xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 55abfc1f)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * This utility function is for doing register extension with an
1318  * optional shift. You will likely want to pass a temporary for the
1319  * destination register. See DecodeRegExtend() in the ARM ARM.
1320  */
1321 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1322                               int option, unsigned int shift)
1323 {
1324     int extsize = extract32(option, 0, 2);
1325     bool is_signed = extract32(option, 2, 1);
1326 
1327     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1328     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1329 }
1330 
1331 static inline void gen_check_sp_alignment(DisasContext *s)
1332 {
1333     /* The AArch64 architecture mandates that (if enabled via PSTATE
1334      * or SCTLR bits) there is a check that SP is 16-aligned on every
1335      * SP-relative load or store (with an exception generated if it is not).
1336      * In line with general QEMU practice regarding misaligned accesses,
1337      * we omit these checks for the sake of guest program performance.
1338      * This function is provided as a hook so we can more easily add these
1339      * checks in future (possibly as a "favour catching guest program bugs
1340      * over speed" user selectable option).
1341      */
1342 }
1343 
1344 /*
1345  * This provides a simple table based table lookup decoder. It is
1346  * intended to be used when the relevant bits for decode are too
1347  * awkwardly placed and switch/if based logic would be confusing and
1348  * deeply nested. Since it's a linear search through the table, tables
1349  * should be kept small.
1350  *
1351  * It returns the first handler where insn & mask == pattern, or
1352  * NULL if there is no match.
1353  * The table is terminated by an empty mask (i.e. 0)
1354  */
1355 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1356                                                uint32_t insn)
1357 {
1358     const AArch64DecodeTable *tptr = table;
1359 
1360     while (tptr->mask) {
1361         if ((insn & tptr->mask) == tptr->pattern) {
1362             return tptr->disas_fn;
1363         }
1364         tptr++;
1365     }
1366     return NULL;
1367 }
1368 
1369 /*
1370  * The instruction disassembly implemented here matches
1371  * the instruction encoding classifications in chapter C4
1372  * of the ARM Architecture Reference Manual (DDI0487B_a);
1373  * classification names and decode diagrams here should generally
1374  * match up with those in the manual.
1375  */
1376 
1377 static bool trans_B(DisasContext *s, arg_i *a)
1378 {
1379     reset_btype(s);
1380     gen_goto_tb(s, 0, a->imm);
1381     return true;
1382 }
1383 
1384 static bool trans_BL(DisasContext *s, arg_i *a)
1385 {
1386     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1387     reset_btype(s);
1388     gen_goto_tb(s, 0, a->imm);
1389     return true;
1390 }
1391 
1392 
1393 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1394 {
1395     DisasLabel match;
1396     TCGv_i64 tcg_cmp;
1397 
1398     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1399     reset_btype(s);
1400 
1401     match = gen_disas_label(s);
1402     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1403                         tcg_cmp, 0, match.label);
1404     gen_goto_tb(s, 0, 4);
1405     set_disas_label(s, match);
1406     gen_goto_tb(s, 1, a->imm);
1407     return true;
1408 }
1409 
1410 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1411 {
1412     DisasLabel match;
1413     TCGv_i64 tcg_cmp;
1414 
1415     tcg_cmp = tcg_temp_new_i64();
1416     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1417 
1418     reset_btype(s);
1419 
1420     match = gen_disas_label(s);
1421     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1422                         tcg_cmp, 0, match.label);
1423     gen_goto_tb(s, 0, 4);
1424     set_disas_label(s, match);
1425     gen_goto_tb(s, 1, a->imm);
1426     return true;
1427 }
1428 
1429 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1430 {
1431     /* BC.cond is only present with FEAT_HBC */
1432     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1433         return false;
1434     }
1435     reset_btype(s);
1436     if (a->cond < 0x0e) {
1437         /* genuinely conditional branches */
1438         DisasLabel match = gen_disas_label(s);
1439         arm_gen_test_cc(a->cond, match.label);
1440         gen_goto_tb(s, 0, 4);
1441         set_disas_label(s, match);
1442         gen_goto_tb(s, 1, a->imm);
1443     } else {
1444         /* 0xe and 0xf are both "always" conditions */
1445         gen_goto_tb(s, 0, a->imm);
1446     }
1447     return true;
1448 }
1449 
1450 static void set_btype_for_br(DisasContext *s, int rn)
1451 {
1452     if (dc_isar_feature(aa64_bti, s)) {
1453         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1454         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1455     }
1456 }
1457 
1458 static void set_btype_for_blr(DisasContext *s)
1459 {
1460     if (dc_isar_feature(aa64_bti, s)) {
1461         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1462         set_btype(s, 2);
1463     }
1464 }
1465 
1466 static bool trans_BR(DisasContext *s, arg_r *a)
1467 {
1468     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1469     set_btype_for_br(s, a->rn);
1470     s->base.is_jmp = DISAS_JUMP;
1471     return true;
1472 }
1473 
1474 static bool trans_BLR(DisasContext *s, arg_r *a)
1475 {
1476     TCGv_i64 dst = cpu_reg(s, a->rn);
1477     TCGv_i64 lr = cpu_reg(s, 30);
1478     if (dst == lr) {
1479         TCGv_i64 tmp = tcg_temp_new_i64();
1480         tcg_gen_mov_i64(tmp, dst);
1481         dst = tmp;
1482     }
1483     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1484     gen_a64_set_pc(s, dst);
1485     set_btype_for_blr(s);
1486     s->base.is_jmp = DISAS_JUMP;
1487     return true;
1488 }
1489 
1490 static bool trans_RET(DisasContext *s, arg_r *a)
1491 {
1492     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1493     s->base.is_jmp = DISAS_JUMP;
1494     return true;
1495 }
1496 
1497 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1498                                    TCGv_i64 modifier, bool use_key_a)
1499 {
1500     TCGv_i64 truedst;
1501     /*
1502      * Return the branch target for a BRAA/RETA/etc, which is either
1503      * just the destination dst, or that value with the pauth check
1504      * done and the code removed from the high bits.
1505      */
1506     if (!s->pauth_active) {
1507         return dst;
1508     }
1509 
1510     truedst = tcg_temp_new_i64();
1511     if (use_key_a) {
1512         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1513     } else {
1514         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1515     }
1516     return truedst;
1517 }
1518 
1519 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1520 {
1521     TCGv_i64 dst;
1522 
1523     if (!dc_isar_feature(aa64_pauth, s)) {
1524         return false;
1525     }
1526 
1527     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1528     gen_a64_set_pc(s, dst);
1529     set_btype_for_br(s, a->rn);
1530     s->base.is_jmp = DISAS_JUMP;
1531     return true;
1532 }
1533 
1534 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1535 {
1536     TCGv_i64 dst, lr;
1537 
1538     if (!dc_isar_feature(aa64_pauth, s)) {
1539         return false;
1540     }
1541 
1542     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1543     lr = cpu_reg(s, 30);
1544     if (dst == lr) {
1545         TCGv_i64 tmp = tcg_temp_new_i64();
1546         tcg_gen_mov_i64(tmp, dst);
1547         dst = tmp;
1548     }
1549     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1550     gen_a64_set_pc(s, dst);
1551     set_btype_for_blr(s);
1552     s->base.is_jmp = DISAS_JUMP;
1553     return true;
1554 }
1555 
1556 static bool trans_RETA(DisasContext *s, arg_reta *a)
1557 {
1558     TCGv_i64 dst;
1559 
1560     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1561     gen_a64_set_pc(s, dst);
1562     s->base.is_jmp = DISAS_JUMP;
1563     return true;
1564 }
1565 
1566 static bool trans_BRA(DisasContext *s, arg_bra *a)
1567 {
1568     TCGv_i64 dst;
1569 
1570     if (!dc_isar_feature(aa64_pauth, s)) {
1571         return false;
1572     }
1573     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1574     gen_a64_set_pc(s, dst);
1575     set_btype_for_br(s, a->rn);
1576     s->base.is_jmp = DISAS_JUMP;
1577     return true;
1578 }
1579 
1580 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1581 {
1582     TCGv_i64 dst, lr;
1583 
1584     if (!dc_isar_feature(aa64_pauth, s)) {
1585         return false;
1586     }
1587     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1588     lr = cpu_reg(s, 30);
1589     if (dst == lr) {
1590         TCGv_i64 tmp = tcg_temp_new_i64();
1591         tcg_gen_mov_i64(tmp, dst);
1592         dst = tmp;
1593     }
1594     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1595     gen_a64_set_pc(s, dst);
1596     set_btype_for_blr(s);
1597     s->base.is_jmp = DISAS_JUMP;
1598     return true;
1599 }
1600 
1601 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1602 {
1603     TCGv_i64 dst;
1604 
1605     if (s->current_el == 0) {
1606         return false;
1607     }
1608     if (s->fgt_eret) {
1609         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1610         return true;
1611     }
1612     dst = tcg_temp_new_i64();
1613     tcg_gen_ld_i64(dst, tcg_env,
1614                    offsetof(CPUARMState, elr_el[s->current_el]));
1615 
1616     translator_io_start(&s->base);
1617 
1618     gen_helper_exception_return(tcg_env, dst);
1619     /* Must exit loop to check un-masked IRQs */
1620     s->base.is_jmp = DISAS_EXIT;
1621     return true;
1622 }
1623 
1624 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1625 {
1626     TCGv_i64 dst;
1627 
1628     if (!dc_isar_feature(aa64_pauth, s)) {
1629         return false;
1630     }
1631     if (s->current_el == 0) {
1632         return false;
1633     }
1634     /* The FGT trap takes precedence over an auth trap. */
1635     if (s->fgt_eret) {
1636         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1637         return true;
1638     }
1639     dst = tcg_temp_new_i64();
1640     tcg_gen_ld_i64(dst, tcg_env,
1641                    offsetof(CPUARMState, elr_el[s->current_el]));
1642 
1643     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1644 
1645     translator_io_start(&s->base);
1646 
1647     gen_helper_exception_return(tcg_env, dst);
1648     /* Must exit loop to check un-masked IRQs */
1649     s->base.is_jmp = DISAS_EXIT;
1650     return true;
1651 }
1652 
1653 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1654 {
1655     return true;
1656 }
1657 
1658 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1659 {
1660     /*
1661      * When running in MTTCG we don't generate jumps to the yield and
1662      * WFE helpers as it won't affect the scheduling of other vCPUs.
1663      * If we wanted to more completely model WFE/SEV so we don't busy
1664      * spin unnecessarily we would need to do something more involved.
1665      */
1666     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1667         s->base.is_jmp = DISAS_YIELD;
1668     }
1669     return true;
1670 }
1671 
1672 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1673 {
1674     s->base.is_jmp = DISAS_WFI;
1675     return true;
1676 }
1677 
1678 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1679 {
1680     /*
1681      * When running in MTTCG we don't generate jumps to the yield and
1682      * WFE helpers as it won't affect the scheduling of other vCPUs.
1683      * If we wanted to more completely model WFE/SEV so we don't busy
1684      * spin unnecessarily we would need to do something more involved.
1685      */
1686     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1687         s->base.is_jmp = DISAS_WFE;
1688     }
1689     return true;
1690 }
1691 
1692 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1693 {
1694     if (s->pauth_active) {
1695         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1696     }
1697     return true;
1698 }
1699 
1700 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1701 {
1702     if (s->pauth_active) {
1703         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1704     }
1705     return true;
1706 }
1707 
1708 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1709 {
1710     if (s->pauth_active) {
1711         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1712     }
1713     return true;
1714 }
1715 
1716 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1717 {
1718     if (s->pauth_active) {
1719         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1720     }
1721     return true;
1722 }
1723 
1724 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1725 {
1726     if (s->pauth_active) {
1727         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1728     }
1729     return true;
1730 }
1731 
1732 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1733 {
1734     /* Without RAS, we must implement this as NOP. */
1735     if (dc_isar_feature(aa64_ras, s)) {
1736         /*
1737          * QEMU does not have a source of physical SErrors,
1738          * so we are only concerned with virtual SErrors.
1739          * The pseudocode in the ARM for this case is
1740          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1741          *      AArch64.vESBOperation();
1742          * Most of the condition can be evaluated at translation time.
1743          * Test for EL2 present, and defer test for SEL2 to runtime.
1744          */
1745         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1746             gen_helper_vesb(tcg_env);
1747         }
1748     }
1749     return true;
1750 }
1751 
1752 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1753 {
1754     if (s->pauth_active) {
1755         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1756     }
1757     return true;
1758 }
1759 
1760 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1761 {
1762     if (s->pauth_active) {
1763         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1764     }
1765     return true;
1766 }
1767 
1768 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1769 {
1770     if (s->pauth_active) {
1771         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1772     }
1773     return true;
1774 }
1775 
1776 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1777 {
1778     if (s->pauth_active) {
1779         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1780     }
1781     return true;
1782 }
1783 
1784 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1785 {
1786     if (s->pauth_active) {
1787         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1788     }
1789     return true;
1790 }
1791 
1792 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1793 {
1794     if (s->pauth_active) {
1795         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1796     }
1797     return true;
1798 }
1799 
1800 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1801 {
1802     if (s->pauth_active) {
1803         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1804     }
1805     return true;
1806 }
1807 
1808 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1809 {
1810     if (s->pauth_active) {
1811         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1812     }
1813     return true;
1814 }
1815 
1816 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1817 {
1818     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1819     return true;
1820 }
1821 
1822 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1823 {
1824     /* We handle DSB and DMB the same way */
1825     TCGBar bar;
1826 
1827     switch (a->types) {
1828     case 1: /* MBReqTypes_Reads */
1829         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1830         break;
1831     case 2: /* MBReqTypes_Writes */
1832         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1833         break;
1834     default: /* MBReqTypes_All */
1835         bar = TCG_BAR_SC | TCG_MO_ALL;
1836         break;
1837     }
1838     tcg_gen_mb(bar);
1839     return true;
1840 }
1841 
1842 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1843 {
1844     /*
1845      * We need to break the TB after this insn to execute
1846      * self-modifying code correctly and also to take
1847      * any pending interrupts immediately.
1848      */
1849     reset_btype(s);
1850     gen_goto_tb(s, 0, 4);
1851     return true;
1852 }
1853 
1854 static bool trans_SB(DisasContext *s, arg_SB *a)
1855 {
1856     if (!dc_isar_feature(aa64_sb, s)) {
1857         return false;
1858     }
1859     /*
1860      * TODO: There is no speculation barrier opcode for TCG;
1861      * MB and end the TB instead.
1862      */
1863     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1864     gen_goto_tb(s, 0, 4);
1865     return true;
1866 }
1867 
1868 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1869 {
1870     if (!dc_isar_feature(aa64_condm_4, s)) {
1871         return false;
1872     }
1873     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1874     return true;
1875 }
1876 
1877 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1878 {
1879     TCGv_i32 z;
1880 
1881     if (!dc_isar_feature(aa64_condm_5, s)) {
1882         return false;
1883     }
1884 
1885     z = tcg_temp_new_i32();
1886 
1887     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1888 
1889     /*
1890      * (!C & !Z) << 31
1891      * (!(C | Z)) << 31
1892      * ~((C | Z) << 31)
1893      * ~-(C | Z)
1894      * (C | Z) - 1
1895      */
1896     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1897     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1898 
1899     /* !(Z & C) */
1900     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1901     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1902 
1903     /* (!C & Z) << 31 -> -(Z & ~C) */
1904     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1905     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1906 
1907     /* C | Z */
1908     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1909 
1910     return true;
1911 }
1912 
1913 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1914 {
1915     if (!dc_isar_feature(aa64_condm_5, s)) {
1916         return false;
1917     }
1918 
1919     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1920     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1921 
1922     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1923     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1924 
1925     tcg_gen_movi_i32(cpu_NF, 0);
1926     tcg_gen_movi_i32(cpu_VF, 0);
1927 
1928     return true;
1929 }
1930 
1931 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1932 {
1933     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1934         return false;
1935     }
1936     if (a->imm & 1) {
1937         set_pstate_bits(PSTATE_UAO);
1938     } else {
1939         clear_pstate_bits(PSTATE_UAO);
1940     }
1941     gen_rebuild_hflags(s);
1942     s->base.is_jmp = DISAS_TOO_MANY;
1943     return true;
1944 }
1945 
1946 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1947 {
1948     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1949         return false;
1950     }
1951     if (a->imm & 1) {
1952         set_pstate_bits(PSTATE_PAN);
1953     } else {
1954         clear_pstate_bits(PSTATE_PAN);
1955     }
1956     gen_rebuild_hflags(s);
1957     s->base.is_jmp = DISAS_TOO_MANY;
1958     return true;
1959 }
1960 
1961 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1962 {
1963     if (s->current_el == 0) {
1964         return false;
1965     }
1966     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
1967     s->base.is_jmp = DISAS_TOO_MANY;
1968     return true;
1969 }
1970 
1971 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1972 {
1973     if (!dc_isar_feature(aa64_ssbs, s)) {
1974         return false;
1975     }
1976     if (a->imm & 1) {
1977         set_pstate_bits(PSTATE_SSBS);
1978     } else {
1979         clear_pstate_bits(PSTATE_SSBS);
1980     }
1981     /* Don't need to rebuild hflags since SSBS is a nop */
1982     s->base.is_jmp = DISAS_TOO_MANY;
1983     return true;
1984 }
1985 
1986 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
1987 {
1988     if (!dc_isar_feature(aa64_dit, s)) {
1989         return false;
1990     }
1991     if (a->imm & 1) {
1992         set_pstate_bits(PSTATE_DIT);
1993     } else {
1994         clear_pstate_bits(PSTATE_DIT);
1995     }
1996     /* There's no need to rebuild hflags because DIT is a nop */
1997     s->base.is_jmp = DISAS_TOO_MANY;
1998     return true;
1999 }
2000 
2001 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2002 {
2003     if (dc_isar_feature(aa64_mte, s)) {
2004         /* Full MTE is enabled -- set the TCO bit as directed. */
2005         if (a->imm & 1) {
2006             set_pstate_bits(PSTATE_TCO);
2007         } else {
2008             clear_pstate_bits(PSTATE_TCO);
2009         }
2010         gen_rebuild_hflags(s);
2011         /* Many factors, including TCO, go into MTE_ACTIVE. */
2012         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2013         return true;
2014     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2015         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2016         return true;
2017     } else {
2018         /* Insn not present */
2019         return false;
2020     }
2021 }
2022 
2023 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2024 {
2025     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2026     s->base.is_jmp = DISAS_TOO_MANY;
2027     return true;
2028 }
2029 
2030 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2031 {
2032     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2033     /* Exit the cpu loop to re-evaluate pending IRQs. */
2034     s->base.is_jmp = DISAS_UPDATE_EXIT;
2035     return true;
2036 }
2037 
2038 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2039 {
2040     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2041         return false;
2042     }
2043     if (sme_access_check(s)) {
2044         int old = s->pstate_sm | (s->pstate_za << 1);
2045         int new = a->imm * 3;
2046 
2047         if ((old ^ new) & a->mask) {
2048             /* At least one bit changes. */
2049             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2050                                 tcg_constant_i32(a->mask));
2051             s->base.is_jmp = DISAS_TOO_MANY;
2052         }
2053     }
2054     return true;
2055 }
2056 
2057 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2058 {
2059     TCGv_i32 tmp = tcg_temp_new_i32();
2060     TCGv_i32 nzcv = tcg_temp_new_i32();
2061 
2062     /* build bit 31, N */
2063     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2064     /* build bit 30, Z */
2065     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2066     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2067     /* build bit 29, C */
2068     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2069     /* build bit 28, V */
2070     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2071     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2072     /* generate result */
2073     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2074 }
2075 
2076 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2077 {
2078     TCGv_i32 nzcv = tcg_temp_new_i32();
2079 
2080     /* take NZCV from R[t] */
2081     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2082 
2083     /* bit 31, N */
2084     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2085     /* bit 30, Z */
2086     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2087     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2088     /* bit 29, C */
2089     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2090     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2091     /* bit 28, V */
2092     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2093     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2094 }
2095 
2096 static void gen_sysreg_undef(DisasContext *s, bool isread,
2097                              uint8_t op0, uint8_t op1, uint8_t op2,
2098                              uint8_t crn, uint8_t crm, uint8_t rt)
2099 {
2100     /*
2101      * Generate code to emit an UNDEF with correct syndrome
2102      * information for a failed system register access.
2103      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2104      * but if FEAT_IDST is implemented then read accesses to registers
2105      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2106      * syndrome.
2107      */
2108     uint32_t syndrome;
2109 
2110     if (isread && dc_isar_feature(aa64_ids, s) &&
2111         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2112         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2113     } else {
2114         syndrome = syn_uncategorized();
2115     }
2116     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2117 }
2118 
2119 /* MRS - move from system register
2120  * MSR (register) - move to system register
2121  * SYS
2122  * SYSL
2123  * These are all essentially the same insn in 'read' and 'write'
2124  * versions, with varying op0 fields.
2125  */
2126 static void handle_sys(DisasContext *s, bool isread,
2127                        unsigned int op0, unsigned int op1, unsigned int op2,
2128                        unsigned int crn, unsigned int crm, unsigned int rt)
2129 {
2130     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2131                                       crn, crm, op0, op1, op2);
2132     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2133     bool need_exit_tb = false;
2134     TCGv_ptr tcg_ri = NULL;
2135     TCGv_i64 tcg_rt;
2136     uint32_t syndrome;
2137 
2138     if (crn == 11 || crn == 15) {
2139         /*
2140          * Check for TIDCP trap, which must take precedence over
2141          * the UNDEF for "no such register" etc.
2142          */
2143         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2144         switch (s->current_el) {
2145         case 0:
2146             if (dc_isar_feature(aa64_tidcp1, s)) {
2147                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2148             }
2149             break;
2150         case 1:
2151             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2152             break;
2153         }
2154     }
2155 
2156     if (!ri) {
2157         /* Unknown register; this might be a guest error or a QEMU
2158          * unimplemented feature.
2159          */
2160         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2161                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2162                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2163         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2164         return;
2165     }
2166 
2167     /* Check access permissions */
2168     if (!cp_access_ok(s->current_el, ri, isread)) {
2169         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2170         return;
2171     }
2172 
2173     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2174         /* Emit code to perform further access permissions checks at
2175          * runtime; this may result in an exception.
2176          */
2177         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2178         gen_a64_update_pc(s, 0);
2179         tcg_ri = tcg_temp_new_ptr();
2180         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2181                                        tcg_constant_i32(key),
2182                                        tcg_constant_i32(syndrome),
2183                                        tcg_constant_i32(isread));
2184     } else if (ri->type & ARM_CP_RAISES_EXC) {
2185         /*
2186          * The readfn or writefn might raise an exception;
2187          * synchronize the CPU state in case it does.
2188          */
2189         gen_a64_update_pc(s, 0);
2190     }
2191 
2192     /* Handle special cases first */
2193     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2194     case 0:
2195         break;
2196     case ARM_CP_NOP:
2197         return;
2198     case ARM_CP_NZCV:
2199         tcg_rt = cpu_reg(s, rt);
2200         if (isread) {
2201             gen_get_nzcv(tcg_rt);
2202         } else {
2203             gen_set_nzcv(tcg_rt);
2204         }
2205         return;
2206     case ARM_CP_CURRENTEL:
2207         /* Reads as current EL value from pstate, which is
2208          * guaranteed to be constant by the tb flags.
2209          */
2210         tcg_rt = cpu_reg(s, rt);
2211         tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2212         return;
2213     case ARM_CP_DC_ZVA:
2214         /* Writes clear the aligned block of memory which rt points into. */
2215         if (s->mte_active[0]) {
2216             int desc = 0;
2217 
2218             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2219             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2220             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2221 
2222             tcg_rt = tcg_temp_new_i64();
2223             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2224                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2225         } else {
2226             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2227         }
2228         gen_helper_dc_zva(tcg_env, tcg_rt);
2229         return;
2230     case ARM_CP_DC_GVA:
2231         {
2232             TCGv_i64 clean_addr, tag;
2233 
2234             /*
2235              * DC_GVA, like DC_ZVA, requires that we supply the original
2236              * pointer for an invalid page.  Probe that address first.
2237              */
2238             tcg_rt = cpu_reg(s, rt);
2239             clean_addr = clean_data_tbi(s, tcg_rt);
2240             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2241 
2242             if (s->ata[0]) {
2243                 /* Extract the tag from the register to match STZGM.  */
2244                 tag = tcg_temp_new_i64();
2245                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2246                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2247             }
2248         }
2249         return;
2250     case ARM_CP_DC_GZVA:
2251         {
2252             TCGv_i64 clean_addr, tag;
2253 
2254             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2255             tcg_rt = cpu_reg(s, rt);
2256             clean_addr = clean_data_tbi(s, tcg_rt);
2257             gen_helper_dc_zva(tcg_env, clean_addr);
2258 
2259             if (s->ata[0]) {
2260                 /* Extract the tag from the register to match STZGM.  */
2261                 tag = tcg_temp_new_i64();
2262                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2263                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2264             }
2265         }
2266         return;
2267     default:
2268         g_assert_not_reached();
2269     }
2270     if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2271         return;
2272     } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2273         return;
2274     } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2275         return;
2276     }
2277 
2278     if (ri->type & ARM_CP_IO) {
2279         /* I/O operations must end the TB here (whether read or write) */
2280         need_exit_tb = translator_io_start(&s->base);
2281     }
2282 
2283     tcg_rt = cpu_reg(s, rt);
2284 
2285     if (isread) {
2286         if (ri->type & ARM_CP_CONST) {
2287             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2288         } else if (ri->readfn) {
2289             if (!tcg_ri) {
2290                 tcg_ri = gen_lookup_cp_reg(key);
2291             }
2292             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2293         } else {
2294             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2295         }
2296     } else {
2297         if (ri->type & ARM_CP_CONST) {
2298             /* If not forbidden by access permissions, treat as WI */
2299             return;
2300         } else if (ri->writefn) {
2301             if (!tcg_ri) {
2302                 tcg_ri = gen_lookup_cp_reg(key);
2303             }
2304             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2305         } else {
2306             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2307         }
2308     }
2309 
2310     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2311         /*
2312          * A write to any coprocessor register that ends a TB
2313          * must rebuild the hflags for the next TB.
2314          */
2315         gen_rebuild_hflags(s);
2316         /*
2317          * We default to ending the TB on a coprocessor register write,
2318          * but allow this to be suppressed by the register definition
2319          * (usually only necessary to work around guest bugs).
2320          */
2321         need_exit_tb = true;
2322     }
2323     if (need_exit_tb) {
2324         s->base.is_jmp = DISAS_UPDATE_EXIT;
2325     }
2326 }
2327 
2328 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2329 {
2330     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2331     return true;
2332 }
2333 
2334 static bool trans_SVC(DisasContext *s, arg_i *a)
2335 {
2336     /*
2337      * For SVC, HVC and SMC we advance the single-step state
2338      * machine before taking the exception. This is architecturally
2339      * mandated, to ensure that single-stepping a system call
2340      * instruction works properly.
2341      */
2342     uint32_t syndrome = syn_aa64_svc(a->imm);
2343     if (s->fgt_svc) {
2344         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2345         return true;
2346     }
2347     gen_ss_advance(s);
2348     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2349     return true;
2350 }
2351 
2352 static bool trans_HVC(DisasContext *s, arg_i *a)
2353 {
2354     int target_el = s->current_el == 3 ? 3 : 2;
2355 
2356     if (s->current_el == 0) {
2357         unallocated_encoding(s);
2358         return true;
2359     }
2360     /*
2361      * The pre HVC helper handles cases when HVC gets trapped
2362      * as an undefined insn by runtime configuration.
2363      */
2364     gen_a64_update_pc(s, 0);
2365     gen_helper_pre_hvc(tcg_env);
2366     /* Architecture requires ss advance before we do the actual work */
2367     gen_ss_advance(s);
2368     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2369     return true;
2370 }
2371 
2372 static bool trans_SMC(DisasContext *s, arg_i *a)
2373 {
2374     if (s->current_el == 0) {
2375         unallocated_encoding(s);
2376         return true;
2377     }
2378     gen_a64_update_pc(s, 0);
2379     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2380     /* Architecture requires ss advance before we do the actual work */
2381     gen_ss_advance(s);
2382     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2383     return true;
2384 }
2385 
2386 static bool trans_BRK(DisasContext *s, arg_i *a)
2387 {
2388     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2389     return true;
2390 }
2391 
2392 static bool trans_HLT(DisasContext *s, arg_i *a)
2393 {
2394     /*
2395      * HLT. This has two purposes.
2396      * Architecturally, it is an external halting debug instruction.
2397      * Since QEMU doesn't implement external debug, we treat this as
2398      * it is required for halting debug disabled: it will UNDEF.
2399      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2400      */
2401     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2402         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2403     } else {
2404         unallocated_encoding(s);
2405     }
2406     return true;
2407 }
2408 
2409 /*
2410  * Load/Store exclusive instructions are implemented by remembering
2411  * the value/address loaded, and seeing if these are the same
2412  * when the store is performed. This is not actually the architecturally
2413  * mandated semantics, but it works for typical guest code sequences
2414  * and avoids having to monitor regular stores.
2415  *
2416  * The store exclusive uses the atomic cmpxchg primitives to avoid
2417  * races in multi-threaded linux-user and when MTTCG softmmu is
2418  * enabled.
2419  */
2420 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2421                                int size, bool is_pair)
2422 {
2423     int idx = get_mem_index(s);
2424     TCGv_i64 dirty_addr, clean_addr;
2425     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2426 
2427     s->is_ldex = true;
2428     dirty_addr = cpu_reg_sp(s, rn);
2429     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2430 
2431     g_assert(size <= 3);
2432     if (is_pair) {
2433         g_assert(size >= 2);
2434         if (size == 2) {
2435             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2436             if (s->be_data == MO_LE) {
2437                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2438                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2439             } else {
2440                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2441                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2442             }
2443         } else {
2444             TCGv_i128 t16 = tcg_temp_new_i128();
2445 
2446             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2447 
2448             if (s->be_data == MO_LE) {
2449                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2450                                       cpu_exclusive_high, t16);
2451             } else {
2452                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2453                                       cpu_exclusive_val, t16);
2454             }
2455             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2456             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2457         }
2458     } else {
2459         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2460         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2461     }
2462     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2463 }
2464 
2465 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2466                                 int rn, int size, int is_pair)
2467 {
2468     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2469      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2470      *     [addr] = {Rt};
2471      *     if (is_pair) {
2472      *         [addr + datasize] = {Rt2};
2473      *     }
2474      *     {Rd} = 0;
2475      * } else {
2476      *     {Rd} = 1;
2477      * }
2478      * env->exclusive_addr = -1;
2479      */
2480     TCGLabel *fail_label = gen_new_label();
2481     TCGLabel *done_label = gen_new_label();
2482     TCGv_i64 tmp, clean_addr;
2483     MemOp memop;
2484 
2485     /*
2486      * FIXME: We are out of spec here.  We have recorded only the address
2487      * from load_exclusive, not the entire range, and we assume that the
2488      * size of the access on both sides match.  The architecture allows the
2489      * store to be smaller than the load, so long as the stored bytes are
2490      * within the range recorded by the load.
2491      */
2492 
2493     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2494     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2495     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2496 
2497     /*
2498      * The write, and any associated faults, only happen if the virtual
2499      * and physical addresses pass the exclusive monitor check.  These
2500      * faults are exceedingly unlikely, because normally the guest uses
2501      * the exact same address register for the load_exclusive, and we
2502      * would have recognized these faults there.
2503      *
2504      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2505      * unaligned 4-byte write within the range of an aligned 8-byte load.
2506      * With LSE2, the store would need to cross a 16-byte boundary when the
2507      * load did not, which would mean the store is outside the range
2508      * recorded for the monitor, which would have failed a corrected monitor
2509      * check above.  For now, we assume no size change and retain the
2510      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2511      *
2512      * It is possible to trigger an MTE fault, by performing the load with
2513      * a virtual address with a valid tag and performing the store with the
2514      * same virtual address and a different invalid tag.
2515      */
2516     memop = size + is_pair;
2517     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2518         memop |= MO_ALIGN;
2519     }
2520     memop = finalize_memop(s, memop);
2521     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2522 
2523     tmp = tcg_temp_new_i64();
2524     if (is_pair) {
2525         if (size == 2) {
2526             if (s->be_data == MO_LE) {
2527                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2528             } else {
2529                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2530             }
2531             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2532                                        cpu_exclusive_val, tmp,
2533                                        get_mem_index(s), memop);
2534             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2535         } else {
2536             TCGv_i128 t16 = tcg_temp_new_i128();
2537             TCGv_i128 c16 = tcg_temp_new_i128();
2538             TCGv_i64 a, b;
2539 
2540             if (s->be_data == MO_LE) {
2541                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2542                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2543                                         cpu_exclusive_high);
2544             } else {
2545                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2546                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2547                                         cpu_exclusive_val);
2548             }
2549 
2550             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2551                                         get_mem_index(s), memop);
2552 
2553             a = tcg_temp_new_i64();
2554             b = tcg_temp_new_i64();
2555             if (s->be_data == MO_LE) {
2556                 tcg_gen_extr_i128_i64(a, b, t16);
2557             } else {
2558                 tcg_gen_extr_i128_i64(b, a, t16);
2559             }
2560 
2561             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2562             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2563             tcg_gen_or_i64(tmp, a, b);
2564 
2565             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2566         }
2567     } else {
2568         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2569                                    cpu_reg(s, rt), get_mem_index(s), memop);
2570         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2571     }
2572     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2573     tcg_gen_br(done_label);
2574 
2575     gen_set_label(fail_label);
2576     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2577     gen_set_label(done_label);
2578     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2579 }
2580 
2581 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2582                                  int rn, int size)
2583 {
2584     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2585     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2586     int memidx = get_mem_index(s);
2587     TCGv_i64 clean_addr;
2588     MemOp memop;
2589 
2590     if (rn == 31) {
2591         gen_check_sp_alignment(s);
2592     }
2593     memop = check_atomic_align(s, rn, size);
2594     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2595     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2596                                memidx, memop);
2597 }
2598 
2599 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2600                                       int rn, int size)
2601 {
2602     TCGv_i64 s1 = cpu_reg(s, rs);
2603     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2604     TCGv_i64 t1 = cpu_reg(s, rt);
2605     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2606     TCGv_i64 clean_addr;
2607     int memidx = get_mem_index(s);
2608     MemOp memop;
2609 
2610     if (rn == 31) {
2611         gen_check_sp_alignment(s);
2612     }
2613 
2614     /* This is a single atomic access, despite the "pair". */
2615     memop = check_atomic_align(s, rn, size + 1);
2616     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2617 
2618     if (size == 2) {
2619         TCGv_i64 cmp = tcg_temp_new_i64();
2620         TCGv_i64 val = tcg_temp_new_i64();
2621 
2622         if (s->be_data == MO_LE) {
2623             tcg_gen_concat32_i64(val, t1, t2);
2624             tcg_gen_concat32_i64(cmp, s1, s2);
2625         } else {
2626             tcg_gen_concat32_i64(val, t2, t1);
2627             tcg_gen_concat32_i64(cmp, s2, s1);
2628         }
2629 
2630         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2631 
2632         if (s->be_data == MO_LE) {
2633             tcg_gen_extr32_i64(s1, s2, cmp);
2634         } else {
2635             tcg_gen_extr32_i64(s2, s1, cmp);
2636         }
2637     } else {
2638         TCGv_i128 cmp = tcg_temp_new_i128();
2639         TCGv_i128 val = tcg_temp_new_i128();
2640 
2641         if (s->be_data == MO_LE) {
2642             tcg_gen_concat_i64_i128(val, t1, t2);
2643             tcg_gen_concat_i64_i128(cmp, s1, s2);
2644         } else {
2645             tcg_gen_concat_i64_i128(val, t2, t1);
2646             tcg_gen_concat_i64_i128(cmp, s2, s1);
2647         }
2648 
2649         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2650 
2651         if (s->be_data == MO_LE) {
2652             tcg_gen_extr_i128_i64(s1, s2, cmp);
2653         } else {
2654             tcg_gen_extr_i128_i64(s2, s1, cmp);
2655         }
2656     }
2657 }
2658 
2659 /*
2660  * Compute the ISS.SF bit for syndrome information if an exception
2661  * is taken on a load or store. This indicates whether the instruction
2662  * is accessing a 32-bit or 64-bit register. This logic is derived
2663  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2664  */
2665 static bool ldst_iss_sf(int size, bool sign, bool ext)
2666 {
2667 
2668     if (sign) {
2669         /*
2670          * Signed loads are 64 bit results if we are not going to
2671          * do a zero-extend from 32 to 64 after the load.
2672          * (For a store, sign and ext are always false.)
2673          */
2674         return !ext;
2675     } else {
2676         /* Unsigned loads/stores work at the specified size */
2677         return size == MO_64;
2678     }
2679 }
2680 
2681 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2682 {
2683     if (a->rn == 31) {
2684         gen_check_sp_alignment(s);
2685     }
2686     if (a->lasr) {
2687         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2688     }
2689     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2690     return true;
2691 }
2692 
2693 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2694 {
2695     if (a->rn == 31) {
2696         gen_check_sp_alignment(s);
2697     }
2698     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2699     if (a->lasr) {
2700         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2701     }
2702     return true;
2703 }
2704 
2705 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2706 {
2707     TCGv_i64 clean_addr;
2708     MemOp memop;
2709     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2710 
2711     /*
2712      * StoreLORelease is the same as Store-Release for QEMU, but
2713      * needs the feature-test.
2714      */
2715     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2716         return false;
2717     }
2718     /* Generate ISS for non-exclusive accesses including LASR.  */
2719     if (a->rn == 31) {
2720         gen_check_sp_alignment(s);
2721     }
2722     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2723     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2724     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2725                                 true, a->rn != 31, memop);
2726     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2727               iss_sf, a->lasr);
2728     return true;
2729 }
2730 
2731 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2732 {
2733     TCGv_i64 clean_addr;
2734     MemOp memop;
2735     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2736 
2737     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2738     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2739         return false;
2740     }
2741     /* Generate ISS for non-exclusive accesses including LASR.  */
2742     if (a->rn == 31) {
2743         gen_check_sp_alignment(s);
2744     }
2745     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2746     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2747                                 false, a->rn != 31, memop);
2748     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2749               a->rt, iss_sf, a->lasr);
2750     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2751     return true;
2752 }
2753 
2754 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2755 {
2756     if (a->rn == 31) {
2757         gen_check_sp_alignment(s);
2758     }
2759     if (a->lasr) {
2760         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2761     }
2762     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2763     return true;
2764 }
2765 
2766 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2767 {
2768     if (a->rn == 31) {
2769         gen_check_sp_alignment(s);
2770     }
2771     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2772     if (a->lasr) {
2773         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2774     }
2775     return true;
2776 }
2777 
2778 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2779 {
2780     if (!dc_isar_feature(aa64_atomics, s)) {
2781         return false;
2782     }
2783     if (((a->rt | a->rs) & 1) != 0) {
2784         return false;
2785     }
2786 
2787     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2788     return true;
2789 }
2790 
2791 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2792 {
2793     if (!dc_isar_feature(aa64_atomics, s)) {
2794         return false;
2795     }
2796     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2797     return true;
2798 }
2799 
2800 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2801 {
2802     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2803     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2804     TCGv_i64 clean_addr = tcg_temp_new_i64();
2805     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2806 
2807     gen_pc_plus_diff(s, clean_addr, a->imm);
2808     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2809               false, true, a->rt, iss_sf, false);
2810     return true;
2811 }
2812 
2813 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2814 {
2815     /* Load register (literal), vector version */
2816     TCGv_i64 clean_addr;
2817     MemOp memop;
2818 
2819     if (!fp_access_check(s)) {
2820         return true;
2821     }
2822     memop = finalize_memop_asimd(s, a->sz);
2823     clean_addr = tcg_temp_new_i64();
2824     gen_pc_plus_diff(s, clean_addr, a->imm);
2825     do_fp_ld(s, a->rt, clean_addr, memop);
2826     return true;
2827 }
2828 
2829 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2830                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2831                                  uint64_t offset, bool is_store, MemOp mop)
2832 {
2833     if (a->rn == 31) {
2834         gen_check_sp_alignment(s);
2835     }
2836 
2837     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2838     if (!a->p) {
2839         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2840     }
2841 
2842     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2843                                  (a->w || a->rn != 31), 2 << a->sz, mop);
2844 }
2845 
2846 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2847                                   TCGv_i64 dirty_addr, uint64_t offset)
2848 {
2849     if (a->w) {
2850         if (a->p) {
2851             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2852         }
2853         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2854     }
2855 }
2856 
2857 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2858 {
2859     uint64_t offset = a->imm << a->sz;
2860     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2861     MemOp mop = finalize_memop(s, a->sz);
2862 
2863     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2864     tcg_rt = cpu_reg(s, a->rt);
2865     tcg_rt2 = cpu_reg(s, a->rt2);
2866     /*
2867      * We built mop above for the single logical access -- rebuild it
2868      * now for the paired operation.
2869      *
2870      * With LSE2, non-sign-extending pairs are treated atomically if
2871      * aligned, and if unaligned one of the pair will be completely
2872      * within a 16-byte block and that element will be atomic.
2873      * Otherwise each element is separately atomic.
2874      * In all cases, issue one operation with the correct atomicity.
2875      */
2876     mop = a->sz + 1;
2877     if (s->align_mem) {
2878         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2879     }
2880     mop = finalize_memop_pair(s, mop);
2881     if (a->sz == 2) {
2882         TCGv_i64 tmp = tcg_temp_new_i64();
2883 
2884         if (s->be_data == MO_LE) {
2885             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
2886         } else {
2887             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
2888         }
2889         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
2890     } else {
2891         TCGv_i128 tmp = tcg_temp_new_i128();
2892 
2893         if (s->be_data == MO_LE) {
2894             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
2895         } else {
2896             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
2897         }
2898         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
2899     }
2900     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2901     return true;
2902 }
2903 
2904 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
2905 {
2906     uint64_t offset = a->imm << a->sz;
2907     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2908     MemOp mop = finalize_memop(s, a->sz);
2909 
2910     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2911     tcg_rt = cpu_reg(s, a->rt);
2912     tcg_rt2 = cpu_reg(s, a->rt2);
2913 
2914     /*
2915      * We built mop above for the single logical access -- rebuild it
2916      * now for the paired operation.
2917      *
2918      * With LSE2, non-sign-extending pairs are treated atomically if
2919      * aligned, and if unaligned one of the pair will be completely
2920      * within a 16-byte block and that element will be atomic.
2921      * Otherwise each element is separately atomic.
2922      * In all cases, issue one operation with the correct atomicity.
2923      *
2924      * This treats sign-extending loads like zero-extending loads,
2925      * since that reuses the most code below.
2926      */
2927     mop = a->sz + 1;
2928     if (s->align_mem) {
2929         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2930     }
2931     mop = finalize_memop_pair(s, mop);
2932     if (a->sz == 2) {
2933         int o2 = s->be_data == MO_LE ? 32 : 0;
2934         int o1 = o2 ^ 32;
2935 
2936         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2937         if (a->sign) {
2938             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2939             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2940         } else {
2941             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2942             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2943         }
2944     } else {
2945         TCGv_i128 tmp = tcg_temp_new_i128();
2946 
2947         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2948         if (s->be_data == MO_LE) {
2949             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2950         } else {
2951             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2952         }
2953     }
2954     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2955     return true;
2956 }
2957 
2958 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
2959 {
2960     uint64_t offset = a->imm << a->sz;
2961     TCGv_i64 clean_addr, dirty_addr;
2962     MemOp mop;
2963 
2964     if (!fp_access_check(s)) {
2965         return true;
2966     }
2967 
2968     /* LSE2 does not merge FP pairs; leave these as separate operations. */
2969     mop = finalize_memop_asimd(s, a->sz);
2970     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2971     do_fp_st(s, a->rt, clean_addr, mop);
2972     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2973     do_fp_st(s, a->rt2, clean_addr, mop);
2974     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2975     return true;
2976 }
2977 
2978 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
2979 {
2980     uint64_t offset = a->imm << a->sz;
2981     TCGv_i64 clean_addr, dirty_addr;
2982     MemOp mop;
2983 
2984     if (!fp_access_check(s)) {
2985         return true;
2986     }
2987 
2988     /* LSE2 does not merge FP pairs; leave these as separate operations. */
2989     mop = finalize_memop_asimd(s, a->sz);
2990     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2991     do_fp_ld(s, a->rt, clean_addr, mop);
2992     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
2993     do_fp_ld(s, a->rt2, clean_addr, mop);
2994     op_addr_ldstpair_post(s, a, dirty_addr, offset);
2995     return true;
2996 }
2997 
2998 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
2999 {
3000     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3001     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3002     MemOp mop;
3003     TCGv_i128 tmp;
3004 
3005     /* STGP only comes in one size. */
3006     tcg_debug_assert(a->sz == MO_64);
3007 
3008     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3009         return false;
3010     }
3011 
3012     if (a->rn == 31) {
3013         gen_check_sp_alignment(s);
3014     }
3015 
3016     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3017     if (!a->p) {
3018         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3019     }
3020 
3021     clean_addr = clean_data_tbi(s, dirty_addr);
3022     tcg_rt = cpu_reg(s, a->rt);
3023     tcg_rt2 = cpu_reg(s, a->rt2);
3024 
3025     /*
3026      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3027      * and one tag operation.  We implement it as one single aligned 16-byte
3028      * memory operation for convenience.  Note that the alignment ensures
3029      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3030      */
3031     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3032 
3033     tmp = tcg_temp_new_i128();
3034     if (s->be_data == MO_LE) {
3035         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3036     } else {
3037         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3038     }
3039     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3040 
3041     /* Perform the tag store, if tag access enabled. */
3042     if (s->ata[0]) {
3043         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3044             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3045         } else {
3046             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3047         }
3048     }
3049 
3050     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3051     return true;
3052 }
3053 
3054 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3055                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3056                                  uint64_t offset, bool is_store, MemOp mop)
3057 {
3058     int memidx;
3059 
3060     if (a->rn == 31) {
3061         gen_check_sp_alignment(s);
3062     }
3063 
3064     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3065     if (!a->p) {
3066         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3067     }
3068     memidx = get_a64_user_mem_index(s, a->unpriv);
3069     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3070                                         a->w || a->rn != 31,
3071                                         mop, a->unpriv, memidx);
3072 }
3073 
3074 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3075                                   TCGv_i64 dirty_addr, uint64_t offset)
3076 {
3077     if (a->w) {
3078         if (a->p) {
3079             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3080         }
3081         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3082     }
3083 }
3084 
3085 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3086 {
3087     bool iss_sf, iss_valid = !a->w;
3088     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3089     int memidx = get_a64_user_mem_index(s, a->unpriv);
3090     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3091 
3092     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3093 
3094     tcg_rt = cpu_reg(s, a->rt);
3095     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3096 
3097     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3098                      iss_valid, a->rt, iss_sf, false);
3099     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3100     return true;
3101 }
3102 
3103 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3104 {
3105     bool iss_sf, iss_valid = !a->w;
3106     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3107     int memidx = get_a64_user_mem_index(s, a->unpriv);
3108     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3109 
3110     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3111 
3112     tcg_rt = cpu_reg(s, a->rt);
3113     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3114 
3115     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3116                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3117     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3118     return true;
3119 }
3120 
3121 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3122 {
3123     TCGv_i64 clean_addr, dirty_addr;
3124     MemOp mop;
3125 
3126     if (!fp_access_check(s)) {
3127         return true;
3128     }
3129     mop = finalize_memop_asimd(s, a->sz);
3130     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3131     do_fp_st(s, a->rt, clean_addr, mop);
3132     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3133     return true;
3134 }
3135 
3136 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3137 {
3138     TCGv_i64 clean_addr, dirty_addr;
3139     MemOp mop;
3140 
3141     if (!fp_access_check(s)) {
3142         return true;
3143     }
3144     mop = finalize_memop_asimd(s, a->sz);
3145     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3146     do_fp_ld(s, a->rt, clean_addr, mop);
3147     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3148     return true;
3149 }
3150 
3151 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3152                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3153                              bool is_store, MemOp memop)
3154 {
3155     TCGv_i64 tcg_rm;
3156 
3157     if (a->rn == 31) {
3158         gen_check_sp_alignment(s);
3159     }
3160     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3161 
3162     tcg_rm = read_cpu_reg(s, a->rm, 1);
3163     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3164 
3165     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3166     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3167 }
3168 
3169 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3170 {
3171     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3172     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3173     MemOp memop;
3174 
3175     if (extract32(a->opt, 1, 1) == 0) {
3176         return false;
3177     }
3178 
3179     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3180     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3181     tcg_rt = cpu_reg(s, a->rt);
3182     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3183               a->ext, true, a->rt, iss_sf, false);
3184     return true;
3185 }
3186 
3187 static bool trans_STR(DisasContext *s, arg_ldst *a)
3188 {
3189     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3190     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3191     MemOp memop;
3192 
3193     if (extract32(a->opt, 1, 1) == 0) {
3194         return false;
3195     }
3196 
3197     memop = finalize_memop(s, a->sz);
3198     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3199     tcg_rt = cpu_reg(s, a->rt);
3200     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3201     return true;
3202 }
3203 
3204 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3205 {
3206     TCGv_i64 clean_addr, dirty_addr;
3207     MemOp memop;
3208 
3209     if (extract32(a->opt, 1, 1) == 0) {
3210         return false;
3211     }
3212 
3213     if (!fp_access_check(s)) {
3214         return true;
3215     }
3216 
3217     memop = finalize_memop_asimd(s, a->sz);
3218     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3219     do_fp_ld(s, a->rt, clean_addr, memop);
3220     return true;
3221 }
3222 
3223 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3224 {
3225     TCGv_i64 clean_addr, dirty_addr;
3226     MemOp memop;
3227 
3228     if (extract32(a->opt, 1, 1) == 0) {
3229         return false;
3230     }
3231 
3232     if (!fp_access_check(s)) {
3233         return true;
3234     }
3235 
3236     memop = finalize_memop_asimd(s, a->sz);
3237     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3238     do_fp_st(s, a->rt, clean_addr, memop);
3239     return true;
3240 }
3241 
3242 
3243 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3244                          int sign, bool invert)
3245 {
3246     MemOp mop = a->sz | sign;
3247     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3248 
3249     if (a->rn == 31) {
3250         gen_check_sp_alignment(s);
3251     }
3252     mop = check_atomic_align(s, a->rn, mop);
3253     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3254                                 a->rn != 31, mop);
3255     tcg_rs = read_cpu_reg(s, a->rs, true);
3256     tcg_rt = cpu_reg(s, a->rt);
3257     if (invert) {
3258         tcg_gen_not_i64(tcg_rs, tcg_rs);
3259     }
3260     /*
3261      * The tcg atomic primitives are all full barriers.  Therefore we
3262      * can ignore the Acquire and Release bits of this instruction.
3263      */
3264     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3265 
3266     if (mop & MO_SIGN) {
3267         switch (a->sz) {
3268         case MO_8:
3269             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3270             break;
3271         case MO_16:
3272             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3273             break;
3274         case MO_32:
3275             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3276             break;
3277         case MO_64:
3278             break;
3279         default:
3280             g_assert_not_reached();
3281         }
3282     }
3283     return true;
3284 }
3285 
3286 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3287 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3288 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3289 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3290 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3291 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3292 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3293 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3294 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3295 
3296 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3297 {
3298     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3299     TCGv_i64 clean_addr;
3300     MemOp mop;
3301 
3302     if (!dc_isar_feature(aa64_atomics, s) ||
3303         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3304         return false;
3305     }
3306     if (a->rn == 31) {
3307         gen_check_sp_alignment(s);
3308     }
3309     mop = check_atomic_align(s, a->rn, a->sz);
3310     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3311                                 a->rn != 31, mop);
3312     /*
3313      * LDAPR* are a special case because they are a simple load, not a
3314      * fetch-and-do-something op.
3315      * The architectural consistency requirements here are weaker than
3316      * full load-acquire (we only need "load-acquire processor consistent"),
3317      * but we choose to implement them as full LDAQ.
3318      */
3319     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3320               true, a->rt, iss_sf, true);
3321     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3322     return true;
3323 }
3324 
3325 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3326 {
3327     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3328     MemOp memop;
3329 
3330     /* Load with pointer authentication */
3331     if (!dc_isar_feature(aa64_pauth, s)) {
3332         return false;
3333     }
3334 
3335     if (a->rn == 31) {
3336         gen_check_sp_alignment(s);
3337     }
3338     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3339 
3340     if (s->pauth_active) {
3341         if (!a->m) {
3342             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3343                                       tcg_constant_i64(0));
3344         } else {
3345             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3346                                       tcg_constant_i64(0));
3347         }
3348     }
3349 
3350     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3351 
3352     memop = finalize_memop(s, MO_64);
3353 
3354     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3355     clean_addr = gen_mte_check1(s, dirty_addr, false,
3356                                 a->w || a->rn != 31, memop);
3357 
3358     tcg_rt = cpu_reg(s, a->rt);
3359     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3360               /* extend */ false, /* iss_valid */ !a->w,
3361               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3362 
3363     if (a->w) {
3364         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3365     }
3366     return true;
3367 }
3368 
3369 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3370 {
3371     TCGv_i64 clean_addr, dirty_addr;
3372     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3373     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3374 
3375     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3376         return false;
3377     }
3378 
3379     if (a->rn == 31) {
3380         gen_check_sp_alignment(s);
3381     }
3382 
3383     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3384     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3385     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3386     clean_addr = clean_data_tbi(s, dirty_addr);
3387 
3388     /*
3389      * Load-AcquirePC semantics; we implement as the slightly more
3390      * restrictive Load-Acquire.
3391      */
3392     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3393               a->rt, iss_sf, true);
3394     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3395     return true;
3396 }
3397 
3398 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3399 {
3400     TCGv_i64 clean_addr, dirty_addr;
3401     MemOp mop = a->sz;
3402     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3403 
3404     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3405         return false;
3406     }
3407 
3408     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3409 
3410     if (a->rn == 31) {
3411         gen_check_sp_alignment(s);
3412     }
3413 
3414     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3415     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3416     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3417     clean_addr = clean_data_tbi(s, dirty_addr);
3418 
3419     /* Store-Release semantics */
3420     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3421     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3422     return true;
3423 }
3424 
3425 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3426 {
3427     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3428     MemOp endian, align, mop;
3429 
3430     int total;    /* total bytes */
3431     int elements; /* elements per vector */
3432     int r;
3433     int size = a->sz;
3434 
3435     if (!a->p && a->rm != 0) {
3436         /* For non-postindexed accesses the Rm field must be 0 */
3437         return false;
3438     }
3439     if (size == 3 && !a->q && a->selem != 1) {
3440         return false;
3441     }
3442     if (!fp_access_check(s)) {
3443         return true;
3444     }
3445 
3446     if (a->rn == 31) {
3447         gen_check_sp_alignment(s);
3448     }
3449 
3450     /* For our purposes, bytes are always little-endian.  */
3451     endian = s->be_data;
3452     if (size == 0) {
3453         endian = MO_LE;
3454     }
3455 
3456     total = a->rpt * a->selem * (a->q ? 16 : 8);
3457     tcg_rn = cpu_reg_sp(s, a->rn);
3458 
3459     /*
3460      * Issue the MTE check vs the logical repeat count, before we
3461      * promote consecutive little-endian elements below.
3462      */
3463     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3464                                 finalize_memop_asimd(s, size));
3465 
3466     /*
3467      * Consecutive little-endian elements from a single register
3468      * can be promoted to a larger little-endian operation.
3469      */
3470     align = MO_ALIGN;
3471     if (a->selem == 1 && endian == MO_LE) {
3472         align = pow2_align(size);
3473         size = 3;
3474     }
3475     if (!s->align_mem) {
3476         align = 0;
3477     }
3478     mop = endian | size | align;
3479 
3480     elements = (a->q ? 16 : 8) >> size;
3481     tcg_ebytes = tcg_constant_i64(1 << size);
3482     for (r = 0; r < a->rpt; r++) {
3483         int e;
3484         for (e = 0; e < elements; e++) {
3485             int xs;
3486             for (xs = 0; xs < a->selem; xs++) {
3487                 int tt = (a->rt + r + xs) % 32;
3488                 do_vec_ld(s, tt, e, clean_addr, mop);
3489                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3490             }
3491         }
3492     }
3493 
3494     /*
3495      * For non-quad operations, setting a slice of the low 64 bits of
3496      * the register clears the high 64 bits (in the ARM ARM pseudocode
3497      * this is implicit in the fact that 'rval' is a 64 bit wide
3498      * variable).  For quad operations, we might still need to zero
3499      * the high bits of SVE.
3500      */
3501     for (r = 0; r < a->rpt * a->selem; r++) {
3502         int tt = (a->rt + r) % 32;
3503         clear_vec_high(s, a->q, tt);
3504     }
3505 
3506     if (a->p) {
3507         if (a->rm == 31) {
3508             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3509         } else {
3510             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3511         }
3512     }
3513     return true;
3514 }
3515 
3516 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3517 {
3518     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3519     MemOp endian, align, mop;
3520 
3521     int total;    /* total bytes */
3522     int elements; /* elements per vector */
3523     int r;
3524     int size = a->sz;
3525 
3526     if (!a->p && a->rm != 0) {
3527         /* For non-postindexed accesses the Rm field must be 0 */
3528         return false;
3529     }
3530     if (size == 3 && !a->q && a->selem != 1) {
3531         return false;
3532     }
3533     if (!fp_access_check(s)) {
3534         return true;
3535     }
3536 
3537     if (a->rn == 31) {
3538         gen_check_sp_alignment(s);
3539     }
3540 
3541     /* For our purposes, bytes are always little-endian.  */
3542     endian = s->be_data;
3543     if (size == 0) {
3544         endian = MO_LE;
3545     }
3546 
3547     total = a->rpt * a->selem * (a->q ? 16 : 8);
3548     tcg_rn = cpu_reg_sp(s, a->rn);
3549 
3550     /*
3551      * Issue the MTE check vs the logical repeat count, before we
3552      * promote consecutive little-endian elements below.
3553      */
3554     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3555                                 finalize_memop_asimd(s, size));
3556 
3557     /*
3558      * Consecutive little-endian elements from a single register
3559      * can be promoted to a larger little-endian operation.
3560      */
3561     align = MO_ALIGN;
3562     if (a->selem == 1 && endian == MO_LE) {
3563         align = pow2_align(size);
3564         size = 3;
3565     }
3566     if (!s->align_mem) {
3567         align = 0;
3568     }
3569     mop = endian | size | align;
3570 
3571     elements = (a->q ? 16 : 8) >> size;
3572     tcg_ebytes = tcg_constant_i64(1 << size);
3573     for (r = 0; r < a->rpt; r++) {
3574         int e;
3575         for (e = 0; e < elements; e++) {
3576             int xs;
3577             for (xs = 0; xs < a->selem; xs++) {
3578                 int tt = (a->rt + r + xs) % 32;
3579                 do_vec_st(s, tt, e, clean_addr, mop);
3580                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3581             }
3582         }
3583     }
3584 
3585     if (a->p) {
3586         if (a->rm == 31) {
3587             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3588         } else {
3589             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3590         }
3591     }
3592     return true;
3593 }
3594 
3595 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3596 {
3597     int xs, total, rt;
3598     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3599     MemOp mop;
3600 
3601     if (!a->p && a->rm != 0) {
3602         return false;
3603     }
3604     if (!fp_access_check(s)) {
3605         return true;
3606     }
3607 
3608     if (a->rn == 31) {
3609         gen_check_sp_alignment(s);
3610     }
3611 
3612     total = a->selem << a->scale;
3613     tcg_rn = cpu_reg_sp(s, a->rn);
3614 
3615     mop = finalize_memop_asimd(s, a->scale);
3616     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3617                                 total, mop);
3618 
3619     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3620     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3621         do_vec_st(s, rt, a->index, clean_addr, mop);
3622         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3623     }
3624 
3625     if (a->p) {
3626         if (a->rm == 31) {
3627             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3628         } else {
3629             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3630         }
3631     }
3632     return true;
3633 }
3634 
3635 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3636 {
3637     int xs, total, rt;
3638     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3639     MemOp mop;
3640 
3641     if (!a->p && a->rm != 0) {
3642         return false;
3643     }
3644     if (!fp_access_check(s)) {
3645         return true;
3646     }
3647 
3648     if (a->rn == 31) {
3649         gen_check_sp_alignment(s);
3650     }
3651 
3652     total = a->selem << a->scale;
3653     tcg_rn = cpu_reg_sp(s, a->rn);
3654 
3655     mop = finalize_memop_asimd(s, a->scale);
3656     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3657                                 total, mop);
3658 
3659     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3660     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3661         do_vec_ld(s, rt, a->index, clean_addr, mop);
3662         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3663     }
3664 
3665     if (a->p) {
3666         if (a->rm == 31) {
3667             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3668         } else {
3669             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3670         }
3671     }
3672     return true;
3673 }
3674 
3675 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3676 {
3677     int xs, total, rt;
3678     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3679     MemOp mop;
3680 
3681     if (!a->p && a->rm != 0) {
3682         return false;
3683     }
3684     if (!fp_access_check(s)) {
3685         return true;
3686     }
3687 
3688     if (a->rn == 31) {
3689         gen_check_sp_alignment(s);
3690     }
3691 
3692     total = a->selem << a->scale;
3693     tcg_rn = cpu_reg_sp(s, a->rn);
3694 
3695     mop = finalize_memop_asimd(s, a->scale);
3696     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3697                                 total, mop);
3698 
3699     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3700     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3701         /* Load and replicate to all elements */
3702         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3703 
3704         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3705         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3706                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3707         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3708     }
3709 
3710     if (a->p) {
3711         if (a->rm == 31) {
3712             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3713         } else {
3714             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3715         }
3716     }
3717     return true;
3718 }
3719 
3720 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3721 {
3722     TCGv_i64 addr, clean_addr, tcg_rt;
3723     int size = 4 << s->dcz_blocksize;
3724 
3725     if (!dc_isar_feature(aa64_mte, s)) {
3726         return false;
3727     }
3728     if (s->current_el == 0) {
3729         return false;
3730     }
3731 
3732     if (a->rn == 31) {
3733         gen_check_sp_alignment(s);
3734     }
3735 
3736     addr = read_cpu_reg_sp(s, a->rn, true);
3737     tcg_gen_addi_i64(addr, addr, a->imm);
3738     tcg_rt = cpu_reg(s, a->rt);
3739 
3740     if (s->ata[0]) {
3741         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3742     }
3743     /*
3744      * The non-tags portion of STZGM is mostly like DC_ZVA,
3745      * except the alignment happens before the access.
3746      */
3747     clean_addr = clean_data_tbi(s, addr);
3748     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3749     gen_helper_dc_zva(tcg_env, clean_addr);
3750     return true;
3751 }
3752 
3753 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3754 {
3755     TCGv_i64 addr, clean_addr, tcg_rt;
3756 
3757     if (!dc_isar_feature(aa64_mte, s)) {
3758         return false;
3759     }
3760     if (s->current_el == 0) {
3761         return false;
3762     }
3763 
3764     if (a->rn == 31) {
3765         gen_check_sp_alignment(s);
3766     }
3767 
3768     addr = read_cpu_reg_sp(s, a->rn, true);
3769     tcg_gen_addi_i64(addr, addr, a->imm);
3770     tcg_rt = cpu_reg(s, a->rt);
3771 
3772     if (s->ata[0]) {
3773         gen_helper_stgm(tcg_env, addr, tcg_rt);
3774     } else {
3775         MMUAccessType acc = MMU_DATA_STORE;
3776         int size = 4 << s->gm_blocksize;
3777 
3778         clean_addr = clean_data_tbi(s, addr);
3779         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3780         gen_probe_access(s, clean_addr, acc, size);
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3786 {
3787     TCGv_i64 addr, clean_addr, tcg_rt;
3788 
3789     if (!dc_isar_feature(aa64_mte, s)) {
3790         return false;
3791     }
3792     if (s->current_el == 0) {
3793         return false;
3794     }
3795 
3796     if (a->rn == 31) {
3797         gen_check_sp_alignment(s);
3798     }
3799 
3800     addr = read_cpu_reg_sp(s, a->rn, true);
3801     tcg_gen_addi_i64(addr, addr, a->imm);
3802     tcg_rt = cpu_reg(s, a->rt);
3803 
3804     if (s->ata[0]) {
3805         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3806     } else {
3807         MMUAccessType acc = MMU_DATA_LOAD;
3808         int size = 4 << s->gm_blocksize;
3809 
3810         clean_addr = clean_data_tbi(s, addr);
3811         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3812         gen_probe_access(s, clean_addr, acc, size);
3813         /* The result tags are zeros.  */
3814         tcg_gen_movi_i64(tcg_rt, 0);
3815     }
3816     return true;
3817 }
3818 
3819 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3820 {
3821     TCGv_i64 addr, clean_addr, tcg_rt;
3822 
3823     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3824         return false;
3825     }
3826 
3827     if (a->rn == 31) {
3828         gen_check_sp_alignment(s);
3829     }
3830 
3831     addr = read_cpu_reg_sp(s, a->rn, true);
3832     if (!a->p) {
3833         /* pre-index or signed offset */
3834         tcg_gen_addi_i64(addr, addr, a->imm);
3835     }
3836 
3837     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3838     tcg_rt = cpu_reg(s, a->rt);
3839     if (s->ata[0]) {
3840         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
3841     } else {
3842         /*
3843          * Tag access disabled: we must check for aborts on the load
3844          * load from [rn+offset], and then insert a 0 tag into rt.
3845          */
3846         clean_addr = clean_data_tbi(s, addr);
3847         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3848         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3849     }
3850 
3851     if (a->w) {
3852         /* pre-index or post-index */
3853         if (a->p) {
3854             /* post-index */
3855             tcg_gen_addi_i64(addr, addr, a->imm);
3856         }
3857         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3858     }
3859     return true;
3860 }
3861 
3862 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3863 {
3864     TCGv_i64 addr, tcg_rt;
3865 
3866     if (a->rn == 31) {
3867         gen_check_sp_alignment(s);
3868     }
3869 
3870     addr = read_cpu_reg_sp(s, a->rn, true);
3871     if (!a->p) {
3872         /* pre-index or signed offset */
3873         tcg_gen_addi_i64(addr, addr, a->imm);
3874     }
3875     tcg_rt = cpu_reg_sp(s, a->rt);
3876     if (!s->ata[0]) {
3877         /*
3878          * For STG and ST2G, we need to check alignment and probe memory.
3879          * TODO: For STZG and STZ2G, we could rely on the stores below,
3880          * at least for system mode; user-only won't enforce alignment.
3881          */
3882         if (is_pair) {
3883             gen_helper_st2g_stub(tcg_env, addr);
3884         } else {
3885             gen_helper_stg_stub(tcg_env, addr);
3886         }
3887     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3888         if (is_pair) {
3889             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
3890         } else {
3891             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
3892         }
3893     } else {
3894         if (is_pair) {
3895             gen_helper_st2g(tcg_env, addr, tcg_rt);
3896         } else {
3897             gen_helper_stg(tcg_env, addr, tcg_rt);
3898         }
3899     }
3900 
3901     if (is_zero) {
3902         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
3903         TCGv_i64 zero64 = tcg_constant_i64(0);
3904         TCGv_i128 zero128 = tcg_temp_new_i128();
3905         int mem_index = get_mem_index(s);
3906         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
3907 
3908         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
3909 
3910         /* This is 1 or 2 atomic 16-byte operations. */
3911         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3912         if (is_pair) {
3913             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
3914             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3915         }
3916     }
3917 
3918     if (a->w) {
3919         /* pre-index or post-index */
3920         if (a->p) {
3921             /* post-index */
3922             tcg_gen_addi_i64(addr, addr, a->imm);
3923         }
3924         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3925     }
3926     return true;
3927 }
3928 
3929 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
3930 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
3931 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
3932 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
3933 
3934 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
3935 
3936 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
3937                    bool is_setg, SetFn fn)
3938 {
3939     int memidx;
3940     uint32_t syndrome, desc = 0;
3941 
3942     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
3943         return false;
3944     }
3945 
3946     /*
3947      * UNPREDICTABLE cases: we choose to UNDEF, which allows
3948      * us to pull this check before the CheckMOPSEnabled() test
3949      * (which we do in the helper function)
3950      */
3951     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
3952         a->rd == 31 || a->rn == 31) {
3953         return false;
3954     }
3955 
3956     memidx = get_a64_user_mem_index(s, a->unpriv);
3957 
3958     /*
3959      * We pass option_a == true, matching our implementation;
3960      * we pass wrong_option == false: helper function may set that bit.
3961      */
3962     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
3963                        is_epilogue, false, true, a->rd, a->rs, a->rn);
3964 
3965     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
3966         /* We may need to do MTE tag checking, so assemble the descriptor */
3967         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
3968         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
3969         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
3970         /* SIZEM1 and ALIGN we leave 0 (byte write) */
3971     }
3972     /* The helper function always needs the memidx even with MTE disabled */
3973     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
3974 
3975     /*
3976      * The helper needs the register numbers, but since they're in
3977      * the syndrome anyway, we let it extract them from there rather
3978      * than passing in an extra three integer arguments.
3979      */
3980     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
3981     return true;
3982 }
3983 
3984 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
3985 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
3986 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
3987 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
3988 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
3989 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
3990 
3991 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
3992 
3993 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
3994 {
3995     int rmemidx, wmemidx;
3996     uint32_t syndrome, rdesc = 0, wdesc = 0;
3997     bool wunpriv = extract32(a->options, 0, 1);
3998     bool runpriv = extract32(a->options, 1, 1);
3999 
4000     /*
4001      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4002      * us to pull this check before the CheckMOPSEnabled() test
4003      * (which we do in the helper function)
4004      */
4005     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4006         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4007         return false;
4008     }
4009 
4010     rmemidx = get_a64_user_mem_index(s, runpriv);
4011     wmemidx = get_a64_user_mem_index(s, wunpriv);
4012 
4013     /*
4014      * We pass option_a == true, matching our implementation;
4015      * we pass wrong_option == false: helper function may set that bit.
4016      */
4017     syndrome = syn_mop(false, false, a->options, is_epilogue,
4018                        false, true, a->rd, a->rs, a->rn);
4019 
4020     /* If we need to do MTE tag checking, assemble the descriptors */
4021     if (s->mte_active[runpriv]) {
4022         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4023         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4024     }
4025     if (s->mte_active[wunpriv]) {
4026         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4027         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4028         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4029     }
4030     /* The helper function needs these parts of the descriptor regardless */
4031     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4032     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4033 
4034     /*
4035      * The helper needs the register numbers, but since they're in
4036      * the syndrome anyway, we let it extract them from there rather
4037      * than passing in an extra three integer arguments.
4038      */
4039     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4040        tcg_constant_i32(rdesc));
4041     return true;
4042 }
4043 
4044 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4045 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4046 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4047 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4048 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4049 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4050 
4051 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4052 
4053 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4054                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4055 {
4056     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4057     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4058     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4059 
4060     fn(tcg_rd, tcg_rn, tcg_imm);
4061     if (!a->sf) {
4062         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4063     }
4064     return true;
4065 }
4066 
4067 /*
4068  * PC-rel. addressing
4069  */
4070 
4071 static bool trans_ADR(DisasContext *s, arg_ri *a)
4072 {
4073     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4074     return true;
4075 }
4076 
4077 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4078 {
4079     int64_t offset = (int64_t)a->imm << 12;
4080 
4081     /* The page offset is ok for CF_PCREL. */
4082     offset -= s->pc_curr & 0xfff;
4083     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4084     return true;
4085 }
4086 
4087 /*
4088  * Add/subtract (immediate)
4089  */
4090 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4091 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4092 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4093 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4094 
4095 /*
4096  * Add/subtract (immediate, with tags)
4097  */
4098 
4099 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4100                                       bool sub_op)
4101 {
4102     TCGv_i64 tcg_rn, tcg_rd;
4103     int imm;
4104 
4105     imm = a->uimm6 << LOG2_TAG_GRANULE;
4106     if (sub_op) {
4107         imm = -imm;
4108     }
4109 
4110     tcg_rn = cpu_reg_sp(s, a->rn);
4111     tcg_rd = cpu_reg_sp(s, a->rd);
4112 
4113     if (s->ata[0]) {
4114         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4115                            tcg_constant_i32(imm),
4116                            tcg_constant_i32(a->uimm4));
4117     } else {
4118         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4119         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4120     }
4121     return true;
4122 }
4123 
4124 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4125 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4126 
4127 /* The input should be a value in the bottom e bits (with higher
4128  * bits zero); returns that value replicated into every element
4129  * of size e in a 64 bit integer.
4130  */
4131 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4132 {
4133     assert(e != 0);
4134     while (e < 64) {
4135         mask |= mask << e;
4136         e *= 2;
4137     }
4138     return mask;
4139 }
4140 
4141 /*
4142  * Logical (immediate)
4143  */
4144 
4145 /*
4146  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4147  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4148  * value (ie should cause a guest UNDEF exception), and true if they are
4149  * valid, in which case the decoded bit pattern is written to result.
4150  */
4151 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4152                             unsigned int imms, unsigned int immr)
4153 {
4154     uint64_t mask;
4155     unsigned e, levels, s, r;
4156     int len;
4157 
4158     assert(immn < 2 && imms < 64 && immr < 64);
4159 
4160     /* The bit patterns we create here are 64 bit patterns which
4161      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4162      * 64 bits each. Each element contains the same value: a run
4163      * of between 1 and e-1 non-zero bits, rotated within the
4164      * element by between 0 and e-1 bits.
4165      *
4166      * The element size and run length are encoded into immn (1 bit)
4167      * and imms (6 bits) as follows:
4168      * 64 bit elements: immn = 1, imms = <length of run - 1>
4169      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4170      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4171      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4172      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4173      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4174      * Notice that immn = 0, imms = 11111x is the only combination
4175      * not covered by one of the above options; this is reserved.
4176      * Further, <length of run - 1> all-ones is a reserved pattern.
4177      *
4178      * In all cases the rotation is by immr % e (and immr is 6 bits).
4179      */
4180 
4181     /* First determine the element size */
4182     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4183     if (len < 1) {
4184         /* This is the immn == 0, imms == 0x11111x case */
4185         return false;
4186     }
4187     e = 1 << len;
4188 
4189     levels = e - 1;
4190     s = imms & levels;
4191     r = immr & levels;
4192 
4193     if (s == levels) {
4194         /* <length of run - 1> mustn't be all-ones. */
4195         return false;
4196     }
4197 
4198     /* Create the value of one element: s+1 set bits rotated
4199      * by r within the element (which is e bits wide)...
4200      */
4201     mask = MAKE_64BIT_MASK(0, s + 1);
4202     if (r) {
4203         mask = (mask >> r) | (mask << (e - r));
4204         mask &= MAKE_64BIT_MASK(0, e);
4205     }
4206     /* ...then replicate the element over the whole 64 bit value */
4207     mask = bitfield_replicate(mask, e);
4208     *result = mask;
4209     return true;
4210 }
4211 
4212 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4213                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4214 {
4215     TCGv_i64 tcg_rd, tcg_rn;
4216     uint64_t imm;
4217 
4218     /* Some immediate field values are reserved. */
4219     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4220                                 extract32(a->dbm, 0, 6),
4221                                 extract32(a->dbm, 6, 6))) {
4222         return false;
4223     }
4224     if (!a->sf) {
4225         imm &= 0xffffffffull;
4226     }
4227 
4228     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4229     tcg_rn = cpu_reg(s, a->rn);
4230 
4231     fn(tcg_rd, tcg_rn, imm);
4232     if (set_cc) {
4233         gen_logic_CC(a->sf, tcg_rd);
4234     }
4235     if (!a->sf) {
4236         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4237     }
4238     return true;
4239 }
4240 
4241 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4242 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4243 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4244 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4245 
4246 /*
4247  * Move wide (immediate)
4248  */
4249 
4250 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4251 {
4252     int pos = a->hw << 4;
4253     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4254     return true;
4255 }
4256 
4257 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4258 {
4259     int pos = a->hw << 4;
4260     uint64_t imm = a->imm;
4261 
4262     imm = ~(imm << pos);
4263     if (!a->sf) {
4264         imm = (uint32_t)imm;
4265     }
4266     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4267     return true;
4268 }
4269 
4270 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4271 {
4272     int pos = a->hw << 4;
4273     TCGv_i64 tcg_rd, tcg_im;
4274 
4275     tcg_rd = cpu_reg(s, a->rd);
4276     tcg_im = tcg_constant_i64(a->imm);
4277     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4278     if (!a->sf) {
4279         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4280     }
4281     return true;
4282 }
4283 
4284 /*
4285  * Bitfield
4286  */
4287 
4288 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4289 {
4290     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4291     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4292     unsigned int bitsize = a->sf ? 64 : 32;
4293     unsigned int ri = a->immr;
4294     unsigned int si = a->imms;
4295     unsigned int pos, len;
4296 
4297     if (si >= ri) {
4298         /* Wd<s-r:0> = Wn<s:r> */
4299         len = (si - ri) + 1;
4300         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4301         if (!a->sf) {
4302             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4303         }
4304     } else {
4305         /* Wd<32+s-r,32-r> = Wn<s:0> */
4306         len = si + 1;
4307         pos = (bitsize - ri) & (bitsize - 1);
4308 
4309         if (len < ri) {
4310             /*
4311              * Sign extend the destination field from len to fill the
4312              * balance of the word.  Let the deposit below insert all
4313              * of those sign bits.
4314              */
4315             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4316             len = ri;
4317         }
4318 
4319         /*
4320          * We start with zero, and we haven't modified any bits outside
4321          * bitsize, therefore no final zero-extension is unneeded for !sf.
4322          */
4323         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4324     }
4325     return true;
4326 }
4327 
4328 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4329 {
4330     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4331     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4332     unsigned int bitsize = a->sf ? 64 : 32;
4333     unsigned int ri = a->immr;
4334     unsigned int si = a->imms;
4335     unsigned int pos, len;
4336 
4337     tcg_rd = cpu_reg(s, a->rd);
4338     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4339 
4340     if (si >= ri) {
4341         /* Wd<s-r:0> = Wn<s:r> */
4342         len = (si - ri) + 1;
4343         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4344     } else {
4345         /* Wd<32+s-r,32-r> = Wn<s:0> */
4346         len = si + 1;
4347         pos = (bitsize - ri) & (bitsize - 1);
4348         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4349     }
4350     return true;
4351 }
4352 
4353 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4354 {
4355     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4356     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4357     unsigned int bitsize = a->sf ? 64 : 32;
4358     unsigned int ri = a->immr;
4359     unsigned int si = a->imms;
4360     unsigned int pos, len;
4361 
4362     tcg_rd = cpu_reg(s, a->rd);
4363     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4364 
4365     if (si >= ri) {
4366         /* Wd<s-r:0> = Wn<s:r> */
4367         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4368         len = (si - ri) + 1;
4369         pos = 0;
4370     } else {
4371         /* Wd<32+s-r,32-r> = Wn<s:0> */
4372         len = si + 1;
4373         pos = (bitsize - ri) & (bitsize - 1);
4374     }
4375 
4376     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4377     if (!a->sf) {
4378         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4379     }
4380     return true;
4381 }
4382 
4383 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4384 {
4385     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4386 
4387     tcg_rd = cpu_reg(s, a->rd);
4388 
4389     if (unlikely(a->imm == 0)) {
4390         /*
4391          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4392          * so an extract from bit 0 is a special case.
4393          */
4394         if (a->sf) {
4395             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4396         } else {
4397             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4398         }
4399     } else {
4400         tcg_rm = cpu_reg(s, a->rm);
4401         tcg_rn = cpu_reg(s, a->rn);
4402 
4403         if (a->sf) {
4404             /* Specialization to ROR happens in EXTRACT2.  */
4405             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4406         } else {
4407             TCGv_i32 t0 = tcg_temp_new_i32();
4408 
4409             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4410             if (a->rm == a->rn) {
4411                 tcg_gen_rotri_i32(t0, t0, a->imm);
4412             } else {
4413                 TCGv_i32 t1 = tcg_temp_new_i32();
4414                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4415                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4416             }
4417             tcg_gen_extu_i32_i64(tcg_rd, t0);
4418         }
4419     }
4420     return true;
4421 }
4422 
4423 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4424  * Note that it is the caller's responsibility to ensure that the
4425  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4426  * mandated semantics for out of range shifts.
4427  */
4428 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4429                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4430 {
4431     switch (shift_type) {
4432     case A64_SHIFT_TYPE_LSL:
4433         tcg_gen_shl_i64(dst, src, shift_amount);
4434         break;
4435     case A64_SHIFT_TYPE_LSR:
4436         tcg_gen_shr_i64(dst, src, shift_amount);
4437         break;
4438     case A64_SHIFT_TYPE_ASR:
4439         if (!sf) {
4440             tcg_gen_ext32s_i64(dst, src);
4441         }
4442         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4443         break;
4444     case A64_SHIFT_TYPE_ROR:
4445         if (sf) {
4446             tcg_gen_rotr_i64(dst, src, shift_amount);
4447         } else {
4448             TCGv_i32 t0, t1;
4449             t0 = tcg_temp_new_i32();
4450             t1 = tcg_temp_new_i32();
4451             tcg_gen_extrl_i64_i32(t0, src);
4452             tcg_gen_extrl_i64_i32(t1, shift_amount);
4453             tcg_gen_rotr_i32(t0, t0, t1);
4454             tcg_gen_extu_i32_i64(dst, t0);
4455         }
4456         break;
4457     default:
4458         assert(FALSE); /* all shift types should be handled */
4459         break;
4460     }
4461 
4462     if (!sf) { /* zero extend final result */
4463         tcg_gen_ext32u_i64(dst, dst);
4464     }
4465 }
4466 
4467 /* Shift a TCGv src by immediate, put result in dst.
4468  * The shift amount must be in range (this should always be true as the
4469  * relevant instructions will UNDEF on bad shift immediates).
4470  */
4471 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4472                           enum a64_shift_type shift_type, unsigned int shift_i)
4473 {
4474     assert(shift_i < (sf ? 64 : 32));
4475 
4476     if (shift_i == 0) {
4477         tcg_gen_mov_i64(dst, src);
4478     } else {
4479         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4480     }
4481 }
4482 
4483 /* Logical (shifted register)
4484  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
4485  * +----+-----+-----------+-------+---+------+--------+------+------+
4486  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
4487  * +----+-----+-----------+-------+---+------+--------+------+------+
4488  */
4489 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4490 {
4491     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4492     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4493 
4494     sf = extract32(insn, 31, 1);
4495     opc = extract32(insn, 29, 2);
4496     shift_type = extract32(insn, 22, 2);
4497     invert = extract32(insn, 21, 1);
4498     rm = extract32(insn, 16, 5);
4499     shift_amount = extract32(insn, 10, 6);
4500     rn = extract32(insn, 5, 5);
4501     rd = extract32(insn, 0, 5);
4502 
4503     if (!sf && (shift_amount & (1 << 5))) {
4504         unallocated_encoding(s);
4505         return;
4506     }
4507 
4508     tcg_rd = cpu_reg(s, rd);
4509 
4510     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4511         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4512          * register-register MOV and MVN, so it is worth special casing.
4513          */
4514         tcg_rm = cpu_reg(s, rm);
4515         if (invert) {
4516             tcg_gen_not_i64(tcg_rd, tcg_rm);
4517             if (!sf) {
4518                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4519             }
4520         } else {
4521             if (sf) {
4522                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4523             } else {
4524                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4525             }
4526         }
4527         return;
4528     }
4529 
4530     tcg_rm = read_cpu_reg(s, rm, sf);
4531 
4532     if (shift_amount) {
4533         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4534     }
4535 
4536     tcg_rn = cpu_reg(s, rn);
4537 
4538     switch (opc | (invert << 2)) {
4539     case 0: /* AND */
4540     case 3: /* ANDS */
4541         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4542         break;
4543     case 1: /* ORR */
4544         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4545         break;
4546     case 2: /* EOR */
4547         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4548         break;
4549     case 4: /* BIC */
4550     case 7: /* BICS */
4551         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4552         break;
4553     case 5: /* ORN */
4554         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4555         break;
4556     case 6: /* EON */
4557         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4558         break;
4559     default:
4560         assert(FALSE);
4561         break;
4562     }
4563 
4564     if (!sf) {
4565         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4566     }
4567 
4568     if (opc == 3) {
4569         gen_logic_CC(sf, tcg_rd);
4570     }
4571 }
4572 
4573 /*
4574  * Add/subtract (extended register)
4575  *
4576  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
4577  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4578  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
4579  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4580  *
4581  *  sf: 0 -> 32bit, 1 -> 64bit
4582  *  op: 0 -> add  , 1 -> sub
4583  *   S: 1 -> set flags
4584  * opt: 00
4585  * option: extension type (see DecodeRegExtend)
4586  * imm3: optional shift to Rm
4587  *
4588  * Rd = Rn + LSL(extend(Rm), amount)
4589  */
4590 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4591 {
4592     int rd = extract32(insn, 0, 5);
4593     int rn = extract32(insn, 5, 5);
4594     int imm3 = extract32(insn, 10, 3);
4595     int option = extract32(insn, 13, 3);
4596     int rm = extract32(insn, 16, 5);
4597     int opt = extract32(insn, 22, 2);
4598     bool setflags = extract32(insn, 29, 1);
4599     bool sub_op = extract32(insn, 30, 1);
4600     bool sf = extract32(insn, 31, 1);
4601 
4602     TCGv_i64 tcg_rm, tcg_rn; /* temps */
4603     TCGv_i64 tcg_rd;
4604     TCGv_i64 tcg_result;
4605 
4606     if (imm3 > 4 || opt != 0) {
4607         unallocated_encoding(s);
4608         return;
4609     }
4610 
4611     /* non-flag setting ops may use SP */
4612     if (!setflags) {
4613         tcg_rd = cpu_reg_sp(s, rd);
4614     } else {
4615         tcg_rd = cpu_reg(s, rd);
4616     }
4617     tcg_rn = read_cpu_reg_sp(s, rn, sf);
4618 
4619     tcg_rm = read_cpu_reg(s, rm, sf);
4620     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4621 
4622     tcg_result = tcg_temp_new_i64();
4623 
4624     if (!setflags) {
4625         if (sub_op) {
4626             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4627         } else {
4628             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4629         }
4630     } else {
4631         if (sub_op) {
4632             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4633         } else {
4634             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4635         }
4636     }
4637 
4638     if (sf) {
4639         tcg_gen_mov_i64(tcg_rd, tcg_result);
4640     } else {
4641         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4642     }
4643 }
4644 
4645 /*
4646  * Add/subtract (shifted register)
4647  *
4648  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
4649  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4650  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
4651  * +--+--+--+-----------+-----+--+-------+---------+------+------+
4652  *
4653  *    sf: 0 -> 32bit, 1 -> 64bit
4654  *    op: 0 -> add  , 1 -> sub
4655  *     S: 1 -> set flags
4656  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4657  *  imm6: Shift amount to apply to Rm before the add/sub
4658  */
4659 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4660 {
4661     int rd = extract32(insn, 0, 5);
4662     int rn = extract32(insn, 5, 5);
4663     int imm6 = extract32(insn, 10, 6);
4664     int rm = extract32(insn, 16, 5);
4665     int shift_type = extract32(insn, 22, 2);
4666     bool setflags = extract32(insn, 29, 1);
4667     bool sub_op = extract32(insn, 30, 1);
4668     bool sf = extract32(insn, 31, 1);
4669 
4670     TCGv_i64 tcg_rd = cpu_reg(s, rd);
4671     TCGv_i64 tcg_rn, tcg_rm;
4672     TCGv_i64 tcg_result;
4673 
4674     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4675         unallocated_encoding(s);
4676         return;
4677     }
4678 
4679     tcg_rn = read_cpu_reg(s, rn, sf);
4680     tcg_rm = read_cpu_reg(s, rm, sf);
4681 
4682     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4683 
4684     tcg_result = tcg_temp_new_i64();
4685 
4686     if (!setflags) {
4687         if (sub_op) {
4688             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4689         } else {
4690             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4691         }
4692     } else {
4693         if (sub_op) {
4694             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4695         } else {
4696             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4697         }
4698     }
4699 
4700     if (sf) {
4701         tcg_gen_mov_i64(tcg_rd, tcg_result);
4702     } else {
4703         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4704     }
4705 }
4706 
4707 /* Data-processing (3 source)
4708  *
4709  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
4710  *  +--+------+-----------+------+------+----+------+------+------+
4711  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
4712  *  +--+------+-----------+------+------+----+------+------+------+
4713  */
4714 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4715 {
4716     int rd = extract32(insn, 0, 5);
4717     int rn = extract32(insn, 5, 5);
4718     int ra = extract32(insn, 10, 5);
4719     int rm = extract32(insn, 16, 5);
4720     int op_id = (extract32(insn, 29, 3) << 4) |
4721         (extract32(insn, 21, 3) << 1) |
4722         extract32(insn, 15, 1);
4723     bool sf = extract32(insn, 31, 1);
4724     bool is_sub = extract32(op_id, 0, 1);
4725     bool is_high = extract32(op_id, 2, 1);
4726     bool is_signed = false;
4727     TCGv_i64 tcg_op1;
4728     TCGv_i64 tcg_op2;
4729     TCGv_i64 tcg_tmp;
4730 
4731     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4732     switch (op_id) {
4733     case 0x42: /* SMADDL */
4734     case 0x43: /* SMSUBL */
4735     case 0x44: /* SMULH */
4736         is_signed = true;
4737         break;
4738     case 0x0: /* MADD (32bit) */
4739     case 0x1: /* MSUB (32bit) */
4740     case 0x40: /* MADD (64bit) */
4741     case 0x41: /* MSUB (64bit) */
4742     case 0x4a: /* UMADDL */
4743     case 0x4b: /* UMSUBL */
4744     case 0x4c: /* UMULH */
4745         break;
4746     default:
4747         unallocated_encoding(s);
4748         return;
4749     }
4750 
4751     if (is_high) {
4752         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4753         TCGv_i64 tcg_rd = cpu_reg(s, rd);
4754         TCGv_i64 tcg_rn = cpu_reg(s, rn);
4755         TCGv_i64 tcg_rm = cpu_reg(s, rm);
4756 
4757         if (is_signed) {
4758             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4759         } else {
4760             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4761         }
4762         return;
4763     }
4764 
4765     tcg_op1 = tcg_temp_new_i64();
4766     tcg_op2 = tcg_temp_new_i64();
4767     tcg_tmp = tcg_temp_new_i64();
4768 
4769     if (op_id < 0x42) {
4770         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4771         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4772     } else {
4773         if (is_signed) {
4774             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4775             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4776         } else {
4777             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4778             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4779         }
4780     }
4781 
4782     if (ra == 31 && !is_sub) {
4783         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4784         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4785     } else {
4786         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4787         if (is_sub) {
4788             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4789         } else {
4790             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4791         }
4792     }
4793 
4794     if (!sf) {
4795         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4796     }
4797 }
4798 
4799 /* Add/subtract (with carry)
4800  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
4801  * +--+--+--+------------------------+------+-------------+------+-----+
4802  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
4803  * +--+--+--+------------------------+------+-------------+------+-----+
4804  */
4805 
4806 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4807 {
4808     unsigned int sf, op, setflags, rm, rn, rd;
4809     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4810 
4811     sf = extract32(insn, 31, 1);
4812     op = extract32(insn, 30, 1);
4813     setflags = extract32(insn, 29, 1);
4814     rm = extract32(insn, 16, 5);
4815     rn = extract32(insn, 5, 5);
4816     rd = extract32(insn, 0, 5);
4817 
4818     tcg_rd = cpu_reg(s, rd);
4819     tcg_rn = cpu_reg(s, rn);
4820 
4821     if (op) {
4822         tcg_y = tcg_temp_new_i64();
4823         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4824     } else {
4825         tcg_y = cpu_reg(s, rm);
4826     }
4827 
4828     if (setflags) {
4829         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4830     } else {
4831         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4832     }
4833 }
4834 
4835 /*
4836  * Rotate right into flags
4837  *  31 30 29                21       15          10      5  4      0
4838  * +--+--+--+-----------------+--------+-----------+------+--+------+
4839  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
4840  * +--+--+--+-----------------+--------+-----------+------+--+------+
4841  */
4842 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4843 {
4844     int mask = extract32(insn, 0, 4);
4845     int o2 = extract32(insn, 4, 1);
4846     int rn = extract32(insn, 5, 5);
4847     int imm6 = extract32(insn, 15, 6);
4848     int sf_op_s = extract32(insn, 29, 3);
4849     TCGv_i64 tcg_rn;
4850     TCGv_i32 nzcv;
4851 
4852     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4853         unallocated_encoding(s);
4854         return;
4855     }
4856 
4857     tcg_rn = read_cpu_reg(s, rn, 1);
4858     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4859 
4860     nzcv = tcg_temp_new_i32();
4861     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4862 
4863     if (mask & 8) { /* N */
4864         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4865     }
4866     if (mask & 4) { /* Z */
4867         tcg_gen_not_i32(cpu_ZF, nzcv);
4868         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4869     }
4870     if (mask & 2) { /* C */
4871         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4872     }
4873     if (mask & 1) { /* V */
4874         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4875     }
4876 }
4877 
4878 /*
4879  * Evaluate into flags
4880  *  31 30 29                21        15   14        10      5  4      0
4881  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4882  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
4883  * +--+--+--+-----------------+---------+----+---------+------+--+------+
4884  */
4885 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4886 {
4887     int o3_mask = extract32(insn, 0, 5);
4888     int rn = extract32(insn, 5, 5);
4889     int o2 = extract32(insn, 15, 6);
4890     int sz = extract32(insn, 14, 1);
4891     int sf_op_s = extract32(insn, 29, 3);
4892     TCGv_i32 tmp;
4893     int shift;
4894 
4895     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4896         !dc_isar_feature(aa64_condm_4, s)) {
4897         unallocated_encoding(s);
4898         return;
4899     }
4900     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
4901 
4902     tmp = tcg_temp_new_i32();
4903     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4904     tcg_gen_shli_i32(cpu_NF, tmp, shift);
4905     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4906     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4907     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4908 }
4909 
4910 /* Conditional compare (immediate / register)
4911  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
4912  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4913  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
4914  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4915  *        [1]                             y                [0]       [0]
4916  */
4917 static void disas_cc(DisasContext *s, uint32_t insn)
4918 {
4919     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4920     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4921     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4922     DisasCompare c;
4923 
4924     if (!extract32(insn, 29, 1)) {
4925         unallocated_encoding(s);
4926         return;
4927     }
4928     if (insn & (1 << 10 | 1 << 4)) {
4929         unallocated_encoding(s);
4930         return;
4931     }
4932     sf = extract32(insn, 31, 1);
4933     op = extract32(insn, 30, 1);
4934     is_imm = extract32(insn, 11, 1);
4935     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4936     cond = extract32(insn, 12, 4);
4937     rn = extract32(insn, 5, 5);
4938     nzcv = extract32(insn, 0, 4);
4939 
4940     /* Set T0 = !COND.  */
4941     tcg_t0 = tcg_temp_new_i32();
4942     arm_test_cc(&c, cond);
4943     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4944 
4945     /* Load the arguments for the new comparison.  */
4946     if (is_imm) {
4947         tcg_y = tcg_temp_new_i64();
4948         tcg_gen_movi_i64(tcg_y, y);
4949     } else {
4950         tcg_y = cpu_reg(s, y);
4951     }
4952     tcg_rn = cpu_reg(s, rn);
4953 
4954     /* Set the flags for the new comparison.  */
4955     tcg_tmp = tcg_temp_new_i64();
4956     if (op) {
4957         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4958     } else {
4959         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4960     }
4961 
4962     /* If COND was false, force the flags to #nzcv.  Compute two masks
4963      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4964      * For tcg hosts that support ANDC, we can make do with just T1.
4965      * In either case, allow the tcg optimizer to delete any unused mask.
4966      */
4967     tcg_t1 = tcg_temp_new_i32();
4968     tcg_t2 = tcg_temp_new_i32();
4969     tcg_gen_neg_i32(tcg_t1, tcg_t0);
4970     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4971 
4972     if (nzcv & 8) { /* N */
4973         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4974     } else {
4975         if (TCG_TARGET_HAS_andc_i32) {
4976             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4977         } else {
4978             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4979         }
4980     }
4981     if (nzcv & 4) { /* Z */
4982         if (TCG_TARGET_HAS_andc_i32) {
4983             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4984         } else {
4985             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4986         }
4987     } else {
4988         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4989     }
4990     if (nzcv & 2) { /* C */
4991         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4992     } else {
4993         if (TCG_TARGET_HAS_andc_i32) {
4994             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4995         } else {
4996             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4997         }
4998     }
4999     if (nzcv & 1) { /* V */
5000         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5001     } else {
5002         if (TCG_TARGET_HAS_andc_i32) {
5003             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5004         } else {
5005             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5006         }
5007     }
5008 }
5009 
5010 /* Conditional select
5011  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5012  * +----+----+---+-----------------+------+------+-----+------+------+
5013  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5014  * +----+----+---+-----------------+------+------+-----+------+------+
5015  */
5016 static void disas_cond_select(DisasContext *s, uint32_t insn)
5017 {
5018     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5019     TCGv_i64 tcg_rd, zero;
5020     DisasCompare64 c;
5021 
5022     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5023         /* S == 1 or op2<1> == 1 */
5024         unallocated_encoding(s);
5025         return;
5026     }
5027     sf = extract32(insn, 31, 1);
5028     else_inv = extract32(insn, 30, 1);
5029     rm = extract32(insn, 16, 5);
5030     cond = extract32(insn, 12, 4);
5031     else_inc = extract32(insn, 10, 1);
5032     rn = extract32(insn, 5, 5);
5033     rd = extract32(insn, 0, 5);
5034 
5035     tcg_rd = cpu_reg(s, rd);
5036 
5037     a64_test_cc(&c, cond);
5038     zero = tcg_constant_i64(0);
5039 
5040     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5041         /* CSET & CSETM.  */
5042         if (else_inv) {
5043             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5044                                    tcg_rd, c.value, zero);
5045         } else {
5046             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5047                                 tcg_rd, c.value, zero);
5048         }
5049     } else {
5050         TCGv_i64 t_true = cpu_reg(s, rn);
5051         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5052         if (else_inv && else_inc) {
5053             tcg_gen_neg_i64(t_false, t_false);
5054         } else if (else_inv) {
5055             tcg_gen_not_i64(t_false, t_false);
5056         } else if (else_inc) {
5057             tcg_gen_addi_i64(t_false, t_false, 1);
5058         }
5059         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5060     }
5061 
5062     if (!sf) {
5063         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5064     }
5065 }
5066 
5067 static void handle_clz(DisasContext *s, unsigned int sf,
5068                        unsigned int rn, unsigned int rd)
5069 {
5070     TCGv_i64 tcg_rd, tcg_rn;
5071     tcg_rd = cpu_reg(s, rd);
5072     tcg_rn = cpu_reg(s, rn);
5073 
5074     if (sf) {
5075         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5076     } else {
5077         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5078         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5079         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5080         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5081     }
5082 }
5083 
5084 static void handle_cls(DisasContext *s, unsigned int sf,
5085                        unsigned int rn, unsigned int rd)
5086 {
5087     TCGv_i64 tcg_rd, tcg_rn;
5088     tcg_rd = cpu_reg(s, rd);
5089     tcg_rn = cpu_reg(s, rn);
5090 
5091     if (sf) {
5092         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5093     } else {
5094         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5095         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5096         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5097         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5098     }
5099 }
5100 
5101 static void handle_rbit(DisasContext *s, unsigned int sf,
5102                         unsigned int rn, unsigned int rd)
5103 {
5104     TCGv_i64 tcg_rd, tcg_rn;
5105     tcg_rd = cpu_reg(s, rd);
5106     tcg_rn = cpu_reg(s, rn);
5107 
5108     if (sf) {
5109         gen_helper_rbit64(tcg_rd, tcg_rn);
5110     } else {
5111         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5112         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5113         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5114         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5115     }
5116 }
5117 
5118 /* REV with sf==1, opcode==3 ("REV64") */
5119 static void handle_rev64(DisasContext *s, unsigned int sf,
5120                          unsigned int rn, unsigned int rd)
5121 {
5122     if (!sf) {
5123         unallocated_encoding(s);
5124         return;
5125     }
5126     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5127 }
5128 
5129 /* REV with sf==0, opcode==2
5130  * REV32 (sf==1, opcode==2)
5131  */
5132 static void handle_rev32(DisasContext *s, unsigned int sf,
5133                          unsigned int rn, unsigned int rd)
5134 {
5135     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5136     TCGv_i64 tcg_rn = cpu_reg(s, rn);
5137 
5138     if (sf) {
5139         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5140         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5141     } else {
5142         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5143     }
5144 }
5145 
5146 /* REV16 (opcode==1) */
5147 static void handle_rev16(DisasContext *s, unsigned int sf,
5148                          unsigned int rn, unsigned int rd)
5149 {
5150     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5151     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5152     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5153     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5154 
5155     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5156     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5157     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5158     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5159     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5160 }
5161 
5162 /* Data-processing (1 source)
5163  *   31  30  29  28             21 20     16 15    10 9    5 4    0
5164  * +----+---+---+-----------------+---------+--------+------+------+
5165  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
5166  * +----+---+---+-----------------+---------+--------+------+------+
5167  */
5168 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5169 {
5170     unsigned int sf, opcode, opcode2, rn, rd;
5171     TCGv_i64 tcg_rd;
5172 
5173     if (extract32(insn, 29, 1)) {
5174         unallocated_encoding(s);
5175         return;
5176     }
5177 
5178     sf = extract32(insn, 31, 1);
5179     opcode = extract32(insn, 10, 6);
5180     opcode2 = extract32(insn, 16, 5);
5181     rn = extract32(insn, 5, 5);
5182     rd = extract32(insn, 0, 5);
5183 
5184 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5185 
5186     switch (MAP(sf, opcode2, opcode)) {
5187     case MAP(0, 0x00, 0x00): /* RBIT */
5188     case MAP(1, 0x00, 0x00):
5189         handle_rbit(s, sf, rn, rd);
5190         break;
5191     case MAP(0, 0x00, 0x01): /* REV16 */
5192     case MAP(1, 0x00, 0x01):
5193         handle_rev16(s, sf, rn, rd);
5194         break;
5195     case MAP(0, 0x00, 0x02): /* REV/REV32 */
5196     case MAP(1, 0x00, 0x02):
5197         handle_rev32(s, sf, rn, rd);
5198         break;
5199     case MAP(1, 0x00, 0x03): /* REV64 */
5200         handle_rev64(s, sf, rn, rd);
5201         break;
5202     case MAP(0, 0x00, 0x04): /* CLZ */
5203     case MAP(1, 0x00, 0x04):
5204         handle_clz(s, sf, rn, rd);
5205         break;
5206     case MAP(0, 0x00, 0x05): /* CLS */
5207     case MAP(1, 0x00, 0x05):
5208         handle_cls(s, sf, rn, rd);
5209         break;
5210     case MAP(1, 0x01, 0x00): /* PACIA */
5211         if (s->pauth_active) {
5212             tcg_rd = cpu_reg(s, rd);
5213             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5214         } else if (!dc_isar_feature(aa64_pauth, s)) {
5215             goto do_unallocated;
5216         }
5217         break;
5218     case MAP(1, 0x01, 0x01): /* PACIB */
5219         if (s->pauth_active) {
5220             tcg_rd = cpu_reg(s, rd);
5221             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5222         } else if (!dc_isar_feature(aa64_pauth, s)) {
5223             goto do_unallocated;
5224         }
5225         break;
5226     case MAP(1, 0x01, 0x02): /* PACDA */
5227         if (s->pauth_active) {
5228             tcg_rd = cpu_reg(s, rd);
5229             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5230         } else if (!dc_isar_feature(aa64_pauth, s)) {
5231             goto do_unallocated;
5232         }
5233         break;
5234     case MAP(1, 0x01, 0x03): /* PACDB */
5235         if (s->pauth_active) {
5236             tcg_rd = cpu_reg(s, rd);
5237             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5238         } else if (!dc_isar_feature(aa64_pauth, s)) {
5239             goto do_unallocated;
5240         }
5241         break;
5242     case MAP(1, 0x01, 0x04): /* AUTIA */
5243         if (s->pauth_active) {
5244             tcg_rd = cpu_reg(s, rd);
5245             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5246         } else if (!dc_isar_feature(aa64_pauth, s)) {
5247             goto do_unallocated;
5248         }
5249         break;
5250     case MAP(1, 0x01, 0x05): /* AUTIB */
5251         if (s->pauth_active) {
5252             tcg_rd = cpu_reg(s, rd);
5253             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5254         } else if (!dc_isar_feature(aa64_pauth, s)) {
5255             goto do_unallocated;
5256         }
5257         break;
5258     case MAP(1, 0x01, 0x06): /* AUTDA */
5259         if (s->pauth_active) {
5260             tcg_rd = cpu_reg(s, rd);
5261             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5262         } else if (!dc_isar_feature(aa64_pauth, s)) {
5263             goto do_unallocated;
5264         }
5265         break;
5266     case MAP(1, 0x01, 0x07): /* AUTDB */
5267         if (s->pauth_active) {
5268             tcg_rd = cpu_reg(s, rd);
5269             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5270         } else if (!dc_isar_feature(aa64_pauth, s)) {
5271             goto do_unallocated;
5272         }
5273         break;
5274     case MAP(1, 0x01, 0x08): /* PACIZA */
5275         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5276             goto do_unallocated;
5277         } else if (s->pauth_active) {
5278             tcg_rd = cpu_reg(s, rd);
5279             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5280         }
5281         break;
5282     case MAP(1, 0x01, 0x09): /* PACIZB */
5283         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5284             goto do_unallocated;
5285         } else if (s->pauth_active) {
5286             tcg_rd = cpu_reg(s, rd);
5287             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5288         }
5289         break;
5290     case MAP(1, 0x01, 0x0a): /* PACDZA */
5291         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5292             goto do_unallocated;
5293         } else if (s->pauth_active) {
5294             tcg_rd = cpu_reg(s, rd);
5295             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5296         }
5297         break;
5298     case MAP(1, 0x01, 0x0b): /* PACDZB */
5299         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5300             goto do_unallocated;
5301         } else if (s->pauth_active) {
5302             tcg_rd = cpu_reg(s, rd);
5303             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5304         }
5305         break;
5306     case MAP(1, 0x01, 0x0c): /* AUTIZA */
5307         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5308             goto do_unallocated;
5309         } else if (s->pauth_active) {
5310             tcg_rd = cpu_reg(s, rd);
5311             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5312         }
5313         break;
5314     case MAP(1, 0x01, 0x0d): /* AUTIZB */
5315         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5316             goto do_unallocated;
5317         } else if (s->pauth_active) {
5318             tcg_rd = cpu_reg(s, rd);
5319             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5320         }
5321         break;
5322     case MAP(1, 0x01, 0x0e): /* AUTDZA */
5323         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5324             goto do_unallocated;
5325         } else if (s->pauth_active) {
5326             tcg_rd = cpu_reg(s, rd);
5327             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5328         }
5329         break;
5330     case MAP(1, 0x01, 0x0f): /* AUTDZB */
5331         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5332             goto do_unallocated;
5333         } else if (s->pauth_active) {
5334             tcg_rd = cpu_reg(s, rd);
5335             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5336         }
5337         break;
5338     case MAP(1, 0x01, 0x10): /* XPACI */
5339         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5340             goto do_unallocated;
5341         } else if (s->pauth_active) {
5342             tcg_rd = cpu_reg(s, rd);
5343             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
5344         }
5345         break;
5346     case MAP(1, 0x01, 0x11): /* XPACD */
5347         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5348             goto do_unallocated;
5349         } else if (s->pauth_active) {
5350             tcg_rd = cpu_reg(s, rd);
5351             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
5352         }
5353         break;
5354     default:
5355     do_unallocated:
5356         unallocated_encoding(s);
5357         break;
5358     }
5359 
5360 #undef MAP
5361 }
5362 
5363 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5364                        unsigned int rm, unsigned int rn, unsigned int rd)
5365 {
5366     TCGv_i64 tcg_n, tcg_m, tcg_rd;
5367     tcg_rd = cpu_reg(s, rd);
5368 
5369     if (!sf && is_signed) {
5370         tcg_n = tcg_temp_new_i64();
5371         tcg_m = tcg_temp_new_i64();
5372         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5373         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5374     } else {
5375         tcg_n = read_cpu_reg(s, rn, sf);
5376         tcg_m = read_cpu_reg(s, rm, sf);
5377     }
5378 
5379     if (is_signed) {
5380         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5381     } else {
5382         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5383     }
5384 
5385     if (!sf) { /* zero extend final result */
5386         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5387     }
5388 }
5389 
5390 /* LSLV, LSRV, ASRV, RORV */
5391 static void handle_shift_reg(DisasContext *s,
5392                              enum a64_shift_type shift_type, unsigned int sf,
5393                              unsigned int rm, unsigned int rn, unsigned int rd)
5394 {
5395     TCGv_i64 tcg_shift = tcg_temp_new_i64();
5396     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5397     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5398 
5399     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5400     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5401 }
5402 
5403 /* CRC32[BHWX], CRC32C[BHWX] */
5404 static void handle_crc32(DisasContext *s,
5405                          unsigned int sf, unsigned int sz, bool crc32c,
5406                          unsigned int rm, unsigned int rn, unsigned int rd)
5407 {
5408     TCGv_i64 tcg_acc, tcg_val;
5409     TCGv_i32 tcg_bytes;
5410 
5411     if (!dc_isar_feature(aa64_crc32, s)
5412         || (sf == 1 && sz != 3)
5413         || (sf == 0 && sz == 3)) {
5414         unallocated_encoding(s);
5415         return;
5416     }
5417 
5418     if (sz == 3) {
5419         tcg_val = cpu_reg(s, rm);
5420     } else {
5421         uint64_t mask;
5422         switch (sz) {
5423         case 0:
5424             mask = 0xFF;
5425             break;
5426         case 1:
5427             mask = 0xFFFF;
5428             break;
5429         case 2:
5430             mask = 0xFFFFFFFF;
5431             break;
5432         default:
5433             g_assert_not_reached();
5434         }
5435         tcg_val = tcg_temp_new_i64();
5436         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5437     }
5438 
5439     tcg_acc = cpu_reg(s, rn);
5440     tcg_bytes = tcg_constant_i32(1 << sz);
5441 
5442     if (crc32c) {
5443         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5444     } else {
5445         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5446     }
5447 }
5448 
5449 /* Data-processing (2 source)
5450  *   31   30  29 28             21 20  16 15    10 9    5 4    0
5451  * +----+---+---+-----------------+------+--------+------+------+
5452  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
5453  * +----+---+---+-----------------+------+--------+------+------+
5454  */
5455 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5456 {
5457     unsigned int sf, rm, opcode, rn, rd, setflag;
5458     sf = extract32(insn, 31, 1);
5459     setflag = extract32(insn, 29, 1);
5460     rm = extract32(insn, 16, 5);
5461     opcode = extract32(insn, 10, 6);
5462     rn = extract32(insn, 5, 5);
5463     rd = extract32(insn, 0, 5);
5464 
5465     if (setflag && opcode != 0) {
5466         unallocated_encoding(s);
5467         return;
5468     }
5469 
5470     switch (opcode) {
5471     case 0: /* SUBP(S) */
5472         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5473             goto do_unallocated;
5474         } else {
5475             TCGv_i64 tcg_n, tcg_m, tcg_d;
5476 
5477             tcg_n = read_cpu_reg_sp(s, rn, true);
5478             tcg_m = read_cpu_reg_sp(s, rm, true);
5479             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5480             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5481             tcg_d = cpu_reg(s, rd);
5482 
5483             if (setflag) {
5484                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5485             } else {
5486                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5487             }
5488         }
5489         break;
5490     case 2: /* UDIV */
5491         handle_div(s, false, sf, rm, rn, rd);
5492         break;
5493     case 3: /* SDIV */
5494         handle_div(s, true, sf, rm, rn, rd);
5495         break;
5496     case 4: /* IRG */
5497         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5498             goto do_unallocated;
5499         }
5500         if (s->ata[0]) {
5501             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
5502                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
5503         } else {
5504             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5505                                              cpu_reg_sp(s, rn));
5506         }
5507         break;
5508     case 5: /* GMI */
5509         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5510             goto do_unallocated;
5511         } else {
5512             TCGv_i64 t = tcg_temp_new_i64();
5513 
5514             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5515             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5516             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5517         }
5518         break;
5519     case 8: /* LSLV */
5520         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5521         break;
5522     case 9: /* LSRV */
5523         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5524         break;
5525     case 10: /* ASRV */
5526         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5527         break;
5528     case 11: /* RORV */
5529         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5530         break;
5531     case 12: /* PACGA */
5532         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5533             goto do_unallocated;
5534         }
5535         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
5536                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
5537         break;
5538     case 16:
5539     case 17:
5540     case 18:
5541     case 19:
5542     case 20:
5543     case 21:
5544     case 22:
5545     case 23: /* CRC32 */
5546     {
5547         int sz = extract32(opcode, 0, 2);
5548         bool crc32c = extract32(opcode, 2, 1);
5549         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5550         break;
5551     }
5552     default:
5553     do_unallocated:
5554         unallocated_encoding(s);
5555         break;
5556     }
5557 }
5558 
5559 /*
5560  * Data processing - register
5561  *  31  30 29  28      25    21  20  16      10         0
5562  * +--+---+--+---+-------+-----+-------+-------+---------+
5563  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
5564  * +--+---+--+---+-------+-----+-------+-------+---------+
5565  */
5566 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5567 {
5568     int op0 = extract32(insn, 30, 1);
5569     int op1 = extract32(insn, 28, 1);
5570     int op2 = extract32(insn, 21, 4);
5571     int op3 = extract32(insn, 10, 6);
5572 
5573     if (!op1) {
5574         if (op2 & 8) {
5575             if (op2 & 1) {
5576                 /* Add/sub (extended register) */
5577                 disas_add_sub_ext_reg(s, insn);
5578             } else {
5579                 /* Add/sub (shifted register) */
5580                 disas_add_sub_reg(s, insn);
5581             }
5582         } else {
5583             /* Logical (shifted register) */
5584             disas_logic_reg(s, insn);
5585         }
5586         return;
5587     }
5588 
5589     switch (op2) {
5590     case 0x0:
5591         switch (op3) {
5592         case 0x00: /* Add/subtract (with carry) */
5593             disas_adc_sbc(s, insn);
5594             break;
5595 
5596         case 0x01: /* Rotate right into flags */
5597         case 0x21:
5598             disas_rotate_right_into_flags(s, insn);
5599             break;
5600 
5601         case 0x02: /* Evaluate into flags */
5602         case 0x12:
5603         case 0x22:
5604         case 0x32:
5605             disas_evaluate_into_flags(s, insn);
5606             break;
5607 
5608         default:
5609             goto do_unallocated;
5610         }
5611         break;
5612 
5613     case 0x2: /* Conditional compare */
5614         disas_cc(s, insn); /* both imm and reg forms */
5615         break;
5616 
5617     case 0x4: /* Conditional select */
5618         disas_cond_select(s, insn);
5619         break;
5620 
5621     case 0x6: /* Data-processing */
5622         if (op0) {    /* (1 source) */
5623             disas_data_proc_1src(s, insn);
5624         } else {      /* (2 source) */
5625             disas_data_proc_2src(s, insn);
5626         }
5627         break;
5628     case 0x8 ... 0xf: /* (3 source) */
5629         disas_data_proc_3src(s, insn);
5630         break;
5631 
5632     default:
5633     do_unallocated:
5634         unallocated_encoding(s);
5635         break;
5636     }
5637 }
5638 
5639 static void handle_fp_compare(DisasContext *s, int size,
5640                               unsigned int rn, unsigned int rm,
5641                               bool cmp_with_zero, bool signal_all_nans)
5642 {
5643     TCGv_i64 tcg_flags = tcg_temp_new_i64();
5644     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5645 
5646     if (size == MO_64) {
5647         TCGv_i64 tcg_vn, tcg_vm;
5648 
5649         tcg_vn = read_fp_dreg(s, rn);
5650         if (cmp_with_zero) {
5651             tcg_vm = tcg_constant_i64(0);
5652         } else {
5653             tcg_vm = read_fp_dreg(s, rm);
5654         }
5655         if (signal_all_nans) {
5656             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5657         } else {
5658             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5659         }
5660     } else {
5661         TCGv_i32 tcg_vn = tcg_temp_new_i32();
5662         TCGv_i32 tcg_vm = tcg_temp_new_i32();
5663 
5664         read_vec_element_i32(s, tcg_vn, rn, 0, size);
5665         if (cmp_with_zero) {
5666             tcg_gen_movi_i32(tcg_vm, 0);
5667         } else {
5668             read_vec_element_i32(s, tcg_vm, rm, 0, size);
5669         }
5670 
5671         switch (size) {
5672         case MO_32:
5673             if (signal_all_nans) {
5674                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5675             } else {
5676                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5677             }
5678             break;
5679         case MO_16:
5680             if (signal_all_nans) {
5681                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5682             } else {
5683                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5684             }
5685             break;
5686         default:
5687             g_assert_not_reached();
5688         }
5689     }
5690 
5691     gen_set_nzcv(tcg_flags);
5692 }
5693 
5694 /* Floating point compare
5695  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
5696  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5697  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
5698  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5699  */
5700 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5701 {
5702     unsigned int mos, type, rm, op, rn, opc, op2r;
5703     int size;
5704 
5705     mos = extract32(insn, 29, 3);
5706     type = extract32(insn, 22, 2);
5707     rm = extract32(insn, 16, 5);
5708     op = extract32(insn, 14, 2);
5709     rn = extract32(insn, 5, 5);
5710     opc = extract32(insn, 3, 2);
5711     op2r = extract32(insn, 0, 3);
5712 
5713     if (mos || op || op2r) {
5714         unallocated_encoding(s);
5715         return;
5716     }
5717 
5718     switch (type) {
5719     case 0:
5720         size = MO_32;
5721         break;
5722     case 1:
5723         size = MO_64;
5724         break;
5725     case 3:
5726         size = MO_16;
5727         if (dc_isar_feature(aa64_fp16, s)) {
5728             break;
5729         }
5730         /* fallthru */
5731     default:
5732         unallocated_encoding(s);
5733         return;
5734     }
5735 
5736     if (!fp_access_check(s)) {
5737         return;
5738     }
5739 
5740     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5741 }
5742 
5743 /* Floating point conditional compare
5744  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
5745  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5746  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
5747  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5748  */
5749 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5750 {
5751     unsigned int mos, type, rm, cond, rn, op, nzcv;
5752     TCGLabel *label_continue = NULL;
5753     int size;
5754 
5755     mos = extract32(insn, 29, 3);
5756     type = extract32(insn, 22, 2);
5757     rm = extract32(insn, 16, 5);
5758     cond = extract32(insn, 12, 4);
5759     rn = extract32(insn, 5, 5);
5760     op = extract32(insn, 4, 1);
5761     nzcv = extract32(insn, 0, 4);
5762 
5763     if (mos) {
5764         unallocated_encoding(s);
5765         return;
5766     }
5767 
5768     switch (type) {
5769     case 0:
5770         size = MO_32;
5771         break;
5772     case 1:
5773         size = MO_64;
5774         break;
5775     case 3:
5776         size = MO_16;
5777         if (dc_isar_feature(aa64_fp16, s)) {
5778             break;
5779         }
5780         /* fallthru */
5781     default:
5782         unallocated_encoding(s);
5783         return;
5784     }
5785 
5786     if (!fp_access_check(s)) {
5787         return;
5788     }
5789 
5790     if (cond < 0x0e) { /* not always */
5791         TCGLabel *label_match = gen_new_label();
5792         label_continue = gen_new_label();
5793         arm_gen_test_cc(cond, label_match);
5794         /* nomatch: */
5795         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5796         tcg_gen_br(label_continue);
5797         gen_set_label(label_match);
5798     }
5799 
5800     handle_fp_compare(s, size, rn, rm, false, op);
5801 
5802     if (cond < 0x0e) {
5803         gen_set_label(label_continue);
5804     }
5805 }
5806 
5807 /* Floating point conditional select
5808  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
5809  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5810  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
5811  * +---+---+---+-----------+------+---+------+------+-----+------+------+
5812  */
5813 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5814 {
5815     unsigned int mos, type, rm, cond, rn, rd;
5816     TCGv_i64 t_true, t_false;
5817     DisasCompare64 c;
5818     MemOp sz;
5819 
5820     mos = extract32(insn, 29, 3);
5821     type = extract32(insn, 22, 2);
5822     rm = extract32(insn, 16, 5);
5823     cond = extract32(insn, 12, 4);
5824     rn = extract32(insn, 5, 5);
5825     rd = extract32(insn, 0, 5);
5826 
5827     if (mos) {
5828         unallocated_encoding(s);
5829         return;
5830     }
5831 
5832     switch (type) {
5833     case 0:
5834         sz = MO_32;
5835         break;
5836     case 1:
5837         sz = MO_64;
5838         break;
5839     case 3:
5840         sz = MO_16;
5841         if (dc_isar_feature(aa64_fp16, s)) {
5842             break;
5843         }
5844         /* fallthru */
5845     default:
5846         unallocated_encoding(s);
5847         return;
5848     }
5849 
5850     if (!fp_access_check(s)) {
5851         return;
5852     }
5853 
5854     /* Zero extend sreg & hreg inputs to 64 bits now.  */
5855     t_true = tcg_temp_new_i64();
5856     t_false = tcg_temp_new_i64();
5857     read_vec_element(s, t_true, rn, 0, sz);
5858     read_vec_element(s, t_false, rm, 0, sz);
5859 
5860     a64_test_cc(&c, cond);
5861     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5862                         t_true, t_false);
5863 
5864     /* Note that sregs & hregs write back zeros to the high bits,
5865        and we've already done the zero-extension.  */
5866     write_fp_dreg(s, rd, t_true);
5867 }
5868 
5869 /* Floating-point data-processing (1 source) - half precision */
5870 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5871 {
5872     TCGv_ptr fpst = NULL;
5873     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5874     TCGv_i32 tcg_res = tcg_temp_new_i32();
5875 
5876     switch (opcode) {
5877     case 0x0: /* FMOV */
5878         tcg_gen_mov_i32(tcg_res, tcg_op);
5879         break;
5880     case 0x1: /* FABS */
5881         tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5882         break;
5883     case 0x2: /* FNEG */
5884         tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5885         break;
5886     case 0x3: /* FSQRT */
5887         fpst = fpstatus_ptr(FPST_FPCR_F16);
5888         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5889         break;
5890     case 0x8: /* FRINTN */
5891     case 0x9: /* FRINTP */
5892     case 0xa: /* FRINTM */
5893     case 0xb: /* FRINTZ */
5894     case 0xc: /* FRINTA */
5895     {
5896         TCGv_i32 tcg_rmode;
5897 
5898         fpst = fpstatus_ptr(FPST_FPCR_F16);
5899         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5900         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5901         gen_restore_rmode(tcg_rmode, fpst);
5902         break;
5903     }
5904     case 0xe: /* FRINTX */
5905         fpst = fpstatus_ptr(FPST_FPCR_F16);
5906         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5907         break;
5908     case 0xf: /* FRINTI */
5909         fpst = fpstatus_ptr(FPST_FPCR_F16);
5910         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5911         break;
5912     default:
5913         g_assert_not_reached();
5914     }
5915 
5916     write_fp_sreg(s, rd, tcg_res);
5917 }
5918 
5919 /* Floating-point data-processing (1 source) - single precision */
5920 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5921 {
5922     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5923     TCGv_i32 tcg_op, tcg_res;
5924     TCGv_ptr fpst;
5925     int rmode = -1;
5926 
5927     tcg_op = read_fp_sreg(s, rn);
5928     tcg_res = tcg_temp_new_i32();
5929 
5930     switch (opcode) {
5931     case 0x0: /* FMOV */
5932         tcg_gen_mov_i32(tcg_res, tcg_op);
5933         goto done;
5934     case 0x1: /* FABS */
5935         gen_helper_vfp_abss(tcg_res, tcg_op);
5936         goto done;
5937     case 0x2: /* FNEG */
5938         gen_helper_vfp_negs(tcg_res, tcg_op);
5939         goto done;
5940     case 0x3: /* FSQRT */
5941         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
5942         goto done;
5943     case 0x6: /* BFCVT */
5944         gen_fpst = gen_helper_bfcvt;
5945         break;
5946     case 0x8: /* FRINTN */
5947     case 0x9: /* FRINTP */
5948     case 0xa: /* FRINTM */
5949     case 0xb: /* FRINTZ */
5950     case 0xc: /* FRINTA */
5951         rmode = opcode & 7;
5952         gen_fpst = gen_helper_rints;
5953         break;
5954     case 0xe: /* FRINTX */
5955         gen_fpst = gen_helper_rints_exact;
5956         break;
5957     case 0xf: /* FRINTI */
5958         gen_fpst = gen_helper_rints;
5959         break;
5960     case 0x10: /* FRINT32Z */
5961         rmode = FPROUNDING_ZERO;
5962         gen_fpst = gen_helper_frint32_s;
5963         break;
5964     case 0x11: /* FRINT32X */
5965         gen_fpst = gen_helper_frint32_s;
5966         break;
5967     case 0x12: /* FRINT64Z */
5968         rmode = FPROUNDING_ZERO;
5969         gen_fpst = gen_helper_frint64_s;
5970         break;
5971     case 0x13: /* FRINT64X */
5972         gen_fpst = gen_helper_frint64_s;
5973         break;
5974     default:
5975         g_assert_not_reached();
5976     }
5977 
5978     fpst = fpstatus_ptr(FPST_FPCR);
5979     if (rmode >= 0) {
5980         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
5981         gen_fpst(tcg_res, tcg_op, fpst);
5982         gen_restore_rmode(tcg_rmode, fpst);
5983     } else {
5984         gen_fpst(tcg_res, tcg_op, fpst);
5985     }
5986 
5987  done:
5988     write_fp_sreg(s, rd, tcg_res);
5989 }
5990 
5991 /* Floating-point data-processing (1 source) - double precision */
5992 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5993 {
5994     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5995     TCGv_i64 tcg_op, tcg_res;
5996     TCGv_ptr fpst;
5997     int rmode = -1;
5998 
5999     switch (opcode) {
6000     case 0x0: /* FMOV */
6001         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6002         return;
6003     }
6004 
6005     tcg_op = read_fp_dreg(s, rn);
6006     tcg_res = tcg_temp_new_i64();
6007 
6008     switch (opcode) {
6009     case 0x1: /* FABS */
6010         gen_helper_vfp_absd(tcg_res, tcg_op);
6011         goto done;
6012     case 0x2: /* FNEG */
6013         gen_helper_vfp_negd(tcg_res, tcg_op);
6014         goto done;
6015     case 0x3: /* FSQRT */
6016         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6017         goto done;
6018     case 0x8: /* FRINTN */
6019     case 0x9: /* FRINTP */
6020     case 0xa: /* FRINTM */
6021     case 0xb: /* FRINTZ */
6022     case 0xc: /* FRINTA */
6023         rmode = opcode & 7;
6024         gen_fpst = gen_helper_rintd;
6025         break;
6026     case 0xe: /* FRINTX */
6027         gen_fpst = gen_helper_rintd_exact;
6028         break;
6029     case 0xf: /* FRINTI */
6030         gen_fpst = gen_helper_rintd;
6031         break;
6032     case 0x10: /* FRINT32Z */
6033         rmode = FPROUNDING_ZERO;
6034         gen_fpst = gen_helper_frint32_d;
6035         break;
6036     case 0x11: /* FRINT32X */
6037         gen_fpst = gen_helper_frint32_d;
6038         break;
6039     case 0x12: /* FRINT64Z */
6040         rmode = FPROUNDING_ZERO;
6041         gen_fpst = gen_helper_frint64_d;
6042         break;
6043     case 0x13: /* FRINT64X */
6044         gen_fpst = gen_helper_frint64_d;
6045         break;
6046     default:
6047         g_assert_not_reached();
6048     }
6049 
6050     fpst = fpstatus_ptr(FPST_FPCR);
6051     if (rmode >= 0) {
6052         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6053         gen_fpst(tcg_res, tcg_op, fpst);
6054         gen_restore_rmode(tcg_rmode, fpst);
6055     } else {
6056         gen_fpst(tcg_res, tcg_op, fpst);
6057     }
6058 
6059  done:
6060     write_fp_dreg(s, rd, tcg_res);
6061 }
6062 
6063 static void handle_fp_fcvt(DisasContext *s, int opcode,
6064                            int rd, int rn, int dtype, int ntype)
6065 {
6066     switch (ntype) {
6067     case 0x0:
6068     {
6069         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6070         if (dtype == 1) {
6071             /* Single to double */
6072             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6073             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6074             write_fp_dreg(s, rd, tcg_rd);
6075         } else {
6076             /* Single to half */
6077             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6078             TCGv_i32 ahp = get_ahp_flag();
6079             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6080 
6081             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6082             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6083             write_fp_sreg(s, rd, tcg_rd);
6084         }
6085         break;
6086     }
6087     case 0x1:
6088     {
6089         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6090         TCGv_i32 tcg_rd = tcg_temp_new_i32();
6091         if (dtype == 0) {
6092             /* Double to single */
6093             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6094         } else {
6095             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6096             TCGv_i32 ahp = get_ahp_flag();
6097             /* Double to half */
6098             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6099             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6100         }
6101         write_fp_sreg(s, rd, tcg_rd);
6102         break;
6103     }
6104     case 0x3:
6105     {
6106         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6107         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6108         TCGv_i32 tcg_ahp = get_ahp_flag();
6109         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6110         if (dtype == 0) {
6111             /* Half to single */
6112             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6113             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6114             write_fp_sreg(s, rd, tcg_rd);
6115         } else {
6116             /* Half to double */
6117             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6118             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6119             write_fp_dreg(s, rd, tcg_rd);
6120         }
6121         break;
6122     }
6123     default:
6124         g_assert_not_reached();
6125     }
6126 }
6127 
6128 /* Floating point data-processing (1 source)
6129  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
6130  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6131  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
6132  * +---+---+---+-----------+------+---+--------+-----------+------+------+
6133  */
6134 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6135 {
6136     int mos = extract32(insn, 29, 3);
6137     int type = extract32(insn, 22, 2);
6138     int opcode = extract32(insn, 15, 6);
6139     int rn = extract32(insn, 5, 5);
6140     int rd = extract32(insn, 0, 5);
6141 
6142     if (mos) {
6143         goto do_unallocated;
6144     }
6145 
6146     switch (opcode) {
6147     case 0x4: case 0x5: case 0x7:
6148     {
6149         /* FCVT between half, single and double precision */
6150         int dtype = extract32(opcode, 0, 2);
6151         if (type == 2 || dtype == type) {
6152             goto do_unallocated;
6153         }
6154         if (!fp_access_check(s)) {
6155             return;
6156         }
6157 
6158         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6159         break;
6160     }
6161 
6162     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6163         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6164             goto do_unallocated;
6165         }
6166         /* fall through */
6167     case 0x0 ... 0x3:
6168     case 0x8 ... 0xc:
6169     case 0xe ... 0xf:
6170         /* 32-to-32 and 64-to-64 ops */
6171         switch (type) {
6172         case 0:
6173             if (!fp_access_check(s)) {
6174                 return;
6175             }
6176             handle_fp_1src_single(s, opcode, rd, rn);
6177             break;
6178         case 1:
6179             if (!fp_access_check(s)) {
6180                 return;
6181             }
6182             handle_fp_1src_double(s, opcode, rd, rn);
6183             break;
6184         case 3:
6185             if (!dc_isar_feature(aa64_fp16, s)) {
6186                 goto do_unallocated;
6187             }
6188 
6189             if (!fp_access_check(s)) {
6190                 return;
6191             }
6192             handle_fp_1src_half(s, opcode, rd, rn);
6193             break;
6194         default:
6195             goto do_unallocated;
6196         }
6197         break;
6198 
6199     case 0x6:
6200         switch (type) {
6201         case 1: /* BFCVT */
6202             if (!dc_isar_feature(aa64_bf16, s)) {
6203                 goto do_unallocated;
6204             }
6205             if (!fp_access_check(s)) {
6206                 return;
6207             }
6208             handle_fp_1src_single(s, opcode, rd, rn);
6209             break;
6210         default:
6211             goto do_unallocated;
6212         }
6213         break;
6214 
6215     default:
6216     do_unallocated:
6217         unallocated_encoding(s);
6218         break;
6219     }
6220 }
6221 
6222 /* Floating-point data-processing (2 source) - single precision */
6223 static void handle_fp_2src_single(DisasContext *s, int opcode,
6224                                   int rd, int rn, int rm)
6225 {
6226     TCGv_i32 tcg_op1;
6227     TCGv_i32 tcg_op2;
6228     TCGv_i32 tcg_res;
6229     TCGv_ptr fpst;
6230 
6231     tcg_res = tcg_temp_new_i32();
6232     fpst = fpstatus_ptr(FPST_FPCR);
6233     tcg_op1 = read_fp_sreg(s, rn);
6234     tcg_op2 = read_fp_sreg(s, rm);
6235 
6236     switch (opcode) {
6237     case 0x0: /* FMUL */
6238         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6239         break;
6240     case 0x1: /* FDIV */
6241         gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6242         break;
6243     case 0x2: /* FADD */
6244         gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6245         break;
6246     case 0x3: /* FSUB */
6247         gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6248         break;
6249     case 0x4: /* FMAX */
6250         gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6251         break;
6252     case 0x5: /* FMIN */
6253         gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6254         break;
6255     case 0x6: /* FMAXNM */
6256         gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6257         break;
6258     case 0x7: /* FMINNM */
6259         gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6260         break;
6261     case 0x8: /* FNMUL */
6262         gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6263         gen_helper_vfp_negs(tcg_res, tcg_res);
6264         break;
6265     }
6266 
6267     write_fp_sreg(s, rd, tcg_res);
6268 }
6269 
6270 /* Floating-point data-processing (2 source) - double precision */
6271 static void handle_fp_2src_double(DisasContext *s, int opcode,
6272                                   int rd, int rn, int rm)
6273 {
6274     TCGv_i64 tcg_op1;
6275     TCGv_i64 tcg_op2;
6276     TCGv_i64 tcg_res;
6277     TCGv_ptr fpst;
6278 
6279     tcg_res = tcg_temp_new_i64();
6280     fpst = fpstatus_ptr(FPST_FPCR);
6281     tcg_op1 = read_fp_dreg(s, rn);
6282     tcg_op2 = read_fp_dreg(s, rm);
6283 
6284     switch (opcode) {
6285     case 0x0: /* FMUL */
6286         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6287         break;
6288     case 0x1: /* FDIV */
6289         gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6290         break;
6291     case 0x2: /* FADD */
6292         gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6293         break;
6294     case 0x3: /* FSUB */
6295         gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6296         break;
6297     case 0x4: /* FMAX */
6298         gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6299         break;
6300     case 0x5: /* FMIN */
6301         gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6302         break;
6303     case 0x6: /* FMAXNM */
6304         gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6305         break;
6306     case 0x7: /* FMINNM */
6307         gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6308         break;
6309     case 0x8: /* FNMUL */
6310         gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6311         gen_helper_vfp_negd(tcg_res, tcg_res);
6312         break;
6313     }
6314 
6315     write_fp_dreg(s, rd, tcg_res);
6316 }
6317 
6318 /* Floating-point data-processing (2 source) - half precision */
6319 static void handle_fp_2src_half(DisasContext *s, int opcode,
6320                                 int rd, int rn, int rm)
6321 {
6322     TCGv_i32 tcg_op1;
6323     TCGv_i32 tcg_op2;
6324     TCGv_i32 tcg_res;
6325     TCGv_ptr fpst;
6326 
6327     tcg_res = tcg_temp_new_i32();
6328     fpst = fpstatus_ptr(FPST_FPCR_F16);
6329     tcg_op1 = read_fp_hreg(s, rn);
6330     tcg_op2 = read_fp_hreg(s, rm);
6331 
6332     switch (opcode) {
6333     case 0x0: /* FMUL */
6334         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6335         break;
6336     case 0x1: /* FDIV */
6337         gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6338         break;
6339     case 0x2: /* FADD */
6340         gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6341         break;
6342     case 0x3: /* FSUB */
6343         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6344         break;
6345     case 0x4: /* FMAX */
6346         gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6347         break;
6348     case 0x5: /* FMIN */
6349         gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6350         break;
6351     case 0x6: /* FMAXNM */
6352         gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6353         break;
6354     case 0x7: /* FMINNM */
6355         gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6356         break;
6357     case 0x8: /* FNMUL */
6358         gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6359         tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6360         break;
6361     default:
6362         g_assert_not_reached();
6363     }
6364 
6365     write_fp_sreg(s, rd, tcg_res);
6366 }
6367 
6368 /* Floating point data-processing (2 source)
6369  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
6370  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6371  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | opcode | 1 0 |  Rn  |  Rd  |
6372  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6373  */
6374 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6375 {
6376     int mos = extract32(insn, 29, 3);
6377     int type = extract32(insn, 22, 2);
6378     int rd = extract32(insn, 0, 5);
6379     int rn = extract32(insn, 5, 5);
6380     int rm = extract32(insn, 16, 5);
6381     int opcode = extract32(insn, 12, 4);
6382 
6383     if (opcode > 8 || mos) {
6384         unallocated_encoding(s);
6385         return;
6386     }
6387 
6388     switch (type) {
6389     case 0:
6390         if (!fp_access_check(s)) {
6391             return;
6392         }
6393         handle_fp_2src_single(s, opcode, rd, rn, rm);
6394         break;
6395     case 1:
6396         if (!fp_access_check(s)) {
6397             return;
6398         }
6399         handle_fp_2src_double(s, opcode, rd, rn, rm);
6400         break;
6401     case 3:
6402         if (!dc_isar_feature(aa64_fp16, s)) {
6403             unallocated_encoding(s);
6404             return;
6405         }
6406         if (!fp_access_check(s)) {
6407             return;
6408         }
6409         handle_fp_2src_half(s, opcode, rd, rn, rm);
6410         break;
6411     default:
6412         unallocated_encoding(s);
6413     }
6414 }
6415 
6416 /* Floating-point data-processing (3 source) - single precision */
6417 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6418                                   int rd, int rn, int rm, int ra)
6419 {
6420     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6421     TCGv_i32 tcg_res = tcg_temp_new_i32();
6422     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6423 
6424     tcg_op1 = read_fp_sreg(s, rn);
6425     tcg_op2 = read_fp_sreg(s, rm);
6426     tcg_op3 = read_fp_sreg(s, ra);
6427 
6428     /* These are fused multiply-add, and must be done as one
6429      * floating point operation with no rounding between the
6430      * multiplication and addition steps.
6431      * NB that doing the negations here as separate steps is
6432      * correct : an input NaN should come out with its sign bit
6433      * flipped if it is a negated-input.
6434      */
6435     if (o1 == true) {
6436         gen_helper_vfp_negs(tcg_op3, tcg_op3);
6437     }
6438 
6439     if (o0 != o1) {
6440         gen_helper_vfp_negs(tcg_op1, tcg_op1);
6441     }
6442 
6443     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6444 
6445     write_fp_sreg(s, rd, tcg_res);
6446 }
6447 
6448 /* Floating-point data-processing (3 source) - double precision */
6449 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6450                                   int rd, int rn, int rm, int ra)
6451 {
6452     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6453     TCGv_i64 tcg_res = tcg_temp_new_i64();
6454     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6455 
6456     tcg_op1 = read_fp_dreg(s, rn);
6457     tcg_op2 = read_fp_dreg(s, rm);
6458     tcg_op3 = read_fp_dreg(s, ra);
6459 
6460     /* These are fused multiply-add, and must be done as one
6461      * floating point operation with no rounding between the
6462      * multiplication and addition steps.
6463      * NB that doing the negations here as separate steps is
6464      * correct : an input NaN should come out with its sign bit
6465      * flipped if it is a negated-input.
6466      */
6467     if (o1 == true) {
6468         gen_helper_vfp_negd(tcg_op3, tcg_op3);
6469     }
6470 
6471     if (o0 != o1) {
6472         gen_helper_vfp_negd(tcg_op1, tcg_op1);
6473     }
6474 
6475     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6476 
6477     write_fp_dreg(s, rd, tcg_res);
6478 }
6479 
6480 /* Floating-point data-processing (3 source) - half precision */
6481 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6482                                 int rd, int rn, int rm, int ra)
6483 {
6484     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6485     TCGv_i32 tcg_res = tcg_temp_new_i32();
6486     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6487 
6488     tcg_op1 = read_fp_hreg(s, rn);
6489     tcg_op2 = read_fp_hreg(s, rm);
6490     tcg_op3 = read_fp_hreg(s, ra);
6491 
6492     /* These are fused multiply-add, and must be done as one
6493      * floating point operation with no rounding between the
6494      * multiplication and addition steps.
6495      * NB that doing the negations here as separate steps is
6496      * correct : an input NaN should come out with its sign bit
6497      * flipped if it is a negated-input.
6498      */
6499     if (o1 == true) {
6500         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6501     }
6502 
6503     if (o0 != o1) {
6504         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6505     }
6506 
6507     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6508 
6509     write_fp_sreg(s, rd, tcg_res);
6510 }
6511 
6512 /* Floating point data-processing (3 source)
6513  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
6514  * +---+---+---+-----------+------+----+------+----+------+------+------+
6515  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
6516  * +---+---+---+-----------+------+----+------+----+------+------+------+
6517  */
6518 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6519 {
6520     int mos = extract32(insn, 29, 3);
6521     int type = extract32(insn, 22, 2);
6522     int rd = extract32(insn, 0, 5);
6523     int rn = extract32(insn, 5, 5);
6524     int ra = extract32(insn, 10, 5);
6525     int rm = extract32(insn, 16, 5);
6526     bool o0 = extract32(insn, 15, 1);
6527     bool o1 = extract32(insn, 21, 1);
6528 
6529     if (mos) {
6530         unallocated_encoding(s);
6531         return;
6532     }
6533 
6534     switch (type) {
6535     case 0:
6536         if (!fp_access_check(s)) {
6537             return;
6538         }
6539         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6540         break;
6541     case 1:
6542         if (!fp_access_check(s)) {
6543             return;
6544         }
6545         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6546         break;
6547     case 3:
6548         if (!dc_isar_feature(aa64_fp16, s)) {
6549             unallocated_encoding(s);
6550             return;
6551         }
6552         if (!fp_access_check(s)) {
6553             return;
6554         }
6555         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6556         break;
6557     default:
6558         unallocated_encoding(s);
6559     }
6560 }
6561 
6562 /* Floating point immediate
6563  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
6564  * +---+---+---+-----------+------+---+------------+-------+------+------+
6565  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
6566  * +---+---+---+-----------+------+---+------------+-------+------+------+
6567  */
6568 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6569 {
6570     int rd = extract32(insn, 0, 5);
6571     int imm5 = extract32(insn, 5, 5);
6572     int imm8 = extract32(insn, 13, 8);
6573     int type = extract32(insn, 22, 2);
6574     int mos = extract32(insn, 29, 3);
6575     uint64_t imm;
6576     MemOp sz;
6577 
6578     if (mos || imm5) {
6579         unallocated_encoding(s);
6580         return;
6581     }
6582 
6583     switch (type) {
6584     case 0:
6585         sz = MO_32;
6586         break;
6587     case 1:
6588         sz = MO_64;
6589         break;
6590     case 3:
6591         sz = MO_16;
6592         if (dc_isar_feature(aa64_fp16, s)) {
6593             break;
6594         }
6595         /* fallthru */
6596     default:
6597         unallocated_encoding(s);
6598         return;
6599     }
6600 
6601     if (!fp_access_check(s)) {
6602         return;
6603     }
6604 
6605     imm = vfp_expand_imm(sz, imm8);
6606     write_fp_dreg(s, rd, tcg_constant_i64(imm));
6607 }
6608 
6609 /* Handle floating point <=> fixed point conversions. Note that we can
6610  * also deal with fp <=> integer conversions as a special case (scale == 64)
6611  * OPTME: consider handling that special case specially or at least skipping
6612  * the call to scalbn in the helpers for zero shifts.
6613  */
6614 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6615                            bool itof, int rmode, int scale, int sf, int type)
6616 {
6617     bool is_signed = !(opcode & 1);
6618     TCGv_ptr tcg_fpstatus;
6619     TCGv_i32 tcg_shift, tcg_single;
6620     TCGv_i64 tcg_double;
6621 
6622     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6623 
6624     tcg_shift = tcg_constant_i32(64 - scale);
6625 
6626     if (itof) {
6627         TCGv_i64 tcg_int = cpu_reg(s, rn);
6628         if (!sf) {
6629             TCGv_i64 tcg_extend = tcg_temp_new_i64();
6630 
6631             if (is_signed) {
6632                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6633             } else {
6634                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6635             }
6636 
6637             tcg_int = tcg_extend;
6638         }
6639 
6640         switch (type) {
6641         case 1: /* float64 */
6642             tcg_double = tcg_temp_new_i64();
6643             if (is_signed) {
6644                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6645                                      tcg_shift, tcg_fpstatus);
6646             } else {
6647                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6648                                      tcg_shift, tcg_fpstatus);
6649             }
6650             write_fp_dreg(s, rd, tcg_double);
6651             break;
6652 
6653         case 0: /* float32 */
6654             tcg_single = tcg_temp_new_i32();
6655             if (is_signed) {
6656                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6657                                      tcg_shift, tcg_fpstatus);
6658             } else {
6659                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6660                                      tcg_shift, tcg_fpstatus);
6661             }
6662             write_fp_sreg(s, rd, tcg_single);
6663             break;
6664 
6665         case 3: /* float16 */
6666             tcg_single = tcg_temp_new_i32();
6667             if (is_signed) {
6668                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6669                                      tcg_shift, tcg_fpstatus);
6670             } else {
6671                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6672                                      tcg_shift, tcg_fpstatus);
6673             }
6674             write_fp_sreg(s, rd, tcg_single);
6675             break;
6676 
6677         default:
6678             g_assert_not_reached();
6679         }
6680     } else {
6681         TCGv_i64 tcg_int = cpu_reg(s, rd);
6682         TCGv_i32 tcg_rmode;
6683 
6684         if (extract32(opcode, 2, 1)) {
6685             /* There are too many rounding modes to all fit into rmode,
6686              * so FCVTA[US] is a special case.
6687              */
6688             rmode = FPROUNDING_TIEAWAY;
6689         }
6690 
6691         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6692 
6693         switch (type) {
6694         case 1: /* float64 */
6695             tcg_double = read_fp_dreg(s, rn);
6696             if (is_signed) {
6697                 if (!sf) {
6698                     gen_helper_vfp_tosld(tcg_int, tcg_double,
6699                                          tcg_shift, tcg_fpstatus);
6700                 } else {
6701                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
6702                                          tcg_shift, tcg_fpstatus);
6703                 }
6704             } else {
6705                 if (!sf) {
6706                     gen_helper_vfp_tould(tcg_int, tcg_double,
6707                                          tcg_shift, tcg_fpstatus);
6708                 } else {
6709                     gen_helper_vfp_touqd(tcg_int, tcg_double,
6710                                          tcg_shift, tcg_fpstatus);
6711                 }
6712             }
6713             if (!sf) {
6714                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6715             }
6716             break;
6717 
6718         case 0: /* float32 */
6719             tcg_single = read_fp_sreg(s, rn);
6720             if (sf) {
6721                 if (is_signed) {
6722                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
6723                                          tcg_shift, tcg_fpstatus);
6724                 } else {
6725                     gen_helper_vfp_touqs(tcg_int, tcg_single,
6726                                          tcg_shift, tcg_fpstatus);
6727                 }
6728             } else {
6729                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6730                 if (is_signed) {
6731                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
6732                                          tcg_shift, tcg_fpstatus);
6733                 } else {
6734                     gen_helper_vfp_touls(tcg_dest, tcg_single,
6735                                          tcg_shift, tcg_fpstatus);
6736                 }
6737                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6738             }
6739             break;
6740 
6741         case 3: /* float16 */
6742             tcg_single = read_fp_sreg(s, rn);
6743             if (sf) {
6744                 if (is_signed) {
6745                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
6746                                          tcg_shift, tcg_fpstatus);
6747                 } else {
6748                     gen_helper_vfp_touqh(tcg_int, tcg_single,
6749                                          tcg_shift, tcg_fpstatus);
6750                 }
6751             } else {
6752                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6753                 if (is_signed) {
6754                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
6755                                          tcg_shift, tcg_fpstatus);
6756                 } else {
6757                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
6758                                          tcg_shift, tcg_fpstatus);
6759                 }
6760                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6761             }
6762             break;
6763 
6764         default:
6765             g_assert_not_reached();
6766         }
6767 
6768         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6769     }
6770 }
6771 
6772 /* Floating point <-> fixed point conversions
6773  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
6774  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6775  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
6776  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6777  */
6778 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6779 {
6780     int rd = extract32(insn, 0, 5);
6781     int rn = extract32(insn, 5, 5);
6782     int scale = extract32(insn, 10, 6);
6783     int opcode = extract32(insn, 16, 3);
6784     int rmode = extract32(insn, 19, 2);
6785     int type = extract32(insn, 22, 2);
6786     bool sbit = extract32(insn, 29, 1);
6787     bool sf = extract32(insn, 31, 1);
6788     bool itof;
6789 
6790     if (sbit || (!sf && scale < 32)) {
6791         unallocated_encoding(s);
6792         return;
6793     }
6794 
6795     switch (type) {
6796     case 0: /* float32 */
6797     case 1: /* float64 */
6798         break;
6799     case 3: /* float16 */
6800         if (dc_isar_feature(aa64_fp16, s)) {
6801             break;
6802         }
6803         /* fallthru */
6804     default:
6805         unallocated_encoding(s);
6806         return;
6807     }
6808 
6809     switch ((rmode << 3) | opcode) {
6810     case 0x2: /* SCVTF */
6811     case 0x3: /* UCVTF */
6812         itof = true;
6813         break;
6814     case 0x18: /* FCVTZS */
6815     case 0x19: /* FCVTZU */
6816         itof = false;
6817         break;
6818     default:
6819         unallocated_encoding(s);
6820         return;
6821     }
6822 
6823     if (!fp_access_check(s)) {
6824         return;
6825     }
6826 
6827     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6828 }
6829 
6830 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6831 {
6832     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6833      * without conversion.
6834      */
6835 
6836     if (itof) {
6837         TCGv_i64 tcg_rn = cpu_reg(s, rn);
6838         TCGv_i64 tmp;
6839 
6840         switch (type) {
6841         case 0:
6842             /* 32 bit */
6843             tmp = tcg_temp_new_i64();
6844             tcg_gen_ext32u_i64(tmp, tcg_rn);
6845             write_fp_dreg(s, rd, tmp);
6846             break;
6847         case 1:
6848             /* 64 bit */
6849             write_fp_dreg(s, rd, tcg_rn);
6850             break;
6851         case 2:
6852             /* 64 bit to top half. */
6853             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
6854             clear_vec_high(s, true, rd);
6855             break;
6856         case 3:
6857             /* 16 bit */
6858             tmp = tcg_temp_new_i64();
6859             tcg_gen_ext16u_i64(tmp, tcg_rn);
6860             write_fp_dreg(s, rd, tmp);
6861             break;
6862         default:
6863             g_assert_not_reached();
6864         }
6865     } else {
6866         TCGv_i64 tcg_rd = cpu_reg(s, rd);
6867 
6868         switch (type) {
6869         case 0:
6870             /* 32 bit */
6871             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
6872             break;
6873         case 1:
6874             /* 64 bit */
6875             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
6876             break;
6877         case 2:
6878             /* 64 bits from top half */
6879             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
6880             break;
6881         case 3:
6882             /* 16 bit */
6883             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
6884             break;
6885         default:
6886             g_assert_not_reached();
6887         }
6888     }
6889 }
6890 
6891 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6892 {
6893     TCGv_i64 t = read_fp_dreg(s, rn);
6894     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6895 
6896     gen_helper_fjcvtzs(t, t, fpstatus);
6897 
6898     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6899     tcg_gen_extrh_i64_i32(cpu_ZF, t);
6900     tcg_gen_movi_i32(cpu_CF, 0);
6901     tcg_gen_movi_i32(cpu_NF, 0);
6902     tcg_gen_movi_i32(cpu_VF, 0);
6903 }
6904 
6905 /* Floating point <-> integer conversions
6906  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
6907  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6908  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6909  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6910  */
6911 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6912 {
6913     int rd = extract32(insn, 0, 5);
6914     int rn = extract32(insn, 5, 5);
6915     int opcode = extract32(insn, 16, 3);
6916     int rmode = extract32(insn, 19, 2);
6917     int type = extract32(insn, 22, 2);
6918     bool sbit = extract32(insn, 29, 1);
6919     bool sf = extract32(insn, 31, 1);
6920     bool itof = false;
6921 
6922     if (sbit) {
6923         goto do_unallocated;
6924     }
6925 
6926     switch (opcode) {
6927     case 2: /* SCVTF */
6928     case 3: /* UCVTF */
6929         itof = true;
6930         /* fallthru */
6931     case 4: /* FCVTAS */
6932     case 5: /* FCVTAU */
6933         if (rmode != 0) {
6934             goto do_unallocated;
6935         }
6936         /* fallthru */
6937     case 0: /* FCVT[NPMZ]S */
6938     case 1: /* FCVT[NPMZ]U */
6939         switch (type) {
6940         case 0: /* float32 */
6941         case 1: /* float64 */
6942             break;
6943         case 3: /* float16 */
6944             if (!dc_isar_feature(aa64_fp16, s)) {
6945                 goto do_unallocated;
6946             }
6947             break;
6948         default:
6949             goto do_unallocated;
6950         }
6951         if (!fp_access_check(s)) {
6952             return;
6953         }
6954         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6955         break;
6956 
6957     default:
6958         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6959         case 0b01100110: /* FMOV half <-> 32-bit int */
6960         case 0b01100111:
6961         case 0b11100110: /* FMOV half <-> 64-bit int */
6962         case 0b11100111:
6963             if (!dc_isar_feature(aa64_fp16, s)) {
6964                 goto do_unallocated;
6965             }
6966             /* fallthru */
6967         case 0b00000110: /* FMOV 32-bit */
6968         case 0b00000111:
6969         case 0b10100110: /* FMOV 64-bit */
6970         case 0b10100111:
6971         case 0b11001110: /* FMOV top half of 128-bit */
6972         case 0b11001111:
6973             if (!fp_access_check(s)) {
6974                 return;
6975             }
6976             itof = opcode & 1;
6977             handle_fmov(s, rd, rn, type, itof);
6978             break;
6979 
6980         case 0b00111110: /* FJCVTZS */
6981             if (!dc_isar_feature(aa64_jscvt, s)) {
6982                 goto do_unallocated;
6983             } else if (fp_access_check(s)) {
6984                 handle_fjcvtzs(s, rd, rn);
6985             }
6986             break;
6987 
6988         default:
6989         do_unallocated:
6990             unallocated_encoding(s);
6991             return;
6992         }
6993         break;
6994     }
6995 }
6996 
6997 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6998  *   31  30  29 28     25 24                          0
6999  * +---+---+---+---------+-----------------------------+
7000  * |   | 0 |   | 1 1 1 1 |                             |
7001  * +---+---+---+---------+-----------------------------+
7002  */
7003 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7004 {
7005     if (extract32(insn, 24, 1)) {
7006         /* Floating point data-processing (3 source) */
7007         disas_fp_3src(s, insn);
7008     } else if (extract32(insn, 21, 1) == 0) {
7009         /* Floating point to fixed point conversions */
7010         disas_fp_fixed_conv(s, insn);
7011     } else {
7012         switch (extract32(insn, 10, 2)) {
7013         case 1:
7014             /* Floating point conditional compare */
7015             disas_fp_ccomp(s, insn);
7016             break;
7017         case 2:
7018             /* Floating point data-processing (2 source) */
7019             disas_fp_2src(s, insn);
7020             break;
7021         case 3:
7022             /* Floating point conditional select */
7023             disas_fp_csel(s, insn);
7024             break;
7025         case 0:
7026             switch (ctz32(extract32(insn, 12, 4))) {
7027             case 0: /* [15:12] == xxx1 */
7028                 /* Floating point immediate */
7029                 disas_fp_imm(s, insn);
7030                 break;
7031             case 1: /* [15:12] == xx10 */
7032                 /* Floating point compare */
7033                 disas_fp_compare(s, insn);
7034                 break;
7035             case 2: /* [15:12] == x100 */
7036                 /* Floating point data-processing (1 source) */
7037                 disas_fp_1src(s, insn);
7038                 break;
7039             case 3: /* [15:12] == 1000 */
7040                 unallocated_encoding(s);
7041                 break;
7042             default: /* [15:12] == 0000 */
7043                 /* Floating point <-> integer conversions */
7044                 disas_fp_int_conv(s, insn);
7045                 break;
7046             }
7047             break;
7048         }
7049     }
7050 }
7051 
7052 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7053                      int pos)
7054 {
7055     /* Extract 64 bits from the middle of two concatenated 64 bit
7056      * vector register slices left:right. The extracted bits start
7057      * at 'pos' bits into the right (least significant) side.
7058      * We return the result in tcg_right, and guarantee not to
7059      * trash tcg_left.
7060      */
7061     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7062     assert(pos > 0 && pos < 64);
7063 
7064     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7065     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7066     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7067 }
7068 
7069 /* EXT
7070  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7071  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7072  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7073  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7074  */
7075 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7076 {
7077     int is_q = extract32(insn, 30, 1);
7078     int op2 = extract32(insn, 22, 2);
7079     int imm4 = extract32(insn, 11, 4);
7080     int rm = extract32(insn, 16, 5);
7081     int rn = extract32(insn, 5, 5);
7082     int rd = extract32(insn, 0, 5);
7083     int pos = imm4 << 3;
7084     TCGv_i64 tcg_resl, tcg_resh;
7085 
7086     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7087         unallocated_encoding(s);
7088         return;
7089     }
7090 
7091     if (!fp_access_check(s)) {
7092         return;
7093     }
7094 
7095     tcg_resh = tcg_temp_new_i64();
7096     tcg_resl = tcg_temp_new_i64();
7097 
7098     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7099      * either extracting 128 bits from a 128:128 concatenation, or
7100      * extracting 64 bits from a 64:64 concatenation.
7101      */
7102     if (!is_q) {
7103         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7104         if (pos != 0) {
7105             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7106             do_ext64(s, tcg_resh, tcg_resl, pos);
7107         }
7108     } else {
7109         TCGv_i64 tcg_hh;
7110         typedef struct {
7111             int reg;
7112             int elt;
7113         } EltPosns;
7114         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7115         EltPosns *elt = eltposns;
7116 
7117         if (pos >= 64) {
7118             elt++;
7119             pos -= 64;
7120         }
7121 
7122         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7123         elt++;
7124         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7125         elt++;
7126         if (pos != 0) {
7127             do_ext64(s, tcg_resh, tcg_resl, pos);
7128             tcg_hh = tcg_temp_new_i64();
7129             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7130             do_ext64(s, tcg_hh, tcg_resh, pos);
7131         }
7132     }
7133 
7134     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7135     if (is_q) {
7136         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7137     }
7138     clear_vec_high(s, is_q, rd);
7139 }
7140 
7141 /* TBL/TBX
7142  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7143  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7144  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7145  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7146  */
7147 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7148 {
7149     int op2 = extract32(insn, 22, 2);
7150     int is_q = extract32(insn, 30, 1);
7151     int rm = extract32(insn, 16, 5);
7152     int rn = extract32(insn, 5, 5);
7153     int rd = extract32(insn, 0, 5);
7154     int is_tbx = extract32(insn, 12, 1);
7155     int len = (extract32(insn, 13, 2) + 1) * 16;
7156 
7157     if (op2 != 0) {
7158         unallocated_encoding(s);
7159         return;
7160     }
7161 
7162     if (!fp_access_check(s)) {
7163         return;
7164     }
7165 
7166     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7167                        vec_full_reg_offset(s, rm), tcg_env,
7168                        is_q ? 16 : 8, vec_full_reg_size(s),
7169                        (len << 6) | (is_tbx << 5) | rn,
7170                        gen_helper_simd_tblx);
7171 }
7172 
7173 /* ZIP/UZP/TRN
7174  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7175  * +---+---+-------------+------+---+------+---+------------------+------+
7176  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7177  * +---+---+-------------+------+---+------+---+------------------+------+
7178  */
7179 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7180 {
7181     int rd = extract32(insn, 0, 5);
7182     int rn = extract32(insn, 5, 5);
7183     int rm = extract32(insn, 16, 5);
7184     int size = extract32(insn, 22, 2);
7185     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7186      * bit 2 indicates 1 vs 2 variant of the insn.
7187      */
7188     int opcode = extract32(insn, 12, 2);
7189     bool part = extract32(insn, 14, 1);
7190     bool is_q = extract32(insn, 30, 1);
7191     int esize = 8 << size;
7192     int i;
7193     int datasize = is_q ? 128 : 64;
7194     int elements = datasize / esize;
7195     TCGv_i64 tcg_res[2], tcg_ele;
7196 
7197     if (opcode == 0 || (size == 3 && !is_q)) {
7198         unallocated_encoding(s);
7199         return;
7200     }
7201 
7202     if (!fp_access_check(s)) {
7203         return;
7204     }
7205 
7206     tcg_res[0] = tcg_temp_new_i64();
7207     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7208     tcg_ele = tcg_temp_new_i64();
7209 
7210     for (i = 0; i < elements; i++) {
7211         int o, w;
7212 
7213         switch (opcode) {
7214         case 1: /* UZP1/2 */
7215         {
7216             int midpoint = elements / 2;
7217             if (i < midpoint) {
7218                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7219             } else {
7220                 read_vec_element(s, tcg_ele, rm,
7221                                  2 * (i - midpoint) + part, size);
7222             }
7223             break;
7224         }
7225         case 2: /* TRN1/2 */
7226             if (i & 1) {
7227                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7228             } else {
7229                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7230             }
7231             break;
7232         case 3: /* ZIP1/2 */
7233         {
7234             int base = part * elements / 2;
7235             if (i & 1) {
7236                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7237             } else {
7238                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7239             }
7240             break;
7241         }
7242         default:
7243             g_assert_not_reached();
7244         }
7245 
7246         w = (i * esize) / 64;
7247         o = (i * esize) % 64;
7248         if (o == 0) {
7249             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7250         } else {
7251             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7252             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7253         }
7254     }
7255 
7256     for (i = 0; i <= is_q; ++i) {
7257         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7258     }
7259     clear_vec_high(s, is_q, rd);
7260 }
7261 
7262 /*
7263  * do_reduction_op helper
7264  *
7265  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7266  * important for correct NaN propagation that we do these
7267  * operations in exactly the order specified by the pseudocode.
7268  *
7269  * This is a recursive function, TCG temps should be freed by the
7270  * calling function once it is done with the values.
7271  */
7272 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7273                                 int esize, int size, int vmap, TCGv_ptr fpst)
7274 {
7275     if (esize == size) {
7276         int element;
7277         MemOp msize = esize == 16 ? MO_16 : MO_32;
7278         TCGv_i32 tcg_elem;
7279 
7280         /* We should have one register left here */
7281         assert(ctpop8(vmap) == 1);
7282         element = ctz32(vmap);
7283         assert(element < 8);
7284 
7285         tcg_elem = tcg_temp_new_i32();
7286         read_vec_element_i32(s, tcg_elem, rn, element, msize);
7287         return tcg_elem;
7288     } else {
7289         int bits = size / 2;
7290         int shift = ctpop8(vmap) / 2;
7291         int vmap_lo = (vmap >> shift) & vmap;
7292         int vmap_hi = (vmap & ~vmap_lo);
7293         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7294 
7295         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7296         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7297         tcg_res = tcg_temp_new_i32();
7298 
7299         switch (fpopcode) {
7300         case 0x0c: /* fmaxnmv half-precision */
7301             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7302             break;
7303         case 0x0f: /* fmaxv half-precision */
7304             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7305             break;
7306         case 0x1c: /* fminnmv half-precision */
7307             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7308             break;
7309         case 0x1f: /* fminv half-precision */
7310             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7311             break;
7312         case 0x2c: /* fmaxnmv */
7313             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7314             break;
7315         case 0x2f: /* fmaxv */
7316             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7317             break;
7318         case 0x3c: /* fminnmv */
7319             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7320             break;
7321         case 0x3f: /* fminv */
7322             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7323             break;
7324         default:
7325             g_assert_not_reached();
7326         }
7327         return tcg_res;
7328     }
7329 }
7330 
7331 /* AdvSIMD across lanes
7332  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7333  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7334  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7335  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7336  */
7337 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7338 {
7339     int rd = extract32(insn, 0, 5);
7340     int rn = extract32(insn, 5, 5);
7341     int size = extract32(insn, 22, 2);
7342     int opcode = extract32(insn, 12, 5);
7343     bool is_q = extract32(insn, 30, 1);
7344     bool is_u = extract32(insn, 29, 1);
7345     bool is_fp = false;
7346     bool is_min = false;
7347     int esize;
7348     int elements;
7349     int i;
7350     TCGv_i64 tcg_res, tcg_elt;
7351 
7352     switch (opcode) {
7353     case 0x1b: /* ADDV */
7354         if (is_u) {
7355             unallocated_encoding(s);
7356             return;
7357         }
7358         /* fall through */
7359     case 0x3: /* SADDLV, UADDLV */
7360     case 0xa: /* SMAXV, UMAXV */
7361     case 0x1a: /* SMINV, UMINV */
7362         if (size == 3 || (size == 2 && !is_q)) {
7363             unallocated_encoding(s);
7364             return;
7365         }
7366         break;
7367     case 0xc: /* FMAXNMV, FMINNMV */
7368     case 0xf: /* FMAXV, FMINV */
7369         /* Bit 1 of size field encodes min vs max and the actual size
7370          * depends on the encoding of the U bit. If not set (and FP16
7371          * enabled) then we do half-precision float instead of single
7372          * precision.
7373          */
7374         is_min = extract32(size, 1, 1);
7375         is_fp = true;
7376         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7377             size = 1;
7378         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7379             unallocated_encoding(s);
7380             return;
7381         } else {
7382             size = 2;
7383         }
7384         break;
7385     default:
7386         unallocated_encoding(s);
7387         return;
7388     }
7389 
7390     if (!fp_access_check(s)) {
7391         return;
7392     }
7393 
7394     esize = 8 << size;
7395     elements = (is_q ? 128 : 64) / esize;
7396 
7397     tcg_res = tcg_temp_new_i64();
7398     tcg_elt = tcg_temp_new_i64();
7399 
7400     /* These instructions operate across all lanes of a vector
7401      * to produce a single result. We can guarantee that a 64
7402      * bit intermediate is sufficient:
7403      *  + for [US]ADDLV the maximum element size is 32 bits, and
7404      *    the result type is 64 bits
7405      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7406      *    same as the element size, which is 32 bits at most
7407      * For the integer operations we can choose to work at 64
7408      * or 32 bits and truncate at the end; for simplicity
7409      * we use 64 bits always. The floating point
7410      * ops do require 32 bit intermediates, though.
7411      */
7412     if (!is_fp) {
7413         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7414 
7415         for (i = 1; i < elements; i++) {
7416             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7417 
7418             switch (opcode) {
7419             case 0x03: /* SADDLV / UADDLV */
7420             case 0x1b: /* ADDV */
7421                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7422                 break;
7423             case 0x0a: /* SMAXV / UMAXV */
7424                 if (is_u) {
7425                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7426                 } else {
7427                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7428                 }
7429                 break;
7430             case 0x1a: /* SMINV / UMINV */
7431                 if (is_u) {
7432                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7433                 } else {
7434                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7435                 }
7436                 break;
7437             default:
7438                 g_assert_not_reached();
7439             }
7440 
7441         }
7442     } else {
7443         /* Floating point vector reduction ops which work across 32
7444          * bit (single) or 16 bit (half-precision) intermediates.
7445          * Note that correct NaN propagation requires that we do these
7446          * operations in exactly the order specified by the pseudocode.
7447          */
7448         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7449         int fpopcode = opcode | is_min << 4 | is_u << 5;
7450         int vmap = (1 << elements) - 1;
7451         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7452                                              (is_q ? 128 : 64), vmap, fpst);
7453         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7454     }
7455 
7456     /* Now truncate the result to the width required for the final output */
7457     if (opcode == 0x03) {
7458         /* SADDLV, UADDLV: result is 2*esize */
7459         size++;
7460     }
7461 
7462     switch (size) {
7463     case 0:
7464         tcg_gen_ext8u_i64(tcg_res, tcg_res);
7465         break;
7466     case 1:
7467         tcg_gen_ext16u_i64(tcg_res, tcg_res);
7468         break;
7469     case 2:
7470         tcg_gen_ext32u_i64(tcg_res, tcg_res);
7471         break;
7472     case 3:
7473         break;
7474     default:
7475         g_assert_not_reached();
7476     }
7477 
7478     write_fp_dreg(s, rd, tcg_res);
7479 }
7480 
7481 /* DUP (Element, Vector)
7482  *
7483  *  31  30   29              21 20    16 15        10  9    5 4    0
7484  * +---+---+-------------------+--------+-------------+------+------+
7485  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7486  * +---+---+-------------------+--------+-------------+------+------+
7487  *
7488  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7489  */
7490 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7491                              int imm5)
7492 {
7493     int size = ctz32(imm5);
7494     int index;
7495 
7496     if (size > 3 || (size == 3 && !is_q)) {
7497         unallocated_encoding(s);
7498         return;
7499     }
7500 
7501     if (!fp_access_check(s)) {
7502         return;
7503     }
7504 
7505     index = imm5 >> (size + 1);
7506     tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7507                          vec_reg_offset(s, rn, index, size),
7508                          is_q ? 16 : 8, vec_full_reg_size(s));
7509 }
7510 
7511 /* DUP (element, scalar)
7512  *  31                   21 20    16 15        10  9    5 4    0
7513  * +-----------------------+--------+-------------+------+------+
7514  * | 0 1 0 1 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 0 1 |  Rn  |  Rd  |
7515  * +-----------------------+--------+-------------+------+------+
7516  */
7517 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7518                               int imm5)
7519 {
7520     int size = ctz32(imm5);
7521     int index;
7522     TCGv_i64 tmp;
7523 
7524     if (size > 3) {
7525         unallocated_encoding(s);
7526         return;
7527     }
7528 
7529     if (!fp_access_check(s)) {
7530         return;
7531     }
7532 
7533     index = imm5 >> (size + 1);
7534 
7535     /* This instruction just extracts the specified element and
7536      * zero-extends it into the bottom of the destination register.
7537      */
7538     tmp = tcg_temp_new_i64();
7539     read_vec_element(s, tmp, rn, index, size);
7540     write_fp_dreg(s, rd, tmp);
7541 }
7542 
7543 /* DUP (General)
7544  *
7545  *  31  30   29              21 20    16 15        10  9    5 4    0
7546  * +---+---+-------------------+--------+-------------+------+------+
7547  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 0 1 1 |  Rn  |  Rd  |
7548  * +---+---+-------------------+--------+-------------+------+------+
7549  *
7550  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7551  */
7552 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7553                              int imm5)
7554 {
7555     int size = ctz32(imm5);
7556     uint32_t dofs, oprsz, maxsz;
7557 
7558     if (size > 3 || ((size == 3) && !is_q)) {
7559         unallocated_encoding(s);
7560         return;
7561     }
7562 
7563     if (!fp_access_check(s)) {
7564         return;
7565     }
7566 
7567     dofs = vec_full_reg_offset(s, rd);
7568     oprsz = is_q ? 16 : 8;
7569     maxsz = vec_full_reg_size(s);
7570 
7571     tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7572 }
7573 
7574 /* INS (Element)
7575  *
7576  *  31                   21 20    16 15  14    11  10 9    5 4    0
7577  * +-----------------------+--------+------------+---+------+------+
7578  * | 0 1 1 0 1 1 1 0 0 0 0 |  imm5  | 0 |  imm4  | 1 |  Rn  |  Rd  |
7579  * +-----------------------+--------+------------+---+------+------+
7580  *
7581  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7582  * index: encoded in imm5<4:size+1>
7583  */
7584 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7585                              int imm4, int imm5)
7586 {
7587     int size = ctz32(imm5);
7588     int src_index, dst_index;
7589     TCGv_i64 tmp;
7590 
7591     if (size > 3) {
7592         unallocated_encoding(s);
7593         return;
7594     }
7595 
7596     if (!fp_access_check(s)) {
7597         return;
7598     }
7599 
7600     dst_index = extract32(imm5, 1+size, 5);
7601     src_index = extract32(imm4, size, 4);
7602 
7603     tmp = tcg_temp_new_i64();
7604 
7605     read_vec_element(s, tmp, rn, src_index, size);
7606     write_vec_element(s, tmp, rd, dst_index, size);
7607 
7608     /* INS is considered a 128-bit write for SVE. */
7609     clear_vec_high(s, true, rd);
7610 }
7611 
7612 
7613 /* INS (General)
7614  *
7615  *  31                   21 20    16 15        10  9    5 4    0
7616  * +-----------------------+--------+-------------+------+------+
7617  * | 0 1 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 0 1 1 1 |  Rn  |  Rd  |
7618  * +-----------------------+--------+-------------+------+------+
7619  *
7620  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7621  * index: encoded in imm5<4:size+1>
7622  */
7623 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7624 {
7625     int size = ctz32(imm5);
7626     int idx;
7627 
7628     if (size > 3) {
7629         unallocated_encoding(s);
7630         return;
7631     }
7632 
7633     if (!fp_access_check(s)) {
7634         return;
7635     }
7636 
7637     idx = extract32(imm5, 1 + size, 4 - size);
7638     write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7639 
7640     /* INS is considered a 128-bit write for SVE. */
7641     clear_vec_high(s, true, rd);
7642 }
7643 
7644 /*
7645  * UMOV (General)
7646  * SMOV (General)
7647  *
7648  *  31  30   29              21 20    16 15    12   10 9    5 4    0
7649  * +---+---+-------------------+--------+-------------+------+------+
7650  * | 0 | Q | 0 0 1 1 1 0 0 0 0 |  imm5  | 0 0 1 U 1 1 |  Rn  |  Rd  |
7651  * +---+---+-------------------+--------+-------------+------+------+
7652  *
7653  * U: unsigned when set
7654  * size: encoded in imm5 (see ARM ARM LowestSetBit())
7655  */
7656 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7657                                   int rn, int rd, int imm5)
7658 {
7659     int size = ctz32(imm5);
7660     int element;
7661     TCGv_i64 tcg_rd;
7662 
7663     /* Check for UnallocatedEncodings */
7664     if (is_signed) {
7665         if (size > 2 || (size == 2 && !is_q)) {
7666             unallocated_encoding(s);
7667             return;
7668         }
7669     } else {
7670         if (size > 3
7671             || (size < 3 && is_q)
7672             || (size == 3 && !is_q)) {
7673             unallocated_encoding(s);
7674             return;
7675         }
7676     }
7677 
7678     if (!fp_access_check(s)) {
7679         return;
7680     }
7681 
7682     element = extract32(imm5, 1+size, 4);
7683 
7684     tcg_rd = cpu_reg(s, rd);
7685     read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7686     if (is_signed && !is_q) {
7687         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7688     }
7689 }
7690 
7691 /* AdvSIMD copy
7692  *   31  30  29  28             21 20  16 15  14  11 10  9    5 4    0
7693  * +---+---+----+-----------------+------+---+------+---+------+------+
7694  * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7695  * +---+---+----+-----------------+------+---+------+---+------+------+
7696  */
7697 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7698 {
7699     int rd = extract32(insn, 0, 5);
7700     int rn = extract32(insn, 5, 5);
7701     int imm4 = extract32(insn, 11, 4);
7702     int op = extract32(insn, 29, 1);
7703     int is_q = extract32(insn, 30, 1);
7704     int imm5 = extract32(insn, 16, 5);
7705 
7706     if (op) {
7707         if (is_q) {
7708             /* INS (element) */
7709             handle_simd_inse(s, rd, rn, imm4, imm5);
7710         } else {
7711             unallocated_encoding(s);
7712         }
7713     } else {
7714         switch (imm4) {
7715         case 0:
7716             /* DUP (element - vector) */
7717             handle_simd_dupe(s, is_q, rd, rn, imm5);
7718             break;
7719         case 1:
7720             /* DUP (general) */
7721             handle_simd_dupg(s, is_q, rd, rn, imm5);
7722             break;
7723         case 3:
7724             if (is_q) {
7725                 /* INS (general) */
7726                 handle_simd_insg(s, rd, rn, imm5);
7727             } else {
7728                 unallocated_encoding(s);
7729             }
7730             break;
7731         case 5:
7732         case 7:
7733             /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7734             handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7735             break;
7736         default:
7737             unallocated_encoding(s);
7738             break;
7739         }
7740     }
7741 }
7742 
7743 /* AdvSIMD modified immediate
7744  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
7745  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7746  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
7747  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7748  *
7749  * There are a number of operations that can be carried out here:
7750  *   MOVI - move (shifted) imm into register
7751  *   MVNI - move inverted (shifted) imm into register
7752  *   ORR  - bitwise OR of (shifted) imm with register
7753  *   BIC  - bitwise clear of (shifted) imm with register
7754  * With ARMv8.2 we also have:
7755  *   FMOV half-precision
7756  */
7757 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7758 {
7759     int rd = extract32(insn, 0, 5);
7760     int cmode = extract32(insn, 12, 4);
7761     int o2 = extract32(insn, 11, 1);
7762     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7763     bool is_neg = extract32(insn, 29, 1);
7764     bool is_q = extract32(insn, 30, 1);
7765     uint64_t imm = 0;
7766 
7767     if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7768         /* Check for FMOV (vector, immediate) - half-precision */
7769         if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7770             unallocated_encoding(s);
7771             return;
7772         }
7773     }
7774 
7775     if (!fp_access_check(s)) {
7776         return;
7777     }
7778 
7779     if (cmode == 15 && o2 && !is_neg) {
7780         /* FMOV (vector, immediate) - half-precision */
7781         imm = vfp_expand_imm(MO_16, abcdefgh);
7782         /* now duplicate across the lanes */
7783         imm = dup_const(MO_16, imm);
7784     } else {
7785         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7786     }
7787 
7788     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7789         /* MOVI or MVNI, with MVNI negation handled above.  */
7790         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7791                              vec_full_reg_size(s), imm);
7792     } else {
7793         /* ORR or BIC, with BIC negation to AND handled above.  */
7794         if (is_neg) {
7795             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7796         } else {
7797             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7798         }
7799     }
7800 }
7801 
7802 /* AdvSIMD scalar copy
7803  *  31 30  29  28             21 20  16 15  14  11 10  9    5 4    0
7804  * +-----+----+-----------------+------+---+------+---+------+------+
7805  * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 |  Rn  |  Rd  |
7806  * +-----+----+-----------------+------+---+------+---+------+------+
7807  */
7808 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7809 {
7810     int rd = extract32(insn, 0, 5);
7811     int rn = extract32(insn, 5, 5);
7812     int imm4 = extract32(insn, 11, 4);
7813     int imm5 = extract32(insn, 16, 5);
7814     int op = extract32(insn, 29, 1);
7815 
7816     if (op != 0 || imm4 != 0) {
7817         unallocated_encoding(s);
7818         return;
7819     }
7820 
7821     /* DUP (element, scalar) */
7822     handle_simd_dupes(s, rd, rn, imm5);
7823 }
7824 
7825 /* AdvSIMD scalar pairwise
7826  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
7827  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7828  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
7829  * +-----+---+-----------+------+-----------+--------+-----+------+------+
7830  */
7831 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7832 {
7833     int u = extract32(insn, 29, 1);
7834     int size = extract32(insn, 22, 2);
7835     int opcode = extract32(insn, 12, 5);
7836     int rn = extract32(insn, 5, 5);
7837     int rd = extract32(insn, 0, 5);
7838     TCGv_ptr fpst;
7839 
7840     /* For some ops (the FP ones), size[1] is part of the encoding.
7841      * For ADDP strictly it is not but size[1] is always 1 for valid
7842      * encodings.
7843      */
7844     opcode |= (extract32(size, 1, 1) << 5);
7845 
7846     switch (opcode) {
7847     case 0x3b: /* ADDP */
7848         if (u || size != 3) {
7849             unallocated_encoding(s);
7850             return;
7851         }
7852         if (!fp_access_check(s)) {
7853             return;
7854         }
7855 
7856         fpst = NULL;
7857         break;
7858     case 0xc: /* FMAXNMP */
7859     case 0xd: /* FADDP */
7860     case 0xf: /* FMAXP */
7861     case 0x2c: /* FMINNMP */
7862     case 0x2f: /* FMINP */
7863         /* FP op, size[0] is 32 or 64 bit*/
7864         if (!u) {
7865             if (!dc_isar_feature(aa64_fp16, s)) {
7866                 unallocated_encoding(s);
7867                 return;
7868             } else {
7869                 size = MO_16;
7870             }
7871         } else {
7872             size = extract32(size, 0, 1) ? MO_64 : MO_32;
7873         }
7874 
7875         if (!fp_access_check(s)) {
7876             return;
7877         }
7878 
7879         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7880         break;
7881     default:
7882         unallocated_encoding(s);
7883         return;
7884     }
7885 
7886     if (size == MO_64) {
7887         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7888         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7889         TCGv_i64 tcg_res = tcg_temp_new_i64();
7890 
7891         read_vec_element(s, tcg_op1, rn, 0, MO_64);
7892         read_vec_element(s, tcg_op2, rn, 1, MO_64);
7893 
7894         switch (opcode) {
7895         case 0x3b: /* ADDP */
7896             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7897             break;
7898         case 0xc: /* FMAXNMP */
7899             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7900             break;
7901         case 0xd: /* FADDP */
7902             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7903             break;
7904         case 0xf: /* FMAXP */
7905             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7906             break;
7907         case 0x2c: /* FMINNMP */
7908             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7909             break;
7910         case 0x2f: /* FMINP */
7911             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7912             break;
7913         default:
7914             g_assert_not_reached();
7915         }
7916 
7917         write_fp_dreg(s, rd, tcg_res);
7918     } else {
7919         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7920         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7921         TCGv_i32 tcg_res = tcg_temp_new_i32();
7922 
7923         read_vec_element_i32(s, tcg_op1, rn, 0, size);
7924         read_vec_element_i32(s, tcg_op2, rn, 1, size);
7925 
7926         if (size == MO_16) {
7927             switch (opcode) {
7928             case 0xc: /* FMAXNMP */
7929                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7930                 break;
7931             case 0xd: /* FADDP */
7932                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7933                 break;
7934             case 0xf: /* FMAXP */
7935                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7936                 break;
7937             case 0x2c: /* FMINNMP */
7938                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7939                 break;
7940             case 0x2f: /* FMINP */
7941                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7942                 break;
7943             default:
7944                 g_assert_not_reached();
7945             }
7946         } else {
7947             switch (opcode) {
7948             case 0xc: /* FMAXNMP */
7949                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7950                 break;
7951             case 0xd: /* FADDP */
7952                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7953                 break;
7954             case 0xf: /* FMAXP */
7955                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7956                 break;
7957             case 0x2c: /* FMINNMP */
7958                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7959                 break;
7960             case 0x2f: /* FMINP */
7961                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7962                 break;
7963             default:
7964                 g_assert_not_reached();
7965             }
7966         }
7967 
7968         write_fp_sreg(s, rd, tcg_res);
7969     }
7970 }
7971 
7972 /*
7973  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7974  *
7975  * This code is handles the common shifting code and is used by both
7976  * the vector and scalar code.
7977  */
7978 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7979                                     TCGv_i64 tcg_rnd, bool accumulate,
7980                                     bool is_u, int size, int shift)
7981 {
7982     bool extended_result = false;
7983     bool round = tcg_rnd != NULL;
7984     int ext_lshift = 0;
7985     TCGv_i64 tcg_src_hi;
7986 
7987     if (round && size == 3) {
7988         extended_result = true;
7989         ext_lshift = 64 - shift;
7990         tcg_src_hi = tcg_temp_new_i64();
7991     } else if (shift == 64) {
7992         if (!accumulate && is_u) {
7993             /* result is zero */
7994             tcg_gen_movi_i64(tcg_res, 0);
7995             return;
7996         }
7997     }
7998 
7999     /* Deal with the rounding step */
8000     if (round) {
8001         if (extended_result) {
8002             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8003             if (!is_u) {
8004                 /* take care of sign extending tcg_res */
8005                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8006                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8007                                  tcg_src, tcg_src_hi,
8008                                  tcg_rnd, tcg_zero);
8009             } else {
8010                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8011                                  tcg_src, tcg_zero,
8012                                  tcg_rnd, tcg_zero);
8013             }
8014         } else {
8015             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8016         }
8017     }
8018 
8019     /* Now do the shift right */
8020     if (round && extended_result) {
8021         /* extended case, >64 bit precision required */
8022         if (ext_lshift == 0) {
8023             /* special case, only high bits matter */
8024             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8025         } else {
8026             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8027             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8028             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8029         }
8030     } else {
8031         if (is_u) {
8032             if (shift == 64) {
8033                 /* essentially shifting in 64 zeros */
8034                 tcg_gen_movi_i64(tcg_src, 0);
8035             } else {
8036                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8037             }
8038         } else {
8039             if (shift == 64) {
8040                 /* effectively extending the sign-bit */
8041                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8042             } else {
8043                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8044             }
8045         }
8046     }
8047 
8048     if (accumulate) {
8049         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8050     } else {
8051         tcg_gen_mov_i64(tcg_res, tcg_src);
8052     }
8053 }
8054 
8055 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8056 static void handle_scalar_simd_shri(DisasContext *s,
8057                                     bool is_u, int immh, int immb,
8058                                     int opcode, int rn, int rd)
8059 {
8060     const int size = 3;
8061     int immhb = immh << 3 | immb;
8062     int shift = 2 * (8 << size) - immhb;
8063     bool accumulate = false;
8064     bool round = false;
8065     bool insert = false;
8066     TCGv_i64 tcg_rn;
8067     TCGv_i64 tcg_rd;
8068     TCGv_i64 tcg_round;
8069 
8070     if (!extract32(immh, 3, 1)) {
8071         unallocated_encoding(s);
8072         return;
8073     }
8074 
8075     if (!fp_access_check(s)) {
8076         return;
8077     }
8078 
8079     switch (opcode) {
8080     case 0x02: /* SSRA / USRA (accumulate) */
8081         accumulate = true;
8082         break;
8083     case 0x04: /* SRSHR / URSHR (rounding) */
8084         round = true;
8085         break;
8086     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8087         accumulate = round = true;
8088         break;
8089     case 0x08: /* SRI */
8090         insert = true;
8091         break;
8092     }
8093 
8094     if (round) {
8095         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8096     } else {
8097         tcg_round = NULL;
8098     }
8099 
8100     tcg_rn = read_fp_dreg(s, rn);
8101     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8102 
8103     if (insert) {
8104         /* shift count same as element size is valid but does nothing;
8105          * special case to avoid potential shift by 64.
8106          */
8107         int esize = 8 << size;
8108         if (shift != esize) {
8109             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8110             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8111         }
8112     } else {
8113         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8114                                 accumulate, is_u, size, shift);
8115     }
8116 
8117     write_fp_dreg(s, rd, tcg_rd);
8118 }
8119 
8120 /* SHL/SLI - Scalar shift left */
8121 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8122                                     int immh, int immb, int opcode,
8123                                     int rn, int rd)
8124 {
8125     int size = 32 - clz32(immh) - 1;
8126     int immhb = immh << 3 | immb;
8127     int shift = immhb - (8 << size);
8128     TCGv_i64 tcg_rn;
8129     TCGv_i64 tcg_rd;
8130 
8131     if (!extract32(immh, 3, 1)) {
8132         unallocated_encoding(s);
8133         return;
8134     }
8135 
8136     if (!fp_access_check(s)) {
8137         return;
8138     }
8139 
8140     tcg_rn = read_fp_dreg(s, rn);
8141     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8142 
8143     if (insert) {
8144         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8145     } else {
8146         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8147     }
8148 
8149     write_fp_dreg(s, rd, tcg_rd);
8150 }
8151 
8152 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8153  * (signed/unsigned) narrowing */
8154 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8155                                    bool is_u_shift, bool is_u_narrow,
8156                                    int immh, int immb, int opcode,
8157                                    int rn, int rd)
8158 {
8159     int immhb = immh << 3 | immb;
8160     int size = 32 - clz32(immh) - 1;
8161     int esize = 8 << size;
8162     int shift = (2 * esize) - immhb;
8163     int elements = is_scalar ? 1 : (64 / esize);
8164     bool round = extract32(opcode, 0, 1);
8165     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8166     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8167     TCGv_i32 tcg_rd_narrowed;
8168     TCGv_i64 tcg_final;
8169 
8170     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8171         { gen_helper_neon_narrow_sat_s8,
8172           gen_helper_neon_unarrow_sat8 },
8173         { gen_helper_neon_narrow_sat_s16,
8174           gen_helper_neon_unarrow_sat16 },
8175         { gen_helper_neon_narrow_sat_s32,
8176           gen_helper_neon_unarrow_sat32 },
8177         { NULL, NULL },
8178     };
8179     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8180         gen_helper_neon_narrow_sat_u8,
8181         gen_helper_neon_narrow_sat_u16,
8182         gen_helper_neon_narrow_sat_u32,
8183         NULL
8184     };
8185     NeonGenNarrowEnvFn *narrowfn;
8186 
8187     int i;
8188 
8189     assert(size < 4);
8190 
8191     if (extract32(immh, 3, 1)) {
8192         unallocated_encoding(s);
8193         return;
8194     }
8195 
8196     if (!fp_access_check(s)) {
8197         return;
8198     }
8199 
8200     if (is_u_shift) {
8201         narrowfn = unsigned_narrow_fns[size];
8202     } else {
8203         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8204     }
8205 
8206     tcg_rn = tcg_temp_new_i64();
8207     tcg_rd = tcg_temp_new_i64();
8208     tcg_rd_narrowed = tcg_temp_new_i32();
8209     tcg_final = tcg_temp_new_i64();
8210 
8211     if (round) {
8212         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8213     } else {
8214         tcg_round = NULL;
8215     }
8216 
8217     for (i = 0; i < elements; i++) {
8218         read_vec_element(s, tcg_rn, rn, i, ldop);
8219         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8220                                 false, is_u_shift, size+1, shift);
8221         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8222         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8223         if (i == 0) {
8224             tcg_gen_mov_i64(tcg_final, tcg_rd);
8225         } else {
8226             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8227         }
8228     }
8229 
8230     if (!is_q) {
8231         write_vec_element(s, tcg_final, rd, 0, MO_64);
8232     } else {
8233         write_vec_element(s, tcg_final, rd, 1, MO_64);
8234     }
8235     clear_vec_high(s, is_q, rd);
8236 }
8237 
8238 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8239 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8240                              bool src_unsigned, bool dst_unsigned,
8241                              int immh, int immb, int rn, int rd)
8242 {
8243     int immhb = immh << 3 | immb;
8244     int size = 32 - clz32(immh) - 1;
8245     int shift = immhb - (8 << size);
8246     int pass;
8247 
8248     assert(immh != 0);
8249     assert(!(scalar && is_q));
8250 
8251     if (!scalar) {
8252         if (!is_q && extract32(immh, 3, 1)) {
8253             unallocated_encoding(s);
8254             return;
8255         }
8256 
8257         /* Since we use the variable-shift helpers we must
8258          * replicate the shift count into each element of
8259          * the tcg_shift value.
8260          */
8261         switch (size) {
8262         case 0:
8263             shift |= shift << 8;
8264             /* fall through */
8265         case 1:
8266             shift |= shift << 16;
8267             break;
8268         case 2:
8269         case 3:
8270             break;
8271         default:
8272             g_assert_not_reached();
8273         }
8274     }
8275 
8276     if (!fp_access_check(s)) {
8277         return;
8278     }
8279 
8280     if (size == 3) {
8281         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8282         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8283             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8284             { NULL, gen_helper_neon_qshl_u64 },
8285         };
8286         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8287         int maxpass = is_q ? 2 : 1;
8288 
8289         for (pass = 0; pass < maxpass; pass++) {
8290             TCGv_i64 tcg_op = tcg_temp_new_i64();
8291 
8292             read_vec_element(s, tcg_op, rn, pass, MO_64);
8293             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8294             write_vec_element(s, tcg_op, rd, pass, MO_64);
8295         }
8296         clear_vec_high(s, is_q, rd);
8297     } else {
8298         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8299         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8300             {
8301                 { gen_helper_neon_qshl_s8,
8302                   gen_helper_neon_qshl_s16,
8303                   gen_helper_neon_qshl_s32 },
8304                 { gen_helper_neon_qshlu_s8,
8305                   gen_helper_neon_qshlu_s16,
8306                   gen_helper_neon_qshlu_s32 }
8307             }, {
8308                 { NULL, NULL, NULL },
8309                 { gen_helper_neon_qshl_u8,
8310                   gen_helper_neon_qshl_u16,
8311                   gen_helper_neon_qshl_u32 }
8312             }
8313         };
8314         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8315         MemOp memop = scalar ? size : MO_32;
8316         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8317 
8318         for (pass = 0; pass < maxpass; pass++) {
8319             TCGv_i32 tcg_op = tcg_temp_new_i32();
8320 
8321             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8322             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8323             if (scalar) {
8324                 switch (size) {
8325                 case 0:
8326                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8327                     break;
8328                 case 1:
8329                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8330                     break;
8331                 case 2:
8332                     break;
8333                 default:
8334                     g_assert_not_reached();
8335                 }
8336                 write_fp_sreg(s, rd, tcg_op);
8337             } else {
8338                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8339             }
8340         }
8341 
8342         if (!scalar) {
8343             clear_vec_high(s, is_q, rd);
8344         }
8345     }
8346 }
8347 
8348 /* Common vector code for handling integer to FP conversion */
8349 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8350                                    int elements, int is_signed,
8351                                    int fracbits, int size)
8352 {
8353     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8354     TCGv_i32 tcg_shift = NULL;
8355 
8356     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8357     int pass;
8358 
8359     if (fracbits || size == MO_64) {
8360         tcg_shift = tcg_constant_i32(fracbits);
8361     }
8362 
8363     if (size == MO_64) {
8364         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8365         TCGv_i64 tcg_double = tcg_temp_new_i64();
8366 
8367         for (pass = 0; pass < elements; pass++) {
8368             read_vec_element(s, tcg_int64, rn, pass, mop);
8369 
8370             if (is_signed) {
8371                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8372                                      tcg_shift, tcg_fpst);
8373             } else {
8374                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8375                                      tcg_shift, tcg_fpst);
8376             }
8377             if (elements == 1) {
8378                 write_fp_dreg(s, rd, tcg_double);
8379             } else {
8380                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8381             }
8382         }
8383     } else {
8384         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8385         TCGv_i32 tcg_float = tcg_temp_new_i32();
8386 
8387         for (pass = 0; pass < elements; pass++) {
8388             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8389 
8390             switch (size) {
8391             case MO_32:
8392                 if (fracbits) {
8393                     if (is_signed) {
8394                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8395                                              tcg_shift, tcg_fpst);
8396                     } else {
8397                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8398                                              tcg_shift, tcg_fpst);
8399                     }
8400                 } else {
8401                     if (is_signed) {
8402                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8403                     } else {
8404                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8405                     }
8406                 }
8407                 break;
8408             case MO_16:
8409                 if (fracbits) {
8410                     if (is_signed) {
8411                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8412                                              tcg_shift, tcg_fpst);
8413                     } else {
8414                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8415                                              tcg_shift, tcg_fpst);
8416                     }
8417                 } else {
8418                     if (is_signed) {
8419                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8420                     } else {
8421                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8422                     }
8423                 }
8424                 break;
8425             default:
8426                 g_assert_not_reached();
8427             }
8428 
8429             if (elements == 1) {
8430                 write_fp_sreg(s, rd, tcg_float);
8431             } else {
8432                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8433             }
8434         }
8435     }
8436 
8437     clear_vec_high(s, elements << size == 16, rd);
8438 }
8439 
8440 /* UCVTF/SCVTF - Integer to FP conversion */
8441 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8442                                          bool is_q, bool is_u,
8443                                          int immh, int immb, int opcode,
8444                                          int rn, int rd)
8445 {
8446     int size, elements, fracbits;
8447     int immhb = immh << 3 | immb;
8448 
8449     if (immh & 8) {
8450         size = MO_64;
8451         if (!is_scalar && !is_q) {
8452             unallocated_encoding(s);
8453             return;
8454         }
8455     } else if (immh & 4) {
8456         size = MO_32;
8457     } else if (immh & 2) {
8458         size = MO_16;
8459         if (!dc_isar_feature(aa64_fp16, s)) {
8460             unallocated_encoding(s);
8461             return;
8462         }
8463     } else {
8464         /* immh == 0 would be a failure of the decode logic */
8465         g_assert(immh == 1);
8466         unallocated_encoding(s);
8467         return;
8468     }
8469 
8470     if (is_scalar) {
8471         elements = 1;
8472     } else {
8473         elements = (8 << is_q) >> size;
8474     }
8475     fracbits = (16 << size) - immhb;
8476 
8477     if (!fp_access_check(s)) {
8478         return;
8479     }
8480 
8481     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8482 }
8483 
8484 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8485 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8486                                          bool is_q, bool is_u,
8487                                          int immh, int immb, int rn, int rd)
8488 {
8489     int immhb = immh << 3 | immb;
8490     int pass, size, fracbits;
8491     TCGv_ptr tcg_fpstatus;
8492     TCGv_i32 tcg_rmode, tcg_shift;
8493 
8494     if (immh & 0x8) {
8495         size = MO_64;
8496         if (!is_scalar && !is_q) {
8497             unallocated_encoding(s);
8498             return;
8499         }
8500     } else if (immh & 0x4) {
8501         size = MO_32;
8502     } else if (immh & 0x2) {
8503         size = MO_16;
8504         if (!dc_isar_feature(aa64_fp16, s)) {
8505             unallocated_encoding(s);
8506             return;
8507         }
8508     } else {
8509         /* Should have split out AdvSIMD modified immediate earlier.  */
8510         assert(immh == 1);
8511         unallocated_encoding(s);
8512         return;
8513     }
8514 
8515     if (!fp_access_check(s)) {
8516         return;
8517     }
8518 
8519     assert(!(is_scalar && is_q));
8520 
8521     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8522     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8523     fracbits = (16 << size) - immhb;
8524     tcg_shift = tcg_constant_i32(fracbits);
8525 
8526     if (size == MO_64) {
8527         int maxpass = is_scalar ? 1 : 2;
8528 
8529         for (pass = 0; pass < maxpass; pass++) {
8530             TCGv_i64 tcg_op = tcg_temp_new_i64();
8531 
8532             read_vec_element(s, tcg_op, rn, pass, MO_64);
8533             if (is_u) {
8534                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8535             } else {
8536                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8537             }
8538             write_vec_element(s, tcg_op, rd, pass, MO_64);
8539         }
8540         clear_vec_high(s, is_q, rd);
8541     } else {
8542         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8543         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8544 
8545         switch (size) {
8546         case MO_16:
8547             if (is_u) {
8548                 fn = gen_helper_vfp_touhh;
8549             } else {
8550                 fn = gen_helper_vfp_toshh;
8551             }
8552             break;
8553         case MO_32:
8554             if (is_u) {
8555                 fn = gen_helper_vfp_touls;
8556             } else {
8557                 fn = gen_helper_vfp_tosls;
8558             }
8559             break;
8560         default:
8561             g_assert_not_reached();
8562         }
8563 
8564         for (pass = 0; pass < maxpass; pass++) {
8565             TCGv_i32 tcg_op = tcg_temp_new_i32();
8566 
8567             read_vec_element_i32(s, tcg_op, rn, pass, size);
8568             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8569             if (is_scalar) {
8570                 write_fp_sreg(s, rd, tcg_op);
8571             } else {
8572                 write_vec_element_i32(s, tcg_op, rd, pass, size);
8573             }
8574         }
8575         if (!is_scalar) {
8576             clear_vec_high(s, is_q, rd);
8577         }
8578     }
8579 
8580     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8581 }
8582 
8583 /* AdvSIMD scalar shift by immediate
8584  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
8585  * +-----+---+-------------+------+------+--------+---+------+------+
8586  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
8587  * +-----+---+-------------+------+------+--------+---+------+------+
8588  *
8589  * This is the scalar version so it works on a fixed sized registers
8590  */
8591 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8592 {
8593     int rd = extract32(insn, 0, 5);
8594     int rn = extract32(insn, 5, 5);
8595     int opcode = extract32(insn, 11, 5);
8596     int immb = extract32(insn, 16, 3);
8597     int immh = extract32(insn, 19, 4);
8598     bool is_u = extract32(insn, 29, 1);
8599 
8600     if (immh == 0) {
8601         unallocated_encoding(s);
8602         return;
8603     }
8604 
8605     switch (opcode) {
8606     case 0x08: /* SRI */
8607         if (!is_u) {
8608             unallocated_encoding(s);
8609             return;
8610         }
8611         /* fall through */
8612     case 0x00: /* SSHR / USHR */
8613     case 0x02: /* SSRA / USRA */
8614     case 0x04: /* SRSHR / URSHR */
8615     case 0x06: /* SRSRA / URSRA */
8616         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8617         break;
8618     case 0x0a: /* SHL / SLI */
8619         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8620         break;
8621     case 0x1c: /* SCVTF, UCVTF */
8622         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8623                                      opcode, rn, rd);
8624         break;
8625     case 0x10: /* SQSHRUN, SQSHRUN2 */
8626     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8627         if (!is_u) {
8628             unallocated_encoding(s);
8629             return;
8630         }
8631         handle_vec_simd_sqshrn(s, true, false, false, true,
8632                                immh, immb, opcode, rn, rd);
8633         break;
8634     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8635     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8636         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8637                                immh, immb, opcode, rn, rd);
8638         break;
8639     case 0xc: /* SQSHLU */
8640         if (!is_u) {
8641             unallocated_encoding(s);
8642             return;
8643         }
8644         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8645         break;
8646     case 0xe: /* SQSHL, UQSHL */
8647         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8648         break;
8649     case 0x1f: /* FCVTZS, FCVTZU */
8650         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8651         break;
8652     default:
8653         unallocated_encoding(s);
8654         break;
8655     }
8656 }
8657 
8658 /* AdvSIMD scalar three different
8659  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
8660  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8661  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
8662  * +-----+---+-----------+------+---+------+--------+-----+------+------+
8663  */
8664 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8665 {
8666     bool is_u = extract32(insn, 29, 1);
8667     int size = extract32(insn, 22, 2);
8668     int opcode = extract32(insn, 12, 4);
8669     int rm = extract32(insn, 16, 5);
8670     int rn = extract32(insn, 5, 5);
8671     int rd = extract32(insn, 0, 5);
8672 
8673     if (is_u) {
8674         unallocated_encoding(s);
8675         return;
8676     }
8677 
8678     switch (opcode) {
8679     case 0x9: /* SQDMLAL, SQDMLAL2 */
8680     case 0xb: /* SQDMLSL, SQDMLSL2 */
8681     case 0xd: /* SQDMULL, SQDMULL2 */
8682         if (size == 0 || size == 3) {
8683             unallocated_encoding(s);
8684             return;
8685         }
8686         break;
8687     default:
8688         unallocated_encoding(s);
8689         return;
8690     }
8691 
8692     if (!fp_access_check(s)) {
8693         return;
8694     }
8695 
8696     if (size == 2) {
8697         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8698         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8699         TCGv_i64 tcg_res = tcg_temp_new_i64();
8700 
8701         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8702         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8703 
8704         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8705         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
8706 
8707         switch (opcode) {
8708         case 0xd: /* SQDMULL, SQDMULL2 */
8709             break;
8710         case 0xb: /* SQDMLSL, SQDMLSL2 */
8711             tcg_gen_neg_i64(tcg_res, tcg_res);
8712             /* fall through */
8713         case 0x9: /* SQDMLAL, SQDMLAL2 */
8714             read_vec_element(s, tcg_op1, rd, 0, MO_64);
8715             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
8716                                               tcg_res, tcg_op1);
8717             break;
8718         default:
8719             g_assert_not_reached();
8720         }
8721 
8722         write_fp_dreg(s, rd, tcg_res);
8723     } else {
8724         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8725         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8726         TCGv_i64 tcg_res = tcg_temp_new_i64();
8727 
8728         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8729         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
8730 
8731         switch (opcode) {
8732         case 0xd: /* SQDMULL, SQDMULL2 */
8733             break;
8734         case 0xb: /* SQDMLSL, SQDMLSL2 */
8735             gen_helper_neon_negl_u32(tcg_res, tcg_res);
8736             /* fall through */
8737         case 0x9: /* SQDMLAL, SQDMLAL2 */
8738         {
8739             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8740             read_vec_element(s, tcg_op3, rd, 0, MO_32);
8741             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
8742                                               tcg_res, tcg_op3);
8743             break;
8744         }
8745         default:
8746             g_assert_not_reached();
8747         }
8748 
8749         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8750         write_fp_dreg(s, rd, tcg_res);
8751     }
8752 }
8753 
8754 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8755                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8756 {
8757     /* Handle 64x64->64 opcodes which are shared between the scalar
8758      * and vector 3-same groups. We cover every opcode where size == 3
8759      * is valid in either the three-reg-same (integer, not pairwise)
8760      * or scalar-three-reg-same groups.
8761      */
8762     TCGCond cond;
8763 
8764     switch (opcode) {
8765     case 0x1: /* SQADD */
8766         if (u) {
8767             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8768         } else {
8769             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8770         }
8771         break;
8772     case 0x5: /* SQSUB */
8773         if (u) {
8774             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8775         } else {
8776             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8777         }
8778         break;
8779     case 0x6: /* CMGT, CMHI */
8780         cond = u ? TCG_COND_GTU : TCG_COND_GT;
8781     do_cmop:
8782         /* 64 bit integer comparison, result = test ? -1 : 0. */
8783         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8784         break;
8785     case 0x7: /* CMGE, CMHS */
8786         cond = u ? TCG_COND_GEU : TCG_COND_GE;
8787         goto do_cmop;
8788     case 0x11: /* CMTST, CMEQ */
8789         if (u) {
8790             cond = TCG_COND_EQ;
8791             goto do_cmop;
8792         }
8793         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8794         break;
8795     case 0x8: /* SSHL, USHL */
8796         if (u) {
8797             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8798         } else {
8799             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8800         }
8801         break;
8802     case 0x9: /* SQSHL, UQSHL */
8803         if (u) {
8804             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8805         } else {
8806             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8807         }
8808         break;
8809     case 0xa: /* SRSHL, URSHL */
8810         if (u) {
8811             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8812         } else {
8813             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8814         }
8815         break;
8816     case 0xb: /* SQRSHL, UQRSHL */
8817         if (u) {
8818             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8819         } else {
8820             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8821         }
8822         break;
8823     case 0x10: /* ADD, SUB */
8824         if (u) {
8825             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8826         } else {
8827             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8828         }
8829         break;
8830     default:
8831         g_assert_not_reached();
8832     }
8833 }
8834 
8835 /* Handle the 3-same-operands float operations; shared by the scalar
8836  * and vector encodings. The caller must filter out any encodings
8837  * not allocated for the encoding it is dealing with.
8838  */
8839 static void handle_3same_float(DisasContext *s, int size, int elements,
8840                                int fpopcode, int rd, int rn, int rm)
8841 {
8842     int pass;
8843     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8844 
8845     for (pass = 0; pass < elements; pass++) {
8846         if (size) {
8847             /* Double */
8848             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8849             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8850             TCGv_i64 tcg_res = tcg_temp_new_i64();
8851 
8852             read_vec_element(s, tcg_op1, rn, pass, MO_64);
8853             read_vec_element(s, tcg_op2, rm, pass, MO_64);
8854 
8855             switch (fpopcode) {
8856             case 0x39: /* FMLS */
8857                 /* As usual for ARM, separate negation for fused multiply-add */
8858                 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8859                 /* fall through */
8860             case 0x19: /* FMLA */
8861                 read_vec_element(s, tcg_res, rd, pass, MO_64);
8862                 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8863                                        tcg_res, fpst);
8864                 break;
8865             case 0x18: /* FMAXNM */
8866                 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8867                 break;
8868             case 0x1a: /* FADD */
8869                 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8870                 break;
8871             case 0x1b: /* FMULX */
8872                 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8873                 break;
8874             case 0x1c: /* FCMEQ */
8875                 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8876                 break;
8877             case 0x1e: /* FMAX */
8878                 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8879                 break;
8880             case 0x1f: /* FRECPS */
8881                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8882                 break;
8883             case 0x38: /* FMINNM */
8884                 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8885                 break;
8886             case 0x3a: /* FSUB */
8887                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8888                 break;
8889             case 0x3e: /* FMIN */
8890                 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8891                 break;
8892             case 0x3f: /* FRSQRTS */
8893                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8894                 break;
8895             case 0x5b: /* FMUL */
8896                 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8897                 break;
8898             case 0x5c: /* FCMGE */
8899                 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8900                 break;
8901             case 0x5d: /* FACGE */
8902                 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8903                 break;
8904             case 0x5f: /* FDIV */
8905                 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8906                 break;
8907             case 0x7a: /* FABD */
8908                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8909                 gen_helper_vfp_absd(tcg_res, tcg_res);
8910                 break;
8911             case 0x7c: /* FCMGT */
8912                 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8913                 break;
8914             case 0x7d: /* FACGT */
8915                 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8916                 break;
8917             default:
8918                 g_assert_not_reached();
8919             }
8920 
8921             write_vec_element(s, tcg_res, rd, pass, MO_64);
8922         } else {
8923             /* Single */
8924             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8925             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8926             TCGv_i32 tcg_res = tcg_temp_new_i32();
8927 
8928             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8929             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8930 
8931             switch (fpopcode) {
8932             case 0x39: /* FMLS */
8933                 /* As usual for ARM, separate negation for fused multiply-add */
8934                 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8935                 /* fall through */
8936             case 0x19: /* FMLA */
8937                 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8938                 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8939                                        tcg_res, fpst);
8940                 break;
8941             case 0x1a: /* FADD */
8942                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8943                 break;
8944             case 0x1b: /* FMULX */
8945                 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8946                 break;
8947             case 0x1c: /* FCMEQ */
8948                 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8949                 break;
8950             case 0x1e: /* FMAX */
8951                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8952                 break;
8953             case 0x1f: /* FRECPS */
8954                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8955                 break;
8956             case 0x18: /* FMAXNM */
8957                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8958                 break;
8959             case 0x38: /* FMINNM */
8960                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8961                 break;
8962             case 0x3a: /* FSUB */
8963                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8964                 break;
8965             case 0x3e: /* FMIN */
8966                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8967                 break;
8968             case 0x3f: /* FRSQRTS */
8969                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8970                 break;
8971             case 0x5b: /* FMUL */
8972                 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8973                 break;
8974             case 0x5c: /* FCMGE */
8975                 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8976                 break;
8977             case 0x5d: /* FACGE */
8978                 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8979                 break;
8980             case 0x5f: /* FDIV */
8981                 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8982                 break;
8983             case 0x7a: /* FABD */
8984                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8985                 gen_helper_vfp_abss(tcg_res, tcg_res);
8986                 break;
8987             case 0x7c: /* FCMGT */
8988                 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8989                 break;
8990             case 0x7d: /* FACGT */
8991                 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8992                 break;
8993             default:
8994                 g_assert_not_reached();
8995             }
8996 
8997             if (elements == 1) {
8998                 /* scalar single so clear high part */
8999                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9000 
9001                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9002                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9003             } else {
9004                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9005             }
9006         }
9007     }
9008 
9009     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9010 }
9011 
9012 /* AdvSIMD scalar three same
9013  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9014  * +-----+---+-----------+------+---+------+--------+---+------+------+
9015  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9016  * +-----+---+-----------+------+---+------+--------+---+------+------+
9017  */
9018 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9019 {
9020     int rd = extract32(insn, 0, 5);
9021     int rn = extract32(insn, 5, 5);
9022     int opcode = extract32(insn, 11, 5);
9023     int rm = extract32(insn, 16, 5);
9024     int size = extract32(insn, 22, 2);
9025     bool u = extract32(insn, 29, 1);
9026     TCGv_i64 tcg_rd;
9027 
9028     if (opcode >= 0x18) {
9029         /* Floating point: U, size[1] and opcode indicate operation */
9030         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9031         switch (fpopcode) {
9032         case 0x1b: /* FMULX */
9033         case 0x1f: /* FRECPS */
9034         case 0x3f: /* FRSQRTS */
9035         case 0x5d: /* FACGE */
9036         case 0x7d: /* FACGT */
9037         case 0x1c: /* FCMEQ */
9038         case 0x5c: /* FCMGE */
9039         case 0x7c: /* FCMGT */
9040         case 0x7a: /* FABD */
9041             break;
9042         default:
9043             unallocated_encoding(s);
9044             return;
9045         }
9046 
9047         if (!fp_access_check(s)) {
9048             return;
9049         }
9050 
9051         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9052         return;
9053     }
9054 
9055     switch (opcode) {
9056     case 0x1: /* SQADD, UQADD */
9057     case 0x5: /* SQSUB, UQSUB */
9058     case 0x9: /* SQSHL, UQSHL */
9059     case 0xb: /* SQRSHL, UQRSHL */
9060         break;
9061     case 0x8: /* SSHL, USHL */
9062     case 0xa: /* SRSHL, URSHL */
9063     case 0x6: /* CMGT, CMHI */
9064     case 0x7: /* CMGE, CMHS */
9065     case 0x11: /* CMTST, CMEQ */
9066     case 0x10: /* ADD, SUB (vector) */
9067         if (size != 3) {
9068             unallocated_encoding(s);
9069             return;
9070         }
9071         break;
9072     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9073         if (size != 1 && size != 2) {
9074             unallocated_encoding(s);
9075             return;
9076         }
9077         break;
9078     default:
9079         unallocated_encoding(s);
9080         return;
9081     }
9082 
9083     if (!fp_access_check(s)) {
9084         return;
9085     }
9086 
9087     tcg_rd = tcg_temp_new_i64();
9088 
9089     if (size == 3) {
9090         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9091         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9092 
9093         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9094     } else {
9095         /* Do a single operation on the lowest element in the vector.
9096          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9097          * no side effects for all these operations.
9098          * OPTME: special-purpose helpers would avoid doing some
9099          * unnecessary work in the helper for the 8 and 16 bit cases.
9100          */
9101         NeonGenTwoOpEnvFn *genenvfn;
9102         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9103         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9104         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9105 
9106         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9107         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9108 
9109         switch (opcode) {
9110         case 0x1: /* SQADD, UQADD */
9111         {
9112             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9113                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9114                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9115                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9116             };
9117             genenvfn = fns[size][u];
9118             break;
9119         }
9120         case 0x5: /* SQSUB, UQSUB */
9121         {
9122             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9123                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9124                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9125                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9126             };
9127             genenvfn = fns[size][u];
9128             break;
9129         }
9130         case 0x9: /* SQSHL, UQSHL */
9131         {
9132             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9133                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9134                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9135                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9136             };
9137             genenvfn = fns[size][u];
9138             break;
9139         }
9140         case 0xb: /* SQRSHL, UQRSHL */
9141         {
9142             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9143                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9144                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9145                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9146             };
9147             genenvfn = fns[size][u];
9148             break;
9149         }
9150         case 0x16: /* SQDMULH, SQRDMULH */
9151         {
9152             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9153                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9154                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9155             };
9156             assert(size == 1 || size == 2);
9157             genenvfn = fns[size - 1][u];
9158             break;
9159         }
9160         default:
9161             g_assert_not_reached();
9162         }
9163 
9164         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9165         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9166     }
9167 
9168     write_fp_dreg(s, rd, tcg_rd);
9169 }
9170 
9171 /* AdvSIMD scalar three same FP16
9172  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9173  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9174  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9175  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9176  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9177  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9178  */
9179 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9180                                                   uint32_t insn)
9181 {
9182     int rd = extract32(insn, 0, 5);
9183     int rn = extract32(insn, 5, 5);
9184     int opcode = extract32(insn, 11, 3);
9185     int rm = extract32(insn, 16, 5);
9186     bool u = extract32(insn, 29, 1);
9187     bool a = extract32(insn, 23, 1);
9188     int fpopcode = opcode | (a << 3) |  (u << 4);
9189     TCGv_ptr fpst;
9190     TCGv_i32 tcg_op1;
9191     TCGv_i32 tcg_op2;
9192     TCGv_i32 tcg_res;
9193 
9194     switch (fpopcode) {
9195     case 0x03: /* FMULX */
9196     case 0x04: /* FCMEQ (reg) */
9197     case 0x07: /* FRECPS */
9198     case 0x0f: /* FRSQRTS */
9199     case 0x14: /* FCMGE (reg) */
9200     case 0x15: /* FACGE */
9201     case 0x1a: /* FABD */
9202     case 0x1c: /* FCMGT (reg) */
9203     case 0x1d: /* FACGT */
9204         break;
9205     default:
9206         unallocated_encoding(s);
9207         return;
9208     }
9209 
9210     if (!dc_isar_feature(aa64_fp16, s)) {
9211         unallocated_encoding(s);
9212     }
9213 
9214     if (!fp_access_check(s)) {
9215         return;
9216     }
9217 
9218     fpst = fpstatus_ptr(FPST_FPCR_F16);
9219 
9220     tcg_op1 = read_fp_hreg(s, rn);
9221     tcg_op2 = read_fp_hreg(s, rm);
9222     tcg_res = tcg_temp_new_i32();
9223 
9224     switch (fpopcode) {
9225     case 0x03: /* FMULX */
9226         gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9227         break;
9228     case 0x04: /* FCMEQ (reg) */
9229         gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9230         break;
9231     case 0x07: /* FRECPS */
9232         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9233         break;
9234     case 0x0f: /* FRSQRTS */
9235         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9236         break;
9237     case 0x14: /* FCMGE (reg) */
9238         gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9239         break;
9240     case 0x15: /* FACGE */
9241         gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9242         break;
9243     case 0x1a: /* FABD */
9244         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9245         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9246         break;
9247     case 0x1c: /* FCMGT (reg) */
9248         gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9249         break;
9250     case 0x1d: /* FACGT */
9251         gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9252         break;
9253     default:
9254         g_assert_not_reached();
9255     }
9256 
9257     write_fp_sreg(s, rd, tcg_res);
9258 }
9259 
9260 /* AdvSIMD scalar three same extra
9261  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9262  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9263  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9264  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9265  */
9266 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9267                                                    uint32_t insn)
9268 {
9269     int rd = extract32(insn, 0, 5);
9270     int rn = extract32(insn, 5, 5);
9271     int opcode = extract32(insn, 11, 4);
9272     int rm = extract32(insn, 16, 5);
9273     int size = extract32(insn, 22, 2);
9274     bool u = extract32(insn, 29, 1);
9275     TCGv_i32 ele1, ele2, ele3;
9276     TCGv_i64 res;
9277     bool feature;
9278 
9279     switch (u * 16 + opcode) {
9280     case 0x10: /* SQRDMLAH (vector) */
9281     case 0x11: /* SQRDMLSH (vector) */
9282         if (size != 1 && size != 2) {
9283             unallocated_encoding(s);
9284             return;
9285         }
9286         feature = dc_isar_feature(aa64_rdm, s);
9287         break;
9288     default:
9289         unallocated_encoding(s);
9290         return;
9291     }
9292     if (!feature) {
9293         unallocated_encoding(s);
9294         return;
9295     }
9296     if (!fp_access_check(s)) {
9297         return;
9298     }
9299 
9300     /* Do a single operation on the lowest element in the vector.
9301      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9302      * with no side effects for all these operations.
9303      * OPTME: special-purpose helpers would avoid doing some
9304      * unnecessary work in the helper for the 16 bit cases.
9305      */
9306     ele1 = tcg_temp_new_i32();
9307     ele2 = tcg_temp_new_i32();
9308     ele3 = tcg_temp_new_i32();
9309 
9310     read_vec_element_i32(s, ele1, rn, 0, size);
9311     read_vec_element_i32(s, ele2, rm, 0, size);
9312     read_vec_element_i32(s, ele3, rd, 0, size);
9313 
9314     switch (opcode) {
9315     case 0x0: /* SQRDMLAH */
9316         if (size == 1) {
9317             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9318         } else {
9319             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9320         }
9321         break;
9322     case 0x1: /* SQRDMLSH */
9323         if (size == 1) {
9324             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9325         } else {
9326             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9327         }
9328         break;
9329     default:
9330         g_assert_not_reached();
9331     }
9332 
9333     res = tcg_temp_new_i64();
9334     tcg_gen_extu_i32_i64(res, ele3);
9335     write_fp_dreg(s, rd, res);
9336 }
9337 
9338 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9339                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9340                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9341 {
9342     /* Handle 64->64 opcodes which are shared between the scalar and
9343      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9344      * is valid in either group and also the double-precision fp ops.
9345      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9346      * requires them.
9347      */
9348     TCGCond cond;
9349 
9350     switch (opcode) {
9351     case 0x4: /* CLS, CLZ */
9352         if (u) {
9353             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9354         } else {
9355             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9356         }
9357         break;
9358     case 0x5: /* NOT */
9359         /* This opcode is shared with CNT and RBIT but we have earlier
9360          * enforced that size == 3 if and only if this is the NOT insn.
9361          */
9362         tcg_gen_not_i64(tcg_rd, tcg_rn);
9363         break;
9364     case 0x7: /* SQABS, SQNEG */
9365         if (u) {
9366             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9367         } else {
9368             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9369         }
9370         break;
9371     case 0xa: /* CMLT */
9372         cond = TCG_COND_LT;
9373     do_cmop:
9374         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9375         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9376         break;
9377     case 0x8: /* CMGT, CMGE */
9378         cond = u ? TCG_COND_GE : TCG_COND_GT;
9379         goto do_cmop;
9380     case 0x9: /* CMEQ, CMLE */
9381         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9382         goto do_cmop;
9383     case 0xb: /* ABS, NEG */
9384         if (u) {
9385             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9386         } else {
9387             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9388         }
9389         break;
9390     case 0x2f: /* FABS */
9391         gen_helper_vfp_absd(tcg_rd, tcg_rn);
9392         break;
9393     case 0x6f: /* FNEG */
9394         gen_helper_vfp_negd(tcg_rd, tcg_rn);
9395         break;
9396     case 0x7f: /* FSQRT */
9397         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9398         break;
9399     case 0x1a: /* FCVTNS */
9400     case 0x1b: /* FCVTMS */
9401     case 0x1c: /* FCVTAS */
9402     case 0x3a: /* FCVTPS */
9403     case 0x3b: /* FCVTZS */
9404         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9405         break;
9406     case 0x5a: /* FCVTNU */
9407     case 0x5b: /* FCVTMU */
9408     case 0x5c: /* FCVTAU */
9409     case 0x7a: /* FCVTPU */
9410     case 0x7b: /* FCVTZU */
9411         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9412         break;
9413     case 0x18: /* FRINTN */
9414     case 0x19: /* FRINTM */
9415     case 0x38: /* FRINTP */
9416     case 0x39: /* FRINTZ */
9417     case 0x58: /* FRINTA */
9418     case 0x79: /* FRINTI */
9419         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9420         break;
9421     case 0x59: /* FRINTX */
9422         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9423         break;
9424     case 0x1e: /* FRINT32Z */
9425     case 0x5e: /* FRINT32X */
9426         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9427         break;
9428     case 0x1f: /* FRINT64Z */
9429     case 0x5f: /* FRINT64X */
9430         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9431         break;
9432     default:
9433         g_assert_not_reached();
9434     }
9435 }
9436 
9437 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9438                                    bool is_scalar, bool is_u, bool is_q,
9439                                    int size, int rn, int rd)
9440 {
9441     bool is_double = (size == MO_64);
9442     TCGv_ptr fpst;
9443 
9444     if (!fp_access_check(s)) {
9445         return;
9446     }
9447 
9448     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9449 
9450     if (is_double) {
9451         TCGv_i64 tcg_op = tcg_temp_new_i64();
9452         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9453         TCGv_i64 tcg_res = tcg_temp_new_i64();
9454         NeonGenTwoDoubleOpFn *genfn;
9455         bool swap = false;
9456         int pass;
9457 
9458         switch (opcode) {
9459         case 0x2e: /* FCMLT (zero) */
9460             swap = true;
9461             /* fallthrough */
9462         case 0x2c: /* FCMGT (zero) */
9463             genfn = gen_helper_neon_cgt_f64;
9464             break;
9465         case 0x2d: /* FCMEQ (zero) */
9466             genfn = gen_helper_neon_ceq_f64;
9467             break;
9468         case 0x6d: /* FCMLE (zero) */
9469             swap = true;
9470             /* fall through */
9471         case 0x6c: /* FCMGE (zero) */
9472             genfn = gen_helper_neon_cge_f64;
9473             break;
9474         default:
9475             g_assert_not_reached();
9476         }
9477 
9478         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9479             read_vec_element(s, tcg_op, rn, pass, MO_64);
9480             if (swap) {
9481                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9482             } else {
9483                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9484             }
9485             write_vec_element(s, tcg_res, rd, pass, MO_64);
9486         }
9487 
9488         clear_vec_high(s, !is_scalar, rd);
9489     } else {
9490         TCGv_i32 tcg_op = tcg_temp_new_i32();
9491         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9492         TCGv_i32 tcg_res = tcg_temp_new_i32();
9493         NeonGenTwoSingleOpFn *genfn;
9494         bool swap = false;
9495         int pass, maxpasses;
9496 
9497         if (size == MO_16) {
9498             switch (opcode) {
9499             case 0x2e: /* FCMLT (zero) */
9500                 swap = true;
9501                 /* fall through */
9502             case 0x2c: /* FCMGT (zero) */
9503                 genfn = gen_helper_advsimd_cgt_f16;
9504                 break;
9505             case 0x2d: /* FCMEQ (zero) */
9506                 genfn = gen_helper_advsimd_ceq_f16;
9507                 break;
9508             case 0x6d: /* FCMLE (zero) */
9509                 swap = true;
9510                 /* fall through */
9511             case 0x6c: /* FCMGE (zero) */
9512                 genfn = gen_helper_advsimd_cge_f16;
9513                 break;
9514             default:
9515                 g_assert_not_reached();
9516             }
9517         } else {
9518             switch (opcode) {
9519             case 0x2e: /* FCMLT (zero) */
9520                 swap = true;
9521                 /* fall through */
9522             case 0x2c: /* FCMGT (zero) */
9523                 genfn = gen_helper_neon_cgt_f32;
9524                 break;
9525             case 0x2d: /* FCMEQ (zero) */
9526                 genfn = gen_helper_neon_ceq_f32;
9527                 break;
9528             case 0x6d: /* FCMLE (zero) */
9529                 swap = true;
9530                 /* fall through */
9531             case 0x6c: /* FCMGE (zero) */
9532                 genfn = gen_helper_neon_cge_f32;
9533                 break;
9534             default:
9535                 g_assert_not_reached();
9536             }
9537         }
9538 
9539         if (is_scalar) {
9540             maxpasses = 1;
9541         } else {
9542             int vector_size = 8 << is_q;
9543             maxpasses = vector_size >> size;
9544         }
9545 
9546         for (pass = 0; pass < maxpasses; pass++) {
9547             read_vec_element_i32(s, tcg_op, rn, pass, size);
9548             if (swap) {
9549                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9550             } else {
9551                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9552             }
9553             if (is_scalar) {
9554                 write_fp_sreg(s, rd, tcg_res);
9555             } else {
9556                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9557             }
9558         }
9559 
9560         if (!is_scalar) {
9561             clear_vec_high(s, is_q, rd);
9562         }
9563     }
9564 }
9565 
9566 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9567                                     bool is_scalar, bool is_u, bool is_q,
9568                                     int size, int rn, int rd)
9569 {
9570     bool is_double = (size == 3);
9571     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9572 
9573     if (is_double) {
9574         TCGv_i64 tcg_op = tcg_temp_new_i64();
9575         TCGv_i64 tcg_res = tcg_temp_new_i64();
9576         int pass;
9577 
9578         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9579             read_vec_element(s, tcg_op, rn, pass, MO_64);
9580             switch (opcode) {
9581             case 0x3d: /* FRECPE */
9582                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9583                 break;
9584             case 0x3f: /* FRECPX */
9585                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9586                 break;
9587             case 0x7d: /* FRSQRTE */
9588                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9589                 break;
9590             default:
9591                 g_assert_not_reached();
9592             }
9593             write_vec_element(s, tcg_res, rd, pass, MO_64);
9594         }
9595         clear_vec_high(s, !is_scalar, rd);
9596     } else {
9597         TCGv_i32 tcg_op = tcg_temp_new_i32();
9598         TCGv_i32 tcg_res = tcg_temp_new_i32();
9599         int pass, maxpasses;
9600 
9601         if (is_scalar) {
9602             maxpasses = 1;
9603         } else {
9604             maxpasses = is_q ? 4 : 2;
9605         }
9606 
9607         for (pass = 0; pass < maxpasses; pass++) {
9608             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9609 
9610             switch (opcode) {
9611             case 0x3c: /* URECPE */
9612                 gen_helper_recpe_u32(tcg_res, tcg_op);
9613                 break;
9614             case 0x3d: /* FRECPE */
9615                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9616                 break;
9617             case 0x3f: /* FRECPX */
9618                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9619                 break;
9620             case 0x7d: /* FRSQRTE */
9621                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9622                 break;
9623             default:
9624                 g_assert_not_reached();
9625             }
9626 
9627             if (is_scalar) {
9628                 write_fp_sreg(s, rd, tcg_res);
9629             } else {
9630                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9631             }
9632         }
9633         if (!is_scalar) {
9634             clear_vec_high(s, is_q, rd);
9635         }
9636     }
9637 }
9638 
9639 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9640                                 int opcode, bool u, bool is_q,
9641                                 int size, int rn, int rd)
9642 {
9643     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9644      * in the source becomes a size element in the destination).
9645      */
9646     int pass;
9647     TCGv_i32 tcg_res[2];
9648     int destelt = is_q ? 2 : 0;
9649     int passes = scalar ? 1 : 2;
9650 
9651     if (scalar) {
9652         tcg_res[1] = tcg_constant_i32(0);
9653     }
9654 
9655     for (pass = 0; pass < passes; pass++) {
9656         TCGv_i64 tcg_op = tcg_temp_new_i64();
9657         NeonGenNarrowFn *genfn = NULL;
9658         NeonGenNarrowEnvFn *genenvfn = NULL;
9659 
9660         if (scalar) {
9661             read_vec_element(s, tcg_op, rn, pass, size + 1);
9662         } else {
9663             read_vec_element(s, tcg_op, rn, pass, MO_64);
9664         }
9665         tcg_res[pass] = tcg_temp_new_i32();
9666 
9667         switch (opcode) {
9668         case 0x12: /* XTN, SQXTUN */
9669         {
9670             static NeonGenNarrowFn * const xtnfns[3] = {
9671                 gen_helper_neon_narrow_u8,
9672                 gen_helper_neon_narrow_u16,
9673                 tcg_gen_extrl_i64_i32,
9674             };
9675             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9676                 gen_helper_neon_unarrow_sat8,
9677                 gen_helper_neon_unarrow_sat16,
9678                 gen_helper_neon_unarrow_sat32,
9679             };
9680             if (u) {
9681                 genenvfn = sqxtunfns[size];
9682             } else {
9683                 genfn = xtnfns[size];
9684             }
9685             break;
9686         }
9687         case 0x14: /* SQXTN, UQXTN */
9688         {
9689             static NeonGenNarrowEnvFn * const fns[3][2] = {
9690                 { gen_helper_neon_narrow_sat_s8,
9691                   gen_helper_neon_narrow_sat_u8 },
9692                 { gen_helper_neon_narrow_sat_s16,
9693                   gen_helper_neon_narrow_sat_u16 },
9694                 { gen_helper_neon_narrow_sat_s32,
9695                   gen_helper_neon_narrow_sat_u32 },
9696             };
9697             genenvfn = fns[size][u];
9698             break;
9699         }
9700         case 0x16: /* FCVTN, FCVTN2 */
9701             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9702             if (size == 2) {
9703                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9704             } else {
9705                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9706                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9707                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9708                 TCGv_i32 ahp = get_ahp_flag();
9709 
9710                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9711                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9712                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9713                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9714             }
9715             break;
9716         case 0x36: /* BFCVTN, BFCVTN2 */
9717             {
9718                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9719                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9720             }
9721             break;
9722         case 0x56:  /* FCVTXN, FCVTXN2 */
9723             /* 64 bit to 32 bit float conversion
9724              * with von Neumann rounding (round to odd)
9725              */
9726             assert(size == 2);
9727             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9728             break;
9729         default:
9730             g_assert_not_reached();
9731         }
9732 
9733         if (genfn) {
9734             genfn(tcg_res[pass], tcg_op);
9735         } else if (genenvfn) {
9736             genenvfn(tcg_res[pass], tcg_env, tcg_op);
9737         }
9738     }
9739 
9740     for (pass = 0; pass < 2; pass++) {
9741         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9742     }
9743     clear_vec_high(s, is_q, rd);
9744 }
9745 
9746 /* Remaining saturating accumulating ops */
9747 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9748                                 bool is_q, int size, int rn, int rd)
9749 {
9750     bool is_double = (size == 3);
9751 
9752     if (is_double) {
9753         TCGv_i64 tcg_rn = tcg_temp_new_i64();
9754         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9755         int pass;
9756 
9757         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9758             read_vec_element(s, tcg_rn, rn, pass, MO_64);
9759             read_vec_element(s, tcg_rd, rd, pass, MO_64);
9760 
9761             if (is_u) { /* USQADD */
9762                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9763             } else { /* SUQADD */
9764                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9765             }
9766             write_vec_element(s, tcg_rd, rd, pass, MO_64);
9767         }
9768         clear_vec_high(s, !is_scalar, rd);
9769     } else {
9770         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9771         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9772         int pass, maxpasses;
9773 
9774         if (is_scalar) {
9775             maxpasses = 1;
9776         } else {
9777             maxpasses = is_q ? 4 : 2;
9778         }
9779 
9780         for (pass = 0; pass < maxpasses; pass++) {
9781             if (is_scalar) {
9782                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9783                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9784             } else {
9785                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9786                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9787             }
9788 
9789             if (is_u) { /* USQADD */
9790                 switch (size) {
9791                 case 0:
9792                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9793                     break;
9794                 case 1:
9795                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9796                     break;
9797                 case 2:
9798                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9799                     break;
9800                 default:
9801                     g_assert_not_reached();
9802                 }
9803             } else { /* SUQADD */
9804                 switch (size) {
9805                 case 0:
9806                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9807                     break;
9808                 case 1:
9809                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9810                     break;
9811                 case 2:
9812                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9813                     break;
9814                 default:
9815                     g_assert_not_reached();
9816                 }
9817             }
9818 
9819             if (is_scalar) {
9820                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9821             }
9822             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9823         }
9824         clear_vec_high(s, is_q, rd);
9825     }
9826 }
9827 
9828 /* AdvSIMD scalar two reg misc
9829  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
9830  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9831  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
9832  * +-----+---+-----------+------+-----------+--------+-----+------+------+
9833  */
9834 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9835 {
9836     int rd = extract32(insn, 0, 5);
9837     int rn = extract32(insn, 5, 5);
9838     int opcode = extract32(insn, 12, 5);
9839     int size = extract32(insn, 22, 2);
9840     bool u = extract32(insn, 29, 1);
9841     bool is_fcvt = false;
9842     int rmode;
9843     TCGv_i32 tcg_rmode;
9844     TCGv_ptr tcg_fpstatus;
9845 
9846     switch (opcode) {
9847     case 0x3: /* USQADD / SUQADD*/
9848         if (!fp_access_check(s)) {
9849             return;
9850         }
9851         handle_2misc_satacc(s, true, u, false, size, rn, rd);
9852         return;
9853     case 0x7: /* SQABS / SQNEG */
9854         break;
9855     case 0xa: /* CMLT */
9856         if (u) {
9857             unallocated_encoding(s);
9858             return;
9859         }
9860         /* fall through */
9861     case 0x8: /* CMGT, CMGE */
9862     case 0x9: /* CMEQ, CMLE */
9863     case 0xb: /* ABS, NEG */
9864         if (size != 3) {
9865             unallocated_encoding(s);
9866             return;
9867         }
9868         break;
9869     case 0x12: /* SQXTUN */
9870         if (!u) {
9871             unallocated_encoding(s);
9872             return;
9873         }
9874         /* fall through */
9875     case 0x14: /* SQXTN, UQXTN */
9876         if (size == 3) {
9877             unallocated_encoding(s);
9878             return;
9879         }
9880         if (!fp_access_check(s)) {
9881             return;
9882         }
9883         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9884         return;
9885     case 0xc ... 0xf:
9886     case 0x16 ... 0x1d:
9887     case 0x1f:
9888         /* Floating point: U, size[1] and opcode indicate operation;
9889          * size[0] indicates single or double precision.
9890          */
9891         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9892         size = extract32(size, 0, 1) ? 3 : 2;
9893         switch (opcode) {
9894         case 0x2c: /* FCMGT (zero) */
9895         case 0x2d: /* FCMEQ (zero) */
9896         case 0x2e: /* FCMLT (zero) */
9897         case 0x6c: /* FCMGE (zero) */
9898         case 0x6d: /* FCMLE (zero) */
9899             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9900             return;
9901         case 0x1d: /* SCVTF */
9902         case 0x5d: /* UCVTF */
9903         {
9904             bool is_signed = (opcode == 0x1d);
9905             if (!fp_access_check(s)) {
9906                 return;
9907             }
9908             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9909             return;
9910         }
9911         case 0x3d: /* FRECPE */
9912         case 0x3f: /* FRECPX */
9913         case 0x7d: /* FRSQRTE */
9914             if (!fp_access_check(s)) {
9915                 return;
9916             }
9917             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9918             return;
9919         case 0x1a: /* FCVTNS */
9920         case 0x1b: /* FCVTMS */
9921         case 0x3a: /* FCVTPS */
9922         case 0x3b: /* FCVTZS */
9923         case 0x5a: /* FCVTNU */
9924         case 0x5b: /* FCVTMU */
9925         case 0x7a: /* FCVTPU */
9926         case 0x7b: /* FCVTZU */
9927             is_fcvt = true;
9928             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9929             break;
9930         case 0x1c: /* FCVTAS */
9931         case 0x5c: /* FCVTAU */
9932             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9933             is_fcvt = true;
9934             rmode = FPROUNDING_TIEAWAY;
9935             break;
9936         case 0x56: /* FCVTXN, FCVTXN2 */
9937             if (size == 2) {
9938                 unallocated_encoding(s);
9939                 return;
9940             }
9941             if (!fp_access_check(s)) {
9942                 return;
9943             }
9944             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9945             return;
9946         default:
9947             unallocated_encoding(s);
9948             return;
9949         }
9950         break;
9951     default:
9952         unallocated_encoding(s);
9953         return;
9954     }
9955 
9956     if (!fp_access_check(s)) {
9957         return;
9958     }
9959 
9960     if (is_fcvt) {
9961         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
9962         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9963     } else {
9964         tcg_fpstatus = NULL;
9965         tcg_rmode = NULL;
9966     }
9967 
9968     if (size == 3) {
9969         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9970         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9971 
9972         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9973         write_fp_dreg(s, rd, tcg_rd);
9974     } else {
9975         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9976         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9977 
9978         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9979 
9980         switch (opcode) {
9981         case 0x7: /* SQABS, SQNEG */
9982         {
9983             NeonGenOneOpEnvFn *genfn;
9984             static NeonGenOneOpEnvFn * const fns[3][2] = {
9985                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9986                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9987                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9988             };
9989             genfn = fns[size][u];
9990             genfn(tcg_rd, tcg_env, tcg_rn);
9991             break;
9992         }
9993         case 0x1a: /* FCVTNS */
9994         case 0x1b: /* FCVTMS */
9995         case 0x1c: /* FCVTAS */
9996         case 0x3a: /* FCVTPS */
9997         case 0x3b: /* FCVTZS */
9998             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
9999                                  tcg_fpstatus);
10000             break;
10001         case 0x5a: /* FCVTNU */
10002         case 0x5b: /* FCVTMU */
10003         case 0x5c: /* FCVTAU */
10004         case 0x7a: /* FCVTPU */
10005         case 0x7b: /* FCVTZU */
10006             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10007                                  tcg_fpstatus);
10008             break;
10009         default:
10010             g_assert_not_reached();
10011         }
10012 
10013         write_fp_sreg(s, rd, tcg_rd);
10014     }
10015 
10016     if (is_fcvt) {
10017         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10018     }
10019 }
10020 
10021 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10022 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10023                                  int immh, int immb, int opcode, int rn, int rd)
10024 {
10025     int size = 32 - clz32(immh) - 1;
10026     int immhb = immh << 3 | immb;
10027     int shift = 2 * (8 << size) - immhb;
10028     GVecGen2iFn *gvec_fn;
10029 
10030     if (extract32(immh, 3, 1) && !is_q) {
10031         unallocated_encoding(s);
10032         return;
10033     }
10034     tcg_debug_assert(size <= 3);
10035 
10036     if (!fp_access_check(s)) {
10037         return;
10038     }
10039 
10040     switch (opcode) {
10041     case 0x02: /* SSRA / USRA (accumulate) */
10042         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10043         break;
10044 
10045     case 0x08: /* SRI */
10046         gvec_fn = gen_gvec_sri;
10047         break;
10048 
10049     case 0x00: /* SSHR / USHR */
10050         if (is_u) {
10051             if (shift == 8 << size) {
10052                 /* Shift count the same size as element size produces zero.  */
10053                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10054                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10055                 return;
10056             }
10057             gvec_fn = tcg_gen_gvec_shri;
10058         } else {
10059             /* Shift count the same size as element size produces all sign.  */
10060             if (shift == 8 << size) {
10061                 shift -= 1;
10062             }
10063             gvec_fn = tcg_gen_gvec_sari;
10064         }
10065         break;
10066 
10067     case 0x04: /* SRSHR / URSHR (rounding) */
10068         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10069         break;
10070 
10071     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10072         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10073         break;
10074 
10075     default:
10076         g_assert_not_reached();
10077     }
10078 
10079     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10080 }
10081 
10082 /* SHL/SLI - Vector shift left */
10083 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10084                                  int immh, int immb, int opcode, int rn, int rd)
10085 {
10086     int size = 32 - clz32(immh) - 1;
10087     int immhb = immh << 3 | immb;
10088     int shift = immhb - (8 << size);
10089 
10090     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10091     assert(size >= 0 && size <= 3);
10092 
10093     if (extract32(immh, 3, 1) && !is_q) {
10094         unallocated_encoding(s);
10095         return;
10096     }
10097 
10098     if (!fp_access_check(s)) {
10099         return;
10100     }
10101 
10102     if (insert) {
10103         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10104     } else {
10105         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10106     }
10107 }
10108 
10109 /* USHLL/SHLL - Vector shift left with widening */
10110 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10111                                  int immh, int immb, int opcode, int rn, int rd)
10112 {
10113     int size = 32 - clz32(immh) - 1;
10114     int immhb = immh << 3 | immb;
10115     int shift = immhb - (8 << size);
10116     int dsize = 64;
10117     int esize = 8 << size;
10118     int elements = dsize/esize;
10119     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10120     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10121     int i;
10122 
10123     if (size >= 3) {
10124         unallocated_encoding(s);
10125         return;
10126     }
10127 
10128     if (!fp_access_check(s)) {
10129         return;
10130     }
10131 
10132     /* For the LL variants the store is larger than the load,
10133      * so if rd == rn we would overwrite parts of our input.
10134      * So load everything right now and use shifts in the main loop.
10135      */
10136     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10137 
10138     for (i = 0; i < elements; i++) {
10139         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10140         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10141         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10142         write_vec_element(s, tcg_rd, rd, i, size + 1);
10143     }
10144 }
10145 
10146 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10147 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10148                                  int immh, int immb, int opcode, int rn, int rd)
10149 {
10150     int immhb = immh << 3 | immb;
10151     int size = 32 - clz32(immh) - 1;
10152     int dsize = 64;
10153     int esize = 8 << size;
10154     int elements = dsize/esize;
10155     int shift = (2 * esize) - immhb;
10156     bool round = extract32(opcode, 0, 1);
10157     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10158     TCGv_i64 tcg_round;
10159     int i;
10160 
10161     if (extract32(immh, 3, 1)) {
10162         unallocated_encoding(s);
10163         return;
10164     }
10165 
10166     if (!fp_access_check(s)) {
10167         return;
10168     }
10169 
10170     tcg_rn = tcg_temp_new_i64();
10171     tcg_rd = tcg_temp_new_i64();
10172     tcg_final = tcg_temp_new_i64();
10173     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10174 
10175     if (round) {
10176         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10177     } else {
10178         tcg_round = NULL;
10179     }
10180 
10181     for (i = 0; i < elements; i++) {
10182         read_vec_element(s, tcg_rn, rn, i, size+1);
10183         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10184                                 false, true, size+1, shift);
10185 
10186         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10187     }
10188 
10189     if (!is_q) {
10190         write_vec_element(s, tcg_final, rd, 0, MO_64);
10191     } else {
10192         write_vec_element(s, tcg_final, rd, 1, MO_64);
10193     }
10194 
10195     clear_vec_high(s, is_q, rd);
10196 }
10197 
10198 
10199 /* AdvSIMD shift by immediate
10200  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10201  * +---+---+---+-------------+------+------+--------+---+------+------+
10202  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10203  * +---+---+---+-------------+------+------+--------+---+------+------+
10204  */
10205 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10206 {
10207     int rd = extract32(insn, 0, 5);
10208     int rn = extract32(insn, 5, 5);
10209     int opcode = extract32(insn, 11, 5);
10210     int immb = extract32(insn, 16, 3);
10211     int immh = extract32(insn, 19, 4);
10212     bool is_u = extract32(insn, 29, 1);
10213     bool is_q = extract32(insn, 30, 1);
10214 
10215     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10216     assert(immh != 0);
10217 
10218     switch (opcode) {
10219     case 0x08: /* SRI */
10220         if (!is_u) {
10221             unallocated_encoding(s);
10222             return;
10223         }
10224         /* fall through */
10225     case 0x00: /* SSHR / USHR */
10226     case 0x02: /* SSRA / USRA (accumulate) */
10227     case 0x04: /* SRSHR / URSHR (rounding) */
10228     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10229         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10230         break;
10231     case 0x0a: /* SHL / SLI */
10232         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10233         break;
10234     case 0x10: /* SHRN */
10235     case 0x11: /* RSHRN / SQRSHRUN */
10236         if (is_u) {
10237             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10238                                    opcode, rn, rd);
10239         } else {
10240             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10241         }
10242         break;
10243     case 0x12: /* SQSHRN / UQSHRN */
10244     case 0x13: /* SQRSHRN / UQRSHRN */
10245         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10246                                opcode, rn, rd);
10247         break;
10248     case 0x14: /* SSHLL / USHLL */
10249         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10250         break;
10251     case 0x1c: /* SCVTF / UCVTF */
10252         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10253                                      opcode, rn, rd);
10254         break;
10255     case 0xc: /* SQSHLU */
10256         if (!is_u) {
10257             unallocated_encoding(s);
10258             return;
10259         }
10260         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10261         break;
10262     case 0xe: /* SQSHL, UQSHL */
10263         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10264         break;
10265     case 0x1f: /* FCVTZS/ FCVTZU */
10266         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10267         return;
10268     default:
10269         unallocated_encoding(s);
10270         return;
10271     }
10272 }
10273 
10274 /* Generate code to do a "long" addition or subtraction, ie one done in
10275  * TCGv_i64 on vector lanes twice the width specified by size.
10276  */
10277 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10278                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10279 {
10280     static NeonGenTwo64OpFn * const fns[3][2] = {
10281         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10282         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10283         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10284     };
10285     NeonGenTwo64OpFn *genfn;
10286     assert(size < 3);
10287 
10288     genfn = fns[size][is_sub];
10289     genfn(tcg_res, tcg_op1, tcg_op2);
10290 }
10291 
10292 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10293                                 int opcode, int rd, int rn, int rm)
10294 {
10295     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10296     TCGv_i64 tcg_res[2];
10297     int pass, accop;
10298 
10299     tcg_res[0] = tcg_temp_new_i64();
10300     tcg_res[1] = tcg_temp_new_i64();
10301 
10302     /* Does this op do an adding accumulate, a subtracting accumulate,
10303      * or no accumulate at all?
10304      */
10305     switch (opcode) {
10306     case 5:
10307     case 8:
10308     case 9:
10309         accop = 1;
10310         break;
10311     case 10:
10312     case 11:
10313         accop = -1;
10314         break;
10315     default:
10316         accop = 0;
10317         break;
10318     }
10319 
10320     if (accop != 0) {
10321         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10322         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10323     }
10324 
10325     /* size == 2 means two 32x32->64 operations; this is worth special
10326      * casing because we can generally handle it inline.
10327      */
10328     if (size == 2) {
10329         for (pass = 0; pass < 2; pass++) {
10330             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10331             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10332             TCGv_i64 tcg_passres;
10333             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10334 
10335             int elt = pass + is_q * 2;
10336 
10337             read_vec_element(s, tcg_op1, rn, elt, memop);
10338             read_vec_element(s, tcg_op2, rm, elt, memop);
10339 
10340             if (accop == 0) {
10341                 tcg_passres = tcg_res[pass];
10342             } else {
10343                 tcg_passres = tcg_temp_new_i64();
10344             }
10345 
10346             switch (opcode) {
10347             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10348                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10349                 break;
10350             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10351                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10352                 break;
10353             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10354             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10355             {
10356                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10357                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10358 
10359                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10360                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10361                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10362                                     tcg_passres,
10363                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10364                 break;
10365             }
10366             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10367             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10368             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10369                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10370                 break;
10371             case 9: /* SQDMLAL, SQDMLAL2 */
10372             case 11: /* SQDMLSL, SQDMLSL2 */
10373             case 13: /* SQDMULL, SQDMULL2 */
10374                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10375                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10376                                                   tcg_passres, tcg_passres);
10377                 break;
10378             default:
10379                 g_assert_not_reached();
10380             }
10381 
10382             if (opcode == 9 || opcode == 11) {
10383                 /* saturating accumulate ops */
10384                 if (accop < 0) {
10385                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10386                 }
10387                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10388                                                   tcg_res[pass], tcg_passres);
10389             } else if (accop > 0) {
10390                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10391             } else if (accop < 0) {
10392                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10393             }
10394         }
10395     } else {
10396         /* size 0 or 1, generally helper functions */
10397         for (pass = 0; pass < 2; pass++) {
10398             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10399             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10400             TCGv_i64 tcg_passres;
10401             int elt = pass + is_q * 2;
10402 
10403             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10404             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10405 
10406             if (accop == 0) {
10407                 tcg_passres = tcg_res[pass];
10408             } else {
10409                 tcg_passres = tcg_temp_new_i64();
10410             }
10411 
10412             switch (opcode) {
10413             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10414             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10415             {
10416                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10417                 static NeonGenWidenFn * const widenfns[2][2] = {
10418                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10419                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10420                 };
10421                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10422 
10423                 widenfn(tcg_op2_64, tcg_op2);
10424                 widenfn(tcg_passres, tcg_op1);
10425                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10426                               tcg_passres, tcg_op2_64);
10427                 break;
10428             }
10429             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10430             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10431                 if (size == 0) {
10432                     if (is_u) {
10433                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10434                     } else {
10435                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10436                     }
10437                 } else {
10438                     if (is_u) {
10439                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10440                     } else {
10441                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10442                     }
10443                 }
10444                 break;
10445             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10446             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10447             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10448                 if (size == 0) {
10449                     if (is_u) {
10450                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10451                     } else {
10452                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10453                     }
10454                 } else {
10455                     if (is_u) {
10456                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10457                     } else {
10458                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10459                     }
10460                 }
10461                 break;
10462             case 9: /* SQDMLAL, SQDMLAL2 */
10463             case 11: /* SQDMLSL, SQDMLSL2 */
10464             case 13: /* SQDMULL, SQDMULL2 */
10465                 assert(size == 1);
10466                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10467                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10468                                                   tcg_passres, tcg_passres);
10469                 break;
10470             default:
10471                 g_assert_not_reached();
10472             }
10473 
10474             if (accop != 0) {
10475                 if (opcode == 9 || opcode == 11) {
10476                     /* saturating accumulate ops */
10477                     if (accop < 0) {
10478                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10479                     }
10480                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10481                                                       tcg_res[pass],
10482                                                       tcg_passres);
10483                 } else {
10484                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10485                                   tcg_res[pass], tcg_passres);
10486                 }
10487             }
10488         }
10489     }
10490 
10491     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10492     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10493 }
10494 
10495 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10496                             int opcode, int rd, int rn, int rm)
10497 {
10498     TCGv_i64 tcg_res[2];
10499     int part = is_q ? 2 : 0;
10500     int pass;
10501 
10502     for (pass = 0; pass < 2; pass++) {
10503         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10504         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10505         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10506         static NeonGenWidenFn * const widenfns[3][2] = {
10507             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10508             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10509             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10510         };
10511         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10512 
10513         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10514         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10515         widenfn(tcg_op2_wide, tcg_op2);
10516         tcg_res[pass] = tcg_temp_new_i64();
10517         gen_neon_addl(size, (opcode == 3),
10518                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10519     }
10520 
10521     for (pass = 0; pass < 2; pass++) {
10522         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10523     }
10524 }
10525 
10526 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10527 {
10528     tcg_gen_addi_i64(in, in, 1U << 31);
10529     tcg_gen_extrh_i64_i32(res, in);
10530 }
10531 
10532 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10533                                  int opcode, int rd, int rn, int rm)
10534 {
10535     TCGv_i32 tcg_res[2];
10536     int part = is_q ? 2 : 0;
10537     int pass;
10538 
10539     for (pass = 0; pass < 2; pass++) {
10540         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10541         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10542         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10543         static NeonGenNarrowFn * const narrowfns[3][2] = {
10544             { gen_helper_neon_narrow_high_u8,
10545               gen_helper_neon_narrow_round_high_u8 },
10546             { gen_helper_neon_narrow_high_u16,
10547               gen_helper_neon_narrow_round_high_u16 },
10548             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10549         };
10550         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10551 
10552         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10553         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10554 
10555         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10556 
10557         tcg_res[pass] = tcg_temp_new_i32();
10558         gennarrow(tcg_res[pass], tcg_wideres);
10559     }
10560 
10561     for (pass = 0; pass < 2; pass++) {
10562         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10563     }
10564     clear_vec_high(s, is_q, rd);
10565 }
10566 
10567 /* AdvSIMD three different
10568  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10569  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10570  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10571  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10572  */
10573 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10574 {
10575     /* Instructions in this group fall into three basic classes
10576      * (in each case with the operation working on each element in
10577      * the input vectors):
10578      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10579      *     128 bit input)
10580      * (2) wide 64 x 128 -> 128
10581      * (3) narrowing 128 x 128 -> 64
10582      * Here we do initial decode, catch unallocated cases and
10583      * dispatch to separate functions for each class.
10584      */
10585     int is_q = extract32(insn, 30, 1);
10586     int is_u = extract32(insn, 29, 1);
10587     int size = extract32(insn, 22, 2);
10588     int opcode = extract32(insn, 12, 4);
10589     int rm = extract32(insn, 16, 5);
10590     int rn = extract32(insn, 5, 5);
10591     int rd = extract32(insn, 0, 5);
10592 
10593     switch (opcode) {
10594     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10595     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10596         /* 64 x 128 -> 128 */
10597         if (size == 3) {
10598             unallocated_encoding(s);
10599             return;
10600         }
10601         if (!fp_access_check(s)) {
10602             return;
10603         }
10604         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10605         break;
10606     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10607     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10608         /* 128 x 128 -> 64 */
10609         if (size == 3) {
10610             unallocated_encoding(s);
10611             return;
10612         }
10613         if (!fp_access_check(s)) {
10614             return;
10615         }
10616         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10617         break;
10618     case 14: /* PMULL, PMULL2 */
10619         if (is_u) {
10620             unallocated_encoding(s);
10621             return;
10622         }
10623         switch (size) {
10624         case 0: /* PMULL.P8 */
10625             if (!fp_access_check(s)) {
10626                 return;
10627             }
10628             /* The Q field specifies lo/hi half input for this insn.  */
10629             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10630                              gen_helper_neon_pmull_h);
10631             break;
10632 
10633         case 3: /* PMULL.P64 */
10634             if (!dc_isar_feature(aa64_pmull, s)) {
10635                 unallocated_encoding(s);
10636                 return;
10637             }
10638             if (!fp_access_check(s)) {
10639                 return;
10640             }
10641             /* The Q field specifies lo/hi half input for this insn.  */
10642             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10643                              gen_helper_gvec_pmull_q);
10644             break;
10645 
10646         default:
10647             unallocated_encoding(s);
10648             break;
10649         }
10650         return;
10651     case 9: /* SQDMLAL, SQDMLAL2 */
10652     case 11: /* SQDMLSL, SQDMLSL2 */
10653     case 13: /* SQDMULL, SQDMULL2 */
10654         if (is_u || size == 0) {
10655             unallocated_encoding(s);
10656             return;
10657         }
10658         /* fall through */
10659     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10660     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10661     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10662     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10663     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10664     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10665     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10666         /* 64 x 64 -> 128 */
10667         if (size == 3) {
10668             unallocated_encoding(s);
10669             return;
10670         }
10671         if (!fp_access_check(s)) {
10672             return;
10673         }
10674 
10675         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10676         break;
10677     default:
10678         /* opcode 15 not allocated */
10679         unallocated_encoding(s);
10680         break;
10681     }
10682 }
10683 
10684 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10685 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10686 {
10687     int rd = extract32(insn, 0, 5);
10688     int rn = extract32(insn, 5, 5);
10689     int rm = extract32(insn, 16, 5);
10690     int size = extract32(insn, 22, 2);
10691     bool is_u = extract32(insn, 29, 1);
10692     bool is_q = extract32(insn, 30, 1);
10693 
10694     if (!fp_access_check(s)) {
10695         return;
10696     }
10697 
10698     switch (size + 4 * is_u) {
10699     case 0: /* AND */
10700         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10701         return;
10702     case 1: /* BIC */
10703         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10704         return;
10705     case 2: /* ORR */
10706         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10707         return;
10708     case 3: /* ORN */
10709         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10710         return;
10711     case 4: /* EOR */
10712         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10713         return;
10714 
10715     case 5: /* BSL bitwise select */
10716         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10717         return;
10718     case 6: /* BIT, bitwise insert if true */
10719         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10720         return;
10721     case 7: /* BIF, bitwise insert if false */
10722         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10723         return;
10724 
10725     default:
10726         g_assert_not_reached();
10727     }
10728 }
10729 
10730 /* Pairwise op subgroup of C3.6.16.
10731  *
10732  * This is called directly or via the handle_3same_float for float pairwise
10733  * operations where the opcode and size are calculated differently.
10734  */
10735 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10736                                    int size, int rn, int rm, int rd)
10737 {
10738     TCGv_ptr fpst;
10739     int pass;
10740 
10741     /* Floating point operations need fpst */
10742     if (opcode >= 0x58) {
10743         fpst = fpstatus_ptr(FPST_FPCR);
10744     } else {
10745         fpst = NULL;
10746     }
10747 
10748     if (!fp_access_check(s)) {
10749         return;
10750     }
10751 
10752     /* These operations work on the concatenated rm:rn, with each pair of
10753      * adjacent elements being operated on to produce an element in the result.
10754      */
10755     if (size == 3) {
10756         TCGv_i64 tcg_res[2];
10757 
10758         for (pass = 0; pass < 2; pass++) {
10759             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10760             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10761             int passreg = (pass == 0) ? rn : rm;
10762 
10763             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10764             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10765             tcg_res[pass] = tcg_temp_new_i64();
10766 
10767             switch (opcode) {
10768             case 0x17: /* ADDP */
10769                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10770                 break;
10771             case 0x58: /* FMAXNMP */
10772                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10773                 break;
10774             case 0x5a: /* FADDP */
10775                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10776                 break;
10777             case 0x5e: /* FMAXP */
10778                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10779                 break;
10780             case 0x78: /* FMINNMP */
10781                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10782                 break;
10783             case 0x7e: /* FMINP */
10784                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10785                 break;
10786             default:
10787                 g_assert_not_reached();
10788             }
10789         }
10790 
10791         for (pass = 0; pass < 2; pass++) {
10792             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10793         }
10794     } else {
10795         int maxpass = is_q ? 4 : 2;
10796         TCGv_i32 tcg_res[4];
10797 
10798         for (pass = 0; pass < maxpass; pass++) {
10799             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10800             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10801             NeonGenTwoOpFn *genfn = NULL;
10802             int passreg = pass < (maxpass / 2) ? rn : rm;
10803             int passelt = (is_q && (pass & 1)) ? 2 : 0;
10804 
10805             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10806             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10807             tcg_res[pass] = tcg_temp_new_i32();
10808 
10809             switch (opcode) {
10810             case 0x17: /* ADDP */
10811             {
10812                 static NeonGenTwoOpFn * const fns[3] = {
10813                     gen_helper_neon_padd_u8,
10814                     gen_helper_neon_padd_u16,
10815                     tcg_gen_add_i32,
10816                 };
10817                 genfn = fns[size];
10818                 break;
10819             }
10820             case 0x14: /* SMAXP, UMAXP */
10821             {
10822                 static NeonGenTwoOpFn * const fns[3][2] = {
10823                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10824                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10825                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10826                 };
10827                 genfn = fns[size][u];
10828                 break;
10829             }
10830             case 0x15: /* SMINP, UMINP */
10831             {
10832                 static NeonGenTwoOpFn * const fns[3][2] = {
10833                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10834                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10835                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10836                 };
10837                 genfn = fns[size][u];
10838                 break;
10839             }
10840             /* The FP operations are all on single floats (32 bit) */
10841             case 0x58: /* FMAXNMP */
10842                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10843                 break;
10844             case 0x5a: /* FADDP */
10845                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10846                 break;
10847             case 0x5e: /* FMAXP */
10848                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10849                 break;
10850             case 0x78: /* FMINNMP */
10851                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10852                 break;
10853             case 0x7e: /* FMINP */
10854                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10855                 break;
10856             default:
10857                 g_assert_not_reached();
10858             }
10859 
10860             /* FP ops called directly, otherwise call now */
10861             if (genfn) {
10862                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10863             }
10864         }
10865 
10866         for (pass = 0; pass < maxpass; pass++) {
10867             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10868         }
10869         clear_vec_high(s, is_q, rd);
10870     }
10871 }
10872 
10873 /* Floating point op subgroup of C3.6.16. */
10874 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10875 {
10876     /* For floating point ops, the U, size[1] and opcode bits
10877      * together indicate the operation. size[0] indicates single
10878      * or double.
10879      */
10880     int fpopcode = extract32(insn, 11, 5)
10881         | (extract32(insn, 23, 1) << 5)
10882         | (extract32(insn, 29, 1) << 6);
10883     int is_q = extract32(insn, 30, 1);
10884     int size = extract32(insn, 22, 1);
10885     int rm = extract32(insn, 16, 5);
10886     int rn = extract32(insn, 5, 5);
10887     int rd = extract32(insn, 0, 5);
10888 
10889     int datasize = is_q ? 128 : 64;
10890     int esize = 32 << size;
10891     int elements = datasize / esize;
10892 
10893     if (size == 1 && !is_q) {
10894         unallocated_encoding(s);
10895         return;
10896     }
10897 
10898     switch (fpopcode) {
10899     case 0x58: /* FMAXNMP */
10900     case 0x5a: /* FADDP */
10901     case 0x5e: /* FMAXP */
10902     case 0x78: /* FMINNMP */
10903     case 0x7e: /* FMINP */
10904         if (size && !is_q) {
10905             unallocated_encoding(s);
10906             return;
10907         }
10908         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10909                                rn, rm, rd);
10910         return;
10911     case 0x1b: /* FMULX */
10912     case 0x1f: /* FRECPS */
10913     case 0x3f: /* FRSQRTS */
10914     case 0x5d: /* FACGE */
10915     case 0x7d: /* FACGT */
10916     case 0x19: /* FMLA */
10917     case 0x39: /* FMLS */
10918     case 0x18: /* FMAXNM */
10919     case 0x1a: /* FADD */
10920     case 0x1c: /* FCMEQ */
10921     case 0x1e: /* FMAX */
10922     case 0x38: /* FMINNM */
10923     case 0x3a: /* FSUB */
10924     case 0x3e: /* FMIN */
10925     case 0x5b: /* FMUL */
10926     case 0x5c: /* FCMGE */
10927     case 0x5f: /* FDIV */
10928     case 0x7a: /* FABD */
10929     case 0x7c: /* FCMGT */
10930         if (!fp_access_check(s)) {
10931             return;
10932         }
10933         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10934         return;
10935 
10936     case 0x1d: /* FMLAL  */
10937     case 0x3d: /* FMLSL  */
10938     case 0x59: /* FMLAL2 */
10939     case 0x79: /* FMLSL2 */
10940         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
10941             unallocated_encoding(s);
10942             return;
10943         }
10944         if (fp_access_check(s)) {
10945             int is_s = extract32(insn, 23, 1);
10946             int is_2 = extract32(insn, 29, 1);
10947             int data = (is_2 << 1) | is_s;
10948             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
10949                                vec_full_reg_offset(s, rn),
10950                                vec_full_reg_offset(s, rm), tcg_env,
10951                                is_q ? 16 : 8, vec_full_reg_size(s),
10952                                data, gen_helper_gvec_fmlal_a64);
10953         }
10954         return;
10955 
10956     default:
10957         unallocated_encoding(s);
10958         return;
10959     }
10960 }
10961 
10962 /* Integer op subgroup of C3.6.16. */
10963 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10964 {
10965     int is_q = extract32(insn, 30, 1);
10966     int u = extract32(insn, 29, 1);
10967     int size = extract32(insn, 22, 2);
10968     int opcode = extract32(insn, 11, 5);
10969     int rm = extract32(insn, 16, 5);
10970     int rn = extract32(insn, 5, 5);
10971     int rd = extract32(insn, 0, 5);
10972     int pass;
10973     TCGCond cond;
10974 
10975     switch (opcode) {
10976     case 0x13: /* MUL, PMUL */
10977         if (u && size != 0) {
10978             unallocated_encoding(s);
10979             return;
10980         }
10981         /* fall through */
10982     case 0x0: /* SHADD, UHADD */
10983     case 0x2: /* SRHADD, URHADD */
10984     case 0x4: /* SHSUB, UHSUB */
10985     case 0xc: /* SMAX, UMAX */
10986     case 0xd: /* SMIN, UMIN */
10987     case 0xe: /* SABD, UABD */
10988     case 0xf: /* SABA, UABA */
10989     case 0x12: /* MLA, MLS */
10990         if (size == 3) {
10991             unallocated_encoding(s);
10992             return;
10993         }
10994         break;
10995     case 0x16: /* SQDMULH, SQRDMULH */
10996         if (size == 0 || size == 3) {
10997             unallocated_encoding(s);
10998             return;
10999         }
11000         break;
11001     default:
11002         if (size == 3 && !is_q) {
11003             unallocated_encoding(s);
11004             return;
11005         }
11006         break;
11007     }
11008 
11009     if (!fp_access_check(s)) {
11010         return;
11011     }
11012 
11013     switch (opcode) {
11014     case 0x01: /* SQADD, UQADD */
11015         if (u) {
11016             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11017         } else {
11018             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11019         }
11020         return;
11021     case 0x05: /* SQSUB, UQSUB */
11022         if (u) {
11023             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11024         } else {
11025             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11026         }
11027         return;
11028     case 0x08: /* SSHL, USHL */
11029         if (u) {
11030             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11031         } else {
11032             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11033         }
11034         return;
11035     case 0x0c: /* SMAX, UMAX */
11036         if (u) {
11037             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11038         } else {
11039             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11040         }
11041         return;
11042     case 0x0d: /* SMIN, UMIN */
11043         if (u) {
11044             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11045         } else {
11046             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11047         }
11048         return;
11049     case 0xe: /* SABD, UABD */
11050         if (u) {
11051             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11052         } else {
11053             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11054         }
11055         return;
11056     case 0xf: /* SABA, UABA */
11057         if (u) {
11058             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11059         } else {
11060             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11061         }
11062         return;
11063     case 0x10: /* ADD, SUB */
11064         if (u) {
11065             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11066         } else {
11067             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11068         }
11069         return;
11070     case 0x13: /* MUL, PMUL */
11071         if (!u) { /* MUL */
11072             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11073         } else {  /* PMUL */
11074             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11075         }
11076         return;
11077     case 0x12: /* MLA, MLS */
11078         if (u) {
11079             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11080         } else {
11081             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11082         }
11083         return;
11084     case 0x16: /* SQDMULH, SQRDMULH */
11085         {
11086             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11087                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11088                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11089             };
11090             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11091         }
11092         return;
11093     case 0x11:
11094         if (!u) { /* CMTST */
11095             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11096             return;
11097         }
11098         /* else CMEQ */
11099         cond = TCG_COND_EQ;
11100         goto do_gvec_cmp;
11101     case 0x06: /* CMGT, CMHI */
11102         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11103         goto do_gvec_cmp;
11104     case 0x07: /* CMGE, CMHS */
11105         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11106     do_gvec_cmp:
11107         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11108                          vec_full_reg_offset(s, rn),
11109                          vec_full_reg_offset(s, rm),
11110                          is_q ? 16 : 8, vec_full_reg_size(s));
11111         return;
11112     }
11113 
11114     if (size == 3) {
11115         assert(is_q);
11116         for (pass = 0; pass < 2; pass++) {
11117             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11118             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11119             TCGv_i64 tcg_res = tcg_temp_new_i64();
11120 
11121             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11122             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11123 
11124             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11125 
11126             write_vec_element(s, tcg_res, rd, pass, MO_64);
11127         }
11128     } else {
11129         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11130             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11131             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11132             TCGv_i32 tcg_res = tcg_temp_new_i32();
11133             NeonGenTwoOpFn *genfn = NULL;
11134             NeonGenTwoOpEnvFn *genenvfn = NULL;
11135 
11136             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11137             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11138 
11139             switch (opcode) {
11140             case 0x0: /* SHADD, UHADD */
11141             {
11142                 static NeonGenTwoOpFn * const fns[3][2] = {
11143                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11144                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11145                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11146                 };
11147                 genfn = fns[size][u];
11148                 break;
11149             }
11150             case 0x2: /* SRHADD, URHADD */
11151             {
11152                 static NeonGenTwoOpFn * const fns[3][2] = {
11153                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11154                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11155                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11156                 };
11157                 genfn = fns[size][u];
11158                 break;
11159             }
11160             case 0x4: /* SHSUB, UHSUB */
11161             {
11162                 static NeonGenTwoOpFn * const fns[3][2] = {
11163                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11164                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11165                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11166                 };
11167                 genfn = fns[size][u];
11168                 break;
11169             }
11170             case 0x9: /* SQSHL, UQSHL */
11171             {
11172                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11173                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11174                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11175                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11176                 };
11177                 genenvfn = fns[size][u];
11178                 break;
11179             }
11180             case 0xa: /* SRSHL, URSHL */
11181             {
11182                 static NeonGenTwoOpFn * const fns[3][2] = {
11183                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11184                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11185                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11186                 };
11187                 genfn = fns[size][u];
11188                 break;
11189             }
11190             case 0xb: /* SQRSHL, UQRSHL */
11191             {
11192                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11193                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11194                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11195                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11196                 };
11197                 genenvfn = fns[size][u];
11198                 break;
11199             }
11200             default:
11201                 g_assert_not_reached();
11202             }
11203 
11204             if (genenvfn) {
11205                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11206             } else {
11207                 genfn(tcg_res, tcg_op1, tcg_op2);
11208             }
11209 
11210             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11211         }
11212     }
11213     clear_vec_high(s, is_q, rd);
11214 }
11215 
11216 /* AdvSIMD three same
11217  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11218  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11219  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11220  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11221  */
11222 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11223 {
11224     int opcode = extract32(insn, 11, 5);
11225 
11226     switch (opcode) {
11227     case 0x3: /* logic ops */
11228         disas_simd_3same_logic(s, insn);
11229         break;
11230     case 0x17: /* ADDP */
11231     case 0x14: /* SMAXP, UMAXP */
11232     case 0x15: /* SMINP, UMINP */
11233     {
11234         /* Pairwise operations */
11235         int is_q = extract32(insn, 30, 1);
11236         int u = extract32(insn, 29, 1);
11237         int size = extract32(insn, 22, 2);
11238         int rm = extract32(insn, 16, 5);
11239         int rn = extract32(insn, 5, 5);
11240         int rd = extract32(insn, 0, 5);
11241         if (opcode == 0x17) {
11242             if (u || (size == 3 && !is_q)) {
11243                 unallocated_encoding(s);
11244                 return;
11245             }
11246         } else {
11247             if (size == 3) {
11248                 unallocated_encoding(s);
11249                 return;
11250             }
11251         }
11252         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11253         break;
11254     }
11255     case 0x18 ... 0x31:
11256         /* floating point ops, sz[1] and U are part of opcode */
11257         disas_simd_3same_float(s, insn);
11258         break;
11259     default:
11260         disas_simd_3same_int(s, insn);
11261         break;
11262     }
11263 }
11264 
11265 /*
11266  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11267  *
11268  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11269  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11270  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11271  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11272  *
11273  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11274  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11275  *
11276  */
11277 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11278 {
11279     int opcode = extract32(insn, 11, 3);
11280     int u = extract32(insn, 29, 1);
11281     int a = extract32(insn, 23, 1);
11282     int is_q = extract32(insn, 30, 1);
11283     int rm = extract32(insn, 16, 5);
11284     int rn = extract32(insn, 5, 5);
11285     int rd = extract32(insn, 0, 5);
11286     /*
11287      * For these floating point ops, the U, a and opcode bits
11288      * together indicate the operation.
11289      */
11290     int fpopcode = opcode | (a << 3) | (u << 4);
11291     int datasize = is_q ? 128 : 64;
11292     int elements = datasize / 16;
11293     bool pairwise;
11294     TCGv_ptr fpst;
11295     int pass;
11296 
11297     switch (fpopcode) {
11298     case 0x0: /* FMAXNM */
11299     case 0x1: /* FMLA */
11300     case 0x2: /* FADD */
11301     case 0x3: /* FMULX */
11302     case 0x4: /* FCMEQ */
11303     case 0x6: /* FMAX */
11304     case 0x7: /* FRECPS */
11305     case 0x8: /* FMINNM */
11306     case 0x9: /* FMLS */
11307     case 0xa: /* FSUB */
11308     case 0xe: /* FMIN */
11309     case 0xf: /* FRSQRTS */
11310     case 0x13: /* FMUL */
11311     case 0x14: /* FCMGE */
11312     case 0x15: /* FACGE */
11313     case 0x17: /* FDIV */
11314     case 0x1a: /* FABD */
11315     case 0x1c: /* FCMGT */
11316     case 0x1d: /* FACGT */
11317         pairwise = false;
11318         break;
11319     case 0x10: /* FMAXNMP */
11320     case 0x12: /* FADDP */
11321     case 0x16: /* FMAXP */
11322     case 0x18: /* FMINNMP */
11323     case 0x1e: /* FMINP */
11324         pairwise = true;
11325         break;
11326     default:
11327         unallocated_encoding(s);
11328         return;
11329     }
11330 
11331     if (!dc_isar_feature(aa64_fp16, s)) {
11332         unallocated_encoding(s);
11333         return;
11334     }
11335 
11336     if (!fp_access_check(s)) {
11337         return;
11338     }
11339 
11340     fpst = fpstatus_ptr(FPST_FPCR_F16);
11341 
11342     if (pairwise) {
11343         int maxpass = is_q ? 8 : 4;
11344         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11345         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11346         TCGv_i32 tcg_res[8];
11347 
11348         for (pass = 0; pass < maxpass; pass++) {
11349             int passreg = pass < (maxpass / 2) ? rn : rm;
11350             int passelt = (pass << 1) & (maxpass - 1);
11351 
11352             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11353             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11354             tcg_res[pass] = tcg_temp_new_i32();
11355 
11356             switch (fpopcode) {
11357             case 0x10: /* FMAXNMP */
11358                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11359                                            fpst);
11360                 break;
11361             case 0x12: /* FADDP */
11362                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11363                 break;
11364             case 0x16: /* FMAXP */
11365                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11366                 break;
11367             case 0x18: /* FMINNMP */
11368                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11369                                            fpst);
11370                 break;
11371             case 0x1e: /* FMINP */
11372                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11373                 break;
11374             default:
11375                 g_assert_not_reached();
11376             }
11377         }
11378 
11379         for (pass = 0; pass < maxpass; pass++) {
11380             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11381         }
11382     } else {
11383         for (pass = 0; pass < elements; pass++) {
11384             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11385             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11386             TCGv_i32 tcg_res = tcg_temp_new_i32();
11387 
11388             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11389             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11390 
11391             switch (fpopcode) {
11392             case 0x0: /* FMAXNM */
11393                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11394                 break;
11395             case 0x1: /* FMLA */
11396                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11397                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11398                                            fpst);
11399                 break;
11400             case 0x2: /* FADD */
11401                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11402                 break;
11403             case 0x3: /* FMULX */
11404                 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11405                 break;
11406             case 0x4: /* FCMEQ */
11407                 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11408                 break;
11409             case 0x6: /* FMAX */
11410                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11411                 break;
11412             case 0x7: /* FRECPS */
11413                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11414                 break;
11415             case 0x8: /* FMINNM */
11416                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11417                 break;
11418             case 0x9: /* FMLS */
11419                 /* As usual for ARM, separate negation for fused multiply-add */
11420                 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11421                 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11422                 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11423                                            fpst);
11424                 break;
11425             case 0xa: /* FSUB */
11426                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11427                 break;
11428             case 0xe: /* FMIN */
11429                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11430                 break;
11431             case 0xf: /* FRSQRTS */
11432                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11433                 break;
11434             case 0x13: /* FMUL */
11435                 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11436                 break;
11437             case 0x14: /* FCMGE */
11438                 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11439                 break;
11440             case 0x15: /* FACGE */
11441                 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11442                 break;
11443             case 0x17: /* FDIV */
11444                 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11445                 break;
11446             case 0x1a: /* FABD */
11447                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11448                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11449                 break;
11450             case 0x1c: /* FCMGT */
11451                 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11452                 break;
11453             case 0x1d: /* FACGT */
11454                 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11455                 break;
11456             default:
11457                 g_assert_not_reached();
11458             }
11459 
11460             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11461         }
11462     }
11463 
11464     clear_vec_high(s, is_q, rd);
11465 }
11466 
11467 /* AdvSIMD three same extra
11468  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11469  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11470  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11471  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11472  */
11473 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11474 {
11475     int rd = extract32(insn, 0, 5);
11476     int rn = extract32(insn, 5, 5);
11477     int opcode = extract32(insn, 11, 4);
11478     int rm = extract32(insn, 16, 5);
11479     int size = extract32(insn, 22, 2);
11480     bool u = extract32(insn, 29, 1);
11481     bool is_q = extract32(insn, 30, 1);
11482     bool feature;
11483     int rot;
11484 
11485     switch (u * 16 + opcode) {
11486     case 0x10: /* SQRDMLAH (vector) */
11487     case 0x11: /* SQRDMLSH (vector) */
11488         if (size != 1 && size != 2) {
11489             unallocated_encoding(s);
11490             return;
11491         }
11492         feature = dc_isar_feature(aa64_rdm, s);
11493         break;
11494     case 0x02: /* SDOT (vector) */
11495     case 0x12: /* UDOT (vector) */
11496         if (size != MO_32) {
11497             unallocated_encoding(s);
11498             return;
11499         }
11500         feature = dc_isar_feature(aa64_dp, s);
11501         break;
11502     case 0x03: /* USDOT */
11503         if (size != MO_32) {
11504             unallocated_encoding(s);
11505             return;
11506         }
11507         feature = dc_isar_feature(aa64_i8mm, s);
11508         break;
11509     case 0x04: /* SMMLA */
11510     case 0x14: /* UMMLA */
11511     case 0x05: /* USMMLA */
11512         if (!is_q || size != MO_32) {
11513             unallocated_encoding(s);
11514             return;
11515         }
11516         feature = dc_isar_feature(aa64_i8mm, s);
11517         break;
11518     case 0x18: /* FCMLA, #0 */
11519     case 0x19: /* FCMLA, #90 */
11520     case 0x1a: /* FCMLA, #180 */
11521     case 0x1b: /* FCMLA, #270 */
11522     case 0x1c: /* FCADD, #90 */
11523     case 0x1e: /* FCADD, #270 */
11524         if (size == 0
11525             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11526             || (size == 3 && !is_q)) {
11527             unallocated_encoding(s);
11528             return;
11529         }
11530         feature = dc_isar_feature(aa64_fcma, s);
11531         break;
11532     case 0x1d: /* BFMMLA */
11533         if (size != MO_16 || !is_q) {
11534             unallocated_encoding(s);
11535             return;
11536         }
11537         feature = dc_isar_feature(aa64_bf16, s);
11538         break;
11539     case 0x1f:
11540         switch (size) {
11541         case 1: /* BFDOT */
11542         case 3: /* BFMLAL{B,T} */
11543             feature = dc_isar_feature(aa64_bf16, s);
11544             break;
11545         default:
11546             unallocated_encoding(s);
11547             return;
11548         }
11549         break;
11550     default:
11551         unallocated_encoding(s);
11552         return;
11553     }
11554     if (!feature) {
11555         unallocated_encoding(s);
11556         return;
11557     }
11558     if (!fp_access_check(s)) {
11559         return;
11560     }
11561 
11562     switch (opcode) {
11563     case 0x0: /* SQRDMLAH (vector) */
11564         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11565         return;
11566 
11567     case 0x1: /* SQRDMLSH (vector) */
11568         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11569         return;
11570 
11571     case 0x2: /* SDOT / UDOT */
11572         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11573                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11574         return;
11575 
11576     case 0x3: /* USDOT */
11577         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11578         return;
11579 
11580     case 0x04: /* SMMLA, UMMLA */
11581         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11582                          u ? gen_helper_gvec_ummla_b
11583                          : gen_helper_gvec_smmla_b);
11584         return;
11585     case 0x05: /* USMMLA */
11586         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11587         return;
11588 
11589     case 0x8: /* FCMLA, #0 */
11590     case 0x9: /* FCMLA, #90 */
11591     case 0xa: /* FCMLA, #180 */
11592     case 0xb: /* FCMLA, #270 */
11593         rot = extract32(opcode, 0, 2);
11594         switch (size) {
11595         case 1:
11596             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11597                               gen_helper_gvec_fcmlah);
11598             break;
11599         case 2:
11600             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11601                               gen_helper_gvec_fcmlas);
11602             break;
11603         case 3:
11604             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11605                               gen_helper_gvec_fcmlad);
11606             break;
11607         default:
11608             g_assert_not_reached();
11609         }
11610         return;
11611 
11612     case 0xc: /* FCADD, #90 */
11613     case 0xe: /* FCADD, #270 */
11614         rot = extract32(opcode, 1, 1);
11615         switch (size) {
11616         case 1:
11617             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11618                               gen_helper_gvec_fcaddh);
11619             break;
11620         case 2:
11621             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11622                               gen_helper_gvec_fcadds);
11623             break;
11624         case 3:
11625             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11626                               gen_helper_gvec_fcaddd);
11627             break;
11628         default:
11629             g_assert_not_reached();
11630         }
11631         return;
11632 
11633     case 0xd: /* BFMMLA */
11634         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11635         return;
11636     case 0xf:
11637         switch (size) {
11638         case 1: /* BFDOT */
11639             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11640             break;
11641         case 3: /* BFMLAL{B,T} */
11642             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11643                               gen_helper_gvec_bfmlal);
11644             break;
11645         default:
11646             g_assert_not_reached();
11647         }
11648         return;
11649 
11650     default:
11651         g_assert_not_reached();
11652     }
11653 }
11654 
11655 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11656                                   int size, int rn, int rd)
11657 {
11658     /* Handle 2-reg-misc ops which are widening (so each size element
11659      * in the source becomes a 2*size element in the destination.
11660      * The only instruction like this is FCVTL.
11661      */
11662     int pass;
11663 
11664     if (size == 3) {
11665         /* 32 -> 64 bit fp conversion */
11666         TCGv_i64 tcg_res[2];
11667         int srcelt = is_q ? 2 : 0;
11668 
11669         for (pass = 0; pass < 2; pass++) {
11670             TCGv_i32 tcg_op = tcg_temp_new_i32();
11671             tcg_res[pass] = tcg_temp_new_i64();
11672 
11673             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11674             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11675         }
11676         for (pass = 0; pass < 2; pass++) {
11677             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11678         }
11679     } else {
11680         /* 16 -> 32 bit fp conversion */
11681         int srcelt = is_q ? 4 : 0;
11682         TCGv_i32 tcg_res[4];
11683         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11684         TCGv_i32 ahp = get_ahp_flag();
11685 
11686         for (pass = 0; pass < 4; pass++) {
11687             tcg_res[pass] = tcg_temp_new_i32();
11688 
11689             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11690             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11691                                            fpst, ahp);
11692         }
11693         for (pass = 0; pass < 4; pass++) {
11694             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11695         }
11696     }
11697 }
11698 
11699 static void handle_rev(DisasContext *s, int opcode, bool u,
11700                        bool is_q, int size, int rn, int rd)
11701 {
11702     int op = (opcode << 1) | u;
11703     int opsz = op + size;
11704     int grp_size = 3 - opsz;
11705     int dsize = is_q ? 128 : 64;
11706     int i;
11707 
11708     if (opsz >= 3) {
11709         unallocated_encoding(s);
11710         return;
11711     }
11712 
11713     if (!fp_access_check(s)) {
11714         return;
11715     }
11716 
11717     if (size == 0) {
11718         /* Special case bytes, use bswap op on each group of elements */
11719         int groups = dsize / (8 << grp_size);
11720 
11721         for (i = 0; i < groups; i++) {
11722             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11723 
11724             read_vec_element(s, tcg_tmp, rn, i, grp_size);
11725             switch (grp_size) {
11726             case MO_16:
11727                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11728                 break;
11729             case MO_32:
11730                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11731                 break;
11732             case MO_64:
11733                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11734                 break;
11735             default:
11736                 g_assert_not_reached();
11737             }
11738             write_vec_element(s, tcg_tmp, rd, i, grp_size);
11739         }
11740         clear_vec_high(s, is_q, rd);
11741     } else {
11742         int revmask = (1 << grp_size) - 1;
11743         int esize = 8 << size;
11744         int elements = dsize / esize;
11745         TCGv_i64 tcg_rn = tcg_temp_new_i64();
11746         TCGv_i64 tcg_rd[2];
11747 
11748         for (i = 0; i < 2; i++) {
11749             tcg_rd[i] = tcg_temp_new_i64();
11750             tcg_gen_movi_i64(tcg_rd[i], 0);
11751         }
11752 
11753         for (i = 0; i < elements; i++) {
11754             int e_rev = (i & 0xf) ^ revmask;
11755             int w = (e_rev * esize) / 64;
11756             int o = (e_rev * esize) % 64;
11757 
11758             read_vec_element(s, tcg_rn, rn, i, size);
11759             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11760         }
11761 
11762         for (i = 0; i < 2; i++) {
11763             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11764         }
11765         clear_vec_high(s, true, rd);
11766     }
11767 }
11768 
11769 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11770                                   bool is_q, int size, int rn, int rd)
11771 {
11772     /* Implement the pairwise operations from 2-misc:
11773      * SADDLP, UADDLP, SADALP, UADALP.
11774      * These all add pairs of elements in the input to produce a
11775      * double-width result element in the output (possibly accumulating).
11776      */
11777     bool accum = (opcode == 0x6);
11778     int maxpass = is_q ? 2 : 1;
11779     int pass;
11780     TCGv_i64 tcg_res[2];
11781 
11782     if (size == 2) {
11783         /* 32 + 32 -> 64 op */
11784         MemOp memop = size + (u ? 0 : MO_SIGN);
11785 
11786         for (pass = 0; pass < maxpass; pass++) {
11787             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11788             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11789 
11790             tcg_res[pass] = tcg_temp_new_i64();
11791 
11792             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11793             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11794             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11795             if (accum) {
11796                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11797                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11798             }
11799         }
11800     } else {
11801         for (pass = 0; pass < maxpass; pass++) {
11802             TCGv_i64 tcg_op = tcg_temp_new_i64();
11803             NeonGenOne64OpFn *genfn;
11804             static NeonGenOne64OpFn * const fns[2][2] = {
11805                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
11806                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
11807             };
11808 
11809             genfn = fns[size][u];
11810 
11811             tcg_res[pass] = tcg_temp_new_i64();
11812 
11813             read_vec_element(s, tcg_op, rn, pass, MO_64);
11814             genfn(tcg_res[pass], tcg_op);
11815 
11816             if (accum) {
11817                 read_vec_element(s, tcg_op, rd, pass, MO_64);
11818                 if (size == 0) {
11819                     gen_helper_neon_addl_u16(tcg_res[pass],
11820                                              tcg_res[pass], tcg_op);
11821                 } else {
11822                     gen_helper_neon_addl_u32(tcg_res[pass],
11823                                              tcg_res[pass], tcg_op);
11824                 }
11825             }
11826         }
11827     }
11828     if (!is_q) {
11829         tcg_res[1] = tcg_constant_i64(0);
11830     }
11831     for (pass = 0; pass < 2; pass++) {
11832         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11833     }
11834 }
11835 
11836 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11837 {
11838     /* Implement SHLL and SHLL2 */
11839     int pass;
11840     int part = is_q ? 2 : 0;
11841     TCGv_i64 tcg_res[2];
11842 
11843     for (pass = 0; pass < 2; pass++) {
11844         static NeonGenWidenFn * const widenfns[3] = {
11845             gen_helper_neon_widen_u8,
11846             gen_helper_neon_widen_u16,
11847             tcg_gen_extu_i32_i64,
11848         };
11849         NeonGenWidenFn *widenfn = widenfns[size];
11850         TCGv_i32 tcg_op = tcg_temp_new_i32();
11851 
11852         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11853         tcg_res[pass] = tcg_temp_new_i64();
11854         widenfn(tcg_res[pass], tcg_op);
11855         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11856     }
11857 
11858     for (pass = 0; pass < 2; pass++) {
11859         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11860     }
11861 }
11862 
11863 /* AdvSIMD two reg misc
11864  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
11865  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11866  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
11867  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11868  */
11869 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11870 {
11871     int size = extract32(insn, 22, 2);
11872     int opcode = extract32(insn, 12, 5);
11873     bool u = extract32(insn, 29, 1);
11874     bool is_q = extract32(insn, 30, 1);
11875     int rn = extract32(insn, 5, 5);
11876     int rd = extract32(insn, 0, 5);
11877     bool need_fpstatus = false;
11878     int rmode = -1;
11879     TCGv_i32 tcg_rmode;
11880     TCGv_ptr tcg_fpstatus;
11881 
11882     switch (opcode) {
11883     case 0x0: /* REV64, REV32 */
11884     case 0x1: /* REV16 */
11885         handle_rev(s, opcode, u, is_q, size, rn, rd);
11886         return;
11887     case 0x5: /* CNT, NOT, RBIT */
11888         if (u && size == 0) {
11889             /* NOT */
11890             break;
11891         } else if (u && size == 1) {
11892             /* RBIT */
11893             break;
11894         } else if (!u && size == 0) {
11895             /* CNT */
11896             break;
11897         }
11898         unallocated_encoding(s);
11899         return;
11900     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11901     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11902         if (size == 3) {
11903             unallocated_encoding(s);
11904             return;
11905         }
11906         if (!fp_access_check(s)) {
11907             return;
11908         }
11909 
11910         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11911         return;
11912     case 0x4: /* CLS, CLZ */
11913         if (size == 3) {
11914             unallocated_encoding(s);
11915             return;
11916         }
11917         break;
11918     case 0x2: /* SADDLP, UADDLP */
11919     case 0x6: /* SADALP, UADALP */
11920         if (size == 3) {
11921             unallocated_encoding(s);
11922             return;
11923         }
11924         if (!fp_access_check(s)) {
11925             return;
11926         }
11927         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11928         return;
11929     case 0x13: /* SHLL, SHLL2 */
11930         if (u == 0 || size == 3) {
11931             unallocated_encoding(s);
11932             return;
11933         }
11934         if (!fp_access_check(s)) {
11935             return;
11936         }
11937         handle_shll(s, is_q, size, rn, rd);
11938         return;
11939     case 0xa: /* CMLT */
11940         if (u == 1) {
11941             unallocated_encoding(s);
11942             return;
11943         }
11944         /* fall through */
11945     case 0x8: /* CMGT, CMGE */
11946     case 0x9: /* CMEQ, CMLE */
11947     case 0xb: /* ABS, NEG */
11948         if (size == 3 && !is_q) {
11949             unallocated_encoding(s);
11950             return;
11951         }
11952         break;
11953     case 0x3: /* SUQADD, USQADD */
11954         if (size == 3 && !is_q) {
11955             unallocated_encoding(s);
11956             return;
11957         }
11958         if (!fp_access_check(s)) {
11959             return;
11960         }
11961         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11962         return;
11963     case 0x7: /* SQABS, SQNEG */
11964         if (size == 3 && !is_q) {
11965             unallocated_encoding(s);
11966             return;
11967         }
11968         break;
11969     case 0xc ... 0xf:
11970     case 0x16 ... 0x1f:
11971     {
11972         /* Floating point: U, size[1] and opcode indicate operation;
11973          * size[0] indicates single or double precision.
11974          */
11975         int is_double = extract32(size, 0, 1);
11976         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11977         size = is_double ? 3 : 2;
11978         switch (opcode) {
11979         case 0x2f: /* FABS */
11980         case 0x6f: /* FNEG */
11981             if (size == 3 && !is_q) {
11982                 unallocated_encoding(s);
11983                 return;
11984             }
11985             break;
11986         case 0x1d: /* SCVTF */
11987         case 0x5d: /* UCVTF */
11988         {
11989             bool is_signed = (opcode == 0x1d) ? true : false;
11990             int elements = is_double ? 2 : is_q ? 4 : 2;
11991             if (is_double && !is_q) {
11992                 unallocated_encoding(s);
11993                 return;
11994             }
11995             if (!fp_access_check(s)) {
11996                 return;
11997             }
11998             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11999             return;
12000         }
12001         case 0x2c: /* FCMGT (zero) */
12002         case 0x2d: /* FCMEQ (zero) */
12003         case 0x2e: /* FCMLT (zero) */
12004         case 0x6c: /* FCMGE (zero) */
12005         case 0x6d: /* FCMLE (zero) */
12006             if (size == 3 && !is_q) {
12007                 unallocated_encoding(s);
12008                 return;
12009             }
12010             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12011             return;
12012         case 0x7f: /* FSQRT */
12013             if (size == 3 && !is_q) {
12014                 unallocated_encoding(s);
12015                 return;
12016             }
12017             break;
12018         case 0x1a: /* FCVTNS */
12019         case 0x1b: /* FCVTMS */
12020         case 0x3a: /* FCVTPS */
12021         case 0x3b: /* FCVTZS */
12022         case 0x5a: /* FCVTNU */
12023         case 0x5b: /* FCVTMU */
12024         case 0x7a: /* FCVTPU */
12025         case 0x7b: /* FCVTZU */
12026             need_fpstatus = true;
12027             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12028             if (size == 3 && !is_q) {
12029                 unallocated_encoding(s);
12030                 return;
12031             }
12032             break;
12033         case 0x5c: /* FCVTAU */
12034         case 0x1c: /* FCVTAS */
12035             need_fpstatus = true;
12036             rmode = FPROUNDING_TIEAWAY;
12037             if (size == 3 && !is_q) {
12038                 unallocated_encoding(s);
12039                 return;
12040             }
12041             break;
12042         case 0x3c: /* URECPE */
12043             if (size == 3) {
12044                 unallocated_encoding(s);
12045                 return;
12046             }
12047             /* fall through */
12048         case 0x3d: /* FRECPE */
12049         case 0x7d: /* FRSQRTE */
12050             if (size == 3 && !is_q) {
12051                 unallocated_encoding(s);
12052                 return;
12053             }
12054             if (!fp_access_check(s)) {
12055                 return;
12056             }
12057             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12058             return;
12059         case 0x56: /* FCVTXN, FCVTXN2 */
12060             if (size == 2) {
12061                 unallocated_encoding(s);
12062                 return;
12063             }
12064             /* fall through */
12065         case 0x16: /* FCVTN, FCVTN2 */
12066             /* handle_2misc_narrow does a 2*size -> size operation, but these
12067              * instructions encode the source size rather than dest size.
12068              */
12069             if (!fp_access_check(s)) {
12070                 return;
12071             }
12072             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12073             return;
12074         case 0x36: /* BFCVTN, BFCVTN2 */
12075             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12076                 unallocated_encoding(s);
12077                 return;
12078             }
12079             if (!fp_access_check(s)) {
12080                 return;
12081             }
12082             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12083             return;
12084         case 0x17: /* FCVTL, FCVTL2 */
12085             if (!fp_access_check(s)) {
12086                 return;
12087             }
12088             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12089             return;
12090         case 0x18: /* FRINTN */
12091         case 0x19: /* FRINTM */
12092         case 0x38: /* FRINTP */
12093         case 0x39: /* FRINTZ */
12094             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12095             /* fall through */
12096         case 0x59: /* FRINTX */
12097         case 0x79: /* FRINTI */
12098             need_fpstatus = true;
12099             if (size == 3 && !is_q) {
12100                 unallocated_encoding(s);
12101                 return;
12102             }
12103             break;
12104         case 0x58: /* FRINTA */
12105             rmode = FPROUNDING_TIEAWAY;
12106             need_fpstatus = true;
12107             if (size == 3 && !is_q) {
12108                 unallocated_encoding(s);
12109                 return;
12110             }
12111             break;
12112         case 0x7c: /* URSQRTE */
12113             if (size == 3) {
12114                 unallocated_encoding(s);
12115                 return;
12116             }
12117             break;
12118         case 0x1e: /* FRINT32Z */
12119         case 0x1f: /* FRINT64Z */
12120             rmode = FPROUNDING_ZERO;
12121             /* fall through */
12122         case 0x5e: /* FRINT32X */
12123         case 0x5f: /* FRINT64X */
12124             need_fpstatus = true;
12125             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12126                 unallocated_encoding(s);
12127                 return;
12128             }
12129             break;
12130         default:
12131             unallocated_encoding(s);
12132             return;
12133         }
12134         break;
12135     }
12136     default:
12137         unallocated_encoding(s);
12138         return;
12139     }
12140 
12141     if (!fp_access_check(s)) {
12142         return;
12143     }
12144 
12145     if (need_fpstatus || rmode >= 0) {
12146         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12147     } else {
12148         tcg_fpstatus = NULL;
12149     }
12150     if (rmode >= 0) {
12151         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12152     } else {
12153         tcg_rmode = NULL;
12154     }
12155 
12156     switch (opcode) {
12157     case 0x5:
12158         if (u && size == 0) { /* NOT */
12159             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12160             return;
12161         }
12162         break;
12163     case 0x8: /* CMGT, CMGE */
12164         if (u) {
12165             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12166         } else {
12167             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12168         }
12169         return;
12170     case 0x9: /* CMEQ, CMLE */
12171         if (u) {
12172             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12173         } else {
12174             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12175         }
12176         return;
12177     case 0xa: /* CMLT */
12178         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12179         return;
12180     case 0xb:
12181         if (u) { /* ABS, NEG */
12182             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12183         } else {
12184             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12185         }
12186         return;
12187     }
12188 
12189     if (size == 3) {
12190         /* All 64-bit element operations can be shared with scalar 2misc */
12191         int pass;
12192 
12193         /* Coverity claims (size == 3 && !is_q) has been eliminated
12194          * from all paths leading to here.
12195          */
12196         tcg_debug_assert(is_q);
12197         for (pass = 0; pass < 2; pass++) {
12198             TCGv_i64 tcg_op = tcg_temp_new_i64();
12199             TCGv_i64 tcg_res = tcg_temp_new_i64();
12200 
12201             read_vec_element(s, tcg_op, rn, pass, MO_64);
12202 
12203             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12204                             tcg_rmode, tcg_fpstatus);
12205 
12206             write_vec_element(s, tcg_res, rd, pass, MO_64);
12207         }
12208     } else {
12209         int pass;
12210 
12211         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12212             TCGv_i32 tcg_op = tcg_temp_new_i32();
12213             TCGv_i32 tcg_res = tcg_temp_new_i32();
12214 
12215             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12216 
12217             if (size == 2) {
12218                 /* Special cases for 32 bit elements */
12219                 switch (opcode) {
12220                 case 0x4: /* CLS */
12221                     if (u) {
12222                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12223                     } else {
12224                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12225                     }
12226                     break;
12227                 case 0x7: /* SQABS, SQNEG */
12228                     if (u) {
12229                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12230                     } else {
12231                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12232                     }
12233                     break;
12234                 case 0x2f: /* FABS */
12235                     gen_helper_vfp_abss(tcg_res, tcg_op);
12236                     break;
12237                 case 0x6f: /* FNEG */
12238                     gen_helper_vfp_negs(tcg_res, tcg_op);
12239                     break;
12240                 case 0x7f: /* FSQRT */
12241                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12242                     break;
12243                 case 0x1a: /* FCVTNS */
12244                 case 0x1b: /* FCVTMS */
12245                 case 0x1c: /* FCVTAS */
12246                 case 0x3a: /* FCVTPS */
12247                 case 0x3b: /* FCVTZS */
12248                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12249                                          tcg_constant_i32(0), tcg_fpstatus);
12250                     break;
12251                 case 0x5a: /* FCVTNU */
12252                 case 0x5b: /* FCVTMU */
12253                 case 0x5c: /* FCVTAU */
12254                 case 0x7a: /* FCVTPU */
12255                 case 0x7b: /* FCVTZU */
12256                     gen_helper_vfp_touls(tcg_res, tcg_op,
12257                                          tcg_constant_i32(0), tcg_fpstatus);
12258                     break;
12259                 case 0x18: /* FRINTN */
12260                 case 0x19: /* FRINTM */
12261                 case 0x38: /* FRINTP */
12262                 case 0x39: /* FRINTZ */
12263                 case 0x58: /* FRINTA */
12264                 case 0x79: /* FRINTI */
12265                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12266                     break;
12267                 case 0x59: /* FRINTX */
12268                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12269                     break;
12270                 case 0x7c: /* URSQRTE */
12271                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12272                     break;
12273                 case 0x1e: /* FRINT32Z */
12274                 case 0x5e: /* FRINT32X */
12275                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12276                     break;
12277                 case 0x1f: /* FRINT64Z */
12278                 case 0x5f: /* FRINT64X */
12279                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12280                     break;
12281                 default:
12282                     g_assert_not_reached();
12283                 }
12284             } else {
12285                 /* Use helpers for 8 and 16 bit elements */
12286                 switch (opcode) {
12287                 case 0x5: /* CNT, RBIT */
12288                     /* For these two insns size is part of the opcode specifier
12289                      * (handled earlier); they always operate on byte elements.
12290                      */
12291                     if (u) {
12292                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12293                     } else {
12294                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12295                     }
12296                     break;
12297                 case 0x7: /* SQABS, SQNEG */
12298                 {
12299                     NeonGenOneOpEnvFn *genfn;
12300                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12301                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12302                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12303                     };
12304                     genfn = fns[size][u];
12305                     genfn(tcg_res, tcg_env, tcg_op);
12306                     break;
12307                 }
12308                 case 0x4: /* CLS, CLZ */
12309                     if (u) {
12310                         if (size == 0) {
12311                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12312                         } else {
12313                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12314                         }
12315                     } else {
12316                         if (size == 0) {
12317                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12318                         } else {
12319                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12320                         }
12321                     }
12322                     break;
12323                 default:
12324                     g_assert_not_reached();
12325                 }
12326             }
12327 
12328             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12329         }
12330     }
12331     clear_vec_high(s, is_q, rd);
12332 
12333     if (tcg_rmode) {
12334         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12335     }
12336 }
12337 
12338 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12339  *
12340  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12341  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12342  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12343  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12344  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12345  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12346  *
12347  * This actually covers two groups where scalar access is governed by
12348  * bit 28. A bunch of the instructions (float to integral) only exist
12349  * in the vector form and are un-allocated for the scalar decode. Also
12350  * in the scalar decode Q is always 1.
12351  */
12352 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12353 {
12354     int fpop, opcode, a, u;
12355     int rn, rd;
12356     bool is_q;
12357     bool is_scalar;
12358     bool only_in_vector = false;
12359 
12360     int pass;
12361     TCGv_i32 tcg_rmode = NULL;
12362     TCGv_ptr tcg_fpstatus = NULL;
12363     bool need_fpst = true;
12364     int rmode = -1;
12365 
12366     if (!dc_isar_feature(aa64_fp16, s)) {
12367         unallocated_encoding(s);
12368         return;
12369     }
12370 
12371     rd = extract32(insn, 0, 5);
12372     rn = extract32(insn, 5, 5);
12373 
12374     a = extract32(insn, 23, 1);
12375     u = extract32(insn, 29, 1);
12376     is_scalar = extract32(insn, 28, 1);
12377     is_q = extract32(insn, 30, 1);
12378 
12379     opcode = extract32(insn, 12, 5);
12380     fpop = deposit32(opcode, 5, 1, a);
12381     fpop = deposit32(fpop, 6, 1, u);
12382 
12383     switch (fpop) {
12384     case 0x1d: /* SCVTF */
12385     case 0x5d: /* UCVTF */
12386     {
12387         int elements;
12388 
12389         if (is_scalar) {
12390             elements = 1;
12391         } else {
12392             elements = (is_q ? 8 : 4);
12393         }
12394 
12395         if (!fp_access_check(s)) {
12396             return;
12397         }
12398         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12399         return;
12400     }
12401     break;
12402     case 0x2c: /* FCMGT (zero) */
12403     case 0x2d: /* FCMEQ (zero) */
12404     case 0x2e: /* FCMLT (zero) */
12405     case 0x6c: /* FCMGE (zero) */
12406     case 0x6d: /* FCMLE (zero) */
12407         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12408         return;
12409     case 0x3d: /* FRECPE */
12410     case 0x3f: /* FRECPX */
12411         break;
12412     case 0x18: /* FRINTN */
12413         only_in_vector = true;
12414         rmode = FPROUNDING_TIEEVEN;
12415         break;
12416     case 0x19: /* FRINTM */
12417         only_in_vector = true;
12418         rmode = FPROUNDING_NEGINF;
12419         break;
12420     case 0x38: /* FRINTP */
12421         only_in_vector = true;
12422         rmode = FPROUNDING_POSINF;
12423         break;
12424     case 0x39: /* FRINTZ */
12425         only_in_vector = true;
12426         rmode = FPROUNDING_ZERO;
12427         break;
12428     case 0x58: /* FRINTA */
12429         only_in_vector = true;
12430         rmode = FPROUNDING_TIEAWAY;
12431         break;
12432     case 0x59: /* FRINTX */
12433     case 0x79: /* FRINTI */
12434         only_in_vector = true;
12435         /* current rounding mode */
12436         break;
12437     case 0x1a: /* FCVTNS */
12438         rmode = FPROUNDING_TIEEVEN;
12439         break;
12440     case 0x1b: /* FCVTMS */
12441         rmode = FPROUNDING_NEGINF;
12442         break;
12443     case 0x1c: /* FCVTAS */
12444         rmode = FPROUNDING_TIEAWAY;
12445         break;
12446     case 0x3a: /* FCVTPS */
12447         rmode = FPROUNDING_POSINF;
12448         break;
12449     case 0x3b: /* FCVTZS */
12450         rmode = FPROUNDING_ZERO;
12451         break;
12452     case 0x5a: /* FCVTNU */
12453         rmode = FPROUNDING_TIEEVEN;
12454         break;
12455     case 0x5b: /* FCVTMU */
12456         rmode = FPROUNDING_NEGINF;
12457         break;
12458     case 0x5c: /* FCVTAU */
12459         rmode = FPROUNDING_TIEAWAY;
12460         break;
12461     case 0x7a: /* FCVTPU */
12462         rmode = FPROUNDING_POSINF;
12463         break;
12464     case 0x7b: /* FCVTZU */
12465         rmode = FPROUNDING_ZERO;
12466         break;
12467     case 0x2f: /* FABS */
12468     case 0x6f: /* FNEG */
12469         need_fpst = false;
12470         break;
12471     case 0x7d: /* FRSQRTE */
12472     case 0x7f: /* FSQRT (vector) */
12473         break;
12474     default:
12475         unallocated_encoding(s);
12476         return;
12477     }
12478 
12479 
12480     /* Check additional constraints for the scalar encoding */
12481     if (is_scalar) {
12482         if (!is_q) {
12483             unallocated_encoding(s);
12484             return;
12485         }
12486         /* FRINTxx is only in the vector form */
12487         if (only_in_vector) {
12488             unallocated_encoding(s);
12489             return;
12490         }
12491     }
12492 
12493     if (!fp_access_check(s)) {
12494         return;
12495     }
12496 
12497     if (rmode >= 0 || need_fpst) {
12498         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12499     }
12500 
12501     if (rmode >= 0) {
12502         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12503     }
12504 
12505     if (is_scalar) {
12506         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12507         TCGv_i32 tcg_res = tcg_temp_new_i32();
12508 
12509         switch (fpop) {
12510         case 0x1a: /* FCVTNS */
12511         case 0x1b: /* FCVTMS */
12512         case 0x1c: /* FCVTAS */
12513         case 0x3a: /* FCVTPS */
12514         case 0x3b: /* FCVTZS */
12515             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12516             break;
12517         case 0x3d: /* FRECPE */
12518             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12519             break;
12520         case 0x3f: /* FRECPX */
12521             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12522             break;
12523         case 0x5a: /* FCVTNU */
12524         case 0x5b: /* FCVTMU */
12525         case 0x5c: /* FCVTAU */
12526         case 0x7a: /* FCVTPU */
12527         case 0x7b: /* FCVTZU */
12528             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12529             break;
12530         case 0x6f: /* FNEG */
12531             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12532             break;
12533         case 0x7d: /* FRSQRTE */
12534             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12535             break;
12536         default:
12537             g_assert_not_reached();
12538         }
12539 
12540         /* limit any sign extension going on */
12541         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12542         write_fp_sreg(s, rd, tcg_res);
12543     } else {
12544         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12545             TCGv_i32 tcg_op = tcg_temp_new_i32();
12546             TCGv_i32 tcg_res = tcg_temp_new_i32();
12547 
12548             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12549 
12550             switch (fpop) {
12551             case 0x1a: /* FCVTNS */
12552             case 0x1b: /* FCVTMS */
12553             case 0x1c: /* FCVTAS */
12554             case 0x3a: /* FCVTPS */
12555             case 0x3b: /* FCVTZS */
12556                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12557                 break;
12558             case 0x3d: /* FRECPE */
12559                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12560                 break;
12561             case 0x5a: /* FCVTNU */
12562             case 0x5b: /* FCVTMU */
12563             case 0x5c: /* FCVTAU */
12564             case 0x7a: /* FCVTPU */
12565             case 0x7b: /* FCVTZU */
12566                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12567                 break;
12568             case 0x18: /* FRINTN */
12569             case 0x19: /* FRINTM */
12570             case 0x38: /* FRINTP */
12571             case 0x39: /* FRINTZ */
12572             case 0x58: /* FRINTA */
12573             case 0x79: /* FRINTI */
12574                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12575                 break;
12576             case 0x59: /* FRINTX */
12577                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12578                 break;
12579             case 0x2f: /* FABS */
12580                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12581                 break;
12582             case 0x6f: /* FNEG */
12583                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12584                 break;
12585             case 0x7d: /* FRSQRTE */
12586                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12587                 break;
12588             case 0x7f: /* FSQRT */
12589                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12590                 break;
12591             default:
12592                 g_assert_not_reached();
12593             }
12594 
12595             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12596         }
12597 
12598         clear_vec_high(s, is_q, rd);
12599     }
12600 
12601     if (tcg_rmode) {
12602         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12603     }
12604 }
12605 
12606 /* AdvSIMD scalar x indexed element
12607  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12608  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12609  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12610  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12611  * AdvSIMD vector x indexed element
12612  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12613  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12614  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12615  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12616  */
12617 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12618 {
12619     /* This encoding has two kinds of instruction:
12620      *  normal, where we perform elt x idxelt => elt for each
12621      *     element in the vector
12622      *  long, where we perform elt x idxelt and generate a result of
12623      *     double the width of the input element
12624      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12625      */
12626     bool is_scalar = extract32(insn, 28, 1);
12627     bool is_q = extract32(insn, 30, 1);
12628     bool u = extract32(insn, 29, 1);
12629     int size = extract32(insn, 22, 2);
12630     int l = extract32(insn, 21, 1);
12631     int m = extract32(insn, 20, 1);
12632     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12633     int rm = extract32(insn, 16, 4);
12634     int opcode = extract32(insn, 12, 4);
12635     int h = extract32(insn, 11, 1);
12636     int rn = extract32(insn, 5, 5);
12637     int rd = extract32(insn, 0, 5);
12638     bool is_long = false;
12639     int is_fp = 0;
12640     bool is_fp16 = false;
12641     int index;
12642     TCGv_ptr fpst;
12643 
12644     switch (16 * u + opcode) {
12645     case 0x08: /* MUL */
12646     case 0x10: /* MLA */
12647     case 0x14: /* MLS */
12648         if (is_scalar) {
12649             unallocated_encoding(s);
12650             return;
12651         }
12652         break;
12653     case 0x02: /* SMLAL, SMLAL2 */
12654     case 0x12: /* UMLAL, UMLAL2 */
12655     case 0x06: /* SMLSL, SMLSL2 */
12656     case 0x16: /* UMLSL, UMLSL2 */
12657     case 0x0a: /* SMULL, SMULL2 */
12658     case 0x1a: /* UMULL, UMULL2 */
12659         if (is_scalar) {
12660             unallocated_encoding(s);
12661             return;
12662         }
12663         is_long = true;
12664         break;
12665     case 0x03: /* SQDMLAL, SQDMLAL2 */
12666     case 0x07: /* SQDMLSL, SQDMLSL2 */
12667     case 0x0b: /* SQDMULL, SQDMULL2 */
12668         is_long = true;
12669         break;
12670     case 0x0c: /* SQDMULH */
12671     case 0x0d: /* SQRDMULH */
12672         break;
12673     case 0x01: /* FMLA */
12674     case 0x05: /* FMLS */
12675     case 0x09: /* FMUL */
12676     case 0x19: /* FMULX */
12677         is_fp = 1;
12678         break;
12679     case 0x1d: /* SQRDMLAH */
12680     case 0x1f: /* SQRDMLSH */
12681         if (!dc_isar_feature(aa64_rdm, s)) {
12682             unallocated_encoding(s);
12683             return;
12684         }
12685         break;
12686     case 0x0e: /* SDOT */
12687     case 0x1e: /* UDOT */
12688         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12689             unallocated_encoding(s);
12690             return;
12691         }
12692         break;
12693     case 0x0f:
12694         switch (size) {
12695         case 0: /* SUDOT */
12696         case 2: /* USDOT */
12697             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12698                 unallocated_encoding(s);
12699                 return;
12700             }
12701             size = MO_32;
12702             break;
12703         case 1: /* BFDOT */
12704             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12705                 unallocated_encoding(s);
12706                 return;
12707             }
12708             size = MO_32;
12709             break;
12710         case 3: /* BFMLAL{B,T} */
12711             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12712                 unallocated_encoding(s);
12713                 return;
12714             }
12715             /* can't set is_fp without other incorrect size checks */
12716             size = MO_16;
12717             break;
12718         default:
12719             unallocated_encoding(s);
12720             return;
12721         }
12722         break;
12723     case 0x11: /* FCMLA #0 */
12724     case 0x13: /* FCMLA #90 */
12725     case 0x15: /* FCMLA #180 */
12726     case 0x17: /* FCMLA #270 */
12727         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12728             unallocated_encoding(s);
12729             return;
12730         }
12731         is_fp = 2;
12732         break;
12733     case 0x00: /* FMLAL */
12734     case 0x04: /* FMLSL */
12735     case 0x18: /* FMLAL2 */
12736     case 0x1c: /* FMLSL2 */
12737         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12738             unallocated_encoding(s);
12739             return;
12740         }
12741         size = MO_16;
12742         /* is_fp, but we pass tcg_env not fp_status.  */
12743         break;
12744     default:
12745         unallocated_encoding(s);
12746         return;
12747     }
12748 
12749     switch (is_fp) {
12750     case 1: /* normal fp */
12751         /* convert insn encoded size to MemOp size */
12752         switch (size) {
12753         case 0: /* half-precision */
12754             size = MO_16;
12755             is_fp16 = true;
12756             break;
12757         case MO_32: /* single precision */
12758         case MO_64: /* double precision */
12759             break;
12760         default:
12761             unallocated_encoding(s);
12762             return;
12763         }
12764         break;
12765 
12766     case 2: /* complex fp */
12767         /* Each indexable element is a complex pair.  */
12768         size += 1;
12769         switch (size) {
12770         case MO_32:
12771             if (h && !is_q) {
12772                 unallocated_encoding(s);
12773                 return;
12774             }
12775             is_fp16 = true;
12776             break;
12777         case MO_64:
12778             break;
12779         default:
12780             unallocated_encoding(s);
12781             return;
12782         }
12783         break;
12784 
12785     default: /* integer */
12786         switch (size) {
12787         case MO_8:
12788         case MO_64:
12789             unallocated_encoding(s);
12790             return;
12791         }
12792         break;
12793     }
12794     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12795         unallocated_encoding(s);
12796         return;
12797     }
12798 
12799     /* Given MemOp size, adjust register and indexing.  */
12800     switch (size) {
12801     case MO_16:
12802         index = h << 2 | l << 1 | m;
12803         break;
12804     case MO_32:
12805         index = h << 1 | l;
12806         rm |= m << 4;
12807         break;
12808     case MO_64:
12809         if (l || !is_q) {
12810             unallocated_encoding(s);
12811             return;
12812         }
12813         index = h;
12814         rm |= m << 4;
12815         break;
12816     default:
12817         g_assert_not_reached();
12818     }
12819 
12820     if (!fp_access_check(s)) {
12821         return;
12822     }
12823 
12824     if (is_fp) {
12825         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12826     } else {
12827         fpst = NULL;
12828     }
12829 
12830     switch (16 * u + opcode) {
12831     case 0x0e: /* SDOT */
12832     case 0x1e: /* UDOT */
12833         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12834                          u ? gen_helper_gvec_udot_idx_b
12835                          : gen_helper_gvec_sdot_idx_b);
12836         return;
12837     case 0x0f:
12838         switch (extract32(insn, 22, 2)) {
12839         case 0: /* SUDOT */
12840             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12841                              gen_helper_gvec_sudot_idx_b);
12842             return;
12843         case 1: /* BFDOT */
12844             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12845                              gen_helper_gvec_bfdot_idx);
12846             return;
12847         case 2: /* USDOT */
12848             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12849                              gen_helper_gvec_usdot_idx_b);
12850             return;
12851         case 3: /* BFMLAL{B,T} */
12852             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12853                               gen_helper_gvec_bfmlal_idx);
12854             return;
12855         }
12856         g_assert_not_reached();
12857     case 0x11: /* FCMLA #0 */
12858     case 0x13: /* FCMLA #90 */
12859     case 0x15: /* FCMLA #180 */
12860     case 0x17: /* FCMLA #270 */
12861         {
12862             int rot = extract32(insn, 13, 2);
12863             int data = (index << 2) | rot;
12864             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12865                                vec_full_reg_offset(s, rn),
12866                                vec_full_reg_offset(s, rm),
12867                                vec_full_reg_offset(s, rd), fpst,
12868                                is_q ? 16 : 8, vec_full_reg_size(s), data,
12869                                size == MO_64
12870                                ? gen_helper_gvec_fcmlas_idx
12871                                : gen_helper_gvec_fcmlah_idx);
12872         }
12873         return;
12874 
12875     case 0x00: /* FMLAL */
12876     case 0x04: /* FMLSL */
12877     case 0x18: /* FMLAL2 */
12878     case 0x1c: /* FMLSL2 */
12879         {
12880             int is_s = extract32(opcode, 2, 1);
12881             int is_2 = u;
12882             int data = (index << 2) | (is_2 << 1) | is_s;
12883             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12884                                vec_full_reg_offset(s, rn),
12885                                vec_full_reg_offset(s, rm), tcg_env,
12886                                is_q ? 16 : 8, vec_full_reg_size(s),
12887                                data, gen_helper_gvec_fmlal_idx_a64);
12888         }
12889         return;
12890 
12891     case 0x08: /* MUL */
12892         if (!is_long && !is_scalar) {
12893             static gen_helper_gvec_3 * const fns[3] = {
12894                 gen_helper_gvec_mul_idx_h,
12895                 gen_helper_gvec_mul_idx_s,
12896                 gen_helper_gvec_mul_idx_d,
12897             };
12898             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12899                                vec_full_reg_offset(s, rn),
12900                                vec_full_reg_offset(s, rm),
12901                                is_q ? 16 : 8, vec_full_reg_size(s),
12902                                index, fns[size - 1]);
12903             return;
12904         }
12905         break;
12906 
12907     case 0x10: /* MLA */
12908         if (!is_long && !is_scalar) {
12909             static gen_helper_gvec_4 * const fns[3] = {
12910                 gen_helper_gvec_mla_idx_h,
12911                 gen_helper_gvec_mla_idx_s,
12912                 gen_helper_gvec_mla_idx_d,
12913             };
12914             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12915                                vec_full_reg_offset(s, rn),
12916                                vec_full_reg_offset(s, rm),
12917                                vec_full_reg_offset(s, rd),
12918                                is_q ? 16 : 8, vec_full_reg_size(s),
12919                                index, fns[size - 1]);
12920             return;
12921         }
12922         break;
12923 
12924     case 0x14: /* MLS */
12925         if (!is_long && !is_scalar) {
12926             static gen_helper_gvec_4 * const fns[3] = {
12927                 gen_helper_gvec_mls_idx_h,
12928                 gen_helper_gvec_mls_idx_s,
12929                 gen_helper_gvec_mls_idx_d,
12930             };
12931             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12932                                vec_full_reg_offset(s, rn),
12933                                vec_full_reg_offset(s, rm),
12934                                vec_full_reg_offset(s, rd),
12935                                is_q ? 16 : 8, vec_full_reg_size(s),
12936                                index, fns[size - 1]);
12937             return;
12938         }
12939         break;
12940     }
12941 
12942     if (size == 3) {
12943         TCGv_i64 tcg_idx = tcg_temp_new_i64();
12944         int pass;
12945 
12946         assert(is_fp && is_q && !is_long);
12947 
12948         read_vec_element(s, tcg_idx, rm, index, MO_64);
12949 
12950         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12951             TCGv_i64 tcg_op = tcg_temp_new_i64();
12952             TCGv_i64 tcg_res = tcg_temp_new_i64();
12953 
12954             read_vec_element(s, tcg_op, rn, pass, MO_64);
12955 
12956             switch (16 * u + opcode) {
12957             case 0x05: /* FMLS */
12958                 /* As usual for ARM, separate negation for fused multiply-add */
12959                 gen_helper_vfp_negd(tcg_op, tcg_op);
12960                 /* fall through */
12961             case 0x01: /* FMLA */
12962                 read_vec_element(s, tcg_res, rd, pass, MO_64);
12963                 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12964                 break;
12965             case 0x09: /* FMUL */
12966                 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12967                 break;
12968             case 0x19: /* FMULX */
12969                 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12970                 break;
12971             default:
12972                 g_assert_not_reached();
12973             }
12974 
12975             write_vec_element(s, tcg_res, rd, pass, MO_64);
12976         }
12977 
12978         clear_vec_high(s, !is_scalar, rd);
12979     } else if (!is_long) {
12980         /* 32 bit floating point, or 16 or 32 bit integer.
12981          * For the 16 bit scalar case we use the usual Neon helpers and
12982          * rely on the fact that 0 op 0 == 0 with no side effects.
12983          */
12984         TCGv_i32 tcg_idx = tcg_temp_new_i32();
12985         int pass, maxpasses;
12986 
12987         if (is_scalar) {
12988             maxpasses = 1;
12989         } else {
12990             maxpasses = is_q ? 4 : 2;
12991         }
12992 
12993         read_vec_element_i32(s, tcg_idx, rm, index, size);
12994 
12995         if (size == 1 && !is_scalar) {
12996             /* The simplest way to handle the 16x16 indexed ops is to duplicate
12997              * the index into both halves of the 32 bit tcg_idx and then use
12998              * the usual Neon helpers.
12999              */
13000             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13001         }
13002 
13003         for (pass = 0; pass < maxpasses; pass++) {
13004             TCGv_i32 tcg_op = tcg_temp_new_i32();
13005             TCGv_i32 tcg_res = tcg_temp_new_i32();
13006 
13007             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13008 
13009             switch (16 * u + opcode) {
13010             case 0x08: /* MUL */
13011             case 0x10: /* MLA */
13012             case 0x14: /* MLS */
13013             {
13014                 static NeonGenTwoOpFn * const fns[2][2] = {
13015                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13016                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13017                 };
13018                 NeonGenTwoOpFn *genfn;
13019                 bool is_sub = opcode == 0x4;
13020 
13021                 if (size == 1) {
13022                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13023                 } else {
13024                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13025                 }
13026                 if (opcode == 0x8) {
13027                     break;
13028                 }
13029                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13030                 genfn = fns[size - 1][is_sub];
13031                 genfn(tcg_res, tcg_op, tcg_res);
13032                 break;
13033             }
13034             case 0x05: /* FMLS */
13035             case 0x01: /* FMLA */
13036                 read_vec_element_i32(s, tcg_res, rd, pass,
13037                                      is_scalar ? size : MO_32);
13038                 switch (size) {
13039                 case 1:
13040                     if (opcode == 0x5) {
13041                         /* As usual for ARM, separate negation for fused
13042                          * multiply-add */
13043                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13044                     }
13045                     if (is_scalar) {
13046                         gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13047                                                    tcg_res, fpst);
13048                     } else {
13049                         gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13050                                                     tcg_res, fpst);
13051                     }
13052                     break;
13053                 case 2:
13054                     if (opcode == 0x5) {
13055                         /* As usual for ARM, separate negation for
13056                          * fused multiply-add */
13057                         tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13058                     }
13059                     gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13060                                            tcg_res, fpst);
13061                     break;
13062                 default:
13063                     g_assert_not_reached();
13064                 }
13065                 break;
13066             case 0x09: /* FMUL */
13067                 switch (size) {
13068                 case 1:
13069                     if (is_scalar) {
13070                         gen_helper_advsimd_mulh(tcg_res, tcg_op,
13071                                                 tcg_idx, fpst);
13072                     } else {
13073                         gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13074                                                  tcg_idx, fpst);
13075                     }
13076                     break;
13077                 case 2:
13078                     gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13079                     break;
13080                 default:
13081                     g_assert_not_reached();
13082                 }
13083                 break;
13084             case 0x19: /* FMULX */
13085                 switch (size) {
13086                 case 1:
13087                     if (is_scalar) {
13088                         gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13089                                                  tcg_idx, fpst);
13090                     } else {
13091                         gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13092                                                   tcg_idx, fpst);
13093                     }
13094                     break;
13095                 case 2:
13096                     gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13097                     break;
13098                 default:
13099                     g_assert_not_reached();
13100                 }
13101                 break;
13102             case 0x0c: /* SQDMULH */
13103                 if (size == 1) {
13104                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13105                                                tcg_op, tcg_idx);
13106                 } else {
13107                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13108                                                tcg_op, tcg_idx);
13109                 }
13110                 break;
13111             case 0x0d: /* SQRDMULH */
13112                 if (size == 1) {
13113                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13114                                                 tcg_op, tcg_idx);
13115                 } else {
13116                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13117                                                 tcg_op, tcg_idx);
13118                 }
13119                 break;
13120             case 0x1d: /* SQRDMLAH */
13121                 read_vec_element_i32(s, tcg_res, rd, pass,
13122                                      is_scalar ? size : MO_32);
13123                 if (size == 1) {
13124                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13125                                                 tcg_op, tcg_idx, tcg_res);
13126                 } else {
13127                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13128                                                 tcg_op, tcg_idx, tcg_res);
13129                 }
13130                 break;
13131             case 0x1f: /* SQRDMLSH */
13132                 read_vec_element_i32(s, tcg_res, rd, pass,
13133                                      is_scalar ? size : MO_32);
13134                 if (size == 1) {
13135                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13136                                                 tcg_op, tcg_idx, tcg_res);
13137                 } else {
13138                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13139                                                 tcg_op, tcg_idx, tcg_res);
13140                 }
13141                 break;
13142             default:
13143                 g_assert_not_reached();
13144             }
13145 
13146             if (is_scalar) {
13147                 write_fp_sreg(s, rd, tcg_res);
13148             } else {
13149                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13150             }
13151         }
13152 
13153         clear_vec_high(s, is_q, rd);
13154     } else {
13155         /* long ops: 16x16->32 or 32x32->64 */
13156         TCGv_i64 tcg_res[2];
13157         int pass;
13158         bool satop = extract32(opcode, 0, 1);
13159         MemOp memop = MO_32;
13160 
13161         if (satop || !u) {
13162             memop |= MO_SIGN;
13163         }
13164 
13165         if (size == 2) {
13166             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13167 
13168             read_vec_element(s, tcg_idx, rm, index, memop);
13169 
13170             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13171                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13172                 TCGv_i64 tcg_passres;
13173                 int passelt;
13174 
13175                 if (is_scalar) {
13176                     passelt = 0;
13177                 } else {
13178                     passelt = pass + (is_q * 2);
13179                 }
13180 
13181                 read_vec_element(s, tcg_op, rn, passelt, memop);
13182 
13183                 tcg_res[pass] = tcg_temp_new_i64();
13184 
13185                 if (opcode == 0xa || opcode == 0xb) {
13186                     /* Non-accumulating ops */
13187                     tcg_passres = tcg_res[pass];
13188                 } else {
13189                     tcg_passres = tcg_temp_new_i64();
13190                 }
13191 
13192                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13193 
13194                 if (satop) {
13195                     /* saturating, doubling */
13196                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13197                                                       tcg_passres, tcg_passres);
13198                 }
13199 
13200                 if (opcode == 0xa || opcode == 0xb) {
13201                     continue;
13202                 }
13203 
13204                 /* Accumulating op: handle accumulate step */
13205                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13206 
13207                 switch (opcode) {
13208                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13209                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13210                     break;
13211                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13212                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13213                     break;
13214                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13215                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13216                     /* fall through */
13217                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13218                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13219                                                       tcg_res[pass],
13220                                                       tcg_passres);
13221                     break;
13222                 default:
13223                     g_assert_not_reached();
13224                 }
13225             }
13226 
13227             clear_vec_high(s, !is_scalar, rd);
13228         } else {
13229             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13230 
13231             assert(size == 1);
13232             read_vec_element_i32(s, tcg_idx, rm, index, size);
13233 
13234             if (!is_scalar) {
13235                 /* The simplest way to handle the 16x16 indexed ops is to
13236                  * duplicate the index into both halves of the 32 bit tcg_idx
13237                  * and then use the usual Neon helpers.
13238                  */
13239                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13240             }
13241 
13242             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13243                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13244                 TCGv_i64 tcg_passres;
13245 
13246                 if (is_scalar) {
13247                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13248                 } else {
13249                     read_vec_element_i32(s, tcg_op, rn,
13250                                          pass + (is_q * 2), MO_32);
13251                 }
13252 
13253                 tcg_res[pass] = tcg_temp_new_i64();
13254 
13255                 if (opcode == 0xa || opcode == 0xb) {
13256                     /* Non-accumulating ops */
13257                     tcg_passres = tcg_res[pass];
13258                 } else {
13259                     tcg_passres = tcg_temp_new_i64();
13260                 }
13261 
13262                 if (memop & MO_SIGN) {
13263                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13264                 } else {
13265                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13266                 }
13267                 if (satop) {
13268                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13269                                                       tcg_passres, tcg_passres);
13270                 }
13271 
13272                 if (opcode == 0xa || opcode == 0xb) {
13273                     continue;
13274                 }
13275 
13276                 /* Accumulating op: handle accumulate step */
13277                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13278 
13279                 switch (opcode) {
13280                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13281                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13282                                              tcg_passres);
13283                     break;
13284                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13285                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13286                                              tcg_passres);
13287                     break;
13288                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13289                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13290                     /* fall through */
13291                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13292                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13293                                                       tcg_res[pass],
13294                                                       tcg_passres);
13295                     break;
13296                 default:
13297                     g_assert_not_reached();
13298                 }
13299             }
13300 
13301             if (is_scalar) {
13302                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13303             }
13304         }
13305 
13306         if (is_scalar) {
13307             tcg_res[1] = tcg_constant_i64(0);
13308         }
13309 
13310         for (pass = 0; pass < 2; pass++) {
13311             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13312         }
13313     }
13314 }
13315 
13316 /* Crypto AES
13317  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13318  * +-----------------+------+-----------+--------+-----+------+------+
13319  * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13320  * +-----------------+------+-----------+--------+-----+------+------+
13321  */
13322 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13323 {
13324     int size = extract32(insn, 22, 2);
13325     int opcode = extract32(insn, 12, 5);
13326     int rn = extract32(insn, 5, 5);
13327     int rd = extract32(insn, 0, 5);
13328     gen_helper_gvec_2 *genfn2 = NULL;
13329     gen_helper_gvec_3 *genfn3 = NULL;
13330 
13331     if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13332         unallocated_encoding(s);
13333         return;
13334     }
13335 
13336     switch (opcode) {
13337     case 0x4: /* AESE */
13338         genfn3 = gen_helper_crypto_aese;
13339         break;
13340     case 0x6: /* AESMC */
13341         genfn2 = gen_helper_crypto_aesmc;
13342         break;
13343     case 0x5: /* AESD */
13344         genfn3 = gen_helper_crypto_aesd;
13345         break;
13346     case 0x7: /* AESIMC */
13347         genfn2 = gen_helper_crypto_aesimc;
13348         break;
13349     default:
13350         unallocated_encoding(s);
13351         return;
13352     }
13353 
13354     if (!fp_access_check(s)) {
13355         return;
13356     }
13357     if (genfn2) {
13358         gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13359     } else {
13360         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13361     }
13362 }
13363 
13364 /* Crypto three-reg SHA
13365  *  31             24 23  22  21 20  16  15 14    12 11 10 9    5 4    0
13366  * +-----------------+------+---+------+---+--------+-----+------+------+
13367  * | 0 1 0 1 1 1 1 0 | size | 0 |  Rm  | 0 | opcode | 0 0 |  Rn  |  Rd  |
13368  * +-----------------+------+---+------+---+--------+-----+------+------+
13369  */
13370 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13371 {
13372     int size = extract32(insn, 22, 2);
13373     int opcode = extract32(insn, 12, 3);
13374     int rm = extract32(insn, 16, 5);
13375     int rn = extract32(insn, 5, 5);
13376     int rd = extract32(insn, 0, 5);
13377     gen_helper_gvec_3 *genfn;
13378     bool feature;
13379 
13380     if (size != 0) {
13381         unallocated_encoding(s);
13382         return;
13383     }
13384 
13385     switch (opcode) {
13386     case 0: /* SHA1C */
13387         genfn = gen_helper_crypto_sha1c;
13388         feature = dc_isar_feature(aa64_sha1, s);
13389         break;
13390     case 1: /* SHA1P */
13391         genfn = gen_helper_crypto_sha1p;
13392         feature = dc_isar_feature(aa64_sha1, s);
13393         break;
13394     case 2: /* SHA1M */
13395         genfn = gen_helper_crypto_sha1m;
13396         feature = dc_isar_feature(aa64_sha1, s);
13397         break;
13398     case 3: /* SHA1SU0 */
13399         genfn = gen_helper_crypto_sha1su0;
13400         feature = dc_isar_feature(aa64_sha1, s);
13401         break;
13402     case 4: /* SHA256H */
13403         genfn = gen_helper_crypto_sha256h;
13404         feature = dc_isar_feature(aa64_sha256, s);
13405         break;
13406     case 5: /* SHA256H2 */
13407         genfn = gen_helper_crypto_sha256h2;
13408         feature = dc_isar_feature(aa64_sha256, s);
13409         break;
13410     case 6: /* SHA256SU1 */
13411         genfn = gen_helper_crypto_sha256su1;
13412         feature = dc_isar_feature(aa64_sha256, s);
13413         break;
13414     default:
13415         unallocated_encoding(s);
13416         return;
13417     }
13418 
13419     if (!feature) {
13420         unallocated_encoding(s);
13421         return;
13422     }
13423 
13424     if (!fp_access_check(s)) {
13425         return;
13426     }
13427     gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13428 }
13429 
13430 /* Crypto two-reg SHA
13431  *  31             24 23  22 21       17 16    12 11 10 9    5 4    0
13432  * +-----------------+------+-----------+--------+-----+------+------+
13433  * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
13434  * +-----------------+------+-----------+--------+-----+------+------+
13435  */
13436 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13437 {
13438     int size = extract32(insn, 22, 2);
13439     int opcode = extract32(insn, 12, 5);
13440     int rn = extract32(insn, 5, 5);
13441     int rd = extract32(insn, 0, 5);
13442     gen_helper_gvec_2 *genfn;
13443     bool feature;
13444 
13445     if (size != 0) {
13446         unallocated_encoding(s);
13447         return;
13448     }
13449 
13450     switch (opcode) {
13451     case 0: /* SHA1H */
13452         feature = dc_isar_feature(aa64_sha1, s);
13453         genfn = gen_helper_crypto_sha1h;
13454         break;
13455     case 1: /* SHA1SU1 */
13456         feature = dc_isar_feature(aa64_sha1, s);
13457         genfn = gen_helper_crypto_sha1su1;
13458         break;
13459     case 2: /* SHA256SU0 */
13460         feature = dc_isar_feature(aa64_sha256, s);
13461         genfn = gen_helper_crypto_sha256su0;
13462         break;
13463     default:
13464         unallocated_encoding(s);
13465         return;
13466     }
13467 
13468     if (!feature) {
13469         unallocated_encoding(s);
13470         return;
13471     }
13472 
13473     if (!fp_access_check(s)) {
13474         return;
13475     }
13476     gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13477 }
13478 
13479 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13480 {
13481     tcg_gen_rotli_i64(d, m, 1);
13482     tcg_gen_xor_i64(d, d, n);
13483 }
13484 
13485 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13486 {
13487     tcg_gen_rotli_vec(vece, d, m, 1);
13488     tcg_gen_xor_vec(vece, d, d, n);
13489 }
13490 
13491 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13492                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13493 {
13494     static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13495     static const GVecGen3 op = {
13496         .fni8 = gen_rax1_i64,
13497         .fniv = gen_rax1_vec,
13498         .opt_opc = vecop_list,
13499         .fno = gen_helper_crypto_rax1,
13500         .vece = MO_64,
13501     };
13502     tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13503 }
13504 
13505 /* Crypto three-reg SHA512
13506  *  31                   21 20  16 15  14  13 12  11  10  9    5 4    0
13507  * +-----------------------+------+---+---+-----+--------+------+------+
13508  * | 1 1 0 0 1 1 1 0 0 1 1 |  Rm  | 1 | O | 0 0 | opcode |  Rn  |  Rd  |
13509  * +-----------------------+------+---+---+-----+--------+------+------+
13510  */
13511 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13512 {
13513     int opcode = extract32(insn, 10, 2);
13514     int o =  extract32(insn, 14, 1);
13515     int rm = extract32(insn, 16, 5);
13516     int rn = extract32(insn, 5, 5);
13517     int rd = extract32(insn, 0, 5);
13518     bool feature;
13519     gen_helper_gvec_3 *oolfn = NULL;
13520     GVecGen3Fn *gvecfn = NULL;
13521 
13522     if (o == 0) {
13523         switch (opcode) {
13524         case 0: /* SHA512H */
13525             feature = dc_isar_feature(aa64_sha512, s);
13526             oolfn = gen_helper_crypto_sha512h;
13527             break;
13528         case 1: /* SHA512H2 */
13529             feature = dc_isar_feature(aa64_sha512, s);
13530             oolfn = gen_helper_crypto_sha512h2;
13531             break;
13532         case 2: /* SHA512SU1 */
13533             feature = dc_isar_feature(aa64_sha512, s);
13534             oolfn = gen_helper_crypto_sha512su1;
13535             break;
13536         case 3: /* RAX1 */
13537             feature = dc_isar_feature(aa64_sha3, s);
13538             gvecfn = gen_gvec_rax1;
13539             break;
13540         default:
13541             g_assert_not_reached();
13542         }
13543     } else {
13544         switch (opcode) {
13545         case 0: /* SM3PARTW1 */
13546             feature = dc_isar_feature(aa64_sm3, s);
13547             oolfn = gen_helper_crypto_sm3partw1;
13548             break;
13549         case 1: /* SM3PARTW2 */
13550             feature = dc_isar_feature(aa64_sm3, s);
13551             oolfn = gen_helper_crypto_sm3partw2;
13552             break;
13553         case 2: /* SM4EKEY */
13554             feature = dc_isar_feature(aa64_sm4, s);
13555             oolfn = gen_helper_crypto_sm4ekey;
13556             break;
13557         default:
13558             unallocated_encoding(s);
13559             return;
13560         }
13561     }
13562 
13563     if (!feature) {
13564         unallocated_encoding(s);
13565         return;
13566     }
13567 
13568     if (!fp_access_check(s)) {
13569         return;
13570     }
13571 
13572     if (oolfn) {
13573         gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13574     } else {
13575         gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13576     }
13577 }
13578 
13579 /* Crypto two-reg SHA512
13580  *  31                                     12  11  10  9    5 4    0
13581  * +-----------------------------------------+--------+------+------+
13582  * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode |  Rn  |  Rd  |
13583  * +-----------------------------------------+--------+------+------+
13584  */
13585 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13586 {
13587     int opcode = extract32(insn, 10, 2);
13588     int rn = extract32(insn, 5, 5);
13589     int rd = extract32(insn, 0, 5);
13590     bool feature;
13591 
13592     switch (opcode) {
13593     case 0: /* SHA512SU0 */
13594         feature = dc_isar_feature(aa64_sha512, s);
13595         break;
13596     case 1: /* SM4E */
13597         feature = dc_isar_feature(aa64_sm4, s);
13598         break;
13599     default:
13600         unallocated_encoding(s);
13601         return;
13602     }
13603 
13604     if (!feature) {
13605         unallocated_encoding(s);
13606         return;
13607     }
13608 
13609     if (!fp_access_check(s)) {
13610         return;
13611     }
13612 
13613     switch (opcode) {
13614     case 0: /* SHA512SU0 */
13615         gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13616         break;
13617     case 1: /* SM4E */
13618         gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13619         break;
13620     default:
13621         g_assert_not_reached();
13622     }
13623 }
13624 
13625 /* Crypto four-register
13626  *  31               23 22 21 20  16 15  14  10 9    5 4    0
13627  * +-------------------+-----+------+---+------+------+------+
13628  * | 1 1 0 0 1 1 1 0 0 | Op0 |  Rm  | 0 |  Ra  |  Rn  |  Rd  |
13629  * +-------------------+-----+------+---+------+------+------+
13630  */
13631 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13632 {
13633     int op0 = extract32(insn, 21, 2);
13634     int rm = extract32(insn, 16, 5);
13635     int ra = extract32(insn, 10, 5);
13636     int rn = extract32(insn, 5, 5);
13637     int rd = extract32(insn, 0, 5);
13638     bool feature;
13639 
13640     switch (op0) {
13641     case 0: /* EOR3 */
13642     case 1: /* BCAX */
13643         feature = dc_isar_feature(aa64_sha3, s);
13644         break;
13645     case 2: /* SM3SS1 */
13646         feature = dc_isar_feature(aa64_sm3, s);
13647         break;
13648     default:
13649         unallocated_encoding(s);
13650         return;
13651     }
13652 
13653     if (!feature) {
13654         unallocated_encoding(s);
13655         return;
13656     }
13657 
13658     if (!fp_access_check(s)) {
13659         return;
13660     }
13661 
13662     if (op0 < 2) {
13663         TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13664         int pass;
13665 
13666         tcg_op1 = tcg_temp_new_i64();
13667         tcg_op2 = tcg_temp_new_i64();
13668         tcg_op3 = tcg_temp_new_i64();
13669         tcg_res[0] = tcg_temp_new_i64();
13670         tcg_res[1] = tcg_temp_new_i64();
13671 
13672         for (pass = 0; pass < 2; pass++) {
13673             read_vec_element(s, tcg_op1, rn, pass, MO_64);
13674             read_vec_element(s, tcg_op2, rm, pass, MO_64);
13675             read_vec_element(s, tcg_op3, ra, pass, MO_64);
13676 
13677             if (op0 == 0) {
13678                 /* EOR3 */
13679                 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13680             } else {
13681                 /* BCAX */
13682                 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13683             }
13684             tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13685         }
13686         write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13687         write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13688     } else {
13689         TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13690 
13691         tcg_op1 = tcg_temp_new_i32();
13692         tcg_op2 = tcg_temp_new_i32();
13693         tcg_op3 = tcg_temp_new_i32();
13694         tcg_res = tcg_temp_new_i32();
13695         tcg_zero = tcg_constant_i32(0);
13696 
13697         read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13698         read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13699         read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13700 
13701         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13702         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13703         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13704         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13705 
13706         write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13707         write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13708         write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13709         write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13710     }
13711 }
13712 
13713 /* Crypto XAR
13714  *  31                   21 20  16 15    10 9    5 4    0
13715  * +-----------------------+------+--------+------+------+
13716  * | 1 1 0 0 1 1 1 0 1 0 0 |  Rm  |  imm6  |  Rn  |  Rd  |
13717  * +-----------------------+------+--------+------+------+
13718  */
13719 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13720 {
13721     int rm = extract32(insn, 16, 5);
13722     int imm6 = extract32(insn, 10, 6);
13723     int rn = extract32(insn, 5, 5);
13724     int rd = extract32(insn, 0, 5);
13725 
13726     if (!dc_isar_feature(aa64_sha3, s)) {
13727         unallocated_encoding(s);
13728         return;
13729     }
13730 
13731     if (!fp_access_check(s)) {
13732         return;
13733     }
13734 
13735     gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13736                  vec_full_reg_offset(s, rn),
13737                  vec_full_reg_offset(s, rm), imm6, 16,
13738                  vec_full_reg_size(s));
13739 }
13740 
13741 /* Crypto three-reg imm2
13742  *  31                   21 20  16 15  14 13 12  11  10  9    5 4    0
13743  * +-----------------------+------+-----+------+--------+------+------+
13744  * | 1 1 0 0 1 1 1 0 0 1 0 |  Rm  | 1 0 | imm2 | opcode |  Rn  |  Rd  |
13745  * +-----------------------+------+-----+------+--------+------+------+
13746  */
13747 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13748 {
13749     static gen_helper_gvec_3 * const fns[4] = {
13750         gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13751         gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13752     };
13753     int opcode = extract32(insn, 10, 2);
13754     int imm2 = extract32(insn, 12, 2);
13755     int rm = extract32(insn, 16, 5);
13756     int rn = extract32(insn, 5, 5);
13757     int rd = extract32(insn, 0, 5);
13758 
13759     if (!dc_isar_feature(aa64_sm3, s)) {
13760         unallocated_encoding(s);
13761         return;
13762     }
13763 
13764     if (!fp_access_check(s)) {
13765         return;
13766     }
13767 
13768     gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13769 }
13770 
13771 /* C3.6 Data processing - SIMD, inc Crypto
13772  *
13773  * As the decode gets a little complex we are using a table based
13774  * approach for this part of the decode.
13775  */
13776 static const AArch64DecodeTable data_proc_simd[] = {
13777     /* pattern  ,  mask     ,  fn                        */
13778     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13779     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13780     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13781     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13782     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13783     { 0x0e000400, 0x9fe08400, disas_simd_copy },
13784     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13785     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13786     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13787     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13788     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13789     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13790     { 0x2e000000, 0xbf208400, disas_simd_ext },
13791     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13792     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13793     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13794     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13795     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13796     { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13797     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13798     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13799     { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13800     { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13801     { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13802     { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13803     { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13804     { 0xce000000, 0xff808000, disas_crypto_four_reg },
13805     { 0xce800000, 0xffe00000, disas_crypto_xar },
13806     { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13807     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13808     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13809     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13810     { 0x00000000, 0x00000000, NULL }
13811 };
13812 
13813 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13814 {
13815     /* Note that this is called with all non-FP cases from
13816      * table C3-6 so it must UNDEF for entries not specifically
13817      * allocated to instructions in that table.
13818      */
13819     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13820     if (fn) {
13821         fn(s, insn);
13822     } else {
13823         unallocated_encoding(s);
13824     }
13825 }
13826 
13827 /* C3.6 Data processing - SIMD and floating point */
13828 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13829 {
13830     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13831         disas_data_proc_fp(s, insn);
13832     } else {
13833         /* SIMD, including crypto */
13834         disas_data_proc_simd(s, insn);
13835     }
13836 }
13837 
13838 static bool trans_OK(DisasContext *s, arg_OK *a)
13839 {
13840     return true;
13841 }
13842 
13843 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13844 {
13845     s->is_nonstreaming = true;
13846     return true;
13847 }
13848 
13849 /**
13850  * is_guarded_page:
13851  * @env: The cpu environment
13852  * @s: The DisasContext
13853  *
13854  * Return true if the page is guarded.
13855  */
13856 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13857 {
13858     uint64_t addr = s->base.pc_first;
13859 #ifdef CONFIG_USER_ONLY
13860     return page_get_flags(addr) & PAGE_BTI;
13861 #else
13862     CPUTLBEntryFull *full;
13863     void *host;
13864     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13865     int flags;
13866 
13867     /*
13868      * We test this immediately after reading an insn, which means
13869      * that the TLB entry must be present and valid, and thus this
13870      * access will never raise an exception.
13871      */
13872     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13873                               false, &host, &full, 0);
13874     assert(!(flags & TLB_INVALID_MASK));
13875 
13876     return full->extra.arm.guarded;
13877 #endif
13878 }
13879 
13880 /**
13881  * btype_destination_ok:
13882  * @insn: The instruction at the branch destination
13883  * @bt: SCTLR_ELx.BT
13884  * @btype: PSTATE.BTYPE, and is non-zero
13885  *
13886  * On a guarded page, there are a limited number of insns
13887  * that may be present at the branch target:
13888  *   - branch target identifiers,
13889  *   - paciasp, pacibsp,
13890  *   - BRK insn
13891  *   - HLT insn
13892  * Anything else causes a Branch Target Exception.
13893  *
13894  * Return true if the branch is compatible, false to raise BTITRAP.
13895  */
13896 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13897 {
13898     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13899         /* HINT space */
13900         switch (extract32(insn, 5, 7)) {
13901         case 0b011001: /* PACIASP */
13902         case 0b011011: /* PACIBSP */
13903             /*
13904              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13905              * with btype == 3.  Otherwise all btype are ok.
13906              */
13907             return !bt || btype != 3;
13908         case 0b100000: /* BTI */
13909             /* Not compatible with any btype.  */
13910             return false;
13911         case 0b100010: /* BTI c */
13912             /* Not compatible with btype == 3 */
13913             return btype != 3;
13914         case 0b100100: /* BTI j */
13915             /* Not compatible with btype == 2 */
13916             return btype != 2;
13917         case 0b100110: /* BTI jc */
13918             /* Compatible with any btype.  */
13919             return true;
13920         }
13921     } else {
13922         switch (insn & 0xffe0001fu) {
13923         case 0xd4200000u: /* BRK */
13924         case 0xd4400000u: /* HLT */
13925             /* Give priority to the breakpoint exception.  */
13926             return true;
13927         }
13928     }
13929     return false;
13930 }
13931 
13932 /* C3.1 A64 instruction index by encoding */
13933 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13934 {
13935     switch (extract32(insn, 25, 4)) {
13936     case 0x5:
13937     case 0xd:      /* Data processing - register */
13938         disas_data_proc_reg(s, insn);
13939         break;
13940     case 0x7:
13941     case 0xf:      /* Data processing - SIMD and floating point */
13942         disas_data_proc_simd_fp(s, insn);
13943         break;
13944     default:
13945         unallocated_encoding(s);
13946         break;
13947     }
13948 }
13949 
13950 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13951                                           CPUState *cpu)
13952 {
13953     DisasContext *dc = container_of(dcbase, DisasContext, base);
13954     CPUARMState *env = cpu_env(cpu);
13955     ARMCPU *arm_cpu = env_archcpu(env);
13956     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13957     int bound, core_mmu_idx;
13958 
13959     dc->isar = &arm_cpu->isar;
13960     dc->condjmp = 0;
13961     dc->pc_save = dc->base.pc_first;
13962     dc->aarch64 = true;
13963     dc->thumb = false;
13964     dc->sctlr_b = 0;
13965     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13966     dc->condexec_mask = 0;
13967     dc->condexec_cond = 0;
13968     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13969     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13970     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13971     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13972     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13973     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13974 #if !defined(CONFIG_USER_ONLY)
13975     dc->user = (dc->current_el == 0);
13976 #endif
13977     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13978     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13979     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13980     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13981     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13982     dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
13983     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13984     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13985     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13986     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13987     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13988     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13989     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13990     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13991     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13992     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13993     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13994     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13995     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13996     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13997     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13998     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13999     dc->vec_len = 0;
14000     dc->vec_stride = 0;
14001     dc->cp_regs = arm_cpu->cp_regs;
14002     dc->features = env->features;
14003     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14004     dc->gm_blocksize = arm_cpu->gm_blocksize;
14005 
14006 #ifdef CONFIG_USER_ONLY
14007     /* In sve_probe_page, we assume TBI is enabled. */
14008     tcg_debug_assert(dc->tbid & 1);
14009 #endif
14010 
14011     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14012 
14013     /* Single step state. The code-generation logic here is:
14014      *  SS_ACTIVE == 0:
14015      *   generate code with no special handling for single-stepping (except
14016      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14017      *   this happens anyway because those changes are all system register or
14018      *   PSTATE writes).
14019      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14020      *   emit code for one insn
14021      *   emit code to clear PSTATE.SS
14022      *   emit code to generate software step exception for completed step
14023      *   end TB (as usual for having generated an exception)
14024      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14025      *   emit code to generate a software step exception
14026      *   end the TB
14027      */
14028     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14029     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14030     dc->is_ldex = false;
14031 
14032     /* Bound the number of insns to execute to those left on the page.  */
14033     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14034 
14035     /* If architectural single step active, limit to 1.  */
14036     if (dc->ss_active) {
14037         bound = 1;
14038     }
14039     dc->base.max_insns = MIN(dc->base.max_insns, bound);
14040 }
14041 
14042 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14043 {
14044 }
14045 
14046 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14047 {
14048     DisasContext *dc = container_of(dcbase, DisasContext, base);
14049     target_ulong pc_arg = dc->base.pc_next;
14050 
14051     if (tb_cflags(dcbase->tb) & CF_PCREL) {
14052         pc_arg &= ~TARGET_PAGE_MASK;
14053     }
14054     tcg_gen_insn_start(pc_arg, 0, 0);
14055     dc->insn_start = tcg_last_op();
14056 }
14057 
14058 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14059 {
14060     DisasContext *s = container_of(dcbase, DisasContext, base);
14061     CPUARMState *env = cpu_env(cpu);
14062     uint64_t pc = s->base.pc_next;
14063     uint32_t insn;
14064 
14065     /* Singlestep exceptions have the highest priority. */
14066     if (s->ss_active && !s->pstate_ss) {
14067         /* Singlestep state is Active-pending.
14068          * If we're in this state at the start of a TB then either
14069          *  a) we just took an exception to an EL which is being debugged
14070          *     and this is the first insn in the exception handler
14071          *  b) debug exceptions were masked and we just unmasked them
14072          *     without changing EL (eg by clearing PSTATE.D)
14073          * In either case we're going to take a swstep exception in the
14074          * "did not step an insn" case, and so the syndrome ISV and EX
14075          * bits should be zero.
14076          */
14077         assert(s->base.num_insns == 1);
14078         gen_swstep_exception(s, 0, 0);
14079         s->base.is_jmp = DISAS_NORETURN;
14080         s->base.pc_next = pc + 4;
14081         return;
14082     }
14083 
14084     if (pc & 3) {
14085         /*
14086          * PC alignment fault.  This has priority over the instruction abort
14087          * that we would receive from a translation fault via arm_ldl_code.
14088          * This should only be possible after an indirect branch, at the
14089          * start of the TB.
14090          */
14091         assert(s->base.num_insns == 1);
14092         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
14093         s->base.is_jmp = DISAS_NORETURN;
14094         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14095         return;
14096     }
14097 
14098     s->pc_curr = pc;
14099     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14100     s->insn = insn;
14101     s->base.pc_next = pc + 4;
14102 
14103     s->fp_access_checked = false;
14104     s->sve_access_checked = false;
14105 
14106     if (s->pstate_il) {
14107         /*
14108          * Illegal execution state. This has priority over BTI
14109          * exceptions, but comes after instruction abort exceptions.
14110          */
14111         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14112         return;
14113     }
14114 
14115     if (dc_isar_feature(aa64_bti, s)) {
14116         if (s->base.num_insns == 1) {
14117             /*
14118              * At the first insn of the TB, compute s->guarded_page.
14119              * We delayed computing this until successfully reading
14120              * the first insn of the TB, above.  This (mostly) ensures
14121              * that the softmmu tlb entry has been populated, and the
14122              * page table GP bit is available.
14123              *
14124              * Note that we need to compute this even if btype == 0,
14125              * because this value is used for BR instructions later
14126              * where ENV is not available.
14127              */
14128             s->guarded_page = is_guarded_page(env, s);
14129 
14130             /* First insn can have btype set to non-zero.  */
14131             tcg_debug_assert(s->btype >= 0);
14132 
14133             /*
14134              * Note that the Branch Target Exception has fairly high
14135              * priority -- below debugging exceptions but above most
14136              * everything else.  This allows us to handle this now
14137              * instead of waiting until the insn is otherwise decoded.
14138              */
14139             if (s->btype != 0
14140                 && s->guarded_page
14141                 && !btype_destination_ok(insn, s->bt, s->btype)) {
14142                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14143                 return;
14144             }
14145         } else {
14146             /* Not the first insn: btype must be 0.  */
14147             tcg_debug_assert(s->btype == 0);
14148         }
14149     }
14150 
14151     s->is_nonstreaming = false;
14152     if (s->sme_trap_nonstreaming) {
14153         disas_sme_fa64(s, insn);
14154     }
14155 
14156     if (!disas_a64(s, insn) &&
14157         !disas_sme(s, insn) &&
14158         !disas_sve(s, insn)) {
14159         disas_a64_legacy(s, insn);
14160     }
14161 
14162     /*
14163      * After execution of most insns, btype is reset to 0.
14164      * Note that we set btype == -1 when the insn sets btype.
14165      */
14166     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14167         reset_btype(s);
14168     }
14169 }
14170 
14171 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14172 {
14173     DisasContext *dc = container_of(dcbase, DisasContext, base);
14174 
14175     if (unlikely(dc->ss_active)) {
14176         /* Note that this means single stepping WFI doesn't halt the CPU.
14177          * For conditional branch insns this is harmless unreachable code as
14178          * gen_goto_tb() has already handled emitting the debug exception
14179          * (and thus a tb-jump is not possible when singlestepping).
14180          */
14181         switch (dc->base.is_jmp) {
14182         default:
14183             gen_a64_update_pc(dc, 4);
14184             /* fall through */
14185         case DISAS_EXIT:
14186         case DISAS_JUMP:
14187             gen_step_complete_exception(dc);
14188             break;
14189         case DISAS_NORETURN:
14190             break;
14191         }
14192     } else {
14193         switch (dc->base.is_jmp) {
14194         case DISAS_NEXT:
14195         case DISAS_TOO_MANY:
14196             gen_goto_tb(dc, 1, 4);
14197             break;
14198         default:
14199         case DISAS_UPDATE_EXIT:
14200             gen_a64_update_pc(dc, 4);
14201             /* fall through */
14202         case DISAS_EXIT:
14203             tcg_gen_exit_tb(NULL, 0);
14204             break;
14205         case DISAS_UPDATE_NOCHAIN:
14206             gen_a64_update_pc(dc, 4);
14207             /* fall through */
14208         case DISAS_JUMP:
14209             tcg_gen_lookup_and_goto_ptr();
14210             break;
14211         case DISAS_NORETURN:
14212         case DISAS_SWI:
14213             break;
14214         case DISAS_WFE:
14215             gen_a64_update_pc(dc, 4);
14216             gen_helper_wfe(tcg_env);
14217             break;
14218         case DISAS_YIELD:
14219             gen_a64_update_pc(dc, 4);
14220             gen_helper_yield(tcg_env);
14221             break;
14222         case DISAS_WFI:
14223             /*
14224              * This is a special case because we don't want to just halt
14225              * the CPU if trying to debug across a WFI.
14226              */
14227             gen_a64_update_pc(dc, 4);
14228             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14229             /*
14230              * The helper doesn't necessarily throw an exception, but we
14231              * must go back to the main loop to check for interrupts anyway.
14232              */
14233             tcg_gen_exit_tb(NULL, 0);
14234             break;
14235         }
14236     }
14237 }
14238 
14239 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14240                                  CPUState *cpu, FILE *logfile)
14241 {
14242     DisasContext *dc = container_of(dcbase, DisasContext, base);
14243 
14244     fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14245     target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14246 }
14247 
14248 const TranslatorOps aarch64_translator_ops = {
14249     .init_disas_context = aarch64_tr_init_disas_context,
14250     .tb_start           = aarch64_tr_tb_start,
14251     .insn_start         = aarch64_tr_insn_start,
14252     .translate_insn     = aarch64_tr_translate_insn,
14253     .tb_stop            = aarch64_tr_tb_stop,
14254     .disas_log          = aarch64_tr_disas_log,
14255 };
14256