1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "disas/disas.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Include the generated decoders. 51 */ 52 53 #include "decode-sme-fa64.c.inc" 54 #include "decode-a64.c.inc" 55 56 /* Table based decoder typedefs - used when the relevant bits for decode 57 * are too awkwardly scattered across the instruction (eg SIMD). 58 */ 59 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 60 61 typedef struct AArch64DecodeTable { 62 uint32_t pattern; 63 uint32_t mask; 64 AArch64DecodeFn *disas_fn; 65 } AArch64DecodeTable; 66 67 /* initialize TCG globals. */ 68 void a64_translate_init(void) 69 { 70 int i; 71 72 cpu_pc = tcg_global_mem_new_i64(cpu_env, 73 offsetof(CPUARMState, pc), 74 "pc"); 75 for (i = 0; i < 32; i++) { 76 cpu_X[i] = tcg_global_mem_new_i64(cpu_env, 77 offsetof(CPUARMState, xregs[i]), 78 regnames[i]); 79 } 80 81 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, 82 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 83 } 84 85 /* 86 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns 87 */ 88 static int get_a64_user_mem_index(DisasContext *s) 89 { 90 /* 91 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 92 * which is the usual mmu_idx for this cpu state. 93 */ 94 ARMMMUIdx useridx = s->mmu_idx; 95 96 if (s->unpriv) { 97 /* 98 * We have pre-computed the condition for AccType_UNPRIV. 99 * Therefore we should never get here with a mmu_idx for 100 * which we do not know the corresponding user mmu_idx. 101 */ 102 switch (useridx) { 103 case ARMMMUIdx_E10_1: 104 case ARMMMUIdx_E10_1_PAN: 105 useridx = ARMMMUIdx_E10_0; 106 break; 107 case ARMMMUIdx_E20_2: 108 case ARMMMUIdx_E20_2_PAN: 109 useridx = ARMMMUIdx_E20_0; 110 break; 111 default: 112 g_assert_not_reached(); 113 } 114 } 115 return arm_to_core_mmu_idx(useridx); 116 } 117 118 static void set_btype_raw(int val) 119 { 120 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env, 121 offsetof(CPUARMState, btype)); 122 } 123 124 static void set_btype(DisasContext *s, int val) 125 { 126 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 127 tcg_debug_assert(val >= 1 && val <= 3); 128 set_btype_raw(val); 129 s->btype = -1; 130 } 131 132 static void reset_btype(DisasContext *s) 133 { 134 if (s->btype != 0) { 135 set_btype_raw(0); 136 s->btype = 0; 137 } 138 } 139 140 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 141 { 142 assert(s->pc_save != -1); 143 if (tb_cflags(s->base.tb) & CF_PCREL) { 144 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 145 } else { 146 tcg_gen_movi_i64(dest, s->pc_curr + diff); 147 } 148 } 149 150 void gen_a64_update_pc(DisasContext *s, target_long diff) 151 { 152 gen_pc_plus_diff(s, cpu_pc, diff); 153 s->pc_save = s->pc_curr + diff; 154 } 155 156 /* 157 * Handle Top Byte Ignore (TBI) bits. 158 * 159 * If address tagging is enabled via the TCR TBI bits: 160 * + for EL2 and EL3 there is only one TBI bit, and if it is set 161 * then the address is zero-extended, clearing bits [63:56] 162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 163 * and TBI1 controls addressses with bit 55 == 1. 164 * If the appropriate TBI bit is set for the address then 165 * the address is sign-extended from bit 55 into bits [63:56] 166 * 167 * Here We have concatenated TBI{1,0} into tbi. 168 */ 169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 170 TCGv_i64 src, int tbi) 171 { 172 if (tbi == 0) { 173 /* Load unmodified address */ 174 tcg_gen_mov_i64(dst, src); 175 } else if (!regime_has_2_ranges(s->mmu_idx)) { 176 /* Force tag byte to all zero */ 177 tcg_gen_extract_i64(dst, src, 0, 56); 178 } else { 179 /* Sign-extend from bit 55. */ 180 tcg_gen_sextract_i64(dst, src, 0, 56); 181 182 switch (tbi) { 183 case 1: 184 /* tbi0 but !tbi1: only use the extension if positive */ 185 tcg_gen_and_i64(dst, dst, src); 186 break; 187 case 2: 188 /* !tbi0 but tbi1: only use the extension if negative */ 189 tcg_gen_or_i64(dst, dst, src); 190 break; 191 case 3: 192 /* tbi0 and tbi1: always use the extension */ 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 } 198 } 199 200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 201 { 202 /* 203 * If address tagging is enabled for instructions via the TCR TBI bits, 204 * then loading an address into the PC will clear out any tag. 205 */ 206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 207 s->pc_save = -1; 208 } 209 210 /* 211 * Handle MTE and/or TBI. 212 * 213 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 214 * for the tag to be present in the FAR_ELx register. But for user-only 215 * mode we do not have a TLB with which to implement this, so we must 216 * remove the top byte now. 217 * 218 * Always return a fresh temporary that we can increment independently 219 * of the write-back address. 220 */ 221 222 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 223 { 224 TCGv_i64 clean = tcg_temp_new_i64(); 225 #ifdef CONFIG_USER_ONLY 226 gen_top_byte_ignore(s, clean, addr, s->tbid); 227 #else 228 tcg_gen_mov_i64(clean, addr); 229 #endif 230 return clean; 231 } 232 233 /* Insert a zero tag into src, with the result at dst. */ 234 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 235 { 236 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 237 } 238 239 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 240 MMUAccessType acc, int log2_size) 241 { 242 gen_helper_probe_access(cpu_env, ptr, 243 tcg_constant_i32(acc), 244 tcg_constant_i32(get_mem_index(s)), 245 tcg_constant_i32(1 << log2_size)); 246 } 247 248 /* 249 * For MTE, check a single logical or atomic access. This probes a single 250 * address, the exact one specified. The size and alignment of the access 251 * is not relevant to MTE, per se, but watchpoints do require the size, 252 * and we want to recognize those before making any other changes to state. 253 */ 254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 255 bool is_write, bool tag_checked, 256 MemOp memop, bool is_unpriv, 257 int core_idx) 258 { 259 if (tag_checked && s->mte_active[is_unpriv]) { 260 TCGv_i64 ret; 261 int desc = 0; 262 263 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 264 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 265 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 266 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 267 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 268 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 269 270 ret = tcg_temp_new_i64(); 271 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 272 273 return ret; 274 } 275 return clean_data_tbi(s, addr); 276 } 277 278 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 279 bool tag_checked, MemOp memop) 280 { 281 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 282 false, get_mem_index(s)); 283 } 284 285 /* 286 * For MTE, check multiple logical sequential accesses. 287 */ 288 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 289 bool tag_checked, int total_size, MemOp single_mop) 290 { 291 if (tag_checked && s->mte_active[0]) { 292 TCGv_i64 ret; 293 int desc = 0; 294 295 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 296 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 297 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 298 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 299 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 300 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 301 302 ret = tcg_temp_new_i64(); 303 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr); 304 305 return ret; 306 } 307 return clean_data_tbi(s, addr); 308 } 309 310 /* 311 * Generate the special alignment check that applies to AccType_ATOMIC 312 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 313 * naturally aligned, but it must not cross a 16-byte boundary. 314 * See AArch64.CheckAlignment(). 315 */ 316 static void check_lse2_align(DisasContext *s, int rn, int imm, 317 bool is_write, MemOp mop) 318 { 319 TCGv_i32 tmp; 320 TCGv_i64 addr; 321 TCGLabel *over_label; 322 MMUAccessType type; 323 int mmu_idx; 324 325 tmp = tcg_temp_new_i32(); 326 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 327 tcg_gen_addi_i32(tmp, tmp, imm & 15); 328 tcg_gen_andi_i32(tmp, tmp, 15); 329 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 330 331 over_label = gen_new_label(); 332 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 333 334 addr = tcg_temp_new_i64(); 335 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 336 337 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 338 mmu_idx = get_mem_index(s); 339 gen_helper_unaligned_access(cpu_env, addr, tcg_constant_i32(type), 340 tcg_constant_i32(mmu_idx)); 341 342 gen_set_label(over_label); 343 344 } 345 346 /* Handle the alignment check for AccType_ATOMIC instructions. */ 347 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 348 { 349 MemOp size = mop & MO_SIZE; 350 351 if (size == MO_8) { 352 return mop; 353 } 354 355 /* 356 * If size == MO_128, this is a LDXP, and the operation is single-copy 357 * atomic for each doubleword, not the entire quadword; it still must 358 * be quadword aligned. 359 */ 360 if (size == MO_128) { 361 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 362 MO_ATOM_IFALIGN_PAIR); 363 } 364 if (dc_isar_feature(aa64_lse2, s)) { 365 check_lse2_align(s, rn, 0, true, mop); 366 } else { 367 mop |= MO_ALIGN; 368 } 369 return finalize_memop(s, mop); 370 } 371 372 /* Handle the alignment check for AccType_ORDERED instructions. */ 373 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 374 bool is_write, MemOp mop) 375 { 376 MemOp size = mop & MO_SIZE; 377 378 if (size == MO_8) { 379 return mop; 380 } 381 if (size == MO_128) { 382 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 383 MO_ATOM_IFALIGN_PAIR); 384 } 385 if (!dc_isar_feature(aa64_lse2, s)) { 386 mop |= MO_ALIGN; 387 } else if (!s->naa) { 388 check_lse2_align(s, rn, imm, is_write, mop); 389 } 390 return finalize_memop(s, mop); 391 } 392 393 typedef struct DisasCompare64 { 394 TCGCond cond; 395 TCGv_i64 value; 396 } DisasCompare64; 397 398 static void a64_test_cc(DisasCompare64 *c64, int cc) 399 { 400 DisasCompare c32; 401 402 arm_test_cc(&c32, cc); 403 404 /* 405 * Sign-extend the 32-bit value so that the GE/LT comparisons work 406 * properly. The NE/EQ comparisons are also fine with this choice. 407 */ 408 c64->cond = c32.cond; 409 c64->value = tcg_temp_new_i64(); 410 tcg_gen_ext_i32_i64(c64->value, c32.value); 411 } 412 413 static void gen_rebuild_hflags(DisasContext *s) 414 { 415 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el)); 416 } 417 418 static void gen_exception_internal(int excp) 419 { 420 assert(excp_is_internal(excp)); 421 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); 422 } 423 424 static void gen_exception_internal_insn(DisasContext *s, int excp) 425 { 426 gen_a64_update_pc(s, 0); 427 gen_exception_internal(excp); 428 s->base.is_jmp = DISAS_NORETURN; 429 } 430 431 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 432 { 433 gen_a64_update_pc(s, 0); 434 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome)); 435 s->base.is_jmp = DISAS_NORETURN; 436 } 437 438 static void gen_step_complete_exception(DisasContext *s) 439 { 440 /* We just completed step of an insn. Move from Active-not-pending 441 * to Active-pending, and then also take the swstep exception. 442 * This corresponds to making the (IMPDEF) choice to prioritize 443 * swstep exceptions over asynchronous exceptions taken to an exception 444 * level where debug is disabled. This choice has the advantage that 445 * we do not need to maintain internal state corresponding to the 446 * ISV/EX syndrome bits between completion of the step and generation 447 * of the exception, and our syndrome information is always correct. 448 */ 449 gen_ss_advance(s); 450 gen_swstep_exception(s, 1, s->is_ldex); 451 s->base.is_jmp = DISAS_NORETURN; 452 } 453 454 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 455 { 456 if (s->ss_active) { 457 return false; 458 } 459 return translator_use_goto_tb(&s->base, dest); 460 } 461 462 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 463 { 464 if (use_goto_tb(s, s->pc_curr + diff)) { 465 /* 466 * For pcrel, the pc must always be up-to-date on entry to 467 * the linked TB, so that it can use simple additions for all 468 * further adjustments. For !pcrel, the linked TB is compiled 469 * to know its full virtual address, so we can delay the 470 * update to pc to the unlinked path. A long chain of links 471 * can thus avoid many updates to the PC. 472 */ 473 if (tb_cflags(s->base.tb) & CF_PCREL) { 474 gen_a64_update_pc(s, diff); 475 tcg_gen_goto_tb(n); 476 } else { 477 tcg_gen_goto_tb(n); 478 gen_a64_update_pc(s, diff); 479 } 480 tcg_gen_exit_tb(s->base.tb, n); 481 s->base.is_jmp = DISAS_NORETURN; 482 } else { 483 gen_a64_update_pc(s, diff); 484 if (s->ss_active) { 485 gen_step_complete_exception(s); 486 } else { 487 tcg_gen_lookup_and_goto_ptr(); 488 s->base.is_jmp = DISAS_NORETURN; 489 } 490 } 491 } 492 493 /* 494 * Register access functions 495 * 496 * These functions are used for directly accessing a register in where 497 * changes to the final register value are likely to be made. If you 498 * need to use a register for temporary calculation (e.g. index type 499 * operations) use the read_* form. 500 * 501 * B1.2.1 Register mappings 502 * 503 * In instruction register encoding 31 can refer to ZR (zero register) or 504 * the SP (stack pointer) depending on context. In QEMU's case we map SP 505 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 506 * This is the point of the _sp forms. 507 */ 508 TCGv_i64 cpu_reg(DisasContext *s, int reg) 509 { 510 if (reg == 31) { 511 TCGv_i64 t = tcg_temp_new_i64(); 512 tcg_gen_movi_i64(t, 0); 513 return t; 514 } else { 515 return cpu_X[reg]; 516 } 517 } 518 519 /* register access for when 31 == SP */ 520 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 521 { 522 return cpu_X[reg]; 523 } 524 525 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 526 * representing the register contents. This TCGv is an auto-freed 527 * temporary so it need not be explicitly freed, and may be modified. 528 */ 529 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 530 { 531 TCGv_i64 v = tcg_temp_new_i64(); 532 if (reg != 31) { 533 if (sf) { 534 tcg_gen_mov_i64(v, cpu_X[reg]); 535 } else { 536 tcg_gen_ext32u_i64(v, cpu_X[reg]); 537 } 538 } else { 539 tcg_gen_movi_i64(v, 0); 540 } 541 return v; 542 } 543 544 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 545 { 546 TCGv_i64 v = tcg_temp_new_i64(); 547 if (sf) { 548 tcg_gen_mov_i64(v, cpu_X[reg]); 549 } else { 550 tcg_gen_ext32u_i64(v, cpu_X[reg]); 551 } 552 return v; 553 } 554 555 /* Return the offset into CPUARMState of a slice (from 556 * the least significant end) of FP register Qn (ie 557 * Dn, Sn, Hn or Bn). 558 * (Note that this is not the same mapping as for A32; see cpu.h) 559 */ 560 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 561 { 562 return vec_reg_offset(s, regno, 0, size); 563 } 564 565 /* Offset of the high half of the 128 bit vector Qn */ 566 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 567 { 568 return vec_reg_offset(s, regno, 1, MO_64); 569 } 570 571 /* Convenience accessors for reading and writing single and double 572 * FP registers. Writing clears the upper parts of the associated 573 * 128 bit vector register, as required by the architecture. 574 * Note that unlike the GP register accessors, the values returned 575 * by the read functions must be manually freed. 576 */ 577 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 578 { 579 TCGv_i64 v = tcg_temp_new_i64(); 580 581 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); 582 return v; 583 } 584 585 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 586 { 587 TCGv_i32 v = tcg_temp_new_i32(); 588 589 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); 590 return v; 591 } 592 593 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 594 { 595 TCGv_i32 v = tcg_temp_new_i32(); 596 597 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); 598 return v; 599 } 600 601 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 602 * If SVE is not enabled, then there are only 128 bits in the vector. 603 */ 604 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 605 { 606 unsigned ofs = fp_reg_offset(s, rd, MO_64); 607 unsigned vsz = vec_full_reg_size(s); 608 609 /* Nop move, with side effect of clearing the tail. */ 610 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 611 } 612 613 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 614 { 615 unsigned ofs = fp_reg_offset(s, reg, MO_64); 616 617 tcg_gen_st_i64(v, cpu_env, ofs); 618 clear_vec_high(s, false, reg); 619 } 620 621 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 622 { 623 TCGv_i64 tmp = tcg_temp_new_i64(); 624 625 tcg_gen_extu_i32_i64(tmp, v); 626 write_fp_dreg(s, reg, tmp); 627 } 628 629 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 630 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 631 GVecGen2Fn *gvec_fn, int vece) 632 { 633 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 634 is_q ? 16 : 8, vec_full_reg_size(s)); 635 } 636 637 /* Expand a 2-operand + immediate AdvSIMD vector operation using 638 * an expander function. 639 */ 640 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 641 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 642 { 643 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 644 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 645 } 646 647 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 648 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 649 GVecGen3Fn *gvec_fn, int vece) 650 { 651 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 652 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 653 } 654 655 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 656 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 657 int rx, GVecGen4Fn *gvec_fn, int vece) 658 { 659 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 660 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 661 is_q ? 16 : 8, vec_full_reg_size(s)); 662 } 663 664 /* Expand a 2-operand operation using an out-of-line helper. */ 665 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 666 int rn, int data, gen_helper_gvec_2 *fn) 667 { 668 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 669 vec_full_reg_offset(s, rn), 670 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 671 } 672 673 /* Expand a 3-operand operation using an out-of-line helper. */ 674 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 675 int rn, int rm, int data, gen_helper_gvec_3 *fn) 676 { 677 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 678 vec_full_reg_offset(s, rn), 679 vec_full_reg_offset(s, rm), 680 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 681 } 682 683 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 684 * an out-of-line helper. 685 */ 686 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 687 int rm, bool is_fp16, int data, 688 gen_helper_gvec_3_ptr *fn) 689 { 690 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 691 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 692 vec_full_reg_offset(s, rn), 693 vec_full_reg_offset(s, rm), fpst, 694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 695 } 696 697 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 698 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 699 int rm, gen_helper_gvec_3_ptr *fn) 700 { 701 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 702 703 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); 704 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 705 vec_full_reg_offset(s, rn), 706 vec_full_reg_offset(s, rm), qc_ptr, 707 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 708 } 709 710 /* Expand a 4-operand operation using an out-of-line helper. */ 711 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 712 int rm, int ra, int data, gen_helper_gvec_4 *fn) 713 { 714 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 715 vec_full_reg_offset(s, rn), 716 vec_full_reg_offset(s, rm), 717 vec_full_reg_offset(s, ra), 718 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 719 } 720 721 /* 722 * Expand a 4-operand + fpstatus pointer + simd data value operation using 723 * an out-of-line helper. 724 */ 725 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 726 int rm, int ra, bool is_fp16, int data, 727 gen_helper_gvec_4_ptr *fn) 728 { 729 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 730 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 731 vec_full_reg_offset(s, rn), 732 vec_full_reg_offset(s, rm), 733 vec_full_reg_offset(s, ra), fpst, 734 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 735 } 736 737 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 738 * than the 32 bit equivalent. 739 */ 740 static inline void gen_set_NZ64(TCGv_i64 result) 741 { 742 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 743 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 744 } 745 746 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 747 static inline void gen_logic_CC(int sf, TCGv_i64 result) 748 { 749 if (sf) { 750 gen_set_NZ64(result); 751 } else { 752 tcg_gen_extrl_i64_i32(cpu_ZF, result); 753 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 754 } 755 tcg_gen_movi_i32(cpu_CF, 0); 756 tcg_gen_movi_i32(cpu_VF, 0); 757 } 758 759 /* dest = T0 + T1; compute C, N, V and Z flags */ 760 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 761 { 762 TCGv_i64 result, flag, tmp; 763 result = tcg_temp_new_i64(); 764 flag = tcg_temp_new_i64(); 765 tmp = tcg_temp_new_i64(); 766 767 tcg_gen_movi_i64(tmp, 0); 768 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 769 770 tcg_gen_extrl_i64_i32(cpu_CF, flag); 771 772 gen_set_NZ64(result); 773 774 tcg_gen_xor_i64(flag, result, t0); 775 tcg_gen_xor_i64(tmp, t0, t1); 776 tcg_gen_andc_i64(flag, flag, tmp); 777 tcg_gen_extrh_i64_i32(cpu_VF, flag); 778 779 tcg_gen_mov_i64(dest, result); 780 } 781 782 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 783 { 784 TCGv_i32 t0_32 = tcg_temp_new_i32(); 785 TCGv_i32 t1_32 = tcg_temp_new_i32(); 786 TCGv_i32 tmp = tcg_temp_new_i32(); 787 788 tcg_gen_movi_i32(tmp, 0); 789 tcg_gen_extrl_i64_i32(t0_32, t0); 790 tcg_gen_extrl_i64_i32(t1_32, t1); 791 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 792 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 794 tcg_gen_xor_i32(tmp, t0_32, t1_32); 795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 796 tcg_gen_extu_i32_i64(dest, cpu_NF); 797 } 798 799 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 800 { 801 if (sf) { 802 gen_add64_CC(dest, t0, t1); 803 } else { 804 gen_add32_CC(dest, t0, t1); 805 } 806 } 807 808 /* dest = T0 - T1; compute C, N, V and Z flags */ 809 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 810 { 811 /* 64 bit arithmetic */ 812 TCGv_i64 result, flag, tmp; 813 814 result = tcg_temp_new_i64(); 815 flag = tcg_temp_new_i64(); 816 tcg_gen_sub_i64(result, t0, t1); 817 818 gen_set_NZ64(result); 819 820 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 821 tcg_gen_extrl_i64_i32(cpu_CF, flag); 822 823 tcg_gen_xor_i64(flag, result, t0); 824 tmp = tcg_temp_new_i64(); 825 tcg_gen_xor_i64(tmp, t0, t1); 826 tcg_gen_and_i64(flag, flag, tmp); 827 tcg_gen_extrh_i64_i32(cpu_VF, flag); 828 tcg_gen_mov_i64(dest, result); 829 } 830 831 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 832 { 833 /* 32 bit arithmetic */ 834 TCGv_i32 t0_32 = tcg_temp_new_i32(); 835 TCGv_i32 t1_32 = tcg_temp_new_i32(); 836 TCGv_i32 tmp; 837 838 tcg_gen_extrl_i64_i32(t0_32, t0); 839 tcg_gen_extrl_i64_i32(t1_32, t1); 840 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 841 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 842 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 843 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 844 tmp = tcg_temp_new_i32(); 845 tcg_gen_xor_i32(tmp, t0_32, t1_32); 846 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 847 tcg_gen_extu_i32_i64(dest, cpu_NF); 848 } 849 850 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 851 { 852 if (sf) { 853 gen_sub64_CC(dest, t0, t1); 854 } else { 855 gen_sub32_CC(dest, t0, t1); 856 } 857 } 858 859 /* dest = T0 + T1 + CF; do not compute flags. */ 860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 861 { 862 TCGv_i64 flag = tcg_temp_new_i64(); 863 tcg_gen_extu_i32_i64(flag, cpu_CF); 864 tcg_gen_add_i64(dest, t0, t1); 865 tcg_gen_add_i64(dest, dest, flag); 866 867 if (!sf) { 868 tcg_gen_ext32u_i64(dest, dest); 869 } 870 } 871 872 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 873 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 874 { 875 if (sf) { 876 TCGv_i64 result = tcg_temp_new_i64(); 877 TCGv_i64 cf_64 = tcg_temp_new_i64(); 878 TCGv_i64 vf_64 = tcg_temp_new_i64(); 879 TCGv_i64 tmp = tcg_temp_new_i64(); 880 TCGv_i64 zero = tcg_constant_i64(0); 881 882 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 883 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 884 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 885 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 886 gen_set_NZ64(result); 887 888 tcg_gen_xor_i64(vf_64, result, t0); 889 tcg_gen_xor_i64(tmp, t0, t1); 890 tcg_gen_andc_i64(vf_64, vf_64, tmp); 891 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 892 893 tcg_gen_mov_i64(dest, result); 894 } else { 895 TCGv_i32 t0_32 = tcg_temp_new_i32(); 896 TCGv_i32 t1_32 = tcg_temp_new_i32(); 897 TCGv_i32 tmp = tcg_temp_new_i32(); 898 TCGv_i32 zero = tcg_constant_i32(0); 899 900 tcg_gen_extrl_i64_i32(t0_32, t0); 901 tcg_gen_extrl_i64_i32(t1_32, t1); 902 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 903 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 904 905 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 906 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 907 tcg_gen_xor_i32(tmp, t0_32, t1_32); 908 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 909 tcg_gen_extu_i32_i64(dest, cpu_NF); 910 } 911 } 912 913 /* 914 * Load/Store generators 915 */ 916 917 /* 918 * Store from GPR register to memory. 919 */ 920 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 921 TCGv_i64 tcg_addr, MemOp memop, int memidx, 922 bool iss_valid, 923 unsigned int iss_srt, 924 bool iss_sf, bool iss_ar) 925 { 926 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 927 928 if (iss_valid) { 929 uint32_t syn; 930 931 syn = syn_data_abort_with_iss(0, 932 (memop & MO_SIZE), 933 false, 934 iss_srt, 935 iss_sf, 936 iss_ar, 937 0, 0, 0, 0, 0, false); 938 disas_set_insn_syndrome(s, syn); 939 } 940 } 941 942 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 943 TCGv_i64 tcg_addr, MemOp memop, 944 bool iss_valid, 945 unsigned int iss_srt, 946 bool iss_sf, bool iss_ar) 947 { 948 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 949 iss_valid, iss_srt, iss_sf, iss_ar); 950 } 951 952 /* 953 * Load from memory to GPR register 954 */ 955 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 956 MemOp memop, bool extend, int memidx, 957 bool iss_valid, unsigned int iss_srt, 958 bool iss_sf, bool iss_ar) 959 { 960 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 961 962 if (extend && (memop & MO_SIGN)) { 963 g_assert((memop & MO_SIZE) <= MO_32); 964 tcg_gen_ext32u_i64(dest, dest); 965 } 966 967 if (iss_valid) { 968 uint32_t syn; 969 970 syn = syn_data_abort_with_iss(0, 971 (memop & MO_SIZE), 972 (memop & MO_SIGN) != 0, 973 iss_srt, 974 iss_sf, 975 iss_ar, 976 0, 0, 0, 0, 0, false); 977 disas_set_insn_syndrome(s, syn); 978 } 979 } 980 981 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 982 MemOp memop, bool extend, 983 bool iss_valid, unsigned int iss_srt, 984 bool iss_sf, bool iss_ar) 985 { 986 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 987 iss_valid, iss_srt, iss_sf, iss_ar); 988 } 989 990 /* 991 * Store from FP register to memory 992 */ 993 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 994 { 995 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 996 TCGv_i64 tmplo = tcg_temp_new_i64(); 997 998 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64)); 999 1000 if ((mop & MO_SIZE) < MO_128) { 1001 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1002 } else { 1003 TCGv_i64 tmphi = tcg_temp_new_i64(); 1004 TCGv_i128 t16 = tcg_temp_new_i128(); 1005 1006 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx)); 1007 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1008 1009 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1010 } 1011 } 1012 1013 /* 1014 * Load from memory to FP register 1015 */ 1016 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1017 { 1018 /* This always zero-extends and writes to a full 128 bit wide vector */ 1019 TCGv_i64 tmplo = tcg_temp_new_i64(); 1020 TCGv_i64 tmphi = NULL; 1021 1022 if ((mop & MO_SIZE) < MO_128) { 1023 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1024 } else { 1025 TCGv_i128 t16 = tcg_temp_new_i128(); 1026 1027 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1028 1029 tmphi = tcg_temp_new_i64(); 1030 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1031 } 1032 1033 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); 1034 1035 if (tmphi) { 1036 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); 1037 } 1038 clear_vec_high(s, tmphi != NULL, destidx); 1039 } 1040 1041 /* 1042 * Vector load/store helpers. 1043 * 1044 * The principal difference between this and a FP load is that we don't 1045 * zero extend as we are filling a partial chunk of the vector register. 1046 * These functions don't support 128 bit loads/stores, which would be 1047 * normal load/store operations. 1048 * 1049 * The _i32 versions are useful when operating on 32 bit quantities 1050 * (eg for floating point single or using Neon helper functions). 1051 */ 1052 1053 /* Get value of an element within a vector register */ 1054 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1055 int element, MemOp memop) 1056 { 1057 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1058 switch ((unsigned)memop) { 1059 case MO_8: 1060 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); 1061 break; 1062 case MO_16: 1063 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); 1064 break; 1065 case MO_32: 1066 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); 1067 break; 1068 case MO_8|MO_SIGN: 1069 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); 1070 break; 1071 case MO_16|MO_SIGN: 1072 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); 1073 break; 1074 case MO_32|MO_SIGN: 1075 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); 1076 break; 1077 case MO_64: 1078 case MO_64|MO_SIGN: 1079 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); 1080 break; 1081 default: 1082 g_assert_not_reached(); 1083 } 1084 } 1085 1086 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1087 int element, MemOp memop) 1088 { 1089 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1090 switch (memop) { 1091 case MO_8: 1092 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); 1093 break; 1094 case MO_16: 1095 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); 1096 break; 1097 case MO_8|MO_SIGN: 1098 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); 1099 break; 1100 case MO_16|MO_SIGN: 1101 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); 1102 break; 1103 case MO_32: 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 } 1111 1112 /* Set value of an element within a vector register */ 1113 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1114 int element, MemOp memop) 1115 { 1116 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1117 switch (memop) { 1118 case MO_8: 1119 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); 1120 break; 1121 case MO_16: 1122 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); 1123 break; 1124 case MO_32: 1125 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); 1126 break; 1127 case MO_64: 1128 tcg_gen_st_i64(tcg_src, cpu_env, vect_off); 1129 break; 1130 default: 1131 g_assert_not_reached(); 1132 } 1133 } 1134 1135 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1136 int destidx, int element, MemOp memop) 1137 { 1138 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1139 switch (memop) { 1140 case MO_8: 1141 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); 1142 break; 1143 case MO_16: 1144 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); 1145 break; 1146 case MO_32: 1147 tcg_gen_st_i32(tcg_src, cpu_env, vect_off); 1148 break; 1149 default: 1150 g_assert_not_reached(); 1151 } 1152 } 1153 1154 /* Store from vector register to memory */ 1155 static void do_vec_st(DisasContext *s, int srcidx, int element, 1156 TCGv_i64 tcg_addr, MemOp mop) 1157 { 1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1159 1160 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1161 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1162 } 1163 1164 /* Load from memory to vector register */ 1165 static void do_vec_ld(DisasContext *s, int destidx, int element, 1166 TCGv_i64 tcg_addr, MemOp mop) 1167 { 1168 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1169 1170 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1171 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1172 } 1173 1174 /* Check that FP/Neon access is enabled. If it is, return 1175 * true. If not, emit code to generate an appropriate exception, 1176 * and return false; the caller should not emit any code for 1177 * the instruction. Note that this check must happen after all 1178 * unallocated-encoding checks (otherwise the syndrome information 1179 * for the resulting exception will be incorrect). 1180 */ 1181 static bool fp_access_check_only(DisasContext *s) 1182 { 1183 if (s->fp_excp_el) { 1184 assert(!s->fp_access_checked); 1185 s->fp_access_checked = true; 1186 1187 gen_exception_insn_el(s, 0, EXCP_UDEF, 1188 syn_fp_access_trap(1, 0xe, false, 0), 1189 s->fp_excp_el); 1190 return false; 1191 } 1192 s->fp_access_checked = true; 1193 return true; 1194 } 1195 1196 static bool fp_access_check(DisasContext *s) 1197 { 1198 if (!fp_access_check_only(s)) { 1199 return false; 1200 } 1201 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1202 gen_exception_insn(s, 0, EXCP_UDEF, 1203 syn_smetrap(SME_ET_Streaming, false)); 1204 return false; 1205 } 1206 return true; 1207 } 1208 1209 /* 1210 * Check that SVE access is enabled. If it is, return true. 1211 * If not, emit code to generate an appropriate exception and return false. 1212 * This function corresponds to CheckSVEEnabled(). 1213 */ 1214 bool sve_access_check(DisasContext *s) 1215 { 1216 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1217 assert(dc_isar_feature(aa64_sme, s)); 1218 if (!sme_sm_enabled_check(s)) { 1219 goto fail_exit; 1220 } 1221 } else if (s->sve_excp_el) { 1222 gen_exception_insn_el(s, 0, EXCP_UDEF, 1223 syn_sve_access_trap(), s->sve_excp_el); 1224 goto fail_exit; 1225 } 1226 s->sve_access_checked = true; 1227 return fp_access_check(s); 1228 1229 fail_exit: 1230 /* Assert that we only raise one exception per instruction. */ 1231 assert(!s->sve_access_checked); 1232 s->sve_access_checked = true; 1233 return false; 1234 } 1235 1236 /* 1237 * Check that SME access is enabled, raise an exception if not. 1238 * Note that this function corresponds to CheckSMEAccess and is 1239 * only used directly for cpregs. 1240 */ 1241 static bool sme_access_check(DisasContext *s) 1242 { 1243 if (s->sme_excp_el) { 1244 gen_exception_insn_el(s, 0, EXCP_UDEF, 1245 syn_smetrap(SME_ET_AccessTrap, false), 1246 s->sme_excp_el); 1247 return false; 1248 } 1249 return true; 1250 } 1251 1252 /* This function corresponds to CheckSMEEnabled. */ 1253 bool sme_enabled_check(DisasContext *s) 1254 { 1255 /* 1256 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1257 * to be zero when fp_excp_el has priority. This is because we need 1258 * sme_excp_el by itself for cpregs access checks. 1259 */ 1260 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1261 s->fp_access_checked = true; 1262 return sme_access_check(s); 1263 } 1264 return fp_access_check_only(s); 1265 } 1266 1267 /* Common subroutine for CheckSMEAnd*Enabled. */ 1268 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1269 { 1270 if (!sme_enabled_check(s)) { 1271 return false; 1272 } 1273 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1274 gen_exception_insn(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_NotStreaming, false)); 1276 return false; 1277 } 1278 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1279 gen_exception_insn(s, 0, EXCP_UDEF, 1280 syn_smetrap(SME_ET_InactiveZA, false)); 1281 return false; 1282 } 1283 return true; 1284 } 1285 1286 /* 1287 * This utility function is for doing register extension with an 1288 * optional shift. You will likely want to pass a temporary for the 1289 * destination register. See DecodeRegExtend() in the ARM ARM. 1290 */ 1291 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1292 int option, unsigned int shift) 1293 { 1294 int extsize = extract32(option, 0, 2); 1295 bool is_signed = extract32(option, 2, 1); 1296 1297 if (is_signed) { 1298 switch (extsize) { 1299 case 0: 1300 tcg_gen_ext8s_i64(tcg_out, tcg_in); 1301 break; 1302 case 1: 1303 tcg_gen_ext16s_i64(tcg_out, tcg_in); 1304 break; 1305 case 2: 1306 tcg_gen_ext32s_i64(tcg_out, tcg_in); 1307 break; 1308 case 3: 1309 tcg_gen_mov_i64(tcg_out, tcg_in); 1310 break; 1311 } 1312 } else { 1313 switch (extsize) { 1314 case 0: 1315 tcg_gen_ext8u_i64(tcg_out, tcg_in); 1316 break; 1317 case 1: 1318 tcg_gen_ext16u_i64(tcg_out, tcg_in); 1319 break; 1320 case 2: 1321 tcg_gen_ext32u_i64(tcg_out, tcg_in); 1322 break; 1323 case 3: 1324 tcg_gen_mov_i64(tcg_out, tcg_in); 1325 break; 1326 } 1327 } 1328 1329 if (shift) { 1330 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1331 } 1332 } 1333 1334 static inline void gen_check_sp_alignment(DisasContext *s) 1335 { 1336 /* The AArch64 architecture mandates that (if enabled via PSTATE 1337 * or SCTLR bits) there is a check that SP is 16-aligned on every 1338 * SP-relative load or store (with an exception generated if it is not). 1339 * In line with general QEMU practice regarding misaligned accesses, 1340 * we omit these checks for the sake of guest program performance. 1341 * This function is provided as a hook so we can more easily add these 1342 * checks in future (possibly as a "favour catching guest program bugs 1343 * over speed" user selectable option). 1344 */ 1345 } 1346 1347 /* 1348 * This provides a simple table based table lookup decoder. It is 1349 * intended to be used when the relevant bits for decode are too 1350 * awkwardly placed and switch/if based logic would be confusing and 1351 * deeply nested. Since it's a linear search through the table, tables 1352 * should be kept small. 1353 * 1354 * It returns the first handler where insn & mask == pattern, or 1355 * NULL if there is no match. 1356 * The table is terminated by an empty mask (i.e. 0) 1357 */ 1358 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1359 uint32_t insn) 1360 { 1361 const AArch64DecodeTable *tptr = table; 1362 1363 while (tptr->mask) { 1364 if ((insn & tptr->mask) == tptr->pattern) { 1365 return tptr->disas_fn; 1366 } 1367 tptr++; 1368 } 1369 return NULL; 1370 } 1371 1372 /* 1373 * The instruction disassembly implemented here matches 1374 * the instruction encoding classifications in chapter C4 1375 * of the ARM Architecture Reference Manual (DDI0487B_a); 1376 * classification names and decode diagrams here should generally 1377 * match up with those in the manual. 1378 */ 1379 1380 static bool trans_B(DisasContext *s, arg_i *a) 1381 { 1382 reset_btype(s); 1383 gen_goto_tb(s, 0, a->imm); 1384 return true; 1385 } 1386 1387 static bool trans_BL(DisasContext *s, arg_i *a) 1388 { 1389 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1390 reset_btype(s); 1391 gen_goto_tb(s, 0, a->imm); 1392 return true; 1393 } 1394 1395 1396 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1397 { 1398 DisasLabel match; 1399 TCGv_i64 tcg_cmp; 1400 1401 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1402 reset_btype(s); 1403 1404 match = gen_disas_label(s); 1405 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1406 tcg_cmp, 0, match.label); 1407 gen_goto_tb(s, 0, 4); 1408 set_disas_label(s, match); 1409 gen_goto_tb(s, 1, a->imm); 1410 return true; 1411 } 1412 1413 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1414 { 1415 DisasLabel match; 1416 TCGv_i64 tcg_cmp; 1417 1418 tcg_cmp = tcg_temp_new_i64(); 1419 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1420 1421 reset_btype(s); 1422 1423 match = gen_disas_label(s); 1424 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1425 tcg_cmp, 0, match.label); 1426 gen_goto_tb(s, 0, 4); 1427 set_disas_label(s, match); 1428 gen_goto_tb(s, 1, a->imm); 1429 return true; 1430 } 1431 1432 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1433 { 1434 reset_btype(s); 1435 if (a->cond < 0x0e) { 1436 /* genuinely conditional branches */ 1437 DisasLabel match = gen_disas_label(s); 1438 arm_gen_test_cc(a->cond, match.label); 1439 gen_goto_tb(s, 0, 4); 1440 set_disas_label(s, match); 1441 gen_goto_tb(s, 1, a->imm); 1442 } else { 1443 /* 0xe and 0xf are both "always" conditions */ 1444 gen_goto_tb(s, 0, a->imm); 1445 } 1446 return true; 1447 } 1448 1449 static void set_btype_for_br(DisasContext *s, int rn) 1450 { 1451 if (dc_isar_feature(aa64_bti, s)) { 1452 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1453 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1454 } 1455 } 1456 1457 static void set_btype_for_blr(DisasContext *s) 1458 { 1459 if (dc_isar_feature(aa64_bti, s)) { 1460 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1461 set_btype(s, 2); 1462 } 1463 } 1464 1465 static bool trans_BR(DisasContext *s, arg_r *a) 1466 { 1467 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1468 set_btype_for_br(s, a->rn); 1469 s->base.is_jmp = DISAS_JUMP; 1470 return true; 1471 } 1472 1473 static bool trans_BLR(DisasContext *s, arg_r *a) 1474 { 1475 TCGv_i64 dst = cpu_reg(s, a->rn); 1476 TCGv_i64 lr = cpu_reg(s, 30); 1477 if (dst == lr) { 1478 TCGv_i64 tmp = tcg_temp_new_i64(); 1479 tcg_gen_mov_i64(tmp, dst); 1480 dst = tmp; 1481 } 1482 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1483 gen_a64_set_pc(s, dst); 1484 set_btype_for_blr(s); 1485 s->base.is_jmp = DISAS_JUMP; 1486 return true; 1487 } 1488 1489 static bool trans_RET(DisasContext *s, arg_r *a) 1490 { 1491 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1492 s->base.is_jmp = DISAS_JUMP; 1493 return true; 1494 } 1495 1496 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1497 TCGv_i64 modifier, bool use_key_a) 1498 { 1499 TCGv_i64 truedst; 1500 /* 1501 * Return the branch target for a BRAA/RETA/etc, which is either 1502 * just the destination dst, or that value with the pauth check 1503 * done and the code removed from the high bits. 1504 */ 1505 if (!s->pauth_active) { 1506 return dst; 1507 } 1508 1509 truedst = tcg_temp_new_i64(); 1510 if (use_key_a) { 1511 gen_helper_autia(truedst, cpu_env, dst, modifier); 1512 } else { 1513 gen_helper_autib(truedst, cpu_env, dst, modifier); 1514 } 1515 return truedst; 1516 } 1517 1518 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1519 { 1520 TCGv_i64 dst; 1521 1522 if (!dc_isar_feature(aa64_pauth, s)) { 1523 return false; 1524 } 1525 1526 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1527 gen_a64_set_pc(s, dst); 1528 set_btype_for_br(s, a->rn); 1529 s->base.is_jmp = DISAS_JUMP; 1530 return true; 1531 } 1532 1533 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1534 { 1535 TCGv_i64 dst, lr; 1536 1537 if (!dc_isar_feature(aa64_pauth, s)) { 1538 return false; 1539 } 1540 1541 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1542 lr = cpu_reg(s, 30); 1543 if (dst == lr) { 1544 TCGv_i64 tmp = tcg_temp_new_i64(); 1545 tcg_gen_mov_i64(tmp, dst); 1546 dst = tmp; 1547 } 1548 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1549 gen_a64_set_pc(s, dst); 1550 set_btype_for_blr(s); 1551 s->base.is_jmp = DISAS_JUMP; 1552 return true; 1553 } 1554 1555 static bool trans_RETA(DisasContext *s, arg_reta *a) 1556 { 1557 TCGv_i64 dst; 1558 1559 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1560 gen_a64_set_pc(s, dst); 1561 s->base.is_jmp = DISAS_JUMP; 1562 return true; 1563 } 1564 1565 static bool trans_BRA(DisasContext *s, arg_bra *a) 1566 { 1567 TCGv_i64 dst; 1568 1569 if (!dc_isar_feature(aa64_pauth, s)) { 1570 return false; 1571 } 1572 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1573 gen_a64_set_pc(s, dst); 1574 set_btype_for_br(s, a->rn); 1575 s->base.is_jmp = DISAS_JUMP; 1576 return true; 1577 } 1578 1579 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1580 { 1581 TCGv_i64 dst, lr; 1582 1583 if (!dc_isar_feature(aa64_pauth, s)) { 1584 return false; 1585 } 1586 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1587 lr = cpu_reg(s, 30); 1588 if (dst == lr) { 1589 TCGv_i64 tmp = tcg_temp_new_i64(); 1590 tcg_gen_mov_i64(tmp, dst); 1591 dst = tmp; 1592 } 1593 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1594 gen_a64_set_pc(s, dst); 1595 set_btype_for_blr(s); 1596 s->base.is_jmp = DISAS_JUMP; 1597 return true; 1598 } 1599 1600 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1601 { 1602 TCGv_i64 dst; 1603 1604 if (s->current_el == 0) { 1605 return false; 1606 } 1607 if (s->fgt_eret) { 1608 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2); 1609 return true; 1610 } 1611 dst = tcg_temp_new_i64(); 1612 tcg_gen_ld_i64(dst, cpu_env, 1613 offsetof(CPUARMState, elr_el[s->current_el])); 1614 1615 translator_io_start(&s->base); 1616 1617 gen_helper_exception_return(cpu_env, dst); 1618 /* Must exit loop to check un-masked IRQs */ 1619 s->base.is_jmp = DISAS_EXIT; 1620 return true; 1621 } 1622 1623 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1624 { 1625 TCGv_i64 dst; 1626 1627 if (!dc_isar_feature(aa64_pauth, s)) { 1628 return false; 1629 } 1630 if (s->current_el == 0) { 1631 return false; 1632 } 1633 /* The FGT trap takes precedence over an auth trap. */ 1634 if (s->fgt_eret) { 1635 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2); 1636 return true; 1637 } 1638 dst = tcg_temp_new_i64(); 1639 tcg_gen_ld_i64(dst, cpu_env, 1640 offsetof(CPUARMState, elr_el[s->current_el])); 1641 1642 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1643 1644 translator_io_start(&s->base); 1645 1646 gen_helper_exception_return(cpu_env, dst); 1647 /* Must exit loop to check un-masked IRQs */ 1648 s->base.is_jmp = DISAS_EXIT; 1649 return true; 1650 } 1651 1652 /* HINT instruction group, including various allocated HINTs */ 1653 static void handle_hint(DisasContext *s, uint32_t insn, 1654 unsigned int op1, unsigned int op2, unsigned int crm) 1655 { 1656 unsigned int selector = crm << 3 | op2; 1657 1658 if (op1 != 3) { 1659 unallocated_encoding(s); 1660 return; 1661 } 1662 1663 switch (selector) { 1664 case 0b00000: /* NOP */ 1665 break; 1666 case 0b00011: /* WFI */ 1667 s->base.is_jmp = DISAS_WFI; 1668 break; 1669 case 0b00001: /* YIELD */ 1670 /* When running in MTTCG we don't generate jumps to the yield and 1671 * WFE helpers as it won't affect the scheduling of other vCPUs. 1672 * If we wanted to more completely model WFE/SEV so we don't busy 1673 * spin unnecessarily we would need to do something more involved. 1674 */ 1675 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1676 s->base.is_jmp = DISAS_YIELD; 1677 } 1678 break; 1679 case 0b00010: /* WFE */ 1680 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1681 s->base.is_jmp = DISAS_WFE; 1682 } 1683 break; 1684 case 0b00100: /* SEV */ 1685 case 0b00101: /* SEVL */ 1686 case 0b00110: /* DGH */ 1687 /* we treat all as NOP at least for now */ 1688 break; 1689 case 0b00111: /* XPACLRI */ 1690 if (s->pauth_active) { 1691 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]); 1692 } 1693 break; 1694 case 0b01000: /* PACIA1716 */ 1695 if (s->pauth_active) { 1696 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1697 } 1698 break; 1699 case 0b01010: /* PACIB1716 */ 1700 if (s->pauth_active) { 1701 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1702 } 1703 break; 1704 case 0b01100: /* AUTIA1716 */ 1705 if (s->pauth_active) { 1706 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1707 } 1708 break; 1709 case 0b01110: /* AUTIB1716 */ 1710 if (s->pauth_active) { 1711 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]); 1712 } 1713 break; 1714 case 0b10000: /* ESB */ 1715 /* Without RAS, we must implement this as NOP. */ 1716 if (dc_isar_feature(aa64_ras, s)) { 1717 /* 1718 * QEMU does not have a source of physical SErrors, 1719 * so we are only concerned with virtual SErrors. 1720 * The pseudocode in the ARM for this case is 1721 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1722 * AArch64.vESBOperation(); 1723 * Most of the condition can be evaluated at translation time. 1724 * Test for EL2 present, and defer test for SEL2 to runtime. 1725 */ 1726 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1727 gen_helper_vesb(cpu_env); 1728 } 1729 } 1730 break; 1731 case 0b11000: /* PACIAZ */ 1732 if (s->pauth_active) { 1733 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], 1734 tcg_constant_i64(0)); 1735 } 1736 break; 1737 case 0b11001: /* PACIASP */ 1738 if (s->pauth_active) { 1739 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1740 } 1741 break; 1742 case 0b11010: /* PACIBZ */ 1743 if (s->pauth_active) { 1744 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], 1745 tcg_constant_i64(0)); 1746 } 1747 break; 1748 case 0b11011: /* PACIBSP */ 1749 if (s->pauth_active) { 1750 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1751 } 1752 break; 1753 case 0b11100: /* AUTIAZ */ 1754 if (s->pauth_active) { 1755 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], 1756 tcg_constant_i64(0)); 1757 } 1758 break; 1759 case 0b11101: /* AUTIASP */ 1760 if (s->pauth_active) { 1761 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1762 } 1763 break; 1764 case 0b11110: /* AUTIBZ */ 1765 if (s->pauth_active) { 1766 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], 1767 tcg_constant_i64(0)); 1768 } 1769 break; 1770 case 0b11111: /* AUTIBSP */ 1771 if (s->pauth_active) { 1772 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]); 1773 } 1774 break; 1775 default: 1776 /* default specified as NOP equivalent */ 1777 break; 1778 } 1779 } 1780 1781 static void gen_clrex(DisasContext *s, uint32_t insn) 1782 { 1783 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1784 } 1785 1786 /* CLREX, DSB, DMB, ISB */ 1787 static void handle_sync(DisasContext *s, uint32_t insn, 1788 unsigned int op1, unsigned int op2, unsigned int crm) 1789 { 1790 TCGBar bar; 1791 1792 if (op1 != 3) { 1793 unallocated_encoding(s); 1794 return; 1795 } 1796 1797 switch (op2) { 1798 case 2: /* CLREX */ 1799 gen_clrex(s, insn); 1800 return; 1801 case 4: /* DSB */ 1802 case 5: /* DMB */ 1803 switch (crm & 3) { 1804 case 1: /* MBReqTypes_Reads */ 1805 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1806 break; 1807 case 2: /* MBReqTypes_Writes */ 1808 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1809 break; 1810 default: /* MBReqTypes_All */ 1811 bar = TCG_BAR_SC | TCG_MO_ALL; 1812 break; 1813 } 1814 tcg_gen_mb(bar); 1815 return; 1816 case 6: /* ISB */ 1817 /* We need to break the TB after this insn to execute 1818 * a self-modified code correctly and also to take 1819 * any pending interrupts immediately. 1820 */ 1821 reset_btype(s); 1822 gen_goto_tb(s, 0, 4); 1823 return; 1824 1825 case 7: /* SB */ 1826 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) { 1827 goto do_unallocated; 1828 } 1829 /* 1830 * TODO: There is no speculation barrier opcode for TCG; 1831 * MB and end the TB instead. 1832 */ 1833 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1834 gen_goto_tb(s, 0, 4); 1835 return; 1836 1837 default: 1838 do_unallocated: 1839 unallocated_encoding(s); 1840 return; 1841 } 1842 } 1843 1844 static void gen_xaflag(void) 1845 { 1846 TCGv_i32 z = tcg_temp_new_i32(); 1847 1848 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1849 1850 /* 1851 * (!C & !Z) << 31 1852 * (!(C | Z)) << 31 1853 * ~((C | Z) << 31) 1854 * ~-(C | Z) 1855 * (C | Z) - 1 1856 */ 1857 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1858 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1859 1860 /* !(Z & C) */ 1861 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1862 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1863 1864 /* (!C & Z) << 31 -> -(Z & ~C) */ 1865 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1866 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1867 1868 /* C | Z */ 1869 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1870 } 1871 1872 static void gen_axflag(void) 1873 { 1874 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1875 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1876 1877 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1878 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1879 1880 tcg_gen_movi_i32(cpu_NF, 0); 1881 tcg_gen_movi_i32(cpu_VF, 0); 1882 } 1883 1884 /* MSR (immediate) - move immediate to processor state field */ 1885 static void handle_msr_i(DisasContext *s, uint32_t insn, 1886 unsigned int op1, unsigned int op2, unsigned int crm) 1887 { 1888 int op = op1 << 3 | op2; 1889 1890 /* End the TB by default, chaining is ok. */ 1891 s->base.is_jmp = DISAS_TOO_MANY; 1892 1893 switch (op) { 1894 case 0x00: /* CFINV */ 1895 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) { 1896 goto do_unallocated; 1897 } 1898 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1899 s->base.is_jmp = DISAS_NEXT; 1900 break; 1901 1902 case 0x01: /* XAFlag */ 1903 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1904 goto do_unallocated; 1905 } 1906 gen_xaflag(); 1907 s->base.is_jmp = DISAS_NEXT; 1908 break; 1909 1910 case 0x02: /* AXFlag */ 1911 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) { 1912 goto do_unallocated; 1913 } 1914 gen_axflag(); 1915 s->base.is_jmp = DISAS_NEXT; 1916 break; 1917 1918 case 0x03: /* UAO */ 1919 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1920 goto do_unallocated; 1921 } 1922 if (crm & 1) { 1923 set_pstate_bits(PSTATE_UAO); 1924 } else { 1925 clear_pstate_bits(PSTATE_UAO); 1926 } 1927 gen_rebuild_hflags(s); 1928 break; 1929 1930 case 0x04: /* PAN */ 1931 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1932 goto do_unallocated; 1933 } 1934 if (crm & 1) { 1935 set_pstate_bits(PSTATE_PAN); 1936 } else { 1937 clear_pstate_bits(PSTATE_PAN); 1938 } 1939 gen_rebuild_hflags(s); 1940 break; 1941 1942 case 0x05: /* SPSel */ 1943 if (s->current_el == 0) { 1944 goto do_unallocated; 1945 } 1946 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP)); 1947 break; 1948 1949 case 0x19: /* SSBS */ 1950 if (!dc_isar_feature(aa64_ssbs, s)) { 1951 goto do_unallocated; 1952 } 1953 if (crm & 1) { 1954 set_pstate_bits(PSTATE_SSBS); 1955 } else { 1956 clear_pstate_bits(PSTATE_SSBS); 1957 } 1958 /* Don't need to rebuild hflags since SSBS is a nop */ 1959 break; 1960 1961 case 0x1a: /* DIT */ 1962 if (!dc_isar_feature(aa64_dit, s)) { 1963 goto do_unallocated; 1964 } 1965 if (crm & 1) { 1966 set_pstate_bits(PSTATE_DIT); 1967 } else { 1968 clear_pstate_bits(PSTATE_DIT); 1969 } 1970 /* There's no need to rebuild hflags because DIT is a nop */ 1971 break; 1972 1973 case 0x1e: /* DAIFSet */ 1974 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm)); 1975 break; 1976 1977 case 0x1f: /* DAIFClear */ 1978 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm)); 1979 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ 1980 s->base.is_jmp = DISAS_UPDATE_EXIT; 1981 break; 1982 1983 case 0x1c: /* TCO */ 1984 if (dc_isar_feature(aa64_mte, s)) { 1985 /* Full MTE is enabled -- set the TCO bit as directed. */ 1986 if (crm & 1) { 1987 set_pstate_bits(PSTATE_TCO); 1988 } else { 1989 clear_pstate_bits(PSTATE_TCO); 1990 } 1991 gen_rebuild_hflags(s); 1992 /* Many factors, including TCO, go into MTE_ACTIVE. */ 1993 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 1994 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 1995 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 1996 s->base.is_jmp = DISAS_NEXT; 1997 } else { 1998 goto do_unallocated; 1999 } 2000 break; 2001 2002 case 0x1b: /* SVCR* */ 2003 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) { 2004 goto do_unallocated; 2005 } 2006 if (sme_access_check(s)) { 2007 int old = s->pstate_sm | (s->pstate_za << 1); 2008 int new = (crm & 1) * 3; 2009 int msk = (crm >> 1) & 3; 2010 2011 if ((old ^ new) & msk) { 2012 /* At least one bit changes. */ 2013 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new), 2014 tcg_constant_i32(msk)); 2015 } else { 2016 s->base.is_jmp = DISAS_NEXT; 2017 } 2018 } 2019 break; 2020 2021 default: 2022 do_unallocated: 2023 unallocated_encoding(s); 2024 return; 2025 } 2026 } 2027 2028 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2029 { 2030 TCGv_i32 tmp = tcg_temp_new_i32(); 2031 TCGv_i32 nzcv = tcg_temp_new_i32(); 2032 2033 /* build bit 31, N */ 2034 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2035 /* build bit 30, Z */ 2036 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2037 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2038 /* build bit 29, C */ 2039 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2040 /* build bit 28, V */ 2041 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2042 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2043 /* generate result */ 2044 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2045 } 2046 2047 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2048 { 2049 TCGv_i32 nzcv = tcg_temp_new_i32(); 2050 2051 /* take NZCV from R[t] */ 2052 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2053 2054 /* bit 31, N */ 2055 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2056 /* bit 30, Z */ 2057 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2058 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2059 /* bit 29, C */ 2060 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2061 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2062 /* bit 28, V */ 2063 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2064 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2065 } 2066 2067 static void gen_sysreg_undef(DisasContext *s, bool isread, 2068 uint8_t op0, uint8_t op1, uint8_t op2, 2069 uint8_t crn, uint8_t crm, uint8_t rt) 2070 { 2071 /* 2072 * Generate code to emit an UNDEF with correct syndrome 2073 * information for a failed system register access. 2074 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2075 * but if FEAT_IDST is implemented then read accesses to registers 2076 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2077 * syndrome. 2078 */ 2079 uint32_t syndrome; 2080 2081 if (isread && dc_isar_feature(aa64_ids, s) && 2082 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2083 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2084 } else { 2085 syndrome = syn_uncategorized(); 2086 } 2087 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2088 } 2089 2090 /* MRS - move from system register 2091 * MSR (register) - move to system register 2092 * SYS 2093 * SYSL 2094 * These are all essentially the same insn in 'read' and 'write' 2095 * versions, with varying op0 fields. 2096 */ 2097 static void handle_sys(DisasContext *s, uint32_t insn, bool isread, 2098 unsigned int op0, unsigned int op1, unsigned int op2, 2099 unsigned int crn, unsigned int crm, unsigned int rt) 2100 { 2101 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2102 crn, crm, op0, op1, op2); 2103 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2104 bool need_exit_tb = false; 2105 TCGv_ptr tcg_ri = NULL; 2106 TCGv_i64 tcg_rt; 2107 2108 if (!ri) { 2109 /* Unknown register; this might be a guest error or a QEMU 2110 * unimplemented feature. 2111 */ 2112 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2113 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2114 isread ? "read" : "write", op0, op1, crn, crm, op2); 2115 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2116 return; 2117 } 2118 2119 /* Check access permissions */ 2120 if (!cp_access_ok(s->current_el, ri, isread)) { 2121 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2122 return; 2123 } 2124 2125 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2126 /* Emit code to perform further access permissions checks at 2127 * runtime; this may result in an exception. 2128 */ 2129 uint32_t syndrome; 2130 2131 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2132 gen_a64_update_pc(s, 0); 2133 tcg_ri = tcg_temp_new_ptr(); 2134 gen_helper_access_check_cp_reg(tcg_ri, cpu_env, 2135 tcg_constant_i32(key), 2136 tcg_constant_i32(syndrome), 2137 tcg_constant_i32(isread)); 2138 } else if (ri->type & ARM_CP_RAISES_EXC) { 2139 /* 2140 * The readfn or writefn might raise an exception; 2141 * synchronize the CPU state in case it does. 2142 */ 2143 gen_a64_update_pc(s, 0); 2144 } 2145 2146 /* Handle special cases first */ 2147 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2148 case 0: 2149 break; 2150 case ARM_CP_NOP: 2151 return; 2152 case ARM_CP_NZCV: 2153 tcg_rt = cpu_reg(s, rt); 2154 if (isread) { 2155 gen_get_nzcv(tcg_rt); 2156 } else { 2157 gen_set_nzcv(tcg_rt); 2158 } 2159 return; 2160 case ARM_CP_CURRENTEL: 2161 /* Reads as current EL value from pstate, which is 2162 * guaranteed to be constant by the tb flags. 2163 */ 2164 tcg_rt = cpu_reg(s, rt); 2165 tcg_gen_movi_i64(tcg_rt, s->current_el << 2); 2166 return; 2167 case ARM_CP_DC_ZVA: 2168 /* Writes clear the aligned block of memory which rt points into. */ 2169 if (s->mte_active[0]) { 2170 int desc = 0; 2171 2172 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2173 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2174 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2175 2176 tcg_rt = tcg_temp_new_i64(); 2177 gen_helper_mte_check_zva(tcg_rt, cpu_env, 2178 tcg_constant_i32(desc), cpu_reg(s, rt)); 2179 } else { 2180 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2181 } 2182 gen_helper_dc_zva(cpu_env, tcg_rt); 2183 return; 2184 case ARM_CP_DC_GVA: 2185 { 2186 TCGv_i64 clean_addr, tag; 2187 2188 /* 2189 * DC_GVA, like DC_ZVA, requires that we supply the original 2190 * pointer for an invalid page. Probe that address first. 2191 */ 2192 tcg_rt = cpu_reg(s, rt); 2193 clean_addr = clean_data_tbi(s, tcg_rt); 2194 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2195 2196 if (s->ata) { 2197 /* Extract the tag from the register to match STZGM. */ 2198 tag = tcg_temp_new_i64(); 2199 tcg_gen_shri_i64(tag, tcg_rt, 56); 2200 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2201 } 2202 } 2203 return; 2204 case ARM_CP_DC_GZVA: 2205 { 2206 TCGv_i64 clean_addr, tag; 2207 2208 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2209 tcg_rt = cpu_reg(s, rt); 2210 clean_addr = clean_data_tbi(s, tcg_rt); 2211 gen_helper_dc_zva(cpu_env, clean_addr); 2212 2213 if (s->ata) { 2214 /* Extract the tag from the register to match STZGM. */ 2215 tag = tcg_temp_new_i64(); 2216 tcg_gen_shri_i64(tag, tcg_rt, 56); 2217 gen_helper_stzgm_tags(cpu_env, clean_addr, tag); 2218 } 2219 } 2220 return; 2221 default: 2222 g_assert_not_reached(); 2223 } 2224 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2225 return; 2226 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2227 return; 2228 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2229 return; 2230 } 2231 2232 if (ri->type & ARM_CP_IO) { 2233 /* I/O operations must end the TB here (whether read or write) */ 2234 need_exit_tb = translator_io_start(&s->base); 2235 } 2236 2237 tcg_rt = cpu_reg(s, rt); 2238 2239 if (isread) { 2240 if (ri->type & ARM_CP_CONST) { 2241 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2242 } else if (ri->readfn) { 2243 if (!tcg_ri) { 2244 tcg_ri = gen_lookup_cp_reg(key); 2245 } 2246 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri); 2247 } else { 2248 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); 2249 } 2250 } else { 2251 if (ri->type & ARM_CP_CONST) { 2252 /* If not forbidden by access permissions, treat as WI */ 2253 return; 2254 } else if (ri->writefn) { 2255 if (!tcg_ri) { 2256 tcg_ri = gen_lookup_cp_reg(key); 2257 } 2258 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt); 2259 } else { 2260 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); 2261 } 2262 } 2263 2264 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2265 /* 2266 * A write to any coprocessor regiser that ends a TB 2267 * must rebuild the hflags for the next TB. 2268 */ 2269 gen_rebuild_hflags(s); 2270 /* 2271 * We default to ending the TB on a coprocessor register write, 2272 * but allow this to be suppressed by the register definition 2273 * (usually only necessary to work around guest bugs). 2274 */ 2275 need_exit_tb = true; 2276 } 2277 if (need_exit_tb) { 2278 s->base.is_jmp = DISAS_UPDATE_EXIT; 2279 } 2280 } 2281 2282 /* System 2283 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 2284 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2285 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | 2286 * +---------------------+---+-----+-----+-------+-------+-----+------+ 2287 */ 2288 static void disas_system(DisasContext *s, uint32_t insn) 2289 { 2290 unsigned int l, op0, op1, crn, crm, op2, rt; 2291 l = extract32(insn, 21, 1); 2292 op0 = extract32(insn, 19, 2); 2293 op1 = extract32(insn, 16, 3); 2294 crn = extract32(insn, 12, 4); 2295 crm = extract32(insn, 8, 4); 2296 op2 = extract32(insn, 5, 3); 2297 rt = extract32(insn, 0, 5); 2298 2299 if (op0 == 0) { 2300 if (l || rt != 31) { 2301 unallocated_encoding(s); 2302 return; 2303 } 2304 switch (crn) { 2305 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ 2306 handle_hint(s, insn, op1, op2, crm); 2307 break; 2308 case 3: /* CLREX, DSB, DMB, ISB */ 2309 handle_sync(s, insn, op1, op2, crm); 2310 break; 2311 case 4: /* MSR (immediate) */ 2312 handle_msr_i(s, insn, op1, op2, crm); 2313 break; 2314 default: 2315 unallocated_encoding(s); 2316 break; 2317 } 2318 return; 2319 } 2320 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); 2321 } 2322 2323 /* Exception generation 2324 * 2325 * 31 24 23 21 20 5 4 2 1 0 2326 * +-----------------+-----+------------------------+-----+----+ 2327 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | 2328 * +-----------------------+------------------------+----------+ 2329 */ 2330 static void disas_exc(DisasContext *s, uint32_t insn) 2331 { 2332 int opc = extract32(insn, 21, 3); 2333 int op2_ll = extract32(insn, 0, 5); 2334 int imm16 = extract32(insn, 5, 16); 2335 uint32_t syndrome; 2336 2337 switch (opc) { 2338 case 0: 2339 /* For SVC, HVC and SMC we advance the single-step state 2340 * machine before taking the exception. This is architecturally 2341 * mandated, to ensure that single-stepping a system call 2342 * instruction works properly. 2343 */ 2344 switch (op2_ll) { 2345 case 1: /* SVC */ 2346 syndrome = syn_aa64_svc(imm16); 2347 if (s->fgt_svc) { 2348 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2349 break; 2350 } 2351 gen_ss_advance(s); 2352 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2353 break; 2354 case 2: /* HVC */ 2355 if (s->current_el == 0) { 2356 unallocated_encoding(s); 2357 break; 2358 } 2359 /* The pre HVC helper handles cases when HVC gets trapped 2360 * as an undefined insn by runtime configuration. 2361 */ 2362 gen_a64_update_pc(s, 0); 2363 gen_helper_pre_hvc(cpu_env); 2364 gen_ss_advance(s); 2365 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2); 2366 break; 2367 case 3: /* SMC */ 2368 if (s->current_el == 0) { 2369 unallocated_encoding(s); 2370 break; 2371 } 2372 gen_a64_update_pc(s, 0); 2373 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16))); 2374 gen_ss_advance(s); 2375 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3); 2376 break; 2377 default: 2378 unallocated_encoding(s); 2379 break; 2380 } 2381 break; 2382 case 1: 2383 if (op2_ll != 0) { 2384 unallocated_encoding(s); 2385 break; 2386 } 2387 /* BRK */ 2388 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16)); 2389 break; 2390 case 2: 2391 if (op2_ll != 0) { 2392 unallocated_encoding(s); 2393 break; 2394 } 2395 /* HLT. This has two purposes. 2396 * Architecturally, it is an external halting debug instruction. 2397 * Since QEMU doesn't implement external debug, we treat this as 2398 * it is required for halting debug disabled: it will UNDEF. 2399 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2400 */ 2401 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) { 2402 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2403 } else { 2404 unallocated_encoding(s); 2405 } 2406 break; 2407 case 5: 2408 if (op2_ll < 1 || op2_ll > 3) { 2409 unallocated_encoding(s); 2410 break; 2411 } 2412 /* DCPS1, DCPS2, DCPS3 */ 2413 unallocated_encoding(s); 2414 break; 2415 default: 2416 unallocated_encoding(s); 2417 break; 2418 } 2419 } 2420 2421 /* Branches, exception generating and system instructions */ 2422 static void disas_b_exc_sys(DisasContext *s, uint32_t insn) 2423 { 2424 switch (extract32(insn, 25, 7)) { 2425 case 0x6a: /* Exception generation / System */ 2426 if (insn & (1 << 24)) { 2427 if (extract32(insn, 22, 2) == 0) { 2428 disas_system(s, insn); 2429 } else { 2430 unallocated_encoding(s); 2431 } 2432 } else { 2433 disas_exc(s, insn); 2434 } 2435 break; 2436 default: 2437 unallocated_encoding(s); 2438 break; 2439 } 2440 } 2441 2442 /* 2443 * Load/Store exclusive instructions are implemented by remembering 2444 * the value/address loaded, and seeing if these are the same 2445 * when the store is performed. This is not actually the architecturally 2446 * mandated semantics, but it works for typical guest code sequences 2447 * and avoids having to monitor regular stores. 2448 * 2449 * The store exclusive uses the atomic cmpxchg primitives to avoid 2450 * races in multi-threaded linux-user and when MTTCG softmmu is 2451 * enabled. 2452 */ 2453 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2454 int size, bool is_pair) 2455 { 2456 int idx = get_mem_index(s); 2457 TCGv_i64 dirty_addr, clean_addr; 2458 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2459 2460 s->is_ldex = true; 2461 dirty_addr = cpu_reg_sp(s, rn); 2462 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2463 2464 g_assert(size <= 3); 2465 if (is_pair) { 2466 g_assert(size >= 2); 2467 if (size == 2) { 2468 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2469 if (s->be_data == MO_LE) { 2470 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2471 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2472 } else { 2473 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2474 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2475 } 2476 } else { 2477 TCGv_i128 t16 = tcg_temp_new_i128(); 2478 2479 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2480 2481 if (s->be_data == MO_LE) { 2482 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2483 cpu_exclusive_high, t16); 2484 } else { 2485 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2486 cpu_exclusive_val, t16); 2487 } 2488 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2489 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2490 } 2491 } else { 2492 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2493 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2494 } 2495 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2496 } 2497 2498 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2499 int rn, int size, int is_pair) 2500 { 2501 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2502 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2503 * [addr] = {Rt}; 2504 * if (is_pair) { 2505 * [addr + datasize] = {Rt2}; 2506 * } 2507 * {Rd} = 0; 2508 * } else { 2509 * {Rd} = 1; 2510 * } 2511 * env->exclusive_addr = -1; 2512 */ 2513 TCGLabel *fail_label = gen_new_label(); 2514 TCGLabel *done_label = gen_new_label(); 2515 TCGv_i64 tmp, clean_addr; 2516 MemOp memop; 2517 2518 /* 2519 * FIXME: We are out of spec here. We have recorded only the address 2520 * from load_exclusive, not the entire range, and we assume that the 2521 * size of the access on both sides match. The architecture allows the 2522 * store to be smaller than the load, so long as the stored bytes are 2523 * within the range recorded by the load. 2524 */ 2525 2526 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2527 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2528 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2529 2530 /* 2531 * The write, and any associated faults, only happen if the virtual 2532 * and physical addresses pass the exclusive monitor check. These 2533 * faults are exceedingly unlikely, because normally the guest uses 2534 * the exact same address register for the load_exclusive, and we 2535 * would have recognized these faults there. 2536 * 2537 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2538 * unaligned 4-byte write within the range of an aligned 8-byte load. 2539 * With LSE2, the store would need to cross a 16-byte boundary when the 2540 * load did not, which would mean the store is outside the range 2541 * recorded for the monitor, which would have failed a corrected monitor 2542 * check above. For now, we assume no size change and retain the 2543 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2544 * 2545 * It is possible to trigger an MTE fault, by performing the load with 2546 * a virtual address with a valid tag and performing the store with the 2547 * same virtual address and a different invalid tag. 2548 */ 2549 memop = size + is_pair; 2550 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2551 memop |= MO_ALIGN; 2552 } 2553 memop = finalize_memop(s, memop); 2554 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2555 2556 tmp = tcg_temp_new_i64(); 2557 if (is_pair) { 2558 if (size == 2) { 2559 if (s->be_data == MO_LE) { 2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2561 } else { 2562 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2563 } 2564 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2565 cpu_exclusive_val, tmp, 2566 get_mem_index(s), memop); 2567 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2568 } else { 2569 TCGv_i128 t16 = tcg_temp_new_i128(); 2570 TCGv_i128 c16 = tcg_temp_new_i128(); 2571 TCGv_i64 a, b; 2572 2573 if (s->be_data == MO_LE) { 2574 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2575 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2576 cpu_exclusive_high); 2577 } else { 2578 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2579 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2580 cpu_exclusive_val); 2581 } 2582 2583 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2584 get_mem_index(s), memop); 2585 2586 a = tcg_temp_new_i64(); 2587 b = tcg_temp_new_i64(); 2588 if (s->be_data == MO_LE) { 2589 tcg_gen_extr_i128_i64(a, b, t16); 2590 } else { 2591 tcg_gen_extr_i128_i64(b, a, t16); 2592 } 2593 2594 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2595 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2596 tcg_gen_or_i64(tmp, a, b); 2597 2598 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2599 } 2600 } else { 2601 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2602 cpu_reg(s, rt), get_mem_index(s), memop); 2603 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2604 } 2605 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2606 tcg_gen_br(done_label); 2607 2608 gen_set_label(fail_label); 2609 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2610 gen_set_label(done_label); 2611 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2612 } 2613 2614 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2615 int rn, int size) 2616 { 2617 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2618 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2619 int memidx = get_mem_index(s); 2620 TCGv_i64 clean_addr; 2621 MemOp memop; 2622 2623 if (rn == 31) { 2624 gen_check_sp_alignment(s); 2625 } 2626 memop = check_atomic_align(s, rn, size); 2627 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2628 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2629 memidx, memop); 2630 } 2631 2632 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2633 int rn, int size) 2634 { 2635 TCGv_i64 s1 = cpu_reg(s, rs); 2636 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2637 TCGv_i64 t1 = cpu_reg(s, rt); 2638 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2639 TCGv_i64 clean_addr; 2640 int memidx = get_mem_index(s); 2641 MemOp memop; 2642 2643 if (rn == 31) { 2644 gen_check_sp_alignment(s); 2645 } 2646 2647 /* This is a single atomic access, despite the "pair". */ 2648 memop = check_atomic_align(s, rn, size + 1); 2649 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2650 2651 if (size == 2) { 2652 TCGv_i64 cmp = tcg_temp_new_i64(); 2653 TCGv_i64 val = tcg_temp_new_i64(); 2654 2655 if (s->be_data == MO_LE) { 2656 tcg_gen_concat32_i64(val, t1, t2); 2657 tcg_gen_concat32_i64(cmp, s1, s2); 2658 } else { 2659 tcg_gen_concat32_i64(val, t2, t1); 2660 tcg_gen_concat32_i64(cmp, s2, s1); 2661 } 2662 2663 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2664 2665 if (s->be_data == MO_LE) { 2666 tcg_gen_extr32_i64(s1, s2, cmp); 2667 } else { 2668 tcg_gen_extr32_i64(s2, s1, cmp); 2669 } 2670 } else { 2671 TCGv_i128 cmp = tcg_temp_new_i128(); 2672 TCGv_i128 val = tcg_temp_new_i128(); 2673 2674 if (s->be_data == MO_LE) { 2675 tcg_gen_concat_i64_i128(val, t1, t2); 2676 tcg_gen_concat_i64_i128(cmp, s1, s2); 2677 } else { 2678 tcg_gen_concat_i64_i128(val, t2, t1); 2679 tcg_gen_concat_i64_i128(cmp, s2, s1); 2680 } 2681 2682 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2683 2684 if (s->be_data == MO_LE) { 2685 tcg_gen_extr_i128_i64(s1, s2, cmp); 2686 } else { 2687 tcg_gen_extr_i128_i64(s2, s1, cmp); 2688 } 2689 } 2690 } 2691 2692 /* Update the Sixty-Four bit (SF) registersize. This logic is derived 2693 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2694 */ 2695 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) 2696 { 2697 int opc0 = extract32(opc, 0, 1); 2698 int regsize; 2699 2700 if (is_signed) { 2701 regsize = opc0 ? 32 : 64; 2702 } else { 2703 regsize = size == 3 ? 64 : 32; 2704 } 2705 return regsize == 64; 2706 } 2707 2708 /* Load/store exclusive 2709 * 2710 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 2711 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2712 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | 2713 * +-----+-------------+----+---+----+------+----+-------+------+------+ 2714 * 2715 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit 2716 * L: 0 -> store, 1 -> load 2717 * o2: 0 -> exclusive, 1 -> not 2718 * o1: 0 -> single register, 1 -> register pair 2719 * o0: 1 -> load-acquire/store-release, 0 -> not 2720 */ 2721 static void disas_ldst_excl(DisasContext *s, uint32_t insn) 2722 { 2723 int rt = extract32(insn, 0, 5); 2724 int rn = extract32(insn, 5, 5); 2725 int rt2 = extract32(insn, 10, 5); 2726 int rs = extract32(insn, 16, 5); 2727 int is_lasr = extract32(insn, 15, 1); 2728 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; 2729 int size = extract32(insn, 30, 2); 2730 TCGv_i64 clean_addr; 2731 MemOp memop; 2732 2733 switch (o2_L_o1_o0) { 2734 case 0x0: /* STXR */ 2735 case 0x1: /* STLXR */ 2736 if (rn == 31) { 2737 gen_check_sp_alignment(s); 2738 } 2739 if (is_lasr) { 2740 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2741 } 2742 gen_store_exclusive(s, rs, rt, rt2, rn, size, false); 2743 return; 2744 2745 case 0x4: /* LDXR */ 2746 case 0x5: /* LDAXR */ 2747 if (rn == 31) { 2748 gen_check_sp_alignment(s); 2749 } 2750 gen_load_exclusive(s, rt, rt2, rn, size, false); 2751 if (is_lasr) { 2752 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2753 } 2754 return; 2755 2756 case 0x8: /* STLLR */ 2757 if (!dc_isar_feature(aa64_lor, s)) { 2758 break; 2759 } 2760 /* StoreLORelease is the same as Store-Release for QEMU. */ 2761 /* fall through */ 2762 case 0x9: /* STLR */ 2763 /* Generate ISS for non-exclusive accesses including LASR. */ 2764 if (rn == 31) { 2765 gen_check_sp_alignment(s); 2766 } 2767 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2768 memop = check_ordered_align(s, rn, 0, true, size); 2769 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2770 true, rn != 31, memop); 2771 do_gpr_st(s, cpu_reg(s, rt), clean_addr, memop, true, rt, 2772 disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2773 return; 2774 2775 case 0xc: /* LDLAR */ 2776 if (!dc_isar_feature(aa64_lor, s)) { 2777 break; 2778 } 2779 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2780 /* fall through */ 2781 case 0xd: /* LDAR */ 2782 /* Generate ISS for non-exclusive accesses including LASR. */ 2783 if (rn == 31) { 2784 gen_check_sp_alignment(s); 2785 } 2786 memop = check_ordered_align(s, rn, 0, false, size); 2787 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), 2788 false, rn != 31, memop); 2789 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, memop, false, true, 2790 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); 2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2792 return; 2793 2794 case 0x2: case 0x3: /* CASP / STXP */ 2795 if (size & 2) { /* STXP / STLXP */ 2796 if (rn == 31) { 2797 gen_check_sp_alignment(s); 2798 } 2799 if (is_lasr) { 2800 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2801 } 2802 gen_store_exclusive(s, rs, rt, rt2, rn, size, true); 2803 return; 2804 } 2805 if (rt2 == 31 2806 && ((rt | rs) & 1) == 0 2807 && dc_isar_feature(aa64_atomics, s)) { 2808 /* CASP / CASPL */ 2809 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2810 return; 2811 } 2812 break; 2813 2814 case 0x6: case 0x7: /* CASPA / LDXP */ 2815 if (size & 2) { /* LDXP / LDAXP */ 2816 if (rn == 31) { 2817 gen_check_sp_alignment(s); 2818 } 2819 gen_load_exclusive(s, rt, rt2, rn, size, true); 2820 if (is_lasr) { 2821 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2822 } 2823 return; 2824 } 2825 if (rt2 == 31 2826 && ((rt | rs) & 1) == 0 2827 && dc_isar_feature(aa64_atomics, s)) { 2828 /* CASPA / CASPAL */ 2829 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); 2830 return; 2831 } 2832 break; 2833 2834 case 0xa: /* CAS */ 2835 case 0xb: /* CASL */ 2836 case 0xe: /* CASA */ 2837 case 0xf: /* CASAL */ 2838 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) { 2839 gen_compare_and_swap(s, rs, rt, rn, size); 2840 return; 2841 } 2842 break; 2843 } 2844 unallocated_encoding(s); 2845 } 2846 2847 /* 2848 * Load register (literal) 2849 * 2850 * 31 30 29 27 26 25 24 23 5 4 0 2851 * +-----+-------+---+-----+-------------------+-------+ 2852 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | 2853 * +-----+-------+---+-----+-------------------+-------+ 2854 * 2855 * V: 1 -> vector (simd/fp) 2856 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, 2857 * 10-> 32 bit signed, 11 -> prefetch 2858 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) 2859 */ 2860 static void disas_ld_lit(DisasContext *s, uint32_t insn) 2861 { 2862 int rt = extract32(insn, 0, 5); 2863 int64_t imm = sextract32(insn, 5, 19) << 2; 2864 bool is_vector = extract32(insn, 26, 1); 2865 int opc = extract32(insn, 30, 2); 2866 bool is_signed = false; 2867 int size = 2; 2868 TCGv_i64 tcg_rt, clean_addr; 2869 MemOp memop; 2870 2871 if (is_vector) { 2872 if (opc == 3) { 2873 unallocated_encoding(s); 2874 return; 2875 } 2876 size = 2 + opc; 2877 if (!fp_access_check(s)) { 2878 return; 2879 } 2880 memop = finalize_memop_asimd(s, size); 2881 } else { 2882 if (opc == 3) { 2883 /* PRFM (literal) : prefetch */ 2884 return; 2885 } 2886 size = 2 + extract32(opc, 0, 1); 2887 is_signed = extract32(opc, 1, 1); 2888 memop = finalize_memop(s, size + is_signed * MO_SIGN); 2889 } 2890 2891 tcg_rt = cpu_reg(s, rt); 2892 2893 clean_addr = tcg_temp_new_i64(); 2894 gen_pc_plus_diff(s, clean_addr, imm); 2895 2896 if (is_vector) { 2897 do_fp_ld(s, rt, clean_addr, memop); 2898 } else { 2899 /* Only unsigned 32bit loads target 32bit registers. */ 2900 bool iss_sf = opc != 0; 2901 do_gpr_ld(s, tcg_rt, clean_addr, memop, false, true, rt, iss_sf, false); 2902 } 2903 } 2904 2905 /* 2906 * LDNP (Load Pair - non-temporal hint) 2907 * LDP (Load Pair - non vector) 2908 * LDPSW (Load Pair Signed Word - non vector) 2909 * STNP (Store Pair - non-temporal hint) 2910 * STP (Store Pair - non vector) 2911 * LDNP (Load Pair of SIMD&FP - non-temporal hint) 2912 * LDP (Load Pair of SIMD&FP) 2913 * STNP (Store Pair of SIMD&FP - non-temporal hint) 2914 * STP (Store Pair of SIMD&FP) 2915 * 2916 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 2917 * +-----+-------+---+---+-------+---+-----------------------------+ 2918 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | 2919 * +-----+-------+---+---+-------+---+-------+-------+------+------+ 2920 * 2921 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit 2922 * LDPSW/STGP 01 2923 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit 2924 * V: 0 -> GPR, 1 -> Vector 2925 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, 2926 * 10 -> signed offset, 11 -> pre-index 2927 * L: 0 -> Store 1 -> Load 2928 * 2929 * Rt, Rt2 = GPR or SIMD registers to be stored 2930 * Rn = general purpose register containing address 2931 * imm7 = signed offset (multiple of 4 or 8 depending on size) 2932 */ 2933 static void disas_ldst_pair(DisasContext *s, uint32_t insn) 2934 { 2935 int rt = extract32(insn, 0, 5); 2936 int rn = extract32(insn, 5, 5); 2937 int rt2 = extract32(insn, 10, 5); 2938 uint64_t offset = sextract64(insn, 15, 7); 2939 int index = extract32(insn, 23, 2); 2940 bool is_vector = extract32(insn, 26, 1); 2941 bool is_load = extract32(insn, 22, 1); 2942 int opc = extract32(insn, 30, 2); 2943 bool is_signed = false; 2944 bool postindex = false; 2945 bool wback = false; 2946 bool set_tag = false; 2947 TCGv_i64 clean_addr, dirty_addr; 2948 MemOp mop; 2949 int size; 2950 2951 if (opc == 3) { 2952 unallocated_encoding(s); 2953 return; 2954 } 2955 2956 if (is_vector) { 2957 size = 2 + opc; 2958 } else if (opc == 1 && !is_load) { 2959 /* STGP */ 2960 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) { 2961 unallocated_encoding(s); 2962 return; 2963 } 2964 size = 3; 2965 set_tag = true; 2966 } else { 2967 size = 2 + extract32(opc, 1, 1); 2968 is_signed = extract32(opc, 0, 1); 2969 if (!is_load && is_signed) { 2970 unallocated_encoding(s); 2971 return; 2972 } 2973 } 2974 2975 switch (index) { 2976 case 1: /* post-index */ 2977 postindex = true; 2978 wback = true; 2979 break; 2980 case 0: 2981 /* signed offset with "non-temporal" hint. Since we don't emulate 2982 * caches we don't care about hints to the cache system about 2983 * data access patterns, and handle this identically to plain 2984 * signed offset. 2985 */ 2986 if (is_signed) { 2987 /* There is no non-temporal-hint version of LDPSW */ 2988 unallocated_encoding(s); 2989 return; 2990 } 2991 postindex = false; 2992 break; 2993 case 2: /* signed offset, rn not updated */ 2994 postindex = false; 2995 break; 2996 case 3: /* pre-index */ 2997 postindex = false; 2998 wback = true; 2999 break; 3000 } 3001 3002 if (is_vector && !fp_access_check(s)) { 3003 return; 3004 } 3005 3006 offset <<= (set_tag ? LOG2_TAG_GRANULE : size); 3007 3008 if (rn == 31) { 3009 gen_check_sp_alignment(s); 3010 } 3011 3012 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3013 if (!postindex) { 3014 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3015 } 3016 3017 if (set_tag) { 3018 if (!s->ata) { 3019 /* 3020 * TODO: We could rely on the stores below, at least for 3021 * system mode, if we arrange to add MO_ALIGN_16. 3022 */ 3023 gen_helper_stg_stub(cpu_env, dirty_addr); 3024 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3025 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr); 3026 } else { 3027 gen_helper_stg(cpu_env, dirty_addr, dirty_addr); 3028 } 3029 } 3030 3031 if (is_vector) { 3032 mop = finalize_memop_asimd(s, size); 3033 } else { 3034 mop = finalize_memop(s, size); 3035 } 3036 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load, 3037 (wback || rn != 31) && !set_tag, 3038 2 << size, mop); 3039 3040 if (is_vector) { 3041 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3042 if (is_load) { 3043 do_fp_ld(s, rt, clean_addr, mop); 3044 } else { 3045 do_fp_st(s, rt, clean_addr, mop); 3046 } 3047 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size); 3048 if (is_load) { 3049 do_fp_ld(s, rt2, clean_addr, mop); 3050 } else { 3051 do_fp_st(s, rt2, clean_addr, mop); 3052 } 3053 } else { 3054 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3055 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); 3056 3057 /* 3058 * We built mop above for the single logical access -- rebuild it 3059 * now for the paired operation. 3060 * 3061 * With LSE2, non-sign-extending pairs are treated atomically if 3062 * aligned, and if unaligned one of the pair will be completely 3063 * within a 16-byte block and that element will be atomic. 3064 * Otherwise each element is separately atomic. 3065 * In all cases, issue one operation with the correct atomicity. 3066 * 3067 * This treats sign-extending loads like zero-extending loads, 3068 * since that reuses the most code below. 3069 */ 3070 mop = size + 1; 3071 if (s->align_mem) { 3072 mop |= (size == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3073 } 3074 mop = finalize_memop_pair(s, mop); 3075 3076 if (is_load) { 3077 if (size == 2) { 3078 int o2 = s->be_data == MO_LE ? 32 : 0; 3079 int o1 = o2 ^ 32; 3080 3081 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3082 if (is_signed) { 3083 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3084 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3085 } else { 3086 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3087 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3088 } 3089 } else { 3090 TCGv_i128 tmp = tcg_temp_new_i128(); 3091 3092 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3093 if (s->be_data == MO_LE) { 3094 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3095 } else { 3096 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3097 } 3098 } 3099 } else { 3100 if (size == 2) { 3101 TCGv_i64 tmp = tcg_temp_new_i64(); 3102 3103 if (s->be_data == MO_LE) { 3104 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3105 } else { 3106 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3107 } 3108 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3109 } else { 3110 TCGv_i128 tmp = tcg_temp_new_i128(); 3111 3112 if (s->be_data == MO_LE) { 3113 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3114 } else { 3115 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3116 } 3117 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3118 } 3119 } 3120 } 3121 3122 if (wback) { 3123 if (postindex) { 3124 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3125 } 3126 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3127 } 3128 } 3129 3130 /* 3131 * Load/store (immediate post-indexed) 3132 * Load/store (immediate pre-indexed) 3133 * Load/store (unscaled immediate) 3134 * 3135 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 3136 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3137 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | 3138 * +----+-------+---+-----+-----+---+--------+-----+------+------+ 3139 * 3140 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 3141 10 -> unprivileged 3142 * V = 0 -> non-vector 3143 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit 3144 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3145 */ 3146 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, 3147 int opc, 3148 int size, 3149 int rt, 3150 bool is_vector) 3151 { 3152 int rn = extract32(insn, 5, 5); 3153 int imm9 = sextract32(insn, 12, 9); 3154 int idx = extract32(insn, 10, 2); 3155 bool is_signed = false; 3156 bool is_store = false; 3157 bool is_extended = false; 3158 bool is_unpriv = (idx == 2); 3159 bool iss_valid; 3160 bool post_index; 3161 bool writeback; 3162 int memidx; 3163 MemOp memop; 3164 TCGv_i64 clean_addr, dirty_addr; 3165 3166 if (is_vector) { 3167 size |= (opc & 2) << 1; 3168 if (size > 4 || is_unpriv) { 3169 unallocated_encoding(s); 3170 return; 3171 } 3172 is_store = ((opc & 1) == 0); 3173 if (!fp_access_check(s)) { 3174 return; 3175 } 3176 memop = finalize_memop_asimd(s, size); 3177 } else { 3178 if (size == 3 && opc == 2) { 3179 /* PRFM - prefetch */ 3180 if (idx != 0) { 3181 unallocated_encoding(s); 3182 return; 3183 } 3184 return; 3185 } 3186 if (opc == 3 && size > 1) { 3187 unallocated_encoding(s); 3188 return; 3189 } 3190 is_store = (opc == 0); 3191 is_signed = !is_store && extract32(opc, 1, 1); 3192 is_extended = (size < 3) && extract32(opc, 0, 1); 3193 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3194 } 3195 3196 switch (idx) { 3197 case 0: 3198 case 2: 3199 post_index = false; 3200 writeback = false; 3201 break; 3202 case 1: 3203 post_index = true; 3204 writeback = true; 3205 break; 3206 case 3: 3207 post_index = false; 3208 writeback = true; 3209 break; 3210 default: 3211 g_assert_not_reached(); 3212 } 3213 3214 iss_valid = !is_vector && !writeback; 3215 3216 if (rn == 31) { 3217 gen_check_sp_alignment(s); 3218 } 3219 3220 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3221 if (!post_index) { 3222 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3223 } 3224 3225 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); 3226 3227 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store, 3228 writeback || rn != 31, 3229 size, is_unpriv, memidx); 3230 3231 if (is_vector) { 3232 if (is_store) { 3233 do_fp_st(s, rt, clean_addr, memop); 3234 } else { 3235 do_fp_ld(s, rt, clean_addr, memop); 3236 } 3237 } else { 3238 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3239 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3240 3241 if (is_store) { 3242 do_gpr_st_memidx(s, tcg_rt, clean_addr, memop, memidx, 3243 iss_valid, rt, iss_sf, false); 3244 } else { 3245 do_gpr_ld_memidx(s, tcg_rt, clean_addr, memop, 3246 is_extended, memidx, 3247 iss_valid, rt, iss_sf, false); 3248 } 3249 } 3250 3251 if (writeback) { 3252 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); 3253 if (post_index) { 3254 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9); 3255 } 3256 tcg_gen_mov_i64(tcg_rn, dirty_addr); 3257 } 3258 } 3259 3260 /* 3261 * Load/store (register offset) 3262 * 3263 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3264 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3265 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | 3266 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ 3267 * 3268 * For non-vector: 3269 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3270 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3271 * For vector: 3272 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3273 * opc<0>: 0 -> store, 1 -> load 3274 * V: 1 -> vector/simd 3275 * opt: extend encoding (see DecodeRegExtend) 3276 * S: if S=1 then scale (essentially index by sizeof(size)) 3277 * Rt: register to transfer into/out of 3278 * Rn: address register or SP for base 3279 * Rm: offset register or ZR for offset 3280 */ 3281 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, 3282 int opc, 3283 int size, 3284 int rt, 3285 bool is_vector) 3286 { 3287 int rn = extract32(insn, 5, 5); 3288 int shift = extract32(insn, 12, 1); 3289 int rm = extract32(insn, 16, 5); 3290 int opt = extract32(insn, 13, 3); 3291 bool is_signed = false; 3292 bool is_store = false; 3293 bool is_extended = false; 3294 TCGv_i64 tcg_rm, clean_addr, dirty_addr; 3295 MemOp memop; 3296 3297 if (extract32(opt, 1, 1) == 0) { 3298 unallocated_encoding(s); 3299 return; 3300 } 3301 3302 if (is_vector) { 3303 size |= (opc & 2) << 1; 3304 if (size > 4) { 3305 unallocated_encoding(s); 3306 return; 3307 } 3308 is_store = !extract32(opc, 0, 1); 3309 if (!fp_access_check(s)) { 3310 return; 3311 } 3312 } else { 3313 if (size == 3 && opc == 2) { 3314 /* PRFM - prefetch */ 3315 return; 3316 } 3317 if (opc == 3 && size > 1) { 3318 unallocated_encoding(s); 3319 return; 3320 } 3321 is_store = (opc == 0); 3322 is_signed = !is_store && extract32(opc, 1, 1); 3323 is_extended = (size < 3) && extract32(opc, 0, 1); 3324 } 3325 3326 if (rn == 31) { 3327 gen_check_sp_alignment(s); 3328 } 3329 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3330 3331 tcg_rm = read_cpu_reg(s, rm, 1); 3332 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); 3333 3334 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm); 3335 3336 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3337 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, memop); 3338 3339 if (is_vector) { 3340 if (is_store) { 3341 do_fp_st(s, rt, clean_addr, memop); 3342 } else { 3343 do_fp_ld(s, rt, clean_addr, memop); 3344 } 3345 } else { 3346 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3347 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3348 3349 if (is_store) { 3350 do_gpr_st(s, tcg_rt, clean_addr, memop, 3351 true, rt, iss_sf, false); 3352 } else { 3353 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3354 is_extended, true, rt, iss_sf, false); 3355 } 3356 } 3357 } 3358 3359 /* 3360 * Load/store (unsigned immediate) 3361 * 3362 * 31 30 29 27 26 25 24 23 22 21 10 9 5 3363 * +----+-------+---+-----+-----+------------+-------+------+ 3364 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | 3365 * +----+-------+---+-----+-----+------------+-------+------+ 3366 * 3367 * For non-vector: 3368 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit 3369 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 3370 * For vector: 3371 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated 3372 * opc<0>: 0 -> store, 1 -> load 3373 * Rn: base address register (inc SP) 3374 * Rt: target register 3375 */ 3376 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, 3377 int opc, 3378 int size, 3379 int rt, 3380 bool is_vector) 3381 { 3382 int rn = extract32(insn, 5, 5); 3383 unsigned int imm12 = extract32(insn, 10, 12); 3384 unsigned int offset; 3385 TCGv_i64 clean_addr, dirty_addr; 3386 bool is_store; 3387 bool is_signed = false; 3388 bool is_extended = false; 3389 MemOp memop; 3390 3391 if (is_vector) { 3392 size |= (opc & 2) << 1; 3393 if (size > 4) { 3394 unallocated_encoding(s); 3395 return; 3396 } 3397 is_store = !extract32(opc, 0, 1); 3398 if (!fp_access_check(s)) { 3399 return; 3400 } 3401 } else { 3402 if (size == 3 && opc == 2) { 3403 /* PRFM - prefetch */ 3404 return; 3405 } 3406 if (opc == 3 && size > 1) { 3407 unallocated_encoding(s); 3408 return; 3409 } 3410 is_store = (opc == 0); 3411 is_signed = !is_store && extract32(opc, 1, 1); 3412 is_extended = (size < 3) && extract32(opc, 0, 1); 3413 } 3414 3415 if (rn == 31) { 3416 gen_check_sp_alignment(s); 3417 } 3418 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3419 offset = imm12 << size; 3420 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3421 3422 memop = finalize_memop(s, size + is_signed * MO_SIGN); 3423 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, memop); 3424 3425 if (is_vector) { 3426 if (is_store) { 3427 do_fp_st(s, rt, clean_addr, memop); 3428 } else { 3429 do_fp_ld(s, rt, clean_addr, memop); 3430 } 3431 } else { 3432 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3433 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); 3434 if (is_store) { 3435 do_gpr_st(s, tcg_rt, clean_addr, memop, true, rt, iss_sf, false); 3436 } else { 3437 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3438 is_extended, true, rt, iss_sf, false); 3439 } 3440 } 3441 } 3442 3443 /* Atomic memory operations 3444 * 3445 * 31 30 27 26 24 22 21 16 15 12 10 5 0 3446 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ 3447 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | 3448 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ 3449 * 3450 * Rt: the result register 3451 * Rn: base address or SP 3452 * Rs: the source register for the operation 3453 * V: vector flag (always 0 as of v8.3) 3454 * A: acquire flag 3455 * R: release flag 3456 */ 3457 static void disas_ldst_atomic(DisasContext *s, uint32_t insn, 3458 int size, int rt, bool is_vector) 3459 { 3460 int rs = extract32(insn, 16, 5); 3461 int rn = extract32(insn, 5, 5); 3462 int o3_opc = extract32(insn, 12, 4); 3463 bool r = extract32(insn, 22, 1); 3464 bool a = extract32(insn, 23, 1); 3465 TCGv_i64 tcg_rs, tcg_rt, clean_addr; 3466 AtomicThreeOpFn *fn = NULL; 3467 MemOp mop = size; 3468 3469 if (is_vector || !dc_isar_feature(aa64_atomics, s)) { 3470 unallocated_encoding(s); 3471 return; 3472 } 3473 switch (o3_opc) { 3474 case 000: /* LDADD */ 3475 fn = tcg_gen_atomic_fetch_add_i64; 3476 break; 3477 case 001: /* LDCLR */ 3478 fn = tcg_gen_atomic_fetch_and_i64; 3479 break; 3480 case 002: /* LDEOR */ 3481 fn = tcg_gen_atomic_fetch_xor_i64; 3482 break; 3483 case 003: /* LDSET */ 3484 fn = tcg_gen_atomic_fetch_or_i64; 3485 break; 3486 case 004: /* LDSMAX */ 3487 fn = tcg_gen_atomic_fetch_smax_i64; 3488 mop |= MO_SIGN; 3489 break; 3490 case 005: /* LDSMIN */ 3491 fn = tcg_gen_atomic_fetch_smin_i64; 3492 mop |= MO_SIGN; 3493 break; 3494 case 006: /* LDUMAX */ 3495 fn = tcg_gen_atomic_fetch_umax_i64; 3496 break; 3497 case 007: /* LDUMIN */ 3498 fn = tcg_gen_atomic_fetch_umin_i64; 3499 break; 3500 case 010: /* SWP */ 3501 fn = tcg_gen_atomic_xchg_i64; 3502 break; 3503 case 014: /* LDAPR, LDAPRH, LDAPRB */ 3504 if (!dc_isar_feature(aa64_rcpc_8_3, s) || 3505 rs != 31 || a != 1 || r != 0) { 3506 unallocated_encoding(s); 3507 return; 3508 } 3509 break; 3510 default: 3511 unallocated_encoding(s); 3512 return; 3513 } 3514 3515 if (rn == 31) { 3516 gen_check_sp_alignment(s); 3517 } 3518 3519 mop = check_atomic_align(s, rn, mop); 3520 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, mop); 3521 3522 if (o3_opc == 014) { 3523 /* 3524 * LDAPR* are a special case because they are a simple load, not a 3525 * fetch-and-do-something op. 3526 * The architectural consistency requirements here are weaker than 3527 * full load-acquire (we only need "load-acquire processor consistent"), 3528 * but we choose to implement them as full LDAQ. 3529 */ 3530 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, false, 3531 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true); 3532 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3533 return; 3534 } 3535 3536 tcg_rs = read_cpu_reg(s, rs, true); 3537 tcg_rt = cpu_reg(s, rt); 3538 3539 if (o3_opc == 1) { /* LDCLR */ 3540 tcg_gen_not_i64(tcg_rs, tcg_rs); 3541 } 3542 3543 /* The tcg atomic primitives are all full barriers. Therefore we 3544 * can ignore the Acquire and Release bits of this instruction. 3545 */ 3546 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3547 3548 if ((mop & MO_SIGN) && size != MO_64) { 3549 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3550 } 3551 } 3552 3553 /* 3554 * PAC memory operations 3555 * 3556 * 31 30 27 26 24 22 21 12 11 10 5 0 3557 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3558 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt | 3559 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+ 3560 * 3561 * Rt: the result register 3562 * Rn: base address or SP 3563 * V: vector flag (always 0 as of v8.3) 3564 * M: clear for key DA, set for key DB 3565 * W: pre-indexing flag 3566 * S: sign for imm9. 3567 */ 3568 static void disas_ldst_pac(DisasContext *s, uint32_t insn, 3569 int size, int rt, bool is_vector) 3570 { 3571 int rn = extract32(insn, 5, 5); 3572 bool is_wback = extract32(insn, 11, 1); 3573 bool use_key_a = !extract32(insn, 23, 1); 3574 int offset; 3575 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3576 MemOp memop; 3577 3578 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) { 3579 unallocated_encoding(s); 3580 return; 3581 } 3582 3583 if (rn == 31) { 3584 gen_check_sp_alignment(s); 3585 } 3586 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3587 3588 if (s->pauth_active) { 3589 if (use_key_a) { 3590 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, 3591 tcg_constant_i64(0)); 3592 } else { 3593 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, 3594 tcg_constant_i64(0)); 3595 } 3596 } 3597 3598 /* Form the 10-bit signed, scaled offset. */ 3599 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9); 3600 offset = sextract32(offset << size, 0, 10 + size); 3601 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3602 3603 memop = finalize_memop(s, size); 3604 3605 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3606 clean_addr = gen_mte_check1(s, dirty_addr, false, 3607 is_wback || rn != 31, memop); 3608 3609 tcg_rt = cpu_reg(s, rt); 3610 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3611 /* extend */ false, /* iss_valid */ !is_wback, 3612 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false); 3613 3614 if (is_wback) { 3615 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr); 3616 } 3617 } 3618 3619 /* 3620 * LDAPR/STLR (unscaled immediate) 3621 * 3622 * 31 30 24 22 21 12 10 5 0 3623 * +------+-------------+-----+---+--------+-----+----+-----+ 3624 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt | 3625 * +------+-------------+-----+---+--------+-----+----+-----+ 3626 * 3627 * Rt: source or destination register 3628 * Rn: base register 3629 * imm9: unscaled immediate offset 3630 * opc: 00: STLUR*, 01/10/11: various LDAPUR* 3631 * size: size of load/store 3632 */ 3633 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn) 3634 { 3635 int rt = extract32(insn, 0, 5); 3636 int rn = extract32(insn, 5, 5); 3637 int offset = sextract32(insn, 12, 9); 3638 int opc = extract32(insn, 22, 2); 3639 int size = extract32(insn, 30, 2); 3640 TCGv_i64 clean_addr, dirty_addr; 3641 bool is_store = false; 3642 bool extend = false; 3643 bool iss_sf; 3644 MemOp mop = size; 3645 3646 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3647 unallocated_encoding(s); 3648 return; 3649 } 3650 3651 switch (opc) { 3652 case 0: /* STLURB */ 3653 is_store = true; 3654 break; 3655 case 1: /* LDAPUR* */ 3656 break; 3657 case 2: /* LDAPURS* 64-bit variant */ 3658 if (size == 3) { 3659 unallocated_encoding(s); 3660 return; 3661 } 3662 mop |= MO_SIGN; 3663 break; 3664 case 3: /* LDAPURS* 32-bit variant */ 3665 if (size > 1) { 3666 unallocated_encoding(s); 3667 return; 3668 } 3669 mop |= MO_SIGN; 3670 extend = true; /* zero-extend 32->64 after signed load */ 3671 break; 3672 default: 3673 g_assert_not_reached(); 3674 } 3675 3676 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc); 3677 3678 if (rn == 31) { 3679 gen_check_sp_alignment(s); 3680 } 3681 3682 mop = check_ordered_align(s, rn, offset, is_store, mop); 3683 3684 dirty_addr = read_cpu_reg_sp(s, rn, 1); 3685 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3686 clean_addr = clean_data_tbi(s, dirty_addr); 3687 3688 if (is_store) { 3689 /* Store-Release semantics */ 3690 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3691 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true); 3692 } else { 3693 /* 3694 * Load-AcquirePC semantics; we implement as the slightly more 3695 * restrictive Load-Acquire. 3696 */ 3697 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop, 3698 extend, true, rt, iss_sf, true); 3699 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3700 } 3701 } 3702 3703 /* Load/store register (all forms) */ 3704 static void disas_ldst_reg(DisasContext *s, uint32_t insn) 3705 { 3706 int rt = extract32(insn, 0, 5); 3707 int opc = extract32(insn, 22, 2); 3708 bool is_vector = extract32(insn, 26, 1); 3709 int size = extract32(insn, 30, 2); 3710 3711 switch (extract32(insn, 24, 2)) { 3712 case 0: 3713 if (extract32(insn, 21, 1) == 0) { 3714 /* Load/store register (unscaled immediate) 3715 * Load/store immediate pre/post-indexed 3716 * Load/store register unprivileged 3717 */ 3718 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); 3719 return; 3720 } 3721 switch (extract32(insn, 10, 2)) { 3722 case 0: 3723 disas_ldst_atomic(s, insn, size, rt, is_vector); 3724 return; 3725 case 2: 3726 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); 3727 return; 3728 default: 3729 disas_ldst_pac(s, insn, size, rt, is_vector); 3730 return; 3731 } 3732 break; 3733 case 1: 3734 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); 3735 return; 3736 } 3737 unallocated_encoding(s); 3738 } 3739 3740 /* AdvSIMD load/store multiple structures 3741 * 3742 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 3743 * +---+---+---------------+---+-------------+--------+------+------+------+ 3744 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | 3745 * +---+---+---------------+---+-------------+--------+------+------+------+ 3746 * 3747 * AdvSIMD load/store multiple structures (post-indexed) 3748 * 3749 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 3750 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3751 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | 3752 * +---+---+---------------+---+---+---------+--------+------+------+------+ 3753 * 3754 * Rt: first (or only) SIMD&FP register to be transferred 3755 * Rn: base address or SP 3756 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3757 */ 3758 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) 3759 { 3760 int rt = extract32(insn, 0, 5); 3761 int rn = extract32(insn, 5, 5); 3762 int rm = extract32(insn, 16, 5); 3763 int size = extract32(insn, 10, 2); 3764 int opcode = extract32(insn, 12, 4); 3765 bool is_store = !extract32(insn, 22, 1); 3766 bool is_postidx = extract32(insn, 23, 1); 3767 bool is_q = extract32(insn, 30, 1); 3768 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3769 MemOp endian, align, mop; 3770 3771 int total; /* total bytes */ 3772 int elements; /* elements per vector */ 3773 int rpt; /* num iterations */ 3774 int selem; /* structure elements */ 3775 int r; 3776 3777 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { 3778 unallocated_encoding(s); 3779 return; 3780 } 3781 3782 if (!is_postidx && rm != 0) { 3783 unallocated_encoding(s); 3784 return; 3785 } 3786 3787 /* From the shared decode logic */ 3788 switch (opcode) { 3789 case 0x0: 3790 rpt = 1; 3791 selem = 4; 3792 break; 3793 case 0x2: 3794 rpt = 4; 3795 selem = 1; 3796 break; 3797 case 0x4: 3798 rpt = 1; 3799 selem = 3; 3800 break; 3801 case 0x6: 3802 rpt = 3; 3803 selem = 1; 3804 break; 3805 case 0x7: 3806 rpt = 1; 3807 selem = 1; 3808 break; 3809 case 0x8: 3810 rpt = 1; 3811 selem = 2; 3812 break; 3813 case 0xa: 3814 rpt = 2; 3815 selem = 1; 3816 break; 3817 default: 3818 unallocated_encoding(s); 3819 return; 3820 } 3821 3822 if (size == 3 && !is_q && selem != 1) { 3823 /* reserved */ 3824 unallocated_encoding(s); 3825 return; 3826 } 3827 3828 if (!fp_access_check(s)) { 3829 return; 3830 } 3831 3832 if (rn == 31) { 3833 gen_check_sp_alignment(s); 3834 } 3835 3836 /* For our purposes, bytes are always little-endian. */ 3837 endian = s->be_data; 3838 if (size == 0) { 3839 endian = MO_LE; 3840 } 3841 3842 total = rpt * selem * (is_q ? 16 : 8); 3843 tcg_rn = cpu_reg_sp(s, rn); 3844 3845 /* 3846 * Issue the MTE check vs the logical repeat count, before we 3847 * promote consecutive little-endian elements below. 3848 */ 3849 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31, 3850 total, finalize_memop(s, size)); 3851 3852 /* 3853 * Consecutive little-endian elements from a single register 3854 * can be promoted to a larger little-endian operation. 3855 */ 3856 align = MO_ALIGN; 3857 if (selem == 1 && endian == MO_LE) { 3858 align = pow2_align(size); 3859 size = 3; 3860 } 3861 if (!s->align_mem) { 3862 align = 0; 3863 } 3864 mop = endian | size | align; 3865 3866 elements = (is_q ? 16 : 8) >> size; 3867 tcg_ebytes = tcg_constant_i64(1 << size); 3868 for (r = 0; r < rpt; r++) { 3869 int e; 3870 for (e = 0; e < elements; e++) { 3871 int xs; 3872 for (xs = 0; xs < selem; xs++) { 3873 int tt = (rt + r + xs) % 32; 3874 if (is_store) { 3875 do_vec_st(s, tt, e, clean_addr, mop); 3876 } else { 3877 do_vec_ld(s, tt, e, clean_addr, mop); 3878 } 3879 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3880 } 3881 } 3882 } 3883 3884 if (!is_store) { 3885 /* For non-quad operations, setting a slice of the low 3886 * 64 bits of the register clears the high 64 bits (in 3887 * the ARM ARM pseudocode this is implicit in the fact 3888 * that 'rval' is a 64 bit wide variable). 3889 * For quad operations, we might still need to zero the 3890 * high bits of SVE. 3891 */ 3892 for (r = 0; r < rpt * selem; r++) { 3893 int tt = (rt + r) % 32; 3894 clear_vec_high(s, is_q, tt); 3895 } 3896 } 3897 3898 if (is_postidx) { 3899 if (rm == 31) { 3900 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3901 } else { 3902 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 3903 } 3904 } 3905 } 3906 3907 /* AdvSIMD load/store single structure 3908 * 3909 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3910 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3911 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | 3912 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3913 * 3914 * AdvSIMD load/store single structure (post-indexed) 3915 * 3916 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 3917 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3918 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | 3919 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ 3920 * 3921 * Rt: first (or only) SIMD&FP register to be transferred 3922 * Rn: base address or SP 3923 * Rm (post-index only): post-index register (when !31) or size dependent #imm 3924 * index = encoded in Q:S:size dependent on size 3925 * 3926 * lane_size = encoded in R, opc 3927 * transfer width = encoded in opc, S, size 3928 */ 3929 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) 3930 { 3931 int rt = extract32(insn, 0, 5); 3932 int rn = extract32(insn, 5, 5); 3933 int rm = extract32(insn, 16, 5); 3934 int size = extract32(insn, 10, 2); 3935 int S = extract32(insn, 12, 1); 3936 int opc = extract32(insn, 13, 3); 3937 int R = extract32(insn, 21, 1); 3938 int is_load = extract32(insn, 22, 1); 3939 int is_postidx = extract32(insn, 23, 1); 3940 int is_q = extract32(insn, 30, 1); 3941 3942 int scale = extract32(opc, 1, 2); 3943 int selem = (extract32(opc, 0, 1) << 1 | R) + 1; 3944 bool replicate = false; 3945 int index = is_q << 3 | S << 2 | size; 3946 int xs, total; 3947 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3948 MemOp mop; 3949 3950 if (extract32(insn, 31, 1)) { 3951 unallocated_encoding(s); 3952 return; 3953 } 3954 if (!is_postidx && rm != 0) { 3955 unallocated_encoding(s); 3956 return; 3957 } 3958 3959 switch (scale) { 3960 case 3: 3961 if (!is_load || S) { 3962 unallocated_encoding(s); 3963 return; 3964 } 3965 scale = size; 3966 replicate = true; 3967 break; 3968 case 0: 3969 break; 3970 case 1: 3971 if (extract32(size, 0, 1)) { 3972 unallocated_encoding(s); 3973 return; 3974 } 3975 index >>= 1; 3976 break; 3977 case 2: 3978 if (extract32(size, 1, 1)) { 3979 unallocated_encoding(s); 3980 return; 3981 } 3982 if (!extract32(size, 0, 1)) { 3983 index >>= 2; 3984 } else { 3985 if (S) { 3986 unallocated_encoding(s); 3987 return; 3988 } 3989 index >>= 3; 3990 scale = 3; 3991 } 3992 break; 3993 default: 3994 g_assert_not_reached(); 3995 } 3996 3997 if (!fp_access_check(s)) { 3998 return; 3999 } 4000 4001 if (rn == 31) { 4002 gen_check_sp_alignment(s); 4003 } 4004 4005 total = selem << scale; 4006 tcg_rn = cpu_reg_sp(s, rn); 4007 4008 mop = finalize_memop(s, scale); 4009 4010 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31, 4011 total, mop); 4012 4013 tcg_ebytes = tcg_constant_i64(1 << scale); 4014 for (xs = 0; xs < selem; xs++) { 4015 if (replicate) { 4016 /* Load and replicate to all elements */ 4017 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4018 4019 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4020 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt), 4021 (is_q + 1) * 8, vec_full_reg_size(s), 4022 tcg_tmp); 4023 } else { 4024 /* Load/store one element per register */ 4025 if (is_load) { 4026 do_vec_ld(s, rt, index, clean_addr, mop); 4027 } else { 4028 do_vec_st(s, rt, index, clean_addr, mop); 4029 } 4030 } 4031 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4032 rt = (rt + 1) % 32; 4033 } 4034 4035 if (is_postidx) { 4036 if (rm == 31) { 4037 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4038 } else { 4039 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); 4040 } 4041 } 4042 } 4043 4044 /* 4045 * Load/Store memory tags 4046 * 4047 * 31 30 29 24 22 21 12 10 5 0 4048 * +-----+-------------+-----+---+------+-----+------+------+ 4049 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt | 4050 * +-----+-------------+-----+---+------+-----+------+------+ 4051 */ 4052 static void disas_ldst_tag(DisasContext *s, uint32_t insn) 4053 { 4054 int rt = extract32(insn, 0, 5); 4055 int rn = extract32(insn, 5, 5); 4056 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE; 4057 int op2 = extract32(insn, 10, 2); 4058 int op1 = extract32(insn, 22, 2); 4059 bool is_load = false, is_pair = false, is_zero = false, is_mult = false; 4060 int index = 0; 4061 TCGv_i64 addr, clean_addr, tcg_rt; 4062 4063 /* We checked insn bits [29:24,21] in the caller. */ 4064 if (extract32(insn, 30, 2) != 3) { 4065 goto do_unallocated; 4066 } 4067 4068 /* 4069 * @index is a tri-state variable which has 3 states: 4070 * < 0 : post-index, writeback 4071 * = 0 : signed offset 4072 * > 0 : pre-index, writeback 4073 */ 4074 switch (op1) { 4075 case 0: 4076 if (op2 != 0) { 4077 /* STG */ 4078 index = op2 - 2; 4079 } else { 4080 /* STZGM */ 4081 if (s->current_el == 0 || offset != 0) { 4082 goto do_unallocated; 4083 } 4084 is_mult = is_zero = true; 4085 } 4086 break; 4087 case 1: 4088 if (op2 != 0) { 4089 /* STZG */ 4090 is_zero = true; 4091 index = op2 - 2; 4092 } else { 4093 /* LDG */ 4094 is_load = true; 4095 } 4096 break; 4097 case 2: 4098 if (op2 != 0) { 4099 /* ST2G */ 4100 is_pair = true; 4101 index = op2 - 2; 4102 } else { 4103 /* STGM */ 4104 if (s->current_el == 0 || offset != 0) { 4105 goto do_unallocated; 4106 } 4107 is_mult = true; 4108 } 4109 break; 4110 case 3: 4111 if (op2 != 0) { 4112 /* STZ2G */ 4113 is_pair = is_zero = true; 4114 index = op2 - 2; 4115 } else { 4116 /* LDGM */ 4117 if (s->current_el == 0 || offset != 0) { 4118 goto do_unallocated; 4119 } 4120 is_mult = is_load = true; 4121 } 4122 break; 4123 4124 default: 4125 do_unallocated: 4126 unallocated_encoding(s); 4127 return; 4128 } 4129 4130 if (is_mult 4131 ? !dc_isar_feature(aa64_mte, s) 4132 : !dc_isar_feature(aa64_mte_insn_reg, s)) { 4133 goto do_unallocated; 4134 } 4135 4136 if (rn == 31) { 4137 gen_check_sp_alignment(s); 4138 } 4139 4140 addr = read_cpu_reg_sp(s, rn, true); 4141 if (index >= 0) { 4142 /* pre-index or signed offset */ 4143 tcg_gen_addi_i64(addr, addr, offset); 4144 } 4145 4146 if (is_mult) { 4147 tcg_rt = cpu_reg(s, rt); 4148 4149 if (is_zero) { 4150 int size = 4 << s->dcz_blocksize; 4151 4152 if (s->ata) { 4153 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt); 4154 } 4155 /* 4156 * The non-tags portion of STZGM is mostly like DC_ZVA, 4157 * except the alignment happens before the access. 4158 */ 4159 clean_addr = clean_data_tbi(s, addr); 4160 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4161 gen_helper_dc_zva(cpu_env, clean_addr); 4162 } else if (s->ata) { 4163 if (is_load) { 4164 gen_helper_ldgm(tcg_rt, cpu_env, addr); 4165 } else { 4166 gen_helper_stgm(cpu_env, addr, tcg_rt); 4167 } 4168 } else { 4169 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE; 4170 int size = 4 << GMID_EL1_BS; 4171 4172 clean_addr = clean_data_tbi(s, addr); 4173 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4174 gen_probe_access(s, clean_addr, acc, size); 4175 4176 if (is_load) { 4177 /* The result tags are zeros. */ 4178 tcg_gen_movi_i64(tcg_rt, 0); 4179 } 4180 } 4181 return; 4182 } 4183 4184 if (is_load) { 4185 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4186 tcg_rt = cpu_reg(s, rt); 4187 if (s->ata) { 4188 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt); 4189 } else { 4190 clean_addr = clean_data_tbi(s, addr); 4191 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4192 gen_address_with_allocation_tag0(tcg_rt, addr); 4193 } 4194 } else { 4195 tcg_rt = cpu_reg_sp(s, rt); 4196 if (!s->ata) { 4197 /* 4198 * For STG and ST2G, we need to check alignment and probe memory. 4199 * TODO: For STZG and STZ2G, we could rely on the stores below, 4200 * at least for system mode; user-only won't enforce alignment. 4201 */ 4202 if (is_pair) { 4203 gen_helper_st2g_stub(cpu_env, addr); 4204 } else { 4205 gen_helper_stg_stub(cpu_env, addr); 4206 } 4207 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4208 if (is_pair) { 4209 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt); 4210 } else { 4211 gen_helper_stg_parallel(cpu_env, addr, tcg_rt); 4212 } 4213 } else { 4214 if (is_pair) { 4215 gen_helper_st2g(cpu_env, addr, tcg_rt); 4216 } else { 4217 gen_helper_stg(cpu_env, addr, tcg_rt); 4218 } 4219 } 4220 } 4221 4222 if (is_zero) { 4223 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4224 TCGv_i64 zero64 = tcg_constant_i64(0); 4225 TCGv_i128 zero128 = tcg_temp_new_i128(); 4226 int mem_index = get_mem_index(s); 4227 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4228 4229 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4230 4231 /* This is 1 or 2 atomic 16-byte operations. */ 4232 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4233 if (is_pair) { 4234 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4235 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4236 } 4237 } 4238 4239 if (index != 0) { 4240 /* pre-index or post-index */ 4241 if (index < 0) { 4242 /* post-index */ 4243 tcg_gen_addi_i64(addr, addr, offset); 4244 } 4245 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr); 4246 } 4247 } 4248 4249 /* Loads and stores */ 4250 static void disas_ldst(DisasContext *s, uint32_t insn) 4251 { 4252 switch (extract32(insn, 24, 6)) { 4253 case 0x08: /* Load/store exclusive */ 4254 disas_ldst_excl(s, insn); 4255 break; 4256 case 0x18: case 0x1c: /* Load register (literal) */ 4257 disas_ld_lit(s, insn); 4258 break; 4259 case 0x28: case 0x29: 4260 case 0x2c: case 0x2d: /* Load/store pair (all forms) */ 4261 disas_ldst_pair(s, insn); 4262 break; 4263 case 0x38: case 0x39: 4264 case 0x3c: case 0x3d: /* Load/store register (all forms) */ 4265 disas_ldst_reg(s, insn); 4266 break; 4267 case 0x0c: /* AdvSIMD load/store multiple structures */ 4268 disas_ldst_multiple_struct(s, insn); 4269 break; 4270 case 0x0d: /* AdvSIMD load/store single structure */ 4271 disas_ldst_single_struct(s, insn); 4272 break; 4273 case 0x19: 4274 if (extract32(insn, 21, 1) != 0) { 4275 disas_ldst_tag(s, insn); 4276 } else if (extract32(insn, 10, 2) == 0) { 4277 disas_ldst_ldapr_stlr(s, insn); 4278 } else { 4279 unallocated_encoding(s); 4280 } 4281 break; 4282 default: 4283 unallocated_encoding(s); 4284 break; 4285 } 4286 } 4287 4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4289 4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4291 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4292 { 4293 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4294 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4295 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4296 4297 fn(tcg_rd, tcg_rn, tcg_imm); 4298 if (!a->sf) { 4299 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4300 } 4301 return true; 4302 } 4303 4304 /* 4305 * PC-rel. addressing 4306 */ 4307 4308 static bool trans_ADR(DisasContext *s, arg_ri *a) 4309 { 4310 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4311 return true; 4312 } 4313 4314 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4315 { 4316 int64_t offset = (int64_t)a->imm << 12; 4317 4318 /* The page offset is ok for CF_PCREL. */ 4319 offset -= s->pc_curr & 0xfff; 4320 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4321 return true; 4322 } 4323 4324 /* 4325 * Add/subtract (immediate) 4326 */ 4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4331 4332 /* 4333 * Add/subtract (immediate, with tags) 4334 */ 4335 4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4337 bool sub_op) 4338 { 4339 TCGv_i64 tcg_rn, tcg_rd; 4340 int imm; 4341 4342 imm = a->uimm6 << LOG2_TAG_GRANULE; 4343 if (sub_op) { 4344 imm = -imm; 4345 } 4346 4347 tcg_rn = cpu_reg_sp(s, a->rn); 4348 tcg_rd = cpu_reg_sp(s, a->rd); 4349 4350 if (s->ata) { 4351 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, 4352 tcg_constant_i32(imm), 4353 tcg_constant_i32(a->uimm4)); 4354 } else { 4355 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4356 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4357 } 4358 return true; 4359 } 4360 4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4363 4364 /* The input should be a value in the bottom e bits (with higher 4365 * bits zero); returns that value replicated into every element 4366 * of size e in a 64 bit integer. 4367 */ 4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4369 { 4370 assert(e != 0); 4371 while (e < 64) { 4372 mask |= mask << e; 4373 e *= 2; 4374 } 4375 return mask; 4376 } 4377 4378 /* 4379 * Logical (immediate) 4380 */ 4381 4382 /* 4383 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4384 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4385 * value (ie should cause a guest UNDEF exception), and true if they are 4386 * valid, in which case the decoded bit pattern is written to result. 4387 */ 4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4389 unsigned int imms, unsigned int immr) 4390 { 4391 uint64_t mask; 4392 unsigned e, levels, s, r; 4393 int len; 4394 4395 assert(immn < 2 && imms < 64 && immr < 64); 4396 4397 /* The bit patterns we create here are 64 bit patterns which 4398 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4399 * 64 bits each. Each element contains the same value: a run 4400 * of between 1 and e-1 non-zero bits, rotated within the 4401 * element by between 0 and e-1 bits. 4402 * 4403 * The element size and run length are encoded into immn (1 bit) 4404 * and imms (6 bits) as follows: 4405 * 64 bit elements: immn = 1, imms = <length of run - 1> 4406 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4407 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4408 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4409 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4410 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4411 * Notice that immn = 0, imms = 11111x is the only combination 4412 * not covered by one of the above options; this is reserved. 4413 * Further, <length of run - 1> all-ones is a reserved pattern. 4414 * 4415 * In all cases the rotation is by immr % e (and immr is 6 bits). 4416 */ 4417 4418 /* First determine the element size */ 4419 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4420 if (len < 1) { 4421 /* This is the immn == 0, imms == 0x11111x case */ 4422 return false; 4423 } 4424 e = 1 << len; 4425 4426 levels = e - 1; 4427 s = imms & levels; 4428 r = immr & levels; 4429 4430 if (s == levels) { 4431 /* <length of run - 1> mustn't be all-ones. */ 4432 return false; 4433 } 4434 4435 /* Create the value of one element: s+1 set bits rotated 4436 * by r within the element (which is e bits wide)... 4437 */ 4438 mask = MAKE_64BIT_MASK(0, s + 1); 4439 if (r) { 4440 mask = (mask >> r) | (mask << (e - r)); 4441 mask &= MAKE_64BIT_MASK(0, e); 4442 } 4443 /* ...then replicate the element over the whole 64 bit value */ 4444 mask = bitfield_replicate(mask, e); 4445 *result = mask; 4446 return true; 4447 } 4448 4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4450 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4451 { 4452 TCGv_i64 tcg_rd, tcg_rn; 4453 uint64_t imm; 4454 4455 /* Some immediate field values are reserved. */ 4456 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4457 extract32(a->dbm, 0, 6), 4458 extract32(a->dbm, 6, 6))) { 4459 return false; 4460 } 4461 if (!a->sf) { 4462 imm &= 0xffffffffull; 4463 } 4464 4465 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4466 tcg_rn = cpu_reg(s, a->rn); 4467 4468 fn(tcg_rd, tcg_rn, imm); 4469 if (set_cc) { 4470 gen_logic_CC(a->sf, tcg_rd); 4471 } 4472 if (!a->sf) { 4473 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4474 } 4475 return true; 4476 } 4477 4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4482 4483 /* 4484 * Move wide (immediate) 4485 */ 4486 4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4488 { 4489 int pos = a->hw << 4; 4490 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4491 return true; 4492 } 4493 4494 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4495 { 4496 int pos = a->hw << 4; 4497 uint64_t imm = a->imm; 4498 4499 imm = ~(imm << pos); 4500 if (!a->sf) { 4501 imm = (uint32_t)imm; 4502 } 4503 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4504 return true; 4505 } 4506 4507 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4508 { 4509 int pos = a->hw << 4; 4510 TCGv_i64 tcg_rd, tcg_im; 4511 4512 tcg_rd = cpu_reg(s, a->rd); 4513 tcg_im = tcg_constant_i64(a->imm); 4514 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4515 if (!a->sf) { 4516 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4517 } 4518 return true; 4519 } 4520 4521 /* 4522 * Bitfield 4523 */ 4524 4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4526 { 4527 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4528 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 unsigned int bitsize = a->sf ? 64 : 32; 4530 unsigned int ri = a->immr; 4531 unsigned int si = a->imms; 4532 unsigned int pos, len; 4533 4534 if (si >= ri) { 4535 /* Wd<s-r:0> = Wn<s:r> */ 4536 len = (si - ri) + 1; 4537 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4538 if (!a->sf) { 4539 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4540 } 4541 } else { 4542 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4543 len = si + 1; 4544 pos = (bitsize - ri) & (bitsize - 1); 4545 4546 if (len < ri) { 4547 /* 4548 * Sign extend the destination field from len to fill the 4549 * balance of the word. Let the deposit below insert all 4550 * of those sign bits. 4551 */ 4552 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4553 len = ri; 4554 } 4555 4556 /* 4557 * We start with zero, and we haven't modified any bits outside 4558 * bitsize, therefore no final zero-extension is unneeded for !sf. 4559 */ 4560 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4561 } 4562 return true; 4563 } 4564 4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4566 { 4567 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4568 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4569 unsigned int bitsize = a->sf ? 64 : 32; 4570 unsigned int ri = a->immr; 4571 unsigned int si = a->imms; 4572 unsigned int pos, len; 4573 4574 tcg_rd = cpu_reg(s, a->rd); 4575 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4576 4577 if (si >= ri) { 4578 /* Wd<s-r:0> = Wn<s:r> */ 4579 len = (si - ri) + 1; 4580 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4581 } else { 4582 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4583 len = si + 1; 4584 pos = (bitsize - ri) & (bitsize - 1); 4585 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4586 } 4587 return true; 4588 } 4589 4590 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4591 { 4592 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4593 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4594 unsigned int bitsize = a->sf ? 64 : 32; 4595 unsigned int ri = a->immr; 4596 unsigned int si = a->imms; 4597 unsigned int pos, len; 4598 4599 tcg_rd = cpu_reg(s, a->rd); 4600 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4601 4602 if (si >= ri) { 4603 /* Wd<s-r:0> = Wn<s:r> */ 4604 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4605 len = (si - ri) + 1; 4606 pos = 0; 4607 } else { 4608 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4609 len = si + 1; 4610 pos = (bitsize - ri) & (bitsize - 1); 4611 } 4612 4613 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4614 if (!a->sf) { 4615 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4616 } 4617 return true; 4618 } 4619 4620 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4621 { 4622 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4623 4624 tcg_rd = cpu_reg(s, a->rd); 4625 4626 if (unlikely(a->imm == 0)) { 4627 /* 4628 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4629 * so an extract from bit 0 is a special case. 4630 */ 4631 if (a->sf) { 4632 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4633 } else { 4634 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4635 } 4636 } else { 4637 tcg_rm = cpu_reg(s, a->rm); 4638 tcg_rn = cpu_reg(s, a->rn); 4639 4640 if (a->sf) { 4641 /* Specialization to ROR happens in EXTRACT2. */ 4642 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4643 } else { 4644 TCGv_i32 t0 = tcg_temp_new_i32(); 4645 4646 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4647 if (a->rm == a->rn) { 4648 tcg_gen_rotri_i32(t0, t0, a->imm); 4649 } else { 4650 TCGv_i32 t1 = tcg_temp_new_i32(); 4651 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4652 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4653 } 4654 tcg_gen_extu_i32_i64(tcg_rd, t0); 4655 } 4656 } 4657 return true; 4658 } 4659 4660 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 4661 * Note that it is the caller's responsibility to ensure that the 4662 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 4663 * mandated semantics for out of range shifts. 4664 */ 4665 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 4666 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 4667 { 4668 switch (shift_type) { 4669 case A64_SHIFT_TYPE_LSL: 4670 tcg_gen_shl_i64(dst, src, shift_amount); 4671 break; 4672 case A64_SHIFT_TYPE_LSR: 4673 tcg_gen_shr_i64(dst, src, shift_amount); 4674 break; 4675 case A64_SHIFT_TYPE_ASR: 4676 if (!sf) { 4677 tcg_gen_ext32s_i64(dst, src); 4678 } 4679 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 4680 break; 4681 case A64_SHIFT_TYPE_ROR: 4682 if (sf) { 4683 tcg_gen_rotr_i64(dst, src, shift_amount); 4684 } else { 4685 TCGv_i32 t0, t1; 4686 t0 = tcg_temp_new_i32(); 4687 t1 = tcg_temp_new_i32(); 4688 tcg_gen_extrl_i64_i32(t0, src); 4689 tcg_gen_extrl_i64_i32(t1, shift_amount); 4690 tcg_gen_rotr_i32(t0, t0, t1); 4691 tcg_gen_extu_i32_i64(dst, t0); 4692 } 4693 break; 4694 default: 4695 assert(FALSE); /* all shift types should be handled */ 4696 break; 4697 } 4698 4699 if (!sf) { /* zero extend final result */ 4700 tcg_gen_ext32u_i64(dst, dst); 4701 } 4702 } 4703 4704 /* Shift a TCGv src by immediate, put result in dst. 4705 * The shift amount must be in range (this should always be true as the 4706 * relevant instructions will UNDEF on bad shift immediates). 4707 */ 4708 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 4709 enum a64_shift_type shift_type, unsigned int shift_i) 4710 { 4711 assert(shift_i < (sf ? 64 : 32)); 4712 4713 if (shift_i == 0) { 4714 tcg_gen_mov_i64(dst, src); 4715 } else { 4716 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 4717 } 4718 } 4719 4720 /* Logical (shifted register) 4721 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4722 * +----+-----+-----------+-------+---+------+--------+------+------+ 4723 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 4724 * +----+-----+-----------+-------+---+------+--------+------+------+ 4725 */ 4726 static void disas_logic_reg(DisasContext *s, uint32_t insn) 4727 { 4728 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 4729 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 4730 4731 sf = extract32(insn, 31, 1); 4732 opc = extract32(insn, 29, 2); 4733 shift_type = extract32(insn, 22, 2); 4734 invert = extract32(insn, 21, 1); 4735 rm = extract32(insn, 16, 5); 4736 shift_amount = extract32(insn, 10, 6); 4737 rn = extract32(insn, 5, 5); 4738 rd = extract32(insn, 0, 5); 4739 4740 if (!sf && (shift_amount & (1 << 5))) { 4741 unallocated_encoding(s); 4742 return; 4743 } 4744 4745 tcg_rd = cpu_reg(s, rd); 4746 4747 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 4748 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 4749 * register-register MOV and MVN, so it is worth special casing. 4750 */ 4751 tcg_rm = cpu_reg(s, rm); 4752 if (invert) { 4753 tcg_gen_not_i64(tcg_rd, tcg_rm); 4754 if (!sf) { 4755 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4756 } 4757 } else { 4758 if (sf) { 4759 tcg_gen_mov_i64(tcg_rd, tcg_rm); 4760 } else { 4761 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 4762 } 4763 } 4764 return; 4765 } 4766 4767 tcg_rm = read_cpu_reg(s, rm, sf); 4768 4769 if (shift_amount) { 4770 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 4771 } 4772 4773 tcg_rn = cpu_reg(s, rn); 4774 4775 switch (opc | (invert << 2)) { 4776 case 0: /* AND */ 4777 case 3: /* ANDS */ 4778 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 4779 break; 4780 case 1: /* ORR */ 4781 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 4782 break; 4783 case 2: /* EOR */ 4784 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 4785 break; 4786 case 4: /* BIC */ 4787 case 7: /* BICS */ 4788 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 4789 break; 4790 case 5: /* ORN */ 4791 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 4792 break; 4793 case 6: /* EON */ 4794 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 4795 break; 4796 default: 4797 assert(FALSE); 4798 break; 4799 } 4800 4801 if (!sf) { 4802 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4803 } 4804 4805 if (opc == 3) { 4806 gen_logic_CC(sf, tcg_rd); 4807 } 4808 } 4809 4810 /* 4811 * Add/subtract (extended register) 4812 * 4813 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 4814 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4815 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 4816 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 4817 * 4818 * sf: 0 -> 32bit, 1 -> 64bit 4819 * op: 0 -> add , 1 -> sub 4820 * S: 1 -> set flags 4821 * opt: 00 4822 * option: extension type (see DecodeRegExtend) 4823 * imm3: optional shift to Rm 4824 * 4825 * Rd = Rn + LSL(extend(Rm), amount) 4826 */ 4827 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 4828 { 4829 int rd = extract32(insn, 0, 5); 4830 int rn = extract32(insn, 5, 5); 4831 int imm3 = extract32(insn, 10, 3); 4832 int option = extract32(insn, 13, 3); 4833 int rm = extract32(insn, 16, 5); 4834 int opt = extract32(insn, 22, 2); 4835 bool setflags = extract32(insn, 29, 1); 4836 bool sub_op = extract32(insn, 30, 1); 4837 bool sf = extract32(insn, 31, 1); 4838 4839 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 4840 TCGv_i64 tcg_rd; 4841 TCGv_i64 tcg_result; 4842 4843 if (imm3 > 4 || opt != 0) { 4844 unallocated_encoding(s); 4845 return; 4846 } 4847 4848 /* non-flag setting ops may use SP */ 4849 if (!setflags) { 4850 tcg_rd = cpu_reg_sp(s, rd); 4851 } else { 4852 tcg_rd = cpu_reg(s, rd); 4853 } 4854 tcg_rn = read_cpu_reg_sp(s, rn, sf); 4855 4856 tcg_rm = read_cpu_reg(s, rm, sf); 4857 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 4858 4859 tcg_result = tcg_temp_new_i64(); 4860 4861 if (!setflags) { 4862 if (sub_op) { 4863 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4864 } else { 4865 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4866 } 4867 } else { 4868 if (sub_op) { 4869 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4870 } else { 4871 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4872 } 4873 } 4874 4875 if (sf) { 4876 tcg_gen_mov_i64(tcg_rd, tcg_result); 4877 } else { 4878 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4879 } 4880 } 4881 4882 /* 4883 * Add/subtract (shifted register) 4884 * 4885 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 4886 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4887 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 4888 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 4889 * 4890 * sf: 0 -> 32bit, 1 -> 64bit 4891 * op: 0 -> add , 1 -> sub 4892 * S: 1 -> set flags 4893 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 4894 * imm6: Shift amount to apply to Rm before the add/sub 4895 */ 4896 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 4897 { 4898 int rd = extract32(insn, 0, 5); 4899 int rn = extract32(insn, 5, 5); 4900 int imm6 = extract32(insn, 10, 6); 4901 int rm = extract32(insn, 16, 5); 4902 int shift_type = extract32(insn, 22, 2); 4903 bool setflags = extract32(insn, 29, 1); 4904 bool sub_op = extract32(insn, 30, 1); 4905 bool sf = extract32(insn, 31, 1); 4906 4907 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4908 TCGv_i64 tcg_rn, tcg_rm; 4909 TCGv_i64 tcg_result; 4910 4911 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 4912 unallocated_encoding(s); 4913 return; 4914 } 4915 4916 tcg_rn = read_cpu_reg(s, rn, sf); 4917 tcg_rm = read_cpu_reg(s, rm, sf); 4918 4919 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 4920 4921 tcg_result = tcg_temp_new_i64(); 4922 4923 if (!setflags) { 4924 if (sub_op) { 4925 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 4926 } else { 4927 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 4928 } 4929 } else { 4930 if (sub_op) { 4931 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 4932 } else { 4933 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 4934 } 4935 } 4936 4937 if (sf) { 4938 tcg_gen_mov_i64(tcg_rd, tcg_result); 4939 } else { 4940 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 4941 } 4942 } 4943 4944 /* Data-processing (3 source) 4945 * 4946 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 4947 * +--+------+-----------+------+------+----+------+------+------+ 4948 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 4949 * +--+------+-----------+------+------+----+------+------+------+ 4950 */ 4951 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 4952 { 4953 int rd = extract32(insn, 0, 5); 4954 int rn = extract32(insn, 5, 5); 4955 int ra = extract32(insn, 10, 5); 4956 int rm = extract32(insn, 16, 5); 4957 int op_id = (extract32(insn, 29, 3) << 4) | 4958 (extract32(insn, 21, 3) << 1) | 4959 extract32(insn, 15, 1); 4960 bool sf = extract32(insn, 31, 1); 4961 bool is_sub = extract32(op_id, 0, 1); 4962 bool is_high = extract32(op_id, 2, 1); 4963 bool is_signed = false; 4964 TCGv_i64 tcg_op1; 4965 TCGv_i64 tcg_op2; 4966 TCGv_i64 tcg_tmp; 4967 4968 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 4969 switch (op_id) { 4970 case 0x42: /* SMADDL */ 4971 case 0x43: /* SMSUBL */ 4972 case 0x44: /* SMULH */ 4973 is_signed = true; 4974 break; 4975 case 0x0: /* MADD (32bit) */ 4976 case 0x1: /* MSUB (32bit) */ 4977 case 0x40: /* MADD (64bit) */ 4978 case 0x41: /* MSUB (64bit) */ 4979 case 0x4a: /* UMADDL */ 4980 case 0x4b: /* UMSUBL */ 4981 case 0x4c: /* UMULH */ 4982 break; 4983 default: 4984 unallocated_encoding(s); 4985 return; 4986 } 4987 4988 if (is_high) { 4989 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 4990 TCGv_i64 tcg_rd = cpu_reg(s, rd); 4991 TCGv_i64 tcg_rn = cpu_reg(s, rn); 4992 TCGv_i64 tcg_rm = cpu_reg(s, rm); 4993 4994 if (is_signed) { 4995 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4996 } else { 4997 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 4998 } 4999 return; 5000 } 5001 5002 tcg_op1 = tcg_temp_new_i64(); 5003 tcg_op2 = tcg_temp_new_i64(); 5004 tcg_tmp = tcg_temp_new_i64(); 5005 5006 if (op_id < 0x42) { 5007 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5008 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5009 } else { 5010 if (is_signed) { 5011 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5012 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5013 } else { 5014 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5015 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5016 } 5017 } 5018 5019 if (ra == 31 && !is_sub) { 5020 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5021 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5022 } else { 5023 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5024 if (is_sub) { 5025 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5026 } else { 5027 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5028 } 5029 } 5030 5031 if (!sf) { 5032 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5033 } 5034 } 5035 5036 /* Add/subtract (with carry) 5037 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5038 * +--+--+--+------------------------+------+-------------+------+-----+ 5039 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5040 * +--+--+--+------------------------+------+-------------+------+-----+ 5041 */ 5042 5043 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5044 { 5045 unsigned int sf, op, setflags, rm, rn, rd; 5046 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5047 5048 sf = extract32(insn, 31, 1); 5049 op = extract32(insn, 30, 1); 5050 setflags = extract32(insn, 29, 1); 5051 rm = extract32(insn, 16, 5); 5052 rn = extract32(insn, 5, 5); 5053 rd = extract32(insn, 0, 5); 5054 5055 tcg_rd = cpu_reg(s, rd); 5056 tcg_rn = cpu_reg(s, rn); 5057 5058 if (op) { 5059 tcg_y = tcg_temp_new_i64(); 5060 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5061 } else { 5062 tcg_y = cpu_reg(s, rm); 5063 } 5064 5065 if (setflags) { 5066 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5067 } else { 5068 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5069 } 5070 } 5071 5072 /* 5073 * Rotate right into flags 5074 * 31 30 29 21 15 10 5 4 0 5075 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5076 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5077 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5078 */ 5079 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5080 { 5081 int mask = extract32(insn, 0, 4); 5082 int o2 = extract32(insn, 4, 1); 5083 int rn = extract32(insn, 5, 5); 5084 int imm6 = extract32(insn, 15, 6); 5085 int sf_op_s = extract32(insn, 29, 3); 5086 TCGv_i64 tcg_rn; 5087 TCGv_i32 nzcv; 5088 5089 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5090 unallocated_encoding(s); 5091 return; 5092 } 5093 5094 tcg_rn = read_cpu_reg(s, rn, 1); 5095 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5096 5097 nzcv = tcg_temp_new_i32(); 5098 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5099 5100 if (mask & 8) { /* N */ 5101 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5102 } 5103 if (mask & 4) { /* Z */ 5104 tcg_gen_not_i32(cpu_ZF, nzcv); 5105 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5106 } 5107 if (mask & 2) { /* C */ 5108 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5109 } 5110 if (mask & 1) { /* V */ 5111 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5112 } 5113 } 5114 5115 /* 5116 * Evaluate into flags 5117 * 31 30 29 21 15 14 10 5 4 0 5118 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5119 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5120 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5121 */ 5122 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5123 { 5124 int o3_mask = extract32(insn, 0, 5); 5125 int rn = extract32(insn, 5, 5); 5126 int o2 = extract32(insn, 15, 6); 5127 int sz = extract32(insn, 14, 1); 5128 int sf_op_s = extract32(insn, 29, 3); 5129 TCGv_i32 tmp; 5130 int shift; 5131 5132 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5133 !dc_isar_feature(aa64_condm_4, s)) { 5134 unallocated_encoding(s); 5135 return; 5136 } 5137 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5138 5139 tmp = tcg_temp_new_i32(); 5140 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5141 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5142 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5143 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5144 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5145 } 5146 5147 /* Conditional compare (immediate / register) 5148 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5149 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5150 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5151 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5152 * [1] y [0] [0] 5153 */ 5154 static void disas_cc(DisasContext *s, uint32_t insn) 5155 { 5156 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5157 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5158 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5159 DisasCompare c; 5160 5161 if (!extract32(insn, 29, 1)) { 5162 unallocated_encoding(s); 5163 return; 5164 } 5165 if (insn & (1 << 10 | 1 << 4)) { 5166 unallocated_encoding(s); 5167 return; 5168 } 5169 sf = extract32(insn, 31, 1); 5170 op = extract32(insn, 30, 1); 5171 is_imm = extract32(insn, 11, 1); 5172 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5173 cond = extract32(insn, 12, 4); 5174 rn = extract32(insn, 5, 5); 5175 nzcv = extract32(insn, 0, 4); 5176 5177 /* Set T0 = !COND. */ 5178 tcg_t0 = tcg_temp_new_i32(); 5179 arm_test_cc(&c, cond); 5180 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5181 5182 /* Load the arguments for the new comparison. */ 5183 if (is_imm) { 5184 tcg_y = tcg_temp_new_i64(); 5185 tcg_gen_movi_i64(tcg_y, y); 5186 } else { 5187 tcg_y = cpu_reg(s, y); 5188 } 5189 tcg_rn = cpu_reg(s, rn); 5190 5191 /* Set the flags for the new comparison. */ 5192 tcg_tmp = tcg_temp_new_i64(); 5193 if (op) { 5194 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5195 } else { 5196 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5197 } 5198 5199 /* If COND was false, force the flags to #nzcv. Compute two masks 5200 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5201 * For tcg hosts that support ANDC, we can make do with just T1. 5202 * In either case, allow the tcg optimizer to delete any unused mask. 5203 */ 5204 tcg_t1 = tcg_temp_new_i32(); 5205 tcg_t2 = tcg_temp_new_i32(); 5206 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5207 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5208 5209 if (nzcv & 8) { /* N */ 5210 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5211 } else { 5212 if (TCG_TARGET_HAS_andc_i32) { 5213 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5214 } else { 5215 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5216 } 5217 } 5218 if (nzcv & 4) { /* Z */ 5219 if (TCG_TARGET_HAS_andc_i32) { 5220 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5221 } else { 5222 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5223 } 5224 } else { 5225 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5226 } 5227 if (nzcv & 2) { /* C */ 5228 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5229 } else { 5230 if (TCG_TARGET_HAS_andc_i32) { 5231 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5232 } else { 5233 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5234 } 5235 } 5236 if (nzcv & 1) { /* V */ 5237 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5238 } else { 5239 if (TCG_TARGET_HAS_andc_i32) { 5240 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5241 } else { 5242 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5243 } 5244 } 5245 } 5246 5247 /* Conditional select 5248 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5249 * +----+----+---+-----------------+------+------+-----+------+------+ 5250 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5251 * +----+----+---+-----------------+------+------+-----+------+------+ 5252 */ 5253 static void disas_cond_select(DisasContext *s, uint32_t insn) 5254 { 5255 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5256 TCGv_i64 tcg_rd, zero; 5257 DisasCompare64 c; 5258 5259 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5260 /* S == 1 or op2<1> == 1 */ 5261 unallocated_encoding(s); 5262 return; 5263 } 5264 sf = extract32(insn, 31, 1); 5265 else_inv = extract32(insn, 30, 1); 5266 rm = extract32(insn, 16, 5); 5267 cond = extract32(insn, 12, 4); 5268 else_inc = extract32(insn, 10, 1); 5269 rn = extract32(insn, 5, 5); 5270 rd = extract32(insn, 0, 5); 5271 5272 tcg_rd = cpu_reg(s, rd); 5273 5274 a64_test_cc(&c, cond); 5275 zero = tcg_constant_i64(0); 5276 5277 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5278 /* CSET & CSETM. */ 5279 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); 5280 if (else_inv) { 5281 tcg_gen_neg_i64(tcg_rd, tcg_rd); 5282 } 5283 } else { 5284 TCGv_i64 t_true = cpu_reg(s, rn); 5285 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5286 if (else_inv && else_inc) { 5287 tcg_gen_neg_i64(t_false, t_false); 5288 } else if (else_inv) { 5289 tcg_gen_not_i64(t_false, t_false); 5290 } else if (else_inc) { 5291 tcg_gen_addi_i64(t_false, t_false, 1); 5292 } 5293 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5294 } 5295 5296 if (!sf) { 5297 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5298 } 5299 } 5300 5301 static void handle_clz(DisasContext *s, unsigned int sf, 5302 unsigned int rn, unsigned int rd) 5303 { 5304 TCGv_i64 tcg_rd, tcg_rn; 5305 tcg_rd = cpu_reg(s, rd); 5306 tcg_rn = cpu_reg(s, rn); 5307 5308 if (sf) { 5309 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5310 } else { 5311 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5312 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5313 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5314 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5315 } 5316 } 5317 5318 static void handle_cls(DisasContext *s, unsigned int sf, 5319 unsigned int rn, unsigned int rd) 5320 { 5321 TCGv_i64 tcg_rd, tcg_rn; 5322 tcg_rd = cpu_reg(s, rd); 5323 tcg_rn = cpu_reg(s, rn); 5324 5325 if (sf) { 5326 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 5327 } else { 5328 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5329 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5330 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 5331 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5332 } 5333 } 5334 5335 static void handle_rbit(DisasContext *s, unsigned int sf, 5336 unsigned int rn, unsigned int rd) 5337 { 5338 TCGv_i64 tcg_rd, tcg_rn; 5339 tcg_rd = cpu_reg(s, rd); 5340 tcg_rn = cpu_reg(s, rn); 5341 5342 if (sf) { 5343 gen_helper_rbit64(tcg_rd, tcg_rn); 5344 } else { 5345 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5346 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5347 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 5348 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5349 } 5350 } 5351 5352 /* REV with sf==1, opcode==3 ("REV64") */ 5353 static void handle_rev64(DisasContext *s, unsigned int sf, 5354 unsigned int rn, unsigned int rd) 5355 { 5356 if (!sf) { 5357 unallocated_encoding(s); 5358 return; 5359 } 5360 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 5361 } 5362 5363 /* REV with sf==0, opcode==2 5364 * REV32 (sf==1, opcode==2) 5365 */ 5366 static void handle_rev32(DisasContext *s, unsigned int sf, 5367 unsigned int rn, unsigned int rd) 5368 { 5369 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5370 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5371 5372 if (sf) { 5373 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 5374 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 5375 } else { 5376 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 5377 } 5378 } 5379 5380 /* REV16 (opcode==1) */ 5381 static void handle_rev16(DisasContext *s, unsigned int sf, 5382 unsigned int rn, unsigned int rd) 5383 { 5384 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5385 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 5386 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5387 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 5388 5389 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 5390 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 5391 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 5392 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 5393 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 5394 } 5395 5396 /* Data-processing (1 source) 5397 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5398 * +----+---+---+-----------------+---------+--------+------+------+ 5399 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 5400 * +----+---+---+-----------------+---------+--------+------+------+ 5401 */ 5402 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 5403 { 5404 unsigned int sf, opcode, opcode2, rn, rd; 5405 TCGv_i64 tcg_rd; 5406 5407 if (extract32(insn, 29, 1)) { 5408 unallocated_encoding(s); 5409 return; 5410 } 5411 5412 sf = extract32(insn, 31, 1); 5413 opcode = extract32(insn, 10, 6); 5414 opcode2 = extract32(insn, 16, 5); 5415 rn = extract32(insn, 5, 5); 5416 rd = extract32(insn, 0, 5); 5417 5418 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 5419 5420 switch (MAP(sf, opcode2, opcode)) { 5421 case MAP(0, 0x00, 0x00): /* RBIT */ 5422 case MAP(1, 0x00, 0x00): 5423 handle_rbit(s, sf, rn, rd); 5424 break; 5425 case MAP(0, 0x00, 0x01): /* REV16 */ 5426 case MAP(1, 0x00, 0x01): 5427 handle_rev16(s, sf, rn, rd); 5428 break; 5429 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 5430 case MAP(1, 0x00, 0x02): 5431 handle_rev32(s, sf, rn, rd); 5432 break; 5433 case MAP(1, 0x00, 0x03): /* REV64 */ 5434 handle_rev64(s, sf, rn, rd); 5435 break; 5436 case MAP(0, 0x00, 0x04): /* CLZ */ 5437 case MAP(1, 0x00, 0x04): 5438 handle_clz(s, sf, rn, rd); 5439 break; 5440 case MAP(0, 0x00, 0x05): /* CLS */ 5441 case MAP(1, 0x00, 0x05): 5442 handle_cls(s, sf, rn, rd); 5443 break; 5444 case MAP(1, 0x01, 0x00): /* PACIA */ 5445 if (s->pauth_active) { 5446 tcg_rd = cpu_reg(s, rd); 5447 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5448 } else if (!dc_isar_feature(aa64_pauth, s)) { 5449 goto do_unallocated; 5450 } 5451 break; 5452 case MAP(1, 0x01, 0x01): /* PACIB */ 5453 if (s->pauth_active) { 5454 tcg_rd = cpu_reg(s, rd); 5455 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5456 } else if (!dc_isar_feature(aa64_pauth, s)) { 5457 goto do_unallocated; 5458 } 5459 break; 5460 case MAP(1, 0x01, 0x02): /* PACDA */ 5461 if (s->pauth_active) { 5462 tcg_rd = cpu_reg(s, rd); 5463 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5464 } else if (!dc_isar_feature(aa64_pauth, s)) { 5465 goto do_unallocated; 5466 } 5467 break; 5468 case MAP(1, 0x01, 0x03): /* PACDB */ 5469 if (s->pauth_active) { 5470 tcg_rd = cpu_reg(s, rd); 5471 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5472 } else if (!dc_isar_feature(aa64_pauth, s)) { 5473 goto do_unallocated; 5474 } 5475 break; 5476 case MAP(1, 0x01, 0x04): /* AUTIA */ 5477 if (s->pauth_active) { 5478 tcg_rd = cpu_reg(s, rd); 5479 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5480 } else if (!dc_isar_feature(aa64_pauth, s)) { 5481 goto do_unallocated; 5482 } 5483 break; 5484 case MAP(1, 0x01, 0x05): /* AUTIB */ 5485 if (s->pauth_active) { 5486 tcg_rd = cpu_reg(s, rd); 5487 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5488 } else if (!dc_isar_feature(aa64_pauth, s)) { 5489 goto do_unallocated; 5490 } 5491 break; 5492 case MAP(1, 0x01, 0x06): /* AUTDA */ 5493 if (s->pauth_active) { 5494 tcg_rd = cpu_reg(s, rd); 5495 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5496 } else if (!dc_isar_feature(aa64_pauth, s)) { 5497 goto do_unallocated; 5498 } 5499 break; 5500 case MAP(1, 0x01, 0x07): /* AUTDB */ 5501 if (s->pauth_active) { 5502 tcg_rd = cpu_reg(s, rd); 5503 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn)); 5504 } else if (!dc_isar_feature(aa64_pauth, s)) { 5505 goto do_unallocated; 5506 } 5507 break; 5508 case MAP(1, 0x01, 0x08): /* PACIZA */ 5509 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5510 goto do_unallocated; 5511 } else if (s->pauth_active) { 5512 tcg_rd = cpu_reg(s, rd); 5513 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5514 } 5515 break; 5516 case MAP(1, 0x01, 0x09): /* PACIZB */ 5517 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5518 goto do_unallocated; 5519 } else if (s->pauth_active) { 5520 tcg_rd = cpu_reg(s, rd); 5521 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5522 } 5523 break; 5524 case MAP(1, 0x01, 0x0a): /* PACDZA */ 5525 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5526 goto do_unallocated; 5527 } else if (s->pauth_active) { 5528 tcg_rd = cpu_reg(s, rd); 5529 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5530 } 5531 break; 5532 case MAP(1, 0x01, 0x0b): /* PACDZB */ 5533 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5534 goto do_unallocated; 5535 } else if (s->pauth_active) { 5536 tcg_rd = cpu_reg(s, rd); 5537 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5538 } 5539 break; 5540 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 5541 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5542 goto do_unallocated; 5543 } else if (s->pauth_active) { 5544 tcg_rd = cpu_reg(s, rd); 5545 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5546 } 5547 break; 5548 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 5549 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5550 goto do_unallocated; 5551 } else if (s->pauth_active) { 5552 tcg_rd = cpu_reg(s, rd); 5553 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5554 } 5555 break; 5556 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 5557 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5558 goto do_unallocated; 5559 } else if (s->pauth_active) { 5560 tcg_rd = cpu_reg(s, rd); 5561 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5562 } 5563 break; 5564 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 5565 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5566 goto do_unallocated; 5567 } else if (s->pauth_active) { 5568 tcg_rd = cpu_reg(s, rd); 5569 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0)); 5570 } 5571 break; 5572 case MAP(1, 0x01, 0x10): /* XPACI */ 5573 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5574 goto do_unallocated; 5575 } else if (s->pauth_active) { 5576 tcg_rd = cpu_reg(s, rd); 5577 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd); 5578 } 5579 break; 5580 case MAP(1, 0x01, 0x11): /* XPACD */ 5581 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 5582 goto do_unallocated; 5583 } else if (s->pauth_active) { 5584 tcg_rd = cpu_reg(s, rd); 5585 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd); 5586 } 5587 break; 5588 default: 5589 do_unallocated: 5590 unallocated_encoding(s); 5591 break; 5592 } 5593 5594 #undef MAP 5595 } 5596 5597 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 5598 unsigned int rm, unsigned int rn, unsigned int rd) 5599 { 5600 TCGv_i64 tcg_n, tcg_m, tcg_rd; 5601 tcg_rd = cpu_reg(s, rd); 5602 5603 if (!sf && is_signed) { 5604 tcg_n = tcg_temp_new_i64(); 5605 tcg_m = tcg_temp_new_i64(); 5606 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 5607 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 5608 } else { 5609 tcg_n = read_cpu_reg(s, rn, sf); 5610 tcg_m = read_cpu_reg(s, rm, sf); 5611 } 5612 5613 if (is_signed) { 5614 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 5615 } else { 5616 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 5617 } 5618 5619 if (!sf) { /* zero extend final result */ 5620 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5621 } 5622 } 5623 5624 /* LSLV, LSRV, ASRV, RORV */ 5625 static void handle_shift_reg(DisasContext *s, 5626 enum a64_shift_type shift_type, unsigned int sf, 5627 unsigned int rm, unsigned int rn, unsigned int rd) 5628 { 5629 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 5630 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5631 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 5632 5633 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 5634 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 5635 } 5636 5637 /* CRC32[BHWX], CRC32C[BHWX] */ 5638 static void handle_crc32(DisasContext *s, 5639 unsigned int sf, unsigned int sz, bool crc32c, 5640 unsigned int rm, unsigned int rn, unsigned int rd) 5641 { 5642 TCGv_i64 tcg_acc, tcg_val; 5643 TCGv_i32 tcg_bytes; 5644 5645 if (!dc_isar_feature(aa64_crc32, s) 5646 || (sf == 1 && sz != 3) 5647 || (sf == 0 && sz == 3)) { 5648 unallocated_encoding(s); 5649 return; 5650 } 5651 5652 if (sz == 3) { 5653 tcg_val = cpu_reg(s, rm); 5654 } else { 5655 uint64_t mask; 5656 switch (sz) { 5657 case 0: 5658 mask = 0xFF; 5659 break; 5660 case 1: 5661 mask = 0xFFFF; 5662 break; 5663 case 2: 5664 mask = 0xFFFFFFFF; 5665 break; 5666 default: 5667 g_assert_not_reached(); 5668 } 5669 tcg_val = tcg_temp_new_i64(); 5670 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 5671 } 5672 5673 tcg_acc = cpu_reg(s, rn); 5674 tcg_bytes = tcg_constant_i32(1 << sz); 5675 5676 if (crc32c) { 5677 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5678 } else { 5679 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 5680 } 5681 } 5682 5683 /* Data-processing (2 source) 5684 * 31 30 29 28 21 20 16 15 10 9 5 4 0 5685 * +----+---+---+-----------------+------+--------+------+------+ 5686 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 5687 * +----+---+---+-----------------+------+--------+------+------+ 5688 */ 5689 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 5690 { 5691 unsigned int sf, rm, opcode, rn, rd, setflag; 5692 sf = extract32(insn, 31, 1); 5693 setflag = extract32(insn, 29, 1); 5694 rm = extract32(insn, 16, 5); 5695 opcode = extract32(insn, 10, 6); 5696 rn = extract32(insn, 5, 5); 5697 rd = extract32(insn, 0, 5); 5698 5699 if (setflag && opcode != 0) { 5700 unallocated_encoding(s); 5701 return; 5702 } 5703 5704 switch (opcode) { 5705 case 0: /* SUBP(S) */ 5706 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5707 goto do_unallocated; 5708 } else { 5709 TCGv_i64 tcg_n, tcg_m, tcg_d; 5710 5711 tcg_n = read_cpu_reg_sp(s, rn, true); 5712 tcg_m = read_cpu_reg_sp(s, rm, true); 5713 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 5714 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 5715 tcg_d = cpu_reg(s, rd); 5716 5717 if (setflag) { 5718 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 5719 } else { 5720 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 5721 } 5722 } 5723 break; 5724 case 2: /* UDIV */ 5725 handle_div(s, false, sf, rm, rn, rd); 5726 break; 5727 case 3: /* SDIV */ 5728 handle_div(s, true, sf, rm, rn, rd); 5729 break; 5730 case 4: /* IRG */ 5731 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5732 goto do_unallocated; 5733 } 5734 if (s->ata) { 5735 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env, 5736 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 5737 } else { 5738 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 5739 cpu_reg_sp(s, rn)); 5740 } 5741 break; 5742 case 5: /* GMI */ 5743 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 5744 goto do_unallocated; 5745 } else { 5746 TCGv_i64 t = tcg_temp_new_i64(); 5747 5748 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 5749 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 5750 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 5751 } 5752 break; 5753 case 8: /* LSLV */ 5754 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 5755 break; 5756 case 9: /* LSRV */ 5757 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 5758 break; 5759 case 10: /* ASRV */ 5760 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 5761 break; 5762 case 11: /* RORV */ 5763 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 5764 break; 5765 case 12: /* PACGA */ 5766 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 5767 goto do_unallocated; 5768 } 5769 gen_helper_pacga(cpu_reg(s, rd), cpu_env, 5770 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 5771 break; 5772 case 16: 5773 case 17: 5774 case 18: 5775 case 19: 5776 case 20: 5777 case 21: 5778 case 22: 5779 case 23: /* CRC32 */ 5780 { 5781 int sz = extract32(opcode, 0, 2); 5782 bool crc32c = extract32(opcode, 2, 1); 5783 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 5784 break; 5785 } 5786 default: 5787 do_unallocated: 5788 unallocated_encoding(s); 5789 break; 5790 } 5791 } 5792 5793 /* 5794 * Data processing - register 5795 * 31 30 29 28 25 21 20 16 10 0 5796 * +--+---+--+---+-------+-----+-------+-------+---------+ 5797 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 5798 * +--+---+--+---+-------+-----+-------+-------+---------+ 5799 */ 5800 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 5801 { 5802 int op0 = extract32(insn, 30, 1); 5803 int op1 = extract32(insn, 28, 1); 5804 int op2 = extract32(insn, 21, 4); 5805 int op3 = extract32(insn, 10, 6); 5806 5807 if (!op1) { 5808 if (op2 & 8) { 5809 if (op2 & 1) { 5810 /* Add/sub (extended register) */ 5811 disas_add_sub_ext_reg(s, insn); 5812 } else { 5813 /* Add/sub (shifted register) */ 5814 disas_add_sub_reg(s, insn); 5815 } 5816 } else { 5817 /* Logical (shifted register) */ 5818 disas_logic_reg(s, insn); 5819 } 5820 return; 5821 } 5822 5823 switch (op2) { 5824 case 0x0: 5825 switch (op3) { 5826 case 0x00: /* Add/subtract (with carry) */ 5827 disas_adc_sbc(s, insn); 5828 break; 5829 5830 case 0x01: /* Rotate right into flags */ 5831 case 0x21: 5832 disas_rotate_right_into_flags(s, insn); 5833 break; 5834 5835 case 0x02: /* Evaluate into flags */ 5836 case 0x12: 5837 case 0x22: 5838 case 0x32: 5839 disas_evaluate_into_flags(s, insn); 5840 break; 5841 5842 default: 5843 goto do_unallocated; 5844 } 5845 break; 5846 5847 case 0x2: /* Conditional compare */ 5848 disas_cc(s, insn); /* both imm and reg forms */ 5849 break; 5850 5851 case 0x4: /* Conditional select */ 5852 disas_cond_select(s, insn); 5853 break; 5854 5855 case 0x6: /* Data-processing */ 5856 if (op0) { /* (1 source) */ 5857 disas_data_proc_1src(s, insn); 5858 } else { /* (2 source) */ 5859 disas_data_proc_2src(s, insn); 5860 } 5861 break; 5862 case 0x8 ... 0xf: /* (3 source) */ 5863 disas_data_proc_3src(s, insn); 5864 break; 5865 5866 default: 5867 do_unallocated: 5868 unallocated_encoding(s); 5869 break; 5870 } 5871 } 5872 5873 static void handle_fp_compare(DisasContext *s, int size, 5874 unsigned int rn, unsigned int rm, 5875 bool cmp_with_zero, bool signal_all_nans) 5876 { 5877 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 5878 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 5879 5880 if (size == MO_64) { 5881 TCGv_i64 tcg_vn, tcg_vm; 5882 5883 tcg_vn = read_fp_dreg(s, rn); 5884 if (cmp_with_zero) { 5885 tcg_vm = tcg_constant_i64(0); 5886 } else { 5887 tcg_vm = read_fp_dreg(s, rm); 5888 } 5889 if (signal_all_nans) { 5890 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5891 } else { 5892 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5893 } 5894 } else { 5895 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 5896 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 5897 5898 read_vec_element_i32(s, tcg_vn, rn, 0, size); 5899 if (cmp_with_zero) { 5900 tcg_gen_movi_i32(tcg_vm, 0); 5901 } else { 5902 read_vec_element_i32(s, tcg_vm, rm, 0, size); 5903 } 5904 5905 switch (size) { 5906 case MO_32: 5907 if (signal_all_nans) { 5908 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5909 } else { 5910 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5911 } 5912 break; 5913 case MO_16: 5914 if (signal_all_nans) { 5915 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5916 } else { 5917 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 5918 } 5919 break; 5920 default: 5921 g_assert_not_reached(); 5922 } 5923 } 5924 5925 gen_set_nzcv(tcg_flags); 5926 } 5927 5928 /* Floating point compare 5929 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 5930 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5931 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 5932 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 5933 */ 5934 static void disas_fp_compare(DisasContext *s, uint32_t insn) 5935 { 5936 unsigned int mos, type, rm, op, rn, opc, op2r; 5937 int size; 5938 5939 mos = extract32(insn, 29, 3); 5940 type = extract32(insn, 22, 2); 5941 rm = extract32(insn, 16, 5); 5942 op = extract32(insn, 14, 2); 5943 rn = extract32(insn, 5, 5); 5944 opc = extract32(insn, 3, 2); 5945 op2r = extract32(insn, 0, 3); 5946 5947 if (mos || op || op2r) { 5948 unallocated_encoding(s); 5949 return; 5950 } 5951 5952 switch (type) { 5953 case 0: 5954 size = MO_32; 5955 break; 5956 case 1: 5957 size = MO_64; 5958 break; 5959 case 3: 5960 size = MO_16; 5961 if (dc_isar_feature(aa64_fp16, s)) { 5962 break; 5963 } 5964 /* fallthru */ 5965 default: 5966 unallocated_encoding(s); 5967 return; 5968 } 5969 5970 if (!fp_access_check(s)) { 5971 return; 5972 } 5973 5974 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 5975 } 5976 5977 /* Floating point conditional compare 5978 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5979 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5980 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 5981 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 5982 */ 5983 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 5984 { 5985 unsigned int mos, type, rm, cond, rn, op, nzcv; 5986 TCGLabel *label_continue = NULL; 5987 int size; 5988 5989 mos = extract32(insn, 29, 3); 5990 type = extract32(insn, 22, 2); 5991 rm = extract32(insn, 16, 5); 5992 cond = extract32(insn, 12, 4); 5993 rn = extract32(insn, 5, 5); 5994 op = extract32(insn, 4, 1); 5995 nzcv = extract32(insn, 0, 4); 5996 5997 if (mos) { 5998 unallocated_encoding(s); 5999 return; 6000 } 6001 6002 switch (type) { 6003 case 0: 6004 size = MO_32; 6005 break; 6006 case 1: 6007 size = MO_64; 6008 break; 6009 case 3: 6010 size = MO_16; 6011 if (dc_isar_feature(aa64_fp16, s)) { 6012 break; 6013 } 6014 /* fallthru */ 6015 default: 6016 unallocated_encoding(s); 6017 return; 6018 } 6019 6020 if (!fp_access_check(s)) { 6021 return; 6022 } 6023 6024 if (cond < 0x0e) { /* not always */ 6025 TCGLabel *label_match = gen_new_label(); 6026 label_continue = gen_new_label(); 6027 arm_gen_test_cc(cond, label_match); 6028 /* nomatch: */ 6029 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6030 tcg_gen_br(label_continue); 6031 gen_set_label(label_match); 6032 } 6033 6034 handle_fp_compare(s, size, rn, rm, false, op); 6035 6036 if (cond < 0x0e) { 6037 gen_set_label(label_continue); 6038 } 6039 } 6040 6041 /* Floating point conditional select 6042 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6043 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6044 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6045 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6046 */ 6047 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6048 { 6049 unsigned int mos, type, rm, cond, rn, rd; 6050 TCGv_i64 t_true, t_false; 6051 DisasCompare64 c; 6052 MemOp sz; 6053 6054 mos = extract32(insn, 29, 3); 6055 type = extract32(insn, 22, 2); 6056 rm = extract32(insn, 16, 5); 6057 cond = extract32(insn, 12, 4); 6058 rn = extract32(insn, 5, 5); 6059 rd = extract32(insn, 0, 5); 6060 6061 if (mos) { 6062 unallocated_encoding(s); 6063 return; 6064 } 6065 6066 switch (type) { 6067 case 0: 6068 sz = MO_32; 6069 break; 6070 case 1: 6071 sz = MO_64; 6072 break; 6073 case 3: 6074 sz = MO_16; 6075 if (dc_isar_feature(aa64_fp16, s)) { 6076 break; 6077 } 6078 /* fallthru */ 6079 default: 6080 unallocated_encoding(s); 6081 return; 6082 } 6083 6084 if (!fp_access_check(s)) { 6085 return; 6086 } 6087 6088 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6089 t_true = tcg_temp_new_i64(); 6090 t_false = tcg_temp_new_i64(); 6091 read_vec_element(s, t_true, rn, 0, sz); 6092 read_vec_element(s, t_false, rm, 0, sz); 6093 6094 a64_test_cc(&c, cond); 6095 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6096 t_true, t_false); 6097 6098 /* Note that sregs & hregs write back zeros to the high bits, 6099 and we've already done the zero-extension. */ 6100 write_fp_dreg(s, rd, t_true); 6101 } 6102 6103 /* Floating-point data-processing (1 source) - half precision */ 6104 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6105 { 6106 TCGv_ptr fpst = NULL; 6107 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6108 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6109 6110 switch (opcode) { 6111 case 0x0: /* FMOV */ 6112 tcg_gen_mov_i32(tcg_res, tcg_op); 6113 break; 6114 case 0x1: /* FABS */ 6115 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 6116 break; 6117 case 0x2: /* FNEG */ 6118 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 6119 break; 6120 case 0x3: /* FSQRT */ 6121 fpst = fpstatus_ptr(FPST_FPCR_F16); 6122 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6123 break; 6124 case 0x8: /* FRINTN */ 6125 case 0x9: /* FRINTP */ 6126 case 0xa: /* FRINTM */ 6127 case 0xb: /* FRINTZ */ 6128 case 0xc: /* FRINTA */ 6129 { 6130 TCGv_i32 tcg_rmode; 6131 6132 fpst = fpstatus_ptr(FPST_FPCR_F16); 6133 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6134 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6135 gen_restore_rmode(tcg_rmode, fpst); 6136 break; 6137 } 6138 case 0xe: /* FRINTX */ 6139 fpst = fpstatus_ptr(FPST_FPCR_F16); 6140 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6141 break; 6142 case 0xf: /* FRINTI */ 6143 fpst = fpstatus_ptr(FPST_FPCR_F16); 6144 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6145 break; 6146 default: 6147 g_assert_not_reached(); 6148 } 6149 6150 write_fp_sreg(s, rd, tcg_res); 6151 } 6152 6153 /* Floating-point data-processing (1 source) - single precision */ 6154 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6155 { 6156 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6157 TCGv_i32 tcg_op, tcg_res; 6158 TCGv_ptr fpst; 6159 int rmode = -1; 6160 6161 tcg_op = read_fp_sreg(s, rn); 6162 tcg_res = tcg_temp_new_i32(); 6163 6164 switch (opcode) { 6165 case 0x0: /* FMOV */ 6166 tcg_gen_mov_i32(tcg_res, tcg_op); 6167 goto done; 6168 case 0x1: /* FABS */ 6169 gen_helper_vfp_abss(tcg_res, tcg_op); 6170 goto done; 6171 case 0x2: /* FNEG */ 6172 gen_helper_vfp_negs(tcg_res, tcg_op); 6173 goto done; 6174 case 0x3: /* FSQRT */ 6175 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 6176 goto done; 6177 case 0x6: /* BFCVT */ 6178 gen_fpst = gen_helper_bfcvt; 6179 break; 6180 case 0x8: /* FRINTN */ 6181 case 0x9: /* FRINTP */ 6182 case 0xa: /* FRINTM */ 6183 case 0xb: /* FRINTZ */ 6184 case 0xc: /* FRINTA */ 6185 rmode = opcode & 7; 6186 gen_fpst = gen_helper_rints; 6187 break; 6188 case 0xe: /* FRINTX */ 6189 gen_fpst = gen_helper_rints_exact; 6190 break; 6191 case 0xf: /* FRINTI */ 6192 gen_fpst = gen_helper_rints; 6193 break; 6194 case 0x10: /* FRINT32Z */ 6195 rmode = FPROUNDING_ZERO; 6196 gen_fpst = gen_helper_frint32_s; 6197 break; 6198 case 0x11: /* FRINT32X */ 6199 gen_fpst = gen_helper_frint32_s; 6200 break; 6201 case 0x12: /* FRINT64Z */ 6202 rmode = FPROUNDING_ZERO; 6203 gen_fpst = gen_helper_frint64_s; 6204 break; 6205 case 0x13: /* FRINT64X */ 6206 gen_fpst = gen_helper_frint64_s; 6207 break; 6208 default: 6209 g_assert_not_reached(); 6210 } 6211 6212 fpst = fpstatus_ptr(FPST_FPCR); 6213 if (rmode >= 0) { 6214 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6215 gen_fpst(tcg_res, tcg_op, fpst); 6216 gen_restore_rmode(tcg_rmode, fpst); 6217 } else { 6218 gen_fpst(tcg_res, tcg_op, fpst); 6219 } 6220 6221 done: 6222 write_fp_sreg(s, rd, tcg_res); 6223 } 6224 6225 /* Floating-point data-processing (1 source) - double precision */ 6226 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6227 { 6228 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6229 TCGv_i64 tcg_op, tcg_res; 6230 TCGv_ptr fpst; 6231 int rmode = -1; 6232 6233 switch (opcode) { 6234 case 0x0: /* FMOV */ 6235 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6236 return; 6237 } 6238 6239 tcg_op = read_fp_dreg(s, rn); 6240 tcg_res = tcg_temp_new_i64(); 6241 6242 switch (opcode) { 6243 case 0x1: /* FABS */ 6244 gen_helper_vfp_absd(tcg_res, tcg_op); 6245 goto done; 6246 case 0x2: /* FNEG */ 6247 gen_helper_vfp_negd(tcg_res, tcg_op); 6248 goto done; 6249 case 0x3: /* FSQRT */ 6250 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); 6251 goto done; 6252 case 0x8: /* FRINTN */ 6253 case 0x9: /* FRINTP */ 6254 case 0xa: /* FRINTM */ 6255 case 0xb: /* FRINTZ */ 6256 case 0xc: /* FRINTA */ 6257 rmode = opcode & 7; 6258 gen_fpst = gen_helper_rintd; 6259 break; 6260 case 0xe: /* FRINTX */ 6261 gen_fpst = gen_helper_rintd_exact; 6262 break; 6263 case 0xf: /* FRINTI */ 6264 gen_fpst = gen_helper_rintd; 6265 break; 6266 case 0x10: /* FRINT32Z */ 6267 rmode = FPROUNDING_ZERO; 6268 gen_fpst = gen_helper_frint32_d; 6269 break; 6270 case 0x11: /* FRINT32X */ 6271 gen_fpst = gen_helper_frint32_d; 6272 break; 6273 case 0x12: /* FRINT64Z */ 6274 rmode = FPROUNDING_ZERO; 6275 gen_fpst = gen_helper_frint64_d; 6276 break; 6277 case 0x13: /* FRINT64X */ 6278 gen_fpst = gen_helper_frint64_d; 6279 break; 6280 default: 6281 g_assert_not_reached(); 6282 } 6283 6284 fpst = fpstatus_ptr(FPST_FPCR); 6285 if (rmode >= 0) { 6286 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6287 gen_fpst(tcg_res, tcg_op, fpst); 6288 gen_restore_rmode(tcg_rmode, fpst); 6289 } else { 6290 gen_fpst(tcg_res, tcg_op, fpst); 6291 } 6292 6293 done: 6294 write_fp_dreg(s, rd, tcg_res); 6295 } 6296 6297 static void handle_fp_fcvt(DisasContext *s, int opcode, 6298 int rd, int rn, int dtype, int ntype) 6299 { 6300 switch (ntype) { 6301 case 0x0: 6302 { 6303 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6304 if (dtype == 1) { 6305 /* Single to double */ 6306 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6307 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); 6308 write_fp_dreg(s, rd, tcg_rd); 6309 } else { 6310 /* Single to half */ 6311 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6312 TCGv_i32 ahp = get_ahp_flag(); 6313 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6314 6315 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6316 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6317 write_fp_sreg(s, rd, tcg_rd); 6318 } 6319 break; 6320 } 6321 case 0x1: 6322 { 6323 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 6324 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6325 if (dtype == 0) { 6326 /* Double to single */ 6327 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); 6328 } else { 6329 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6330 TCGv_i32 ahp = get_ahp_flag(); 6331 /* Double to half */ 6332 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6333 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6334 } 6335 write_fp_sreg(s, rd, tcg_rd); 6336 break; 6337 } 6338 case 0x3: 6339 { 6340 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6341 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 6342 TCGv_i32 tcg_ahp = get_ahp_flag(); 6343 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 6344 if (dtype == 0) { 6345 /* Half to single */ 6346 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6347 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6348 write_fp_sreg(s, rd, tcg_rd); 6349 } else { 6350 /* Half to double */ 6351 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6352 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 6353 write_fp_dreg(s, rd, tcg_rd); 6354 } 6355 break; 6356 } 6357 default: 6358 g_assert_not_reached(); 6359 } 6360 } 6361 6362 /* Floating point data-processing (1 source) 6363 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 6364 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6365 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 6366 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 6367 */ 6368 static void disas_fp_1src(DisasContext *s, uint32_t insn) 6369 { 6370 int mos = extract32(insn, 29, 3); 6371 int type = extract32(insn, 22, 2); 6372 int opcode = extract32(insn, 15, 6); 6373 int rn = extract32(insn, 5, 5); 6374 int rd = extract32(insn, 0, 5); 6375 6376 if (mos) { 6377 goto do_unallocated; 6378 } 6379 6380 switch (opcode) { 6381 case 0x4: case 0x5: case 0x7: 6382 { 6383 /* FCVT between half, single and double precision */ 6384 int dtype = extract32(opcode, 0, 2); 6385 if (type == 2 || dtype == type) { 6386 goto do_unallocated; 6387 } 6388 if (!fp_access_check(s)) { 6389 return; 6390 } 6391 6392 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 6393 break; 6394 } 6395 6396 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 6397 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 6398 goto do_unallocated; 6399 } 6400 /* fall through */ 6401 case 0x0 ... 0x3: 6402 case 0x8 ... 0xc: 6403 case 0xe ... 0xf: 6404 /* 32-to-32 and 64-to-64 ops */ 6405 switch (type) { 6406 case 0: 6407 if (!fp_access_check(s)) { 6408 return; 6409 } 6410 handle_fp_1src_single(s, opcode, rd, rn); 6411 break; 6412 case 1: 6413 if (!fp_access_check(s)) { 6414 return; 6415 } 6416 handle_fp_1src_double(s, opcode, rd, rn); 6417 break; 6418 case 3: 6419 if (!dc_isar_feature(aa64_fp16, s)) { 6420 goto do_unallocated; 6421 } 6422 6423 if (!fp_access_check(s)) { 6424 return; 6425 } 6426 handle_fp_1src_half(s, opcode, rd, rn); 6427 break; 6428 default: 6429 goto do_unallocated; 6430 } 6431 break; 6432 6433 case 0x6: 6434 switch (type) { 6435 case 1: /* BFCVT */ 6436 if (!dc_isar_feature(aa64_bf16, s)) { 6437 goto do_unallocated; 6438 } 6439 if (!fp_access_check(s)) { 6440 return; 6441 } 6442 handle_fp_1src_single(s, opcode, rd, rn); 6443 break; 6444 default: 6445 goto do_unallocated; 6446 } 6447 break; 6448 6449 default: 6450 do_unallocated: 6451 unallocated_encoding(s); 6452 break; 6453 } 6454 } 6455 6456 /* Floating-point data-processing (2 source) - single precision */ 6457 static void handle_fp_2src_single(DisasContext *s, int opcode, 6458 int rd, int rn, int rm) 6459 { 6460 TCGv_i32 tcg_op1; 6461 TCGv_i32 tcg_op2; 6462 TCGv_i32 tcg_res; 6463 TCGv_ptr fpst; 6464 6465 tcg_res = tcg_temp_new_i32(); 6466 fpst = fpstatus_ptr(FPST_FPCR); 6467 tcg_op1 = read_fp_sreg(s, rn); 6468 tcg_op2 = read_fp_sreg(s, rm); 6469 6470 switch (opcode) { 6471 case 0x0: /* FMUL */ 6472 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6473 break; 6474 case 0x1: /* FDIV */ 6475 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 6476 break; 6477 case 0x2: /* FADD */ 6478 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 6479 break; 6480 case 0x3: /* FSUB */ 6481 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 6482 break; 6483 case 0x4: /* FMAX */ 6484 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 6485 break; 6486 case 0x5: /* FMIN */ 6487 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 6488 break; 6489 case 0x6: /* FMAXNM */ 6490 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 6491 break; 6492 case 0x7: /* FMINNM */ 6493 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 6494 break; 6495 case 0x8: /* FNMUL */ 6496 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 6497 gen_helper_vfp_negs(tcg_res, tcg_res); 6498 break; 6499 } 6500 6501 write_fp_sreg(s, rd, tcg_res); 6502 } 6503 6504 /* Floating-point data-processing (2 source) - double precision */ 6505 static void handle_fp_2src_double(DisasContext *s, int opcode, 6506 int rd, int rn, int rm) 6507 { 6508 TCGv_i64 tcg_op1; 6509 TCGv_i64 tcg_op2; 6510 TCGv_i64 tcg_res; 6511 TCGv_ptr fpst; 6512 6513 tcg_res = tcg_temp_new_i64(); 6514 fpst = fpstatus_ptr(FPST_FPCR); 6515 tcg_op1 = read_fp_dreg(s, rn); 6516 tcg_op2 = read_fp_dreg(s, rm); 6517 6518 switch (opcode) { 6519 case 0x0: /* FMUL */ 6520 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6521 break; 6522 case 0x1: /* FDIV */ 6523 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 6524 break; 6525 case 0x2: /* FADD */ 6526 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 6527 break; 6528 case 0x3: /* FSUB */ 6529 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 6530 break; 6531 case 0x4: /* FMAX */ 6532 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 6533 break; 6534 case 0x5: /* FMIN */ 6535 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 6536 break; 6537 case 0x6: /* FMAXNM */ 6538 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6539 break; 6540 case 0x7: /* FMINNM */ 6541 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 6542 break; 6543 case 0x8: /* FNMUL */ 6544 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 6545 gen_helper_vfp_negd(tcg_res, tcg_res); 6546 break; 6547 } 6548 6549 write_fp_dreg(s, rd, tcg_res); 6550 } 6551 6552 /* Floating-point data-processing (2 source) - half precision */ 6553 static void handle_fp_2src_half(DisasContext *s, int opcode, 6554 int rd, int rn, int rm) 6555 { 6556 TCGv_i32 tcg_op1; 6557 TCGv_i32 tcg_op2; 6558 TCGv_i32 tcg_res; 6559 TCGv_ptr fpst; 6560 6561 tcg_res = tcg_temp_new_i32(); 6562 fpst = fpstatus_ptr(FPST_FPCR_F16); 6563 tcg_op1 = read_fp_hreg(s, rn); 6564 tcg_op2 = read_fp_hreg(s, rm); 6565 6566 switch (opcode) { 6567 case 0x0: /* FMUL */ 6568 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6569 break; 6570 case 0x1: /* FDIV */ 6571 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 6572 break; 6573 case 0x2: /* FADD */ 6574 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 6575 break; 6576 case 0x3: /* FSUB */ 6577 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 6578 break; 6579 case 0x4: /* FMAX */ 6580 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 6581 break; 6582 case 0x5: /* FMIN */ 6583 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 6584 break; 6585 case 0x6: /* FMAXNM */ 6586 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6587 break; 6588 case 0x7: /* FMINNM */ 6589 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 6590 break; 6591 case 0x8: /* FNMUL */ 6592 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 6593 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); 6594 break; 6595 default: 6596 g_assert_not_reached(); 6597 } 6598 6599 write_fp_sreg(s, rd, tcg_res); 6600 } 6601 6602 /* Floating point data-processing (2 source) 6603 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6604 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6605 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | 6606 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 6607 */ 6608 static void disas_fp_2src(DisasContext *s, uint32_t insn) 6609 { 6610 int mos = extract32(insn, 29, 3); 6611 int type = extract32(insn, 22, 2); 6612 int rd = extract32(insn, 0, 5); 6613 int rn = extract32(insn, 5, 5); 6614 int rm = extract32(insn, 16, 5); 6615 int opcode = extract32(insn, 12, 4); 6616 6617 if (opcode > 8 || mos) { 6618 unallocated_encoding(s); 6619 return; 6620 } 6621 6622 switch (type) { 6623 case 0: 6624 if (!fp_access_check(s)) { 6625 return; 6626 } 6627 handle_fp_2src_single(s, opcode, rd, rn, rm); 6628 break; 6629 case 1: 6630 if (!fp_access_check(s)) { 6631 return; 6632 } 6633 handle_fp_2src_double(s, opcode, rd, rn, rm); 6634 break; 6635 case 3: 6636 if (!dc_isar_feature(aa64_fp16, s)) { 6637 unallocated_encoding(s); 6638 return; 6639 } 6640 if (!fp_access_check(s)) { 6641 return; 6642 } 6643 handle_fp_2src_half(s, opcode, rd, rn, rm); 6644 break; 6645 default: 6646 unallocated_encoding(s); 6647 } 6648 } 6649 6650 /* Floating-point data-processing (3 source) - single precision */ 6651 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 6652 int rd, int rn, int rm, int ra) 6653 { 6654 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6655 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6656 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6657 6658 tcg_op1 = read_fp_sreg(s, rn); 6659 tcg_op2 = read_fp_sreg(s, rm); 6660 tcg_op3 = read_fp_sreg(s, ra); 6661 6662 /* These are fused multiply-add, and must be done as one 6663 * floating point operation with no rounding between the 6664 * multiplication and addition steps. 6665 * NB that doing the negations here as separate steps is 6666 * correct : an input NaN should come out with its sign bit 6667 * flipped if it is a negated-input. 6668 */ 6669 if (o1 == true) { 6670 gen_helper_vfp_negs(tcg_op3, tcg_op3); 6671 } 6672 6673 if (o0 != o1) { 6674 gen_helper_vfp_negs(tcg_op1, tcg_op1); 6675 } 6676 6677 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6678 6679 write_fp_sreg(s, rd, tcg_res); 6680 } 6681 6682 /* Floating-point data-processing (3 source) - double precision */ 6683 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 6684 int rd, int rn, int rm, int ra) 6685 { 6686 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 6687 TCGv_i64 tcg_res = tcg_temp_new_i64(); 6688 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6689 6690 tcg_op1 = read_fp_dreg(s, rn); 6691 tcg_op2 = read_fp_dreg(s, rm); 6692 tcg_op3 = read_fp_dreg(s, ra); 6693 6694 /* These are fused multiply-add, and must be done as one 6695 * floating point operation with no rounding between the 6696 * multiplication and addition steps. 6697 * NB that doing the negations here as separate steps is 6698 * correct : an input NaN should come out with its sign bit 6699 * flipped if it is a negated-input. 6700 */ 6701 if (o1 == true) { 6702 gen_helper_vfp_negd(tcg_op3, tcg_op3); 6703 } 6704 6705 if (o0 != o1) { 6706 gen_helper_vfp_negd(tcg_op1, tcg_op1); 6707 } 6708 6709 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6710 6711 write_fp_dreg(s, rd, tcg_res); 6712 } 6713 6714 /* Floating-point data-processing (3 source) - half precision */ 6715 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 6716 int rd, int rn, int rm, int ra) 6717 { 6718 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 6719 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6720 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 6721 6722 tcg_op1 = read_fp_hreg(s, rn); 6723 tcg_op2 = read_fp_hreg(s, rm); 6724 tcg_op3 = read_fp_hreg(s, ra); 6725 6726 /* These are fused multiply-add, and must be done as one 6727 * floating point operation with no rounding between the 6728 * multiplication and addition steps. 6729 * NB that doing the negations here as separate steps is 6730 * correct : an input NaN should come out with its sign bit 6731 * flipped if it is a negated-input. 6732 */ 6733 if (o1 == true) { 6734 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 6735 } 6736 6737 if (o0 != o1) { 6738 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 6739 } 6740 6741 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 6742 6743 write_fp_sreg(s, rd, tcg_res); 6744 } 6745 6746 /* Floating point data-processing (3 source) 6747 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 6748 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6749 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 6750 * +---+---+---+-----------+------+----+------+----+------+------+------+ 6751 */ 6752 static void disas_fp_3src(DisasContext *s, uint32_t insn) 6753 { 6754 int mos = extract32(insn, 29, 3); 6755 int type = extract32(insn, 22, 2); 6756 int rd = extract32(insn, 0, 5); 6757 int rn = extract32(insn, 5, 5); 6758 int ra = extract32(insn, 10, 5); 6759 int rm = extract32(insn, 16, 5); 6760 bool o0 = extract32(insn, 15, 1); 6761 bool o1 = extract32(insn, 21, 1); 6762 6763 if (mos) { 6764 unallocated_encoding(s); 6765 return; 6766 } 6767 6768 switch (type) { 6769 case 0: 6770 if (!fp_access_check(s)) { 6771 return; 6772 } 6773 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 6774 break; 6775 case 1: 6776 if (!fp_access_check(s)) { 6777 return; 6778 } 6779 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 6780 break; 6781 case 3: 6782 if (!dc_isar_feature(aa64_fp16, s)) { 6783 unallocated_encoding(s); 6784 return; 6785 } 6786 if (!fp_access_check(s)) { 6787 return; 6788 } 6789 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 6790 break; 6791 default: 6792 unallocated_encoding(s); 6793 } 6794 } 6795 6796 /* Floating point immediate 6797 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 6798 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6799 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 6800 * +---+---+---+-----------+------+---+------------+-------+------+------+ 6801 */ 6802 static void disas_fp_imm(DisasContext *s, uint32_t insn) 6803 { 6804 int rd = extract32(insn, 0, 5); 6805 int imm5 = extract32(insn, 5, 5); 6806 int imm8 = extract32(insn, 13, 8); 6807 int type = extract32(insn, 22, 2); 6808 int mos = extract32(insn, 29, 3); 6809 uint64_t imm; 6810 MemOp sz; 6811 6812 if (mos || imm5) { 6813 unallocated_encoding(s); 6814 return; 6815 } 6816 6817 switch (type) { 6818 case 0: 6819 sz = MO_32; 6820 break; 6821 case 1: 6822 sz = MO_64; 6823 break; 6824 case 3: 6825 sz = MO_16; 6826 if (dc_isar_feature(aa64_fp16, s)) { 6827 break; 6828 } 6829 /* fallthru */ 6830 default: 6831 unallocated_encoding(s); 6832 return; 6833 } 6834 6835 if (!fp_access_check(s)) { 6836 return; 6837 } 6838 6839 imm = vfp_expand_imm(sz, imm8); 6840 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 6841 } 6842 6843 /* Handle floating point <=> fixed point conversions. Note that we can 6844 * also deal with fp <=> integer conversions as a special case (scale == 64) 6845 * OPTME: consider handling that special case specially or at least skipping 6846 * the call to scalbn in the helpers for zero shifts. 6847 */ 6848 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 6849 bool itof, int rmode, int scale, int sf, int type) 6850 { 6851 bool is_signed = !(opcode & 1); 6852 TCGv_ptr tcg_fpstatus; 6853 TCGv_i32 tcg_shift, tcg_single; 6854 TCGv_i64 tcg_double; 6855 6856 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 6857 6858 tcg_shift = tcg_constant_i32(64 - scale); 6859 6860 if (itof) { 6861 TCGv_i64 tcg_int = cpu_reg(s, rn); 6862 if (!sf) { 6863 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 6864 6865 if (is_signed) { 6866 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 6867 } else { 6868 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 6869 } 6870 6871 tcg_int = tcg_extend; 6872 } 6873 6874 switch (type) { 6875 case 1: /* float64 */ 6876 tcg_double = tcg_temp_new_i64(); 6877 if (is_signed) { 6878 gen_helper_vfp_sqtod(tcg_double, tcg_int, 6879 tcg_shift, tcg_fpstatus); 6880 } else { 6881 gen_helper_vfp_uqtod(tcg_double, tcg_int, 6882 tcg_shift, tcg_fpstatus); 6883 } 6884 write_fp_dreg(s, rd, tcg_double); 6885 break; 6886 6887 case 0: /* float32 */ 6888 tcg_single = tcg_temp_new_i32(); 6889 if (is_signed) { 6890 gen_helper_vfp_sqtos(tcg_single, tcg_int, 6891 tcg_shift, tcg_fpstatus); 6892 } else { 6893 gen_helper_vfp_uqtos(tcg_single, tcg_int, 6894 tcg_shift, tcg_fpstatus); 6895 } 6896 write_fp_sreg(s, rd, tcg_single); 6897 break; 6898 6899 case 3: /* float16 */ 6900 tcg_single = tcg_temp_new_i32(); 6901 if (is_signed) { 6902 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 6903 tcg_shift, tcg_fpstatus); 6904 } else { 6905 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 6906 tcg_shift, tcg_fpstatus); 6907 } 6908 write_fp_sreg(s, rd, tcg_single); 6909 break; 6910 6911 default: 6912 g_assert_not_reached(); 6913 } 6914 } else { 6915 TCGv_i64 tcg_int = cpu_reg(s, rd); 6916 TCGv_i32 tcg_rmode; 6917 6918 if (extract32(opcode, 2, 1)) { 6919 /* There are too many rounding modes to all fit into rmode, 6920 * so FCVTA[US] is a special case. 6921 */ 6922 rmode = FPROUNDING_TIEAWAY; 6923 } 6924 6925 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 6926 6927 switch (type) { 6928 case 1: /* float64 */ 6929 tcg_double = read_fp_dreg(s, rn); 6930 if (is_signed) { 6931 if (!sf) { 6932 gen_helper_vfp_tosld(tcg_int, tcg_double, 6933 tcg_shift, tcg_fpstatus); 6934 } else { 6935 gen_helper_vfp_tosqd(tcg_int, tcg_double, 6936 tcg_shift, tcg_fpstatus); 6937 } 6938 } else { 6939 if (!sf) { 6940 gen_helper_vfp_tould(tcg_int, tcg_double, 6941 tcg_shift, tcg_fpstatus); 6942 } else { 6943 gen_helper_vfp_touqd(tcg_int, tcg_double, 6944 tcg_shift, tcg_fpstatus); 6945 } 6946 } 6947 if (!sf) { 6948 tcg_gen_ext32u_i64(tcg_int, tcg_int); 6949 } 6950 break; 6951 6952 case 0: /* float32 */ 6953 tcg_single = read_fp_sreg(s, rn); 6954 if (sf) { 6955 if (is_signed) { 6956 gen_helper_vfp_tosqs(tcg_int, tcg_single, 6957 tcg_shift, tcg_fpstatus); 6958 } else { 6959 gen_helper_vfp_touqs(tcg_int, tcg_single, 6960 tcg_shift, tcg_fpstatus); 6961 } 6962 } else { 6963 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6964 if (is_signed) { 6965 gen_helper_vfp_tosls(tcg_dest, tcg_single, 6966 tcg_shift, tcg_fpstatus); 6967 } else { 6968 gen_helper_vfp_touls(tcg_dest, tcg_single, 6969 tcg_shift, tcg_fpstatus); 6970 } 6971 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6972 } 6973 break; 6974 6975 case 3: /* float16 */ 6976 tcg_single = read_fp_sreg(s, rn); 6977 if (sf) { 6978 if (is_signed) { 6979 gen_helper_vfp_tosqh(tcg_int, tcg_single, 6980 tcg_shift, tcg_fpstatus); 6981 } else { 6982 gen_helper_vfp_touqh(tcg_int, tcg_single, 6983 tcg_shift, tcg_fpstatus); 6984 } 6985 } else { 6986 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 6987 if (is_signed) { 6988 gen_helper_vfp_toslh(tcg_dest, tcg_single, 6989 tcg_shift, tcg_fpstatus); 6990 } else { 6991 gen_helper_vfp_toulh(tcg_dest, tcg_single, 6992 tcg_shift, tcg_fpstatus); 6993 } 6994 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 6995 } 6996 break; 6997 6998 default: 6999 g_assert_not_reached(); 7000 } 7001 7002 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7003 } 7004 } 7005 7006 /* Floating point <-> fixed point conversions 7007 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7008 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7009 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7010 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7011 */ 7012 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7013 { 7014 int rd = extract32(insn, 0, 5); 7015 int rn = extract32(insn, 5, 5); 7016 int scale = extract32(insn, 10, 6); 7017 int opcode = extract32(insn, 16, 3); 7018 int rmode = extract32(insn, 19, 2); 7019 int type = extract32(insn, 22, 2); 7020 bool sbit = extract32(insn, 29, 1); 7021 bool sf = extract32(insn, 31, 1); 7022 bool itof; 7023 7024 if (sbit || (!sf && scale < 32)) { 7025 unallocated_encoding(s); 7026 return; 7027 } 7028 7029 switch (type) { 7030 case 0: /* float32 */ 7031 case 1: /* float64 */ 7032 break; 7033 case 3: /* float16 */ 7034 if (dc_isar_feature(aa64_fp16, s)) { 7035 break; 7036 } 7037 /* fallthru */ 7038 default: 7039 unallocated_encoding(s); 7040 return; 7041 } 7042 7043 switch ((rmode << 3) | opcode) { 7044 case 0x2: /* SCVTF */ 7045 case 0x3: /* UCVTF */ 7046 itof = true; 7047 break; 7048 case 0x18: /* FCVTZS */ 7049 case 0x19: /* FCVTZU */ 7050 itof = false; 7051 break; 7052 default: 7053 unallocated_encoding(s); 7054 return; 7055 } 7056 7057 if (!fp_access_check(s)) { 7058 return; 7059 } 7060 7061 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7062 } 7063 7064 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7065 { 7066 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7067 * without conversion. 7068 */ 7069 7070 if (itof) { 7071 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7072 TCGv_i64 tmp; 7073 7074 switch (type) { 7075 case 0: 7076 /* 32 bit */ 7077 tmp = tcg_temp_new_i64(); 7078 tcg_gen_ext32u_i64(tmp, tcg_rn); 7079 write_fp_dreg(s, rd, tmp); 7080 break; 7081 case 1: 7082 /* 64 bit */ 7083 write_fp_dreg(s, rd, tcg_rn); 7084 break; 7085 case 2: 7086 /* 64 bit to top half. */ 7087 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); 7088 clear_vec_high(s, true, rd); 7089 break; 7090 case 3: 7091 /* 16 bit */ 7092 tmp = tcg_temp_new_i64(); 7093 tcg_gen_ext16u_i64(tmp, tcg_rn); 7094 write_fp_dreg(s, rd, tmp); 7095 break; 7096 default: 7097 g_assert_not_reached(); 7098 } 7099 } else { 7100 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7101 7102 switch (type) { 7103 case 0: 7104 /* 32 bit */ 7105 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); 7106 break; 7107 case 1: 7108 /* 64 bit */ 7109 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); 7110 break; 7111 case 2: 7112 /* 64 bits from top half */ 7113 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); 7114 break; 7115 case 3: 7116 /* 16 bit */ 7117 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); 7118 break; 7119 default: 7120 g_assert_not_reached(); 7121 } 7122 } 7123 } 7124 7125 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7126 { 7127 TCGv_i64 t = read_fp_dreg(s, rn); 7128 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7129 7130 gen_helper_fjcvtzs(t, t, fpstatus); 7131 7132 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7133 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7134 tcg_gen_movi_i32(cpu_CF, 0); 7135 tcg_gen_movi_i32(cpu_NF, 0); 7136 tcg_gen_movi_i32(cpu_VF, 0); 7137 } 7138 7139 /* Floating point <-> integer conversions 7140 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7141 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7142 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7143 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7144 */ 7145 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7146 { 7147 int rd = extract32(insn, 0, 5); 7148 int rn = extract32(insn, 5, 5); 7149 int opcode = extract32(insn, 16, 3); 7150 int rmode = extract32(insn, 19, 2); 7151 int type = extract32(insn, 22, 2); 7152 bool sbit = extract32(insn, 29, 1); 7153 bool sf = extract32(insn, 31, 1); 7154 bool itof = false; 7155 7156 if (sbit) { 7157 goto do_unallocated; 7158 } 7159 7160 switch (opcode) { 7161 case 2: /* SCVTF */ 7162 case 3: /* UCVTF */ 7163 itof = true; 7164 /* fallthru */ 7165 case 4: /* FCVTAS */ 7166 case 5: /* FCVTAU */ 7167 if (rmode != 0) { 7168 goto do_unallocated; 7169 } 7170 /* fallthru */ 7171 case 0: /* FCVT[NPMZ]S */ 7172 case 1: /* FCVT[NPMZ]U */ 7173 switch (type) { 7174 case 0: /* float32 */ 7175 case 1: /* float64 */ 7176 break; 7177 case 3: /* float16 */ 7178 if (!dc_isar_feature(aa64_fp16, s)) { 7179 goto do_unallocated; 7180 } 7181 break; 7182 default: 7183 goto do_unallocated; 7184 } 7185 if (!fp_access_check(s)) { 7186 return; 7187 } 7188 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7189 break; 7190 7191 default: 7192 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7193 case 0b01100110: /* FMOV half <-> 32-bit int */ 7194 case 0b01100111: 7195 case 0b11100110: /* FMOV half <-> 64-bit int */ 7196 case 0b11100111: 7197 if (!dc_isar_feature(aa64_fp16, s)) { 7198 goto do_unallocated; 7199 } 7200 /* fallthru */ 7201 case 0b00000110: /* FMOV 32-bit */ 7202 case 0b00000111: 7203 case 0b10100110: /* FMOV 64-bit */ 7204 case 0b10100111: 7205 case 0b11001110: /* FMOV top half of 128-bit */ 7206 case 0b11001111: 7207 if (!fp_access_check(s)) { 7208 return; 7209 } 7210 itof = opcode & 1; 7211 handle_fmov(s, rd, rn, type, itof); 7212 break; 7213 7214 case 0b00111110: /* FJCVTZS */ 7215 if (!dc_isar_feature(aa64_jscvt, s)) { 7216 goto do_unallocated; 7217 } else if (fp_access_check(s)) { 7218 handle_fjcvtzs(s, rd, rn); 7219 } 7220 break; 7221 7222 default: 7223 do_unallocated: 7224 unallocated_encoding(s); 7225 return; 7226 } 7227 break; 7228 } 7229 } 7230 7231 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7232 * 31 30 29 28 25 24 0 7233 * +---+---+---+---------+-----------------------------+ 7234 * | | 0 | | 1 1 1 1 | | 7235 * +---+---+---+---------+-----------------------------+ 7236 */ 7237 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7238 { 7239 if (extract32(insn, 24, 1)) { 7240 /* Floating point data-processing (3 source) */ 7241 disas_fp_3src(s, insn); 7242 } else if (extract32(insn, 21, 1) == 0) { 7243 /* Floating point to fixed point conversions */ 7244 disas_fp_fixed_conv(s, insn); 7245 } else { 7246 switch (extract32(insn, 10, 2)) { 7247 case 1: 7248 /* Floating point conditional compare */ 7249 disas_fp_ccomp(s, insn); 7250 break; 7251 case 2: 7252 /* Floating point data-processing (2 source) */ 7253 disas_fp_2src(s, insn); 7254 break; 7255 case 3: 7256 /* Floating point conditional select */ 7257 disas_fp_csel(s, insn); 7258 break; 7259 case 0: 7260 switch (ctz32(extract32(insn, 12, 4))) { 7261 case 0: /* [15:12] == xxx1 */ 7262 /* Floating point immediate */ 7263 disas_fp_imm(s, insn); 7264 break; 7265 case 1: /* [15:12] == xx10 */ 7266 /* Floating point compare */ 7267 disas_fp_compare(s, insn); 7268 break; 7269 case 2: /* [15:12] == x100 */ 7270 /* Floating point data-processing (1 source) */ 7271 disas_fp_1src(s, insn); 7272 break; 7273 case 3: /* [15:12] == 1000 */ 7274 unallocated_encoding(s); 7275 break; 7276 default: /* [15:12] == 0000 */ 7277 /* Floating point <-> integer conversions */ 7278 disas_fp_int_conv(s, insn); 7279 break; 7280 } 7281 break; 7282 } 7283 } 7284 } 7285 7286 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7287 int pos) 7288 { 7289 /* Extract 64 bits from the middle of two concatenated 64 bit 7290 * vector register slices left:right. The extracted bits start 7291 * at 'pos' bits into the right (least significant) side. 7292 * We return the result in tcg_right, and guarantee not to 7293 * trash tcg_left. 7294 */ 7295 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7296 assert(pos > 0 && pos < 64); 7297 7298 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7299 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7300 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7301 } 7302 7303 /* EXT 7304 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7305 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7306 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7307 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7308 */ 7309 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7310 { 7311 int is_q = extract32(insn, 30, 1); 7312 int op2 = extract32(insn, 22, 2); 7313 int imm4 = extract32(insn, 11, 4); 7314 int rm = extract32(insn, 16, 5); 7315 int rn = extract32(insn, 5, 5); 7316 int rd = extract32(insn, 0, 5); 7317 int pos = imm4 << 3; 7318 TCGv_i64 tcg_resl, tcg_resh; 7319 7320 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7321 unallocated_encoding(s); 7322 return; 7323 } 7324 7325 if (!fp_access_check(s)) { 7326 return; 7327 } 7328 7329 tcg_resh = tcg_temp_new_i64(); 7330 tcg_resl = tcg_temp_new_i64(); 7331 7332 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7333 * either extracting 128 bits from a 128:128 concatenation, or 7334 * extracting 64 bits from a 64:64 concatenation. 7335 */ 7336 if (!is_q) { 7337 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7338 if (pos != 0) { 7339 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7340 do_ext64(s, tcg_resh, tcg_resl, pos); 7341 } 7342 } else { 7343 TCGv_i64 tcg_hh; 7344 typedef struct { 7345 int reg; 7346 int elt; 7347 } EltPosns; 7348 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7349 EltPosns *elt = eltposns; 7350 7351 if (pos >= 64) { 7352 elt++; 7353 pos -= 64; 7354 } 7355 7356 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7357 elt++; 7358 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7359 elt++; 7360 if (pos != 0) { 7361 do_ext64(s, tcg_resh, tcg_resl, pos); 7362 tcg_hh = tcg_temp_new_i64(); 7363 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7364 do_ext64(s, tcg_hh, tcg_resh, pos); 7365 } 7366 } 7367 7368 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7369 if (is_q) { 7370 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7371 } 7372 clear_vec_high(s, is_q, rd); 7373 } 7374 7375 /* TBL/TBX 7376 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7377 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7378 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7379 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7380 */ 7381 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7382 { 7383 int op2 = extract32(insn, 22, 2); 7384 int is_q = extract32(insn, 30, 1); 7385 int rm = extract32(insn, 16, 5); 7386 int rn = extract32(insn, 5, 5); 7387 int rd = extract32(insn, 0, 5); 7388 int is_tbx = extract32(insn, 12, 1); 7389 int len = (extract32(insn, 13, 2) + 1) * 16; 7390 7391 if (op2 != 0) { 7392 unallocated_encoding(s); 7393 return; 7394 } 7395 7396 if (!fp_access_check(s)) { 7397 return; 7398 } 7399 7400 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7401 vec_full_reg_offset(s, rm), cpu_env, 7402 is_q ? 16 : 8, vec_full_reg_size(s), 7403 (len << 6) | (is_tbx << 5) | rn, 7404 gen_helper_simd_tblx); 7405 } 7406 7407 /* ZIP/UZP/TRN 7408 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7409 * +---+---+-------------+------+---+------+---+------------------+------+ 7410 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7411 * +---+---+-------------+------+---+------+---+------------------+------+ 7412 */ 7413 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7414 { 7415 int rd = extract32(insn, 0, 5); 7416 int rn = extract32(insn, 5, 5); 7417 int rm = extract32(insn, 16, 5); 7418 int size = extract32(insn, 22, 2); 7419 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7420 * bit 2 indicates 1 vs 2 variant of the insn. 7421 */ 7422 int opcode = extract32(insn, 12, 2); 7423 bool part = extract32(insn, 14, 1); 7424 bool is_q = extract32(insn, 30, 1); 7425 int esize = 8 << size; 7426 int i; 7427 int datasize = is_q ? 128 : 64; 7428 int elements = datasize / esize; 7429 TCGv_i64 tcg_res[2], tcg_ele; 7430 7431 if (opcode == 0 || (size == 3 && !is_q)) { 7432 unallocated_encoding(s); 7433 return; 7434 } 7435 7436 if (!fp_access_check(s)) { 7437 return; 7438 } 7439 7440 tcg_res[0] = tcg_temp_new_i64(); 7441 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7442 tcg_ele = tcg_temp_new_i64(); 7443 7444 for (i = 0; i < elements; i++) { 7445 int o, w; 7446 7447 switch (opcode) { 7448 case 1: /* UZP1/2 */ 7449 { 7450 int midpoint = elements / 2; 7451 if (i < midpoint) { 7452 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7453 } else { 7454 read_vec_element(s, tcg_ele, rm, 7455 2 * (i - midpoint) + part, size); 7456 } 7457 break; 7458 } 7459 case 2: /* TRN1/2 */ 7460 if (i & 1) { 7461 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7462 } else { 7463 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7464 } 7465 break; 7466 case 3: /* ZIP1/2 */ 7467 { 7468 int base = part * elements / 2; 7469 if (i & 1) { 7470 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7471 } else { 7472 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7473 } 7474 break; 7475 } 7476 default: 7477 g_assert_not_reached(); 7478 } 7479 7480 w = (i * esize) / 64; 7481 o = (i * esize) % 64; 7482 if (o == 0) { 7483 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7484 } else { 7485 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7486 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7487 } 7488 } 7489 7490 for (i = 0; i <= is_q; ++i) { 7491 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7492 } 7493 clear_vec_high(s, is_q, rd); 7494 } 7495 7496 /* 7497 * do_reduction_op helper 7498 * 7499 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7500 * important for correct NaN propagation that we do these 7501 * operations in exactly the order specified by the pseudocode. 7502 * 7503 * This is a recursive function, TCG temps should be freed by the 7504 * calling function once it is done with the values. 7505 */ 7506 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7507 int esize, int size, int vmap, TCGv_ptr fpst) 7508 { 7509 if (esize == size) { 7510 int element; 7511 MemOp msize = esize == 16 ? MO_16 : MO_32; 7512 TCGv_i32 tcg_elem; 7513 7514 /* We should have one register left here */ 7515 assert(ctpop8(vmap) == 1); 7516 element = ctz32(vmap); 7517 assert(element < 8); 7518 7519 tcg_elem = tcg_temp_new_i32(); 7520 read_vec_element_i32(s, tcg_elem, rn, element, msize); 7521 return tcg_elem; 7522 } else { 7523 int bits = size / 2; 7524 int shift = ctpop8(vmap) / 2; 7525 int vmap_lo = (vmap >> shift) & vmap; 7526 int vmap_hi = (vmap & ~vmap_lo); 7527 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7528 7529 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 7530 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 7531 tcg_res = tcg_temp_new_i32(); 7532 7533 switch (fpopcode) { 7534 case 0x0c: /* fmaxnmv half-precision */ 7535 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7536 break; 7537 case 0x0f: /* fmaxv half-precision */ 7538 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 7539 break; 7540 case 0x1c: /* fminnmv half-precision */ 7541 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 7542 break; 7543 case 0x1f: /* fminv half-precision */ 7544 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 7545 break; 7546 case 0x2c: /* fmaxnmv */ 7547 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 7548 break; 7549 case 0x2f: /* fmaxv */ 7550 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 7551 break; 7552 case 0x3c: /* fminnmv */ 7553 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 7554 break; 7555 case 0x3f: /* fminv */ 7556 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 7557 break; 7558 default: 7559 g_assert_not_reached(); 7560 } 7561 return tcg_res; 7562 } 7563 } 7564 7565 /* AdvSIMD across lanes 7566 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 7567 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7568 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 7569 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 7570 */ 7571 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 7572 { 7573 int rd = extract32(insn, 0, 5); 7574 int rn = extract32(insn, 5, 5); 7575 int size = extract32(insn, 22, 2); 7576 int opcode = extract32(insn, 12, 5); 7577 bool is_q = extract32(insn, 30, 1); 7578 bool is_u = extract32(insn, 29, 1); 7579 bool is_fp = false; 7580 bool is_min = false; 7581 int esize; 7582 int elements; 7583 int i; 7584 TCGv_i64 tcg_res, tcg_elt; 7585 7586 switch (opcode) { 7587 case 0x1b: /* ADDV */ 7588 if (is_u) { 7589 unallocated_encoding(s); 7590 return; 7591 } 7592 /* fall through */ 7593 case 0x3: /* SADDLV, UADDLV */ 7594 case 0xa: /* SMAXV, UMAXV */ 7595 case 0x1a: /* SMINV, UMINV */ 7596 if (size == 3 || (size == 2 && !is_q)) { 7597 unallocated_encoding(s); 7598 return; 7599 } 7600 break; 7601 case 0xc: /* FMAXNMV, FMINNMV */ 7602 case 0xf: /* FMAXV, FMINV */ 7603 /* Bit 1 of size field encodes min vs max and the actual size 7604 * depends on the encoding of the U bit. If not set (and FP16 7605 * enabled) then we do half-precision float instead of single 7606 * precision. 7607 */ 7608 is_min = extract32(size, 1, 1); 7609 is_fp = true; 7610 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 7611 size = 1; 7612 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 7613 unallocated_encoding(s); 7614 return; 7615 } else { 7616 size = 2; 7617 } 7618 break; 7619 default: 7620 unallocated_encoding(s); 7621 return; 7622 } 7623 7624 if (!fp_access_check(s)) { 7625 return; 7626 } 7627 7628 esize = 8 << size; 7629 elements = (is_q ? 128 : 64) / esize; 7630 7631 tcg_res = tcg_temp_new_i64(); 7632 tcg_elt = tcg_temp_new_i64(); 7633 7634 /* These instructions operate across all lanes of a vector 7635 * to produce a single result. We can guarantee that a 64 7636 * bit intermediate is sufficient: 7637 * + for [US]ADDLV the maximum element size is 32 bits, and 7638 * the result type is 64 bits 7639 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 7640 * same as the element size, which is 32 bits at most 7641 * For the integer operations we can choose to work at 64 7642 * or 32 bits and truncate at the end; for simplicity 7643 * we use 64 bits always. The floating point 7644 * ops do require 32 bit intermediates, though. 7645 */ 7646 if (!is_fp) { 7647 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 7648 7649 for (i = 1; i < elements; i++) { 7650 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 7651 7652 switch (opcode) { 7653 case 0x03: /* SADDLV / UADDLV */ 7654 case 0x1b: /* ADDV */ 7655 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 7656 break; 7657 case 0x0a: /* SMAXV / UMAXV */ 7658 if (is_u) { 7659 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 7660 } else { 7661 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 7662 } 7663 break; 7664 case 0x1a: /* SMINV / UMINV */ 7665 if (is_u) { 7666 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 7667 } else { 7668 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 7669 } 7670 break; 7671 default: 7672 g_assert_not_reached(); 7673 } 7674 7675 } 7676 } else { 7677 /* Floating point vector reduction ops which work across 32 7678 * bit (single) or 16 bit (half-precision) intermediates. 7679 * Note that correct NaN propagation requires that we do these 7680 * operations in exactly the order specified by the pseudocode. 7681 */ 7682 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 7683 int fpopcode = opcode | is_min << 4 | is_u << 5; 7684 int vmap = (1 << elements) - 1; 7685 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 7686 (is_q ? 128 : 64), vmap, fpst); 7687 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 7688 } 7689 7690 /* Now truncate the result to the width required for the final output */ 7691 if (opcode == 0x03) { 7692 /* SADDLV, UADDLV: result is 2*esize */ 7693 size++; 7694 } 7695 7696 switch (size) { 7697 case 0: 7698 tcg_gen_ext8u_i64(tcg_res, tcg_res); 7699 break; 7700 case 1: 7701 tcg_gen_ext16u_i64(tcg_res, tcg_res); 7702 break; 7703 case 2: 7704 tcg_gen_ext32u_i64(tcg_res, tcg_res); 7705 break; 7706 case 3: 7707 break; 7708 default: 7709 g_assert_not_reached(); 7710 } 7711 7712 write_fp_dreg(s, rd, tcg_res); 7713 } 7714 7715 /* DUP (Element, Vector) 7716 * 7717 * 31 30 29 21 20 16 15 10 9 5 4 0 7718 * +---+---+-------------------+--------+-------------+------+------+ 7719 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7720 * +---+---+-------------------+--------+-------------+------+------+ 7721 * 7722 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7723 */ 7724 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, 7725 int imm5) 7726 { 7727 int size = ctz32(imm5); 7728 int index; 7729 7730 if (size > 3 || (size == 3 && !is_q)) { 7731 unallocated_encoding(s); 7732 return; 7733 } 7734 7735 if (!fp_access_check(s)) { 7736 return; 7737 } 7738 7739 index = imm5 >> (size + 1); 7740 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), 7741 vec_reg_offset(s, rn, index, size), 7742 is_q ? 16 : 8, vec_full_reg_size(s)); 7743 } 7744 7745 /* DUP (element, scalar) 7746 * 31 21 20 16 15 10 9 5 4 0 7747 * +-----------------------+--------+-------------+------+------+ 7748 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | 7749 * +-----------------------+--------+-------------+------+------+ 7750 */ 7751 static void handle_simd_dupes(DisasContext *s, int rd, int rn, 7752 int imm5) 7753 { 7754 int size = ctz32(imm5); 7755 int index; 7756 TCGv_i64 tmp; 7757 7758 if (size > 3) { 7759 unallocated_encoding(s); 7760 return; 7761 } 7762 7763 if (!fp_access_check(s)) { 7764 return; 7765 } 7766 7767 index = imm5 >> (size + 1); 7768 7769 /* This instruction just extracts the specified element and 7770 * zero-extends it into the bottom of the destination register. 7771 */ 7772 tmp = tcg_temp_new_i64(); 7773 read_vec_element(s, tmp, rn, index, size); 7774 write_fp_dreg(s, rd, tmp); 7775 } 7776 7777 /* DUP (General) 7778 * 7779 * 31 30 29 21 20 16 15 10 9 5 4 0 7780 * +---+---+-------------------+--------+-------------+------+------+ 7781 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | 7782 * +---+---+-------------------+--------+-------------+------+------+ 7783 * 7784 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7785 */ 7786 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, 7787 int imm5) 7788 { 7789 int size = ctz32(imm5); 7790 uint32_t dofs, oprsz, maxsz; 7791 7792 if (size > 3 || ((size == 3) && !is_q)) { 7793 unallocated_encoding(s); 7794 return; 7795 } 7796 7797 if (!fp_access_check(s)) { 7798 return; 7799 } 7800 7801 dofs = vec_full_reg_offset(s, rd); 7802 oprsz = is_q ? 16 : 8; 7803 maxsz = vec_full_reg_size(s); 7804 7805 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); 7806 } 7807 7808 /* INS (Element) 7809 * 7810 * 31 21 20 16 15 14 11 10 9 5 4 0 7811 * +-----------------------+--------+------------+---+------+------+ 7812 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7813 * +-----------------------+--------+------------+---+------+------+ 7814 * 7815 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7816 * index: encoded in imm5<4:size+1> 7817 */ 7818 static void handle_simd_inse(DisasContext *s, int rd, int rn, 7819 int imm4, int imm5) 7820 { 7821 int size = ctz32(imm5); 7822 int src_index, dst_index; 7823 TCGv_i64 tmp; 7824 7825 if (size > 3) { 7826 unallocated_encoding(s); 7827 return; 7828 } 7829 7830 if (!fp_access_check(s)) { 7831 return; 7832 } 7833 7834 dst_index = extract32(imm5, 1+size, 5); 7835 src_index = extract32(imm4, size, 4); 7836 7837 tmp = tcg_temp_new_i64(); 7838 7839 read_vec_element(s, tmp, rn, src_index, size); 7840 write_vec_element(s, tmp, rd, dst_index, size); 7841 7842 /* INS is considered a 128-bit write for SVE. */ 7843 clear_vec_high(s, true, rd); 7844 } 7845 7846 7847 /* INS (General) 7848 * 7849 * 31 21 20 16 15 10 9 5 4 0 7850 * +-----------------------+--------+-------------+------+------+ 7851 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | 7852 * +-----------------------+--------+-------------+------+------+ 7853 * 7854 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7855 * index: encoded in imm5<4:size+1> 7856 */ 7857 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) 7858 { 7859 int size = ctz32(imm5); 7860 int idx; 7861 7862 if (size > 3) { 7863 unallocated_encoding(s); 7864 return; 7865 } 7866 7867 if (!fp_access_check(s)) { 7868 return; 7869 } 7870 7871 idx = extract32(imm5, 1 + size, 4 - size); 7872 write_vec_element(s, cpu_reg(s, rn), rd, idx, size); 7873 7874 /* INS is considered a 128-bit write for SVE. */ 7875 clear_vec_high(s, true, rd); 7876 } 7877 7878 /* 7879 * UMOV (General) 7880 * SMOV (General) 7881 * 7882 * 31 30 29 21 20 16 15 12 10 9 5 4 0 7883 * +---+---+-------------------+--------+-------------+------+------+ 7884 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | 7885 * +---+---+-------------------+--------+-------------+------+------+ 7886 * 7887 * U: unsigned when set 7888 * size: encoded in imm5 (see ARM ARM LowestSetBit()) 7889 */ 7890 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, 7891 int rn, int rd, int imm5) 7892 { 7893 int size = ctz32(imm5); 7894 int element; 7895 TCGv_i64 tcg_rd; 7896 7897 /* Check for UnallocatedEncodings */ 7898 if (is_signed) { 7899 if (size > 2 || (size == 2 && !is_q)) { 7900 unallocated_encoding(s); 7901 return; 7902 } 7903 } else { 7904 if (size > 3 7905 || (size < 3 && is_q) 7906 || (size == 3 && !is_q)) { 7907 unallocated_encoding(s); 7908 return; 7909 } 7910 } 7911 7912 if (!fp_access_check(s)) { 7913 return; 7914 } 7915 7916 element = extract32(imm5, 1+size, 4); 7917 7918 tcg_rd = cpu_reg(s, rd); 7919 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); 7920 if (is_signed && !is_q) { 7921 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7922 } 7923 } 7924 7925 /* AdvSIMD copy 7926 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 7927 * +---+---+----+-----------------+------+---+------+---+------+------+ 7928 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 7929 * +---+---+----+-----------------+------+---+------+---+------+------+ 7930 */ 7931 static void disas_simd_copy(DisasContext *s, uint32_t insn) 7932 { 7933 int rd = extract32(insn, 0, 5); 7934 int rn = extract32(insn, 5, 5); 7935 int imm4 = extract32(insn, 11, 4); 7936 int op = extract32(insn, 29, 1); 7937 int is_q = extract32(insn, 30, 1); 7938 int imm5 = extract32(insn, 16, 5); 7939 7940 if (op) { 7941 if (is_q) { 7942 /* INS (element) */ 7943 handle_simd_inse(s, rd, rn, imm4, imm5); 7944 } else { 7945 unallocated_encoding(s); 7946 } 7947 } else { 7948 switch (imm4) { 7949 case 0: 7950 /* DUP (element - vector) */ 7951 handle_simd_dupe(s, is_q, rd, rn, imm5); 7952 break; 7953 case 1: 7954 /* DUP (general) */ 7955 handle_simd_dupg(s, is_q, rd, rn, imm5); 7956 break; 7957 case 3: 7958 if (is_q) { 7959 /* INS (general) */ 7960 handle_simd_insg(s, rd, rn, imm5); 7961 } else { 7962 unallocated_encoding(s); 7963 } 7964 break; 7965 case 5: 7966 case 7: 7967 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ 7968 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); 7969 break; 7970 default: 7971 unallocated_encoding(s); 7972 break; 7973 } 7974 } 7975 } 7976 7977 /* AdvSIMD modified immediate 7978 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 7979 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7980 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 7981 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 7982 * 7983 * There are a number of operations that can be carried out here: 7984 * MOVI - move (shifted) imm into register 7985 * MVNI - move inverted (shifted) imm into register 7986 * ORR - bitwise OR of (shifted) imm with register 7987 * BIC - bitwise clear of (shifted) imm with register 7988 * With ARMv8.2 we also have: 7989 * FMOV half-precision 7990 */ 7991 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 7992 { 7993 int rd = extract32(insn, 0, 5); 7994 int cmode = extract32(insn, 12, 4); 7995 int o2 = extract32(insn, 11, 1); 7996 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 7997 bool is_neg = extract32(insn, 29, 1); 7998 bool is_q = extract32(insn, 30, 1); 7999 uint64_t imm = 0; 8000 8001 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { 8002 /* Check for FMOV (vector, immediate) - half-precision */ 8003 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) { 8004 unallocated_encoding(s); 8005 return; 8006 } 8007 } 8008 8009 if (!fp_access_check(s)) { 8010 return; 8011 } 8012 8013 if (cmode == 15 && o2 && !is_neg) { 8014 /* FMOV (vector, immediate) - half-precision */ 8015 imm = vfp_expand_imm(MO_16, abcdefgh); 8016 /* now duplicate across the lanes */ 8017 imm = dup_const(MO_16, imm); 8018 } else { 8019 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8020 } 8021 8022 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8023 /* MOVI or MVNI, with MVNI negation handled above. */ 8024 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8025 vec_full_reg_size(s), imm); 8026 } else { 8027 /* ORR or BIC, with BIC negation to AND handled above. */ 8028 if (is_neg) { 8029 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8030 } else { 8031 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8032 } 8033 } 8034 } 8035 8036 /* AdvSIMD scalar copy 8037 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 8038 * +-----+----+-----------------+------+---+------+---+------+------+ 8039 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | 8040 * +-----+----+-----------------+------+---+------+---+------+------+ 8041 */ 8042 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) 8043 { 8044 int rd = extract32(insn, 0, 5); 8045 int rn = extract32(insn, 5, 5); 8046 int imm4 = extract32(insn, 11, 4); 8047 int imm5 = extract32(insn, 16, 5); 8048 int op = extract32(insn, 29, 1); 8049 8050 if (op != 0 || imm4 != 0) { 8051 unallocated_encoding(s); 8052 return; 8053 } 8054 8055 /* DUP (element, scalar) */ 8056 handle_simd_dupes(s, rd, rn, imm5); 8057 } 8058 8059 /* AdvSIMD scalar pairwise 8060 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8061 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8062 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8063 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8064 */ 8065 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8066 { 8067 int u = extract32(insn, 29, 1); 8068 int size = extract32(insn, 22, 2); 8069 int opcode = extract32(insn, 12, 5); 8070 int rn = extract32(insn, 5, 5); 8071 int rd = extract32(insn, 0, 5); 8072 TCGv_ptr fpst; 8073 8074 /* For some ops (the FP ones), size[1] is part of the encoding. 8075 * For ADDP strictly it is not but size[1] is always 1 for valid 8076 * encodings. 8077 */ 8078 opcode |= (extract32(size, 1, 1) << 5); 8079 8080 switch (opcode) { 8081 case 0x3b: /* ADDP */ 8082 if (u || size != 3) { 8083 unallocated_encoding(s); 8084 return; 8085 } 8086 if (!fp_access_check(s)) { 8087 return; 8088 } 8089 8090 fpst = NULL; 8091 break; 8092 case 0xc: /* FMAXNMP */ 8093 case 0xd: /* FADDP */ 8094 case 0xf: /* FMAXP */ 8095 case 0x2c: /* FMINNMP */ 8096 case 0x2f: /* FMINP */ 8097 /* FP op, size[0] is 32 or 64 bit*/ 8098 if (!u) { 8099 if (!dc_isar_feature(aa64_fp16, s)) { 8100 unallocated_encoding(s); 8101 return; 8102 } else { 8103 size = MO_16; 8104 } 8105 } else { 8106 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8107 } 8108 8109 if (!fp_access_check(s)) { 8110 return; 8111 } 8112 8113 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8114 break; 8115 default: 8116 unallocated_encoding(s); 8117 return; 8118 } 8119 8120 if (size == MO_64) { 8121 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8122 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8123 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8124 8125 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8126 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8127 8128 switch (opcode) { 8129 case 0x3b: /* ADDP */ 8130 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8131 break; 8132 case 0xc: /* FMAXNMP */ 8133 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8134 break; 8135 case 0xd: /* FADDP */ 8136 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8137 break; 8138 case 0xf: /* FMAXP */ 8139 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8140 break; 8141 case 0x2c: /* FMINNMP */ 8142 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8143 break; 8144 case 0x2f: /* FMINP */ 8145 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8146 break; 8147 default: 8148 g_assert_not_reached(); 8149 } 8150 8151 write_fp_dreg(s, rd, tcg_res); 8152 } else { 8153 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8154 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8155 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8156 8157 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8158 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8159 8160 if (size == MO_16) { 8161 switch (opcode) { 8162 case 0xc: /* FMAXNMP */ 8163 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8164 break; 8165 case 0xd: /* FADDP */ 8166 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8167 break; 8168 case 0xf: /* FMAXP */ 8169 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8170 break; 8171 case 0x2c: /* FMINNMP */ 8172 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8173 break; 8174 case 0x2f: /* FMINP */ 8175 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8176 break; 8177 default: 8178 g_assert_not_reached(); 8179 } 8180 } else { 8181 switch (opcode) { 8182 case 0xc: /* FMAXNMP */ 8183 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8184 break; 8185 case 0xd: /* FADDP */ 8186 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8187 break; 8188 case 0xf: /* FMAXP */ 8189 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8190 break; 8191 case 0x2c: /* FMINNMP */ 8192 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8193 break; 8194 case 0x2f: /* FMINP */ 8195 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8196 break; 8197 default: 8198 g_assert_not_reached(); 8199 } 8200 } 8201 8202 write_fp_sreg(s, rd, tcg_res); 8203 } 8204 } 8205 8206 /* 8207 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8208 * 8209 * This code is handles the common shifting code and is used by both 8210 * the vector and scalar code. 8211 */ 8212 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8213 TCGv_i64 tcg_rnd, bool accumulate, 8214 bool is_u, int size, int shift) 8215 { 8216 bool extended_result = false; 8217 bool round = tcg_rnd != NULL; 8218 int ext_lshift = 0; 8219 TCGv_i64 tcg_src_hi; 8220 8221 if (round && size == 3) { 8222 extended_result = true; 8223 ext_lshift = 64 - shift; 8224 tcg_src_hi = tcg_temp_new_i64(); 8225 } else if (shift == 64) { 8226 if (!accumulate && is_u) { 8227 /* result is zero */ 8228 tcg_gen_movi_i64(tcg_res, 0); 8229 return; 8230 } 8231 } 8232 8233 /* Deal with the rounding step */ 8234 if (round) { 8235 if (extended_result) { 8236 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8237 if (!is_u) { 8238 /* take care of sign extending tcg_res */ 8239 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8240 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8241 tcg_src, tcg_src_hi, 8242 tcg_rnd, tcg_zero); 8243 } else { 8244 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8245 tcg_src, tcg_zero, 8246 tcg_rnd, tcg_zero); 8247 } 8248 } else { 8249 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8250 } 8251 } 8252 8253 /* Now do the shift right */ 8254 if (round && extended_result) { 8255 /* extended case, >64 bit precision required */ 8256 if (ext_lshift == 0) { 8257 /* special case, only high bits matter */ 8258 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8259 } else { 8260 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8261 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8262 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8263 } 8264 } else { 8265 if (is_u) { 8266 if (shift == 64) { 8267 /* essentially shifting in 64 zeros */ 8268 tcg_gen_movi_i64(tcg_src, 0); 8269 } else { 8270 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8271 } 8272 } else { 8273 if (shift == 64) { 8274 /* effectively extending the sign-bit */ 8275 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8276 } else { 8277 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8278 } 8279 } 8280 } 8281 8282 if (accumulate) { 8283 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8284 } else { 8285 tcg_gen_mov_i64(tcg_res, tcg_src); 8286 } 8287 } 8288 8289 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8290 static void handle_scalar_simd_shri(DisasContext *s, 8291 bool is_u, int immh, int immb, 8292 int opcode, int rn, int rd) 8293 { 8294 const int size = 3; 8295 int immhb = immh << 3 | immb; 8296 int shift = 2 * (8 << size) - immhb; 8297 bool accumulate = false; 8298 bool round = false; 8299 bool insert = false; 8300 TCGv_i64 tcg_rn; 8301 TCGv_i64 tcg_rd; 8302 TCGv_i64 tcg_round; 8303 8304 if (!extract32(immh, 3, 1)) { 8305 unallocated_encoding(s); 8306 return; 8307 } 8308 8309 if (!fp_access_check(s)) { 8310 return; 8311 } 8312 8313 switch (opcode) { 8314 case 0x02: /* SSRA / USRA (accumulate) */ 8315 accumulate = true; 8316 break; 8317 case 0x04: /* SRSHR / URSHR (rounding) */ 8318 round = true; 8319 break; 8320 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8321 accumulate = round = true; 8322 break; 8323 case 0x08: /* SRI */ 8324 insert = true; 8325 break; 8326 } 8327 8328 if (round) { 8329 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8330 } else { 8331 tcg_round = NULL; 8332 } 8333 8334 tcg_rn = read_fp_dreg(s, rn); 8335 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8336 8337 if (insert) { 8338 /* shift count same as element size is valid but does nothing; 8339 * special case to avoid potential shift by 64. 8340 */ 8341 int esize = 8 << size; 8342 if (shift != esize) { 8343 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8344 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8345 } 8346 } else { 8347 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8348 accumulate, is_u, size, shift); 8349 } 8350 8351 write_fp_dreg(s, rd, tcg_rd); 8352 } 8353 8354 /* SHL/SLI - Scalar shift left */ 8355 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8356 int immh, int immb, int opcode, 8357 int rn, int rd) 8358 { 8359 int size = 32 - clz32(immh) - 1; 8360 int immhb = immh << 3 | immb; 8361 int shift = immhb - (8 << size); 8362 TCGv_i64 tcg_rn; 8363 TCGv_i64 tcg_rd; 8364 8365 if (!extract32(immh, 3, 1)) { 8366 unallocated_encoding(s); 8367 return; 8368 } 8369 8370 if (!fp_access_check(s)) { 8371 return; 8372 } 8373 8374 tcg_rn = read_fp_dreg(s, rn); 8375 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8376 8377 if (insert) { 8378 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8379 } else { 8380 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8381 } 8382 8383 write_fp_dreg(s, rd, tcg_rd); 8384 } 8385 8386 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8387 * (signed/unsigned) narrowing */ 8388 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8389 bool is_u_shift, bool is_u_narrow, 8390 int immh, int immb, int opcode, 8391 int rn, int rd) 8392 { 8393 int immhb = immh << 3 | immb; 8394 int size = 32 - clz32(immh) - 1; 8395 int esize = 8 << size; 8396 int shift = (2 * esize) - immhb; 8397 int elements = is_scalar ? 1 : (64 / esize); 8398 bool round = extract32(opcode, 0, 1); 8399 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8400 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8401 TCGv_i32 tcg_rd_narrowed; 8402 TCGv_i64 tcg_final; 8403 8404 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8405 { gen_helper_neon_narrow_sat_s8, 8406 gen_helper_neon_unarrow_sat8 }, 8407 { gen_helper_neon_narrow_sat_s16, 8408 gen_helper_neon_unarrow_sat16 }, 8409 { gen_helper_neon_narrow_sat_s32, 8410 gen_helper_neon_unarrow_sat32 }, 8411 { NULL, NULL }, 8412 }; 8413 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8414 gen_helper_neon_narrow_sat_u8, 8415 gen_helper_neon_narrow_sat_u16, 8416 gen_helper_neon_narrow_sat_u32, 8417 NULL 8418 }; 8419 NeonGenNarrowEnvFn *narrowfn; 8420 8421 int i; 8422 8423 assert(size < 4); 8424 8425 if (extract32(immh, 3, 1)) { 8426 unallocated_encoding(s); 8427 return; 8428 } 8429 8430 if (!fp_access_check(s)) { 8431 return; 8432 } 8433 8434 if (is_u_shift) { 8435 narrowfn = unsigned_narrow_fns[size]; 8436 } else { 8437 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8438 } 8439 8440 tcg_rn = tcg_temp_new_i64(); 8441 tcg_rd = tcg_temp_new_i64(); 8442 tcg_rd_narrowed = tcg_temp_new_i32(); 8443 tcg_final = tcg_temp_new_i64(); 8444 8445 if (round) { 8446 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8447 } else { 8448 tcg_round = NULL; 8449 } 8450 8451 for (i = 0; i < elements; i++) { 8452 read_vec_element(s, tcg_rn, rn, i, ldop); 8453 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8454 false, is_u_shift, size+1, shift); 8455 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); 8456 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8457 if (i == 0) { 8458 tcg_gen_mov_i64(tcg_final, tcg_rd); 8459 } else { 8460 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8461 } 8462 } 8463 8464 if (!is_q) { 8465 write_vec_element(s, tcg_final, rd, 0, MO_64); 8466 } else { 8467 write_vec_element(s, tcg_final, rd, 1, MO_64); 8468 } 8469 clear_vec_high(s, is_q, rd); 8470 } 8471 8472 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8473 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8474 bool src_unsigned, bool dst_unsigned, 8475 int immh, int immb, int rn, int rd) 8476 { 8477 int immhb = immh << 3 | immb; 8478 int size = 32 - clz32(immh) - 1; 8479 int shift = immhb - (8 << size); 8480 int pass; 8481 8482 assert(immh != 0); 8483 assert(!(scalar && is_q)); 8484 8485 if (!scalar) { 8486 if (!is_q && extract32(immh, 3, 1)) { 8487 unallocated_encoding(s); 8488 return; 8489 } 8490 8491 /* Since we use the variable-shift helpers we must 8492 * replicate the shift count into each element of 8493 * the tcg_shift value. 8494 */ 8495 switch (size) { 8496 case 0: 8497 shift |= shift << 8; 8498 /* fall through */ 8499 case 1: 8500 shift |= shift << 16; 8501 break; 8502 case 2: 8503 case 3: 8504 break; 8505 default: 8506 g_assert_not_reached(); 8507 } 8508 } 8509 8510 if (!fp_access_check(s)) { 8511 return; 8512 } 8513 8514 if (size == 3) { 8515 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8516 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8517 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8518 { NULL, gen_helper_neon_qshl_u64 }, 8519 }; 8520 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8521 int maxpass = is_q ? 2 : 1; 8522 8523 for (pass = 0; pass < maxpass; pass++) { 8524 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8525 8526 read_vec_element(s, tcg_op, rn, pass, MO_64); 8527 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8528 write_vec_element(s, tcg_op, rd, pass, MO_64); 8529 } 8530 clear_vec_high(s, is_q, rd); 8531 } else { 8532 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8533 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8534 { 8535 { gen_helper_neon_qshl_s8, 8536 gen_helper_neon_qshl_s16, 8537 gen_helper_neon_qshl_s32 }, 8538 { gen_helper_neon_qshlu_s8, 8539 gen_helper_neon_qshlu_s16, 8540 gen_helper_neon_qshlu_s32 } 8541 }, { 8542 { NULL, NULL, NULL }, 8543 { gen_helper_neon_qshl_u8, 8544 gen_helper_neon_qshl_u16, 8545 gen_helper_neon_qshl_u32 } 8546 } 8547 }; 8548 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8549 MemOp memop = scalar ? size : MO_32; 8550 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8551 8552 for (pass = 0; pass < maxpass; pass++) { 8553 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8554 8555 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8556 genfn(tcg_op, cpu_env, tcg_op, tcg_shift); 8557 if (scalar) { 8558 switch (size) { 8559 case 0: 8560 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8561 break; 8562 case 1: 8563 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8564 break; 8565 case 2: 8566 break; 8567 default: 8568 g_assert_not_reached(); 8569 } 8570 write_fp_sreg(s, rd, tcg_op); 8571 } else { 8572 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8573 } 8574 } 8575 8576 if (!scalar) { 8577 clear_vec_high(s, is_q, rd); 8578 } 8579 } 8580 } 8581 8582 /* Common vector code for handling integer to FP conversion */ 8583 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8584 int elements, int is_signed, 8585 int fracbits, int size) 8586 { 8587 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8588 TCGv_i32 tcg_shift = NULL; 8589 8590 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8591 int pass; 8592 8593 if (fracbits || size == MO_64) { 8594 tcg_shift = tcg_constant_i32(fracbits); 8595 } 8596 8597 if (size == MO_64) { 8598 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8599 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8600 8601 for (pass = 0; pass < elements; pass++) { 8602 read_vec_element(s, tcg_int64, rn, pass, mop); 8603 8604 if (is_signed) { 8605 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8606 tcg_shift, tcg_fpst); 8607 } else { 8608 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8609 tcg_shift, tcg_fpst); 8610 } 8611 if (elements == 1) { 8612 write_fp_dreg(s, rd, tcg_double); 8613 } else { 8614 write_vec_element(s, tcg_double, rd, pass, MO_64); 8615 } 8616 } 8617 } else { 8618 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8619 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8620 8621 for (pass = 0; pass < elements; pass++) { 8622 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8623 8624 switch (size) { 8625 case MO_32: 8626 if (fracbits) { 8627 if (is_signed) { 8628 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8629 tcg_shift, tcg_fpst); 8630 } else { 8631 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8632 tcg_shift, tcg_fpst); 8633 } 8634 } else { 8635 if (is_signed) { 8636 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8637 } else { 8638 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8639 } 8640 } 8641 break; 8642 case MO_16: 8643 if (fracbits) { 8644 if (is_signed) { 8645 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8646 tcg_shift, tcg_fpst); 8647 } else { 8648 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8649 tcg_shift, tcg_fpst); 8650 } 8651 } else { 8652 if (is_signed) { 8653 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8654 } else { 8655 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8656 } 8657 } 8658 break; 8659 default: 8660 g_assert_not_reached(); 8661 } 8662 8663 if (elements == 1) { 8664 write_fp_sreg(s, rd, tcg_float); 8665 } else { 8666 write_vec_element_i32(s, tcg_float, rd, pass, size); 8667 } 8668 } 8669 } 8670 8671 clear_vec_high(s, elements << size == 16, rd); 8672 } 8673 8674 /* UCVTF/SCVTF - Integer to FP conversion */ 8675 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8676 bool is_q, bool is_u, 8677 int immh, int immb, int opcode, 8678 int rn, int rd) 8679 { 8680 int size, elements, fracbits; 8681 int immhb = immh << 3 | immb; 8682 8683 if (immh & 8) { 8684 size = MO_64; 8685 if (!is_scalar && !is_q) { 8686 unallocated_encoding(s); 8687 return; 8688 } 8689 } else if (immh & 4) { 8690 size = MO_32; 8691 } else if (immh & 2) { 8692 size = MO_16; 8693 if (!dc_isar_feature(aa64_fp16, s)) { 8694 unallocated_encoding(s); 8695 return; 8696 } 8697 } else { 8698 /* immh == 0 would be a failure of the decode logic */ 8699 g_assert(immh == 1); 8700 unallocated_encoding(s); 8701 return; 8702 } 8703 8704 if (is_scalar) { 8705 elements = 1; 8706 } else { 8707 elements = (8 << is_q) >> size; 8708 } 8709 fracbits = (16 << size) - immhb; 8710 8711 if (!fp_access_check(s)) { 8712 return; 8713 } 8714 8715 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8716 } 8717 8718 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8719 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8720 bool is_q, bool is_u, 8721 int immh, int immb, int rn, int rd) 8722 { 8723 int immhb = immh << 3 | immb; 8724 int pass, size, fracbits; 8725 TCGv_ptr tcg_fpstatus; 8726 TCGv_i32 tcg_rmode, tcg_shift; 8727 8728 if (immh & 0x8) { 8729 size = MO_64; 8730 if (!is_scalar && !is_q) { 8731 unallocated_encoding(s); 8732 return; 8733 } 8734 } else if (immh & 0x4) { 8735 size = MO_32; 8736 } else if (immh & 0x2) { 8737 size = MO_16; 8738 if (!dc_isar_feature(aa64_fp16, s)) { 8739 unallocated_encoding(s); 8740 return; 8741 } 8742 } else { 8743 /* Should have split out AdvSIMD modified immediate earlier. */ 8744 assert(immh == 1); 8745 unallocated_encoding(s); 8746 return; 8747 } 8748 8749 if (!fp_access_check(s)) { 8750 return; 8751 } 8752 8753 assert(!(is_scalar && is_q)); 8754 8755 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8756 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8757 fracbits = (16 << size) - immhb; 8758 tcg_shift = tcg_constant_i32(fracbits); 8759 8760 if (size == MO_64) { 8761 int maxpass = is_scalar ? 1 : 2; 8762 8763 for (pass = 0; pass < maxpass; pass++) { 8764 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8765 8766 read_vec_element(s, tcg_op, rn, pass, MO_64); 8767 if (is_u) { 8768 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8769 } else { 8770 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8771 } 8772 write_vec_element(s, tcg_op, rd, pass, MO_64); 8773 } 8774 clear_vec_high(s, is_q, rd); 8775 } else { 8776 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8777 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8778 8779 switch (size) { 8780 case MO_16: 8781 if (is_u) { 8782 fn = gen_helper_vfp_touhh; 8783 } else { 8784 fn = gen_helper_vfp_toshh; 8785 } 8786 break; 8787 case MO_32: 8788 if (is_u) { 8789 fn = gen_helper_vfp_touls; 8790 } else { 8791 fn = gen_helper_vfp_tosls; 8792 } 8793 break; 8794 default: 8795 g_assert_not_reached(); 8796 } 8797 8798 for (pass = 0; pass < maxpass; pass++) { 8799 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8800 8801 read_vec_element_i32(s, tcg_op, rn, pass, size); 8802 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8803 if (is_scalar) { 8804 write_fp_sreg(s, rd, tcg_op); 8805 } else { 8806 write_vec_element_i32(s, tcg_op, rd, pass, size); 8807 } 8808 } 8809 if (!is_scalar) { 8810 clear_vec_high(s, is_q, rd); 8811 } 8812 } 8813 8814 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 8815 } 8816 8817 /* AdvSIMD scalar shift by immediate 8818 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 8819 * +-----+---+-------------+------+------+--------+---+------+------+ 8820 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 8821 * +-----+---+-------------+------+------+--------+---+------+------+ 8822 * 8823 * This is the scalar version so it works on a fixed sized registers 8824 */ 8825 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 8826 { 8827 int rd = extract32(insn, 0, 5); 8828 int rn = extract32(insn, 5, 5); 8829 int opcode = extract32(insn, 11, 5); 8830 int immb = extract32(insn, 16, 3); 8831 int immh = extract32(insn, 19, 4); 8832 bool is_u = extract32(insn, 29, 1); 8833 8834 if (immh == 0) { 8835 unallocated_encoding(s); 8836 return; 8837 } 8838 8839 switch (opcode) { 8840 case 0x08: /* SRI */ 8841 if (!is_u) { 8842 unallocated_encoding(s); 8843 return; 8844 } 8845 /* fall through */ 8846 case 0x00: /* SSHR / USHR */ 8847 case 0x02: /* SSRA / USRA */ 8848 case 0x04: /* SRSHR / URSHR */ 8849 case 0x06: /* SRSRA / URSRA */ 8850 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 8851 break; 8852 case 0x0a: /* SHL / SLI */ 8853 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 8854 break; 8855 case 0x1c: /* SCVTF, UCVTF */ 8856 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 8857 opcode, rn, rd); 8858 break; 8859 case 0x10: /* SQSHRUN, SQSHRUN2 */ 8860 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 8861 if (!is_u) { 8862 unallocated_encoding(s); 8863 return; 8864 } 8865 handle_vec_simd_sqshrn(s, true, false, false, true, 8866 immh, immb, opcode, rn, rd); 8867 break; 8868 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 8869 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 8870 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 8871 immh, immb, opcode, rn, rd); 8872 break; 8873 case 0xc: /* SQSHLU */ 8874 if (!is_u) { 8875 unallocated_encoding(s); 8876 return; 8877 } 8878 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 8879 break; 8880 case 0xe: /* SQSHL, UQSHL */ 8881 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 8882 break; 8883 case 0x1f: /* FCVTZS, FCVTZU */ 8884 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 8885 break; 8886 default: 8887 unallocated_encoding(s); 8888 break; 8889 } 8890 } 8891 8892 /* AdvSIMD scalar three different 8893 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 8894 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8895 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 8896 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 8897 */ 8898 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 8899 { 8900 bool is_u = extract32(insn, 29, 1); 8901 int size = extract32(insn, 22, 2); 8902 int opcode = extract32(insn, 12, 4); 8903 int rm = extract32(insn, 16, 5); 8904 int rn = extract32(insn, 5, 5); 8905 int rd = extract32(insn, 0, 5); 8906 8907 if (is_u) { 8908 unallocated_encoding(s); 8909 return; 8910 } 8911 8912 switch (opcode) { 8913 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8914 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8915 case 0xd: /* SQDMULL, SQDMULL2 */ 8916 if (size == 0 || size == 3) { 8917 unallocated_encoding(s); 8918 return; 8919 } 8920 break; 8921 default: 8922 unallocated_encoding(s); 8923 return; 8924 } 8925 8926 if (!fp_access_check(s)) { 8927 return; 8928 } 8929 8930 if (size == 2) { 8931 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8932 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8933 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8934 8935 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 8936 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 8937 8938 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 8939 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); 8940 8941 switch (opcode) { 8942 case 0xd: /* SQDMULL, SQDMULL2 */ 8943 break; 8944 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8945 tcg_gen_neg_i64(tcg_res, tcg_res); 8946 /* fall through */ 8947 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8948 read_vec_element(s, tcg_op1, rd, 0, MO_64); 8949 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, 8950 tcg_res, tcg_op1); 8951 break; 8952 default: 8953 g_assert_not_reached(); 8954 } 8955 8956 write_fp_dreg(s, rd, tcg_res); 8957 } else { 8958 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 8959 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 8960 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8961 8962 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 8963 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); 8964 8965 switch (opcode) { 8966 case 0xd: /* SQDMULL, SQDMULL2 */ 8967 break; 8968 case 0xb: /* SQDMLSL, SQDMLSL2 */ 8969 gen_helper_neon_negl_u32(tcg_res, tcg_res); 8970 /* fall through */ 8971 case 0x9: /* SQDMLAL, SQDMLAL2 */ 8972 { 8973 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 8974 read_vec_element(s, tcg_op3, rd, 0, MO_32); 8975 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, 8976 tcg_res, tcg_op3); 8977 break; 8978 } 8979 default: 8980 g_assert_not_reached(); 8981 } 8982 8983 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8984 write_fp_dreg(s, rd, tcg_res); 8985 } 8986 } 8987 8988 static void handle_3same_64(DisasContext *s, int opcode, bool u, 8989 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 8990 { 8991 /* Handle 64x64->64 opcodes which are shared between the scalar 8992 * and vector 3-same groups. We cover every opcode where size == 3 8993 * is valid in either the three-reg-same (integer, not pairwise) 8994 * or scalar-three-reg-same groups. 8995 */ 8996 TCGCond cond; 8997 8998 switch (opcode) { 8999 case 0x1: /* SQADD */ 9000 if (u) { 9001 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9002 } else { 9003 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9004 } 9005 break; 9006 case 0x5: /* SQSUB */ 9007 if (u) { 9008 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9009 } else { 9010 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9011 } 9012 break; 9013 case 0x6: /* CMGT, CMHI */ 9014 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. 9015 * We implement this using setcond (test) and then negating. 9016 */ 9017 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9018 do_cmop: 9019 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9020 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9021 break; 9022 case 0x7: /* CMGE, CMHS */ 9023 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9024 goto do_cmop; 9025 case 0x11: /* CMTST, CMEQ */ 9026 if (u) { 9027 cond = TCG_COND_EQ; 9028 goto do_cmop; 9029 } 9030 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9031 break; 9032 case 0x8: /* SSHL, USHL */ 9033 if (u) { 9034 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9035 } else { 9036 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9037 } 9038 break; 9039 case 0x9: /* SQSHL, UQSHL */ 9040 if (u) { 9041 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9042 } else { 9043 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9044 } 9045 break; 9046 case 0xa: /* SRSHL, URSHL */ 9047 if (u) { 9048 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9049 } else { 9050 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9051 } 9052 break; 9053 case 0xb: /* SQRSHL, UQRSHL */ 9054 if (u) { 9055 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9056 } else { 9057 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); 9058 } 9059 break; 9060 case 0x10: /* ADD, SUB */ 9061 if (u) { 9062 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9063 } else { 9064 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9065 } 9066 break; 9067 default: 9068 g_assert_not_reached(); 9069 } 9070 } 9071 9072 /* Handle the 3-same-operands float operations; shared by the scalar 9073 * and vector encodings. The caller must filter out any encodings 9074 * not allocated for the encoding it is dealing with. 9075 */ 9076 static void handle_3same_float(DisasContext *s, int size, int elements, 9077 int fpopcode, int rd, int rn, int rm) 9078 { 9079 int pass; 9080 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9081 9082 for (pass = 0; pass < elements; pass++) { 9083 if (size) { 9084 /* Double */ 9085 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9086 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9087 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9088 9089 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9090 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9091 9092 switch (fpopcode) { 9093 case 0x39: /* FMLS */ 9094 /* As usual for ARM, separate negation for fused multiply-add */ 9095 gen_helper_vfp_negd(tcg_op1, tcg_op1); 9096 /* fall through */ 9097 case 0x19: /* FMLA */ 9098 read_vec_element(s, tcg_res, rd, pass, MO_64); 9099 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, 9100 tcg_res, fpst); 9101 break; 9102 case 0x18: /* FMAXNM */ 9103 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9104 break; 9105 case 0x1a: /* FADD */ 9106 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 9107 break; 9108 case 0x1b: /* FMULX */ 9109 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); 9110 break; 9111 case 0x1c: /* FCMEQ */ 9112 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9113 break; 9114 case 0x1e: /* FMAX */ 9115 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 9116 break; 9117 case 0x1f: /* FRECPS */ 9118 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9119 break; 9120 case 0x38: /* FMINNM */ 9121 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 9122 break; 9123 case 0x3a: /* FSUB */ 9124 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9125 break; 9126 case 0x3e: /* FMIN */ 9127 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 9128 break; 9129 case 0x3f: /* FRSQRTS */ 9130 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9131 break; 9132 case 0x5b: /* FMUL */ 9133 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); 9134 break; 9135 case 0x5c: /* FCMGE */ 9136 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9137 break; 9138 case 0x5d: /* FACGE */ 9139 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9140 break; 9141 case 0x5f: /* FDIV */ 9142 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); 9143 break; 9144 case 0x7a: /* FABD */ 9145 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9146 gen_helper_vfp_absd(tcg_res, tcg_res); 9147 break; 9148 case 0x7c: /* FCMGT */ 9149 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9150 break; 9151 case 0x7d: /* FACGT */ 9152 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9153 break; 9154 default: 9155 g_assert_not_reached(); 9156 } 9157 9158 write_vec_element(s, tcg_res, rd, pass, MO_64); 9159 } else { 9160 /* Single */ 9161 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9162 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9163 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9164 9165 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9166 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9167 9168 switch (fpopcode) { 9169 case 0x39: /* FMLS */ 9170 /* As usual for ARM, separate negation for fused multiply-add */ 9171 gen_helper_vfp_negs(tcg_op1, tcg_op1); 9172 /* fall through */ 9173 case 0x19: /* FMLA */ 9174 read_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9175 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, 9176 tcg_res, fpst); 9177 break; 9178 case 0x1a: /* FADD */ 9179 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 9180 break; 9181 case 0x1b: /* FMULX */ 9182 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); 9183 break; 9184 case 0x1c: /* FCMEQ */ 9185 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9186 break; 9187 case 0x1e: /* FMAX */ 9188 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 9189 break; 9190 case 0x1f: /* FRECPS */ 9191 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9192 break; 9193 case 0x18: /* FMAXNM */ 9194 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 9195 break; 9196 case 0x38: /* FMINNM */ 9197 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 9198 break; 9199 case 0x3a: /* FSUB */ 9200 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9201 break; 9202 case 0x3e: /* FMIN */ 9203 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 9204 break; 9205 case 0x3f: /* FRSQRTS */ 9206 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9207 break; 9208 case 0x5b: /* FMUL */ 9209 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); 9210 break; 9211 case 0x5c: /* FCMGE */ 9212 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9213 break; 9214 case 0x5d: /* FACGE */ 9215 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9216 break; 9217 case 0x5f: /* FDIV */ 9218 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); 9219 break; 9220 case 0x7a: /* FABD */ 9221 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9222 gen_helper_vfp_abss(tcg_res, tcg_res); 9223 break; 9224 case 0x7c: /* FCMGT */ 9225 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9226 break; 9227 case 0x7d: /* FACGT */ 9228 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9229 break; 9230 default: 9231 g_assert_not_reached(); 9232 } 9233 9234 if (elements == 1) { 9235 /* scalar single so clear high part */ 9236 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9237 9238 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9239 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9240 } else { 9241 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9242 } 9243 } 9244 } 9245 9246 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9247 } 9248 9249 /* AdvSIMD scalar three same 9250 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9251 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9252 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9253 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9254 */ 9255 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9256 { 9257 int rd = extract32(insn, 0, 5); 9258 int rn = extract32(insn, 5, 5); 9259 int opcode = extract32(insn, 11, 5); 9260 int rm = extract32(insn, 16, 5); 9261 int size = extract32(insn, 22, 2); 9262 bool u = extract32(insn, 29, 1); 9263 TCGv_i64 tcg_rd; 9264 9265 if (opcode >= 0x18) { 9266 /* Floating point: U, size[1] and opcode indicate operation */ 9267 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9268 switch (fpopcode) { 9269 case 0x1b: /* FMULX */ 9270 case 0x1f: /* FRECPS */ 9271 case 0x3f: /* FRSQRTS */ 9272 case 0x5d: /* FACGE */ 9273 case 0x7d: /* FACGT */ 9274 case 0x1c: /* FCMEQ */ 9275 case 0x5c: /* FCMGE */ 9276 case 0x7c: /* FCMGT */ 9277 case 0x7a: /* FABD */ 9278 break; 9279 default: 9280 unallocated_encoding(s); 9281 return; 9282 } 9283 9284 if (!fp_access_check(s)) { 9285 return; 9286 } 9287 9288 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9289 return; 9290 } 9291 9292 switch (opcode) { 9293 case 0x1: /* SQADD, UQADD */ 9294 case 0x5: /* SQSUB, UQSUB */ 9295 case 0x9: /* SQSHL, UQSHL */ 9296 case 0xb: /* SQRSHL, UQRSHL */ 9297 break; 9298 case 0x8: /* SSHL, USHL */ 9299 case 0xa: /* SRSHL, URSHL */ 9300 case 0x6: /* CMGT, CMHI */ 9301 case 0x7: /* CMGE, CMHS */ 9302 case 0x11: /* CMTST, CMEQ */ 9303 case 0x10: /* ADD, SUB (vector) */ 9304 if (size != 3) { 9305 unallocated_encoding(s); 9306 return; 9307 } 9308 break; 9309 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9310 if (size != 1 && size != 2) { 9311 unallocated_encoding(s); 9312 return; 9313 } 9314 break; 9315 default: 9316 unallocated_encoding(s); 9317 return; 9318 } 9319 9320 if (!fp_access_check(s)) { 9321 return; 9322 } 9323 9324 tcg_rd = tcg_temp_new_i64(); 9325 9326 if (size == 3) { 9327 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9328 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9329 9330 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9331 } else { 9332 /* Do a single operation on the lowest element in the vector. 9333 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9334 * no side effects for all these operations. 9335 * OPTME: special-purpose helpers would avoid doing some 9336 * unnecessary work in the helper for the 8 and 16 bit cases. 9337 */ 9338 NeonGenTwoOpEnvFn *genenvfn; 9339 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9340 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9341 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9342 9343 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9344 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9345 9346 switch (opcode) { 9347 case 0x1: /* SQADD, UQADD */ 9348 { 9349 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9350 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9351 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9352 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9353 }; 9354 genenvfn = fns[size][u]; 9355 break; 9356 } 9357 case 0x5: /* SQSUB, UQSUB */ 9358 { 9359 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9360 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9361 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9362 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9363 }; 9364 genenvfn = fns[size][u]; 9365 break; 9366 } 9367 case 0x9: /* SQSHL, UQSHL */ 9368 { 9369 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9370 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9371 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9372 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9373 }; 9374 genenvfn = fns[size][u]; 9375 break; 9376 } 9377 case 0xb: /* SQRSHL, UQRSHL */ 9378 { 9379 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9380 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9381 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9382 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9383 }; 9384 genenvfn = fns[size][u]; 9385 break; 9386 } 9387 case 0x16: /* SQDMULH, SQRDMULH */ 9388 { 9389 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9390 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9391 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9392 }; 9393 assert(size == 1 || size == 2); 9394 genenvfn = fns[size - 1][u]; 9395 break; 9396 } 9397 default: 9398 g_assert_not_reached(); 9399 } 9400 9401 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); 9402 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9403 } 9404 9405 write_fp_dreg(s, rd, tcg_rd); 9406 } 9407 9408 /* AdvSIMD scalar three same FP16 9409 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9410 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9411 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9412 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9413 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9414 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9415 */ 9416 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9417 uint32_t insn) 9418 { 9419 int rd = extract32(insn, 0, 5); 9420 int rn = extract32(insn, 5, 5); 9421 int opcode = extract32(insn, 11, 3); 9422 int rm = extract32(insn, 16, 5); 9423 bool u = extract32(insn, 29, 1); 9424 bool a = extract32(insn, 23, 1); 9425 int fpopcode = opcode | (a << 3) | (u << 4); 9426 TCGv_ptr fpst; 9427 TCGv_i32 tcg_op1; 9428 TCGv_i32 tcg_op2; 9429 TCGv_i32 tcg_res; 9430 9431 switch (fpopcode) { 9432 case 0x03: /* FMULX */ 9433 case 0x04: /* FCMEQ (reg) */ 9434 case 0x07: /* FRECPS */ 9435 case 0x0f: /* FRSQRTS */ 9436 case 0x14: /* FCMGE (reg) */ 9437 case 0x15: /* FACGE */ 9438 case 0x1a: /* FABD */ 9439 case 0x1c: /* FCMGT (reg) */ 9440 case 0x1d: /* FACGT */ 9441 break; 9442 default: 9443 unallocated_encoding(s); 9444 return; 9445 } 9446 9447 if (!dc_isar_feature(aa64_fp16, s)) { 9448 unallocated_encoding(s); 9449 } 9450 9451 if (!fp_access_check(s)) { 9452 return; 9453 } 9454 9455 fpst = fpstatus_ptr(FPST_FPCR_F16); 9456 9457 tcg_op1 = read_fp_hreg(s, rn); 9458 tcg_op2 = read_fp_hreg(s, rm); 9459 tcg_res = tcg_temp_new_i32(); 9460 9461 switch (fpopcode) { 9462 case 0x03: /* FMULX */ 9463 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 9464 break; 9465 case 0x04: /* FCMEQ (reg) */ 9466 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9467 break; 9468 case 0x07: /* FRECPS */ 9469 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9470 break; 9471 case 0x0f: /* FRSQRTS */ 9472 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9473 break; 9474 case 0x14: /* FCMGE (reg) */ 9475 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9476 break; 9477 case 0x15: /* FACGE */ 9478 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9479 break; 9480 case 0x1a: /* FABD */ 9481 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9482 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9483 break; 9484 case 0x1c: /* FCMGT (reg) */ 9485 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9486 break; 9487 case 0x1d: /* FACGT */ 9488 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9489 break; 9490 default: 9491 g_assert_not_reached(); 9492 } 9493 9494 write_fp_sreg(s, rd, tcg_res); 9495 } 9496 9497 /* AdvSIMD scalar three same extra 9498 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9499 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9500 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9501 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9502 */ 9503 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9504 uint32_t insn) 9505 { 9506 int rd = extract32(insn, 0, 5); 9507 int rn = extract32(insn, 5, 5); 9508 int opcode = extract32(insn, 11, 4); 9509 int rm = extract32(insn, 16, 5); 9510 int size = extract32(insn, 22, 2); 9511 bool u = extract32(insn, 29, 1); 9512 TCGv_i32 ele1, ele2, ele3; 9513 TCGv_i64 res; 9514 bool feature; 9515 9516 switch (u * 16 + opcode) { 9517 case 0x10: /* SQRDMLAH (vector) */ 9518 case 0x11: /* SQRDMLSH (vector) */ 9519 if (size != 1 && size != 2) { 9520 unallocated_encoding(s); 9521 return; 9522 } 9523 feature = dc_isar_feature(aa64_rdm, s); 9524 break; 9525 default: 9526 unallocated_encoding(s); 9527 return; 9528 } 9529 if (!feature) { 9530 unallocated_encoding(s); 9531 return; 9532 } 9533 if (!fp_access_check(s)) { 9534 return; 9535 } 9536 9537 /* Do a single operation on the lowest element in the vector. 9538 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9539 * with no side effects for all these operations. 9540 * OPTME: special-purpose helpers would avoid doing some 9541 * unnecessary work in the helper for the 16 bit cases. 9542 */ 9543 ele1 = tcg_temp_new_i32(); 9544 ele2 = tcg_temp_new_i32(); 9545 ele3 = tcg_temp_new_i32(); 9546 9547 read_vec_element_i32(s, ele1, rn, 0, size); 9548 read_vec_element_i32(s, ele2, rm, 0, size); 9549 read_vec_element_i32(s, ele3, rd, 0, size); 9550 9551 switch (opcode) { 9552 case 0x0: /* SQRDMLAH */ 9553 if (size == 1) { 9554 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); 9555 } else { 9556 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); 9557 } 9558 break; 9559 case 0x1: /* SQRDMLSH */ 9560 if (size == 1) { 9561 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); 9562 } else { 9563 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); 9564 } 9565 break; 9566 default: 9567 g_assert_not_reached(); 9568 } 9569 9570 res = tcg_temp_new_i64(); 9571 tcg_gen_extu_i32_i64(res, ele3); 9572 write_fp_dreg(s, rd, res); 9573 } 9574 9575 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9576 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9577 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9578 { 9579 /* Handle 64->64 opcodes which are shared between the scalar and 9580 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9581 * is valid in either group and also the double-precision fp ops. 9582 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9583 * requires them. 9584 */ 9585 TCGCond cond; 9586 9587 switch (opcode) { 9588 case 0x4: /* CLS, CLZ */ 9589 if (u) { 9590 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9591 } else { 9592 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9593 } 9594 break; 9595 case 0x5: /* NOT */ 9596 /* This opcode is shared with CNT and RBIT but we have earlier 9597 * enforced that size == 3 if and only if this is the NOT insn. 9598 */ 9599 tcg_gen_not_i64(tcg_rd, tcg_rn); 9600 break; 9601 case 0x7: /* SQABS, SQNEG */ 9602 if (u) { 9603 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); 9604 } else { 9605 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); 9606 } 9607 break; 9608 case 0xa: /* CMLT */ 9609 /* 64 bit integer comparison against zero, result is 9610 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and 9611 * subtracting 1. 9612 */ 9613 cond = TCG_COND_LT; 9614 do_cmop: 9615 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); 9616 tcg_gen_neg_i64(tcg_rd, tcg_rd); 9617 break; 9618 case 0x8: /* CMGT, CMGE */ 9619 cond = u ? TCG_COND_GE : TCG_COND_GT; 9620 goto do_cmop; 9621 case 0x9: /* CMEQ, CMLE */ 9622 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9623 goto do_cmop; 9624 case 0xb: /* ABS, NEG */ 9625 if (u) { 9626 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9627 } else { 9628 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9629 } 9630 break; 9631 case 0x2f: /* FABS */ 9632 gen_helper_vfp_absd(tcg_rd, tcg_rn); 9633 break; 9634 case 0x6f: /* FNEG */ 9635 gen_helper_vfp_negd(tcg_rd, tcg_rn); 9636 break; 9637 case 0x7f: /* FSQRT */ 9638 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); 9639 break; 9640 case 0x1a: /* FCVTNS */ 9641 case 0x1b: /* FCVTMS */ 9642 case 0x1c: /* FCVTAS */ 9643 case 0x3a: /* FCVTPS */ 9644 case 0x3b: /* FCVTZS */ 9645 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9646 break; 9647 case 0x5a: /* FCVTNU */ 9648 case 0x5b: /* FCVTMU */ 9649 case 0x5c: /* FCVTAU */ 9650 case 0x7a: /* FCVTPU */ 9651 case 0x7b: /* FCVTZU */ 9652 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9653 break; 9654 case 0x18: /* FRINTN */ 9655 case 0x19: /* FRINTM */ 9656 case 0x38: /* FRINTP */ 9657 case 0x39: /* FRINTZ */ 9658 case 0x58: /* FRINTA */ 9659 case 0x79: /* FRINTI */ 9660 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9661 break; 9662 case 0x59: /* FRINTX */ 9663 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9664 break; 9665 case 0x1e: /* FRINT32Z */ 9666 case 0x5e: /* FRINT32X */ 9667 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9668 break; 9669 case 0x1f: /* FRINT64Z */ 9670 case 0x5f: /* FRINT64X */ 9671 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9672 break; 9673 default: 9674 g_assert_not_reached(); 9675 } 9676 } 9677 9678 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9679 bool is_scalar, bool is_u, bool is_q, 9680 int size, int rn, int rd) 9681 { 9682 bool is_double = (size == MO_64); 9683 TCGv_ptr fpst; 9684 9685 if (!fp_access_check(s)) { 9686 return; 9687 } 9688 9689 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9690 9691 if (is_double) { 9692 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9693 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9694 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9695 NeonGenTwoDoubleOpFn *genfn; 9696 bool swap = false; 9697 int pass; 9698 9699 switch (opcode) { 9700 case 0x2e: /* FCMLT (zero) */ 9701 swap = true; 9702 /* fallthrough */ 9703 case 0x2c: /* FCMGT (zero) */ 9704 genfn = gen_helper_neon_cgt_f64; 9705 break; 9706 case 0x2d: /* FCMEQ (zero) */ 9707 genfn = gen_helper_neon_ceq_f64; 9708 break; 9709 case 0x6d: /* FCMLE (zero) */ 9710 swap = true; 9711 /* fall through */ 9712 case 0x6c: /* FCMGE (zero) */ 9713 genfn = gen_helper_neon_cge_f64; 9714 break; 9715 default: 9716 g_assert_not_reached(); 9717 } 9718 9719 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9720 read_vec_element(s, tcg_op, rn, pass, MO_64); 9721 if (swap) { 9722 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9723 } else { 9724 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9725 } 9726 write_vec_element(s, tcg_res, rd, pass, MO_64); 9727 } 9728 9729 clear_vec_high(s, !is_scalar, rd); 9730 } else { 9731 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9732 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9733 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9734 NeonGenTwoSingleOpFn *genfn; 9735 bool swap = false; 9736 int pass, maxpasses; 9737 9738 if (size == MO_16) { 9739 switch (opcode) { 9740 case 0x2e: /* FCMLT (zero) */ 9741 swap = true; 9742 /* fall through */ 9743 case 0x2c: /* FCMGT (zero) */ 9744 genfn = gen_helper_advsimd_cgt_f16; 9745 break; 9746 case 0x2d: /* FCMEQ (zero) */ 9747 genfn = gen_helper_advsimd_ceq_f16; 9748 break; 9749 case 0x6d: /* FCMLE (zero) */ 9750 swap = true; 9751 /* fall through */ 9752 case 0x6c: /* FCMGE (zero) */ 9753 genfn = gen_helper_advsimd_cge_f16; 9754 break; 9755 default: 9756 g_assert_not_reached(); 9757 } 9758 } else { 9759 switch (opcode) { 9760 case 0x2e: /* FCMLT (zero) */ 9761 swap = true; 9762 /* fall through */ 9763 case 0x2c: /* FCMGT (zero) */ 9764 genfn = gen_helper_neon_cgt_f32; 9765 break; 9766 case 0x2d: /* FCMEQ (zero) */ 9767 genfn = gen_helper_neon_ceq_f32; 9768 break; 9769 case 0x6d: /* FCMLE (zero) */ 9770 swap = true; 9771 /* fall through */ 9772 case 0x6c: /* FCMGE (zero) */ 9773 genfn = gen_helper_neon_cge_f32; 9774 break; 9775 default: 9776 g_assert_not_reached(); 9777 } 9778 } 9779 9780 if (is_scalar) { 9781 maxpasses = 1; 9782 } else { 9783 int vector_size = 8 << is_q; 9784 maxpasses = vector_size >> size; 9785 } 9786 9787 for (pass = 0; pass < maxpasses; pass++) { 9788 read_vec_element_i32(s, tcg_op, rn, pass, size); 9789 if (swap) { 9790 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9791 } else { 9792 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9793 } 9794 if (is_scalar) { 9795 write_fp_sreg(s, rd, tcg_res); 9796 } else { 9797 write_vec_element_i32(s, tcg_res, rd, pass, size); 9798 } 9799 } 9800 9801 if (!is_scalar) { 9802 clear_vec_high(s, is_q, rd); 9803 } 9804 } 9805 } 9806 9807 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9808 bool is_scalar, bool is_u, bool is_q, 9809 int size, int rn, int rd) 9810 { 9811 bool is_double = (size == 3); 9812 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9813 9814 if (is_double) { 9815 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9816 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9817 int pass; 9818 9819 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9820 read_vec_element(s, tcg_op, rn, pass, MO_64); 9821 switch (opcode) { 9822 case 0x3d: /* FRECPE */ 9823 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9824 break; 9825 case 0x3f: /* FRECPX */ 9826 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9827 break; 9828 case 0x7d: /* FRSQRTE */ 9829 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9830 break; 9831 default: 9832 g_assert_not_reached(); 9833 } 9834 write_vec_element(s, tcg_res, rd, pass, MO_64); 9835 } 9836 clear_vec_high(s, !is_scalar, rd); 9837 } else { 9838 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9839 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9840 int pass, maxpasses; 9841 9842 if (is_scalar) { 9843 maxpasses = 1; 9844 } else { 9845 maxpasses = is_q ? 4 : 2; 9846 } 9847 9848 for (pass = 0; pass < maxpasses; pass++) { 9849 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9850 9851 switch (opcode) { 9852 case 0x3c: /* URECPE */ 9853 gen_helper_recpe_u32(tcg_res, tcg_op); 9854 break; 9855 case 0x3d: /* FRECPE */ 9856 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9857 break; 9858 case 0x3f: /* FRECPX */ 9859 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9860 break; 9861 case 0x7d: /* FRSQRTE */ 9862 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9863 break; 9864 default: 9865 g_assert_not_reached(); 9866 } 9867 9868 if (is_scalar) { 9869 write_fp_sreg(s, rd, tcg_res); 9870 } else { 9871 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9872 } 9873 } 9874 if (!is_scalar) { 9875 clear_vec_high(s, is_q, rd); 9876 } 9877 } 9878 } 9879 9880 static void handle_2misc_narrow(DisasContext *s, bool scalar, 9881 int opcode, bool u, bool is_q, 9882 int size, int rn, int rd) 9883 { 9884 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 9885 * in the source becomes a size element in the destination). 9886 */ 9887 int pass; 9888 TCGv_i32 tcg_res[2]; 9889 int destelt = is_q ? 2 : 0; 9890 int passes = scalar ? 1 : 2; 9891 9892 if (scalar) { 9893 tcg_res[1] = tcg_constant_i32(0); 9894 } 9895 9896 for (pass = 0; pass < passes; pass++) { 9897 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9898 NeonGenNarrowFn *genfn = NULL; 9899 NeonGenNarrowEnvFn *genenvfn = NULL; 9900 9901 if (scalar) { 9902 read_vec_element(s, tcg_op, rn, pass, size + 1); 9903 } else { 9904 read_vec_element(s, tcg_op, rn, pass, MO_64); 9905 } 9906 tcg_res[pass] = tcg_temp_new_i32(); 9907 9908 switch (opcode) { 9909 case 0x12: /* XTN, SQXTUN */ 9910 { 9911 static NeonGenNarrowFn * const xtnfns[3] = { 9912 gen_helper_neon_narrow_u8, 9913 gen_helper_neon_narrow_u16, 9914 tcg_gen_extrl_i64_i32, 9915 }; 9916 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 9917 gen_helper_neon_unarrow_sat8, 9918 gen_helper_neon_unarrow_sat16, 9919 gen_helper_neon_unarrow_sat32, 9920 }; 9921 if (u) { 9922 genenvfn = sqxtunfns[size]; 9923 } else { 9924 genfn = xtnfns[size]; 9925 } 9926 break; 9927 } 9928 case 0x14: /* SQXTN, UQXTN */ 9929 { 9930 static NeonGenNarrowEnvFn * const fns[3][2] = { 9931 { gen_helper_neon_narrow_sat_s8, 9932 gen_helper_neon_narrow_sat_u8 }, 9933 { gen_helper_neon_narrow_sat_s16, 9934 gen_helper_neon_narrow_sat_u16 }, 9935 { gen_helper_neon_narrow_sat_s32, 9936 gen_helper_neon_narrow_sat_u32 }, 9937 }; 9938 genenvfn = fns[size][u]; 9939 break; 9940 } 9941 case 0x16: /* FCVTN, FCVTN2 */ 9942 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 9943 if (size == 2) { 9944 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); 9945 } else { 9946 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9947 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9948 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9949 TCGv_i32 ahp = get_ahp_flag(); 9950 9951 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 9952 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9953 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9954 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 9955 } 9956 break; 9957 case 0x36: /* BFCVTN, BFCVTN2 */ 9958 { 9959 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9960 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 9961 } 9962 break; 9963 case 0x56: /* FCVTXN, FCVTXN2 */ 9964 /* 64 bit to 32 bit float conversion 9965 * with von Neumann rounding (round to odd) 9966 */ 9967 assert(size == 2); 9968 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); 9969 break; 9970 default: 9971 g_assert_not_reached(); 9972 } 9973 9974 if (genfn) { 9975 genfn(tcg_res[pass], tcg_op); 9976 } else if (genenvfn) { 9977 genenvfn(tcg_res[pass], cpu_env, tcg_op); 9978 } 9979 } 9980 9981 for (pass = 0; pass < 2; pass++) { 9982 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 9983 } 9984 clear_vec_high(s, is_q, rd); 9985 } 9986 9987 /* Remaining saturating accumulating ops */ 9988 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 9989 bool is_q, int size, int rn, int rd) 9990 { 9991 bool is_double = (size == 3); 9992 9993 if (is_double) { 9994 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 9995 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9996 int pass; 9997 9998 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9999 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10000 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10001 10002 if (is_u) { /* USQADD */ 10003 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10004 } else { /* SUQADD */ 10005 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10006 } 10007 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10008 } 10009 clear_vec_high(s, !is_scalar, rd); 10010 } else { 10011 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10012 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10013 int pass, maxpasses; 10014 10015 if (is_scalar) { 10016 maxpasses = 1; 10017 } else { 10018 maxpasses = is_q ? 4 : 2; 10019 } 10020 10021 for (pass = 0; pass < maxpasses; pass++) { 10022 if (is_scalar) { 10023 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10024 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10025 } else { 10026 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10027 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10028 } 10029 10030 if (is_u) { /* USQADD */ 10031 switch (size) { 10032 case 0: 10033 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10034 break; 10035 case 1: 10036 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10037 break; 10038 case 2: 10039 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10040 break; 10041 default: 10042 g_assert_not_reached(); 10043 } 10044 } else { /* SUQADD */ 10045 switch (size) { 10046 case 0: 10047 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10048 break; 10049 case 1: 10050 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10051 break; 10052 case 2: 10053 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); 10054 break; 10055 default: 10056 g_assert_not_reached(); 10057 } 10058 } 10059 10060 if (is_scalar) { 10061 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10062 } 10063 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10064 } 10065 clear_vec_high(s, is_q, rd); 10066 } 10067 } 10068 10069 /* AdvSIMD scalar two reg misc 10070 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10071 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10072 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10073 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10074 */ 10075 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10076 { 10077 int rd = extract32(insn, 0, 5); 10078 int rn = extract32(insn, 5, 5); 10079 int opcode = extract32(insn, 12, 5); 10080 int size = extract32(insn, 22, 2); 10081 bool u = extract32(insn, 29, 1); 10082 bool is_fcvt = false; 10083 int rmode; 10084 TCGv_i32 tcg_rmode; 10085 TCGv_ptr tcg_fpstatus; 10086 10087 switch (opcode) { 10088 case 0x3: /* USQADD / SUQADD*/ 10089 if (!fp_access_check(s)) { 10090 return; 10091 } 10092 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10093 return; 10094 case 0x7: /* SQABS / SQNEG */ 10095 break; 10096 case 0xa: /* CMLT */ 10097 if (u) { 10098 unallocated_encoding(s); 10099 return; 10100 } 10101 /* fall through */ 10102 case 0x8: /* CMGT, CMGE */ 10103 case 0x9: /* CMEQ, CMLE */ 10104 case 0xb: /* ABS, NEG */ 10105 if (size != 3) { 10106 unallocated_encoding(s); 10107 return; 10108 } 10109 break; 10110 case 0x12: /* SQXTUN */ 10111 if (!u) { 10112 unallocated_encoding(s); 10113 return; 10114 } 10115 /* fall through */ 10116 case 0x14: /* SQXTN, UQXTN */ 10117 if (size == 3) { 10118 unallocated_encoding(s); 10119 return; 10120 } 10121 if (!fp_access_check(s)) { 10122 return; 10123 } 10124 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10125 return; 10126 case 0xc ... 0xf: 10127 case 0x16 ... 0x1d: 10128 case 0x1f: 10129 /* Floating point: U, size[1] and opcode indicate operation; 10130 * size[0] indicates single or double precision. 10131 */ 10132 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10133 size = extract32(size, 0, 1) ? 3 : 2; 10134 switch (opcode) { 10135 case 0x2c: /* FCMGT (zero) */ 10136 case 0x2d: /* FCMEQ (zero) */ 10137 case 0x2e: /* FCMLT (zero) */ 10138 case 0x6c: /* FCMGE (zero) */ 10139 case 0x6d: /* FCMLE (zero) */ 10140 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10141 return; 10142 case 0x1d: /* SCVTF */ 10143 case 0x5d: /* UCVTF */ 10144 { 10145 bool is_signed = (opcode == 0x1d); 10146 if (!fp_access_check(s)) { 10147 return; 10148 } 10149 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10150 return; 10151 } 10152 case 0x3d: /* FRECPE */ 10153 case 0x3f: /* FRECPX */ 10154 case 0x7d: /* FRSQRTE */ 10155 if (!fp_access_check(s)) { 10156 return; 10157 } 10158 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10159 return; 10160 case 0x1a: /* FCVTNS */ 10161 case 0x1b: /* FCVTMS */ 10162 case 0x3a: /* FCVTPS */ 10163 case 0x3b: /* FCVTZS */ 10164 case 0x5a: /* FCVTNU */ 10165 case 0x5b: /* FCVTMU */ 10166 case 0x7a: /* FCVTPU */ 10167 case 0x7b: /* FCVTZU */ 10168 is_fcvt = true; 10169 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10170 break; 10171 case 0x1c: /* FCVTAS */ 10172 case 0x5c: /* FCVTAU */ 10173 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10174 is_fcvt = true; 10175 rmode = FPROUNDING_TIEAWAY; 10176 break; 10177 case 0x56: /* FCVTXN, FCVTXN2 */ 10178 if (size == 2) { 10179 unallocated_encoding(s); 10180 return; 10181 } 10182 if (!fp_access_check(s)) { 10183 return; 10184 } 10185 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10186 return; 10187 default: 10188 unallocated_encoding(s); 10189 return; 10190 } 10191 break; 10192 default: 10193 unallocated_encoding(s); 10194 return; 10195 } 10196 10197 if (!fp_access_check(s)) { 10198 return; 10199 } 10200 10201 if (is_fcvt) { 10202 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10203 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10204 } else { 10205 tcg_fpstatus = NULL; 10206 tcg_rmode = NULL; 10207 } 10208 10209 if (size == 3) { 10210 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10211 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10212 10213 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10214 write_fp_dreg(s, rd, tcg_rd); 10215 } else { 10216 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10217 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10218 10219 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10220 10221 switch (opcode) { 10222 case 0x7: /* SQABS, SQNEG */ 10223 { 10224 NeonGenOneOpEnvFn *genfn; 10225 static NeonGenOneOpEnvFn * const fns[3][2] = { 10226 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10227 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10228 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10229 }; 10230 genfn = fns[size][u]; 10231 genfn(tcg_rd, cpu_env, tcg_rn); 10232 break; 10233 } 10234 case 0x1a: /* FCVTNS */ 10235 case 0x1b: /* FCVTMS */ 10236 case 0x1c: /* FCVTAS */ 10237 case 0x3a: /* FCVTPS */ 10238 case 0x3b: /* FCVTZS */ 10239 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10240 tcg_fpstatus); 10241 break; 10242 case 0x5a: /* FCVTNU */ 10243 case 0x5b: /* FCVTMU */ 10244 case 0x5c: /* FCVTAU */ 10245 case 0x7a: /* FCVTPU */ 10246 case 0x7b: /* FCVTZU */ 10247 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10248 tcg_fpstatus); 10249 break; 10250 default: 10251 g_assert_not_reached(); 10252 } 10253 10254 write_fp_sreg(s, rd, tcg_rd); 10255 } 10256 10257 if (is_fcvt) { 10258 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10259 } 10260 } 10261 10262 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10263 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10264 int immh, int immb, int opcode, int rn, int rd) 10265 { 10266 int size = 32 - clz32(immh) - 1; 10267 int immhb = immh << 3 | immb; 10268 int shift = 2 * (8 << size) - immhb; 10269 GVecGen2iFn *gvec_fn; 10270 10271 if (extract32(immh, 3, 1) && !is_q) { 10272 unallocated_encoding(s); 10273 return; 10274 } 10275 tcg_debug_assert(size <= 3); 10276 10277 if (!fp_access_check(s)) { 10278 return; 10279 } 10280 10281 switch (opcode) { 10282 case 0x02: /* SSRA / USRA (accumulate) */ 10283 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10284 break; 10285 10286 case 0x08: /* SRI */ 10287 gvec_fn = gen_gvec_sri; 10288 break; 10289 10290 case 0x00: /* SSHR / USHR */ 10291 if (is_u) { 10292 if (shift == 8 << size) { 10293 /* Shift count the same size as element size produces zero. */ 10294 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10295 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10296 return; 10297 } 10298 gvec_fn = tcg_gen_gvec_shri; 10299 } else { 10300 /* Shift count the same size as element size produces all sign. */ 10301 if (shift == 8 << size) { 10302 shift -= 1; 10303 } 10304 gvec_fn = tcg_gen_gvec_sari; 10305 } 10306 break; 10307 10308 case 0x04: /* SRSHR / URSHR (rounding) */ 10309 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10310 break; 10311 10312 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10313 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10314 break; 10315 10316 default: 10317 g_assert_not_reached(); 10318 } 10319 10320 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10321 } 10322 10323 /* SHL/SLI - Vector shift left */ 10324 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10325 int immh, int immb, int opcode, int rn, int rd) 10326 { 10327 int size = 32 - clz32(immh) - 1; 10328 int immhb = immh << 3 | immb; 10329 int shift = immhb - (8 << size); 10330 10331 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10332 assert(size >= 0 && size <= 3); 10333 10334 if (extract32(immh, 3, 1) && !is_q) { 10335 unallocated_encoding(s); 10336 return; 10337 } 10338 10339 if (!fp_access_check(s)) { 10340 return; 10341 } 10342 10343 if (insert) { 10344 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10345 } else { 10346 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10347 } 10348 } 10349 10350 /* USHLL/SHLL - Vector shift left with widening */ 10351 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10352 int immh, int immb, int opcode, int rn, int rd) 10353 { 10354 int size = 32 - clz32(immh) - 1; 10355 int immhb = immh << 3 | immb; 10356 int shift = immhb - (8 << size); 10357 int dsize = 64; 10358 int esize = 8 << size; 10359 int elements = dsize/esize; 10360 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10361 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10362 int i; 10363 10364 if (size >= 3) { 10365 unallocated_encoding(s); 10366 return; 10367 } 10368 10369 if (!fp_access_check(s)) { 10370 return; 10371 } 10372 10373 /* For the LL variants the store is larger than the load, 10374 * so if rd == rn we would overwrite parts of our input. 10375 * So load everything right now and use shifts in the main loop. 10376 */ 10377 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10378 10379 for (i = 0; i < elements; i++) { 10380 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10381 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10382 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10383 write_vec_element(s, tcg_rd, rd, i, size + 1); 10384 } 10385 } 10386 10387 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10388 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10389 int immh, int immb, int opcode, int rn, int rd) 10390 { 10391 int immhb = immh << 3 | immb; 10392 int size = 32 - clz32(immh) - 1; 10393 int dsize = 64; 10394 int esize = 8 << size; 10395 int elements = dsize/esize; 10396 int shift = (2 * esize) - immhb; 10397 bool round = extract32(opcode, 0, 1); 10398 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10399 TCGv_i64 tcg_round; 10400 int i; 10401 10402 if (extract32(immh, 3, 1)) { 10403 unallocated_encoding(s); 10404 return; 10405 } 10406 10407 if (!fp_access_check(s)) { 10408 return; 10409 } 10410 10411 tcg_rn = tcg_temp_new_i64(); 10412 tcg_rd = tcg_temp_new_i64(); 10413 tcg_final = tcg_temp_new_i64(); 10414 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10415 10416 if (round) { 10417 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10418 } else { 10419 tcg_round = NULL; 10420 } 10421 10422 for (i = 0; i < elements; i++) { 10423 read_vec_element(s, tcg_rn, rn, i, size+1); 10424 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10425 false, true, size+1, shift); 10426 10427 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10428 } 10429 10430 if (!is_q) { 10431 write_vec_element(s, tcg_final, rd, 0, MO_64); 10432 } else { 10433 write_vec_element(s, tcg_final, rd, 1, MO_64); 10434 } 10435 10436 clear_vec_high(s, is_q, rd); 10437 } 10438 10439 10440 /* AdvSIMD shift by immediate 10441 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10442 * +---+---+---+-------------+------+------+--------+---+------+------+ 10443 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10444 * +---+---+---+-------------+------+------+--------+---+------+------+ 10445 */ 10446 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10447 { 10448 int rd = extract32(insn, 0, 5); 10449 int rn = extract32(insn, 5, 5); 10450 int opcode = extract32(insn, 11, 5); 10451 int immb = extract32(insn, 16, 3); 10452 int immh = extract32(insn, 19, 4); 10453 bool is_u = extract32(insn, 29, 1); 10454 bool is_q = extract32(insn, 30, 1); 10455 10456 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10457 assert(immh != 0); 10458 10459 switch (opcode) { 10460 case 0x08: /* SRI */ 10461 if (!is_u) { 10462 unallocated_encoding(s); 10463 return; 10464 } 10465 /* fall through */ 10466 case 0x00: /* SSHR / USHR */ 10467 case 0x02: /* SSRA / USRA (accumulate) */ 10468 case 0x04: /* SRSHR / URSHR (rounding) */ 10469 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10470 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10471 break; 10472 case 0x0a: /* SHL / SLI */ 10473 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10474 break; 10475 case 0x10: /* SHRN */ 10476 case 0x11: /* RSHRN / SQRSHRUN */ 10477 if (is_u) { 10478 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10479 opcode, rn, rd); 10480 } else { 10481 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10482 } 10483 break; 10484 case 0x12: /* SQSHRN / UQSHRN */ 10485 case 0x13: /* SQRSHRN / UQRSHRN */ 10486 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10487 opcode, rn, rd); 10488 break; 10489 case 0x14: /* SSHLL / USHLL */ 10490 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10491 break; 10492 case 0x1c: /* SCVTF / UCVTF */ 10493 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10494 opcode, rn, rd); 10495 break; 10496 case 0xc: /* SQSHLU */ 10497 if (!is_u) { 10498 unallocated_encoding(s); 10499 return; 10500 } 10501 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10502 break; 10503 case 0xe: /* SQSHL, UQSHL */ 10504 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10505 break; 10506 case 0x1f: /* FCVTZS/ FCVTZU */ 10507 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10508 return; 10509 default: 10510 unallocated_encoding(s); 10511 return; 10512 } 10513 } 10514 10515 /* Generate code to do a "long" addition or subtraction, ie one done in 10516 * TCGv_i64 on vector lanes twice the width specified by size. 10517 */ 10518 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10519 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10520 { 10521 static NeonGenTwo64OpFn * const fns[3][2] = { 10522 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10523 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10524 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10525 }; 10526 NeonGenTwo64OpFn *genfn; 10527 assert(size < 3); 10528 10529 genfn = fns[size][is_sub]; 10530 genfn(tcg_res, tcg_op1, tcg_op2); 10531 } 10532 10533 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10534 int opcode, int rd, int rn, int rm) 10535 { 10536 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10537 TCGv_i64 tcg_res[2]; 10538 int pass, accop; 10539 10540 tcg_res[0] = tcg_temp_new_i64(); 10541 tcg_res[1] = tcg_temp_new_i64(); 10542 10543 /* Does this op do an adding accumulate, a subtracting accumulate, 10544 * or no accumulate at all? 10545 */ 10546 switch (opcode) { 10547 case 5: 10548 case 8: 10549 case 9: 10550 accop = 1; 10551 break; 10552 case 10: 10553 case 11: 10554 accop = -1; 10555 break; 10556 default: 10557 accop = 0; 10558 break; 10559 } 10560 10561 if (accop != 0) { 10562 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10563 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10564 } 10565 10566 /* size == 2 means two 32x32->64 operations; this is worth special 10567 * casing because we can generally handle it inline. 10568 */ 10569 if (size == 2) { 10570 for (pass = 0; pass < 2; pass++) { 10571 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10572 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10573 TCGv_i64 tcg_passres; 10574 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10575 10576 int elt = pass + is_q * 2; 10577 10578 read_vec_element(s, tcg_op1, rn, elt, memop); 10579 read_vec_element(s, tcg_op2, rm, elt, memop); 10580 10581 if (accop == 0) { 10582 tcg_passres = tcg_res[pass]; 10583 } else { 10584 tcg_passres = tcg_temp_new_i64(); 10585 } 10586 10587 switch (opcode) { 10588 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10589 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10590 break; 10591 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10592 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10593 break; 10594 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10595 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10596 { 10597 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10598 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10599 10600 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10601 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10602 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10603 tcg_passres, 10604 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10605 break; 10606 } 10607 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10608 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10609 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10610 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10611 break; 10612 case 9: /* SQDMLAL, SQDMLAL2 */ 10613 case 11: /* SQDMLSL, SQDMLSL2 */ 10614 case 13: /* SQDMULL, SQDMULL2 */ 10615 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10616 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 10617 tcg_passres, tcg_passres); 10618 break; 10619 default: 10620 g_assert_not_reached(); 10621 } 10622 10623 if (opcode == 9 || opcode == 11) { 10624 /* saturating accumulate ops */ 10625 if (accop < 0) { 10626 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10627 } 10628 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 10629 tcg_res[pass], tcg_passres); 10630 } else if (accop > 0) { 10631 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10632 } else if (accop < 0) { 10633 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10634 } 10635 } 10636 } else { 10637 /* size 0 or 1, generally helper functions */ 10638 for (pass = 0; pass < 2; pass++) { 10639 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10640 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10641 TCGv_i64 tcg_passres; 10642 int elt = pass + is_q * 2; 10643 10644 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10645 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10646 10647 if (accop == 0) { 10648 tcg_passres = tcg_res[pass]; 10649 } else { 10650 tcg_passres = tcg_temp_new_i64(); 10651 } 10652 10653 switch (opcode) { 10654 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10655 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10656 { 10657 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10658 static NeonGenWidenFn * const widenfns[2][2] = { 10659 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10660 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10661 }; 10662 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10663 10664 widenfn(tcg_op2_64, tcg_op2); 10665 widenfn(tcg_passres, tcg_op1); 10666 gen_neon_addl(size, (opcode == 2), tcg_passres, 10667 tcg_passres, tcg_op2_64); 10668 break; 10669 } 10670 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10671 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10672 if (size == 0) { 10673 if (is_u) { 10674 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10675 } else { 10676 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10677 } 10678 } else { 10679 if (is_u) { 10680 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10681 } else { 10682 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10683 } 10684 } 10685 break; 10686 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10687 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10688 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10689 if (size == 0) { 10690 if (is_u) { 10691 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10692 } else { 10693 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10694 } 10695 } else { 10696 if (is_u) { 10697 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10698 } else { 10699 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10700 } 10701 } 10702 break; 10703 case 9: /* SQDMLAL, SQDMLAL2 */ 10704 case 11: /* SQDMLSL, SQDMLSL2 */ 10705 case 13: /* SQDMULL, SQDMULL2 */ 10706 assert(size == 1); 10707 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10708 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 10709 tcg_passres, tcg_passres); 10710 break; 10711 default: 10712 g_assert_not_reached(); 10713 } 10714 10715 if (accop != 0) { 10716 if (opcode == 9 || opcode == 11) { 10717 /* saturating accumulate ops */ 10718 if (accop < 0) { 10719 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10720 } 10721 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 10722 tcg_res[pass], 10723 tcg_passres); 10724 } else { 10725 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10726 tcg_res[pass], tcg_passres); 10727 } 10728 } 10729 } 10730 } 10731 10732 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10733 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10734 } 10735 10736 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10737 int opcode, int rd, int rn, int rm) 10738 { 10739 TCGv_i64 tcg_res[2]; 10740 int part = is_q ? 2 : 0; 10741 int pass; 10742 10743 for (pass = 0; pass < 2; pass++) { 10744 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10745 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10746 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10747 static NeonGenWidenFn * const widenfns[3][2] = { 10748 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10749 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10750 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10751 }; 10752 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10753 10754 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10755 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10756 widenfn(tcg_op2_wide, tcg_op2); 10757 tcg_res[pass] = tcg_temp_new_i64(); 10758 gen_neon_addl(size, (opcode == 3), 10759 tcg_res[pass], tcg_op1, tcg_op2_wide); 10760 } 10761 10762 for (pass = 0; pass < 2; pass++) { 10763 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10764 } 10765 } 10766 10767 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10768 { 10769 tcg_gen_addi_i64(in, in, 1U << 31); 10770 tcg_gen_extrh_i64_i32(res, in); 10771 } 10772 10773 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10774 int opcode, int rd, int rn, int rm) 10775 { 10776 TCGv_i32 tcg_res[2]; 10777 int part = is_q ? 2 : 0; 10778 int pass; 10779 10780 for (pass = 0; pass < 2; pass++) { 10781 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10782 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10783 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10784 static NeonGenNarrowFn * const narrowfns[3][2] = { 10785 { gen_helper_neon_narrow_high_u8, 10786 gen_helper_neon_narrow_round_high_u8 }, 10787 { gen_helper_neon_narrow_high_u16, 10788 gen_helper_neon_narrow_round_high_u16 }, 10789 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10790 }; 10791 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10792 10793 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10794 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10795 10796 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10797 10798 tcg_res[pass] = tcg_temp_new_i32(); 10799 gennarrow(tcg_res[pass], tcg_wideres); 10800 } 10801 10802 for (pass = 0; pass < 2; pass++) { 10803 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10804 } 10805 clear_vec_high(s, is_q, rd); 10806 } 10807 10808 /* AdvSIMD three different 10809 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10810 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10811 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10812 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10813 */ 10814 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10815 { 10816 /* Instructions in this group fall into three basic classes 10817 * (in each case with the operation working on each element in 10818 * the input vectors): 10819 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10820 * 128 bit input) 10821 * (2) wide 64 x 128 -> 128 10822 * (3) narrowing 128 x 128 -> 64 10823 * Here we do initial decode, catch unallocated cases and 10824 * dispatch to separate functions for each class. 10825 */ 10826 int is_q = extract32(insn, 30, 1); 10827 int is_u = extract32(insn, 29, 1); 10828 int size = extract32(insn, 22, 2); 10829 int opcode = extract32(insn, 12, 4); 10830 int rm = extract32(insn, 16, 5); 10831 int rn = extract32(insn, 5, 5); 10832 int rd = extract32(insn, 0, 5); 10833 10834 switch (opcode) { 10835 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10836 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10837 /* 64 x 128 -> 128 */ 10838 if (size == 3) { 10839 unallocated_encoding(s); 10840 return; 10841 } 10842 if (!fp_access_check(s)) { 10843 return; 10844 } 10845 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10846 break; 10847 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10848 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10849 /* 128 x 128 -> 64 */ 10850 if (size == 3) { 10851 unallocated_encoding(s); 10852 return; 10853 } 10854 if (!fp_access_check(s)) { 10855 return; 10856 } 10857 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10858 break; 10859 case 14: /* PMULL, PMULL2 */ 10860 if (is_u) { 10861 unallocated_encoding(s); 10862 return; 10863 } 10864 switch (size) { 10865 case 0: /* PMULL.P8 */ 10866 if (!fp_access_check(s)) { 10867 return; 10868 } 10869 /* The Q field specifies lo/hi half input for this insn. */ 10870 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10871 gen_helper_neon_pmull_h); 10872 break; 10873 10874 case 3: /* PMULL.P64 */ 10875 if (!dc_isar_feature(aa64_pmull, s)) { 10876 unallocated_encoding(s); 10877 return; 10878 } 10879 if (!fp_access_check(s)) { 10880 return; 10881 } 10882 /* The Q field specifies lo/hi half input for this insn. */ 10883 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10884 gen_helper_gvec_pmull_q); 10885 break; 10886 10887 default: 10888 unallocated_encoding(s); 10889 break; 10890 } 10891 return; 10892 case 9: /* SQDMLAL, SQDMLAL2 */ 10893 case 11: /* SQDMLSL, SQDMLSL2 */ 10894 case 13: /* SQDMULL, SQDMULL2 */ 10895 if (is_u || size == 0) { 10896 unallocated_encoding(s); 10897 return; 10898 } 10899 /* fall through */ 10900 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10901 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10902 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10903 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10904 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10905 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10906 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 10907 /* 64 x 64 -> 128 */ 10908 if (size == 3) { 10909 unallocated_encoding(s); 10910 return; 10911 } 10912 if (!fp_access_check(s)) { 10913 return; 10914 } 10915 10916 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 10917 break; 10918 default: 10919 /* opcode 15 not allocated */ 10920 unallocated_encoding(s); 10921 break; 10922 } 10923 } 10924 10925 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 10926 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 10927 { 10928 int rd = extract32(insn, 0, 5); 10929 int rn = extract32(insn, 5, 5); 10930 int rm = extract32(insn, 16, 5); 10931 int size = extract32(insn, 22, 2); 10932 bool is_u = extract32(insn, 29, 1); 10933 bool is_q = extract32(insn, 30, 1); 10934 10935 if (!fp_access_check(s)) { 10936 return; 10937 } 10938 10939 switch (size + 4 * is_u) { 10940 case 0: /* AND */ 10941 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 10942 return; 10943 case 1: /* BIC */ 10944 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 10945 return; 10946 case 2: /* ORR */ 10947 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 10948 return; 10949 case 3: /* ORN */ 10950 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 10951 return; 10952 case 4: /* EOR */ 10953 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 10954 return; 10955 10956 case 5: /* BSL bitwise select */ 10957 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 10958 return; 10959 case 6: /* BIT, bitwise insert if true */ 10960 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 10961 return; 10962 case 7: /* BIF, bitwise insert if false */ 10963 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 10964 return; 10965 10966 default: 10967 g_assert_not_reached(); 10968 } 10969 } 10970 10971 /* Pairwise op subgroup of C3.6.16. 10972 * 10973 * This is called directly or via the handle_3same_float for float pairwise 10974 * operations where the opcode and size are calculated differently. 10975 */ 10976 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 10977 int size, int rn, int rm, int rd) 10978 { 10979 TCGv_ptr fpst; 10980 int pass; 10981 10982 /* Floating point operations need fpst */ 10983 if (opcode >= 0x58) { 10984 fpst = fpstatus_ptr(FPST_FPCR); 10985 } else { 10986 fpst = NULL; 10987 } 10988 10989 if (!fp_access_check(s)) { 10990 return; 10991 } 10992 10993 /* These operations work on the concatenated rm:rn, with each pair of 10994 * adjacent elements being operated on to produce an element in the result. 10995 */ 10996 if (size == 3) { 10997 TCGv_i64 tcg_res[2]; 10998 10999 for (pass = 0; pass < 2; pass++) { 11000 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11001 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11002 int passreg = (pass == 0) ? rn : rm; 11003 11004 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11005 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11006 tcg_res[pass] = tcg_temp_new_i64(); 11007 11008 switch (opcode) { 11009 case 0x17: /* ADDP */ 11010 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11011 break; 11012 case 0x58: /* FMAXNMP */ 11013 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11014 break; 11015 case 0x5a: /* FADDP */ 11016 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11017 break; 11018 case 0x5e: /* FMAXP */ 11019 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11020 break; 11021 case 0x78: /* FMINNMP */ 11022 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11023 break; 11024 case 0x7e: /* FMINP */ 11025 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11026 break; 11027 default: 11028 g_assert_not_reached(); 11029 } 11030 } 11031 11032 for (pass = 0; pass < 2; pass++) { 11033 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11034 } 11035 } else { 11036 int maxpass = is_q ? 4 : 2; 11037 TCGv_i32 tcg_res[4]; 11038 11039 for (pass = 0; pass < maxpass; pass++) { 11040 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11041 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11042 NeonGenTwoOpFn *genfn = NULL; 11043 int passreg = pass < (maxpass / 2) ? rn : rm; 11044 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11045 11046 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11047 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11048 tcg_res[pass] = tcg_temp_new_i32(); 11049 11050 switch (opcode) { 11051 case 0x17: /* ADDP */ 11052 { 11053 static NeonGenTwoOpFn * const fns[3] = { 11054 gen_helper_neon_padd_u8, 11055 gen_helper_neon_padd_u16, 11056 tcg_gen_add_i32, 11057 }; 11058 genfn = fns[size]; 11059 break; 11060 } 11061 case 0x14: /* SMAXP, UMAXP */ 11062 { 11063 static NeonGenTwoOpFn * const fns[3][2] = { 11064 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11065 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11066 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11067 }; 11068 genfn = fns[size][u]; 11069 break; 11070 } 11071 case 0x15: /* SMINP, UMINP */ 11072 { 11073 static NeonGenTwoOpFn * const fns[3][2] = { 11074 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11075 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11076 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11077 }; 11078 genfn = fns[size][u]; 11079 break; 11080 } 11081 /* The FP operations are all on single floats (32 bit) */ 11082 case 0x58: /* FMAXNMP */ 11083 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11084 break; 11085 case 0x5a: /* FADDP */ 11086 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11087 break; 11088 case 0x5e: /* FMAXP */ 11089 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11090 break; 11091 case 0x78: /* FMINNMP */ 11092 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11093 break; 11094 case 0x7e: /* FMINP */ 11095 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11096 break; 11097 default: 11098 g_assert_not_reached(); 11099 } 11100 11101 /* FP ops called directly, otherwise call now */ 11102 if (genfn) { 11103 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11104 } 11105 } 11106 11107 for (pass = 0; pass < maxpass; pass++) { 11108 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11109 } 11110 clear_vec_high(s, is_q, rd); 11111 } 11112 } 11113 11114 /* Floating point op subgroup of C3.6.16. */ 11115 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11116 { 11117 /* For floating point ops, the U, size[1] and opcode bits 11118 * together indicate the operation. size[0] indicates single 11119 * or double. 11120 */ 11121 int fpopcode = extract32(insn, 11, 5) 11122 | (extract32(insn, 23, 1) << 5) 11123 | (extract32(insn, 29, 1) << 6); 11124 int is_q = extract32(insn, 30, 1); 11125 int size = extract32(insn, 22, 1); 11126 int rm = extract32(insn, 16, 5); 11127 int rn = extract32(insn, 5, 5); 11128 int rd = extract32(insn, 0, 5); 11129 11130 int datasize = is_q ? 128 : 64; 11131 int esize = 32 << size; 11132 int elements = datasize / esize; 11133 11134 if (size == 1 && !is_q) { 11135 unallocated_encoding(s); 11136 return; 11137 } 11138 11139 switch (fpopcode) { 11140 case 0x58: /* FMAXNMP */ 11141 case 0x5a: /* FADDP */ 11142 case 0x5e: /* FMAXP */ 11143 case 0x78: /* FMINNMP */ 11144 case 0x7e: /* FMINP */ 11145 if (size && !is_q) { 11146 unallocated_encoding(s); 11147 return; 11148 } 11149 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11150 rn, rm, rd); 11151 return; 11152 case 0x1b: /* FMULX */ 11153 case 0x1f: /* FRECPS */ 11154 case 0x3f: /* FRSQRTS */ 11155 case 0x5d: /* FACGE */ 11156 case 0x7d: /* FACGT */ 11157 case 0x19: /* FMLA */ 11158 case 0x39: /* FMLS */ 11159 case 0x18: /* FMAXNM */ 11160 case 0x1a: /* FADD */ 11161 case 0x1c: /* FCMEQ */ 11162 case 0x1e: /* FMAX */ 11163 case 0x38: /* FMINNM */ 11164 case 0x3a: /* FSUB */ 11165 case 0x3e: /* FMIN */ 11166 case 0x5b: /* FMUL */ 11167 case 0x5c: /* FCMGE */ 11168 case 0x5f: /* FDIV */ 11169 case 0x7a: /* FABD */ 11170 case 0x7c: /* FCMGT */ 11171 if (!fp_access_check(s)) { 11172 return; 11173 } 11174 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11175 return; 11176 11177 case 0x1d: /* FMLAL */ 11178 case 0x3d: /* FMLSL */ 11179 case 0x59: /* FMLAL2 */ 11180 case 0x79: /* FMLSL2 */ 11181 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11182 unallocated_encoding(s); 11183 return; 11184 } 11185 if (fp_access_check(s)) { 11186 int is_s = extract32(insn, 23, 1); 11187 int is_2 = extract32(insn, 29, 1); 11188 int data = (is_2 << 1) | is_s; 11189 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11190 vec_full_reg_offset(s, rn), 11191 vec_full_reg_offset(s, rm), cpu_env, 11192 is_q ? 16 : 8, vec_full_reg_size(s), 11193 data, gen_helper_gvec_fmlal_a64); 11194 } 11195 return; 11196 11197 default: 11198 unallocated_encoding(s); 11199 return; 11200 } 11201 } 11202 11203 /* Integer op subgroup of C3.6.16. */ 11204 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11205 { 11206 int is_q = extract32(insn, 30, 1); 11207 int u = extract32(insn, 29, 1); 11208 int size = extract32(insn, 22, 2); 11209 int opcode = extract32(insn, 11, 5); 11210 int rm = extract32(insn, 16, 5); 11211 int rn = extract32(insn, 5, 5); 11212 int rd = extract32(insn, 0, 5); 11213 int pass; 11214 TCGCond cond; 11215 11216 switch (opcode) { 11217 case 0x13: /* MUL, PMUL */ 11218 if (u && size != 0) { 11219 unallocated_encoding(s); 11220 return; 11221 } 11222 /* fall through */ 11223 case 0x0: /* SHADD, UHADD */ 11224 case 0x2: /* SRHADD, URHADD */ 11225 case 0x4: /* SHSUB, UHSUB */ 11226 case 0xc: /* SMAX, UMAX */ 11227 case 0xd: /* SMIN, UMIN */ 11228 case 0xe: /* SABD, UABD */ 11229 case 0xf: /* SABA, UABA */ 11230 case 0x12: /* MLA, MLS */ 11231 if (size == 3) { 11232 unallocated_encoding(s); 11233 return; 11234 } 11235 break; 11236 case 0x16: /* SQDMULH, SQRDMULH */ 11237 if (size == 0 || size == 3) { 11238 unallocated_encoding(s); 11239 return; 11240 } 11241 break; 11242 default: 11243 if (size == 3 && !is_q) { 11244 unallocated_encoding(s); 11245 return; 11246 } 11247 break; 11248 } 11249 11250 if (!fp_access_check(s)) { 11251 return; 11252 } 11253 11254 switch (opcode) { 11255 case 0x01: /* SQADD, UQADD */ 11256 if (u) { 11257 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11258 } else { 11259 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11260 } 11261 return; 11262 case 0x05: /* SQSUB, UQSUB */ 11263 if (u) { 11264 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11265 } else { 11266 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11267 } 11268 return; 11269 case 0x08: /* SSHL, USHL */ 11270 if (u) { 11271 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11272 } else { 11273 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11274 } 11275 return; 11276 case 0x0c: /* SMAX, UMAX */ 11277 if (u) { 11278 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11279 } else { 11280 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11281 } 11282 return; 11283 case 0x0d: /* SMIN, UMIN */ 11284 if (u) { 11285 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11286 } else { 11287 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11288 } 11289 return; 11290 case 0xe: /* SABD, UABD */ 11291 if (u) { 11292 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11293 } else { 11294 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11295 } 11296 return; 11297 case 0xf: /* SABA, UABA */ 11298 if (u) { 11299 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11300 } else { 11301 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11302 } 11303 return; 11304 case 0x10: /* ADD, SUB */ 11305 if (u) { 11306 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11307 } else { 11308 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11309 } 11310 return; 11311 case 0x13: /* MUL, PMUL */ 11312 if (!u) { /* MUL */ 11313 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11314 } else { /* PMUL */ 11315 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11316 } 11317 return; 11318 case 0x12: /* MLA, MLS */ 11319 if (u) { 11320 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11321 } else { 11322 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11323 } 11324 return; 11325 case 0x16: /* SQDMULH, SQRDMULH */ 11326 { 11327 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11328 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11329 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11330 }; 11331 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11332 } 11333 return; 11334 case 0x11: 11335 if (!u) { /* CMTST */ 11336 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11337 return; 11338 } 11339 /* else CMEQ */ 11340 cond = TCG_COND_EQ; 11341 goto do_gvec_cmp; 11342 case 0x06: /* CMGT, CMHI */ 11343 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11344 goto do_gvec_cmp; 11345 case 0x07: /* CMGE, CMHS */ 11346 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11347 do_gvec_cmp: 11348 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11349 vec_full_reg_offset(s, rn), 11350 vec_full_reg_offset(s, rm), 11351 is_q ? 16 : 8, vec_full_reg_size(s)); 11352 return; 11353 } 11354 11355 if (size == 3) { 11356 assert(is_q); 11357 for (pass = 0; pass < 2; pass++) { 11358 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11359 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11360 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11361 11362 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11363 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11364 11365 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11366 11367 write_vec_element(s, tcg_res, rd, pass, MO_64); 11368 } 11369 } else { 11370 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11371 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11372 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11373 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11374 NeonGenTwoOpFn *genfn = NULL; 11375 NeonGenTwoOpEnvFn *genenvfn = NULL; 11376 11377 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11378 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11379 11380 switch (opcode) { 11381 case 0x0: /* SHADD, UHADD */ 11382 { 11383 static NeonGenTwoOpFn * const fns[3][2] = { 11384 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11385 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11386 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11387 }; 11388 genfn = fns[size][u]; 11389 break; 11390 } 11391 case 0x2: /* SRHADD, URHADD */ 11392 { 11393 static NeonGenTwoOpFn * const fns[3][2] = { 11394 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11395 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11396 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11397 }; 11398 genfn = fns[size][u]; 11399 break; 11400 } 11401 case 0x4: /* SHSUB, UHSUB */ 11402 { 11403 static NeonGenTwoOpFn * const fns[3][2] = { 11404 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11405 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11406 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11407 }; 11408 genfn = fns[size][u]; 11409 break; 11410 } 11411 case 0x9: /* SQSHL, UQSHL */ 11412 { 11413 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11414 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11415 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11416 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11417 }; 11418 genenvfn = fns[size][u]; 11419 break; 11420 } 11421 case 0xa: /* SRSHL, URSHL */ 11422 { 11423 static NeonGenTwoOpFn * const fns[3][2] = { 11424 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11425 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11426 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11427 }; 11428 genfn = fns[size][u]; 11429 break; 11430 } 11431 case 0xb: /* SQRSHL, UQRSHL */ 11432 { 11433 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11434 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11435 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11436 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11437 }; 11438 genenvfn = fns[size][u]; 11439 break; 11440 } 11441 default: 11442 g_assert_not_reached(); 11443 } 11444 11445 if (genenvfn) { 11446 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); 11447 } else { 11448 genfn(tcg_res, tcg_op1, tcg_op2); 11449 } 11450 11451 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11452 } 11453 } 11454 clear_vec_high(s, is_q, rd); 11455 } 11456 11457 /* AdvSIMD three same 11458 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11459 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11460 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11461 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11462 */ 11463 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11464 { 11465 int opcode = extract32(insn, 11, 5); 11466 11467 switch (opcode) { 11468 case 0x3: /* logic ops */ 11469 disas_simd_3same_logic(s, insn); 11470 break; 11471 case 0x17: /* ADDP */ 11472 case 0x14: /* SMAXP, UMAXP */ 11473 case 0x15: /* SMINP, UMINP */ 11474 { 11475 /* Pairwise operations */ 11476 int is_q = extract32(insn, 30, 1); 11477 int u = extract32(insn, 29, 1); 11478 int size = extract32(insn, 22, 2); 11479 int rm = extract32(insn, 16, 5); 11480 int rn = extract32(insn, 5, 5); 11481 int rd = extract32(insn, 0, 5); 11482 if (opcode == 0x17) { 11483 if (u || (size == 3 && !is_q)) { 11484 unallocated_encoding(s); 11485 return; 11486 } 11487 } else { 11488 if (size == 3) { 11489 unallocated_encoding(s); 11490 return; 11491 } 11492 } 11493 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11494 break; 11495 } 11496 case 0x18 ... 0x31: 11497 /* floating point ops, sz[1] and U are part of opcode */ 11498 disas_simd_3same_float(s, insn); 11499 break; 11500 default: 11501 disas_simd_3same_int(s, insn); 11502 break; 11503 } 11504 } 11505 11506 /* 11507 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11508 * 11509 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11510 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11511 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11512 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11513 * 11514 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11515 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11516 * 11517 */ 11518 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11519 { 11520 int opcode = extract32(insn, 11, 3); 11521 int u = extract32(insn, 29, 1); 11522 int a = extract32(insn, 23, 1); 11523 int is_q = extract32(insn, 30, 1); 11524 int rm = extract32(insn, 16, 5); 11525 int rn = extract32(insn, 5, 5); 11526 int rd = extract32(insn, 0, 5); 11527 /* 11528 * For these floating point ops, the U, a and opcode bits 11529 * together indicate the operation. 11530 */ 11531 int fpopcode = opcode | (a << 3) | (u << 4); 11532 int datasize = is_q ? 128 : 64; 11533 int elements = datasize / 16; 11534 bool pairwise; 11535 TCGv_ptr fpst; 11536 int pass; 11537 11538 switch (fpopcode) { 11539 case 0x0: /* FMAXNM */ 11540 case 0x1: /* FMLA */ 11541 case 0x2: /* FADD */ 11542 case 0x3: /* FMULX */ 11543 case 0x4: /* FCMEQ */ 11544 case 0x6: /* FMAX */ 11545 case 0x7: /* FRECPS */ 11546 case 0x8: /* FMINNM */ 11547 case 0x9: /* FMLS */ 11548 case 0xa: /* FSUB */ 11549 case 0xe: /* FMIN */ 11550 case 0xf: /* FRSQRTS */ 11551 case 0x13: /* FMUL */ 11552 case 0x14: /* FCMGE */ 11553 case 0x15: /* FACGE */ 11554 case 0x17: /* FDIV */ 11555 case 0x1a: /* FABD */ 11556 case 0x1c: /* FCMGT */ 11557 case 0x1d: /* FACGT */ 11558 pairwise = false; 11559 break; 11560 case 0x10: /* FMAXNMP */ 11561 case 0x12: /* FADDP */ 11562 case 0x16: /* FMAXP */ 11563 case 0x18: /* FMINNMP */ 11564 case 0x1e: /* FMINP */ 11565 pairwise = true; 11566 break; 11567 default: 11568 unallocated_encoding(s); 11569 return; 11570 } 11571 11572 if (!dc_isar_feature(aa64_fp16, s)) { 11573 unallocated_encoding(s); 11574 return; 11575 } 11576 11577 if (!fp_access_check(s)) { 11578 return; 11579 } 11580 11581 fpst = fpstatus_ptr(FPST_FPCR_F16); 11582 11583 if (pairwise) { 11584 int maxpass = is_q ? 8 : 4; 11585 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11586 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11587 TCGv_i32 tcg_res[8]; 11588 11589 for (pass = 0; pass < maxpass; pass++) { 11590 int passreg = pass < (maxpass / 2) ? rn : rm; 11591 int passelt = (pass << 1) & (maxpass - 1); 11592 11593 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11594 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11595 tcg_res[pass] = tcg_temp_new_i32(); 11596 11597 switch (fpopcode) { 11598 case 0x10: /* FMAXNMP */ 11599 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11600 fpst); 11601 break; 11602 case 0x12: /* FADDP */ 11603 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11604 break; 11605 case 0x16: /* FMAXP */ 11606 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11607 break; 11608 case 0x18: /* FMINNMP */ 11609 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11610 fpst); 11611 break; 11612 case 0x1e: /* FMINP */ 11613 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11614 break; 11615 default: 11616 g_assert_not_reached(); 11617 } 11618 } 11619 11620 for (pass = 0; pass < maxpass; pass++) { 11621 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11622 } 11623 } else { 11624 for (pass = 0; pass < elements; pass++) { 11625 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11626 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11627 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11628 11629 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11630 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11631 11632 switch (fpopcode) { 11633 case 0x0: /* FMAXNM */ 11634 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11635 break; 11636 case 0x1: /* FMLA */ 11637 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11638 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11639 fpst); 11640 break; 11641 case 0x2: /* FADD */ 11642 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 11643 break; 11644 case 0x3: /* FMULX */ 11645 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); 11646 break; 11647 case 0x4: /* FCMEQ */ 11648 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11649 break; 11650 case 0x6: /* FMAX */ 11651 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 11652 break; 11653 case 0x7: /* FRECPS */ 11654 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11655 break; 11656 case 0x8: /* FMINNM */ 11657 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 11658 break; 11659 case 0x9: /* FMLS */ 11660 /* As usual for ARM, separate negation for fused multiply-add */ 11661 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 11662 read_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11663 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, 11664 fpst); 11665 break; 11666 case 0xa: /* FSUB */ 11667 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11668 break; 11669 case 0xe: /* FMIN */ 11670 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 11671 break; 11672 case 0xf: /* FRSQRTS */ 11673 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11674 break; 11675 case 0x13: /* FMUL */ 11676 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); 11677 break; 11678 case 0x14: /* FCMGE */ 11679 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11680 break; 11681 case 0x15: /* FACGE */ 11682 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11683 break; 11684 case 0x17: /* FDIV */ 11685 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); 11686 break; 11687 case 0x1a: /* FABD */ 11688 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11689 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11690 break; 11691 case 0x1c: /* FCMGT */ 11692 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11693 break; 11694 case 0x1d: /* FACGT */ 11695 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11696 break; 11697 default: 11698 g_assert_not_reached(); 11699 } 11700 11701 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11702 } 11703 } 11704 11705 clear_vec_high(s, is_q, rd); 11706 } 11707 11708 /* AdvSIMD three same extra 11709 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11710 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11711 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11712 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11713 */ 11714 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11715 { 11716 int rd = extract32(insn, 0, 5); 11717 int rn = extract32(insn, 5, 5); 11718 int opcode = extract32(insn, 11, 4); 11719 int rm = extract32(insn, 16, 5); 11720 int size = extract32(insn, 22, 2); 11721 bool u = extract32(insn, 29, 1); 11722 bool is_q = extract32(insn, 30, 1); 11723 bool feature; 11724 int rot; 11725 11726 switch (u * 16 + opcode) { 11727 case 0x10: /* SQRDMLAH (vector) */ 11728 case 0x11: /* SQRDMLSH (vector) */ 11729 if (size != 1 && size != 2) { 11730 unallocated_encoding(s); 11731 return; 11732 } 11733 feature = dc_isar_feature(aa64_rdm, s); 11734 break; 11735 case 0x02: /* SDOT (vector) */ 11736 case 0x12: /* UDOT (vector) */ 11737 if (size != MO_32) { 11738 unallocated_encoding(s); 11739 return; 11740 } 11741 feature = dc_isar_feature(aa64_dp, s); 11742 break; 11743 case 0x03: /* USDOT */ 11744 if (size != MO_32) { 11745 unallocated_encoding(s); 11746 return; 11747 } 11748 feature = dc_isar_feature(aa64_i8mm, s); 11749 break; 11750 case 0x04: /* SMMLA */ 11751 case 0x14: /* UMMLA */ 11752 case 0x05: /* USMMLA */ 11753 if (!is_q || size != MO_32) { 11754 unallocated_encoding(s); 11755 return; 11756 } 11757 feature = dc_isar_feature(aa64_i8mm, s); 11758 break; 11759 case 0x18: /* FCMLA, #0 */ 11760 case 0x19: /* FCMLA, #90 */ 11761 case 0x1a: /* FCMLA, #180 */ 11762 case 0x1b: /* FCMLA, #270 */ 11763 case 0x1c: /* FCADD, #90 */ 11764 case 0x1e: /* FCADD, #270 */ 11765 if (size == 0 11766 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11767 || (size == 3 && !is_q)) { 11768 unallocated_encoding(s); 11769 return; 11770 } 11771 feature = dc_isar_feature(aa64_fcma, s); 11772 break; 11773 case 0x1d: /* BFMMLA */ 11774 if (size != MO_16 || !is_q) { 11775 unallocated_encoding(s); 11776 return; 11777 } 11778 feature = dc_isar_feature(aa64_bf16, s); 11779 break; 11780 case 0x1f: 11781 switch (size) { 11782 case 1: /* BFDOT */ 11783 case 3: /* BFMLAL{B,T} */ 11784 feature = dc_isar_feature(aa64_bf16, s); 11785 break; 11786 default: 11787 unallocated_encoding(s); 11788 return; 11789 } 11790 break; 11791 default: 11792 unallocated_encoding(s); 11793 return; 11794 } 11795 if (!feature) { 11796 unallocated_encoding(s); 11797 return; 11798 } 11799 if (!fp_access_check(s)) { 11800 return; 11801 } 11802 11803 switch (opcode) { 11804 case 0x0: /* SQRDMLAH (vector) */ 11805 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11806 return; 11807 11808 case 0x1: /* SQRDMLSH (vector) */ 11809 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11810 return; 11811 11812 case 0x2: /* SDOT / UDOT */ 11813 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11814 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11815 return; 11816 11817 case 0x3: /* USDOT */ 11818 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11819 return; 11820 11821 case 0x04: /* SMMLA, UMMLA */ 11822 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11823 u ? gen_helper_gvec_ummla_b 11824 : gen_helper_gvec_smmla_b); 11825 return; 11826 case 0x05: /* USMMLA */ 11827 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11828 return; 11829 11830 case 0x8: /* FCMLA, #0 */ 11831 case 0x9: /* FCMLA, #90 */ 11832 case 0xa: /* FCMLA, #180 */ 11833 case 0xb: /* FCMLA, #270 */ 11834 rot = extract32(opcode, 0, 2); 11835 switch (size) { 11836 case 1: 11837 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11838 gen_helper_gvec_fcmlah); 11839 break; 11840 case 2: 11841 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11842 gen_helper_gvec_fcmlas); 11843 break; 11844 case 3: 11845 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11846 gen_helper_gvec_fcmlad); 11847 break; 11848 default: 11849 g_assert_not_reached(); 11850 } 11851 return; 11852 11853 case 0xc: /* FCADD, #90 */ 11854 case 0xe: /* FCADD, #270 */ 11855 rot = extract32(opcode, 1, 1); 11856 switch (size) { 11857 case 1: 11858 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11859 gen_helper_gvec_fcaddh); 11860 break; 11861 case 2: 11862 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11863 gen_helper_gvec_fcadds); 11864 break; 11865 case 3: 11866 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11867 gen_helper_gvec_fcaddd); 11868 break; 11869 default: 11870 g_assert_not_reached(); 11871 } 11872 return; 11873 11874 case 0xd: /* BFMMLA */ 11875 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11876 return; 11877 case 0xf: 11878 switch (size) { 11879 case 1: /* BFDOT */ 11880 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11881 break; 11882 case 3: /* BFMLAL{B,T} */ 11883 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11884 gen_helper_gvec_bfmlal); 11885 break; 11886 default: 11887 g_assert_not_reached(); 11888 } 11889 return; 11890 11891 default: 11892 g_assert_not_reached(); 11893 } 11894 } 11895 11896 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11897 int size, int rn, int rd) 11898 { 11899 /* Handle 2-reg-misc ops which are widening (so each size element 11900 * in the source becomes a 2*size element in the destination. 11901 * The only instruction like this is FCVTL. 11902 */ 11903 int pass; 11904 11905 if (size == 3) { 11906 /* 32 -> 64 bit fp conversion */ 11907 TCGv_i64 tcg_res[2]; 11908 int srcelt = is_q ? 2 : 0; 11909 11910 for (pass = 0; pass < 2; pass++) { 11911 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11912 tcg_res[pass] = tcg_temp_new_i64(); 11913 11914 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11915 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); 11916 } 11917 for (pass = 0; pass < 2; pass++) { 11918 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11919 } 11920 } else { 11921 /* 16 -> 32 bit fp conversion */ 11922 int srcelt = is_q ? 4 : 0; 11923 TCGv_i32 tcg_res[4]; 11924 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 11925 TCGv_i32 ahp = get_ahp_flag(); 11926 11927 for (pass = 0; pass < 4; pass++) { 11928 tcg_res[pass] = tcg_temp_new_i32(); 11929 11930 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 11931 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 11932 fpst, ahp); 11933 } 11934 for (pass = 0; pass < 4; pass++) { 11935 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11936 } 11937 } 11938 } 11939 11940 static void handle_rev(DisasContext *s, int opcode, bool u, 11941 bool is_q, int size, int rn, int rd) 11942 { 11943 int op = (opcode << 1) | u; 11944 int opsz = op + size; 11945 int grp_size = 3 - opsz; 11946 int dsize = is_q ? 128 : 64; 11947 int i; 11948 11949 if (opsz >= 3) { 11950 unallocated_encoding(s); 11951 return; 11952 } 11953 11954 if (!fp_access_check(s)) { 11955 return; 11956 } 11957 11958 if (size == 0) { 11959 /* Special case bytes, use bswap op on each group of elements */ 11960 int groups = dsize / (8 << grp_size); 11961 11962 for (i = 0; i < groups; i++) { 11963 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 11964 11965 read_vec_element(s, tcg_tmp, rn, i, grp_size); 11966 switch (grp_size) { 11967 case MO_16: 11968 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11969 break; 11970 case MO_32: 11971 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 11972 break; 11973 case MO_64: 11974 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 11975 break; 11976 default: 11977 g_assert_not_reached(); 11978 } 11979 write_vec_element(s, tcg_tmp, rd, i, grp_size); 11980 } 11981 clear_vec_high(s, is_q, rd); 11982 } else { 11983 int revmask = (1 << grp_size) - 1; 11984 int esize = 8 << size; 11985 int elements = dsize / esize; 11986 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 11987 TCGv_i64 tcg_rd[2]; 11988 11989 for (i = 0; i < 2; i++) { 11990 tcg_rd[i] = tcg_temp_new_i64(); 11991 tcg_gen_movi_i64(tcg_rd[i], 0); 11992 } 11993 11994 for (i = 0; i < elements; i++) { 11995 int e_rev = (i & 0xf) ^ revmask; 11996 int w = (e_rev * esize) / 64; 11997 int o = (e_rev * esize) % 64; 11998 11999 read_vec_element(s, tcg_rn, rn, i, size); 12000 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12001 } 12002 12003 for (i = 0; i < 2; i++) { 12004 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12005 } 12006 clear_vec_high(s, true, rd); 12007 } 12008 } 12009 12010 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12011 bool is_q, int size, int rn, int rd) 12012 { 12013 /* Implement the pairwise operations from 2-misc: 12014 * SADDLP, UADDLP, SADALP, UADALP. 12015 * These all add pairs of elements in the input to produce a 12016 * double-width result element in the output (possibly accumulating). 12017 */ 12018 bool accum = (opcode == 0x6); 12019 int maxpass = is_q ? 2 : 1; 12020 int pass; 12021 TCGv_i64 tcg_res[2]; 12022 12023 if (size == 2) { 12024 /* 32 + 32 -> 64 op */ 12025 MemOp memop = size + (u ? 0 : MO_SIGN); 12026 12027 for (pass = 0; pass < maxpass; pass++) { 12028 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12029 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12030 12031 tcg_res[pass] = tcg_temp_new_i64(); 12032 12033 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12034 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12035 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12036 if (accum) { 12037 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12038 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12039 } 12040 } 12041 } else { 12042 for (pass = 0; pass < maxpass; pass++) { 12043 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12044 NeonGenOne64OpFn *genfn; 12045 static NeonGenOne64OpFn * const fns[2][2] = { 12046 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12047 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12048 }; 12049 12050 genfn = fns[size][u]; 12051 12052 tcg_res[pass] = tcg_temp_new_i64(); 12053 12054 read_vec_element(s, tcg_op, rn, pass, MO_64); 12055 genfn(tcg_res[pass], tcg_op); 12056 12057 if (accum) { 12058 read_vec_element(s, tcg_op, rd, pass, MO_64); 12059 if (size == 0) { 12060 gen_helper_neon_addl_u16(tcg_res[pass], 12061 tcg_res[pass], tcg_op); 12062 } else { 12063 gen_helper_neon_addl_u32(tcg_res[pass], 12064 tcg_res[pass], tcg_op); 12065 } 12066 } 12067 } 12068 } 12069 if (!is_q) { 12070 tcg_res[1] = tcg_constant_i64(0); 12071 } 12072 for (pass = 0; pass < 2; pass++) { 12073 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12074 } 12075 } 12076 12077 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12078 { 12079 /* Implement SHLL and SHLL2 */ 12080 int pass; 12081 int part = is_q ? 2 : 0; 12082 TCGv_i64 tcg_res[2]; 12083 12084 for (pass = 0; pass < 2; pass++) { 12085 static NeonGenWidenFn * const widenfns[3] = { 12086 gen_helper_neon_widen_u8, 12087 gen_helper_neon_widen_u16, 12088 tcg_gen_extu_i32_i64, 12089 }; 12090 NeonGenWidenFn *widenfn = widenfns[size]; 12091 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12092 12093 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12094 tcg_res[pass] = tcg_temp_new_i64(); 12095 widenfn(tcg_res[pass], tcg_op); 12096 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12097 } 12098 12099 for (pass = 0; pass < 2; pass++) { 12100 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12101 } 12102 } 12103 12104 /* AdvSIMD two reg misc 12105 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12106 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12107 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12108 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12109 */ 12110 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12111 { 12112 int size = extract32(insn, 22, 2); 12113 int opcode = extract32(insn, 12, 5); 12114 bool u = extract32(insn, 29, 1); 12115 bool is_q = extract32(insn, 30, 1); 12116 int rn = extract32(insn, 5, 5); 12117 int rd = extract32(insn, 0, 5); 12118 bool need_fpstatus = false; 12119 int rmode = -1; 12120 TCGv_i32 tcg_rmode; 12121 TCGv_ptr tcg_fpstatus; 12122 12123 switch (opcode) { 12124 case 0x0: /* REV64, REV32 */ 12125 case 0x1: /* REV16 */ 12126 handle_rev(s, opcode, u, is_q, size, rn, rd); 12127 return; 12128 case 0x5: /* CNT, NOT, RBIT */ 12129 if (u && size == 0) { 12130 /* NOT */ 12131 break; 12132 } else if (u && size == 1) { 12133 /* RBIT */ 12134 break; 12135 } else if (!u && size == 0) { 12136 /* CNT */ 12137 break; 12138 } 12139 unallocated_encoding(s); 12140 return; 12141 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12142 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12143 if (size == 3) { 12144 unallocated_encoding(s); 12145 return; 12146 } 12147 if (!fp_access_check(s)) { 12148 return; 12149 } 12150 12151 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12152 return; 12153 case 0x4: /* CLS, CLZ */ 12154 if (size == 3) { 12155 unallocated_encoding(s); 12156 return; 12157 } 12158 break; 12159 case 0x2: /* SADDLP, UADDLP */ 12160 case 0x6: /* SADALP, UADALP */ 12161 if (size == 3) { 12162 unallocated_encoding(s); 12163 return; 12164 } 12165 if (!fp_access_check(s)) { 12166 return; 12167 } 12168 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12169 return; 12170 case 0x13: /* SHLL, SHLL2 */ 12171 if (u == 0 || size == 3) { 12172 unallocated_encoding(s); 12173 return; 12174 } 12175 if (!fp_access_check(s)) { 12176 return; 12177 } 12178 handle_shll(s, is_q, size, rn, rd); 12179 return; 12180 case 0xa: /* CMLT */ 12181 if (u == 1) { 12182 unallocated_encoding(s); 12183 return; 12184 } 12185 /* fall through */ 12186 case 0x8: /* CMGT, CMGE */ 12187 case 0x9: /* CMEQ, CMLE */ 12188 case 0xb: /* ABS, NEG */ 12189 if (size == 3 && !is_q) { 12190 unallocated_encoding(s); 12191 return; 12192 } 12193 break; 12194 case 0x3: /* SUQADD, USQADD */ 12195 if (size == 3 && !is_q) { 12196 unallocated_encoding(s); 12197 return; 12198 } 12199 if (!fp_access_check(s)) { 12200 return; 12201 } 12202 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12203 return; 12204 case 0x7: /* SQABS, SQNEG */ 12205 if (size == 3 && !is_q) { 12206 unallocated_encoding(s); 12207 return; 12208 } 12209 break; 12210 case 0xc ... 0xf: 12211 case 0x16 ... 0x1f: 12212 { 12213 /* Floating point: U, size[1] and opcode indicate operation; 12214 * size[0] indicates single or double precision. 12215 */ 12216 int is_double = extract32(size, 0, 1); 12217 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12218 size = is_double ? 3 : 2; 12219 switch (opcode) { 12220 case 0x2f: /* FABS */ 12221 case 0x6f: /* FNEG */ 12222 if (size == 3 && !is_q) { 12223 unallocated_encoding(s); 12224 return; 12225 } 12226 break; 12227 case 0x1d: /* SCVTF */ 12228 case 0x5d: /* UCVTF */ 12229 { 12230 bool is_signed = (opcode == 0x1d) ? true : false; 12231 int elements = is_double ? 2 : is_q ? 4 : 2; 12232 if (is_double && !is_q) { 12233 unallocated_encoding(s); 12234 return; 12235 } 12236 if (!fp_access_check(s)) { 12237 return; 12238 } 12239 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12240 return; 12241 } 12242 case 0x2c: /* FCMGT (zero) */ 12243 case 0x2d: /* FCMEQ (zero) */ 12244 case 0x2e: /* FCMLT (zero) */ 12245 case 0x6c: /* FCMGE (zero) */ 12246 case 0x6d: /* FCMLE (zero) */ 12247 if (size == 3 && !is_q) { 12248 unallocated_encoding(s); 12249 return; 12250 } 12251 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12252 return; 12253 case 0x7f: /* FSQRT */ 12254 if (size == 3 && !is_q) { 12255 unallocated_encoding(s); 12256 return; 12257 } 12258 break; 12259 case 0x1a: /* FCVTNS */ 12260 case 0x1b: /* FCVTMS */ 12261 case 0x3a: /* FCVTPS */ 12262 case 0x3b: /* FCVTZS */ 12263 case 0x5a: /* FCVTNU */ 12264 case 0x5b: /* FCVTMU */ 12265 case 0x7a: /* FCVTPU */ 12266 case 0x7b: /* FCVTZU */ 12267 need_fpstatus = true; 12268 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12269 if (size == 3 && !is_q) { 12270 unallocated_encoding(s); 12271 return; 12272 } 12273 break; 12274 case 0x5c: /* FCVTAU */ 12275 case 0x1c: /* FCVTAS */ 12276 need_fpstatus = true; 12277 rmode = FPROUNDING_TIEAWAY; 12278 if (size == 3 && !is_q) { 12279 unallocated_encoding(s); 12280 return; 12281 } 12282 break; 12283 case 0x3c: /* URECPE */ 12284 if (size == 3) { 12285 unallocated_encoding(s); 12286 return; 12287 } 12288 /* fall through */ 12289 case 0x3d: /* FRECPE */ 12290 case 0x7d: /* FRSQRTE */ 12291 if (size == 3 && !is_q) { 12292 unallocated_encoding(s); 12293 return; 12294 } 12295 if (!fp_access_check(s)) { 12296 return; 12297 } 12298 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12299 return; 12300 case 0x56: /* FCVTXN, FCVTXN2 */ 12301 if (size == 2) { 12302 unallocated_encoding(s); 12303 return; 12304 } 12305 /* fall through */ 12306 case 0x16: /* FCVTN, FCVTN2 */ 12307 /* handle_2misc_narrow does a 2*size -> size operation, but these 12308 * instructions encode the source size rather than dest size. 12309 */ 12310 if (!fp_access_check(s)) { 12311 return; 12312 } 12313 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12314 return; 12315 case 0x36: /* BFCVTN, BFCVTN2 */ 12316 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12317 unallocated_encoding(s); 12318 return; 12319 } 12320 if (!fp_access_check(s)) { 12321 return; 12322 } 12323 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12324 return; 12325 case 0x17: /* FCVTL, FCVTL2 */ 12326 if (!fp_access_check(s)) { 12327 return; 12328 } 12329 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12330 return; 12331 case 0x18: /* FRINTN */ 12332 case 0x19: /* FRINTM */ 12333 case 0x38: /* FRINTP */ 12334 case 0x39: /* FRINTZ */ 12335 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12336 /* fall through */ 12337 case 0x59: /* FRINTX */ 12338 case 0x79: /* FRINTI */ 12339 need_fpstatus = true; 12340 if (size == 3 && !is_q) { 12341 unallocated_encoding(s); 12342 return; 12343 } 12344 break; 12345 case 0x58: /* FRINTA */ 12346 rmode = FPROUNDING_TIEAWAY; 12347 need_fpstatus = true; 12348 if (size == 3 && !is_q) { 12349 unallocated_encoding(s); 12350 return; 12351 } 12352 break; 12353 case 0x7c: /* URSQRTE */ 12354 if (size == 3) { 12355 unallocated_encoding(s); 12356 return; 12357 } 12358 break; 12359 case 0x1e: /* FRINT32Z */ 12360 case 0x1f: /* FRINT64Z */ 12361 rmode = FPROUNDING_ZERO; 12362 /* fall through */ 12363 case 0x5e: /* FRINT32X */ 12364 case 0x5f: /* FRINT64X */ 12365 need_fpstatus = true; 12366 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12367 unallocated_encoding(s); 12368 return; 12369 } 12370 break; 12371 default: 12372 unallocated_encoding(s); 12373 return; 12374 } 12375 break; 12376 } 12377 default: 12378 unallocated_encoding(s); 12379 return; 12380 } 12381 12382 if (!fp_access_check(s)) { 12383 return; 12384 } 12385 12386 if (need_fpstatus || rmode >= 0) { 12387 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12388 } else { 12389 tcg_fpstatus = NULL; 12390 } 12391 if (rmode >= 0) { 12392 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12393 } else { 12394 tcg_rmode = NULL; 12395 } 12396 12397 switch (opcode) { 12398 case 0x5: 12399 if (u && size == 0) { /* NOT */ 12400 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12401 return; 12402 } 12403 break; 12404 case 0x8: /* CMGT, CMGE */ 12405 if (u) { 12406 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12407 } else { 12408 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12409 } 12410 return; 12411 case 0x9: /* CMEQ, CMLE */ 12412 if (u) { 12413 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12414 } else { 12415 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12416 } 12417 return; 12418 case 0xa: /* CMLT */ 12419 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12420 return; 12421 case 0xb: 12422 if (u) { /* ABS, NEG */ 12423 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12424 } else { 12425 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12426 } 12427 return; 12428 } 12429 12430 if (size == 3) { 12431 /* All 64-bit element operations can be shared with scalar 2misc */ 12432 int pass; 12433 12434 /* Coverity claims (size == 3 && !is_q) has been eliminated 12435 * from all paths leading to here. 12436 */ 12437 tcg_debug_assert(is_q); 12438 for (pass = 0; pass < 2; pass++) { 12439 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12440 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12441 12442 read_vec_element(s, tcg_op, rn, pass, MO_64); 12443 12444 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12445 tcg_rmode, tcg_fpstatus); 12446 12447 write_vec_element(s, tcg_res, rd, pass, MO_64); 12448 } 12449 } else { 12450 int pass; 12451 12452 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12453 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12454 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12455 12456 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12457 12458 if (size == 2) { 12459 /* Special cases for 32 bit elements */ 12460 switch (opcode) { 12461 case 0x4: /* CLS */ 12462 if (u) { 12463 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12464 } else { 12465 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12466 } 12467 break; 12468 case 0x7: /* SQABS, SQNEG */ 12469 if (u) { 12470 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); 12471 } else { 12472 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); 12473 } 12474 break; 12475 case 0x2f: /* FABS */ 12476 gen_helper_vfp_abss(tcg_res, tcg_op); 12477 break; 12478 case 0x6f: /* FNEG */ 12479 gen_helper_vfp_negs(tcg_res, tcg_op); 12480 break; 12481 case 0x7f: /* FSQRT */ 12482 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); 12483 break; 12484 case 0x1a: /* FCVTNS */ 12485 case 0x1b: /* FCVTMS */ 12486 case 0x1c: /* FCVTAS */ 12487 case 0x3a: /* FCVTPS */ 12488 case 0x3b: /* FCVTZS */ 12489 gen_helper_vfp_tosls(tcg_res, tcg_op, 12490 tcg_constant_i32(0), tcg_fpstatus); 12491 break; 12492 case 0x5a: /* FCVTNU */ 12493 case 0x5b: /* FCVTMU */ 12494 case 0x5c: /* FCVTAU */ 12495 case 0x7a: /* FCVTPU */ 12496 case 0x7b: /* FCVTZU */ 12497 gen_helper_vfp_touls(tcg_res, tcg_op, 12498 tcg_constant_i32(0), tcg_fpstatus); 12499 break; 12500 case 0x18: /* FRINTN */ 12501 case 0x19: /* FRINTM */ 12502 case 0x38: /* FRINTP */ 12503 case 0x39: /* FRINTZ */ 12504 case 0x58: /* FRINTA */ 12505 case 0x79: /* FRINTI */ 12506 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12507 break; 12508 case 0x59: /* FRINTX */ 12509 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12510 break; 12511 case 0x7c: /* URSQRTE */ 12512 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12513 break; 12514 case 0x1e: /* FRINT32Z */ 12515 case 0x5e: /* FRINT32X */ 12516 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12517 break; 12518 case 0x1f: /* FRINT64Z */ 12519 case 0x5f: /* FRINT64X */ 12520 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12521 break; 12522 default: 12523 g_assert_not_reached(); 12524 } 12525 } else { 12526 /* Use helpers for 8 and 16 bit elements */ 12527 switch (opcode) { 12528 case 0x5: /* CNT, RBIT */ 12529 /* For these two insns size is part of the opcode specifier 12530 * (handled earlier); they always operate on byte elements. 12531 */ 12532 if (u) { 12533 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12534 } else { 12535 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12536 } 12537 break; 12538 case 0x7: /* SQABS, SQNEG */ 12539 { 12540 NeonGenOneOpEnvFn *genfn; 12541 static NeonGenOneOpEnvFn * const fns[2][2] = { 12542 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12543 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12544 }; 12545 genfn = fns[size][u]; 12546 genfn(tcg_res, cpu_env, tcg_op); 12547 break; 12548 } 12549 case 0x4: /* CLS, CLZ */ 12550 if (u) { 12551 if (size == 0) { 12552 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12553 } else { 12554 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12555 } 12556 } else { 12557 if (size == 0) { 12558 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12559 } else { 12560 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12561 } 12562 } 12563 break; 12564 default: 12565 g_assert_not_reached(); 12566 } 12567 } 12568 12569 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12570 } 12571 } 12572 clear_vec_high(s, is_q, rd); 12573 12574 if (tcg_rmode) { 12575 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12576 } 12577 } 12578 12579 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12580 * 12581 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12582 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12583 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12584 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12585 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12586 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12587 * 12588 * This actually covers two groups where scalar access is governed by 12589 * bit 28. A bunch of the instructions (float to integral) only exist 12590 * in the vector form and are un-allocated for the scalar decode. Also 12591 * in the scalar decode Q is always 1. 12592 */ 12593 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12594 { 12595 int fpop, opcode, a, u; 12596 int rn, rd; 12597 bool is_q; 12598 bool is_scalar; 12599 bool only_in_vector = false; 12600 12601 int pass; 12602 TCGv_i32 tcg_rmode = NULL; 12603 TCGv_ptr tcg_fpstatus = NULL; 12604 bool need_fpst = true; 12605 int rmode = -1; 12606 12607 if (!dc_isar_feature(aa64_fp16, s)) { 12608 unallocated_encoding(s); 12609 return; 12610 } 12611 12612 rd = extract32(insn, 0, 5); 12613 rn = extract32(insn, 5, 5); 12614 12615 a = extract32(insn, 23, 1); 12616 u = extract32(insn, 29, 1); 12617 is_scalar = extract32(insn, 28, 1); 12618 is_q = extract32(insn, 30, 1); 12619 12620 opcode = extract32(insn, 12, 5); 12621 fpop = deposit32(opcode, 5, 1, a); 12622 fpop = deposit32(fpop, 6, 1, u); 12623 12624 switch (fpop) { 12625 case 0x1d: /* SCVTF */ 12626 case 0x5d: /* UCVTF */ 12627 { 12628 int elements; 12629 12630 if (is_scalar) { 12631 elements = 1; 12632 } else { 12633 elements = (is_q ? 8 : 4); 12634 } 12635 12636 if (!fp_access_check(s)) { 12637 return; 12638 } 12639 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12640 return; 12641 } 12642 break; 12643 case 0x2c: /* FCMGT (zero) */ 12644 case 0x2d: /* FCMEQ (zero) */ 12645 case 0x2e: /* FCMLT (zero) */ 12646 case 0x6c: /* FCMGE (zero) */ 12647 case 0x6d: /* FCMLE (zero) */ 12648 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12649 return; 12650 case 0x3d: /* FRECPE */ 12651 case 0x3f: /* FRECPX */ 12652 break; 12653 case 0x18: /* FRINTN */ 12654 only_in_vector = true; 12655 rmode = FPROUNDING_TIEEVEN; 12656 break; 12657 case 0x19: /* FRINTM */ 12658 only_in_vector = true; 12659 rmode = FPROUNDING_NEGINF; 12660 break; 12661 case 0x38: /* FRINTP */ 12662 only_in_vector = true; 12663 rmode = FPROUNDING_POSINF; 12664 break; 12665 case 0x39: /* FRINTZ */ 12666 only_in_vector = true; 12667 rmode = FPROUNDING_ZERO; 12668 break; 12669 case 0x58: /* FRINTA */ 12670 only_in_vector = true; 12671 rmode = FPROUNDING_TIEAWAY; 12672 break; 12673 case 0x59: /* FRINTX */ 12674 case 0x79: /* FRINTI */ 12675 only_in_vector = true; 12676 /* current rounding mode */ 12677 break; 12678 case 0x1a: /* FCVTNS */ 12679 rmode = FPROUNDING_TIEEVEN; 12680 break; 12681 case 0x1b: /* FCVTMS */ 12682 rmode = FPROUNDING_NEGINF; 12683 break; 12684 case 0x1c: /* FCVTAS */ 12685 rmode = FPROUNDING_TIEAWAY; 12686 break; 12687 case 0x3a: /* FCVTPS */ 12688 rmode = FPROUNDING_POSINF; 12689 break; 12690 case 0x3b: /* FCVTZS */ 12691 rmode = FPROUNDING_ZERO; 12692 break; 12693 case 0x5a: /* FCVTNU */ 12694 rmode = FPROUNDING_TIEEVEN; 12695 break; 12696 case 0x5b: /* FCVTMU */ 12697 rmode = FPROUNDING_NEGINF; 12698 break; 12699 case 0x5c: /* FCVTAU */ 12700 rmode = FPROUNDING_TIEAWAY; 12701 break; 12702 case 0x7a: /* FCVTPU */ 12703 rmode = FPROUNDING_POSINF; 12704 break; 12705 case 0x7b: /* FCVTZU */ 12706 rmode = FPROUNDING_ZERO; 12707 break; 12708 case 0x2f: /* FABS */ 12709 case 0x6f: /* FNEG */ 12710 need_fpst = false; 12711 break; 12712 case 0x7d: /* FRSQRTE */ 12713 case 0x7f: /* FSQRT (vector) */ 12714 break; 12715 default: 12716 unallocated_encoding(s); 12717 return; 12718 } 12719 12720 12721 /* Check additional constraints for the scalar encoding */ 12722 if (is_scalar) { 12723 if (!is_q) { 12724 unallocated_encoding(s); 12725 return; 12726 } 12727 /* FRINTxx is only in the vector form */ 12728 if (only_in_vector) { 12729 unallocated_encoding(s); 12730 return; 12731 } 12732 } 12733 12734 if (!fp_access_check(s)) { 12735 return; 12736 } 12737 12738 if (rmode >= 0 || need_fpst) { 12739 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12740 } 12741 12742 if (rmode >= 0) { 12743 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12744 } 12745 12746 if (is_scalar) { 12747 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12748 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12749 12750 switch (fpop) { 12751 case 0x1a: /* FCVTNS */ 12752 case 0x1b: /* FCVTMS */ 12753 case 0x1c: /* FCVTAS */ 12754 case 0x3a: /* FCVTPS */ 12755 case 0x3b: /* FCVTZS */ 12756 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12757 break; 12758 case 0x3d: /* FRECPE */ 12759 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12760 break; 12761 case 0x3f: /* FRECPX */ 12762 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12763 break; 12764 case 0x5a: /* FCVTNU */ 12765 case 0x5b: /* FCVTMU */ 12766 case 0x5c: /* FCVTAU */ 12767 case 0x7a: /* FCVTPU */ 12768 case 0x7b: /* FCVTZU */ 12769 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12770 break; 12771 case 0x6f: /* FNEG */ 12772 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12773 break; 12774 case 0x7d: /* FRSQRTE */ 12775 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12776 break; 12777 default: 12778 g_assert_not_reached(); 12779 } 12780 12781 /* limit any sign extension going on */ 12782 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12783 write_fp_sreg(s, rd, tcg_res); 12784 } else { 12785 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12786 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12787 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12788 12789 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12790 12791 switch (fpop) { 12792 case 0x1a: /* FCVTNS */ 12793 case 0x1b: /* FCVTMS */ 12794 case 0x1c: /* FCVTAS */ 12795 case 0x3a: /* FCVTPS */ 12796 case 0x3b: /* FCVTZS */ 12797 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12798 break; 12799 case 0x3d: /* FRECPE */ 12800 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12801 break; 12802 case 0x5a: /* FCVTNU */ 12803 case 0x5b: /* FCVTMU */ 12804 case 0x5c: /* FCVTAU */ 12805 case 0x7a: /* FCVTPU */ 12806 case 0x7b: /* FCVTZU */ 12807 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12808 break; 12809 case 0x18: /* FRINTN */ 12810 case 0x19: /* FRINTM */ 12811 case 0x38: /* FRINTP */ 12812 case 0x39: /* FRINTZ */ 12813 case 0x58: /* FRINTA */ 12814 case 0x79: /* FRINTI */ 12815 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12816 break; 12817 case 0x59: /* FRINTX */ 12818 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12819 break; 12820 case 0x2f: /* FABS */ 12821 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12822 break; 12823 case 0x6f: /* FNEG */ 12824 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12825 break; 12826 case 0x7d: /* FRSQRTE */ 12827 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12828 break; 12829 case 0x7f: /* FSQRT */ 12830 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12831 break; 12832 default: 12833 g_assert_not_reached(); 12834 } 12835 12836 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12837 } 12838 12839 clear_vec_high(s, is_q, rd); 12840 } 12841 12842 if (tcg_rmode) { 12843 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12844 } 12845 } 12846 12847 /* AdvSIMD scalar x indexed element 12848 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12849 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12850 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12851 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12852 * AdvSIMD vector x indexed element 12853 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12854 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12855 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12856 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12857 */ 12858 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12859 { 12860 /* This encoding has two kinds of instruction: 12861 * normal, where we perform elt x idxelt => elt for each 12862 * element in the vector 12863 * long, where we perform elt x idxelt and generate a result of 12864 * double the width of the input element 12865 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12866 */ 12867 bool is_scalar = extract32(insn, 28, 1); 12868 bool is_q = extract32(insn, 30, 1); 12869 bool u = extract32(insn, 29, 1); 12870 int size = extract32(insn, 22, 2); 12871 int l = extract32(insn, 21, 1); 12872 int m = extract32(insn, 20, 1); 12873 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12874 int rm = extract32(insn, 16, 4); 12875 int opcode = extract32(insn, 12, 4); 12876 int h = extract32(insn, 11, 1); 12877 int rn = extract32(insn, 5, 5); 12878 int rd = extract32(insn, 0, 5); 12879 bool is_long = false; 12880 int is_fp = 0; 12881 bool is_fp16 = false; 12882 int index; 12883 TCGv_ptr fpst; 12884 12885 switch (16 * u + opcode) { 12886 case 0x08: /* MUL */ 12887 case 0x10: /* MLA */ 12888 case 0x14: /* MLS */ 12889 if (is_scalar) { 12890 unallocated_encoding(s); 12891 return; 12892 } 12893 break; 12894 case 0x02: /* SMLAL, SMLAL2 */ 12895 case 0x12: /* UMLAL, UMLAL2 */ 12896 case 0x06: /* SMLSL, SMLSL2 */ 12897 case 0x16: /* UMLSL, UMLSL2 */ 12898 case 0x0a: /* SMULL, SMULL2 */ 12899 case 0x1a: /* UMULL, UMULL2 */ 12900 if (is_scalar) { 12901 unallocated_encoding(s); 12902 return; 12903 } 12904 is_long = true; 12905 break; 12906 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12907 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12908 case 0x0b: /* SQDMULL, SQDMULL2 */ 12909 is_long = true; 12910 break; 12911 case 0x0c: /* SQDMULH */ 12912 case 0x0d: /* SQRDMULH */ 12913 break; 12914 case 0x01: /* FMLA */ 12915 case 0x05: /* FMLS */ 12916 case 0x09: /* FMUL */ 12917 case 0x19: /* FMULX */ 12918 is_fp = 1; 12919 break; 12920 case 0x1d: /* SQRDMLAH */ 12921 case 0x1f: /* SQRDMLSH */ 12922 if (!dc_isar_feature(aa64_rdm, s)) { 12923 unallocated_encoding(s); 12924 return; 12925 } 12926 break; 12927 case 0x0e: /* SDOT */ 12928 case 0x1e: /* UDOT */ 12929 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 12930 unallocated_encoding(s); 12931 return; 12932 } 12933 break; 12934 case 0x0f: 12935 switch (size) { 12936 case 0: /* SUDOT */ 12937 case 2: /* USDOT */ 12938 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 12939 unallocated_encoding(s); 12940 return; 12941 } 12942 size = MO_32; 12943 break; 12944 case 1: /* BFDOT */ 12945 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12946 unallocated_encoding(s); 12947 return; 12948 } 12949 size = MO_32; 12950 break; 12951 case 3: /* BFMLAL{B,T} */ 12952 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 12953 unallocated_encoding(s); 12954 return; 12955 } 12956 /* can't set is_fp without other incorrect size checks */ 12957 size = MO_16; 12958 break; 12959 default: 12960 unallocated_encoding(s); 12961 return; 12962 } 12963 break; 12964 case 0x11: /* FCMLA #0 */ 12965 case 0x13: /* FCMLA #90 */ 12966 case 0x15: /* FCMLA #180 */ 12967 case 0x17: /* FCMLA #270 */ 12968 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 12969 unallocated_encoding(s); 12970 return; 12971 } 12972 is_fp = 2; 12973 break; 12974 case 0x00: /* FMLAL */ 12975 case 0x04: /* FMLSL */ 12976 case 0x18: /* FMLAL2 */ 12977 case 0x1c: /* FMLSL2 */ 12978 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 12979 unallocated_encoding(s); 12980 return; 12981 } 12982 size = MO_16; 12983 /* is_fp, but we pass cpu_env not fp_status. */ 12984 break; 12985 default: 12986 unallocated_encoding(s); 12987 return; 12988 } 12989 12990 switch (is_fp) { 12991 case 1: /* normal fp */ 12992 /* convert insn encoded size to MemOp size */ 12993 switch (size) { 12994 case 0: /* half-precision */ 12995 size = MO_16; 12996 is_fp16 = true; 12997 break; 12998 case MO_32: /* single precision */ 12999 case MO_64: /* double precision */ 13000 break; 13001 default: 13002 unallocated_encoding(s); 13003 return; 13004 } 13005 break; 13006 13007 case 2: /* complex fp */ 13008 /* Each indexable element is a complex pair. */ 13009 size += 1; 13010 switch (size) { 13011 case MO_32: 13012 if (h && !is_q) { 13013 unallocated_encoding(s); 13014 return; 13015 } 13016 is_fp16 = true; 13017 break; 13018 case MO_64: 13019 break; 13020 default: 13021 unallocated_encoding(s); 13022 return; 13023 } 13024 break; 13025 13026 default: /* integer */ 13027 switch (size) { 13028 case MO_8: 13029 case MO_64: 13030 unallocated_encoding(s); 13031 return; 13032 } 13033 break; 13034 } 13035 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13036 unallocated_encoding(s); 13037 return; 13038 } 13039 13040 /* Given MemOp size, adjust register and indexing. */ 13041 switch (size) { 13042 case MO_16: 13043 index = h << 2 | l << 1 | m; 13044 break; 13045 case MO_32: 13046 index = h << 1 | l; 13047 rm |= m << 4; 13048 break; 13049 case MO_64: 13050 if (l || !is_q) { 13051 unallocated_encoding(s); 13052 return; 13053 } 13054 index = h; 13055 rm |= m << 4; 13056 break; 13057 default: 13058 g_assert_not_reached(); 13059 } 13060 13061 if (!fp_access_check(s)) { 13062 return; 13063 } 13064 13065 if (is_fp) { 13066 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13067 } else { 13068 fpst = NULL; 13069 } 13070 13071 switch (16 * u + opcode) { 13072 case 0x0e: /* SDOT */ 13073 case 0x1e: /* UDOT */ 13074 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13075 u ? gen_helper_gvec_udot_idx_b 13076 : gen_helper_gvec_sdot_idx_b); 13077 return; 13078 case 0x0f: 13079 switch (extract32(insn, 22, 2)) { 13080 case 0: /* SUDOT */ 13081 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13082 gen_helper_gvec_sudot_idx_b); 13083 return; 13084 case 1: /* BFDOT */ 13085 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13086 gen_helper_gvec_bfdot_idx); 13087 return; 13088 case 2: /* USDOT */ 13089 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13090 gen_helper_gvec_usdot_idx_b); 13091 return; 13092 case 3: /* BFMLAL{B,T} */ 13093 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13094 gen_helper_gvec_bfmlal_idx); 13095 return; 13096 } 13097 g_assert_not_reached(); 13098 case 0x11: /* FCMLA #0 */ 13099 case 0x13: /* FCMLA #90 */ 13100 case 0x15: /* FCMLA #180 */ 13101 case 0x17: /* FCMLA #270 */ 13102 { 13103 int rot = extract32(insn, 13, 2); 13104 int data = (index << 2) | rot; 13105 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13106 vec_full_reg_offset(s, rn), 13107 vec_full_reg_offset(s, rm), 13108 vec_full_reg_offset(s, rd), fpst, 13109 is_q ? 16 : 8, vec_full_reg_size(s), data, 13110 size == MO_64 13111 ? gen_helper_gvec_fcmlas_idx 13112 : gen_helper_gvec_fcmlah_idx); 13113 } 13114 return; 13115 13116 case 0x00: /* FMLAL */ 13117 case 0x04: /* FMLSL */ 13118 case 0x18: /* FMLAL2 */ 13119 case 0x1c: /* FMLSL2 */ 13120 { 13121 int is_s = extract32(opcode, 2, 1); 13122 int is_2 = u; 13123 int data = (index << 2) | (is_2 << 1) | is_s; 13124 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13125 vec_full_reg_offset(s, rn), 13126 vec_full_reg_offset(s, rm), cpu_env, 13127 is_q ? 16 : 8, vec_full_reg_size(s), 13128 data, gen_helper_gvec_fmlal_idx_a64); 13129 } 13130 return; 13131 13132 case 0x08: /* MUL */ 13133 if (!is_long && !is_scalar) { 13134 static gen_helper_gvec_3 * const fns[3] = { 13135 gen_helper_gvec_mul_idx_h, 13136 gen_helper_gvec_mul_idx_s, 13137 gen_helper_gvec_mul_idx_d, 13138 }; 13139 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13140 vec_full_reg_offset(s, rn), 13141 vec_full_reg_offset(s, rm), 13142 is_q ? 16 : 8, vec_full_reg_size(s), 13143 index, fns[size - 1]); 13144 return; 13145 } 13146 break; 13147 13148 case 0x10: /* MLA */ 13149 if (!is_long && !is_scalar) { 13150 static gen_helper_gvec_4 * const fns[3] = { 13151 gen_helper_gvec_mla_idx_h, 13152 gen_helper_gvec_mla_idx_s, 13153 gen_helper_gvec_mla_idx_d, 13154 }; 13155 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13156 vec_full_reg_offset(s, rn), 13157 vec_full_reg_offset(s, rm), 13158 vec_full_reg_offset(s, rd), 13159 is_q ? 16 : 8, vec_full_reg_size(s), 13160 index, fns[size - 1]); 13161 return; 13162 } 13163 break; 13164 13165 case 0x14: /* MLS */ 13166 if (!is_long && !is_scalar) { 13167 static gen_helper_gvec_4 * const fns[3] = { 13168 gen_helper_gvec_mls_idx_h, 13169 gen_helper_gvec_mls_idx_s, 13170 gen_helper_gvec_mls_idx_d, 13171 }; 13172 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13173 vec_full_reg_offset(s, rn), 13174 vec_full_reg_offset(s, rm), 13175 vec_full_reg_offset(s, rd), 13176 is_q ? 16 : 8, vec_full_reg_size(s), 13177 index, fns[size - 1]); 13178 return; 13179 } 13180 break; 13181 } 13182 13183 if (size == 3) { 13184 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13185 int pass; 13186 13187 assert(is_fp && is_q && !is_long); 13188 13189 read_vec_element(s, tcg_idx, rm, index, MO_64); 13190 13191 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13192 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13193 TCGv_i64 tcg_res = tcg_temp_new_i64(); 13194 13195 read_vec_element(s, tcg_op, rn, pass, MO_64); 13196 13197 switch (16 * u + opcode) { 13198 case 0x05: /* FMLS */ 13199 /* As usual for ARM, separate negation for fused multiply-add */ 13200 gen_helper_vfp_negd(tcg_op, tcg_op); 13201 /* fall through */ 13202 case 0x01: /* FMLA */ 13203 read_vec_element(s, tcg_res, rd, pass, MO_64); 13204 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); 13205 break; 13206 case 0x09: /* FMUL */ 13207 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); 13208 break; 13209 case 0x19: /* FMULX */ 13210 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); 13211 break; 13212 default: 13213 g_assert_not_reached(); 13214 } 13215 13216 write_vec_element(s, tcg_res, rd, pass, MO_64); 13217 } 13218 13219 clear_vec_high(s, !is_scalar, rd); 13220 } else if (!is_long) { 13221 /* 32 bit floating point, or 16 or 32 bit integer. 13222 * For the 16 bit scalar case we use the usual Neon helpers and 13223 * rely on the fact that 0 op 0 == 0 with no side effects. 13224 */ 13225 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13226 int pass, maxpasses; 13227 13228 if (is_scalar) { 13229 maxpasses = 1; 13230 } else { 13231 maxpasses = is_q ? 4 : 2; 13232 } 13233 13234 read_vec_element_i32(s, tcg_idx, rm, index, size); 13235 13236 if (size == 1 && !is_scalar) { 13237 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13238 * the index into both halves of the 32 bit tcg_idx and then use 13239 * the usual Neon helpers. 13240 */ 13241 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13242 } 13243 13244 for (pass = 0; pass < maxpasses; pass++) { 13245 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13246 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13247 13248 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13249 13250 switch (16 * u + opcode) { 13251 case 0x08: /* MUL */ 13252 case 0x10: /* MLA */ 13253 case 0x14: /* MLS */ 13254 { 13255 static NeonGenTwoOpFn * const fns[2][2] = { 13256 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13257 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13258 }; 13259 NeonGenTwoOpFn *genfn; 13260 bool is_sub = opcode == 0x4; 13261 13262 if (size == 1) { 13263 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13264 } else { 13265 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13266 } 13267 if (opcode == 0x8) { 13268 break; 13269 } 13270 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13271 genfn = fns[size - 1][is_sub]; 13272 genfn(tcg_res, tcg_op, tcg_res); 13273 break; 13274 } 13275 case 0x05: /* FMLS */ 13276 case 0x01: /* FMLA */ 13277 read_vec_element_i32(s, tcg_res, rd, pass, 13278 is_scalar ? size : MO_32); 13279 switch (size) { 13280 case 1: 13281 if (opcode == 0x5) { 13282 /* As usual for ARM, separate negation for fused 13283 * multiply-add */ 13284 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); 13285 } 13286 if (is_scalar) { 13287 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, 13288 tcg_res, fpst); 13289 } else { 13290 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, 13291 tcg_res, fpst); 13292 } 13293 break; 13294 case 2: 13295 if (opcode == 0x5) { 13296 /* As usual for ARM, separate negation for 13297 * fused multiply-add */ 13298 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); 13299 } 13300 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, 13301 tcg_res, fpst); 13302 break; 13303 default: 13304 g_assert_not_reached(); 13305 } 13306 break; 13307 case 0x09: /* FMUL */ 13308 switch (size) { 13309 case 1: 13310 if (is_scalar) { 13311 gen_helper_advsimd_mulh(tcg_res, tcg_op, 13312 tcg_idx, fpst); 13313 } else { 13314 gen_helper_advsimd_mul2h(tcg_res, tcg_op, 13315 tcg_idx, fpst); 13316 } 13317 break; 13318 case 2: 13319 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); 13320 break; 13321 default: 13322 g_assert_not_reached(); 13323 } 13324 break; 13325 case 0x19: /* FMULX */ 13326 switch (size) { 13327 case 1: 13328 if (is_scalar) { 13329 gen_helper_advsimd_mulxh(tcg_res, tcg_op, 13330 tcg_idx, fpst); 13331 } else { 13332 gen_helper_advsimd_mulx2h(tcg_res, tcg_op, 13333 tcg_idx, fpst); 13334 } 13335 break; 13336 case 2: 13337 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); 13338 break; 13339 default: 13340 g_assert_not_reached(); 13341 } 13342 break; 13343 case 0x0c: /* SQDMULH */ 13344 if (size == 1) { 13345 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, 13346 tcg_op, tcg_idx); 13347 } else { 13348 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, 13349 tcg_op, tcg_idx); 13350 } 13351 break; 13352 case 0x0d: /* SQRDMULH */ 13353 if (size == 1) { 13354 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, 13355 tcg_op, tcg_idx); 13356 } else { 13357 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, 13358 tcg_op, tcg_idx); 13359 } 13360 break; 13361 case 0x1d: /* SQRDMLAH */ 13362 read_vec_element_i32(s, tcg_res, rd, pass, 13363 is_scalar ? size : MO_32); 13364 if (size == 1) { 13365 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, 13366 tcg_op, tcg_idx, tcg_res); 13367 } else { 13368 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, 13369 tcg_op, tcg_idx, tcg_res); 13370 } 13371 break; 13372 case 0x1f: /* SQRDMLSH */ 13373 read_vec_element_i32(s, tcg_res, rd, pass, 13374 is_scalar ? size : MO_32); 13375 if (size == 1) { 13376 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, 13377 tcg_op, tcg_idx, tcg_res); 13378 } else { 13379 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, 13380 tcg_op, tcg_idx, tcg_res); 13381 } 13382 break; 13383 default: 13384 g_assert_not_reached(); 13385 } 13386 13387 if (is_scalar) { 13388 write_fp_sreg(s, rd, tcg_res); 13389 } else { 13390 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13391 } 13392 } 13393 13394 clear_vec_high(s, is_q, rd); 13395 } else { 13396 /* long ops: 16x16->32 or 32x32->64 */ 13397 TCGv_i64 tcg_res[2]; 13398 int pass; 13399 bool satop = extract32(opcode, 0, 1); 13400 MemOp memop = MO_32; 13401 13402 if (satop || !u) { 13403 memop |= MO_SIGN; 13404 } 13405 13406 if (size == 2) { 13407 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13408 13409 read_vec_element(s, tcg_idx, rm, index, memop); 13410 13411 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13412 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13413 TCGv_i64 tcg_passres; 13414 int passelt; 13415 13416 if (is_scalar) { 13417 passelt = 0; 13418 } else { 13419 passelt = pass + (is_q * 2); 13420 } 13421 13422 read_vec_element(s, tcg_op, rn, passelt, memop); 13423 13424 tcg_res[pass] = tcg_temp_new_i64(); 13425 13426 if (opcode == 0xa || opcode == 0xb) { 13427 /* Non-accumulating ops */ 13428 tcg_passres = tcg_res[pass]; 13429 } else { 13430 tcg_passres = tcg_temp_new_i64(); 13431 } 13432 13433 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13434 13435 if (satop) { 13436 /* saturating, doubling */ 13437 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, 13438 tcg_passres, tcg_passres); 13439 } 13440 13441 if (opcode == 0xa || opcode == 0xb) { 13442 continue; 13443 } 13444 13445 /* Accumulating op: handle accumulate step */ 13446 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13447 13448 switch (opcode) { 13449 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13450 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13451 break; 13452 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13453 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13454 break; 13455 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13456 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13457 /* fall through */ 13458 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13459 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, 13460 tcg_res[pass], 13461 tcg_passres); 13462 break; 13463 default: 13464 g_assert_not_reached(); 13465 } 13466 } 13467 13468 clear_vec_high(s, !is_scalar, rd); 13469 } else { 13470 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13471 13472 assert(size == 1); 13473 read_vec_element_i32(s, tcg_idx, rm, index, size); 13474 13475 if (!is_scalar) { 13476 /* The simplest way to handle the 16x16 indexed ops is to 13477 * duplicate the index into both halves of the 32 bit tcg_idx 13478 * and then use the usual Neon helpers. 13479 */ 13480 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13481 } 13482 13483 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13484 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13485 TCGv_i64 tcg_passres; 13486 13487 if (is_scalar) { 13488 read_vec_element_i32(s, tcg_op, rn, pass, size); 13489 } else { 13490 read_vec_element_i32(s, tcg_op, rn, 13491 pass + (is_q * 2), MO_32); 13492 } 13493 13494 tcg_res[pass] = tcg_temp_new_i64(); 13495 13496 if (opcode == 0xa || opcode == 0xb) { 13497 /* Non-accumulating ops */ 13498 tcg_passres = tcg_res[pass]; 13499 } else { 13500 tcg_passres = tcg_temp_new_i64(); 13501 } 13502 13503 if (memop & MO_SIGN) { 13504 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13505 } else { 13506 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13507 } 13508 if (satop) { 13509 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, 13510 tcg_passres, tcg_passres); 13511 } 13512 13513 if (opcode == 0xa || opcode == 0xb) { 13514 continue; 13515 } 13516 13517 /* Accumulating op: handle accumulate step */ 13518 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13519 13520 switch (opcode) { 13521 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13522 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13523 tcg_passres); 13524 break; 13525 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13526 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13527 tcg_passres); 13528 break; 13529 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13530 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13531 /* fall through */ 13532 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13533 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, 13534 tcg_res[pass], 13535 tcg_passres); 13536 break; 13537 default: 13538 g_assert_not_reached(); 13539 } 13540 } 13541 13542 if (is_scalar) { 13543 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13544 } 13545 } 13546 13547 if (is_scalar) { 13548 tcg_res[1] = tcg_constant_i64(0); 13549 } 13550 13551 for (pass = 0; pass < 2; pass++) { 13552 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13553 } 13554 } 13555 } 13556 13557 /* Crypto AES 13558 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13559 * +-----------------+------+-----------+--------+-----+------+------+ 13560 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13561 * +-----------------+------+-----------+--------+-----+------+------+ 13562 */ 13563 static void disas_crypto_aes(DisasContext *s, uint32_t insn) 13564 { 13565 int size = extract32(insn, 22, 2); 13566 int opcode = extract32(insn, 12, 5); 13567 int rn = extract32(insn, 5, 5); 13568 int rd = extract32(insn, 0, 5); 13569 int decrypt; 13570 gen_helper_gvec_2 *genfn2 = NULL; 13571 gen_helper_gvec_3 *genfn3 = NULL; 13572 13573 if (!dc_isar_feature(aa64_aes, s) || size != 0) { 13574 unallocated_encoding(s); 13575 return; 13576 } 13577 13578 switch (opcode) { 13579 case 0x4: /* AESE */ 13580 decrypt = 0; 13581 genfn3 = gen_helper_crypto_aese; 13582 break; 13583 case 0x6: /* AESMC */ 13584 decrypt = 0; 13585 genfn2 = gen_helper_crypto_aesmc; 13586 break; 13587 case 0x5: /* AESD */ 13588 decrypt = 1; 13589 genfn3 = gen_helper_crypto_aese; 13590 break; 13591 case 0x7: /* AESIMC */ 13592 decrypt = 1; 13593 genfn2 = gen_helper_crypto_aesmc; 13594 break; 13595 default: 13596 unallocated_encoding(s); 13597 return; 13598 } 13599 13600 if (!fp_access_check(s)) { 13601 return; 13602 } 13603 if (genfn2) { 13604 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2); 13605 } else { 13606 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3); 13607 } 13608 } 13609 13610 /* Crypto three-reg SHA 13611 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 13612 * +-----------------+------+---+------+---+--------+-----+------+------+ 13613 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | 13614 * +-----------------+------+---+------+---+--------+-----+------+------+ 13615 */ 13616 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) 13617 { 13618 int size = extract32(insn, 22, 2); 13619 int opcode = extract32(insn, 12, 3); 13620 int rm = extract32(insn, 16, 5); 13621 int rn = extract32(insn, 5, 5); 13622 int rd = extract32(insn, 0, 5); 13623 gen_helper_gvec_3 *genfn; 13624 bool feature; 13625 13626 if (size != 0) { 13627 unallocated_encoding(s); 13628 return; 13629 } 13630 13631 switch (opcode) { 13632 case 0: /* SHA1C */ 13633 genfn = gen_helper_crypto_sha1c; 13634 feature = dc_isar_feature(aa64_sha1, s); 13635 break; 13636 case 1: /* SHA1P */ 13637 genfn = gen_helper_crypto_sha1p; 13638 feature = dc_isar_feature(aa64_sha1, s); 13639 break; 13640 case 2: /* SHA1M */ 13641 genfn = gen_helper_crypto_sha1m; 13642 feature = dc_isar_feature(aa64_sha1, s); 13643 break; 13644 case 3: /* SHA1SU0 */ 13645 genfn = gen_helper_crypto_sha1su0; 13646 feature = dc_isar_feature(aa64_sha1, s); 13647 break; 13648 case 4: /* SHA256H */ 13649 genfn = gen_helper_crypto_sha256h; 13650 feature = dc_isar_feature(aa64_sha256, s); 13651 break; 13652 case 5: /* SHA256H2 */ 13653 genfn = gen_helper_crypto_sha256h2; 13654 feature = dc_isar_feature(aa64_sha256, s); 13655 break; 13656 case 6: /* SHA256SU1 */ 13657 genfn = gen_helper_crypto_sha256su1; 13658 feature = dc_isar_feature(aa64_sha256, s); 13659 break; 13660 default: 13661 unallocated_encoding(s); 13662 return; 13663 } 13664 13665 if (!feature) { 13666 unallocated_encoding(s); 13667 return; 13668 } 13669 13670 if (!fp_access_check(s)) { 13671 return; 13672 } 13673 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn); 13674 } 13675 13676 /* Crypto two-reg SHA 13677 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 13678 * +-----------------+------+-----------+--------+-----+------+------+ 13679 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | 13680 * +-----------------+------+-----------+--------+-----+------+------+ 13681 */ 13682 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) 13683 { 13684 int size = extract32(insn, 22, 2); 13685 int opcode = extract32(insn, 12, 5); 13686 int rn = extract32(insn, 5, 5); 13687 int rd = extract32(insn, 0, 5); 13688 gen_helper_gvec_2 *genfn; 13689 bool feature; 13690 13691 if (size != 0) { 13692 unallocated_encoding(s); 13693 return; 13694 } 13695 13696 switch (opcode) { 13697 case 0: /* SHA1H */ 13698 feature = dc_isar_feature(aa64_sha1, s); 13699 genfn = gen_helper_crypto_sha1h; 13700 break; 13701 case 1: /* SHA1SU1 */ 13702 feature = dc_isar_feature(aa64_sha1, s); 13703 genfn = gen_helper_crypto_sha1su1; 13704 break; 13705 case 2: /* SHA256SU0 */ 13706 feature = dc_isar_feature(aa64_sha256, s); 13707 genfn = gen_helper_crypto_sha256su0; 13708 break; 13709 default: 13710 unallocated_encoding(s); 13711 return; 13712 } 13713 13714 if (!feature) { 13715 unallocated_encoding(s); 13716 return; 13717 } 13718 13719 if (!fp_access_check(s)) { 13720 return; 13721 } 13722 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn); 13723 } 13724 13725 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 13726 { 13727 tcg_gen_rotli_i64(d, m, 1); 13728 tcg_gen_xor_i64(d, d, n); 13729 } 13730 13731 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m) 13732 { 13733 tcg_gen_rotli_vec(vece, d, m, 1); 13734 tcg_gen_xor_vec(vece, d, d, n); 13735 } 13736 13737 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, 13738 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) 13739 { 13740 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 13741 static const GVecGen3 op = { 13742 .fni8 = gen_rax1_i64, 13743 .fniv = gen_rax1_vec, 13744 .opt_opc = vecop_list, 13745 .fno = gen_helper_crypto_rax1, 13746 .vece = MO_64, 13747 }; 13748 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op); 13749 } 13750 13751 /* Crypto three-reg SHA512 13752 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13753 * +-----------------------+------+---+---+-----+--------+------+------+ 13754 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | 13755 * +-----------------------+------+---+---+-----+--------+------+------+ 13756 */ 13757 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) 13758 { 13759 int opcode = extract32(insn, 10, 2); 13760 int o = extract32(insn, 14, 1); 13761 int rm = extract32(insn, 16, 5); 13762 int rn = extract32(insn, 5, 5); 13763 int rd = extract32(insn, 0, 5); 13764 bool feature; 13765 gen_helper_gvec_3 *oolfn = NULL; 13766 GVecGen3Fn *gvecfn = NULL; 13767 13768 if (o == 0) { 13769 switch (opcode) { 13770 case 0: /* SHA512H */ 13771 feature = dc_isar_feature(aa64_sha512, s); 13772 oolfn = gen_helper_crypto_sha512h; 13773 break; 13774 case 1: /* SHA512H2 */ 13775 feature = dc_isar_feature(aa64_sha512, s); 13776 oolfn = gen_helper_crypto_sha512h2; 13777 break; 13778 case 2: /* SHA512SU1 */ 13779 feature = dc_isar_feature(aa64_sha512, s); 13780 oolfn = gen_helper_crypto_sha512su1; 13781 break; 13782 case 3: /* RAX1 */ 13783 feature = dc_isar_feature(aa64_sha3, s); 13784 gvecfn = gen_gvec_rax1; 13785 break; 13786 default: 13787 g_assert_not_reached(); 13788 } 13789 } else { 13790 switch (opcode) { 13791 case 0: /* SM3PARTW1 */ 13792 feature = dc_isar_feature(aa64_sm3, s); 13793 oolfn = gen_helper_crypto_sm3partw1; 13794 break; 13795 case 1: /* SM3PARTW2 */ 13796 feature = dc_isar_feature(aa64_sm3, s); 13797 oolfn = gen_helper_crypto_sm3partw2; 13798 break; 13799 case 2: /* SM4EKEY */ 13800 feature = dc_isar_feature(aa64_sm4, s); 13801 oolfn = gen_helper_crypto_sm4ekey; 13802 break; 13803 default: 13804 unallocated_encoding(s); 13805 return; 13806 } 13807 } 13808 13809 if (!feature) { 13810 unallocated_encoding(s); 13811 return; 13812 } 13813 13814 if (!fp_access_check(s)) { 13815 return; 13816 } 13817 13818 if (oolfn) { 13819 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn); 13820 } else { 13821 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64); 13822 } 13823 } 13824 13825 /* Crypto two-reg SHA512 13826 * 31 12 11 10 9 5 4 0 13827 * +-----------------------------------------+--------+------+------+ 13828 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | 13829 * +-----------------------------------------+--------+------+------+ 13830 */ 13831 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) 13832 { 13833 int opcode = extract32(insn, 10, 2); 13834 int rn = extract32(insn, 5, 5); 13835 int rd = extract32(insn, 0, 5); 13836 bool feature; 13837 13838 switch (opcode) { 13839 case 0: /* SHA512SU0 */ 13840 feature = dc_isar_feature(aa64_sha512, s); 13841 break; 13842 case 1: /* SM4E */ 13843 feature = dc_isar_feature(aa64_sm4, s); 13844 break; 13845 default: 13846 unallocated_encoding(s); 13847 return; 13848 } 13849 13850 if (!feature) { 13851 unallocated_encoding(s); 13852 return; 13853 } 13854 13855 if (!fp_access_check(s)) { 13856 return; 13857 } 13858 13859 switch (opcode) { 13860 case 0: /* SHA512SU0 */ 13861 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0); 13862 break; 13863 case 1: /* SM4E */ 13864 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e); 13865 break; 13866 default: 13867 g_assert_not_reached(); 13868 } 13869 } 13870 13871 /* Crypto four-register 13872 * 31 23 22 21 20 16 15 14 10 9 5 4 0 13873 * +-------------------+-----+------+---+------+------+------+ 13874 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | 13875 * +-------------------+-----+------+---+------+------+------+ 13876 */ 13877 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) 13878 { 13879 int op0 = extract32(insn, 21, 2); 13880 int rm = extract32(insn, 16, 5); 13881 int ra = extract32(insn, 10, 5); 13882 int rn = extract32(insn, 5, 5); 13883 int rd = extract32(insn, 0, 5); 13884 bool feature; 13885 13886 switch (op0) { 13887 case 0: /* EOR3 */ 13888 case 1: /* BCAX */ 13889 feature = dc_isar_feature(aa64_sha3, s); 13890 break; 13891 case 2: /* SM3SS1 */ 13892 feature = dc_isar_feature(aa64_sm3, s); 13893 break; 13894 default: 13895 unallocated_encoding(s); 13896 return; 13897 } 13898 13899 if (!feature) { 13900 unallocated_encoding(s); 13901 return; 13902 } 13903 13904 if (!fp_access_check(s)) { 13905 return; 13906 } 13907 13908 if (op0 < 2) { 13909 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; 13910 int pass; 13911 13912 tcg_op1 = tcg_temp_new_i64(); 13913 tcg_op2 = tcg_temp_new_i64(); 13914 tcg_op3 = tcg_temp_new_i64(); 13915 tcg_res[0] = tcg_temp_new_i64(); 13916 tcg_res[1] = tcg_temp_new_i64(); 13917 13918 for (pass = 0; pass < 2; pass++) { 13919 read_vec_element(s, tcg_op1, rn, pass, MO_64); 13920 read_vec_element(s, tcg_op2, rm, pass, MO_64); 13921 read_vec_element(s, tcg_op3, ra, pass, MO_64); 13922 13923 if (op0 == 0) { 13924 /* EOR3 */ 13925 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); 13926 } else { 13927 /* BCAX */ 13928 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); 13929 } 13930 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 13931 } 13932 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 13933 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 13934 } else { 13935 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; 13936 13937 tcg_op1 = tcg_temp_new_i32(); 13938 tcg_op2 = tcg_temp_new_i32(); 13939 tcg_op3 = tcg_temp_new_i32(); 13940 tcg_res = tcg_temp_new_i32(); 13941 tcg_zero = tcg_constant_i32(0); 13942 13943 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); 13944 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); 13945 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); 13946 13947 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 13948 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 13949 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 13950 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 13951 13952 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); 13953 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); 13954 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); 13955 write_vec_element_i32(s, tcg_res, rd, 3, MO_32); 13956 } 13957 } 13958 13959 /* Crypto XAR 13960 * 31 21 20 16 15 10 9 5 4 0 13961 * +-----------------------+------+--------+------+------+ 13962 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | 13963 * +-----------------------+------+--------+------+------+ 13964 */ 13965 static void disas_crypto_xar(DisasContext *s, uint32_t insn) 13966 { 13967 int rm = extract32(insn, 16, 5); 13968 int imm6 = extract32(insn, 10, 6); 13969 int rn = extract32(insn, 5, 5); 13970 int rd = extract32(insn, 0, 5); 13971 13972 if (!dc_isar_feature(aa64_sha3, s)) { 13973 unallocated_encoding(s); 13974 return; 13975 } 13976 13977 if (!fp_access_check(s)) { 13978 return; 13979 } 13980 13981 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd), 13982 vec_full_reg_offset(s, rn), 13983 vec_full_reg_offset(s, rm), imm6, 16, 13984 vec_full_reg_size(s)); 13985 } 13986 13987 /* Crypto three-reg imm2 13988 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 13989 * +-----------------------+------+-----+------+--------+------+------+ 13990 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | 13991 * +-----------------------+------+-----+------+--------+------+------+ 13992 */ 13993 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) 13994 { 13995 static gen_helper_gvec_3 * const fns[4] = { 13996 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b, 13997 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b, 13998 }; 13999 int opcode = extract32(insn, 10, 2); 14000 int imm2 = extract32(insn, 12, 2); 14001 int rm = extract32(insn, 16, 5); 14002 int rn = extract32(insn, 5, 5); 14003 int rd = extract32(insn, 0, 5); 14004 14005 if (!dc_isar_feature(aa64_sm3, s)) { 14006 unallocated_encoding(s); 14007 return; 14008 } 14009 14010 if (!fp_access_check(s)) { 14011 return; 14012 } 14013 14014 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]); 14015 } 14016 14017 /* C3.6 Data processing - SIMD, inc Crypto 14018 * 14019 * As the decode gets a little complex we are using a table based 14020 * approach for this part of the decode. 14021 */ 14022 static const AArch64DecodeTable data_proc_simd[] = { 14023 /* pattern , mask , fn */ 14024 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 14025 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 14026 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 14027 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 14028 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 14029 { 0x0e000400, 0x9fe08400, disas_simd_copy }, 14030 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 14031 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 14032 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 14033 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 14034 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 14035 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 14036 { 0x2e000000, 0xbf208400, disas_simd_ext }, 14037 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 14038 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 14039 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 14040 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 14041 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 14042 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, 14043 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 14044 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 14045 { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, 14046 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, 14047 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, 14048 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, 14049 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, 14050 { 0xce000000, 0xff808000, disas_crypto_four_reg }, 14051 { 0xce800000, 0xffe00000, disas_crypto_xar }, 14052 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, 14053 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 14054 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 14055 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 14056 { 0x00000000, 0x00000000, NULL } 14057 }; 14058 14059 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 14060 { 14061 /* Note that this is called with all non-FP cases from 14062 * table C3-6 so it must UNDEF for entries not specifically 14063 * allocated to instructions in that table. 14064 */ 14065 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 14066 if (fn) { 14067 fn(s, insn); 14068 } else { 14069 unallocated_encoding(s); 14070 } 14071 } 14072 14073 /* C3.6 Data processing - SIMD and floating point */ 14074 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 14075 { 14076 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 14077 disas_data_proc_fp(s, insn); 14078 } else { 14079 /* SIMD, including crypto */ 14080 disas_data_proc_simd(s, insn); 14081 } 14082 } 14083 14084 static bool trans_OK(DisasContext *s, arg_OK *a) 14085 { 14086 return true; 14087 } 14088 14089 static bool trans_FAIL(DisasContext *s, arg_OK *a) 14090 { 14091 s->is_nonstreaming = true; 14092 return true; 14093 } 14094 14095 /** 14096 * is_guarded_page: 14097 * @env: The cpu environment 14098 * @s: The DisasContext 14099 * 14100 * Return true if the page is guarded. 14101 */ 14102 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 14103 { 14104 uint64_t addr = s->base.pc_first; 14105 #ifdef CONFIG_USER_ONLY 14106 return page_get_flags(addr) & PAGE_BTI; 14107 #else 14108 CPUTLBEntryFull *full; 14109 void *host; 14110 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 14111 int flags; 14112 14113 /* 14114 * We test this immediately after reading an insn, which means 14115 * that the TLB entry must be present and valid, and thus this 14116 * access will never raise an exception. 14117 */ 14118 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 14119 false, &host, &full, 0); 14120 assert(!(flags & TLB_INVALID_MASK)); 14121 14122 return full->guarded; 14123 #endif 14124 } 14125 14126 /** 14127 * btype_destination_ok: 14128 * @insn: The instruction at the branch destination 14129 * @bt: SCTLR_ELx.BT 14130 * @btype: PSTATE.BTYPE, and is non-zero 14131 * 14132 * On a guarded page, there are a limited number of insns 14133 * that may be present at the branch target: 14134 * - branch target identifiers, 14135 * - paciasp, pacibsp, 14136 * - BRK insn 14137 * - HLT insn 14138 * Anything else causes a Branch Target Exception. 14139 * 14140 * Return true if the branch is compatible, false to raise BTITRAP. 14141 */ 14142 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 14143 { 14144 if ((insn & 0xfffff01fu) == 0xd503201fu) { 14145 /* HINT space */ 14146 switch (extract32(insn, 5, 7)) { 14147 case 0b011001: /* PACIASP */ 14148 case 0b011011: /* PACIBSP */ 14149 /* 14150 * If SCTLR_ELx.BT, then PACI*SP are not compatible 14151 * with btype == 3. Otherwise all btype are ok. 14152 */ 14153 return !bt || btype != 3; 14154 case 0b100000: /* BTI */ 14155 /* Not compatible with any btype. */ 14156 return false; 14157 case 0b100010: /* BTI c */ 14158 /* Not compatible with btype == 3 */ 14159 return btype != 3; 14160 case 0b100100: /* BTI j */ 14161 /* Not compatible with btype == 2 */ 14162 return btype != 2; 14163 case 0b100110: /* BTI jc */ 14164 /* Compatible with any btype. */ 14165 return true; 14166 } 14167 } else { 14168 switch (insn & 0xffe0001fu) { 14169 case 0xd4200000u: /* BRK */ 14170 case 0xd4400000u: /* HLT */ 14171 /* Give priority to the breakpoint exception. */ 14172 return true; 14173 } 14174 } 14175 return false; 14176 } 14177 14178 /* C3.1 A64 instruction index by encoding */ 14179 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 14180 { 14181 switch (extract32(insn, 25, 4)) { 14182 case 0xa: case 0xb: /* Branch, exception generation and system insns */ 14183 disas_b_exc_sys(s, insn); 14184 break; 14185 case 0x4: 14186 case 0x6: 14187 case 0xc: 14188 case 0xe: /* Loads and stores */ 14189 disas_ldst(s, insn); 14190 break; 14191 case 0x5: 14192 case 0xd: /* Data processing - register */ 14193 disas_data_proc_reg(s, insn); 14194 break; 14195 case 0x7: 14196 case 0xf: /* Data processing - SIMD and floating point */ 14197 disas_data_proc_simd_fp(s, insn); 14198 break; 14199 default: 14200 unallocated_encoding(s); 14201 break; 14202 } 14203 } 14204 14205 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 14206 CPUState *cpu) 14207 { 14208 DisasContext *dc = container_of(dcbase, DisasContext, base); 14209 CPUARMState *env = cpu->env_ptr; 14210 ARMCPU *arm_cpu = env_archcpu(env); 14211 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 14212 int bound, core_mmu_idx; 14213 14214 dc->isar = &arm_cpu->isar; 14215 dc->condjmp = 0; 14216 dc->pc_save = dc->base.pc_first; 14217 dc->aarch64 = true; 14218 dc->thumb = false; 14219 dc->sctlr_b = 0; 14220 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 14221 dc->condexec_mask = 0; 14222 dc->condexec_cond = 0; 14223 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 14224 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 14225 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 14226 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 14227 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 14228 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 14229 #if !defined(CONFIG_USER_ONLY) 14230 dc->user = (dc->current_el == 0); 14231 #endif 14232 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 14233 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 14234 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 14235 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 14236 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 14237 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET); 14238 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 14239 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 14240 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 14241 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 14242 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 14243 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 14244 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 14245 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 14246 dc->ata = EX_TBFLAG_A64(tb_flags, ATA); 14247 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 14248 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 14249 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 14250 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 14251 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 14252 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 14253 dc->vec_len = 0; 14254 dc->vec_stride = 0; 14255 dc->cp_regs = arm_cpu->cp_regs; 14256 dc->features = env->features; 14257 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 14258 14259 #ifdef CONFIG_USER_ONLY 14260 /* In sve_probe_page, we assume TBI is enabled. */ 14261 tcg_debug_assert(dc->tbid & 1); 14262 #endif 14263 14264 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 14265 14266 /* Single step state. The code-generation logic here is: 14267 * SS_ACTIVE == 0: 14268 * generate code with no special handling for single-stepping (except 14269 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 14270 * this happens anyway because those changes are all system register or 14271 * PSTATE writes). 14272 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 14273 * emit code for one insn 14274 * emit code to clear PSTATE.SS 14275 * emit code to generate software step exception for completed step 14276 * end TB (as usual for having generated an exception) 14277 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 14278 * emit code to generate a software step exception 14279 * end the TB 14280 */ 14281 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 14282 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 14283 dc->is_ldex = false; 14284 14285 /* Bound the number of insns to execute to those left on the page. */ 14286 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 14287 14288 /* If architectural single step active, limit to 1. */ 14289 if (dc->ss_active) { 14290 bound = 1; 14291 } 14292 dc->base.max_insns = MIN(dc->base.max_insns, bound); 14293 } 14294 14295 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 14296 { 14297 } 14298 14299 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 14300 { 14301 DisasContext *dc = container_of(dcbase, DisasContext, base); 14302 target_ulong pc_arg = dc->base.pc_next; 14303 14304 if (tb_cflags(dcbase->tb) & CF_PCREL) { 14305 pc_arg &= ~TARGET_PAGE_MASK; 14306 } 14307 tcg_gen_insn_start(pc_arg, 0, 0); 14308 dc->insn_start = tcg_last_op(); 14309 } 14310 14311 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 14312 { 14313 DisasContext *s = container_of(dcbase, DisasContext, base); 14314 CPUARMState *env = cpu->env_ptr; 14315 uint64_t pc = s->base.pc_next; 14316 uint32_t insn; 14317 14318 /* Singlestep exceptions have the highest priority. */ 14319 if (s->ss_active && !s->pstate_ss) { 14320 /* Singlestep state is Active-pending. 14321 * If we're in this state at the start of a TB then either 14322 * a) we just took an exception to an EL which is being debugged 14323 * and this is the first insn in the exception handler 14324 * b) debug exceptions were masked and we just unmasked them 14325 * without changing EL (eg by clearing PSTATE.D) 14326 * In either case we're going to take a swstep exception in the 14327 * "did not step an insn" case, and so the syndrome ISV and EX 14328 * bits should be zero. 14329 */ 14330 assert(s->base.num_insns == 1); 14331 gen_swstep_exception(s, 0, 0); 14332 s->base.is_jmp = DISAS_NORETURN; 14333 s->base.pc_next = pc + 4; 14334 return; 14335 } 14336 14337 if (pc & 3) { 14338 /* 14339 * PC alignment fault. This has priority over the instruction abort 14340 * that we would receive from a translation fault via arm_ldl_code. 14341 * This should only be possible after an indirect branch, at the 14342 * start of the TB. 14343 */ 14344 assert(s->base.num_insns == 1); 14345 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); 14346 s->base.is_jmp = DISAS_NORETURN; 14347 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 14348 return; 14349 } 14350 14351 s->pc_curr = pc; 14352 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 14353 s->insn = insn; 14354 s->base.pc_next = pc + 4; 14355 14356 s->fp_access_checked = false; 14357 s->sve_access_checked = false; 14358 14359 if (s->pstate_il) { 14360 /* 14361 * Illegal execution state. This has priority over BTI 14362 * exceptions, but comes after instruction abort exceptions. 14363 */ 14364 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 14365 return; 14366 } 14367 14368 if (dc_isar_feature(aa64_bti, s)) { 14369 if (s->base.num_insns == 1) { 14370 /* 14371 * At the first insn of the TB, compute s->guarded_page. 14372 * We delayed computing this until successfully reading 14373 * the first insn of the TB, above. This (mostly) ensures 14374 * that the softmmu tlb entry has been populated, and the 14375 * page table GP bit is available. 14376 * 14377 * Note that we need to compute this even if btype == 0, 14378 * because this value is used for BR instructions later 14379 * where ENV is not available. 14380 */ 14381 s->guarded_page = is_guarded_page(env, s); 14382 14383 /* First insn can have btype set to non-zero. */ 14384 tcg_debug_assert(s->btype >= 0); 14385 14386 /* 14387 * Note that the Branch Target Exception has fairly high 14388 * priority -- below debugging exceptions but above most 14389 * everything else. This allows us to handle this now 14390 * instead of waiting until the insn is otherwise decoded. 14391 */ 14392 if (s->btype != 0 14393 && s->guarded_page 14394 && !btype_destination_ok(insn, s->bt, s->btype)) { 14395 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 14396 return; 14397 } 14398 } else { 14399 /* Not the first insn: btype must be 0. */ 14400 tcg_debug_assert(s->btype == 0); 14401 } 14402 } 14403 14404 s->is_nonstreaming = false; 14405 if (s->sme_trap_nonstreaming) { 14406 disas_sme_fa64(s, insn); 14407 } 14408 14409 if (!disas_a64(s, insn) && 14410 !disas_sme(s, insn) && 14411 !disas_sve(s, insn)) { 14412 disas_a64_legacy(s, insn); 14413 } 14414 14415 /* 14416 * After execution of most insns, btype is reset to 0. 14417 * Note that we set btype == -1 when the insn sets btype. 14418 */ 14419 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 14420 reset_btype(s); 14421 } 14422 } 14423 14424 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 14425 { 14426 DisasContext *dc = container_of(dcbase, DisasContext, base); 14427 14428 if (unlikely(dc->ss_active)) { 14429 /* Note that this means single stepping WFI doesn't halt the CPU. 14430 * For conditional branch insns this is harmless unreachable code as 14431 * gen_goto_tb() has already handled emitting the debug exception 14432 * (and thus a tb-jump is not possible when singlestepping). 14433 */ 14434 switch (dc->base.is_jmp) { 14435 default: 14436 gen_a64_update_pc(dc, 4); 14437 /* fall through */ 14438 case DISAS_EXIT: 14439 case DISAS_JUMP: 14440 gen_step_complete_exception(dc); 14441 break; 14442 case DISAS_NORETURN: 14443 break; 14444 } 14445 } else { 14446 switch (dc->base.is_jmp) { 14447 case DISAS_NEXT: 14448 case DISAS_TOO_MANY: 14449 gen_goto_tb(dc, 1, 4); 14450 break; 14451 default: 14452 case DISAS_UPDATE_EXIT: 14453 gen_a64_update_pc(dc, 4); 14454 /* fall through */ 14455 case DISAS_EXIT: 14456 tcg_gen_exit_tb(NULL, 0); 14457 break; 14458 case DISAS_UPDATE_NOCHAIN: 14459 gen_a64_update_pc(dc, 4); 14460 /* fall through */ 14461 case DISAS_JUMP: 14462 tcg_gen_lookup_and_goto_ptr(); 14463 break; 14464 case DISAS_NORETURN: 14465 case DISAS_SWI: 14466 break; 14467 case DISAS_WFE: 14468 gen_a64_update_pc(dc, 4); 14469 gen_helper_wfe(cpu_env); 14470 break; 14471 case DISAS_YIELD: 14472 gen_a64_update_pc(dc, 4); 14473 gen_helper_yield(cpu_env); 14474 break; 14475 case DISAS_WFI: 14476 /* 14477 * This is a special case because we don't want to just halt 14478 * the CPU if trying to debug across a WFI. 14479 */ 14480 gen_a64_update_pc(dc, 4); 14481 gen_helper_wfi(cpu_env, tcg_constant_i32(4)); 14482 /* 14483 * The helper doesn't necessarily throw an exception, but we 14484 * must go back to the main loop to check for interrupts anyway. 14485 */ 14486 tcg_gen_exit_tb(NULL, 0); 14487 break; 14488 } 14489 } 14490 } 14491 14492 static void aarch64_tr_disas_log(const DisasContextBase *dcbase, 14493 CPUState *cpu, FILE *logfile) 14494 { 14495 DisasContext *dc = container_of(dcbase, DisasContext, base); 14496 14497 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); 14498 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); 14499 } 14500 14501 const TranslatorOps aarch64_translator_ops = { 14502 .init_disas_context = aarch64_tr_init_disas_context, 14503 .tb_start = aarch64_tr_tb_start, 14504 .insn_start = aarch64_tr_insn_start, 14505 .translate_insn = aarch64_tr_translate_insn, 14506 .tb_stop = aarch64_tr_tb_stop, 14507 .disas_log = aarch64_tr_disas_log, 14508 }; 14509