1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg-op.h" 24 #include "tcg/tcg-op-gvec.h" 25 #include "qemu/log.h" 26 #include "arm_ldst.h" 27 #include "translate.h" 28 #include "internals.h" 29 #include "qemu/host-utils.h" 30 #include "semihosting/semihost.h" 31 #include "exec/gen-icount.h" 32 #include "exec/helper-proto.h" 33 #include "exec/helper-gen.h" 34 #include "exec/log.h" 35 #include "cpregs.h" 36 #include "translate-a64.h" 37 #include "qemu/atomic128.h" 38 39 static TCGv_i64 cpu_X[32]; 40 static TCGv_i64 cpu_pc; 41 42 /* Load/store exclusive handling */ 43 static TCGv_i64 cpu_exclusive_high; 44 45 static const char *regnames[] = { 46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 50 }; 51 52 enum a64_shift_type { 53 A64_SHIFT_TYPE_LSL = 0, 54 A64_SHIFT_TYPE_LSR = 1, 55 A64_SHIFT_TYPE_ASR = 2, 56 A64_SHIFT_TYPE_ROR = 3 57 }; 58 59 /* Table based decoder typedefs - used when the relevant bits for decode 60 * are too awkwardly scattered across the instruction (eg SIMD). 61 */ 62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 63 64 typedef struct AArch64DecodeTable { 65 uint32_t pattern; 66 uint32_t mask; 67 AArch64DecodeFn *disas_fn; 68 } AArch64DecodeTable; 69 70 /* initialize TCG globals. */ 71 void a64_translate_init(void) 72 { 73 int i; 74 75 cpu_pc = tcg_global_mem_new_i64(cpu_env, 76 offsetof(CPUARMState, pc), 77 "pc"); 78 for (i = 0; i < 32; i++) { 79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 80 offsetof(CPUARMState, xregs[i]), 81 regnames[i]); 82 } 83 84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 85 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 86 } 87 88 /* 89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 90 */ 91 static int get_a64_user_mem_index(DisasContext *s) 92 { 93 /* 94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 95 * which is the usual mmu_idx for this cpu state. 96 */ 97 ARMMMUIdx useridx = s->mmu_idx; 98 99 if (s->unpriv) { 100 /* 101 * We have pre-computed the condition for AccType_UNPRIV. 102 * Therefore we should never get here with a mmu_idx for 103 * which we do not know the corresponding user mmu_idx. 104 */ 105 switch (useridx) { 106 case ARMMMUIdx_E10_1: 107 case ARMMMUIdx_E10_1_PAN: 108 useridx = ARMMMUIdx_E10_0; 109 break; 110 case ARMMMUIdx_E20_2: 111 case ARMMMUIdx_E20_2_PAN: 112 useridx = ARMMMUIdx_E20_0; 113 break; 114 default: 115 g_assert_not_reached(); 116 } 117 } 118 return arm_to_core_mmu_idx(useridx); 119 } 120 121 static void set_btype_raw(int val) 122 { 123 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 124 offsetof(CPUARMState, btype)); 125 } 126 127 static void set_btype(DisasContext *s, int val) 128 { 129 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 130 tcg_debug_assert(val >= 1 && val <= 3); 131 set_btype_raw(val); 132 s->btype = -1; 133 } 134 135 static void reset_btype(DisasContext *s) 136 { 137 if (s->btype != 0) { 138 set_btype_raw(0); 139 s->btype = 0; 140 } 141 } 142 143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 144 { 145 assert(s->pc_save != -1); 146 if (tb_cflags(s->base.tb) & CF_PCREL) { 147 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 148 } else { 149 tcg_gen_movi_i64(dest, s->pc_curr + diff); 150 } 151 } 152 153 void gen_a64_update_pc(DisasContext *s, target_long diff) 154 { 155 gen_pc_plus_diff(s, cpu_pc, diff); 156 s->pc_save = s->pc_curr + diff; 157 } 158 159 /* 160 * Handle Top Byte Ignore (TBI) bits. 161 * 162 * If address tagging is enabled via the TCR TBI bits: 163 * + for EL2 and EL3 there is only one TBI bit, and if it is set 164 * then the address is zero-extended, clearing bits [63:56] 165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 166 * and TBI1 controls addressses with bit 55 == 1. 167 * If the appropriate TBI bit is set for the address then 168 * the address is sign-extended from bit 55 into bits [63:56] 169 * 170 * Here We have concatenated TBI{1,0} into tbi. 171 */ 172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 173 TCGv_i64 src, int tbi) 174 { 175 if (tbi == 0) { 176 /* Load unmodified address */ 177 tcg_gen_mov_i64(dst, src); 178 } else if (!regime_has_2_ranges(s->mmu_idx)) { 179 /* Force tag byte to all zero */ 180 tcg_gen_extract_i64(dst, src, 0, 56); 181 } else { 182 /* Sign-extend from bit 55. */ 183 tcg_gen_sextract_i64(dst, src, 0, 56); 184 185 switch (tbi) { 186 case 1: 187 /* tbi0 but !tbi1: only use the extension if positive */ 188 tcg_gen_and_i64(dst, dst, src); 189 break; 190 case 2: 191 /* !tbi0 but tbi1: only use the extension if negative */ 192 tcg_gen_or_i64(dst, dst, src); 193 break; 194 case 3: 195 /* tbi0 and tbi1: always use the extension */ 196 break; 197 default: 198 g_assert_not_reached(); 199 } 200 } 201 } 202 203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 204 { 205 /* 206 * If address tagging is enabled for instructions via the TCR TBI bits, 207 * then loading an address into the PC will clear out any tag. 208 */ 209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 210 s->pc_save = -1; 211 } 212 213 /* 214 * Handle MTE and/or TBI. 215 * 216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 217 * for the tag to be present in the FAR_ELx register. But for user-only 218 * mode we do not have a TLB with which to implement this, so we must 219 * remove the top byte now. 220 * 221 * Always return a fresh temporary that we can increment independently 222 * of the write-back address. 223 */ 224 225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 226 { 227 TCGv_i64 clean = tcg_temp_new_i64(); 228 #ifdef CONFIG_USER_ONLY 229 gen_top_byte_ignore(s, clean, addr, s->tbid); 230 #else 231 tcg_gen_mov_i64(clean, addr); 232 #endif 233 return clean; 234 } 235 236 /* Insert a zero tag into src, with the result at dst. */ 237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 238 { 239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 240 } 241 242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 243 MMUAccessType acc, int log2_size) 244 { 245 gen_helper_probe_access(cpu_env, ptr, 246 tcg_constant_i32(acc), 247 tcg_constant_i32(get_mem_index(s)), 248 tcg_constant_i32(1 << log2_size)); 249 } 250 251 /* 252 * For MTE, check a single logical or atomic access. This probes a single 253 * address, the exact one specified. The size and alignment of the access 254 * is not relevant to MTE, per se, but watchpoints do require the size, 255 * and we want to recognize those before making any other changes to state. 256 */ 257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 258 bool is_write, bool tag_checked, 259 int log2_size, bool is_unpriv, 260 int core_idx) 261 { 262 if (tag_checked && s->mte_active[is_unpriv]) { 263 TCGv_i64 ret; 264 int desc = 0; 265 266 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 267 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 268 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 269 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 270 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1); 271 272 ret = tcg_temp_new_i64(); 273 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 274 275 return ret; 276 } 277 return clean_data_tbi(s, addr); 278 } 279 280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 281 bool tag_checked, int log2_size) 282 { 283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size, 284 false, get_mem_index(s)); 285 } 286 287 /* 288 * For MTE, check multiple logical sequential accesses. 289 */ 290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 291 bool tag_checked, int size) 292 { 293 if (tag_checked && s->mte_active[0]) { 294 TCGv_i64 ret; 295 int desc = 0; 296 297 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 298 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 299 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 300 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 301 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1); 302 303 ret = tcg_temp_new_i64(); 304 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 305 306 return ret; 307 } 308 return clean_data_tbi(s, addr); 309 } 310 311 typedef struct DisasCompare64 { 312 TCGCond cond; 313 TCGv_i64 value; 314 } DisasCompare64; 315 316 static void a64_test_cc(DisasCompare64 *c64, int cc) 317 { 318 DisasCompare c32; 319 320 arm_test_cc(&c32, cc); 321 322 /* 323 * Sign-extend the 32-bit value so that the GE/LT comparisons work 324 * properly. The NE/EQ comparisons are also fine with this choice. 325 */ 326 c64->cond = c32.cond; 327 c64->value = tcg_temp_new_i64(); 328 tcg_gen_ext_i32_i64(c64->value, c32.value); 329 } 330 331 static void gen_rebuild_hflags(DisasContext *s) 332 { 333 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 334 } 335 336 static void gen_exception_internal(int excp) 337 { 338 assert(excp_is_internal(excp)); 339 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 340 } 341 342 static void gen_exception_internal_insn(DisasContext *s, int excp) 343 { 344 gen_a64_update_pc(s, 0); 345 gen_exception_internal(excp); 346 s->base.is_jmp = DISAS_NORETURN; 347 } 348 349 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 350 { 351 gen_a64_update_pc(s, 0); 352 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 353 s->base.is_jmp = DISAS_NORETURN; 354 } 355 356 static void gen_step_complete_exception(DisasContext *s) 357 { 358 /* We just completed step of an insn. Move from Active-not-pending 359 * to Active-pending, and then also take the swstep exception. 360 * This corresponds to making the (IMPDEF) choice to prioritize 361 * swstep exceptions over asynchronous exceptions taken to an exception 362 * level where debug is disabled. This choice has the advantage that 363 * we do not need to maintain internal state corresponding to the 364 * ISV/EX syndrome bits between completion of the step and generation 365 * of the exception, and our syndrome information is always correct. 366 */ 367 gen_ss_advance(s); 368 gen_swstep_exception(s, 1, s->is_ldex); 369 s->base.is_jmp = DISAS_NORETURN; 370 } 371 372 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 373 { 374 if (s->ss_active) { 375 return false; 376 } 377 return translator_use_goto_tb(&s->base, dest); 378 } 379 380 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 381 { 382 if (use_goto_tb(s, s->pc_curr + diff)) { 383 /* 384 * For pcrel, the pc must always be up-to-date on entry to 385 * the linked TB, so that it can use simple additions for all 386 * further adjustments. For !pcrel, the linked TB is compiled 387 * to know its full virtual address, so we can delay the 388 * update to pc to the unlinked path. A long chain of links 389 * can thus avoid many updates to the PC. 390 */ 391 if (tb_cflags(s->base.tb) & CF_PCREL) { 392 gen_a64_update_pc(s, diff); 393 tcg_gen_goto_tb(n); 394 } else { 395 tcg_gen_goto_tb(n); 396 gen_a64_update_pc(s, diff); 397 } 398 tcg_gen_exit_tb(s->base.tb, n); 399 s->base.is_jmp = DISAS_NORETURN; 400 } else { 401 gen_a64_update_pc(s, diff); 402 if (s->ss_active) { 403 gen_step_complete_exception(s); 404 } else { 405 tcg_gen_lookup_and_goto_ptr(); 406 s->base.is_jmp = DISAS_NORETURN; 407 } 408 } 409 } 410 411 /* 412 * Register access functions 413 * 414 * These functions are used for directly accessing a register in where 415 * changes to the final register value are likely to be made. If you 416 * need to use a register for temporary calculation (e.g. index type 417 * operations) use the read_* form. 418 * 419 * B1.2.1 Register mappings 420 * 421 * In instruction register encoding 31 can refer to ZR (zero register) or 422 * the SP (stack pointer) depending on context. In QEMU's case we map SP 423 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 424 * This is the point of the _sp forms. 425 */ 426 TCGv_i64 cpu_reg(DisasContext *s, int reg) 427 { 428 if (reg == 31) { 429 TCGv_i64 t = tcg_temp_new_i64(); 430 tcg_gen_movi_i64(t, 0); 431 return t; 432 } else { 433 return cpu_X[reg]; 434 } 435 } 436 437 /* register access for when 31 == SP */ 438 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 439 { 440 return cpu_X[reg]; 441 } 442 443 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 444 * representing the register contents. This TCGv is an auto-freed 445 * temporary so it need not be explicitly freed, and may be modified. 446 */ 447 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 448 { 449 TCGv_i64 v = tcg_temp_new_i64(); 450 if (reg != 31) { 451 if (sf) { 452 tcg_gen_mov_i64(v, cpu_X[reg]); 453 } else { 454 tcg_gen_ext32u_i64(v, cpu_X[reg]); 455 } 456 } else { 457 tcg_gen_movi_i64(v, 0); 458 } 459 return v; 460 } 461 462 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 463 { 464 TCGv_i64 v = tcg_temp_new_i64(); 465 if (sf) { 466 tcg_gen_mov_i64(v, cpu_X[reg]); 467 } else { 468 tcg_gen_ext32u_i64(v, cpu_X[reg]); 469 } 470 return v; 471 } 472 473 /* Return the offset into CPUARMState of a slice (from 474 * the least significant end) of FP register Qn (ie 475 * Dn, Sn, Hn or Bn). 476 * (Note that this is not the same mapping as for A32; see cpu.h) 477 */ 478 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 479 { 480 return vec_reg_offset(s, regno, 0, size); 481 } 482 483 /* Offset of the high half of the 128 bit vector Qn */ 484 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 485 { 486 return vec_reg_offset(s, regno, 1, MO_64); 487 } 488 489 /* Convenience accessors for reading and writing single and double 490 * FP registers. Writing clears the upper parts of the associated 491 * 128 bit vector register, as required by the architecture. 492 * Note that unlike the GP register accessors, the values returned 493 * by the read functions must be manually freed. 494 */ 495 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 496 { 497 TCGv_i64 v = tcg_temp_new_i64(); 498 499 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 500 return v; 501 } 502 503 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 504 { 505 TCGv_i32 v = tcg_temp_new_i32(); 506 507 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 508 return v; 509 } 510 511 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 512 { 513 TCGv_i32 v = tcg_temp_new_i32(); 514 515 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 516 return v; 517 } 518 519 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 520 * If SVE is not enabled, then there are only 128 bits in the vector. 521 */ 522 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 523 { 524 unsigned ofs = fp_reg_offset(s, rd, MO_64); 525 unsigned vsz = vec_full_reg_size(s); 526 527 /* Nop move, with side effect of clearing the tail. */ 528 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 529 } 530 531 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 532 { 533 unsigned ofs = fp_reg_offset(s, reg, MO_64); 534 535 tcg_gen_st_i64(v, cpu_env, ofs); 536 clear_vec_high(s, false, reg); 537 } 538 539 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 540 { 541 TCGv_i64 tmp = tcg_temp_new_i64(); 542 543 tcg_gen_extu_i32_i64(tmp, v); 544 write_fp_dreg(s, reg, tmp); 545 } 546 547 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 548 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 549 GVecGen2Fn *gvec_fn, int vece) 550 { 551 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 552 is_q ? 16 : 8, vec_full_reg_size(s)); 553 } 554 555 /* Expand a 2-operand + immediate AdvSIMD vector operation using 556 * an expander function. 557 */ 558 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 559 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 560 { 561 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 562 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 563 } 564 565 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 566 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 567 GVecGen3Fn *gvec_fn, int vece) 568 { 569 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 570 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 571 } 572 573 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 574 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 575 int rx, GVecGen4Fn *gvec_fn, int vece) 576 { 577 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 578 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 579 is_q ? 16 : 8, vec_full_reg_size(s)); 580 } 581 582 /* Expand a 2-operand operation using an out-of-line helper. */ 583 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 584 int rn, int data, gen_helper_gvec_2 *fn) 585 { 586 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 587 vec_full_reg_offset(s, rn), 588 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 589 } 590 591 /* Expand a 3-operand operation using an out-of-line helper. */ 592 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 593 int rn, int rm, int data, gen_helper_gvec_3 *fn) 594 { 595 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 596 vec_full_reg_offset(s, rn), 597 vec_full_reg_offset(s, rm), 598 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 599 } 600 601 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 602 * an out-of-line helper. 603 */ 604 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 605 int rm, bool is_fp16, int data, 606 gen_helper_gvec_3_ptr *fn) 607 { 608 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 609 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 610 vec_full_reg_offset(s, rn), 611 vec_full_reg_offset(s, rm), fpst, 612 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 613 } 614 615 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 616 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 617 int rm, gen_helper_gvec_3_ptr *fn) 618 { 619 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 620 621 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 622 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 623 vec_full_reg_offset(s, rn), 624 vec_full_reg_offset(s, rm), qc_ptr, 625 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 626 } 627 628 /* Expand a 4-operand operation using an out-of-line helper. */ 629 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 630 int rm, int ra, int data, gen_helper_gvec_4 *fn) 631 { 632 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 633 vec_full_reg_offset(s, rn), 634 vec_full_reg_offset(s, rm), 635 vec_full_reg_offset(s, ra), 636 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 637 } 638 639 /* 640 * Expand a 4-operand + fpstatus pointer + simd data value operation using 641 * an out-of-line helper. 642 */ 643 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 644 int rm, int ra, bool is_fp16, int data, 645 gen_helper_gvec_4_ptr *fn) 646 { 647 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 648 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 649 vec_full_reg_offset(s, rn), 650 vec_full_reg_offset(s, rm), 651 vec_full_reg_offset(s, ra), fpst, 652 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 653 } 654 655 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 656 * than the 32 bit equivalent. 657 */ 658 static inline void gen_set_NZ64(TCGv_i64 result) 659 { 660 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 661 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 662 } 663 664 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 665 static inline void gen_logic_CC(int sf, TCGv_i64 result) 666 { 667 if (sf) { 668 gen_set_NZ64(result); 669 } else { 670 tcg_gen_extrl_i64_i32(cpu_ZF, result); 671 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 672 } 673 tcg_gen_movi_i32(cpu_CF, 0); 674 tcg_gen_movi_i32(cpu_VF, 0); 675 } 676 677 /* dest = T0 + T1; compute C, N, V and Z flags */ 678 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 679 { 680 if (sf) { 681 TCGv_i64 result, flag, tmp; 682 result = tcg_temp_new_i64(); 683 flag = tcg_temp_new_i64(); 684 tmp = tcg_temp_new_i64(); 685 686 tcg_gen_movi_i64(tmp, 0); 687 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 688 689 tcg_gen_extrl_i64_i32(cpu_CF, flag); 690 691 gen_set_NZ64(result); 692 693 tcg_gen_xor_i64(flag, result, t0); 694 tcg_gen_xor_i64(tmp, t0, t1); 695 tcg_gen_andc_i64(flag, flag, tmp); 696 tcg_gen_extrh_i64_i32(cpu_VF, flag); 697 698 tcg_gen_mov_i64(dest, result); 699 } else { 700 /* 32 bit arithmetic */ 701 TCGv_i32 t0_32 = tcg_temp_new_i32(); 702 TCGv_i32 t1_32 = tcg_temp_new_i32(); 703 TCGv_i32 tmp = tcg_temp_new_i32(); 704 705 tcg_gen_movi_i32(tmp, 0); 706 tcg_gen_extrl_i64_i32(t0_32, t0); 707 tcg_gen_extrl_i64_i32(t1_32, t1); 708 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 709 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 710 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 711 tcg_gen_xor_i32(tmp, t0_32, t1_32); 712 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 713 tcg_gen_extu_i32_i64(dest, cpu_NF); 714 } 715 } 716 717 /* dest = T0 - T1; compute C, N, V and Z flags */ 718 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 719 { 720 if (sf) { 721 /* 64 bit arithmetic */ 722 TCGv_i64 result, flag, tmp; 723 724 result = tcg_temp_new_i64(); 725 flag = tcg_temp_new_i64(); 726 tcg_gen_sub_i64(result, t0, t1); 727 728 gen_set_NZ64(result); 729 730 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 731 tcg_gen_extrl_i64_i32(cpu_CF, flag); 732 733 tcg_gen_xor_i64(flag, result, t0); 734 tmp = tcg_temp_new_i64(); 735 tcg_gen_xor_i64(tmp, t0, t1); 736 tcg_gen_and_i64(flag, flag, tmp); 737 tcg_gen_extrh_i64_i32(cpu_VF, flag); 738 tcg_gen_mov_i64(dest, result); 739 } else { 740 /* 32 bit arithmetic */ 741 TCGv_i32 t0_32 = tcg_temp_new_i32(); 742 TCGv_i32 t1_32 = tcg_temp_new_i32(); 743 TCGv_i32 tmp; 744 745 tcg_gen_extrl_i64_i32(t0_32, t0); 746 tcg_gen_extrl_i64_i32(t1_32, t1); 747 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 748 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 749 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 750 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 751 tmp = tcg_temp_new_i32(); 752 tcg_gen_xor_i32(tmp, t0_32, t1_32); 753 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 754 tcg_gen_extu_i32_i64(dest, cpu_NF); 755 } 756 } 757 758 /* dest = T0 + T1 + CF; do not compute flags. */ 759 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 760 { 761 TCGv_i64 flag = tcg_temp_new_i64(); 762 tcg_gen_extu_i32_i64(flag, cpu_CF); 763 tcg_gen_add_i64(dest, t0, t1); 764 tcg_gen_add_i64(dest, dest, flag); 765 766 if (!sf) { 767 tcg_gen_ext32u_i64(dest, dest); 768 } 769 } 770 771 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 772 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 773 { 774 if (sf) { 775 TCGv_i64 result = tcg_temp_new_i64(); 776 TCGv_i64 cf_64 = tcg_temp_new_i64(); 777 TCGv_i64 vf_64 = tcg_temp_new_i64(); 778 TCGv_i64 tmp = tcg_temp_new_i64(); 779 TCGv_i64 zero = tcg_constant_i64(0); 780 781 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 782 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 783 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 784 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 785 gen_set_NZ64(result); 786 787 tcg_gen_xor_i64(vf_64, result, t0); 788 tcg_gen_xor_i64(tmp, t0, t1); 789 tcg_gen_andc_i64(vf_64, vf_64, tmp); 790 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 791 792 tcg_gen_mov_i64(dest, result); 793 } else { 794 TCGv_i32 t0_32 = tcg_temp_new_i32(); 795 TCGv_i32 t1_32 = tcg_temp_new_i32(); 796 TCGv_i32 tmp = tcg_temp_new_i32(); 797 TCGv_i32 zero = tcg_constant_i32(0); 798 799 tcg_gen_extrl_i64_i32(t0_32, t0); 800 tcg_gen_extrl_i64_i32(t1_32, t1); 801 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 802 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 803 804 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 805 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 806 tcg_gen_xor_i32(tmp, t0_32, t1_32); 807 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 808 tcg_gen_extu_i32_i64(dest, cpu_NF); 809 } 810 } 811 812 /* 813 * Load/Store generators 814 */ 815 816 /* 817 * Store from GPR register to memory. 818 */ 819 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 820 TCGv_i64 tcg_addr, MemOp memop, int memidx, 821 bool iss_valid, 822 unsigned int iss_srt, 823 bool iss_sf, bool iss_ar) 824 { 825 memop = finalize_memop(s, memop); 826 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 827 828 if (iss_valid) { 829 uint32_t syn; 830 831 syn = syn_data_abort_with_iss(0, 832 (memop & MO_SIZE), 833 false, 834 iss_srt, 835 iss_sf, 836 iss_ar, 837 0, 0, 0, 0, 0, false); 838 disas_set_insn_syndrome(s, syn); 839 } 840 } 841 842 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 843 TCGv_i64 tcg_addr, MemOp memop, 844 bool iss_valid, 845 unsigned int iss_srt, 846 bool iss_sf, bool iss_ar) 847 { 848 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 849 iss_valid, iss_srt, iss_sf, iss_ar); 850 } 851 852 /* 853 * Load from memory to GPR register 854 */ 855 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 856 MemOp memop, bool extend, int memidx, 857 bool iss_valid, unsigned int iss_srt, 858 bool iss_sf, bool iss_ar) 859 { 860 memop = finalize_memop(s, memop); 861 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 862 863 if (extend && (memop & MO_SIGN)) { 864 g_assert((memop & MO_SIZE) <= MO_32); 865 tcg_gen_ext32u_i64(dest, dest); 866 } 867 868 if (iss_valid) { 869 uint32_t syn; 870 871 syn = syn_data_abort_with_iss(0, 872 (memop & MO_SIZE), 873 (memop & MO_SIGN) != 0, 874 iss_srt, 875 iss_sf, 876 iss_ar, 877 0, 0, 0, 0, 0, false); 878 disas_set_insn_syndrome(s, syn); 879 } 880 } 881 882 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 883 MemOp memop, bool extend, 884 bool iss_valid, unsigned int iss_srt, 885 bool iss_sf, bool iss_ar) 886 { 887 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 888 iss_valid, iss_srt, iss_sf, iss_ar); 889 } 890 891 /* 892 * Store from FP register to memory 893 */ 894 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) 895 { 896 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 897 TCGv_i64 tmplo = tcg_temp_new_i64(); 898 MemOp mop; 899 900 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 901 902 if (size < 4) { 903 mop = finalize_memop(s, size); 904 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 905 } else { 906 bool be = s->be_data == MO_BE; 907 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); 908 TCGv_i64 tmphi = tcg_temp_new_i64(); 909 910 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 911 912 mop = s->be_data | MO_UQ; 913 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 914 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 915 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 916 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr, 917 get_mem_index(s), mop); 918 } 919 } 920 921 /* 922 * Load from memory to FP register 923 */ 924 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) 925 { 926 /* This always zero-extends and writes to a full 128 bit wide vector */ 927 TCGv_i64 tmplo = tcg_temp_new_i64(); 928 TCGv_i64 tmphi = NULL; 929 MemOp mop; 930 931 if (size < 4) { 932 mop = finalize_memop(s, size); 933 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 934 } else { 935 bool be = s->be_data == MO_BE; 936 TCGv_i64 tcg_hiaddr; 937 938 tmphi = tcg_temp_new_i64(); 939 tcg_hiaddr = tcg_temp_new_i64(); 940 941 mop = s->be_data | MO_UQ; 942 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s), 943 mop | (s->align_mem ? MO_ALIGN_16 : 0)); 944 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); 945 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr, 946 get_mem_index(s), mop); 947 } 948 949 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 950 951 if (tmphi) { 952 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 953 } 954 clear_vec_high(s, tmphi != NULL, destidx); 955 } 956 957 /* 958 * Vector load/store helpers. 959 * 960 * The principal difference between this and a FP load is that we don't 961 * zero extend as we are filling a partial chunk of the vector register. 962 * These functions don't support 128 bit loads/stores, which would be 963 * normal load/store operations. 964 * 965 * The _i32 versions are useful when operating on 32 bit quantities 966 * (eg for floating point single or using Neon helper functions). 967 */ 968 969 /* Get value of an element within a vector register */ 970 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 971 int element, MemOp memop) 972 { 973 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 974 switch ((unsigned)memop) { 975 case MO_8: 976 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 977 break; 978 case MO_16: 979 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 980 break; 981 case MO_32: 982 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 983 break; 984 case MO_8|MO_SIGN: 985 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 986 break; 987 case MO_16|MO_SIGN: 988 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 989 break; 990 case MO_32|MO_SIGN: 991 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 992 break; 993 case MO_64: 994 case MO_64|MO_SIGN: 995 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 996 break; 997 default: 998 g_assert_not_reached(); 999 } 1000 } 1001 1002 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1003 int element, MemOp memop) 1004 { 1005 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1006 switch (memop) { 1007 case MO_8: 1008 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1009 break; 1010 case MO_16: 1011 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1012 break; 1013 case MO_8|MO_SIGN: 1014 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1015 break; 1016 case MO_16|MO_SIGN: 1017 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1018 break; 1019 case MO_32: 1020 case MO_32|MO_SIGN: 1021 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1022 break; 1023 default: 1024 g_assert_not_reached(); 1025 } 1026 } 1027 1028 /* Set value of an element within a vector register */ 1029 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1030 int element, MemOp memop) 1031 { 1032 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1033 switch (memop) { 1034 case MO_8: 1035 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1036 break; 1037 case MO_16: 1038 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1039 break; 1040 case MO_32: 1041 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1042 break; 1043 case MO_64: 1044 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1045 break; 1046 default: 1047 g_assert_not_reached(); 1048 } 1049 } 1050 1051 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1052 int destidx, int element, MemOp memop) 1053 { 1054 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1055 switch (memop) { 1056 case MO_8: 1057 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1058 break; 1059 case MO_16: 1060 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1061 break; 1062 case MO_32: 1063 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1064 break; 1065 default: 1066 g_assert_not_reached(); 1067 } 1068 } 1069 1070 /* Store from vector register to memory */ 1071 static void do_vec_st(DisasContext *s, int srcidx, int element, 1072 TCGv_i64 tcg_addr, MemOp mop) 1073 { 1074 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1075 1076 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1077 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1078 } 1079 1080 /* Load from memory to vector register */ 1081 static void do_vec_ld(DisasContext *s, int destidx, int element, 1082 TCGv_i64 tcg_addr, MemOp mop) 1083 { 1084 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1085 1086 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1087 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1088 } 1089 1090 /* Check that FP/Neon access is enabled. If it is, return 1091 * true. If not, emit code to generate an appropriate exception, 1092 * and return false; the caller should not emit any code for 1093 * the instruction. Note that this check must happen after all 1094 * unallocated-encoding checks (otherwise the syndrome information 1095 * for the resulting exception will be incorrect). 1096 */ 1097 static bool fp_access_check_only(DisasContext *s) 1098 { 1099 if (s->fp_excp_el) { 1100 assert(!s->fp_access_checked); 1101 s->fp_access_checked = true; 1102 1103 gen_exception_insn_el(s, 0, EXCP_UDEF, 1104 syn_fp_access_trap(1, 0xe, false, 0), 1105 s->fp_excp_el); 1106 return false; 1107 } 1108 s->fp_access_checked = true; 1109 return true; 1110 } 1111 1112 static bool fp_access_check(DisasContext *s) 1113 { 1114 if (!fp_access_check_only(s)) { 1115 return false; 1116 } 1117 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1118 gen_exception_insn(s, 0, EXCP_UDEF, 1119 syn_smetrap(SME_ET_Streaming, false)); 1120 return false; 1121 } 1122 return true; 1123 } 1124 1125 /* 1126 * Check that SVE access is enabled. If it is, return true. 1127 * If not, emit code to generate an appropriate exception and return false. 1128 * This function corresponds to CheckSVEEnabled(). 1129 */ 1130 bool sve_access_check(DisasContext *s) 1131 { 1132 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1133 assert(dc_isar_feature(aa64_sme, s)); 1134 if (!sme_sm_enabled_check(s)) { 1135 goto fail_exit; 1136 } 1137 } else if (s->sve_excp_el) { 1138 gen_exception_insn_el(s, 0, EXCP_UDEF, 1139 syn_sve_access_trap(), s->sve_excp_el); 1140 goto fail_exit; 1141 } 1142 s->sve_access_checked = true; 1143 return fp_access_check(s); 1144 1145 fail_exit: 1146 /* Assert that we only raise one exception per instruction. */ 1147 assert(!s->sve_access_checked); 1148 s->sve_access_checked = true; 1149 return false; 1150 } 1151 1152 /* 1153 * Check that SME access is enabled, raise an exception if not. 1154 * Note that this function corresponds to CheckSMEAccess and is 1155 * only used directly for cpregs. 1156 */ 1157 static bool sme_access_check(DisasContext *s) 1158 { 1159 if (s->sme_excp_el) { 1160 gen_exception_insn_el(s, 0, EXCP_UDEF, 1161 syn_smetrap(SME_ET_AccessTrap, false), 1162 s->sme_excp_el); 1163 return false; 1164 } 1165 return true; 1166 } 1167 1168 /* This function corresponds to CheckSMEEnabled. */ 1169 bool sme_enabled_check(DisasContext *s) 1170 { 1171 /* 1172 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1173 * to be zero when fp_excp_el has priority. This is because we need 1174 * sme_excp_el by itself for cpregs access checks. 1175 */ 1176 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1177 s->fp_access_checked = true; 1178 return sme_access_check(s); 1179 } 1180 return fp_access_check_only(s); 1181 } 1182 1183 /* Common subroutine for CheckSMEAnd*Enabled. */ 1184 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1185 { 1186 if (!sme_enabled_check(s)) { 1187 return false; 1188 } 1189 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1190 gen_exception_insn(s, 0, EXCP_UDEF, 1191 syn_smetrap(SME_ET_NotStreaming, false)); 1192 return false; 1193 } 1194 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1195 gen_exception_insn(s, 0, EXCP_UDEF, 1196 syn_smetrap(SME_ET_InactiveZA, false)); 1197 return false; 1198 } 1199 return true; 1200 } 1201 1202 /* 1203 * This utility function is for doing register extension with an 1204 * optional shift. You will likely want to pass a temporary for the 1205 * destination register. See DecodeRegExtend() in the ARM ARM. 1206 */ 1207 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1208 int option, unsigned int shift) 1209 { 1210 int extsize = extract32(option, 0, 2); 1211 bool is_signed = extract32(option, 2, 1); 1212 1213 if (is_signed) { 1214 switch (extsize) { 1215 case 0: 1216 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1217 break; 1218 case 1: 1219 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1220 break; 1221 case 2: 1222 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1223 break; 1224 case 3: 1225 tcg_gen_mov_i64(tcg_out, tcg_in); 1226 break; 1227 } 1228 } else { 1229 switch (extsize) { 1230 case 0: 1231 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1232 break; 1233 case 1: 1234 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1235 break; 1236 case 2: 1237 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1238 break; 1239 case 3: 1240 tcg_gen_mov_i64(tcg_out, tcg_in); 1241 break; 1242 } 1243 } 1244 1245 if (shift) { 1246 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1247 } 1248 } 1249 1250 static inline void gen_check_sp_alignment(DisasContext *s) 1251 { 1252 /* The AArch64 architecture mandates that (if enabled via PSTATE 1253 * or SCTLR bits) there is a check that SP is 16-aligned on every 1254 * SP-relative load or store (with an exception generated if it is not). 1255 * In line with general QEMU practice regarding misaligned accesses, 1256 * we omit these checks for the sake of guest program performance. 1257 * This function is provided as a hook so we can more easily add these 1258 * checks in future (possibly as a "favour catching guest program bugs 1259 * over speed" user selectable option). 1260 */ 1261 } 1262 1263 /* 1264 * This provides a simple table based table lookup decoder. It is 1265 * intended to be used when the relevant bits for decode are too 1266 * awkwardly placed and switch/if based logic would be confusing and 1267 * deeply nested. Since it's a linear search through the table, tables 1268 * should be kept small. 1269 * 1270 * It returns the first handler where insn & mask == pattern, or 1271 * NULL if there is no match. 1272 * The table is terminated by an empty mask (i.e. 0) 1273 */ 1274 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1275 uint32_t insn) 1276 { 1277 const AArch64DecodeTable *tptr = table; 1278 1279 while (tptr->mask) { 1280 if ((insn & tptr->mask) == tptr->pattern) { 1281 return tptr->disas_fn; 1282 } 1283 tptr++; 1284 } 1285 return NULL; 1286 } 1287 1288 /* 1289 * The instruction disassembly implemented here matches 1290 * the instruction encoding classifications in chapter C4 1291 * of the ARM Architecture Reference Manual (DDI0487B_a); 1292 * classification names and decode diagrams here should generally 1293 * match up with those in the manual. 1294 */ 1295 1296 /* Unconditional branch (immediate) 1297 * 31 30 26 25 0 1298 * +----+-----------+-------------------------------------+ 1299 * | op | 0 0 1 0 1 | imm26 | 1300 * +----+-----------+-------------------------------------+ 1301 */ 1302 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) 1303 { 1304 int64_t diff = sextract32(insn, 0, 26) * 4; 1305 1306 if (insn & (1U << 31)) { 1307 /* BL Branch with link */ 1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1309 } 1310 1311 /* B Branch / BL Branch with link */ 1312 reset_btype(s); 1313 gen_goto_tb(s, 0, diff); 1314 } 1315 1316 /* Compare and branch (immediate) 1317 * 31 30 25 24 23 5 4 0 1318 * +----+-------------+----+---------------------+--------+ 1319 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | 1320 * +----+-------------+----+---------------------+--------+ 1321 */ 1322 static void disas_comp_b_imm(DisasContext *s, uint32_t insn) 1323 { 1324 unsigned int sf, op, rt; 1325 int64_t diff; 1326 DisasLabel match; 1327 TCGv_i64 tcg_cmp; 1328 1329 sf = extract32(insn, 31, 1); 1330 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ 1331 rt = extract32(insn, 0, 5); 1332 diff = sextract32(insn, 5, 19) * 4; 1333 1334 tcg_cmp = read_cpu_reg(s, rt, sf); 1335 reset_btype(s); 1336 1337 match = gen_disas_label(s); 1338 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1339 tcg_cmp, 0, match.label); 1340 gen_goto_tb(s, 0, 4); 1341 set_disas_label(s, match); 1342 gen_goto_tb(s, 1, diff); 1343 } 1344 1345 /* Test and branch (immediate) 1346 * 31 30 25 24 23 19 18 5 4 0 1347 * +----+-------------+----+-------+-------------+------+ 1348 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | 1349 * +----+-------------+----+-------+-------------+------+ 1350 */ 1351 static void disas_test_b_imm(DisasContext *s, uint32_t insn) 1352 { 1353 unsigned int bit_pos, op, rt; 1354 int64_t diff; 1355 DisasLabel match; 1356 TCGv_i64 tcg_cmp; 1357 1358 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); 1359 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ 1360 diff = sextract32(insn, 5, 14) * 4; 1361 rt = extract32(insn, 0, 5); 1362 1363 tcg_cmp = tcg_temp_new_i64(); 1364 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); 1365 1366 reset_btype(s); 1367 1368 match = gen_disas_label(s); 1369 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, 1370 tcg_cmp, 0, match.label); 1371 gen_goto_tb(s, 0, 4); 1372 set_disas_label(s, match); 1373 gen_goto_tb(s, 1, diff); 1374 } 1375 1376 /* Conditional branch (immediate) 1377 * 31 25 24 23 5 4 3 0 1378 * +---------------+----+---------------------+----+------+ 1379 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | 1380 * +---------------+----+---------------------+----+------+ 1381 */ 1382 static void disas_cond_b_imm(DisasContext *s, uint32_t insn) 1383 { 1384 unsigned int cond; 1385 int64_t diff; 1386 1387 if ((insn & (1 << 4)) || (insn & (1 << 24))) { 1388 unallocated_encoding(s); 1389 return; 1390 } 1391 diff = sextract32(insn, 5, 19) * 4; 1392 cond = extract32(insn, 0, 4); 1393 1394 reset_btype(s); 1395 if (cond < 0x0e) { 1396 /* genuinely conditional branches */ 1397 DisasLabel match = gen_disas_label(s); 1398 arm_gen_test_cc(cond, match.label); 1399 gen_goto_tb(s, 0, 4); 1400 set_disas_label(s, match); 1401 gen_goto_tb(s, 1, diff); 1402 } else { 1403 /* 0xe and 0xf are both "always" conditions */ 1404 gen_goto_tb(s, 0, diff); 1405 } 1406 } 1407 1408 /* HINT instruction group, including various allocated HINTs */ 1409 static void handle_hint(DisasContext *s, uint32_t insn, 1410 unsigned int op1, unsigned int op2, unsigned int crm) 1411 { 1412 unsigned int selector = crm << 3 | op2; 1413 1414 if (op1 != 3) { 1415 unallocated_encoding(s); 1416 return; 1417 } 1418 1419 switch (selector) { 1420 case 0b00000: /* NOP */ 1421 break; 1422 case 0b00011: /* WFI */ 1423 s->base.is_jmp = DISAS_WFI; 1424 break; 1425 case 0b00001: /* YIELD */ 1426 /* When running in MTTCG we don't generate jumps to the yield and 1427 * WFE helpers as it won't affect the scheduling of other vCPUs. 1428 * If we wanted to more completely model WFE/SEV so we don't busy 1429 * spin unnecessarily we would need to do something more involved. 1430 */ 1431 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1432 s->base.is_jmp = DISAS_YIELD; 1433 } 1434 break; 1435 case 0b00010: /* WFE */ 1436 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1437 s->base.is_jmp = DISAS_WFE; 1438 } 1439 break; 1440 case 0b00100: /* SEV */ 1441 case 0b00101: /* SEVL */ 1442 case 0b00110: /* DGH */ 1443 /* we treat all as NOP at least for now */ 1444 break; 1445 case 0b00111: /* XPACLRI */ 1446 if (s->pauth_active) { 1447 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1448 } 1449 break; 1450 case 0b01000: /* PACIA1716 */ 1451 if (s->pauth_active) { 1452 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1453 } 1454 break; 1455 case 0b01010: /* PACIB1716 */ 1456 if (s->pauth_active) { 1457 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1458 } 1459 break; 1460 case 0b01100: /* AUTIA1716 */ 1461 if (s->pauth_active) { 1462 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1463 } 1464 break; 1465 case 0b01110: /* AUTIB1716 */ 1466 if (s->pauth_active) { 1467 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1468 } 1469 break; 1470 case 0b10000: /* ESB */ 1471 /* Without RAS, we must implement this as NOP. */ 1472 if (dc_isar_feature(aa64_ras, s)) { 1473 /* 1474 * QEMU does not have a source of physical SErrors, 1475 * so we are only concerned with virtual SErrors. 1476 * The pseudocode in the ARM for this case is 1477 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1478 * AArch64.vESBOperation(); 1479 * Most of the condition can be evaluated at translation time. 1480 * Test for EL2 present, and defer test for SEL2 to runtime. 1481 */ 1482 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1483 gen_helper_vesb(cpu_env); 1484 } 1485 } 1486 break; 1487 case 0b11000: /* PACIAZ */ 1488 if (s->pauth_active) { 1489 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1490 tcg_constant_i64(0)); 1491 } 1492 break; 1493 case 0b11001: /* PACIASP */ 1494 if (s->pauth_active) { 1495 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1496 } 1497 break; 1498 case 0b11010: /* PACIBZ */ 1499 if (s->pauth_active) { 1500 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1501 tcg_constant_i64(0)); 1502 } 1503 break; 1504 case 0b11011: /* PACIBSP */ 1505 if (s->pauth_active) { 1506 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1507 } 1508 break; 1509 case 0b11100: /* AUTIAZ */ 1510 if (s->pauth_active) { 1511 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1512 tcg_constant_i64(0)); 1513 } 1514 break; 1515 case 0b11101: /* AUTIASP */ 1516 if (s->pauth_active) { 1517 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1518 } 1519 break; 1520 case 0b11110: /* AUTIBZ */ 1521 if (s->pauth_active) { 1522 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1523 tcg_constant_i64(0)); 1524 } 1525 break; 1526 case 0b11111: /* AUTIBSP */ 1527 if (s->pauth_active) { 1528 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1529 } 1530 break; 1531 default: 1532 /* default specified as NOP equivalent */ 1533 break; 1534 } 1535 } 1536 1537 static void gen_clrex(DisasContext *s, uint32_t insn) 1538 { 1539 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1540 } 1541 1542 /* CLREX, DSB, DMB, ISB */ 1543 static void handle_sync(DisasContext *s, uint32_t insn, 1544 unsigned int op1, unsigned int op2, unsigned int crm) 1545 { 1546 TCGBar bar; 1547 1548 if (op1 != 3) { 1549 unallocated_encoding(s); 1550 return; 1551 } 1552 1553 switch (op2) { 1554 case 2: /* CLREX */ 1555 gen_clrex(s, insn); 1556 return; 1557 case 4: /* DSB */ 1558 case 5: /* DMB */ 1559 switch (crm & 3) { 1560 case 1: /* MBReqTypes_Reads */ 1561 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1562 break; 1563 case 2: /* MBReqTypes_Writes */ 1564 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1565 break; 1566 default: /* MBReqTypes_All */ 1567 bar = TCG_BAR_SC | TCG_MO_ALL; 1568 break; 1569 } 1570 tcg_gen_mb(bar); 1571 return; 1572 case 6: /* ISB */ 1573 /* We need to break the TB after this insn to execute 1574 * a self-modified code correctly and also to take 1575 * any pending interrupts immediately. 1576 */ 1577 reset_btype(s); 1578 gen_goto_tb(s, 0, 4); 1579 return; 1580 1581 case 7: /* SB */ 1582 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1583 goto do_unallocated; 1584 } 1585 /* 1586 * TODO: There is no speculation barrier opcode for TCG; 1587 * MB and end the TB instead. 1588 */ 1589 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1590 gen_goto_tb(s, 0, 4); 1591 return; 1592 1593 default: 1594 do_unallocated: 1595 unallocated_encoding(s); 1596 return; 1597 } 1598 } 1599 1600 static void gen_xaflag(void) 1601 { 1602 TCGv_i32 z = tcg_temp_new_i32(); 1603 1604 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1605 1606 /* 1607 * (!C & !Z) << 31 1608 * (!(C | Z)) << 31 1609 * ~((C | Z) << 31) 1610 * ~-(C | Z) 1611 * (C | Z) - 1 1612 */ 1613 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1614 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1615 1616 /* !(Z & C) */ 1617 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1618 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1619 1620 /* (!C & Z) << 31 -> -(Z & ~C) */ 1621 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1622 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1623 1624 /* C | Z */ 1625 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1626 } 1627 1628 static void gen_axflag(void) 1629 { 1630 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1631 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1632 1633 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1634 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1635 1636 tcg_gen_movi_i32(cpu_NF, 0); 1637 tcg_gen_movi_i32(cpu_VF, 0); 1638 } 1639 1640 /* MSR (immediate) - move immediate to processor state field */ 1641 static void handle_msr_i(DisasContext *s, uint32_t insn, 1642 unsigned int op1, unsigned int op2, unsigned int crm) 1643 { 1644 int op = op1 << 3 | op2; 1645 1646 /* End the TB by default, chaining is ok. */ 1647 s->base.is_jmp = DISAS_TOO_MANY; 1648 1649 switch (op) { 1650 case 0x00: /* CFINV */ 1651 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1652 goto do_unallocated; 1653 } 1654 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1655 s->base.is_jmp = DISAS_NEXT; 1656 break; 1657 1658 case 0x01: /* XAFlag */ 1659 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1660 goto do_unallocated; 1661 } 1662 gen_xaflag(); 1663 s->base.is_jmp = DISAS_NEXT; 1664 break; 1665 1666 case 0x02: /* AXFlag */ 1667 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1668 goto do_unallocated; 1669 } 1670 gen_axflag(); 1671 s->base.is_jmp = DISAS_NEXT; 1672 break; 1673 1674 case 0x03: /* UAO */ 1675 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1676 goto do_unallocated; 1677 } 1678 if (crm & 1) { 1679 set_pstate_bits(PSTATE_UAO); 1680 } else { 1681 clear_pstate_bits(PSTATE_UAO); 1682 } 1683 gen_rebuild_hflags(s); 1684 break; 1685 1686 case 0x04: /* PAN */ 1687 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1688 goto do_unallocated; 1689 } 1690 if (crm & 1) { 1691 set_pstate_bits(PSTATE_PAN); 1692 } else { 1693 clear_pstate_bits(PSTATE_PAN); 1694 } 1695 gen_rebuild_hflags(s); 1696 break; 1697 1698 case 0x05: /* SPSel */ 1699 if (s->current_el == 0) { 1700 goto do_unallocated; 1701 } 1702 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1703 break; 1704 1705 case 0x19: /* SSBS */ 1706 if (!dc_isar_feature(aa64_ssbs, s)) { 1707 goto do_unallocated; 1708 } 1709 if (crm & 1) { 1710 set_pstate_bits(PSTATE_SSBS); 1711 } else { 1712 clear_pstate_bits(PSTATE_SSBS); 1713 } 1714 /* Don't need to rebuild hflags since SSBS is a nop */ 1715 break; 1716 1717 case 0x1a: /* DIT */ 1718 if (!dc_isar_feature(aa64_dit, s)) { 1719 goto do_unallocated; 1720 } 1721 if (crm & 1) { 1722 set_pstate_bits(PSTATE_DIT); 1723 } else { 1724 clear_pstate_bits(PSTATE_DIT); 1725 } 1726 /* There's no need to rebuild hflags because DIT is a nop */ 1727 break; 1728 1729 case 0x1e: /* DAIFSet */ 1730 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1731 break; 1732 1733 case 0x1f: /* DAIFClear */ 1734 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1735 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1736 s->base.is_jmp = DISAS_UPDATE_EXIT; 1737 break; 1738 1739 case 0x1c: /* TCO */ 1740 if (dc_isar_feature(aa64_mte, s)) { 1741 /* Full MTE is enabled -- set the TCO bit as directed. */ 1742 if (crm & 1) { 1743 set_pstate_bits(PSTATE_TCO); 1744 } else { 1745 clear_pstate_bits(PSTATE_TCO); 1746 } 1747 gen_rebuild_hflags(s); 1748 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1749 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1750 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1751 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1752 s->base.is_jmp = DISAS_NEXT; 1753 } else { 1754 goto do_unallocated; 1755 } 1756 break; 1757 1758 case 0x1b: /* SVCR* */ 1759 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 1760 goto do_unallocated; 1761 } 1762 if (sme_access_check(s)) { 1763 int old = s->pstate_sm | (s->pstate_za << 1); 1764 int new = (crm & 1) * 3; 1765 int msk = (crm >> 1) & 3; 1766 1767 if ((old ^ new) & msk) { 1768 /* At least one bit changes. */ 1769 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 1770 tcg_constant_i32(msk)); 1771 } else { 1772 s->base.is_jmp = DISAS_NEXT; 1773 } 1774 } 1775 break; 1776 1777 default: 1778 do_unallocated: 1779 unallocated_encoding(s); 1780 return; 1781 } 1782 } 1783 1784 static void gen_get_nzcv(TCGv_i64 tcg_rt) 1785 { 1786 TCGv_i32 tmp = tcg_temp_new_i32(); 1787 TCGv_i32 nzcv = tcg_temp_new_i32(); 1788 1789 /* build bit 31, N */ 1790 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 1791 /* build bit 30, Z */ 1792 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 1793 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 1794 /* build bit 29, C */ 1795 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 1796 /* build bit 28, V */ 1797 tcg_gen_shri_i32(tmp, cpu_VF, 31); 1798 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 1799 /* generate result */ 1800 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 1801 } 1802 1803 static void gen_set_nzcv(TCGv_i64 tcg_rt) 1804 { 1805 TCGv_i32 nzcv = tcg_temp_new_i32(); 1806 1807 /* take NZCV from R[t] */ 1808 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 1809 1810 /* bit 31, N */ 1811 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 1812 /* bit 30, Z */ 1813 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 1814 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 1815 /* bit 29, C */ 1816 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 1817 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 1818 /* bit 28, V */ 1819 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 1820 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 1821 } 1822 1823 static void gen_sysreg_undef(DisasContext *s, bool isread, 1824 uint8_t op0, uint8_t op1, uint8_t op2, 1825 uint8_t crn, uint8_t crm, uint8_t rt) 1826 { 1827 /* 1828 * Generate code to emit an UNDEF with correct syndrome 1829 * information for a failed system register access. 1830 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 1831 * but if FEAT_IDST is implemented then read accesses to registers 1832 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 1833 * syndrome. 1834 */ 1835 uint32_t syndrome; 1836 1837 if (isread && dc_isar_feature(aa64_ids, s) && 1838 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 1839 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1840 } else { 1841 syndrome = syn_uncategorized(); 1842 } 1843 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 1844 } 1845 1846 /* MRS - move from system register 1847 * MSR (register) - move to system register 1848 * SYS 1849 * SYSL 1850 * These are all essentially the same insn in 'read' and 'write' 1851 * versions, with varying op0 fields. 1852 */ 1853 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 1854 unsigned int op0, unsigned int op1, unsigned int op2, 1855 unsigned int crn, unsigned int crm, unsigned int rt) 1856 { 1857 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 1858 crn, crm, op0, op1, op2); 1859 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 1860 TCGv_ptr tcg_ri = NULL; 1861 TCGv_i64 tcg_rt; 1862 1863 if (!ri) { 1864 /* Unknown register; this might be a guest error or a QEMU 1865 * unimplemented feature. 1866 */ 1867 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 1868 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 1869 isread ? "read" : "write", op0, op1, crn, crm, op2); 1870 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1871 return; 1872 } 1873 1874 /* Check access permissions */ 1875 if (!cp_access_ok(s->current_el, ri, isread)) { 1876 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 1877 return; 1878 } 1879 1880 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 1881 /* Emit code to perform further access permissions checks at 1882 * runtime; this may result in an exception. 1883 */ 1884 uint32_t syndrome; 1885 1886 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 1887 gen_a64_update_pc(s, 0); 1888 tcg_ri = tcg_temp_new_ptr(); 1889 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 1890 tcg_constant_i32(key), 1891 tcg_constant_i32(syndrome), 1892 tcg_constant_i32(isread)); 1893 } else if (ri->type & ARM_CP_RAISES_EXC) { 1894 /* 1895 * The readfn or writefn might raise an exception; 1896 * synchronize the CPU state in case it does. 1897 */ 1898 gen_a64_update_pc(s, 0); 1899 } 1900 1901 /* Handle special cases first */ 1902 switch (ri->type & ARM_CP_SPECIAL_MASK) { 1903 case 0: 1904 break; 1905 case ARM_CP_NOP: 1906 return; 1907 case ARM_CP_NZCV: 1908 tcg_rt = cpu_reg(s, rt); 1909 if (isread) { 1910 gen_get_nzcv(tcg_rt); 1911 } else { 1912 gen_set_nzcv(tcg_rt); 1913 } 1914 return; 1915 case ARM_CP_CURRENTEL: 1916 /* Reads as current EL value from pstate, which is 1917 * guaranteed to be constant by the tb flags. 1918 */ 1919 tcg_rt = cpu_reg(s, rt); 1920 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 1921 return; 1922 case ARM_CP_DC_ZVA: 1923 /* Writes clear the aligned block of memory which rt points into. */ 1924 if (s->mte_active[0]) { 1925 int desc = 0; 1926 1927 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 1928 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 1929 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 1930 1931 tcg_rt = tcg_temp_new_i64(); 1932 gen_helper_mte_check_zva(tcg_rt, cpu_env, 1933 tcg_constant_i32(desc), cpu_reg(s, rt)); 1934 } else { 1935 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 1936 } 1937 gen_helper_dc_zva(cpu_env, tcg_rt); 1938 return; 1939 case ARM_CP_DC_GVA: 1940 { 1941 TCGv_i64 clean_addr, tag; 1942 1943 /* 1944 * DC_GVA, like DC_ZVA, requires that we supply the original 1945 * pointer for an invalid page. Probe that address first. 1946 */ 1947 tcg_rt = cpu_reg(s, rt); 1948 clean_addr = clean_data_tbi(s, tcg_rt); 1949 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 1950 1951 if (s->ata) { 1952 /* Extract the tag from the register to match STZGM. */ 1953 tag = tcg_temp_new_i64(); 1954 tcg_gen_shri_i64(tag, tcg_rt, 56); 1955 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1956 } 1957 } 1958 return; 1959 case ARM_CP_DC_GZVA: 1960 { 1961 TCGv_i64 clean_addr, tag; 1962 1963 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 1964 tcg_rt = cpu_reg(s, rt); 1965 clean_addr = clean_data_tbi(s, tcg_rt); 1966 gen_helper_dc_zva(cpu_env, clean_addr); 1967 1968 if (s->ata) { 1969 /* Extract the tag from the register to match STZGM. */ 1970 tag = tcg_temp_new_i64(); 1971 tcg_gen_shri_i64(tag, tcg_rt, 56); 1972 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 1973 } 1974 } 1975 return; 1976 default: 1977 g_assert_not_reached(); 1978 } 1979 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 1980 return; 1981 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 1982 return; 1983 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 1984 return; 1985 } 1986 1987 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 1988 gen_io_start(); 1989 } 1990 1991 tcg_rt = cpu_reg(s, rt); 1992 1993 if (isread) { 1994 if (ri->type & ARM_CP_CONST) { 1995 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 1996 } else if (ri->readfn) { 1997 if (!tcg_ri) { 1998 tcg_ri = gen_lookup_cp_reg(key); 1999 } 2000 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2001 } else { 2002 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2003 } 2004 } else { 2005 if (ri->type & ARM_CP_CONST) { 2006 /* If not forbidden by access permissions, treat as WI */ 2007 return; 2008 } else if (ri->writefn) { 2009 if (!tcg_ri) { 2010 tcg_ri = gen_lookup_cp_reg(key); 2011 } 2012 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2013 } else { 2014 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2015 } 2016 } 2017 2018 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { 2019 /* I/O operations must end the TB here (whether read or write) */ 2020 s->base.is_jmp = DISAS_UPDATE_EXIT; 2021 } 2022 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2023 /* 2024 * A write to any coprocessor regiser that ends a TB 2025 * must rebuild the hflags for the next TB. 2026 */ 2027 gen_rebuild_hflags(s); 2028 /* 2029 * We default to ending the TB on a coprocessor register write, 2030 * but allow this to be suppressed by the register definition 2031 * (usually only necessary to work around guest bugs). 2032 */ 2033 s->base.is_jmp = DISAS_UPDATE_EXIT; 2034 } 2035 } 2036 2037 /* System 2038 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2039 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2040 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2041 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2042 */ 2043 static void disas_system(DisasContext *s, uint32_t insn) 2044 { 2045 unsigned int l, op0, op1, crn, crm, op2, rt; 2046 l = extract32(insn, 21, 1); 2047 op0 = extract32(insn, 19, 2); 2048 op1 = extract32(insn, 16, 3); 2049 crn = extract32(insn, 12, 4); 2050 crm = extract32(insn, 8, 4); 2051 op2 = extract32(insn, 5, 3); 2052 rt = extract32(insn, 0, 5); 2053 2054 if (op0 == 0) { 2055 if (l || rt != 31) { 2056 unallocated_encoding(s); 2057 return; 2058 } 2059 switch (crn) { 2060 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2061 handle_hint(s, insn, op1, op2, crm); 2062 break; 2063 case 3: /* CLREX, DSB, DMB, ISB */ 2064 handle_sync(s, insn, op1, op2, crm); 2065 break; 2066 case 4: /* MSR (immediate) */ 2067 handle_msr_i(s, insn, op1, op2, crm); 2068 break; 2069 default: 2070 unallocated_encoding(s); 2071 break; 2072 } 2073 return; 2074 } 2075 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2076 } 2077 2078 /* Exception generation 2079 * 2080 * 31 24 23 21 20 5 4 2 1 0 2081 * +-----------------+-----+------------------------+-----+----+ 2082 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2083 * +-----------------------+------------------------+----------+ 2084 */ 2085 static void disas_exc(DisasContext *s, uint32_t insn) 2086 { 2087 int opc = extract32(insn, 21, 3); 2088 int op2_ll = extract32(insn, 0, 5); 2089 int imm16 = extract32(insn, 5, 16); 2090 uint32_t syndrome; 2091 2092 switch (opc) { 2093 case 0: 2094 /* For SVC, HVC and SMC we advance the single-step state 2095 * machine before taking the exception. This is architecturally 2096 * mandated, to ensure that single-stepping a system call 2097 * instruction works properly. 2098 */ 2099 switch (op2_ll) { 2100 case 1: /* SVC */ 2101 syndrome = syn_aa64_svc(imm16); 2102 if (s->fgt_svc) { 2103 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2104 break; 2105 } 2106 gen_ss_advance(s); 2107 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2108 break; 2109 case 2: /* HVC */ 2110 if (s->current_el == 0) { 2111 unallocated_encoding(s); 2112 break; 2113 } 2114 /* The pre HVC helper handles cases when HVC gets trapped 2115 * as an undefined insn by runtime configuration. 2116 */ 2117 gen_a64_update_pc(s, 0); 2118 gen_helper_pre_hvc(cpu_env); 2119 gen_ss_advance(s); 2120 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2121 break; 2122 case 3: /* SMC */ 2123 if (s->current_el == 0) { 2124 unallocated_encoding(s); 2125 break; 2126 } 2127 gen_a64_update_pc(s, 0); 2128 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2129 gen_ss_advance(s); 2130 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2131 break; 2132 default: 2133 unallocated_encoding(s); 2134 break; 2135 } 2136 break; 2137 case 1: 2138 if (op2_ll != 0) { 2139 unallocated_encoding(s); 2140 break; 2141 } 2142 /* BRK */ 2143 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2144 break; 2145 case 2: 2146 if (op2_ll != 0) { 2147 unallocated_encoding(s); 2148 break; 2149 } 2150 /* HLT. This has two purposes. 2151 * Architecturally, it is an external halting debug instruction. 2152 * Since QEMU doesn't implement external debug, we treat this as 2153 * it is required for halting debug disabled: it will UNDEF. 2154 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2155 */ 2156 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2157 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2158 } else { 2159 unallocated_encoding(s); 2160 } 2161 break; 2162 case 5: 2163 if (op2_ll < 1 || op2_ll > 3) { 2164 unallocated_encoding(s); 2165 break; 2166 } 2167 /* DCPS1, DCPS2, DCPS3 */ 2168 unallocated_encoding(s); 2169 break; 2170 default: 2171 unallocated_encoding(s); 2172 break; 2173 } 2174 } 2175 2176 /* Unconditional branch (register) 2177 * 31 25 24 21 20 16 15 10 9 5 4 0 2178 * +---------------+-------+-------+-------+------+-------+ 2179 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | 2180 * +---------------+-------+-------+-------+------+-------+ 2181 */ 2182 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) 2183 { 2184 unsigned int opc, op2, op3, rn, op4; 2185 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */ 2186 TCGv_i64 dst; 2187 TCGv_i64 modifier; 2188 2189 opc = extract32(insn, 21, 4); 2190 op2 = extract32(insn, 16, 5); 2191 op3 = extract32(insn, 10, 6); 2192 rn = extract32(insn, 5, 5); 2193 op4 = extract32(insn, 0, 5); 2194 2195 if (op2 != 0x1f) { 2196 goto do_unallocated; 2197 } 2198 2199 switch (opc) { 2200 case 0: /* BR */ 2201 case 1: /* BLR */ 2202 case 2: /* RET */ 2203 btype_mod = opc; 2204 switch (op3) { 2205 case 0: 2206 /* BR, BLR, RET */ 2207 if (op4 != 0) { 2208 goto do_unallocated; 2209 } 2210 dst = cpu_reg(s, rn); 2211 break; 2212 2213 case 2: 2214 case 3: 2215 if (!dc_isar_feature(aa64_pauth, s)) { 2216 goto do_unallocated; 2217 } 2218 if (opc == 2) { 2219 /* RETAA, RETAB */ 2220 if (rn != 0x1f || op4 != 0x1f) { 2221 goto do_unallocated; 2222 } 2223 rn = 30; 2224 modifier = cpu_X[31]; 2225 } else { 2226 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */ 2227 if (op4 != 0x1f) { 2228 goto do_unallocated; 2229 } 2230 modifier = tcg_constant_i64(0); 2231 } 2232 if (s->pauth_active) { 2233 dst = tcg_temp_new_i64(); 2234 if (op3 == 2) { 2235 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2236 } else { 2237 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2238 } 2239 } else { 2240 dst = cpu_reg(s, rn); 2241 } 2242 break; 2243 2244 default: 2245 goto do_unallocated; 2246 } 2247 /* BLR also needs to load return address */ 2248 if (opc == 1) { 2249 TCGv_i64 lr = cpu_reg(s, 30); 2250 if (dst == lr) { 2251 TCGv_i64 tmp = tcg_temp_new_i64(); 2252 tcg_gen_mov_i64(tmp, dst); 2253 dst = tmp; 2254 } 2255 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2256 } 2257 gen_a64_set_pc(s, dst); 2258 break; 2259 2260 case 8: /* BRAA */ 2261 case 9: /* BLRAA */ 2262 if (!dc_isar_feature(aa64_pauth, s)) { 2263 goto do_unallocated; 2264 } 2265 if ((op3 & ~1) != 2) { 2266 goto do_unallocated; 2267 } 2268 btype_mod = opc & 1; 2269 if (s->pauth_active) { 2270 dst = tcg_temp_new_i64(); 2271 modifier = cpu_reg_sp(s, op4); 2272 if (op3 == 2) { 2273 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier); 2274 } else { 2275 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier); 2276 } 2277 } else { 2278 dst = cpu_reg(s, rn); 2279 } 2280 /* BLRAA also needs to load return address */ 2281 if (opc == 9) { 2282 TCGv_i64 lr = cpu_reg(s, 30); 2283 if (dst == lr) { 2284 TCGv_i64 tmp = tcg_temp_new_i64(); 2285 tcg_gen_mov_i64(tmp, dst); 2286 dst = tmp; 2287 } 2288 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 2289 } 2290 gen_a64_set_pc(s, dst); 2291 break; 2292 2293 case 4: /* ERET */ 2294 if (s->current_el == 0) { 2295 goto do_unallocated; 2296 } 2297 switch (op3) { 2298 case 0: /* ERET */ 2299 if (op4 != 0) { 2300 goto do_unallocated; 2301 } 2302 if (s->fgt_eret) { 2303 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2304 return; 2305 } 2306 dst = tcg_temp_new_i64(); 2307 tcg_gen_ld_i64(dst, cpu_env, 2308 offsetof(CPUARMState, elr_el[s->current_el])); 2309 break; 2310 2311 case 2: /* ERETAA */ 2312 case 3: /* ERETAB */ 2313 if (!dc_isar_feature(aa64_pauth, s)) { 2314 goto do_unallocated; 2315 } 2316 if (rn != 0x1f || op4 != 0x1f) { 2317 goto do_unallocated; 2318 } 2319 /* The FGT trap takes precedence over an auth trap. */ 2320 if (s->fgt_eret) { 2321 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2); 2322 return; 2323 } 2324 dst = tcg_temp_new_i64(); 2325 tcg_gen_ld_i64(dst, cpu_env, 2326 offsetof(CPUARMState, elr_el[s->current_el])); 2327 if (s->pauth_active) { 2328 modifier = cpu_X[31]; 2329 if (op3 == 2) { 2330 gen_helper_autia(dst, cpu_env, dst, modifier); 2331 } else { 2332 gen_helper_autib(dst, cpu_env, dst, modifier); 2333 } 2334 } 2335 break; 2336 2337 default: 2338 goto do_unallocated; 2339 } 2340 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { 2341 gen_io_start(); 2342 } 2343 2344 gen_helper_exception_return(cpu_env, dst); 2345 /* Must exit loop to check un-masked IRQs */ 2346 s->base.is_jmp = DISAS_EXIT; 2347 return; 2348 2349 case 5: /* DRPS */ 2350 if (op3 != 0 || op4 != 0 || rn != 0x1f) { 2351 goto do_unallocated; 2352 } else { 2353 unallocated_encoding(s); 2354 } 2355 return; 2356 2357 default: 2358 do_unallocated: 2359 unallocated_encoding(s); 2360 return; 2361 } 2362 2363 switch (btype_mod) { 2364 case 0: /* BR */ 2365 if (dc_isar_feature(aa64_bti, s)) { 2366 /* BR to {x16,x17} or !guard -> 1, else 3. */ 2367 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 2368 } 2369 break; 2370 2371 case 1: /* BLR */ 2372 if (dc_isar_feature(aa64_bti, s)) { 2373 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 2374 set_btype(s, 2); 2375 } 2376 break; 2377 2378 default: /* RET or none of the above. */ 2379 /* BTYPE will be set to 0 by normal end-of-insn processing. */ 2380 break; 2381 } 2382 2383 s->base.is_jmp = DISAS_JUMP; 2384 } 2385 2386 /* Branches, exception generating and system instructions */ 2387 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2388 { 2389 switch (extract32(insn, 25, 7)) { 2390 case 0x0a: case 0x0b: 2391 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ 2392 disas_uncond_b_imm(s, insn); 2393 break; 2394 case 0x1a: case 0x5a: /* Compare & branch (immediate) */ 2395 disas_comp_b_imm(s, insn); 2396 break; 2397 case 0x1b: case 0x5b: /* Test & branch (immediate) */ 2398 disas_test_b_imm(s, insn); 2399 break; 2400 case 0x2a: /* Conditional branch (immediate) */ 2401 disas_cond_b_imm(s, insn); 2402 break; 2403 case 0x6a: /* Exception generation / System */ 2404 if (insn & (1 << 24)) { 2405 if (extract32(insn, 22, 2) == 0) { 2406 disas_system(s, insn); 2407 } else { 2408 unallocated_encoding(s); 2409 } 2410 } else { 2411 disas_exc(s, insn); 2412 } 2413 break; 2414 case 0x6b: /* Unconditional branch (register) */ 2415 disas_uncond_b_reg(s, insn); 2416 break; 2417 default: 2418 unallocated_encoding(s); 2419 break; 2420 } 2421 } 2422 2423 /* 2424 * Load/Store exclusive instructions are implemented by remembering 2425 * the value/address loaded, and seeing if these are the same 2426 * when the store is performed. This is not actually the architecturally 2427 * mandated semantics, but it works for typical guest code sequences 2428 * and avoids having to monitor regular stores. 2429 * 2430 * The store exclusive uses the atomic cmpxchg primitives to avoid 2431 * races in multi-threaded linux-user and when MTTCG softmmu is 2432 * enabled. 2433 */ 2434 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, 2435 TCGv_i64 addr, int size, bool is_pair) 2436 { 2437 int idx = get_mem_index(s); 2438 MemOp memop = s->be_data; 2439 2440 g_assert(size <= 3); 2441 if (is_pair) { 2442 g_assert(size >= 2); 2443 if (size == 2) { 2444 /* The pair must be single-copy atomic for the doubleword. */ 2445 memop |= MO_64 | MO_ALIGN; 2446 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2447 if (s->be_data == MO_LE) { 2448 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2449 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2450 } else { 2451 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2452 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2453 } 2454 } else { 2455 /* The pair must be single-copy atomic for *each* doubleword, not 2456 the entire quadword, however it must be quadword aligned. */ 2457 memop |= MO_64; 2458 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, 2459 memop | MO_ALIGN_16); 2460 2461 TCGv_i64 addr2 = tcg_temp_new_i64(); 2462 tcg_gen_addi_i64(addr2, addr, 8); 2463 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); 2464 2465 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2466 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2467 } 2468 } else { 2469 memop |= size | MO_ALIGN; 2470 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); 2471 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2472 } 2473 tcg_gen_mov_i64(cpu_exclusive_addr, addr); 2474 } 2475 2476 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2477 TCGv_i64 addr, int size, int is_pair) 2478 { 2479 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2480 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2481 * [addr] = {Rt}; 2482 * if (is_pair) { 2483 * [addr + datasize] = {Rt2}; 2484 * } 2485 * {Rd} = 0; 2486 * } else { 2487 * {Rd} = 1; 2488 * } 2489 * env->exclusive_addr = -1; 2490 */ 2491 TCGLabel *fail_label = gen_new_label(); 2492 TCGLabel *done_label = gen_new_label(); 2493 TCGv_i64 tmp; 2494 2495 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); 2496 2497 tmp = tcg_temp_new_i64(); 2498 if (is_pair) { 2499 if (size == 2) { 2500 if (s->be_data == MO_LE) { 2501 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2502 } else { 2503 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2504 } 2505 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2506 cpu_exclusive_val, tmp, 2507 get_mem_index(s), 2508 MO_64 | MO_ALIGN | s->be_data); 2509 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2510 } else { 2511 TCGv_i128 t16 = tcg_temp_new_i128(); 2512 TCGv_i128 c16 = tcg_temp_new_i128(); 2513 TCGv_i64 a, b; 2514 2515 if (s->be_data == MO_LE) { 2516 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2517 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2518 cpu_exclusive_high); 2519 } else { 2520 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2521 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2522 cpu_exclusive_val); 2523 } 2524 2525 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2526 get_mem_index(s), 2527 MO_128 | MO_ALIGN | s->be_data); 2528 2529 a = tcg_temp_new_i64(); 2530 b = tcg_temp_new_i64(); 2531 if (s->be_data == MO_LE) { 2532 tcg_gen_extr_i128_i64(a, b, t16); 2533 } else { 2534 tcg_gen_extr_i128_i64(b, a, t16); 2535 } 2536 2537 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2538 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2539 tcg_gen_or_i64(tmp, a, b); 2540 2541 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2542 } 2543 } else { 2544 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2545 cpu_reg(s, rt), get_mem_index(s), 2546 size | MO_ALIGN | s->be_data); 2547 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2548 } 2549 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2550 tcg_gen_br(done_label); 2551 2552 gen_set_label(fail_label); 2553 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2554 gen_set_label(done_label); 2555 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2556 } 2557 2558 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2559 int rn, int size) 2560 { 2561 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2562 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2563 int memidx = get_mem_index(s); 2564 TCGv_i64 clean_addr; 2565 2566 if (rn == 31) { 2567 gen_check_sp_alignment(s); 2568 } 2569 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size); 2570 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx, 2571 size | MO_ALIGN | s->be_data); 2572 } 2573 2574 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2575 int rn, int size) 2576 { 2577 TCGv_i64 s1 = cpu_reg(s, rs); 2578 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2579 TCGv_i64 t1 = cpu_reg(s, rt); 2580 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2581 TCGv_i64 clean_addr; 2582 int memidx = get_mem_index(s); 2583 2584 if (rn == 31) { 2585 gen_check_sp_alignment(s); 2586 } 2587 2588 /* This is a single atomic access, despite the "pair". */ 2589 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1); 2590 2591 if (size == 2) { 2592 TCGv_i64 cmp = tcg_temp_new_i64(); 2593 TCGv_i64 val = tcg_temp_new_i64(); 2594 2595 if (s->be_data == MO_LE) { 2596 tcg_gen_concat32_i64(val, t1, t2); 2597 tcg_gen_concat32_i64(cmp, s1, s2); 2598 } else { 2599 tcg_gen_concat32_i64(val, t2, t1); 2600 tcg_gen_concat32_i64(cmp, s2, s1); 2601 } 2602 2603 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, 2604 MO_64 | MO_ALIGN | s->be_data); 2605 2606 if (s->be_data == MO_LE) { 2607 tcg_gen_extr32_i64(s1, s2, cmp); 2608 } else { 2609 tcg_gen_extr32_i64(s2, s1, cmp); 2610 } 2611 } else { 2612 TCGv_i128 cmp = tcg_temp_new_i128(); 2613 TCGv_i128 val = tcg_temp_new_i128(); 2614 2615 if (s->be_data == MO_LE) { 2616 tcg_gen_concat_i64_i128(val, t1, t2); 2617 tcg_gen_concat_i64_i128(cmp, s1, s2); 2618 } else { 2619 tcg_gen_concat_i64_i128(val, t2, t1); 2620 tcg_gen_concat_i64_i128(cmp, s2, s1); 2621 } 2622 2623 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, 2624 MO_128 | MO_ALIGN | s->be_data); 2625 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extr_i128_i64(s1, s2, cmp); 2628 } else { 2629 tcg_gen_extr_i128_i64(s2, s1, cmp); 2630 } 2631 } 2632 } 2633 2634 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2635 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2636 */ 2637 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2638 { 2639 int opc0 = extract32(opc, 0, 1); 2640 int regsize; 2641 2642 if (is_signed) { 2643 regsize = opc0 ? 32 : 64; 2644 } else { 2645 regsize = size == 3 ? 64 : 32; 2646 } 2647 return regsize == 64; 2648 } 2649 2650 /* Load/store exclusive 2651 * 2652 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2653 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2654 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2655 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2656 * 2657 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2658 * L: 0 -> store, 1 -> load 2659 * o2: 0 -> exclusive, 1 -> not 2660 * o1: 0 -> single register, 1 -> register pair 2661 * o0: 1 -> load-acquire/store-release, 0 -> not 2662 */ 2663 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2664 { 2665 int rt = extract32(insn, 0, 5); 2666 int rn = extract32(insn, 5, 5); 2667 int rt2 = extract32(insn, 10, 5); 2668 int rs = extract32(insn, 16, 5); 2669 int is_lasr = extract32(insn, 15, 1); 2670 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2671 int size = extract32(insn, 30, 2); 2672 TCGv_i64 clean_addr; 2673 2674 switch (o2_L_o1_o0) { 2675 case 0x0: /* STXR */ 2676 case 0x1: /* STLXR */ 2677 if (rn == 31) { 2678 gen_check_sp_alignment(s); 2679 } 2680 if (is_lasr) { 2681 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2682 } 2683 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2684 true, rn != 31, size); 2685 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false); 2686 return; 2687 2688 case 0x4: /* LDXR */ 2689 case 0x5: /* LDAXR */ 2690 if (rn == 31) { 2691 gen_check_sp_alignment(s); 2692 } 2693 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2694 false, rn != 31, size); 2695 s->is_ldex = true; 2696 gen_load_exclusive(s, rt, rt2, clean_addr, size, false); 2697 if (is_lasr) { 2698 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2699 } 2700 return; 2701 2702 case 0x8: /* STLLR */ 2703 if (!dc_isar_feature(aa64_lor, s)) { 2704 break; 2705 } 2706 /* StoreLORelease is the same as Store-Release for QEMU. */ 2707 /* fall through */ 2708 case 0x9: /* STLR */ 2709 /* Generate ISS for non-exclusive accesses including LASR. */ 2710 if (rn == 31) { 2711 gen_check_sp_alignment(s); 2712 } 2713 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2714 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2715 true, rn != 31, size); 2716 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2717 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt, 2718 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2719 return; 2720 2721 case 0xc: /* LDLAR */ 2722 if (!dc_isar_feature(aa64_lor, s)) { 2723 break; 2724 } 2725 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2726 /* fall through */ 2727 case 0xd: /* LDAR */ 2728 /* Generate ISS for non-exclusive accesses including LASR. */ 2729 if (rn == 31) { 2730 gen_check_sp_alignment(s); 2731 } 2732 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2733 false, rn != 31, size); 2734 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 2735 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true, 2736 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2737 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2738 return; 2739 2740 case 0x2: case 0x3: /* CASP / STXP */ 2741 if (size & 2) { /* STXP / STLXP */ 2742 if (rn == 31) { 2743 gen_check_sp_alignment(s); 2744 } 2745 if (is_lasr) { 2746 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2747 } 2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2749 true, rn != 31, size); 2750 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true); 2751 return; 2752 } 2753 if (rt2 == 31 2754 && ((rt | rs) & 1) == 0 2755 && dc_isar_feature(aa64_atomics, s)) { 2756 /* CASP / CASPL */ 2757 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2758 return; 2759 } 2760 break; 2761 2762 case 0x6: case 0x7: /* CASPA / LDXP */ 2763 if (size & 2) { /* LDXP / LDAXP */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2768 false, rn != 31, size); 2769 s->is_ldex = true; 2770 gen_load_exclusive(s, rt, rt2, clean_addr, size, true); 2771 if (is_lasr) { 2772 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2773 } 2774 return; 2775 } 2776 if (rt2 == 31 2777 && ((rt | rs) & 1) == 0 2778 && dc_isar_feature(aa64_atomics, s)) { 2779 /* CASPA / CASPAL */ 2780 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2781 return; 2782 } 2783 break; 2784 2785 case 0xa: /* CAS */ 2786 case 0xb: /* CASL */ 2787 case 0xe: /* CASA */ 2788 case 0xf: /* CASAL */ 2789 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2790 gen_compare_and_swap(s, rs, rt, rn, size); 2791 return; 2792 } 2793 break; 2794 } 2795 unallocated_encoding(s); 2796 } 2797 2798 /* 2799 * Load register (literal) 2800 * 2801 * 31 30 29 27 26 25 24 23 5 4 0 2802 * +-----+-------+---+-----+-------------------+-------+ 2803 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2804 * +-----+-------+---+-----+-------------------+-------+ 2805 * 2806 * V: 1 -> vector (simd/fp) 2807 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2808 * 10-> 32 bit signed, 11 -> prefetch 2809 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2810 */ 2811 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2812 { 2813 int rt = extract32(insn, 0, 5); 2814 int64_t imm = sextract32(insn, 5, 19) << 2; 2815 bool is_vector = extract32(insn, 26, 1); 2816 int opc = extract32(insn, 30, 2); 2817 bool is_signed = false; 2818 int size = 2; 2819 TCGv_i64 tcg_rt, clean_addr; 2820 2821 if (is_vector) { 2822 if (opc == 3) { 2823 unallocated_encoding(s); 2824 return; 2825 } 2826 size = 2 + opc; 2827 if (!fp_access_check(s)) { 2828 return; 2829 } 2830 } else { 2831 if (opc == 3) { 2832 /* PRFM (literal) : prefetch */ 2833 return; 2834 } 2835 size = 2 + extract32(opc, 0, 1); 2836 is_signed = extract32(opc, 1, 1); 2837 } 2838 2839 tcg_rt = cpu_reg(s, rt); 2840 2841 clean_addr = tcg_temp_new_i64(); 2842 gen_pc_plus_diff(s, clean_addr, imm); 2843 if (is_vector) { 2844 do_fp_ld(s, rt, clean_addr, size); 2845 } else { 2846 /* Only unsigned 32bit loads target 32bit registers. */ 2847 bool iss_sf = opc != 0; 2848 2849 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 2850 false, true, rt, iss_sf, false); 2851 } 2852 } 2853 2854 /* 2855 * LDNP (Load Pair - non-temporal hint) 2856 * LDP (Load Pair - non vector) 2857 * LDPSW (Load Pair Signed Word - non vector) 2858 * STNP (Store Pair - non-temporal hint) 2859 * STP (Store Pair - non vector) 2860 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2861 * LDP (Load Pair of SIMD&FP) 2862 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2863 * STP (Store Pair of SIMD&FP) 2864 * 2865 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2866 * +-----+-------+---+---+-------+---+-----------------------------+ 2867 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2868 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2869 * 2870 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2871 * LDPSW/STGP 01 2872 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2873 * V: 0 -> GPR, 1 -> Vector 2874 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2875 * 10 -> signed offset, 11 -> pre-index 2876 * L: 0 -> Store 1 -> Load 2877 * 2878 * Rt, Rt2 = GPR or SIMD registers to be stored 2879 * Rn = general purpose register containing address 2880 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2881 */ 2882 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2883 { 2884 int rt = extract32(insn, 0, 5); 2885 int rn = extract32(insn, 5, 5); 2886 int rt2 = extract32(insn, 10, 5); 2887 uint64_t offset = sextract64(insn, 15, 7); 2888 int index = extract32(insn, 23, 2); 2889 bool is_vector = extract32(insn, 26, 1); 2890 bool is_load = extract32(insn, 22, 1); 2891 int opc = extract32(insn, 30, 2); 2892 2893 bool is_signed = false; 2894 bool postindex = false; 2895 bool wback = false; 2896 bool set_tag = false; 2897 2898 TCGv_i64 clean_addr, dirty_addr; 2899 2900 int size; 2901 2902 if (opc == 3) { 2903 unallocated_encoding(s); 2904 return; 2905 } 2906 2907 if (is_vector) { 2908 size = 2 + opc; 2909 } else if (opc == 1 && !is_load) { 2910 /* STGP */ 2911 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2912 unallocated_encoding(s); 2913 return; 2914 } 2915 size = 3; 2916 set_tag = true; 2917 } else { 2918 size = 2 + extract32(opc, 1, 1); 2919 is_signed = extract32(opc, 0, 1); 2920 if (!is_load && is_signed) { 2921 unallocated_encoding(s); 2922 return; 2923 } 2924 } 2925 2926 switch (index) { 2927 case 1: /* post-index */ 2928 postindex = true; 2929 wback = true; 2930 break; 2931 case 0: 2932 /* signed offset with "non-temporal" hint. Since we don't emulate 2933 * caches we don't care about hints to the cache system about 2934 * data access patterns, and handle this identically to plain 2935 * signed offset. 2936 */ 2937 if (is_signed) { 2938 /* There is no non-temporal-hint version of LDPSW */ 2939 unallocated_encoding(s); 2940 return; 2941 } 2942 postindex = false; 2943 break; 2944 case 2: /* signed offset, rn not updated */ 2945 postindex = false; 2946 break; 2947 case 3: /* pre-index */ 2948 postindex = false; 2949 wback = true; 2950 break; 2951 } 2952 2953 if (is_vector && !fp_access_check(s)) { 2954 return; 2955 } 2956 2957 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 2958 2959 if (rn == 31) { 2960 gen_check_sp_alignment(s); 2961 } 2962 2963 dirty_addr = read_cpu_reg_sp(s, rn, 1); 2964 if (!postindex) { 2965 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 2966 } 2967 2968 if (set_tag) { 2969 if (!s->ata) { 2970 /* 2971 * TODO: We could rely on the stores below, at least for 2972 * system mode, if we arrange to add MO_ALIGN_16. 2973 */ 2974 gen_helper_stg_stub(cpu_env, dirty_addr); 2975 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 2976 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 2977 } else { 2978 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 2979 } 2980 } 2981 2982 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 2983 (wback || rn != 31) && !set_tag, 2 << size); 2984 2985 if (is_vector) { 2986 if (is_load) { 2987 do_fp_ld(s, rt, clean_addr, size); 2988 } else { 2989 do_fp_st(s, rt, clean_addr, size); 2990 } 2991 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 2992 if (is_load) { 2993 do_fp_ld(s, rt2, clean_addr, size); 2994 } else { 2995 do_fp_st(s, rt2, clean_addr, size); 2996 } 2997 } else { 2998 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2999 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3000 3001 if (is_load) { 3002 TCGv_i64 tmp = tcg_temp_new_i64(); 3003 3004 /* Do not modify tcg_rt before recognizing any exception 3005 * from the second load. 3006 */ 3007 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN, 3008 false, false, 0, false, false); 3009 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3010 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN, 3011 false, false, 0, false, false); 3012 3013 tcg_gen_mov_i64(tcg_rt, tmp); 3014 } else { 3015 do_gpr_st(s, tcg_rt, clean_addr, size, 3016 false, 0, false, false); 3017 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3018 do_gpr_st(s, tcg_rt2, clean_addr, size, 3019 false, 0, false, false); 3020 } 3021 } 3022 3023 if (wback) { 3024 if (postindex) { 3025 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3026 } 3027 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3028 } 3029 } 3030 3031 /* 3032 * Load/store (immediate post-indexed) 3033 * Load/store (immediate pre-indexed) 3034 * Load/store (unscaled immediate) 3035 * 3036 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3037 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3038 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3039 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3040 * 3041 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3042 10 -> unprivileged 3043 * V = 0 -> non-vector 3044 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3045 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3046 */ 3047 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3048 int opc, 3049 int size, 3050 int rt, 3051 bool is_vector) 3052 { 3053 int rn = extract32(insn, 5, 5); 3054 int imm9 = sextract32(insn, 12, 9); 3055 int idx = extract32(insn, 10, 2); 3056 bool is_signed = false; 3057 bool is_store = false; 3058 bool is_extended = false; 3059 bool is_unpriv = (idx == 2); 3060 bool iss_valid; 3061 bool post_index; 3062 bool writeback; 3063 int memidx; 3064 3065 TCGv_i64 clean_addr, dirty_addr; 3066 3067 if (is_vector) { 3068 size |= (opc & 2) << 1; 3069 if (size > 4 || is_unpriv) { 3070 unallocated_encoding(s); 3071 return; 3072 } 3073 is_store = ((opc & 1) == 0); 3074 if (!fp_access_check(s)) { 3075 return; 3076 } 3077 } else { 3078 if (size == 3 && opc == 2) { 3079 /* PRFM - prefetch */ 3080 if (idx != 0) { 3081 unallocated_encoding(s); 3082 return; 3083 } 3084 return; 3085 } 3086 if (opc == 3 && size > 1) { 3087 unallocated_encoding(s); 3088 return; 3089 } 3090 is_store = (opc == 0); 3091 is_signed = extract32(opc, 1, 1); 3092 is_extended = (size < 3) && extract32(opc, 0, 1); 3093 } 3094 3095 switch (idx) { 3096 case 0: 3097 case 2: 3098 post_index = false; 3099 writeback = false; 3100 break; 3101 case 1: 3102 post_index = true; 3103 writeback = true; 3104 break; 3105 case 3: 3106 post_index = false; 3107 writeback = true; 3108 break; 3109 default: 3110 g_assert_not_reached(); 3111 } 3112 3113 iss_valid = !is_vector && !writeback; 3114 3115 if (rn == 31) { 3116 gen_check_sp_alignment(s); 3117 } 3118 3119 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3120 if (!post_index) { 3121 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3122 } 3123 3124 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3125 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3126 writeback || rn != 31, 3127 size, is_unpriv, memidx); 3128 3129 if (is_vector) { 3130 if (is_store) { 3131 do_fp_st(s, rt, clean_addr, size); 3132 } else { 3133 do_fp_ld(s, rt, clean_addr, size); 3134 } 3135 } else { 3136 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3137 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3138 3139 if (is_store) { 3140 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx, 3141 iss_valid, rt, iss_sf, false); 3142 } else { 3143 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3144 is_extended, memidx, 3145 iss_valid, rt, iss_sf, false); 3146 } 3147 } 3148 3149 if (writeback) { 3150 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3151 if (post_index) { 3152 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3153 } 3154 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3155 } 3156 } 3157 3158 /* 3159 * Load/store (register offset) 3160 * 3161 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3162 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3163 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3164 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3165 * 3166 * For non-vector: 3167 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3168 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3169 * For vector: 3170 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3171 * opc<0>: 0 -> store, 1 -> load 3172 * V: 1 -> vector/simd 3173 * opt: extend encoding (see DecodeRegExtend) 3174 * S: if S=1 then scale (essentially index by sizeof(size)) 3175 * Rt: register to transfer into/out of 3176 * Rn: address register or SP for base 3177 * Rm: offset register or ZR for offset 3178 */ 3179 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3180 int opc, 3181 int size, 3182 int rt, 3183 bool is_vector) 3184 { 3185 int rn = extract32(insn, 5, 5); 3186 int shift = extract32(insn, 12, 1); 3187 int rm = extract32(insn, 16, 5); 3188 int opt = extract32(insn, 13, 3); 3189 bool is_signed = false; 3190 bool is_store = false; 3191 bool is_extended = false; 3192 3193 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3194 3195 if (extract32(opt, 1, 1) == 0) { 3196 unallocated_encoding(s); 3197 return; 3198 } 3199 3200 if (is_vector) { 3201 size |= (opc & 2) << 1; 3202 if (size > 4) { 3203 unallocated_encoding(s); 3204 return; 3205 } 3206 is_store = !extract32(opc, 0, 1); 3207 if (!fp_access_check(s)) { 3208 return; 3209 } 3210 } else { 3211 if (size == 3 && opc == 2) { 3212 /* PRFM - prefetch */ 3213 return; 3214 } 3215 if (opc == 3 && size > 1) { 3216 unallocated_encoding(s); 3217 return; 3218 } 3219 is_store = (opc == 0); 3220 is_signed = extract32(opc, 1, 1); 3221 is_extended = (size < 3) && extract32(opc, 0, 1); 3222 } 3223 3224 if (rn == 31) { 3225 gen_check_sp_alignment(s); 3226 } 3227 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3228 3229 tcg_rm = read_cpu_reg(s, rm, 1); 3230 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3231 3232 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3233 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size); 3234 3235 if (is_vector) { 3236 if (is_store) { 3237 do_fp_st(s, rt, clean_addr, size); 3238 } else { 3239 do_fp_ld(s, rt, clean_addr, size); 3240 } 3241 } else { 3242 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3243 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3244 if (is_store) { 3245 do_gpr_st(s, tcg_rt, clean_addr, size, 3246 true, rt, iss_sf, false); 3247 } else { 3248 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3249 is_extended, true, rt, iss_sf, false); 3250 } 3251 } 3252 } 3253 3254 /* 3255 * Load/store (unsigned immediate) 3256 * 3257 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3258 * +----+-------+---+-----+-----+------------+-------+------+ 3259 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3260 * +----+-------+---+-----+-----+------------+-------+------+ 3261 * 3262 * For non-vector: 3263 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3264 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3265 * For vector: 3266 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3267 * opc<0>: 0 -> store, 1 -> load 3268 * Rn: base address register (inc SP) 3269 * Rt: target register 3270 */ 3271 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3272 int opc, 3273 int size, 3274 int rt, 3275 bool is_vector) 3276 { 3277 int rn = extract32(insn, 5, 5); 3278 unsigned int imm12 = extract32(insn, 10, 12); 3279 unsigned int offset; 3280 3281 TCGv_i64 clean_addr, dirty_addr; 3282 3283 bool is_store; 3284 bool is_signed = false; 3285 bool is_extended = false; 3286 3287 if (is_vector) { 3288 size |= (opc & 2) << 1; 3289 if (size > 4) { 3290 unallocated_encoding(s); 3291 return; 3292 } 3293 is_store = !extract32(opc, 0, 1); 3294 if (!fp_access_check(s)) { 3295 return; 3296 } 3297 } else { 3298 if (size == 3 && opc == 2) { 3299 /* PRFM - prefetch */ 3300 return; 3301 } 3302 if (opc == 3 && size > 1) { 3303 unallocated_encoding(s); 3304 return; 3305 } 3306 is_store = (opc == 0); 3307 is_signed = extract32(opc, 1, 1); 3308 is_extended = (size < 3) && extract32(opc, 0, 1); 3309 } 3310 3311 if (rn == 31) { 3312 gen_check_sp_alignment(s); 3313 } 3314 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3315 offset = imm12 << size; 3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3317 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size); 3318 3319 if (is_vector) { 3320 if (is_store) { 3321 do_fp_st(s, rt, clean_addr, size); 3322 } else { 3323 do_fp_ld(s, rt, clean_addr, size); 3324 } 3325 } else { 3326 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3327 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3328 if (is_store) { 3329 do_gpr_st(s, tcg_rt, clean_addr, size, 3330 true, rt, iss_sf, false); 3331 } else { 3332 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN, 3333 is_extended, true, rt, iss_sf, false); 3334 } 3335 } 3336 } 3337 3338 /* Atomic memory operations 3339 * 3340 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3341 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3342 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3343 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3344 * 3345 * Rt: the result register 3346 * Rn: base address or SP 3347 * Rs: the source register for the operation 3348 * V: vector flag (always 0 as of v8.3) 3349 * A: acquire flag 3350 * R: release flag 3351 */ 3352 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3353 int size, int rt, bool is_vector) 3354 { 3355 int rs = extract32(insn, 16, 5); 3356 int rn = extract32(insn, 5, 5); 3357 int o3_opc = extract32(insn, 12, 4); 3358 bool r = extract32(insn, 22, 1); 3359 bool a = extract32(insn, 23, 1); 3360 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3361 AtomicThreeOpFn *fn = NULL; 3362 MemOp mop = s->be_data | size | MO_ALIGN; 3363 3364 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3365 unallocated_encoding(s); 3366 return; 3367 } 3368 switch (o3_opc) { 3369 case 000: /* LDADD */ 3370 fn = tcg_gen_atomic_fetch_add_i64; 3371 break; 3372 case 001: /* LDCLR */ 3373 fn = tcg_gen_atomic_fetch_and_i64; 3374 break; 3375 case 002: /* LDEOR */ 3376 fn = tcg_gen_atomic_fetch_xor_i64; 3377 break; 3378 case 003: /* LDSET */ 3379 fn = tcg_gen_atomic_fetch_or_i64; 3380 break; 3381 case 004: /* LDSMAX */ 3382 fn = tcg_gen_atomic_fetch_smax_i64; 3383 mop |= MO_SIGN; 3384 break; 3385 case 005: /* LDSMIN */ 3386 fn = tcg_gen_atomic_fetch_smin_i64; 3387 mop |= MO_SIGN; 3388 break; 3389 case 006: /* LDUMAX */ 3390 fn = tcg_gen_atomic_fetch_umax_i64; 3391 break; 3392 case 007: /* LDUMIN */ 3393 fn = tcg_gen_atomic_fetch_umin_i64; 3394 break; 3395 case 010: /* SWP */ 3396 fn = tcg_gen_atomic_xchg_i64; 3397 break; 3398 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3399 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3400 rs != 31 || a != 1 || r != 0) { 3401 unallocated_encoding(s); 3402 return; 3403 } 3404 break; 3405 default: 3406 unallocated_encoding(s); 3407 return; 3408 } 3409 3410 if (rn == 31) { 3411 gen_check_sp_alignment(s); 3412 } 3413 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size); 3414 3415 if (o3_opc == 014) { 3416 /* 3417 * LDAPR* are a special case because they are a simple load, not a 3418 * fetch-and-do-something op. 3419 * The architectural consistency requirements here are weaker than 3420 * full load-acquire (we only need "load-acquire processor consistent"), 3421 * but we choose to implement them as full LDAQ. 3422 */ 3423 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, 3424 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3426 return; 3427 } 3428 3429 tcg_rs = read_cpu_reg(s, rs, true); 3430 tcg_rt = cpu_reg(s, rt); 3431 3432 if (o3_opc == 1) { /* LDCLR */ 3433 tcg_gen_not_i64(tcg_rs, tcg_rs); 3434 } 3435 3436 /* The tcg atomic primitives are all full barriers. Therefore we 3437 * can ignore the Acquire and Release bits of this instruction. 3438 */ 3439 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3440 3441 if ((mop & MO_SIGN) && size != MO_64) { 3442 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3443 } 3444 } 3445 3446 /* 3447 * PAC memory operations 3448 * 3449 * 31 30 27 26 24 22 21 12 11 10 5 0 3450 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3451 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3452 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3453 * 3454 * Rt: the result register 3455 * Rn: base address or SP 3456 * V: vector flag (always 0 as of v8.3) 3457 * M: clear for key DA, set for key DB 3458 * W: pre-indexing flag 3459 * S: sign for imm9. 3460 */ 3461 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3462 int size, int rt, bool is_vector) 3463 { 3464 int rn = extract32(insn, 5, 5); 3465 bool is_wback = extract32(insn, 11, 1); 3466 bool use_key_a = !extract32(insn, 23, 1); 3467 int offset; 3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3469 3470 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3471 unallocated_encoding(s); 3472 return; 3473 } 3474 3475 if (rn == 31) { 3476 gen_check_sp_alignment(s); 3477 } 3478 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3479 3480 if (s->pauth_active) { 3481 if (use_key_a) { 3482 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3483 tcg_constant_i64(0)); 3484 } else { 3485 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3486 tcg_constant_i64(0)); 3487 } 3488 } 3489 3490 /* Form the 10-bit signed, scaled offset. */ 3491 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3492 offset = sextract32(offset << size, 0, 10 + size); 3493 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3494 3495 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3496 clean_addr = gen_mte_check1(s, dirty_addr, false, 3497 is_wback || rn != 31, size); 3498 3499 tcg_rt = cpu_reg(s, rt); 3500 do_gpr_ld(s, tcg_rt, clean_addr, size, 3501 /* extend */ false, /* iss_valid */ !is_wback, 3502 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3503 3504 if (is_wback) { 3505 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3506 } 3507 } 3508 3509 /* 3510 * LDAPR/STLR (unscaled immediate) 3511 * 3512 * 31 30 24 22 21 12 10 5 0 3513 * +------+-------------+-----+---+--------+-----+----+-----+ 3514 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3515 * +------+-------------+-----+---+--------+-----+----+-----+ 3516 * 3517 * Rt: source or destination register 3518 * Rn: base register 3519 * imm9: unscaled immediate offset 3520 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3521 * size: size of load/store 3522 */ 3523 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3524 { 3525 int rt = extract32(insn, 0, 5); 3526 int rn = extract32(insn, 5, 5); 3527 int offset = sextract32(insn, 12, 9); 3528 int opc = extract32(insn, 22, 2); 3529 int size = extract32(insn, 30, 2); 3530 TCGv_i64 clean_addr, dirty_addr; 3531 bool is_store = false; 3532 bool extend = false; 3533 bool iss_sf; 3534 MemOp mop; 3535 3536 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3537 unallocated_encoding(s); 3538 return; 3539 } 3540 3541 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3542 mop = size | MO_ALIGN; 3543 3544 switch (opc) { 3545 case 0: /* STLURB */ 3546 is_store = true; 3547 break; 3548 case 1: /* LDAPUR* */ 3549 break; 3550 case 2: /* LDAPURS* 64-bit variant */ 3551 if (size == 3) { 3552 unallocated_encoding(s); 3553 return; 3554 } 3555 mop |= MO_SIGN; 3556 break; 3557 case 3: /* LDAPURS* 32-bit variant */ 3558 if (size > 1) { 3559 unallocated_encoding(s); 3560 return; 3561 } 3562 mop |= MO_SIGN; 3563 extend = true; /* zero-extend 32->64 after signed load */ 3564 break; 3565 default: 3566 g_assert_not_reached(); 3567 } 3568 3569 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3570 3571 if (rn == 31) { 3572 gen_check_sp_alignment(s); 3573 } 3574 3575 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3576 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3577 clean_addr = clean_data_tbi(s, dirty_addr); 3578 3579 if (is_store) { 3580 /* Store-Release semantics */ 3581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3582 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3583 } else { 3584 /* 3585 * Load-AcquirePC semantics; we implement as the slightly more 3586 * restrictive Load-Acquire. 3587 */ 3588 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3589 extend, true, rt, iss_sf, true); 3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3591 } 3592 } 3593 3594 /* Load/store register (all forms) */ 3595 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3596 { 3597 int rt = extract32(insn, 0, 5); 3598 int opc = extract32(insn, 22, 2); 3599 bool is_vector = extract32(insn, 26, 1); 3600 int size = extract32(insn, 30, 2); 3601 3602 switch (extract32(insn, 24, 2)) { 3603 case 0: 3604 if (extract32(insn, 21, 1) == 0) { 3605 /* Load/store register (unscaled immediate) 3606 * Load/store immediate pre/post-indexed 3607 * Load/store register unprivileged 3608 */ 3609 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3610 return; 3611 } 3612 switch (extract32(insn, 10, 2)) { 3613 case 0: 3614 disas_ldst_atomic(s, insn, size, rt, is_vector); 3615 return; 3616 case 2: 3617 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3618 return; 3619 default: 3620 disas_ldst_pac(s, insn, size, rt, is_vector); 3621 return; 3622 } 3623 break; 3624 case 1: 3625 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3626 return; 3627 } 3628 unallocated_encoding(s); 3629 } 3630 3631 /* AdvSIMD load/store multiple structures 3632 * 3633 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3634 * +---+---+---------------+---+-------------+--------+------+------+------+ 3635 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3636 * +---+---+---------------+---+-------------+--------+------+------+------+ 3637 * 3638 * AdvSIMD load/store multiple structures (post-indexed) 3639 * 3640 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3641 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3642 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3643 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3644 * 3645 * Rt: first (or only) SIMD&FP register to be transferred 3646 * Rn: base address or SP 3647 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3648 */ 3649 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3650 { 3651 int rt = extract32(insn, 0, 5); 3652 int rn = extract32(insn, 5, 5); 3653 int rm = extract32(insn, 16, 5); 3654 int size = extract32(insn, 10, 2); 3655 int opcode = extract32(insn, 12, 4); 3656 bool is_store = !extract32(insn, 22, 1); 3657 bool is_postidx = extract32(insn, 23, 1); 3658 bool is_q = extract32(insn, 30, 1); 3659 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3660 MemOp endian, align, mop; 3661 3662 int total; /* total bytes */ 3663 int elements; /* elements per vector */ 3664 int rpt; /* num iterations */ 3665 int selem; /* structure elements */ 3666 int r; 3667 3668 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3669 unallocated_encoding(s); 3670 return; 3671 } 3672 3673 if (!is_postidx && rm != 0) { 3674 unallocated_encoding(s); 3675 return; 3676 } 3677 3678 /* From the shared decode logic */ 3679 switch (opcode) { 3680 case 0x0: 3681 rpt = 1; 3682 selem = 4; 3683 break; 3684 case 0x2: 3685 rpt = 4; 3686 selem = 1; 3687 break; 3688 case 0x4: 3689 rpt = 1; 3690 selem = 3; 3691 break; 3692 case 0x6: 3693 rpt = 3; 3694 selem = 1; 3695 break; 3696 case 0x7: 3697 rpt = 1; 3698 selem = 1; 3699 break; 3700 case 0x8: 3701 rpt = 1; 3702 selem = 2; 3703 break; 3704 case 0xa: 3705 rpt = 2; 3706 selem = 1; 3707 break; 3708 default: 3709 unallocated_encoding(s); 3710 return; 3711 } 3712 3713 if (size == 3 && !is_q && selem != 1) { 3714 /* reserved */ 3715 unallocated_encoding(s); 3716 return; 3717 } 3718 3719 if (!fp_access_check(s)) { 3720 return; 3721 } 3722 3723 if (rn == 31) { 3724 gen_check_sp_alignment(s); 3725 } 3726 3727 /* For our purposes, bytes are always little-endian. */ 3728 endian = s->be_data; 3729 if (size == 0) { 3730 endian = MO_LE; 3731 } 3732 3733 total = rpt * selem * (is_q ? 16 : 8); 3734 tcg_rn = cpu_reg_sp(s, rn); 3735 3736 /* 3737 * Issue the MTE check vs the logical repeat count, before we 3738 * promote consecutive little-endian elements below. 3739 */ 3740 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3741 total); 3742 3743 /* 3744 * Consecutive little-endian elements from a single register 3745 * can be promoted to a larger little-endian operation. 3746 */ 3747 align = MO_ALIGN; 3748 if (selem == 1 && endian == MO_LE) { 3749 align = pow2_align(size); 3750 size = 3; 3751 } 3752 if (!s->align_mem) { 3753 align = 0; 3754 } 3755 mop = endian | size | align; 3756 3757 elements = (is_q ? 16 : 8) >> size; 3758 tcg_ebytes = tcg_constant_i64(1 << size); 3759 for (r = 0; r < rpt; r++) { 3760 int e; 3761 for (e = 0; e < elements; e++) { 3762 int xs; 3763 for (xs = 0; xs < selem; xs++) { 3764 int tt = (rt + r + xs) % 32; 3765 if (is_store) { 3766 do_vec_st(s, tt, e, clean_addr, mop); 3767 } else { 3768 do_vec_ld(s, tt, e, clean_addr, mop); 3769 } 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (!is_store) { 3776 /* For non-quad operations, setting a slice of the low 3777 * 64 bits of the register clears the high 64 bits (in 3778 * the ARM ARM pseudocode this is implicit in the fact 3779 * that 'rval' is a 64 bit wide variable). 3780 * For quad operations, we might still need to zero the 3781 * high bits of SVE. 3782 */ 3783 for (r = 0; r < rpt * selem; r++) { 3784 int tt = (rt + r) % 32; 3785 clear_vec_high(s, is_q, tt); 3786 } 3787 } 3788 3789 if (is_postidx) { 3790 if (rm == 31) { 3791 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3792 } else { 3793 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3794 } 3795 } 3796 } 3797 3798 /* AdvSIMD load/store single structure 3799 * 3800 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3801 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3802 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3803 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3804 * 3805 * AdvSIMD load/store single structure (post-indexed) 3806 * 3807 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3808 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3809 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3810 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3811 * 3812 * Rt: first (or only) SIMD&FP register to be transferred 3813 * Rn: base address or SP 3814 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3815 * index = encoded in Q:S:size dependent on size 3816 * 3817 * lane_size = encoded in R, opc 3818 * transfer width = encoded in opc, S, size 3819 */ 3820 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3821 { 3822 int rt = extract32(insn, 0, 5); 3823 int rn = extract32(insn, 5, 5); 3824 int rm = extract32(insn, 16, 5); 3825 int size = extract32(insn, 10, 2); 3826 int S = extract32(insn, 12, 1); 3827 int opc = extract32(insn, 13, 3); 3828 int R = extract32(insn, 21, 1); 3829 int is_load = extract32(insn, 22, 1); 3830 int is_postidx = extract32(insn, 23, 1); 3831 int is_q = extract32(insn, 30, 1); 3832 3833 int scale = extract32(opc, 1, 2); 3834 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3835 bool replicate = false; 3836 int index = is_q << 3 | S << 2 | size; 3837 int xs, total; 3838 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3839 MemOp mop; 3840 3841 if (extract32(insn, 31, 1)) { 3842 unallocated_encoding(s); 3843 return; 3844 } 3845 if (!is_postidx && rm != 0) { 3846 unallocated_encoding(s); 3847 return; 3848 } 3849 3850 switch (scale) { 3851 case 3: 3852 if (!is_load || S) { 3853 unallocated_encoding(s); 3854 return; 3855 } 3856 scale = size; 3857 replicate = true; 3858 break; 3859 case 0: 3860 break; 3861 case 1: 3862 if (extract32(size, 0, 1)) { 3863 unallocated_encoding(s); 3864 return; 3865 } 3866 index >>= 1; 3867 break; 3868 case 2: 3869 if (extract32(size, 1, 1)) { 3870 unallocated_encoding(s); 3871 return; 3872 } 3873 if (!extract32(size, 0, 1)) { 3874 index >>= 2; 3875 } else { 3876 if (S) { 3877 unallocated_encoding(s); 3878 return; 3879 } 3880 index >>= 3; 3881 scale = 3; 3882 } 3883 break; 3884 default: 3885 g_assert_not_reached(); 3886 } 3887 3888 if (!fp_access_check(s)) { 3889 return; 3890 } 3891 3892 if (rn == 31) { 3893 gen_check_sp_alignment(s); 3894 } 3895 3896 total = selem << scale; 3897 tcg_rn = cpu_reg_sp(s, rn); 3898 3899 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 3900 total); 3901 mop = finalize_memop(s, scale); 3902 3903 tcg_ebytes = tcg_constant_i64(1 << scale); 3904 for (xs = 0; xs < selem; xs++) { 3905 if (replicate) { 3906 /* Load and replicate to all elements */ 3907 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3908 3909 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3910 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 3911 (is_q + 1) * 8, vec_full_reg_size(s), 3912 tcg_tmp); 3913 } else { 3914 /* Load/store one element per register */ 3915 if (is_load) { 3916 do_vec_ld(s, rt, index, clean_addr, mop); 3917 } else { 3918 do_vec_st(s, rt, index, clean_addr, mop); 3919 } 3920 } 3921 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3922 rt = (rt + 1) % 32; 3923 } 3924 3925 if (is_postidx) { 3926 if (rm == 31) { 3927 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3928 } else { 3929 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3930 } 3931 } 3932 } 3933 3934 /* 3935 * Load/Store memory tags 3936 * 3937 * 31 30 29 24 22 21 12 10 5 0 3938 * +-----+-------------+-----+---+------+-----+------+------+ 3939 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 3940 * +-----+-------------+-----+---+------+-----+------+------+ 3941 */ 3942 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 3943 { 3944 int rt = extract32(insn, 0, 5); 3945 int rn = extract32(insn, 5, 5); 3946 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 3947 int op2 = extract32(insn, 10, 2); 3948 int op1 = extract32(insn, 22, 2); 3949 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 3950 int index = 0; 3951 TCGv_i64 addr, clean_addr, tcg_rt; 3952 3953 /* We checked insn bits [29:24,21] in the caller. */ 3954 if (extract32(insn, 30, 2) != 3) { 3955 goto do_unallocated; 3956 } 3957 3958 /* 3959 * @index is a tri-state variable which has 3 states: 3960 * < 0 : post-index, writeback 3961 * = 0 : signed offset 3962 * > 0 : pre-index, writeback 3963 */ 3964 switch (op1) { 3965 case 0: 3966 if (op2 != 0) { 3967 /* STG */ 3968 index = op2 - 2; 3969 } else { 3970 /* STZGM */ 3971 if (s->current_el == 0 || offset != 0) { 3972 goto do_unallocated; 3973 } 3974 is_mult = is_zero = true; 3975 } 3976 break; 3977 case 1: 3978 if (op2 != 0) { 3979 /* STZG */ 3980 is_zero = true; 3981 index = op2 - 2; 3982 } else { 3983 /* LDG */ 3984 is_load = true; 3985 } 3986 break; 3987 case 2: 3988 if (op2 != 0) { 3989 /* ST2G */ 3990 is_pair = true; 3991 index = op2 - 2; 3992 } else { 3993 /* STGM */ 3994 if (s->current_el == 0 || offset != 0) { 3995 goto do_unallocated; 3996 } 3997 is_mult = true; 3998 } 3999 break; 4000 case 3: 4001 if (op2 != 0) { 4002 /* STZ2G */ 4003 is_pair = is_zero = true; 4004 index = op2 - 2; 4005 } else { 4006 /* LDGM */ 4007 if (s->current_el == 0 || offset != 0) { 4008 goto do_unallocated; 4009 } 4010 is_mult = is_load = true; 4011 } 4012 break; 4013 4014 default: 4015 do_unallocated: 4016 unallocated_encoding(s); 4017 return; 4018 } 4019 4020 if (is_mult 4021 ? !dc_isar_feature(aa64_mte, s) 4022 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4023 goto do_unallocated; 4024 } 4025 4026 if (rn == 31) { 4027 gen_check_sp_alignment(s); 4028 } 4029 4030 addr = read_cpu_reg_sp(s, rn, true); 4031 if (index >= 0) { 4032 /* pre-index or signed offset */ 4033 tcg_gen_addi_i64(addr, addr, offset); 4034 } 4035 4036 if (is_mult) { 4037 tcg_rt = cpu_reg(s, rt); 4038 4039 if (is_zero) { 4040 int size = 4 << s->dcz_blocksize; 4041 4042 if (s->ata) { 4043 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4044 } 4045 /* 4046 * The non-tags portion of STZGM is mostly like DC_ZVA, 4047 * except the alignment happens before the access. 4048 */ 4049 clean_addr = clean_data_tbi(s, addr); 4050 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4051 gen_helper_dc_zva(cpu_env, clean_addr); 4052 } else if (s->ata) { 4053 if (is_load) { 4054 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4055 } else { 4056 gen_helper_stgm(cpu_env, addr, tcg_rt); 4057 } 4058 } else { 4059 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4060 int size = 4 << GMID_EL1_BS; 4061 4062 clean_addr = clean_data_tbi(s, addr); 4063 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4064 gen_probe_access(s, clean_addr, acc, size); 4065 4066 if (is_load) { 4067 /* The result tags are zeros. */ 4068 tcg_gen_movi_i64(tcg_rt, 0); 4069 } 4070 } 4071 return; 4072 } 4073 4074 if (is_load) { 4075 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4076 tcg_rt = cpu_reg(s, rt); 4077 if (s->ata) { 4078 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4079 } else { 4080 clean_addr = clean_data_tbi(s, addr); 4081 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4082 gen_address_with_allocation_tag0(tcg_rt, addr); 4083 } 4084 } else { 4085 tcg_rt = cpu_reg_sp(s, rt); 4086 if (!s->ata) { 4087 /* 4088 * For STG and ST2G, we need to check alignment and probe memory. 4089 * TODO: For STZG and STZ2G, we could rely on the stores below, 4090 * at least for system mode; user-only won't enforce alignment. 4091 */ 4092 if (is_pair) { 4093 gen_helper_st2g_stub(cpu_env, addr); 4094 } else { 4095 gen_helper_stg_stub(cpu_env, addr); 4096 } 4097 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4098 if (is_pair) { 4099 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4100 } else { 4101 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4102 } 4103 } else { 4104 if (is_pair) { 4105 gen_helper_st2g(cpu_env, addr, tcg_rt); 4106 } else { 4107 gen_helper_stg(cpu_env, addr, tcg_rt); 4108 } 4109 } 4110 } 4111 4112 if (is_zero) { 4113 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4114 TCGv_i64 tcg_zero = tcg_constant_i64(0); 4115 int mem_index = get_mem_index(s); 4116 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE; 4117 4118 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, 4119 MO_UQ | MO_ALIGN_16); 4120 for (i = 8; i < n; i += 8) { 4121 tcg_gen_addi_i64(clean_addr, clean_addr, 8); 4122 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ); 4123 } 4124 } 4125 4126 if (index != 0) { 4127 /* pre-index or post-index */ 4128 if (index < 0) { 4129 /* post-index */ 4130 tcg_gen_addi_i64(addr, addr, offset); 4131 } 4132 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4133 } 4134 } 4135 4136 /* Loads and stores */ 4137 static void disas_ldst(DisasContext *s, uint32_t insn) 4138 { 4139 switch (extract32(insn, 24, 6)) { 4140 case 0x08: /* Load/store exclusive */ 4141 disas_ldst_excl(s, insn); 4142 break; 4143 case 0x18: case 0x1c: /* Load register (literal) */ 4144 disas_ld_lit(s, insn); 4145 break; 4146 case 0x28: case 0x29: 4147 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4148 disas_ldst_pair(s, insn); 4149 break; 4150 case 0x38: case 0x39: 4151 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4152 disas_ldst_reg(s, insn); 4153 break; 4154 case 0x0c: /* AdvSIMD load/store multiple structures */ 4155 disas_ldst_multiple_struct(s, insn); 4156 break; 4157 case 0x0d: /* AdvSIMD load/store single structure */ 4158 disas_ldst_single_struct(s, insn); 4159 break; 4160 case 0x19: 4161 if (extract32(insn, 21, 1) != 0) { 4162 disas_ldst_tag(s, insn); 4163 } else if (extract32(insn, 10, 2) == 0) { 4164 disas_ldst_ldapr_stlr(s, insn); 4165 } else { 4166 unallocated_encoding(s); 4167 } 4168 break; 4169 default: 4170 unallocated_encoding(s); 4171 break; 4172 } 4173 } 4174 4175 /* PC-rel. addressing 4176 * 31 30 29 28 24 23 5 4 0 4177 * +----+-------+-----------+-------------------+------+ 4178 * | op | immlo | 1 0 0 0 0 | immhi | Rd | 4179 * +----+-------+-----------+-------------------+------+ 4180 */ 4181 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) 4182 { 4183 unsigned int page, rd; 4184 int64_t offset; 4185 4186 page = extract32(insn, 31, 1); 4187 /* SignExtend(immhi:immlo) -> offset */ 4188 offset = sextract64(insn, 5, 19); 4189 offset = offset << 2 | extract32(insn, 29, 2); 4190 rd = extract32(insn, 0, 5); 4191 4192 if (page) { 4193 /* ADRP (page based) */ 4194 offset <<= 12; 4195 /* The page offset is ok for CF_PCREL. */ 4196 offset -= s->pc_curr & 0xfff; 4197 } 4198 4199 gen_pc_plus_diff(s, cpu_reg(s, rd), offset); 4200 } 4201 4202 /* 4203 * Add/subtract (immediate) 4204 * 4205 * 31 30 29 28 23 22 21 10 9 5 4 0 4206 * +--+--+--+-------------+--+-------------+-----+-----+ 4207 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd | 4208 * +--+--+--+-------------+--+-------------+-----+-----+ 4209 * 4210 * sf: 0 -> 32bit, 1 -> 64bit 4211 * op: 0 -> add , 1 -> sub 4212 * S: 1 -> set flags 4213 * sh: 1 -> LSL imm by 12 4214 */ 4215 static void disas_add_sub_imm(DisasContext *s, uint32_t insn) 4216 { 4217 int rd = extract32(insn, 0, 5); 4218 int rn = extract32(insn, 5, 5); 4219 uint64_t imm = extract32(insn, 10, 12); 4220 bool shift = extract32(insn, 22, 1); 4221 bool setflags = extract32(insn, 29, 1); 4222 bool sub_op = extract32(insn, 30, 1); 4223 bool is_64bit = extract32(insn, 31, 1); 4224 4225 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 4226 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); 4227 TCGv_i64 tcg_result; 4228 4229 if (shift) { 4230 imm <<= 12; 4231 } 4232 4233 tcg_result = tcg_temp_new_i64(); 4234 if (!setflags) { 4235 if (sub_op) { 4236 tcg_gen_subi_i64(tcg_result, tcg_rn, imm); 4237 } else { 4238 tcg_gen_addi_i64(tcg_result, tcg_rn, imm); 4239 } 4240 } else { 4241 TCGv_i64 tcg_imm = tcg_constant_i64(imm); 4242 if (sub_op) { 4243 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4244 } else { 4245 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); 4246 } 4247 } 4248 4249 if (is_64bit) { 4250 tcg_gen_mov_i64(tcg_rd, tcg_result); 4251 } else { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4253 } 4254 } 4255 4256 /* 4257 * Add/subtract (immediate, with tags) 4258 * 4259 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0 4260 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4261 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd | 4262 * +--+--+--+-------------+--+---------+--+-------+-----+-----+ 4263 * 4264 * op: 0 -> add, 1 -> sub 4265 */ 4266 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn) 4267 { 4268 int rd = extract32(insn, 0, 5); 4269 int rn = extract32(insn, 5, 5); 4270 int uimm4 = extract32(insn, 10, 4); 4271 int uimm6 = extract32(insn, 16, 6); 4272 bool sub_op = extract32(insn, 30, 1); 4273 TCGv_i64 tcg_rn, tcg_rd; 4274 int imm; 4275 4276 /* Test all of sf=1, S=0, o2=0, o3=0. */ 4277 if ((insn & 0xa040c000u) != 0x80000000u || 4278 !dc_isar_feature(aa64_mte_insn_reg, s)) { 4279 unallocated_encoding(s); 4280 return; 4281 } 4282 4283 imm = uimm6 << LOG2_TAG_GRANULE; 4284 if (sub_op) { 4285 imm = -imm; 4286 } 4287 4288 tcg_rn = cpu_reg_sp(s, rn); 4289 tcg_rd = cpu_reg_sp(s, rd); 4290 4291 if (s->ata) { 4292 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4293 tcg_constant_i32(imm), 4294 tcg_constant_i32(uimm4)); 4295 } else { 4296 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4297 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4298 } 4299 } 4300 4301 /* The input should be a value in the bottom e bits (with higher 4302 * bits zero); returns that value replicated into every element 4303 * of size e in a 64 bit integer. 4304 */ 4305 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4306 { 4307 assert(e != 0); 4308 while (e < 64) { 4309 mask |= mask << e; 4310 e *= 2; 4311 } 4312 return mask; 4313 } 4314 4315 /* Return a value with the bottom len bits set (where 0 < len <= 64) */ 4316 static inline uint64_t bitmask64(unsigned int length) 4317 { 4318 assert(length > 0 && length <= 64); 4319 return ~0ULL >> (64 - length); 4320 } 4321 4322 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we 4323 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4324 * value (ie should cause a guest UNDEF exception), and true if they are 4325 * valid, in which case the decoded bit pattern is written to result. 4326 */ 4327 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4328 unsigned int imms, unsigned int immr) 4329 { 4330 uint64_t mask; 4331 unsigned e, levels, s, r; 4332 int len; 4333 4334 assert(immn < 2 && imms < 64 && immr < 64); 4335 4336 /* The bit patterns we create here are 64 bit patterns which 4337 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4338 * 64 bits each. Each element contains the same value: a run 4339 * of between 1 and e-1 non-zero bits, rotated within the 4340 * element by between 0 and e-1 bits. 4341 * 4342 * The element size and run length are encoded into immn (1 bit) 4343 * and imms (6 bits) as follows: 4344 * 64 bit elements: immn = 1, imms = <length of run - 1> 4345 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4346 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4347 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4348 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4349 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4350 * Notice that immn = 0, imms = 11111x is the only combination 4351 * not covered by one of the above options; this is reserved. 4352 * Further, <length of run - 1> all-ones is a reserved pattern. 4353 * 4354 * In all cases the rotation is by immr % e (and immr is 6 bits). 4355 */ 4356 4357 /* First determine the element size */ 4358 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4359 if (len < 1) { 4360 /* This is the immn == 0, imms == 0x11111x case */ 4361 return false; 4362 } 4363 e = 1 << len; 4364 4365 levels = e - 1; 4366 s = imms & levels; 4367 r = immr & levels; 4368 4369 if (s == levels) { 4370 /* <length of run - 1> mustn't be all-ones. */ 4371 return false; 4372 } 4373 4374 /* Create the value of one element: s+1 set bits rotated 4375 * by r within the element (which is e bits wide)... 4376 */ 4377 mask = bitmask64(s + 1); 4378 if (r) { 4379 mask = (mask >> r) | (mask << (e - r)); 4380 mask &= bitmask64(e); 4381 } 4382 /* ...then replicate the element over the whole 64 bit value */ 4383 mask = bitfield_replicate(mask, e); 4384 *result = mask; 4385 return true; 4386 } 4387 4388 /* Logical (immediate) 4389 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4390 * +----+-----+-------------+---+------+------+------+------+ 4391 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | 4392 * +----+-----+-------------+---+------+------+------+------+ 4393 */ 4394 static void disas_logic_imm(DisasContext *s, uint32_t insn) 4395 { 4396 unsigned int sf, opc, is_n, immr, imms, rn, rd; 4397 TCGv_i64 tcg_rd, tcg_rn; 4398 uint64_t wmask; 4399 bool is_and = false; 4400 4401 sf = extract32(insn, 31, 1); 4402 opc = extract32(insn, 29, 2); 4403 is_n = extract32(insn, 22, 1); 4404 immr = extract32(insn, 16, 6); 4405 imms = extract32(insn, 10, 6); 4406 rn = extract32(insn, 5, 5); 4407 rd = extract32(insn, 0, 5); 4408 4409 if (!sf && is_n) { 4410 unallocated_encoding(s); 4411 return; 4412 } 4413 4414 if (opc == 0x3) { /* ANDS */ 4415 tcg_rd = cpu_reg(s, rd); 4416 } else { 4417 tcg_rd = cpu_reg_sp(s, rd); 4418 } 4419 tcg_rn = cpu_reg(s, rn); 4420 4421 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { 4422 /* some immediate field values are reserved */ 4423 unallocated_encoding(s); 4424 return; 4425 } 4426 4427 if (!sf) { 4428 wmask &= 0xffffffff; 4429 } 4430 4431 switch (opc) { 4432 case 0x3: /* ANDS */ 4433 case 0x0: /* AND */ 4434 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); 4435 is_and = true; 4436 break; 4437 case 0x1: /* ORR */ 4438 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); 4439 break; 4440 case 0x2: /* EOR */ 4441 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); 4442 break; 4443 default: 4444 assert(FALSE); /* must handle all above */ 4445 break; 4446 } 4447 4448 if (!sf && !is_and) { 4449 /* zero extend final result; we know we can skip this for AND 4450 * since the immediate had the high 32 bits clear. 4451 */ 4452 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4453 } 4454 4455 if (opc == 3) { /* ANDS */ 4456 gen_logic_CC(sf, tcg_rd); 4457 } 4458 } 4459 4460 /* 4461 * Move wide (immediate) 4462 * 4463 * 31 30 29 28 23 22 21 20 5 4 0 4464 * +--+-----+-------------+-----+----------------+------+ 4465 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | 4466 * +--+-----+-------------+-----+----------------+------+ 4467 * 4468 * sf: 0 -> 32 bit, 1 -> 64 bit 4469 * opc: 00 -> N, 10 -> Z, 11 -> K 4470 * hw: shift/16 (0,16, and sf only 32, 48) 4471 */ 4472 static void disas_movw_imm(DisasContext *s, uint32_t insn) 4473 { 4474 int rd = extract32(insn, 0, 5); 4475 uint64_t imm = extract32(insn, 5, 16); 4476 int sf = extract32(insn, 31, 1); 4477 int opc = extract32(insn, 29, 2); 4478 int pos = extract32(insn, 21, 2) << 4; 4479 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4480 4481 if (!sf && (pos >= 32)) { 4482 unallocated_encoding(s); 4483 return; 4484 } 4485 4486 switch (opc) { 4487 case 0: /* MOVN */ 4488 case 2: /* MOVZ */ 4489 imm <<= pos; 4490 if (opc == 0) { 4491 imm = ~imm; 4492 } 4493 if (!sf) { 4494 imm &= 0xffffffffu; 4495 } 4496 tcg_gen_movi_i64(tcg_rd, imm); 4497 break; 4498 case 3: /* MOVK */ 4499 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16); 4500 if (!sf) { 4501 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4502 } 4503 break; 4504 default: 4505 unallocated_encoding(s); 4506 break; 4507 } 4508 } 4509 4510 /* Bitfield 4511 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 4512 * +----+-----+-------------+---+------+------+------+------+ 4513 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | 4514 * +----+-----+-------------+---+------+------+------+------+ 4515 */ 4516 static void disas_bitfield(DisasContext *s, uint32_t insn) 4517 { 4518 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; 4519 TCGv_i64 tcg_rd, tcg_tmp; 4520 4521 sf = extract32(insn, 31, 1); 4522 opc = extract32(insn, 29, 2); 4523 n = extract32(insn, 22, 1); 4524 ri = extract32(insn, 16, 6); 4525 si = extract32(insn, 10, 6); 4526 rn = extract32(insn, 5, 5); 4527 rd = extract32(insn, 0, 5); 4528 bitsize = sf ? 64 : 32; 4529 4530 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { 4531 unallocated_encoding(s); 4532 return; 4533 } 4534 4535 tcg_rd = cpu_reg(s, rd); 4536 4537 /* Suppress the zero-extend for !sf. Since RI and SI are constrained 4538 to be smaller than bitsize, we'll never reference data outside the 4539 low 32-bits anyway. */ 4540 tcg_tmp = read_cpu_reg(s, rn, 1); 4541 4542 /* Recognize simple(r) extractions. */ 4543 if (si >= ri) { 4544 /* Wd<s-r:0> = Wn<s:r> */ 4545 len = (si - ri) + 1; 4546 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ 4547 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4548 goto done; 4549 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ 4550 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4551 return; 4552 } 4553 /* opc == 1, BFXIL fall through to deposit */ 4554 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4555 pos = 0; 4556 } else { 4557 /* Handle the ri > si case with a deposit 4558 * Wd<32+s-r,32-r> = Wn<s:0> 4559 */ 4560 len = si + 1; 4561 pos = (bitsize - ri) & (bitsize - 1); 4562 } 4563 4564 if (opc == 0 && len < ri) { 4565 /* SBFM: sign extend the destination field from len to fill 4566 the balance of the word. Let the deposit below insert all 4567 of those sign bits. */ 4568 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4569 len = ri; 4570 } 4571 4572 if (opc == 1) { /* BFM, BFXIL */ 4573 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4574 } else { 4575 /* SBFM or UBFM: We start with zero, and we haven't modified 4576 any bits outside bitsize, therefore the zero-extension 4577 below is unneeded. */ 4578 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4579 return; 4580 } 4581 4582 done: 4583 if (!sf) { /* zero extend final result */ 4584 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4585 } 4586 } 4587 4588 /* Extract 4589 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 4590 * +----+------+-------------+---+----+------+--------+------+------+ 4591 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | 4592 * +----+------+-------------+---+----+------+--------+------+------+ 4593 */ 4594 static void disas_extract(DisasContext *s, uint32_t insn) 4595 { 4596 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; 4597 4598 sf = extract32(insn, 31, 1); 4599 n = extract32(insn, 22, 1); 4600 rm = extract32(insn, 16, 5); 4601 imm = extract32(insn, 10, 6); 4602 rn = extract32(insn, 5, 5); 4603 rd = extract32(insn, 0, 5); 4604 op21 = extract32(insn, 29, 2); 4605 op0 = extract32(insn, 21, 1); 4606 bitsize = sf ? 64 : 32; 4607 4608 if (sf != n || op21 || op0 || imm >= bitsize) { 4609 unallocated_encoding(s); 4610 } else { 4611 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4612 4613 tcg_rd = cpu_reg(s, rd); 4614 4615 if (unlikely(imm == 0)) { 4616 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4617 * so an extract from bit 0 is a special case. 4618 */ 4619 if (sf) { 4620 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); 4621 } else { 4622 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); 4623 } 4624 } else { 4625 tcg_rm = cpu_reg(s, rm); 4626 tcg_rn = cpu_reg(s, rn); 4627 4628 if (sf) { 4629 /* Specialization to ROR happens in EXTRACT2. */ 4630 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm); 4631 } else { 4632 TCGv_i32 t0 = tcg_temp_new_i32(); 4633 4634 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4635 if (rm == rn) { 4636 tcg_gen_rotri_i32(t0, t0, imm); 4637 } else { 4638 TCGv_i32 t1 = tcg_temp_new_i32(); 4639 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4640 tcg_gen_extract2_i32(t0, t0, t1, imm); 4641 } 4642 tcg_gen_extu_i32_i64(tcg_rd, t0); 4643 } 4644 } 4645 } 4646 } 4647 4648 /* Data processing - immediate */ 4649 static void disas_data_proc_imm(DisasContext *s, uint32_t insn) 4650 { 4651 switch (extract32(insn, 23, 6)) { 4652 case 0x20: case 0x21: /* PC-rel. addressing */ 4653 disas_pc_rel_adr(s, insn); 4654 break; 4655 case 0x22: /* Add/subtract (immediate) */ 4656 disas_add_sub_imm(s, insn); 4657 break; 4658 case 0x23: /* Add/subtract (immediate, with tags) */ 4659 disas_add_sub_imm_with_tags(s, insn); 4660 break; 4661 case 0x24: /* Logical (immediate) */ 4662 disas_logic_imm(s, insn); 4663 break; 4664 case 0x25: /* Move wide (immediate) */ 4665 disas_movw_imm(s, insn); 4666 break; 4667 case 0x26: /* Bitfield */ 4668 disas_bitfield(s, insn); 4669 break; 4670 case 0x27: /* Extract */ 4671 disas_extract(s, insn); 4672 break; 4673 default: 4674 unallocated_encoding(s); 4675 break; 4676 } 4677 } 4678 4679 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4680 * Note that it is the caller's responsibility to ensure that the 4681 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4682 * mandated semantics for out of range shifts. 4683 */ 4684 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4685 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4686 { 4687 switch (shift_type) { 4688 case A64_SHIFT_TYPE_LSL: 4689 tcg_gen_shl_i64(dst, src, shift_amount); 4690 break; 4691 case A64_SHIFT_TYPE_LSR: 4692 tcg_gen_shr_i64(dst, src, shift_amount); 4693 break; 4694 case A64_SHIFT_TYPE_ASR: 4695 if (!sf) { 4696 tcg_gen_ext32s_i64(dst, src); 4697 } 4698 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4699 break; 4700 case A64_SHIFT_TYPE_ROR: 4701 if (sf) { 4702 tcg_gen_rotr_i64(dst, src, shift_amount); 4703 } else { 4704 TCGv_i32 t0, t1; 4705 t0 = tcg_temp_new_i32(); 4706 t1 = tcg_temp_new_i32(); 4707 tcg_gen_extrl_i64_i32(t0, src); 4708 tcg_gen_extrl_i64_i32(t1, shift_amount); 4709 tcg_gen_rotr_i32(t0, t0, t1); 4710 tcg_gen_extu_i32_i64(dst, t0); 4711 } 4712 break; 4713 default: 4714 assert(FALSE); /* all shift types should be handled */ 4715 break; 4716 } 4717 4718 if (!sf) { /* zero extend final result */ 4719 tcg_gen_ext32u_i64(dst, dst); 4720 } 4721 } 4722 4723 /* Shift a TCGv src by immediate, put result in dst. 4724 * The shift amount must be in range (this should always be true as the 4725 * relevant instructions will UNDEF on bad shift immediates). 4726 */ 4727 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4728 enum a64_shift_type shift_type, unsigned int shift_i) 4729 { 4730 assert(shift_i < (sf ? 64 : 32)); 4731 4732 if (shift_i == 0) { 4733 tcg_gen_mov_i64(dst, src); 4734 } else { 4735 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4736 } 4737 } 4738 4739 /* Logical (shifted register) 4740 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4741 * +----+-----+-----------+-------+---+------+--------+------+------+ 4742 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4743 * +----+-----+-----------+-------+---+------+--------+------+------+ 4744 */ 4745 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4746 { 4747 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4748 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4749 4750 sf = extract32(insn, 31, 1); 4751 opc = extract32(insn, 29, 2); 4752 shift_type = extract32(insn, 22, 2); 4753 invert = extract32(insn, 21, 1); 4754 rm = extract32(insn, 16, 5); 4755 shift_amount = extract32(insn, 10, 6); 4756 rn = extract32(insn, 5, 5); 4757 rd = extract32(insn, 0, 5); 4758 4759 if (!sf && (shift_amount & (1 << 5))) { 4760 unallocated_encoding(s); 4761 return; 4762 } 4763 4764 tcg_rd = cpu_reg(s, rd); 4765 4766 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4767 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4768 * register-register MOV and MVN, so it is worth special casing. 4769 */ 4770 tcg_rm = cpu_reg(s, rm); 4771 if (invert) { 4772 tcg_gen_not_i64(tcg_rd, tcg_rm); 4773 if (!sf) { 4774 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4775 } 4776 } else { 4777 if (sf) { 4778 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4779 } else { 4780 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4781 } 4782 } 4783 return; 4784 } 4785 4786 tcg_rm = read_cpu_reg(s, rm, sf); 4787 4788 if (shift_amount) { 4789 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4790 } 4791 4792 tcg_rn = cpu_reg(s, rn); 4793 4794 switch (opc | (invert << 2)) { 4795 case 0: /* AND */ 4796 case 3: /* ANDS */ 4797 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4798 break; 4799 case 1: /* ORR */ 4800 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4801 break; 4802 case 2: /* EOR */ 4803 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4804 break; 4805 case 4: /* BIC */ 4806 case 7: /* BICS */ 4807 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4808 break; 4809 case 5: /* ORN */ 4810 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4811 break; 4812 case 6: /* EON */ 4813 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4814 break; 4815 default: 4816 assert(FALSE); 4817 break; 4818 } 4819 4820 if (!sf) { 4821 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4822 } 4823 4824 if (opc == 3) { 4825 gen_logic_CC(sf, tcg_rd); 4826 } 4827 } 4828 4829 /* 4830 * Add/subtract (extended register) 4831 * 4832 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4833 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4834 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4835 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4836 * 4837 * sf: 0 -> 32bit, 1 -> 64bit 4838 * op: 0 -> add , 1 -> sub 4839 * S: 1 -> set flags 4840 * opt: 00 4841 * option: extension type (see DecodeRegExtend) 4842 * imm3: optional shift to Rm 4843 * 4844 * Rd = Rn + LSL(extend(Rm), amount) 4845 */ 4846 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4847 { 4848 int rd = extract32(insn, 0, 5); 4849 int rn = extract32(insn, 5, 5); 4850 int imm3 = extract32(insn, 10, 3); 4851 int option = extract32(insn, 13, 3); 4852 int rm = extract32(insn, 16, 5); 4853 int opt = extract32(insn, 22, 2); 4854 bool setflags = extract32(insn, 29, 1); 4855 bool sub_op = extract32(insn, 30, 1); 4856 bool sf = extract32(insn, 31, 1); 4857 4858 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4859 TCGv_i64 tcg_rd; 4860 TCGv_i64 tcg_result; 4861 4862 if (imm3 > 4 || opt != 0) { 4863 unallocated_encoding(s); 4864 return; 4865 } 4866 4867 /* non-flag setting ops may use SP */ 4868 if (!setflags) { 4869 tcg_rd = cpu_reg_sp(s, rd); 4870 } else { 4871 tcg_rd = cpu_reg(s, rd); 4872 } 4873 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4874 4875 tcg_rm = read_cpu_reg(s, rm, sf); 4876 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4877 4878 tcg_result = tcg_temp_new_i64(); 4879 4880 if (!setflags) { 4881 if (sub_op) { 4882 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4883 } else { 4884 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4885 } 4886 } else { 4887 if (sub_op) { 4888 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4889 } else { 4890 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4891 } 4892 } 4893 4894 if (sf) { 4895 tcg_gen_mov_i64(tcg_rd, tcg_result); 4896 } else { 4897 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4898 } 4899 } 4900 4901 /* 4902 * Add/subtract (shifted register) 4903 * 4904 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4905 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4906 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4907 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4908 * 4909 * sf: 0 -> 32bit, 1 -> 64bit 4910 * op: 0 -> add , 1 -> sub 4911 * S: 1 -> set flags 4912 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4913 * imm6: Shift amount to apply to Rm before the add/sub 4914 */ 4915 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4916 { 4917 int rd = extract32(insn, 0, 5); 4918 int rn = extract32(insn, 5, 5); 4919 int imm6 = extract32(insn, 10, 6); 4920 int rm = extract32(insn, 16, 5); 4921 int shift_type = extract32(insn, 22, 2); 4922 bool setflags = extract32(insn, 29, 1); 4923 bool sub_op = extract32(insn, 30, 1); 4924 bool sf = extract32(insn, 31, 1); 4925 4926 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4927 TCGv_i64 tcg_rn, tcg_rm; 4928 TCGv_i64 tcg_result; 4929 4930 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4931 unallocated_encoding(s); 4932 return; 4933 } 4934 4935 tcg_rn = read_cpu_reg(s, rn, sf); 4936 tcg_rm = read_cpu_reg(s, rm, sf); 4937 4938 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4939 4940 tcg_result = tcg_temp_new_i64(); 4941 4942 if (!setflags) { 4943 if (sub_op) { 4944 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4945 } else { 4946 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4947 } 4948 } else { 4949 if (sub_op) { 4950 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4951 } else { 4952 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4953 } 4954 } 4955 4956 if (sf) { 4957 tcg_gen_mov_i64(tcg_rd, tcg_result); 4958 } else { 4959 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4960 } 4961 } 4962 4963 /* Data-processing (3 source) 4964 * 4965 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4966 * +--+------+-----------+------+------+----+------+------+------+ 4967 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4968 * +--+------+-----------+------+------+----+------+------+------+ 4969 */ 4970 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4971 { 4972 int rd = extract32(insn, 0, 5); 4973 int rn = extract32(insn, 5, 5); 4974 int ra = extract32(insn, 10, 5); 4975 int rm = extract32(insn, 16, 5); 4976 int op_id = (extract32(insn, 29, 3) << 4) | 4977 (extract32(insn, 21, 3) << 1) | 4978 extract32(insn, 15, 1); 4979 bool sf = extract32(insn, 31, 1); 4980 bool is_sub = extract32(op_id, 0, 1); 4981 bool is_high = extract32(op_id, 2, 1); 4982 bool is_signed = false; 4983 TCGv_i64 tcg_op1; 4984 TCGv_i64 tcg_op2; 4985 TCGv_i64 tcg_tmp; 4986 4987 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4988 switch (op_id) { 4989 case 0x42: /* SMADDL */ 4990 case 0x43: /* SMSUBL */ 4991 case 0x44: /* SMULH */ 4992 is_signed = true; 4993 break; 4994 case 0x0: /* MADD (32bit) */ 4995 case 0x1: /* MSUB (32bit) */ 4996 case 0x40: /* MADD (64bit) */ 4997 case 0x41: /* MSUB (64bit) */ 4998 case 0x4a: /* UMADDL */ 4999 case 0x4b: /* UMSUBL */ 5000 case 0x4c: /* UMULH */ 5001 break; 5002 default: 5003 unallocated_encoding(s); 5004 return; 5005 } 5006 5007 if (is_high) { 5008 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5009 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5010 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5011 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5012 5013 if (is_signed) { 5014 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5015 } else { 5016 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5017 } 5018 return; 5019 } 5020 5021 tcg_op1 = tcg_temp_new_i64(); 5022 tcg_op2 = tcg_temp_new_i64(); 5023 tcg_tmp = tcg_temp_new_i64(); 5024 5025 if (op_id < 0x42) { 5026 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5027 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5028 } else { 5029 if (is_signed) { 5030 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5031 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5032 } else { 5033 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5034 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5035 } 5036 } 5037 5038 if (ra == 31 && !is_sub) { 5039 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5040 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5041 } else { 5042 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5043 if (is_sub) { 5044 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5045 } else { 5046 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5047 } 5048 } 5049 5050 if (!sf) { 5051 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5052 } 5053 } 5054 5055 /* Add/subtract (with carry) 5056 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5057 * +--+--+--+------------------------+------+-------------+------+-----+ 5058 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5059 * +--+--+--+------------------------+------+-------------+------+-----+ 5060 */ 5061 5062 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5063 { 5064 unsigned int sf, op, setflags, rm, rn, rd; 5065 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5066 5067 sf = extract32(insn, 31, 1); 5068 op = extract32(insn, 30, 1); 5069 setflags = extract32(insn, 29, 1); 5070 rm = extract32(insn, 16, 5); 5071 rn = extract32(insn, 5, 5); 5072 rd = extract32(insn, 0, 5); 5073 5074 tcg_rd = cpu_reg(s, rd); 5075 tcg_rn = cpu_reg(s, rn); 5076 5077 if (op) { 5078 tcg_y = tcg_temp_new_i64(); 5079 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5080 } else { 5081 tcg_y = cpu_reg(s, rm); 5082 } 5083 5084 if (setflags) { 5085 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5086 } else { 5087 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5088 } 5089 } 5090 5091 /* 5092 * Rotate right into flags 5093 * 31 30 29 21 15 10 5 4 0 5094 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5095 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5096 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5097 */ 5098 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5099 { 5100 int mask = extract32(insn, 0, 4); 5101 int o2 = extract32(insn, 4, 1); 5102 int rn = extract32(insn, 5, 5); 5103 int imm6 = extract32(insn, 15, 6); 5104 int sf_op_s = extract32(insn, 29, 3); 5105 TCGv_i64 tcg_rn; 5106 TCGv_i32 nzcv; 5107 5108 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5109 unallocated_encoding(s); 5110 return; 5111 } 5112 5113 tcg_rn = read_cpu_reg(s, rn, 1); 5114 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5115 5116 nzcv = tcg_temp_new_i32(); 5117 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5118 5119 if (mask & 8) { /* N */ 5120 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5121 } 5122 if (mask & 4) { /* Z */ 5123 tcg_gen_not_i32(cpu_ZF, nzcv); 5124 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5125 } 5126 if (mask & 2) { /* C */ 5127 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5128 } 5129 if (mask & 1) { /* V */ 5130 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5131 } 5132 } 5133 5134 /* 5135 * Evaluate into flags 5136 * 31 30 29 21 15 14 10 5 4 0 5137 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5138 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5139 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5140 */ 5141 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5142 { 5143 int o3_mask = extract32(insn, 0, 5); 5144 int rn = extract32(insn, 5, 5); 5145 int o2 = extract32(insn, 15, 6); 5146 int sz = extract32(insn, 14, 1); 5147 int sf_op_s = extract32(insn, 29, 3); 5148 TCGv_i32 tmp; 5149 int shift; 5150 5151 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5152 !dc_isar_feature(aa64_condm_4, s)) { 5153 unallocated_encoding(s); 5154 return; 5155 } 5156 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5157 5158 tmp = tcg_temp_new_i32(); 5159 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5160 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5161 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5162 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5163 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5164 } 5165 5166 /* Conditional compare (immediate / register) 5167 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5168 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5169 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5170 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5171 * [1] y [0] [0] 5172 */ 5173 static void disas_cc(DisasContext *s, uint32_t insn) 5174 { 5175 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5176 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5177 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5178 DisasCompare c; 5179 5180 if (!extract32(insn, 29, 1)) { 5181 unallocated_encoding(s); 5182 return; 5183 } 5184 if (insn & (1 << 10 | 1 << 4)) { 5185 unallocated_encoding(s); 5186 return; 5187 } 5188 sf = extract32(insn, 31, 1); 5189 op = extract32(insn, 30, 1); 5190 is_imm = extract32(insn, 11, 1); 5191 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5192 cond = extract32(insn, 12, 4); 5193 rn = extract32(insn, 5, 5); 5194 nzcv = extract32(insn, 0, 4); 5195 5196 /* Set T0 = !COND. */ 5197 tcg_t0 = tcg_temp_new_i32(); 5198 arm_test_cc(&c, cond); 5199 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5200 5201 /* Load the arguments for the new comparison. */ 5202 if (is_imm) { 5203 tcg_y = tcg_temp_new_i64(); 5204 tcg_gen_movi_i64(tcg_y, y); 5205 } else { 5206 tcg_y = cpu_reg(s, y); 5207 } 5208 tcg_rn = cpu_reg(s, rn); 5209 5210 /* Set the flags for the new comparison. */ 5211 tcg_tmp = tcg_temp_new_i64(); 5212 if (op) { 5213 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5214 } else { 5215 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5216 } 5217 5218 /* If COND was false, force the flags to #nzcv. Compute two masks 5219 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5220 * For tcg hosts that support ANDC, we can make do with just T1. 5221 * In either case, allow the tcg optimizer to delete any unused mask. 5222 */ 5223 tcg_t1 = tcg_temp_new_i32(); 5224 tcg_t2 = tcg_temp_new_i32(); 5225 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5226 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5227 5228 if (nzcv & 8) { /* N */ 5229 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5230 } else { 5231 if (TCG_TARGET_HAS_andc_i32) { 5232 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5233 } else { 5234 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5235 } 5236 } 5237 if (nzcv & 4) { /* Z */ 5238 if (TCG_TARGET_HAS_andc_i32) { 5239 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5240 } else { 5241 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5242 } 5243 } else { 5244 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5245 } 5246 if (nzcv & 2) { /* C */ 5247 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5248 } else { 5249 if (TCG_TARGET_HAS_andc_i32) { 5250 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5251 } else { 5252 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5253 } 5254 } 5255 if (nzcv & 1) { /* V */ 5256 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5257 } else { 5258 if (TCG_TARGET_HAS_andc_i32) { 5259 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5260 } else { 5261 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5262 } 5263 } 5264 } 5265 5266 /* Conditional select 5267 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5268 * +----+----+---+-----------------+------+------+-----+------+------+ 5269 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5270 * +----+----+---+-----------------+------+------+-----+------+------+ 5271 */ 5272 static void disas_cond_select(DisasContext *s, uint32_t insn) 5273 { 5274 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5275 TCGv_i64 tcg_rd, zero; 5276 DisasCompare64 c; 5277 5278 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5279 /* S == 1 or op2<1> == 1 */ 5280 unallocated_encoding(s); 5281 return; 5282 } 5283 sf = extract32(insn, 31, 1); 5284 else_inv = extract32(insn, 30, 1); 5285 rm = extract32(insn, 16, 5); 5286 cond = extract32(insn, 12, 4); 5287 else_inc = extract32(insn, 10, 1); 5288 rn = extract32(insn, 5, 5); 5289 rd = extract32(insn, 0, 5); 5290 5291 tcg_rd = cpu_reg(s, rd); 5292 5293 a64_test_cc(&c, cond); 5294 zero = tcg_constant_i64(0); 5295 5296 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5297 /* CSET & CSETM. */ 5298 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5299 if (else_inv) { 5300 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5301 } 5302 } else { 5303 TCGv_i64 t_true = cpu_reg(s, rn); 5304 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5305 if (else_inv && else_inc) { 5306 tcg_gen_neg_i64(t_false, t_false); 5307 } else if (else_inv) { 5308 tcg_gen_not_i64(t_false, t_false); 5309 } else if (else_inc) { 5310 tcg_gen_addi_i64(t_false, t_false, 1); 5311 } 5312 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5313 } 5314 5315 if (!sf) { 5316 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5317 } 5318 } 5319 5320 static void handle_clz(DisasContext *s, unsigned int sf, 5321 unsigned int rn, unsigned int rd) 5322 { 5323 TCGv_i64 tcg_rd, tcg_rn; 5324 tcg_rd = cpu_reg(s, rd); 5325 tcg_rn = cpu_reg(s, rn); 5326 5327 if (sf) { 5328 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5329 } else { 5330 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5331 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5332 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5333 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5334 } 5335 } 5336 5337 static void handle_cls(DisasContext *s, unsigned int sf, 5338 unsigned int rn, unsigned int rd) 5339 { 5340 TCGv_i64 tcg_rd, tcg_rn; 5341 tcg_rd = cpu_reg(s, rd); 5342 tcg_rn = cpu_reg(s, rn); 5343 5344 if (sf) { 5345 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5346 } else { 5347 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5348 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5349 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5350 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5351 } 5352 } 5353 5354 static void handle_rbit(DisasContext *s, unsigned int sf, 5355 unsigned int rn, unsigned int rd) 5356 { 5357 TCGv_i64 tcg_rd, tcg_rn; 5358 tcg_rd = cpu_reg(s, rd); 5359 tcg_rn = cpu_reg(s, rn); 5360 5361 if (sf) { 5362 gen_helper_rbit64(tcg_rd, tcg_rn); 5363 } else { 5364 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5365 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5366 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5367 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5368 } 5369 } 5370 5371 /* REV with sf==1, opcode==3 ("REV64") */ 5372 static void handle_rev64(DisasContext *s, unsigned int sf, 5373 unsigned int rn, unsigned int rd) 5374 { 5375 if (!sf) { 5376 unallocated_encoding(s); 5377 return; 5378 } 5379 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5380 } 5381 5382 /* REV with sf==0, opcode==2 5383 * REV32 (sf==1, opcode==2) 5384 */ 5385 static void handle_rev32(DisasContext *s, unsigned int sf, 5386 unsigned int rn, unsigned int rd) 5387 { 5388 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5389 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5390 5391 if (sf) { 5392 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5393 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5394 } else { 5395 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5396 } 5397 } 5398 5399 /* REV16 (opcode==1) */ 5400 static void handle_rev16(DisasContext *s, unsigned int sf, 5401 unsigned int rn, unsigned int rd) 5402 { 5403 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5404 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5405 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5406 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5407 5408 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5409 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5410 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5411 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5412 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5413 } 5414 5415 /* Data-processing (1 source) 5416 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5417 * +----+---+---+-----------------+---------+--------+------+------+ 5418 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5419 * +----+---+---+-----------------+---------+--------+------+------+ 5420 */ 5421 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5422 { 5423 unsigned int sf, opcode, opcode2, rn, rd; 5424 TCGv_i64 tcg_rd; 5425 5426 if (extract32(insn, 29, 1)) { 5427 unallocated_encoding(s); 5428 return; 5429 } 5430 5431 sf = extract32(insn, 31, 1); 5432 opcode = extract32(insn, 10, 6); 5433 opcode2 = extract32(insn, 16, 5); 5434 rn = extract32(insn, 5, 5); 5435 rd = extract32(insn, 0, 5); 5436 5437 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5438 5439 switch (MAP(sf, opcode2, opcode)) { 5440 case MAP(0, 0x00, 0x00): /* RBIT */ 5441 case MAP(1, 0x00, 0x00): 5442 handle_rbit(s, sf, rn, rd); 5443 break; 5444 case MAP(0, 0x00, 0x01): /* REV16 */ 5445 case MAP(1, 0x00, 0x01): 5446 handle_rev16(s, sf, rn, rd); 5447 break; 5448 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5449 case MAP(1, 0x00, 0x02): 5450 handle_rev32(s, sf, rn, rd); 5451 break; 5452 case MAP(1, 0x00, 0x03): /* REV64 */ 5453 handle_rev64(s, sf, rn, rd); 5454 break; 5455 case MAP(0, 0x00, 0x04): /* CLZ */ 5456 case MAP(1, 0x00, 0x04): 5457 handle_clz(s, sf, rn, rd); 5458 break; 5459 case MAP(0, 0x00, 0x05): /* CLS */ 5460 case MAP(1, 0x00, 0x05): 5461 handle_cls(s, sf, rn, rd); 5462 break; 5463 case MAP(1, 0x01, 0x00): /* PACIA */ 5464 if (s->pauth_active) { 5465 tcg_rd = cpu_reg(s, rd); 5466 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5467 } else if (!dc_isar_feature(aa64_pauth, s)) { 5468 goto do_unallocated; 5469 } 5470 break; 5471 case MAP(1, 0x01, 0x01): /* PACIB */ 5472 if (s->pauth_active) { 5473 tcg_rd = cpu_reg(s, rd); 5474 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5475 } else if (!dc_isar_feature(aa64_pauth, s)) { 5476 goto do_unallocated; 5477 } 5478 break; 5479 case MAP(1, 0x01, 0x02): /* PACDA */ 5480 if (s->pauth_active) { 5481 tcg_rd = cpu_reg(s, rd); 5482 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5483 } else if (!dc_isar_feature(aa64_pauth, s)) { 5484 goto do_unallocated; 5485 } 5486 break; 5487 case MAP(1, 0x01, 0x03): /* PACDB */ 5488 if (s->pauth_active) { 5489 tcg_rd = cpu_reg(s, rd); 5490 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5491 } else if (!dc_isar_feature(aa64_pauth, s)) { 5492 goto do_unallocated; 5493 } 5494 break; 5495 case MAP(1, 0x01, 0x04): /* AUTIA */ 5496 if (s->pauth_active) { 5497 tcg_rd = cpu_reg(s, rd); 5498 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5499 } else if (!dc_isar_feature(aa64_pauth, s)) { 5500 goto do_unallocated; 5501 } 5502 break; 5503 case MAP(1, 0x01, 0x05): /* AUTIB */ 5504 if (s->pauth_active) { 5505 tcg_rd = cpu_reg(s, rd); 5506 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5507 } else if (!dc_isar_feature(aa64_pauth, s)) { 5508 goto do_unallocated; 5509 } 5510 break; 5511 case MAP(1, 0x01, 0x06): /* AUTDA */ 5512 if (s->pauth_active) { 5513 tcg_rd = cpu_reg(s, rd); 5514 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5515 } else if (!dc_isar_feature(aa64_pauth, s)) { 5516 goto do_unallocated; 5517 } 5518 break; 5519 case MAP(1, 0x01, 0x07): /* AUTDB */ 5520 if (s->pauth_active) { 5521 tcg_rd = cpu_reg(s, rd); 5522 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5523 } else if (!dc_isar_feature(aa64_pauth, s)) { 5524 goto do_unallocated; 5525 } 5526 break; 5527 case MAP(1, 0x01, 0x08): /* PACIZA */ 5528 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5529 goto do_unallocated; 5530 } else if (s->pauth_active) { 5531 tcg_rd = cpu_reg(s, rd); 5532 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5533 } 5534 break; 5535 case MAP(1, 0x01, 0x09): /* PACIZB */ 5536 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5537 goto do_unallocated; 5538 } else if (s->pauth_active) { 5539 tcg_rd = cpu_reg(s, rd); 5540 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5541 } 5542 break; 5543 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5544 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5545 goto do_unallocated; 5546 } else if (s->pauth_active) { 5547 tcg_rd = cpu_reg(s, rd); 5548 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5549 } 5550 break; 5551 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5552 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5553 goto do_unallocated; 5554 } else if (s->pauth_active) { 5555 tcg_rd = cpu_reg(s, rd); 5556 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5557 } 5558 break; 5559 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5560 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5561 goto do_unallocated; 5562 } else if (s->pauth_active) { 5563 tcg_rd = cpu_reg(s, rd); 5564 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5565 } 5566 break; 5567 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5568 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5569 goto do_unallocated; 5570 } else if (s->pauth_active) { 5571 tcg_rd = cpu_reg(s, rd); 5572 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5573 } 5574 break; 5575 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5576 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5577 goto do_unallocated; 5578 } else if (s->pauth_active) { 5579 tcg_rd = cpu_reg(s, rd); 5580 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5581 } 5582 break; 5583 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5584 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5585 goto do_unallocated; 5586 } else if (s->pauth_active) { 5587 tcg_rd = cpu_reg(s, rd); 5588 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5589 } 5590 break; 5591 case MAP(1, 0x01, 0x10): /* XPACI */ 5592 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5593 goto do_unallocated; 5594 } else if (s->pauth_active) { 5595 tcg_rd = cpu_reg(s, rd); 5596 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5597 } 5598 break; 5599 case MAP(1, 0x01, 0x11): /* XPACD */ 5600 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5601 goto do_unallocated; 5602 } else if (s->pauth_active) { 5603 tcg_rd = cpu_reg(s, rd); 5604 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5605 } 5606 break; 5607 default: 5608 do_unallocated: 5609 unallocated_encoding(s); 5610 break; 5611 } 5612 5613 #undef MAP 5614 } 5615 5616 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5617 unsigned int rm, unsigned int rn, unsigned int rd) 5618 { 5619 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5620 tcg_rd = cpu_reg(s, rd); 5621 5622 if (!sf && is_signed) { 5623 tcg_n = tcg_temp_new_i64(); 5624 tcg_m = tcg_temp_new_i64(); 5625 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5626 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5627 } else { 5628 tcg_n = read_cpu_reg(s, rn, sf); 5629 tcg_m = read_cpu_reg(s, rm, sf); 5630 } 5631 5632 if (is_signed) { 5633 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5634 } else { 5635 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5636 } 5637 5638 if (!sf) { /* zero extend final result */ 5639 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5640 } 5641 } 5642 5643 /* LSLV, LSRV, ASRV, RORV */ 5644 static void handle_shift_reg(DisasContext *s, 5645 enum a64_shift_type shift_type, unsigned int sf, 5646 unsigned int rm, unsigned int rn, unsigned int rd) 5647 { 5648 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5649 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5650 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5651 5652 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5653 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5654 } 5655 5656 /* CRC32[BHWX], CRC32C[BHWX] */ 5657 static void handle_crc32(DisasContext *s, 5658 unsigned int sf, unsigned int sz, bool crc32c, 5659 unsigned int rm, unsigned int rn, unsigned int rd) 5660 { 5661 TCGv_i64 tcg_acc, tcg_val; 5662 TCGv_i32 tcg_bytes; 5663 5664 if (!dc_isar_feature(aa64_crc32, s) 5665 || (sf == 1 && sz != 3) 5666 || (sf == 0 && sz == 3)) { 5667 unallocated_encoding(s); 5668 return; 5669 } 5670 5671 if (sz == 3) { 5672 tcg_val = cpu_reg(s, rm); 5673 } else { 5674 uint64_t mask; 5675 switch (sz) { 5676 case 0: 5677 mask = 0xFF; 5678 break; 5679 case 1: 5680 mask = 0xFFFF; 5681 break; 5682 case 2: 5683 mask = 0xFFFFFFFF; 5684 break; 5685 default: 5686 g_assert_not_reached(); 5687 } 5688 tcg_val = tcg_temp_new_i64(); 5689 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5690 } 5691 5692 tcg_acc = cpu_reg(s, rn); 5693 tcg_bytes = tcg_constant_i32(1 << sz); 5694 5695 if (crc32c) { 5696 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5697 } else { 5698 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5699 } 5700 } 5701 5702 /* Data-processing (2 source) 5703 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5704 * +----+---+---+-----------------+------+--------+------+------+ 5705 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5706 * +----+---+---+-----------------+------+--------+------+------+ 5707 */ 5708 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5709 { 5710 unsigned int sf, rm, opcode, rn, rd, setflag; 5711 sf = extract32(insn, 31, 1); 5712 setflag = extract32(insn, 29, 1); 5713 rm = extract32(insn, 16, 5); 5714 opcode = extract32(insn, 10, 6); 5715 rn = extract32(insn, 5, 5); 5716 rd = extract32(insn, 0, 5); 5717 5718 if (setflag && opcode != 0) { 5719 unallocated_encoding(s); 5720 return; 5721 } 5722 5723 switch (opcode) { 5724 case 0: /* SUBP(S) */ 5725 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5726 goto do_unallocated; 5727 } else { 5728 TCGv_i64 tcg_n, tcg_m, tcg_d; 5729 5730 tcg_n = read_cpu_reg_sp(s, rn, true); 5731 tcg_m = read_cpu_reg_sp(s, rm, true); 5732 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5733 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5734 tcg_d = cpu_reg(s, rd); 5735 5736 if (setflag) { 5737 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5738 } else { 5739 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5740 } 5741 } 5742 break; 5743 case 2: /* UDIV */ 5744 handle_div(s, false, sf, rm, rn, rd); 5745 break; 5746 case 3: /* SDIV */ 5747 handle_div(s, true, sf, rm, rn, rd); 5748 break; 5749 case 4: /* IRG */ 5750 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5751 goto do_unallocated; 5752 } 5753 if (s->ata) { 5754 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5755 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5756 } else { 5757 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5758 cpu_reg_sp(s, rn)); 5759 } 5760 break; 5761 case 5: /* GMI */ 5762 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5763 goto do_unallocated; 5764 } else { 5765 TCGv_i64 t = tcg_temp_new_i64(); 5766 5767 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5768 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5769 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5770 } 5771 break; 5772 case 8: /* LSLV */ 5773 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5774 break; 5775 case 9: /* LSRV */ 5776 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5777 break; 5778 case 10: /* ASRV */ 5779 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5780 break; 5781 case 11: /* RORV */ 5782 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5783 break; 5784 case 12: /* PACGA */ 5785 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5786 goto do_unallocated; 5787 } 5788 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5789 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5790 break; 5791 case 16: 5792 case 17: 5793 case 18: 5794 case 19: 5795 case 20: 5796 case 21: 5797 case 22: 5798 case 23: /* CRC32 */ 5799 { 5800 int sz = extract32(opcode, 0, 2); 5801 bool crc32c = extract32(opcode, 2, 1); 5802 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5803 break; 5804 } 5805 default: 5806 do_unallocated: 5807 unallocated_encoding(s); 5808 break; 5809 } 5810 } 5811 5812 /* 5813 * Data processing - register 5814 * 31 30 29 28 25 21 20 16 10 0 5815 * +--+---+--+---+-------+-----+-------+-------+---------+ 5816 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5817 * +--+---+--+---+-------+-----+-------+-------+---------+ 5818 */ 5819 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5820 { 5821 int op0 = extract32(insn, 30, 1); 5822 int op1 = extract32(insn, 28, 1); 5823 int op2 = extract32(insn, 21, 4); 5824 int op3 = extract32(insn, 10, 6); 5825 5826 if (!op1) { 5827 if (op2 & 8) { 5828 if (op2 & 1) { 5829 /* Add/sub (extended register) */ 5830 disas_add_sub_ext_reg(s, insn); 5831 } else { 5832 /* Add/sub (shifted register) */ 5833 disas_add_sub_reg(s, insn); 5834 } 5835 } else { 5836 /* Logical (shifted register) */ 5837 disas_logic_reg(s, insn); 5838 } 5839 return; 5840 } 5841 5842 switch (op2) { 5843 case 0x0: 5844 switch (op3) { 5845 case 0x00: /* Add/subtract (with carry) */ 5846 disas_adc_sbc(s, insn); 5847 break; 5848 5849 case 0x01: /* Rotate right into flags */ 5850 case 0x21: 5851 disas_rotate_right_into_flags(s, insn); 5852 break; 5853 5854 case 0x02: /* Evaluate into flags */ 5855 case 0x12: 5856 case 0x22: 5857 case 0x32: 5858 disas_evaluate_into_flags(s, insn); 5859 break; 5860 5861 default: 5862 goto do_unallocated; 5863 } 5864 break; 5865 5866 case 0x2: /* Conditional compare */ 5867 disas_cc(s, insn); /* both imm and reg forms */ 5868 break; 5869 5870 case 0x4: /* Conditional select */ 5871 disas_cond_select(s, insn); 5872 break; 5873 5874 case 0x6: /* Data-processing */ 5875 if (op0) { /* (1 source) */ 5876 disas_data_proc_1src(s, insn); 5877 } else { /* (2 source) */ 5878 disas_data_proc_2src(s, insn); 5879 } 5880 break; 5881 case 0x8 ... 0xf: /* (3 source) */ 5882 disas_data_proc_3src(s, insn); 5883 break; 5884 5885 default: 5886 do_unallocated: 5887 unallocated_encoding(s); 5888 break; 5889 } 5890 } 5891 5892 static void handle_fp_compare(DisasContext *s, int size, 5893 unsigned int rn, unsigned int rm, 5894 bool cmp_with_zero, bool signal_all_nans) 5895 { 5896 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5897 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5898 5899 if (size == MO_64) { 5900 TCGv_i64 tcg_vn, tcg_vm; 5901 5902 tcg_vn = read_fp_dreg(s, rn); 5903 if (cmp_with_zero) { 5904 tcg_vm = tcg_constant_i64(0); 5905 } else { 5906 tcg_vm = read_fp_dreg(s, rm); 5907 } 5908 if (signal_all_nans) { 5909 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5910 } else { 5911 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5912 } 5913 } else { 5914 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5915 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5916 5917 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5918 if (cmp_with_zero) { 5919 tcg_gen_movi_i32(tcg_vm, 0); 5920 } else { 5921 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5922 } 5923 5924 switch (size) { 5925 case MO_32: 5926 if (signal_all_nans) { 5927 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5928 } else { 5929 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5930 } 5931 break; 5932 case MO_16: 5933 if (signal_all_nans) { 5934 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5935 } else { 5936 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5937 } 5938 break; 5939 default: 5940 g_assert_not_reached(); 5941 } 5942 } 5943 5944 gen_set_nzcv(tcg_flags); 5945 } 5946 5947 /* Floating point compare 5948 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5949 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5950 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5951 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5952 */ 5953 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5954 { 5955 unsigned int mos, type, rm, op, rn, opc, op2r; 5956 int size; 5957 5958 mos = extract32(insn, 29, 3); 5959 type = extract32(insn, 22, 2); 5960 rm = extract32(insn, 16, 5); 5961 op = extract32(insn, 14, 2); 5962 rn = extract32(insn, 5, 5); 5963 opc = extract32(insn, 3, 2); 5964 op2r = extract32(insn, 0, 3); 5965 5966 if (mos || op || op2r) { 5967 unallocated_encoding(s); 5968 return; 5969 } 5970 5971 switch (type) { 5972 case 0: 5973 size = MO_32; 5974 break; 5975 case 1: 5976 size = MO_64; 5977 break; 5978 case 3: 5979 size = MO_16; 5980 if (dc_isar_feature(aa64_fp16, s)) { 5981 break; 5982 } 5983 /* fallthru */ 5984 default: 5985 unallocated_encoding(s); 5986 return; 5987 } 5988 5989 if (!fp_access_check(s)) { 5990 return; 5991 } 5992 5993 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5994 } 5995 5996 /* Floating point conditional compare 5997 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5998 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5999 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6000 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6001 */ 6002 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6003 { 6004 unsigned int mos, type, rm, cond, rn, op, nzcv; 6005 TCGLabel *label_continue = NULL; 6006 int size; 6007 6008 mos = extract32(insn, 29, 3); 6009 type = extract32(insn, 22, 2); 6010 rm = extract32(insn, 16, 5); 6011 cond = extract32(insn, 12, 4); 6012 rn = extract32(insn, 5, 5); 6013 op = extract32(insn, 4, 1); 6014 nzcv = extract32(insn, 0, 4); 6015 6016 if (mos) { 6017 unallocated_encoding(s); 6018 return; 6019 } 6020 6021 switch (type) { 6022 case 0: 6023 size = MO_32; 6024 break; 6025 case 1: 6026 size = MO_64; 6027 break; 6028 case 3: 6029 size = MO_16; 6030 if (dc_isar_feature(aa64_fp16, s)) { 6031 break; 6032 } 6033 /* fallthru */ 6034 default: 6035 unallocated_encoding(s); 6036 return; 6037 } 6038 6039 if (!fp_access_check(s)) { 6040 return; 6041 } 6042 6043 if (cond < 0x0e) { /* not always */ 6044 TCGLabel *label_match = gen_new_label(); 6045 label_continue = gen_new_label(); 6046 arm_gen_test_cc(cond, label_match); 6047 /* nomatch: */ 6048 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6049 tcg_gen_br(label_continue); 6050 gen_set_label(label_match); 6051 } 6052 6053 handle_fp_compare(s, size, rn, rm, false, op); 6054 6055 if (cond < 0x0e) { 6056 gen_set_label(label_continue); 6057 } 6058 } 6059 6060 /* Floating point conditional select 6061 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6062 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6063 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6064 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6065 */ 6066 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6067 { 6068 unsigned int mos, type, rm, cond, rn, rd; 6069 TCGv_i64 t_true, t_false; 6070 DisasCompare64 c; 6071 MemOp sz; 6072 6073 mos = extract32(insn, 29, 3); 6074 type = extract32(insn, 22, 2); 6075 rm = extract32(insn, 16, 5); 6076 cond = extract32(insn, 12, 4); 6077 rn = extract32(insn, 5, 5); 6078 rd = extract32(insn, 0, 5); 6079 6080 if (mos) { 6081 unallocated_encoding(s); 6082 return; 6083 } 6084 6085 switch (type) { 6086 case 0: 6087 sz = MO_32; 6088 break; 6089 case 1: 6090 sz = MO_64; 6091 break; 6092 case 3: 6093 sz = MO_16; 6094 if (dc_isar_feature(aa64_fp16, s)) { 6095 break; 6096 } 6097 /* fallthru */ 6098 default: 6099 unallocated_encoding(s); 6100 return; 6101 } 6102 6103 if (!fp_access_check(s)) { 6104 return; 6105 } 6106 6107 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6108 t_true = tcg_temp_new_i64(); 6109 t_false = tcg_temp_new_i64(); 6110 read_vec_element(s, t_true, rn, 0, sz); 6111 read_vec_element(s, t_false, rm, 0, sz); 6112 6113 a64_test_cc(&c, cond); 6114 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6115 t_true, t_false); 6116 6117 /* Note that sregs & hregs write back zeros to the high bits, 6118 and we've already done the zero-extension. */ 6119 write_fp_dreg(s, rd, t_true); 6120 } 6121 6122 /* Floating-point data-processing (1 source) - half precision */ 6123 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6124 { 6125 TCGv_ptr fpst = NULL; 6126 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6127 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6128 6129 switch (opcode) { 6130 case 0x0: /* FMOV */ 6131 tcg_gen_mov_i32(tcg_res, tcg_op); 6132 break; 6133 case 0x1: /* FABS */ 6134 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6135 break; 6136 case 0x2: /* FNEG */ 6137 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6138 break; 6139 case 0x3: /* FSQRT */ 6140 fpst = fpstatus_ptr(FPST_FPCR_F16); 6141 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6142 break; 6143 case 0x8: /* FRINTN */ 6144 case 0x9: /* FRINTP */ 6145 case 0xa: /* FRINTM */ 6146 case 0xb: /* FRINTZ */ 6147 case 0xc: /* FRINTA */ 6148 { 6149 TCGv_i32 tcg_rmode; 6150 6151 fpst = fpstatus_ptr(FPST_FPCR_F16); 6152 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6153 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6154 gen_restore_rmode(tcg_rmode, fpst); 6155 break; 6156 } 6157 case 0xe: /* FRINTX */ 6158 fpst = fpstatus_ptr(FPST_FPCR_F16); 6159 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6160 break; 6161 case 0xf: /* FRINTI */ 6162 fpst = fpstatus_ptr(FPST_FPCR_F16); 6163 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6164 break; 6165 default: 6166 g_assert_not_reached(); 6167 } 6168 6169 write_fp_sreg(s, rd, tcg_res); 6170 } 6171 6172 /* Floating-point data-processing (1 source) - single precision */ 6173 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6174 { 6175 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6176 TCGv_i32 tcg_op, tcg_res; 6177 TCGv_ptr fpst; 6178 int rmode = -1; 6179 6180 tcg_op = read_fp_sreg(s, rn); 6181 tcg_res = tcg_temp_new_i32(); 6182 6183 switch (opcode) { 6184 case 0x0: /* FMOV */ 6185 tcg_gen_mov_i32(tcg_res, tcg_op); 6186 goto done; 6187 case 0x1: /* FABS */ 6188 gen_helper_vfp_abss(tcg_res, tcg_op); 6189 goto done; 6190 case 0x2: /* FNEG */ 6191 gen_helper_vfp_negs(tcg_res, tcg_op); 6192 goto done; 6193 case 0x3: /* FSQRT */ 6194 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6195 goto done; 6196 case 0x6: /* BFCVT */ 6197 gen_fpst = gen_helper_bfcvt; 6198 break; 6199 case 0x8: /* FRINTN */ 6200 case 0x9: /* FRINTP */ 6201 case 0xa: /* FRINTM */ 6202 case 0xb: /* FRINTZ */ 6203 case 0xc: /* FRINTA */ 6204 rmode = opcode & 7; 6205 gen_fpst = gen_helper_rints; 6206 break; 6207 case 0xe: /* FRINTX */ 6208 gen_fpst = gen_helper_rints_exact; 6209 break; 6210 case 0xf: /* FRINTI */ 6211 gen_fpst = gen_helper_rints; 6212 break; 6213 case 0x10: /* FRINT32Z */ 6214 rmode = FPROUNDING_ZERO; 6215 gen_fpst = gen_helper_frint32_s; 6216 break; 6217 case 0x11: /* FRINT32X */ 6218 gen_fpst = gen_helper_frint32_s; 6219 break; 6220 case 0x12: /* FRINT64Z */ 6221 rmode = FPROUNDING_ZERO; 6222 gen_fpst = gen_helper_frint64_s; 6223 break; 6224 case 0x13: /* FRINT64X */ 6225 gen_fpst = gen_helper_frint64_s; 6226 break; 6227 default: 6228 g_assert_not_reached(); 6229 } 6230 6231 fpst = fpstatus_ptr(FPST_FPCR); 6232 if (rmode >= 0) { 6233 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6234 gen_fpst(tcg_res, tcg_op, fpst); 6235 gen_restore_rmode(tcg_rmode, fpst); 6236 } else { 6237 gen_fpst(tcg_res, tcg_op, fpst); 6238 } 6239 6240 done: 6241 write_fp_sreg(s, rd, tcg_res); 6242 } 6243 6244 /* Floating-point data-processing (1 source) - double precision */ 6245 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6246 { 6247 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6248 TCGv_i64 tcg_op, tcg_res; 6249 TCGv_ptr fpst; 6250 int rmode = -1; 6251 6252 switch (opcode) { 6253 case 0x0: /* FMOV */ 6254 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6255 return; 6256 } 6257 6258 tcg_op = read_fp_dreg(s, rn); 6259 tcg_res = tcg_temp_new_i64(); 6260 6261 switch (opcode) { 6262 case 0x1: /* FABS */ 6263 gen_helper_vfp_absd(tcg_res, tcg_op); 6264 goto done; 6265 case 0x2: /* FNEG */ 6266 gen_helper_vfp_negd(tcg_res, tcg_op); 6267 goto done; 6268 case 0x3: /* FSQRT */ 6269 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6270 goto done; 6271 case 0x8: /* FRINTN */ 6272 case 0x9: /* FRINTP */ 6273 case 0xa: /* FRINTM */ 6274 case 0xb: /* FRINTZ */ 6275 case 0xc: /* FRINTA */ 6276 rmode = opcode & 7; 6277 gen_fpst = gen_helper_rintd; 6278 break; 6279 case 0xe: /* FRINTX */ 6280 gen_fpst = gen_helper_rintd_exact; 6281 break; 6282 case 0xf: /* FRINTI */ 6283 gen_fpst = gen_helper_rintd; 6284 break; 6285 case 0x10: /* FRINT32Z */ 6286 rmode = FPROUNDING_ZERO; 6287 gen_fpst = gen_helper_frint32_d; 6288 break; 6289 case 0x11: /* FRINT32X */ 6290 gen_fpst = gen_helper_frint32_d; 6291 break; 6292 case 0x12: /* FRINT64Z */ 6293 rmode = FPROUNDING_ZERO; 6294 gen_fpst = gen_helper_frint64_d; 6295 break; 6296 case 0x13: /* FRINT64X */ 6297 gen_fpst = gen_helper_frint64_d; 6298 break; 6299 default: 6300 g_assert_not_reached(); 6301 } 6302 6303 fpst = fpstatus_ptr(FPST_FPCR); 6304 if (rmode >= 0) { 6305 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6306 gen_fpst(tcg_res, tcg_op, fpst); 6307 gen_restore_rmode(tcg_rmode, fpst); 6308 } else { 6309 gen_fpst(tcg_res, tcg_op, fpst); 6310 } 6311 6312 done: 6313 write_fp_dreg(s, rd, tcg_res); 6314 } 6315 6316 static void handle_fp_fcvt(DisasContext *s, int opcode, 6317 int rd, int rn, int dtype, int ntype) 6318 { 6319 switch (ntype) { 6320 case 0x0: 6321 { 6322 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6323 if (dtype == 1) { 6324 /* Single to double */ 6325 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6326 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6327 write_fp_dreg(s, rd, tcg_rd); 6328 } else { 6329 /* Single to half */ 6330 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6331 TCGv_i32 ahp = get_ahp_flag(); 6332 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6333 6334 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6335 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6336 write_fp_sreg(s, rd, tcg_rd); 6337 } 6338 break; 6339 } 6340 case 0x1: 6341 { 6342 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6343 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6344 if (dtype == 0) { 6345 /* Double to single */ 6346 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6347 } else { 6348 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6349 TCGv_i32 ahp = get_ahp_flag(); 6350 /* Double to half */ 6351 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6352 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6353 } 6354 write_fp_sreg(s, rd, tcg_rd); 6355 break; 6356 } 6357 case 0x3: 6358 { 6359 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6360 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6361 TCGv_i32 tcg_ahp = get_ahp_flag(); 6362 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6363 if (dtype == 0) { 6364 /* Half to single */ 6365 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6366 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6367 write_fp_sreg(s, rd, tcg_rd); 6368 } else { 6369 /* Half to double */ 6370 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6371 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6372 write_fp_dreg(s, rd, tcg_rd); 6373 } 6374 break; 6375 } 6376 default: 6377 g_assert_not_reached(); 6378 } 6379 } 6380 6381 /* Floating point data-processing (1 source) 6382 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6383 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6384 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6385 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6386 */ 6387 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6388 { 6389 int mos = extract32(insn, 29, 3); 6390 int type = extract32(insn, 22, 2); 6391 int opcode = extract32(insn, 15, 6); 6392 int rn = extract32(insn, 5, 5); 6393 int rd = extract32(insn, 0, 5); 6394 6395 if (mos) { 6396 goto do_unallocated; 6397 } 6398 6399 switch (opcode) { 6400 case 0x4: case 0x5: case 0x7: 6401 { 6402 /* FCVT between half, single and double precision */ 6403 int dtype = extract32(opcode, 0, 2); 6404 if (type == 2 || dtype == type) { 6405 goto do_unallocated; 6406 } 6407 if (!fp_access_check(s)) { 6408 return; 6409 } 6410 6411 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6412 break; 6413 } 6414 6415 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6416 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6417 goto do_unallocated; 6418 } 6419 /* fall through */ 6420 case 0x0 ... 0x3: 6421 case 0x8 ... 0xc: 6422 case 0xe ... 0xf: 6423 /* 32-to-32 and 64-to-64 ops */ 6424 switch (type) { 6425 case 0: 6426 if (!fp_access_check(s)) { 6427 return; 6428 } 6429 handle_fp_1src_single(s, opcode, rd, rn); 6430 break; 6431 case 1: 6432 if (!fp_access_check(s)) { 6433 return; 6434 } 6435 handle_fp_1src_double(s, opcode, rd, rn); 6436 break; 6437 case 3: 6438 if (!dc_isar_feature(aa64_fp16, s)) { 6439 goto do_unallocated; 6440 } 6441 6442 if (!fp_access_check(s)) { 6443 return; 6444 } 6445 handle_fp_1src_half(s, opcode, rd, rn); 6446 break; 6447 default: 6448 goto do_unallocated; 6449 } 6450 break; 6451 6452 case 0x6: 6453 switch (type) { 6454 case 1: /* BFCVT */ 6455 if (!dc_isar_feature(aa64_bf16, s)) { 6456 goto do_unallocated; 6457 } 6458 if (!fp_access_check(s)) { 6459 return; 6460 } 6461 handle_fp_1src_single(s, opcode, rd, rn); 6462 break; 6463 default: 6464 goto do_unallocated; 6465 } 6466 break; 6467 6468 default: 6469 do_unallocated: 6470 unallocated_encoding(s); 6471 break; 6472 } 6473 } 6474 6475 /* Floating-point data-processing (2 source) - single precision */ 6476 static void handle_fp_2src_single(DisasContext *s, int opcode, 6477 int rd, int rn, int rm) 6478 { 6479 TCGv_i32 tcg_op1; 6480 TCGv_i32 tcg_op2; 6481 TCGv_i32 tcg_res; 6482 TCGv_ptr fpst; 6483 6484 tcg_res = tcg_temp_new_i32(); 6485 fpst = fpstatus_ptr(FPST_FPCR); 6486 tcg_op1 = read_fp_sreg(s, rn); 6487 tcg_op2 = read_fp_sreg(s, rm); 6488 6489 switch (opcode) { 6490 case 0x0: /* FMUL */ 6491 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6492 break; 6493 case 0x1: /* FDIV */ 6494 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6495 break; 6496 case 0x2: /* FADD */ 6497 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6498 break; 6499 case 0x3: /* FSUB */ 6500 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6501 break; 6502 case 0x4: /* FMAX */ 6503 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6504 break; 6505 case 0x5: /* FMIN */ 6506 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6507 break; 6508 case 0x6: /* FMAXNM */ 6509 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6510 break; 6511 case 0x7: /* FMINNM */ 6512 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6513 break; 6514 case 0x8: /* FNMUL */ 6515 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6516 gen_helper_vfp_negs(tcg_res, tcg_res); 6517 break; 6518 } 6519 6520 write_fp_sreg(s, rd, tcg_res); 6521 } 6522 6523 /* Floating-point data-processing (2 source) - double precision */ 6524 static void handle_fp_2src_double(DisasContext *s, int opcode, 6525 int rd, int rn, int rm) 6526 { 6527 TCGv_i64 tcg_op1; 6528 TCGv_i64 tcg_op2; 6529 TCGv_i64 tcg_res; 6530 TCGv_ptr fpst; 6531 6532 tcg_res = tcg_temp_new_i64(); 6533 fpst = fpstatus_ptr(FPST_FPCR); 6534 tcg_op1 = read_fp_dreg(s, rn); 6535 tcg_op2 = read_fp_dreg(s, rm); 6536 6537 switch (opcode) { 6538 case 0x0: /* FMUL */ 6539 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6540 break; 6541 case 0x1: /* FDIV */ 6542 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6543 break; 6544 case 0x2: /* FADD */ 6545 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6546 break; 6547 case 0x3: /* FSUB */ 6548 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6549 break; 6550 case 0x4: /* FMAX */ 6551 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6552 break; 6553 case 0x5: /* FMIN */ 6554 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6555 break; 6556 case 0x6: /* FMAXNM */ 6557 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6558 break; 6559 case 0x7: /* FMINNM */ 6560 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6561 break; 6562 case 0x8: /* FNMUL */ 6563 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6564 gen_helper_vfp_negd(tcg_res, tcg_res); 6565 break; 6566 } 6567 6568 write_fp_dreg(s, rd, tcg_res); 6569 } 6570 6571 /* Floating-point data-processing (2 source) - half precision */ 6572 static void handle_fp_2src_half(DisasContext *s, int opcode, 6573 int rd, int rn, int rm) 6574 { 6575 TCGv_i32 tcg_op1; 6576 TCGv_i32 tcg_op2; 6577 TCGv_i32 tcg_res; 6578 TCGv_ptr fpst; 6579 6580 tcg_res = tcg_temp_new_i32(); 6581 fpst = fpstatus_ptr(FPST_FPCR_F16); 6582 tcg_op1 = read_fp_hreg(s, rn); 6583 tcg_op2 = read_fp_hreg(s, rm); 6584 6585 switch (opcode) { 6586 case 0x0: /* FMUL */ 6587 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6588 break; 6589 case 0x1: /* FDIV */ 6590 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6591 break; 6592 case 0x2: /* FADD */ 6593 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6594 break; 6595 case 0x3: /* FSUB */ 6596 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6597 break; 6598 case 0x4: /* FMAX */ 6599 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6600 break; 6601 case 0x5: /* FMIN */ 6602 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6603 break; 6604 case 0x6: /* FMAXNM */ 6605 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6606 break; 6607 case 0x7: /* FMINNM */ 6608 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6609 break; 6610 case 0x8: /* FNMUL */ 6611 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6612 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6613 break; 6614 default: 6615 g_assert_not_reached(); 6616 } 6617 6618 write_fp_sreg(s, rd, tcg_res); 6619 } 6620 6621 /* Floating point data-processing (2 source) 6622 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6623 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6624 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6625 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6626 */ 6627 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6628 { 6629 int mos = extract32(insn, 29, 3); 6630 int type = extract32(insn, 22, 2); 6631 int rd = extract32(insn, 0, 5); 6632 int rn = extract32(insn, 5, 5); 6633 int rm = extract32(insn, 16, 5); 6634 int opcode = extract32(insn, 12, 4); 6635 6636 if (opcode > 8 || mos) { 6637 unallocated_encoding(s); 6638 return; 6639 } 6640 6641 switch (type) { 6642 case 0: 6643 if (!fp_access_check(s)) { 6644 return; 6645 } 6646 handle_fp_2src_single(s, opcode, rd, rn, rm); 6647 break; 6648 case 1: 6649 if (!fp_access_check(s)) { 6650 return; 6651 } 6652 handle_fp_2src_double(s, opcode, rd, rn, rm); 6653 break; 6654 case 3: 6655 if (!dc_isar_feature(aa64_fp16, s)) { 6656 unallocated_encoding(s); 6657 return; 6658 } 6659 if (!fp_access_check(s)) { 6660 return; 6661 } 6662 handle_fp_2src_half(s, opcode, rd, rn, rm); 6663 break; 6664 default: 6665 unallocated_encoding(s); 6666 } 6667 } 6668 6669 /* Floating-point data-processing (3 source) - single precision */ 6670 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6671 int rd, int rn, int rm, int ra) 6672 { 6673 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6674 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6675 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6676 6677 tcg_op1 = read_fp_sreg(s, rn); 6678 tcg_op2 = read_fp_sreg(s, rm); 6679 tcg_op3 = read_fp_sreg(s, ra); 6680 6681 /* These are fused multiply-add, and must be done as one 6682 * floating point operation with no rounding between the 6683 * multiplication and addition steps. 6684 * NB that doing the negations here as separate steps is 6685 * correct : an input NaN should come out with its sign bit 6686 * flipped if it is a negated-input. 6687 */ 6688 if (o1 == true) { 6689 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6690 } 6691 6692 if (o0 != o1) { 6693 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6694 } 6695 6696 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6697 6698 write_fp_sreg(s, rd, tcg_res); 6699 } 6700 6701 /* Floating-point data-processing (3 source) - double precision */ 6702 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6703 int rd, int rn, int rm, int ra) 6704 { 6705 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6706 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6707 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6708 6709 tcg_op1 = read_fp_dreg(s, rn); 6710 tcg_op2 = read_fp_dreg(s, rm); 6711 tcg_op3 = read_fp_dreg(s, ra); 6712 6713 /* These are fused multiply-add, and must be done as one 6714 * floating point operation with no rounding between the 6715 * multiplication and addition steps. 6716 * NB that doing the negations here as separate steps is 6717 * correct : an input NaN should come out with its sign bit 6718 * flipped if it is a negated-input. 6719 */ 6720 if (o1 == true) { 6721 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6722 } 6723 6724 if (o0 != o1) { 6725 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6726 } 6727 6728 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6729 6730 write_fp_dreg(s, rd, tcg_res); 6731 } 6732 6733 /* Floating-point data-processing (3 source) - half precision */ 6734 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6735 int rd, int rn, int rm, int ra) 6736 { 6737 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6738 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6740 6741 tcg_op1 = read_fp_hreg(s, rn); 6742 tcg_op2 = read_fp_hreg(s, rm); 6743 tcg_op3 = read_fp_hreg(s, ra); 6744 6745 /* These are fused multiply-add, and must be done as one 6746 * floating point operation with no rounding between the 6747 * multiplication and addition steps. 6748 * NB that doing the negations here as separate steps is 6749 * correct : an input NaN should come out with its sign bit 6750 * flipped if it is a negated-input. 6751 */ 6752 if (o1 == true) { 6753 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6754 } 6755 6756 if (o0 != o1) { 6757 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6758 } 6759 6760 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6761 6762 write_fp_sreg(s, rd, tcg_res); 6763 } 6764 6765 /* Floating point data-processing (3 source) 6766 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6767 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6768 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6769 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6770 */ 6771 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6772 { 6773 int mos = extract32(insn, 29, 3); 6774 int type = extract32(insn, 22, 2); 6775 int rd = extract32(insn, 0, 5); 6776 int rn = extract32(insn, 5, 5); 6777 int ra = extract32(insn, 10, 5); 6778 int rm = extract32(insn, 16, 5); 6779 bool o0 = extract32(insn, 15, 1); 6780 bool o1 = extract32(insn, 21, 1); 6781 6782 if (mos) { 6783 unallocated_encoding(s); 6784 return; 6785 } 6786 6787 switch (type) { 6788 case 0: 6789 if (!fp_access_check(s)) { 6790 return; 6791 } 6792 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6793 break; 6794 case 1: 6795 if (!fp_access_check(s)) { 6796 return; 6797 } 6798 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6799 break; 6800 case 3: 6801 if (!dc_isar_feature(aa64_fp16, s)) { 6802 unallocated_encoding(s); 6803 return; 6804 } 6805 if (!fp_access_check(s)) { 6806 return; 6807 } 6808 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6809 break; 6810 default: 6811 unallocated_encoding(s); 6812 } 6813 } 6814 6815 /* Floating point immediate 6816 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6817 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6818 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6819 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6820 */ 6821 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6822 { 6823 int rd = extract32(insn, 0, 5); 6824 int imm5 = extract32(insn, 5, 5); 6825 int imm8 = extract32(insn, 13, 8); 6826 int type = extract32(insn, 22, 2); 6827 int mos = extract32(insn, 29, 3); 6828 uint64_t imm; 6829 MemOp sz; 6830 6831 if (mos || imm5) { 6832 unallocated_encoding(s); 6833 return; 6834 } 6835 6836 switch (type) { 6837 case 0: 6838 sz = MO_32; 6839 break; 6840 case 1: 6841 sz = MO_64; 6842 break; 6843 case 3: 6844 sz = MO_16; 6845 if (dc_isar_feature(aa64_fp16, s)) { 6846 break; 6847 } 6848 /* fallthru */ 6849 default: 6850 unallocated_encoding(s); 6851 return; 6852 } 6853 6854 if (!fp_access_check(s)) { 6855 return; 6856 } 6857 6858 imm = vfp_expand_imm(sz, imm8); 6859 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6860 } 6861 6862 /* Handle floating point <=> fixed point conversions. Note that we can 6863 * also deal with fp <=> integer conversions as a special case (scale == 64) 6864 * OPTME: consider handling that special case specially or at least skipping 6865 * the call to scalbn in the helpers for zero shifts. 6866 */ 6867 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6868 bool itof, int rmode, int scale, int sf, int type) 6869 { 6870 bool is_signed = !(opcode & 1); 6871 TCGv_ptr tcg_fpstatus; 6872 TCGv_i32 tcg_shift, tcg_single; 6873 TCGv_i64 tcg_double; 6874 6875 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6876 6877 tcg_shift = tcg_constant_i32(64 - scale); 6878 6879 if (itof) { 6880 TCGv_i64 tcg_int = cpu_reg(s, rn); 6881 if (!sf) { 6882 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6883 6884 if (is_signed) { 6885 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6886 } else { 6887 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6888 } 6889 6890 tcg_int = tcg_extend; 6891 } 6892 6893 switch (type) { 6894 case 1: /* float64 */ 6895 tcg_double = tcg_temp_new_i64(); 6896 if (is_signed) { 6897 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6898 tcg_shift, tcg_fpstatus); 6899 } else { 6900 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6901 tcg_shift, tcg_fpstatus); 6902 } 6903 write_fp_dreg(s, rd, tcg_double); 6904 break; 6905 6906 case 0: /* float32 */ 6907 tcg_single = tcg_temp_new_i32(); 6908 if (is_signed) { 6909 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6910 tcg_shift, tcg_fpstatus); 6911 } else { 6912 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6913 tcg_shift, tcg_fpstatus); 6914 } 6915 write_fp_sreg(s, rd, tcg_single); 6916 break; 6917 6918 case 3: /* float16 */ 6919 tcg_single = tcg_temp_new_i32(); 6920 if (is_signed) { 6921 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6922 tcg_shift, tcg_fpstatus); 6923 } else { 6924 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6925 tcg_shift, tcg_fpstatus); 6926 } 6927 write_fp_sreg(s, rd, tcg_single); 6928 break; 6929 6930 default: 6931 g_assert_not_reached(); 6932 } 6933 } else { 6934 TCGv_i64 tcg_int = cpu_reg(s, rd); 6935 TCGv_i32 tcg_rmode; 6936 6937 if (extract32(opcode, 2, 1)) { 6938 /* There are too many rounding modes to all fit into rmode, 6939 * so FCVTA[US] is a special case. 6940 */ 6941 rmode = FPROUNDING_TIEAWAY; 6942 } 6943 6944 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6945 6946 switch (type) { 6947 case 1: /* float64 */ 6948 tcg_double = read_fp_dreg(s, rn); 6949 if (is_signed) { 6950 if (!sf) { 6951 gen_helper_vfp_tosld(tcg_int, tcg_double, 6952 tcg_shift, tcg_fpstatus); 6953 } else { 6954 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6955 tcg_shift, tcg_fpstatus); 6956 } 6957 } else { 6958 if (!sf) { 6959 gen_helper_vfp_tould(tcg_int, tcg_double, 6960 tcg_shift, tcg_fpstatus); 6961 } else { 6962 gen_helper_vfp_touqd(tcg_int, tcg_double, 6963 tcg_shift, tcg_fpstatus); 6964 } 6965 } 6966 if (!sf) { 6967 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6968 } 6969 break; 6970 6971 case 0: /* float32 */ 6972 tcg_single = read_fp_sreg(s, rn); 6973 if (sf) { 6974 if (is_signed) { 6975 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6976 tcg_shift, tcg_fpstatus); 6977 } else { 6978 gen_helper_vfp_touqs(tcg_int, tcg_single, 6979 tcg_shift, tcg_fpstatus); 6980 } 6981 } else { 6982 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6983 if (is_signed) { 6984 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6985 tcg_shift, tcg_fpstatus); 6986 } else { 6987 gen_helper_vfp_touls(tcg_dest, tcg_single, 6988 tcg_shift, tcg_fpstatus); 6989 } 6990 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6991 } 6992 break; 6993 6994 case 3: /* float16 */ 6995 tcg_single = read_fp_sreg(s, rn); 6996 if (sf) { 6997 if (is_signed) { 6998 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6999 tcg_shift, tcg_fpstatus); 7000 } else { 7001 gen_helper_vfp_touqh(tcg_int, tcg_single, 7002 tcg_shift, tcg_fpstatus); 7003 } 7004 } else { 7005 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7006 if (is_signed) { 7007 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7008 tcg_shift, tcg_fpstatus); 7009 } else { 7010 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7011 tcg_shift, tcg_fpstatus); 7012 } 7013 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7014 } 7015 break; 7016 7017 default: 7018 g_assert_not_reached(); 7019 } 7020 7021 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7022 } 7023 } 7024 7025 /* Floating point <-> fixed point conversions 7026 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7027 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7028 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7029 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7030 */ 7031 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7032 { 7033 int rd = extract32(insn, 0, 5); 7034 int rn = extract32(insn, 5, 5); 7035 int scale = extract32(insn, 10, 6); 7036 int opcode = extract32(insn, 16, 3); 7037 int rmode = extract32(insn, 19, 2); 7038 int type = extract32(insn, 22, 2); 7039 bool sbit = extract32(insn, 29, 1); 7040 bool sf = extract32(insn, 31, 1); 7041 bool itof; 7042 7043 if (sbit || (!sf && scale < 32)) { 7044 unallocated_encoding(s); 7045 return; 7046 } 7047 7048 switch (type) { 7049 case 0: /* float32 */ 7050 case 1: /* float64 */ 7051 break; 7052 case 3: /* float16 */ 7053 if (dc_isar_feature(aa64_fp16, s)) { 7054 break; 7055 } 7056 /* fallthru */ 7057 default: 7058 unallocated_encoding(s); 7059 return; 7060 } 7061 7062 switch ((rmode << 3) | opcode) { 7063 case 0x2: /* SCVTF */ 7064 case 0x3: /* UCVTF */ 7065 itof = true; 7066 break; 7067 case 0x18: /* FCVTZS */ 7068 case 0x19: /* FCVTZU */ 7069 itof = false; 7070 break; 7071 default: 7072 unallocated_encoding(s); 7073 return; 7074 } 7075 7076 if (!fp_access_check(s)) { 7077 return; 7078 } 7079 7080 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7081 } 7082 7083 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7084 { 7085 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7086 * without conversion. 7087 */ 7088 7089 if (itof) { 7090 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7091 TCGv_i64 tmp; 7092 7093 switch (type) { 7094 case 0: 7095 /* 32 bit */ 7096 tmp = tcg_temp_new_i64(); 7097 tcg_gen_ext32u_i64(tmp, tcg_rn); 7098 write_fp_dreg(s, rd, tmp); 7099 break; 7100 case 1: 7101 /* 64 bit */ 7102 write_fp_dreg(s, rd, tcg_rn); 7103 break; 7104 case 2: 7105 /* 64 bit to top half. */ 7106 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7107 clear_vec_high(s, true, rd); 7108 break; 7109 case 3: 7110 /* 16 bit */ 7111 tmp = tcg_temp_new_i64(); 7112 tcg_gen_ext16u_i64(tmp, tcg_rn); 7113 write_fp_dreg(s, rd, tmp); 7114 break; 7115 default: 7116 g_assert_not_reached(); 7117 } 7118 } else { 7119 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7120 7121 switch (type) { 7122 case 0: 7123 /* 32 bit */ 7124 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7125 break; 7126 case 1: 7127 /* 64 bit */ 7128 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7129 break; 7130 case 2: 7131 /* 64 bits from top half */ 7132 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7133 break; 7134 case 3: 7135 /* 16 bit */ 7136 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7137 break; 7138 default: 7139 g_assert_not_reached(); 7140 } 7141 } 7142 } 7143 7144 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7145 { 7146 TCGv_i64 t = read_fp_dreg(s, rn); 7147 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7148 7149 gen_helper_fjcvtzs(t, t, fpstatus); 7150 7151 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7152 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7153 tcg_gen_movi_i32(cpu_CF, 0); 7154 tcg_gen_movi_i32(cpu_NF, 0); 7155 tcg_gen_movi_i32(cpu_VF, 0); 7156 } 7157 7158 /* Floating point <-> integer conversions 7159 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7160 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7161 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7162 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7163 */ 7164 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7165 { 7166 int rd = extract32(insn, 0, 5); 7167 int rn = extract32(insn, 5, 5); 7168 int opcode = extract32(insn, 16, 3); 7169 int rmode = extract32(insn, 19, 2); 7170 int type = extract32(insn, 22, 2); 7171 bool sbit = extract32(insn, 29, 1); 7172 bool sf = extract32(insn, 31, 1); 7173 bool itof = false; 7174 7175 if (sbit) { 7176 goto do_unallocated; 7177 } 7178 7179 switch (opcode) { 7180 case 2: /* SCVTF */ 7181 case 3: /* UCVTF */ 7182 itof = true; 7183 /* fallthru */ 7184 case 4: /* FCVTAS */ 7185 case 5: /* FCVTAU */ 7186 if (rmode != 0) { 7187 goto do_unallocated; 7188 } 7189 /* fallthru */ 7190 case 0: /* FCVT[NPMZ]S */ 7191 case 1: /* FCVT[NPMZ]U */ 7192 switch (type) { 7193 case 0: /* float32 */ 7194 case 1: /* float64 */ 7195 break; 7196 case 3: /* float16 */ 7197 if (!dc_isar_feature(aa64_fp16, s)) { 7198 goto do_unallocated; 7199 } 7200 break; 7201 default: 7202 goto do_unallocated; 7203 } 7204 if (!fp_access_check(s)) { 7205 return; 7206 } 7207 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7208 break; 7209 7210 default: 7211 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7212 case 0b01100110: /* FMOV half <-> 32-bit int */ 7213 case 0b01100111: 7214 case 0b11100110: /* FMOV half <-> 64-bit int */ 7215 case 0b11100111: 7216 if (!dc_isar_feature(aa64_fp16, s)) { 7217 goto do_unallocated; 7218 } 7219 /* fallthru */ 7220 case 0b00000110: /* FMOV 32-bit */ 7221 case 0b00000111: 7222 case 0b10100110: /* FMOV 64-bit */ 7223 case 0b10100111: 7224 case 0b11001110: /* FMOV top half of 128-bit */ 7225 case 0b11001111: 7226 if (!fp_access_check(s)) { 7227 return; 7228 } 7229 itof = opcode & 1; 7230 handle_fmov(s, rd, rn, type, itof); 7231 break; 7232 7233 case 0b00111110: /* FJCVTZS */ 7234 if (!dc_isar_feature(aa64_jscvt, s)) { 7235 goto do_unallocated; 7236 } else if (fp_access_check(s)) { 7237 handle_fjcvtzs(s, rd, rn); 7238 } 7239 break; 7240 7241 default: 7242 do_unallocated: 7243 unallocated_encoding(s); 7244 return; 7245 } 7246 break; 7247 } 7248 } 7249 7250 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7251 * 31 30 29 28 25 24 0 7252 * +---+---+---+---------+-----------------------------+ 7253 * | | 0 | | 1 1 1 1 | | 7254 * +---+---+---+---------+-----------------------------+ 7255 */ 7256 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7257 { 7258 if (extract32(insn, 24, 1)) { 7259 /* Floating point data-processing (3 source) */ 7260 disas_fp_3src(s, insn); 7261 } else if (extract32(insn, 21, 1) == 0) { 7262 /* Floating point to fixed point conversions */ 7263 disas_fp_fixed_conv(s, insn); 7264 } else { 7265 switch (extract32(insn, 10, 2)) { 7266 case 1: 7267 /* Floating point conditional compare */ 7268 disas_fp_ccomp(s, insn); 7269 break; 7270 case 2: 7271 /* Floating point data-processing (2 source) */ 7272 disas_fp_2src(s, insn); 7273 break; 7274 case 3: 7275 /* Floating point conditional select */ 7276 disas_fp_csel(s, insn); 7277 break; 7278 case 0: 7279 switch (ctz32(extract32(insn, 12, 4))) { 7280 case 0: /* [15:12] == xxx1 */ 7281 /* Floating point immediate */ 7282 disas_fp_imm(s, insn); 7283 break; 7284 case 1: /* [15:12] == xx10 */ 7285 /* Floating point compare */ 7286 disas_fp_compare(s, insn); 7287 break; 7288 case 2: /* [15:12] == x100 */ 7289 /* Floating point data-processing (1 source) */ 7290 disas_fp_1src(s, insn); 7291 break; 7292 case 3: /* [15:12] == 1000 */ 7293 unallocated_encoding(s); 7294 break; 7295 default: /* [15:12] == 0000 */ 7296 /* Floating point <-> integer conversions */ 7297 disas_fp_int_conv(s, insn); 7298 break; 7299 } 7300 break; 7301 } 7302 } 7303 } 7304 7305 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7306 int pos) 7307 { 7308 /* Extract 64 bits from the middle of two concatenated 64 bit 7309 * vector register slices left:right. The extracted bits start 7310 * at 'pos' bits into the right (least significant) side. 7311 * We return the result in tcg_right, and guarantee not to 7312 * trash tcg_left. 7313 */ 7314 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7315 assert(pos > 0 && pos < 64); 7316 7317 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7318 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7319 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7320 } 7321 7322 /* EXT 7323 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7324 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7325 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7326 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7327 */ 7328 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7329 { 7330 int is_q = extract32(insn, 30, 1); 7331 int op2 = extract32(insn, 22, 2); 7332 int imm4 = extract32(insn, 11, 4); 7333 int rm = extract32(insn, 16, 5); 7334 int rn = extract32(insn, 5, 5); 7335 int rd = extract32(insn, 0, 5); 7336 int pos = imm4 << 3; 7337 TCGv_i64 tcg_resl, tcg_resh; 7338 7339 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7340 unallocated_encoding(s); 7341 return; 7342 } 7343 7344 if (!fp_access_check(s)) { 7345 return; 7346 } 7347 7348 tcg_resh = tcg_temp_new_i64(); 7349 tcg_resl = tcg_temp_new_i64(); 7350 7351 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7352 * either extracting 128 bits from a 128:128 concatenation, or 7353 * extracting 64 bits from a 64:64 concatenation. 7354 */ 7355 if (!is_q) { 7356 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7357 if (pos != 0) { 7358 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7359 do_ext64(s, tcg_resh, tcg_resl, pos); 7360 } 7361 } else { 7362 TCGv_i64 tcg_hh; 7363 typedef struct { 7364 int reg; 7365 int elt; 7366 } EltPosns; 7367 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7368 EltPosns *elt = eltposns; 7369 7370 if (pos >= 64) { 7371 elt++; 7372 pos -= 64; 7373 } 7374 7375 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7376 elt++; 7377 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7378 elt++; 7379 if (pos != 0) { 7380 do_ext64(s, tcg_resh, tcg_resl, pos); 7381 tcg_hh = tcg_temp_new_i64(); 7382 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7383 do_ext64(s, tcg_hh, tcg_resh, pos); 7384 } 7385 } 7386 7387 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7388 if (is_q) { 7389 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7390 } 7391 clear_vec_high(s, is_q, rd); 7392 } 7393 7394 /* TBL/TBX 7395 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7396 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7397 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7398 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7399 */ 7400 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7401 { 7402 int op2 = extract32(insn, 22, 2); 7403 int is_q = extract32(insn, 30, 1); 7404 int rm = extract32(insn, 16, 5); 7405 int rn = extract32(insn, 5, 5); 7406 int rd = extract32(insn, 0, 5); 7407 int is_tbx = extract32(insn, 12, 1); 7408 int len = (extract32(insn, 13, 2) + 1) * 16; 7409 7410 if (op2 != 0) { 7411 unallocated_encoding(s); 7412 return; 7413 } 7414 7415 if (!fp_access_check(s)) { 7416 return; 7417 } 7418 7419 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7420 vec_full_reg_offset(s, rm), cpu_env, 7421 is_q ? 16 : 8, vec_full_reg_size(s), 7422 (len << 6) | (is_tbx << 5) | rn, 7423 gen_helper_simd_tblx); 7424 } 7425 7426 /* ZIP/UZP/TRN 7427 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7428 * +---+---+-------------+------+---+------+---+------------------+------+ 7429 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7430 * +---+---+-------------+------+---+------+---+------------------+------+ 7431 */ 7432 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7433 { 7434 int rd = extract32(insn, 0, 5); 7435 int rn = extract32(insn, 5, 5); 7436 int rm = extract32(insn, 16, 5); 7437 int size = extract32(insn, 22, 2); 7438 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7439 * bit 2 indicates 1 vs 2 variant of the insn. 7440 */ 7441 int opcode = extract32(insn, 12, 2); 7442 bool part = extract32(insn, 14, 1); 7443 bool is_q = extract32(insn, 30, 1); 7444 int esize = 8 << size; 7445 int i; 7446 int datasize = is_q ? 128 : 64; 7447 int elements = datasize / esize; 7448 TCGv_i64 tcg_res[2], tcg_ele; 7449 7450 if (opcode == 0 || (size == 3 && !is_q)) { 7451 unallocated_encoding(s); 7452 return; 7453 } 7454 7455 if (!fp_access_check(s)) { 7456 return; 7457 } 7458 7459 tcg_res[0] = tcg_temp_new_i64(); 7460 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7461 tcg_ele = tcg_temp_new_i64(); 7462 7463 for (i = 0; i < elements; i++) { 7464 int o, w; 7465 7466 switch (opcode) { 7467 case 1: /* UZP1/2 */ 7468 { 7469 int midpoint = elements / 2; 7470 if (i < midpoint) { 7471 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7472 } else { 7473 read_vec_element(s, tcg_ele, rm, 7474 2 * (i - midpoint) + part, size); 7475 } 7476 break; 7477 } 7478 case 2: /* TRN1/2 */ 7479 if (i & 1) { 7480 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7481 } else { 7482 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7483 } 7484 break; 7485 case 3: /* ZIP1/2 */ 7486 { 7487 int base = part * elements / 2; 7488 if (i & 1) { 7489 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7490 } else { 7491 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7492 } 7493 break; 7494 } 7495 default: 7496 g_assert_not_reached(); 7497 } 7498 7499 w = (i * esize) / 64; 7500 o = (i * esize) % 64; 7501 if (o == 0) { 7502 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7503 } else { 7504 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7505 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7506 } 7507 } 7508 7509 for (i = 0; i <= is_q; ++i) { 7510 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7511 } 7512 clear_vec_high(s, is_q, rd); 7513 } 7514 7515 /* 7516 * do_reduction_op helper 7517 * 7518 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7519 * important for correct NaN propagation that we do these 7520 * operations in exactly the order specified by the pseudocode. 7521 * 7522 * This is a recursive function, TCG temps should be freed by the 7523 * calling function once it is done with the values. 7524 */ 7525 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7526 int esize, int size, int vmap, TCGv_ptr fpst) 7527 { 7528 if (esize == size) { 7529 int element; 7530 MemOp msize = esize == 16 ? MO_16 : MO_32; 7531 TCGv_i32 tcg_elem; 7532 7533 /* We should have one register left here */ 7534 assert(ctpop8(vmap) == 1); 7535 element = ctz32(vmap); 7536 assert(element < 8); 7537 7538 tcg_elem = tcg_temp_new_i32(); 7539 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7540 return tcg_elem; 7541 } else { 7542 int bits = size / 2; 7543 int shift = ctpop8(vmap) / 2; 7544 int vmap_lo = (vmap >> shift) & vmap; 7545 int vmap_hi = (vmap & ~vmap_lo); 7546 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7547 7548 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7549 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7550 tcg_res = tcg_temp_new_i32(); 7551 7552 switch (fpopcode) { 7553 case 0x0c: /* fmaxnmv half-precision */ 7554 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7555 break; 7556 case 0x0f: /* fmaxv half-precision */ 7557 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7558 break; 7559 case 0x1c: /* fminnmv half-precision */ 7560 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7561 break; 7562 case 0x1f: /* fminv half-precision */ 7563 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7564 break; 7565 case 0x2c: /* fmaxnmv */ 7566 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7567 break; 7568 case 0x2f: /* fmaxv */ 7569 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7570 break; 7571 case 0x3c: /* fminnmv */ 7572 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7573 break; 7574 case 0x3f: /* fminv */ 7575 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7576 break; 7577 default: 7578 g_assert_not_reached(); 7579 } 7580 return tcg_res; 7581 } 7582 } 7583 7584 /* AdvSIMD across lanes 7585 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7586 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7587 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7588 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7589 */ 7590 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7591 { 7592 int rd = extract32(insn, 0, 5); 7593 int rn = extract32(insn, 5, 5); 7594 int size = extract32(insn, 22, 2); 7595 int opcode = extract32(insn, 12, 5); 7596 bool is_q = extract32(insn, 30, 1); 7597 bool is_u = extract32(insn, 29, 1); 7598 bool is_fp = false; 7599 bool is_min = false; 7600 int esize; 7601 int elements; 7602 int i; 7603 TCGv_i64 tcg_res, tcg_elt; 7604 7605 switch (opcode) { 7606 case 0x1b: /* ADDV */ 7607 if (is_u) { 7608 unallocated_encoding(s); 7609 return; 7610 } 7611 /* fall through */ 7612 case 0x3: /* SADDLV, UADDLV */ 7613 case 0xa: /* SMAXV, UMAXV */ 7614 case 0x1a: /* SMINV, UMINV */ 7615 if (size == 3 || (size == 2 && !is_q)) { 7616 unallocated_encoding(s); 7617 return; 7618 } 7619 break; 7620 case 0xc: /* FMAXNMV, FMINNMV */ 7621 case 0xf: /* FMAXV, FMINV */ 7622 /* Bit 1 of size field encodes min vs max and the actual size 7623 * depends on the encoding of the U bit. If not set (and FP16 7624 * enabled) then we do half-precision float instead of single 7625 * precision. 7626 */ 7627 is_min = extract32(size, 1, 1); 7628 is_fp = true; 7629 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7630 size = 1; 7631 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7632 unallocated_encoding(s); 7633 return; 7634 } else { 7635 size = 2; 7636 } 7637 break; 7638 default: 7639 unallocated_encoding(s); 7640 return; 7641 } 7642 7643 if (!fp_access_check(s)) { 7644 return; 7645 } 7646 7647 esize = 8 << size; 7648 elements = (is_q ? 128 : 64) / esize; 7649 7650 tcg_res = tcg_temp_new_i64(); 7651 tcg_elt = tcg_temp_new_i64(); 7652 7653 /* These instructions operate across all lanes of a vector 7654 * to produce a single result. We can guarantee that a 64 7655 * bit intermediate is sufficient: 7656 * + for [US]ADDLV the maximum element size is 32 bits, and 7657 * the result type is 64 bits 7658 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7659 * same as the element size, which is 32 bits at most 7660 * For the integer operations we can choose to work at 64 7661 * or 32 bits and truncate at the end; for simplicity 7662 * we use 64 bits always. The floating point 7663 * ops do require 32 bit intermediates, though. 7664 */ 7665 if (!is_fp) { 7666 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7667 7668 for (i = 1; i < elements; i++) { 7669 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7670 7671 switch (opcode) { 7672 case 0x03: /* SADDLV / UADDLV */ 7673 case 0x1b: /* ADDV */ 7674 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7675 break; 7676 case 0x0a: /* SMAXV / UMAXV */ 7677 if (is_u) { 7678 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7679 } else { 7680 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7681 } 7682 break; 7683 case 0x1a: /* SMINV / UMINV */ 7684 if (is_u) { 7685 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7686 } else { 7687 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7688 } 7689 break; 7690 default: 7691 g_assert_not_reached(); 7692 } 7693 7694 } 7695 } else { 7696 /* Floating point vector reduction ops which work across 32 7697 * bit (single) or 16 bit (half-precision) intermediates. 7698 * Note that correct NaN propagation requires that we do these 7699 * operations in exactly the order specified by the pseudocode. 7700 */ 7701 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7702 int fpopcode = opcode | is_min << 4 | is_u << 5; 7703 int vmap = (1 << elements) - 1; 7704 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7705 (is_q ? 128 : 64), vmap, fpst); 7706 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7707 } 7708 7709 /* Now truncate the result to the width required for the final output */ 7710 if (opcode == 0x03) { 7711 /* SADDLV, UADDLV: result is 2*esize */ 7712 size++; 7713 } 7714 7715 switch (size) { 7716 case 0: 7717 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7718 break; 7719 case 1: 7720 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7721 break; 7722 case 2: 7723 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7724 break; 7725 case 3: 7726 break; 7727 default: 7728 g_assert_not_reached(); 7729 } 7730 7731 write_fp_dreg(s, rd, tcg_res); 7732 } 7733 7734 /* DUP (Element, Vector) 7735 * 7736 * 31 30 29 21 20 16 15 10 9 5 4 0 7737 * +---+---+-------------------+--------+-------------+------+------+ 7738 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7739 * +---+---+-------------------+--------+-------------+------+------+ 7740 * 7741 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7742 */ 7743 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7744 int imm5) 7745 { 7746 int size = ctz32(imm5); 7747 int index; 7748 7749 if (size > 3 || (size == 3 && !is_q)) { 7750 unallocated_encoding(s); 7751 return; 7752 } 7753 7754 if (!fp_access_check(s)) { 7755 return; 7756 } 7757 7758 index = imm5 >> (size + 1); 7759 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7760 vec_reg_offset(s, rn, index, size), 7761 is_q ? 16 : 8, vec_full_reg_size(s)); 7762 } 7763 7764 /* DUP (element, scalar) 7765 * 31 21 20 16 15 10 9 5 4 0 7766 * +-----------------------+--------+-------------+------+------+ 7767 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7768 * +-----------------------+--------+-------------+------+------+ 7769 */ 7770 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7771 int imm5) 7772 { 7773 int size = ctz32(imm5); 7774 int index; 7775 TCGv_i64 tmp; 7776 7777 if (size > 3) { 7778 unallocated_encoding(s); 7779 return; 7780 } 7781 7782 if (!fp_access_check(s)) { 7783 return; 7784 } 7785 7786 index = imm5 >> (size + 1); 7787 7788 /* This instruction just extracts the specified element and 7789 * zero-extends it into the bottom of the destination register. 7790 */ 7791 tmp = tcg_temp_new_i64(); 7792 read_vec_element(s, tmp, rn, index, size); 7793 write_fp_dreg(s, rd, tmp); 7794 } 7795 7796 /* DUP (General) 7797 * 7798 * 31 30 29 21 20 16 15 10 9 5 4 0 7799 * +---+---+-------------------+--------+-------------+------+------+ 7800 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7801 * +---+---+-------------------+--------+-------------+------+------+ 7802 * 7803 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7804 */ 7805 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7806 int imm5) 7807 { 7808 int size = ctz32(imm5); 7809 uint32_t dofs, oprsz, maxsz; 7810 7811 if (size > 3 || ((size == 3) && !is_q)) { 7812 unallocated_encoding(s); 7813 return; 7814 } 7815 7816 if (!fp_access_check(s)) { 7817 return; 7818 } 7819 7820 dofs = vec_full_reg_offset(s, rd); 7821 oprsz = is_q ? 16 : 8; 7822 maxsz = vec_full_reg_size(s); 7823 7824 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7825 } 7826 7827 /* INS (Element) 7828 * 7829 * 31 21 20 16 15 14 11 10 9 5 4 0 7830 * +-----------------------+--------+------------+---+------+------+ 7831 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7832 * +-----------------------+--------+------------+---+------+------+ 7833 * 7834 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7835 * index: encoded in imm5<4:size+1> 7836 */ 7837 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7838 int imm4, int imm5) 7839 { 7840 int size = ctz32(imm5); 7841 int src_index, dst_index; 7842 TCGv_i64 tmp; 7843 7844 if (size > 3) { 7845 unallocated_encoding(s); 7846 return; 7847 } 7848 7849 if (!fp_access_check(s)) { 7850 return; 7851 } 7852 7853 dst_index = extract32(imm5, 1+size, 5); 7854 src_index = extract32(imm4, size, 4); 7855 7856 tmp = tcg_temp_new_i64(); 7857 7858 read_vec_element(s, tmp, rn, src_index, size); 7859 write_vec_element(s, tmp, rd, dst_index, size); 7860 7861 /* INS is considered a 128-bit write for SVE. */ 7862 clear_vec_high(s, true, rd); 7863 } 7864 7865 7866 /* INS (General) 7867 * 7868 * 31 21 20 16 15 10 9 5 4 0 7869 * +-----------------------+--------+-------------+------+------+ 7870 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7871 * +-----------------------+--------+-------------+------+------+ 7872 * 7873 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7874 * index: encoded in imm5<4:size+1> 7875 */ 7876 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7877 { 7878 int size = ctz32(imm5); 7879 int idx; 7880 7881 if (size > 3) { 7882 unallocated_encoding(s); 7883 return; 7884 } 7885 7886 if (!fp_access_check(s)) { 7887 return; 7888 } 7889 7890 idx = extract32(imm5, 1 + size, 4 - size); 7891 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7892 7893 /* INS is considered a 128-bit write for SVE. */ 7894 clear_vec_high(s, true, rd); 7895 } 7896 7897 /* 7898 * UMOV (General) 7899 * SMOV (General) 7900 * 7901 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7902 * +---+---+-------------------+--------+-------------+------+------+ 7903 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7904 * +---+---+-------------------+--------+-------------+------+------+ 7905 * 7906 * U: unsigned when set 7907 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7908 */ 7909 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7910 int rn, int rd, int imm5) 7911 { 7912 int size = ctz32(imm5); 7913 int element; 7914 TCGv_i64 tcg_rd; 7915 7916 /* Check for UnallocatedEncodings */ 7917 if (is_signed) { 7918 if (size > 2 || (size == 2 && !is_q)) { 7919 unallocated_encoding(s); 7920 return; 7921 } 7922 } else { 7923 if (size > 3 7924 || (size < 3 && is_q) 7925 || (size == 3 && !is_q)) { 7926 unallocated_encoding(s); 7927 return; 7928 } 7929 } 7930 7931 if (!fp_access_check(s)) { 7932 return; 7933 } 7934 7935 element = extract32(imm5, 1+size, 4); 7936 7937 tcg_rd = cpu_reg(s, rd); 7938 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7939 if (is_signed && !is_q) { 7940 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7941 } 7942 } 7943 7944 /* AdvSIMD copy 7945 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7946 * +---+---+----+-----------------+------+---+------+---+------+------+ 7947 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7948 * +---+---+----+-----------------+------+---+------+---+------+------+ 7949 */ 7950 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7951 { 7952 int rd = extract32(insn, 0, 5); 7953 int rn = extract32(insn, 5, 5); 7954 int imm4 = extract32(insn, 11, 4); 7955 int op = extract32(insn, 29, 1); 7956 int is_q = extract32(insn, 30, 1); 7957 int imm5 = extract32(insn, 16, 5); 7958 7959 if (op) { 7960 if (is_q) { 7961 /* INS (element) */ 7962 handle_simd_inse(s, rd, rn, imm4, imm5); 7963 } else { 7964 unallocated_encoding(s); 7965 } 7966 } else { 7967 switch (imm4) { 7968 case 0: 7969 /* DUP (element - vector) */ 7970 handle_simd_dupe(s, is_q, rd, rn, imm5); 7971 break; 7972 case 1: 7973 /* DUP (general) */ 7974 handle_simd_dupg(s, is_q, rd, rn, imm5); 7975 break; 7976 case 3: 7977 if (is_q) { 7978 /* INS (general) */ 7979 handle_simd_insg(s, rd, rn, imm5); 7980 } else { 7981 unallocated_encoding(s); 7982 } 7983 break; 7984 case 5: 7985 case 7: 7986 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7987 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7988 break; 7989 default: 7990 unallocated_encoding(s); 7991 break; 7992 } 7993 } 7994 } 7995 7996 /* AdvSIMD modified immediate 7997 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7998 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7999 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8000 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8001 * 8002 * There are a number of operations that can be carried out here: 8003 * MOVI - move (shifted) imm into register 8004 * MVNI - move inverted (shifted) imm into register 8005 * ORR - bitwise OR of (shifted) imm with register 8006 * BIC - bitwise clear of (shifted) imm with register 8007 * With ARMv8.2 we also have: 8008 * FMOV half-precision 8009 */ 8010 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8011 { 8012 int rd = extract32(insn, 0, 5); 8013 int cmode = extract32(insn, 12, 4); 8014 int o2 = extract32(insn, 11, 1); 8015 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8016 bool is_neg = extract32(insn, 29, 1); 8017 bool is_q = extract32(insn, 30, 1); 8018 uint64_t imm = 0; 8019 8020 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8021 /* Check for FMOV (vector, immediate) - half-precision */ 8022 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8023 unallocated_encoding(s); 8024 return; 8025 } 8026 } 8027 8028 if (!fp_access_check(s)) { 8029 return; 8030 } 8031 8032 if (cmode == 15 && o2 && !is_neg) { 8033 /* FMOV (vector, immediate) - half-precision */ 8034 imm = vfp_expand_imm(MO_16, abcdefgh); 8035 /* now duplicate across the lanes */ 8036 imm = dup_const(MO_16, imm); 8037 } else { 8038 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8039 } 8040 8041 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8042 /* MOVI or MVNI, with MVNI negation handled above. */ 8043 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8044 vec_full_reg_size(s), imm); 8045 } else { 8046 /* ORR or BIC, with BIC negation to AND handled above. */ 8047 if (is_neg) { 8048 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8049 } else { 8050 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8051 } 8052 } 8053 } 8054 8055 /* AdvSIMD scalar copy 8056 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8057 * +-----+----+-----------------+------+---+------+---+------+------+ 8058 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8059 * +-----+----+-----------------+------+---+------+---+------+------+ 8060 */ 8061 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8062 { 8063 int rd = extract32(insn, 0, 5); 8064 int rn = extract32(insn, 5, 5); 8065 int imm4 = extract32(insn, 11, 4); 8066 int imm5 = extract32(insn, 16, 5); 8067 int op = extract32(insn, 29, 1); 8068 8069 if (op != 0 || imm4 != 0) { 8070 unallocated_encoding(s); 8071 return; 8072 } 8073 8074 /* DUP (element, scalar) */ 8075 handle_simd_dupes(s, rd, rn, imm5); 8076 } 8077 8078 /* AdvSIMD scalar pairwise 8079 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8080 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8081 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8082 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8083 */ 8084 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8085 { 8086 int u = extract32(insn, 29, 1); 8087 int size = extract32(insn, 22, 2); 8088 int opcode = extract32(insn, 12, 5); 8089 int rn = extract32(insn, 5, 5); 8090 int rd = extract32(insn, 0, 5); 8091 TCGv_ptr fpst; 8092 8093 /* For some ops (the FP ones), size[1] is part of the encoding. 8094 * For ADDP strictly it is not but size[1] is always 1 for valid 8095 * encodings. 8096 */ 8097 opcode |= (extract32(size, 1, 1) << 5); 8098 8099 switch (opcode) { 8100 case 0x3b: /* ADDP */ 8101 if (u || size != 3) { 8102 unallocated_encoding(s); 8103 return; 8104 } 8105 if (!fp_access_check(s)) { 8106 return; 8107 } 8108 8109 fpst = NULL; 8110 break; 8111 case 0xc: /* FMAXNMP */ 8112 case 0xd: /* FADDP */ 8113 case 0xf: /* FMAXP */ 8114 case 0x2c: /* FMINNMP */ 8115 case 0x2f: /* FMINP */ 8116 /* FP op, size[0] is 32 or 64 bit*/ 8117 if (!u) { 8118 if (!dc_isar_feature(aa64_fp16, s)) { 8119 unallocated_encoding(s); 8120 return; 8121 } else { 8122 size = MO_16; 8123 } 8124 } else { 8125 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8126 } 8127 8128 if (!fp_access_check(s)) { 8129 return; 8130 } 8131 8132 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8133 break; 8134 default: 8135 unallocated_encoding(s); 8136 return; 8137 } 8138 8139 if (size == MO_64) { 8140 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8141 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8142 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8143 8144 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8145 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8146 8147 switch (opcode) { 8148 case 0x3b: /* ADDP */ 8149 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8150 break; 8151 case 0xc: /* FMAXNMP */ 8152 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8153 break; 8154 case 0xd: /* FADDP */ 8155 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8156 break; 8157 case 0xf: /* FMAXP */ 8158 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8159 break; 8160 case 0x2c: /* FMINNMP */ 8161 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8162 break; 8163 case 0x2f: /* FMINP */ 8164 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8165 break; 8166 default: 8167 g_assert_not_reached(); 8168 } 8169 8170 write_fp_dreg(s, rd, tcg_res); 8171 } else { 8172 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8173 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8174 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8175 8176 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8177 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8178 8179 if (size == MO_16) { 8180 switch (opcode) { 8181 case 0xc: /* FMAXNMP */ 8182 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8183 break; 8184 case 0xd: /* FADDP */ 8185 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8186 break; 8187 case 0xf: /* FMAXP */ 8188 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8189 break; 8190 case 0x2c: /* FMINNMP */ 8191 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8192 break; 8193 case 0x2f: /* FMINP */ 8194 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8195 break; 8196 default: 8197 g_assert_not_reached(); 8198 } 8199 } else { 8200 switch (opcode) { 8201 case 0xc: /* FMAXNMP */ 8202 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8203 break; 8204 case 0xd: /* FADDP */ 8205 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8206 break; 8207 case 0xf: /* FMAXP */ 8208 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8209 break; 8210 case 0x2c: /* FMINNMP */ 8211 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8212 break; 8213 case 0x2f: /* FMINP */ 8214 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8215 break; 8216 default: 8217 g_assert_not_reached(); 8218 } 8219 } 8220 8221 write_fp_sreg(s, rd, tcg_res); 8222 } 8223 } 8224 8225 /* 8226 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8227 * 8228 * This code is handles the common shifting code and is used by both 8229 * the vector and scalar code. 8230 */ 8231 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8232 TCGv_i64 tcg_rnd, bool accumulate, 8233 bool is_u, int size, int shift) 8234 { 8235 bool extended_result = false; 8236 bool round = tcg_rnd != NULL; 8237 int ext_lshift = 0; 8238 TCGv_i64 tcg_src_hi; 8239 8240 if (round && size == 3) { 8241 extended_result = true; 8242 ext_lshift = 64 - shift; 8243 tcg_src_hi = tcg_temp_new_i64(); 8244 } else if (shift == 64) { 8245 if (!accumulate && is_u) { 8246 /* result is zero */ 8247 tcg_gen_movi_i64(tcg_res, 0); 8248 return; 8249 } 8250 } 8251 8252 /* Deal with the rounding step */ 8253 if (round) { 8254 if (extended_result) { 8255 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8256 if (!is_u) { 8257 /* take care of sign extending tcg_res */ 8258 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8259 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8260 tcg_src, tcg_src_hi, 8261 tcg_rnd, tcg_zero); 8262 } else { 8263 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8264 tcg_src, tcg_zero, 8265 tcg_rnd, tcg_zero); 8266 } 8267 } else { 8268 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8269 } 8270 } 8271 8272 /* Now do the shift right */ 8273 if (round && extended_result) { 8274 /* extended case, >64 bit precision required */ 8275 if (ext_lshift == 0) { 8276 /* special case, only high bits matter */ 8277 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8278 } else { 8279 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8280 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8281 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8282 } 8283 } else { 8284 if (is_u) { 8285 if (shift == 64) { 8286 /* essentially shifting in 64 zeros */ 8287 tcg_gen_movi_i64(tcg_src, 0); 8288 } else { 8289 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8290 } 8291 } else { 8292 if (shift == 64) { 8293 /* effectively extending the sign-bit */ 8294 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8295 } else { 8296 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8297 } 8298 } 8299 } 8300 8301 if (accumulate) { 8302 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8303 } else { 8304 tcg_gen_mov_i64(tcg_res, tcg_src); 8305 } 8306 } 8307 8308 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8309 static void handle_scalar_simd_shri(DisasContext *s, 8310 bool is_u, int immh, int immb, 8311 int opcode, int rn, int rd) 8312 { 8313 const int size = 3; 8314 int immhb = immh << 3 | immb; 8315 int shift = 2 * (8 << size) - immhb; 8316 bool accumulate = false; 8317 bool round = false; 8318 bool insert = false; 8319 TCGv_i64 tcg_rn; 8320 TCGv_i64 tcg_rd; 8321 TCGv_i64 tcg_round; 8322 8323 if (!extract32(immh, 3, 1)) { 8324 unallocated_encoding(s); 8325 return; 8326 } 8327 8328 if (!fp_access_check(s)) { 8329 return; 8330 } 8331 8332 switch (opcode) { 8333 case 0x02: /* SSRA / USRA (accumulate) */ 8334 accumulate = true; 8335 break; 8336 case 0x04: /* SRSHR / URSHR (rounding) */ 8337 round = true; 8338 break; 8339 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8340 accumulate = round = true; 8341 break; 8342 case 0x08: /* SRI */ 8343 insert = true; 8344 break; 8345 } 8346 8347 if (round) { 8348 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8349 } else { 8350 tcg_round = NULL; 8351 } 8352 8353 tcg_rn = read_fp_dreg(s, rn); 8354 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8355 8356 if (insert) { 8357 /* shift count same as element size is valid but does nothing; 8358 * special case to avoid potential shift by 64. 8359 */ 8360 int esize = 8 << size; 8361 if (shift != esize) { 8362 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8363 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8364 } 8365 } else { 8366 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8367 accumulate, is_u, size, shift); 8368 } 8369 8370 write_fp_dreg(s, rd, tcg_rd); 8371 } 8372 8373 /* SHL/SLI - Scalar shift left */ 8374 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8375 int immh, int immb, int opcode, 8376 int rn, int rd) 8377 { 8378 int size = 32 - clz32(immh) - 1; 8379 int immhb = immh << 3 | immb; 8380 int shift = immhb - (8 << size); 8381 TCGv_i64 tcg_rn; 8382 TCGv_i64 tcg_rd; 8383 8384 if (!extract32(immh, 3, 1)) { 8385 unallocated_encoding(s); 8386 return; 8387 } 8388 8389 if (!fp_access_check(s)) { 8390 return; 8391 } 8392 8393 tcg_rn = read_fp_dreg(s, rn); 8394 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8395 8396 if (insert) { 8397 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8398 } else { 8399 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8400 } 8401 8402 write_fp_dreg(s, rd, tcg_rd); 8403 } 8404 8405 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8406 * (signed/unsigned) narrowing */ 8407 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8408 bool is_u_shift, bool is_u_narrow, 8409 int immh, int immb, int opcode, 8410 int rn, int rd) 8411 { 8412 int immhb = immh << 3 | immb; 8413 int size = 32 - clz32(immh) - 1; 8414 int esize = 8 << size; 8415 int shift = (2 * esize) - immhb; 8416 int elements = is_scalar ? 1 : (64 / esize); 8417 bool round = extract32(opcode, 0, 1); 8418 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8419 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8420 TCGv_i32 tcg_rd_narrowed; 8421 TCGv_i64 tcg_final; 8422 8423 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8424 { gen_helper_neon_narrow_sat_s8, 8425 gen_helper_neon_unarrow_sat8 }, 8426 { gen_helper_neon_narrow_sat_s16, 8427 gen_helper_neon_unarrow_sat16 }, 8428 { gen_helper_neon_narrow_sat_s32, 8429 gen_helper_neon_unarrow_sat32 }, 8430 { NULL, NULL }, 8431 }; 8432 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8433 gen_helper_neon_narrow_sat_u8, 8434 gen_helper_neon_narrow_sat_u16, 8435 gen_helper_neon_narrow_sat_u32, 8436 NULL 8437 }; 8438 NeonGenNarrowEnvFn *narrowfn; 8439 8440 int i; 8441 8442 assert(size < 4); 8443 8444 if (extract32(immh, 3, 1)) { 8445 unallocated_encoding(s); 8446 return; 8447 } 8448 8449 if (!fp_access_check(s)) { 8450 return; 8451 } 8452 8453 if (is_u_shift) { 8454 narrowfn = unsigned_narrow_fns[size]; 8455 } else { 8456 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8457 } 8458 8459 tcg_rn = tcg_temp_new_i64(); 8460 tcg_rd = tcg_temp_new_i64(); 8461 tcg_rd_narrowed = tcg_temp_new_i32(); 8462 tcg_final = tcg_temp_new_i64(); 8463 8464 if (round) { 8465 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8466 } else { 8467 tcg_round = NULL; 8468 } 8469 8470 for (i = 0; i < elements; i++) { 8471 read_vec_element(s, tcg_rn, rn, i, ldop); 8472 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8473 false, is_u_shift, size+1, shift); 8474 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8475 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8476 if (i == 0) { 8477 tcg_gen_mov_i64(tcg_final, tcg_rd); 8478 } else { 8479 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8480 } 8481 } 8482 8483 if (!is_q) { 8484 write_vec_element(s, tcg_final, rd, 0, MO_64); 8485 } else { 8486 write_vec_element(s, tcg_final, rd, 1, MO_64); 8487 } 8488 clear_vec_high(s, is_q, rd); 8489 } 8490 8491 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8492 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8493 bool src_unsigned, bool dst_unsigned, 8494 int immh, int immb, int rn, int rd) 8495 { 8496 int immhb = immh << 3 | immb; 8497 int size = 32 - clz32(immh) - 1; 8498 int shift = immhb - (8 << size); 8499 int pass; 8500 8501 assert(immh != 0); 8502 assert(!(scalar && is_q)); 8503 8504 if (!scalar) { 8505 if (!is_q && extract32(immh, 3, 1)) { 8506 unallocated_encoding(s); 8507 return; 8508 } 8509 8510 /* Since we use the variable-shift helpers we must 8511 * replicate the shift count into each element of 8512 * the tcg_shift value. 8513 */ 8514 switch (size) { 8515 case 0: 8516 shift |= shift << 8; 8517 /* fall through */ 8518 case 1: 8519 shift |= shift << 16; 8520 break; 8521 case 2: 8522 case 3: 8523 break; 8524 default: 8525 g_assert_not_reached(); 8526 } 8527 } 8528 8529 if (!fp_access_check(s)) { 8530 return; 8531 } 8532 8533 if (size == 3) { 8534 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8535 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8536 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8537 { NULL, gen_helper_neon_qshl_u64 }, 8538 }; 8539 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8540 int maxpass = is_q ? 2 : 1; 8541 8542 for (pass = 0; pass < maxpass; pass++) { 8543 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8544 8545 read_vec_element(s, tcg_op, rn, pass, MO_64); 8546 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8547 write_vec_element(s, tcg_op, rd, pass, MO_64); 8548 } 8549 clear_vec_high(s, is_q, rd); 8550 } else { 8551 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8552 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8553 { 8554 { gen_helper_neon_qshl_s8, 8555 gen_helper_neon_qshl_s16, 8556 gen_helper_neon_qshl_s32 }, 8557 { gen_helper_neon_qshlu_s8, 8558 gen_helper_neon_qshlu_s16, 8559 gen_helper_neon_qshlu_s32 } 8560 }, { 8561 { NULL, NULL, NULL }, 8562 { gen_helper_neon_qshl_u8, 8563 gen_helper_neon_qshl_u16, 8564 gen_helper_neon_qshl_u32 } 8565 } 8566 }; 8567 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8568 MemOp memop = scalar ? size : MO_32; 8569 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8570 8571 for (pass = 0; pass < maxpass; pass++) { 8572 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8573 8574 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8575 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8576 if (scalar) { 8577 switch (size) { 8578 case 0: 8579 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8580 break; 8581 case 1: 8582 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8583 break; 8584 case 2: 8585 break; 8586 default: 8587 g_assert_not_reached(); 8588 } 8589 write_fp_sreg(s, rd, tcg_op); 8590 } else { 8591 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8592 } 8593 } 8594 8595 if (!scalar) { 8596 clear_vec_high(s, is_q, rd); 8597 } 8598 } 8599 } 8600 8601 /* Common vector code for handling integer to FP conversion */ 8602 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8603 int elements, int is_signed, 8604 int fracbits, int size) 8605 { 8606 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8607 TCGv_i32 tcg_shift = NULL; 8608 8609 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8610 int pass; 8611 8612 if (fracbits || size == MO_64) { 8613 tcg_shift = tcg_constant_i32(fracbits); 8614 } 8615 8616 if (size == MO_64) { 8617 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8618 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8619 8620 for (pass = 0; pass < elements; pass++) { 8621 read_vec_element(s, tcg_int64, rn, pass, mop); 8622 8623 if (is_signed) { 8624 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8625 tcg_shift, tcg_fpst); 8626 } else { 8627 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8628 tcg_shift, tcg_fpst); 8629 } 8630 if (elements == 1) { 8631 write_fp_dreg(s, rd, tcg_double); 8632 } else { 8633 write_vec_element(s, tcg_double, rd, pass, MO_64); 8634 } 8635 } 8636 } else { 8637 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8638 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8639 8640 for (pass = 0; pass < elements; pass++) { 8641 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8642 8643 switch (size) { 8644 case MO_32: 8645 if (fracbits) { 8646 if (is_signed) { 8647 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8648 tcg_shift, tcg_fpst); 8649 } else { 8650 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8651 tcg_shift, tcg_fpst); 8652 } 8653 } else { 8654 if (is_signed) { 8655 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8656 } else { 8657 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8658 } 8659 } 8660 break; 8661 case MO_16: 8662 if (fracbits) { 8663 if (is_signed) { 8664 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8665 tcg_shift, tcg_fpst); 8666 } else { 8667 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8668 tcg_shift, tcg_fpst); 8669 } 8670 } else { 8671 if (is_signed) { 8672 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8673 } else { 8674 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8675 } 8676 } 8677 break; 8678 default: 8679 g_assert_not_reached(); 8680 } 8681 8682 if (elements == 1) { 8683 write_fp_sreg(s, rd, tcg_float); 8684 } else { 8685 write_vec_element_i32(s, tcg_float, rd, pass, size); 8686 } 8687 } 8688 } 8689 8690 clear_vec_high(s, elements << size == 16, rd); 8691 } 8692 8693 /* UCVTF/SCVTF - Integer to FP conversion */ 8694 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8695 bool is_q, bool is_u, 8696 int immh, int immb, int opcode, 8697 int rn, int rd) 8698 { 8699 int size, elements, fracbits; 8700 int immhb = immh << 3 | immb; 8701 8702 if (immh & 8) { 8703 size = MO_64; 8704 if (!is_scalar && !is_q) { 8705 unallocated_encoding(s); 8706 return; 8707 } 8708 } else if (immh & 4) { 8709 size = MO_32; 8710 } else if (immh & 2) { 8711 size = MO_16; 8712 if (!dc_isar_feature(aa64_fp16, s)) { 8713 unallocated_encoding(s); 8714 return; 8715 } 8716 } else { 8717 /* immh == 0 would be a failure of the decode logic */ 8718 g_assert(immh == 1); 8719 unallocated_encoding(s); 8720 return; 8721 } 8722 8723 if (is_scalar) { 8724 elements = 1; 8725 } else { 8726 elements = (8 << is_q) >> size; 8727 } 8728 fracbits = (16 << size) - immhb; 8729 8730 if (!fp_access_check(s)) { 8731 return; 8732 } 8733 8734 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8735 } 8736 8737 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8738 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8739 bool is_q, bool is_u, 8740 int immh, int immb, int rn, int rd) 8741 { 8742 int immhb = immh << 3 | immb; 8743 int pass, size, fracbits; 8744 TCGv_ptr tcg_fpstatus; 8745 TCGv_i32 tcg_rmode, tcg_shift; 8746 8747 if (immh & 0x8) { 8748 size = MO_64; 8749 if (!is_scalar && !is_q) { 8750 unallocated_encoding(s); 8751 return; 8752 } 8753 } else if (immh & 0x4) { 8754 size = MO_32; 8755 } else if (immh & 0x2) { 8756 size = MO_16; 8757 if (!dc_isar_feature(aa64_fp16, s)) { 8758 unallocated_encoding(s); 8759 return; 8760 } 8761 } else { 8762 /* Should have split out AdvSIMD modified immediate earlier. */ 8763 assert(immh == 1); 8764 unallocated_encoding(s); 8765 return; 8766 } 8767 8768 if (!fp_access_check(s)) { 8769 return; 8770 } 8771 8772 assert(!(is_scalar && is_q)); 8773 8774 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8775 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8776 fracbits = (16 << size) - immhb; 8777 tcg_shift = tcg_constant_i32(fracbits); 8778 8779 if (size == MO_64) { 8780 int maxpass = is_scalar ? 1 : 2; 8781 8782 for (pass = 0; pass < maxpass; pass++) { 8783 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8784 8785 read_vec_element(s, tcg_op, rn, pass, MO_64); 8786 if (is_u) { 8787 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8788 } else { 8789 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8790 } 8791 write_vec_element(s, tcg_op, rd, pass, MO_64); 8792 } 8793 clear_vec_high(s, is_q, rd); 8794 } else { 8795 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8796 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8797 8798 switch (size) { 8799 case MO_16: 8800 if (is_u) { 8801 fn = gen_helper_vfp_touhh; 8802 } else { 8803 fn = gen_helper_vfp_toshh; 8804 } 8805 break; 8806 case MO_32: 8807 if (is_u) { 8808 fn = gen_helper_vfp_touls; 8809 } else { 8810 fn = gen_helper_vfp_tosls; 8811 } 8812 break; 8813 default: 8814 g_assert_not_reached(); 8815 } 8816 8817 for (pass = 0; pass < maxpass; pass++) { 8818 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8819 8820 read_vec_element_i32(s, tcg_op, rn, pass, size); 8821 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8822 if (is_scalar) { 8823 write_fp_sreg(s, rd, tcg_op); 8824 } else { 8825 write_vec_element_i32(s, tcg_op, rd, pass, size); 8826 } 8827 } 8828 if (!is_scalar) { 8829 clear_vec_high(s, is_q, rd); 8830 } 8831 } 8832 8833 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8834 } 8835 8836 /* AdvSIMD scalar shift by immediate 8837 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8838 * +-----+---+-------------+------+------+--------+---+------+------+ 8839 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8840 * +-----+---+-------------+------+------+--------+---+------+------+ 8841 * 8842 * This is the scalar version so it works on a fixed sized registers 8843 */ 8844 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8845 { 8846 int rd = extract32(insn, 0, 5); 8847 int rn = extract32(insn, 5, 5); 8848 int opcode = extract32(insn, 11, 5); 8849 int immb = extract32(insn, 16, 3); 8850 int immh = extract32(insn, 19, 4); 8851 bool is_u = extract32(insn, 29, 1); 8852 8853 if (immh == 0) { 8854 unallocated_encoding(s); 8855 return; 8856 } 8857 8858 switch (opcode) { 8859 case 0x08: /* SRI */ 8860 if (!is_u) { 8861 unallocated_encoding(s); 8862 return; 8863 } 8864 /* fall through */ 8865 case 0x00: /* SSHR / USHR */ 8866 case 0x02: /* SSRA / USRA */ 8867 case 0x04: /* SRSHR / URSHR */ 8868 case 0x06: /* SRSRA / URSRA */ 8869 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8870 break; 8871 case 0x0a: /* SHL / SLI */ 8872 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8873 break; 8874 case 0x1c: /* SCVTF, UCVTF */ 8875 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8876 opcode, rn, rd); 8877 break; 8878 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8879 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8880 if (!is_u) { 8881 unallocated_encoding(s); 8882 return; 8883 } 8884 handle_vec_simd_sqshrn(s, true, false, false, true, 8885 immh, immb, opcode, rn, rd); 8886 break; 8887 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8888 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8889 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8890 immh, immb, opcode, rn, rd); 8891 break; 8892 case 0xc: /* SQSHLU */ 8893 if (!is_u) { 8894 unallocated_encoding(s); 8895 return; 8896 } 8897 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8898 break; 8899 case 0xe: /* SQSHL, UQSHL */ 8900 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8901 break; 8902 case 0x1f: /* FCVTZS, FCVTZU */ 8903 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8904 break; 8905 default: 8906 unallocated_encoding(s); 8907 break; 8908 } 8909 } 8910 8911 /* AdvSIMD scalar three different 8912 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8913 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8914 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8915 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8916 */ 8917 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8918 { 8919 bool is_u = extract32(insn, 29, 1); 8920 int size = extract32(insn, 22, 2); 8921 int opcode = extract32(insn, 12, 4); 8922 int rm = extract32(insn, 16, 5); 8923 int rn = extract32(insn, 5, 5); 8924 int rd = extract32(insn, 0, 5); 8925 8926 if (is_u) { 8927 unallocated_encoding(s); 8928 return; 8929 } 8930 8931 switch (opcode) { 8932 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8933 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8934 case 0xd: /* SQDMULL, SQDMULL2 */ 8935 if (size == 0 || size == 3) { 8936 unallocated_encoding(s); 8937 return; 8938 } 8939 break; 8940 default: 8941 unallocated_encoding(s); 8942 return; 8943 } 8944 8945 if (!fp_access_check(s)) { 8946 return; 8947 } 8948 8949 if (size == 2) { 8950 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8951 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8952 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8953 8954 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8955 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8956 8957 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8958 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8959 8960 switch (opcode) { 8961 case 0xd: /* SQDMULL, SQDMULL2 */ 8962 break; 8963 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8964 tcg_gen_neg_i64(tcg_res, tcg_res); 8965 /* fall through */ 8966 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8967 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8968 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8969 tcg_res, tcg_op1); 8970 break; 8971 default: 8972 g_assert_not_reached(); 8973 } 8974 8975 write_fp_dreg(s, rd, tcg_res); 8976 } else { 8977 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8978 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8979 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8980 8981 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8982 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8983 8984 switch (opcode) { 8985 case 0xd: /* SQDMULL, SQDMULL2 */ 8986 break; 8987 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8988 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8989 /* fall through */ 8990 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8991 { 8992 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8993 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8994 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8995 tcg_res, tcg_op3); 8996 break; 8997 } 8998 default: 8999 g_assert_not_reached(); 9000 } 9001 9002 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9003 write_fp_dreg(s, rd, tcg_res); 9004 } 9005 } 9006 9007 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9008 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9009 { 9010 /* Handle 64x64->64 opcodes which are shared between the scalar 9011 * and vector 3-same groups. We cover every opcode where size == 3 9012 * is valid in either the three-reg-same (integer, not pairwise) 9013 * or scalar-three-reg-same groups. 9014 */ 9015 TCGCond cond; 9016 9017 switch (opcode) { 9018 case 0x1: /* SQADD */ 9019 if (u) { 9020 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9021 } else { 9022 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9023 } 9024 break; 9025 case 0x5: /* SQSUB */ 9026 if (u) { 9027 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9028 } else { 9029 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9030 } 9031 break; 9032 case 0x6: /* CMGT, CMHI */ 9033 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9034 * We implement this using setcond (test) and then negating. 9035 */ 9036 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9037 do_cmop: 9038 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9039 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9040 break; 9041 case 0x7: /* CMGE, CMHS */ 9042 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9043 goto do_cmop; 9044 case 0x11: /* CMTST, CMEQ */ 9045 if (u) { 9046 cond = TCG_COND_EQ; 9047 goto do_cmop; 9048 } 9049 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9050 break; 9051 case 0x8: /* SSHL, USHL */ 9052 if (u) { 9053 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9054 } else { 9055 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9056 } 9057 break; 9058 case 0x9: /* SQSHL, UQSHL */ 9059 if (u) { 9060 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9061 } else { 9062 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9063 } 9064 break; 9065 case 0xa: /* SRSHL, URSHL */ 9066 if (u) { 9067 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9068 } else { 9069 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9070 } 9071 break; 9072 case 0xb: /* SQRSHL, UQRSHL */ 9073 if (u) { 9074 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9075 } else { 9076 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9077 } 9078 break; 9079 case 0x10: /* ADD, SUB */ 9080 if (u) { 9081 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9082 } else { 9083 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9084 } 9085 break; 9086 default: 9087 g_assert_not_reached(); 9088 } 9089 } 9090 9091 /* Handle the 3-same-operands float operations; shared by the scalar 9092 * and vector encodings. The caller must filter out any encodings 9093 * not allocated for the encoding it is dealing with. 9094 */ 9095 static void handle_3same_float(DisasContext *s, int size, int elements, 9096 int fpopcode, int rd, int rn, int rm) 9097 { 9098 int pass; 9099 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9100 9101 for (pass = 0; pass < elements; pass++) { 9102 if (size) { 9103 /* Double */ 9104 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9105 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9106 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9107 9108 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9109 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9110 9111 switch (fpopcode) { 9112 case 0x39: /* FMLS */ 9113 /* As usual for ARM, separate negation for fused multiply-add */ 9114 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9115 /* fall through */ 9116 case 0x19: /* FMLA */ 9117 read_vec_element(s, tcg_res, rd, pass, MO_64); 9118 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9119 tcg_res, fpst); 9120 break; 9121 case 0x18: /* FMAXNM */ 9122 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9123 break; 9124 case 0x1a: /* FADD */ 9125 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9126 break; 9127 case 0x1b: /* FMULX */ 9128 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9129 break; 9130 case 0x1c: /* FCMEQ */ 9131 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9132 break; 9133 case 0x1e: /* FMAX */ 9134 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9135 break; 9136 case 0x1f: /* FRECPS */ 9137 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9138 break; 9139 case 0x38: /* FMINNM */ 9140 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9141 break; 9142 case 0x3a: /* FSUB */ 9143 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9144 break; 9145 case 0x3e: /* FMIN */ 9146 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9147 break; 9148 case 0x3f: /* FRSQRTS */ 9149 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x5b: /* FMUL */ 9152 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 case 0x5c: /* FCMGE */ 9155 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9156 break; 9157 case 0x5d: /* FACGE */ 9158 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9159 break; 9160 case 0x5f: /* FDIV */ 9161 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9162 break; 9163 case 0x7a: /* FABD */ 9164 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9165 gen_helper_vfp_absd(tcg_res, tcg_res); 9166 break; 9167 case 0x7c: /* FCMGT */ 9168 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9169 break; 9170 case 0x7d: /* FACGT */ 9171 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9172 break; 9173 default: 9174 g_assert_not_reached(); 9175 } 9176 9177 write_vec_element(s, tcg_res, rd, pass, MO_64); 9178 } else { 9179 /* Single */ 9180 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9181 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9182 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9183 9184 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9185 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9186 9187 switch (fpopcode) { 9188 case 0x39: /* FMLS */ 9189 /* As usual for ARM, separate negation for fused multiply-add */ 9190 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9191 /* fall through */ 9192 case 0x19: /* FMLA */ 9193 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9194 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9195 tcg_res, fpst); 9196 break; 9197 case 0x1a: /* FADD */ 9198 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9199 break; 9200 case 0x1b: /* FMULX */ 9201 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9202 break; 9203 case 0x1c: /* FCMEQ */ 9204 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9205 break; 9206 case 0x1e: /* FMAX */ 9207 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9208 break; 9209 case 0x1f: /* FRECPS */ 9210 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9211 break; 9212 case 0x18: /* FMAXNM */ 9213 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9214 break; 9215 case 0x38: /* FMINNM */ 9216 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9217 break; 9218 case 0x3a: /* FSUB */ 9219 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9220 break; 9221 case 0x3e: /* FMIN */ 9222 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9223 break; 9224 case 0x3f: /* FRSQRTS */ 9225 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9226 break; 9227 case 0x5b: /* FMUL */ 9228 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9229 break; 9230 case 0x5c: /* FCMGE */ 9231 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9232 break; 9233 case 0x5d: /* FACGE */ 9234 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9235 break; 9236 case 0x5f: /* FDIV */ 9237 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9238 break; 9239 case 0x7a: /* FABD */ 9240 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9241 gen_helper_vfp_abss(tcg_res, tcg_res); 9242 break; 9243 case 0x7c: /* FCMGT */ 9244 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9245 break; 9246 case 0x7d: /* FACGT */ 9247 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9248 break; 9249 default: 9250 g_assert_not_reached(); 9251 } 9252 9253 if (elements == 1) { 9254 /* scalar single so clear high part */ 9255 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9256 9257 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9258 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9259 } else { 9260 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9261 } 9262 } 9263 } 9264 9265 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9266 } 9267 9268 /* AdvSIMD scalar three same 9269 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9270 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9271 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9272 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9273 */ 9274 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9275 { 9276 int rd = extract32(insn, 0, 5); 9277 int rn = extract32(insn, 5, 5); 9278 int opcode = extract32(insn, 11, 5); 9279 int rm = extract32(insn, 16, 5); 9280 int size = extract32(insn, 22, 2); 9281 bool u = extract32(insn, 29, 1); 9282 TCGv_i64 tcg_rd; 9283 9284 if (opcode >= 0x18) { 9285 /* Floating point: U, size[1] and opcode indicate operation */ 9286 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9287 switch (fpopcode) { 9288 case 0x1b: /* FMULX */ 9289 case 0x1f: /* FRECPS */ 9290 case 0x3f: /* FRSQRTS */ 9291 case 0x5d: /* FACGE */ 9292 case 0x7d: /* FACGT */ 9293 case 0x1c: /* FCMEQ */ 9294 case 0x5c: /* FCMGE */ 9295 case 0x7c: /* FCMGT */ 9296 case 0x7a: /* FABD */ 9297 break; 9298 default: 9299 unallocated_encoding(s); 9300 return; 9301 } 9302 9303 if (!fp_access_check(s)) { 9304 return; 9305 } 9306 9307 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9308 return; 9309 } 9310 9311 switch (opcode) { 9312 case 0x1: /* SQADD, UQADD */ 9313 case 0x5: /* SQSUB, UQSUB */ 9314 case 0x9: /* SQSHL, UQSHL */ 9315 case 0xb: /* SQRSHL, UQRSHL */ 9316 break; 9317 case 0x8: /* SSHL, USHL */ 9318 case 0xa: /* SRSHL, URSHL */ 9319 case 0x6: /* CMGT, CMHI */ 9320 case 0x7: /* CMGE, CMHS */ 9321 case 0x11: /* CMTST, CMEQ */ 9322 case 0x10: /* ADD, SUB (vector) */ 9323 if (size != 3) { 9324 unallocated_encoding(s); 9325 return; 9326 } 9327 break; 9328 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9329 if (size != 1 && size != 2) { 9330 unallocated_encoding(s); 9331 return; 9332 } 9333 break; 9334 default: 9335 unallocated_encoding(s); 9336 return; 9337 } 9338 9339 if (!fp_access_check(s)) { 9340 return; 9341 } 9342 9343 tcg_rd = tcg_temp_new_i64(); 9344 9345 if (size == 3) { 9346 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9347 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9348 9349 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9350 } else { 9351 /* Do a single operation on the lowest element in the vector. 9352 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9353 * no side effects for all these operations. 9354 * OPTME: special-purpose helpers would avoid doing some 9355 * unnecessary work in the helper for the 8 and 16 bit cases. 9356 */ 9357 NeonGenTwoOpEnvFn *genenvfn; 9358 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9359 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9360 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9361 9362 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9363 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9364 9365 switch (opcode) { 9366 case 0x1: /* SQADD, UQADD */ 9367 { 9368 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9369 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9370 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9371 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9372 }; 9373 genenvfn = fns[size][u]; 9374 break; 9375 } 9376 case 0x5: /* SQSUB, UQSUB */ 9377 { 9378 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9379 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9380 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9381 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9382 }; 9383 genenvfn = fns[size][u]; 9384 break; 9385 } 9386 case 0x9: /* SQSHL, UQSHL */ 9387 { 9388 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9389 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9390 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9391 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9392 }; 9393 genenvfn = fns[size][u]; 9394 break; 9395 } 9396 case 0xb: /* SQRSHL, UQRSHL */ 9397 { 9398 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9399 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9400 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9401 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9402 }; 9403 genenvfn = fns[size][u]; 9404 break; 9405 } 9406 case 0x16: /* SQDMULH, SQRDMULH */ 9407 { 9408 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9409 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9410 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9411 }; 9412 assert(size == 1 || size == 2); 9413 genenvfn = fns[size - 1][u]; 9414 break; 9415 } 9416 default: 9417 g_assert_not_reached(); 9418 } 9419 9420 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9421 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9422 } 9423 9424 write_fp_dreg(s, rd, tcg_rd); 9425 } 9426 9427 /* AdvSIMD scalar three same FP16 9428 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9429 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9430 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9431 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9432 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9433 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9434 */ 9435 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9436 uint32_t insn) 9437 { 9438 int rd = extract32(insn, 0, 5); 9439 int rn = extract32(insn, 5, 5); 9440 int opcode = extract32(insn, 11, 3); 9441 int rm = extract32(insn, 16, 5); 9442 bool u = extract32(insn, 29, 1); 9443 bool a = extract32(insn, 23, 1); 9444 int fpopcode = opcode | (a << 3) | (u << 4); 9445 TCGv_ptr fpst; 9446 TCGv_i32 tcg_op1; 9447 TCGv_i32 tcg_op2; 9448 TCGv_i32 tcg_res; 9449 9450 switch (fpopcode) { 9451 case 0x03: /* FMULX */ 9452 case 0x04: /* FCMEQ (reg) */ 9453 case 0x07: /* FRECPS */ 9454 case 0x0f: /* FRSQRTS */ 9455 case 0x14: /* FCMGE (reg) */ 9456 case 0x15: /* FACGE */ 9457 case 0x1a: /* FABD */ 9458 case 0x1c: /* FCMGT (reg) */ 9459 case 0x1d: /* FACGT */ 9460 break; 9461 default: 9462 unallocated_encoding(s); 9463 return; 9464 } 9465 9466 if (!dc_isar_feature(aa64_fp16, s)) { 9467 unallocated_encoding(s); 9468 } 9469 9470 if (!fp_access_check(s)) { 9471 return; 9472 } 9473 9474 fpst = fpstatus_ptr(FPST_FPCR_F16); 9475 9476 tcg_op1 = read_fp_hreg(s, rn); 9477 tcg_op2 = read_fp_hreg(s, rm); 9478 tcg_res = tcg_temp_new_i32(); 9479 9480 switch (fpopcode) { 9481 case 0x03: /* FMULX */ 9482 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9483 break; 9484 case 0x04: /* FCMEQ (reg) */ 9485 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9486 break; 9487 case 0x07: /* FRECPS */ 9488 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9489 break; 9490 case 0x0f: /* FRSQRTS */ 9491 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9492 break; 9493 case 0x14: /* FCMGE (reg) */ 9494 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9495 break; 9496 case 0x15: /* FACGE */ 9497 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9498 break; 9499 case 0x1a: /* FABD */ 9500 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9501 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9502 break; 9503 case 0x1c: /* FCMGT (reg) */ 9504 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9505 break; 9506 case 0x1d: /* FACGT */ 9507 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9508 break; 9509 default: 9510 g_assert_not_reached(); 9511 } 9512 9513 write_fp_sreg(s, rd, tcg_res); 9514 } 9515 9516 /* AdvSIMD scalar three same extra 9517 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9518 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9519 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9520 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9521 */ 9522 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9523 uint32_t insn) 9524 { 9525 int rd = extract32(insn, 0, 5); 9526 int rn = extract32(insn, 5, 5); 9527 int opcode = extract32(insn, 11, 4); 9528 int rm = extract32(insn, 16, 5); 9529 int size = extract32(insn, 22, 2); 9530 bool u = extract32(insn, 29, 1); 9531 TCGv_i32 ele1, ele2, ele3; 9532 TCGv_i64 res; 9533 bool feature; 9534 9535 switch (u * 16 + opcode) { 9536 case 0x10: /* SQRDMLAH (vector) */ 9537 case 0x11: /* SQRDMLSH (vector) */ 9538 if (size != 1 && size != 2) { 9539 unallocated_encoding(s); 9540 return; 9541 } 9542 feature = dc_isar_feature(aa64_rdm, s); 9543 break; 9544 default: 9545 unallocated_encoding(s); 9546 return; 9547 } 9548 if (!feature) { 9549 unallocated_encoding(s); 9550 return; 9551 } 9552 if (!fp_access_check(s)) { 9553 return; 9554 } 9555 9556 /* Do a single operation on the lowest element in the vector. 9557 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9558 * with no side effects for all these operations. 9559 * OPTME: special-purpose helpers would avoid doing some 9560 * unnecessary work in the helper for the 16 bit cases. 9561 */ 9562 ele1 = tcg_temp_new_i32(); 9563 ele2 = tcg_temp_new_i32(); 9564 ele3 = tcg_temp_new_i32(); 9565 9566 read_vec_element_i32(s, ele1, rn, 0, size); 9567 read_vec_element_i32(s, ele2, rm, 0, size); 9568 read_vec_element_i32(s, ele3, rd, 0, size); 9569 9570 switch (opcode) { 9571 case 0x0: /* SQRDMLAH */ 9572 if (size == 1) { 9573 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9574 } else { 9575 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9576 } 9577 break; 9578 case 0x1: /* SQRDMLSH */ 9579 if (size == 1) { 9580 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9581 } else { 9582 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9583 } 9584 break; 9585 default: 9586 g_assert_not_reached(); 9587 } 9588 9589 res = tcg_temp_new_i64(); 9590 tcg_gen_extu_i32_i64(res, ele3); 9591 write_fp_dreg(s, rd, res); 9592 } 9593 9594 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9595 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9596 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9597 { 9598 /* Handle 64->64 opcodes which are shared between the scalar and 9599 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9600 * is valid in either group and also the double-precision fp ops. 9601 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9602 * requires them. 9603 */ 9604 TCGCond cond; 9605 9606 switch (opcode) { 9607 case 0x4: /* CLS, CLZ */ 9608 if (u) { 9609 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9610 } else { 9611 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9612 } 9613 break; 9614 case 0x5: /* NOT */ 9615 /* This opcode is shared with CNT and RBIT but we have earlier 9616 * enforced that size == 3 if and only if this is the NOT insn. 9617 */ 9618 tcg_gen_not_i64(tcg_rd, tcg_rn); 9619 break; 9620 case 0x7: /* SQABS, SQNEG */ 9621 if (u) { 9622 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9623 } else { 9624 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9625 } 9626 break; 9627 case 0xa: /* CMLT */ 9628 /* 64 bit integer comparison against zero, result is 9629 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9630 * subtracting 1. 9631 */ 9632 cond = TCG_COND_LT; 9633 do_cmop: 9634 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9635 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9636 break; 9637 case 0x8: /* CMGT, CMGE */ 9638 cond = u ? TCG_COND_GE : TCG_COND_GT; 9639 goto do_cmop; 9640 case 0x9: /* CMEQ, CMLE */ 9641 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9642 goto do_cmop; 9643 case 0xb: /* ABS, NEG */ 9644 if (u) { 9645 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9646 } else { 9647 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9648 } 9649 break; 9650 case 0x2f: /* FABS */ 9651 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9652 break; 9653 case 0x6f: /* FNEG */ 9654 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9655 break; 9656 case 0x7f: /* FSQRT */ 9657 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9658 break; 9659 case 0x1a: /* FCVTNS */ 9660 case 0x1b: /* FCVTMS */ 9661 case 0x1c: /* FCVTAS */ 9662 case 0x3a: /* FCVTPS */ 9663 case 0x3b: /* FCVTZS */ 9664 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9665 break; 9666 case 0x5a: /* FCVTNU */ 9667 case 0x5b: /* FCVTMU */ 9668 case 0x5c: /* FCVTAU */ 9669 case 0x7a: /* FCVTPU */ 9670 case 0x7b: /* FCVTZU */ 9671 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9672 break; 9673 case 0x18: /* FRINTN */ 9674 case 0x19: /* FRINTM */ 9675 case 0x38: /* FRINTP */ 9676 case 0x39: /* FRINTZ */ 9677 case 0x58: /* FRINTA */ 9678 case 0x79: /* FRINTI */ 9679 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9680 break; 9681 case 0x59: /* FRINTX */ 9682 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9683 break; 9684 case 0x1e: /* FRINT32Z */ 9685 case 0x5e: /* FRINT32X */ 9686 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9687 break; 9688 case 0x1f: /* FRINT64Z */ 9689 case 0x5f: /* FRINT64X */ 9690 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9691 break; 9692 default: 9693 g_assert_not_reached(); 9694 } 9695 } 9696 9697 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9698 bool is_scalar, bool is_u, bool is_q, 9699 int size, int rn, int rd) 9700 { 9701 bool is_double = (size == MO_64); 9702 TCGv_ptr fpst; 9703 9704 if (!fp_access_check(s)) { 9705 return; 9706 } 9707 9708 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9709 9710 if (is_double) { 9711 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9712 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9713 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9714 NeonGenTwoDoubleOpFn *genfn; 9715 bool swap = false; 9716 int pass; 9717 9718 switch (opcode) { 9719 case 0x2e: /* FCMLT (zero) */ 9720 swap = true; 9721 /* fallthrough */ 9722 case 0x2c: /* FCMGT (zero) */ 9723 genfn = gen_helper_neon_cgt_f64; 9724 break; 9725 case 0x2d: /* FCMEQ (zero) */ 9726 genfn = gen_helper_neon_ceq_f64; 9727 break; 9728 case 0x6d: /* FCMLE (zero) */ 9729 swap = true; 9730 /* fall through */ 9731 case 0x6c: /* FCMGE (zero) */ 9732 genfn = gen_helper_neon_cge_f64; 9733 break; 9734 default: 9735 g_assert_not_reached(); 9736 } 9737 9738 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9739 read_vec_element(s, tcg_op, rn, pass, MO_64); 9740 if (swap) { 9741 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9742 } else { 9743 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9744 } 9745 write_vec_element(s, tcg_res, rd, pass, MO_64); 9746 } 9747 9748 clear_vec_high(s, !is_scalar, rd); 9749 } else { 9750 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9751 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9752 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9753 NeonGenTwoSingleOpFn *genfn; 9754 bool swap = false; 9755 int pass, maxpasses; 9756 9757 if (size == MO_16) { 9758 switch (opcode) { 9759 case 0x2e: /* FCMLT (zero) */ 9760 swap = true; 9761 /* fall through */ 9762 case 0x2c: /* FCMGT (zero) */ 9763 genfn = gen_helper_advsimd_cgt_f16; 9764 break; 9765 case 0x2d: /* FCMEQ (zero) */ 9766 genfn = gen_helper_advsimd_ceq_f16; 9767 break; 9768 case 0x6d: /* FCMLE (zero) */ 9769 swap = true; 9770 /* fall through */ 9771 case 0x6c: /* FCMGE (zero) */ 9772 genfn = gen_helper_advsimd_cge_f16; 9773 break; 9774 default: 9775 g_assert_not_reached(); 9776 } 9777 } else { 9778 switch (opcode) { 9779 case 0x2e: /* FCMLT (zero) */ 9780 swap = true; 9781 /* fall through */ 9782 case 0x2c: /* FCMGT (zero) */ 9783 genfn = gen_helper_neon_cgt_f32; 9784 break; 9785 case 0x2d: /* FCMEQ (zero) */ 9786 genfn = gen_helper_neon_ceq_f32; 9787 break; 9788 case 0x6d: /* FCMLE (zero) */ 9789 swap = true; 9790 /* fall through */ 9791 case 0x6c: /* FCMGE (zero) */ 9792 genfn = gen_helper_neon_cge_f32; 9793 break; 9794 default: 9795 g_assert_not_reached(); 9796 } 9797 } 9798 9799 if (is_scalar) { 9800 maxpasses = 1; 9801 } else { 9802 int vector_size = 8 << is_q; 9803 maxpasses = vector_size >> size; 9804 } 9805 9806 for (pass = 0; pass < maxpasses; pass++) { 9807 read_vec_element_i32(s, tcg_op, rn, pass, size); 9808 if (swap) { 9809 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9810 } else { 9811 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9812 } 9813 if (is_scalar) { 9814 write_fp_sreg(s, rd, tcg_res); 9815 } else { 9816 write_vec_element_i32(s, tcg_res, rd, pass, size); 9817 } 9818 } 9819 9820 if (!is_scalar) { 9821 clear_vec_high(s, is_q, rd); 9822 } 9823 } 9824 } 9825 9826 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9827 bool is_scalar, bool is_u, bool is_q, 9828 int size, int rn, int rd) 9829 { 9830 bool is_double = (size == 3); 9831 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9832 9833 if (is_double) { 9834 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9835 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9836 int pass; 9837 9838 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9839 read_vec_element(s, tcg_op, rn, pass, MO_64); 9840 switch (opcode) { 9841 case 0x3d: /* FRECPE */ 9842 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9843 break; 9844 case 0x3f: /* FRECPX */ 9845 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9846 break; 9847 case 0x7d: /* FRSQRTE */ 9848 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9849 break; 9850 default: 9851 g_assert_not_reached(); 9852 } 9853 write_vec_element(s, tcg_res, rd, pass, MO_64); 9854 } 9855 clear_vec_high(s, !is_scalar, rd); 9856 } else { 9857 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9858 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9859 int pass, maxpasses; 9860 9861 if (is_scalar) { 9862 maxpasses = 1; 9863 } else { 9864 maxpasses = is_q ? 4 : 2; 9865 } 9866 9867 for (pass = 0; pass < maxpasses; pass++) { 9868 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9869 9870 switch (opcode) { 9871 case 0x3c: /* URECPE */ 9872 gen_helper_recpe_u32(tcg_res, tcg_op); 9873 break; 9874 case 0x3d: /* FRECPE */ 9875 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9876 break; 9877 case 0x3f: /* FRECPX */ 9878 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9879 break; 9880 case 0x7d: /* FRSQRTE */ 9881 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9882 break; 9883 default: 9884 g_assert_not_reached(); 9885 } 9886 9887 if (is_scalar) { 9888 write_fp_sreg(s, rd, tcg_res); 9889 } else { 9890 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9891 } 9892 } 9893 if (!is_scalar) { 9894 clear_vec_high(s, is_q, rd); 9895 } 9896 } 9897 } 9898 9899 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9900 int opcode, bool u, bool is_q, 9901 int size, int rn, int rd) 9902 { 9903 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9904 * in the source becomes a size element in the destination). 9905 */ 9906 int pass; 9907 TCGv_i32 tcg_res[2]; 9908 int destelt = is_q ? 2 : 0; 9909 int passes = scalar ? 1 : 2; 9910 9911 if (scalar) { 9912 tcg_res[1] = tcg_constant_i32(0); 9913 } 9914 9915 for (pass = 0; pass < passes; pass++) { 9916 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9917 NeonGenNarrowFn *genfn = NULL; 9918 NeonGenNarrowEnvFn *genenvfn = NULL; 9919 9920 if (scalar) { 9921 read_vec_element(s, tcg_op, rn, pass, size + 1); 9922 } else { 9923 read_vec_element(s, tcg_op, rn, pass, MO_64); 9924 } 9925 tcg_res[pass] = tcg_temp_new_i32(); 9926 9927 switch (opcode) { 9928 case 0x12: /* XTN, SQXTUN */ 9929 { 9930 static NeonGenNarrowFn * const xtnfns[3] = { 9931 gen_helper_neon_narrow_u8, 9932 gen_helper_neon_narrow_u16, 9933 tcg_gen_extrl_i64_i32, 9934 }; 9935 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9936 gen_helper_neon_unarrow_sat8, 9937 gen_helper_neon_unarrow_sat16, 9938 gen_helper_neon_unarrow_sat32, 9939 }; 9940 if (u) { 9941 genenvfn = sqxtunfns[size]; 9942 } else { 9943 genfn = xtnfns[size]; 9944 } 9945 break; 9946 } 9947 case 0x14: /* SQXTN, UQXTN */ 9948 { 9949 static NeonGenNarrowEnvFn * const fns[3][2] = { 9950 { gen_helper_neon_narrow_sat_s8, 9951 gen_helper_neon_narrow_sat_u8 }, 9952 { gen_helper_neon_narrow_sat_s16, 9953 gen_helper_neon_narrow_sat_u16 }, 9954 { gen_helper_neon_narrow_sat_s32, 9955 gen_helper_neon_narrow_sat_u32 }, 9956 }; 9957 genenvfn = fns[size][u]; 9958 break; 9959 } 9960 case 0x16: /* FCVTN, FCVTN2 */ 9961 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9962 if (size == 2) { 9963 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9964 } else { 9965 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9966 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9967 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9968 TCGv_i32 ahp = get_ahp_flag(); 9969 9970 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9971 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9972 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9973 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9974 } 9975 break; 9976 case 0x36: /* BFCVTN, BFCVTN2 */ 9977 { 9978 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9979 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9980 } 9981 break; 9982 case 0x56: /* FCVTXN, FCVTXN2 */ 9983 /* 64 bit to 32 bit float conversion 9984 * with von Neumann rounding (round to odd) 9985 */ 9986 assert(size == 2); 9987 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9988 break; 9989 default: 9990 g_assert_not_reached(); 9991 } 9992 9993 if (genfn) { 9994 genfn(tcg_res[pass], tcg_op); 9995 } else if (genenvfn) { 9996 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9997 } 9998 } 9999 10000 for (pass = 0; pass < 2; pass++) { 10001 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10002 } 10003 clear_vec_high(s, is_q, rd); 10004 } 10005 10006 /* Remaining saturating accumulating ops */ 10007 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10008 bool is_q, int size, int rn, int rd) 10009 { 10010 bool is_double = (size == 3); 10011 10012 if (is_double) { 10013 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10014 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10015 int pass; 10016 10017 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10018 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10019 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10020 10021 if (is_u) { /* USQADD */ 10022 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10023 } else { /* SUQADD */ 10024 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10025 } 10026 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10027 } 10028 clear_vec_high(s, !is_scalar, rd); 10029 } else { 10030 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10031 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10032 int pass, maxpasses; 10033 10034 if (is_scalar) { 10035 maxpasses = 1; 10036 } else { 10037 maxpasses = is_q ? 4 : 2; 10038 } 10039 10040 for (pass = 0; pass < maxpasses; pass++) { 10041 if (is_scalar) { 10042 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10043 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10044 } else { 10045 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10046 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10047 } 10048 10049 if (is_u) { /* USQADD */ 10050 switch (size) { 10051 case 0: 10052 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10053 break; 10054 case 1: 10055 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10056 break; 10057 case 2: 10058 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10059 break; 10060 default: 10061 g_assert_not_reached(); 10062 } 10063 } else { /* SUQADD */ 10064 switch (size) { 10065 case 0: 10066 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10067 break; 10068 case 1: 10069 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10070 break; 10071 case 2: 10072 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10073 break; 10074 default: 10075 g_assert_not_reached(); 10076 } 10077 } 10078 10079 if (is_scalar) { 10080 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10081 } 10082 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10083 } 10084 clear_vec_high(s, is_q, rd); 10085 } 10086 } 10087 10088 /* AdvSIMD scalar two reg misc 10089 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10090 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10091 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10092 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10093 */ 10094 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10095 { 10096 int rd = extract32(insn, 0, 5); 10097 int rn = extract32(insn, 5, 5); 10098 int opcode = extract32(insn, 12, 5); 10099 int size = extract32(insn, 22, 2); 10100 bool u = extract32(insn, 29, 1); 10101 bool is_fcvt = false; 10102 int rmode; 10103 TCGv_i32 tcg_rmode; 10104 TCGv_ptr tcg_fpstatus; 10105 10106 switch (opcode) { 10107 case 0x3: /* USQADD / SUQADD*/ 10108 if (!fp_access_check(s)) { 10109 return; 10110 } 10111 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10112 return; 10113 case 0x7: /* SQABS / SQNEG */ 10114 break; 10115 case 0xa: /* CMLT */ 10116 if (u) { 10117 unallocated_encoding(s); 10118 return; 10119 } 10120 /* fall through */ 10121 case 0x8: /* CMGT, CMGE */ 10122 case 0x9: /* CMEQ, CMLE */ 10123 case 0xb: /* ABS, NEG */ 10124 if (size != 3) { 10125 unallocated_encoding(s); 10126 return; 10127 } 10128 break; 10129 case 0x12: /* SQXTUN */ 10130 if (!u) { 10131 unallocated_encoding(s); 10132 return; 10133 } 10134 /* fall through */ 10135 case 0x14: /* SQXTN, UQXTN */ 10136 if (size == 3) { 10137 unallocated_encoding(s); 10138 return; 10139 } 10140 if (!fp_access_check(s)) { 10141 return; 10142 } 10143 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10144 return; 10145 case 0xc ... 0xf: 10146 case 0x16 ... 0x1d: 10147 case 0x1f: 10148 /* Floating point: U, size[1] and opcode indicate operation; 10149 * size[0] indicates single or double precision. 10150 */ 10151 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10152 size = extract32(size, 0, 1) ? 3 : 2; 10153 switch (opcode) { 10154 case 0x2c: /* FCMGT (zero) */ 10155 case 0x2d: /* FCMEQ (zero) */ 10156 case 0x2e: /* FCMLT (zero) */ 10157 case 0x6c: /* FCMGE (zero) */ 10158 case 0x6d: /* FCMLE (zero) */ 10159 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10160 return; 10161 case 0x1d: /* SCVTF */ 10162 case 0x5d: /* UCVTF */ 10163 { 10164 bool is_signed = (opcode == 0x1d); 10165 if (!fp_access_check(s)) { 10166 return; 10167 } 10168 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10169 return; 10170 } 10171 case 0x3d: /* FRECPE */ 10172 case 0x3f: /* FRECPX */ 10173 case 0x7d: /* FRSQRTE */ 10174 if (!fp_access_check(s)) { 10175 return; 10176 } 10177 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10178 return; 10179 case 0x1a: /* FCVTNS */ 10180 case 0x1b: /* FCVTMS */ 10181 case 0x3a: /* FCVTPS */ 10182 case 0x3b: /* FCVTZS */ 10183 case 0x5a: /* FCVTNU */ 10184 case 0x5b: /* FCVTMU */ 10185 case 0x7a: /* FCVTPU */ 10186 case 0x7b: /* FCVTZU */ 10187 is_fcvt = true; 10188 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10189 break; 10190 case 0x1c: /* FCVTAS */ 10191 case 0x5c: /* FCVTAU */ 10192 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10193 is_fcvt = true; 10194 rmode = FPROUNDING_TIEAWAY; 10195 break; 10196 case 0x56: /* FCVTXN, FCVTXN2 */ 10197 if (size == 2) { 10198 unallocated_encoding(s); 10199 return; 10200 } 10201 if (!fp_access_check(s)) { 10202 return; 10203 } 10204 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10205 return; 10206 default: 10207 unallocated_encoding(s); 10208 return; 10209 } 10210 break; 10211 default: 10212 unallocated_encoding(s); 10213 return; 10214 } 10215 10216 if (!fp_access_check(s)) { 10217 return; 10218 } 10219 10220 if (is_fcvt) { 10221 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10222 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10223 } else { 10224 tcg_fpstatus = NULL; 10225 tcg_rmode = NULL; 10226 } 10227 10228 if (size == 3) { 10229 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10230 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10231 10232 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10233 write_fp_dreg(s, rd, tcg_rd); 10234 } else { 10235 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10236 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10237 10238 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10239 10240 switch (opcode) { 10241 case 0x7: /* SQABS, SQNEG */ 10242 { 10243 NeonGenOneOpEnvFn *genfn; 10244 static NeonGenOneOpEnvFn * const fns[3][2] = { 10245 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10246 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10247 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10248 }; 10249 genfn = fns[size][u]; 10250 genfn(tcg_rd, cpu_env, tcg_rn); 10251 break; 10252 } 10253 case 0x1a: /* FCVTNS */ 10254 case 0x1b: /* FCVTMS */ 10255 case 0x1c: /* FCVTAS */ 10256 case 0x3a: /* FCVTPS */ 10257 case 0x3b: /* FCVTZS */ 10258 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10259 tcg_fpstatus); 10260 break; 10261 case 0x5a: /* FCVTNU */ 10262 case 0x5b: /* FCVTMU */ 10263 case 0x5c: /* FCVTAU */ 10264 case 0x7a: /* FCVTPU */ 10265 case 0x7b: /* FCVTZU */ 10266 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10267 tcg_fpstatus); 10268 break; 10269 default: 10270 g_assert_not_reached(); 10271 } 10272 10273 write_fp_sreg(s, rd, tcg_rd); 10274 } 10275 10276 if (is_fcvt) { 10277 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10278 } 10279 } 10280 10281 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10282 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10283 int immh, int immb, int opcode, int rn, int rd) 10284 { 10285 int size = 32 - clz32(immh) - 1; 10286 int immhb = immh << 3 | immb; 10287 int shift = 2 * (8 << size) - immhb; 10288 GVecGen2iFn *gvec_fn; 10289 10290 if (extract32(immh, 3, 1) && !is_q) { 10291 unallocated_encoding(s); 10292 return; 10293 } 10294 tcg_debug_assert(size <= 3); 10295 10296 if (!fp_access_check(s)) { 10297 return; 10298 } 10299 10300 switch (opcode) { 10301 case 0x02: /* SSRA / USRA (accumulate) */ 10302 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10303 break; 10304 10305 case 0x08: /* SRI */ 10306 gvec_fn = gen_gvec_sri; 10307 break; 10308 10309 case 0x00: /* SSHR / USHR */ 10310 if (is_u) { 10311 if (shift == 8 << size) { 10312 /* Shift count the same size as element size produces zero. */ 10313 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10314 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10315 return; 10316 } 10317 gvec_fn = tcg_gen_gvec_shri; 10318 } else { 10319 /* Shift count the same size as element size produces all sign. */ 10320 if (shift == 8 << size) { 10321 shift -= 1; 10322 } 10323 gvec_fn = tcg_gen_gvec_sari; 10324 } 10325 break; 10326 10327 case 0x04: /* SRSHR / URSHR (rounding) */ 10328 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10329 break; 10330 10331 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10332 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10333 break; 10334 10335 default: 10336 g_assert_not_reached(); 10337 } 10338 10339 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10340 } 10341 10342 /* SHL/SLI - Vector shift left */ 10343 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10344 int immh, int immb, int opcode, int rn, int rd) 10345 { 10346 int size = 32 - clz32(immh) - 1; 10347 int immhb = immh << 3 | immb; 10348 int shift = immhb - (8 << size); 10349 10350 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10351 assert(size >= 0 && size <= 3); 10352 10353 if (extract32(immh, 3, 1) && !is_q) { 10354 unallocated_encoding(s); 10355 return; 10356 } 10357 10358 if (!fp_access_check(s)) { 10359 return; 10360 } 10361 10362 if (insert) { 10363 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10364 } else { 10365 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10366 } 10367 } 10368 10369 /* USHLL/SHLL - Vector shift left with widening */ 10370 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10371 int immh, int immb, int opcode, int rn, int rd) 10372 { 10373 int size = 32 - clz32(immh) - 1; 10374 int immhb = immh << 3 | immb; 10375 int shift = immhb - (8 << size); 10376 int dsize = 64; 10377 int esize = 8 << size; 10378 int elements = dsize/esize; 10379 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10380 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10381 int i; 10382 10383 if (size >= 3) { 10384 unallocated_encoding(s); 10385 return; 10386 } 10387 10388 if (!fp_access_check(s)) { 10389 return; 10390 } 10391 10392 /* For the LL variants the store is larger than the load, 10393 * so if rd == rn we would overwrite parts of our input. 10394 * So load everything right now and use shifts in the main loop. 10395 */ 10396 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10397 10398 for (i = 0; i < elements; i++) { 10399 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10400 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10401 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10402 write_vec_element(s, tcg_rd, rd, i, size + 1); 10403 } 10404 } 10405 10406 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10407 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10408 int immh, int immb, int opcode, int rn, int rd) 10409 { 10410 int immhb = immh << 3 | immb; 10411 int size = 32 - clz32(immh) - 1; 10412 int dsize = 64; 10413 int esize = 8 << size; 10414 int elements = dsize/esize; 10415 int shift = (2 * esize) - immhb; 10416 bool round = extract32(opcode, 0, 1); 10417 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10418 TCGv_i64 tcg_round; 10419 int i; 10420 10421 if (extract32(immh, 3, 1)) { 10422 unallocated_encoding(s); 10423 return; 10424 } 10425 10426 if (!fp_access_check(s)) { 10427 return; 10428 } 10429 10430 tcg_rn = tcg_temp_new_i64(); 10431 tcg_rd = tcg_temp_new_i64(); 10432 tcg_final = tcg_temp_new_i64(); 10433 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10434 10435 if (round) { 10436 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10437 } else { 10438 tcg_round = NULL; 10439 } 10440 10441 for (i = 0; i < elements; i++) { 10442 read_vec_element(s, tcg_rn, rn, i, size+1); 10443 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10444 false, true, size+1, shift); 10445 10446 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10447 } 10448 10449 if (!is_q) { 10450 write_vec_element(s, tcg_final, rd, 0, MO_64); 10451 } else { 10452 write_vec_element(s, tcg_final, rd, 1, MO_64); 10453 } 10454 10455 clear_vec_high(s, is_q, rd); 10456 } 10457 10458 10459 /* AdvSIMD shift by immediate 10460 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10461 * +---+---+---+-------------+------+------+--------+---+------+------+ 10462 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10463 * +---+---+---+-------------+------+------+--------+---+------+------+ 10464 */ 10465 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10466 { 10467 int rd = extract32(insn, 0, 5); 10468 int rn = extract32(insn, 5, 5); 10469 int opcode = extract32(insn, 11, 5); 10470 int immb = extract32(insn, 16, 3); 10471 int immh = extract32(insn, 19, 4); 10472 bool is_u = extract32(insn, 29, 1); 10473 bool is_q = extract32(insn, 30, 1); 10474 10475 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10476 assert(immh != 0); 10477 10478 switch (opcode) { 10479 case 0x08: /* SRI */ 10480 if (!is_u) { 10481 unallocated_encoding(s); 10482 return; 10483 } 10484 /* fall through */ 10485 case 0x00: /* SSHR / USHR */ 10486 case 0x02: /* SSRA / USRA (accumulate) */ 10487 case 0x04: /* SRSHR / URSHR (rounding) */ 10488 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10489 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10490 break; 10491 case 0x0a: /* SHL / SLI */ 10492 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10493 break; 10494 case 0x10: /* SHRN */ 10495 case 0x11: /* RSHRN / SQRSHRUN */ 10496 if (is_u) { 10497 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10498 opcode, rn, rd); 10499 } else { 10500 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10501 } 10502 break; 10503 case 0x12: /* SQSHRN / UQSHRN */ 10504 case 0x13: /* SQRSHRN / UQRSHRN */ 10505 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10506 opcode, rn, rd); 10507 break; 10508 case 0x14: /* SSHLL / USHLL */ 10509 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10510 break; 10511 case 0x1c: /* SCVTF / UCVTF */ 10512 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10513 opcode, rn, rd); 10514 break; 10515 case 0xc: /* SQSHLU */ 10516 if (!is_u) { 10517 unallocated_encoding(s); 10518 return; 10519 } 10520 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10521 break; 10522 case 0xe: /* SQSHL, UQSHL */ 10523 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10524 break; 10525 case 0x1f: /* FCVTZS/ FCVTZU */ 10526 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10527 return; 10528 default: 10529 unallocated_encoding(s); 10530 return; 10531 } 10532 } 10533 10534 /* Generate code to do a "long" addition or subtraction, ie one done in 10535 * TCGv_i64 on vector lanes twice the width specified by size. 10536 */ 10537 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10538 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10539 { 10540 static NeonGenTwo64OpFn * const fns[3][2] = { 10541 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10542 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10543 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10544 }; 10545 NeonGenTwo64OpFn *genfn; 10546 assert(size < 3); 10547 10548 genfn = fns[size][is_sub]; 10549 genfn(tcg_res, tcg_op1, tcg_op2); 10550 } 10551 10552 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10553 int opcode, int rd, int rn, int rm) 10554 { 10555 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10556 TCGv_i64 tcg_res[2]; 10557 int pass, accop; 10558 10559 tcg_res[0] = tcg_temp_new_i64(); 10560 tcg_res[1] = tcg_temp_new_i64(); 10561 10562 /* Does this op do an adding accumulate, a subtracting accumulate, 10563 * or no accumulate at all? 10564 */ 10565 switch (opcode) { 10566 case 5: 10567 case 8: 10568 case 9: 10569 accop = 1; 10570 break; 10571 case 10: 10572 case 11: 10573 accop = -1; 10574 break; 10575 default: 10576 accop = 0; 10577 break; 10578 } 10579 10580 if (accop != 0) { 10581 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10582 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10583 } 10584 10585 /* size == 2 means two 32x32->64 operations; this is worth special 10586 * casing because we can generally handle it inline. 10587 */ 10588 if (size == 2) { 10589 for (pass = 0; pass < 2; pass++) { 10590 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10591 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10592 TCGv_i64 tcg_passres; 10593 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10594 10595 int elt = pass + is_q * 2; 10596 10597 read_vec_element(s, tcg_op1, rn, elt, memop); 10598 read_vec_element(s, tcg_op2, rm, elt, memop); 10599 10600 if (accop == 0) { 10601 tcg_passres = tcg_res[pass]; 10602 } else { 10603 tcg_passres = tcg_temp_new_i64(); 10604 } 10605 10606 switch (opcode) { 10607 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10608 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10609 break; 10610 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10611 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10612 break; 10613 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10614 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10615 { 10616 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10617 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10618 10619 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10620 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10621 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10622 tcg_passres, 10623 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10624 break; 10625 } 10626 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10627 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10628 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10629 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10630 break; 10631 case 9: /* SQDMLAL, SQDMLAL2 */ 10632 case 11: /* SQDMLSL, SQDMLSL2 */ 10633 case 13: /* SQDMULL, SQDMULL2 */ 10634 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10635 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10636 tcg_passres, tcg_passres); 10637 break; 10638 default: 10639 g_assert_not_reached(); 10640 } 10641 10642 if (opcode == 9 || opcode == 11) { 10643 /* saturating accumulate ops */ 10644 if (accop < 0) { 10645 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10646 } 10647 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10648 tcg_res[pass], tcg_passres); 10649 } else if (accop > 0) { 10650 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10651 } else if (accop < 0) { 10652 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10653 } 10654 } 10655 } else { 10656 /* size 0 or 1, generally helper functions */ 10657 for (pass = 0; pass < 2; pass++) { 10658 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10659 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10660 TCGv_i64 tcg_passres; 10661 int elt = pass + is_q * 2; 10662 10663 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10664 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10665 10666 if (accop == 0) { 10667 tcg_passres = tcg_res[pass]; 10668 } else { 10669 tcg_passres = tcg_temp_new_i64(); 10670 } 10671 10672 switch (opcode) { 10673 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10674 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10675 { 10676 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10677 static NeonGenWidenFn * const widenfns[2][2] = { 10678 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10679 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10680 }; 10681 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10682 10683 widenfn(tcg_op2_64, tcg_op2); 10684 widenfn(tcg_passres, tcg_op1); 10685 gen_neon_addl(size, (opcode == 2), tcg_passres, 10686 tcg_passres, tcg_op2_64); 10687 break; 10688 } 10689 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10690 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10691 if (size == 0) { 10692 if (is_u) { 10693 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10694 } else { 10695 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10696 } 10697 } else { 10698 if (is_u) { 10699 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10700 } else { 10701 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10702 } 10703 } 10704 break; 10705 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10706 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10707 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10708 if (size == 0) { 10709 if (is_u) { 10710 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10711 } else { 10712 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10713 } 10714 } else { 10715 if (is_u) { 10716 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10717 } else { 10718 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10719 } 10720 } 10721 break; 10722 case 9: /* SQDMLAL, SQDMLAL2 */ 10723 case 11: /* SQDMLSL, SQDMLSL2 */ 10724 case 13: /* SQDMULL, SQDMULL2 */ 10725 assert(size == 1); 10726 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10727 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10728 tcg_passres, tcg_passres); 10729 break; 10730 default: 10731 g_assert_not_reached(); 10732 } 10733 10734 if (accop != 0) { 10735 if (opcode == 9 || opcode == 11) { 10736 /* saturating accumulate ops */ 10737 if (accop < 0) { 10738 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10739 } 10740 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10741 tcg_res[pass], 10742 tcg_passres); 10743 } else { 10744 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10745 tcg_res[pass], tcg_passres); 10746 } 10747 } 10748 } 10749 } 10750 10751 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10752 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10753 } 10754 10755 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10756 int opcode, int rd, int rn, int rm) 10757 { 10758 TCGv_i64 tcg_res[2]; 10759 int part = is_q ? 2 : 0; 10760 int pass; 10761 10762 for (pass = 0; pass < 2; pass++) { 10763 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10764 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10765 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10766 static NeonGenWidenFn * const widenfns[3][2] = { 10767 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10768 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10769 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10770 }; 10771 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10772 10773 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10774 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10775 widenfn(tcg_op2_wide, tcg_op2); 10776 tcg_res[pass] = tcg_temp_new_i64(); 10777 gen_neon_addl(size, (opcode == 3), 10778 tcg_res[pass], tcg_op1, tcg_op2_wide); 10779 } 10780 10781 for (pass = 0; pass < 2; pass++) { 10782 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10783 } 10784 } 10785 10786 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10787 { 10788 tcg_gen_addi_i64(in, in, 1U << 31); 10789 tcg_gen_extrh_i64_i32(res, in); 10790 } 10791 10792 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10793 int opcode, int rd, int rn, int rm) 10794 { 10795 TCGv_i32 tcg_res[2]; 10796 int part = is_q ? 2 : 0; 10797 int pass; 10798 10799 for (pass = 0; pass < 2; pass++) { 10800 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10801 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10802 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10803 static NeonGenNarrowFn * const narrowfns[3][2] = { 10804 { gen_helper_neon_narrow_high_u8, 10805 gen_helper_neon_narrow_round_high_u8 }, 10806 { gen_helper_neon_narrow_high_u16, 10807 gen_helper_neon_narrow_round_high_u16 }, 10808 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10809 }; 10810 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10811 10812 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10813 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10814 10815 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10816 10817 tcg_res[pass] = tcg_temp_new_i32(); 10818 gennarrow(tcg_res[pass], tcg_wideres); 10819 } 10820 10821 for (pass = 0; pass < 2; pass++) { 10822 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10823 } 10824 clear_vec_high(s, is_q, rd); 10825 } 10826 10827 /* AdvSIMD three different 10828 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10829 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10830 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10831 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10832 */ 10833 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10834 { 10835 /* Instructions in this group fall into three basic classes 10836 * (in each case with the operation working on each element in 10837 * the input vectors): 10838 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10839 * 128 bit input) 10840 * (2) wide 64 x 128 -> 128 10841 * (3) narrowing 128 x 128 -> 64 10842 * Here we do initial decode, catch unallocated cases and 10843 * dispatch to separate functions for each class. 10844 */ 10845 int is_q = extract32(insn, 30, 1); 10846 int is_u = extract32(insn, 29, 1); 10847 int size = extract32(insn, 22, 2); 10848 int opcode = extract32(insn, 12, 4); 10849 int rm = extract32(insn, 16, 5); 10850 int rn = extract32(insn, 5, 5); 10851 int rd = extract32(insn, 0, 5); 10852 10853 switch (opcode) { 10854 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10855 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10856 /* 64 x 128 -> 128 */ 10857 if (size == 3) { 10858 unallocated_encoding(s); 10859 return; 10860 } 10861 if (!fp_access_check(s)) { 10862 return; 10863 } 10864 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10865 break; 10866 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10867 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10868 /* 128 x 128 -> 64 */ 10869 if (size == 3) { 10870 unallocated_encoding(s); 10871 return; 10872 } 10873 if (!fp_access_check(s)) { 10874 return; 10875 } 10876 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10877 break; 10878 case 14: /* PMULL, PMULL2 */ 10879 if (is_u) { 10880 unallocated_encoding(s); 10881 return; 10882 } 10883 switch (size) { 10884 case 0: /* PMULL.P8 */ 10885 if (!fp_access_check(s)) { 10886 return; 10887 } 10888 /* The Q field specifies lo/hi half input for this insn. */ 10889 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10890 gen_helper_neon_pmull_h); 10891 break; 10892 10893 case 3: /* PMULL.P64 */ 10894 if (!dc_isar_feature(aa64_pmull, s)) { 10895 unallocated_encoding(s); 10896 return; 10897 } 10898 if (!fp_access_check(s)) { 10899 return; 10900 } 10901 /* The Q field specifies lo/hi half input for this insn. */ 10902 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10903 gen_helper_gvec_pmull_q); 10904 break; 10905 10906 default: 10907 unallocated_encoding(s); 10908 break; 10909 } 10910 return; 10911 case 9: /* SQDMLAL, SQDMLAL2 */ 10912 case 11: /* SQDMLSL, SQDMLSL2 */ 10913 case 13: /* SQDMULL, SQDMULL2 */ 10914 if (is_u || size == 0) { 10915 unallocated_encoding(s); 10916 return; 10917 } 10918 /* fall through */ 10919 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10920 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10921 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10922 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10923 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10924 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10925 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10926 /* 64 x 64 -> 128 */ 10927 if (size == 3) { 10928 unallocated_encoding(s); 10929 return; 10930 } 10931 if (!fp_access_check(s)) { 10932 return; 10933 } 10934 10935 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10936 break; 10937 default: 10938 /* opcode 15 not allocated */ 10939 unallocated_encoding(s); 10940 break; 10941 } 10942 } 10943 10944 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10945 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10946 { 10947 int rd = extract32(insn, 0, 5); 10948 int rn = extract32(insn, 5, 5); 10949 int rm = extract32(insn, 16, 5); 10950 int size = extract32(insn, 22, 2); 10951 bool is_u = extract32(insn, 29, 1); 10952 bool is_q = extract32(insn, 30, 1); 10953 10954 if (!fp_access_check(s)) { 10955 return; 10956 } 10957 10958 switch (size + 4 * is_u) { 10959 case 0: /* AND */ 10960 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10961 return; 10962 case 1: /* BIC */ 10963 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10964 return; 10965 case 2: /* ORR */ 10966 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10967 return; 10968 case 3: /* ORN */ 10969 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10970 return; 10971 case 4: /* EOR */ 10972 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10973 return; 10974 10975 case 5: /* BSL bitwise select */ 10976 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10977 return; 10978 case 6: /* BIT, bitwise insert if true */ 10979 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10980 return; 10981 case 7: /* BIF, bitwise insert if false */ 10982 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10983 return; 10984 10985 default: 10986 g_assert_not_reached(); 10987 } 10988 } 10989 10990 /* Pairwise op subgroup of C3.6.16. 10991 * 10992 * This is called directly or via the handle_3same_float for float pairwise 10993 * operations where the opcode and size are calculated differently. 10994 */ 10995 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10996 int size, int rn, int rm, int rd) 10997 { 10998 TCGv_ptr fpst; 10999 int pass; 11000 11001 /* Floating point operations need fpst */ 11002 if (opcode >= 0x58) { 11003 fpst = fpstatus_ptr(FPST_FPCR); 11004 } else { 11005 fpst = NULL; 11006 } 11007 11008 if (!fp_access_check(s)) { 11009 return; 11010 } 11011 11012 /* These operations work on the concatenated rm:rn, with each pair of 11013 * adjacent elements being operated on to produce an element in the result. 11014 */ 11015 if (size == 3) { 11016 TCGv_i64 tcg_res[2]; 11017 11018 for (pass = 0; pass < 2; pass++) { 11019 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11020 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11021 int passreg = (pass == 0) ? rn : rm; 11022 11023 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11024 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11025 tcg_res[pass] = tcg_temp_new_i64(); 11026 11027 switch (opcode) { 11028 case 0x17: /* ADDP */ 11029 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11030 break; 11031 case 0x58: /* FMAXNMP */ 11032 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11033 break; 11034 case 0x5a: /* FADDP */ 11035 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11036 break; 11037 case 0x5e: /* FMAXP */ 11038 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11039 break; 11040 case 0x78: /* FMINNMP */ 11041 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11042 break; 11043 case 0x7e: /* FMINP */ 11044 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11045 break; 11046 default: 11047 g_assert_not_reached(); 11048 } 11049 } 11050 11051 for (pass = 0; pass < 2; pass++) { 11052 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11053 } 11054 } else { 11055 int maxpass = is_q ? 4 : 2; 11056 TCGv_i32 tcg_res[4]; 11057 11058 for (pass = 0; pass < maxpass; pass++) { 11059 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11060 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11061 NeonGenTwoOpFn *genfn = NULL; 11062 int passreg = pass < (maxpass / 2) ? rn : rm; 11063 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11064 11065 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11066 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11067 tcg_res[pass] = tcg_temp_new_i32(); 11068 11069 switch (opcode) { 11070 case 0x17: /* ADDP */ 11071 { 11072 static NeonGenTwoOpFn * const fns[3] = { 11073 gen_helper_neon_padd_u8, 11074 gen_helper_neon_padd_u16, 11075 tcg_gen_add_i32, 11076 }; 11077 genfn = fns[size]; 11078 break; 11079 } 11080 case 0x14: /* SMAXP, UMAXP */ 11081 { 11082 static NeonGenTwoOpFn * const fns[3][2] = { 11083 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11084 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11085 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11086 }; 11087 genfn = fns[size][u]; 11088 break; 11089 } 11090 case 0x15: /* SMINP, UMINP */ 11091 { 11092 static NeonGenTwoOpFn * const fns[3][2] = { 11093 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11094 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11095 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11096 }; 11097 genfn = fns[size][u]; 11098 break; 11099 } 11100 /* The FP operations are all on single floats (32 bit) */ 11101 case 0x58: /* FMAXNMP */ 11102 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11103 break; 11104 case 0x5a: /* FADDP */ 11105 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11106 break; 11107 case 0x5e: /* FMAXP */ 11108 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11109 break; 11110 case 0x78: /* FMINNMP */ 11111 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11112 break; 11113 case 0x7e: /* FMINP */ 11114 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11115 break; 11116 default: 11117 g_assert_not_reached(); 11118 } 11119 11120 /* FP ops called directly, otherwise call now */ 11121 if (genfn) { 11122 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11123 } 11124 } 11125 11126 for (pass = 0; pass < maxpass; pass++) { 11127 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11128 } 11129 clear_vec_high(s, is_q, rd); 11130 } 11131 } 11132 11133 /* Floating point op subgroup of C3.6.16. */ 11134 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11135 { 11136 /* For floating point ops, the U, size[1] and opcode bits 11137 * together indicate the operation. size[0] indicates single 11138 * or double. 11139 */ 11140 int fpopcode = extract32(insn, 11, 5) 11141 | (extract32(insn, 23, 1) << 5) 11142 | (extract32(insn, 29, 1) << 6); 11143 int is_q = extract32(insn, 30, 1); 11144 int size = extract32(insn, 22, 1); 11145 int rm = extract32(insn, 16, 5); 11146 int rn = extract32(insn, 5, 5); 11147 int rd = extract32(insn, 0, 5); 11148 11149 int datasize = is_q ? 128 : 64; 11150 int esize = 32 << size; 11151 int elements = datasize / esize; 11152 11153 if (size == 1 && !is_q) { 11154 unallocated_encoding(s); 11155 return; 11156 } 11157 11158 switch (fpopcode) { 11159 case 0x58: /* FMAXNMP */ 11160 case 0x5a: /* FADDP */ 11161 case 0x5e: /* FMAXP */ 11162 case 0x78: /* FMINNMP */ 11163 case 0x7e: /* FMINP */ 11164 if (size && !is_q) { 11165 unallocated_encoding(s); 11166 return; 11167 } 11168 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11169 rn, rm, rd); 11170 return; 11171 case 0x1b: /* FMULX */ 11172 case 0x1f: /* FRECPS */ 11173 case 0x3f: /* FRSQRTS */ 11174 case 0x5d: /* FACGE */ 11175 case 0x7d: /* FACGT */ 11176 case 0x19: /* FMLA */ 11177 case 0x39: /* FMLS */ 11178 case 0x18: /* FMAXNM */ 11179 case 0x1a: /* FADD */ 11180 case 0x1c: /* FCMEQ */ 11181 case 0x1e: /* FMAX */ 11182 case 0x38: /* FMINNM */ 11183 case 0x3a: /* FSUB */ 11184 case 0x3e: /* FMIN */ 11185 case 0x5b: /* FMUL */ 11186 case 0x5c: /* FCMGE */ 11187 case 0x5f: /* FDIV */ 11188 case 0x7a: /* FABD */ 11189 case 0x7c: /* FCMGT */ 11190 if (!fp_access_check(s)) { 11191 return; 11192 } 11193 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11194 return; 11195 11196 case 0x1d: /* FMLAL */ 11197 case 0x3d: /* FMLSL */ 11198 case 0x59: /* FMLAL2 */ 11199 case 0x79: /* FMLSL2 */ 11200 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11201 unallocated_encoding(s); 11202 return; 11203 } 11204 if (fp_access_check(s)) { 11205 int is_s = extract32(insn, 23, 1); 11206 int is_2 = extract32(insn, 29, 1); 11207 int data = (is_2 << 1) | is_s; 11208 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11209 vec_full_reg_offset(s, rn), 11210 vec_full_reg_offset(s, rm), cpu_env, 11211 is_q ? 16 : 8, vec_full_reg_size(s), 11212 data, gen_helper_gvec_fmlal_a64); 11213 } 11214 return; 11215 11216 default: 11217 unallocated_encoding(s); 11218 return; 11219 } 11220 } 11221 11222 /* Integer op subgroup of C3.6.16. */ 11223 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11224 { 11225 int is_q = extract32(insn, 30, 1); 11226 int u = extract32(insn, 29, 1); 11227 int size = extract32(insn, 22, 2); 11228 int opcode = extract32(insn, 11, 5); 11229 int rm = extract32(insn, 16, 5); 11230 int rn = extract32(insn, 5, 5); 11231 int rd = extract32(insn, 0, 5); 11232 int pass; 11233 TCGCond cond; 11234 11235 switch (opcode) { 11236 case 0x13: /* MUL, PMUL */ 11237 if (u && size != 0) { 11238 unallocated_encoding(s); 11239 return; 11240 } 11241 /* fall through */ 11242 case 0x0: /* SHADD, UHADD */ 11243 case 0x2: /* SRHADD, URHADD */ 11244 case 0x4: /* SHSUB, UHSUB */ 11245 case 0xc: /* SMAX, UMAX */ 11246 case 0xd: /* SMIN, UMIN */ 11247 case 0xe: /* SABD, UABD */ 11248 case 0xf: /* SABA, UABA */ 11249 case 0x12: /* MLA, MLS */ 11250 if (size == 3) { 11251 unallocated_encoding(s); 11252 return; 11253 } 11254 break; 11255 case 0x16: /* SQDMULH, SQRDMULH */ 11256 if (size == 0 || size == 3) { 11257 unallocated_encoding(s); 11258 return; 11259 } 11260 break; 11261 default: 11262 if (size == 3 && !is_q) { 11263 unallocated_encoding(s); 11264 return; 11265 } 11266 break; 11267 } 11268 11269 if (!fp_access_check(s)) { 11270 return; 11271 } 11272 11273 switch (opcode) { 11274 case 0x01: /* SQADD, UQADD */ 11275 if (u) { 11276 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11277 } else { 11278 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11279 } 11280 return; 11281 case 0x05: /* SQSUB, UQSUB */ 11282 if (u) { 11283 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11284 } else { 11285 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11286 } 11287 return; 11288 case 0x08: /* SSHL, USHL */ 11289 if (u) { 11290 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11291 } else { 11292 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11293 } 11294 return; 11295 case 0x0c: /* SMAX, UMAX */ 11296 if (u) { 11297 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11298 } else { 11299 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11300 } 11301 return; 11302 case 0x0d: /* SMIN, UMIN */ 11303 if (u) { 11304 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11305 } else { 11306 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11307 } 11308 return; 11309 case 0xe: /* SABD, UABD */ 11310 if (u) { 11311 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11312 } else { 11313 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11314 } 11315 return; 11316 case 0xf: /* SABA, UABA */ 11317 if (u) { 11318 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11319 } else { 11320 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11321 } 11322 return; 11323 case 0x10: /* ADD, SUB */ 11324 if (u) { 11325 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11326 } else { 11327 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11328 } 11329 return; 11330 case 0x13: /* MUL, PMUL */ 11331 if (!u) { /* MUL */ 11332 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11333 } else { /* PMUL */ 11334 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11335 } 11336 return; 11337 case 0x12: /* MLA, MLS */ 11338 if (u) { 11339 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11340 } else { 11341 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11342 } 11343 return; 11344 case 0x16: /* SQDMULH, SQRDMULH */ 11345 { 11346 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11347 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11348 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11349 }; 11350 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11351 } 11352 return; 11353 case 0x11: 11354 if (!u) { /* CMTST */ 11355 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11356 return; 11357 } 11358 /* else CMEQ */ 11359 cond = TCG_COND_EQ; 11360 goto do_gvec_cmp; 11361 case 0x06: /* CMGT, CMHI */ 11362 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11363 goto do_gvec_cmp; 11364 case 0x07: /* CMGE, CMHS */ 11365 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11366 do_gvec_cmp: 11367 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11368 vec_full_reg_offset(s, rn), 11369 vec_full_reg_offset(s, rm), 11370 is_q ? 16 : 8, vec_full_reg_size(s)); 11371 return; 11372 } 11373 11374 if (size == 3) { 11375 assert(is_q); 11376 for (pass = 0; pass < 2; pass++) { 11377 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11378 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11379 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11380 11381 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11382 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11383 11384 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11385 11386 write_vec_element(s, tcg_res, rd, pass, MO_64); 11387 } 11388 } else { 11389 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11390 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11391 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11392 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11393 NeonGenTwoOpFn *genfn = NULL; 11394 NeonGenTwoOpEnvFn *genenvfn = NULL; 11395 11396 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11397 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11398 11399 switch (opcode) { 11400 case 0x0: /* SHADD, UHADD */ 11401 { 11402 static NeonGenTwoOpFn * const fns[3][2] = { 11403 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11404 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11405 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11406 }; 11407 genfn = fns[size][u]; 11408 break; 11409 } 11410 case 0x2: /* SRHADD, URHADD */ 11411 { 11412 static NeonGenTwoOpFn * const fns[3][2] = { 11413 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11414 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11415 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11416 }; 11417 genfn = fns[size][u]; 11418 break; 11419 } 11420 case 0x4: /* SHSUB, UHSUB */ 11421 { 11422 static NeonGenTwoOpFn * const fns[3][2] = { 11423 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11424 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11425 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11426 }; 11427 genfn = fns[size][u]; 11428 break; 11429 } 11430 case 0x9: /* SQSHL, UQSHL */ 11431 { 11432 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11433 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11434 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11435 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11436 }; 11437 genenvfn = fns[size][u]; 11438 break; 11439 } 11440 case 0xa: /* SRSHL, URSHL */ 11441 { 11442 static NeonGenTwoOpFn * const fns[3][2] = { 11443 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11444 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11445 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11446 }; 11447 genfn = fns[size][u]; 11448 break; 11449 } 11450 case 0xb: /* SQRSHL, UQRSHL */ 11451 { 11452 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11453 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11454 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11455 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11456 }; 11457 genenvfn = fns[size][u]; 11458 break; 11459 } 11460 default: 11461 g_assert_not_reached(); 11462 } 11463 11464 if (genenvfn) { 11465 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11466 } else { 11467 genfn(tcg_res, tcg_op1, tcg_op2); 11468 } 11469 11470 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11471 } 11472 } 11473 clear_vec_high(s, is_q, rd); 11474 } 11475 11476 /* AdvSIMD three same 11477 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11478 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11479 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11480 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11481 */ 11482 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11483 { 11484 int opcode = extract32(insn, 11, 5); 11485 11486 switch (opcode) { 11487 case 0x3: /* logic ops */ 11488 disas_simd_3same_logic(s, insn); 11489 break; 11490 case 0x17: /* ADDP */ 11491 case 0x14: /* SMAXP, UMAXP */ 11492 case 0x15: /* SMINP, UMINP */ 11493 { 11494 /* Pairwise operations */ 11495 int is_q = extract32(insn, 30, 1); 11496 int u = extract32(insn, 29, 1); 11497 int size = extract32(insn, 22, 2); 11498 int rm = extract32(insn, 16, 5); 11499 int rn = extract32(insn, 5, 5); 11500 int rd = extract32(insn, 0, 5); 11501 if (opcode == 0x17) { 11502 if (u || (size == 3 && !is_q)) { 11503 unallocated_encoding(s); 11504 return; 11505 } 11506 } else { 11507 if (size == 3) { 11508 unallocated_encoding(s); 11509 return; 11510 } 11511 } 11512 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11513 break; 11514 } 11515 case 0x18 ... 0x31: 11516 /* floating point ops, sz[1] and U are part of opcode */ 11517 disas_simd_3same_float(s, insn); 11518 break; 11519 default: 11520 disas_simd_3same_int(s, insn); 11521 break; 11522 } 11523 } 11524 11525 /* 11526 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11527 * 11528 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11529 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11530 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11531 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11532 * 11533 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11534 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11535 * 11536 */ 11537 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11538 { 11539 int opcode = extract32(insn, 11, 3); 11540 int u = extract32(insn, 29, 1); 11541 int a = extract32(insn, 23, 1); 11542 int is_q = extract32(insn, 30, 1); 11543 int rm = extract32(insn, 16, 5); 11544 int rn = extract32(insn, 5, 5); 11545 int rd = extract32(insn, 0, 5); 11546 /* 11547 * For these floating point ops, the U, a and opcode bits 11548 * together indicate the operation. 11549 */ 11550 int fpopcode = opcode | (a << 3) | (u << 4); 11551 int datasize = is_q ? 128 : 64; 11552 int elements = datasize / 16; 11553 bool pairwise; 11554 TCGv_ptr fpst; 11555 int pass; 11556 11557 switch (fpopcode) { 11558 case 0x0: /* FMAXNM */ 11559 case 0x1: /* FMLA */ 11560 case 0x2: /* FADD */ 11561 case 0x3: /* FMULX */ 11562 case 0x4: /* FCMEQ */ 11563 case 0x6: /* FMAX */ 11564 case 0x7: /* FRECPS */ 11565 case 0x8: /* FMINNM */ 11566 case 0x9: /* FMLS */ 11567 case 0xa: /* FSUB */ 11568 case 0xe: /* FMIN */ 11569 case 0xf: /* FRSQRTS */ 11570 case 0x13: /* FMUL */ 11571 case 0x14: /* FCMGE */ 11572 case 0x15: /* FACGE */ 11573 case 0x17: /* FDIV */ 11574 case 0x1a: /* FABD */ 11575 case 0x1c: /* FCMGT */ 11576 case 0x1d: /* FACGT */ 11577 pairwise = false; 11578 break; 11579 case 0x10: /* FMAXNMP */ 11580 case 0x12: /* FADDP */ 11581 case 0x16: /* FMAXP */ 11582 case 0x18: /* FMINNMP */ 11583 case 0x1e: /* FMINP */ 11584 pairwise = true; 11585 break; 11586 default: 11587 unallocated_encoding(s); 11588 return; 11589 } 11590 11591 if (!dc_isar_feature(aa64_fp16, s)) { 11592 unallocated_encoding(s); 11593 return; 11594 } 11595 11596 if (!fp_access_check(s)) { 11597 return; 11598 } 11599 11600 fpst = fpstatus_ptr(FPST_FPCR_F16); 11601 11602 if (pairwise) { 11603 int maxpass = is_q ? 8 : 4; 11604 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11605 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11606 TCGv_i32 tcg_res[8]; 11607 11608 for (pass = 0; pass < maxpass; pass++) { 11609 int passreg = pass < (maxpass / 2) ? rn : rm; 11610 int passelt = (pass << 1) & (maxpass - 1); 11611 11612 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11613 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11614 tcg_res[pass] = tcg_temp_new_i32(); 11615 11616 switch (fpopcode) { 11617 case 0x10: /* FMAXNMP */ 11618 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11619 fpst); 11620 break; 11621 case 0x12: /* FADDP */ 11622 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11623 break; 11624 case 0x16: /* FMAXP */ 11625 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11626 break; 11627 case 0x18: /* FMINNMP */ 11628 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11629 fpst); 11630 break; 11631 case 0x1e: /* FMINP */ 11632 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11633 break; 11634 default: 11635 g_assert_not_reached(); 11636 } 11637 } 11638 11639 for (pass = 0; pass < maxpass; pass++) { 11640 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11641 } 11642 } else { 11643 for (pass = 0; pass < elements; pass++) { 11644 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11645 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11646 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11647 11648 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11649 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11650 11651 switch (fpopcode) { 11652 case 0x0: /* FMAXNM */ 11653 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11654 break; 11655 case 0x1: /* FMLA */ 11656 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11657 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11658 fpst); 11659 break; 11660 case 0x2: /* FADD */ 11661 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11662 break; 11663 case 0x3: /* FMULX */ 11664 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11665 break; 11666 case 0x4: /* FCMEQ */ 11667 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11668 break; 11669 case 0x6: /* FMAX */ 11670 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11671 break; 11672 case 0x7: /* FRECPS */ 11673 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11674 break; 11675 case 0x8: /* FMINNM */ 11676 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11677 break; 11678 case 0x9: /* FMLS */ 11679 /* As usual for ARM, separate negation for fused multiply-add */ 11680 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11681 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11682 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11683 fpst); 11684 break; 11685 case 0xa: /* FSUB */ 11686 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11687 break; 11688 case 0xe: /* FMIN */ 11689 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11690 break; 11691 case 0xf: /* FRSQRTS */ 11692 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11693 break; 11694 case 0x13: /* FMUL */ 11695 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11696 break; 11697 case 0x14: /* FCMGE */ 11698 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11699 break; 11700 case 0x15: /* FACGE */ 11701 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11702 break; 11703 case 0x17: /* FDIV */ 11704 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11705 break; 11706 case 0x1a: /* FABD */ 11707 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11708 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11709 break; 11710 case 0x1c: /* FCMGT */ 11711 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11712 break; 11713 case 0x1d: /* FACGT */ 11714 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11715 break; 11716 default: 11717 g_assert_not_reached(); 11718 } 11719 11720 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11721 } 11722 } 11723 11724 clear_vec_high(s, is_q, rd); 11725 } 11726 11727 /* AdvSIMD three same extra 11728 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11729 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11730 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11731 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11732 */ 11733 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11734 { 11735 int rd = extract32(insn, 0, 5); 11736 int rn = extract32(insn, 5, 5); 11737 int opcode = extract32(insn, 11, 4); 11738 int rm = extract32(insn, 16, 5); 11739 int size = extract32(insn, 22, 2); 11740 bool u = extract32(insn, 29, 1); 11741 bool is_q = extract32(insn, 30, 1); 11742 bool feature; 11743 int rot; 11744 11745 switch (u * 16 + opcode) { 11746 case 0x10: /* SQRDMLAH (vector) */ 11747 case 0x11: /* SQRDMLSH (vector) */ 11748 if (size != 1 && size != 2) { 11749 unallocated_encoding(s); 11750 return; 11751 } 11752 feature = dc_isar_feature(aa64_rdm, s); 11753 break; 11754 case 0x02: /* SDOT (vector) */ 11755 case 0x12: /* UDOT (vector) */ 11756 if (size != MO_32) { 11757 unallocated_encoding(s); 11758 return; 11759 } 11760 feature = dc_isar_feature(aa64_dp, s); 11761 break; 11762 case 0x03: /* USDOT */ 11763 if (size != MO_32) { 11764 unallocated_encoding(s); 11765 return; 11766 } 11767 feature = dc_isar_feature(aa64_i8mm, s); 11768 break; 11769 case 0x04: /* SMMLA */ 11770 case 0x14: /* UMMLA */ 11771 case 0x05: /* USMMLA */ 11772 if (!is_q || size != MO_32) { 11773 unallocated_encoding(s); 11774 return; 11775 } 11776 feature = dc_isar_feature(aa64_i8mm, s); 11777 break; 11778 case 0x18: /* FCMLA, #0 */ 11779 case 0x19: /* FCMLA, #90 */ 11780 case 0x1a: /* FCMLA, #180 */ 11781 case 0x1b: /* FCMLA, #270 */ 11782 case 0x1c: /* FCADD, #90 */ 11783 case 0x1e: /* FCADD, #270 */ 11784 if (size == 0 11785 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11786 || (size == 3 && !is_q)) { 11787 unallocated_encoding(s); 11788 return; 11789 } 11790 feature = dc_isar_feature(aa64_fcma, s); 11791 break; 11792 case 0x1d: /* BFMMLA */ 11793 if (size != MO_16 || !is_q) { 11794 unallocated_encoding(s); 11795 return; 11796 } 11797 feature = dc_isar_feature(aa64_bf16, s); 11798 break; 11799 case 0x1f: 11800 switch (size) { 11801 case 1: /* BFDOT */ 11802 case 3: /* BFMLAL{B,T} */ 11803 feature = dc_isar_feature(aa64_bf16, s); 11804 break; 11805 default: 11806 unallocated_encoding(s); 11807 return; 11808 } 11809 break; 11810 default: 11811 unallocated_encoding(s); 11812 return; 11813 } 11814 if (!feature) { 11815 unallocated_encoding(s); 11816 return; 11817 } 11818 if (!fp_access_check(s)) { 11819 return; 11820 } 11821 11822 switch (opcode) { 11823 case 0x0: /* SQRDMLAH (vector) */ 11824 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11825 return; 11826 11827 case 0x1: /* SQRDMLSH (vector) */ 11828 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11829 return; 11830 11831 case 0x2: /* SDOT / UDOT */ 11832 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11833 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11834 return; 11835 11836 case 0x3: /* USDOT */ 11837 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11838 return; 11839 11840 case 0x04: /* SMMLA, UMMLA */ 11841 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11842 u ? gen_helper_gvec_ummla_b 11843 : gen_helper_gvec_smmla_b); 11844 return; 11845 case 0x05: /* USMMLA */ 11846 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11847 return; 11848 11849 case 0x8: /* FCMLA, #0 */ 11850 case 0x9: /* FCMLA, #90 */ 11851 case 0xa: /* FCMLA, #180 */ 11852 case 0xb: /* FCMLA, #270 */ 11853 rot = extract32(opcode, 0, 2); 11854 switch (size) { 11855 case 1: 11856 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11857 gen_helper_gvec_fcmlah); 11858 break; 11859 case 2: 11860 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11861 gen_helper_gvec_fcmlas); 11862 break; 11863 case 3: 11864 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11865 gen_helper_gvec_fcmlad); 11866 break; 11867 default: 11868 g_assert_not_reached(); 11869 } 11870 return; 11871 11872 case 0xc: /* FCADD, #90 */ 11873 case 0xe: /* FCADD, #270 */ 11874 rot = extract32(opcode, 1, 1); 11875 switch (size) { 11876 case 1: 11877 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11878 gen_helper_gvec_fcaddh); 11879 break; 11880 case 2: 11881 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11882 gen_helper_gvec_fcadds); 11883 break; 11884 case 3: 11885 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11886 gen_helper_gvec_fcaddd); 11887 break; 11888 default: 11889 g_assert_not_reached(); 11890 } 11891 return; 11892 11893 case 0xd: /* BFMMLA */ 11894 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11895 return; 11896 case 0xf: 11897 switch (size) { 11898 case 1: /* BFDOT */ 11899 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11900 break; 11901 case 3: /* BFMLAL{B,T} */ 11902 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11903 gen_helper_gvec_bfmlal); 11904 break; 11905 default: 11906 g_assert_not_reached(); 11907 } 11908 return; 11909 11910 default: 11911 g_assert_not_reached(); 11912 } 11913 } 11914 11915 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11916 int size, int rn, int rd) 11917 { 11918 /* Handle 2-reg-misc ops which are widening (so each size element 11919 * in the source becomes a 2*size element in the destination. 11920 * The only instruction like this is FCVTL. 11921 */ 11922 int pass; 11923 11924 if (size == 3) { 11925 /* 32 -> 64 bit fp conversion */ 11926 TCGv_i64 tcg_res[2]; 11927 int srcelt = is_q ? 2 : 0; 11928 11929 for (pass = 0; pass < 2; pass++) { 11930 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11931 tcg_res[pass] = tcg_temp_new_i64(); 11932 11933 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11934 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11935 } 11936 for (pass = 0; pass < 2; pass++) { 11937 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11938 } 11939 } else { 11940 /* 16 -> 32 bit fp conversion */ 11941 int srcelt = is_q ? 4 : 0; 11942 TCGv_i32 tcg_res[4]; 11943 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11944 TCGv_i32 ahp = get_ahp_flag(); 11945 11946 for (pass = 0; pass < 4; pass++) { 11947 tcg_res[pass] = tcg_temp_new_i32(); 11948 11949 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11950 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11951 fpst, ahp); 11952 } 11953 for (pass = 0; pass < 4; pass++) { 11954 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11955 } 11956 } 11957 } 11958 11959 static void handle_rev(DisasContext *s, int opcode, bool u, 11960 bool is_q, int size, int rn, int rd) 11961 { 11962 int op = (opcode << 1) | u; 11963 int opsz = op + size; 11964 int grp_size = 3 - opsz; 11965 int dsize = is_q ? 128 : 64; 11966 int i; 11967 11968 if (opsz >= 3) { 11969 unallocated_encoding(s); 11970 return; 11971 } 11972 11973 if (!fp_access_check(s)) { 11974 return; 11975 } 11976 11977 if (size == 0) { 11978 /* Special case bytes, use bswap op on each group of elements */ 11979 int groups = dsize / (8 << grp_size); 11980 11981 for (i = 0; i < groups; i++) { 11982 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11983 11984 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11985 switch (grp_size) { 11986 case MO_16: 11987 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11988 break; 11989 case MO_32: 11990 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11991 break; 11992 case MO_64: 11993 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11994 break; 11995 default: 11996 g_assert_not_reached(); 11997 } 11998 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11999 } 12000 clear_vec_high(s, is_q, rd); 12001 } else { 12002 int revmask = (1 << grp_size) - 1; 12003 int esize = 8 << size; 12004 int elements = dsize / esize; 12005 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12006 TCGv_i64 tcg_rd[2]; 12007 12008 for (i = 0; i < 2; i++) { 12009 tcg_rd[i] = tcg_temp_new_i64(); 12010 tcg_gen_movi_i64(tcg_rd[i], 0); 12011 } 12012 12013 for (i = 0; i < elements; i++) { 12014 int e_rev = (i & 0xf) ^ revmask; 12015 int w = (e_rev * esize) / 64; 12016 int o = (e_rev * esize) % 64; 12017 12018 read_vec_element(s, tcg_rn, rn, i, size); 12019 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12020 } 12021 12022 for (i = 0; i < 2; i++) { 12023 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12024 } 12025 clear_vec_high(s, true, rd); 12026 } 12027 } 12028 12029 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12030 bool is_q, int size, int rn, int rd) 12031 { 12032 /* Implement the pairwise operations from 2-misc: 12033 * SADDLP, UADDLP, SADALP, UADALP. 12034 * These all add pairs of elements in the input to produce a 12035 * double-width result element in the output (possibly accumulating). 12036 */ 12037 bool accum = (opcode == 0x6); 12038 int maxpass = is_q ? 2 : 1; 12039 int pass; 12040 TCGv_i64 tcg_res[2]; 12041 12042 if (size == 2) { 12043 /* 32 + 32 -> 64 op */ 12044 MemOp memop = size + (u ? 0 : MO_SIGN); 12045 12046 for (pass = 0; pass < maxpass; pass++) { 12047 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12048 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12049 12050 tcg_res[pass] = tcg_temp_new_i64(); 12051 12052 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12053 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12054 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12055 if (accum) { 12056 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12057 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12058 } 12059 } 12060 } else { 12061 for (pass = 0; pass < maxpass; pass++) { 12062 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12063 NeonGenOne64OpFn *genfn; 12064 static NeonGenOne64OpFn * const fns[2][2] = { 12065 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12066 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12067 }; 12068 12069 genfn = fns[size][u]; 12070 12071 tcg_res[pass] = tcg_temp_new_i64(); 12072 12073 read_vec_element(s, tcg_op, rn, pass, MO_64); 12074 genfn(tcg_res[pass], tcg_op); 12075 12076 if (accum) { 12077 read_vec_element(s, tcg_op, rd, pass, MO_64); 12078 if (size == 0) { 12079 gen_helper_neon_addl_u16(tcg_res[pass], 12080 tcg_res[pass], tcg_op); 12081 } else { 12082 gen_helper_neon_addl_u32(tcg_res[pass], 12083 tcg_res[pass], tcg_op); 12084 } 12085 } 12086 } 12087 } 12088 if (!is_q) { 12089 tcg_res[1] = tcg_constant_i64(0); 12090 } 12091 for (pass = 0; pass < 2; pass++) { 12092 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12093 } 12094 } 12095 12096 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12097 { 12098 /* Implement SHLL and SHLL2 */ 12099 int pass; 12100 int part = is_q ? 2 : 0; 12101 TCGv_i64 tcg_res[2]; 12102 12103 for (pass = 0; pass < 2; pass++) { 12104 static NeonGenWidenFn * const widenfns[3] = { 12105 gen_helper_neon_widen_u8, 12106 gen_helper_neon_widen_u16, 12107 tcg_gen_extu_i32_i64, 12108 }; 12109 NeonGenWidenFn *widenfn = widenfns[size]; 12110 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12111 12112 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12113 tcg_res[pass] = tcg_temp_new_i64(); 12114 widenfn(tcg_res[pass], tcg_op); 12115 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12116 } 12117 12118 for (pass = 0; pass < 2; pass++) { 12119 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12120 } 12121 } 12122 12123 /* AdvSIMD two reg misc 12124 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12125 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12126 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12127 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12128 */ 12129 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12130 { 12131 int size = extract32(insn, 22, 2); 12132 int opcode = extract32(insn, 12, 5); 12133 bool u = extract32(insn, 29, 1); 12134 bool is_q = extract32(insn, 30, 1); 12135 int rn = extract32(insn, 5, 5); 12136 int rd = extract32(insn, 0, 5); 12137 bool need_fpstatus = false; 12138 int rmode = -1; 12139 TCGv_i32 tcg_rmode; 12140 TCGv_ptr tcg_fpstatus; 12141 12142 switch (opcode) { 12143 case 0x0: /* REV64, REV32 */ 12144 case 0x1: /* REV16 */ 12145 handle_rev(s, opcode, u, is_q, size, rn, rd); 12146 return; 12147 case 0x5: /* CNT, NOT, RBIT */ 12148 if (u && size == 0) { 12149 /* NOT */ 12150 break; 12151 } else if (u && size == 1) { 12152 /* RBIT */ 12153 break; 12154 } else if (!u && size == 0) { 12155 /* CNT */ 12156 break; 12157 } 12158 unallocated_encoding(s); 12159 return; 12160 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12161 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12162 if (size == 3) { 12163 unallocated_encoding(s); 12164 return; 12165 } 12166 if (!fp_access_check(s)) { 12167 return; 12168 } 12169 12170 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12171 return; 12172 case 0x4: /* CLS, CLZ */ 12173 if (size == 3) { 12174 unallocated_encoding(s); 12175 return; 12176 } 12177 break; 12178 case 0x2: /* SADDLP, UADDLP */ 12179 case 0x6: /* SADALP, UADALP */ 12180 if (size == 3) { 12181 unallocated_encoding(s); 12182 return; 12183 } 12184 if (!fp_access_check(s)) { 12185 return; 12186 } 12187 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12188 return; 12189 case 0x13: /* SHLL, SHLL2 */ 12190 if (u == 0 || size == 3) { 12191 unallocated_encoding(s); 12192 return; 12193 } 12194 if (!fp_access_check(s)) { 12195 return; 12196 } 12197 handle_shll(s, is_q, size, rn, rd); 12198 return; 12199 case 0xa: /* CMLT */ 12200 if (u == 1) { 12201 unallocated_encoding(s); 12202 return; 12203 } 12204 /* fall through */ 12205 case 0x8: /* CMGT, CMGE */ 12206 case 0x9: /* CMEQ, CMLE */ 12207 case 0xb: /* ABS, NEG */ 12208 if (size == 3 && !is_q) { 12209 unallocated_encoding(s); 12210 return; 12211 } 12212 break; 12213 case 0x3: /* SUQADD, USQADD */ 12214 if (size == 3 && !is_q) { 12215 unallocated_encoding(s); 12216 return; 12217 } 12218 if (!fp_access_check(s)) { 12219 return; 12220 } 12221 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12222 return; 12223 case 0x7: /* SQABS, SQNEG */ 12224 if (size == 3 && !is_q) { 12225 unallocated_encoding(s); 12226 return; 12227 } 12228 break; 12229 case 0xc ... 0xf: 12230 case 0x16 ... 0x1f: 12231 { 12232 /* Floating point: U, size[1] and opcode indicate operation; 12233 * size[0] indicates single or double precision. 12234 */ 12235 int is_double = extract32(size, 0, 1); 12236 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12237 size = is_double ? 3 : 2; 12238 switch (opcode) { 12239 case 0x2f: /* FABS */ 12240 case 0x6f: /* FNEG */ 12241 if (size == 3 && !is_q) { 12242 unallocated_encoding(s); 12243 return; 12244 } 12245 break; 12246 case 0x1d: /* SCVTF */ 12247 case 0x5d: /* UCVTF */ 12248 { 12249 bool is_signed = (opcode == 0x1d) ? true : false; 12250 int elements = is_double ? 2 : is_q ? 4 : 2; 12251 if (is_double && !is_q) { 12252 unallocated_encoding(s); 12253 return; 12254 } 12255 if (!fp_access_check(s)) { 12256 return; 12257 } 12258 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12259 return; 12260 } 12261 case 0x2c: /* FCMGT (zero) */ 12262 case 0x2d: /* FCMEQ (zero) */ 12263 case 0x2e: /* FCMLT (zero) */ 12264 case 0x6c: /* FCMGE (zero) */ 12265 case 0x6d: /* FCMLE (zero) */ 12266 if (size == 3 && !is_q) { 12267 unallocated_encoding(s); 12268 return; 12269 } 12270 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12271 return; 12272 case 0x7f: /* FSQRT */ 12273 if (size == 3 && !is_q) { 12274 unallocated_encoding(s); 12275 return; 12276 } 12277 break; 12278 case 0x1a: /* FCVTNS */ 12279 case 0x1b: /* FCVTMS */ 12280 case 0x3a: /* FCVTPS */ 12281 case 0x3b: /* FCVTZS */ 12282 case 0x5a: /* FCVTNU */ 12283 case 0x5b: /* FCVTMU */ 12284 case 0x7a: /* FCVTPU */ 12285 case 0x7b: /* FCVTZU */ 12286 need_fpstatus = true; 12287 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12288 if (size == 3 && !is_q) { 12289 unallocated_encoding(s); 12290 return; 12291 } 12292 break; 12293 case 0x5c: /* FCVTAU */ 12294 case 0x1c: /* FCVTAS */ 12295 need_fpstatus = true; 12296 rmode = FPROUNDING_TIEAWAY; 12297 if (size == 3 && !is_q) { 12298 unallocated_encoding(s); 12299 return; 12300 } 12301 break; 12302 case 0x3c: /* URECPE */ 12303 if (size == 3) { 12304 unallocated_encoding(s); 12305 return; 12306 } 12307 /* fall through */ 12308 case 0x3d: /* FRECPE */ 12309 case 0x7d: /* FRSQRTE */ 12310 if (size == 3 && !is_q) { 12311 unallocated_encoding(s); 12312 return; 12313 } 12314 if (!fp_access_check(s)) { 12315 return; 12316 } 12317 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12318 return; 12319 case 0x56: /* FCVTXN, FCVTXN2 */ 12320 if (size == 2) { 12321 unallocated_encoding(s); 12322 return; 12323 } 12324 /* fall through */ 12325 case 0x16: /* FCVTN, FCVTN2 */ 12326 /* handle_2misc_narrow does a 2*size -> size operation, but these 12327 * instructions encode the source size rather than dest size. 12328 */ 12329 if (!fp_access_check(s)) { 12330 return; 12331 } 12332 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12333 return; 12334 case 0x36: /* BFCVTN, BFCVTN2 */ 12335 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12336 unallocated_encoding(s); 12337 return; 12338 } 12339 if (!fp_access_check(s)) { 12340 return; 12341 } 12342 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12343 return; 12344 case 0x17: /* FCVTL, FCVTL2 */ 12345 if (!fp_access_check(s)) { 12346 return; 12347 } 12348 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12349 return; 12350 case 0x18: /* FRINTN */ 12351 case 0x19: /* FRINTM */ 12352 case 0x38: /* FRINTP */ 12353 case 0x39: /* FRINTZ */ 12354 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12355 /* fall through */ 12356 case 0x59: /* FRINTX */ 12357 case 0x79: /* FRINTI */ 12358 need_fpstatus = true; 12359 if (size == 3 && !is_q) { 12360 unallocated_encoding(s); 12361 return; 12362 } 12363 break; 12364 case 0x58: /* FRINTA */ 12365 rmode = FPROUNDING_TIEAWAY; 12366 need_fpstatus = true; 12367 if (size == 3 && !is_q) { 12368 unallocated_encoding(s); 12369 return; 12370 } 12371 break; 12372 case 0x7c: /* URSQRTE */ 12373 if (size == 3) { 12374 unallocated_encoding(s); 12375 return; 12376 } 12377 break; 12378 case 0x1e: /* FRINT32Z */ 12379 case 0x1f: /* FRINT64Z */ 12380 rmode = FPROUNDING_ZERO; 12381 /* fall through */ 12382 case 0x5e: /* FRINT32X */ 12383 case 0x5f: /* FRINT64X */ 12384 need_fpstatus = true; 12385 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12386 unallocated_encoding(s); 12387 return; 12388 } 12389 break; 12390 default: 12391 unallocated_encoding(s); 12392 return; 12393 } 12394 break; 12395 } 12396 default: 12397 unallocated_encoding(s); 12398 return; 12399 } 12400 12401 if (!fp_access_check(s)) { 12402 return; 12403 } 12404 12405 if (need_fpstatus || rmode >= 0) { 12406 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12407 } else { 12408 tcg_fpstatus = NULL; 12409 } 12410 if (rmode >= 0) { 12411 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12412 } else { 12413 tcg_rmode = NULL; 12414 } 12415 12416 switch (opcode) { 12417 case 0x5: 12418 if (u && size == 0) { /* NOT */ 12419 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12420 return; 12421 } 12422 break; 12423 case 0x8: /* CMGT, CMGE */ 12424 if (u) { 12425 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12426 } else { 12427 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12428 } 12429 return; 12430 case 0x9: /* CMEQ, CMLE */ 12431 if (u) { 12432 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12433 } else { 12434 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12435 } 12436 return; 12437 case 0xa: /* CMLT */ 12438 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12439 return; 12440 case 0xb: 12441 if (u) { /* ABS, NEG */ 12442 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12443 } else { 12444 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12445 } 12446 return; 12447 } 12448 12449 if (size == 3) { 12450 /* All 64-bit element operations can be shared with scalar 2misc */ 12451 int pass; 12452 12453 /* Coverity claims (size == 3 && !is_q) has been eliminated 12454 * from all paths leading to here. 12455 */ 12456 tcg_debug_assert(is_q); 12457 for (pass = 0; pass < 2; pass++) { 12458 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12459 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12460 12461 read_vec_element(s, tcg_op, rn, pass, MO_64); 12462 12463 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12464 tcg_rmode, tcg_fpstatus); 12465 12466 write_vec_element(s, tcg_res, rd, pass, MO_64); 12467 } 12468 } else { 12469 int pass; 12470 12471 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12472 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12473 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12474 12475 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12476 12477 if (size == 2) { 12478 /* Special cases for 32 bit elements */ 12479 switch (opcode) { 12480 case 0x4: /* CLS */ 12481 if (u) { 12482 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12483 } else { 12484 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12485 } 12486 break; 12487 case 0x7: /* SQABS, SQNEG */ 12488 if (u) { 12489 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12490 } else { 12491 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12492 } 12493 break; 12494 case 0x2f: /* FABS */ 12495 gen_helper_vfp_abss(tcg_res, tcg_op); 12496 break; 12497 case 0x6f: /* FNEG */ 12498 gen_helper_vfp_negs(tcg_res, tcg_op); 12499 break; 12500 case 0x7f: /* FSQRT */ 12501 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12502 break; 12503 case 0x1a: /* FCVTNS */ 12504 case 0x1b: /* FCVTMS */ 12505 case 0x1c: /* FCVTAS */ 12506 case 0x3a: /* FCVTPS */ 12507 case 0x3b: /* FCVTZS */ 12508 gen_helper_vfp_tosls(tcg_res, tcg_op, 12509 tcg_constant_i32(0), tcg_fpstatus); 12510 break; 12511 case 0x5a: /* FCVTNU */ 12512 case 0x5b: /* FCVTMU */ 12513 case 0x5c: /* FCVTAU */ 12514 case 0x7a: /* FCVTPU */ 12515 case 0x7b: /* FCVTZU */ 12516 gen_helper_vfp_touls(tcg_res, tcg_op, 12517 tcg_constant_i32(0), tcg_fpstatus); 12518 break; 12519 case 0x18: /* FRINTN */ 12520 case 0x19: /* FRINTM */ 12521 case 0x38: /* FRINTP */ 12522 case 0x39: /* FRINTZ */ 12523 case 0x58: /* FRINTA */ 12524 case 0x79: /* FRINTI */ 12525 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12526 break; 12527 case 0x59: /* FRINTX */ 12528 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12529 break; 12530 case 0x7c: /* URSQRTE */ 12531 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12532 break; 12533 case 0x1e: /* FRINT32Z */ 12534 case 0x5e: /* FRINT32X */ 12535 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12536 break; 12537 case 0x1f: /* FRINT64Z */ 12538 case 0x5f: /* FRINT64X */ 12539 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12540 break; 12541 default: 12542 g_assert_not_reached(); 12543 } 12544 } else { 12545 /* Use helpers for 8 and 16 bit elements */ 12546 switch (opcode) { 12547 case 0x5: /* CNT, RBIT */ 12548 /* For these two insns size is part of the opcode specifier 12549 * (handled earlier); they always operate on byte elements. 12550 */ 12551 if (u) { 12552 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12553 } else { 12554 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12555 } 12556 break; 12557 case 0x7: /* SQABS, SQNEG */ 12558 { 12559 NeonGenOneOpEnvFn *genfn; 12560 static NeonGenOneOpEnvFn * const fns[2][2] = { 12561 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12562 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12563 }; 12564 genfn = fns[size][u]; 12565 genfn(tcg_res, cpu_env, tcg_op); 12566 break; 12567 } 12568 case 0x4: /* CLS, CLZ */ 12569 if (u) { 12570 if (size == 0) { 12571 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12572 } else { 12573 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12574 } 12575 } else { 12576 if (size == 0) { 12577 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12578 } else { 12579 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12580 } 12581 } 12582 break; 12583 default: 12584 g_assert_not_reached(); 12585 } 12586 } 12587 12588 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12589 } 12590 } 12591 clear_vec_high(s, is_q, rd); 12592 12593 if (tcg_rmode) { 12594 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12595 } 12596 } 12597 12598 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12599 * 12600 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12601 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12602 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12603 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12604 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12605 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12606 * 12607 * This actually covers two groups where scalar access is governed by 12608 * bit 28. A bunch of the instructions (float to integral) only exist 12609 * in the vector form and are un-allocated for the scalar decode. Also 12610 * in the scalar decode Q is always 1. 12611 */ 12612 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12613 { 12614 int fpop, opcode, a, u; 12615 int rn, rd; 12616 bool is_q; 12617 bool is_scalar; 12618 bool only_in_vector = false; 12619 12620 int pass; 12621 TCGv_i32 tcg_rmode = NULL; 12622 TCGv_ptr tcg_fpstatus = NULL; 12623 bool need_fpst = true; 12624 int rmode = -1; 12625 12626 if (!dc_isar_feature(aa64_fp16, s)) { 12627 unallocated_encoding(s); 12628 return; 12629 } 12630 12631 rd = extract32(insn, 0, 5); 12632 rn = extract32(insn, 5, 5); 12633 12634 a = extract32(insn, 23, 1); 12635 u = extract32(insn, 29, 1); 12636 is_scalar = extract32(insn, 28, 1); 12637 is_q = extract32(insn, 30, 1); 12638 12639 opcode = extract32(insn, 12, 5); 12640 fpop = deposit32(opcode, 5, 1, a); 12641 fpop = deposit32(fpop, 6, 1, u); 12642 12643 switch (fpop) { 12644 case 0x1d: /* SCVTF */ 12645 case 0x5d: /* UCVTF */ 12646 { 12647 int elements; 12648 12649 if (is_scalar) { 12650 elements = 1; 12651 } else { 12652 elements = (is_q ? 8 : 4); 12653 } 12654 12655 if (!fp_access_check(s)) { 12656 return; 12657 } 12658 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12659 return; 12660 } 12661 break; 12662 case 0x2c: /* FCMGT (zero) */ 12663 case 0x2d: /* FCMEQ (zero) */ 12664 case 0x2e: /* FCMLT (zero) */ 12665 case 0x6c: /* FCMGE (zero) */ 12666 case 0x6d: /* FCMLE (zero) */ 12667 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12668 return; 12669 case 0x3d: /* FRECPE */ 12670 case 0x3f: /* FRECPX */ 12671 break; 12672 case 0x18: /* FRINTN */ 12673 only_in_vector = true; 12674 rmode = FPROUNDING_TIEEVEN; 12675 break; 12676 case 0x19: /* FRINTM */ 12677 only_in_vector = true; 12678 rmode = FPROUNDING_NEGINF; 12679 break; 12680 case 0x38: /* FRINTP */ 12681 only_in_vector = true; 12682 rmode = FPROUNDING_POSINF; 12683 break; 12684 case 0x39: /* FRINTZ */ 12685 only_in_vector = true; 12686 rmode = FPROUNDING_ZERO; 12687 break; 12688 case 0x58: /* FRINTA */ 12689 only_in_vector = true; 12690 rmode = FPROUNDING_TIEAWAY; 12691 break; 12692 case 0x59: /* FRINTX */ 12693 case 0x79: /* FRINTI */ 12694 only_in_vector = true; 12695 /* current rounding mode */ 12696 break; 12697 case 0x1a: /* FCVTNS */ 12698 rmode = FPROUNDING_TIEEVEN; 12699 break; 12700 case 0x1b: /* FCVTMS */ 12701 rmode = FPROUNDING_NEGINF; 12702 break; 12703 case 0x1c: /* FCVTAS */ 12704 rmode = FPROUNDING_TIEAWAY; 12705 break; 12706 case 0x3a: /* FCVTPS */ 12707 rmode = FPROUNDING_POSINF; 12708 break; 12709 case 0x3b: /* FCVTZS */ 12710 rmode = FPROUNDING_ZERO; 12711 break; 12712 case 0x5a: /* FCVTNU */ 12713 rmode = FPROUNDING_TIEEVEN; 12714 break; 12715 case 0x5b: /* FCVTMU */ 12716 rmode = FPROUNDING_NEGINF; 12717 break; 12718 case 0x5c: /* FCVTAU */ 12719 rmode = FPROUNDING_TIEAWAY; 12720 break; 12721 case 0x7a: /* FCVTPU */ 12722 rmode = FPROUNDING_POSINF; 12723 break; 12724 case 0x7b: /* FCVTZU */ 12725 rmode = FPROUNDING_ZERO; 12726 break; 12727 case 0x2f: /* FABS */ 12728 case 0x6f: /* FNEG */ 12729 need_fpst = false; 12730 break; 12731 case 0x7d: /* FRSQRTE */ 12732 case 0x7f: /* FSQRT (vector) */ 12733 break; 12734 default: 12735 unallocated_encoding(s); 12736 return; 12737 } 12738 12739 12740 /* Check additional constraints for the scalar encoding */ 12741 if (is_scalar) { 12742 if (!is_q) { 12743 unallocated_encoding(s); 12744 return; 12745 } 12746 /* FRINTxx is only in the vector form */ 12747 if (only_in_vector) { 12748 unallocated_encoding(s); 12749 return; 12750 } 12751 } 12752 12753 if (!fp_access_check(s)) { 12754 return; 12755 } 12756 12757 if (rmode >= 0 || need_fpst) { 12758 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12759 } 12760 12761 if (rmode >= 0) { 12762 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12763 } 12764 12765 if (is_scalar) { 12766 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12767 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12768 12769 switch (fpop) { 12770 case 0x1a: /* FCVTNS */ 12771 case 0x1b: /* FCVTMS */ 12772 case 0x1c: /* FCVTAS */ 12773 case 0x3a: /* FCVTPS */ 12774 case 0x3b: /* FCVTZS */ 12775 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12776 break; 12777 case 0x3d: /* FRECPE */ 12778 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12779 break; 12780 case 0x3f: /* FRECPX */ 12781 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12782 break; 12783 case 0x5a: /* FCVTNU */ 12784 case 0x5b: /* FCVTMU */ 12785 case 0x5c: /* FCVTAU */ 12786 case 0x7a: /* FCVTPU */ 12787 case 0x7b: /* FCVTZU */ 12788 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12789 break; 12790 case 0x6f: /* FNEG */ 12791 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12792 break; 12793 case 0x7d: /* FRSQRTE */ 12794 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12795 break; 12796 default: 12797 g_assert_not_reached(); 12798 } 12799 12800 /* limit any sign extension going on */ 12801 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12802 write_fp_sreg(s, rd, tcg_res); 12803 } else { 12804 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12805 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12806 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12807 12808 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12809 12810 switch (fpop) { 12811 case 0x1a: /* FCVTNS */ 12812 case 0x1b: /* FCVTMS */ 12813 case 0x1c: /* FCVTAS */ 12814 case 0x3a: /* FCVTPS */ 12815 case 0x3b: /* FCVTZS */ 12816 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12817 break; 12818 case 0x3d: /* FRECPE */ 12819 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12820 break; 12821 case 0x5a: /* FCVTNU */ 12822 case 0x5b: /* FCVTMU */ 12823 case 0x5c: /* FCVTAU */ 12824 case 0x7a: /* FCVTPU */ 12825 case 0x7b: /* FCVTZU */ 12826 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12827 break; 12828 case 0x18: /* FRINTN */ 12829 case 0x19: /* FRINTM */ 12830 case 0x38: /* FRINTP */ 12831 case 0x39: /* FRINTZ */ 12832 case 0x58: /* FRINTA */ 12833 case 0x79: /* FRINTI */ 12834 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12835 break; 12836 case 0x59: /* FRINTX */ 12837 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12838 break; 12839 case 0x2f: /* FABS */ 12840 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12841 break; 12842 case 0x6f: /* FNEG */ 12843 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12844 break; 12845 case 0x7d: /* FRSQRTE */ 12846 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12847 break; 12848 case 0x7f: /* FSQRT */ 12849 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12850 break; 12851 default: 12852 g_assert_not_reached(); 12853 } 12854 12855 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12856 } 12857 12858 clear_vec_high(s, is_q, rd); 12859 } 12860 12861 if (tcg_rmode) { 12862 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12863 } 12864 } 12865 12866 /* AdvSIMD scalar x indexed element 12867 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12868 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12869 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12870 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12871 * AdvSIMD vector x indexed element 12872 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12873 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12874 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12875 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12876 */ 12877 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12878 { 12879 /* This encoding has two kinds of instruction: 12880 * normal, where we perform elt x idxelt => elt for each 12881 * element in the vector 12882 * long, where we perform elt x idxelt and generate a result of 12883 * double the width of the input element 12884 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12885 */ 12886 bool is_scalar = extract32(insn, 28, 1); 12887 bool is_q = extract32(insn, 30, 1); 12888 bool u = extract32(insn, 29, 1); 12889 int size = extract32(insn, 22, 2); 12890 int l = extract32(insn, 21, 1); 12891 int m = extract32(insn, 20, 1); 12892 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12893 int rm = extract32(insn, 16, 4); 12894 int opcode = extract32(insn, 12, 4); 12895 int h = extract32(insn, 11, 1); 12896 int rn = extract32(insn, 5, 5); 12897 int rd = extract32(insn, 0, 5); 12898 bool is_long = false; 12899 int is_fp = 0; 12900 bool is_fp16 = false; 12901 int index; 12902 TCGv_ptr fpst; 12903 12904 switch (16 * u + opcode) { 12905 case 0x08: /* MUL */ 12906 case 0x10: /* MLA */ 12907 case 0x14: /* MLS */ 12908 if (is_scalar) { 12909 unallocated_encoding(s); 12910 return; 12911 } 12912 break; 12913 case 0x02: /* SMLAL, SMLAL2 */ 12914 case 0x12: /* UMLAL, UMLAL2 */ 12915 case 0x06: /* SMLSL, SMLSL2 */ 12916 case 0x16: /* UMLSL, UMLSL2 */ 12917 case 0x0a: /* SMULL, SMULL2 */ 12918 case 0x1a: /* UMULL, UMULL2 */ 12919 if (is_scalar) { 12920 unallocated_encoding(s); 12921 return; 12922 } 12923 is_long = true; 12924 break; 12925 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12926 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12927 case 0x0b: /* SQDMULL, SQDMULL2 */ 12928 is_long = true; 12929 break; 12930 case 0x0c: /* SQDMULH */ 12931 case 0x0d: /* SQRDMULH */ 12932 break; 12933 case 0x01: /* FMLA */ 12934 case 0x05: /* FMLS */ 12935 case 0x09: /* FMUL */ 12936 case 0x19: /* FMULX */ 12937 is_fp = 1; 12938 break; 12939 case 0x1d: /* SQRDMLAH */ 12940 case 0x1f: /* SQRDMLSH */ 12941 if (!dc_isar_feature(aa64_rdm, s)) { 12942 unallocated_encoding(s); 12943 return; 12944 } 12945 break; 12946 case 0x0e: /* SDOT */ 12947 case 0x1e: /* UDOT */ 12948 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12949 unallocated_encoding(s); 12950 return; 12951 } 12952 break; 12953 case 0x0f: 12954 switch (size) { 12955 case 0: /* SUDOT */ 12956 case 2: /* USDOT */ 12957 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12958 unallocated_encoding(s); 12959 return; 12960 } 12961 size = MO_32; 12962 break; 12963 case 1: /* BFDOT */ 12964 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12965 unallocated_encoding(s); 12966 return; 12967 } 12968 size = MO_32; 12969 break; 12970 case 3: /* BFMLAL{B,T} */ 12971 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12972 unallocated_encoding(s); 12973 return; 12974 } 12975 /* can't set is_fp without other incorrect size checks */ 12976 size = MO_16; 12977 break; 12978 default: 12979 unallocated_encoding(s); 12980 return; 12981 } 12982 break; 12983 case 0x11: /* FCMLA #0 */ 12984 case 0x13: /* FCMLA #90 */ 12985 case 0x15: /* FCMLA #180 */ 12986 case 0x17: /* FCMLA #270 */ 12987 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12988 unallocated_encoding(s); 12989 return; 12990 } 12991 is_fp = 2; 12992 break; 12993 case 0x00: /* FMLAL */ 12994 case 0x04: /* FMLSL */ 12995 case 0x18: /* FMLAL2 */ 12996 case 0x1c: /* FMLSL2 */ 12997 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12998 unallocated_encoding(s); 12999 return; 13000 } 13001 size = MO_16; 13002 /* is_fp, but we pass cpu_env not fp_status. */ 13003 break; 13004 default: 13005 unallocated_encoding(s); 13006 return; 13007 } 13008 13009 switch (is_fp) { 13010 case 1: /* normal fp */ 13011 /* convert insn encoded size to MemOp size */ 13012 switch (size) { 13013 case 0: /* half-precision */ 13014 size = MO_16; 13015 is_fp16 = true; 13016 break; 13017 case MO_32: /* single precision */ 13018 case MO_64: /* double precision */ 13019 break; 13020 default: 13021 unallocated_encoding(s); 13022 return; 13023 } 13024 break; 13025 13026 case 2: /* complex fp */ 13027 /* Each indexable element is a complex pair. */ 13028 size += 1; 13029 switch (size) { 13030 case MO_32: 13031 if (h && !is_q) { 13032 unallocated_encoding(s); 13033 return; 13034 } 13035 is_fp16 = true; 13036 break; 13037 case MO_64: 13038 break; 13039 default: 13040 unallocated_encoding(s); 13041 return; 13042 } 13043 break; 13044 13045 default: /* integer */ 13046 switch (size) { 13047 case MO_8: 13048 case MO_64: 13049 unallocated_encoding(s); 13050 return; 13051 } 13052 break; 13053 } 13054 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13055 unallocated_encoding(s); 13056 return; 13057 } 13058 13059 /* Given MemOp size, adjust register and indexing. */ 13060 switch (size) { 13061 case MO_16: 13062 index = h << 2 | l << 1 | m; 13063 break; 13064 case MO_32: 13065 index = h << 1 | l; 13066 rm |= m << 4; 13067 break; 13068 case MO_64: 13069 if (l || !is_q) { 13070 unallocated_encoding(s); 13071 return; 13072 } 13073 index = h; 13074 rm |= m << 4; 13075 break; 13076 default: 13077 g_assert_not_reached(); 13078 } 13079 13080 if (!fp_access_check(s)) { 13081 return; 13082 } 13083 13084 if (is_fp) { 13085 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13086 } else { 13087 fpst = NULL; 13088 } 13089 13090 switch (16 * u + opcode) { 13091 case 0x0e: /* SDOT */ 13092 case 0x1e: /* UDOT */ 13093 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13094 u ? gen_helper_gvec_udot_idx_b 13095 : gen_helper_gvec_sdot_idx_b); 13096 return; 13097 case 0x0f: 13098 switch (extract32(insn, 22, 2)) { 13099 case 0: /* SUDOT */ 13100 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13101 gen_helper_gvec_sudot_idx_b); 13102 return; 13103 case 1: /* BFDOT */ 13104 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13105 gen_helper_gvec_bfdot_idx); 13106 return; 13107 case 2: /* USDOT */ 13108 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13109 gen_helper_gvec_usdot_idx_b); 13110 return; 13111 case 3: /* BFMLAL{B,T} */ 13112 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13113 gen_helper_gvec_bfmlal_idx); 13114 return; 13115 } 13116 g_assert_not_reached(); 13117 case 0x11: /* FCMLA #0 */ 13118 case 0x13: /* FCMLA #90 */ 13119 case 0x15: /* FCMLA #180 */ 13120 case 0x17: /* FCMLA #270 */ 13121 { 13122 int rot = extract32(insn, 13, 2); 13123 int data = (index << 2) | rot; 13124 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13125 vec_full_reg_offset(s, rn), 13126 vec_full_reg_offset(s, rm), 13127 vec_full_reg_offset(s, rd), fpst, 13128 is_q ? 16 : 8, vec_full_reg_size(s), data, 13129 size == MO_64 13130 ? gen_helper_gvec_fcmlas_idx 13131 : gen_helper_gvec_fcmlah_idx); 13132 } 13133 return; 13134 13135 case 0x00: /* FMLAL */ 13136 case 0x04: /* FMLSL */ 13137 case 0x18: /* FMLAL2 */ 13138 case 0x1c: /* FMLSL2 */ 13139 { 13140 int is_s = extract32(opcode, 2, 1); 13141 int is_2 = u; 13142 int data = (index << 2) | (is_2 << 1) | is_s; 13143 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13144 vec_full_reg_offset(s, rn), 13145 vec_full_reg_offset(s, rm), cpu_env, 13146 is_q ? 16 : 8, vec_full_reg_size(s), 13147 data, gen_helper_gvec_fmlal_idx_a64); 13148 } 13149 return; 13150 13151 case 0x08: /* MUL */ 13152 if (!is_long && !is_scalar) { 13153 static gen_helper_gvec_3 * const fns[3] = { 13154 gen_helper_gvec_mul_idx_h, 13155 gen_helper_gvec_mul_idx_s, 13156 gen_helper_gvec_mul_idx_d, 13157 }; 13158 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13159 vec_full_reg_offset(s, rn), 13160 vec_full_reg_offset(s, rm), 13161 is_q ? 16 : 8, vec_full_reg_size(s), 13162 index, fns[size - 1]); 13163 return; 13164 } 13165 break; 13166 13167 case 0x10: /* MLA */ 13168 if (!is_long && !is_scalar) { 13169 static gen_helper_gvec_4 * const fns[3] = { 13170 gen_helper_gvec_mla_idx_h, 13171 gen_helper_gvec_mla_idx_s, 13172 gen_helper_gvec_mla_idx_d, 13173 }; 13174 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13175 vec_full_reg_offset(s, rn), 13176 vec_full_reg_offset(s, rm), 13177 vec_full_reg_offset(s, rd), 13178 is_q ? 16 : 8, vec_full_reg_size(s), 13179 index, fns[size - 1]); 13180 return; 13181 } 13182 break; 13183 13184 case 0x14: /* MLS */ 13185 if (!is_long && !is_scalar) { 13186 static gen_helper_gvec_4 * const fns[3] = { 13187 gen_helper_gvec_mls_idx_h, 13188 gen_helper_gvec_mls_idx_s, 13189 gen_helper_gvec_mls_idx_d, 13190 }; 13191 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13192 vec_full_reg_offset(s, rn), 13193 vec_full_reg_offset(s, rm), 13194 vec_full_reg_offset(s, rd), 13195 is_q ? 16 : 8, vec_full_reg_size(s), 13196 index, fns[size - 1]); 13197 return; 13198 } 13199 break; 13200 } 13201 13202 if (size == 3) { 13203 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13204 int pass; 13205 13206 assert(is_fp && is_q && !is_long); 13207 13208 read_vec_element(s, tcg_idx, rm, index, MO_64); 13209 13210 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13211 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13212 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13213 13214 read_vec_element(s, tcg_op, rn, pass, MO_64); 13215 13216 switch (16 * u + opcode) { 13217 case 0x05: /* FMLS */ 13218 /* As usual for ARM, separate negation for fused multiply-add */ 13219 gen_helper_vfp_negd(tcg_op, tcg_op); 13220 /* fall through */ 13221 case 0x01: /* FMLA */ 13222 read_vec_element(s, tcg_res, rd, pass, MO_64); 13223 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13224 break; 13225 case 0x09: /* FMUL */ 13226 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13227 break; 13228 case 0x19: /* FMULX */ 13229 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13230 break; 13231 default: 13232 g_assert_not_reached(); 13233 } 13234 13235 write_vec_element(s, tcg_res, rd, pass, MO_64); 13236 } 13237 13238 clear_vec_high(s, !is_scalar, rd); 13239 } else if (!is_long) { 13240 /* 32 bit floating point, or 16 or 32 bit integer. 13241 * For the 16 bit scalar case we use the usual Neon helpers and 13242 * rely on the fact that 0 op 0 == 0 with no side effects. 13243 */ 13244 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13245 int pass, maxpasses; 13246 13247 if (is_scalar) { 13248 maxpasses = 1; 13249 } else { 13250 maxpasses = is_q ? 4 : 2; 13251 } 13252 13253 read_vec_element_i32(s, tcg_idx, rm, index, size); 13254 13255 if (size == 1 && !is_scalar) { 13256 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13257 * the index into both halves of the 32 bit tcg_idx and then use 13258 * the usual Neon helpers. 13259 */ 13260 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13261 } 13262 13263 for (pass = 0; pass < maxpasses; pass++) { 13264 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13265 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13266 13267 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13268 13269 switch (16 * u + opcode) { 13270 case 0x08: /* MUL */ 13271 case 0x10: /* MLA */ 13272 case 0x14: /* MLS */ 13273 { 13274 static NeonGenTwoOpFn * const fns[2][2] = { 13275 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13276 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13277 }; 13278 NeonGenTwoOpFn *genfn; 13279 bool is_sub = opcode == 0x4; 13280 13281 if (size == 1) { 13282 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13283 } else { 13284 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13285 } 13286 if (opcode == 0x8) { 13287 break; 13288 } 13289 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13290 genfn = fns[size - 1][is_sub]; 13291 genfn(tcg_res, tcg_op, tcg_res); 13292 break; 13293 } 13294 case 0x05: /* FMLS */ 13295 case 0x01: /* FMLA */ 13296 read_vec_element_i32(s, tcg_res, rd, pass, 13297 is_scalar ? size : MO_32); 13298 switch (size) { 13299 case 1: 13300 if (opcode == 0x5) { 13301 /* As usual for ARM, separate negation for fused 13302 * multiply-add */ 13303 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13304 } 13305 if (is_scalar) { 13306 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13307 tcg_res, fpst); 13308 } else { 13309 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13310 tcg_res, fpst); 13311 } 13312 break; 13313 case 2: 13314 if (opcode == 0x5) { 13315 /* As usual for ARM, separate negation for 13316 * fused multiply-add */ 13317 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13318 } 13319 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13320 tcg_res, fpst); 13321 break; 13322 default: 13323 g_assert_not_reached(); 13324 } 13325 break; 13326 case 0x09: /* FMUL */ 13327 switch (size) { 13328 case 1: 13329 if (is_scalar) { 13330 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13331 tcg_idx, fpst); 13332 } else { 13333 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13334 tcg_idx, fpst); 13335 } 13336 break; 13337 case 2: 13338 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13339 break; 13340 default: 13341 g_assert_not_reached(); 13342 } 13343 break; 13344 case 0x19: /* FMULX */ 13345 switch (size) { 13346 case 1: 13347 if (is_scalar) { 13348 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13349 tcg_idx, fpst); 13350 } else { 13351 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13352 tcg_idx, fpst); 13353 } 13354 break; 13355 case 2: 13356 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13357 break; 13358 default: 13359 g_assert_not_reached(); 13360 } 13361 break; 13362 case 0x0c: /* SQDMULH */ 13363 if (size == 1) { 13364 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13365 tcg_op, tcg_idx); 13366 } else { 13367 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13368 tcg_op, tcg_idx); 13369 } 13370 break; 13371 case 0x0d: /* SQRDMULH */ 13372 if (size == 1) { 13373 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13374 tcg_op, tcg_idx); 13375 } else { 13376 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13377 tcg_op, tcg_idx); 13378 } 13379 break; 13380 case 0x1d: /* SQRDMLAH */ 13381 read_vec_element_i32(s, tcg_res, rd, pass, 13382 is_scalar ? size : MO_32); 13383 if (size == 1) { 13384 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13385 tcg_op, tcg_idx, tcg_res); 13386 } else { 13387 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13388 tcg_op, tcg_idx, tcg_res); 13389 } 13390 break; 13391 case 0x1f: /* SQRDMLSH */ 13392 read_vec_element_i32(s, tcg_res, rd, pass, 13393 is_scalar ? size : MO_32); 13394 if (size == 1) { 13395 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13396 tcg_op, tcg_idx, tcg_res); 13397 } else { 13398 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13399 tcg_op, tcg_idx, tcg_res); 13400 } 13401 break; 13402 default: 13403 g_assert_not_reached(); 13404 } 13405 13406 if (is_scalar) { 13407 write_fp_sreg(s, rd, tcg_res); 13408 } else { 13409 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13410 } 13411 } 13412 13413 clear_vec_high(s, is_q, rd); 13414 } else { 13415 /* long ops: 16x16->32 or 32x32->64 */ 13416 TCGv_i64 tcg_res[2]; 13417 int pass; 13418 bool satop = extract32(opcode, 0, 1); 13419 MemOp memop = MO_32; 13420 13421 if (satop || !u) { 13422 memop |= MO_SIGN; 13423 } 13424 13425 if (size == 2) { 13426 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13427 13428 read_vec_element(s, tcg_idx, rm, index, memop); 13429 13430 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13431 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13432 TCGv_i64 tcg_passres; 13433 int passelt; 13434 13435 if (is_scalar) { 13436 passelt = 0; 13437 } else { 13438 passelt = pass + (is_q * 2); 13439 } 13440 13441 read_vec_element(s, tcg_op, rn, passelt, memop); 13442 13443 tcg_res[pass] = tcg_temp_new_i64(); 13444 13445 if (opcode == 0xa || opcode == 0xb) { 13446 /* Non-accumulating ops */ 13447 tcg_passres = tcg_res[pass]; 13448 } else { 13449 tcg_passres = tcg_temp_new_i64(); 13450 } 13451 13452 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13453 13454 if (satop) { 13455 /* saturating, doubling */ 13456 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13457 tcg_passres, tcg_passres); 13458 } 13459 13460 if (opcode == 0xa || opcode == 0xb) { 13461 continue; 13462 } 13463 13464 /* Accumulating op: handle accumulate step */ 13465 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13466 13467 switch (opcode) { 13468 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13469 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13470 break; 13471 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13472 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13473 break; 13474 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13475 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13476 /* fall through */ 13477 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13478 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13479 tcg_res[pass], 13480 tcg_passres); 13481 break; 13482 default: 13483 g_assert_not_reached(); 13484 } 13485 } 13486 13487 clear_vec_high(s, !is_scalar, rd); 13488 } else { 13489 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13490 13491 assert(size == 1); 13492 read_vec_element_i32(s, tcg_idx, rm, index, size); 13493 13494 if (!is_scalar) { 13495 /* The simplest way to handle the 16x16 indexed ops is to 13496 * duplicate the index into both halves of the 32 bit tcg_idx 13497 * and then use the usual Neon helpers. 13498 */ 13499 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13500 } 13501 13502 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13503 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13504 TCGv_i64 tcg_passres; 13505 13506 if (is_scalar) { 13507 read_vec_element_i32(s, tcg_op, rn, pass, size); 13508 } else { 13509 read_vec_element_i32(s, tcg_op, rn, 13510 pass + (is_q * 2), MO_32); 13511 } 13512 13513 tcg_res[pass] = tcg_temp_new_i64(); 13514 13515 if (opcode == 0xa || opcode == 0xb) { 13516 /* Non-accumulating ops */ 13517 tcg_passres = tcg_res[pass]; 13518 } else { 13519 tcg_passres = tcg_temp_new_i64(); 13520 } 13521 13522 if (memop & MO_SIGN) { 13523 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13524 } else { 13525 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13526 } 13527 if (satop) { 13528 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13529 tcg_passres, tcg_passres); 13530 } 13531 13532 if (opcode == 0xa || opcode == 0xb) { 13533 continue; 13534 } 13535 13536 /* Accumulating op: handle accumulate step */ 13537 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13538 13539 switch (opcode) { 13540 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13541 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13542 tcg_passres); 13543 break; 13544 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13545 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13546 tcg_passres); 13547 break; 13548 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13549 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13550 /* fall through */ 13551 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13552 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13553 tcg_res[pass], 13554 tcg_passres); 13555 break; 13556 default: 13557 g_assert_not_reached(); 13558 } 13559 } 13560 13561 if (is_scalar) { 13562 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13563 } 13564 } 13565 13566 if (is_scalar) { 13567 tcg_res[1] = tcg_constant_i64(0); 13568 } 13569 13570 for (pass = 0; pass < 2; pass++) { 13571 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13572 } 13573 } 13574 } 13575 13576 /* Crypto AES 13577 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13578 * +-----------------+------+-----------+--------+-----+------+------+ 13579 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13580 * +-----------------+------+-----------+--------+-----+------+------+ 13581 */ 13582 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13583 { 13584 int size = extract32(insn, 22, 2); 13585 int opcode = extract32(insn, 12, 5); 13586 int rn = extract32(insn, 5, 5); 13587 int rd = extract32(insn, 0, 5); 13588 int decrypt; 13589 gen_helper_gvec_2 *genfn2 = NULL; 13590 gen_helper_gvec_3 *genfn3 = NULL; 13591 13592 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13593 unallocated_encoding(s); 13594 return; 13595 } 13596 13597 switch (opcode) { 13598 case 0x4: /* AESE */ 13599 decrypt = 0; 13600 genfn3 = gen_helper_crypto_aese; 13601 break; 13602 case 0x6: /* AESMC */ 13603 decrypt = 0; 13604 genfn2 = gen_helper_crypto_aesmc; 13605 break; 13606 case 0x5: /* AESD */ 13607 decrypt = 1; 13608 genfn3 = gen_helper_crypto_aese; 13609 break; 13610 case 0x7: /* AESIMC */ 13611 decrypt = 1; 13612 genfn2 = gen_helper_crypto_aesmc; 13613 break; 13614 default: 13615 unallocated_encoding(s); 13616 return; 13617 } 13618 13619 if (!fp_access_check(s)) { 13620 return; 13621 } 13622 if (genfn2) { 13623 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13624 } else { 13625 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13626 } 13627 } 13628 13629 /* Crypto three-reg SHA 13630 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13631 * +-----------------+------+---+------+---+--------+-----+------+------+ 13632 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13633 * +-----------------+------+---+------+---+--------+-----+------+------+ 13634 */ 13635 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13636 { 13637 int size = extract32(insn, 22, 2); 13638 int opcode = extract32(insn, 12, 3); 13639 int rm = extract32(insn, 16, 5); 13640 int rn = extract32(insn, 5, 5); 13641 int rd = extract32(insn, 0, 5); 13642 gen_helper_gvec_3 *genfn; 13643 bool feature; 13644 13645 if (size != 0) { 13646 unallocated_encoding(s); 13647 return; 13648 } 13649 13650 switch (opcode) { 13651 case 0: /* SHA1C */ 13652 genfn = gen_helper_crypto_sha1c; 13653 feature = dc_isar_feature(aa64_sha1, s); 13654 break; 13655 case 1: /* SHA1P */ 13656 genfn = gen_helper_crypto_sha1p; 13657 feature = dc_isar_feature(aa64_sha1, s); 13658 break; 13659 case 2: /* SHA1M */ 13660 genfn = gen_helper_crypto_sha1m; 13661 feature = dc_isar_feature(aa64_sha1, s); 13662 break; 13663 case 3: /* SHA1SU0 */ 13664 genfn = gen_helper_crypto_sha1su0; 13665 feature = dc_isar_feature(aa64_sha1, s); 13666 break; 13667 case 4: /* SHA256H */ 13668 genfn = gen_helper_crypto_sha256h; 13669 feature = dc_isar_feature(aa64_sha256, s); 13670 break; 13671 case 5: /* SHA256H2 */ 13672 genfn = gen_helper_crypto_sha256h2; 13673 feature = dc_isar_feature(aa64_sha256, s); 13674 break; 13675 case 6: /* SHA256SU1 */ 13676 genfn = gen_helper_crypto_sha256su1; 13677 feature = dc_isar_feature(aa64_sha256, s); 13678 break; 13679 default: 13680 unallocated_encoding(s); 13681 return; 13682 } 13683 13684 if (!feature) { 13685 unallocated_encoding(s); 13686 return; 13687 } 13688 13689 if (!fp_access_check(s)) { 13690 return; 13691 } 13692 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13693 } 13694 13695 /* Crypto two-reg SHA 13696 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13697 * +-----------------+------+-----------+--------+-----+------+------+ 13698 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13699 * +-----------------+------+-----------+--------+-----+------+------+ 13700 */ 13701 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13702 { 13703 int size = extract32(insn, 22, 2); 13704 int opcode = extract32(insn, 12, 5); 13705 int rn = extract32(insn, 5, 5); 13706 int rd = extract32(insn, 0, 5); 13707 gen_helper_gvec_2 *genfn; 13708 bool feature; 13709 13710 if (size != 0) { 13711 unallocated_encoding(s); 13712 return; 13713 } 13714 13715 switch (opcode) { 13716 case 0: /* SHA1H */ 13717 feature = dc_isar_feature(aa64_sha1, s); 13718 genfn = gen_helper_crypto_sha1h; 13719 break; 13720 case 1: /* SHA1SU1 */ 13721 feature = dc_isar_feature(aa64_sha1, s); 13722 genfn = gen_helper_crypto_sha1su1; 13723 break; 13724 case 2: /* SHA256SU0 */ 13725 feature = dc_isar_feature(aa64_sha256, s); 13726 genfn = gen_helper_crypto_sha256su0; 13727 break; 13728 default: 13729 unallocated_encoding(s); 13730 return; 13731 } 13732 13733 if (!feature) { 13734 unallocated_encoding(s); 13735 return; 13736 } 13737 13738 if (!fp_access_check(s)) { 13739 return; 13740 } 13741 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13742 } 13743 13744 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13745 { 13746 tcg_gen_rotli_i64(d, m, 1); 13747 tcg_gen_xor_i64(d, d, n); 13748 } 13749 13750 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13751 { 13752 tcg_gen_rotli_vec(vece, d, m, 1); 13753 tcg_gen_xor_vec(vece, d, d, n); 13754 } 13755 13756 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13757 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13758 { 13759 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13760 static const GVecGen3 op = { 13761 .fni8 = gen_rax1_i64, 13762 .fniv = gen_rax1_vec, 13763 .opt_opc = vecop_list, 13764 .fno = gen_helper_crypto_rax1, 13765 .vece = MO_64, 13766 }; 13767 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13768 } 13769 13770 /* Crypto three-reg SHA512 13771 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13772 * +-----------------------+------+---+---+-----+--------+------+------+ 13773 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13774 * +-----------------------+------+---+---+-----+--------+------+------+ 13775 */ 13776 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13777 { 13778 int opcode = extract32(insn, 10, 2); 13779 int o = extract32(insn, 14, 1); 13780 int rm = extract32(insn, 16, 5); 13781 int rn = extract32(insn, 5, 5); 13782 int rd = extract32(insn, 0, 5); 13783 bool feature; 13784 gen_helper_gvec_3 *oolfn = NULL; 13785 GVecGen3Fn *gvecfn = NULL; 13786 13787 if (o == 0) { 13788 switch (opcode) { 13789 case 0: /* SHA512H */ 13790 feature = dc_isar_feature(aa64_sha512, s); 13791 oolfn = gen_helper_crypto_sha512h; 13792 break; 13793 case 1: /* SHA512H2 */ 13794 feature = dc_isar_feature(aa64_sha512, s); 13795 oolfn = gen_helper_crypto_sha512h2; 13796 break; 13797 case 2: /* SHA512SU1 */ 13798 feature = dc_isar_feature(aa64_sha512, s); 13799 oolfn = gen_helper_crypto_sha512su1; 13800 break; 13801 case 3: /* RAX1 */ 13802 feature = dc_isar_feature(aa64_sha3, s); 13803 gvecfn = gen_gvec_rax1; 13804 break; 13805 default: 13806 g_assert_not_reached(); 13807 } 13808 } else { 13809 switch (opcode) { 13810 case 0: /* SM3PARTW1 */ 13811 feature = dc_isar_feature(aa64_sm3, s); 13812 oolfn = gen_helper_crypto_sm3partw1; 13813 break; 13814 case 1: /* SM3PARTW2 */ 13815 feature = dc_isar_feature(aa64_sm3, s); 13816 oolfn = gen_helper_crypto_sm3partw2; 13817 break; 13818 case 2: /* SM4EKEY */ 13819 feature = dc_isar_feature(aa64_sm4, s); 13820 oolfn = gen_helper_crypto_sm4ekey; 13821 break; 13822 default: 13823 unallocated_encoding(s); 13824 return; 13825 } 13826 } 13827 13828 if (!feature) { 13829 unallocated_encoding(s); 13830 return; 13831 } 13832 13833 if (!fp_access_check(s)) { 13834 return; 13835 } 13836 13837 if (oolfn) { 13838 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13839 } else { 13840 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13841 } 13842 } 13843 13844 /* Crypto two-reg SHA512 13845 * 31 12 11 10 9 5 4 0 13846 * +-----------------------------------------+--------+------+------+ 13847 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13848 * +-----------------------------------------+--------+------+------+ 13849 */ 13850 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13851 { 13852 int opcode = extract32(insn, 10, 2); 13853 int rn = extract32(insn, 5, 5); 13854 int rd = extract32(insn, 0, 5); 13855 bool feature; 13856 13857 switch (opcode) { 13858 case 0: /* SHA512SU0 */ 13859 feature = dc_isar_feature(aa64_sha512, s); 13860 break; 13861 case 1: /* SM4E */ 13862 feature = dc_isar_feature(aa64_sm4, s); 13863 break; 13864 default: 13865 unallocated_encoding(s); 13866 return; 13867 } 13868 13869 if (!feature) { 13870 unallocated_encoding(s); 13871 return; 13872 } 13873 13874 if (!fp_access_check(s)) { 13875 return; 13876 } 13877 13878 switch (opcode) { 13879 case 0: /* SHA512SU0 */ 13880 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13881 break; 13882 case 1: /* SM4E */ 13883 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13884 break; 13885 default: 13886 g_assert_not_reached(); 13887 } 13888 } 13889 13890 /* Crypto four-register 13891 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13892 * +-------------------+-----+------+---+------+------+------+ 13893 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13894 * +-------------------+-----+------+---+------+------+------+ 13895 */ 13896 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13897 { 13898 int op0 = extract32(insn, 21, 2); 13899 int rm = extract32(insn, 16, 5); 13900 int ra = extract32(insn, 10, 5); 13901 int rn = extract32(insn, 5, 5); 13902 int rd = extract32(insn, 0, 5); 13903 bool feature; 13904 13905 switch (op0) { 13906 case 0: /* EOR3 */ 13907 case 1: /* BCAX */ 13908 feature = dc_isar_feature(aa64_sha3, s); 13909 break; 13910 case 2: /* SM3SS1 */ 13911 feature = dc_isar_feature(aa64_sm3, s); 13912 break; 13913 default: 13914 unallocated_encoding(s); 13915 return; 13916 } 13917 13918 if (!feature) { 13919 unallocated_encoding(s); 13920 return; 13921 } 13922 13923 if (!fp_access_check(s)) { 13924 return; 13925 } 13926 13927 if (op0 < 2) { 13928 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13929 int pass; 13930 13931 tcg_op1 = tcg_temp_new_i64(); 13932 tcg_op2 = tcg_temp_new_i64(); 13933 tcg_op3 = tcg_temp_new_i64(); 13934 tcg_res[0] = tcg_temp_new_i64(); 13935 tcg_res[1] = tcg_temp_new_i64(); 13936 13937 for (pass = 0; pass < 2; pass++) { 13938 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13939 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13940 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13941 13942 if (op0 == 0) { 13943 /* EOR3 */ 13944 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13945 } else { 13946 /* BCAX */ 13947 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13948 } 13949 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13950 } 13951 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13952 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13953 } else { 13954 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13955 13956 tcg_op1 = tcg_temp_new_i32(); 13957 tcg_op2 = tcg_temp_new_i32(); 13958 tcg_op3 = tcg_temp_new_i32(); 13959 tcg_res = tcg_temp_new_i32(); 13960 tcg_zero = tcg_constant_i32(0); 13961 13962 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13963 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13964 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13965 13966 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13967 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13968 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13969 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13970 13971 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13972 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13973 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13974 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13975 } 13976 } 13977 13978 /* Crypto XAR 13979 * 31 21 20 16 15 10 9 5 4 0 13980 * +-----------------------+------+--------+------+------+ 13981 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13982 * +-----------------------+------+--------+------+------+ 13983 */ 13984 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13985 { 13986 int rm = extract32(insn, 16, 5); 13987 int imm6 = extract32(insn, 10, 6); 13988 int rn = extract32(insn, 5, 5); 13989 int rd = extract32(insn, 0, 5); 13990 13991 if (!dc_isar_feature(aa64_sha3, s)) { 13992 unallocated_encoding(s); 13993 return; 13994 } 13995 13996 if (!fp_access_check(s)) { 13997 return; 13998 } 13999 14000 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 14001 vec_full_reg_offset(s, rn), 14002 vec_full_reg_offset(s, rm), imm6, 16, 14003 vec_full_reg_size(s)); 14004 } 14005 14006 /* Crypto three-reg imm2 14007 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 14008 * +-----------------------+------+-----+------+--------+------+------+ 14009 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 14010 * +-----------------------+------+-----+------+--------+------+------+ 14011 */ 14012 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 14013 { 14014 static gen_helper_gvec_3 * const fns[4] = { 14015 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 14016 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 14017 }; 14018 int opcode = extract32(insn, 10, 2); 14019 int imm2 = extract32(insn, 12, 2); 14020 int rm = extract32(insn, 16, 5); 14021 int rn = extract32(insn, 5, 5); 14022 int rd = extract32(insn, 0, 5); 14023 14024 if (!dc_isar_feature(aa64_sm3, s)) { 14025 unallocated_encoding(s); 14026 return; 14027 } 14028 14029 if (!fp_access_check(s)) { 14030 return; 14031 } 14032 14033 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14034 } 14035 14036 /* C3.6 Data processing - SIMD, inc Crypto 14037 * 14038 * As the decode gets a little complex we are using a table based 14039 * approach for this part of the decode. 14040 */ 14041 static const AArch64DecodeTable data_proc_simd[] = { 14042 /* pattern , mask , fn */ 14043 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14044 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14045 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14046 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14047 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14048 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14049 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14050 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14051 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14052 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14053 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14054 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14055 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14056 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14057 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14058 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14059 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14060 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14061 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14062 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14063 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14064 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14065 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14066 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14067 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14068 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14069 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14070 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14071 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14072 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14073 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14074 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14075 { 0x00000000, 0x00000000, NULL } 14076 }; 14077 14078 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14079 { 14080 /* Note that this is called with all non-FP cases from 14081 * table C3-6 so it must UNDEF for entries not specifically 14082 * allocated to instructions in that table. 14083 */ 14084 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14085 if (fn) { 14086 fn(s, insn); 14087 } else { 14088 unallocated_encoding(s); 14089 } 14090 } 14091 14092 /* C3.6 Data processing - SIMD and floating point */ 14093 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14094 { 14095 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14096 disas_data_proc_fp(s, insn); 14097 } else { 14098 /* SIMD, including crypto */ 14099 disas_data_proc_simd(s, insn); 14100 } 14101 } 14102 14103 /* 14104 * Include the generated SME FA64 decoder. 14105 */ 14106 14107 #include "decode-sme-fa64.c.inc" 14108 14109 static bool trans_OK(DisasContext *s, arg_OK *a) 14110 { 14111 return true; 14112 } 14113 14114 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14115 { 14116 s->is_nonstreaming = true; 14117 return true; 14118 } 14119 14120 /** 14121 * is_guarded_page: 14122 * @env: The cpu environment 14123 * @s: The DisasContext 14124 * 14125 * Return true if the page is guarded. 14126 */ 14127 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14128 { 14129 uint64_t addr = s->base.pc_first; 14130 #ifdef CONFIG_USER_ONLY 14131 return page_get_flags(addr) & PAGE_BTI; 14132 #else 14133 CPUTLBEntryFull *full; 14134 void *host; 14135 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14136 int flags; 14137 14138 /* 14139 * We test this immediately after reading an insn, which means 14140 * that the TLB entry must be present and valid, and thus this 14141 * access will never raise an exception. 14142 */ 14143 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14144 false, &host, &full, 0); 14145 assert(!(flags & TLB_INVALID_MASK)); 14146 14147 return full->guarded; 14148 #endif 14149 } 14150 14151 /** 14152 * btype_destination_ok: 14153 * @insn: The instruction at the branch destination 14154 * @bt: SCTLR_ELx.BT 14155 * @btype: PSTATE.BTYPE, and is non-zero 14156 * 14157 * On a guarded page, there are a limited number of insns 14158 * that may be present at the branch target: 14159 * - branch target identifiers, 14160 * - paciasp, pacibsp, 14161 * - BRK insn 14162 * - HLT insn 14163 * Anything else causes a Branch Target Exception. 14164 * 14165 * Return true if the branch is compatible, false to raise BTITRAP. 14166 */ 14167 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14168 { 14169 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14170 /* HINT space */ 14171 switch (extract32(insn, 5, 7)) { 14172 case 0b011001: /* PACIASP */ 14173 case 0b011011: /* PACIBSP */ 14174 /* 14175 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14176 * with btype == 3. Otherwise all btype are ok. 14177 */ 14178 return !bt || btype != 3; 14179 case 0b100000: /* BTI */ 14180 /* Not compatible with any btype. */ 14181 return false; 14182 case 0b100010: /* BTI c */ 14183 /* Not compatible with btype == 3 */ 14184 return btype != 3; 14185 case 0b100100: /* BTI j */ 14186 /* Not compatible with btype == 2 */ 14187 return btype != 2; 14188 case 0b100110: /* BTI jc */ 14189 /* Compatible with any btype. */ 14190 return true; 14191 } 14192 } else { 14193 switch (insn & 0xffe0001fu) { 14194 case 0xd4200000u: /* BRK */ 14195 case 0xd4400000u: /* HLT */ 14196 /* Give priority to the breakpoint exception. */ 14197 return true; 14198 } 14199 } 14200 return false; 14201 } 14202 14203 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14204 CPUState *cpu) 14205 { 14206 DisasContext *dc = container_of(dcbase, DisasContext, base); 14207 CPUARMState *env = cpu->env_ptr; 14208 ARMCPU *arm_cpu = env_archcpu(env); 14209 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14210 int bound, core_mmu_idx; 14211 14212 dc->isar = &arm_cpu->isar; 14213 dc->condjmp = 0; 14214 dc->pc_save = dc->base.pc_first; 14215 dc->aarch64 = true; 14216 dc->thumb = false; 14217 dc->sctlr_b = 0; 14218 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14219 dc->condexec_mask = 0; 14220 dc->condexec_cond = 0; 14221 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14222 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14223 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14224 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14225 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14226 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14227 #if !defined(CONFIG_USER_ONLY) 14228 dc->user = (dc->current_el == 0); 14229 #endif 14230 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14231 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14232 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14233 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14234 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14235 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14236 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14237 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14238 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14239 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14240 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14241 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14242 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14243 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14244 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14245 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14246 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14247 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14248 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14249 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14250 dc->vec_len = 0; 14251 dc->vec_stride = 0; 14252 dc->cp_regs = arm_cpu->cp_regs; 14253 dc->features = env->features; 14254 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14255 14256 #ifdef CONFIG_USER_ONLY 14257 /* In sve_probe_page, we assume TBI is enabled. */ 14258 tcg_debug_assert(dc->tbid & 1); 14259 #endif 14260 14261 /* Single step state. The code-generation logic here is: 14262 * SS_ACTIVE == 0: 14263 * generate code with no special handling for single-stepping (except 14264 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14265 * this happens anyway because those changes are all system register or 14266 * PSTATE writes). 14267 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14268 * emit code for one insn 14269 * emit code to clear PSTATE.SS 14270 * emit code to generate software step exception for completed step 14271 * end TB (as usual for having generated an exception) 14272 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14273 * emit code to generate a software step exception 14274 * end the TB 14275 */ 14276 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14277 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14278 dc->is_ldex = false; 14279 14280 /* Bound the number of insns to execute to those left on the page. */ 14281 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14282 14283 /* If architectural single step active, limit to 1. */ 14284 if (dc->ss_active) { 14285 bound = 1; 14286 } 14287 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14288 } 14289 14290 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14291 { 14292 } 14293 14294 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14295 { 14296 DisasContext *dc = container_of(dcbase, DisasContext, base); 14297 target_ulong pc_arg = dc->base.pc_next; 14298 14299 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14300 pc_arg &= ~TARGET_PAGE_MASK; 14301 } 14302 tcg_gen_insn_start(pc_arg, 0, 0); 14303 dc->insn_start = tcg_last_op(); 14304 } 14305 14306 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14307 { 14308 DisasContext *s = container_of(dcbase, DisasContext, base); 14309 CPUARMState *env = cpu->env_ptr; 14310 uint64_t pc = s->base.pc_next; 14311 uint32_t insn; 14312 14313 /* Singlestep exceptions have the highest priority. */ 14314 if (s->ss_active && !s->pstate_ss) { 14315 /* Singlestep state is Active-pending. 14316 * If we're in this state at the start of a TB then either 14317 * a) we just took an exception to an EL which is being debugged 14318 * and this is the first insn in the exception handler 14319 * b) debug exceptions were masked and we just unmasked them 14320 * without changing EL (eg by clearing PSTATE.D) 14321 * In either case we're going to take a swstep exception in the 14322 * "did not step an insn" case, and so the syndrome ISV and EX 14323 * bits should be zero. 14324 */ 14325 assert(s->base.num_insns == 1); 14326 gen_swstep_exception(s, 0, 0); 14327 s->base.is_jmp = DISAS_NORETURN; 14328 s->base.pc_next = pc + 4; 14329 return; 14330 } 14331 14332 if (pc & 3) { 14333 /* 14334 * PC alignment fault. This has priority over the instruction abort 14335 * that we would receive from a translation fault via arm_ldl_code. 14336 * This should only be possible after an indirect branch, at the 14337 * start of the TB. 14338 */ 14339 assert(s->base.num_insns == 1); 14340 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14341 s->base.is_jmp = DISAS_NORETURN; 14342 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14343 return; 14344 } 14345 14346 s->pc_curr = pc; 14347 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14348 s->insn = insn; 14349 s->base.pc_next = pc + 4; 14350 14351 s->fp_access_checked = false; 14352 s->sve_access_checked = false; 14353 14354 if (s->pstate_il) { 14355 /* 14356 * Illegal execution state. This has priority over BTI 14357 * exceptions, but comes after instruction abort exceptions. 14358 */ 14359 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14360 return; 14361 } 14362 14363 if (dc_isar_feature(aa64_bti, s)) { 14364 if (s->base.num_insns == 1) { 14365 /* 14366 * At the first insn of the TB, compute s->guarded_page. 14367 * We delayed computing this until successfully reading 14368 * the first insn of the TB, above. This (mostly) ensures 14369 * that the softmmu tlb entry has been populated, and the 14370 * page table GP bit is available. 14371 * 14372 * Note that we need to compute this even if btype == 0, 14373 * because this value is used for BR instructions later 14374 * where ENV is not available. 14375 */ 14376 s->guarded_page = is_guarded_page(env, s); 14377 14378 /* First insn can have btype set to non-zero. */ 14379 tcg_debug_assert(s->btype >= 0); 14380 14381 /* 14382 * Note that the Branch Target Exception has fairly high 14383 * priority -- below debugging exceptions but above most 14384 * everything else. This allows us to handle this now 14385 * instead of waiting until the insn is otherwise decoded. 14386 */ 14387 if (s->btype != 0 14388 && s->guarded_page 14389 && !btype_destination_ok(insn, s->bt, s->btype)) { 14390 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14391 return; 14392 } 14393 } else { 14394 /* Not the first insn: btype must be 0. */ 14395 tcg_debug_assert(s->btype == 0); 14396 } 14397 } 14398 14399 s->is_nonstreaming = false; 14400 if (s->sme_trap_nonstreaming) { 14401 disas_sme_fa64(s, insn); 14402 } 14403 14404 switch (extract32(insn, 25, 4)) { 14405 case 0x0: 14406 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) { 14407 unallocated_encoding(s); 14408 } 14409 break; 14410 case 0x1: case 0x3: /* UNALLOCATED */ 14411 unallocated_encoding(s); 14412 break; 14413 case 0x2: 14414 if (!disas_sve(s, insn)) { 14415 unallocated_encoding(s); 14416 } 14417 break; 14418 case 0x8: case 0x9: /* Data processing - immediate */ 14419 disas_data_proc_imm(s, insn); 14420 break; 14421 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14422 disas_b_exc_sys(s, insn); 14423 break; 14424 case 0x4: 14425 case 0x6: 14426 case 0xc: 14427 case 0xe: /* Loads and stores */ 14428 disas_ldst(s, insn); 14429 break; 14430 case 0x5: 14431 case 0xd: /* Data processing - register */ 14432 disas_data_proc_reg(s, insn); 14433 break; 14434 case 0x7: 14435 case 0xf: /* Data processing - SIMD and floating point */ 14436 disas_data_proc_simd_fp(s, insn); 14437 break; 14438 default: 14439 assert(FALSE); /* all 15 cases should be handled above */ 14440 break; 14441 } 14442 14443 /* 14444 * After execution of most insns, btype is reset to 0. 14445 * Note that we set btype == -1 when the insn sets btype. 14446 */ 14447 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14448 reset_btype(s); 14449 } 14450 } 14451 14452 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14453 { 14454 DisasContext *dc = container_of(dcbase, DisasContext, base); 14455 14456 if (unlikely(dc->ss_active)) { 14457 /* Note that this means single stepping WFI doesn't halt the CPU. 14458 * For conditional branch insns this is harmless unreachable code as 14459 * gen_goto_tb() has already handled emitting the debug exception 14460 * (and thus a tb-jump is not possible when singlestepping). 14461 */ 14462 switch (dc->base.is_jmp) { 14463 default: 14464 gen_a64_update_pc(dc, 4); 14465 /* fall through */ 14466 case DISAS_EXIT: 14467 case DISAS_JUMP: 14468 gen_step_complete_exception(dc); 14469 break; 14470 case DISAS_NORETURN: 14471 break; 14472 } 14473 } else { 14474 switch (dc->base.is_jmp) { 14475 case DISAS_NEXT: 14476 case DISAS_TOO_MANY: 14477 gen_goto_tb(dc, 1, 4); 14478 break; 14479 default: 14480 case DISAS_UPDATE_EXIT: 14481 gen_a64_update_pc(dc, 4); 14482 /* fall through */ 14483 case DISAS_EXIT: 14484 tcg_gen_exit_tb(NULL, 0); 14485 break; 14486 case DISAS_UPDATE_NOCHAIN: 14487 gen_a64_update_pc(dc, 4); 14488 /* fall through */ 14489 case DISAS_JUMP: 14490 tcg_gen_lookup_and_goto_ptr(); 14491 break; 14492 case DISAS_NORETURN: 14493 case DISAS_SWI: 14494 break; 14495 case DISAS_WFE: 14496 gen_a64_update_pc(dc, 4); 14497 gen_helper_wfe(cpu_env); 14498 break; 14499 case DISAS_YIELD: 14500 gen_a64_update_pc(dc, 4); 14501 gen_helper_yield(cpu_env); 14502 break; 14503 case DISAS_WFI: 14504 /* 14505 * This is a special case because we don't want to just halt 14506 * the CPU if trying to debug across a WFI. 14507 */ 14508 gen_a64_update_pc(dc, 4); 14509 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14510 /* 14511 * The helper doesn't necessarily throw an exception, but we 14512 * must go back to the main loop to check for interrupts anyway. 14513 */ 14514 tcg_gen_exit_tb(NULL, 0); 14515 break; 14516 } 14517 } 14518 } 14519 14520 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14521 CPUState *cpu, FILE *logfile) 14522 { 14523 DisasContext *dc = container_of(dcbase, DisasContext, base); 14524 14525 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14526 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14527 } 14528 14529 const TranslatorOps aarch64_translator_ops = { 14530 .init_disas_context = aarch64_tr_init_disas_context, 14531 .tb_start = aarch64_tr_tb_start, 14532 .insn_start = aarch64_tr_insn_start, 14533 .translate_insn = aarch64_tr_translate_insn, 14534 .tb_stop = aarch64_tr_tb_stop, 14535 .disas_log = aarch64_tr_disas_log, 14536 }; 14537