */ 11390 { 11391 static NeonGenTwoOpFn * const fns[3][2] = { 11392 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11393 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11394 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11395 }; 11396 genfn = fns[size][u]; 11397 break; 11398 } 11399 case 0x2: /* SRHADD, URHADD */ 11400 { 11401 static NeonGenTwoOpFn * const fns[3][2] = { 11402 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11403 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11404 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11405 }; 11406 genfn = fns[size][u]; 11407 break; 11408 } 11409 case 0x4: /* SHSUB, UHSUB */ 11410 { 11411 static NeonGenTwoOpFn * const fns[3][2] = { 11412 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11413 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11414 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11415 }; 11416 genfn = fns[size][u]; 11417 break; 11418 } 11419 case 0x9: /* SQSHL, UQSHL */ 11420 { 11421 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11422 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11423 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11424 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11425 }; 11426 genenvfn = fns[size][u]; 11427 break; 11428 } 11429 case 0xa: /* SRSHL, URSHL */ 11430 { 11431 static NeonGenTwoOpFn * const fns[3][2] = { 11432 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11433 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11434 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11435 }; 11436 genfn = fns[size][u]; 11437 break; 11438 } 11439 case 0xb: /* SQRSHL, UQRSHL */ 11440 { 11441 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11442 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11443 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11444 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11445 }; 11446 genenvfn = fns[size][u]; 11447 break; 11448 } 11449 default: 11450 g_assert_not_reached(); 11451 } 11452 11453 if (genenvfn) { 11454 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11455 } else { 11456 genfn(tcg_res, tcg_op1, tcg_op2); 11457 } 11458 11459 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11460 } 11461 } 11462 clear_vec_high(s, is_q, rd); 11463 } 11464 11465 /* AdvSIMD three same 11466 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11467 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11468 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11469 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11470 */ 11471 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11472 { 11473 int opcode = extract32(insn, 11, 5); 11474 11475 switch (opcode) { 11476 case 0x3: /* logic ops */ 11477 disas_simd_3same_logic(s, insn); 11478 break; 11479 case 0x17: /* ADDP */ 11480 case 0x14: /* SMAXP, UMAXP */ 11481 case 0x15: /* SMINP, UMINP */ 11482 { 11483 /* Pairwise operations */ 11484 int is_q = extract32(insn, 30, 1); 11485 int u = extract32(insn, 29, 1); 11486 int size = extract32(insn, 22, 2); 11487 int rm = extract32(insn, 16, 5); 11488 int rn = extract32(insn, 5, 5); 11489 int rd = extract32(insn, 0, 5); 11490 if (opcode == 0x17) { 11491 if (u || (size == 3 && !is_q)) { 11492 unallocated_encoding(s); 11493 return; 11494 } 11495 } else { 11496 if (size == 3) { 11497 unallocated_encoding(s); 11498 return; 11499 } 11500 } 11501 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11502 break; 11503 } 11504 case 0x18 ... 0x31: 11505 /* floating point ops, sz[1] and U are part of opcode */ 11506 disas_simd_3same_float(s, insn); 11507 break; 11508 default: 11509 disas_simd_3same_int(s, insn); 11510 break; 11511 } 11512 } 11513 11514 /* 11515 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11516 * 11517 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11518 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11519 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11520 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11521 * 11522 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11523 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11524 * 11525 */ 11526 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11527 { 11528 int opcode = extract32(insn, 11, 3); 11529 int u = extract32(insn, 29, 1); 11530 int a = extract32(insn, 23, 1); 11531 int is_q = extract32(insn, 30, 1); 11532 int rm = extract32(insn, 16, 5); 11533 int rn = extract32(insn, 5, 5); 11534 int rd = extract32(insn, 0, 5); 11535 /* 11536 * For these floating point ops, the U, a and opcode bits 11537 * together indicate the operation. 11538 */ 11539 int fpopcode = opcode | (a << 3) | (u << 4); 11540 bool pairwise; 11541 TCGv_ptr fpst; 11542 int pass; 11543 11544 switch (fpopcode) { 11545 case 0x10: /* FMAXNMP */ 11546 case 0x16: /* FMAXP */ 11547 case 0x18: /* FMINNMP */ 11548 case 0x1e: /* FMINP */ 11549 pairwise = true; 11550 break; 11551 default: 11552 case 0x0: /* FMAXNM */ 11553 case 0x1: /* FMLA */ 11554 case 0x2: /* FADD */ 11555 case 0x3: /* FMULX */ 11556 case 0x4: /* FCMEQ */ 11557 case 0x6: /* FMAX */ 11558 case 0x7: /* FRECPS */ 11559 case 0x8: /* FMINNM */ 11560 case 0x9: /* FMLS */ 11561 case 0xa: /* FSUB */ 11562 case 0xe: /* FMIN */ 11563 case 0xf: /* FRSQRTS */ 11564 case 0x12: /* FADDP */ 11565 case 0x13: /* FMUL */ 11566 case 0x14: /* FCMGE */ 11567 case 0x15: /* FACGE */ 11568 case 0x17: /* FDIV */ 11569 case 0x1a: /* FABD */ 11570 case 0x1c: /* FCMGT */ 11571 case 0x1d: /* FACGT */ 11572 unallocated_encoding(s); 11573 return; 11574 } 11575 11576 if (!dc_isar_feature(aa64_fp16, s)) { 11577 unallocated_encoding(s); 11578 return; 11579 } 11580 11581 if (!fp_access_check(s)) { 11582 return; 11583 } 11584 11585 fpst = fpstatus_ptr(FPST_FPCR_F16); 11586 11587 if (pairwise) { 11588 int maxpass = is_q ? 8 : 4; 11589 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11590 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11591 TCGv_i32 tcg_res[8]; 11592 11593 for (pass = 0; pass < maxpass; pass++) { 11594 int passreg = pass < (maxpass / 2) ? rn : rm; 11595 int passelt = (pass << 1) & (maxpass - 1); 11596 11597 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11598 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11599 tcg_res[pass] = tcg_temp_new_i32(); 11600 11601 switch (fpopcode) { 11602 case 0x10: /* FMAXNMP */ 11603 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11604 fpst); 11605 break; 11606 case 0x16: /* FMAXP */ 11607 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11608 break; 11609 case 0x18: /* FMINNMP */ 11610 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11611 fpst); 11612 break; 11613 case 0x1e: /* FMINP */ 11614 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11615 break; 11616 default: 11617 case 0x12: /* FADDP */ 11618 g_assert_not_reached(); 11619 } 11620 } 11621 11622 for (pass = 0; pass < maxpass; pass++) { 11623 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11624 } 11625 } else { 11626 g_assert_not_reached(); 11627 } 11628 11629 clear_vec_high(s, is_q, rd); 11630 } 11631 11632 /* AdvSIMD three same extra 11633 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11634 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11635 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11636 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11637 */ 11638 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11639 { 11640 int rd = extract32(insn, 0, 5); 11641 int rn = extract32(insn, 5, 5); 11642 int opcode = extract32(insn, 11, 4); 11643 int rm = extract32(insn, 16, 5); 11644 int size = extract32(insn, 22, 2); 11645 bool u = extract32(insn, 29, 1); 11646 bool is_q = extract32(insn, 30, 1); 11647 bool feature; 11648 int rot; 11649 11650 switch (u * 16 + opcode) { 11651 case 0x10: /* SQRDMLAH (vector) */ 11652 case 0x11: /* SQRDMLSH (vector) */ 11653 if (size != 1 && size != 2) { 11654 unallocated_encoding(s); 11655 return; 11656 } 11657 feature = dc_isar_feature(aa64_rdm, s); 11658 break; 11659 case 0x02: /* SDOT (vector) */ 11660 case 0x12: /* UDOT (vector) */ 11661 if (size != MO_32) { 11662 unallocated_encoding(s); 11663 return; 11664 } 11665 feature = dc_isar_feature(aa64_dp, s); 11666 break; 11667 case 0x03: /* USDOT */ 11668 if (size != MO_32) { 11669 unallocated_encoding(s); 11670 return; 11671 } 11672 feature = dc_isar_feature(aa64_i8mm, s); 11673 break; 11674 case 0x04: /* SMMLA */ 11675 case 0x14: /* UMMLA */ 11676 case 0x05: /* USMMLA */ 11677 if (!is_q || size != MO_32) { 11678 unallocated_encoding(s); 11679 return; 11680 } 11681 feature = dc_isar_feature(aa64_i8mm, s); 11682 break; 11683 case 0x18: /* FCMLA, #0 */ 11684 case 0x19: /* FCMLA, #90 */ 11685 case 0x1a: /* FCMLA, #180 */ 11686 case 0x1b: /* FCMLA, #270 */ 11687 case 0x1c: /* FCADD, #90 */ 11688 case 0x1e: /* FCADD, #270 */ 11689 if (size == 0 11690 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11691 || (size == 3 && !is_q)) { 11692 unallocated_encoding(s); 11693 return; 11694 } 11695 feature = dc_isar_feature(aa64_fcma, s); 11696 break; 11697 case 0x1d: /* BFMMLA */ 11698 if (size != MO_16 || !is_q) { 11699 unallocated_encoding(s); 11700 return; 11701 } 11702 feature = dc_isar_feature(aa64_bf16, s); 11703 break; 11704 case 0x1f: 11705 switch (size) { 11706 case 1: /* BFDOT */ 11707 case 3: /* BFMLAL{B,T} */ 11708 feature = dc_isar_feature(aa64_bf16, s); 11709 break; 11710 default: 11711 unallocated_encoding(s); 11712 return; 11713 } 11714 break; 11715 default: 11716 unallocated_encoding(s); 11717 return; 11718 } 11719 if (!feature) { 11720 unallocated_encoding(s); 11721 return; 11722 } 11723 if (!fp_access_check(s)) { 11724 return; 11725 } 11726 11727 switch (opcode) { 11728 case 0x0: /* SQRDMLAH (vector) */ 11729 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11730 return; 11731 11732 case 0x1: /* SQRDMLSH (vector) */ 11733 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11734 return; 11735 11736 case 0x2: /* SDOT / UDOT */ 11737 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11738 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11739 return; 11740 11741 case 0x3: /* USDOT */ 11742 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11743 return; 11744 11745 case 0x04: /* SMMLA, UMMLA */ 11746 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11747 u ? gen_helper_gvec_ummla_b 11748 : gen_helper_gvec_smmla_b); 11749 return; 11750 case 0x05: /* USMMLA */ 11751 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11752 return; 11753 11754 case 0x8: /* FCMLA, #0 */ 11755 case 0x9: /* FCMLA, #90 */ 11756 case 0xa: /* FCMLA, #180 */ 11757 case 0xb: /* FCMLA, #270 */ 11758 rot = extract32(opcode, 0, 2); 11759 switch (size) { 11760 case 1: 11761 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11762 gen_helper_gvec_fcmlah); 11763 break; 11764 case 2: 11765 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11766 gen_helper_gvec_fcmlas); 11767 break; 11768 case 3: 11769 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11770 gen_helper_gvec_fcmlad); 11771 break; 11772 default: 11773 g_assert_not_reached(); 11774 } 11775 return; 11776 11777 case 0xc: /* FCADD, #90 */ 11778 case 0xe: /* FCADD, #270 */ 11779 rot = extract32(opcode, 1, 1); 11780 switch (size) { 11781 case 1: 11782 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11783 gen_helper_gvec_fcaddh); 11784 break; 11785 case 2: 11786 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11787 gen_helper_gvec_fcadds); 11788 break; 11789 case 3: 11790 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11791 gen_helper_gvec_fcaddd); 11792 break; 11793 default: 11794 g_assert_not_reached(); 11795 } 11796 return; 11797 11798 case 0xd: /* BFMMLA */ 11799 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11800 return; 11801 case 0xf: 11802 switch (size) { 11803 case 1: /* BFDOT */ 11804 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11805 break; 11806 case 3: /* BFMLAL{B,T} */ 11807 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11808 gen_helper_gvec_bfmlal); 11809 break; 11810 default: 11811 g_assert_not_reached(); 11812 } 11813 return; 11814 11815 default: 11816 g_assert_not_reached(); 11817 } 11818 } 11819 11820 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11821 int size, int rn, int rd) 11822 { 11823 /* Handle 2-reg-misc ops which are widening (so each size element 11824 * in the source becomes a 2*size element in the destination. 11825 * The only instruction like this is FCVTL. 11826 */ 11827 int pass; 11828 11829 if (size == 3) { 11830 /* 32 -> 64 bit fp conversion */ 11831 TCGv_i64 tcg_res[2]; 11832 int srcelt = is_q ? 2 : 0; 11833 11834 for (pass = 0; pass < 2; pass++) { 11835 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11836 tcg_res[pass] = tcg_temp_new_i64(); 11837 11838 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11839 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11840 } 11841 for (pass = 0; pass < 2; pass++) { 11842 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11843 } 11844 } else { 11845 /* 16 -> 32 bit fp conversion */ 11846 int srcelt = is_q ? 4 : 0; 11847 TCGv_i32 tcg_res[4]; 11848 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11849 TCGv_i32 ahp = get_ahp_flag(); 11850 11851 for (pass = 0; pass < 4; pass++) { 11852 tcg_res[pass] = tcg_temp_new_i32(); 11853 11854 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11855 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11856 fpst, ahp); 11857 } 11858 for (pass = 0; pass < 4; pass++) { 11859 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11860 } 11861 } 11862 } 11863 11864 static void handle_rev(DisasContext *s, int opcode, bool u, 11865 bool is_q, int size, int rn, int rd) 11866 { 11867 int op = (opcode << 1) | u; 11868 int opsz = op + size; 11869 int grp_size = 3 - opsz; 11870 int dsize = is_q ? 128 : 64; 11871 int i; 11872 11873 if (opsz >= 3) { 11874 unallocated_encoding(s); 11875 return; 11876 } 11877 11878 if (!fp_access_check(s)) { 11879 return; 11880 } 11881 11882 if (size == 0) { 11883 /* Special case bytes, use bswap op on each group of elements */ 11884 int groups = dsize / (8 << grp_size); 11885 11886 for (i = 0; i < groups; i++) { 11887 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11888 11889 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11890 switch (grp_size) { 11891 case MO_16: 11892 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11893 break; 11894 case MO_32: 11895 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11896 break; 11897 case MO_64: 11898 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11899 break; 11900 default: 11901 g_assert_not_reached(); 11902 } 11903 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11904 } 11905 clear_vec_high(s, is_q, rd); 11906 } else { 11907 int revmask = (1 << grp_size) - 1; 11908 int esize = 8 << size; 11909 int elements = dsize / esize; 11910 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11911 TCGv_i64 tcg_rd[2]; 11912 11913 for (i = 0; i < 2; i++) { 11914 tcg_rd[i] = tcg_temp_new_i64(); 11915 tcg_gen_movi_i64(tcg_rd[i], 0); 11916 } 11917 11918 for (i = 0; i < elements; i++) { 11919 int e_rev = (i & 0xf) ^ revmask; 11920 int w = (e_rev * esize) / 64; 11921 int o = (e_rev * esize) % 64; 11922 11923 read_vec_element(s, tcg_rn, rn, i, size); 11924 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 11925 } 11926 11927 for (i = 0; i < 2; i++) { 11928 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 11929 } 11930 clear_vec_high(s, true, rd); 11931 } 11932 } 11933 11934 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 11935 bool is_q, int size, int rn, int rd) 11936 { 11937 /* Implement the pairwise operations from 2-misc: 11938 * SADDLP, UADDLP, SADALP, UADALP. 11939 * These all add pairs of elements in the input to produce a 11940 * double-width result element in the output (possibly accumulating). 11941 */ 11942 bool accum = (opcode == 0x6); 11943 int maxpass = is_q ? 2 : 1; 11944 int pass; 11945 TCGv_i64 tcg_res[2]; 11946 11947 if (size == 2) { 11948 /* 32 + 32 -> 64 op */ 11949 MemOp memop = size + (u ? 0 : MO_SIGN); 11950 11951 for (pass = 0; pass < maxpass; pass++) { 11952 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11953 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11954 11955 tcg_res[pass] = tcg_temp_new_i64(); 11956 11957 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 11958 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 11959 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11960 if (accum) { 11961 read_vec_element(s, tcg_op1, rd, pass, MO_64); 11962 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 11963 } 11964 } 11965 } else { 11966 for (pass = 0; pass < maxpass; pass++) { 11967 TCGv_i64 tcg_op = tcg_temp_new_i64(); 11968 NeonGenOne64OpFn *genfn; 11969 static NeonGenOne64OpFn * const fns[2][2] = { 11970 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 11971 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 11972 }; 11973 11974 genfn = fns[size][u]; 11975 11976 tcg_res[pass] = tcg_temp_new_i64(); 11977 11978 read_vec_element(s, tcg_op, rn, pass, MO_64); 11979 genfn(tcg_res[pass], tcg_op); 11980 11981 if (accum) { 11982 read_vec_element(s, tcg_op, rd, pass, MO_64); 11983 if (size == 0) { 11984 gen_helper_neon_addl_u16(tcg_res[pass], 11985 tcg_res[pass], tcg_op); 11986 } else { 11987 gen_helper_neon_addl_u32(tcg_res[pass], 11988 tcg_res[pass], tcg_op); 11989 } 11990 } 11991 } 11992 } 11993 if (!is_q) { 11994 tcg_res[1] = tcg_constant_i64(0); 11995 } 11996 for (pass = 0; pass < 2; pass++) { 11997 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11998 } 11999 } 12000 12001 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12002 { 12003 /* Implement SHLL and SHLL2 */ 12004 int pass; 12005 int part = is_q ? 2 : 0; 12006 TCGv_i64 tcg_res[2]; 12007 12008 for (pass = 0; pass < 2; pass++) { 12009 static NeonGenWidenFn * const widenfns[3] = { 12010 gen_helper_neon_widen_u8, 12011 gen_helper_neon_widen_u16, 12012 tcg_gen_extu_i32_i64, 12013 }; 12014 NeonGenWidenFn *widenfn = widenfns[size]; 12015 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12016 12017 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12018 tcg_res[pass] = tcg_temp_new_i64(); 12019 widenfn(tcg_res[pass], tcg_op); 12020 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12021 } 12022 12023 for (pass = 0; pass < 2; pass++) { 12024 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12025 } 12026 } 12027 12028 /* AdvSIMD two reg misc 12029 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12030 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12031 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12032 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12033 */ 12034 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12035 { 12036 int size = extract32(insn, 22, 2); 12037 int opcode = extract32(insn, 12, 5); 12038 bool u = extract32(insn, 29, 1); 12039 bool is_q = extract32(insn, 30, 1); 12040 int rn = extract32(insn, 5, 5); 12041 int rd = extract32(insn, 0, 5); 12042 bool need_fpstatus = false; 12043 int rmode = -1; 12044 TCGv_i32 tcg_rmode; 12045 TCGv_ptr tcg_fpstatus; 12046 12047 switch (opcode) { 12048 case 0x0: /* REV64, REV32 */ 12049 case 0x1: /* REV16 */ 12050 handle_rev(s, opcode, u, is_q, size, rn, rd); 12051 return; 12052 case 0x5: /* CNT, NOT, RBIT */ 12053 if (u && size == 0) { 12054 /* NOT */ 12055 break; 12056 } else if (u && size == 1) { 12057 /* RBIT */ 12058 break; 12059 } else if (!u && size == 0) { 12060 /* CNT */ 12061 break; 12062 } 12063 unallocated_encoding(s); 12064 return; 12065 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12066 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12067 if (size == 3) { 12068 unallocated_encoding(s); 12069 return; 12070 } 12071 if (!fp_access_check(s)) { 12072 return; 12073 } 12074 12075 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12076 return; 12077 case 0x4: /* CLS, CLZ */ 12078 if (size == 3) { 12079 unallocated_encoding(s); 12080 return; 12081 } 12082 break; 12083 case 0x2: /* SADDLP, UADDLP */ 12084 case 0x6: /* SADALP, UADALP */ 12085 if (size == 3) { 12086 unallocated_encoding(s); 12087 return; 12088 } 12089 if (!fp_access_check(s)) { 12090 return; 12091 } 12092 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12093 return; 12094 case 0x13: /* SHLL, SHLL2 */ 12095 if (u == 0 || size == 3) { 12096 unallocated_encoding(s); 12097 return; 12098 } 12099 if (!fp_access_check(s)) { 12100 return; 12101 } 12102 handle_shll(s, is_q, size, rn, rd); 12103 return; 12104 case 0xa: /* CMLT */ 12105 if (u == 1) { 12106 unallocated_encoding(s); 12107 return; 12108 } 12109 /* fall through */ 12110 case 0x8: /* CMGT, CMGE */ 12111 case 0x9: /* CMEQ, CMLE */ 12112 case 0xb: /* ABS, NEG */ 12113 if (size == 3 && !is_q) { 12114 unallocated_encoding(s); 12115 return; 12116 } 12117 break; 12118 case 0x3: /* SUQADD, USQADD */ 12119 if (size == 3 && !is_q) { 12120 unallocated_encoding(s); 12121 return; 12122 } 12123 if (!fp_access_check(s)) { 12124 return; 12125 } 12126 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12127 return; 12128 case 0x7: /* SQABS, SQNEG */ 12129 if (size == 3 && !is_q) { 12130 unallocated_encoding(s); 12131 return; 12132 } 12133 break; 12134 case 0xc ... 0xf: 12135 case 0x16 ... 0x1f: 12136 { 12137 /* Floating point: U, size[1] and opcode indicate operation; 12138 * size[0] indicates single or double precision. 12139 */ 12140 int is_double = extract32(size, 0, 1); 12141 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12142 size = is_double ? 3 : 2; 12143 switch (opcode) { 12144 case 0x2f: /* FABS */ 12145 case 0x6f: /* FNEG */ 12146 if (size == 3 && !is_q) { 12147 unallocated_encoding(s); 12148 return; 12149 } 12150 break; 12151 case 0x1d: /* SCVTF */ 12152 case 0x5d: /* UCVTF */ 12153 { 12154 bool is_signed = (opcode == 0x1d) ? true : false; 12155 int elements = is_double ? 2 : is_q ? 4 : 2; 12156 if (is_double && !is_q) { 12157 unallocated_encoding(s); 12158 return; 12159 } 12160 if (!fp_access_check(s)) { 12161 return; 12162 } 12163 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12164 return; 12165 } 12166 case 0x2c: /* FCMGT (zero) */ 12167 case 0x2d: /* FCMEQ (zero) */ 12168 case 0x2e: /* FCMLT (zero) */ 12169 case 0x6c: /* FCMGE (zero) */ 12170 case 0x6d: /* FCMLE (zero) */ 12171 if (size == 3 && !is_q) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12176 return; 12177 case 0x7f: /* FSQRT */ 12178 if (size == 3 && !is_q) { 12179 unallocated_encoding(s); 12180 return; 12181 } 12182 break; 12183 case 0x1a: /* FCVTNS */ 12184 case 0x1b: /* FCVTMS */ 12185 case 0x3a: /* FCVTPS */ 12186 case 0x3b: /* FCVTZS */ 12187 case 0x5a: /* FCVTNU */ 12188 case 0x5b: /* FCVTMU */ 12189 case 0x7a: /* FCVTPU */ 12190 case 0x7b: /* FCVTZU */ 12191 need_fpstatus = true; 12192 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12193 if (size == 3 && !is_q) { 12194 unallocated_encoding(s); 12195 return; 12196 } 12197 break; 12198 case 0x5c: /* FCVTAU */ 12199 case 0x1c: /* FCVTAS */ 12200 need_fpstatus = true; 12201 rmode = FPROUNDING_TIEAWAY; 12202 if (size == 3 && !is_q) { 12203 unallocated_encoding(s); 12204 return; 12205 } 12206 break; 12207 case 0x3c: /* URECPE */ 12208 if (size == 3) { 12209 unallocated_encoding(s); 12210 return; 12211 } 12212 /* fall through */ 12213 case 0x3d: /* FRECPE */ 12214 case 0x7d: /* FRSQRTE */ 12215 if (size == 3 && !is_q) { 12216 unallocated_encoding(s); 12217 return; 12218 } 12219 if (!fp_access_check(s)) { 12220 return; 12221 } 12222 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12223 return; 12224 case 0x56: /* FCVTXN, FCVTXN2 */ 12225 if (size == 2) { 12226 unallocated_encoding(s); 12227 return; 12228 } 12229 /* fall through */ 12230 case 0x16: /* FCVTN, FCVTN2 */ 12231 /* handle_2misc_narrow does a 2*size -> size operation, but these 12232 * instructions encode the source size rather than dest size. 12233 */ 12234 if (!fp_access_check(s)) { 12235 return; 12236 } 12237 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12238 return; 12239 case 0x36: /* BFCVTN, BFCVTN2 */ 12240 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12241 unallocated_encoding(s); 12242 return; 12243 } 12244 if (!fp_access_check(s)) { 12245 return; 12246 } 12247 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12248 return; 12249 case 0x17: /* FCVTL, FCVTL2 */ 12250 if (!fp_access_check(s)) { 12251 return; 12252 } 12253 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12254 return; 12255 case 0x18: /* FRINTN */ 12256 case 0x19: /* FRINTM */ 12257 case 0x38: /* FRINTP */ 12258 case 0x39: /* FRINTZ */ 12259 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12260 /* fall through */ 12261 case 0x59: /* FRINTX */ 12262 case 0x79: /* FRINTI */ 12263 need_fpstatus = true; 12264 if (size == 3 && !is_q) { 12265 unallocated_encoding(s); 12266 return; 12267 } 12268 break; 12269 case 0x58: /* FRINTA */ 12270 rmode = FPROUNDING_TIEAWAY; 12271 need_fpstatus = true; 12272 if (size == 3 && !is_q) { 12273 unallocated_encoding(s); 12274 return; 12275 } 12276 break; 12277 case 0x7c: /* URSQRTE */ 12278 if (size == 3) { 12279 unallocated_encoding(s); 12280 return; 12281 } 12282 break; 12283 case 0x1e: /* FRINT32Z */ 12284 case 0x1f: /* FRINT64Z */ 12285 rmode = FPROUNDING_ZERO; 12286 /* fall through */ 12287 case 0x5e: /* FRINT32X */ 12288 case 0x5f: /* FRINT64X */ 12289 need_fpstatus = true; 12290 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12291 unallocated_encoding(s); 12292 return; 12293 } 12294 break; 12295 default: 12296 unallocated_encoding(s); 12297 return; 12298 } 12299 break; 12300 } 12301 default: 12302 unallocated_encoding(s); 12303 return; 12304 } 12305 12306 if (!fp_access_check(s)) { 12307 return; 12308 } 12309 12310 if (need_fpstatus || rmode >= 0) { 12311 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12312 } else { 12313 tcg_fpstatus = NULL; 12314 } 12315 if (rmode >= 0) { 12316 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12317 } else { 12318 tcg_rmode = NULL; 12319 } 12320 12321 switch (opcode) { 12322 case 0x5: 12323 if (u && size == 0) { /* NOT */ 12324 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12325 return; 12326 } 12327 break; 12328 case 0x8: /* CMGT, CMGE */ 12329 if (u) { 12330 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12331 } else { 12332 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12333 } 12334 return; 12335 case 0x9: /* CMEQ, CMLE */ 12336 if (u) { 12337 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12338 } else { 12339 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12340 } 12341 return; 12342 case 0xa: /* CMLT */ 12343 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12344 return; 12345 case 0xb: 12346 if (u) { /* ABS, NEG */ 12347 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12348 } else { 12349 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12350 } 12351 return; 12352 } 12353 12354 if (size == 3) { 12355 /* All 64-bit element operations can be shared with scalar 2misc */ 12356 int pass; 12357 12358 /* Coverity claims (size == 3 && !is_q) has been eliminated 12359 * from all paths leading to here. 12360 */ 12361 tcg_debug_assert(is_q); 12362 for (pass = 0; pass < 2; pass++) { 12363 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12364 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12365 12366 read_vec_element(s, tcg_op, rn, pass, MO_64); 12367 12368 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12369 tcg_rmode, tcg_fpstatus); 12370 12371 write_vec_element(s, tcg_res, rd, pass, MO_64); 12372 } 12373 } else { 12374 int pass; 12375 12376 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12377 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12378 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12379 12380 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12381 12382 if (size == 2) { 12383 /* Special cases for 32 bit elements */ 12384 switch (opcode) { 12385 case 0x4: /* CLS */ 12386 if (u) { 12387 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12388 } else { 12389 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12390 } 12391 break; 12392 case 0x7: /* SQABS, SQNEG */ 12393 if (u) { 12394 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12395 } else { 12396 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12397 } 12398 break; 12399 case 0x2f: /* FABS */ 12400 gen_vfp_abss(tcg_res, tcg_op); 12401 break; 12402 case 0x6f: /* FNEG */ 12403 gen_vfp_negs(tcg_res, tcg_op); 12404 break; 12405 case 0x7f: /* FSQRT */ 12406 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12407 break; 12408 case 0x1a: /* FCVTNS */ 12409 case 0x1b: /* FCVTMS */ 12410 case 0x1c: /* FCVTAS */ 12411 case 0x3a: /* FCVTPS */ 12412 case 0x3b: /* FCVTZS */ 12413 gen_helper_vfp_tosls(tcg_res, tcg_op, 12414 tcg_constant_i32(0), tcg_fpstatus); 12415 break; 12416 case 0x5a: /* FCVTNU */ 12417 case 0x5b: /* FCVTMU */ 12418 case 0x5c: /* FCVTAU */ 12419 case 0x7a: /* FCVTPU */ 12420 case 0x7b: /* FCVTZU */ 12421 gen_helper_vfp_touls(tcg_res, tcg_op, 12422 tcg_constant_i32(0), tcg_fpstatus); 12423 break; 12424 case 0x18: /* FRINTN */ 12425 case 0x19: /* FRINTM */ 12426 case 0x38: /* FRINTP */ 12427 case 0x39: /* FRINTZ */ 12428 case 0x58: /* FRINTA */ 12429 case 0x79: /* FRINTI */ 12430 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12431 break; 12432 case 0x59: /* FRINTX */ 12433 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12434 break; 12435 case 0x7c: /* URSQRTE */ 12436 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12437 break; 12438 case 0x1e: /* FRINT32Z */ 12439 case 0x5e: /* FRINT32X */ 12440 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12441 break; 12442 case 0x1f: /* FRINT64Z */ 12443 case 0x5f: /* FRINT64X */ 12444 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12445 break; 12446 default: 12447 g_assert_not_reached(); 12448 } 12449 } else { 12450 /* Use helpers for 8 and 16 bit elements */ 12451 switch (opcode) { 12452 case 0x5: /* CNT, RBIT */ 12453 /* For these two insns size is part of the opcode specifier 12454 * (handled earlier); they always operate on byte elements. 12455 */ 12456 if (u) { 12457 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12458 } else { 12459 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12460 } 12461 break; 12462 case 0x7: /* SQABS, SQNEG */ 12463 { 12464 NeonGenOneOpEnvFn *genfn; 12465 static NeonGenOneOpEnvFn * const fns[2][2] = { 12466 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12467 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12468 }; 12469 genfn = fns[size][u]; 12470 genfn(tcg_res, tcg_env, tcg_op); 12471 break; 12472 } 12473 case 0x4: /* CLS, CLZ */ 12474 if (u) { 12475 if (size == 0) { 12476 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12477 } else { 12478 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12479 } 12480 } else { 12481 if (size == 0) { 12482 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12483 } else { 12484 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12485 } 12486 } 12487 break; 12488 default: 12489 g_assert_not_reached(); 12490 } 12491 } 12492 12493 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12494 } 12495 } 12496 clear_vec_high(s, is_q, rd); 12497 12498 if (tcg_rmode) { 12499 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12500 } 12501 } 12502 12503 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12504 * 12505 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12506 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12507 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12508 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12509 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12510 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12511 * 12512 * This actually covers two groups where scalar access is governed by 12513 * bit 28. A bunch of the instructions (float to integral) only exist 12514 * in the vector form and are un-allocated for the scalar decode. Also 12515 * in the scalar decode Q is always 1. 12516 */ 12517 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12518 { 12519 int fpop, opcode, a, u; 12520 int rn, rd; 12521 bool is_q; 12522 bool is_scalar; 12523 bool only_in_vector = false; 12524 12525 int pass; 12526 TCGv_i32 tcg_rmode = NULL; 12527 TCGv_ptr tcg_fpstatus = NULL; 12528 bool need_fpst = true; 12529 int rmode = -1; 12530 12531 if (!dc_isar_feature(aa64_fp16, s)) { 12532 unallocated_encoding(s); 12533 return; 12534 } 12535 12536 rd = extract32(insn, 0, 5); 12537 rn = extract32(insn, 5, 5); 12538 12539 a = extract32(insn, 23, 1); 12540 u = extract32(insn, 29, 1); 12541 is_scalar = extract32(insn, 28, 1); 12542 is_q = extract32(insn, 30, 1); 12543 12544 opcode = extract32(insn, 12, 5); 12545 fpop = deposit32(opcode, 5, 1, a); 12546 fpop = deposit32(fpop, 6, 1, u); 12547 12548 switch (fpop) { 12549 case 0x1d: /* SCVTF */ 12550 case 0x5d: /* UCVTF */ 12551 { 12552 int elements; 12553 12554 if (is_scalar) { 12555 elements = 1; 12556 } else { 12557 elements = (is_q ? 8 : 4); 12558 } 12559 12560 if (!fp_access_check(s)) { 12561 return; 12562 } 12563 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12564 return; 12565 } 12566 break; 12567 case 0x2c: /* FCMGT (zero) */ 12568 case 0x2d: /* FCMEQ (zero) */ 12569 case 0x2e: /* FCMLT (zero) */ 12570 case 0x6c: /* FCMGE (zero) */ 12571 case 0x6d: /* FCMLE (zero) */ 12572 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12573 return; 12574 case 0x3d: /* FRECPE */ 12575 case 0x3f: /* FRECPX */ 12576 break; 12577 case 0x18: /* FRINTN */ 12578 only_in_vector = true; 12579 rmode = FPROUNDING_TIEEVEN; 12580 break; 12581 case 0x19: /* FRINTM */ 12582 only_in_vector = true; 12583 rmode = FPROUNDING_NEGINF; 12584 break; 12585 case 0x38: /* FRINTP */ 12586 only_in_vector = true; 12587 rmode = FPROUNDING_POSINF; 12588 break; 12589 case 0x39: /* FRINTZ */ 12590 only_in_vector = true; 12591 rmode = FPROUNDING_ZERO; 12592 break; 12593 case 0x58: /* FRINTA */ 12594 only_in_vector = true; 12595 rmode = FPROUNDING_TIEAWAY; 12596 break; 12597 case 0x59: /* FRINTX */ 12598 case 0x79: /* FRINTI */ 12599 only_in_vector = true; 12600 /* current rounding mode */ 12601 break; 12602 case 0x1a: /* FCVTNS */ 12603 rmode = FPROUNDING_TIEEVEN; 12604 break; 12605 case 0x1b: /* FCVTMS */ 12606 rmode = FPROUNDING_NEGINF; 12607 break; 12608 case 0x1c: /* FCVTAS */ 12609 rmode = FPROUNDING_TIEAWAY; 12610 break; 12611 case 0x3a: /* FCVTPS */ 12612 rmode = FPROUNDING_POSINF; 12613 break; 12614 case 0x3b: /* FCVTZS */ 12615 rmode = FPROUNDING_ZERO; 12616 break; 12617 case 0x5a: /* FCVTNU */ 12618 rmode = FPROUNDING_TIEEVEN; 12619 break; 12620 case 0x5b: /* FCVTMU */ 12621 rmode = FPROUNDING_NEGINF; 12622 break; 12623 case 0x5c: /* FCVTAU */ 12624 rmode = FPROUNDING_TIEAWAY; 12625 break; 12626 case 0x7a: /* FCVTPU */ 12627 rmode = FPROUNDING_POSINF; 12628 break; 12629 case 0x7b: /* FCVTZU */ 12630 rmode = FPROUNDING_ZERO; 12631 break; 12632 case 0x2f: /* FABS */ 12633 case 0x6f: /* FNEG */ 12634 need_fpst = false; 12635 break; 12636 case 0x7d: /* FRSQRTE */ 12637 case 0x7f: /* FSQRT (vector) */ 12638 break; 12639 default: 12640 unallocated_encoding(s); 12641 return; 12642 } 12643 12644 12645 /* Check additional constraints for the scalar encoding */ 12646 if (is_scalar) { 12647 if (!is_q) { 12648 unallocated_encoding(s); 12649 return; 12650 } 12651 /* FRINTxx is only in the vector form */ 12652 if (only_in_vector) { 12653 unallocated_encoding(s); 12654 return; 12655 } 12656 } 12657 12658 if (!fp_access_check(s)) { 12659 return; 12660 } 12661 12662 if (rmode >= 0 || need_fpst) { 12663 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12664 } 12665 12666 if (rmode >= 0) { 12667 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12668 } 12669 12670 if (is_scalar) { 12671 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12672 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12673 12674 switch (fpop) { 12675 case 0x1a: /* FCVTNS */ 12676 case 0x1b: /* FCVTMS */ 12677 case 0x1c: /* FCVTAS */ 12678 case 0x3a: /* FCVTPS */ 12679 case 0x3b: /* FCVTZS */ 12680 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12681 break; 12682 case 0x3d: /* FRECPE */ 12683 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12684 break; 12685 case 0x3f: /* FRECPX */ 12686 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12687 break; 12688 case 0x5a: /* FCVTNU */ 12689 case 0x5b: /* FCVTMU */ 12690 case 0x5c: /* FCVTAU */ 12691 case 0x7a: /* FCVTPU */ 12692 case 0x7b: /* FCVTZU */ 12693 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12694 break; 12695 case 0x6f: /* FNEG */ 12696 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12697 break; 12698 case 0x7d: /* FRSQRTE */ 12699 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12700 break; 12701 default: 12702 g_assert_not_reached(); 12703 } 12704 12705 /* limit any sign extension going on */ 12706 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12707 write_fp_sreg(s, rd, tcg_res); 12708 } else { 12709 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12710 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12711 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12712 12713 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12714 12715 switch (fpop) { 12716 case 0x1a: /* FCVTNS */ 12717 case 0x1b: /* FCVTMS */ 12718 case 0x1c: /* FCVTAS */ 12719 case 0x3a: /* FCVTPS */ 12720 case 0x3b: /* FCVTZS */ 12721 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12722 break; 12723 case 0x3d: /* FRECPE */ 12724 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12725 break; 12726 case 0x5a: /* FCVTNU */ 12727 case 0x5b: /* FCVTMU */ 12728 case 0x5c: /* FCVTAU */ 12729 case 0x7a: /* FCVTPU */ 12730 case 0x7b: /* FCVTZU */ 12731 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12732 break; 12733 case 0x18: /* FRINTN */ 12734 case 0x19: /* FRINTM */ 12735 case 0x38: /* FRINTP */ 12736 case 0x39: /* FRINTZ */ 12737 case 0x58: /* FRINTA */ 12738 case 0x79: /* FRINTI */ 12739 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12740 break; 12741 case 0x59: /* FRINTX */ 12742 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12743 break; 12744 case 0x2f: /* FABS */ 12745 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12746 break; 12747 case 0x6f: /* FNEG */ 12748 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12749 break; 12750 case 0x7d: /* FRSQRTE */ 12751 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12752 break; 12753 case 0x7f: /* FSQRT */ 12754 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12755 break; 12756 default: 12757 g_assert_not_reached(); 12758 } 12759 12760 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12761 } 12762 12763 clear_vec_high(s, is_q, rd); 12764 } 12765 12766 if (tcg_rmode) { 12767 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12768 } 12769 } 12770 12771 /* AdvSIMD scalar x indexed element 12772 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12773 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12774 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12775 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12776 * AdvSIMD vector x indexed element 12777 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12778 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12779 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12780 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12781 */ 12782 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12783 { 12784 /* This encoding has two kinds of instruction: 12785 * normal, where we perform elt x idxelt => elt for each 12786 * element in the vector 12787 * long, where we perform elt x idxelt and generate a result of 12788 * double the width of the input element 12789 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12790 */ 12791 bool is_scalar = extract32(insn, 28, 1); 12792 bool is_q = extract32(insn, 30, 1); 12793 bool u = extract32(insn, 29, 1); 12794 int size = extract32(insn, 22, 2); 12795 int l = extract32(insn, 21, 1); 12796 int m = extract32(insn, 20, 1); 12797 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12798 int rm = extract32(insn, 16, 4); 12799 int opcode = extract32(insn, 12, 4); 12800 int h = extract32(insn, 11, 1); 12801 int rn = extract32(insn, 5, 5); 12802 int rd = extract32(insn, 0, 5); 12803 bool is_long = false; 12804 int is_fp = 0; 12805 bool is_fp16 = false; 12806 int index; 12807 TCGv_ptr fpst; 12808 12809 switch (16 * u + opcode) { 12810 case 0x08: /* MUL */ 12811 case 0x10: /* MLA */ 12812 case 0x14: /* MLS */ 12813 if (is_scalar) { 12814 unallocated_encoding(s); 12815 return; 12816 } 12817 break; 12818 case 0x02: /* SMLAL, SMLAL2 */ 12819 case 0x12: /* UMLAL, UMLAL2 */ 12820 case 0x06: /* SMLSL, SMLSL2 */ 12821 case 0x16: /* UMLSL, UMLSL2 */ 12822 case 0x0a: /* SMULL, SMULL2 */ 12823 case 0x1a: /* UMULL, UMULL2 */ 12824 if (is_scalar) { 12825 unallocated_encoding(s); 12826 return; 12827 } 12828 is_long = true; 12829 break; 12830 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12831 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12832 case 0x0b: /* SQDMULL, SQDMULL2 */ 12833 is_long = true; 12834 break; 12835 case 0x0c: /* SQDMULH */ 12836 case 0x0d: /* SQRDMULH */ 12837 break; 12838 case 0x1d: /* SQRDMLAH */ 12839 case 0x1f: /* SQRDMLSH */ 12840 if (!dc_isar_feature(aa64_rdm, s)) { 12841 unallocated_encoding(s); 12842 return; 12843 } 12844 break; 12845 case 0x0e: /* SDOT */ 12846 case 0x1e: /* UDOT */ 12847 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12848 unallocated_encoding(s); 12849 return; 12850 } 12851 break; 12852 case 0x0f: 12853 switch (size) { 12854 case 0: /* SUDOT */ 12855 case 2: /* USDOT */ 12856 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12857 unallocated_encoding(s); 12858 return; 12859 } 12860 size = MO_32; 12861 break; 12862 case 1: /* BFDOT */ 12863 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12864 unallocated_encoding(s); 12865 return; 12866 } 12867 size = MO_32; 12868 break; 12869 case 3: /* BFMLAL{B,T} */ 12870 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12871 unallocated_encoding(s); 12872 return; 12873 } 12874 /* can't set is_fp without other incorrect size checks */ 12875 size = MO_16; 12876 break; 12877 default: 12878 unallocated_encoding(s); 12879 return; 12880 } 12881 break; 12882 case 0x11: /* FCMLA #0 */ 12883 case 0x13: /* FCMLA #90 */ 12884 case 0x15: /* FCMLA #180 */ 12885 case 0x17: /* FCMLA #270 */ 12886 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12887 unallocated_encoding(s); 12888 return; 12889 } 12890 is_fp = 2; 12891 break; 12892 case 0x00: /* FMLAL */ 12893 case 0x04: /* FMLSL */ 12894 case 0x18: /* FMLAL2 */ 12895 case 0x1c: /* FMLSL2 */ 12896 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12897 unallocated_encoding(s); 12898 return; 12899 } 12900 size = MO_16; 12901 /* is_fp, but we pass tcg_env not fp_status. */ 12902 break; 12903 default: 12904 case 0x01: /* FMLA */ 12905 case 0x05: /* FMLS */ 12906 case 0x09: /* FMUL */ 12907 case 0x19: /* FMULX */ 12908 unallocated_encoding(s); 12909 return; 12910 } 12911 12912 switch (is_fp) { 12913 case 1: /* normal fp */ 12914 unallocated_encoding(s); /* in decodetree */ 12915 return; 12916 12917 case 2: /* complex fp */ 12918 /* Each indexable element is a complex pair. */ 12919 size += 1; 12920 switch (size) { 12921 case MO_32: 12922 if (h && !is_q) { 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 is_fp16 = true; 12927 break; 12928 case MO_64: 12929 break; 12930 default: 12931 unallocated_encoding(s); 12932 return; 12933 } 12934 break; 12935 12936 default: /* integer */ 12937 switch (size) { 12938 case MO_8: 12939 case MO_64: 12940 unallocated_encoding(s); 12941 return; 12942 } 12943 break; 12944 } 12945 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 12946 unallocated_encoding(s); 12947 return; 12948 } 12949 12950 /* Given MemOp size, adjust register and indexing. */ 12951 switch (size) { 12952 case MO_16: 12953 index = h << 2 | l << 1 | m; 12954 break; 12955 case MO_32: 12956 index = h << 1 | l; 12957 rm |= m << 4; 12958 break; 12959 case MO_64: 12960 if (l || !is_q) { 12961 unallocated_encoding(s); 12962 return; 12963 } 12964 index = h; 12965 rm |= m << 4; 12966 break; 12967 default: 12968 g_assert_not_reached(); 12969 } 12970 12971 if (!fp_access_check(s)) { 12972 return; 12973 } 12974 12975 if (is_fp) { 12976 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 12977 } else { 12978 fpst = NULL; 12979 } 12980 12981 switch (16 * u + opcode) { 12982 case 0x0e: /* SDOT */ 12983 case 0x1e: /* UDOT */ 12984 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12985 u ? gen_helper_gvec_udot_idx_b 12986 : gen_helper_gvec_sdot_idx_b); 12987 return; 12988 case 0x0f: 12989 switch (extract32(insn, 22, 2)) { 12990 case 0: /* SUDOT */ 12991 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12992 gen_helper_gvec_sudot_idx_b); 12993 return; 12994 case 1: /* BFDOT */ 12995 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 12996 gen_helper_gvec_bfdot_idx); 12997 return; 12998 case 2: /* USDOT */ 12999 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13000 gen_helper_gvec_usdot_idx_b); 13001 return; 13002 case 3: /* BFMLAL{B,T} */ 13003 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13004 gen_helper_gvec_bfmlal_idx); 13005 return; 13006 } 13007 g_assert_not_reached(); 13008 case 0x11: /* FCMLA #0 */ 13009 case 0x13: /* FCMLA #90 */ 13010 case 0x15: /* FCMLA #180 */ 13011 case 0x17: /* FCMLA #270 */ 13012 { 13013 int rot = extract32(insn, 13, 2); 13014 int data = (index << 2) | rot; 13015 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13016 vec_full_reg_offset(s, rn), 13017 vec_full_reg_offset(s, rm), 13018 vec_full_reg_offset(s, rd), fpst, 13019 is_q ? 16 : 8, vec_full_reg_size(s), data, 13020 size == MO_64 13021 ? gen_helper_gvec_fcmlas_idx 13022 : gen_helper_gvec_fcmlah_idx); 13023 } 13024 return; 13025 13026 case 0x00: /* FMLAL */ 13027 case 0x04: /* FMLSL */ 13028 case 0x18: /* FMLAL2 */ 13029 case 0x1c: /* FMLSL2 */ 13030 { 13031 int is_s = extract32(opcode, 2, 1); 13032 int is_2 = u; 13033 int data = (index << 2) | (is_2 << 1) | is_s; 13034 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13035 vec_full_reg_offset(s, rn), 13036 vec_full_reg_offset(s, rm), tcg_env, 13037 is_q ? 16 : 8, vec_full_reg_size(s), 13038 data, gen_helper_gvec_fmlal_idx_a64); 13039 } 13040 return; 13041 13042 case 0x08: /* MUL */ 13043 if (!is_long && !is_scalar) { 13044 static gen_helper_gvec_3 * const fns[3] = { 13045 gen_helper_gvec_mul_idx_h, 13046 gen_helper_gvec_mul_idx_s, 13047 gen_helper_gvec_mul_idx_d, 13048 }; 13049 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13050 vec_full_reg_offset(s, rn), 13051 vec_full_reg_offset(s, rm), 13052 is_q ? 16 : 8, vec_full_reg_size(s), 13053 index, fns[size - 1]); 13054 return; 13055 } 13056 break; 13057 13058 case 0x10: /* MLA */ 13059 if (!is_long && !is_scalar) { 13060 static gen_helper_gvec_4 * const fns[3] = { 13061 gen_helper_gvec_mla_idx_h, 13062 gen_helper_gvec_mla_idx_s, 13063 gen_helper_gvec_mla_idx_d, 13064 }; 13065 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13066 vec_full_reg_offset(s, rn), 13067 vec_full_reg_offset(s, rm), 13068 vec_full_reg_offset(s, rd), 13069 is_q ? 16 : 8, vec_full_reg_size(s), 13070 index, fns[size - 1]); 13071 return; 13072 } 13073 break; 13074 13075 case 0x14: /* MLS */ 13076 if (!is_long && !is_scalar) { 13077 static gen_helper_gvec_4 * const fns[3] = { 13078 gen_helper_gvec_mls_idx_h, 13079 gen_helper_gvec_mls_idx_s, 13080 gen_helper_gvec_mls_idx_d, 13081 }; 13082 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13083 vec_full_reg_offset(s, rn), 13084 vec_full_reg_offset(s, rm), 13085 vec_full_reg_offset(s, rd), 13086 is_q ? 16 : 8, vec_full_reg_size(s), 13087 index, fns[size - 1]); 13088 return; 13089 } 13090 break; 13091 } 13092 13093 if (size == 3) { 13094 g_assert_not_reached(); 13095 } else if (!is_long) { 13096 /* 32 bit floating point, or 16 or 32 bit integer. 13097 * For the 16 bit scalar case we use the usual Neon helpers and 13098 * rely on the fact that 0 op 0 == 0 with no side effects. 13099 */ 13100 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13101 int pass, maxpasses; 13102 13103 if (is_scalar) { 13104 maxpasses = 1; 13105 } else { 13106 maxpasses = is_q ? 4 : 2; 13107 } 13108 13109 read_vec_element_i32(s, tcg_idx, rm, index, size); 13110 13111 if (size == 1 && !is_scalar) { 13112 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13113 * the index into both halves of the 32 bit tcg_idx and then use 13114 * the usual Neon helpers. 13115 */ 13116 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13117 } 13118 13119 for (pass = 0; pass < maxpasses; pass++) { 13120 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13121 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13122 13123 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13124 13125 switch (16 * u + opcode) { 13126 case 0x08: /* MUL */ 13127 case 0x10: /* MLA */ 13128 case 0x14: /* MLS */ 13129 { 13130 static NeonGenTwoOpFn * const fns[2][2] = { 13131 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13132 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13133 }; 13134 NeonGenTwoOpFn *genfn; 13135 bool is_sub = opcode == 0x4; 13136 13137 if (size == 1) { 13138 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13139 } else { 13140 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13141 } 13142 if (opcode == 0x8) { 13143 break; 13144 } 13145 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13146 genfn = fns[size - 1][is_sub]; 13147 genfn(tcg_res, tcg_op, tcg_res); 13148 break; 13149 } 13150 case 0x0c: /* SQDMULH */ 13151 if (size == 1) { 13152 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13153 tcg_op, tcg_idx); 13154 } else { 13155 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13156 tcg_op, tcg_idx); 13157 } 13158 break; 13159 case 0x0d: /* SQRDMULH */ 13160 if (size == 1) { 13161 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13162 tcg_op, tcg_idx); 13163 } else { 13164 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13165 tcg_op, tcg_idx); 13166 } 13167 break; 13168 case 0x1d: /* SQRDMLAH */ 13169 read_vec_element_i32(s, tcg_res, rd, pass, 13170 is_scalar ? size : MO_32); 13171 if (size == 1) { 13172 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13173 tcg_op, tcg_idx, tcg_res); 13174 } else { 13175 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13176 tcg_op, tcg_idx, tcg_res); 13177 } 13178 break; 13179 case 0x1f: /* SQRDMLSH */ 13180 read_vec_element_i32(s, tcg_res, rd, pass, 13181 is_scalar ? size : MO_32); 13182 if (size == 1) { 13183 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13184 tcg_op, tcg_idx, tcg_res); 13185 } else { 13186 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13187 tcg_op, tcg_idx, tcg_res); 13188 } 13189 break; 13190 default: 13191 case 0x01: /* FMLA */ 13192 case 0x05: /* FMLS */ 13193 case 0x09: /* FMUL */ 13194 case 0x19: /* FMULX */ 13195 g_assert_not_reached(); 13196 } 13197 13198 if (is_scalar) { 13199 write_fp_sreg(s, rd, tcg_res); 13200 } else { 13201 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13202 } 13203 } 13204 13205 clear_vec_high(s, is_q, rd); 13206 } else { 13207 /* long ops: 16x16->32 or 32x32->64 */ 13208 TCGv_i64 tcg_res[2]; 13209 int pass; 13210 bool satop = extract32(opcode, 0, 1); 13211 MemOp memop = MO_32; 13212 13213 if (satop || !u) { 13214 memop |= MO_SIGN; 13215 } 13216 13217 if (size == 2) { 13218 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13219 13220 read_vec_element(s, tcg_idx, rm, index, memop); 13221 13222 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13223 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13224 TCGv_i64 tcg_passres; 13225 int passelt; 13226 13227 if (is_scalar) { 13228 passelt = 0; 13229 } else { 13230 passelt = pass + (is_q * 2); 13231 } 13232 13233 read_vec_element(s, tcg_op, rn, passelt, memop); 13234 13235 tcg_res[pass] = tcg_temp_new_i64(); 13236 13237 if (opcode == 0xa || opcode == 0xb) { 13238 /* Non-accumulating ops */ 13239 tcg_passres = tcg_res[pass]; 13240 } else { 13241 tcg_passres = tcg_temp_new_i64(); 13242 } 13243 13244 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13245 13246 if (satop) { 13247 /* saturating, doubling */ 13248 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13249 tcg_passres, tcg_passres); 13250 } 13251 13252 if (opcode == 0xa || opcode == 0xb) { 13253 continue; 13254 } 13255 13256 /* Accumulating op: handle accumulate step */ 13257 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13258 13259 switch (opcode) { 13260 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13261 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13262 break; 13263 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13264 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13265 break; 13266 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13267 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13268 /* fall through */ 13269 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13270 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13271 tcg_res[pass], 13272 tcg_passres); 13273 break; 13274 default: 13275 g_assert_not_reached(); 13276 } 13277 } 13278 13279 clear_vec_high(s, !is_scalar, rd); 13280 } else { 13281 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13282 13283 assert(size == 1); 13284 read_vec_element_i32(s, tcg_idx, rm, index, size); 13285 13286 if (!is_scalar) { 13287 /* The simplest way to handle the 16x16 indexed ops is to 13288 * duplicate the index into both halves of the 32 bit tcg_idx 13289 * and then use the usual Neon helpers. 13290 */ 13291 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13292 } 13293 13294 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13295 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13296 TCGv_i64 tcg_passres; 13297 13298 if (is_scalar) { 13299 read_vec_element_i32(s, tcg_op, rn, pass, size); 13300 } else { 13301 read_vec_element_i32(s, tcg_op, rn, 13302 pass + (is_q * 2), MO_32); 13303 } 13304 13305 tcg_res[pass] = tcg_temp_new_i64(); 13306 13307 if (opcode == 0xa || opcode == 0xb) { 13308 /* Non-accumulating ops */ 13309 tcg_passres = tcg_res[pass]; 13310 } else { 13311 tcg_passres = tcg_temp_new_i64(); 13312 } 13313 13314 if (memop & MO_SIGN) { 13315 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13316 } else { 13317 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13318 } 13319 if (satop) { 13320 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13321 tcg_passres, tcg_passres); 13322 } 13323 13324 if (opcode == 0xa || opcode == 0xb) { 13325 continue; 13326 } 13327 13328 /* Accumulating op: handle accumulate step */ 13329 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13330 13331 switch (opcode) { 13332 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13333 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13334 tcg_passres); 13335 break; 13336 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13337 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13338 tcg_passres); 13339 break; 13340 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13341 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13342 /* fall through */ 13343 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13344 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13345 tcg_res[pass], 13346 tcg_passres); 13347 break; 13348 default: 13349 g_assert_not_reached(); 13350 } 13351 } 13352 13353 if (is_scalar) { 13354 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13355 } 13356 } 13357 13358 if (is_scalar) { 13359 tcg_res[1] = tcg_constant_i64(0); 13360 } 13361 13362 for (pass = 0; pass < 2; pass++) { 13363 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13364 } 13365 } 13366 } 13367 13368 /* C3.6 Data processing - SIMD, inc Crypto 13369 * 13370 * As the decode gets a little complex we are using a table based 13371 * approach for this part of the decode. 13372 */ 13373 static const AArch64DecodeTable data_proc_simd[] = { 13374 /* pattern , mask , fn */ 13375 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13376 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13377 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13378 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13379 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13380 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13381 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13382 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13383 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13384 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13385 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13386 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13387 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13388 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13389 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13390 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13391 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13392 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13393 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13394 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13395 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13396 { 0x00000000, 0x00000000, NULL } 13397 }; 13398 13399 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13400 { 13401 /* Note that this is called with all non-FP cases from 13402 * table C3-6 so it must UNDEF for entries not specifically 13403 * allocated to instructions in that table. 13404 */ 13405 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13406 if (fn) { 13407 fn(s, insn); 13408 } else { 13409 unallocated_encoding(s); 13410 } 13411 } 13412 13413 /* C3.6 Data processing - SIMD and floating point */ 13414 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13415 { 13416 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13417 disas_data_proc_fp(s, insn); 13418 } else { 13419 /* SIMD, including crypto */ 13420 disas_data_proc_simd(s, insn); 13421 } 13422 } 13423 13424 static bool trans_OK(DisasContext *s, arg_OK *a) 13425 { 13426 return true; 13427 } 13428 13429 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13430 { 13431 s->is_nonstreaming = true; 13432 return true; 13433 } 13434 13435 /** 13436 * is_guarded_page: 13437 * @env: The cpu environment 13438 * @s: The DisasContext 13439 * 13440 * Return true if the page is guarded. 13441 */ 13442 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13443 { 13444 uint64_t addr = s->base.pc_first; 13445 #ifdef CONFIG_USER_ONLY 13446 return page_get_flags(addr) & PAGE_BTI; 13447 #else 13448 CPUTLBEntryFull *full; 13449 void *host; 13450 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13451 int flags; 13452 13453 /* 13454 * We test this immediately after reading an insn, which means 13455 * that the TLB entry must be present and valid, and thus this 13456 * access will never raise an exception. 13457 */ 13458 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13459 false, &host, &full, 0); 13460 assert(!(flags & TLB_INVALID_MASK)); 13461 13462 return full->extra.arm.guarded; 13463 #endif 13464 } 13465 13466 /** 13467 * btype_destination_ok: 13468 * @insn: The instruction at the branch destination 13469 * @bt: SCTLR_ELx.BT 13470 * @btype: PSTATE.BTYPE, and is non-zero 13471 * 13472 * On a guarded page, there are a limited number of insns 13473 * that may be present at the branch target: 13474 * - branch target identifiers, 13475 * - paciasp, pacibsp, 13476 * - BRK insn 13477 * - HLT insn 13478 * Anything else causes a Branch Target Exception. 13479 * 13480 * Return true if the branch is compatible, false to raise BTITRAP. 13481 */ 13482 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13483 { 13484 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13485 /* HINT space */ 13486 switch (extract32(insn, 5, 7)) { 13487 case 0b011001: /* PACIASP */ 13488 case 0b011011: /* PACIBSP */ 13489 /* 13490 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13491 * with btype == 3. Otherwise all btype are ok. 13492 */ 13493 return !bt || btype != 3; 13494 case 0b100000: /* BTI */ 13495 /* Not compatible with any btype. */ 13496 return false; 13497 case 0b100010: /* BTI c */ 13498 /* Not compatible with btype == 3 */ 13499 return btype != 3; 13500 case 0b100100: /* BTI j */ 13501 /* Not compatible with btype == 2 */ 13502 return btype != 2; 13503 case 0b100110: /* BTI jc */ 13504 /* Compatible with any btype. */ 13505 return true; 13506 } 13507 } else { 13508 switch (insn & 0xffe0001fu) { 13509 case 0xd4200000u: /* BRK */ 13510 case 0xd4400000u: /* HLT */ 13511 /* Give priority to the breakpoint exception. */ 13512 return true; 13513 } 13514 } 13515 return false; 13516 } 13517 13518 /* C3.1 A64 instruction index by encoding */ 13519 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13520 { 13521 switch (extract32(insn, 25, 4)) { 13522 case 0x5: 13523 case 0xd: /* Data processing - register */ 13524 disas_data_proc_reg(s, insn); 13525 break; 13526 case 0x7: 13527 case 0xf: /* Data processing - SIMD and floating point */ 13528 disas_data_proc_simd_fp(s, insn); 13529 break; 13530 default: 13531 unallocated_encoding(s); 13532 break; 13533 } 13534 } 13535 13536 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13537 CPUState *cpu) 13538 { 13539 DisasContext *dc = container_of(dcbase, DisasContext, base); 13540 CPUARMState *env = cpu_env(cpu); 13541 ARMCPU *arm_cpu = env_archcpu(env); 13542 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13543 int bound, core_mmu_idx; 13544 13545 dc->isar = &arm_cpu->isar; 13546 dc->condjmp = 0; 13547 dc->pc_save = dc->base.pc_first; 13548 dc->aarch64 = true; 13549 dc->thumb = false; 13550 dc->sctlr_b = 0; 13551 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13552 dc->condexec_mask = 0; 13553 dc->condexec_cond = 0; 13554 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13555 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13556 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13557 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13558 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13559 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13560 #if !defined(CONFIG_USER_ONLY) 13561 dc->user = (dc->current_el == 0); 13562 #endif 13563 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13564 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13565 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13566 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13567 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13568 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13569 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13570 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13571 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13572 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13573 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13574 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13575 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13576 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13577 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13578 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13579 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13580 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13581 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13582 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13583 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13584 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13585 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13586 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13587 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13588 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13589 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13590 dc->vec_len = 0; 13591 dc->vec_stride = 0; 13592 dc->cp_regs = arm_cpu->cp_regs; 13593 dc->features = env->features; 13594 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13595 dc->gm_blocksize = arm_cpu->gm_blocksize; 13596 13597 #ifdef CONFIG_USER_ONLY 13598 /* In sve_probe_page, we assume TBI is enabled. */ 13599 tcg_debug_assert(dc->tbid & 1); 13600 #endif 13601 13602 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13603 13604 /* Single step state. The code-generation logic here is: 13605 * SS_ACTIVE == 0: 13606 * generate code with no special handling for single-stepping (except 13607 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13608 * this happens anyway because those changes are all system register or 13609 * PSTATE writes). 13610 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13611 * emit code for one insn 13612 * emit code to clear PSTATE.SS 13613 * emit code to generate software step exception for completed step 13614 * end TB (as usual for having generated an exception) 13615 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13616 * emit code to generate a software step exception 13617 * end the TB 13618 */ 13619 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13620 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13621 dc->is_ldex = false; 13622 13623 /* Bound the number of insns to execute to those left on the page. */ 13624 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13625 13626 /* If architectural single step active, limit to 1. */ 13627 if (dc->ss_active) { 13628 bound = 1; 13629 } 13630 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13631 } 13632 13633 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13634 { 13635 } 13636 13637 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13638 { 13639 DisasContext *dc = container_of(dcbase, DisasContext, base); 13640 target_ulong pc_arg = dc->base.pc_next; 13641 13642 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13643 pc_arg &= ~TARGET_PAGE_MASK; 13644 } 13645 tcg_gen_insn_start(pc_arg, 0, 0); 13646 dc->insn_start_updated = false; 13647 } 13648 13649 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13650 { 13651 DisasContext *s = container_of(dcbase, DisasContext, base); 13652 CPUARMState *env = cpu_env(cpu); 13653 uint64_t pc = s->base.pc_next; 13654 uint32_t insn; 13655 13656 /* Singlestep exceptions have the highest priority. */ 13657 if (s->ss_active && !s->pstate_ss) { 13658 /* Singlestep state is Active-pending. 13659 * If we're in this state at the start of a TB then either 13660 * a) we just took an exception to an EL which is being debugged 13661 * and this is the first insn in the exception handler 13662 * b) debug exceptions were masked and we just unmasked them 13663 * without changing EL (eg by clearing PSTATE.D) 13664 * In either case we're going to take a swstep exception in the 13665 * "did not step an insn" case, and so the syndrome ISV and EX 13666 * bits should be zero. 13667 */ 13668 assert(s->base.num_insns == 1); 13669 gen_swstep_exception(s, 0, 0); 13670 s->base.is_jmp = DISAS_NORETURN; 13671 s->base.pc_next = pc + 4; 13672 return; 13673 } 13674 13675 if (pc & 3) { 13676 /* 13677 * PC alignment fault. This has priority over the instruction abort 13678 * that we would receive from a translation fault via arm_ldl_code. 13679 * This should only be possible after an indirect branch, at the 13680 * start of the TB. 13681 */ 13682 assert(s->base.num_insns == 1); 13683 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13684 s->base.is_jmp = DISAS_NORETURN; 13685 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13686 return; 13687 } 13688 13689 s->pc_curr = pc; 13690 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13691 s->insn = insn; 13692 s->base.pc_next = pc + 4; 13693 13694 s->fp_access_checked = false; 13695 s->sve_access_checked = false; 13696 13697 if (s->pstate_il) { 13698 /* 13699 * Illegal execution state. This has priority over BTI 13700 * exceptions, but comes after instruction abort exceptions. 13701 */ 13702 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13703 return; 13704 } 13705 13706 if (dc_isar_feature(aa64_bti, s)) { 13707 if (s->base.num_insns == 1) { 13708 /* 13709 * At the first insn of the TB, compute s->guarded_page. 13710 * We delayed computing this until successfully reading 13711 * the first insn of the TB, above. This (mostly) ensures 13712 * that the softmmu tlb entry has been populated, and the 13713 * page table GP bit is available. 13714 * 13715 * Note that we need to compute this even if btype == 0, 13716 * because this value is used for BR instructions later 13717 * where ENV is not available. 13718 */ 13719 s->guarded_page = is_guarded_page(env, s); 13720 13721 /* First insn can have btype set to non-zero. */ 13722 tcg_debug_assert(s->btype >= 0); 13723 13724 /* 13725 * Note that the Branch Target Exception has fairly high 13726 * priority -- below debugging exceptions but above most 13727 * everything else. This allows us to handle this now 13728 * instead of waiting until the insn is otherwise decoded. 13729 */ 13730 if (s->btype != 0 13731 && s->guarded_page 13732 && !btype_destination_ok(insn, s->bt, s->btype)) { 13733 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13734 return; 13735 } 13736 } else { 13737 /* Not the first insn: btype must be 0. */ 13738 tcg_debug_assert(s->btype == 0); 13739 } 13740 } 13741 13742 s->is_nonstreaming = false; 13743 if (s->sme_trap_nonstreaming) { 13744 disas_sme_fa64(s, insn); 13745 } 13746 13747 if (!disas_a64(s, insn) && 13748 !disas_sme(s, insn) && 13749 !disas_sve(s, insn)) { 13750 disas_a64_legacy(s, insn); 13751 } 13752 13753 /* 13754 * After execution of most insns, btype is reset to 0. 13755 * Note that we set btype == -1 when the insn sets btype. 13756 */ 13757 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13758 reset_btype(s); 13759 } 13760 } 13761 13762 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13763 { 13764 DisasContext *dc = container_of(dcbase, DisasContext, base); 13765 13766 if (unlikely(dc->ss_active)) { 13767 /* Note that this means single stepping WFI doesn't halt the CPU. 13768 * For conditional branch insns this is harmless unreachable code as 13769 * gen_goto_tb() has already handled emitting the debug exception 13770 * (and thus a tb-jump is not possible when singlestepping). 13771 */ 13772 switch (dc->base.is_jmp) { 13773 default: 13774 gen_a64_update_pc(dc, 4); 13775 /* fall through */ 13776 case DISAS_EXIT: 13777 case DISAS_JUMP: 13778 gen_step_complete_exception(dc); 13779 break; 13780 case DISAS_NORETURN: 13781 break; 13782 } 13783 } else { 13784 switch (dc->base.is_jmp) { 13785 case DISAS_NEXT: 13786 case DISAS_TOO_MANY: 13787 gen_goto_tb(dc, 1, 4); 13788 break; 13789 default: 13790 case DISAS_UPDATE_EXIT: 13791 gen_a64_update_pc(dc, 4); 13792 /* fall through */ 13793 case DISAS_EXIT: 13794 tcg_gen_exit_tb(NULL, 0); 13795 break; 13796 case DISAS_UPDATE_NOCHAIN: 13797 gen_a64_update_pc(dc, 4); 13798 /* fall through */ 13799 case DISAS_JUMP: 13800 tcg_gen_lookup_and_goto_ptr(); 13801 break; 13802 case DISAS_NORETURN: 13803 case DISAS_SWI: 13804 break; 13805 case DISAS_WFE: 13806 gen_a64_update_pc(dc, 4); 13807 gen_helper_wfe(tcg_env); 13808 break; 13809 case DISAS_YIELD: 13810 gen_a64_update_pc(dc, 4); 13811 gen_helper_yield(tcg_env); 13812 break; 13813 case DISAS_WFI: 13814 /* 13815 * This is a special case because we don't want to just halt 13816 * the CPU if trying to debug across a WFI. 13817 */ 13818 gen_a64_update_pc(dc, 4); 13819 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13820 /* 13821 * The helper doesn't necessarily throw an exception, but we 13822 * must go back to the main loop to check for interrupts anyway. 13823 */ 13824 tcg_gen_exit_tb(NULL, 0); 13825 break; 13826 } 13827 } 13828 } 13829 13830 const TranslatorOps aarch64_translator_ops = { 13831 .init_disas_context = aarch64_tr_init_disas_context, 13832 .tb_start = aarch64_tr_tb_start, 13833 .insn_start = aarch64_tr_insn_start, 13834 .translate_insn = aarch64_tr_translate_insn, 13835 .tb_stop = aarch64_tr_tb_stop, 13836 }; 13837