xref: /openbmc/qemu/target/arm/tcg/translate-a64.c (revision 4fe068fa)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* Table based decoder typedefs - used when the relevant bits for decode
79  * are too awkwardly scattered across the instruction (eg SIMD).
80  */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82 
83 typedef struct AArch64DecodeTable {
84     uint32_t pattern;
85     uint32_t mask;
86     AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88 
89 /* initialize TCG globals.  */
90 void a64_translate_init(void)
91 {
92     int i;
93 
94     cpu_pc = tcg_global_mem_new_i64(tcg_env,
95                                     offsetof(CPUARMState, pc),
96                                     "pc");
97     for (i = 0; i < 32; i++) {
98         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99                                           offsetof(CPUARMState, xregs[i]),
100                                           regnames[i]);
101     }
102 
103     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104         offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106 
107 /*
108  * Return the core mmu_idx to use for A64 load/store insns which
109  * have a "unprivileged load/store" variant. Those insns access
110  * EL0 if executed from an EL which has control over EL0 (usually
111  * EL1) but behave like normal loads and stores if executed from
112  * elsewhere (eg EL3).
113  *
114  * @unpriv : true for the unprivileged encoding; false for the
115  *           normal encoding (in which case we will return the same
116  *           thing as get_mem_index().
117  */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120     /*
121      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122      * which is the usual mmu_idx for this cpu state.
123      */
124     ARMMMUIdx useridx = s->mmu_idx;
125 
126     if (unpriv && s->unpriv) {
127         /*
128          * We have pre-computed the condition for AccType_UNPRIV.
129          * Therefore we should never get here with a mmu_idx for
130          * which we do not know the corresponding user mmu_idx.
131          */
132         switch (useridx) {
133         case ARMMMUIdx_E10_1:
134         case ARMMMUIdx_E10_1_PAN:
135             useridx = ARMMMUIdx_E10_0;
136             break;
137         case ARMMMUIdx_E20_2:
138         case ARMMMUIdx_E20_2_PAN:
139             useridx = ARMMMUIdx_E20_0;
140             break;
141         default:
142             g_assert_not_reached();
143         }
144     }
145     return arm_to_core_mmu_idx(useridx);
146 }
147 
148 static void set_btype_raw(int val)
149 {
150     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151                    offsetof(CPUARMState, btype));
152 }
153 
154 static void set_btype(DisasContext *s, int val)
155 {
156     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
157     tcg_debug_assert(val >= 1 && val <= 3);
158     set_btype_raw(val);
159     s->btype = -1;
160 }
161 
162 static void reset_btype(DisasContext *s)
163 {
164     if (s->btype != 0) {
165         set_btype_raw(0);
166         s->btype = 0;
167     }
168 }
169 
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172     assert(s->pc_save != -1);
173     if (tb_cflags(s->base.tb) & CF_PCREL) {
174         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175     } else {
176         tcg_gen_movi_i64(dest, s->pc_curr + diff);
177     }
178 }
179 
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182     gen_pc_plus_diff(s, cpu_pc, diff);
183     s->pc_save = s->pc_curr + diff;
184 }
185 
186 /*
187  * Handle Top Byte Ignore (TBI) bits.
188  *
189  * If address tagging is enabled via the TCR TBI bits:
190  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
191  *    then the address is zero-extended, clearing bits [63:56]
192  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193  *    and TBI1 controls addresses with bit 55 == 1.
194  *    If the appropriate TBI bit is set for the address then
195  *    the address is sign-extended from bit 55 into bits [63:56]
196  *
197  * Here We have concatenated TBI{1,0} into tbi.
198  */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200                                 TCGv_i64 src, int tbi)
201 {
202     if (tbi == 0) {
203         /* Load unmodified address */
204         tcg_gen_mov_i64(dst, src);
205     } else if (!regime_has_2_ranges(s->mmu_idx)) {
206         /* Force tag byte to all zero */
207         tcg_gen_extract_i64(dst, src, 0, 56);
208     } else {
209         /* Sign-extend from bit 55.  */
210         tcg_gen_sextract_i64(dst, src, 0, 56);
211 
212         switch (tbi) {
213         case 1:
214             /* tbi0 but !tbi1: only use the extension if positive */
215             tcg_gen_and_i64(dst, dst, src);
216             break;
217         case 2:
218             /* !tbi0 but tbi1: only use the extension if negative */
219             tcg_gen_or_i64(dst, dst, src);
220             break;
221         case 3:
222             /* tbi0 and tbi1: always use the extension */
223             break;
224         default:
225             g_assert_not_reached();
226         }
227     }
228 }
229 
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232     /*
233      * If address tagging is enabled for instructions via the TCR TBI bits,
234      * then loading an address into the PC will clear out any tag.
235      */
236     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237     s->pc_save = -1;
238 }
239 
240 /*
241  * Handle MTE and/or TBI.
242  *
243  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
244  * for the tag to be present in the FAR_ELx register.  But for user-only
245  * mode we do not have a TLB with which to implement this, so we must
246  * remove the top byte now.
247  *
248  * Always return a fresh temporary that we can increment independently
249  * of the write-back address.
250  */
251 
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254     TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256     gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258     tcg_gen_mov_i64(clean, addr);
259 #endif
260     return clean;
261 }
262 
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268 
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270                              MMUAccessType acc, int log2_size)
271 {
272     gen_helper_probe_access(tcg_env, ptr,
273                             tcg_constant_i32(acc),
274                             tcg_constant_i32(get_mem_index(s)),
275                             tcg_constant_i32(1 << log2_size));
276 }
277 
278 /*
279  * For MTE, check a single logical or atomic access.  This probes a single
280  * address, the exact one specified.  The size and alignment of the access
281  * is not relevant to MTE, per se, but watchpoints do require the size,
282  * and we want to recognize those before making any other changes to state.
283  */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285                                       bool is_write, bool tag_checked,
286                                       MemOp memop, bool is_unpriv,
287                                       int core_idx)
288 {
289     if (tag_checked && s->mte_active[is_unpriv]) {
290         TCGv_i64 ret;
291         int desc = 0;
292 
293         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299 
300         ret = tcg_temp_new_i64();
301         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302 
303         return ret;
304     }
305     return clean_data_tbi(s, addr);
306 }
307 
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309                         bool tag_checked, MemOp memop)
310 {
311     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312                                  false, get_mem_index(s));
313 }
314 
315 /*
316  * For MTE, check multiple logical sequential accesses.
317  */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319                         bool tag_checked, int total_size, MemOp single_mop)
320 {
321     if (tag_checked && s->mte_active[0]) {
322         TCGv_i64 ret;
323         int desc = 0;
324 
325         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329         desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331 
332         ret = tcg_temp_new_i64();
333         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334 
335         return ret;
336     }
337     return clean_data_tbi(s, addr);
338 }
339 
340 /*
341  * Generate the special alignment check that applies to AccType_ATOMIC
342  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343  * naturally aligned, but it must not cross a 16-byte boundary.
344  * See AArch64.CheckAlignment().
345  */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347                              bool is_write, MemOp mop)
348 {
349     TCGv_i32 tmp;
350     TCGv_i64 addr;
351     TCGLabel *over_label;
352     MMUAccessType type;
353     int mmu_idx;
354 
355     tmp = tcg_temp_new_i32();
356     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357     tcg_gen_addi_i32(tmp, tmp, imm & 15);
358     tcg_gen_andi_i32(tmp, tmp, 15);
359     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360 
361     over_label = gen_new_label();
362     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363 
364     addr = tcg_temp_new_i64();
365     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366 
367     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368     mmu_idx = get_mem_index(s);
369     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370                                 tcg_constant_i32(mmu_idx));
371 
372     gen_set_label(over_label);
373 
374 }
375 
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379     MemOp size = mop & MO_SIZE;
380 
381     if (size == MO_8) {
382         return mop;
383     }
384 
385     /*
386      * If size == MO_128, this is a LDXP, and the operation is single-copy
387      * atomic for each doubleword, not the entire quadword; it still must
388      * be quadword aligned.
389      */
390     if (size == MO_128) {
391         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392                                    MO_ATOM_IFALIGN_PAIR);
393     }
394     if (dc_isar_feature(aa64_lse2, s)) {
395         check_lse2_align(s, rn, 0, true, mop);
396     } else {
397         mop |= MO_ALIGN;
398     }
399     return finalize_memop(s, mop);
400 }
401 
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404                                  bool is_write, MemOp mop)
405 {
406     MemOp size = mop & MO_SIZE;
407 
408     if (size == MO_8) {
409         return mop;
410     }
411     if (size == MO_128) {
412         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413                                    MO_ATOM_IFALIGN_PAIR);
414     }
415     if (!dc_isar_feature(aa64_lse2, s)) {
416         mop |= MO_ALIGN;
417     } else if (!s->naa) {
418         check_lse2_align(s, rn, imm, is_write, mop);
419     }
420     return finalize_memop(s, mop);
421 }
422 
423 typedef struct DisasCompare64 {
424     TCGCond cond;
425     TCGv_i64 value;
426 } DisasCompare64;
427 
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430     DisasCompare c32;
431 
432     arm_test_cc(&c32, cc);
433 
434     /*
435      * Sign-extend the 32-bit value so that the GE/LT comparisons work
436      * properly.  The NE/EQ comparisons are also fine with this choice.
437       */
438     c64->cond = c32.cond;
439     c64->value = tcg_temp_new_i64();
440     tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442 
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447 
448 static void gen_exception_internal(int excp)
449 {
450     assert(excp_is_internal(excp));
451     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453 
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456     gen_a64_update_pc(s, 0);
457     gen_exception_internal(excp);
458     s->base.is_jmp = DISAS_NORETURN;
459 }
460 
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463     gen_a64_update_pc(s, 0);
464     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465     s->base.is_jmp = DISAS_NORETURN;
466 }
467 
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470     /* We just completed step of an insn. Move from Active-not-pending
471      * to Active-pending, and then also take the swstep exception.
472      * This corresponds to making the (IMPDEF) choice to prioritize
473      * swstep exceptions over asynchronous exceptions taken to an exception
474      * level where debug is disabled. This choice has the advantage that
475      * we do not need to maintain internal state corresponding to the
476      * ISV/EX syndrome bits between completion of the step and generation
477      * of the exception, and our syndrome information is always correct.
478      */
479     gen_ss_advance(s);
480     gen_swstep_exception(s, 1, s->is_ldex);
481     s->base.is_jmp = DISAS_NORETURN;
482 }
483 
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486     if (s->ss_active) {
487         return false;
488     }
489     return translator_use_goto_tb(&s->base, dest);
490 }
491 
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494     if (use_goto_tb(s, s->pc_curr + diff)) {
495         /*
496          * For pcrel, the pc must always be up-to-date on entry to
497          * the linked TB, so that it can use simple additions for all
498          * further adjustments.  For !pcrel, the linked TB is compiled
499          * to know its full virtual address, so we can delay the
500          * update to pc to the unlinked path.  A long chain of links
501          * can thus avoid many updates to the PC.
502          */
503         if (tb_cflags(s->base.tb) & CF_PCREL) {
504             gen_a64_update_pc(s, diff);
505             tcg_gen_goto_tb(n);
506         } else {
507             tcg_gen_goto_tb(n);
508             gen_a64_update_pc(s, diff);
509         }
510         tcg_gen_exit_tb(s->base.tb, n);
511         s->base.is_jmp = DISAS_NORETURN;
512     } else {
513         gen_a64_update_pc(s, diff);
514         if (s->ss_active) {
515             gen_step_complete_exception(s);
516         } else {
517             tcg_gen_lookup_and_goto_ptr();
518             s->base.is_jmp = DISAS_NORETURN;
519         }
520     }
521 }
522 
523 /*
524  * Register access functions
525  *
526  * These functions are used for directly accessing a register in where
527  * changes to the final register value are likely to be made. If you
528  * need to use a register for temporary calculation (e.g. index type
529  * operations) use the read_* form.
530  *
531  * B1.2.1 Register mappings
532  *
533  * In instruction register encoding 31 can refer to ZR (zero register) or
534  * the SP (stack pointer) depending on context. In QEMU's case we map SP
535  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536  * This is the point of the _sp forms.
537  */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540     if (reg == 31) {
541         TCGv_i64 t = tcg_temp_new_i64();
542         tcg_gen_movi_i64(t, 0);
543         return t;
544     } else {
545         return cpu_X[reg];
546     }
547 }
548 
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552     return cpu_X[reg];
553 }
554 
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556  * representing the register contents. This TCGv is an auto-freed
557  * temporary so it need not be explicitly freed, and may be modified.
558  */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561     TCGv_i64 v = tcg_temp_new_i64();
562     if (reg != 31) {
563         if (sf) {
564             tcg_gen_mov_i64(v, cpu_X[reg]);
565         } else {
566             tcg_gen_ext32u_i64(v, cpu_X[reg]);
567         }
568     } else {
569         tcg_gen_movi_i64(v, 0);
570     }
571     return v;
572 }
573 
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576     TCGv_i64 v = tcg_temp_new_i64();
577     if (sf) {
578         tcg_gen_mov_i64(v, cpu_X[reg]);
579     } else {
580         tcg_gen_ext32u_i64(v, cpu_X[reg]);
581     }
582     return v;
583 }
584 
585 /* Return the offset into CPUARMState of a slice (from
586  * the least significant end) of FP register Qn (ie
587  * Dn, Sn, Hn or Bn).
588  * (Note that this is not the same mapping as for A32; see cpu.h)
589  */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592     return vec_reg_offset(s, regno, 0, size);
593 }
594 
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598     return vec_reg_offset(s, regno, 1, MO_64);
599 }
600 
601 /* Convenience accessors for reading and writing single and double
602  * FP registers. Writing clears the upper parts of the associated
603  * 128 bit vector register, as required by the architecture.
604  * Note that unlike the GP register accessors, the values returned
605  * by the read functions must be manually freed.
606  */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609     TCGv_i64 v = tcg_temp_new_i64();
610 
611     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612     return v;
613 }
614 
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617     TCGv_i32 v = tcg_temp_new_i32();
618 
619     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620     return v;
621 }
622 
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625     TCGv_i32 v = tcg_temp_new_i32();
626 
627     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628     return v;
629 }
630 
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632  * If SVE is not enabled, then there are only 128 bits in the vector.
633  */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636     unsigned ofs = fp_reg_offset(s, rd, MO_64);
637     unsigned vsz = vec_full_reg_size(s);
638 
639     /* Nop move, with side effect of clearing the tail. */
640     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642 
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645     unsigned ofs = fp_reg_offset(s, reg, MO_64);
646 
647     tcg_gen_st_i64(v, tcg_env, ofs);
648     clear_vec_high(s, false, reg);
649 }
650 
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653     TCGv_i64 tmp = tcg_temp_new_i64();
654 
655     tcg_gen_extu_i32_i64(tmp, v);
656     write_fp_dreg(s, reg, tmp);
657 }
658 
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661                          GVecGen2Fn *gvec_fn, int vece)
662 {
663     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664             is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666 
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668  * an expander function.
669  */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674             imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676 
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679                          GVecGen3Fn *gvec_fn, int vece)
680 {
681     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684 
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687                          int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691             is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693 
694 /* Expand a 2-operand operation using an out-of-line helper.  */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696                              int rn, int data, gen_helper_gvec_2 *fn)
697 {
698     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699                        vec_full_reg_offset(s, rn),
700                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702 
703 /* Expand a 3-operand operation using an out-of-line helper.  */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708                        vec_full_reg_offset(s, rn),
709                        vec_full_reg_offset(s, rm),
710                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712 
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714  * an out-of-line helper.
715  */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717                               int rm, bool is_fp16, int data,
718                               gen_helper_gvec_3_ptr *fn)
719 {
720     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722                        vec_full_reg_offset(s, rn),
723                        vec_full_reg_offset(s, rm), fpst,
724                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726 
727 /* Expand a 3-operand + qc + operation using an out-of-line helper.  */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729                             int rm, gen_helper_gvec_3_ptr *fn)
730 {
731     TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732 
733     tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735                        vec_full_reg_offset(s, rn),
736                        vec_full_reg_offset(s, rm), qc_ptr,
737                        is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739 
740 /* Expand a 4-operand operation using an out-of-line helper.  */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745                        vec_full_reg_offset(s, rn),
746                        vec_full_reg_offset(s, rm),
747                        vec_full_reg_offset(s, ra),
748                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750 
751 /*
752  * Expand a 4-operand + fpstatus pointer + simd data value operation using
753  * an out-of-line helper.
754  */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756                               int rm, int ra, bool is_fp16, int data,
757                               gen_helper_gvec_4_ptr *fn)
758 {
759     TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        vec_full_reg_offset(s, ra), fpst,
764                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766 
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768  * than the 32 bit equivalent.
769  */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775 
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779     if (sf) {
780         gen_set_NZ64(result);
781     } else {
782         tcg_gen_extrl_i64_i32(cpu_ZF, result);
783         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784     }
785     tcg_gen_movi_i32(cpu_CF, 0);
786     tcg_gen_movi_i32(cpu_VF, 0);
787 }
788 
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792     TCGv_i64 result, flag, tmp;
793     result = tcg_temp_new_i64();
794     flag = tcg_temp_new_i64();
795     tmp = tcg_temp_new_i64();
796 
797     tcg_gen_movi_i64(tmp, 0);
798     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799 
800     tcg_gen_extrl_i64_i32(cpu_CF, flag);
801 
802     gen_set_NZ64(result);
803 
804     tcg_gen_xor_i64(flag, result, t0);
805     tcg_gen_xor_i64(tmp, t0, t1);
806     tcg_gen_andc_i64(flag, flag, tmp);
807     tcg_gen_extrh_i64_i32(cpu_VF, flag);
808 
809     tcg_gen_mov_i64(dest, result);
810 }
811 
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814     TCGv_i32 t0_32 = tcg_temp_new_i32();
815     TCGv_i32 t1_32 = tcg_temp_new_i32();
816     TCGv_i32 tmp = tcg_temp_new_i32();
817 
818     tcg_gen_movi_i32(tmp, 0);
819     tcg_gen_extrl_i64_i32(t0_32, t0);
820     tcg_gen_extrl_i64_i32(t1_32, t1);
821     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824     tcg_gen_xor_i32(tmp, t0_32, t1_32);
825     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826     tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828 
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831     if (sf) {
832         gen_add64_CC(dest, t0, t1);
833     } else {
834         gen_add32_CC(dest, t0, t1);
835     }
836 }
837 
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841     /* 64 bit arithmetic */
842     TCGv_i64 result, flag, tmp;
843 
844     result = tcg_temp_new_i64();
845     flag = tcg_temp_new_i64();
846     tcg_gen_sub_i64(result, t0, t1);
847 
848     gen_set_NZ64(result);
849 
850     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851     tcg_gen_extrl_i64_i32(cpu_CF, flag);
852 
853     tcg_gen_xor_i64(flag, result, t0);
854     tmp = tcg_temp_new_i64();
855     tcg_gen_xor_i64(tmp, t0, t1);
856     tcg_gen_and_i64(flag, flag, tmp);
857     tcg_gen_extrh_i64_i32(cpu_VF, flag);
858     tcg_gen_mov_i64(dest, result);
859 }
860 
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863     /* 32 bit arithmetic */
864     TCGv_i32 t0_32 = tcg_temp_new_i32();
865     TCGv_i32 t1_32 = tcg_temp_new_i32();
866     TCGv_i32 tmp;
867 
868     tcg_gen_extrl_i64_i32(t0_32, t0);
869     tcg_gen_extrl_i64_i32(t1_32, t1);
870     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874     tmp = tcg_temp_new_i32();
875     tcg_gen_xor_i32(tmp, t0_32, t1_32);
876     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877     tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879 
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882     if (sf) {
883         gen_sub64_CC(dest, t0, t1);
884     } else {
885         gen_sub32_CC(dest, t0, t1);
886     }
887 }
888 
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892     TCGv_i64 flag = tcg_temp_new_i64();
893     tcg_gen_extu_i32_i64(flag, cpu_CF);
894     tcg_gen_add_i64(dest, t0, t1);
895     tcg_gen_add_i64(dest, dest, flag);
896 
897     if (!sf) {
898         tcg_gen_ext32u_i64(dest, dest);
899     }
900 }
901 
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905     if (sf) {
906         TCGv_i64 result = tcg_temp_new_i64();
907         TCGv_i64 cf_64 = tcg_temp_new_i64();
908         TCGv_i64 vf_64 = tcg_temp_new_i64();
909         TCGv_i64 tmp = tcg_temp_new_i64();
910         TCGv_i64 zero = tcg_constant_i64(0);
911 
912         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916         gen_set_NZ64(result);
917 
918         tcg_gen_xor_i64(vf_64, result, t0);
919         tcg_gen_xor_i64(tmp, t0, t1);
920         tcg_gen_andc_i64(vf_64, vf_64, tmp);
921         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922 
923         tcg_gen_mov_i64(dest, result);
924     } else {
925         TCGv_i32 t0_32 = tcg_temp_new_i32();
926         TCGv_i32 t1_32 = tcg_temp_new_i32();
927         TCGv_i32 tmp = tcg_temp_new_i32();
928         TCGv_i32 zero = tcg_constant_i32(0);
929 
930         tcg_gen_extrl_i64_i32(t0_32, t0);
931         tcg_gen_extrl_i64_i32(t1_32, t1);
932         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934 
935         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937         tcg_gen_xor_i32(tmp, t0_32, t1_32);
938         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939         tcg_gen_extu_i32_i64(dest, cpu_NF);
940     }
941 }
942 
943 /*
944  * Load/Store generators
945  */
946 
947 /*
948  * Store from GPR register to memory.
949  */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
952                              bool iss_valid,
953                              unsigned int iss_srt,
954                              bool iss_sf, bool iss_ar)
955 {
956     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957 
958     if (iss_valid) {
959         uint32_t syn;
960 
961         syn = syn_data_abort_with_iss(0,
962                                       (memop & MO_SIZE),
963                                       false,
964                                       iss_srt,
965                                       iss_sf,
966                                       iss_ar,
967                                       0, 0, 0, 0, 0, false);
968         disas_set_insn_syndrome(s, syn);
969     }
970 }
971 
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973                       TCGv_i64 tcg_addr, MemOp memop,
974                       bool iss_valid,
975                       unsigned int iss_srt,
976                       bool iss_sf, bool iss_ar)
977 {
978     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979                      iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981 
982 /*
983  * Load from memory to GPR register
984  */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986                              MemOp memop, bool extend, int memidx,
987                              bool iss_valid, unsigned int iss_srt,
988                              bool iss_sf, bool iss_ar)
989 {
990     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991 
992     if (extend && (memop & MO_SIGN)) {
993         g_assert((memop & MO_SIZE) <= MO_32);
994         tcg_gen_ext32u_i64(dest, dest);
995     }
996 
997     if (iss_valid) {
998         uint32_t syn;
999 
1000         syn = syn_data_abort_with_iss(0,
1001                                       (memop & MO_SIZE),
1002                                       (memop & MO_SIGN) != 0,
1003                                       iss_srt,
1004                                       iss_sf,
1005                                       iss_ar,
1006                                       0, 0, 0, 0, 0, false);
1007         disas_set_insn_syndrome(s, syn);
1008     }
1009 }
1010 
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012                       MemOp memop, bool extend,
1013                       bool iss_valid, unsigned int iss_srt,
1014                       bool iss_sf, bool iss_ar)
1015 {
1016     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017                      iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019 
1020 /*
1021  * Store from FP register to memory
1022  */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026     TCGv_i64 tmplo = tcg_temp_new_i64();
1027 
1028     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029 
1030     if ((mop & MO_SIZE) < MO_128) {
1031         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032     } else {
1033         TCGv_i64 tmphi = tcg_temp_new_i64();
1034         TCGv_i128 t16 = tcg_temp_new_i128();
1035 
1036         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038 
1039         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040     }
1041 }
1042 
1043 /*
1044  * Load from memory to FP register
1045  */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048     /* This always zero-extends and writes to a full 128 bit wide vector */
1049     TCGv_i64 tmplo = tcg_temp_new_i64();
1050     TCGv_i64 tmphi = NULL;
1051 
1052     if ((mop & MO_SIZE) < MO_128) {
1053         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054     } else {
1055         TCGv_i128 t16 = tcg_temp_new_i128();
1056 
1057         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058 
1059         tmphi = tcg_temp_new_i64();
1060         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061     }
1062 
1063     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064 
1065     if (tmphi) {
1066         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067     }
1068     clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070 
1071 /*
1072  * Vector load/store helpers.
1073  *
1074  * The principal difference between this and a FP load is that we don't
1075  * zero extend as we are filling a partial chunk of the vector register.
1076  * These functions don't support 128 bit loads/stores, which would be
1077  * normal load/store operations.
1078  *
1079  * The _i32 versions are useful when operating on 32 bit quantities
1080  * (eg for floating point single or using Neon helper functions).
1081  */
1082 
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085                              int element, MemOp memop)
1086 {
1087     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088     switch ((unsigned)memop) {
1089     case MO_8:
1090         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091         break;
1092     case MO_16:
1093         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094         break;
1095     case MO_32:
1096         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097         break;
1098     case MO_8|MO_SIGN:
1099         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100         break;
1101     case MO_16|MO_SIGN:
1102         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103         break;
1104     case MO_32|MO_SIGN:
1105         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106         break;
1107     case MO_64:
1108     case MO_64|MO_SIGN:
1109         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110         break;
1111     default:
1112         g_assert_not_reached();
1113     }
1114 }
1115 
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117                                  int element, MemOp memop)
1118 {
1119     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120     switch (memop) {
1121     case MO_8:
1122         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123         break;
1124     case MO_16:
1125         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126         break;
1127     case MO_8|MO_SIGN:
1128         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129         break;
1130     case MO_16|MO_SIGN:
1131         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132         break;
1133     case MO_32:
1134     case MO_32|MO_SIGN:
1135         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136         break;
1137     default:
1138         g_assert_not_reached();
1139     }
1140 }
1141 
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144                               int element, MemOp memop)
1145 {
1146     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147     switch (memop) {
1148     case MO_8:
1149         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150         break;
1151     case MO_16:
1152         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153         break;
1154     case MO_32:
1155         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156         break;
1157     case MO_64:
1158         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163 }
1164 
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166                                   int destidx, int element, MemOp memop)
1167 {
1168     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169     switch (memop) {
1170     case MO_8:
1171         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172         break;
1173     case MO_16:
1174         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175         break;
1176     case MO_32:
1177         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178         break;
1179     default:
1180         g_assert_not_reached();
1181     }
1182 }
1183 
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186                       TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189 
1190     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193 
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196                       TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199 
1200     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203 
1204 /* Check that FP/Neon access is enabled. If it is, return
1205  * true. If not, emit code to generate an appropriate exception,
1206  * and return false; the caller should not emit any code for
1207  * the instruction. Note that this check must happen after all
1208  * unallocated-encoding checks (otherwise the syndrome information
1209  * for the resulting exception will be incorrect).
1210  */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213     if (s->fp_excp_el) {
1214         assert(!s->fp_access_checked);
1215         s->fp_access_checked = true;
1216 
1217         gen_exception_insn_el(s, 0, EXCP_UDEF,
1218                               syn_fp_access_trap(1, 0xe, false, 0),
1219                               s->fp_excp_el);
1220         return false;
1221     }
1222     s->fp_access_checked = true;
1223     return true;
1224 }
1225 
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228     if (!fp_access_check_only(s)) {
1229         return false;
1230     }
1231     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232         gen_exception_insn(s, 0, EXCP_UDEF,
1233                            syn_smetrap(SME_ET_Streaming, false));
1234         return false;
1235     }
1236     return true;
1237 }
1238 
1239 /*
1240  * Check that SVE access is enabled.  If it is, return true.
1241  * If not, emit code to generate an appropriate exception and return false.
1242  * This function corresponds to CheckSVEEnabled().
1243  */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247         assert(dc_isar_feature(aa64_sme, s));
1248         if (!sme_sm_enabled_check(s)) {
1249             goto fail_exit;
1250         }
1251     } else if (s->sve_excp_el) {
1252         gen_exception_insn_el(s, 0, EXCP_UDEF,
1253                               syn_sve_access_trap(), s->sve_excp_el);
1254         goto fail_exit;
1255     }
1256     s->sve_access_checked = true;
1257     return fp_access_check(s);
1258 
1259  fail_exit:
1260     /* Assert that we only raise one exception per instruction. */
1261     assert(!s->sve_access_checked);
1262     s->sve_access_checked = true;
1263     return false;
1264 }
1265 
1266 /*
1267  * Check that SME access is enabled, raise an exception if not.
1268  * Note that this function corresponds to CheckSMEAccess and is
1269  * only used directly for cpregs.
1270  */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273     if (s->sme_excp_el) {
1274         gen_exception_insn_el(s, 0, EXCP_UDEF,
1275                               syn_smetrap(SME_ET_AccessTrap, false),
1276                               s->sme_excp_el);
1277         return false;
1278     }
1279     return true;
1280 }
1281 
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285     /*
1286      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287      * to be zero when fp_excp_el has priority.  This is because we need
1288      * sme_excp_el by itself for cpregs access checks.
1289      */
1290     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291         s->fp_access_checked = true;
1292         return sme_access_check(s);
1293     }
1294     return fp_access_check_only(s);
1295 }
1296 
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300     if (!sme_enabled_check(s)) {
1301         return false;
1302     }
1303     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304         gen_exception_insn(s, 0, EXCP_UDEF,
1305                            syn_smetrap(SME_ET_NotStreaming, false));
1306         return false;
1307     }
1308     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309         gen_exception_insn(s, 0, EXCP_UDEF,
1310                            syn_smetrap(SME_ET_InactiveZA, false));
1311         return false;
1312     }
1313     return true;
1314 }
1315 
1316 /*
1317  * Expanders for AdvSIMD translation functions.
1318  */
1319 
1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1321                             gen_helper_gvec_2 *fn)
1322 {
1323     if (!a->q && a->esz == MO_64) {
1324         return false;
1325     }
1326     if (fp_access_check(s)) {
1327         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1328     }
1329     return true;
1330 }
1331 
1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1333                             gen_helper_gvec_3 *fn)
1334 {
1335     if (!a->q && a->esz == MO_64) {
1336         return false;
1337     }
1338     if (fp_access_check(s)) {
1339         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1340     }
1341     return true;
1342 }
1343 
1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1345 {
1346     if (!a->q && a->esz == MO_64) {
1347         return false;
1348     }
1349     if (fp_access_check(s)) {
1350         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1351     }
1352     return true;
1353 }
1354 
1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1356 {
1357     if (!a->q && a->esz == MO_64) {
1358         return false;
1359     }
1360     if (fp_access_check(s)) {
1361         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1362     }
1363     return true;
1364 }
1365 
1366 /*
1367  * This utility function is for doing register extension with an
1368  * optional shift. You will likely want to pass a temporary for the
1369  * destination register. See DecodeRegExtend() in the ARM ARM.
1370  */
1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1372                               int option, unsigned int shift)
1373 {
1374     int extsize = extract32(option, 0, 2);
1375     bool is_signed = extract32(option, 2, 1);
1376 
1377     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1378     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1379 }
1380 
1381 static inline void gen_check_sp_alignment(DisasContext *s)
1382 {
1383     /* The AArch64 architecture mandates that (if enabled via PSTATE
1384      * or SCTLR bits) there is a check that SP is 16-aligned on every
1385      * SP-relative load or store (with an exception generated if it is not).
1386      * In line with general QEMU practice regarding misaligned accesses,
1387      * we omit these checks for the sake of guest program performance.
1388      * This function is provided as a hook so we can more easily add these
1389      * checks in future (possibly as a "favour catching guest program bugs
1390      * over speed" user selectable option).
1391      */
1392 }
1393 
1394 /*
1395  * This provides a simple table based table lookup decoder. It is
1396  * intended to be used when the relevant bits for decode are too
1397  * awkwardly placed and switch/if based logic would be confusing and
1398  * deeply nested. Since it's a linear search through the table, tables
1399  * should be kept small.
1400  *
1401  * It returns the first handler where insn & mask == pattern, or
1402  * NULL if there is no match.
1403  * The table is terminated by an empty mask (i.e. 0)
1404  */
1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1406                                                uint32_t insn)
1407 {
1408     const AArch64DecodeTable *tptr = table;
1409 
1410     while (tptr->mask) {
1411         if ((insn & tptr->mask) == tptr->pattern) {
1412             return tptr->disas_fn;
1413         }
1414         tptr++;
1415     }
1416     return NULL;
1417 }
1418 
1419 /*
1420  * The instruction disassembly implemented here matches
1421  * the instruction encoding classifications in chapter C4
1422  * of the ARM Architecture Reference Manual (DDI0487B_a);
1423  * classification names and decode diagrams here should generally
1424  * match up with those in the manual.
1425  */
1426 
1427 static bool trans_B(DisasContext *s, arg_i *a)
1428 {
1429     reset_btype(s);
1430     gen_goto_tb(s, 0, a->imm);
1431     return true;
1432 }
1433 
1434 static bool trans_BL(DisasContext *s, arg_i *a)
1435 {
1436     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1437     reset_btype(s);
1438     gen_goto_tb(s, 0, a->imm);
1439     return true;
1440 }
1441 
1442 
1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1444 {
1445     DisasLabel match;
1446     TCGv_i64 tcg_cmp;
1447 
1448     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1449     reset_btype(s);
1450 
1451     match = gen_disas_label(s);
1452     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1453                         tcg_cmp, 0, match.label);
1454     gen_goto_tb(s, 0, 4);
1455     set_disas_label(s, match);
1456     gen_goto_tb(s, 1, a->imm);
1457     return true;
1458 }
1459 
1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1461 {
1462     DisasLabel match;
1463     TCGv_i64 tcg_cmp;
1464 
1465     tcg_cmp = tcg_temp_new_i64();
1466     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1467 
1468     reset_btype(s);
1469 
1470     match = gen_disas_label(s);
1471     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1472                         tcg_cmp, 0, match.label);
1473     gen_goto_tb(s, 0, 4);
1474     set_disas_label(s, match);
1475     gen_goto_tb(s, 1, a->imm);
1476     return true;
1477 }
1478 
1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1480 {
1481     /* BC.cond is only present with FEAT_HBC */
1482     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1483         return false;
1484     }
1485     reset_btype(s);
1486     if (a->cond < 0x0e) {
1487         /* genuinely conditional branches */
1488         DisasLabel match = gen_disas_label(s);
1489         arm_gen_test_cc(a->cond, match.label);
1490         gen_goto_tb(s, 0, 4);
1491         set_disas_label(s, match);
1492         gen_goto_tb(s, 1, a->imm);
1493     } else {
1494         /* 0xe and 0xf are both "always" conditions */
1495         gen_goto_tb(s, 0, a->imm);
1496     }
1497     return true;
1498 }
1499 
1500 static void set_btype_for_br(DisasContext *s, int rn)
1501 {
1502     if (dc_isar_feature(aa64_bti, s)) {
1503         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1504         set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1505     }
1506 }
1507 
1508 static void set_btype_for_blr(DisasContext *s)
1509 {
1510     if (dc_isar_feature(aa64_bti, s)) {
1511         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1512         set_btype(s, 2);
1513     }
1514 }
1515 
1516 static bool trans_BR(DisasContext *s, arg_r *a)
1517 {
1518     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1519     set_btype_for_br(s, a->rn);
1520     s->base.is_jmp = DISAS_JUMP;
1521     return true;
1522 }
1523 
1524 static bool trans_BLR(DisasContext *s, arg_r *a)
1525 {
1526     TCGv_i64 dst = cpu_reg(s, a->rn);
1527     TCGv_i64 lr = cpu_reg(s, 30);
1528     if (dst == lr) {
1529         TCGv_i64 tmp = tcg_temp_new_i64();
1530         tcg_gen_mov_i64(tmp, dst);
1531         dst = tmp;
1532     }
1533     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1534     gen_a64_set_pc(s, dst);
1535     set_btype_for_blr(s);
1536     s->base.is_jmp = DISAS_JUMP;
1537     return true;
1538 }
1539 
1540 static bool trans_RET(DisasContext *s, arg_r *a)
1541 {
1542     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1543     s->base.is_jmp = DISAS_JUMP;
1544     return true;
1545 }
1546 
1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1548                                    TCGv_i64 modifier, bool use_key_a)
1549 {
1550     TCGv_i64 truedst;
1551     /*
1552      * Return the branch target for a BRAA/RETA/etc, which is either
1553      * just the destination dst, or that value with the pauth check
1554      * done and the code removed from the high bits.
1555      */
1556     if (!s->pauth_active) {
1557         return dst;
1558     }
1559 
1560     truedst = tcg_temp_new_i64();
1561     if (use_key_a) {
1562         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1563     } else {
1564         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1565     }
1566     return truedst;
1567 }
1568 
1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1570 {
1571     TCGv_i64 dst;
1572 
1573     if (!dc_isar_feature(aa64_pauth, s)) {
1574         return false;
1575     }
1576 
1577     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1578     gen_a64_set_pc(s, dst);
1579     set_btype_for_br(s, a->rn);
1580     s->base.is_jmp = DISAS_JUMP;
1581     return true;
1582 }
1583 
1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1585 {
1586     TCGv_i64 dst, lr;
1587 
1588     if (!dc_isar_feature(aa64_pauth, s)) {
1589         return false;
1590     }
1591 
1592     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1593     lr = cpu_reg(s, 30);
1594     if (dst == lr) {
1595         TCGv_i64 tmp = tcg_temp_new_i64();
1596         tcg_gen_mov_i64(tmp, dst);
1597         dst = tmp;
1598     }
1599     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1600     gen_a64_set_pc(s, dst);
1601     set_btype_for_blr(s);
1602     s->base.is_jmp = DISAS_JUMP;
1603     return true;
1604 }
1605 
1606 static bool trans_RETA(DisasContext *s, arg_reta *a)
1607 {
1608     TCGv_i64 dst;
1609 
1610     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1611     gen_a64_set_pc(s, dst);
1612     s->base.is_jmp = DISAS_JUMP;
1613     return true;
1614 }
1615 
1616 static bool trans_BRA(DisasContext *s, arg_bra *a)
1617 {
1618     TCGv_i64 dst;
1619 
1620     if (!dc_isar_feature(aa64_pauth, s)) {
1621         return false;
1622     }
1623     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1624     gen_a64_set_pc(s, dst);
1625     set_btype_for_br(s, a->rn);
1626     s->base.is_jmp = DISAS_JUMP;
1627     return true;
1628 }
1629 
1630 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1631 {
1632     TCGv_i64 dst, lr;
1633 
1634     if (!dc_isar_feature(aa64_pauth, s)) {
1635         return false;
1636     }
1637     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1638     lr = cpu_reg(s, 30);
1639     if (dst == lr) {
1640         TCGv_i64 tmp = tcg_temp_new_i64();
1641         tcg_gen_mov_i64(tmp, dst);
1642         dst = tmp;
1643     }
1644     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1645     gen_a64_set_pc(s, dst);
1646     set_btype_for_blr(s);
1647     s->base.is_jmp = DISAS_JUMP;
1648     return true;
1649 }
1650 
1651 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1652 {
1653     TCGv_i64 dst;
1654 
1655     if (s->current_el == 0) {
1656         return false;
1657     }
1658     if (s->trap_eret) {
1659         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1660         return true;
1661     }
1662     dst = tcg_temp_new_i64();
1663     tcg_gen_ld_i64(dst, tcg_env,
1664                    offsetof(CPUARMState, elr_el[s->current_el]));
1665 
1666     translator_io_start(&s->base);
1667 
1668     gen_helper_exception_return(tcg_env, dst);
1669     /* Must exit loop to check un-masked IRQs */
1670     s->base.is_jmp = DISAS_EXIT;
1671     return true;
1672 }
1673 
1674 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1675 {
1676     TCGv_i64 dst;
1677 
1678     if (!dc_isar_feature(aa64_pauth, s)) {
1679         return false;
1680     }
1681     if (s->current_el == 0) {
1682         return false;
1683     }
1684     /* The FGT trap takes precedence over an auth trap. */
1685     if (s->trap_eret) {
1686         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1687         return true;
1688     }
1689     dst = tcg_temp_new_i64();
1690     tcg_gen_ld_i64(dst, tcg_env,
1691                    offsetof(CPUARMState, elr_el[s->current_el]));
1692 
1693     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1694 
1695     translator_io_start(&s->base);
1696 
1697     gen_helper_exception_return(tcg_env, dst);
1698     /* Must exit loop to check un-masked IRQs */
1699     s->base.is_jmp = DISAS_EXIT;
1700     return true;
1701 }
1702 
1703 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1704 {
1705     return true;
1706 }
1707 
1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1709 {
1710     /*
1711      * When running in MTTCG we don't generate jumps to the yield and
1712      * WFE helpers as it won't affect the scheduling of other vCPUs.
1713      * If we wanted to more completely model WFE/SEV so we don't busy
1714      * spin unnecessarily we would need to do something more involved.
1715      */
1716     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1717         s->base.is_jmp = DISAS_YIELD;
1718     }
1719     return true;
1720 }
1721 
1722 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1723 {
1724     s->base.is_jmp = DISAS_WFI;
1725     return true;
1726 }
1727 
1728 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1729 {
1730     /*
1731      * When running in MTTCG we don't generate jumps to the yield and
1732      * WFE helpers as it won't affect the scheduling of other vCPUs.
1733      * If we wanted to more completely model WFE/SEV so we don't busy
1734      * spin unnecessarily we would need to do something more involved.
1735      */
1736     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1737         s->base.is_jmp = DISAS_WFE;
1738     }
1739     return true;
1740 }
1741 
1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1743 {
1744     if (s->pauth_active) {
1745         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1746     }
1747     return true;
1748 }
1749 
1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1751 {
1752     if (s->pauth_active) {
1753         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1754     }
1755     return true;
1756 }
1757 
1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1759 {
1760     if (s->pauth_active) {
1761         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1762     }
1763     return true;
1764 }
1765 
1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1767 {
1768     if (s->pauth_active) {
1769         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1770     }
1771     return true;
1772 }
1773 
1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1775 {
1776     if (s->pauth_active) {
1777         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1778     }
1779     return true;
1780 }
1781 
1782 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1783 {
1784     /* Without RAS, we must implement this as NOP. */
1785     if (dc_isar_feature(aa64_ras, s)) {
1786         /*
1787          * QEMU does not have a source of physical SErrors,
1788          * so we are only concerned with virtual SErrors.
1789          * The pseudocode in the ARM for this case is
1790          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1791          *      AArch64.vESBOperation();
1792          * Most of the condition can be evaluated at translation time.
1793          * Test for EL2 present, and defer test for SEL2 to runtime.
1794          */
1795         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1796             gen_helper_vesb(tcg_env);
1797         }
1798     }
1799     return true;
1800 }
1801 
1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1803 {
1804     if (s->pauth_active) {
1805         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1806     }
1807     return true;
1808 }
1809 
1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1811 {
1812     if (s->pauth_active) {
1813         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1814     }
1815     return true;
1816 }
1817 
1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1819 {
1820     if (s->pauth_active) {
1821         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1822     }
1823     return true;
1824 }
1825 
1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1827 {
1828     if (s->pauth_active) {
1829         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1830     }
1831     return true;
1832 }
1833 
1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1835 {
1836     if (s->pauth_active) {
1837         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1838     }
1839     return true;
1840 }
1841 
1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1843 {
1844     if (s->pauth_active) {
1845         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1846     }
1847     return true;
1848 }
1849 
1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1851 {
1852     if (s->pauth_active) {
1853         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854     }
1855     return true;
1856 }
1857 
1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1859 {
1860     if (s->pauth_active) {
1861         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862     }
1863     return true;
1864 }
1865 
1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1867 {
1868     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1869     return true;
1870 }
1871 
1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1873 {
1874     /* We handle DSB and DMB the same way */
1875     TCGBar bar;
1876 
1877     switch (a->types) {
1878     case 1: /* MBReqTypes_Reads */
1879         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1880         break;
1881     case 2: /* MBReqTypes_Writes */
1882         bar = TCG_BAR_SC | TCG_MO_ST_ST;
1883         break;
1884     default: /* MBReqTypes_All */
1885         bar = TCG_BAR_SC | TCG_MO_ALL;
1886         break;
1887     }
1888     tcg_gen_mb(bar);
1889     return true;
1890 }
1891 
1892 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1893 {
1894     /*
1895      * We need to break the TB after this insn to execute
1896      * self-modifying code correctly and also to take
1897      * any pending interrupts immediately.
1898      */
1899     reset_btype(s);
1900     gen_goto_tb(s, 0, 4);
1901     return true;
1902 }
1903 
1904 static bool trans_SB(DisasContext *s, arg_SB *a)
1905 {
1906     if (!dc_isar_feature(aa64_sb, s)) {
1907         return false;
1908     }
1909     /*
1910      * TODO: There is no speculation barrier opcode for TCG;
1911      * MB and end the TB instead.
1912      */
1913     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1914     gen_goto_tb(s, 0, 4);
1915     return true;
1916 }
1917 
1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1919 {
1920     if (!dc_isar_feature(aa64_condm_4, s)) {
1921         return false;
1922     }
1923     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1924     return true;
1925 }
1926 
1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1928 {
1929     TCGv_i32 z;
1930 
1931     if (!dc_isar_feature(aa64_condm_5, s)) {
1932         return false;
1933     }
1934 
1935     z = tcg_temp_new_i32();
1936 
1937     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1938 
1939     /*
1940      * (!C & !Z) << 31
1941      * (!(C | Z)) << 31
1942      * ~((C | Z) << 31)
1943      * ~-(C | Z)
1944      * (C | Z) - 1
1945      */
1946     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1947     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1948 
1949     /* !(Z & C) */
1950     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1951     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1952 
1953     /* (!C & Z) << 31 -> -(Z & ~C) */
1954     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1955     tcg_gen_neg_i32(cpu_VF, cpu_VF);
1956 
1957     /* C | Z */
1958     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1959 
1960     return true;
1961 }
1962 
1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1964 {
1965     if (!dc_isar_feature(aa64_condm_5, s)) {
1966         return false;
1967     }
1968 
1969     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
1970     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
1971 
1972     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1973     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1974 
1975     tcg_gen_movi_i32(cpu_NF, 0);
1976     tcg_gen_movi_i32(cpu_VF, 0);
1977 
1978     return true;
1979 }
1980 
1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1982 {
1983     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1984         return false;
1985     }
1986     if (a->imm & 1) {
1987         set_pstate_bits(PSTATE_UAO);
1988     } else {
1989         clear_pstate_bits(PSTATE_UAO);
1990     }
1991     gen_rebuild_hflags(s);
1992     s->base.is_jmp = DISAS_TOO_MANY;
1993     return true;
1994 }
1995 
1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1997 {
1998     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1999         return false;
2000     }
2001     if (a->imm & 1) {
2002         set_pstate_bits(PSTATE_PAN);
2003     } else {
2004         clear_pstate_bits(PSTATE_PAN);
2005     }
2006     gen_rebuild_hflags(s);
2007     s->base.is_jmp = DISAS_TOO_MANY;
2008     return true;
2009 }
2010 
2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2012 {
2013     if (s->current_el == 0) {
2014         return false;
2015     }
2016     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2017     s->base.is_jmp = DISAS_TOO_MANY;
2018     return true;
2019 }
2020 
2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2022 {
2023     if (!dc_isar_feature(aa64_ssbs, s)) {
2024         return false;
2025     }
2026     if (a->imm & 1) {
2027         set_pstate_bits(PSTATE_SSBS);
2028     } else {
2029         clear_pstate_bits(PSTATE_SSBS);
2030     }
2031     /* Don't need to rebuild hflags since SSBS is a nop */
2032     s->base.is_jmp = DISAS_TOO_MANY;
2033     return true;
2034 }
2035 
2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2037 {
2038     if (!dc_isar_feature(aa64_dit, s)) {
2039         return false;
2040     }
2041     if (a->imm & 1) {
2042         set_pstate_bits(PSTATE_DIT);
2043     } else {
2044         clear_pstate_bits(PSTATE_DIT);
2045     }
2046     /* There's no need to rebuild hflags because DIT is a nop */
2047     s->base.is_jmp = DISAS_TOO_MANY;
2048     return true;
2049 }
2050 
2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2052 {
2053     if (dc_isar_feature(aa64_mte, s)) {
2054         /* Full MTE is enabled -- set the TCO bit as directed. */
2055         if (a->imm & 1) {
2056             set_pstate_bits(PSTATE_TCO);
2057         } else {
2058             clear_pstate_bits(PSTATE_TCO);
2059         }
2060         gen_rebuild_hflags(s);
2061         /* Many factors, including TCO, go into MTE_ACTIVE. */
2062         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2063         return true;
2064     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2065         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2066         return true;
2067     } else {
2068         /* Insn not present */
2069         return false;
2070     }
2071 }
2072 
2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2074 {
2075     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2076     s->base.is_jmp = DISAS_TOO_MANY;
2077     return true;
2078 }
2079 
2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2081 {
2082     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2083     /* Exit the cpu loop to re-evaluate pending IRQs. */
2084     s->base.is_jmp = DISAS_UPDATE_EXIT;
2085     return true;
2086 }
2087 
2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2089 {
2090     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2091         return false;
2092     }
2093 
2094     if (a->imm == 0) {
2095         clear_pstate_bits(PSTATE_ALLINT);
2096     } else if (s->current_el > 1) {
2097         set_pstate_bits(PSTATE_ALLINT);
2098     } else {
2099         gen_helper_msr_set_allint_el1(tcg_env);
2100     }
2101 
2102     /* Exit the cpu loop to re-evaluate pending IRQs. */
2103     s->base.is_jmp = DISAS_UPDATE_EXIT;
2104     return true;
2105 }
2106 
2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2108 {
2109     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2110         return false;
2111     }
2112     if (sme_access_check(s)) {
2113         int old = s->pstate_sm | (s->pstate_za << 1);
2114         int new = a->imm * 3;
2115 
2116         if ((old ^ new) & a->mask) {
2117             /* At least one bit changes. */
2118             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2119                                 tcg_constant_i32(a->mask));
2120             s->base.is_jmp = DISAS_TOO_MANY;
2121         }
2122     }
2123     return true;
2124 }
2125 
2126 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2127 {
2128     TCGv_i32 tmp = tcg_temp_new_i32();
2129     TCGv_i32 nzcv = tcg_temp_new_i32();
2130 
2131     /* build bit 31, N */
2132     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2133     /* build bit 30, Z */
2134     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2135     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2136     /* build bit 29, C */
2137     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2138     /* build bit 28, V */
2139     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2140     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2141     /* generate result */
2142     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2143 }
2144 
2145 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2146 {
2147     TCGv_i32 nzcv = tcg_temp_new_i32();
2148 
2149     /* take NZCV from R[t] */
2150     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2151 
2152     /* bit 31, N */
2153     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2154     /* bit 30, Z */
2155     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2156     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2157     /* bit 29, C */
2158     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2159     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2160     /* bit 28, V */
2161     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2162     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2163 }
2164 
2165 static void gen_sysreg_undef(DisasContext *s, bool isread,
2166                              uint8_t op0, uint8_t op1, uint8_t op2,
2167                              uint8_t crn, uint8_t crm, uint8_t rt)
2168 {
2169     /*
2170      * Generate code to emit an UNDEF with correct syndrome
2171      * information for a failed system register access.
2172      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2173      * but if FEAT_IDST is implemented then read accesses to registers
2174      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2175      * syndrome.
2176      */
2177     uint32_t syndrome;
2178 
2179     if (isread && dc_isar_feature(aa64_ids, s) &&
2180         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2181         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2182     } else {
2183         syndrome = syn_uncategorized();
2184     }
2185     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2186 }
2187 
2188 /* MRS - move from system register
2189  * MSR (register) - move to system register
2190  * SYS
2191  * SYSL
2192  * These are all essentially the same insn in 'read' and 'write'
2193  * versions, with varying op0 fields.
2194  */
2195 static void handle_sys(DisasContext *s, bool isread,
2196                        unsigned int op0, unsigned int op1, unsigned int op2,
2197                        unsigned int crn, unsigned int crm, unsigned int rt)
2198 {
2199     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2200                                       crn, crm, op0, op1, op2);
2201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2202     bool need_exit_tb = false;
2203     bool nv_trap_to_el2 = false;
2204     bool nv_redirect_reg = false;
2205     bool skip_fp_access_checks = false;
2206     bool nv2_mem_redirect = false;
2207     TCGv_ptr tcg_ri = NULL;
2208     TCGv_i64 tcg_rt;
2209     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2210 
2211     if (crn == 11 || crn == 15) {
2212         /*
2213          * Check for TIDCP trap, which must take precedence over
2214          * the UNDEF for "no such register" etc.
2215          */
2216         switch (s->current_el) {
2217         case 0:
2218             if (dc_isar_feature(aa64_tidcp1, s)) {
2219                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2220             }
2221             break;
2222         case 1:
2223             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2224             break;
2225         }
2226     }
2227 
2228     if (!ri) {
2229         /* Unknown register; this might be a guest error or a QEMU
2230          * unimplemented feature.
2231          */
2232         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2233                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2234                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2235         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2236         return;
2237     }
2238 
2239     if (s->nv2 && ri->nv2_redirect_offset) {
2240         /*
2241          * Some registers always redirect to memory; some only do so if
2242          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2243          * pairs which share an offset; see the table in R_CSRPQ).
2244          */
2245         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2246             nv2_mem_redirect = s->nv1;
2247         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2248             nv2_mem_redirect = !s->nv1;
2249         } else {
2250             nv2_mem_redirect = true;
2251         }
2252     }
2253 
2254     /* Check access permissions */
2255     if (!cp_access_ok(s->current_el, ri, isread)) {
2256         /*
2257          * FEAT_NV/NV2 handling does not do the usual FP access checks
2258          * for registers only accessible at EL2 (though it *does* do them
2259          * for registers accessible at EL1).
2260          */
2261         skip_fp_access_checks = true;
2262         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2263             /*
2264              * This is one of the few EL2 registers which should redirect
2265              * to the equivalent EL1 register. We do that after running
2266              * the EL2 register's accessfn.
2267              */
2268             nv_redirect_reg = true;
2269             assert(!nv2_mem_redirect);
2270         } else if (nv2_mem_redirect) {
2271             /*
2272              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2273              * UNDEF to EL1.
2274              */
2275         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2276             /*
2277              * This register / instruction exists and is an EL2 register, so
2278              * we must trap to EL2 if accessed in nested virtualization EL1
2279              * instead of UNDEFing. We'll do that after the usual access checks.
2280              * (This makes a difference only for a couple of registers like
2281              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2282              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2283              * an accessfn which does nothing when called from EL1, because
2284              * the trap-to-EL3 controls which would apply to that register
2285              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2286              */
2287             nv_trap_to_el2 = true;
2288         } else {
2289             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290             return;
2291         }
2292     }
2293 
2294     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2295         /* Emit code to perform further access permissions checks at
2296          * runtime; this may result in an exception.
2297          */
2298         gen_a64_update_pc(s, 0);
2299         tcg_ri = tcg_temp_new_ptr();
2300         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2301                                        tcg_constant_i32(key),
2302                                        tcg_constant_i32(syndrome),
2303                                        tcg_constant_i32(isread));
2304     } else if (ri->type & ARM_CP_RAISES_EXC) {
2305         /*
2306          * The readfn or writefn might raise an exception;
2307          * synchronize the CPU state in case it does.
2308          */
2309         gen_a64_update_pc(s, 0);
2310     }
2311 
2312     if (!skip_fp_access_checks) {
2313         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2314             return;
2315         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2316             return;
2317         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2318             return;
2319         }
2320     }
2321 
2322     if (nv_trap_to_el2) {
2323         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2324         return;
2325     }
2326 
2327     if (nv_redirect_reg) {
2328         /*
2329          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2330          * Conveniently in all cases the encoding of the EL1 register is
2331          * identical to the EL2 register except that opc1 is 0.
2332          * Get the reginfo for the EL1 register to use for the actual access.
2333          * We don't use the EL1 register's access function, and
2334          * fine-grained-traps on EL1 also do not apply here.
2335          */
2336         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2337                                  crn, crm, op0, 0, op2);
2338         ri = get_arm_cp_reginfo(s->cp_regs, key);
2339         assert(ri);
2340         assert(cp_access_ok(s->current_el, ri, isread));
2341         /*
2342          * We might not have done an update_pc earlier, so check we don't
2343          * need it. We could support this in future if necessary.
2344          */
2345         assert(!(ri->type & ARM_CP_RAISES_EXC));
2346     }
2347 
2348     if (nv2_mem_redirect) {
2349         /*
2350          * This system register is being redirected into an EL2 memory access.
2351          * This means it is not an IO operation, doesn't change hflags,
2352          * and need not end the TB, because it has no side effects.
2353          *
2354          * The access is 64-bit single copy atomic, guaranteed aligned because
2355          * of the definition of VCNR_EL2. Its endianness depends on
2356          * SCTLR_EL2.EE, not on the data endianness of EL1.
2357          * It is done under either the EL2 translation regime or the EL2&0
2358          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2359          * PSTATE.PAN is 0.
2360          */
2361         TCGv_i64 ptr = tcg_temp_new_i64();
2362         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2363         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2364         int memidx = arm_to_core_mmu_idx(armmemidx);
2365         uint32_t syn;
2366 
2367         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2368 
2369         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2370         tcg_gen_addi_i64(ptr, ptr,
2371                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2372         tcg_rt = cpu_reg(s, rt);
2373 
2374         syn = syn_data_abort_vncr(0, !isread, 0);
2375         disas_set_insn_syndrome(s, syn);
2376         if (isread) {
2377             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2378         } else {
2379             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2380         }
2381         return;
2382     }
2383 
2384     /* Handle special cases first */
2385     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2386     case 0:
2387         break;
2388     case ARM_CP_NOP:
2389         return;
2390     case ARM_CP_NZCV:
2391         tcg_rt = cpu_reg(s, rt);
2392         if (isread) {
2393             gen_get_nzcv(tcg_rt);
2394         } else {
2395             gen_set_nzcv(tcg_rt);
2396         }
2397         return;
2398     case ARM_CP_CURRENTEL:
2399     {
2400         /*
2401          * Reads as current EL value from pstate, which is
2402          * guaranteed to be constant by the tb flags.
2403          * For nested virt we should report EL2.
2404          */
2405         int el = s->nv ? 2 : s->current_el;
2406         tcg_rt = cpu_reg(s, rt);
2407         tcg_gen_movi_i64(tcg_rt, el << 2);
2408         return;
2409     }
2410     case ARM_CP_DC_ZVA:
2411         /* Writes clear the aligned block of memory which rt points into. */
2412         if (s->mte_active[0]) {
2413             int desc = 0;
2414 
2415             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2416             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2417             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2418 
2419             tcg_rt = tcg_temp_new_i64();
2420             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2421                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2422         } else {
2423             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2424         }
2425         gen_helper_dc_zva(tcg_env, tcg_rt);
2426         return;
2427     case ARM_CP_DC_GVA:
2428         {
2429             TCGv_i64 clean_addr, tag;
2430 
2431             /*
2432              * DC_GVA, like DC_ZVA, requires that we supply the original
2433              * pointer for an invalid page.  Probe that address first.
2434              */
2435             tcg_rt = cpu_reg(s, rt);
2436             clean_addr = clean_data_tbi(s, tcg_rt);
2437             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2438 
2439             if (s->ata[0]) {
2440                 /* Extract the tag from the register to match STZGM.  */
2441                 tag = tcg_temp_new_i64();
2442                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2443                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2444             }
2445         }
2446         return;
2447     case ARM_CP_DC_GZVA:
2448         {
2449             TCGv_i64 clean_addr, tag;
2450 
2451             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2452             tcg_rt = cpu_reg(s, rt);
2453             clean_addr = clean_data_tbi(s, tcg_rt);
2454             gen_helper_dc_zva(tcg_env, clean_addr);
2455 
2456             if (s->ata[0]) {
2457                 /* Extract the tag from the register to match STZGM.  */
2458                 tag = tcg_temp_new_i64();
2459                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2460                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2461             }
2462         }
2463         return;
2464     default:
2465         g_assert_not_reached();
2466     }
2467 
2468     if (ri->type & ARM_CP_IO) {
2469         /* I/O operations must end the TB here (whether read or write) */
2470         need_exit_tb = translator_io_start(&s->base);
2471     }
2472 
2473     tcg_rt = cpu_reg(s, rt);
2474 
2475     if (isread) {
2476         if (ri->type & ARM_CP_CONST) {
2477             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2478         } else if (ri->readfn) {
2479             if (!tcg_ri) {
2480                 tcg_ri = gen_lookup_cp_reg(key);
2481             }
2482             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2483         } else {
2484             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2485         }
2486     } else {
2487         if (ri->type & ARM_CP_CONST) {
2488             /* If not forbidden by access permissions, treat as WI */
2489             return;
2490         } else if (ri->writefn) {
2491             if (!tcg_ri) {
2492                 tcg_ri = gen_lookup_cp_reg(key);
2493             }
2494             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2495         } else {
2496             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2497         }
2498     }
2499 
2500     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2501         /*
2502          * A write to any coprocessor register that ends a TB
2503          * must rebuild the hflags for the next TB.
2504          */
2505         gen_rebuild_hflags(s);
2506         /*
2507          * We default to ending the TB on a coprocessor register write,
2508          * but allow this to be suppressed by the register definition
2509          * (usually only necessary to work around guest bugs).
2510          */
2511         need_exit_tb = true;
2512     }
2513     if (need_exit_tb) {
2514         s->base.is_jmp = DISAS_UPDATE_EXIT;
2515     }
2516 }
2517 
2518 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2519 {
2520     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2521     return true;
2522 }
2523 
2524 static bool trans_SVC(DisasContext *s, arg_i *a)
2525 {
2526     /*
2527      * For SVC, HVC and SMC we advance the single-step state
2528      * machine before taking the exception. This is architecturally
2529      * mandated, to ensure that single-stepping a system call
2530      * instruction works properly.
2531      */
2532     uint32_t syndrome = syn_aa64_svc(a->imm);
2533     if (s->fgt_svc) {
2534         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2535         return true;
2536     }
2537     gen_ss_advance(s);
2538     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2539     return true;
2540 }
2541 
2542 static bool trans_HVC(DisasContext *s, arg_i *a)
2543 {
2544     int target_el = s->current_el == 3 ? 3 : 2;
2545 
2546     if (s->current_el == 0) {
2547         unallocated_encoding(s);
2548         return true;
2549     }
2550     /*
2551      * The pre HVC helper handles cases when HVC gets trapped
2552      * as an undefined insn by runtime configuration.
2553      */
2554     gen_a64_update_pc(s, 0);
2555     gen_helper_pre_hvc(tcg_env);
2556     /* Architecture requires ss advance before we do the actual work */
2557     gen_ss_advance(s);
2558     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2559     return true;
2560 }
2561 
2562 static bool trans_SMC(DisasContext *s, arg_i *a)
2563 {
2564     if (s->current_el == 0) {
2565         unallocated_encoding(s);
2566         return true;
2567     }
2568     gen_a64_update_pc(s, 0);
2569     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2570     /* Architecture requires ss advance before we do the actual work */
2571     gen_ss_advance(s);
2572     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2573     return true;
2574 }
2575 
2576 static bool trans_BRK(DisasContext *s, arg_i *a)
2577 {
2578     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2579     return true;
2580 }
2581 
2582 static bool trans_HLT(DisasContext *s, arg_i *a)
2583 {
2584     /*
2585      * HLT. This has two purposes.
2586      * Architecturally, it is an external halting debug instruction.
2587      * Since QEMU doesn't implement external debug, we treat this as
2588      * it is required for halting debug disabled: it will UNDEF.
2589      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2590      */
2591     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2592         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2593     } else {
2594         unallocated_encoding(s);
2595     }
2596     return true;
2597 }
2598 
2599 /*
2600  * Load/Store exclusive instructions are implemented by remembering
2601  * the value/address loaded, and seeing if these are the same
2602  * when the store is performed. This is not actually the architecturally
2603  * mandated semantics, but it works for typical guest code sequences
2604  * and avoids having to monitor regular stores.
2605  *
2606  * The store exclusive uses the atomic cmpxchg primitives to avoid
2607  * races in multi-threaded linux-user and when MTTCG softmmu is
2608  * enabled.
2609  */
2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2611                                int size, bool is_pair)
2612 {
2613     int idx = get_mem_index(s);
2614     TCGv_i64 dirty_addr, clean_addr;
2615     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2616 
2617     s->is_ldex = true;
2618     dirty_addr = cpu_reg_sp(s, rn);
2619     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2620 
2621     g_assert(size <= 3);
2622     if (is_pair) {
2623         g_assert(size >= 2);
2624         if (size == 2) {
2625             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2626             if (s->be_data == MO_LE) {
2627                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2628                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2629             } else {
2630                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2631                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2632             }
2633         } else {
2634             TCGv_i128 t16 = tcg_temp_new_i128();
2635 
2636             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2637 
2638             if (s->be_data == MO_LE) {
2639                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2640                                       cpu_exclusive_high, t16);
2641             } else {
2642                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2643                                       cpu_exclusive_val, t16);
2644             }
2645             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2646             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2647         }
2648     } else {
2649         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2650         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2651     }
2652     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2653 }
2654 
2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2656                                 int rn, int size, int is_pair)
2657 {
2658     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2659      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2660      *     [addr] = {Rt};
2661      *     if (is_pair) {
2662      *         [addr + datasize] = {Rt2};
2663      *     }
2664      *     {Rd} = 0;
2665      * } else {
2666      *     {Rd} = 1;
2667      * }
2668      * env->exclusive_addr = -1;
2669      */
2670     TCGLabel *fail_label = gen_new_label();
2671     TCGLabel *done_label = gen_new_label();
2672     TCGv_i64 tmp, clean_addr;
2673     MemOp memop;
2674 
2675     /*
2676      * FIXME: We are out of spec here.  We have recorded only the address
2677      * from load_exclusive, not the entire range, and we assume that the
2678      * size of the access on both sides match.  The architecture allows the
2679      * store to be smaller than the load, so long as the stored bytes are
2680      * within the range recorded by the load.
2681      */
2682 
2683     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2684     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2685     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2686 
2687     /*
2688      * The write, and any associated faults, only happen if the virtual
2689      * and physical addresses pass the exclusive monitor check.  These
2690      * faults are exceedingly unlikely, because normally the guest uses
2691      * the exact same address register for the load_exclusive, and we
2692      * would have recognized these faults there.
2693      *
2694      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2695      * unaligned 4-byte write within the range of an aligned 8-byte load.
2696      * With LSE2, the store would need to cross a 16-byte boundary when the
2697      * load did not, which would mean the store is outside the range
2698      * recorded for the monitor, which would have failed a corrected monitor
2699      * check above.  For now, we assume no size change and retain the
2700      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2701      *
2702      * It is possible to trigger an MTE fault, by performing the load with
2703      * a virtual address with a valid tag and performing the store with the
2704      * same virtual address and a different invalid tag.
2705      */
2706     memop = size + is_pair;
2707     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2708         memop |= MO_ALIGN;
2709     }
2710     memop = finalize_memop(s, memop);
2711     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2712 
2713     tmp = tcg_temp_new_i64();
2714     if (is_pair) {
2715         if (size == 2) {
2716             if (s->be_data == MO_LE) {
2717                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2718             } else {
2719                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2720             }
2721             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2722                                        cpu_exclusive_val, tmp,
2723                                        get_mem_index(s), memop);
2724             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2725         } else {
2726             TCGv_i128 t16 = tcg_temp_new_i128();
2727             TCGv_i128 c16 = tcg_temp_new_i128();
2728             TCGv_i64 a, b;
2729 
2730             if (s->be_data == MO_LE) {
2731                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2732                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2733                                         cpu_exclusive_high);
2734             } else {
2735                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2736                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2737                                         cpu_exclusive_val);
2738             }
2739 
2740             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2741                                         get_mem_index(s), memop);
2742 
2743             a = tcg_temp_new_i64();
2744             b = tcg_temp_new_i64();
2745             if (s->be_data == MO_LE) {
2746                 tcg_gen_extr_i128_i64(a, b, t16);
2747             } else {
2748                 tcg_gen_extr_i128_i64(b, a, t16);
2749             }
2750 
2751             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2752             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2753             tcg_gen_or_i64(tmp, a, b);
2754 
2755             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2756         }
2757     } else {
2758         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2759                                    cpu_reg(s, rt), get_mem_index(s), memop);
2760         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2761     }
2762     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2763     tcg_gen_br(done_label);
2764 
2765     gen_set_label(fail_label);
2766     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2767     gen_set_label(done_label);
2768     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2769 }
2770 
2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2772                                  int rn, int size)
2773 {
2774     TCGv_i64 tcg_rs = cpu_reg(s, rs);
2775     TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776     int memidx = get_mem_index(s);
2777     TCGv_i64 clean_addr;
2778     MemOp memop;
2779 
2780     if (rn == 31) {
2781         gen_check_sp_alignment(s);
2782     }
2783     memop = check_atomic_align(s, rn, size);
2784     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2785     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2786                                memidx, memop);
2787 }
2788 
2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2790                                       int rn, int size)
2791 {
2792     TCGv_i64 s1 = cpu_reg(s, rs);
2793     TCGv_i64 s2 = cpu_reg(s, rs + 1);
2794     TCGv_i64 t1 = cpu_reg(s, rt);
2795     TCGv_i64 t2 = cpu_reg(s, rt + 1);
2796     TCGv_i64 clean_addr;
2797     int memidx = get_mem_index(s);
2798     MemOp memop;
2799 
2800     if (rn == 31) {
2801         gen_check_sp_alignment(s);
2802     }
2803 
2804     /* This is a single atomic access, despite the "pair". */
2805     memop = check_atomic_align(s, rn, size + 1);
2806     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2807 
2808     if (size == 2) {
2809         TCGv_i64 cmp = tcg_temp_new_i64();
2810         TCGv_i64 val = tcg_temp_new_i64();
2811 
2812         if (s->be_data == MO_LE) {
2813             tcg_gen_concat32_i64(val, t1, t2);
2814             tcg_gen_concat32_i64(cmp, s1, s2);
2815         } else {
2816             tcg_gen_concat32_i64(val, t2, t1);
2817             tcg_gen_concat32_i64(cmp, s2, s1);
2818         }
2819 
2820         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2821 
2822         if (s->be_data == MO_LE) {
2823             tcg_gen_extr32_i64(s1, s2, cmp);
2824         } else {
2825             tcg_gen_extr32_i64(s2, s1, cmp);
2826         }
2827     } else {
2828         TCGv_i128 cmp = tcg_temp_new_i128();
2829         TCGv_i128 val = tcg_temp_new_i128();
2830 
2831         if (s->be_data == MO_LE) {
2832             tcg_gen_concat_i64_i128(val, t1, t2);
2833             tcg_gen_concat_i64_i128(cmp, s1, s2);
2834         } else {
2835             tcg_gen_concat_i64_i128(val, t2, t1);
2836             tcg_gen_concat_i64_i128(cmp, s2, s1);
2837         }
2838 
2839         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2840 
2841         if (s->be_data == MO_LE) {
2842             tcg_gen_extr_i128_i64(s1, s2, cmp);
2843         } else {
2844             tcg_gen_extr_i128_i64(s2, s1, cmp);
2845         }
2846     }
2847 }
2848 
2849 /*
2850  * Compute the ISS.SF bit for syndrome information if an exception
2851  * is taken on a load or store. This indicates whether the instruction
2852  * is accessing a 32-bit or 64-bit register. This logic is derived
2853  * from the ARMv8 specs for LDR (Shared decode for all encodings).
2854  */
2855 static bool ldst_iss_sf(int size, bool sign, bool ext)
2856 {
2857 
2858     if (sign) {
2859         /*
2860          * Signed loads are 64 bit results if we are not going to
2861          * do a zero-extend from 32 to 64 after the load.
2862          * (For a store, sign and ext are always false.)
2863          */
2864         return !ext;
2865     } else {
2866         /* Unsigned loads/stores work at the specified size */
2867         return size == MO_64;
2868     }
2869 }
2870 
2871 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2872 {
2873     if (a->rn == 31) {
2874         gen_check_sp_alignment(s);
2875     }
2876     if (a->lasr) {
2877         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2878     }
2879     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2880     return true;
2881 }
2882 
2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2884 {
2885     if (a->rn == 31) {
2886         gen_check_sp_alignment(s);
2887     }
2888     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2889     if (a->lasr) {
2890         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2891     }
2892     return true;
2893 }
2894 
2895 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2896 {
2897     TCGv_i64 clean_addr;
2898     MemOp memop;
2899     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2900 
2901     /*
2902      * StoreLORelease is the same as Store-Release for QEMU, but
2903      * needs the feature-test.
2904      */
2905     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2906         return false;
2907     }
2908     /* Generate ISS for non-exclusive accesses including LASR.  */
2909     if (a->rn == 31) {
2910         gen_check_sp_alignment(s);
2911     }
2912     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2913     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2914     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2915                                 true, a->rn != 31, memop);
2916     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2917               iss_sf, a->lasr);
2918     return true;
2919 }
2920 
2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2922 {
2923     TCGv_i64 clean_addr;
2924     MemOp memop;
2925     bool iss_sf = ldst_iss_sf(a->sz, false, false);
2926 
2927     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
2928     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2929         return false;
2930     }
2931     /* Generate ISS for non-exclusive accesses including LASR.  */
2932     if (a->rn == 31) {
2933         gen_check_sp_alignment(s);
2934     }
2935     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2936     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2937                                 false, a->rn != 31, memop);
2938     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2939               a->rt, iss_sf, a->lasr);
2940     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2941     return true;
2942 }
2943 
2944 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2945 {
2946     if (a->rn == 31) {
2947         gen_check_sp_alignment(s);
2948     }
2949     if (a->lasr) {
2950         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2951     }
2952     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2953     return true;
2954 }
2955 
2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2957 {
2958     if (a->rn == 31) {
2959         gen_check_sp_alignment(s);
2960     }
2961     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2962     if (a->lasr) {
2963         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2964     }
2965     return true;
2966 }
2967 
2968 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2969 {
2970     if (!dc_isar_feature(aa64_atomics, s)) {
2971         return false;
2972     }
2973     if (((a->rt | a->rs) & 1) != 0) {
2974         return false;
2975     }
2976 
2977     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2978     return true;
2979 }
2980 
2981 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2982 {
2983     if (!dc_isar_feature(aa64_atomics, s)) {
2984         return false;
2985     }
2986     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2987     return true;
2988 }
2989 
2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2991 {
2992     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2993     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2994     TCGv_i64 clean_addr = tcg_temp_new_i64();
2995     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2996 
2997     gen_pc_plus_diff(s, clean_addr, a->imm);
2998     do_gpr_ld(s, tcg_rt, clean_addr, memop,
2999               false, true, a->rt, iss_sf, false);
3000     return true;
3001 }
3002 
3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3004 {
3005     /* Load register (literal), vector version */
3006     TCGv_i64 clean_addr;
3007     MemOp memop;
3008 
3009     if (!fp_access_check(s)) {
3010         return true;
3011     }
3012     memop = finalize_memop_asimd(s, a->sz);
3013     clean_addr = tcg_temp_new_i64();
3014     gen_pc_plus_diff(s, clean_addr, a->imm);
3015     do_fp_ld(s, a->rt, clean_addr, memop);
3016     return true;
3017 }
3018 
3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3020                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3021                                  uint64_t offset, bool is_store, MemOp mop)
3022 {
3023     if (a->rn == 31) {
3024         gen_check_sp_alignment(s);
3025     }
3026 
3027     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3028     if (!a->p) {
3029         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3030     }
3031 
3032     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3033                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3034 }
3035 
3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3037                                   TCGv_i64 dirty_addr, uint64_t offset)
3038 {
3039     if (a->w) {
3040         if (a->p) {
3041             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3042         }
3043         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3044     }
3045 }
3046 
3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3048 {
3049     uint64_t offset = a->imm << a->sz;
3050     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3051     MemOp mop = finalize_memop(s, a->sz);
3052 
3053     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3054     tcg_rt = cpu_reg(s, a->rt);
3055     tcg_rt2 = cpu_reg(s, a->rt2);
3056     /*
3057      * We built mop above for the single logical access -- rebuild it
3058      * now for the paired operation.
3059      *
3060      * With LSE2, non-sign-extending pairs are treated atomically if
3061      * aligned, and if unaligned one of the pair will be completely
3062      * within a 16-byte block and that element will be atomic.
3063      * Otherwise each element is separately atomic.
3064      * In all cases, issue one operation with the correct atomicity.
3065      */
3066     mop = a->sz + 1;
3067     if (s->align_mem) {
3068         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3069     }
3070     mop = finalize_memop_pair(s, mop);
3071     if (a->sz == 2) {
3072         TCGv_i64 tmp = tcg_temp_new_i64();
3073 
3074         if (s->be_data == MO_LE) {
3075             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3076         } else {
3077             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3078         }
3079         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3080     } else {
3081         TCGv_i128 tmp = tcg_temp_new_i128();
3082 
3083         if (s->be_data == MO_LE) {
3084             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3085         } else {
3086             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3087         }
3088         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3089     }
3090     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3091     return true;
3092 }
3093 
3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3095 {
3096     uint64_t offset = a->imm << a->sz;
3097     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098     MemOp mop = finalize_memop(s, a->sz);
3099 
3100     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3101     tcg_rt = cpu_reg(s, a->rt);
3102     tcg_rt2 = cpu_reg(s, a->rt2);
3103 
3104     /*
3105      * We built mop above for the single logical access -- rebuild it
3106      * now for the paired operation.
3107      *
3108      * With LSE2, non-sign-extending pairs are treated atomically if
3109      * aligned, and if unaligned one of the pair will be completely
3110      * within a 16-byte block and that element will be atomic.
3111      * Otherwise each element is separately atomic.
3112      * In all cases, issue one operation with the correct atomicity.
3113      *
3114      * This treats sign-extending loads like zero-extending loads,
3115      * since that reuses the most code below.
3116      */
3117     mop = a->sz + 1;
3118     if (s->align_mem) {
3119         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3120     }
3121     mop = finalize_memop_pair(s, mop);
3122     if (a->sz == 2) {
3123         int o2 = s->be_data == MO_LE ? 32 : 0;
3124         int o1 = o2 ^ 32;
3125 
3126         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3127         if (a->sign) {
3128             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3129             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3130         } else {
3131             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3132             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3133         }
3134     } else {
3135         TCGv_i128 tmp = tcg_temp_new_i128();
3136 
3137         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3138         if (s->be_data == MO_LE) {
3139             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3140         } else {
3141             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3142         }
3143     }
3144     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145     return true;
3146 }
3147 
3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3149 {
3150     uint64_t offset = a->imm << a->sz;
3151     TCGv_i64 clean_addr, dirty_addr;
3152     MemOp mop;
3153 
3154     if (!fp_access_check(s)) {
3155         return true;
3156     }
3157 
3158     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3159     mop = finalize_memop_asimd(s, a->sz);
3160     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3161     do_fp_st(s, a->rt, clean_addr, mop);
3162     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3163     do_fp_st(s, a->rt2, clean_addr, mop);
3164     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3165     return true;
3166 }
3167 
3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3169 {
3170     uint64_t offset = a->imm << a->sz;
3171     TCGv_i64 clean_addr, dirty_addr;
3172     MemOp mop;
3173 
3174     if (!fp_access_check(s)) {
3175         return true;
3176     }
3177 
3178     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3179     mop = finalize_memop_asimd(s, a->sz);
3180     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3181     do_fp_ld(s, a->rt, clean_addr, mop);
3182     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3183     do_fp_ld(s, a->rt2, clean_addr, mop);
3184     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3185     return true;
3186 }
3187 
3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3189 {
3190     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3191     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3192     MemOp mop;
3193     TCGv_i128 tmp;
3194 
3195     /* STGP only comes in one size. */
3196     tcg_debug_assert(a->sz == MO_64);
3197 
3198     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3199         return false;
3200     }
3201 
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205 
3206     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3207     if (!a->p) {
3208         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209     }
3210 
3211     clean_addr = clean_data_tbi(s, dirty_addr);
3212     tcg_rt = cpu_reg(s, a->rt);
3213     tcg_rt2 = cpu_reg(s, a->rt2);
3214 
3215     /*
3216      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3217      * and one tag operation.  We implement it as one single aligned 16-byte
3218      * memory operation for convenience.  Note that the alignment ensures
3219      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3220      */
3221     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3222 
3223     tmp = tcg_temp_new_i128();
3224     if (s->be_data == MO_LE) {
3225         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3226     } else {
3227         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3228     }
3229     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3230 
3231     /* Perform the tag store, if tag access enabled. */
3232     if (s->ata[0]) {
3233         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3234             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3235         } else {
3236             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3237         }
3238     }
3239 
3240     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3241     return true;
3242 }
3243 
3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3245                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3246                                  uint64_t offset, bool is_store, MemOp mop)
3247 {
3248     int memidx;
3249 
3250     if (a->rn == 31) {
3251         gen_check_sp_alignment(s);
3252     }
3253 
3254     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3255     if (!a->p) {
3256         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3257     }
3258     memidx = get_a64_user_mem_index(s, a->unpriv);
3259     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3260                                         a->w || a->rn != 31,
3261                                         mop, a->unpriv, memidx);
3262 }
3263 
3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3265                                   TCGv_i64 dirty_addr, uint64_t offset)
3266 {
3267     if (a->w) {
3268         if (a->p) {
3269             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3270         }
3271         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3272     }
3273 }
3274 
3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3276 {
3277     bool iss_sf, iss_valid = !a->w;
3278     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3279     int memidx = get_a64_user_mem_index(s, a->unpriv);
3280     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3281 
3282     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3283 
3284     tcg_rt = cpu_reg(s, a->rt);
3285     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3286 
3287     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3288                      iss_valid, a->rt, iss_sf, false);
3289     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3290     return true;
3291 }
3292 
3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3294 {
3295     bool iss_sf, iss_valid = !a->w;
3296     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3297     int memidx = get_a64_user_mem_index(s, a->unpriv);
3298     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3299 
3300     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3301 
3302     tcg_rt = cpu_reg(s, a->rt);
3303     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3304 
3305     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3306                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3307     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3308     return true;
3309 }
3310 
3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3312 {
3313     TCGv_i64 clean_addr, dirty_addr;
3314     MemOp mop;
3315 
3316     if (!fp_access_check(s)) {
3317         return true;
3318     }
3319     mop = finalize_memop_asimd(s, a->sz);
3320     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3321     do_fp_st(s, a->rt, clean_addr, mop);
3322     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3323     return true;
3324 }
3325 
3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3327 {
3328     TCGv_i64 clean_addr, dirty_addr;
3329     MemOp mop;
3330 
3331     if (!fp_access_check(s)) {
3332         return true;
3333     }
3334     mop = finalize_memop_asimd(s, a->sz);
3335     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3336     do_fp_ld(s, a->rt, clean_addr, mop);
3337     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3338     return true;
3339 }
3340 
3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3342                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3343                              bool is_store, MemOp memop)
3344 {
3345     TCGv_i64 tcg_rm;
3346 
3347     if (a->rn == 31) {
3348         gen_check_sp_alignment(s);
3349     }
3350     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3351 
3352     tcg_rm = read_cpu_reg(s, a->rm, 1);
3353     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3354 
3355     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3356     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3357 }
3358 
3359 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3360 {
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3362     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3363     MemOp memop;
3364 
3365     if (extract32(a->opt, 1, 1) == 0) {
3366         return false;
3367     }
3368 
3369     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3370     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3373               a->ext, true, a->rt, iss_sf, false);
3374     return true;
3375 }
3376 
3377 static bool trans_STR(DisasContext *s, arg_ldst *a)
3378 {
3379     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3380     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3381     MemOp memop;
3382 
3383     if (extract32(a->opt, 1, 1) == 0) {
3384         return false;
3385     }
3386 
3387     memop = finalize_memop(s, a->sz);
3388     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3389     tcg_rt = cpu_reg(s, a->rt);
3390     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3391     return true;
3392 }
3393 
3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3395 {
3396     TCGv_i64 clean_addr, dirty_addr;
3397     MemOp memop;
3398 
3399     if (extract32(a->opt, 1, 1) == 0) {
3400         return false;
3401     }
3402 
3403     if (!fp_access_check(s)) {
3404         return true;
3405     }
3406 
3407     memop = finalize_memop_asimd(s, a->sz);
3408     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3409     do_fp_ld(s, a->rt, clean_addr, memop);
3410     return true;
3411 }
3412 
3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3414 {
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp memop;
3417 
3418     if (extract32(a->opt, 1, 1) == 0) {
3419         return false;
3420     }
3421 
3422     if (!fp_access_check(s)) {
3423         return true;
3424     }
3425 
3426     memop = finalize_memop_asimd(s, a->sz);
3427     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3428     do_fp_st(s, a->rt, clean_addr, memop);
3429     return true;
3430 }
3431 
3432 
3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3434                          int sign, bool invert)
3435 {
3436     MemOp mop = a->sz | sign;
3437     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3438 
3439     if (a->rn == 31) {
3440         gen_check_sp_alignment(s);
3441     }
3442     mop = check_atomic_align(s, a->rn, mop);
3443     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3444                                 a->rn != 31, mop);
3445     tcg_rs = read_cpu_reg(s, a->rs, true);
3446     tcg_rt = cpu_reg(s, a->rt);
3447     if (invert) {
3448         tcg_gen_not_i64(tcg_rs, tcg_rs);
3449     }
3450     /*
3451      * The tcg atomic primitives are all full barriers.  Therefore we
3452      * can ignore the Acquire and Release bits of this instruction.
3453      */
3454     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3455 
3456     if (mop & MO_SIGN) {
3457         switch (a->sz) {
3458         case MO_8:
3459             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3460             break;
3461         case MO_16:
3462             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3463             break;
3464         case MO_32:
3465             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3466             break;
3467         case MO_64:
3468             break;
3469         default:
3470             g_assert_not_reached();
3471         }
3472     }
3473     return true;
3474 }
3475 
3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3485 
3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3487 {
3488     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3489     TCGv_i64 clean_addr;
3490     MemOp mop;
3491 
3492     if (!dc_isar_feature(aa64_atomics, s) ||
3493         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3494         return false;
3495     }
3496     if (a->rn == 31) {
3497         gen_check_sp_alignment(s);
3498     }
3499     mop = check_atomic_align(s, a->rn, a->sz);
3500     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3501                                 a->rn != 31, mop);
3502     /*
3503      * LDAPR* are a special case because they are a simple load, not a
3504      * fetch-and-do-something op.
3505      * The architectural consistency requirements here are weaker than
3506      * full load-acquire (we only need "load-acquire processor consistent"),
3507      * but we choose to implement them as full LDAQ.
3508      */
3509     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3510               true, a->rt, iss_sf, true);
3511     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3512     return true;
3513 }
3514 
3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3516 {
3517     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3518     MemOp memop;
3519 
3520     /* Load with pointer authentication */
3521     if (!dc_isar_feature(aa64_pauth, s)) {
3522         return false;
3523     }
3524 
3525     if (a->rn == 31) {
3526         gen_check_sp_alignment(s);
3527     }
3528     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3529 
3530     if (s->pauth_active) {
3531         if (!a->m) {
3532             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3533                                       tcg_constant_i64(0));
3534         } else {
3535             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3536                                       tcg_constant_i64(0));
3537         }
3538     }
3539 
3540     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3541 
3542     memop = finalize_memop(s, MO_64);
3543 
3544     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3545     clean_addr = gen_mte_check1(s, dirty_addr, false,
3546                                 a->w || a->rn != 31, memop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3550               /* extend */ false, /* iss_valid */ !a->w,
3551               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3552 
3553     if (a->w) {
3554         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3555     }
3556     return true;
3557 }
3558 
3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3560 {
3561     TCGv_i64 clean_addr, dirty_addr;
3562     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3563     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3564 
3565     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3566         return false;
3567     }
3568 
3569     if (a->rn == 31) {
3570         gen_check_sp_alignment(s);
3571     }
3572 
3573     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3574     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3575     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3576     clean_addr = clean_data_tbi(s, dirty_addr);
3577 
3578     /*
3579      * Load-AcquirePC semantics; we implement as the slightly more
3580      * restrictive Load-Acquire.
3581      */
3582     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3583               a->rt, iss_sf, true);
3584     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3585     return true;
3586 }
3587 
3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3589 {
3590     TCGv_i64 clean_addr, dirty_addr;
3591     MemOp mop = a->sz;
3592     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3593 
3594     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3595         return false;
3596     }
3597 
3598     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3599 
3600     if (a->rn == 31) {
3601         gen_check_sp_alignment(s);
3602     }
3603 
3604     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3605     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3606     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3607     clean_addr = clean_data_tbi(s, dirty_addr);
3608 
3609     /* Store-Release semantics */
3610     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3611     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3612     return true;
3613 }
3614 
3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3616 {
3617     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3618     MemOp endian, align, mop;
3619 
3620     int total;    /* total bytes */
3621     int elements; /* elements per vector */
3622     int r;
3623     int size = a->sz;
3624 
3625     if (!a->p && a->rm != 0) {
3626         /* For non-postindexed accesses the Rm field must be 0 */
3627         return false;
3628     }
3629     if (size == 3 && !a->q && a->selem != 1) {
3630         return false;
3631     }
3632     if (!fp_access_check(s)) {
3633         return true;
3634     }
3635 
3636     if (a->rn == 31) {
3637         gen_check_sp_alignment(s);
3638     }
3639 
3640     /* For our purposes, bytes are always little-endian.  */
3641     endian = s->be_data;
3642     if (size == 0) {
3643         endian = MO_LE;
3644     }
3645 
3646     total = a->rpt * a->selem * (a->q ? 16 : 8);
3647     tcg_rn = cpu_reg_sp(s, a->rn);
3648 
3649     /*
3650      * Issue the MTE check vs the logical repeat count, before we
3651      * promote consecutive little-endian elements below.
3652      */
3653     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3654                                 finalize_memop_asimd(s, size));
3655 
3656     /*
3657      * Consecutive little-endian elements from a single register
3658      * can be promoted to a larger little-endian operation.
3659      */
3660     align = MO_ALIGN;
3661     if (a->selem == 1 && endian == MO_LE) {
3662         align = pow2_align(size);
3663         size = 3;
3664     }
3665     if (!s->align_mem) {
3666         align = 0;
3667     }
3668     mop = endian | size | align;
3669 
3670     elements = (a->q ? 16 : 8) >> size;
3671     tcg_ebytes = tcg_constant_i64(1 << size);
3672     for (r = 0; r < a->rpt; r++) {
3673         int e;
3674         for (e = 0; e < elements; e++) {
3675             int xs;
3676             for (xs = 0; xs < a->selem; xs++) {
3677                 int tt = (a->rt + r + xs) % 32;
3678                 do_vec_ld(s, tt, e, clean_addr, mop);
3679                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3680             }
3681         }
3682     }
3683 
3684     /*
3685      * For non-quad operations, setting a slice of the low 64 bits of
3686      * the register clears the high 64 bits (in the ARM ARM pseudocode
3687      * this is implicit in the fact that 'rval' is a 64 bit wide
3688      * variable).  For quad operations, we might still need to zero
3689      * the high bits of SVE.
3690      */
3691     for (r = 0; r < a->rpt * a->selem; r++) {
3692         int tt = (a->rt + r) % 32;
3693         clear_vec_high(s, a->q, tt);
3694     }
3695 
3696     if (a->p) {
3697         if (a->rm == 31) {
3698             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699         } else {
3700             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701         }
3702     }
3703     return true;
3704 }
3705 
3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3707 {
3708     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3709     MemOp endian, align, mop;
3710 
3711     int total;    /* total bytes */
3712     int elements; /* elements per vector */
3713     int r;
3714     int size = a->sz;
3715 
3716     if (!a->p && a->rm != 0) {
3717         /* For non-postindexed accesses the Rm field must be 0 */
3718         return false;
3719     }
3720     if (size == 3 && !a->q && a->selem != 1) {
3721         return false;
3722     }
3723     if (!fp_access_check(s)) {
3724         return true;
3725     }
3726 
3727     if (a->rn == 31) {
3728         gen_check_sp_alignment(s);
3729     }
3730 
3731     /* For our purposes, bytes are always little-endian.  */
3732     endian = s->be_data;
3733     if (size == 0) {
3734         endian = MO_LE;
3735     }
3736 
3737     total = a->rpt * a->selem * (a->q ? 16 : 8);
3738     tcg_rn = cpu_reg_sp(s, a->rn);
3739 
3740     /*
3741      * Issue the MTE check vs the logical repeat count, before we
3742      * promote consecutive little-endian elements below.
3743      */
3744     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3745                                 finalize_memop_asimd(s, size));
3746 
3747     /*
3748      * Consecutive little-endian elements from a single register
3749      * can be promoted to a larger little-endian operation.
3750      */
3751     align = MO_ALIGN;
3752     if (a->selem == 1 && endian == MO_LE) {
3753         align = pow2_align(size);
3754         size = 3;
3755     }
3756     if (!s->align_mem) {
3757         align = 0;
3758     }
3759     mop = endian | size | align;
3760 
3761     elements = (a->q ? 16 : 8) >> size;
3762     tcg_ebytes = tcg_constant_i64(1 << size);
3763     for (r = 0; r < a->rpt; r++) {
3764         int e;
3765         for (e = 0; e < elements; e++) {
3766             int xs;
3767             for (xs = 0; xs < a->selem; xs++) {
3768                 int tt = (a->rt + r + xs) % 32;
3769                 do_vec_st(s, tt, e, clean_addr, mop);
3770                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771             }
3772         }
3773     }
3774 
3775     if (a->p) {
3776         if (a->rm == 31) {
3777             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3778         } else {
3779             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3780         }
3781     }
3782     return true;
3783 }
3784 
3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3786 {
3787     int xs, total, rt;
3788     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3789     MemOp mop;
3790 
3791     if (!a->p && a->rm != 0) {
3792         return false;
3793     }
3794     if (!fp_access_check(s)) {
3795         return true;
3796     }
3797 
3798     if (a->rn == 31) {
3799         gen_check_sp_alignment(s);
3800     }
3801 
3802     total = a->selem << a->scale;
3803     tcg_rn = cpu_reg_sp(s, a->rn);
3804 
3805     mop = finalize_memop_asimd(s, a->scale);
3806     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3807                                 total, mop);
3808 
3809     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3810     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3811         do_vec_st(s, rt, a->index, clean_addr, mop);
3812         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3813     }
3814 
3815     if (a->p) {
3816         if (a->rm == 31) {
3817             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3818         } else {
3819             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3820         }
3821     }
3822     return true;
3823 }
3824 
3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3826 {
3827     int xs, total, rt;
3828     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3829     MemOp mop;
3830 
3831     if (!a->p && a->rm != 0) {
3832         return false;
3833     }
3834     if (!fp_access_check(s)) {
3835         return true;
3836     }
3837 
3838     if (a->rn == 31) {
3839         gen_check_sp_alignment(s);
3840     }
3841 
3842     total = a->selem << a->scale;
3843     tcg_rn = cpu_reg_sp(s, a->rn);
3844 
3845     mop = finalize_memop_asimd(s, a->scale);
3846     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3847                                 total, mop);
3848 
3849     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3850     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3851         do_vec_ld(s, rt, a->index, clean_addr, mop);
3852         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3853     }
3854 
3855     if (a->p) {
3856         if (a->rm == 31) {
3857             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3858         } else {
3859             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3860         }
3861     }
3862     return true;
3863 }
3864 
3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3866 {
3867     int xs, total, rt;
3868     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3869     MemOp mop;
3870 
3871     if (!a->p && a->rm != 0) {
3872         return false;
3873     }
3874     if (!fp_access_check(s)) {
3875         return true;
3876     }
3877 
3878     if (a->rn == 31) {
3879         gen_check_sp_alignment(s);
3880     }
3881 
3882     total = a->selem << a->scale;
3883     tcg_rn = cpu_reg_sp(s, a->rn);
3884 
3885     mop = finalize_memop_asimd(s, a->scale);
3886     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3887                                 total, mop);
3888 
3889     tcg_ebytes = tcg_constant_i64(1 << a->scale);
3890     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3891         /* Load and replicate to all elements */
3892         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3893 
3894         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3895         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3896                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3897         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3898     }
3899 
3900     if (a->p) {
3901         if (a->rm == 31) {
3902             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3903         } else {
3904             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3905         }
3906     }
3907     return true;
3908 }
3909 
3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3911 {
3912     TCGv_i64 addr, clean_addr, tcg_rt;
3913     int size = 4 << s->dcz_blocksize;
3914 
3915     if (!dc_isar_feature(aa64_mte, s)) {
3916         return false;
3917     }
3918     if (s->current_el == 0) {
3919         return false;
3920     }
3921 
3922     if (a->rn == 31) {
3923         gen_check_sp_alignment(s);
3924     }
3925 
3926     addr = read_cpu_reg_sp(s, a->rn, true);
3927     tcg_gen_addi_i64(addr, addr, a->imm);
3928     tcg_rt = cpu_reg(s, a->rt);
3929 
3930     if (s->ata[0]) {
3931         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3932     }
3933     /*
3934      * The non-tags portion of STZGM is mostly like DC_ZVA,
3935      * except the alignment happens before the access.
3936      */
3937     clean_addr = clean_data_tbi(s, addr);
3938     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3939     gen_helper_dc_zva(tcg_env, clean_addr);
3940     return true;
3941 }
3942 
3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3944 {
3945     TCGv_i64 addr, clean_addr, tcg_rt;
3946 
3947     if (!dc_isar_feature(aa64_mte, s)) {
3948         return false;
3949     }
3950     if (s->current_el == 0) {
3951         return false;
3952     }
3953 
3954     if (a->rn == 31) {
3955         gen_check_sp_alignment(s);
3956     }
3957 
3958     addr = read_cpu_reg_sp(s, a->rn, true);
3959     tcg_gen_addi_i64(addr, addr, a->imm);
3960     tcg_rt = cpu_reg(s, a->rt);
3961 
3962     if (s->ata[0]) {
3963         gen_helper_stgm(tcg_env, addr, tcg_rt);
3964     } else {
3965         MMUAccessType acc = MMU_DATA_STORE;
3966         int size = 4 << s->gm_blocksize;
3967 
3968         clean_addr = clean_data_tbi(s, addr);
3969         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3970         gen_probe_access(s, clean_addr, acc, size);
3971     }
3972     return true;
3973 }
3974 
3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3976 {
3977     TCGv_i64 addr, clean_addr, tcg_rt;
3978 
3979     if (!dc_isar_feature(aa64_mte, s)) {
3980         return false;
3981     }
3982     if (s->current_el == 0) {
3983         return false;
3984     }
3985 
3986     if (a->rn == 31) {
3987         gen_check_sp_alignment(s);
3988     }
3989 
3990     addr = read_cpu_reg_sp(s, a->rn, true);
3991     tcg_gen_addi_i64(addr, addr, a->imm);
3992     tcg_rt = cpu_reg(s, a->rt);
3993 
3994     if (s->ata[0]) {
3995         gen_helper_ldgm(tcg_rt, tcg_env, addr);
3996     } else {
3997         MMUAccessType acc = MMU_DATA_LOAD;
3998         int size = 4 << s->gm_blocksize;
3999 
4000         clean_addr = clean_data_tbi(s, addr);
4001         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4002         gen_probe_access(s, clean_addr, acc, size);
4003         /* The result tags are zeros.  */
4004         tcg_gen_movi_i64(tcg_rt, 0);
4005     }
4006     return true;
4007 }
4008 
4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4010 {
4011     TCGv_i64 addr, clean_addr, tcg_rt;
4012 
4013     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4014         return false;
4015     }
4016 
4017     if (a->rn == 31) {
4018         gen_check_sp_alignment(s);
4019     }
4020 
4021     addr = read_cpu_reg_sp(s, a->rn, true);
4022     if (!a->p) {
4023         /* pre-index or signed offset */
4024         tcg_gen_addi_i64(addr, addr, a->imm);
4025     }
4026 
4027     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4028     tcg_rt = cpu_reg(s, a->rt);
4029     if (s->ata[0]) {
4030         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4031     } else {
4032         /*
4033          * Tag access disabled: we must check for aborts on the load
4034          * load from [rn+offset], and then insert a 0 tag into rt.
4035          */
4036         clean_addr = clean_data_tbi(s, addr);
4037         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4038         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4039     }
4040 
4041     if (a->w) {
4042         /* pre-index or post-index */
4043         if (a->p) {
4044             /* post-index */
4045             tcg_gen_addi_i64(addr, addr, a->imm);
4046         }
4047         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4048     }
4049     return true;
4050 }
4051 
4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4053 {
4054     TCGv_i64 addr, tcg_rt;
4055 
4056     if (a->rn == 31) {
4057         gen_check_sp_alignment(s);
4058     }
4059 
4060     addr = read_cpu_reg_sp(s, a->rn, true);
4061     if (!a->p) {
4062         /* pre-index or signed offset */
4063         tcg_gen_addi_i64(addr, addr, a->imm);
4064     }
4065     tcg_rt = cpu_reg_sp(s, a->rt);
4066     if (!s->ata[0]) {
4067         /*
4068          * For STG and ST2G, we need to check alignment and probe memory.
4069          * TODO: For STZG and STZ2G, we could rely on the stores below,
4070          * at least for system mode; user-only won't enforce alignment.
4071          */
4072         if (is_pair) {
4073             gen_helper_st2g_stub(tcg_env, addr);
4074         } else {
4075             gen_helper_stg_stub(tcg_env, addr);
4076         }
4077     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4078         if (is_pair) {
4079             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4080         } else {
4081             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4082         }
4083     } else {
4084         if (is_pair) {
4085             gen_helper_st2g(tcg_env, addr, tcg_rt);
4086         } else {
4087             gen_helper_stg(tcg_env, addr, tcg_rt);
4088         }
4089     }
4090 
4091     if (is_zero) {
4092         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4093         TCGv_i64 zero64 = tcg_constant_i64(0);
4094         TCGv_i128 zero128 = tcg_temp_new_i128();
4095         int mem_index = get_mem_index(s);
4096         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4097 
4098         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4099 
4100         /* This is 1 or 2 atomic 16-byte operations. */
4101         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4102         if (is_pair) {
4103             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4104             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4105         }
4106     }
4107 
4108     if (a->w) {
4109         /* pre-index or post-index */
4110         if (a->p) {
4111             /* post-index */
4112             tcg_gen_addi_i64(addr, addr, a->imm);
4113         }
4114         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4115     }
4116     return true;
4117 }
4118 
4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4123 
4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4125 
4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4127                    bool is_setg, SetFn fn)
4128 {
4129     int memidx;
4130     uint32_t syndrome, desc = 0;
4131 
4132     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4133         return false;
4134     }
4135 
4136     /*
4137      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4138      * us to pull this check before the CheckMOPSEnabled() test
4139      * (which we do in the helper function)
4140      */
4141     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4142         a->rd == 31 || a->rn == 31) {
4143         return false;
4144     }
4145 
4146     memidx = get_a64_user_mem_index(s, a->unpriv);
4147 
4148     /*
4149      * We pass option_a == true, matching our implementation;
4150      * we pass wrong_option == false: helper function may set that bit.
4151      */
4152     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4153                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4154 
4155     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4156         /* We may need to do MTE tag checking, so assemble the descriptor */
4157         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4158         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4159         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4160         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4161     }
4162     /* The helper function always needs the memidx even with MTE disabled */
4163     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4164 
4165     /*
4166      * The helper needs the register numbers, but since they're in
4167      * the syndrome anyway, we let it extract them from there rather
4168      * than passing in an extra three integer arguments.
4169      */
4170     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4171     return true;
4172 }
4173 
4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4180 
4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4182 
4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4184 {
4185     int rmemidx, wmemidx;
4186     uint32_t syndrome, rdesc = 0, wdesc = 0;
4187     bool wunpriv = extract32(a->options, 0, 1);
4188     bool runpriv = extract32(a->options, 1, 1);
4189 
4190     /*
4191      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192      * us to pull this check before the CheckMOPSEnabled() test
4193      * (which we do in the helper function)
4194      */
4195     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4197         return false;
4198     }
4199 
4200     rmemidx = get_a64_user_mem_index(s, runpriv);
4201     wmemidx = get_a64_user_mem_index(s, wunpriv);
4202 
4203     /*
4204      * We pass option_a == true, matching our implementation;
4205      * we pass wrong_option == false: helper function may set that bit.
4206      */
4207     syndrome = syn_mop(false, false, a->options, is_epilogue,
4208                        false, true, a->rd, a->rs, a->rn);
4209 
4210     /* If we need to do MTE tag checking, assemble the descriptors */
4211     if (s->mte_active[runpriv]) {
4212         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4213         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4214     }
4215     if (s->mte_active[wunpriv]) {
4216         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4217         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4218         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4219     }
4220     /* The helper function needs these parts of the descriptor regardless */
4221     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4222     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4223 
4224     /*
4225      * The helper needs the register numbers, but since they're in
4226      * the syndrome anyway, we let it extract them from there rather
4227      * than passing in an extra three integer arguments.
4228      */
4229     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4230        tcg_constant_i32(rdesc));
4231     return true;
4232 }
4233 
4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4240 
4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4242 
4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4244                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4245 {
4246     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4247     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4248     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4249 
4250     fn(tcg_rd, tcg_rn, tcg_imm);
4251     if (!a->sf) {
4252         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4253     }
4254     return true;
4255 }
4256 
4257 /*
4258  * PC-rel. addressing
4259  */
4260 
4261 static bool trans_ADR(DisasContext *s, arg_ri *a)
4262 {
4263     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4264     return true;
4265 }
4266 
4267 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4268 {
4269     int64_t offset = (int64_t)a->imm << 12;
4270 
4271     /* The page offset is ok for CF_PCREL. */
4272     offset -= s->pc_curr & 0xfff;
4273     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4274     return true;
4275 }
4276 
4277 /*
4278  * Add/subtract (immediate)
4279  */
4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4284 
4285 /*
4286  * Add/subtract (immediate, with tags)
4287  */
4288 
4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4290                                       bool sub_op)
4291 {
4292     TCGv_i64 tcg_rn, tcg_rd;
4293     int imm;
4294 
4295     imm = a->uimm6 << LOG2_TAG_GRANULE;
4296     if (sub_op) {
4297         imm = -imm;
4298     }
4299 
4300     tcg_rn = cpu_reg_sp(s, a->rn);
4301     tcg_rd = cpu_reg_sp(s, a->rd);
4302 
4303     if (s->ata[0]) {
4304         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4305                            tcg_constant_i32(imm),
4306                            tcg_constant_i32(a->uimm4));
4307     } else {
4308         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4309         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4310     }
4311     return true;
4312 }
4313 
4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4316 
4317 /* The input should be a value in the bottom e bits (with higher
4318  * bits zero); returns that value replicated into every element
4319  * of size e in a 64 bit integer.
4320  */
4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4322 {
4323     assert(e != 0);
4324     while (e < 64) {
4325         mask |= mask << e;
4326         e *= 2;
4327     }
4328     return mask;
4329 }
4330 
4331 /*
4332  * Logical (immediate)
4333  */
4334 
4335 /*
4336  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4337  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4338  * value (ie should cause a guest UNDEF exception), and true if they are
4339  * valid, in which case the decoded bit pattern is written to result.
4340  */
4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4342                             unsigned int imms, unsigned int immr)
4343 {
4344     uint64_t mask;
4345     unsigned e, levels, s, r;
4346     int len;
4347 
4348     assert(immn < 2 && imms < 64 && immr < 64);
4349 
4350     /* The bit patterns we create here are 64 bit patterns which
4351      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4352      * 64 bits each. Each element contains the same value: a run
4353      * of between 1 and e-1 non-zero bits, rotated within the
4354      * element by between 0 and e-1 bits.
4355      *
4356      * The element size and run length are encoded into immn (1 bit)
4357      * and imms (6 bits) as follows:
4358      * 64 bit elements: immn = 1, imms = <length of run - 1>
4359      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4360      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4361      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4362      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4363      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4364      * Notice that immn = 0, imms = 11111x is the only combination
4365      * not covered by one of the above options; this is reserved.
4366      * Further, <length of run - 1> all-ones is a reserved pattern.
4367      *
4368      * In all cases the rotation is by immr % e (and immr is 6 bits).
4369      */
4370 
4371     /* First determine the element size */
4372     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4373     if (len < 1) {
4374         /* This is the immn == 0, imms == 0x11111x case */
4375         return false;
4376     }
4377     e = 1 << len;
4378 
4379     levels = e - 1;
4380     s = imms & levels;
4381     r = immr & levels;
4382 
4383     if (s == levels) {
4384         /* <length of run - 1> mustn't be all-ones. */
4385         return false;
4386     }
4387 
4388     /* Create the value of one element: s+1 set bits rotated
4389      * by r within the element (which is e bits wide)...
4390      */
4391     mask = MAKE_64BIT_MASK(0, s + 1);
4392     if (r) {
4393         mask = (mask >> r) | (mask << (e - r));
4394         mask &= MAKE_64BIT_MASK(0, e);
4395     }
4396     /* ...then replicate the element over the whole 64 bit value */
4397     mask = bitfield_replicate(mask, e);
4398     *result = mask;
4399     return true;
4400 }
4401 
4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4403                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4404 {
4405     TCGv_i64 tcg_rd, tcg_rn;
4406     uint64_t imm;
4407 
4408     /* Some immediate field values are reserved. */
4409     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4410                                 extract32(a->dbm, 0, 6),
4411                                 extract32(a->dbm, 6, 6))) {
4412         return false;
4413     }
4414     if (!a->sf) {
4415         imm &= 0xffffffffull;
4416     }
4417 
4418     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4419     tcg_rn = cpu_reg(s, a->rn);
4420 
4421     fn(tcg_rd, tcg_rn, imm);
4422     if (set_cc) {
4423         gen_logic_CC(a->sf, tcg_rd);
4424     }
4425     if (!a->sf) {
4426         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4427     }
4428     return true;
4429 }
4430 
4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4435 
4436 /*
4437  * Move wide (immediate)
4438  */
4439 
4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4441 {
4442     int pos = a->hw << 4;
4443     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4444     return true;
4445 }
4446 
4447 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4448 {
4449     int pos = a->hw << 4;
4450     uint64_t imm = a->imm;
4451 
4452     imm = ~(imm << pos);
4453     if (!a->sf) {
4454         imm = (uint32_t)imm;
4455     }
4456     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4457     return true;
4458 }
4459 
4460 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4461 {
4462     int pos = a->hw << 4;
4463     TCGv_i64 tcg_rd, tcg_im;
4464 
4465     tcg_rd = cpu_reg(s, a->rd);
4466     tcg_im = tcg_constant_i64(a->imm);
4467     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4468     if (!a->sf) {
4469         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4470     }
4471     return true;
4472 }
4473 
4474 /*
4475  * Bitfield
4476  */
4477 
4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4479 {
4480     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4481     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482     unsigned int bitsize = a->sf ? 64 : 32;
4483     unsigned int ri = a->immr;
4484     unsigned int si = a->imms;
4485     unsigned int pos, len;
4486 
4487     if (si >= ri) {
4488         /* Wd<s-r:0> = Wn<s:r> */
4489         len = (si - ri) + 1;
4490         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4491         if (!a->sf) {
4492             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4493         }
4494     } else {
4495         /* Wd<32+s-r,32-r> = Wn<s:0> */
4496         len = si + 1;
4497         pos = (bitsize - ri) & (bitsize - 1);
4498 
4499         if (len < ri) {
4500             /*
4501              * Sign extend the destination field from len to fill the
4502              * balance of the word.  Let the deposit below insert all
4503              * of those sign bits.
4504              */
4505             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4506             len = ri;
4507         }
4508 
4509         /*
4510          * We start with zero, and we haven't modified any bits outside
4511          * bitsize, therefore no final zero-extension is unneeded for !sf.
4512          */
4513         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4514     }
4515     return true;
4516 }
4517 
4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4519 {
4520     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4521     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4522     unsigned int bitsize = a->sf ? 64 : 32;
4523     unsigned int ri = a->immr;
4524     unsigned int si = a->imms;
4525     unsigned int pos, len;
4526 
4527     tcg_rd = cpu_reg(s, a->rd);
4528     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 
4530     if (si >= ri) {
4531         /* Wd<s-r:0> = Wn<s:r> */
4532         len = (si - ri) + 1;
4533         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4534     } else {
4535         /* Wd<32+s-r,32-r> = Wn<s:0> */
4536         len = si + 1;
4537         pos = (bitsize - ri) & (bitsize - 1);
4538         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4539     }
4540     return true;
4541 }
4542 
4543 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4544 {
4545     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4546     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4547     unsigned int bitsize = a->sf ? 64 : 32;
4548     unsigned int ri = a->immr;
4549     unsigned int si = a->imms;
4550     unsigned int pos, len;
4551 
4552     tcg_rd = cpu_reg(s, a->rd);
4553     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4554 
4555     if (si >= ri) {
4556         /* Wd<s-r:0> = Wn<s:r> */
4557         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4558         len = (si - ri) + 1;
4559         pos = 0;
4560     } else {
4561         /* Wd<32+s-r,32-r> = Wn<s:0> */
4562         len = si + 1;
4563         pos = (bitsize - ri) & (bitsize - 1);
4564     }
4565 
4566     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4567     if (!a->sf) {
4568         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4569     }
4570     return true;
4571 }
4572 
4573 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4574 {
4575     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4576 
4577     tcg_rd = cpu_reg(s, a->rd);
4578 
4579     if (unlikely(a->imm == 0)) {
4580         /*
4581          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4582          * so an extract from bit 0 is a special case.
4583          */
4584         if (a->sf) {
4585             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4586         } else {
4587             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4588         }
4589     } else {
4590         tcg_rm = cpu_reg(s, a->rm);
4591         tcg_rn = cpu_reg(s, a->rn);
4592 
4593         if (a->sf) {
4594             /* Specialization to ROR happens in EXTRACT2.  */
4595             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4596         } else {
4597             TCGv_i32 t0 = tcg_temp_new_i32();
4598 
4599             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4600             if (a->rm == a->rn) {
4601                 tcg_gen_rotri_i32(t0, t0, a->imm);
4602             } else {
4603                 TCGv_i32 t1 = tcg_temp_new_i32();
4604                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4605                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4606             }
4607             tcg_gen_extu_i32_i64(tcg_rd, t0);
4608         }
4609     }
4610     return true;
4611 }
4612 
4613 /*
4614  * Cryptographic AES, SHA, SHA512
4615  */
4616 
4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4621 
4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4626 
4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4630 
4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4634 
4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4642 
4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4645 
4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4648 
4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4650 {
4651     if (!dc_isar_feature(aa64_sm3, s)) {
4652         return false;
4653     }
4654     if (fp_access_check(s)) {
4655         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4656         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4657         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4658         TCGv_i32 tcg_res = tcg_temp_new_i32();
4659         unsigned vsz, dofs;
4660 
4661         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4662         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4663         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4664 
4665         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4666         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4667         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4668         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4669 
4670         /* Clear the whole register first, then store bits [127:96]. */
4671         vsz = vec_full_reg_size(s);
4672         dofs = vec_full_reg_offset(s, a->rd);
4673         tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4674         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4675     }
4676     return true;
4677 }
4678 
4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4680 {
4681     if (fp_access_check(s)) {
4682         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4683     }
4684     return true;
4685 }
4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4690 
4691 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4692 {
4693     if (!dc_isar_feature(aa64_sha3, s)) {
4694         return false;
4695     }
4696     if (fp_access_check(s)) {
4697         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4698                      vec_full_reg_offset(s, a->rn),
4699                      vec_full_reg_offset(s, a->rm), a->imm, 16,
4700                      vec_full_reg_size(s));
4701     }
4702     return true;
4703 }
4704 
4705 /*
4706  * Advanced SIMD copy
4707  */
4708 
4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4710 {
4711     unsigned esz = ctz32(imm);
4712     if (esz <= MO_64) {
4713         *pesz = esz;
4714         *pidx = imm >> (esz + 1);
4715         return true;
4716     }
4717     return false;
4718 }
4719 
4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4721 {
4722     MemOp esz;
4723     unsigned idx;
4724 
4725     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4726         return false;
4727     }
4728     if (fp_access_check(s)) {
4729         /*
4730          * This instruction just extracts the specified element and
4731          * zero-extends it into the bottom of the destination register.
4732          */
4733         TCGv_i64 tmp = tcg_temp_new_i64();
4734         read_vec_element(s, tmp, a->rn, idx, esz);
4735         write_fp_dreg(s, a->rd, tmp);
4736     }
4737     return true;
4738 }
4739 
4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4741 {
4742     MemOp esz;
4743     unsigned idx;
4744 
4745     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4746         return false;
4747     }
4748     if (esz == MO_64 && !a->q) {
4749         return false;
4750     }
4751     if (fp_access_check(s)) {
4752         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4753                              vec_reg_offset(s, a->rn, idx, esz),
4754                              a->q ? 16 : 8, vec_full_reg_size(s));
4755     }
4756     return true;
4757 }
4758 
4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4760 {
4761     MemOp esz;
4762     unsigned idx;
4763 
4764     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4765         return false;
4766     }
4767     if (esz == MO_64 && !a->q) {
4768         return false;
4769     }
4770     if (fp_access_check(s)) {
4771         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4772                              a->q ? 16 : 8, vec_full_reg_size(s),
4773                              cpu_reg(s, a->rn));
4774     }
4775     return true;
4776 }
4777 
4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4779 {
4780     MemOp esz;
4781     unsigned idx;
4782 
4783     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4784         return false;
4785     }
4786     if (is_signed) {
4787         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4788             return false;
4789         }
4790     } else {
4791         if (esz == MO_64 ? !a->q : a->q) {
4792             return false;
4793         }
4794     }
4795     if (fp_access_check(s)) {
4796         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4797         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4798         if (is_signed && !a->q) {
4799             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4800         }
4801     }
4802     return true;
4803 }
4804 
4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4806 TRANS(UMOV, do_smov_umov, a, 0)
4807 
4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4809 {
4810     MemOp esz;
4811     unsigned idx;
4812 
4813     if (!decode_esz_idx(a->imm, &esz, &idx)) {
4814         return false;
4815     }
4816     if (fp_access_check(s)) {
4817         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4818         clear_vec_high(s, true, a->rd);
4819     }
4820     return true;
4821 }
4822 
4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4824 {
4825     MemOp esz;
4826     unsigned didx, sidx;
4827 
4828     if (!decode_esz_idx(a->di, &esz, &didx)) {
4829         return false;
4830     }
4831     sidx = a->si >> esz;
4832     if (fp_access_check(s)) {
4833         TCGv_i64 tmp = tcg_temp_new_i64();
4834 
4835         read_vec_element(s, tmp, a->rn, sidx, esz);
4836         write_vec_element(s, tmp, a->rd, didx, esz);
4837 
4838         /* INS is considered a 128-bit write for SVE. */
4839         clear_vec_high(s, true, a->rd);
4840     }
4841     return true;
4842 }
4843 
4844 /*
4845  * Advanced SIMD three same
4846  */
4847 
4848 typedef struct FPScalar {
4849     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4850     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4851     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4852 } FPScalar;
4853 
4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4855 {
4856     switch (a->esz) {
4857     case MO_64:
4858         if (fp_access_check(s)) {
4859             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4860             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4861             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4862             write_fp_dreg(s, a->rd, t0);
4863         }
4864         break;
4865     case MO_32:
4866         if (fp_access_check(s)) {
4867             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4868             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4869             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4870             write_fp_sreg(s, a->rd, t0);
4871         }
4872         break;
4873     case MO_16:
4874         if (!dc_isar_feature(aa64_fp16, s)) {
4875             return false;
4876         }
4877         if (fp_access_check(s)) {
4878             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4879             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4880             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4881             write_fp_sreg(s, a->rd, t0);
4882         }
4883         break;
4884     default:
4885         return false;
4886     }
4887     return true;
4888 }
4889 
4890 static const FPScalar f_scalar_fadd = {
4891     gen_helper_vfp_addh,
4892     gen_helper_vfp_adds,
4893     gen_helper_vfp_addd,
4894 };
4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4896 
4897 static const FPScalar f_scalar_fsub = {
4898     gen_helper_vfp_subh,
4899     gen_helper_vfp_subs,
4900     gen_helper_vfp_subd,
4901 };
4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4903 
4904 static const FPScalar f_scalar_fdiv = {
4905     gen_helper_vfp_divh,
4906     gen_helper_vfp_divs,
4907     gen_helper_vfp_divd,
4908 };
4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4910 
4911 static const FPScalar f_scalar_fmul = {
4912     gen_helper_vfp_mulh,
4913     gen_helper_vfp_muls,
4914     gen_helper_vfp_muld,
4915 };
4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4917 
4918 static const FPScalar f_scalar_fmax = {
4919     gen_helper_advsimd_maxh,
4920     gen_helper_vfp_maxs,
4921     gen_helper_vfp_maxd,
4922 };
4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4924 
4925 static const FPScalar f_scalar_fmin = {
4926     gen_helper_advsimd_minh,
4927     gen_helper_vfp_mins,
4928     gen_helper_vfp_mind,
4929 };
4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4931 
4932 static const FPScalar f_scalar_fmaxnm = {
4933     gen_helper_advsimd_maxnumh,
4934     gen_helper_vfp_maxnums,
4935     gen_helper_vfp_maxnumd,
4936 };
4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4938 
4939 static const FPScalar f_scalar_fminnm = {
4940     gen_helper_advsimd_minnumh,
4941     gen_helper_vfp_minnums,
4942     gen_helper_vfp_minnumd,
4943 };
4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4945 
4946 static const FPScalar f_scalar_fmulx = {
4947     gen_helper_advsimd_mulxh,
4948     gen_helper_vfp_mulxs,
4949     gen_helper_vfp_mulxd,
4950 };
4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
4952 
4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4954 {
4955     gen_helper_vfp_mulh(d, n, m, s);
4956     gen_vfp_negh(d, d);
4957 }
4958 
4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
4960 {
4961     gen_helper_vfp_muls(d, n, m, s);
4962     gen_vfp_negs(d, d);
4963 }
4964 
4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
4966 {
4967     gen_helper_vfp_muld(d, n, m, s);
4968     gen_vfp_negd(d, d);
4969 }
4970 
4971 static const FPScalar f_scalar_fnmul = {
4972     gen_fnmul_h,
4973     gen_fnmul_s,
4974     gen_fnmul_d,
4975 };
4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
4977 
4978 static const FPScalar f_scalar_fcmeq = {
4979     gen_helper_advsimd_ceq_f16,
4980     gen_helper_neon_ceq_f32,
4981     gen_helper_neon_ceq_f64,
4982 };
4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
4984 
4985 static const FPScalar f_scalar_fcmge = {
4986     gen_helper_advsimd_cge_f16,
4987     gen_helper_neon_cge_f32,
4988     gen_helper_neon_cge_f64,
4989 };
4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
4991 
4992 static const FPScalar f_scalar_fcmgt = {
4993     gen_helper_advsimd_cgt_f16,
4994     gen_helper_neon_cgt_f32,
4995     gen_helper_neon_cgt_f64,
4996 };
4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
4998 
4999 static const FPScalar f_scalar_facge = {
5000     gen_helper_advsimd_acge_f16,
5001     gen_helper_neon_acge_f32,
5002     gen_helper_neon_acge_f64,
5003 };
5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5005 
5006 static const FPScalar f_scalar_facgt = {
5007     gen_helper_advsimd_acgt_f16,
5008     gen_helper_neon_acgt_f32,
5009     gen_helper_neon_acgt_f64,
5010 };
5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5012 
5013 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
5014                           gen_helper_gvec_3_ptr * const fns[3])
5015 {
5016     MemOp esz = a->esz;
5017 
5018     switch (esz) {
5019     case MO_64:
5020         if (!a->q) {
5021             return false;
5022         }
5023         break;
5024     case MO_32:
5025         break;
5026     case MO_16:
5027         if (!dc_isar_feature(aa64_fp16, s)) {
5028             return false;
5029         }
5030         break;
5031     default:
5032         return false;
5033     }
5034     if (fp_access_check(s)) {
5035         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5036                           esz == MO_16, 0, fns[esz - 1]);
5037     }
5038     return true;
5039 }
5040 
5041 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5042     gen_helper_gvec_fadd_h,
5043     gen_helper_gvec_fadd_s,
5044     gen_helper_gvec_fadd_d,
5045 };
5046 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
5047 
5048 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5049     gen_helper_gvec_fsub_h,
5050     gen_helper_gvec_fsub_s,
5051     gen_helper_gvec_fsub_d,
5052 };
5053 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
5054 
5055 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5056     gen_helper_gvec_fdiv_h,
5057     gen_helper_gvec_fdiv_s,
5058     gen_helper_gvec_fdiv_d,
5059 };
5060 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
5061 
5062 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5063     gen_helper_gvec_fmul_h,
5064     gen_helper_gvec_fmul_s,
5065     gen_helper_gvec_fmul_d,
5066 };
5067 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
5068 
5069 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5070     gen_helper_gvec_fmax_h,
5071     gen_helper_gvec_fmax_s,
5072     gen_helper_gvec_fmax_d,
5073 };
5074 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
5075 
5076 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5077     gen_helper_gvec_fmin_h,
5078     gen_helper_gvec_fmin_s,
5079     gen_helper_gvec_fmin_d,
5080 };
5081 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
5082 
5083 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5084     gen_helper_gvec_fmaxnum_h,
5085     gen_helper_gvec_fmaxnum_s,
5086     gen_helper_gvec_fmaxnum_d,
5087 };
5088 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
5089 
5090 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5091     gen_helper_gvec_fminnum_h,
5092     gen_helper_gvec_fminnum_s,
5093     gen_helper_gvec_fminnum_d,
5094 };
5095 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
5096 
5097 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5098     gen_helper_gvec_fmulx_h,
5099     gen_helper_gvec_fmulx_s,
5100     gen_helper_gvec_fmulx_d,
5101 };
5102 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
5103 
5104 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5105     gen_helper_gvec_vfma_h,
5106     gen_helper_gvec_vfma_s,
5107     gen_helper_gvec_vfma_d,
5108 };
5109 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
5110 
5111 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5112     gen_helper_gvec_vfms_h,
5113     gen_helper_gvec_vfms_s,
5114     gen_helper_gvec_vfms_d,
5115 };
5116 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
5117 
5118 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5119     gen_helper_gvec_fceq_h,
5120     gen_helper_gvec_fceq_s,
5121     gen_helper_gvec_fceq_d,
5122 };
5123 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
5124 
5125 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5126     gen_helper_gvec_fcge_h,
5127     gen_helper_gvec_fcge_s,
5128     gen_helper_gvec_fcge_d,
5129 };
5130 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
5131 
5132 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5133     gen_helper_gvec_fcgt_h,
5134     gen_helper_gvec_fcgt_s,
5135     gen_helper_gvec_fcgt_d,
5136 };
5137 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
5138 
5139 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5140     gen_helper_gvec_facge_h,
5141     gen_helper_gvec_facge_s,
5142     gen_helper_gvec_facge_d,
5143 };
5144 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
5145 
5146 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5147     gen_helper_gvec_facgt_h,
5148     gen_helper_gvec_facgt_s,
5149     gen_helper_gvec_facgt_d,
5150 };
5151 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
5152 
5153 /*
5154  * Advanced SIMD scalar/vector x indexed element
5155  */
5156 
5157 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
5158 {
5159     switch (a->esz) {
5160     case MO_64:
5161         if (fp_access_check(s)) {
5162             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5163             TCGv_i64 t1 = tcg_temp_new_i64();
5164 
5165             read_vec_element(s, t1, a->rm, a->idx, MO_64);
5166             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5167             write_fp_dreg(s, a->rd, t0);
5168         }
5169         break;
5170     case MO_32:
5171         if (fp_access_check(s)) {
5172             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5173             TCGv_i32 t1 = tcg_temp_new_i32();
5174 
5175             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
5176             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
5177             write_fp_sreg(s, a->rd, t0);
5178         }
5179         break;
5180     case MO_16:
5181         if (!dc_isar_feature(aa64_fp16, s)) {
5182             return false;
5183         }
5184         if (fp_access_check(s)) {
5185             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5186             TCGv_i32 t1 = tcg_temp_new_i32();
5187 
5188             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
5189             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
5190             write_fp_sreg(s, a->rd, t0);
5191         }
5192         break;
5193     default:
5194         g_assert_not_reached();
5195     }
5196     return true;
5197 }
5198 
5199 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
5200 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
5201 
5202 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
5203 {
5204     switch (a->esz) {
5205     case MO_64:
5206         if (fp_access_check(s)) {
5207             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
5208             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
5209             TCGv_i64 t2 = tcg_temp_new_i64();
5210 
5211             read_vec_element(s, t2, a->rm, a->idx, MO_64);
5212             if (neg) {
5213                 gen_vfp_negd(t1, t1);
5214             }
5215             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5216             write_fp_dreg(s, a->rd, t0);
5217         }
5218         break;
5219     case MO_32:
5220         if (fp_access_check(s)) {
5221             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
5222             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
5223             TCGv_i32 t2 = tcg_temp_new_i32();
5224 
5225             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
5226             if (neg) {
5227                 gen_vfp_negs(t1, t1);
5228             }
5229             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
5230             write_fp_sreg(s, a->rd, t0);
5231         }
5232         break;
5233     case MO_16:
5234         if (!dc_isar_feature(aa64_fp16, s)) {
5235             return false;
5236         }
5237         if (fp_access_check(s)) {
5238             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
5239             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
5240             TCGv_i32 t2 = tcg_temp_new_i32();
5241 
5242             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
5243             if (neg) {
5244                 gen_vfp_negh(t1, t1);
5245             }
5246             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
5247                                        fpstatus_ptr(FPST_FPCR_F16));
5248             write_fp_sreg(s, a->rd, t0);
5249         }
5250         break;
5251     default:
5252         g_assert_not_reached();
5253     }
5254     return true;
5255 }
5256 
5257 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
5258 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
5259 
5260 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
5261                               gen_helper_gvec_3_ptr * const fns[3])
5262 {
5263     MemOp esz = a->esz;
5264 
5265     switch (esz) {
5266     case MO_64:
5267         if (!a->q) {
5268             return false;
5269         }
5270         break;
5271     case MO_32:
5272         break;
5273     case MO_16:
5274         if (!dc_isar_feature(aa64_fp16, s)) {
5275             return false;
5276         }
5277         break;
5278     default:
5279         g_assert_not_reached();
5280     }
5281     if (fp_access_check(s)) {
5282         gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5283                           esz == MO_16, a->idx, fns[esz - 1]);
5284     }
5285     return true;
5286 }
5287 
5288 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
5289     gen_helper_gvec_fmul_idx_h,
5290     gen_helper_gvec_fmul_idx_s,
5291     gen_helper_gvec_fmul_idx_d,
5292 };
5293 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
5294 
5295 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
5296     gen_helper_gvec_fmulx_idx_h,
5297     gen_helper_gvec_fmulx_idx_s,
5298     gen_helper_gvec_fmulx_idx_d,
5299 };
5300 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
5301 
5302 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
5303 {
5304     static gen_helper_gvec_4_ptr * const fns[3] = {
5305         gen_helper_gvec_fmla_idx_h,
5306         gen_helper_gvec_fmla_idx_s,
5307         gen_helper_gvec_fmla_idx_d,
5308     };
5309     MemOp esz = a->esz;
5310 
5311     switch (esz) {
5312     case MO_64:
5313         if (!a->q) {
5314             return false;
5315         }
5316         break;
5317     case MO_32:
5318         break;
5319     case MO_16:
5320         if (!dc_isar_feature(aa64_fp16, s)) {
5321             return false;
5322         }
5323         break;
5324     default:
5325         g_assert_not_reached();
5326     }
5327     if (fp_access_check(s)) {
5328         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5329                           esz == MO_16, (a->idx << 1) | neg,
5330                           fns[esz - 1]);
5331     }
5332     return true;
5333 }
5334 
5335 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
5336 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
5337 
5338 
5339 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
5340  * Note that it is the caller's responsibility to ensure that the
5341  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
5342  * mandated semantics for out of range shifts.
5343  */
5344 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
5345                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
5346 {
5347     switch (shift_type) {
5348     case A64_SHIFT_TYPE_LSL:
5349         tcg_gen_shl_i64(dst, src, shift_amount);
5350         break;
5351     case A64_SHIFT_TYPE_LSR:
5352         tcg_gen_shr_i64(dst, src, shift_amount);
5353         break;
5354     case A64_SHIFT_TYPE_ASR:
5355         if (!sf) {
5356             tcg_gen_ext32s_i64(dst, src);
5357         }
5358         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
5359         break;
5360     case A64_SHIFT_TYPE_ROR:
5361         if (sf) {
5362             tcg_gen_rotr_i64(dst, src, shift_amount);
5363         } else {
5364             TCGv_i32 t0, t1;
5365             t0 = tcg_temp_new_i32();
5366             t1 = tcg_temp_new_i32();
5367             tcg_gen_extrl_i64_i32(t0, src);
5368             tcg_gen_extrl_i64_i32(t1, shift_amount);
5369             tcg_gen_rotr_i32(t0, t0, t1);
5370             tcg_gen_extu_i32_i64(dst, t0);
5371         }
5372         break;
5373     default:
5374         assert(FALSE); /* all shift types should be handled */
5375         break;
5376     }
5377 
5378     if (!sf) { /* zero extend final result */
5379         tcg_gen_ext32u_i64(dst, dst);
5380     }
5381 }
5382 
5383 /* Shift a TCGv src by immediate, put result in dst.
5384  * The shift amount must be in range (this should always be true as the
5385  * relevant instructions will UNDEF on bad shift immediates).
5386  */
5387 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
5388                           enum a64_shift_type shift_type, unsigned int shift_i)
5389 {
5390     assert(shift_i < (sf ? 64 : 32));
5391 
5392     if (shift_i == 0) {
5393         tcg_gen_mov_i64(dst, src);
5394     } else {
5395         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
5396     }
5397 }
5398 
5399 /* Logical (shifted register)
5400  *   31  30 29 28       24 23   22 21  20  16 15    10 9    5 4    0
5401  * +----+-----+-----------+-------+---+------+--------+------+------+
5402  * | sf | opc | 0 1 0 1 0 | shift | N |  Rm  |  imm6  |  Rn  |  Rd  |
5403  * +----+-----+-----------+-------+---+------+--------+------+------+
5404  */
5405 static void disas_logic_reg(DisasContext *s, uint32_t insn)
5406 {
5407     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
5408     unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
5409 
5410     sf = extract32(insn, 31, 1);
5411     opc = extract32(insn, 29, 2);
5412     shift_type = extract32(insn, 22, 2);
5413     invert = extract32(insn, 21, 1);
5414     rm = extract32(insn, 16, 5);
5415     shift_amount = extract32(insn, 10, 6);
5416     rn = extract32(insn, 5, 5);
5417     rd = extract32(insn, 0, 5);
5418 
5419     if (!sf && (shift_amount & (1 << 5))) {
5420         unallocated_encoding(s);
5421         return;
5422     }
5423 
5424     tcg_rd = cpu_reg(s, rd);
5425 
5426     if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
5427         /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
5428          * register-register MOV and MVN, so it is worth special casing.
5429          */
5430         tcg_rm = cpu_reg(s, rm);
5431         if (invert) {
5432             tcg_gen_not_i64(tcg_rd, tcg_rm);
5433             if (!sf) {
5434                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5435             }
5436         } else {
5437             if (sf) {
5438                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
5439             } else {
5440                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
5441             }
5442         }
5443         return;
5444     }
5445 
5446     tcg_rm = read_cpu_reg(s, rm, sf);
5447 
5448     if (shift_amount) {
5449         shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
5450     }
5451 
5452     tcg_rn = cpu_reg(s, rn);
5453 
5454     switch (opc | (invert << 2)) {
5455     case 0: /* AND */
5456     case 3: /* ANDS */
5457         tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
5458         break;
5459     case 1: /* ORR */
5460         tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
5461         break;
5462     case 2: /* EOR */
5463         tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
5464         break;
5465     case 4: /* BIC */
5466     case 7: /* BICS */
5467         tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
5468         break;
5469     case 5: /* ORN */
5470         tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
5471         break;
5472     case 6: /* EON */
5473         tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
5474         break;
5475     default:
5476         assert(FALSE);
5477         break;
5478     }
5479 
5480     if (!sf) {
5481         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5482     }
5483 
5484     if (opc == 3) {
5485         gen_logic_CC(sf, tcg_rd);
5486     }
5487 }
5488 
5489 /*
5490  * Add/subtract (extended register)
5491  *
5492  *  31|30|29|28       24|23 22|21|20   16|15  13|12  10|9  5|4  0|
5493  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5494  * |sf|op| S| 0 1 0 1 1 | opt | 1|  Rm   |option| imm3 | Rn | Rd |
5495  * +--+--+--+-----------+-----+--+-------+------+------+----+----+
5496  *
5497  *  sf: 0 -> 32bit, 1 -> 64bit
5498  *  op: 0 -> add  , 1 -> sub
5499  *   S: 1 -> set flags
5500  * opt: 00
5501  * option: extension type (see DecodeRegExtend)
5502  * imm3: optional shift to Rm
5503  *
5504  * Rd = Rn + LSL(extend(Rm), amount)
5505  */
5506 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
5507 {
5508     int rd = extract32(insn, 0, 5);
5509     int rn = extract32(insn, 5, 5);
5510     int imm3 = extract32(insn, 10, 3);
5511     int option = extract32(insn, 13, 3);
5512     int rm = extract32(insn, 16, 5);
5513     int opt = extract32(insn, 22, 2);
5514     bool setflags = extract32(insn, 29, 1);
5515     bool sub_op = extract32(insn, 30, 1);
5516     bool sf = extract32(insn, 31, 1);
5517 
5518     TCGv_i64 tcg_rm, tcg_rn; /* temps */
5519     TCGv_i64 tcg_rd;
5520     TCGv_i64 tcg_result;
5521 
5522     if (imm3 > 4 || opt != 0) {
5523         unallocated_encoding(s);
5524         return;
5525     }
5526 
5527     /* non-flag setting ops may use SP */
5528     if (!setflags) {
5529         tcg_rd = cpu_reg_sp(s, rd);
5530     } else {
5531         tcg_rd = cpu_reg(s, rd);
5532     }
5533     tcg_rn = read_cpu_reg_sp(s, rn, sf);
5534 
5535     tcg_rm = read_cpu_reg(s, rm, sf);
5536     ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
5537 
5538     tcg_result = tcg_temp_new_i64();
5539 
5540     if (!setflags) {
5541         if (sub_op) {
5542             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5543         } else {
5544             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5545         }
5546     } else {
5547         if (sub_op) {
5548             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5549         } else {
5550             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5551         }
5552     }
5553 
5554     if (sf) {
5555         tcg_gen_mov_i64(tcg_rd, tcg_result);
5556     } else {
5557         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5558     }
5559 }
5560 
5561 /*
5562  * Add/subtract (shifted register)
5563  *
5564  *  31 30 29 28       24 23 22 21 20   16 15     10 9    5 4    0
5565  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5566  * |sf|op| S| 0 1 0 1 1 |shift| 0|  Rm   |  imm6   |  Rn  |  Rd  |
5567  * +--+--+--+-----------+-----+--+-------+---------+------+------+
5568  *
5569  *    sf: 0 -> 32bit, 1 -> 64bit
5570  *    op: 0 -> add  , 1 -> sub
5571  *     S: 1 -> set flags
5572  * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5573  *  imm6: Shift amount to apply to Rm before the add/sub
5574  */
5575 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5576 {
5577     int rd = extract32(insn, 0, 5);
5578     int rn = extract32(insn, 5, 5);
5579     int imm6 = extract32(insn, 10, 6);
5580     int rm = extract32(insn, 16, 5);
5581     int shift_type = extract32(insn, 22, 2);
5582     bool setflags = extract32(insn, 29, 1);
5583     bool sub_op = extract32(insn, 30, 1);
5584     bool sf = extract32(insn, 31, 1);
5585 
5586     TCGv_i64 tcg_rd = cpu_reg(s, rd);
5587     TCGv_i64 tcg_rn, tcg_rm;
5588     TCGv_i64 tcg_result;
5589 
5590     if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5591         unallocated_encoding(s);
5592         return;
5593     }
5594 
5595     tcg_rn = read_cpu_reg(s, rn, sf);
5596     tcg_rm = read_cpu_reg(s, rm, sf);
5597 
5598     shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5599 
5600     tcg_result = tcg_temp_new_i64();
5601 
5602     if (!setflags) {
5603         if (sub_op) {
5604             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5605         } else {
5606             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5607         }
5608     } else {
5609         if (sub_op) {
5610             gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5611         } else {
5612             gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5613         }
5614     }
5615 
5616     if (sf) {
5617         tcg_gen_mov_i64(tcg_rd, tcg_result);
5618     } else {
5619         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5620     }
5621 }
5622 
5623 /* Data-processing (3 source)
5624  *
5625  *    31 30  29 28       24 23 21  20  16  15  14  10 9    5 4    0
5626  *  +--+------+-----------+------+------+----+------+------+------+
5627  *  |sf| op54 | 1 1 0 1 1 | op31 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
5628  *  +--+------+-----------+------+------+----+------+------+------+
5629  */
5630 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5631 {
5632     int rd = extract32(insn, 0, 5);
5633     int rn = extract32(insn, 5, 5);
5634     int ra = extract32(insn, 10, 5);
5635     int rm = extract32(insn, 16, 5);
5636     int op_id = (extract32(insn, 29, 3) << 4) |
5637         (extract32(insn, 21, 3) << 1) |
5638         extract32(insn, 15, 1);
5639     bool sf = extract32(insn, 31, 1);
5640     bool is_sub = extract32(op_id, 0, 1);
5641     bool is_high = extract32(op_id, 2, 1);
5642     bool is_signed = false;
5643     TCGv_i64 tcg_op1;
5644     TCGv_i64 tcg_op2;
5645     TCGv_i64 tcg_tmp;
5646 
5647     /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5648     switch (op_id) {
5649     case 0x42: /* SMADDL */
5650     case 0x43: /* SMSUBL */
5651     case 0x44: /* SMULH */
5652         is_signed = true;
5653         break;
5654     case 0x0: /* MADD (32bit) */
5655     case 0x1: /* MSUB (32bit) */
5656     case 0x40: /* MADD (64bit) */
5657     case 0x41: /* MSUB (64bit) */
5658     case 0x4a: /* UMADDL */
5659     case 0x4b: /* UMSUBL */
5660     case 0x4c: /* UMULH */
5661         break;
5662     default:
5663         unallocated_encoding(s);
5664         return;
5665     }
5666 
5667     if (is_high) {
5668         TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5669         TCGv_i64 tcg_rd = cpu_reg(s, rd);
5670         TCGv_i64 tcg_rn = cpu_reg(s, rn);
5671         TCGv_i64 tcg_rm = cpu_reg(s, rm);
5672 
5673         if (is_signed) {
5674             tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5675         } else {
5676             tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5677         }
5678         return;
5679     }
5680 
5681     tcg_op1 = tcg_temp_new_i64();
5682     tcg_op2 = tcg_temp_new_i64();
5683     tcg_tmp = tcg_temp_new_i64();
5684 
5685     if (op_id < 0x42) {
5686         tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5687         tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5688     } else {
5689         if (is_signed) {
5690             tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5691             tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5692         } else {
5693             tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5694             tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5695         }
5696     }
5697 
5698     if (ra == 31 && !is_sub) {
5699         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5700         tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5701     } else {
5702         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5703         if (is_sub) {
5704             tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5705         } else {
5706             tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5707         }
5708     }
5709 
5710     if (!sf) {
5711         tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5712     }
5713 }
5714 
5715 /* Add/subtract (with carry)
5716  *  31 30 29 28 27 26 25 24 23 22 21  20  16  15       10  9    5 4   0
5717  * +--+--+--+------------------------+------+-------------+------+-----+
5718  * |sf|op| S| 1  1  0  1  0  0  0  0 |  rm  | 0 0 0 0 0 0 |  Rn  |  Rd |
5719  * +--+--+--+------------------------+------+-------------+------+-----+
5720  */
5721 
5722 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5723 {
5724     unsigned int sf, op, setflags, rm, rn, rd;
5725     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5726 
5727     sf = extract32(insn, 31, 1);
5728     op = extract32(insn, 30, 1);
5729     setflags = extract32(insn, 29, 1);
5730     rm = extract32(insn, 16, 5);
5731     rn = extract32(insn, 5, 5);
5732     rd = extract32(insn, 0, 5);
5733 
5734     tcg_rd = cpu_reg(s, rd);
5735     tcg_rn = cpu_reg(s, rn);
5736 
5737     if (op) {
5738         tcg_y = tcg_temp_new_i64();
5739         tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5740     } else {
5741         tcg_y = cpu_reg(s, rm);
5742     }
5743 
5744     if (setflags) {
5745         gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5746     } else {
5747         gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5748     }
5749 }
5750 
5751 /*
5752  * Rotate right into flags
5753  *  31 30 29                21       15          10      5  4      0
5754  * +--+--+--+-----------------+--------+-----------+------+--+------+
5755  * |sf|op| S| 1 1 0 1 0 0 0 0 |  imm6  | 0 0 0 0 1 |  Rn  |o2| mask |
5756  * +--+--+--+-----------------+--------+-----------+------+--+------+
5757  */
5758 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5759 {
5760     int mask = extract32(insn, 0, 4);
5761     int o2 = extract32(insn, 4, 1);
5762     int rn = extract32(insn, 5, 5);
5763     int imm6 = extract32(insn, 15, 6);
5764     int sf_op_s = extract32(insn, 29, 3);
5765     TCGv_i64 tcg_rn;
5766     TCGv_i32 nzcv;
5767 
5768     if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5769         unallocated_encoding(s);
5770         return;
5771     }
5772 
5773     tcg_rn = read_cpu_reg(s, rn, 1);
5774     tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5775 
5776     nzcv = tcg_temp_new_i32();
5777     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5778 
5779     if (mask & 8) { /* N */
5780         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5781     }
5782     if (mask & 4) { /* Z */
5783         tcg_gen_not_i32(cpu_ZF, nzcv);
5784         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5785     }
5786     if (mask & 2) { /* C */
5787         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5788     }
5789     if (mask & 1) { /* V */
5790         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5791     }
5792 }
5793 
5794 /*
5795  * Evaluate into flags
5796  *  31 30 29                21        15   14        10      5  4      0
5797  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5798  * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 |  Rn  |o3| mask |
5799  * +--+--+--+-----------------+---------+----+---------+------+--+------+
5800  */
5801 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5802 {
5803     int o3_mask = extract32(insn, 0, 5);
5804     int rn = extract32(insn, 5, 5);
5805     int o2 = extract32(insn, 15, 6);
5806     int sz = extract32(insn, 14, 1);
5807     int sf_op_s = extract32(insn, 29, 3);
5808     TCGv_i32 tmp;
5809     int shift;
5810 
5811     if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5812         !dc_isar_feature(aa64_condm_4, s)) {
5813         unallocated_encoding(s);
5814         return;
5815     }
5816     shift = sz ? 16 : 24;  /* SETF16 or SETF8 */
5817 
5818     tmp = tcg_temp_new_i32();
5819     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5820     tcg_gen_shli_i32(cpu_NF, tmp, shift);
5821     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5822     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5823     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5824 }
5825 
5826 /* Conditional compare (immediate / register)
5827  *  31 30 29 28 27 26 25 24 23 22 21  20    16 15  12  11  10  9   5  4 3   0
5828  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5829  * |sf|op| S| 1  1  0  1  0  0  1  0 |imm5/rm | cond |i/r |o2|  Rn  |o3|nzcv |
5830  * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5831  *        [1]                             y                [0]       [0]
5832  */
5833 static void disas_cc(DisasContext *s, uint32_t insn)
5834 {
5835     unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5836     TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5837     TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5838     DisasCompare c;
5839 
5840     if (!extract32(insn, 29, 1)) {
5841         unallocated_encoding(s);
5842         return;
5843     }
5844     if (insn & (1 << 10 | 1 << 4)) {
5845         unallocated_encoding(s);
5846         return;
5847     }
5848     sf = extract32(insn, 31, 1);
5849     op = extract32(insn, 30, 1);
5850     is_imm = extract32(insn, 11, 1);
5851     y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5852     cond = extract32(insn, 12, 4);
5853     rn = extract32(insn, 5, 5);
5854     nzcv = extract32(insn, 0, 4);
5855 
5856     /* Set T0 = !COND.  */
5857     tcg_t0 = tcg_temp_new_i32();
5858     arm_test_cc(&c, cond);
5859     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5860 
5861     /* Load the arguments for the new comparison.  */
5862     if (is_imm) {
5863         tcg_y = tcg_temp_new_i64();
5864         tcg_gen_movi_i64(tcg_y, y);
5865     } else {
5866         tcg_y = cpu_reg(s, y);
5867     }
5868     tcg_rn = cpu_reg(s, rn);
5869 
5870     /* Set the flags for the new comparison.  */
5871     tcg_tmp = tcg_temp_new_i64();
5872     if (op) {
5873         gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5874     } else {
5875         gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5876     }
5877 
5878     /* If COND was false, force the flags to #nzcv.  Compute two masks
5879      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5880      * For tcg hosts that support ANDC, we can make do with just T1.
5881      * In either case, allow the tcg optimizer to delete any unused mask.
5882      */
5883     tcg_t1 = tcg_temp_new_i32();
5884     tcg_t2 = tcg_temp_new_i32();
5885     tcg_gen_neg_i32(tcg_t1, tcg_t0);
5886     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5887 
5888     if (nzcv & 8) { /* N */
5889         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5890     } else {
5891         if (TCG_TARGET_HAS_andc_i32) {
5892             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5893         } else {
5894             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5895         }
5896     }
5897     if (nzcv & 4) { /* Z */
5898         if (TCG_TARGET_HAS_andc_i32) {
5899             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5900         } else {
5901             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5902         }
5903     } else {
5904         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5905     }
5906     if (nzcv & 2) { /* C */
5907         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5908     } else {
5909         if (TCG_TARGET_HAS_andc_i32) {
5910             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5911         } else {
5912             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5913         }
5914     }
5915     if (nzcv & 1) { /* V */
5916         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5917     } else {
5918         if (TCG_TARGET_HAS_andc_i32) {
5919             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5920         } else {
5921             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5922         }
5923     }
5924 }
5925 
5926 /* Conditional select
5927  *   31   30  29  28             21 20  16 15  12 11 10 9    5 4    0
5928  * +----+----+---+-----------------+------+------+-----+------+------+
5929  * | sf | op | S | 1 1 0 1 0 1 0 0 |  Rm  | cond | op2 |  Rn  |  Rd  |
5930  * +----+----+---+-----------------+------+------+-----+------+------+
5931  */
5932 static void disas_cond_select(DisasContext *s, uint32_t insn)
5933 {
5934     unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5935     TCGv_i64 tcg_rd, zero;
5936     DisasCompare64 c;
5937 
5938     if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5939         /* S == 1 or op2<1> == 1 */
5940         unallocated_encoding(s);
5941         return;
5942     }
5943     sf = extract32(insn, 31, 1);
5944     else_inv = extract32(insn, 30, 1);
5945     rm = extract32(insn, 16, 5);
5946     cond = extract32(insn, 12, 4);
5947     else_inc = extract32(insn, 10, 1);
5948     rn = extract32(insn, 5, 5);
5949     rd = extract32(insn, 0, 5);
5950 
5951     tcg_rd = cpu_reg(s, rd);
5952 
5953     a64_test_cc(&c, cond);
5954     zero = tcg_constant_i64(0);
5955 
5956     if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5957         /* CSET & CSETM.  */
5958         if (else_inv) {
5959             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5960                                    tcg_rd, c.value, zero);
5961         } else {
5962             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5963                                 tcg_rd, c.value, zero);
5964         }
5965     } else {
5966         TCGv_i64 t_true = cpu_reg(s, rn);
5967         TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5968         if (else_inv && else_inc) {
5969             tcg_gen_neg_i64(t_false, t_false);
5970         } else if (else_inv) {
5971             tcg_gen_not_i64(t_false, t_false);
5972         } else if (else_inc) {
5973             tcg_gen_addi_i64(t_false, t_false, 1);
5974         }
5975         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5976     }
5977 
5978     if (!sf) {
5979         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5980     }
5981 }
5982 
5983 static void handle_clz(DisasContext *s, unsigned int sf,
5984                        unsigned int rn, unsigned int rd)
5985 {
5986     TCGv_i64 tcg_rd, tcg_rn;
5987     tcg_rd = cpu_reg(s, rd);
5988     tcg_rn = cpu_reg(s, rn);
5989 
5990     if (sf) {
5991         tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5992     } else {
5993         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5994         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5995         tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5996         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5997     }
5998 }
5999 
6000 static void handle_cls(DisasContext *s, unsigned int sf,
6001                        unsigned int rn, unsigned int rd)
6002 {
6003     TCGv_i64 tcg_rd, tcg_rn;
6004     tcg_rd = cpu_reg(s, rd);
6005     tcg_rn = cpu_reg(s, rn);
6006 
6007     if (sf) {
6008         tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
6009     } else {
6010         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6011         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6012         tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
6013         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6014     }
6015 }
6016 
6017 static void handle_rbit(DisasContext *s, unsigned int sf,
6018                         unsigned int rn, unsigned int rd)
6019 {
6020     TCGv_i64 tcg_rd, tcg_rn;
6021     tcg_rd = cpu_reg(s, rd);
6022     tcg_rn = cpu_reg(s, rn);
6023 
6024     if (sf) {
6025         gen_helper_rbit64(tcg_rd, tcg_rn);
6026     } else {
6027         TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
6028         tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
6029         gen_helper_rbit(tcg_tmp32, tcg_tmp32);
6030         tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
6031     }
6032 }
6033 
6034 /* REV with sf==1, opcode==3 ("REV64") */
6035 static void handle_rev64(DisasContext *s, unsigned int sf,
6036                          unsigned int rn, unsigned int rd)
6037 {
6038     if (!sf) {
6039         unallocated_encoding(s);
6040         return;
6041     }
6042     tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
6043 }
6044 
6045 /* REV with sf==0, opcode==2
6046  * REV32 (sf==1, opcode==2)
6047  */
6048 static void handle_rev32(DisasContext *s, unsigned int sf,
6049                          unsigned int rn, unsigned int rd)
6050 {
6051     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6052     TCGv_i64 tcg_rn = cpu_reg(s, rn);
6053 
6054     if (sf) {
6055         tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
6056         tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
6057     } else {
6058         tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
6059     }
6060 }
6061 
6062 /* REV16 (opcode==1) */
6063 static void handle_rev16(DisasContext *s, unsigned int sf,
6064                          unsigned int rn, unsigned int rd)
6065 {
6066     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6067     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6068     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6069     TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
6070 
6071     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
6072     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
6073     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
6074     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
6075     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
6076 }
6077 
6078 /* Data-processing (1 source)
6079  *   31  30  29  28             21 20     16 15    10 9    5 4    0
6080  * +----+---+---+-----------------+---------+--------+------+------+
6081  * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode |  Rn  |  Rd  |
6082  * +----+---+---+-----------------+---------+--------+------+------+
6083  */
6084 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
6085 {
6086     unsigned int sf, opcode, opcode2, rn, rd;
6087     TCGv_i64 tcg_rd;
6088 
6089     if (extract32(insn, 29, 1)) {
6090         unallocated_encoding(s);
6091         return;
6092     }
6093 
6094     sf = extract32(insn, 31, 1);
6095     opcode = extract32(insn, 10, 6);
6096     opcode2 = extract32(insn, 16, 5);
6097     rn = extract32(insn, 5, 5);
6098     rd = extract32(insn, 0, 5);
6099 
6100 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
6101 
6102     switch (MAP(sf, opcode2, opcode)) {
6103     case MAP(0, 0x00, 0x00): /* RBIT */
6104     case MAP(1, 0x00, 0x00):
6105         handle_rbit(s, sf, rn, rd);
6106         break;
6107     case MAP(0, 0x00, 0x01): /* REV16 */
6108     case MAP(1, 0x00, 0x01):
6109         handle_rev16(s, sf, rn, rd);
6110         break;
6111     case MAP(0, 0x00, 0x02): /* REV/REV32 */
6112     case MAP(1, 0x00, 0x02):
6113         handle_rev32(s, sf, rn, rd);
6114         break;
6115     case MAP(1, 0x00, 0x03): /* REV64 */
6116         handle_rev64(s, sf, rn, rd);
6117         break;
6118     case MAP(0, 0x00, 0x04): /* CLZ */
6119     case MAP(1, 0x00, 0x04):
6120         handle_clz(s, sf, rn, rd);
6121         break;
6122     case MAP(0, 0x00, 0x05): /* CLS */
6123     case MAP(1, 0x00, 0x05):
6124         handle_cls(s, sf, rn, rd);
6125         break;
6126     case MAP(1, 0x01, 0x00): /* PACIA */
6127         if (s->pauth_active) {
6128             tcg_rd = cpu_reg(s, rd);
6129             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6130         } else if (!dc_isar_feature(aa64_pauth, s)) {
6131             goto do_unallocated;
6132         }
6133         break;
6134     case MAP(1, 0x01, 0x01): /* PACIB */
6135         if (s->pauth_active) {
6136             tcg_rd = cpu_reg(s, rd);
6137             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6138         } else if (!dc_isar_feature(aa64_pauth, s)) {
6139             goto do_unallocated;
6140         }
6141         break;
6142     case MAP(1, 0x01, 0x02): /* PACDA */
6143         if (s->pauth_active) {
6144             tcg_rd = cpu_reg(s, rd);
6145             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6146         } else if (!dc_isar_feature(aa64_pauth, s)) {
6147             goto do_unallocated;
6148         }
6149         break;
6150     case MAP(1, 0x01, 0x03): /* PACDB */
6151         if (s->pauth_active) {
6152             tcg_rd = cpu_reg(s, rd);
6153             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6154         } else if (!dc_isar_feature(aa64_pauth, s)) {
6155             goto do_unallocated;
6156         }
6157         break;
6158     case MAP(1, 0x01, 0x04): /* AUTIA */
6159         if (s->pauth_active) {
6160             tcg_rd = cpu_reg(s, rd);
6161             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6162         } else if (!dc_isar_feature(aa64_pauth, s)) {
6163             goto do_unallocated;
6164         }
6165         break;
6166     case MAP(1, 0x01, 0x05): /* AUTIB */
6167         if (s->pauth_active) {
6168             tcg_rd = cpu_reg(s, rd);
6169             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6170         } else if (!dc_isar_feature(aa64_pauth, s)) {
6171             goto do_unallocated;
6172         }
6173         break;
6174     case MAP(1, 0x01, 0x06): /* AUTDA */
6175         if (s->pauth_active) {
6176             tcg_rd = cpu_reg(s, rd);
6177             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6178         } else if (!dc_isar_feature(aa64_pauth, s)) {
6179             goto do_unallocated;
6180         }
6181         break;
6182     case MAP(1, 0x01, 0x07): /* AUTDB */
6183         if (s->pauth_active) {
6184             tcg_rd = cpu_reg(s, rd);
6185             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
6186         } else if (!dc_isar_feature(aa64_pauth, s)) {
6187             goto do_unallocated;
6188         }
6189         break;
6190     case MAP(1, 0x01, 0x08): /* PACIZA */
6191         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6192             goto do_unallocated;
6193         } else if (s->pauth_active) {
6194             tcg_rd = cpu_reg(s, rd);
6195             gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6196         }
6197         break;
6198     case MAP(1, 0x01, 0x09): /* PACIZB */
6199         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6200             goto do_unallocated;
6201         } else if (s->pauth_active) {
6202             tcg_rd = cpu_reg(s, rd);
6203             gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6204         }
6205         break;
6206     case MAP(1, 0x01, 0x0a): /* PACDZA */
6207         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6208             goto do_unallocated;
6209         } else if (s->pauth_active) {
6210             tcg_rd = cpu_reg(s, rd);
6211             gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6212         }
6213         break;
6214     case MAP(1, 0x01, 0x0b): /* PACDZB */
6215         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6216             goto do_unallocated;
6217         } else if (s->pauth_active) {
6218             tcg_rd = cpu_reg(s, rd);
6219             gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6220         }
6221         break;
6222     case MAP(1, 0x01, 0x0c): /* AUTIZA */
6223         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6224             goto do_unallocated;
6225         } else if (s->pauth_active) {
6226             tcg_rd = cpu_reg(s, rd);
6227             gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6228         }
6229         break;
6230     case MAP(1, 0x01, 0x0d): /* AUTIZB */
6231         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6232             goto do_unallocated;
6233         } else if (s->pauth_active) {
6234             tcg_rd = cpu_reg(s, rd);
6235             gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6236         }
6237         break;
6238     case MAP(1, 0x01, 0x0e): /* AUTDZA */
6239         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6240             goto do_unallocated;
6241         } else if (s->pauth_active) {
6242             tcg_rd = cpu_reg(s, rd);
6243             gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6244         }
6245         break;
6246     case MAP(1, 0x01, 0x0f): /* AUTDZB */
6247         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6248             goto do_unallocated;
6249         } else if (s->pauth_active) {
6250             tcg_rd = cpu_reg(s, rd);
6251             gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
6252         }
6253         break;
6254     case MAP(1, 0x01, 0x10): /* XPACI */
6255         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6256             goto do_unallocated;
6257         } else if (s->pauth_active) {
6258             tcg_rd = cpu_reg(s, rd);
6259             gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
6260         }
6261         break;
6262     case MAP(1, 0x01, 0x11): /* XPACD */
6263         if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
6264             goto do_unallocated;
6265         } else if (s->pauth_active) {
6266             tcg_rd = cpu_reg(s, rd);
6267             gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
6268         }
6269         break;
6270     default:
6271     do_unallocated:
6272         unallocated_encoding(s);
6273         break;
6274     }
6275 
6276 #undef MAP
6277 }
6278 
6279 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
6280                        unsigned int rm, unsigned int rn, unsigned int rd)
6281 {
6282     TCGv_i64 tcg_n, tcg_m, tcg_rd;
6283     tcg_rd = cpu_reg(s, rd);
6284 
6285     if (!sf && is_signed) {
6286         tcg_n = tcg_temp_new_i64();
6287         tcg_m = tcg_temp_new_i64();
6288         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
6289         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
6290     } else {
6291         tcg_n = read_cpu_reg(s, rn, sf);
6292         tcg_m = read_cpu_reg(s, rm, sf);
6293     }
6294 
6295     if (is_signed) {
6296         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
6297     } else {
6298         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
6299     }
6300 
6301     if (!sf) { /* zero extend final result */
6302         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6303     }
6304 }
6305 
6306 /* LSLV, LSRV, ASRV, RORV */
6307 static void handle_shift_reg(DisasContext *s,
6308                              enum a64_shift_type shift_type, unsigned int sf,
6309                              unsigned int rm, unsigned int rn, unsigned int rd)
6310 {
6311     TCGv_i64 tcg_shift = tcg_temp_new_i64();
6312     TCGv_i64 tcg_rd = cpu_reg(s, rd);
6313     TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
6314 
6315     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
6316     shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
6317 }
6318 
6319 /* CRC32[BHWX], CRC32C[BHWX] */
6320 static void handle_crc32(DisasContext *s,
6321                          unsigned int sf, unsigned int sz, bool crc32c,
6322                          unsigned int rm, unsigned int rn, unsigned int rd)
6323 {
6324     TCGv_i64 tcg_acc, tcg_val;
6325     TCGv_i32 tcg_bytes;
6326 
6327     if (!dc_isar_feature(aa64_crc32, s)
6328         || (sf == 1 && sz != 3)
6329         || (sf == 0 && sz == 3)) {
6330         unallocated_encoding(s);
6331         return;
6332     }
6333 
6334     if (sz == 3) {
6335         tcg_val = cpu_reg(s, rm);
6336     } else {
6337         uint64_t mask;
6338         switch (sz) {
6339         case 0:
6340             mask = 0xFF;
6341             break;
6342         case 1:
6343             mask = 0xFFFF;
6344             break;
6345         case 2:
6346             mask = 0xFFFFFFFF;
6347             break;
6348         default:
6349             g_assert_not_reached();
6350         }
6351         tcg_val = tcg_temp_new_i64();
6352         tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
6353     }
6354 
6355     tcg_acc = cpu_reg(s, rn);
6356     tcg_bytes = tcg_constant_i32(1 << sz);
6357 
6358     if (crc32c) {
6359         gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6360     } else {
6361         gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
6362     }
6363 }
6364 
6365 /* Data-processing (2 source)
6366  *   31   30  29 28             21 20  16 15    10 9    5 4    0
6367  * +----+---+---+-----------------+------+--------+------+------+
6368  * | sf | 0 | S | 1 1 0 1 0 1 1 0 |  Rm  | opcode |  Rn  |  Rd  |
6369  * +----+---+---+-----------------+------+--------+------+------+
6370  */
6371 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
6372 {
6373     unsigned int sf, rm, opcode, rn, rd, setflag;
6374     sf = extract32(insn, 31, 1);
6375     setflag = extract32(insn, 29, 1);
6376     rm = extract32(insn, 16, 5);
6377     opcode = extract32(insn, 10, 6);
6378     rn = extract32(insn, 5, 5);
6379     rd = extract32(insn, 0, 5);
6380 
6381     if (setflag && opcode != 0) {
6382         unallocated_encoding(s);
6383         return;
6384     }
6385 
6386     switch (opcode) {
6387     case 0: /* SUBP(S) */
6388         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6389             goto do_unallocated;
6390         } else {
6391             TCGv_i64 tcg_n, tcg_m, tcg_d;
6392 
6393             tcg_n = read_cpu_reg_sp(s, rn, true);
6394             tcg_m = read_cpu_reg_sp(s, rm, true);
6395             tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
6396             tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
6397             tcg_d = cpu_reg(s, rd);
6398 
6399             if (setflag) {
6400                 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
6401             } else {
6402                 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
6403             }
6404         }
6405         break;
6406     case 2: /* UDIV */
6407         handle_div(s, false, sf, rm, rn, rd);
6408         break;
6409     case 3: /* SDIV */
6410         handle_div(s, true, sf, rm, rn, rd);
6411         break;
6412     case 4: /* IRG */
6413         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6414             goto do_unallocated;
6415         }
6416         if (s->ata[0]) {
6417             gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
6418                            cpu_reg_sp(s, rn), cpu_reg(s, rm));
6419         } else {
6420             gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
6421                                              cpu_reg_sp(s, rn));
6422         }
6423         break;
6424     case 5: /* GMI */
6425         if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
6426             goto do_unallocated;
6427         } else {
6428             TCGv_i64 t = tcg_temp_new_i64();
6429 
6430             tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
6431             tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
6432             tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
6433         }
6434         break;
6435     case 8: /* LSLV */
6436         handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
6437         break;
6438     case 9: /* LSRV */
6439         handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
6440         break;
6441     case 10: /* ASRV */
6442         handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
6443         break;
6444     case 11: /* RORV */
6445         handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
6446         break;
6447     case 12: /* PACGA */
6448         if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
6449             goto do_unallocated;
6450         }
6451         gen_helper_pacga(cpu_reg(s, rd), tcg_env,
6452                          cpu_reg(s, rn), cpu_reg_sp(s, rm));
6453         break;
6454     case 16:
6455     case 17:
6456     case 18:
6457     case 19:
6458     case 20:
6459     case 21:
6460     case 22:
6461     case 23: /* CRC32 */
6462     {
6463         int sz = extract32(opcode, 0, 2);
6464         bool crc32c = extract32(opcode, 2, 1);
6465         handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
6466         break;
6467     }
6468     default:
6469     do_unallocated:
6470         unallocated_encoding(s);
6471         break;
6472     }
6473 }
6474 
6475 /*
6476  * Data processing - register
6477  *  31  30 29  28      25    21  20  16      10         0
6478  * +--+---+--+---+-------+-----+-------+-------+---------+
6479  * |  |op0|  |op1| 1 0 1 | op2 |       |  op3  |         |
6480  * +--+---+--+---+-------+-----+-------+-------+---------+
6481  */
6482 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
6483 {
6484     int op0 = extract32(insn, 30, 1);
6485     int op1 = extract32(insn, 28, 1);
6486     int op2 = extract32(insn, 21, 4);
6487     int op3 = extract32(insn, 10, 6);
6488 
6489     if (!op1) {
6490         if (op2 & 8) {
6491             if (op2 & 1) {
6492                 /* Add/sub (extended register) */
6493                 disas_add_sub_ext_reg(s, insn);
6494             } else {
6495                 /* Add/sub (shifted register) */
6496                 disas_add_sub_reg(s, insn);
6497             }
6498         } else {
6499             /* Logical (shifted register) */
6500             disas_logic_reg(s, insn);
6501         }
6502         return;
6503     }
6504 
6505     switch (op2) {
6506     case 0x0:
6507         switch (op3) {
6508         case 0x00: /* Add/subtract (with carry) */
6509             disas_adc_sbc(s, insn);
6510             break;
6511 
6512         case 0x01: /* Rotate right into flags */
6513         case 0x21:
6514             disas_rotate_right_into_flags(s, insn);
6515             break;
6516 
6517         case 0x02: /* Evaluate into flags */
6518         case 0x12:
6519         case 0x22:
6520         case 0x32:
6521             disas_evaluate_into_flags(s, insn);
6522             break;
6523 
6524         default:
6525             goto do_unallocated;
6526         }
6527         break;
6528 
6529     case 0x2: /* Conditional compare */
6530         disas_cc(s, insn); /* both imm and reg forms */
6531         break;
6532 
6533     case 0x4: /* Conditional select */
6534         disas_cond_select(s, insn);
6535         break;
6536 
6537     case 0x6: /* Data-processing */
6538         if (op0) {    /* (1 source) */
6539             disas_data_proc_1src(s, insn);
6540         } else {      /* (2 source) */
6541             disas_data_proc_2src(s, insn);
6542         }
6543         break;
6544     case 0x8 ... 0xf: /* (3 source) */
6545         disas_data_proc_3src(s, insn);
6546         break;
6547 
6548     default:
6549     do_unallocated:
6550         unallocated_encoding(s);
6551         break;
6552     }
6553 }
6554 
6555 static void handle_fp_compare(DisasContext *s, int size,
6556                               unsigned int rn, unsigned int rm,
6557                               bool cmp_with_zero, bool signal_all_nans)
6558 {
6559     TCGv_i64 tcg_flags = tcg_temp_new_i64();
6560     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6561 
6562     if (size == MO_64) {
6563         TCGv_i64 tcg_vn, tcg_vm;
6564 
6565         tcg_vn = read_fp_dreg(s, rn);
6566         if (cmp_with_zero) {
6567             tcg_vm = tcg_constant_i64(0);
6568         } else {
6569             tcg_vm = read_fp_dreg(s, rm);
6570         }
6571         if (signal_all_nans) {
6572             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6573         } else {
6574             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6575         }
6576     } else {
6577         TCGv_i32 tcg_vn = tcg_temp_new_i32();
6578         TCGv_i32 tcg_vm = tcg_temp_new_i32();
6579 
6580         read_vec_element_i32(s, tcg_vn, rn, 0, size);
6581         if (cmp_with_zero) {
6582             tcg_gen_movi_i32(tcg_vm, 0);
6583         } else {
6584             read_vec_element_i32(s, tcg_vm, rm, 0, size);
6585         }
6586 
6587         switch (size) {
6588         case MO_32:
6589             if (signal_all_nans) {
6590                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6591             } else {
6592                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6593             }
6594             break;
6595         case MO_16:
6596             if (signal_all_nans) {
6597                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6598             } else {
6599                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6600             }
6601             break;
6602         default:
6603             g_assert_not_reached();
6604         }
6605     }
6606 
6607     gen_set_nzcv(tcg_flags);
6608 }
6609 
6610 /* Floating point compare
6611  *   31  30  29 28       24 23  22  21 20  16 15 14 13  10    9    5 4     0
6612  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6613  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | op  | 1 0 0 0 |  Rn  |  op2  |
6614  * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6615  */
6616 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6617 {
6618     unsigned int mos, type, rm, op, rn, opc, op2r;
6619     int size;
6620 
6621     mos = extract32(insn, 29, 3);
6622     type = extract32(insn, 22, 2);
6623     rm = extract32(insn, 16, 5);
6624     op = extract32(insn, 14, 2);
6625     rn = extract32(insn, 5, 5);
6626     opc = extract32(insn, 3, 2);
6627     op2r = extract32(insn, 0, 3);
6628 
6629     if (mos || op || op2r) {
6630         unallocated_encoding(s);
6631         return;
6632     }
6633 
6634     switch (type) {
6635     case 0:
6636         size = MO_32;
6637         break;
6638     case 1:
6639         size = MO_64;
6640         break;
6641     case 3:
6642         size = MO_16;
6643         if (dc_isar_feature(aa64_fp16, s)) {
6644             break;
6645         }
6646         /* fallthru */
6647     default:
6648         unallocated_encoding(s);
6649         return;
6650     }
6651 
6652     if (!fp_access_check(s)) {
6653         return;
6654     }
6655 
6656     handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6657 }
6658 
6659 /* Floating point conditional compare
6660  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5  4   3    0
6661  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6662  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 0 1 |  Rn  | op | nzcv |
6663  * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6664  */
6665 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6666 {
6667     unsigned int mos, type, rm, cond, rn, op, nzcv;
6668     TCGLabel *label_continue = NULL;
6669     int size;
6670 
6671     mos = extract32(insn, 29, 3);
6672     type = extract32(insn, 22, 2);
6673     rm = extract32(insn, 16, 5);
6674     cond = extract32(insn, 12, 4);
6675     rn = extract32(insn, 5, 5);
6676     op = extract32(insn, 4, 1);
6677     nzcv = extract32(insn, 0, 4);
6678 
6679     if (mos) {
6680         unallocated_encoding(s);
6681         return;
6682     }
6683 
6684     switch (type) {
6685     case 0:
6686         size = MO_32;
6687         break;
6688     case 1:
6689         size = MO_64;
6690         break;
6691     case 3:
6692         size = MO_16;
6693         if (dc_isar_feature(aa64_fp16, s)) {
6694             break;
6695         }
6696         /* fallthru */
6697     default:
6698         unallocated_encoding(s);
6699         return;
6700     }
6701 
6702     if (!fp_access_check(s)) {
6703         return;
6704     }
6705 
6706     if (cond < 0x0e) { /* not always */
6707         TCGLabel *label_match = gen_new_label();
6708         label_continue = gen_new_label();
6709         arm_gen_test_cc(cond, label_match);
6710         /* nomatch: */
6711         gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6712         tcg_gen_br(label_continue);
6713         gen_set_label(label_match);
6714     }
6715 
6716     handle_fp_compare(s, size, rn, rm, false, op);
6717 
6718     if (cond < 0x0e) {
6719         gen_set_label(label_continue);
6720     }
6721 }
6722 
6723 /* Floating point conditional select
6724  *   31  30  29 28       24 23  22  21 20  16 15  12 11 10 9    5 4    0
6725  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6726  * | M | 0 | S | 1 1 1 1 0 | type | 1 |  Rm  | cond | 1 1 |  Rn  |  Rd  |
6727  * +---+---+---+-----------+------+---+------+------+-----+------+------+
6728  */
6729 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6730 {
6731     unsigned int mos, type, rm, cond, rn, rd;
6732     TCGv_i64 t_true, t_false;
6733     DisasCompare64 c;
6734     MemOp sz;
6735 
6736     mos = extract32(insn, 29, 3);
6737     type = extract32(insn, 22, 2);
6738     rm = extract32(insn, 16, 5);
6739     cond = extract32(insn, 12, 4);
6740     rn = extract32(insn, 5, 5);
6741     rd = extract32(insn, 0, 5);
6742 
6743     if (mos) {
6744         unallocated_encoding(s);
6745         return;
6746     }
6747 
6748     switch (type) {
6749     case 0:
6750         sz = MO_32;
6751         break;
6752     case 1:
6753         sz = MO_64;
6754         break;
6755     case 3:
6756         sz = MO_16;
6757         if (dc_isar_feature(aa64_fp16, s)) {
6758             break;
6759         }
6760         /* fallthru */
6761     default:
6762         unallocated_encoding(s);
6763         return;
6764     }
6765 
6766     if (!fp_access_check(s)) {
6767         return;
6768     }
6769 
6770     /* Zero extend sreg & hreg inputs to 64 bits now.  */
6771     t_true = tcg_temp_new_i64();
6772     t_false = tcg_temp_new_i64();
6773     read_vec_element(s, t_true, rn, 0, sz);
6774     read_vec_element(s, t_false, rm, 0, sz);
6775 
6776     a64_test_cc(&c, cond);
6777     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6778                         t_true, t_false);
6779 
6780     /* Note that sregs & hregs write back zeros to the high bits,
6781        and we've already done the zero-extension.  */
6782     write_fp_dreg(s, rd, t_true);
6783 }
6784 
6785 /* Floating-point data-processing (1 source) - half precision */
6786 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6787 {
6788     TCGv_ptr fpst = NULL;
6789     TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6790     TCGv_i32 tcg_res = tcg_temp_new_i32();
6791 
6792     switch (opcode) {
6793     case 0x0: /* FMOV */
6794         tcg_gen_mov_i32(tcg_res, tcg_op);
6795         break;
6796     case 0x1: /* FABS */
6797         gen_vfp_absh(tcg_res, tcg_op);
6798         break;
6799     case 0x2: /* FNEG */
6800         gen_vfp_negh(tcg_res, tcg_op);
6801         break;
6802     case 0x3: /* FSQRT */
6803         fpst = fpstatus_ptr(FPST_FPCR_F16);
6804         gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6805         break;
6806     case 0x8: /* FRINTN */
6807     case 0x9: /* FRINTP */
6808     case 0xa: /* FRINTM */
6809     case 0xb: /* FRINTZ */
6810     case 0xc: /* FRINTA */
6811     {
6812         TCGv_i32 tcg_rmode;
6813 
6814         fpst = fpstatus_ptr(FPST_FPCR_F16);
6815         tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6816         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6817         gen_restore_rmode(tcg_rmode, fpst);
6818         break;
6819     }
6820     case 0xe: /* FRINTX */
6821         fpst = fpstatus_ptr(FPST_FPCR_F16);
6822         gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6823         break;
6824     case 0xf: /* FRINTI */
6825         fpst = fpstatus_ptr(FPST_FPCR_F16);
6826         gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6827         break;
6828     default:
6829         g_assert_not_reached();
6830     }
6831 
6832     write_fp_sreg(s, rd, tcg_res);
6833 }
6834 
6835 /* Floating-point data-processing (1 source) - single precision */
6836 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6837 {
6838     void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6839     TCGv_i32 tcg_op, tcg_res;
6840     TCGv_ptr fpst;
6841     int rmode = -1;
6842 
6843     tcg_op = read_fp_sreg(s, rn);
6844     tcg_res = tcg_temp_new_i32();
6845 
6846     switch (opcode) {
6847     case 0x0: /* FMOV */
6848         tcg_gen_mov_i32(tcg_res, tcg_op);
6849         goto done;
6850     case 0x1: /* FABS */
6851         gen_vfp_abss(tcg_res, tcg_op);
6852         goto done;
6853     case 0x2: /* FNEG */
6854         gen_vfp_negs(tcg_res, tcg_op);
6855         goto done;
6856     case 0x3: /* FSQRT */
6857         gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6858         goto done;
6859     case 0x6: /* BFCVT */
6860         gen_fpst = gen_helper_bfcvt;
6861         break;
6862     case 0x8: /* FRINTN */
6863     case 0x9: /* FRINTP */
6864     case 0xa: /* FRINTM */
6865     case 0xb: /* FRINTZ */
6866     case 0xc: /* FRINTA */
6867         rmode = opcode & 7;
6868         gen_fpst = gen_helper_rints;
6869         break;
6870     case 0xe: /* FRINTX */
6871         gen_fpst = gen_helper_rints_exact;
6872         break;
6873     case 0xf: /* FRINTI */
6874         gen_fpst = gen_helper_rints;
6875         break;
6876     case 0x10: /* FRINT32Z */
6877         rmode = FPROUNDING_ZERO;
6878         gen_fpst = gen_helper_frint32_s;
6879         break;
6880     case 0x11: /* FRINT32X */
6881         gen_fpst = gen_helper_frint32_s;
6882         break;
6883     case 0x12: /* FRINT64Z */
6884         rmode = FPROUNDING_ZERO;
6885         gen_fpst = gen_helper_frint64_s;
6886         break;
6887     case 0x13: /* FRINT64X */
6888         gen_fpst = gen_helper_frint64_s;
6889         break;
6890     default:
6891         g_assert_not_reached();
6892     }
6893 
6894     fpst = fpstatus_ptr(FPST_FPCR);
6895     if (rmode >= 0) {
6896         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6897         gen_fpst(tcg_res, tcg_op, fpst);
6898         gen_restore_rmode(tcg_rmode, fpst);
6899     } else {
6900         gen_fpst(tcg_res, tcg_op, fpst);
6901     }
6902 
6903  done:
6904     write_fp_sreg(s, rd, tcg_res);
6905 }
6906 
6907 /* Floating-point data-processing (1 source) - double precision */
6908 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6909 {
6910     void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6911     TCGv_i64 tcg_op, tcg_res;
6912     TCGv_ptr fpst;
6913     int rmode = -1;
6914 
6915     switch (opcode) {
6916     case 0x0: /* FMOV */
6917         gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6918         return;
6919     }
6920 
6921     tcg_op = read_fp_dreg(s, rn);
6922     tcg_res = tcg_temp_new_i64();
6923 
6924     switch (opcode) {
6925     case 0x1: /* FABS */
6926         gen_vfp_absd(tcg_res, tcg_op);
6927         goto done;
6928     case 0x2: /* FNEG */
6929         gen_vfp_negd(tcg_res, tcg_op);
6930         goto done;
6931     case 0x3: /* FSQRT */
6932         gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6933         goto done;
6934     case 0x8: /* FRINTN */
6935     case 0x9: /* FRINTP */
6936     case 0xa: /* FRINTM */
6937     case 0xb: /* FRINTZ */
6938     case 0xc: /* FRINTA */
6939         rmode = opcode & 7;
6940         gen_fpst = gen_helper_rintd;
6941         break;
6942     case 0xe: /* FRINTX */
6943         gen_fpst = gen_helper_rintd_exact;
6944         break;
6945     case 0xf: /* FRINTI */
6946         gen_fpst = gen_helper_rintd;
6947         break;
6948     case 0x10: /* FRINT32Z */
6949         rmode = FPROUNDING_ZERO;
6950         gen_fpst = gen_helper_frint32_d;
6951         break;
6952     case 0x11: /* FRINT32X */
6953         gen_fpst = gen_helper_frint32_d;
6954         break;
6955     case 0x12: /* FRINT64Z */
6956         rmode = FPROUNDING_ZERO;
6957         gen_fpst = gen_helper_frint64_d;
6958         break;
6959     case 0x13: /* FRINT64X */
6960         gen_fpst = gen_helper_frint64_d;
6961         break;
6962     default:
6963         g_assert_not_reached();
6964     }
6965 
6966     fpst = fpstatus_ptr(FPST_FPCR);
6967     if (rmode >= 0) {
6968         TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6969         gen_fpst(tcg_res, tcg_op, fpst);
6970         gen_restore_rmode(tcg_rmode, fpst);
6971     } else {
6972         gen_fpst(tcg_res, tcg_op, fpst);
6973     }
6974 
6975  done:
6976     write_fp_dreg(s, rd, tcg_res);
6977 }
6978 
6979 static void handle_fp_fcvt(DisasContext *s, int opcode,
6980                            int rd, int rn, int dtype, int ntype)
6981 {
6982     switch (ntype) {
6983     case 0x0:
6984     {
6985         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6986         if (dtype == 1) {
6987             /* Single to double */
6988             TCGv_i64 tcg_rd = tcg_temp_new_i64();
6989             gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6990             write_fp_dreg(s, rd, tcg_rd);
6991         } else {
6992             /* Single to half */
6993             TCGv_i32 tcg_rd = tcg_temp_new_i32();
6994             TCGv_i32 ahp = get_ahp_flag();
6995             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6996 
6997             gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6998             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6999             write_fp_sreg(s, rd, tcg_rd);
7000         }
7001         break;
7002     }
7003     case 0x1:
7004     {
7005         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7006         TCGv_i32 tcg_rd = tcg_temp_new_i32();
7007         if (dtype == 0) {
7008             /* Double to single */
7009             gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
7010         } else {
7011             TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7012             TCGv_i32 ahp = get_ahp_flag();
7013             /* Double to half */
7014             gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
7015             /* write_fp_sreg is OK here because top half of tcg_rd is zero */
7016         }
7017         write_fp_sreg(s, rd, tcg_rd);
7018         break;
7019     }
7020     case 0x3:
7021     {
7022         TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
7023         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
7024         TCGv_i32 tcg_ahp = get_ahp_flag();
7025         tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
7026         if (dtype == 0) {
7027             /* Half to single */
7028             TCGv_i32 tcg_rd = tcg_temp_new_i32();
7029             gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7030             write_fp_sreg(s, rd, tcg_rd);
7031         } else {
7032             /* Half to double */
7033             TCGv_i64 tcg_rd = tcg_temp_new_i64();
7034             gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
7035             write_fp_dreg(s, rd, tcg_rd);
7036         }
7037         break;
7038     }
7039     default:
7040         g_assert_not_reached();
7041     }
7042 }
7043 
7044 /* Floating point data-processing (1 source)
7045  *   31  30  29 28       24 23  22  21 20    15 14       10 9    5 4    0
7046  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7047  * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 |  Rn  |  Rd  |
7048  * +---+---+---+-----------+------+---+--------+-----------+------+------+
7049  */
7050 static void disas_fp_1src(DisasContext *s, uint32_t insn)
7051 {
7052     int mos = extract32(insn, 29, 3);
7053     int type = extract32(insn, 22, 2);
7054     int opcode = extract32(insn, 15, 6);
7055     int rn = extract32(insn, 5, 5);
7056     int rd = extract32(insn, 0, 5);
7057 
7058     if (mos) {
7059         goto do_unallocated;
7060     }
7061 
7062     switch (opcode) {
7063     case 0x4: case 0x5: case 0x7:
7064     {
7065         /* FCVT between half, single and double precision */
7066         int dtype = extract32(opcode, 0, 2);
7067         if (type == 2 || dtype == type) {
7068             goto do_unallocated;
7069         }
7070         if (!fp_access_check(s)) {
7071             return;
7072         }
7073 
7074         handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
7075         break;
7076     }
7077 
7078     case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
7079         if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
7080             goto do_unallocated;
7081         }
7082         /* fall through */
7083     case 0x0 ... 0x3:
7084     case 0x8 ... 0xc:
7085     case 0xe ... 0xf:
7086         /* 32-to-32 and 64-to-64 ops */
7087         switch (type) {
7088         case 0:
7089             if (!fp_access_check(s)) {
7090                 return;
7091             }
7092             handle_fp_1src_single(s, opcode, rd, rn);
7093             break;
7094         case 1:
7095             if (!fp_access_check(s)) {
7096                 return;
7097             }
7098             handle_fp_1src_double(s, opcode, rd, rn);
7099             break;
7100         case 3:
7101             if (!dc_isar_feature(aa64_fp16, s)) {
7102                 goto do_unallocated;
7103             }
7104 
7105             if (!fp_access_check(s)) {
7106                 return;
7107             }
7108             handle_fp_1src_half(s, opcode, rd, rn);
7109             break;
7110         default:
7111             goto do_unallocated;
7112         }
7113         break;
7114 
7115     case 0x6:
7116         switch (type) {
7117         case 1: /* BFCVT */
7118             if (!dc_isar_feature(aa64_bf16, s)) {
7119                 goto do_unallocated;
7120             }
7121             if (!fp_access_check(s)) {
7122                 return;
7123             }
7124             handle_fp_1src_single(s, opcode, rd, rn);
7125             break;
7126         default:
7127             goto do_unallocated;
7128         }
7129         break;
7130 
7131     default:
7132     do_unallocated:
7133         unallocated_encoding(s);
7134         break;
7135     }
7136 }
7137 
7138 /* Floating-point data-processing (3 source) - single precision */
7139 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
7140                                   int rd, int rn, int rm, int ra)
7141 {
7142     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7143     TCGv_i32 tcg_res = tcg_temp_new_i32();
7144     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7145 
7146     tcg_op1 = read_fp_sreg(s, rn);
7147     tcg_op2 = read_fp_sreg(s, rm);
7148     tcg_op3 = read_fp_sreg(s, ra);
7149 
7150     /* These are fused multiply-add, and must be done as one
7151      * floating point operation with no rounding between the
7152      * multiplication and addition steps.
7153      * NB that doing the negations here as separate steps is
7154      * correct : an input NaN should come out with its sign bit
7155      * flipped if it is a negated-input.
7156      */
7157     if (o1 == true) {
7158         gen_vfp_negs(tcg_op3, tcg_op3);
7159     }
7160 
7161     if (o0 != o1) {
7162         gen_vfp_negs(tcg_op1, tcg_op1);
7163     }
7164 
7165     gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7166 
7167     write_fp_sreg(s, rd, tcg_res);
7168 }
7169 
7170 /* Floating-point data-processing (3 source) - double precision */
7171 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
7172                                   int rd, int rn, int rm, int ra)
7173 {
7174     TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
7175     TCGv_i64 tcg_res = tcg_temp_new_i64();
7176     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
7177 
7178     tcg_op1 = read_fp_dreg(s, rn);
7179     tcg_op2 = read_fp_dreg(s, rm);
7180     tcg_op3 = read_fp_dreg(s, ra);
7181 
7182     /* These are fused multiply-add, and must be done as one
7183      * floating point operation with no rounding between the
7184      * multiplication and addition steps.
7185      * NB that doing the negations here as separate steps is
7186      * correct : an input NaN should come out with its sign bit
7187      * flipped if it is a negated-input.
7188      */
7189     if (o1 == true) {
7190         gen_vfp_negd(tcg_op3, tcg_op3);
7191     }
7192 
7193     if (o0 != o1) {
7194         gen_vfp_negd(tcg_op1, tcg_op1);
7195     }
7196 
7197     gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7198 
7199     write_fp_dreg(s, rd, tcg_res);
7200 }
7201 
7202 /* Floating-point data-processing (3 source) - half precision */
7203 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
7204                                 int rd, int rn, int rm, int ra)
7205 {
7206     TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
7207     TCGv_i32 tcg_res = tcg_temp_new_i32();
7208     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
7209 
7210     tcg_op1 = read_fp_hreg(s, rn);
7211     tcg_op2 = read_fp_hreg(s, rm);
7212     tcg_op3 = read_fp_hreg(s, ra);
7213 
7214     /* These are fused multiply-add, and must be done as one
7215      * floating point operation with no rounding between the
7216      * multiplication and addition steps.
7217      * NB that doing the negations here as separate steps is
7218      * correct : an input NaN should come out with its sign bit
7219      * flipped if it is a negated-input.
7220      */
7221     if (o1 == true) {
7222         tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
7223     }
7224 
7225     if (o0 != o1) {
7226         tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
7227     }
7228 
7229     gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
7230 
7231     write_fp_sreg(s, rd, tcg_res);
7232 }
7233 
7234 /* Floating point data-processing (3 source)
7235  *   31  30  29 28       24 23  22  21  20  16  15  14  10 9    5 4    0
7236  * +---+---+---+-----------+------+----+------+----+------+------+------+
7237  * | M | 0 | S | 1 1 1 1 1 | type | o1 |  Rm  | o0 |  Ra  |  Rn  |  Rd  |
7238  * +---+---+---+-----------+------+----+------+----+------+------+------+
7239  */
7240 static void disas_fp_3src(DisasContext *s, uint32_t insn)
7241 {
7242     int mos = extract32(insn, 29, 3);
7243     int type = extract32(insn, 22, 2);
7244     int rd = extract32(insn, 0, 5);
7245     int rn = extract32(insn, 5, 5);
7246     int ra = extract32(insn, 10, 5);
7247     int rm = extract32(insn, 16, 5);
7248     bool o0 = extract32(insn, 15, 1);
7249     bool o1 = extract32(insn, 21, 1);
7250 
7251     if (mos) {
7252         unallocated_encoding(s);
7253         return;
7254     }
7255 
7256     switch (type) {
7257     case 0:
7258         if (!fp_access_check(s)) {
7259             return;
7260         }
7261         handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7262         break;
7263     case 1:
7264         if (!fp_access_check(s)) {
7265             return;
7266         }
7267         handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7268         break;
7269     case 3:
7270         if (!dc_isar_feature(aa64_fp16, s)) {
7271             unallocated_encoding(s);
7272             return;
7273         }
7274         if (!fp_access_check(s)) {
7275             return;
7276         }
7277         handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7278         break;
7279     default:
7280         unallocated_encoding(s);
7281     }
7282 }
7283 
7284 /* Floating point immediate
7285  *   31  30  29 28       24 23  22  21 20        13 12   10 9    5 4    0
7286  * +---+---+---+-----------+------+---+------------+-------+------+------+
7287  * | M | 0 | S | 1 1 1 1 0 | type | 1 |    imm8    | 1 0 0 | imm5 |  Rd  |
7288  * +---+---+---+-----------+------+---+------------+-------+------+------+
7289  */
7290 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7291 {
7292     int rd = extract32(insn, 0, 5);
7293     int imm5 = extract32(insn, 5, 5);
7294     int imm8 = extract32(insn, 13, 8);
7295     int type = extract32(insn, 22, 2);
7296     int mos = extract32(insn, 29, 3);
7297     uint64_t imm;
7298     MemOp sz;
7299 
7300     if (mos || imm5) {
7301         unallocated_encoding(s);
7302         return;
7303     }
7304 
7305     switch (type) {
7306     case 0:
7307         sz = MO_32;
7308         break;
7309     case 1:
7310         sz = MO_64;
7311         break;
7312     case 3:
7313         sz = MO_16;
7314         if (dc_isar_feature(aa64_fp16, s)) {
7315             break;
7316         }
7317         /* fallthru */
7318     default:
7319         unallocated_encoding(s);
7320         return;
7321     }
7322 
7323     if (!fp_access_check(s)) {
7324         return;
7325     }
7326 
7327     imm = vfp_expand_imm(sz, imm8);
7328     write_fp_dreg(s, rd, tcg_constant_i64(imm));
7329 }
7330 
7331 /* Handle floating point <=> fixed point conversions. Note that we can
7332  * also deal with fp <=> integer conversions as a special case (scale == 64)
7333  * OPTME: consider handling that special case specially or at least skipping
7334  * the call to scalbn in the helpers for zero shifts.
7335  */
7336 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7337                            bool itof, int rmode, int scale, int sf, int type)
7338 {
7339     bool is_signed = !(opcode & 1);
7340     TCGv_ptr tcg_fpstatus;
7341     TCGv_i32 tcg_shift, tcg_single;
7342     TCGv_i64 tcg_double;
7343 
7344     tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7345 
7346     tcg_shift = tcg_constant_i32(64 - scale);
7347 
7348     if (itof) {
7349         TCGv_i64 tcg_int = cpu_reg(s, rn);
7350         if (!sf) {
7351             TCGv_i64 tcg_extend = tcg_temp_new_i64();
7352 
7353             if (is_signed) {
7354                 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7355             } else {
7356                 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7357             }
7358 
7359             tcg_int = tcg_extend;
7360         }
7361 
7362         switch (type) {
7363         case 1: /* float64 */
7364             tcg_double = tcg_temp_new_i64();
7365             if (is_signed) {
7366                 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7367                                      tcg_shift, tcg_fpstatus);
7368             } else {
7369                 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7370                                      tcg_shift, tcg_fpstatus);
7371             }
7372             write_fp_dreg(s, rd, tcg_double);
7373             break;
7374 
7375         case 0: /* float32 */
7376             tcg_single = tcg_temp_new_i32();
7377             if (is_signed) {
7378                 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7379                                      tcg_shift, tcg_fpstatus);
7380             } else {
7381                 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7382                                      tcg_shift, tcg_fpstatus);
7383             }
7384             write_fp_sreg(s, rd, tcg_single);
7385             break;
7386 
7387         case 3: /* float16 */
7388             tcg_single = tcg_temp_new_i32();
7389             if (is_signed) {
7390                 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7391                                      tcg_shift, tcg_fpstatus);
7392             } else {
7393                 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7394                                      tcg_shift, tcg_fpstatus);
7395             }
7396             write_fp_sreg(s, rd, tcg_single);
7397             break;
7398 
7399         default:
7400             g_assert_not_reached();
7401         }
7402     } else {
7403         TCGv_i64 tcg_int = cpu_reg(s, rd);
7404         TCGv_i32 tcg_rmode;
7405 
7406         if (extract32(opcode, 2, 1)) {
7407             /* There are too many rounding modes to all fit into rmode,
7408              * so FCVTA[US] is a special case.
7409              */
7410             rmode = FPROUNDING_TIEAWAY;
7411         }
7412 
7413         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
7414 
7415         switch (type) {
7416         case 1: /* float64 */
7417             tcg_double = read_fp_dreg(s, rn);
7418             if (is_signed) {
7419                 if (!sf) {
7420                     gen_helper_vfp_tosld(tcg_int, tcg_double,
7421                                          tcg_shift, tcg_fpstatus);
7422                 } else {
7423                     gen_helper_vfp_tosqd(tcg_int, tcg_double,
7424                                          tcg_shift, tcg_fpstatus);
7425                 }
7426             } else {
7427                 if (!sf) {
7428                     gen_helper_vfp_tould(tcg_int, tcg_double,
7429                                          tcg_shift, tcg_fpstatus);
7430                 } else {
7431                     gen_helper_vfp_touqd(tcg_int, tcg_double,
7432                                          tcg_shift, tcg_fpstatus);
7433                 }
7434             }
7435             if (!sf) {
7436                 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7437             }
7438             break;
7439 
7440         case 0: /* float32 */
7441             tcg_single = read_fp_sreg(s, rn);
7442             if (sf) {
7443                 if (is_signed) {
7444                     gen_helper_vfp_tosqs(tcg_int, tcg_single,
7445                                          tcg_shift, tcg_fpstatus);
7446                 } else {
7447                     gen_helper_vfp_touqs(tcg_int, tcg_single,
7448                                          tcg_shift, tcg_fpstatus);
7449                 }
7450             } else {
7451                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7452                 if (is_signed) {
7453                     gen_helper_vfp_tosls(tcg_dest, tcg_single,
7454                                          tcg_shift, tcg_fpstatus);
7455                 } else {
7456                     gen_helper_vfp_touls(tcg_dest, tcg_single,
7457                                          tcg_shift, tcg_fpstatus);
7458                 }
7459                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7460             }
7461             break;
7462 
7463         case 3: /* float16 */
7464             tcg_single = read_fp_sreg(s, rn);
7465             if (sf) {
7466                 if (is_signed) {
7467                     gen_helper_vfp_tosqh(tcg_int, tcg_single,
7468                                          tcg_shift, tcg_fpstatus);
7469                 } else {
7470                     gen_helper_vfp_touqh(tcg_int, tcg_single,
7471                                          tcg_shift, tcg_fpstatus);
7472                 }
7473             } else {
7474                 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7475                 if (is_signed) {
7476                     gen_helper_vfp_toslh(tcg_dest, tcg_single,
7477                                          tcg_shift, tcg_fpstatus);
7478                 } else {
7479                     gen_helper_vfp_toulh(tcg_dest, tcg_single,
7480                                          tcg_shift, tcg_fpstatus);
7481                 }
7482                 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7483             }
7484             break;
7485 
7486         default:
7487             g_assert_not_reached();
7488         }
7489 
7490         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7491     }
7492 }
7493 
7494 /* Floating point <-> fixed point conversions
7495  *   31   30  29 28       24 23  22  21 20   19 18    16 15   10 9    5 4    0
7496  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7497  * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale |  Rn  |  Rd  |
7498  * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7499  */
7500 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7501 {
7502     int rd = extract32(insn, 0, 5);
7503     int rn = extract32(insn, 5, 5);
7504     int scale = extract32(insn, 10, 6);
7505     int opcode = extract32(insn, 16, 3);
7506     int rmode = extract32(insn, 19, 2);
7507     int type = extract32(insn, 22, 2);
7508     bool sbit = extract32(insn, 29, 1);
7509     bool sf = extract32(insn, 31, 1);
7510     bool itof;
7511 
7512     if (sbit || (!sf && scale < 32)) {
7513         unallocated_encoding(s);
7514         return;
7515     }
7516 
7517     switch (type) {
7518     case 0: /* float32 */
7519     case 1: /* float64 */
7520         break;
7521     case 3: /* float16 */
7522         if (dc_isar_feature(aa64_fp16, s)) {
7523             break;
7524         }
7525         /* fallthru */
7526     default:
7527         unallocated_encoding(s);
7528         return;
7529     }
7530 
7531     switch ((rmode << 3) | opcode) {
7532     case 0x2: /* SCVTF */
7533     case 0x3: /* UCVTF */
7534         itof = true;
7535         break;
7536     case 0x18: /* FCVTZS */
7537     case 0x19: /* FCVTZU */
7538         itof = false;
7539         break;
7540     default:
7541         unallocated_encoding(s);
7542         return;
7543     }
7544 
7545     if (!fp_access_check(s)) {
7546         return;
7547     }
7548 
7549     handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7550 }
7551 
7552 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7553 {
7554     /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7555      * without conversion.
7556      */
7557 
7558     if (itof) {
7559         TCGv_i64 tcg_rn = cpu_reg(s, rn);
7560         TCGv_i64 tmp;
7561 
7562         switch (type) {
7563         case 0:
7564             /* 32 bit */
7565             tmp = tcg_temp_new_i64();
7566             tcg_gen_ext32u_i64(tmp, tcg_rn);
7567             write_fp_dreg(s, rd, tmp);
7568             break;
7569         case 1:
7570             /* 64 bit */
7571             write_fp_dreg(s, rd, tcg_rn);
7572             break;
7573         case 2:
7574             /* 64 bit to top half. */
7575             tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
7576             clear_vec_high(s, true, rd);
7577             break;
7578         case 3:
7579             /* 16 bit */
7580             tmp = tcg_temp_new_i64();
7581             tcg_gen_ext16u_i64(tmp, tcg_rn);
7582             write_fp_dreg(s, rd, tmp);
7583             break;
7584         default:
7585             g_assert_not_reached();
7586         }
7587     } else {
7588         TCGv_i64 tcg_rd = cpu_reg(s, rd);
7589 
7590         switch (type) {
7591         case 0:
7592             /* 32 bit */
7593             tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
7594             break;
7595         case 1:
7596             /* 64 bit */
7597             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
7598             break;
7599         case 2:
7600             /* 64 bits from top half */
7601             tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7602             break;
7603         case 3:
7604             /* 16 bit */
7605             tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7606             break;
7607         default:
7608             g_assert_not_reached();
7609         }
7610     }
7611 }
7612 
7613 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7614 {
7615     TCGv_i64 t = read_fp_dreg(s, rn);
7616     TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7617 
7618     gen_helper_fjcvtzs(t, t, fpstatus);
7619 
7620     tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7621     tcg_gen_extrh_i64_i32(cpu_ZF, t);
7622     tcg_gen_movi_i32(cpu_CF, 0);
7623     tcg_gen_movi_i32(cpu_NF, 0);
7624     tcg_gen_movi_i32(cpu_VF, 0);
7625 }
7626 
7627 /* Floating point <-> integer conversions
7628  *   31   30  29 28       24 23  22  21 20   19 18 16 15         10 9  5 4  0
7629  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7630  * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7631  * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7632  */
7633 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7634 {
7635     int rd = extract32(insn, 0, 5);
7636     int rn = extract32(insn, 5, 5);
7637     int opcode = extract32(insn, 16, 3);
7638     int rmode = extract32(insn, 19, 2);
7639     int type = extract32(insn, 22, 2);
7640     bool sbit = extract32(insn, 29, 1);
7641     bool sf = extract32(insn, 31, 1);
7642     bool itof = false;
7643 
7644     if (sbit) {
7645         goto do_unallocated;
7646     }
7647 
7648     switch (opcode) {
7649     case 2: /* SCVTF */
7650     case 3: /* UCVTF */
7651         itof = true;
7652         /* fallthru */
7653     case 4: /* FCVTAS */
7654     case 5: /* FCVTAU */
7655         if (rmode != 0) {
7656             goto do_unallocated;
7657         }
7658         /* fallthru */
7659     case 0: /* FCVT[NPMZ]S */
7660     case 1: /* FCVT[NPMZ]U */
7661         switch (type) {
7662         case 0: /* float32 */
7663         case 1: /* float64 */
7664             break;
7665         case 3: /* float16 */
7666             if (!dc_isar_feature(aa64_fp16, s)) {
7667                 goto do_unallocated;
7668             }
7669             break;
7670         default:
7671             goto do_unallocated;
7672         }
7673         if (!fp_access_check(s)) {
7674             return;
7675         }
7676         handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7677         break;
7678 
7679     default:
7680         switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7681         case 0b01100110: /* FMOV half <-> 32-bit int */
7682         case 0b01100111:
7683         case 0b11100110: /* FMOV half <-> 64-bit int */
7684         case 0b11100111:
7685             if (!dc_isar_feature(aa64_fp16, s)) {
7686                 goto do_unallocated;
7687             }
7688             /* fallthru */
7689         case 0b00000110: /* FMOV 32-bit */
7690         case 0b00000111:
7691         case 0b10100110: /* FMOV 64-bit */
7692         case 0b10100111:
7693         case 0b11001110: /* FMOV top half of 128-bit */
7694         case 0b11001111:
7695             if (!fp_access_check(s)) {
7696                 return;
7697             }
7698             itof = opcode & 1;
7699             handle_fmov(s, rd, rn, type, itof);
7700             break;
7701 
7702         case 0b00111110: /* FJCVTZS */
7703             if (!dc_isar_feature(aa64_jscvt, s)) {
7704                 goto do_unallocated;
7705             } else if (fp_access_check(s)) {
7706                 handle_fjcvtzs(s, rd, rn);
7707             }
7708             break;
7709 
7710         default:
7711         do_unallocated:
7712             unallocated_encoding(s);
7713             return;
7714         }
7715         break;
7716     }
7717 }
7718 
7719 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7720  *   31  30  29 28     25 24                          0
7721  * +---+---+---+---------+-----------------------------+
7722  * |   | 0 |   | 1 1 1 1 |                             |
7723  * +---+---+---+---------+-----------------------------+
7724  */
7725 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7726 {
7727     if (extract32(insn, 24, 1)) {
7728         /* Floating point data-processing (3 source) */
7729         disas_fp_3src(s, insn);
7730     } else if (extract32(insn, 21, 1) == 0) {
7731         /* Floating point to fixed point conversions */
7732         disas_fp_fixed_conv(s, insn);
7733     } else {
7734         switch (extract32(insn, 10, 2)) {
7735         case 1:
7736             /* Floating point conditional compare */
7737             disas_fp_ccomp(s, insn);
7738             break;
7739         case 2:
7740             /* Floating point data-processing (2 source) */
7741             unallocated_encoding(s); /* in decodetree */
7742             break;
7743         case 3:
7744             /* Floating point conditional select */
7745             disas_fp_csel(s, insn);
7746             break;
7747         case 0:
7748             switch (ctz32(extract32(insn, 12, 4))) {
7749             case 0: /* [15:12] == xxx1 */
7750                 /* Floating point immediate */
7751                 disas_fp_imm(s, insn);
7752                 break;
7753             case 1: /* [15:12] == xx10 */
7754                 /* Floating point compare */
7755                 disas_fp_compare(s, insn);
7756                 break;
7757             case 2: /* [15:12] == x100 */
7758                 /* Floating point data-processing (1 source) */
7759                 disas_fp_1src(s, insn);
7760                 break;
7761             case 3: /* [15:12] == 1000 */
7762                 unallocated_encoding(s);
7763                 break;
7764             default: /* [15:12] == 0000 */
7765                 /* Floating point <-> integer conversions */
7766                 disas_fp_int_conv(s, insn);
7767                 break;
7768             }
7769             break;
7770         }
7771     }
7772 }
7773 
7774 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7775                      int pos)
7776 {
7777     /* Extract 64 bits from the middle of two concatenated 64 bit
7778      * vector register slices left:right. The extracted bits start
7779      * at 'pos' bits into the right (least significant) side.
7780      * We return the result in tcg_right, and guarantee not to
7781      * trash tcg_left.
7782      */
7783     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7784     assert(pos > 0 && pos < 64);
7785 
7786     tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7787     tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7788     tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7789 }
7790 
7791 /* EXT
7792  *   31  30 29         24 23 22  21 20  16 15  14  11 10  9    5 4    0
7793  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7794  * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | imm4 | 0 |  Rn  |  Rd  |
7795  * +---+---+-------------+-----+---+------+---+------+---+------+------+
7796  */
7797 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7798 {
7799     int is_q = extract32(insn, 30, 1);
7800     int op2 = extract32(insn, 22, 2);
7801     int imm4 = extract32(insn, 11, 4);
7802     int rm = extract32(insn, 16, 5);
7803     int rn = extract32(insn, 5, 5);
7804     int rd = extract32(insn, 0, 5);
7805     int pos = imm4 << 3;
7806     TCGv_i64 tcg_resl, tcg_resh;
7807 
7808     if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7809         unallocated_encoding(s);
7810         return;
7811     }
7812 
7813     if (!fp_access_check(s)) {
7814         return;
7815     }
7816 
7817     tcg_resh = tcg_temp_new_i64();
7818     tcg_resl = tcg_temp_new_i64();
7819 
7820     /* Vd gets bits starting at pos bits into Vm:Vn. This is
7821      * either extracting 128 bits from a 128:128 concatenation, or
7822      * extracting 64 bits from a 64:64 concatenation.
7823      */
7824     if (!is_q) {
7825         read_vec_element(s, tcg_resl, rn, 0, MO_64);
7826         if (pos != 0) {
7827             read_vec_element(s, tcg_resh, rm, 0, MO_64);
7828             do_ext64(s, tcg_resh, tcg_resl, pos);
7829         }
7830     } else {
7831         TCGv_i64 tcg_hh;
7832         typedef struct {
7833             int reg;
7834             int elt;
7835         } EltPosns;
7836         EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7837         EltPosns *elt = eltposns;
7838 
7839         if (pos >= 64) {
7840             elt++;
7841             pos -= 64;
7842         }
7843 
7844         read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7845         elt++;
7846         read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7847         elt++;
7848         if (pos != 0) {
7849             do_ext64(s, tcg_resh, tcg_resl, pos);
7850             tcg_hh = tcg_temp_new_i64();
7851             read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7852             do_ext64(s, tcg_hh, tcg_resh, pos);
7853         }
7854     }
7855 
7856     write_vec_element(s, tcg_resl, rd, 0, MO_64);
7857     if (is_q) {
7858         write_vec_element(s, tcg_resh, rd, 1, MO_64);
7859     }
7860     clear_vec_high(s, is_q, rd);
7861 }
7862 
7863 /* TBL/TBX
7864  *   31  30 29         24 23 22  21 20  16 15  14 13  12  11 10 9    5 4    0
7865  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7866  * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 |  Rm  | 0 | len | op | 0 0 |  Rn  |  Rd  |
7867  * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7868  */
7869 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7870 {
7871     int op2 = extract32(insn, 22, 2);
7872     int is_q = extract32(insn, 30, 1);
7873     int rm = extract32(insn, 16, 5);
7874     int rn = extract32(insn, 5, 5);
7875     int rd = extract32(insn, 0, 5);
7876     int is_tbx = extract32(insn, 12, 1);
7877     int len = (extract32(insn, 13, 2) + 1) * 16;
7878 
7879     if (op2 != 0) {
7880         unallocated_encoding(s);
7881         return;
7882     }
7883 
7884     if (!fp_access_check(s)) {
7885         return;
7886     }
7887 
7888     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7889                        vec_full_reg_offset(s, rm), tcg_env,
7890                        is_q ? 16 : 8, vec_full_reg_size(s),
7891                        (len << 6) | (is_tbx << 5) | rn,
7892                        gen_helper_simd_tblx);
7893 }
7894 
7895 /* ZIP/UZP/TRN
7896  *   31  30 29         24 23  22  21 20   16 15 14 12 11 10 9    5 4    0
7897  * +---+---+-------------+------+---+------+---+------------------+------+
7898  * | 0 | Q | 0 0 1 1 1 0 | size | 0 |  Rm  | 0 | opc | 1 0 |  Rn  |  Rd  |
7899  * +---+---+-------------+------+---+------+---+------------------+------+
7900  */
7901 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7902 {
7903     int rd = extract32(insn, 0, 5);
7904     int rn = extract32(insn, 5, 5);
7905     int rm = extract32(insn, 16, 5);
7906     int size = extract32(insn, 22, 2);
7907     /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7908      * bit 2 indicates 1 vs 2 variant of the insn.
7909      */
7910     int opcode = extract32(insn, 12, 2);
7911     bool part = extract32(insn, 14, 1);
7912     bool is_q = extract32(insn, 30, 1);
7913     int esize = 8 << size;
7914     int i;
7915     int datasize = is_q ? 128 : 64;
7916     int elements = datasize / esize;
7917     TCGv_i64 tcg_res[2], tcg_ele;
7918 
7919     if (opcode == 0 || (size == 3 && !is_q)) {
7920         unallocated_encoding(s);
7921         return;
7922     }
7923 
7924     if (!fp_access_check(s)) {
7925         return;
7926     }
7927 
7928     tcg_res[0] = tcg_temp_new_i64();
7929     tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7930     tcg_ele = tcg_temp_new_i64();
7931 
7932     for (i = 0; i < elements; i++) {
7933         int o, w;
7934 
7935         switch (opcode) {
7936         case 1: /* UZP1/2 */
7937         {
7938             int midpoint = elements / 2;
7939             if (i < midpoint) {
7940                 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7941             } else {
7942                 read_vec_element(s, tcg_ele, rm,
7943                                  2 * (i - midpoint) + part, size);
7944             }
7945             break;
7946         }
7947         case 2: /* TRN1/2 */
7948             if (i & 1) {
7949                 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7950             } else {
7951                 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7952             }
7953             break;
7954         case 3: /* ZIP1/2 */
7955         {
7956             int base = part * elements / 2;
7957             if (i & 1) {
7958                 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7959             } else {
7960                 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7961             }
7962             break;
7963         }
7964         default:
7965             g_assert_not_reached();
7966         }
7967 
7968         w = (i * esize) / 64;
7969         o = (i * esize) % 64;
7970         if (o == 0) {
7971             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7972         } else {
7973             tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7974             tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7975         }
7976     }
7977 
7978     for (i = 0; i <= is_q; ++i) {
7979         write_vec_element(s, tcg_res[i], rd, i, MO_64);
7980     }
7981     clear_vec_high(s, is_q, rd);
7982 }
7983 
7984 /*
7985  * do_reduction_op helper
7986  *
7987  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7988  * important for correct NaN propagation that we do these
7989  * operations in exactly the order specified by the pseudocode.
7990  *
7991  * This is a recursive function, TCG temps should be freed by the
7992  * calling function once it is done with the values.
7993  */
7994 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7995                                 int esize, int size, int vmap, TCGv_ptr fpst)
7996 {
7997     if (esize == size) {
7998         int element;
7999         MemOp msize = esize == 16 ? MO_16 : MO_32;
8000         TCGv_i32 tcg_elem;
8001 
8002         /* We should have one register left here */
8003         assert(ctpop8(vmap) == 1);
8004         element = ctz32(vmap);
8005         assert(element < 8);
8006 
8007         tcg_elem = tcg_temp_new_i32();
8008         read_vec_element_i32(s, tcg_elem, rn, element, msize);
8009         return tcg_elem;
8010     } else {
8011         int bits = size / 2;
8012         int shift = ctpop8(vmap) / 2;
8013         int vmap_lo = (vmap >> shift) & vmap;
8014         int vmap_hi = (vmap & ~vmap_lo);
8015         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
8016 
8017         tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
8018         tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
8019         tcg_res = tcg_temp_new_i32();
8020 
8021         switch (fpopcode) {
8022         case 0x0c: /* fmaxnmv half-precision */
8023             gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8024             break;
8025         case 0x0f: /* fmaxv half-precision */
8026             gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
8027             break;
8028         case 0x1c: /* fminnmv half-precision */
8029             gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
8030             break;
8031         case 0x1f: /* fminv half-precision */
8032             gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
8033             break;
8034         case 0x2c: /* fmaxnmv */
8035             gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
8036             break;
8037         case 0x2f: /* fmaxv */
8038             gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
8039             break;
8040         case 0x3c: /* fminnmv */
8041             gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
8042             break;
8043         case 0x3f: /* fminv */
8044             gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
8045             break;
8046         default:
8047             g_assert_not_reached();
8048         }
8049         return tcg_res;
8050     }
8051 }
8052 
8053 /* AdvSIMD across lanes
8054  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8055  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8056  * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8057  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
8058  */
8059 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
8060 {
8061     int rd = extract32(insn, 0, 5);
8062     int rn = extract32(insn, 5, 5);
8063     int size = extract32(insn, 22, 2);
8064     int opcode = extract32(insn, 12, 5);
8065     bool is_q = extract32(insn, 30, 1);
8066     bool is_u = extract32(insn, 29, 1);
8067     bool is_fp = false;
8068     bool is_min = false;
8069     int esize;
8070     int elements;
8071     int i;
8072     TCGv_i64 tcg_res, tcg_elt;
8073 
8074     switch (opcode) {
8075     case 0x1b: /* ADDV */
8076         if (is_u) {
8077             unallocated_encoding(s);
8078             return;
8079         }
8080         /* fall through */
8081     case 0x3: /* SADDLV, UADDLV */
8082     case 0xa: /* SMAXV, UMAXV */
8083     case 0x1a: /* SMINV, UMINV */
8084         if (size == 3 || (size == 2 && !is_q)) {
8085             unallocated_encoding(s);
8086             return;
8087         }
8088         break;
8089     case 0xc: /* FMAXNMV, FMINNMV */
8090     case 0xf: /* FMAXV, FMINV */
8091         /* Bit 1 of size field encodes min vs max and the actual size
8092          * depends on the encoding of the U bit. If not set (and FP16
8093          * enabled) then we do half-precision float instead of single
8094          * precision.
8095          */
8096         is_min = extract32(size, 1, 1);
8097         is_fp = true;
8098         if (!is_u && dc_isar_feature(aa64_fp16, s)) {
8099             size = 1;
8100         } else if (!is_u || !is_q || extract32(size, 0, 1)) {
8101             unallocated_encoding(s);
8102             return;
8103         } else {
8104             size = 2;
8105         }
8106         break;
8107     default:
8108         unallocated_encoding(s);
8109         return;
8110     }
8111 
8112     if (!fp_access_check(s)) {
8113         return;
8114     }
8115 
8116     esize = 8 << size;
8117     elements = (is_q ? 128 : 64) / esize;
8118 
8119     tcg_res = tcg_temp_new_i64();
8120     tcg_elt = tcg_temp_new_i64();
8121 
8122     /* These instructions operate across all lanes of a vector
8123      * to produce a single result. We can guarantee that a 64
8124      * bit intermediate is sufficient:
8125      *  + for [US]ADDLV the maximum element size is 32 bits, and
8126      *    the result type is 64 bits
8127      *  + for FMAX*V, FMIN*V, ADDV the intermediate type is the
8128      *    same as the element size, which is 32 bits at most
8129      * For the integer operations we can choose to work at 64
8130      * or 32 bits and truncate at the end; for simplicity
8131      * we use 64 bits always. The floating point
8132      * ops do require 32 bit intermediates, though.
8133      */
8134     if (!is_fp) {
8135         read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
8136 
8137         for (i = 1; i < elements; i++) {
8138             read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
8139 
8140             switch (opcode) {
8141             case 0x03: /* SADDLV / UADDLV */
8142             case 0x1b: /* ADDV */
8143                 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
8144                 break;
8145             case 0x0a: /* SMAXV / UMAXV */
8146                 if (is_u) {
8147                     tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
8148                 } else {
8149                     tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
8150                 }
8151                 break;
8152             case 0x1a: /* SMINV / UMINV */
8153                 if (is_u) {
8154                     tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
8155                 } else {
8156                     tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
8157                 }
8158                 break;
8159             default:
8160                 g_assert_not_reached();
8161             }
8162 
8163         }
8164     } else {
8165         /* Floating point vector reduction ops which work across 32
8166          * bit (single) or 16 bit (half-precision) intermediates.
8167          * Note that correct NaN propagation requires that we do these
8168          * operations in exactly the order specified by the pseudocode.
8169          */
8170         TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8171         int fpopcode = opcode | is_min << 4 | is_u << 5;
8172         int vmap = (1 << elements) - 1;
8173         TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
8174                                              (is_q ? 128 : 64), vmap, fpst);
8175         tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
8176     }
8177 
8178     /* Now truncate the result to the width required for the final output */
8179     if (opcode == 0x03) {
8180         /* SADDLV, UADDLV: result is 2*esize */
8181         size++;
8182     }
8183 
8184     switch (size) {
8185     case 0:
8186         tcg_gen_ext8u_i64(tcg_res, tcg_res);
8187         break;
8188     case 1:
8189         tcg_gen_ext16u_i64(tcg_res, tcg_res);
8190         break;
8191     case 2:
8192         tcg_gen_ext32u_i64(tcg_res, tcg_res);
8193         break;
8194     case 3:
8195         break;
8196     default:
8197         g_assert_not_reached();
8198     }
8199 
8200     write_fp_dreg(s, rd, tcg_res);
8201 }
8202 
8203 /* AdvSIMD modified immediate
8204  *  31  30   29  28                 19 18 16 15   12  11  10  9     5 4    0
8205  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8206  * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh |  Rd  |
8207  * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8208  *
8209  * There are a number of operations that can be carried out here:
8210  *   MOVI - move (shifted) imm into register
8211  *   MVNI - move inverted (shifted) imm into register
8212  *   ORR  - bitwise OR of (shifted) imm with register
8213  *   BIC  - bitwise clear of (shifted) imm with register
8214  * With ARMv8.2 we also have:
8215  *   FMOV half-precision
8216  */
8217 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8218 {
8219     int rd = extract32(insn, 0, 5);
8220     int cmode = extract32(insn, 12, 4);
8221     int o2 = extract32(insn, 11, 1);
8222     uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8223     bool is_neg = extract32(insn, 29, 1);
8224     bool is_q = extract32(insn, 30, 1);
8225     uint64_t imm = 0;
8226 
8227     if (o2) {
8228         if (cmode != 0xf || is_neg) {
8229             unallocated_encoding(s);
8230             return;
8231         }
8232         /* FMOV (vector, immediate) - half-precision */
8233         if (!dc_isar_feature(aa64_fp16, s)) {
8234             unallocated_encoding(s);
8235             return;
8236         }
8237         imm = vfp_expand_imm(MO_16, abcdefgh);
8238         /* now duplicate across the lanes */
8239         imm = dup_const(MO_16, imm);
8240     } else {
8241         if (cmode == 0xf && is_neg && !is_q) {
8242             unallocated_encoding(s);
8243             return;
8244         }
8245         imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8246     }
8247 
8248     if (!fp_access_check(s)) {
8249         return;
8250     }
8251 
8252     if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8253         /* MOVI or MVNI, with MVNI negation handled above.  */
8254         tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8255                              vec_full_reg_size(s), imm);
8256     } else {
8257         /* ORR or BIC, with BIC negation to AND handled above.  */
8258         if (is_neg) {
8259             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8260         } else {
8261             gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8262         }
8263     }
8264 }
8265 
8266 /* AdvSIMD scalar pairwise
8267  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
8268  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8269  * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
8270  * +-----+---+-----------+------+-----------+--------+-----+------+------+
8271  */
8272 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8273 {
8274     int u = extract32(insn, 29, 1);
8275     int size = extract32(insn, 22, 2);
8276     int opcode = extract32(insn, 12, 5);
8277     int rn = extract32(insn, 5, 5);
8278     int rd = extract32(insn, 0, 5);
8279     TCGv_ptr fpst;
8280 
8281     /* For some ops (the FP ones), size[1] is part of the encoding.
8282      * For ADDP strictly it is not but size[1] is always 1 for valid
8283      * encodings.
8284      */
8285     opcode |= (extract32(size, 1, 1) << 5);
8286 
8287     switch (opcode) {
8288     case 0x3b: /* ADDP */
8289         if (u || size != 3) {
8290             unallocated_encoding(s);
8291             return;
8292         }
8293         if (!fp_access_check(s)) {
8294             return;
8295         }
8296 
8297         fpst = NULL;
8298         break;
8299     case 0xc: /* FMAXNMP */
8300     case 0xd: /* FADDP */
8301     case 0xf: /* FMAXP */
8302     case 0x2c: /* FMINNMP */
8303     case 0x2f: /* FMINP */
8304         /* FP op, size[0] is 32 or 64 bit*/
8305         if (!u) {
8306             if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) {
8307                 unallocated_encoding(s);
8308                 return;
8309             } else {
8310                 size = MO_16;
8311             }
8312         } else {
8313             size = extract32(size, 0, 1) ? MO_64 : MO_32;
8314         }
8315 
8316         if (!fp_access_check(s)) {
8317             return;
8318         }
8319 
8320         fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8321         break;
8322     default:
8323         unallocated_encoding(s);
8324         return;
8325     }
8326 
8327     if (size == MO_64) {
8328         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8329         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8330         TCGv_i64 tcg_res = tcg_temp_new_i64();
8331 
8332         read_vec_element(s, tcg_op1, rn, 0, MO_64);
8333         read_vec_element(s, tcg_op2, rn, 1, MO_64);
8334 
8335         switch (opcode) {
8336         case 0x3b: /* ADDP */
8337             tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8338             break;
8339         case 0xc: /* FMAXNMP */
8340             gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8341             break;
8342         case 0xd: /* FADDP */
8343             gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8344             break;
8345         case 0xf: /* FMAXP */
8346             gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8347             break;
8348         case 0x2c: /* FMINNMP */
8349             gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8350             break;
8351         case 0x2f: /* FMINP */
8352             gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8353             break;
8354         default:
8355             g_assert_not_reached();
8356         }
8357 
8358         write_fp_dreg(s, rd, tcg_res);
8359     } else {
8360         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8361         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8362         TCGv_i32 tcg_res = tcg_temp_new_i32();
8363 
8364         read_vec_element_i32(s, tcg_op1, rn, 0, size);
8365         read_vec_element_i32(s, tcg_op2, rn, 1, size);
8366 
8367         if (size == MO_16) {
8368             switch (opcode) {
8369             case 0xc: /* FMAXNMP */
8370                 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8371                 break;
8372             case 0xd: /* FADDP */
8373                 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8374                 break;
8375             case 0xf: /* FMAXP */
8376                 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8377                 break;
8378             case 0x2c: /* FMINNMP */
8379                 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8380                 break;
8381             case 0x2f: /* FMINP */
8382                 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8383                 break;
8384             default:
8385                 g_assert_not_reached();
8386             }
8387         } else {
8388             switch (opcode) {
8389             case 0xc: /* FMAXNMP */
8390                 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8391                 break;
8392             case 0xd: /* FADDP */
8393                 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8394                 break;
8395             case 0xf: /* FMAXP */
8396                 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8397                 break;
8398             case 0x2c: /* FMINNMP */
8399                 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8400                 break;
8401             case 0x2f: /* FMINP */
8402                 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8403                 break;
8404             default:
8405                 g_assert_not_reached();
8406             }
8407         }
8408 
8409         write_fp_sreg(s, rd, tcg_res);
8410     }
8411 }
8412 
8413 /*
8414  * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8415  *
8416  * This code is handles the common shifting code and is used by both
8417  * the vector and scalar code.
8418  */
8419 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8420                                     TCGv_i64 tcg_rnd, bool accumulate,
8421                                     bool is_u, int size, int shift)
8422 {
8423     bool extended_result = false;
8424     bool round = tcg_rnd != NULL;
8425     int ext_lshift = 0;
8426     TCGv_i64 tcg_src_hi;
8427 
8428     if (round && size == 3) {
8429         extended_result = true;
8430         ext_lshift = 64 - shift;
8431         tcg_src_hi = tcg_temp_new_i64();
8432     } else if (shift == 64) {
8433         if (!accumulate && is_u) {
8434             /* result is zero */
8435             tcg_gen_movi_i64(tcg_res, 0);
8436             return;
8437         }
8438     }
8439 
8440     /* Deal with the rounding step */
8441     if (round) {
8442         if (extended_result) {
8443             TCGv_i64 tcg_zero = tcg_constant_i64(0);
8444             if (!is_u) {
8445                 /* take care of sign extending tcg_res */
8446                 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8447                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8448                                  tcg_src, tcg_src_hi,
8449                                  tcg_rnd, tcg_zero);
8450             } else {
8451                 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8452                                  tcg_src, tcg_zero,
8453                                  tcg_rnd, tcg_zero);
8454             }
8455         } else {
8456             tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8457         }
8458     }
8459 
8460     /* Now do the shift right */
8461     if (round && extended_result) {
8462         /* extended case, >64 bit precision required */
8463         if (ext_lshift == 0) {
8464             /* special case, only high bits matter */
8465             tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8466         } else {
8467             tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8468             tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8469             tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8470         }
8471     } else {
8472         if (is_u) {
8473             if (shift == 64) {
8474                 /* essentially shifting in 64 zeros */
8475                 tcg_gen_movi_i64(tcg_src, 0);
8476             } else {
8477                 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8478             }
8479         } else {
8480             if (shift == 64) {
8481                 /* effectively extending the sign-bit */
8482                 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8483             } else {
8484                 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8485             }
8486         }
8487     }
8488 
8489     if (accumulate) {
8490         tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8491     } else {
8492         tcg_gen_mov_i64(tcg_res, tcg_src);
8493     }
8494 }
8495 
8496 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8497 static void handle_scalar_simd_shri(DisasContext *s,
8498                                     bool is_u, int immh, int immb,
8499                                     int opcode, int rn, int rd)
8500 {
8501     const int size = 3;
8502     int immhb = immh << 3 | immb;
8503     int shift = 2 * (8 << size) - immhb;
8504     bool accumulate = false;
8505     bool round = false;
8506     bool insert = false;
8507     TCGv_i64 tcg_rn;
8508     TCGv_i64 tcg_rd;
8509     TCGv_i64 tcg_round;
8510 
8511     if (!extract32(immh, 3, 1)) {
8512         unallocated_encoding(s);
8513         return;
8514     }
8515 
8516     if (!fp_access_check(s)) {
8517         return;
8518     }
8519 
8520     switch (opcode) {
8521     case 0x02: /* SSRA / USRA (accumulate) */
8522         accumulate = true;
8523         break;
8524     case 0x04: /* SRSHR / URSHR (rounding) */
8525         round = true;
8526         break;
8527     case 0x06: /* SRSRA / URSRA (accum + rounding) */
8528         accumulate = round = true;
8529         break;
8530     case 0x08: /* SRI */
8531         insert = true;
8532         break;
8533     }
8534 
8535     if (round) {
8536         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8537     } else {
8538         tcg_round = NULL;
8539     }
8540 
8541     tcg_rn = read_fp_dreg(s, rn);
8542     tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8543 
8544     if (insert) {
8545         /* shift count same as element size is valid but does nothing;
8546          * special case to avoid potential shift by 64.
8547          */
8548         int esize = 8 << size;
8549         if (shift != esize) {
8550             tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8551             tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8552         }
8553     } else {
8554         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8555                                 accumulate, is_u, size, shift);
8556     }
8557 
8558     write_fp_dreg(s, rd, tcg_rd);
8559 }
8560 
8561 /* SHL/SLI - Scalar shift left */
8562 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8563                                     int immh, int immb, int opcode,
8564                                     int rn, int rd)
8565 {
8566     int size = 32 - clz32(immh) - 1;
8567     int immhb = immh << 3 | immb;
8568     int shift = immhb - (8 << size);
8569     TCGv_i64 tcg_rn;
8570     TCGv_i64 tcg_rd;
8571 
8572     if (!extract32(immh, 3, 1)) {
8573         unallocated_encoding(s);
8574         return;
8575     }
8576 
8577     if (!fp_access_check(s)) {
8578         return;
8579     }
8580 
8581     tcg_rn = read_fp_dreg(s, rn);
8582     tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8583 
8584     if (insert) {
8585         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8586     } else {
8587         tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8588     }
8589 
8590     write_fp_dreg(s, rd, tcg_rd);
8591 }
8592 
8593 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8594  * (signed/unsigned) narrowing */
8595 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8596                                    bool is_u_shift, bool is_u_narrow,
8597                                    int immh, int immb, int opcode,
8598                                    int rn, int rd)
8599 {
8600     int immhb = immh << 3 | immb;
8601     int size = 32 - clz32(immh) - 1;
8602     int esize = 8 << size;
8603     int shift = (2 * esize) - immhb;
8604     int elements = is_scalar ? 1 : (64 / esize);
8605     bool round = extract32(opcode, 0, 1);
8606     MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8607     TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8608     TCGv_i32 tcg_rd_narrowed;
8609     TCGv_i64 tcg_final;
8610 
8611     static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8612         { gen_helper_neon_narrow_sat_s8,
8613           gen_helper_neon_unarrow_sat8 },
8614         { gen_helper_neon_narrow_sat_s16,
8615           gen_helper_neon_unarrow_sat16 },
8616         { gen_helper_neon_narrow_sat_s32,
8617           gen_helper_neon_unarrow_sat32 },
8618         { NULL, NULL },
8619     };
8620     static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8621         gen_helper_neon_narrow_sat_u8,
8622         gen_helper_neon_narrow_sat_u16,
8623         gen_helper_neon_narrow_sat_u32,
8624         NULL
8625     };
8626     NeonGenNarrowEnvFn *narrowfn;
8627 
8628     int i;
8629 
8630     assert(size < 4);
8631 
8632     if (extract32(immh, 3, 1)) {
8633         unallocated_encoding(s);
8634         return;
8635     }
8636 
8637     if (!fp_access_check(s)) {
8638         return;
8639     }
8640 
8641     if (is_u_shift) {
8642         narrowfn = unsigned_narrow_fns[size];
8643     } else {
8644         narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8645     }
8646 
8647     tcg_rn = tcg_temp_new_i64();
8648     tcg_rd = tcg_temp_new_i64();
8649     tcg_rd_narrowed = tcg_temp_new_i32();
8650     tcg_final = tcg_temp_new_i64();
8651 
8652     if (round) {
8653         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8654     } else {
8655         tcg_round = NULL;
8656     }
8657 
8658     for (i = 0; i < elements; i++) {
8659         read_vec_element(s, tcg_rn, rn, i, ldop);
8660         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8661                                 false, is_u_shift, size+1, shift);
8662         narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8663         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8664         if (i == 0) {
8665             tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8666         } else {
8667             tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8668         }
8669     }
8670 
8671     if (!is_q) {
8672         write_vec_element(s, tcg_final, rd, 0, MO_64);
8673     } else {
8674         write_vec_element(s, tcg_final, rd, 1, MO_64);
8675     }
8676     clear_vec_high(s, is_q, rd);
8677 }
8678 
8679 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8680 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8681                              bool src_unsigned, bool dst_unsigned,
8682                              int immh, int immb, int rn, int rd)
8683 {
8684     int immhb = immh << 3 | immb;
8685     int size = 32 - clz32(immh) - 1;
8686     int shift = immhb - (8 << size);
8687     int pass;
8688 
8689     assert(immh != 0);
8690     assert(!(scalar && is_q));
8691 
8692     if (!scalar) {
8693         if (!is_q && extract32(immh, 3, 1)) {
8694             unallocated_encoding(s);
8695             return;
8696         }
8697 
8698         /* Since we use the variable-shift helpers we must
8699          * replicate the shift count into each element of
8700          * the tcg_shift value.
8701          */
8702         switch (size) {
8703         case 0:
8704             shift |= shift << 8;
8705             /* fall through */
8706         case 1:
8707             shift |= shift << 16;
8708             break;
8709         case 2:
8710         case 3:
8711             break;
8712         default:
8713             g_assert_not_reached();
8714         }
8715     }
8716 
8717     if (!fp_access_check(s)) {
8718         return;
8719     }
8720 
8721     if (size == 3) {
8722         TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8723         static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8724             { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8725             { NULL, gen_helper_neon_qshl_u64 },
8726         };
8727         NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8728         int maxpass = is_q ? 2 : 1;
8729 
8730         for (pass = 0; pass < maxpass; pass++) {
8731             TCGv_i64 tcg_op = tcg_temp_new_i64();
8732 
8733             read_vec_element(s, tcg_op, rn, pass, MO_64);
8734             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8735             write_vec_element(s, tcg_op, rd, pass, MO_64);
8736         }
8737         clear_vec_high(s, is_q, rd);
8738     } else {
8739         TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8740         static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8741             {
8742                 { gen_helper_neon_qshl_s8,
8743                   gen_helper_neon_qshl_s16,
8744                   gen_helper_neon_qshl_s32 },
8745                 { gen_helper_neon_qshlu_s8,
8746                   gen_helper_neon_qshlu_s16,
8747                   gen_helper_neon_qshlu_s32 }
8748             }, {
8749                 { NULL, NULL, NULL },
8750                 { gen_helper_neon_qshl_u8,
8751                   gen_helper_neon_qshl_u16,
8752                   gen_helper_neon_qshl_u32 }
8753             }
8754         };
8755         NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8756         MemOp memop = scalar ? size : MO_32;
8757         int maxpass = scalar ? 1 : is_q ? 4 : 2;
8758 
8759         for (pass = 0; pass < maxpass; pass++) {
8760             TCGv_i32 tcg_op = tcg_temp_new_i32();
8761 
8762             read_vec_element_i32(s, tcg_op, rn, pass, memop);
8763             genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8764             if (scalar) {
8765                 switch (size) {
8766                 case 0:
8767                     tcg_gen_ext8u_i32(tcg_op, tcg_op);
8768                     break;
8769                 case 1:
8770                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
8771                     break;
8772                 case 2:
8773                     break;
8774                 default:
8775                     g_assert_not_reached();
8776                 }
8777                 write_fp_sreg(s, rd, tcg_op);
8778             } else {
8779                 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8780             }
8781         }
8782 
8783         if (!scalar) {
8784             clear_vec_high(s, is_q, rd);
8785         }
8786     }
8787 }
8788 
8789 /* Common vector code for handling integer to FP conversion */
8790 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8791                                    int elements, int is_signed,
8792                                    int fracbits, int size)
8793 {
8794     TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8795     TCGv_i32 tcg_shift = NULL;
8796 
8797     MemOp mop = size | (is_signed ? MO_SIGN : 0);
8798     int pass;
8799 
8800     if (fracbits || size == MO_64) {
8801         tcg_shift = tcg_constant_i32(fracbits);
8802     }
8803 
8804     if (size == MO_64) {
8805         TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8806         TCGv_i64 tcg_double = tcg_temp_new_i64();
8807 
8808         for (pass = 0; pass < elements; pass++) {
8809             read_vec_element(s, tcg_int64, rn, pass, mop);
8810 
8811             if (is_signed) {
8812                 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8813                                      tcg_shift, tcg_fpst);
8814             } else {
8815                 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8816                                      tcg_shift, tcg_fpst);
8817             }
8818             if (elements == 1) {
8819                 write_fp_dreg(s, rd, tcg_double);
8820             } else {
8821                 write_vec_element(s, tcg_double, rd, pass, MO_64);
8822             }
8823         }
8824     } else {
8825         TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8826         TCGv_i32 tcg_float = tcg_temp_new_i32();
8827 
8828         for (pass = 0; pass < elements; pass++) {
8829             read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8830 
8831             switch (size) {
8832             case MO_32:
8833                 if (fracbits) {
8834                     if (is_signed) {
8835                         gen_helper_vfp_sltos(tcg_float, tcg_int32,
8836                                              tcg_shift, tcg_fpst);
8837                     } else {
8838                         gen_helper_vfp_ultos(tcg_float, tcg_int32,
8839                                              tcg_shift, tcg_fpst);
8840                     }
8841                 } else {
8842                     if (is_signed) {
8843                         gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8844                     } else {
8845                         gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8846                     }
8847                 }
8848                 break;
8849             case MO_16:
8850                 if (fracbits) {
8851                     if (is_signed) {
8852                         gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8853                                              tcg_shift, tcg_fpst);
8854                     } else {
8855                         gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8856                                              tcg_shift, tcg_fpst);
8857                     }
8858                 } else {
8859                     if (is_signed) {
8860                         gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8861                     } else {
8862                         gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8863                     }
8864                 }
8865                 break;
8866             default:
8867                 g_assert_not_reached();
8868             }
8869 
8870             if (elements == 1) {
8871                 write_fp_sreg(s, rd, tcg_float);
8872             } else {
8873                 write_vec_element_i32(s, tcg_float, rd, pass, size);
8874             }
8875         }
8876     }
8877 
8878     clear_vec_high(s, elements << size == 16, rd);
8879 }
8880 
8881 /* UCVTF/SCVTF - Integer to FP conversion */
8882 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8883                                          bool is_q, bool is_u,
8884                                          int immh, int immb, int opcode,
8885                                          int rn, int rd)
8886 {
8887     int size, elements, fracbits;
8888     int immhb = immh << 3 | immb;
8889 
8890     if (immh & 8) {
8891         size = MO_64;
8892         if (!is_scalar && !is_q) {
8893             unallocated_encoding(s);
8894             return;
8895         }
8896     } else if (immh & 4) {
8897         size = MO_32;
8898     } else if (immh & 2) {
8899         size = MO_16;
8900         if (!dc_isar_feature(aa64_fp16, s)) {
8901             unallocated_encoding(s);
8902             return;
8903         }
8904     } else {
8905         /* immh == 0 would be a failure of the decode logic */
8906         g_assert(immh == 1);
8907         unallocated_encoding(s);
8908         return;
8909     }
8910 
8911     if (is_scalar) {
8912         elements = 1;
8913     } else {
8914         elements = (8 << is_q) >> size;
8915     }
8916     fracbits = (16 << size) - immhb;
8917 
8918     if (!fp_access_check(s)) {
8919         return;
8920     }
8921 
8922     handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8923 }
8924 
8925 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8926 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8927                                          bool is_q, bool is_u,
8928                                          int immh, int immb, int rn, int rd)
8929 {
8930     int immhb = immh << 3 | immb;
8931     int pass, size, fracbits;
8932     TCGv_ptr tcg_fpstatus;
8933     TCGv_i32 tcg_rmode, tcg_shift;
8934 
8935     if (immh & 0x8) {
8936         size = MO_64;
8937         if (!is_scalar && !is_q) {
8938             unallocated_encoding(s);
8939             return;
8940         }
8941     } else if (immh & 0x4) {
8942         size = MO_32;
8943     } else if (immh & 0x2) {
8944         size = MO_16;
8945         if (!dc_isar_feature(aa64_fp16, s)) {
8946             unallocated_encoding(s);
8947             return;
8948         }
8949     } else {
8950         /* Should have split out AdvSIMD modified immediate earlier.  */
8951         assert(immh == 1);
8952         unallocated_encoding(s);
8953         return;
8954     }
8955 
8956     if (!fp_access_check(s)) {
8957         return;
8958     }
8959 
8960     assert(!(is_scalar && is_q));
8961 
8962     tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8963     tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8964     fracbits = (16 << size) - immhb;
8965     tcg_shift = tcg_constant_i32(fracbits);
8966 
8967     if (size == MO_64) {
8968         int maxpass = is_scalar ? 1 : 2;
8969 
8970         for (pass = 0; pass < maxpass; pass++) {
8971             TCGv_i64 tcg_op = tcg_temp_new_i64();
8972 
8973             read_vec_element(s, tcg_op, rn, pass, MO_64);
8974             if (is_u) {
8975                 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8976             } else {
8977                 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8978             }
8979             write_vec_element(s, tcg_op, rd, pass, MO_64);
8980         }
8981         clear_vec_high(s, is_q, rd);
8982     } else {
8983         void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8984         int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8985 
8986         switch (size) {
8987         case MO_16:
8988             if (is_u) {
8989                 fn = gen_helper_vfp_touhh;
8990             } else {
8991                 fn = gen_helper_vfp_toshh;
8992             }
8993             break;
8994         case MO_32:
8995             if (is_u) {
8996                 fn = gen_helper_vfp_touls;
8997             } else {
8998                 fn = gen_helper_vfp_tosls;
8999             }
9000             break;
9001         default:
9002             g_assert_not_reached();
9003         }
9004 
9005         for (pass = 0; pass < maxpass; pass++) {
9006             TCGv_i32 tcg_op = tcg_temp_new_i32();
9007 
9008             read_vec_element_i32(s, tcg_op, rn, pass, size);
9009             fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9010             if (is_scalar) {
9011                 if (size == MO_16 && !is_u) {
9012                     tcg_gen_ext16u_i32(tcg_op, tcg_op);
9013                 }
9014                 write_fp_sreg(s, rd, tcg_op);
9015             } else {
9016                 write_vec_element_i32(s, tcg_op, rd, pass, size);
9017             }
9018         }
9019         if (!is_scalar) {
9020             clear_vec_high(s, is_q, rd);
9021         }
9022     }
9023 
9024     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9025 }
9026 
9027 /* AdvSIMD scalar shift by immediate
9028  *  31 30  29 28         23 22  19 18  16 15    11  10 9    5 4    0
9029  * +-----+---+-------------+------+------+--------+---+------+------+
9030  * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
9031  * +-----+---+-------------+------+------+--------+---+------+------+
9032  *
9033  * This is the scalar version so it works on a fixed sized registers
9034  */
9035 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9036 {
9037     int rd = extract32(insn, 0, 5);
9038     int rn = extract32(insn, 5, 5);
9039     int opcode = extract32(insn, 11, 5);
9040     int immb = extract32(insn, 16, 3);
9041     int immh = extract32(insn, 19, 4);
9042     bool is_u = extract32(insn, 29, 1);
9043 
9044     if (immh == 0) {
9045         unallocated_encoding(s);
9046         return;
9047     }
9048 
9049     switch (opcode) {
9050     case 0x08: /* SRI */
9051         if (!is_u) {
9052             unallocated_encoding(s);
9053             return;
9054         }
9055         /* fall through */
9056     case 0x00: /* SSHR / USHR */
9057     case 0x02: /* SSRA / USRA */
9058     case 0x04: /* SRSHR / URSHR */
9059     case 0x06: /* SRSRA / URSRA */
9060         handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9061         break;
9062     case 0x0a: /* SHL / SLI */
9063         handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9064         break;
9065     case 0x1c: /* SCVTF, UCVTF */
9066         handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9067                                      opcode, rn, rd);
9068         break;
9069     case 0x10: /* SQSHRUN, SQSHRUN2 */
9070     case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9071         if (!is_u) {
9072             unallocated_encoding(s);
9073             return;
9074         }
9075         handle_vec_simd_sqshrn(s, true, false, false, true,
9076                                immh, immb, opcode, rn, rd);
9077         break;
9078     case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9079     case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9080         handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9081                                immh, immb, opcode, rn, rd);
9082         break;
9083     case 0xc: /* SQSHLU */
9084         if (!is_u) {
9085             unallocated_encoding(s);
9086             return;
9087         }
9088         handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9089         break;
9090     case 0xe: /* SQSHL, UQSHL */
9091         handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9092         break;
9093     case 0x1f: /* FCVTZS, FCVTZU */
9094         handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9095         break;
9096     default:
9097         unallocated_encoding(s);
9098         break;
9099     }
9100 }
9101 
9102 /* AdvSIMD scalar three different
9103  *  31 30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
9104  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9105  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
9106  * +-----+---+-----------+------+---+------+--------+-----+------+------+
9107  */
9108 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9109 {
9110     bool is_u = extract32(insn, 29, 1);
9111     int size = extract32(insn, 22, 2);
9112     int opcode = extract32(insn, 12, 4);
9113     int rm = extract32(insn, 16, 5);
9114     int rn = extract32(insn, 5, 5);
9115     int rd = extract32(insn, 0, 5);
9116 
9117     if (is_u) {
9118         unallocated_encoding(s);
9119         return;
9120     }
9121 
9122     switch (opcode) {
9123     case 0x9: /* SQDMLAL, SQDMLAL2 */
9124     case 0xb: /* SQDMLSL, SQDMLSL2 */
9125     case 0xd: /* SQDMULL, SQDMULL2 */
9126         if (size == 0 || size == 3) {
9127             unallocated_encoding(s);
9128             return;
9129         }
9130         break;
9131     default:
9132         unallocated_encoding(s);
9133         return;
9134     }
9135 
9136     if (!fp_access_check(s)) {
9137         return;
9138     }
9139 
9140     if (size == 2) {
9141         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9142         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9143         TCGv_i64 tcg_res = tcg_temp_new_i64();
9144 
9145         read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9146         read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9147 
9148         tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9149         gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
9150 
9151         switch (opcode) {
9152         case 0xd: /* SQDMULL, SQDMULL2 */
9153             break;
9154         case 0xb: /* SQDMLSL, SQDMLSL2 */
9155             tcg_gen_neg_i64(tcg_res, tcg_res);
9156             /* fall through */
9157         case 0x9: /* SQDMLAL, SQDMLAL2 */
9158             read_vec_element(s, tcg_op1, rd, 0, MO_64);
9159             gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
9160                                               tcg_res, tcg_op1);
9161             break;
9162         default:
9163             g_assert_not_reached();
9164         }
9165 
9166         write_fp_dreg(s, rd, tcg_res);
9167     } else {
9168         TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9169         TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9170         TCGv_i64 tcg_res = tcg_temp_new_i64();
9171 
9172         gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9173         gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
9174 
9175         switch (opcode) {
9176         case 0xd: /* SQDMULL, SQDMULL2 */
9177             break;
9178         case 0xb: /* SQDMLSL, SQDMLSL2 */
9179             gen_helper_neon_negl_u32(tcg_res, tcg_res);
9180             /* fall through */
9181         case 0x9: /* SQDMLAL, SQDMLAL2 */
9182         {
9183             TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9184             read_vec_element(s, tcg_op3, rd, 0, MO_32);
9185             gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
9186                                               tcg_res, tcg_op3);
9187             break;
9188         }
9189         default:
9190             g_assert_not_reached();
9191         }
9192 
9193         tcg_gen_ext32u_i64(tcg_res, tcg_res);
9194         write_fp_dreg(s, rd, tcg_res);
9195     }
9196 }
9197 
9198 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9199                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9200 {
9201     /* Handle 64x64->64 opcodes which are shared between the scalar
9202      * and vector 3-same groups. We cover every opcode where size == 3
9203      * is valid in either the three-reg-same (integer, not pairwise)
9204      * or scalar-three-reg-same groups.
9205      */
9206     TCGCond cond;
9207 
9208     switch (opcode) {
9209     case 0x1: /* SQADD */
9210         if (u) {
9211             gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9212         } else {
9213             gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9214         }
9215         break;
9216     case 0x5: /* SQSUB */
9217         if (u) {
9218             gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9219         } else {
9220             gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9221         }
9222         break;
9223     case 0x6: /* CMGT, CMHI */
9224         cond = u ? TCG_COND_GTU : TCG_COND_GT;
9225     do_cmop:
9226         /* 64 bit integer comparison, result = test ? -1 : 0. */
9227         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9228         break;
9229     case 0x7: /* CMGE, CMHS */
9230         cond = u ? TCG_COND_GEU : TCG_COND_GE;
9231         goto do_cmop;
9232     case 0x11: /* CMTST, CMEQ */
9233         if (u) {
9234             cond = TCG_COND_EQ;
9235             goto do_cmop;
9236         }
9237         gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9238         break;
9239     case 0x8: /* SSHL, USHL */
9240         if (u) {
9241             gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9242         } else {
9243             gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9244         }
9245         break;
9246     case 0x9: /* SQSHL, UQSHL */
9247         if (u) {
9248             gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9249         } else {
9250             gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9251         }
9252         break;
9253     case 0xa: /* SRSHL, URSHL */
9254         if (u) {
9255             gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9256         } else {
9257             gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9258         }
9259         break;
9260     case 0xb: /* SQRSHL, UQRSHL */
9261         if (u) {
9262             gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9263         } else {
9264             gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
9265         }
9266         break;
9267     case 0x10: /* ADD, SUB */
9268         if (u) {
9269             tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9270         } else {
9271             tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9272         }
9273         break;
9274     default:
9275         g_assert_not_reached();
9276     }
9277 }
9278 
9279 /* Handle the 3-same-operands float operations; shared by the scalar
9280  * and vector encodings. The caller must filter out any encodings
9281  * not allocated for the encoding it is dealing with.
9282  */
9283 static void handle_3same_float(DisasContext *s, int size, int elements,
9284                                int fpopcode, int rd, int rn, int rm)
9285 {
9286     int pass;
9287     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9288 
9289     for (pass = 0; pass < elements; pass++) {
9290         if (size) {
9291             /* Double */
9292             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9293             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9294             TCGv_i64 tcg_res = tcg_temp_new_i64();
9295 
9296             read_vec_element(s, tcg_op1, rn, pass, MO_64);
9297             read_vec_element(s, tcg_op2, rm, pass, MO_64);
9298 
9299             switch (fpopcode) {
9300             case 0x1f: /* FRECPS */
9301                 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9302                 break;
9303             case 0x3f: /* FRSQRTS */
9304                 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9305                 break;
9306             case 0x7a: /* FABD */
9307                 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9308                 gen_vfp_absd(tcg_res, tcg_res);
9309                 break;
9310             default:
9311             case 0x18: /* FMAXNM */
9312             case 0x19: /* FMLA */
9313             case 0x1a: /* FADD */
9314             case 0x1b: /* FMULX */
9315             case 0x1c: /* FCMEQ */
9316             case 0x1e: /* FMAX */
9317             case 0x38: /* FMINNM */
9318             case 0x39: /* FMLS */
9319             case 0x3a: /* FSUB */
9320             case 0x3e: /* FMIN */
9321             case 0x5b: /* FMUL */
9322             case 0x5c: /* FCMGE */
9323             case 0x5d: /* FACGE */
9324             case 0x5f: /* FDIV */
9325             case 0x7c: /* FCMGT */
9326             case 0x7d: /* FACGT */
9327                 g_assert_not_reached();
9328             }
9329 
9330             write_vec_element(s, tcg_res, rd, pass, MO_64);
9331         } else {
9332             /* Single */
9333             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9334             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9335             TCGv_i32 tcg_res = tcg_temp_new_i32();
9336 
9337             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9338             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9339 
9340             switch (fpopcode) {
9341             case 0x1f: /* FRECPS */
9342                 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9343                 break;
9344             case 0x3f: /* FRSQRTS */
9345                 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9346                 break;
9347             case 0x7a: /* FABD */
9348                 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9349                 gen_vfp_abss(tcg_res, tcg_res);
9350                 break;
9351             default:
9352             case 0x18: /* FMAXNM */
9353             case 0x19: /* FMLA */
9354             case 0x1a: /* FADD */
9355             case 0x1b: /* FMULX */
9356             case 0x1c: /* FCMEQ */
9357             case 0x1e: /* FMAX */
9358             case 0x38: /* FMINNM */
9359             case 0x39: /* FMLS */
9360             case 0x3a: /* FSUB */
9361             case 0x3e: /* FMIN */
9362             case 0x5b: /* FMUL */
9363             case 0x5c: /* FCMGE */
9364             case 0x5d: /* FACGE */
9365             case 0x5f: /* FDIV */
9366             case 0x7c: /* FCMGT */
9367             case 0x7d: /* FACGT */
9368                 g_assert_not_reached();
9369             }
9370 
9371             if (elements == 1) {
9372                 /* scalar single so clear high part */
9373                 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9374 
9375                 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9376                 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9377             } else {
9378                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9379             }
9380         }
9381     }
9382 
9383     clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9384 }
9385 
9386 /* AdvSIMD scalar three same
9387  *  31 30  29 28       24 23  22  21 20  16 15    11  10 9    5 4    0
9388  * +-----+---+-----------+------+---+------+--------+---+------+------+
9389  * | 0 1 | U | 1 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
9390  * +-----+---+-----------+------+---+------+--------+---+------+------+
9391  */
9392 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9393 {
9394     int rd = extract32(insn, 0, 5);
9395     int rn = extract32(insn, 5, 5);
9396     int opcode = extract32(insn, 11, 5);
9397     int rm = extract32(insn, 16, 5);
9398     int size = extract32(insn, 22, 2);
9399     bool u = extract32(insn, 29, 1);
9400     TCGv_i64 tcg_rd;
9401 
9402     if (opcode >= 0x18) {
9403         /* Floating point: U, size[1] and opcode indicate operation */
9404         int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9405         switch (fpopcode) {
9406         case 0x1f: /* FRECPS */
9407         case 0x3f: /* FRSQRTS */
9408         case 0x7a: /* FABD */
9409             break;
9410         default:
9411         case 0x1b: /* FMULX */
9412         case 0x5d: /* FACGE */
9413         case 0x7d: /* FACGT */
9414         case 0x1c: /* FCMEQ */
9415         case 0x5c: /* FCMGE */
9416         case 0x7c: /* FCMGT */
9417             unallocated_encoding(s);
9418             return;
9419         }
9420 
9421         if (!fp_access_check(s)) {
9422             return;
9423         }
9424 
9425         handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9426         return;
9427     }
9428 
9429     switch (opcode) {
9430     case 0x1: /* SQADD, UQADD */
9431     case 0x5: /* SQSUB, UQSUB */
9432     case 0x9: /* SQSHL, UQSHL */
9433     case 0xb: /* SQRSHL, UQRSHL */
9434         break;
9435     case 0x8: /* SSHL, USHL */
9436     case 0xa: /* SRSHL, URSHL */
9437     case 0x6: /* CMGT, CMHI */
9438     case 0x7: /* CMGE, CMHS */
9439     case 0x11: /* CMTST, CMEQ */
9440     case 0x10: /* ADD, SUB (vector) */
9441         if (size != 3) {
9442             unallocated_encoding(s);
9443             return;
9444         }
9445         break;
9446     case 0x16: /* SQDMULH, SQRDMULH (vector) */
9447         if (size != 1 && size != 2) {
9448             unallocated_encoding(s);
9449             return;
9450         }
9451         break;
9452     default:
9453         unallocated_encoding(s);
9454         return;
9455     }
9456 
9457     if (!fp_access_check(s)) {
9458         return;
9459     }
9460 
9461     tcg_rd = tcg_temp_new_i64();
9462 
9463     if (size == 3) {
9464         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9465         TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9466 
9467         handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9468     } else {
9469         /* Do a single operation on the lowest element in the vector.
9470          * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9471          * no side effects for all these operations.
9472          * OPTME: special-purpose helpers would avoid doing some
9473          * unnecessary work in the helper for the 8 and 16 bit cases.
9474          */
9475         NeonGenTwoOpEnvFn *genenvfn;
9476         TCGv_i32 tcg_rn = tcg_temp_new_i32();
9477         TCGv_i32 tcg_rm = tcg_temp_new_i32();
9478         TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9479 
9480         read_vec_element_i32(s, tcg_rn, rn, 0, size);
9481         read_vec_element_i32(s, tcg_rm, rm, 0, size);
9482 
9483         switch (opcode) {
9484         case 0x1: /* SQADD, UQADD */
9485         {
9486             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9487                 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9488                 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9489                 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9490             };
9491             genenvfn = fns[size][u];
9492             break;
9493         }
9494         case 0x5: /* SQSUB, UQSUB */
9495         {
9496             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9497                 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9498                 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9499                 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9500             };
9501             genenvfn = fns[size][u];
9502             break;
9503         }
9504         case 0x9: /* SQSHL, UQSHL */
9505         {
9506             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9507                 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9508                 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9509                 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9510             };
9511             genenvfn = fns[size][u];
9512             break;
9513         }
9514         case 0xb: /* SQRSHL, UQRSHL */
9515         {
9516             static NeonGenTwoOpEnvFn * const fns[3][2] = {
9517                 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9518                 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9519                 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9520             };
9521             genenvfn = fns[size][u];
9522             break;
9523         }
9524         case 0x16: /* SQDMULH, SQRDMULH */
9525         {
9526             static NeonGenTwoOpEnvFn * const fns[2][2] = {
9527                 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9528                 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9529             };
9530             assert(size == 1 || size == 2);
9531             genenvfn = fns[size - 1][u];
9532             break;
9533         }
9534         default:
9535             g_assert_not_reached();
9536         }
9537 
9538         genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9539         tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9540     }
9541 
9542     write_fp_dreg(s, rd, tcg_rd);
9543 }
9544 
9545 /* AdvSIMD scalar three same FP16
9546  *  31 30  29 28       24 23  22 21 20  16 15 14 13    11 10  9  5 4  0
9547  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9548  * | 0 1 | U | 1 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 | Rn | Rd |
9549  * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9550  * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9551  * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9552  */
9553 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9554                                                   uint32_t insn)
9555 {
9556     int rd = extract32(insn, 0, 5);
9557     int rn = extract32(insn, 5, 5);
9558     int opcode = extract32(insn, 11, 3);
9559     int rm = extract32(insn, 16, 5);
9560     bool u = extract32(insn, 29, 1);
9561     bool a = extract32(insn, 23, 1);
9562     int fpopcode = opcode | (a << 3) |  (u << 4);
9563     TCGv_ptr fpst;
9564     TCGv_i32 tcg_op1;
9565     TCGv_i32 tcg_op2;
9566     TCGv_i32 tcg_res;
9567 
9568     switch (fpopcode) {
9569     case 0x07: /* FRECPS */
9570     case 0x0f: /* FRSQRTS */
9571     case 0x1a: /* FABD */
9572         break;
9573     default:
9574     case 0x03: /* FMULX */
9575     case 0x04: /* FCMEQ (reg) */
9576     case 0x14: /* FCMGE (reg) */
9577     case 0x15: /* FACGE */
9578     case 0x1c: /* FCMGT (reg) */
9579     case 0x1d: /* FACGT */
9580         unallocated_encoding(s);
9581         return;
9582     }
9583 
9584     if (!dc_isar_feature(aa64_fp16, s)) {
9585         unallocated_encoding(s);
9586     }
9587 
9588     if (!fp_access_check(s)) {
9589         return;
9590     }
9591 
9592     fpst = fpstatus_ptr(FPST_FPCR_F16);
9593 
9594     tcg_op1 = read_fp_hreg(s, rn);
9595     tcg_op2 = read_fp_hreg(s, rm);
9596     tcg_res = tcg_temp_new_i32();
9597 
9598     switch (fpopcode) {
9599     case 0x07: /* FRECPS */
9600         gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9601         break;
9602     case 0x0f: /* FRSQRTS */
9603         gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9604         break;
9605     case 0x1a: /* FABD */
9606         gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9607         tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9608         break;
9609     default:
9610     case 0x03: /* FMULX */
9611     case 0x04: /* FCMEQ (reg) */
9612     case 0x14: /* FCMGE (reg) */
9613     case 0x15: /* FACGE */
9614     case 0x1c: /* FCMGT (reg) */
9615     case 0x1d: /* FACGT */
9616         g_assert_not_reached();
9617     }
9618 
9619     write_fp_sreg(s, rd, tcg_res);
9620 }
9621 
9622 /* AdvSIMD scalar three same extra
9623  *  31 30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
9624  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9625  * | 0 1 | U | 1 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
9626  * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9627  */
9628 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9629                                                    uint32_t insn)
9630 {
9631     int rd = extract32(insn, 0, 5);
9632     int rn = extract32(insn, 5, 5);
9633     int opcode = extract32(insn, 11, 4);
9634     int rm = extract32(insn, 16, 5);
9635     int size = extract32(insn, 22, 2);
9636     bool u = extract32(insn, 29, 1);
9637     TCGv_i32 ele1, ele2, ele3;
9638     TCGv_i64 res;
9639     bool feature;
9640 
9641     switch (u * 16 + opcode) {
9642     case 0x10: /* SQRDMLAH (vector) */
9643     case 0x11: /* SQRDMLSH (vector) */
9644         if (size != 1 && size != 2) {
9645             unallocated_encoding(s);
9646             return;
9647         }
9648         feature = dc_isar_feature(aa64_rdm, s);
9649         break;
9650     default:
9651         unallocated_encoding(s);
9652         return;
9653     }
9654     if (!feature) {
9655         unallocated_encoding(s);
9656         return;
9657     }
9658     if (!fp_access_check(s)) {
9659         return;
9660     }
9661 
9662     /* Do a single operation on the lowest element in the vector.
9663      * We use the standard Neon helpers and rely on 0 OP 0 == 0
9664      * with no side effects for all these operations.
9665      * OPTME: special-purpose helpers would avoid doing some
9666      * unnecessary work in the helper for the 16 bit cases.
9667      */
9668     ele1 = tcg_temp_new_i32();
9669     ele2 = tcg_temp_new_i32();
9670     ele3 = tcg_temp_new_i32();
9671 
9672     read_vec_element_i32(s, ele1, rn, 0, size);
9673     read_vec_element_i32(s, ele2, rm, 0, size);
9674     read_vec_element_i32(s, ele3, rd, 0, size);
9675 
9676     switch (opcode) {
9677     case 0x0: /* SQRDMLAH */
9678         if (size == 1) {
9679             gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9680         } else {
9681             gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9682         }
9683         break;
9684     case 0x1: /* SQRDMLSH */
9685         if (size == 1) {
9686             gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9687         } else {
9688             gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9689         }
9690         break;
9691     default:
9692         g_assert_not_reached();
9693     }
9694 
9695     res = tcg_temp_new_i64();
9696     tcg_gen_extu_i32_i64(res, ele3);
9697     write_fp_dreg(s, rd, res);
9698 }
9699 
9700 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9701                             TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9702                             TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9703 {
9704     /* Handle 64->64 opcodes which are shared between the scalar and
9705      * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9706      * is valid in either group and also the double-precision fp ops.
9707      * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9708      * requires them.
9709      */
9710     TCGCond cond;
9711 
9712     switch (opcode) {
9713     case 0x4: /* CLS, CLZ */
9714         if (u) {
9715             tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9716         } else {
9717             tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9718         }
9719         break;
9720     case 0x5: /* NOT */
9721         /* This opcode is shared with CNT and RBIT but we have earlier
9722          * enforced that size == 3 if and only if this is the NOT insn.
9723          */
9724         tcg_gen_not_i64(tcg_rd, tcg_rn);
9725         break;
9726     case 0x7: /* SQABS, SQNEG */
9727         if (u) {
9728             gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9729         } else {
9730             gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9731         }
9732         break;
9733     case 0xa: /* CMLT */
9734         cond = TCG_COND_LT;
9735     do_cmop:
9736         /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9737         tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9738         break;
9739     case 0x8: /* CMGT, CMGE */
9740         cond = u ? TCG_COND_GE : TCG_COND_GT;
9741         goto do_cmop;
9742     case 0x9: /* CMEQ, CMLE */
9743         cond = u ? TCG_COND_LE : TCG_COND_EQ;
9744         goto do_cmop;
9745     case 0xb: /* ABS, NEG */
9746         if (u) {
9747             tcg_gen_neg_i64(tcg_rd, tcg_rn);
9748         } else {
9749             tcg_gen_abs_i64(tcg_rd, tcg_rn);
9750         }
9751         break;
9752     case 0x2f: /* FABS */
9753         gen_vfp_absd(tcg_rd, tcg_rn);
9754         break;
9755     case 0x6f: /* FNEG */
9756         gen_vfp_negd(tcg_rd, tcg_rn);
9757         break;
9758     case 0x7f: /* FSQRT */
9759         gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9760         break;
9761     case 0x1a: /* FCVTNS */
9762     case 0x1b: /* FCVTMS */
9763     case 0x1c: /* FCVTAS */
9764     case 0x3a: /* FCVTPS */
9765     case 0x3b: /* FCVTZS */
9766         gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9767         break;
9768     case 0x5a: /* FCVTNU */
9769     case 0x5b: /* FCVTMU */
9770     case 0x5c: /* FCVTAU */
9771     case 0x7a: /* FCVTPU */
9772     case 0x7b: /* FCVTZU */
9773         gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9774         break;
9775     case 0x18: /* FRINTN */
9776     case 0x19: /* FRINTM */
9777     case 0x38: /* FRINTP */
9778     case 0x39: /* FRINTZ */
9779     case 0x58: /* FRINTA */
9780     case 0x79: /* FRINTI */
9781         gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9782         break;
9783     case 0x59: /* FRINTX */
9784         gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9785         break;
9786     case 0x1e: /* FRINT32Z */
9787     case 0x5e: /* FRINT32X */
9788         gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9789         break;
9790     case 0x1f: /* FRINT64Z */
9791     case 0x5f: /* FRINT64X */
9792         gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9793         break;
9794     default:
9795         g_assert_not_reached();
9796     }
9797 }
9798 
9799 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9800                                    bool is_scalar, bool is_u, bool is_q,
9801                                    int size, int rn, int rd)
9802 {
9803     bool is_double = (size == MO_64);
9804     TCGv_ptr fpst;
9805 
9806     if (!fp_access_check(s)) {
9807         return;
9808     }
9809 
9810     fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9811 
9812     if (is_double) {
9813         TCGv_i64 tcg_op = tcg_temp_new_i64();
9814         TCGv_i64 tcg_zero = tcg_constant_i64(0);
9815         TCGv_i64 tcg_res = tcg_temp_new_i64();
9816         NeonGenTwoDoubleOpFn *genfn;
9817         bool swap = false;
9818         int pass;
9819 
9820         switch (opcode) {
9821         case 0x2e: /* FCMLT (zero) */
9822             swap = true;
9823             /* fallthrough */
9824         case 0x2c: /* FCMGT (zero) */
9825             genfn = gen_helper_neon_cgt_f64;
9826             break;
9827         case 0x2d: /* FCMEQ (zero) */
9828             genfn = gen_helper_neon_ceq_f64;
9829             break;
9830         case 0x6d: /* FCMLE (zero) */
9831             swap = true;
9832             /* fall through */
9833         case 0x6c: /* FCMGE (zero) */
9834             genfn = gen_helper_neon_cge_f64;
9835             break;
9836         default:
9837             g_assert_not_reached();
9838         }
9839 
9840         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9841             read_vec_element(s, tcg_op, rn, pass, MO_64);
9842             if (swap) {
9843                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9844             } else {
9845                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9846             }
9847             write_vec_element(s, tcg_res, rd, pass, MO_64);
9848         }
9849 
9850         clear_vec_high(s, !is_scalar, rd);
9851     } else {
9852         TCGv_i32 tcg_op = tcg_temp_new_i32();
9853         TCGv_i32 tcg_zero = tcg_constant_i32(0);
9854         TCGv_i32 tcg_res = tcg_temp_new_i32();
9855         NeonGenTwoSingleOpFn *genfn;
9856         bool swap = false;
9857         int pass, maxpasses;
9858 
9859         if (size == MO_16) {
9860             switch (opcode) {
9861             case 0x2e: /* FCMLT (zero) */
9862                 swap = true;
9863                 /* fall through */
9864             case 0x2c: /* FCMGT (zero) */
9865                 genfn = gen_helper_advsimd_cgt_f16;
9866                 break;
9867             case 0x2d: /* FCMEQ (zero) */
9868                 genfn = gen_helper_advsimd_ceq_f16;
9869                 break;
9870             case 0x6d: /* FCMLE (zero) */
9871                 swap = true;
9872                 /* fall through */
9873             case 0x6c: /* FCMGE (zero) */
9874                 genfn = gen_helper_advsimd_cge_f16;
9875                 break;
9876             default:
9877                 g_assert_not_reached();
9878             }
9879         } else {
9880             switch (opcode) {
9881             case 0x2e: /* FCMLT (zero) */
9882                 swap = true;
9883                 /* fall through */
9884             case 0x2c: /* FCMGT (zero) */
9885                 genfn = gen_helper_neon_cgt_f32;
9886                 break;
9887             case 0x2d: /* FCMEQ (zero) */
9888                 genfn = gen_helper_neon_ceq_f32;
9889                 break;
9890             case 0x6d: /* FCMLE (zero) */
9891                 swap = true;
9892                 /* fall through */
9893             case 0x6c: /* FCMGE (zero) */
9894                 genfn = gen_helper_neon_cge_f32;
9895                 break;
9896             default:
9897                 g_assert_not_reached();
9898             }
9899         }
9900 
9901         if (is_scalar) {
9902             maxpasses = 1;
9903         } else {
9904             int vector_size = 8 << is_q;
9905             maxpasses = vector_size >> size;
9906         }
9907 
9908         for (pass = 0; pass < maxpasses; pass++) {
9909             read_vec_element_i32(s, tcg_op, rn, pass, size);
9910             if (swap) {
9911                 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9912             } else {
9913                 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9914             }
9915             if (is_scalar) {
9916                 write_fp_sreg(s, rd, tcg_res);
9917             } else {
9918                 write_vec_element_i32(s, tcg_res, rd, pass, size);
9919             }
9920         }
9921 
9922         if (!is_scalar) {
9923             clear_vec_high(s, is_q, rd);
9924         }
9925     }
9926 }
9927 
9928 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9929                                     bool is_scalar, bool is_u, bool is_q,
9930                                     int size, int rn, int rd)
9931 {
9932     bool is_double = (size == 3);
9933     TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9934 
9935     if (is_double) {
9936         TCGv_i64 tcg_op = tcg_temp_new_i64();
9937         TCGv_i64 tcg_res = tcg_temp_new_i64();
9938         int pass;
9939 
9940         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9941             read_vec_element(s, tcg_op, rn, pass, MO_64);
9942             switch (opcode) {
9943             case 0x3d: /* FRECPE */
9944                 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9945                 break;
9946             case 0x3f: /* FRECPX */
9947                 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9948                 break;
9949             case 0x7d: /* FRSQRTE */
9950                 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9951                 break;
9952             default:
9953                 g_assert_not_reached();
9954             }
9955             write_vec_element(s, tcg_res, rd, pass, MO_64);
9956         }
9957         clear_vec_high(s, !is_scalar, rd);
9958     } else {
9959         TCGv_i32 tcg_op = tcg_temp_new_i32();
9960         TCGv_i32 tcg_res = tcg_temp_new_i32();
9961         int pass, maxpasses;
9962 
9963         if (is_scalar) {
9964             maxpasses = 1;
9965         } else {
9966             maxpasses = is_q ? 4 : 2;
9967         }
9968 
9969         for (pass = 0; pass < maxpasses; pass++) {
9970             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9971 
9972             switch (opcode) {
9973             case 0x3c: /* URECPE */
9974                 gen_helper_recpe_u32(tcg_res, tcg_op);
9975                 break;
9976             case 0x3d: /* FRECPE */
9977                 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9978                 break;
9979             case 0x3f: /* FRECPX */
9980                 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9981                 break;
9982             case 0x7d: /* FRSQRTE */
9983                 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9984                 break;
9985             default:
9986                 g_assert_not_reached();
9987             }
9988 
9989             if (is_scalar) {
9990                 write_fp_sreg(s, rd, tcg_res);
9991             } else {
9992                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9993             }
9994         }
9995         if (!is_scalar) {
9996             clear_vec_high(s, is_q, rd);
9997         }
9998     }
9999 }
10000 
10001 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10002                                 int opcode, bool u, bool is_q,
10003                                 int size, int rn, int rd)
10004 {
10005     /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10006      * in the source becomes a size element in the destination).
10007      */
10008     int pass;
10009     TCGv_i32 tcg_res[2];
10010     int destelt = is_q ? 2 : 0;
10011     int passes = scalar ? 1 : 2;
10012 
10013     if (scalar) {
10014         tcg_res[1] = tcg_constant_i32(0);
10015     }
10016 
10017     for (pass = 0; pass < passes; pass++) {
10018         TCGv_i64 tcg_op = tcg_temp_new_i64();
10019         NeonGenNarrowFn *genfn = NULL;
10020         NeonGenNarrowEnvFn *genenvfn = NULL;
10021 
10022         if (scalar) {
10023             read_vec_element(s, tcg_op, rn, pass, size + 1);
10024         } else {
10025             read_vec_element(s, tcg_op, rn, pass, MO_64);
10026         }
10027         tcg_res[pass] = tcg_temp_new_i32();
10028 
10029         switch (opcode) {
10030         case 0x12: /* XTN, SQXTUN */
10031         {
10032             static NeonGenNarrowFn * const xtnfns[3] = {
10033                 gen_helper_neon_narrow_u8,
10034                 gen_helper_neon_narrow_u16,
10035                 tcg_gen_extrl_i64_i32,
10036             };
10037             static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10038                 gen_helper_neon_unarrow_sat8,
10039                 gen_helper_neon_unarrow_sat16,
10040                 gen_helper_neon_unarrow_sat32,
10041             };
10042             if (u) {
10043                 genenvfn = sqxtunfns[size];
10044             } else {
10045                 genfn = xtnfns[size];
10046             }
10047             break;
10048         }
10049         case 0x14: /* SQXTN, UQXTN */
10050         {
10051             static NeonGenNarrowEnvFn * const fns[3][2] = {
10052                 { gen_helper_neon_narrow_sat_s8,
10053                   gen_helper_neon_narrow_sat_u8 },
10054                 { gen_helper_neon_narrow_sat_s16,
10055                   gen_helper_neon_narrow_sat_u16 },
10056                 { gen_helper_neon_narrow_sat_s32,
10057                   gen_helper_neon_narrow_sat_u32 },
10058             };
10059             genenvfn = fns[size][u];
10060             break;
10061         }
10062         case 0x16: /* FCVTN, FCVTN2 */
10063             /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10064             if (size == 2) {
10065                 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10066             } else {
10067                 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10068                 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10069                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10070                 TCGv_i32 ahp = get_ahp_flag();
10071 
10072                 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10073                 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10074                 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10075                 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10076             }
10077             break;
10078         case 0x36: /* BFCVTN, BFCVTN2 */
10079             {
10080                 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10081                 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10082             }
10083             break;
10084         case 0x56:  /* FCVTXN, FCVTXN2 */
10085             /* 64 bit to 32 bit float conversion
10086              * with von Neumann rounding (round to odd)
10087              */
10088             assert(size == 2);
10089             gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10090             break;
10091         default:
10092             g_assert_not_reached();
10093         }
10094 
10095         if (genfn) {
10096             genfn(tcg_res[pass], tcg_op);
10097         } else if (genenvfn) {
10098             genenvfn(tcg_res[pass], tcg_env, tcg_op);
10099         }
10100     }
10101 
10102     for (pass = 0; pass < 2; pass++) {
10103         write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10104     }
10105     clear_vec_high(s, is_q, rd);
10106 }
10107 
10108 /* Remaining saturating accumulating ops */
10109 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10110                                 bool is_q, int size, int rn, int rd)
10111 {
10112     bool is_double = (size == 3);
10113 
10114     if (is_double) {
10115         TCGv_i64 tcg_rn = tcg_temp_new_i64();
10116         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10117         int pass;
10118 
10119         for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10120             read_vec_element(s, tcg_rn, rn, pass, MO_64);
10121             read_vec_element(s, tcg_rd, rd, pass, MO_64);
10122 
10123             if (is_u) { /* USQADD */
10124                 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10125             } else { /* SUQADD */
10126                 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10127             }
10128             write_vec_element(s, tcg_rd, rd, pass, MO_64);
10129         }
10130         clear_vec_high(s, !is_scalar, rd);
10131     } else {
10132         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10133         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10134         int pass, maxpasses;
10135 
10136         if (is_scalar) {
10137             maxpasses = 1;
10138         } else {
10139             maxpasses = is_q ? 4 : 2;
10140         }
10141 
10142         for (pass = 0; pass < maxpasses; pass++) {
10143             if (is_scalar) {
10144                 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10145                 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10146             } else {
10147                 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10148                 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10149             }
10150 
10151             if (is_u) { /* USQADD */
10152                 switch (size) {
10153                 case 0:
10154                     gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10155                     break;
10156                 case 1:
10157                     gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10158                     break;
10159                 case 2:
10160                     gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10161                     break;
10162                 default:
10163                     g_assert_not_reached();
10164                 }
10165             } else { /* SUQADD */
10166                 switch (size) {
10167                 case 0:
10168                     gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10169                     break;
10170                 case 1:
10171                     gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10172                     break;
10173                 case 2:
10174                     gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
10175                     break;
10176                 default:
10177                     g_assert_not_reached();
10178                 }
10179             }
10180 
10181             if (is_scalar) {
10182                 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10183             }
10184             write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10185         }
10186         clear_vec_high(s, is_q, rd);
10187     }
10188 }
10189 
10190 /* AdvSIMD scalar two reg misc
10191  *  31 30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
10192  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10193  * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
10194  * +-----+---+-----------+------+-----------+--------+-----+------+------+
10195  */
10196 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10197 {
10198     int rd = extract32(insn, 0, 5);
10199     int rn = extract32(insn, 5, 5);
10200     int opcode = extract32(insn, 12, 5);
10201     int size = extract32(insn, 22, 2);
10202     bool u = extract32(insn, 29, 1);
10203     bool is_fcvt = false;
10204     int rmode;
10205     TCGv_i32 tcg_rmode;
10206     TCGv_ptr tcg_fpstatus;
10207 
10208     switch (opcode) {
10209     case 0x3: /* USQADD / SUQADD*/
10210         if (!fp_access_check(s)) {
10211             return;
10212         }
10213         handle_2misc_satacc(s, true, u, false, size, rn, rd);
10214         return;
10215     case 0x7: /* SQABS / SQNEG */
10216         break;
10217     case 0xa: /* CMLT */
10218         if (u) {
10219             unallocated_encoding(s);
10220             return;
10221         }
10222         /* fall through */
10223     case 0x8: /* CMGT, CMGE */
10224     case 0x9: /* CMEQ, CMLE */
10225     case 0xb: /* ABS, NEG */
10226         if (size != 3) {
10227             unallocated_encoding(s);
10228             return;
10229         }
10230         break;
10231     case 0x12: /* SQXTUN */
10232         if (!u) {
10233             unallocated_encoding(s);
10234             return;
10235         }
10236         /* fall through */
10237     case 0x14: /* SQXTN, UQXTN */
10238         if (size == 3) {
10239             unallocated_encoding(s);
10240             return;
10241         }
10242         if (!fp_access_check(s)) {
10243             return;
10244         }
10245         handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10246         return;
10247     case 0xc ... 0xf:
10248     case 0x16 ... 0x1d:
10249     case 0x1f:
10250         /* Floating point: U, size[1] and opcode indicate operation;
10251          * size[0] indicates single or double precision.
10252          */
10253         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10254         size = extract32(size, 0, 1) ? 3 : 2;
10255         switch (opcode) {
10256         case 0x2c: /* FCMGT (zero) */
10257         case 0x2d: /* FCMEQ (zero) */
10258         case 0x2e: /* FCMLT (zero) */
10259         case 0x6c: /* FCMGE (zero) */
10260         case 0x6d: /* FCMLE (zero) */
10261             handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10262             return;
10263         case 0x1d: /* SCVTF */
10264         case 0x5d: /* UCVTF */
10265         {
10266             bool is_signed = (opcode == 0x1d);
10267             if (!fp_access_check(s)) {
10268                 return;
10269             }
10270             handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10271             return;
10272         }
10273         case 0x3d: /* FRECPE */
10274         case 0x3f: /* FRECPX */
10275         case 0x7d: /* FRSQRTE */
10276             if (!fp_access_check(s)) {
10277                 return;
10278             }
10279             handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10280             return;
10281         case 0x1a: /* FCVTNS */
10282         case 0x1b: /* FCVTMS */
10283         case 0x3a: /* FCVTPS */
10284         case 0x3b: /* FCVTZS */
10285         case 0x5a: /* FCVTNU */
10286         case 0x5b: /* FCVTMU */
10287         case 0x7a: /* FCVTPU */
10288         case 0x7b: /* FCVTZU */
10289             is_fcvt = true;
10290             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10291             break;
10292         case 0x1c: /* FCVTAS */
10293         case 0x5c: /* FCVTAU */
10294             /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10295             is_fcvt = true;
10296             rmode = FPROUNDING_TIEAWAY;
10297             break;
10298         case 0x56: /* FCVTXN, FCVTXN2 */
10299             if (size == 2) {
10300                 unallocated_encoding(s);
10301                 return;
10302             }
10303             if (!fp_access_check(s)) {
10304                 return;
10305             }
10306             handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10307             return;
10308         default:
10309             unallocated_encoding(s);
10310             return;
10311         }
10312         break;
10313     default:
10314         unallocated_encoding(s);
10315         return;
10316     }
10317 
10318     if (!fp_access_check(s)) {
10319         return;
10320     }
10321 
10322     if (is_fcvt) {
10323         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10324         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10325     } else {
10326         tcg_fpstatus = NULL;
10327         tcg_rmode = NULL;
10328     }
10329 
10330     if (size == 3) {
10331         TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10332         TCGv_i64 tcg_rd = tcg_temp_new_i64();
10333 
10334         handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10335         write_fp_dreg(s, rd, tcg_rd);
10336     } else {
10337         TCGv_i32 tcg_rn = tcg_temp_new_i32();
10338         TCGv_i32 tcg_rd = tcg_temp_new_i32();
10339 
10340         read_vec_element_i32(s, tcg_rn, rn, 0, size);
10341 
10342         switch (opcode) {
10343         case 0x7: /* SQABS, SQNEG */
10344         {
10345             NeonGenOneOpEnvFn *genfn;
10346             static NeonGenOneOpEnvFn * const fns[3][2] = {
10347                 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10348                 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10349                 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10350             };
10351             genfn = fns[size][u];
10352             genfn(tcg_rd, tcg_env, tcg_rn);
10353             break;
10354         }
10355         case 0x1a: /* FCVTNS */
10356         case 0x1b: /* FCVTMS */
10357         case 0x1c: /* FCVTAS */
10358         case 0x3a: /* FCVTPS */
10359         case 0x3b: /* FCVTZS */
10360             gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10361                                  tcg_fpstatus);
10362             break;
10363         case 0x5a: /* FCVTNU */
10364         case 0x5b: /* FCVTMU */
10365         case 0x5c: /* FCVTAU */
10366         case 0x7a: /* FCVTPU */
10367         case 0x7b: /* FCVTZU */
10368             gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10369                                  tcg_fpstatus);
10370             break;
10371         default:
10372             g_assert_not_reached();
10373         }
10374 
10375         write_fp_sreg(s, rd, tcg_rd);
10376     }
10377 
10378     if (is_fcvt) {
10379         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10380     }
10381 }
10382 
10383 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10384 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10385                                  int immh, int immb, int opcode, int rn, int rd)
10386 {
10387     int size = 32 - clz32(immh) - 1;
10388     int immhb = immh << 3 | immb;
10389     int shift = 2 * (8 << size) - immhb;
10390     GVecGen2iFn *gvec_fn;
10391 
10392     if (extract32(immh, 3, 1) && !is_q) {
10393         unallocated_encoding(s);
10394         return;
10395     }
10396     tcg_debug_assert(size <= 3);
10397 
10398     if (!fp_access_check(s)) {
10399         return;
10400     }
10401 
10402     switch (opcode) {
10403     case 0x02: /* SSRA / USRA (accumulate) */
10404         gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10405         break;
10406 
10407     case 0x08: /* SRI */
10408         gvec_fn = gen_gvec_sri;
10409         break;
10410 
10411     case 0x00: /* SSHR / USHR */
10412         if (is_u) {
10413             if (shift == 8 << size) {
10414                 /* Shift count the same size as element size produces zero.  */
10415                 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10416                                      is_q ? 16 : 8, vec_full_reg_size(s), 0);
10417                 return;
10418             }
10419             gvec_fn = tcg_gen_gvec_shri;
10420         } else {
10421             /* Shift count the same size as element size produces all sign.  */
10422             if (shift == 8 << size) {
10423                 shift -= 1;
10424             }
10425             gvec_fn = tcg_gen_gvec_sari;
10426         }
10427         break;
10428 
10429     case 0x04: /* SRSHR / URSHR (rounding) */
10430         gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10431         break;
10432 
10433     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10434         gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10435         break;
10436 
10437     default:
10438         g_assert_not_reached();
10439     }
10440 
10441     gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10442 }
10443 
10444 /* SHL/SLI - Vector shift left */
10445 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10446                                  int immh, int immb, int opcode, int rn, int rd)
10447 {
10448     int size = 32 - clz32(immh) - 1;
10449     int immhb = immh << 3 | immb;
10450     int shift = immhb - (8 << size);
10451 
10452     /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10453     assert(size >= 0 && size <= 3);
10454 
10455     if (extract32(immh, 3, 1) && !is_q) {
10456         unallocated_encoding(s);
10457         return;
10458     }
10459 
10460     if (!fp_access_check(s)) {
10461         return;
10462     }
10463 
10464     if (insert) {
10465         gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10466     } else {
10467         gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10468     }
10469 }
10470 
10471 /* USHLL/SHLL - Vector shift left with widening */
10472 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10473                                  int immh, int immb, int opcode, int rn, int rd)
10474 {
10475     int size = 32 - clz32(immh) - 1;
10476     int immhb = immh << 3 | immb;
10477     int shift = immhb - (8 << size);
10478     int dsize = 64;
10479     int esize = 8 << size;
10480     int elements = dsize/esize;
10481     TCGv_i64 tcg_rn = tcg_temp_new_i64();
10482     TCGv_i64 tcg_rd = tcg_temp_new_i64();
10483     int i;
10484 
10485     if (size >= 3) {
10486         unallocated_encoding(s);
10487         return;
10488     }
10489 
10490     if (!fp_access_check(s)) {
10491         return;
10492     }
10493 
10494     /* For the LL variants the store is larger than the load,
10495      * so if rd == rn we would overwrite parts of our input.
10496      * So load everything right now and use shifts in the main loop.
10497      */
10498     read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10499 
10500     for (i = 0; i < elements; i++) {
10501         tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10502         ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10503         tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10504         write_vec_element(s, tcg_rd, rd, i, size + 1);
10505     }
10506 }
10507 
10508 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10509 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10510                                  int immh, int immb, int opcode, int rn, int rd)
10511 {
10512     int immhb = immh << 3 | immb;
10513     int size = 32 - clz32(immh) - 1;
10514     int dsize = 64;
10515     int esize = 8 << size;
10516     int elements = dsize/esize;
10517     int shift = (2 * esize) - immhb;
10518     bool round = extract32(opcode, 0, 1);
10519     TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10520     TCGv_i64 tcg_round;
10521     int i;
10522 
10523     if (extract32(immh, 3, 1)) {
10524         unallocated_encoding(s);
10525         return;
10526     }
10527 
10528     if (!fp_access_check(s)) {
10529         return;
10530     }
10531 
10532     tcg_rn = tcg_temp_new_i64();
10533     tcg_rd = tcg_temp_new_i64();
10534     tcg_final = tcg_temp_new_i64();
10535     read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10536 
10537     if (round) {
10538         tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10539     } else {
10540         tcg_round = NULL;
10541     }
10542 
10543     for (i = 0; i < elements; i++) {
10544         read_vec_element(s, tcg_rn, rn, i, size+1);
10545         handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10546                                 false, true, size+1, shift);
10547 
10548         tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10549     }
10550 
10551     if (!is_q) {
10552         write_vec_element(s, tcg_final, rd, 0, MO_64);
10553     } else {
10554         write_vec_element(s, tcg_final, rd, 1, MO_64);
10555     }
10556 
10557     clear_vec_high(s, is_q, rd);
10558 }
10559 
10560 
10561 /* AdvSIMD shift by immediate
10562  *  31  30   29 28         23 22  19 18  16 15    11  10 9    5 4    0
10563  * +---+---+---+-------------+------+------+--------+---+------+------+
10564  * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 |  Rn  |  Rd  |
10565  * +---+---+---+-------------+------+------+--------+---+------+------+
10566  */
10567 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10568 {
10569     int rd = extract32(insn, 0, 5);
10570     int rn = extract32(insn, 5, 5);
10571     int opcode = extract32(insn, 11, 5);
10572     int immb = extract32(insn, 16, 3);
10573     int immh = extract32(insn, 19, 4);
10574     bool is_u = extract32(insn, 29, 1);
10575     bool is_q = extract32(insn, 30, 1);
10576 
10577     /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10578     assert(immh != 0);
10579 
10580     switch (opcode) {
10581     case 0x08: /* SRI */
10582         if (!is_u) {
10583             unallocated_encoding(s);
10584             return;
10585         }
10586         /* fall through */
10587     case 0x00: /* SSHR / USHR */
10588     case 0x02: /* SSRA / USRA (accumulate) */
10589     case 0x04: /* SRSHR / URSHR (rounding) */
10590     case 0x06: /* SRSRA / URSRA (accum + rounding) */
10591         handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10592         break;
10593     case 0x0a: /* SHL / SLI */
10594         handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10595         break;
10596     case 0x10: /* SHRN */
10597     case 0x11: /* RSHRN / SQRSHRUN */
10598         if (is_u) {
10599             handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10600                                    opcode, rn, rd);
10601         } else {
10602             handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10603         }
10604         break;
10605     case 0x12: /* SQSHRN / UQSHRN */
10606     case 0x13: /* SQRSHRN / UQRSHRN */
10607         handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10608                                opcode, rn, rd);
10609         break;
10610     case 0x14: /* SSHLL / USHLL */
10611         handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10612         break;
10613     case 0x1c: /* SCVTF / UCVTF */
10614         handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10615                                      opcode, rn, rd);
10616         break;
10617     case 0xc: /* SQSHLU */
10618         if (!is_u) {
10619             unallocated_encoding(s);
10620             return;
10621         }
10622         handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10623         break;
10624     case 0xe: /* SQSHL, UQSHL */
10625         handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10626         break;
10627     case 0x1f: /* FCVTZS/ FCVTZU */
10628         handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10629         return;
10630     default:
10631         unallocated_encoding(s);
10632         return;
10633     }
10634 }
10635 
10636 /* Generate code to do a "long" addition or subtraction, ie one done in
10637  * TCGv_i64 on vector lanes twice the width specified by size.
10638  */
10639 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10640                           TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10641 {
10642     static NeonGenTwo64OpFn * const fns[3][2] = {
10643         { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10644         { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10645         { tcg_gen_add_i64, tcg_gen_sub_i64 },
10646     };
10647     NeonGenTwo64OpFn *genfn;
10648     assert(size < 3);
10649 
10650     genfn = fns[size][is_sub];
10651     genfn(tcg_res, tcg_op1, tcg_op2);
10652 }
10653 
10654 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10655                                 int opcode, int rd, int rn, int rm)
10656 {
10657     /* 3-reg-different widening insns: 64 x 64 -> 128 */
10658     TCGv_i64 tcg_res[2];
10659     int pass, accop;
10660 
10661     tcg_res[0] = tcg_temp_new_i64();
10662     tcg_res[1] = tcg_temp_new_i64();
10663 
10664     /* Does this op do an adding accumulate, a subtracting accumulate,
10665      * or no accumulate at all?
10666      */
10667     switch (opcode) {
10668     case 5:
10669     case 8:
10670     case 9:
10671         accop = 1;
10672         break;
10673     case 10:
10674     case 11:
10675         accop = -1;
10676         break;
10677     default:
10678         accop = 0;
10679         break;
10680     }
10681 
10682     if (accop != 0) {
10683         read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10684         read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10685     }
10686 
10687     /* size == 2 means two 32x32->64 operations; this is worth special
10688      * casing because we can generally handle it inline.
10689      */
10690     if (size == 2) {
10691         for (pass = 0; pass < 2; pass++) {
10692             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10693             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10694             TCGv_i64 tcg_passres;
10695             MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10696 
10697             int elt = pass + is_q * 2;
10698 
10699             read_vec_element(s, tcg_op1, rn, elt, memop);
10700             read_vec_element(s, tcg_op2, rm, elt, memop);
10701 
10702             if (accop == 0) {
10703                 tcg_passres = tcg_res[pass];
10704             } else {
10705                 tcg_passres = tcg_temp_new_i64();
10706             }
10707 
10708             switch (opcode) {
10709             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10710                 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10711                 break;
10712             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10713                 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10714                 break;
10715             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10716             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10717             {
10718                 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10719                 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10720 
10721                 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10722                 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10723                 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10724                                     tcg_passres,
10725                                     tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10726                 break;
10727             }
10728             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10729             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10730             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10731                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10732                 break;
10733             case 9: /* SQDMLAL, SQDMLAL2 */
10734             case 11: /* SQDMLSL, SQDMLSL2 */
10735             case 13: /* SQDMULL, SQDMULL2 */
10736                 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10737                 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10738                                                   tcg_passres, tcg_passres);
10739                 break;
10740             default:
10741                 g_assert_not_reached();
10742             }
10743 
10744             if (opcode == 9 || opcode == 11) {
10745                 /* saturating accumulate ops */
10746                 if (accop < 0) {
10747                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
10748                 }
10749                 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10750                                                   tcg_res[pass], tcg_passres);
10751             } else if (accop > 0) {
10752                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10753             } else if (accop < 0) {
10754                 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10755             }
10756         }
10757     } else {
10758         /* size 0 or 1, generally helper functions */
10759         for (pass = 0; pass < 2; pass++) {
10760             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10761             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10762             TCGv_i64 tcg_passres;
10763             int elt = pass + is_q * 2;
10764 
10765             read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10766             read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10767 
10768             if (accop == 0) {
10769                 tcg_passres = tcg_res[pass];
10770             } else {
10771                 tcg_passres = tcg_temp_new_i64();
10772             }
10773 
10774             switch (opcode) {
10775             case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10776             case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10777             {
10778                 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10779                 static NeonGenWidenFn * const widenfns[2][2] = {
10780                     { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10781                     { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10782                 };
10783                 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10784 
10785                 widenfn(tcg_op2_64, tcg_op2);
10786                 widenfn(tcg_passres, tcg_op1);
10787                 gen_neon_addl(size, (opcode == 2), tcg_passres,
10788                               tcg_passres, tcg_op2_64);
10789                 break;
10790             }
10791             case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10792             case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10793                 if (size == 0) {
10794                     if (is_u) {
10795                         gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10796                     } else {
10797                         gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10798                     }
10799                 } else {
10800                     if (is_u) {
10801                         gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10802                     } else {
10803                         gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10804                     }
10805                 }
10806                 break;
10807             case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10808             case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10809             case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10810                 if (size == 0) {
10811                     if (is_u) {
10812                         gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10813                     } else {
10814                         gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10815                     }
10816                 } else {
10817                     if (is_u) {
10818                         gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10819                     } else {
10820                         gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10821                     }
10822                 }
10823                 break;
10824             case 9: /* SQDMLAL, SQDMLAL2 */
10825             case 11: /* SQDMLSL, SQDMLSL2 */
10826             case 13: /* SQDMULL, SQDMULL2 */
10827                 assert(size == 1);
10828                 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10829                 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10830                                                   tcg_passres, tcg_passres);
10831                 break;
10832             default:
10833                 g_assert_not_reached();
10834             }
10835 
10836             if (accop != 0) {
10837                 if (opcode == 9 || opcode == 11) {
10838                     /* saturating accumulate ops */
10839                     if (accop < 0) {
10840                         gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10841                     }
10842                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10843                                                       tcg_res[pass],
10844                                                       tcg_passres);
10845                 } else {
10846                     gen_neon_addl(size, (accop < 0), tcg_res[pass],
10847                                   tcg_res[pass], tcg_passres);
10848                 }
10849             }
10850         }
10851     }
10852 
10853     write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10854     write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10855 }
10856 
10857 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10858                             int opcode, int rd, int rn, int rm)
10859 {
10860     TCGv_i64 tcg_res[2];
10861     int part = is_q ? 2 : 0;
10862     int pass;
10863 
10864     for (pass = 0; pass < 2; pass++) {
10865         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10866         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10867         TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10868         static NeonGenWidenFn * const widenfns[3][2] = {
10869             { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10870             { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10871             { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10872         };
10873         NeonGenWidenFn *widenfn = widenfns[size][is_u];
10874 
10875         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10876         read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10877         widenfn(tcg_op2_wide, tcg_op2);
10878         tcg_res[pass] = tcg_temp_new_i64();
10879         gen_neon_addl(size, (opcode == 3),
10880                       tcg_res[pass], tcg_op1, tcg_op2_wide);
10881     }
10882 
10883     for (pass = 0; pass < 2; pass++) {
10884         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10885     }
10886 }
10887 
10888 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10889 {
10890     tcg_gen_addi_i64(in, in, 1U << 31);
10891     tcg_gen_extrh_i64_i32(res, in);
10892 }
10893 
10894 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10895                                  int opcode, int rd, int rn, int rm)
10896 {
10897     TCGv_i32 tcg_res[2];
10898     int part = is_q ? 2 : 0;
10899     int pass;
10900 
10901     for (pass = 0; pass < 2; pass++) {
10902         TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10903         TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10904         TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10905         static NeonGenNarrowFn * const narrowfns[3][2] = {
10906             { gen_helper_neon_narrow_high_u8,
10907               gen_helper_neon_narrow_round_high_u8 },
10908             { gen_helper_neon_narrow_high_u16,
10909               gen_helper_neon_narrow_round_high_u16 },
10910             { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10911         };
10912         NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10913 
10914         read_vec_element(s, tcg_op1, rn, pass, MO_64);
10915         read_vec_element(s, tcg_op2, rm, pass, MO_64);
10916 
10917         gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10918 
10919         tcg_res[pass] = tcg_temp_new_i32();
10920         gennarrow(tcg_res[pass], tcg_wideres);
10921     }
10922 
10923     for (pass = 0; pass < 2; pass++) {
10924         write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10925     }
10926     clear_vec_high(s, is_q, rd);
10927 }
10928 
10929 /* AdvSIMD three different
10930  *   31  30  29 28       24 23  22  21 20  16 15    12 11 10 9    5 4    0
10931  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10932  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 0 0 |  Rn  |  Rd  |
10933  * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10934  */
10935 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10936 {
10937     /* Instructions in this group fall into three basic classes
10938      * (in each case with the operation working on each element in
10939      * the input vectors):
10940      * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10941      *     128 bit input)
10942      * (2) wide 64 x 128 -> 128
10943      * (3) narrowing 128 x 128 -> 64
10944      * Here we do initial decode, catch unallocated cases and
10945      * dispatch to separate functions for each class.
10946      */
10947     int is_q = extract32(insn, 30, 1);
10948     int is_u = extract32(insn, 29, 1);
10949     int size = extract32(insn, 22, 2);
10950     int opcode = extract32(insn, 12, 4);
10951     int rm = extract32(insn, 16, 5);
10952     int rn = extract32(insn, 5, 5);
10953     int rd = extract32(insn, 0, 5);
10954 
10955     switch (opcode) {
10956     case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10957     case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10958         /* 64 x 128 -> 128 */
10959         if (size == 3) {
10960             unallocated_encoding(s);
10961             return;
10962         }
10963         if (!fp_access_check(s)) {
10964             return;
10965         }
10966         handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10967         break;
10968     case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10969     case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10970         /* 128 x 128 -> 64 */
10971         if (size == 3) {
10972             unallocated_encoding(s);
10973             return;
10974         }
10975         if (!fp_access_check(s)) {
10976             return;
10977         }
10978         handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10979         break;
10980     case 14: /* PMULL, PMULL2 */
10981         if (is_u) {
10982             unallocated_encoding(s);
10983             return;
10984         }
10985         switch (size) {
10986         case 0: /* PMULL.P8 */
10987             if (!fp_access_check(s)) {
10988                 return;
10989             }
10990             /* The Q field specifies lo/hi half input for this insn.  */
10991             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10992                              gen_helper_neon_pmull_h);
10993             break;
10994 
10995         case 3: /* PMULL.P64 */
10996             if (!dc_isar_feature(aa64_pmull, s)) {
10997                 unallocated_encoding(s);
10998                 return;
10999             }
11000             if (!fp_access_check(s)) {
11001                 return;
11002             }
11003             /* The Q field specifies lo/hi half input for this insn.  */
11004             gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11005                              gen_helper_gvec_pmull_q);
11006             break;
11007 
11008         default:
11009             unallocated_encoding(s);
11010             break;
11011         }
11012         return;
11013     case 9: /* SQDMLAL, SQDMLAL2 */
11014     case 11: /* SQDMLSL, SQDMLSL2 */
11015     case 13: /* SQDMULL, SQDMULL2 */
11016         if (is_u || size == 0) {
11017             unallocated_encoding(s);
11018             return;
11019         }
11020         /* fall through */
11021     case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11022     case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11023     case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11024     case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11025     case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11026     case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11027     case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11028         /* 64 x 64 -> 128 */
11029         if (size == 3) {
11030             unallocated_encoding(s);
11031             return;
11032         }
11033         if (!fp_access_check(s)) {
11034             return;
11035         }
11036 
11037         handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11038         break;
11039     default:
11040         /* opcode 15 not allocated */
11041         unallocated_encoding(s);
11042         break;
11043     }
11044 }
11045 
11046 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11047 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11048 {
11049     int rd = extract32(insn, 0, 5);
11050     int rn = extract32(insn, 5, 5);
11051     int rm = extract32(insn, 16, 5);
11052     int size = extract32(insn, 22, 2);
11053     bool is_u = extract32(insn, 29, 1);
11054     bool is_q = extract32(insn, 30, 1);
11055 
11056     if (!fp_access_check(s)) {
11057         return;
11058     }
11059 
11060     switch (size + 4 * is_u) {
11061     case 0: /* AND */
11062         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11063         return;
11064     case 1: /* BIC */
11065         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11066         return;
11067     case 2: /* ORR */
11068         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11069         return;
11070     case 3: /* ORN */
11071         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11072         return;
11073     case 4: /* EOR */
11074         gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11075         return;
11076 
11077     case 5: /* BSL bitwise select */
11078         gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11079         return;
11080     case 6: /* BIT, bitwise insert if true */
11081         gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11082         return;
11083     case 7: /* BIF, bitwise insert if false */
11084         gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11085         return;
11086 
11087     default:
11088         g_assert_not_reached();
11089     }
11090 }
11091 
11092 /* Pairwise op subgroup of C3.6.16.
11093  *
11094  * This is called directly or via the handle_3same_float for float pairwise
11095  * operations where the opcode and size are calculated differently.
11096  */
11097 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11098                                    int size, int rn, int rm, int rd)
11099 {
11100     TCGv_ptr fpst;
11101     int pass;
11102 
11103     /* Floating point operations need fpst */
11104     if (opcode >= 0x58) {
11105         fpst = fpstatus_ptr(FPST_FPCR);
11106     } else {
11107         fpst = NULL;
11108     }
11109 
11110     if (!fp_access_check(s)) {
11111         return;
11112     }
11113 
11114     /* These operations work on the concatenated rm:rn, with each pair of
11115      * adjacent elements being operated on to produce an element in the result.
11116      */
11117     if (size == 3) {
11118         TCGv_i64 tcg_res[2];
11119 
11120         for (pass = 0; pass < 2; pass++) {
11121             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11122             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11123             int passreg = (pass == 0) ? rn : rm;
11124 
11125             read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11126             read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11127             tcg_res[pass] = tcg_temp_new_i64();
11128 
11129             switch (opcode) {
11130             case 0x17: /* ADDP */
11131                 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11132                 break;
11133             case 0x58: /* FMAXNMP */
11134                 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11135                 break;
11136             case 0x5a: /* FADDP */
11137                 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11138                 break;
11139             case 0x5e: /* FMAXP */
11140                 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11141                 break;
11142             case 0x78: /* FMINNMP */
11143                 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11144                 break;
11145             case 0x7e: /* FMINP */
11146                 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11147                 break;
11148             default:
11149                 g_assert_not_reached();
11150             }
11151         }
11152 
11153         for (pass = 0; pass < 2; pass++) {
11154             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11155         }
11156     } else {
11157         int maxpass = is_q ? 4 : 2;
11158         TCGv_i32 tcg_res[4];
11159 
11160         for (pass = 0; pass < maxpass; pass++) {
11161             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11162             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11163             NeonGenTwoOpFn *genfn = NULL;
11164             int passreg = pass < (maxpass / 2) ? rn : rm;
11165             int passelt = (is_q && (pass & 1)) ? 2 : 0;
11166 
11167             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11168             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11169             tcg_res[pass] = tcg_temp_new_i32();
11170 
11171             switch (opcode) {
11172             case 0x17: /* ADDP */
11173             {
11174                 static NeonGenTwoOpFn * const fns[3] = {
11175                     gen_helper_neon_padd_u8,
11176                     gen_helper_neon_padd_u16,
11177                     tcg_gen_add_i32,
11178                 };
11179                 genfn = fns[size];
11180                 break;
11181             }
11182             case 0x14: /* SMAXP, UMAXP */
11183             {
11184                 static NeonGenTwoOpFn * const fns[3][2] = {
11185                     { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11186                     { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11187                     { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11188                 };
11189                 genfn = fns[size][u];
11190                 break;
11191             }
11192             case 0x15: /* SMINP, UMINP */
11193             {
11194                 static NeonGenTwoOpFn * const fns[3][2] = {
11195                     { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11196                     { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11197                     { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11198                 };
11199                 genfn = fns[size][u];
11200                 break;
11201             }
11202             /* The FP operations are all on single floats (32 bit) */
11203             case 0x58: /* FMAXNMP */
11204                 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11205                 break;
11206             case 0x5a: /* FADDP */
11207                 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11208                 break;
11209             case 0x5e: /* FMAXP */
11210                 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11211                 break;
11212             case 0x78: /* FMINNMP */
11213                 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11214                 break;
11215             case 0x7e: /* FMINP */
11216                 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11217                 break;
11218             default:
11219                 g_assert_not_reached();
11220             }
11221 
11222             /* FP ops called directly, otherwise call now */
11223             if (genfn) {
11224                 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11225             }
11226         }
11227 
11228         for (pass = 0; pass < maxpass; pass++) {
11229             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11230         }
11231         clear_vec_high(s, is_q, rd);
11232     }
11233 }
11234 
11235 /* Floating point op subgroup of C3.6.16. */
11236 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11237 {
11238     /* For floating point ops, the U, size[1] and opcode bits
11239      * together indicate the operation. size[0] indicates single
11240      * or double.
11241      */
11242     int fpopcode = extract32(insn, 11, 5)
11243         | (extract32(insn, 23, 1) << 5)
11244         | (extract32(insn, 29, 1) << 6);
11245     int is_q = extract32(insn, 30, 1);
11246     int size = extract32(insn, 22, 1);
11247     int rm = extract32(insn, 16, 5);
11248     int rn = extract32(insn, 5, 5);
11249     int rd = extract32(insn, 0, 5);
11250 
11251     int datasize = is_q ? 128 : 64;
11252     int esize = 32 << size;
11253     int elements = datasize / esize;
11254 
11255     if (size == 1 && !is_q) {
11256         unallocated_encoding(s);
11257         return;
11258     }
11259 
11260     switch (fpopcode) {
11261     case 0x58: /* FMAXNMP */
11262     case 0x5a: /* FADDP */
11263     case 0x5e: /* FMAXP */
11264     case 0x78: /* FMINNMP */
11265     case 0x7e: /* FMINP */
11266         if (size && !is_q) {
11267             unallocated_encoding(s);
11268             return;
11269         }
11270         handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11271                                rn, rm, rd);
11272         return;
11273     case 0x1f: /* FRECPS */
11274     case 0x3f: /* FRSQRTS */
11275     case 0x7a: /* FABD */
11276         if (!fp_access_check(s)) {
11277             return;
11278         }
11279         handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11280         return;
11281 
11282     case 0x1d: /* FMLAL  */
11283     case 0x3d: /* FMLSL  */
11284     case 0x59: /* FMLAL2 */
11285     case 0x79: /* FMLSL2 */
11286         if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11287             unallocated_encoding(s);
11288             return;
11289         }
11290         if (fp_access_check(s)) {
11291             int is_s = extract32(insn, 23, 1);
11292             int is_2 = extract32(insn, 29, 1);
11293             int data = (is_2 << 1) | is_s;
11294             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11295                                vec_full_reg_offset(s, rn),
11296                                vec_full_reg_offset(s, rm), tcg_env,
11297                                is_q ? 16 : 8, vec_full_reg_size(s),
11298                                data, gen_helper_gvec_fmlal_a64);
11299         }
11300         return;
11301 
11302     default:
11303     case 0x18: /* FMAXNM */
11304     case 0x19: /* FMLA */
11305     case 0x1a: /* FADD */
11306     case 0x1b: /* FMULX */
11307     case 0x1c: /* FCMEQ */
11308     case 0x1e: /* FMAX */
11309     case 0x38: /* FMINNM */
11310     case 0x39: /* FMLS */
11311     case 0x3a: /* FSUB */
11312     case 0x3e: /* FMIN */
11313     case 0x5b: /* FMUL */
11314     case 0x5c: /* FCMGE */
11315     case 0x5d: /* FACGE */
11316     case 0x5f: /* FDIV */
11317     case 0x7d: /* FACGT */
11318     case 0x7c: /* FCMGT */
11319         unallocated_encoding(s);
11320         return;
11321     }
11322 }
11323 
11324 /* Integer op subgroup of C3.6.16. */
11325 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11326 {
11327     int is_q = extract32(insn, 30, 1);
11328     int u = extract32(insn, 29, 1);
11329     int size = extract32(insn, 22, 2);
11330     int opcode = extract32(insn, 11, 5);
11331     int rm = extract32(insn, 16, 5);
11332     int rn = extract32(insn, 5, 5);
11333     int rd = extract32(insn, 0, 5);
11334     int pass;
11335     TCGCond cond;
11336 
11337     switch (opcode) {
11338     case 0x13: /* MUL, PMUL */
11339         if (u && size != 0) {
11340             unallocated_encoding(s);
11341             return;
11342         }
11343         /* fall through */
11344     case 0x0: /* SHADD, UHADD */
11345     case 0x2: /* SRHADD, URHADD */
11346     case 0x4: /* SHSUB, UHSUB */
11347     case 0xc: /* SMAX, UMAX */
11348     case 0xd: /* SMIN, UMIN */
11349     case 0xe: /* SABD, UABD */
11350     case 0xf: /* SABA, UABA */
11351     case 0x12: /* MLA, MLS */
11352         if (size == 3) {
11353             unallocated_encoding(s);
11354             return;
11355         }
11356         break;
11357     case 0x16: /* SQDMULH, SQRDMULH */
11358         if (size == 0 || size == 3) {
11359             unallocated_encoding(s);
11360             return;
11361         }
11362         break;
11363     default:
11364         if (size == 3 && !is_q) {
11365             unallocated_encoding(s);
11366             return;
11367         }
11368         break;
11369     }
11370 
11371     if (!fp_access_check(s)) {
11372         return;
11373     }
11374 
11375     switch (opcode) {
11376     case 0x01: /* SQADD, UQADD */
11377         if (u) {
11378             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11379         } else {
11380             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11381         }
11382         return;
11383     case 0x05: /* SQSUB, UQSUB */
11384         if (u) {
11385             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11386         } else {
11387             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11388         }
11389         return;
11390     case 0x08: /* SSHL, USHL */
11391         if (u) {
11392             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11393         } else {
11394             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11395         }
11396         return;
11397     case 0x0c: /* SMAX, UMAX */
11398         if (u) {
11399             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11400         } else {
11401             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11402         }
11403         return;
11404     case 0x0d: /* SMIN, UMIN */
11405         if (u) {
11406             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11407         } else {
11408             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11409         }
11410         return;
11411     case 0xe: /* SABD, UABD */
11412         if (u) {
11413             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11414         } else {
11415             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11416         }
11417         return;
11418     case 0xf: /* SABA, UABA */
11419         if (u) {
11420             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11421         } else {
11422             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11423         }
11424         return;
11425     case 0x10: /* ADD, SUB */
11426         if (u) {
11427             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11428         } else {
11429             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11430         }
11431         return;
11432     case 0x13: /* MUL, PMUL */
11433         if (!u) { /* MUL */
11434             gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11435         } else {  /* PMUL */
11436             gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11437         }
11438         return;
11439     case 0x12: /* MLA, MLS */
11440         if (u) {
11441             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11442         } else {
11443             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11444         }
11445         return;
11446     case 0x16: /* SQDMULH, SQRDMULH */
11447         {
11448             static gen_helper_gvec_3_ptr * const fns[2][2] = {
11449                 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11450                 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11451             };
11452             gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11453         }
11454         return;
11455     case 0x11:
11456         if (!u) { /* CMTST */
11457             gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11458             return;
11459         }
11460         /* else CMEQ */
11461         cond = TCG_COND_EQ;
11462         goto do_gvec_cmp;
11463     case 0x06: /* CMGT, CMHI */
11464         cond = u ? TCG_COND_GTU : TCG_COND_GT;
11465         goto do_gvec_cmp;
11466     case 0x07: /* CMGE, CMHS */
11467         cond = u ? TCG_COND_GEU : TCG_COND_GE;
11468     do_gvec_cmp:
11469         tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11470                          vec_full_reg_offset(s, rn),
11471                          vec_full_reg_offset(s, rm),
11472                          is_q ? 16 : 8, vec_full_reg_size(s));
11473         return;
11474     }
11475 
11476     if (size == 3) {
11477         assert(is_q);
11478         for (pass = 0; pass < 2; pass++) {
11479             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11480             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11481             TCGv_i64 tcg_res = tcg_temp_new_i64();
11482 
11483             read_vec_element(s, tcg_op1, rn, pass, MO_64);
11484             read_vec_element(s, tcg_op2, rm, pass, MO_64);
11485 
11486             handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11487 
11488             write_vec_element(s, tcg_res, rd, pass, MO_64);
11489         }
11490     } else {
11491         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11492             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11493             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11494             TCGv_i32 tcg_res = tcg_temp_new_i32();
11495             NeonGenTwoOpFn *genfn = NULL;
11496             NeonGenTwoOpEnvFn *genenvfn = NULL;
11497 
11498             read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11499             read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11500 
11501             switch (opcode) {
11502             case 0x0: /* SHADD, UHADD */
11503             {
11504                 static NeonGenTwoOpFn * const fns[3][2] = {
11505                     { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11506                     { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11507                     { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11508                 };
11509                 genfn = fns[size][u];
11510                 break;
11511             }
11512             case 0x2: /* SRHADD, URHADD */
11513             {
11514                 static NeonGenTwoOpFn * const fns[3][2] = {
11515                     { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11516                     { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11517                     { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11518                 };
11519                 genfn = fns[size][u];
11520                 break;
11521             }
11522             case 0x4: /* SHSUB, UHSUB */
11523             {
11524                 static NeonGenTwoOpFn * const fns[3][2] = {
11525                     { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11526                     { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11527                     { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11528                 };
11529                 genfn = fns[size][u];
11530                 break;
11531             }
11532             case 0x9: /* SQSHL, UQSHL */
11533             {
11534                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11535                     { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11536                     { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11537                     { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11538                 };
11539                 genenvfn = fns[size][u];
11540                 break;
11541             }
11542             case 0xa: /* SRSHL, URSHL */
11543             {
11544                 static NeonGenTwoOpFn * const fns[3][2] = {
11545                     { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11546                     { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11547                     { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11548                 };
11549                 genfn = fns[size][u];
11550                 break;
11551             }
11552             case 0xb: /* SQRSHL, UQRSHL */
11553             {
11554                 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11555                     { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11556                     { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11557                     { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11558                 };
11559                 genenvfn = fns[size][u];
11560                 break;
11561             }
11562             default:
11563                 g_assert_not_reached();
11564             }
11565 
11566             if (genenvfn) {
11567                 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11568             } else {
11569                 genfn(tcg_res, tcg_op1, tcg_op2);
11570             }
11571 
11572             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11573         }
11574     }
11575     clear_vec_high(s, is_q, rd);
11576 }
11577 
11578 /* AdvSIMD three same
11579  *  31  30  29  28       24 23  22  21 20  16 15    11  10 9    5 4    0
11580  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11581  * | 0 | Q | U | 0 1 1 1 0 | size | 1 |  Rm  | opcode | 1 |  Rn  |  Rd  |
11582  * +---+---+---+-----------+------+---+------+--------+---+------+------+
11583  */
11584 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11585 {
11586     int opcode = extract32(insn, 11, 5);
11587 
11588     switch (opcode) {
11589     case 0x3: /* logic ops */
11590         disas_simd_3same_logic(s, insn);
11591         break;
11592     case 0x17: /* ADDP */
11593     case 0x14: /* SMAXP, UMAXP */
11594     case 0x15: /* SMINP, UMINP */
11595     {
11596         /* Pairwise operations */
11597         int is_q = extract32(insn, 30, 1);
11598         int u = extract32(insn, 29, 1);
11599         int size = extract32(insn, 22, 2);
11600         int rm = extract32(insn, 16, 5);
11601         int rn = extract32(insn, 5, 5);
11602         int rd = extract32(insn, 0, 5);
11603         if (opcode == 0x17) {
11604             if (u || (size == 3 && !is_q)) {
11605                 unallocated_encoding(s);
11606                 return;
11607             }
11608         } else {
11609             if (size == 3) {
11610                 unallocated_encoding(s);
11611                 return;
11612             }
11613         }
11614         handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11615         break;
11616     }
11617     case 0x18 ... 0x31:
11618         /* floating point ops, sz[1] and U are part of opcode */
11619         disas_simd_3same_float(s, insn);
11620         break;
11621     default:
11622         disas_simd_3same_int(s, insn);
11623         break;
11624     }
11625 }
11626 
11627 /*
11628  * Advanced SIMD three same (ARMv8.2 FP16 variants)
11629  *
11630  *  31  30  29  28       24 23  22 21 20  16 15 14 13    11 10  9    5 4    0
11631  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11632  * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 |  Rm  | 0 0 | opcode | 1 |  Rn  |  Rd  |
11633  * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11634  *
11635  * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11636  * (register), FACGE, FABD, FCMGT (register) and FACGT.
11637  *
11638  */
11639 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11640 {
11641     int opcode = extract32(insn, 11, 3);
11642     int u = extract32(insn, 29, 1);
11643     int a = extract32(insn, 23, 1);
11644     int is_q = extract32(insn, 30, 1);
11645     int rm = extract32(insn, 16, 5);
11646     int rn = extract32(insn, 5, 5);
11647     int rd = extract32(insn, 0, 5);
11648     /*
11649      * For these floating point ops, the U, a and opcode bits
11650      * together indicate the operation.
11651      */
11652     int fpopcode = opcode | (a << 3) | (u << 4);
11653     int datasize = is_q ? 128 : 64;
11654     int elements = datasize / 16;
11655     bool pairwise;
11656     TCGv_ptr fpst;
11657     int pass;
11658 
11659     switch (fpopcode) {
11660     case 0x7: /* FRECPS */
11661     case 0xf: /* FRSQRTS */
11662     case 0x1a: /* FABD */
11663         pairwise = false;
11664         break;
11665     case 0x10: /* FMAXNMP */
11666     case 0x12: /* FADDP */
11667     case 0x16: /* FMAXP */
11668     case 0x18: /* FMINNMP */
11669     case 0x1e: /* FMINP */
11670         pairwise = true;
11671         break;
11672     default:
11673     case 0x0: /* FMAXNM */
11674     case 0x1: /* FMLA */
11675     case 0x2: /* FADD */
11676     case 0x3: /* FMULX */
11677     case 0x4: /* FCMEQ */
11678     case 0x6: /* FMAX */
11679     case 0x8: /* FMINNM */
11680     case 0x9: /* FMLS */
11681     case 0xa: /* FSUB */
11682     case 0xe: /* FMIN */
11683     case 0x13: /* FMUL */
11684     case 0x14: /* FCMGE */
11685     case 0x15: /* FACGE */
11686     case 0x17: /* FDIV */
11687     case 0x1c: /* FCMGT */
11688     case 0x1d: /* FACGT */
11689         unallocated_encoding(s);
11690         return;
11691     }
11692 
11693     if (!dc_isar_feature(aa64_fp16, s)) {
11694         unallocated_encoding(s);
11695         return;
11696     }
11697 
11698     if (!fp_access_check(s)) {
11699         return;
11700     }
11701 
11702     fpst = fpstatus_ptr(FPST_FPCR_F16);
11703 
11704     if (pairwise) {
11705         int maxpass = is_q ? 8 : 4;
11706         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11707         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11708         TCGv_i32 tcg_res[8];
11709 
11710         for (pass = 0; pass < maxpass; pass++) {
11711             int passreg = pass < (maxpass / 2) ? rn : rm;
11712             int passelt = (pass << 1) & (maxpass - 1);
11713 
11714             read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11715             read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11716             tcg_res[pass] = tcg_temp_new_i32();
11717 
11718             switch (fpopcode) {
11719             case 0x10: /* FMAXNMP */
11720                 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11721                                            fpst);
11722                 break;
11723             case 0x12: /* FADDP */
11724                 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11725                 break;
11726             case 0x16: /* FMAXP */
11727                 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11728                 break;
11729             case 0x18: /* FMINNMP */
11730                 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11731                                            fpst);
11732                 break;
11733             case 0x1e: /* FMINP */
11734                 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11735                 break;
11736             default:
11737                 g_assert_not_reached();
11738             }
11739         }
11740 
11741         for (pass = 0; pass < maxpass; pass++) {
11742             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11743         }
11744     } else {
11745         for (pass = 0; pass < elements; pass++) {
11746             TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11747             TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11748             TCGv_i32 tcg_res = tcg_temp_new_i32();
11749 
11750             read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11751             read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11752 
11753             switch (fpopcode) {
11754             case 0x7: /* FRECPS */
11755                 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11756                 break;
11757             case 0xf: /* FRSQRTS */
11758                 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11759                 break;
11760             case 0x1a: /* FABD */
11761                 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11762                 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11763                 break;
11764             default:
11765             case 0x0: /* FMAXNM */
11766             case 0x1: /* FMLA */
11767             case 0x2: /* FADD */
11768             case 0x3: /* FMULX */
11769             case 0x4: /* FCMEQ */
11770             case 0x6: /* FMAX */
11771             case 0x8: /* FMINNM */
11772             case 0x9: /* FMLS */
11773             case 0xa: /* FSUB */
11774             case 0xe: /* FMIN */
11775             case 0x13: /* FMUL */
11776             case 0x14: /* FCMGE */
11777             case 0x15: /* FACGE */
11778             case 0x17: /* FDIV */
11779             case 0x1c: /* FCMGT */
11780             case 0x1d: /* FACGT */
11781                 g_assert_not_reached();
11782             }
11783 
11784             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11785         }
11786     }
11787 
11788     clear_vec_high(s, is_q, rd);
11789 }
11790 
11791 /* AdvSIMD three same extra
11792  *  31   30  29 28       24 23  22  21 20  16  15 14    11  10 9  5 4  0
11793  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11794  * | 0 | Q | U | 0 1 1 1 0 | size | 0 |  Rm  | 1 | opcode | 1 | Rn | Rd |
11795  * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11796  */
11797 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11798 {
11799     int rd = extract32(insn, 0, 5);
11800     int rn = extract32(insn, 5, 5);
11801     int opcode = extract32(insn, 11, 4);
11802     int rm = extract32(insn, 16, 5);
11803     int size = extract32(insn, 22, 2);
11804     bool u = extract32(insn, 29, 1);
11805     bool is_q = extract32(insn, 30, 1);
11806     bool feature;
11807     int rot;
11808 
11809     switch (u * 16 + opcode) {
11810     case 0x10: /* SQRDMLAH (vector) */
11811     case 0x11: /* SQRDMLSH (vector) */
11812         if (size != 1 && size != 2) {
11813             unallocated_encoding(s);
11814             return;
11815         }
11816         feature = dc_isar_feature(aa64_rdm, s);
11817         break;
11818     case 0x02: /* SDOT (vector) */
11819     case 0x12: /* UDOT (vector) */
11820         if (size != MO_32) {
11821             unallocated_encoding(s);
11822             return;
11823         }
11824         feature = dc_isar_feature(aa64_dp, s);
11825         break;
11826     case 0x03: /* USDOT */
11827         if (size != MO_32) {
11828             unallocated_encoding(s);
11829             return;
11830         }
11831         feature = dc_isar_feature(aa64_i8mm, s);
11832         break;
11833     case 0x04: /* SMMLA */
11834     case 0x14: /* UMMLA */
11835     case 0x05: /* USMMLA */
11836         if (!is_q || size != MO_32) {
11837             unallocated_encoding(s);
11838             return;
11839         }
11840         feature = dc_isar_feature(aa64_i8mm, s);
11841         break;
11842     case 0x18: /* FCMLA, #0 */
11843     case 0x19: /* FCMLA, #90 */
11844     case 0x1a: /* FCMLA, #180 */
11845     case 0x1b: /* FCMLA, #270 */
11846     case 0x1c: /* FCADD, #90 */
11847     case 0x1e: /* FCADD, #270 */
11848         if (size == 0
11849             || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11850             || (size == 3 && !is_q)) {
11851             unallocated_encoding(s);
11852             return;
11853         }
11854         feature = dc_isar_feature(aa64_fcma, s);
11855         break;
11856     case 0x1d: /* BFMMLA */
11857         if (size != MO_16 || !is_q) {
11858             unallocated_encoding(s);
11859             return;
11860         }
11861         feature = dc_isar_feature(aa64_bf16, s);
11862         break;
11863     case 0x1f:
11864         switch (size) {
11865         case 1: /* BFDOT */
11866         case 3: /* BFMLAL{B,T} */
11867             feature = dc_isar_feature(aa64_bf16, s);
11868             break;
11869         default:
11870             unallocated_encoding(s);
11871             return;
11872         }
11873         break;
11874     default:
11875         unallocated_encoding(s);
11876         return;
11877     }
11878     if (!feature) {
11879         unallocated_encoding(s);
11880         return;
11881     }
11882     if (!fp_access_check(s)) {
11883         return;
11884     }
11885 
11886     switch (opcode) {
11887     case 0x0: /* SQRDMLAH (vector) */
11888         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11889         return;
11890 
11891     case 0x1: /* SQRDMLSH (vector) */
11892         gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11893         return;
11894 
11895     case 0x2: /* SDOT / UDOT */
11896         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11897                          u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11898         return;
11899 
11900     case 0x3: /* USDOT */
11901         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11902         return;
11903 
11904     case 0x04: /* SMMLA, UMMLA */
11905         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11906                          u ? gen_helper_gvec_ummla_b
11907                          : gen_helper_gvec_smmla_b);
11908         return;
11909     case 0x05: /* USMMLA */
11910         gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11911         return;
11912 
11913     case 0x8: /* FCMLA, #0 */
11914     case 0x9: /* FCMLA, #90 */
11915     case 0xa: /* FCMLA, #180 */
11916     case 0xb: /* FCMLA, #270 */
11917         rot = extract32(opcode, 0, 2);
11918         switch (size) {
11919         case 1:
11920             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11921                               gen_helper_gvec_fcmlah);
11922             break;
11923         case 2:
11924             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11925                               gen_helper_gvec_fcmlas);
11926             break;
11927         case 3:
11928             gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11929                               gen_helper_gvec_fcmlad);
11930             break;
11931         default:
11932             g_assert_not_reached();
11933         }
11934         return;
11935 
11936     case 0xc: /* FCADD, #90 */
11937     case 0xe: /* FCADD, #270 */
11938         rot = extract32(opcode, 1, 1);
11939         switch (size) {
11940         case 1:
11941             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11942                               gen_helper_gvec_fcaddh);
11943             break;
11944         case 2:
11945             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11946                               gen_helper_gvec_fcadds);
11947             break;
11948         case 3:
11949             gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11950                               gen_helper_gvec_fcaddd);
11951             break;
11952         default:
11953             g_assert_not_reached();
11954         }
11955         return;
11956 
11957     case 0xd: /* BFMMLA */
11958         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11959         return;
11960     case 0xf:
11961         switch (size) {
11962         case 1: /* BFDOT */
11963             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11964             break;
11965         case 3: /* BFMLAL{B,T} */
11966             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11967                               gen_helper_gvec_bfmlal);
11968             break;
11969         default:
11970             g_assert_not_reached();
11971         }
11972         return;
11973 
11974     default:
11975         g_assert_not_reached();
11976     }
11977 }
11978 
11979 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11980                                   int size, int rn, int rd)
11981 {
11982     /* Handle 2-reg-misc ops which are widening (so each size element
11983      * in the source becomes a 2*size element in the destination.
11984      * The only instruction like this is FCVTL.
11985      */
11986     int pass;
11987 
11988     if (size == 3) {
11989         /* 32 -> 64 bit fp conversion */
11990         TCGv_i64 tcg_res[2];
11991         int srcelt = is_q ? 2 : 0;
11992 
11993         for (pass = 0; pass < 2; pass++) {
11994             TCGv_i32 tcg_op = tcg_temp_new_i32();
11995             tcg_res[pass] = tcg_temp_new_i64();
11996 
11997             read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11998             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11999         }
12000         for (pass = 0; pass < 2; pass++) {
12001             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12002         }
12003     } else {
12004         /* 16 -> 32 bit fp conversion */
12005         int srcelt = is_q ? 4 : 0;
12006         TCGv_i32 tcg_res[4];
12007         TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12008         TCGv_i32 ahp = get_ahp_flag();
12009 
12010         for (pass = 0; pass < 4; pass++) {
12011             tcg_res[pass] = tcg_temp_new_i32();
12012 
12013             read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12014             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12015                                            fpst, ahp);
12016         }
12017         for (pass = 0; pass < 4; pass++) {
12018             write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12019         }
12020     }
12021 }
12022 
12023 static void handle_rev(DisasContext *s, int opcode, bool u,
12024                        bool is_q, int size, int rn, int rd)
12025 {
12026     int op = (opcode << 1) | u;
12027     int opsz = op + size;
12028     int grp_size = 3 - opsz;
12029     int dsize = is_q ? 128 : 64;
12030     int i;
12031 
12032     if (opsz >= 3) {
12033         unallocated_encoding(s);
12034         return;
12035     }
12036 
12037     if (!fp_access_check(s)) {
12038         return;
12039     }
12040 
12041     if (size == 0) {
12042         /* Special case bytes, use bswap op on each group of elements */
12043         int groups = dsize / (8 << grp_size);
12044 
12045         for (i = 0; i < groups; i++) {
12046             TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12047 
12048             read_vec_element(s, tcg_tmp, rn, i, grp_size);
12049             switch (grp_size) {
12050             case MO_16:
12051                 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12052                 break;
12053             case MO_32:
12054                 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12055                 break;
12056             case MO_64:
12057                 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12058                 break;
12059             default:
12060                 g_assert_not_reached();
12061             }
12062             write_vec_element(s, tcg_tmp, rd, i, grp_size);
12063         }
12064         clear_vec_high(s, is_q, rd);
12065     } else {
12066         int revmask = (1 << grp_size) - 1;
12067         int esize = 8 << size;
12068         int elements = dsize / esize;
12069         TCGv_i64 tcg_rn = tcg_temp_new_i64();
12070         TCGv_i64 tcg_rd[2];
12071 
12072         for (i = 0; i < 2; i++) {
12073             tcg_rd[i] = tcg_temp_new_i64();
12074             tcg_gen_movi_i64(tcg_rd[i], 0);
12075         }
12076 
12077         for (i = 0; i < elements; i++) {
12078             int e_rev = (i & 0xf) ^ revmask;
12079             int w = (e_rev * esize) / 64;
12080             int o = (e_rev * esize) % 64;
12081 
12082             read_vec_element(s, tcg_rn, rn, i, size);
12083             tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12084         }
12085 
12086         for (i = 0; i < 2; i++) {
12087             write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12088         }
12089         clear_vec_high(s, true, rd);
12090     }
12091 }
12092 
12093 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12094                                   bool is_q, int size, int rn, int rd)
12095 {
12096     /* Implement the pairwise operations from 2-misc:
12097      * SADDLP, UADDLP, SADALP, UADALP.
12098      * These all add pairs of elements in the input to produce a
12099      * double-width result element in the output (possibly accumulating).
12100      */
12101     bool accum = (opcode == 0x6);
12102     int maxpass = is_q ? 2 : 1;
12103     int pass;
12104     TCGv_i64 tcg_res[2];
12105 
12106     if (size == 2) {
12107         /* 32 + 32 -> 64 op */
12108         MemOp memop = size + (u ? 0 : MO_SIGN);
12109 
12110         for (pass = 0; pass < maxpass; pass++) {
12111             TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12112             TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12113 
12114             tcg_res[pass] = tcg_temp_new_i64();
12115 
12116             read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12117             read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12118             tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12119             if (accum) {
12120                 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12121                 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12122             }
12123         }
12124     } else {
12125         for (pass = 0; pass < maxpass; pass++) {
12126             TCGv_i64 tcg_op = tcg_temp_new_i64();
12127             NeonGenOne64OpFn *genfn;
12128             static NeonGenOne64OpFn * const fns[2][2] = {
12129                 { gen_helper_neon_addlp_s8,  gen_helper_neon_addlp_u8 },
12130                 { gen_helper_neon_addlp_s16,  gen_helper_neon_addlp_u16 },
12131             };
12132 
12133             genfn = fns[size][u];
12134 
12135             tcg_res[pass] = tcg_temp_new_i64();
12136 
12137             read_vec_element(s, tcg_op, rn, pass, MO_64);
12138             genfn(tcg_res[pass], tcg_op);
12139 
12140             if (accum) {
12141                 read_vec_element(s, tcg_op, rd, pass, MO_64);
12142                 if (size == 0) {
12143                     gen_helper_neon_addl_u16(tcg_res[pass],
12144                                              tcg_res[pass], tcg_op);
12145                 } else {
12146                     gen_helper_neon_addl_u32(tcg_res[pass],
12147                                              tcg_res[pass], tcg_op);
12148                 }
12149             }
12150         }
12151     }
12152     if (!is_q) {
12153         tcg_res[1] = tcg_constant_i64(0);
12154     }
12155     for (pass = 0; pass < 2; pass++) {
12156         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12157     }
12158 }
12159 
12160 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12161 {
12162     /* Implement SHLL and SHLL2 */
12163     int pass;
12164     int part = is_q ? 2 : 0;
12165     TCGv_i64 tcg_res[2];
12166 
12167     for (pass = 0; pass < 2; pass++) {
12168         static NeonGenWidenFn * const widenfns[3] = {
12169             gen_helper_neon_widen_u8,
12170             gen_helper_neon_widen_u16,
12171             tcg_gen_extu_i32_i64,
12172         };
12173         NeonGenWidenFn *widenfn = widenfns[size];
12174         TCGv_i32 tcg_op = tcg_temp_new_i32();
12175 
12176         read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12177         tcg_res[pass] = tcg_temp_new_i64();
12178         widenfn(tcg_res[pass], tcg_op);
12179         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12180     }
12181 
12182     for (pass = 0; pass < 2; pass++) {
12183         write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12184     }
12185 }
12186 
12187 /* AdvSIMD two reg misc
12188  *   31  30  29 28       24 23  22 21       17 16    12 11 10 9    5 4    0
12189  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12190  * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12191  * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12192  */
12193 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12194 {
12195     int size = extract32(insn, 22, 2);
12196     int opcode = extract32(insn, 12, 5);
12197     bool u = extract32(insn, 29, 1);
12198     bool is_q = extract32(insn, 30, 1);
12199     int rn = extract32(insn, 5, 5);
12200     int rd = extract32(insn, 0, 5);
12201     bool need_fpstatus = false;
12202     int rmode = -1;
12203     TCGv_i32 tcg_rmode;
12204     TCGv_ptr tcg_fpstatus;
12205 
12206     switch (opcode) {
12207     case 0x0: /* REV64, REV32 */
12208     case 0x1: /* REV16 */
12209         handle_rev(s, opcode, u, is_q, size, rn, rd);
12210         return;
12211     case 0x5: /* CNT, NOT, RBIT */
12212         if (u && size == 0) {
12213             /* NOT */
12214             break;
12215         } else if (u && size == 1) {
12216             /* RBIT */
12217             break;
12218         } else if (!u && size == 0) {
12219             /* CNT */
12220             break;
12221         }
12222         unallocated_encoding(s);
12223         return;
12224     case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12225     case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12226         if (size == 3) {
12227             unallocated_encoding(s);
12228             return;
12229         }
12230         if (!fp_access_check(s)) {
12231             return;
12232         }
12233 
12234         handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12235         return;
12236     case 0x4: /* CLS, CLZ */
12237         if (size == 3) {
12238             unallocated_encoding(s);
12239             return;
12240         }
12241         break;
12242     case 0x2: /* SADDLP, UADDLP */
12243     case 0x6: /* SADALP, UADALP */
12244         if (size == 3) {
12245             unallocated_encoding(s);
12246             return;
12247         }
12248         if (!fp_access_check(s)) {
12249             return;
12250         }
12251         handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12252         return;
12253     case 0x13: /* SHLL, SHLL2 */
12254         if (u == 0 || size == 3) {
12255             unallocated_encoding(s);
12256             return;
12257         }
12258         if (!fp_access_check(s)) {
12259             return;
12260         }
12261         handle_shll(s, is_q, size, rn, rd);
12262         return;
12263     case 0xa: /* CMLT */
12264         if (u == 1) {
12265             unallocated_encoding(s);
12266             return;
12267         }
12268         /* fall through */
12269     case 0x8: /* CMGT, CMGE */
12270     case 0x9: /* CMEQ, CMLE */
12271     case 0xb: /* ABS, NEG */
12272         if (size == 3 && !is_q) {
12273             unallocated_encoding(s);
12274             return;
12275         }
12276         break;
12277     case 0x3: /* SUQADD, USQADD */
12278         if (size == 3 && !is_q) {
12279             unallocated_encoding(s);
12280             return;
12281         }
12282         if (!fp_access_check(s)) {
12283             return;
12284         }
12285         handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12286         return;
12287     case 0x7: /* SQABS, SQNEG */
12288         if (size == 3 && !is_q) {
12289             unallocated_encoding(s);
12290             return;
12291         }
12292         break;
12293     case 0xc ... 0xf:
12294     case 0x16 ... 0x1f:
12295     {
12296         /* Floating point: U, size[1] and opcode indicate operation;
12297          * size[0] indicates single or double precision.
12298          */
12299         int is_double = extract32(size, 0, 1);
12300         opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12301         size = is_double ? 3 : 2;
12302         switch (opcode) {
12303         case 0x2f: /* FABS */
12304         case 0x6f: /* FNEG */
12305             if (size == 3 && !is_q) {
12306                 unallocated_encoding(s);
12307                 return;
12308             }
12309             break;
12310         case 0x1d: /* SCVTF */
12311         case 0x5d: /* UCVTF */
12312         {
12313             bool is_signed = (opcode == 0x1d) ? true : false;
12314             int elements = is_double ? 2 : is_q ? 4 : 2;
12315             if (is_double && !is_q) {
12316                 unallocated_encoding(s);
12317                 return;
12318             }
12319             if (!fp_access_check(s)) {
12320                 return;
12321             }
12322             handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12323             return;
12324         }
12325         case 0x2c: /* FCMGT (zero) */
12326         case 0x2d: /* FCMEQ (zero) */
12327         case 0x2e: /* FCMLT (zero) */
12328         case 0x6c: /* FCMGE (zero) */
12329         case 0x6d: /* FCMLE (zero) */
12330             if (size == 3 && !is_q) {
12331                 unallocated_encoding(s);
12332                 return;
12333             }
12334             handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12335             return;
12336         case 0x7f: /* FSQRT */
12337             if (size == 3 && !is_q) {
12338                 unallocated_encoding(s);
12339                 return;
12340             }
12341             break;
12342         case 0x1a: /* FCVTNS */
12343         case 0x1b: /* FCVTMS */
12344         case 0x3a: /* FCVTPS */
12345         case 0x3b: /* FCVTZS */
12346         case 0x5a: /* FCVTNU */
12347         case 0x5b: /* FCVTMU */
12348         case 0x7a: /* FCVTPU */
12349         case 0x7b: /* FCVTZU */
12350             need_fpstatus = true;
12351             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12352             if (size == 3 && !is_q) {
12353                 unallocated_encoding(s);
12354                 return;
12355             }
12356             break;
12357         case 0x5c: /* FCVTAU */
12358         case 0x1c: /* FCVTAS */
12359             need_fpstatus = true;
12360             rmode = FPROUNDING_TIEAWAY;
12361             if (size == 3 && !is_q) {
12362                 unallocated_encoding(s);
12363                 return;
12364             }
12365             break;
12366         case 0x3c: /* URECPE */
12367             if (size == 3) {
12368                 unallocated_encoding(s);
12369                 return;
12370             }
12371             /* fall through */
12372         case 0x3d: /* FRECPE */
12373         case 0x7d: /* FRSQRTE */
12374             if (size == 3 && !is_q) {
12375                 unallocated_encoding(s);
12376                 return;
12377             }
12378             if (!fp_access_check(s)) {
12379                 return;
12380             }
12381             handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12382             return;
12383         case 0x56: /* FCVTXN, FCVTXN2 */
12384             if (size == 2) {
12385                 unallocated_encoding(s);
12386                 return;
12387             }
12388             /* fall through */
12389         case 0x16: /* FCVTN, FCVTN2 */
12390             /* handle_2misc_narrow does a 2*size -> size operation, but these
12391              * instructions encode the source size rather than dest size.
12392              */
12393             if (!fp_access_check(s)) {
12394                 return;
12395             }
12396             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12397             return;
12398         case 0x36: /* BFCVTN, BFCVTN2 */
12399             if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12400                 unallocated_encoding(s);
12401                 return;
12402             }
12403             if (!fp_access_check(s)) {
12404                 return;
12405             }
12406             handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12407             return;
12408         case 0x17: /* FCVTL, FCVTL2 */
12409             if (!fp_access_check(s)) {
12410                 return;
12411             }
12412             handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12413             return;
12414         case 0x18: /* FRINTN */
12415         case 0x19: /* FRINTM */
12416         case 0x38: /* FRINTP */
12417         case 0x39: /* FRINTZ */
12418             rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12419             /* fall through */
12420         case 0x59: /* FRINTX */
12421         case 0x79: /* FRINTI */
12422             need_fpstatus = true;
12423             if (size == 3 && !is_q) {
12424                 unallocated_encoding(s);
12425                 return;
12426             }
12427             break;
12428         case 0x58: /* FRINTA */
12429             rmode = FPROUNDING_TIEAWAY;
12430             need_fpstatus = true;
12431             if (size == 3 && !is_q) {
12432                 unallocated_encoding(s);
12433                 return;
12434             }
12435             break;
12436         case 0x7c: /* URSQRTE */
12437             if (size == 3) {
12438                 unallocated_encoding(s);
12439                 return;
12440             }
12441             break;
12442         case 0x1e: /* FRINT32Z */
12443         case 0x1f: /* FRINT64Z */
12444             rmode = FPROUNDING_ZERO;
12445             /* fall through */
12446         case 0x5e: /* FRINT32X */
12447         case 0x5f: /* FRINT64X */
12448             need_fpstatus = true;
12449             if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12450                 unallocated_encoding(s);
12451                 return;
12452             }
12453             break;
12454         default:
12455             unallocated_encoding(s);
12456             return;
12457         }
12458         break;
12459     }
12460     default:
12461         unallocated_encoding(s);
12462         return;
12463     }
12464 
12465     if (!fp_access_check(s)) {
12466         return;
12467     }
12468 
12469     if (need_fpstatus || rmode >= 0) {
12470         tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12471     } else {
12472         tcg_fpstatus = NULL;
12473     }
12474     if (rmode >= 0) {
12475         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12476     } else {
12477         tcg_rmode = NULL;
12478     }
12479 
12480     switch (opcode) {
12481     case 0x5:
12482         if (u && size == 0) { /* NOT */
12483             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12484             return;
12485         }
12486         break;
12487     case 0x8: /* CMGT, CMGE */
12488         if (u) {
12489             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12490         } else {
12491             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12492         }
12493         return;
12494     case 0x9: /* CMEQ, CMLE */
12495         if (u) {
12496             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12497         } else {
12498             gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12499         }
12500         return;
12501     case 0xa: /* CMLT */
12502         gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12503         return;
12504     case 0xb:
12505         if (u) { /* ABS, NEG */
12506             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12507         } else {
12508             gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12509         }
12510         return;
12511     }
12512 
12513     if (size == 3) {
12514         /* All 64-bit element operations can be shared with scalar 2misc */
12515         int pass;
12516 
12517         /* Coverity claims (size == 3 && !is_q) has been eliminated
12518          * from all paths leading to here.
12519          */
12520         tcg_debug_assert(is_q);
12521         for (pass = 0; pass < 2; pass++) {
12522             TCGv_i64 tcg_op = tcg_temp_new_i64();
12523             TCGv_i64 tcg_res = tcg_temp_new_i64();
12524 
12525             read_vec_element(s, tcg_op, rn, pass, MO_64);
12526 
12527             handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12528                             tcg_rmode, tcg_fpstatus);
12529 
12530             write_vec_element(s, tcg_res, rd, pass, MO_64);
12531         }
12532     } else {
12533         int pass;
12534 
12535         for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12536             TCGv_i32 tcg_op = tcg_temp_new_i32();
12537             TCGv_i32 tcg_res = tcg_temp_new_i32();
12538 
12539             read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12540 
12541             if (size == 2) {
12542                 /* Special cases for 32 bit elements */
12543                 switch (opcode) {
12544                 case 0x4: /* CLS */
12545                     if (u) {
12546                         tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12547                     } else {
12548                         tcg_gen_clrsb_i32(tcg_res, tcg_op);
12549                     }
12550                     break;
12551                 case 0x7: /* SQABS, SQNEG */
12552                     if (u) {
12553                         gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12554                     } else {
12555                         gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12556                     }
12557                     break;
12558                 case 0x2f: /* FABS */
12559                     gen_vfp_abss(tcg_res, tcg_op);
12560                     break;
12561                 case 0x6f: /* FNEG */
12562                     gen_vfp_negs(tcg_res, tcg_op);
12563                     break;
12564                 case 0x7f: /* FSQRT */
12565                     gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12566                     break;
12567                 case 0x1a: /* FCVTNS */
12568                 case 0x1b: /* FCVTMS */
12569                 case 0x1c: /* FCVTAS */
12570                 case 0x3a: /* FCVTPS */
12571                 case 0x3b: /* FCVTZS */
12572                     gen_helper_vfp_tosls(tcg_res, tcg_op,
12573                                          tcg_constant_i32(0), tcg_fpstatus);
12574                     break;
12575                 case 0x5a: /* FCVTNU */
12576                 case 0x5b: /* FCVTMU */
12577                 case 0x5c: /* FCVTAU */
12578                 case 0x7a: /* FCVTPU */
12579                 case 0x7b: /* FCVTZU */
12580                     gen_helper_vfp_touls(tcg_res, tcg_op,
12581                                          tcg_constant_i32(0), tcg_fpstatus);
12582                     break;
12583                 case 0x18: /* FRINTN */
12584                 case 0x19: /* FRINTM */
12585                 case 0x38: /* FRINTP */
12586                 case 0x39: /* FRINTZ */
12587                 case 0x58: /* FRINTA */
12588                 case 0x79: /* FRINTI */
12589                     gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12590                     break;
12591                 case 0x59: /* FRINTX */
12592                     gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12593                     break;
12594                 case 0x7c: /* URSQRTE */
12595                     gen_helper_rsqrte_u32(tcg_res, tcg_op);
12596                     break;
12597                 case 0x1e: /* FRINT32Z */
12598                 case 0x5e: /* FRINT32X */
12599                     gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12600                     break;
12601                 case 0x1f: /* FRINT64Z */
12602                 case 0x5f: /* FRINT64X */
12603                     gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12604                     break;
12605                 default:
12606                     g_assert_not_reached();
12607                 }
12608             } else {
12609                 /* Use helpers for 8 and 16 bit elements */
12610                 switch (opcode) {
12611                 case 0x5: /* CNT, RBIT */
12612                     /* For these two insns size is part of the opcode specifier
12613                      * (handled earlier); they always operate on byte elements.
12614                      */
12615                     if (u) {
12616                         gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12617                     } else {
12618                         gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12619                     }
12620                     break;
12621                 case 0x7: /* SQABS, SQNEG */
12622                 {
12623                     NeonGenOneOpEnvFn *genfn;
12624                     static NeonGenOneOpEnvFn * const fns[2][2] = {
12625                         { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12626                         { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12627                     };
12628                     genfn = fns[size][u];
12629                     genfn(tcg_res, tcg_env, tcg_op);
12630                     break;
12631                 }
12632                 case 0x4: /* CLS, CLZ */
12633                     if (u) {
12634                         if (size == 0) {
12635                             gen_helper_neon_clz_u8(tcg_res, tcg_op);
12636                         } else {
12637                             gen_helper_neon_clz_u16(tcg_res, tcg_op);
12638                         }
12639                     } else {
12640                         if (size == 0) {
12641                             gen_helper_neon_cls_s8(tcg_res, tcg_op);
12642                         } else {
12643                             gen_helper_neon_cls_s16(tcg_res, tcg_op);
12644                         }
12645                     }
12646                     break;
12647                 default:
12648                     g_assert_not_reached();
12649                 }
12650             }
12651 
12652             write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12653         }
12654     }
12655     clear_vec_high(s, is_q, rd);
12656 
12657     if (tcg_rmode) {
12658         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12659     }
12660 }
12661 
12662 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12663  *
12664  *   31  30  29 28  27     24  23 22 21       17 16    12 11 10 9    5 4    0
12665  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12666  * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 |  Rn  |  Rd  |
12667  * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12668  *   mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12669  *   val:  0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12670  *
12671  * This actually covers two groups where scalar access is governed by
12672  * bit 28. A bunch of the instructions (float to integral) only exist
12673  * in the vector form and are un-allocated for the scalar decode. Also
12674  * in the scalar decode Q is always 1.
12675  */
12676 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12677 {
12678     int fpop, opcode, a, u;
12679     int rn, rd;
12680     bool is_q;
12681     bool is_scalar;
12682     bool only_in_vector = false;
12683 
12684     int pass;
12685     TCGv_i32 tcg_rmode = NULL;
12686     TCGv_ptr tcg_fpstatus = NULL;
12687     bool need_fpst = true;
12688     int rmode = -1;
12689 
12690     if (!dc_isar_feature(aa64_fp16, s)) {
12691         unallocated_encoding(s);
12692         return;
12693     }
12694 
12695     rd = extract32(insn, 0, 5);
12696     rn = extract32(insn, 5, 5);
12697 
12698     a = extract32(insn, 23, 1);
12699     u = extract32(insn, 29, 1);
12700     is_scalar = extract32(insn, 28, 1);
12701     is_q = extract32(insn, 30, 1);
12702 
12703     opcode = extract32(insn, 12, 5);
12704     fpop = deposit32(opcode, 5, 1, a);
12705     fpop = deposit32(fpop, 6, 1, u);
12706 
12707     switch (fpop) {
12708     case 0x1d: /* SCVTF */
12709     case 0x5d: /* UCVTF */
12710     {
12711         int elements;
12712 
12713         if (is_scalar) {
12714             elements = 1;
12715         } else {
12716             elements = (is_q ? 8 : 4);
12717         }
12718 
12719         if (!fp_access_check(s)) {
12720             return;
12721         }
12722         handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12723         return;
12724     }
12725     break;
12726     case 0x2c: /* FCMGT (zero) */
12727     case 0x2d: /* FCMEQ (zero) */
12728     case 0x2e: /* FCMLT (zero) */
12729     case 0x6c: /* FCMGE (zero) */
12730     case 0x6d: /* FCMLE (zero) */
12731         handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12732         return;
12733     case 0x3d: /* FRECPE */
12734     case 0x3f: /* FRECPX */
12735         break;
12736     case 0x18: /* FRINTN */
12737         only_in_vector = true;
12738         rmode = FPROUNDING_TIEEVEN;
12739         break;
12740     case 0x19: /* FRINTM */
12741         only_in_vector = true;
12742         rmode = FPROUNDING_NEGINF;
12743         break;
12744     case 0x38: /* FRINTP */
12745         only_in_vector = true;
12746         rmode = FPROUNDING_POSINF;
12747         break;
12748     case 0x39: /* FRINTZ */
12749         only_in_vector = true;
12750         rmode = FPROUNDING_ZERO;
12751         break;
12752     case 0x58: /* FRINTA */
12753         only_in_vector = true;
12754         rmode = FPROUNDING_TIEAWAY;
12755         break;
12756     case 0x59: /* FRINTX */
12757     case 0x79: /* FRINTI */
12758         only_in_vector = true;
12759         /* current rounding mode */
12760         break;
12761     case 0x1a: /* FCVTNS */
12762         rmode = FPROUNDING_TIEEVEN;
12763         break;
12764     case 0x1b: /* FCVTMS */
12765         rmode = FPROUNDING_NEGINF;
12766         break;
12767     case 0x1c: /* FCVTAS */
12768         rmode = FPROUNDING_TIEAWAY;
12769         break;
12770     case 0x3a: /* FCVTPS */
12771         rmode = FPROUNDING_POSINF;
12772         break;
12773     case 0x3b: /* FCVTZS */
12774         rmode = FPROUNDING_ZERO;
12775         break;
12776     case 0x5a: /* FCVTNU */
12777         rmode = FPROUNDING_TIEEVEN;
12778         break;
12779     case 0x5b: /* FCVTMU */
12780         rmode = FPROUNDING_NEGINF;
12781         break;
12782     case 0x5c: /* FCVTAU */
12783         rmode = FPROUNDING_TIEAWAY;
12784         break;
12785     case 0x7a: /* FCVTPU */
12786         rmode = FPROUNDING_POSINF;
12787         break;
12788     case 0x7b: /* FCVTZU */
12789         rmode = FPROUNDING_ZERO;
12790         break;
12791     case 0x2f: /* FABS */
12792     case 0x6f: /* FNEG */
12793         need_fpst = false;
12794         break;
12795     case 0x7d: /* FRSQRTE */
12796     case 0x7f: /* FSQRT (vector) */
12797         break;
12798     default:
12799         unallocated_encoding(s);
12800         return;
12801     }
12802 
12803 
12804     /* Check additional constraints for the scalar encoding */
12805     if (is_scalar) {
12806         if (!is_q) {
12807             unallocated_encoding(s);
12808             return;
12809         }
12810         /* FRINTxx is only in the vector form */
12811         if (only_in_vector) {
12812             unallocated_encoding(s);
12813             return;
12814         }
12815     }
12816 
12817     if (!fp_access_check(s)) {
12818         return;
12819     }
12820 
12821     if (rmode >= 0 || need_fpst) {
12822         tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12823     }
12824 
12825     if (rmode >= 0) {
12826         tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12827     }
12828 
12829     if (is_scalar) {
12830         TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12831         TCGv_i32 tcg_res = tcg_temp_new_i32();
12832 
12833         switch (fpop) {
12834         case 0x1a: /* FCVTNS */
12835         case 0x1b: /* FCVTMS */
12836         case 0x1c: /* FCVTAS */
12837         case 0x3a: /* FCVTPS */
12838         case 0x3b: /* FCVTZS */
12839             gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12840             break;
12841         case 0x3d: /* FRECPE */
12842             gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12843             break;
12844         case 0x3f: /* FRECPX */
12845             gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12846             break;
12847         case 0x5a: /* FCVTNU */
12848         case 0x5b: /* FCVTMU */
12849         case 0x5c: /* FCVTAU */
12850         case 0x7a: /* FCVTPU */
12851         case 0x7b: /* FCVTZU */
12852             gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12853             break;
12854         case 0x6f: /* FNEG */
12855             tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12856             break;
12857         case 0x7d: /* FRSQRTE */
12858             gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12859             break;
12860         default:
12861             g_assert_not_reached();
12862         }
12863 
12864         /* limit any sign extension going on */
12865         tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12866         write_fp_sreg(s, rd, tcg_res);
12867     } else {
12868         for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12869             TCGv_i32 tcg_op = tcg_temp_new_i32();
12870             TCGv_i32 tcg_res = tcg_temp_new_i32();
12871 
12872             read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12873 
12874             switch (fpop) {
12875             case 0x1a: /* FCVTNS */
12876             case 0x1b: /* FCVTMS */
12877             case 0x1c: /* FCVTAS */
12878             case 0x3a: /* FCVTPS */
12879             case 0x3b: /* FCVTZS */
12880                 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12881                 break;
12882             case 0x3d: /* FRECPE */
12883                 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12884                 break;
12885             case 0x5a: /* FCVTNU */
12886             case 0x5b: /* FCVTMU */
12887             case 0x5c: /* FCVTAU */
12888             case 0x7a: /* FCVTPU */
12889             case 0x7b: /* FCVTZU */
12890                 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12891                 break;
12892             case 0x18: /* FRINTN */
12893             case 0x19: /* FRINTM */
12894             case 0x38: /* FRINTP */
12895             case 0x39: /* FRINTZ */
12896             case 0x58: /* FRINTA */
12897             case 0x79: /* FRINTI */
12898                 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12899                 break;
12900             case 0x59: /* FRINTX */
12901                 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12902                 break;
12903             case 0x2f: /* FABS */
12904                 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12905                 break;
12906             case 0x6f: /* FNEG */
12907                 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12908                 break;
12909             case 0x7d: /* FRSQRTE */
12910                 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12911                 break;
12912             case 0x7f: /* FSQRT */
12913                 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12914                 break;
12915             default:
12916                 g_assert_not_reached();
12917             }
12918 
12919             write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12920         }
12921 
12922         clear_vec_high(s, is_q, rd);
12923     }
12924 
12925     if (tcg_rmode) {
12926         gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12927     }
12928 }
12929 
12930 /* AdvSIMD scalar x indexed element
12931  *  31 30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12932  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12933  * | 0 1 | U | 1 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12934  * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12935  * AdvSIMD vector x indexed element
12936  *   31  30  29 28       24 23  22 21  20  19  16 15 12  11  10 9    5 4    0
12937  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12938  * | 0 | Q | U | 0 1 1 1 1 | size | L | M |  Rm  | opc | H | 0 |  Rn  |  Rd  |
12939  * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12940  */
12941 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12942 {
12943     /* This encoding has two kinds of instruction:
12944      *  normal, where we perform elt x idxelt => elt for each
12945      *     element in the vector
12946      *  long, where we perform elt x idxelt and generate a result of
12947      *     double the width of the input element
12948      * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12949      */
12950     bool is_scalar = extract32(insn, 28, 1);
12951     bool is_q = extract32(insn, 30, 1);
12952     bool u = extract32(insn, 29, 1);
12953     int size = extract32(insn, 22, 2);
12954     int l = extract32(insn, 21, 1);
12955     int m = extract32(insn, 20, 1);
12956     /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12957     int rm = extract32(insn, 16, 4);
12958     int opcode = extract32(insn, 12, 4);
12959     int h = extract32(insn, 11, 1);
12960     int rn = extract32(insn, 5, 5);
12961     int rd = extract32(insn, 0, 5);
12962     bool is_long = false;
12963     int is_fp = 0;
12964     bool is_fp16 = false;
12965     int index;
12966     TCGv_ptr fpst;
12967 
12968     switch (16 * u + opcode) {
12969     case 0x08: /* MUL */
12970     case 0x10: /* MLA */
12971     case 0x14: /* MLS */
12972         if (is_scalar) {
12973             unallocated_encoding(s);
12974             return;
12975         }
12976         break;
12977     case 0x02: /* SMLAL, SMLAL2 */
12978     case 0x12: /* UMLAL, UMLAL2 */
12979     case 0x06: /* SMLSL, SMLSL2 */
12980     case 0x16: /* UMLSL, UMLSL2 */
12981     case 0x0a: /* SMULL, SMULL2 */
12982     case 0x1a: /* UMULL, UMULL2 */
12983         if (is_scalar) {
12984             unallocated_encoding(s);
12985             return;
12986         }
12987         is_long = true;
12988         break;
12989     case 0x03: /* SQDMLAL, SQDMLAL2 */
12990     case 0x07: /* SQDMLSL, SQDMLSL2 */
12991     case 0x0b: /* SQDMULL, SQDMULL2 */
12992         is_long = true;
12993         break;
12994     case 0x0c: /* SQDMULH */
12995     case 0x0d: /* SQRDMULH */
12996         break;
12997     case 0x1d: /* SQRDMLAH */
12998     case 0x1f: /* SQRDMLSH */
12999         if (!dc_isar_feature(aa64_rdm, s)) {
13000             unallocated_encoding(s);
13001             return;
13002         }
13003         break;
13004     case 0x0e: /* SDOT */
13005     case 0x1e: /* UDOT */
13006         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13007             unallocated_encoding(s);
13008             return;
13009         }
13010         break;
13011     case 0x0f:
13012         switch (size) {
13013         case 0: /* SUDOT */
13014         case 2: /* USDOT */
13015             if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13016                 unallocated_encoding(s);
13017                 return;
13018             }
13019             size = MO_32;
13020             break;
13021         case 1: /* BFDOT */
13022             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13023                 unallocated_encoding(s);
13024                 return;
13025             }
13026             size = MO_32;
13027             break;
13028         case 3: /* BFMLAL{B,T} */
13029             if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13030                 unallocated_encoding(s);
13031                 return;
13032             }
13033             /* can't set is_fp without other incorrect size checks */
13034             size = MO_16;
13035             break;
13036         default:
13037             unallocated_encoding(s);
13038             return;
13039         }
13040         break;
13041     case 0x11: /* FCMLA #0 */
13042     case 0x13: /* FCMLA #90 */
13043     case 0x15: /* FCMLA #180 */
13044     case 0x17: /* FCMLA #270 */
13045         if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13046             unallocated_encoding(s);
13047             return;
13048         }
13049         is_fp = 2;
13050         break;
13051     case 0x00: /* FMLAL */
13052     case 0x04: /* FMLSL */
13053     case 0x18: /* FMLAL2 */
13054     case 0x1c: /* FMLSL2 */
13055         if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13056             unallocated_encoding(s);
13057             return;
13058         }
13059         size = MO_16;
13060         /* is_fp, but we pass tcg_env not fp_status.  */
13061         break;
13062     default:
13063     case 0x01: /* FMLA */
13064     case 0x05: /* FMLS */
13065     case 0x09: /* FMUL */
13066     case 0x19: /* FMULX */
13067         unallocated_encoding(s);
13068         return;
13069     }
13070 
13071     switch (is_fp) {
13072     case 1: /* normal fp */
13073         unallocated_encoding(s); /* in decodetree */
13074         return;
13075 
13076     case 2: /* complex fp */
13077         /* Each indexable element is a complex pair.  */
13078         size += 1;
13079         switch (size) {
13080         case MO_32:
13081             if (h && !is_q) {
13082                 unallocated_encoding(s);
13083                 return;
13084             }
13085             is_fp16 = true;
13086             break;
13087         case MO_64:
13088             break;
13089         default:
13090             unallocated_encoding(s);
13091             return;
13092         }
13093         break;
13094 
13095     default: /* integer */
13096         switch (size) {
13097         case MO_8:
13098         case MO_64:
13099             unallocated_encoding(s);
13100             return;
13101         }
13102         break;
13103     }
13104     if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13105         unallocated_encoding(s);
13106         return;
13107     }
13108 
13109     /* Given MemOp size, adjust register and indexing.  */
13110     switch (size) {
13111     case MO_16:
13112         index = h << 2 | l << 1 | m;
13113         break;
13114     case MO_32:
13115         index = h << 1 | l;
13116         rm |= m << 4;
13117         break;
13118     case MO_64:
13119         if (l || !is_q) {
13120             unallocated_encoding(s);
13121             return;
13122         }
13123         index = h;
13124         rm |= m << 4;
13125         break;
13126     default:
13127         g_assert_not_reached();
13128     }
13129 
13130     if (!fp_access_check(s)) {
13131         return;
13132     }
13133 
13134     if (is_fp) {
13135         fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13136     } else {
13137         fpst = NULL;
13138     }
13139 
13140     switch (16 * u + opcode) {
13141     case 0x0e: /* SDOT */
13142     case 0x1e: /* UDOT */
13143         gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13144                          u ? gen_helper_gvec_udot_idx_b
13145                          : gen_helper_gvec_sdot_idx_b);
13146         return;
13147     case 0x0f:
13148         switch (extract32(insn, 22, 2)) {
13149         case 0: /* SUDOT */
13150             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13151                              gen_helper_gvec_sudot_idx_b);
13152             return;
13153         case 1: /* BFDOT */
13154             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13155                              gen_helper_gvec_bfdot_idx);
13156             return;
13157         case 2: /* USDOT */
13158             gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13159                              gen_helper_gvec_usdot_idx_b);
13160             return;
13161         case 3: /* BFMLAL{B,T} */
13162             gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13163                               gen_helper_gvec_bfmlal_idx);
13164             return;
13165         }
13166         g_assert_not_reached();
13167     case 0x11: /* FCMLA #0 */
13168     case 0x13: /* FCMLA #90 */
13169     case 0x15: /* FCMLA #180 */
13170     case 0x17: /* FCMLA #270 */
13171         {
13172             int rot = extract32(insn, 13, 2);
13173             int data = (index << 2) | rot;
13174             tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13175                                vec_full_reg_offset(s, rn),
13176                                vec_full_reg_offset(s, rm),
13177                                vec_full_reg_offset(s, rd), fpst,
13178                                is_q ? 16 : 8, vec_full_reg_size(s), data,
13179                                size == MO_64
13180                                ? gen_helper_gvec_fcmlas_idx
13181                                : gen_helper_gvec_fcmlah_idx);
13182         }
13183         return;
13184 
13185     case 0x00: /* FMLAL */
13186     case 0x04: /* FMLSL */
13187     case 0x18: /* FMLAL2 */
13188     case 0x1c: /* FMLSL2 */
13189         {
13190             int is_s = extract32(opcode, 2, 1);
13191             int is_2 = u;
13192             int data = (index << 2) | (is_2 << 1) | is_s;
13193             tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13194                                vec_full_reg_offset(s, rn),
13195                                vec_full_reg_offset(s, rm), tcg_env,
13196                                is_q ? 16 : 8, vec_full_reg_size(s),
13197                                data, gen_helper_gvec_fmlal_idx_a64);
13198         }
13199         return;
13200 
13201     case 0x08: /* MUL */
13202         if (!is_long && !is_scalar) {
13203             static gen_helper_gvec_3 * const fns[3] = {
13204                 gen_helper_gvec_mul_idx_h,
13205                 gen_helper_gvec_mul_idx_s,
13206                 gen_helper_gvec_mul_idx_d,
13207             };
13208             tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13209                                vec_full_reg_offset(s, rn),
13210                                vec_full_reg_offset(s, rm),
13211                                is_q ? 16 : 8, vec_full_reg_size(s),
13212                                index, fns[size - 1]);
13213             return;
13214         }
13215         break;
13216 
13217     case 0x10: /* MLA */
13218         if (!is_long && !is_scalar) {
13219             static gen_helper_gvec_4 * const fns[3] = {
13220                 gen_helper_gvec_mla_idx_h,
13221                 gen_helper_gvec_mla_idx_s,
13222                 gen_helper_gvec_mla_idx_d,
13223             };
13224             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13225                                vec_full_reg_offset(s, rn),
13226                                vec_full_reg_offset(s, rm),
13227                                vec_full_reg_offset(s, rd),
13228                                is_q ? 16 : 8, vec_full_reg_size(s),
13229                                index, fns[size - 1]);
13230             return;
13231         }
13232         break;
13233 
13234     case 0x14: /* MLS */
13235         if (!is_long && !is_scalar) {
13236             static gen_helper_gvec_4 * const fns[3] = {
13237                 gen_helper_gvec_mls_idx_h,
13238                 gen_helper_gvec_mls_idx_s,
13239                 gen_helper_gvec_mls_idx_d,
13240             };
13241             tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13242                                vec_full_reg_offset(s, rn),
13243                                vec_full_reg_offset(s, rm),
13244                                vec_full_reg_offset(s, rd),
13245                                is_q ? 16 : 8, vec_full_reg_size(s),
13246                                index, fns[size - 1]);
13247             return;
13248         }
13249         break;
13250     }
13251 
13252     if (size == 3) {
13253         g_assert_not_reached();
13254     } else if (!is_long) {
13255         /* 32 bit floating point, or 16 or 32 bit integer.
13256          * For the 16 bit scalar case we use the usual Neon helpers and
13257          * rely on the fact that 0 op 0 == 0 with no side effects.
13258          */
13259         TCGv_i32 tcg_idx = tcg_temp_new_i32();
13260         int pass, maxpasses;
13261 
13262         if (is_scalar) {
13263             maxpasses = 1;
13264         } else {
13265             maxpasses = is_q ? 4 : 2;
13266         }
13267 
13268         read_vec_element_i32(s, tcg_idx, rm, index, size);
13269 
13270         if (size == 1 && !is_scalar) {
13271             /* The simplest way to handle the 16x16 indexed ops is to duplicate
13272              * the index into both halves of the 32 bit tcg_idx and then use
13273              * the usual Neon helpers.
13274              */
13275             tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13276         }
13277 
13278         for (pass = 0; pass < maxpasses; pass++) {
13279             TCGv_i32 tcg_op = tcg_temp_new_i32();
13280             TCGv_i32 tcg_res = tcg_temp_new_i32();
13281 
13282             read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13283 
13284             switch (16 * u + opcode) {
13285             case 0x08: /* MUL */
13286             case 0x10: /* MLA */
13287             case 0x14: /* MLS */
13288             {
13289                 static NeonGenTwoOpFn * const fns[2][2] = {
13290                     { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13291                     { tcg_gen_add_i32, tcg_gen_sub_i32 },
13292                 };
13293                 NeonGenTwoOpFn *genfn;
13294                 bool is_sub = opcode == 0x4;
13295 
13296                 if (size == 1) {
13297                     gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13298                 } else {
13299                     tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13300                 }
13301                 if (opcode == 0x8) {
13302                     break;
13303                 }
13304                 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13305                 genfn = fns[size - 1][is_sub];
13306                 genfn(tcg_res, tcg_op, tcg_res);
13307                 break;
13308             }
13309             case 0x0c: /* SQDMULH */
13310                 if (size == 1) {
13311                     gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13312                                                tcg_op, tcg_idx);
13313                 } else {
13314                     gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13315                                                tcg_op, tcg_idx);
13316                 }
13317                 break;
13318             case 0x0d: /* SQRDMULH */
13319                 if (size == 1) {
13320                     gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13321                                                 tcg_op, tcg_idx);
13322                 } else {
13323                     gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13324                                                 tcg_op, tcg_idx);
13325                 }
13326                 break;
13327             case 0x1d: /* SQRDMLAH */
13328                 read_vec_element_i32(s, tcg_res, rd, pass,
13329                                      is_scalar ? size : MO_32);
13330                 if (size == 1) {
13331                     gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13332                                                 tcg_op, tcg_idx, tcg_res);
13333                 } else {
13334                     gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13335                                                 tcg_op, tcg_idx, tcg_res);
13336                 }
13337                 break;
13338             case 0x1f: /* SQRDMLSH */
13339                 read_vec_element_i32(s, tcg_res, rd, pass,
13340                                      is_scalar ? size : MO_32);
13341                 if (size == 1) {
13342                     gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13343                                                 tcg_op, tcg_idx, tcg_res);
13344                 } else {
13345                     gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13346                                                 tcg_op, tcg_idx, tcg_res);
13347                 }
13348                 break;
13349             default:
13350             case 0x01: /* FMLA */
13351             case 0x05: /* FMLS */
13352             case 0x09: /* FMUL */
13353             case 0x19: /* FMULX */
13354                 g_assert_not_reached();
13355             }
13356 
13357             if (is_scalar) {
13358                 write_fp_sreg(s, rd, tcg_res);
13359             } else {
13360                 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13361             }
13362         }
13363 
13364         clear_vec_high(s, is_q, rd);
13365     } else {
13366         /* long ops: 16x16->32 or 32x32->64 */
13367         TCGv_i64 tcg_res[2];
13368         int pass;
13369         bool satop = extract32(opcode, 0, 1);
13370         MemOp memop = MO_32;
13371 
13372         if (satop || !u) {
13373             memop |= MO_SIGN;
13374         }
13375 
13376         if (size == 2) {
13377             TCGv_i64 tcg_idx = tcg_temp_new_i64();
13378 
13379             read_vec_element(s, tcg_idx, rm, index, memop);
13380 
13381             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13382                 TCGv_i64 tcg_op = tcg_temp_new_i64();
13383                 TCGv_i64 tcg_passres;
13384                 int passelt;
13385 
13386                 if (is_scalar) {
13387                     passelt = 0;
13388                 } else {
13389                     passelt = pass + (is_q * 2);
13390                 }
13391 
13392                 read_vec_element(s, tcg_op, rn, passelt, memop);
13393 
13394                 tcg_res[pass] = tcg_temp_new_i64();
13395 
13396                 if (opcode == 0xa || opcode == 0xb) {
13397                     /* Non-accumulating ops */
13398                     tcg_passres = tcg_res[pass];
13399                 } else {
13400                     tcg_passres = tcg_temp_new_i64();
13401                 }
13402 
13403                 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13404 
13405                 if (satop) {
13406                     /* saturating, doubling */
13407                     gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13408                                                       tcg_passres, tcg_passres);
13409                 }
13410 
13411                 if (opcode == 0xa || opcode == 0xb) {
13412                     continue;
13413                 }
13414 
13415                 /* Accumulating op: handle accumulate step */
13416                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13417 
13418                 switch (opcode) {
13419                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13420                     tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13421                     break;
13422                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13423                     tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13424                     break;
13425                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13426                     tcg_gen_neg_i64(tcg_passres, tcg_passres);
13427                     /* fall through */
13428                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13429                     gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13430                                                       tcg_res[pass],
13431                                                       tcg_passres);
13432                     break;
13433                 default:
13434                     g_assert_not_reached();
13435                 }
13436             }
13437 
13438             clear_vec_high(s, !is_scalar, rd);
13439         } else {
13440             TCGv_i32 tcg_idx = tcg_temp_new_i32();
13441 
13442             assert(size == 1);
13443             read_vec_element_i32(s, tcg_idx, rm, index, size);
13444 
13445             if (!is_scalar) {
13446                 /* The simplest way to handle the 16x16 indexed ops is to
13447                  * duplicate the index into both halves of the 32 bit tcg_idx
13448                  * and then use the usual Neon helpers.
13449                  */
13450                 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13451             }
13452 
13453             for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13454                 TCGv_i32 tcg_op = tcg_temp_new_i32();
13455                 TCGv_i64 tcg_passres;
13456 
13457                 if (is_scalar) {
13458                     read_vec_element_i32(s, tcg_op, rn, pass, size);
13459                 } else {
13460                     read_vec_element_i32(s, tcg_op, rn,
13461                                          pass + (is_q * 2), MO_32);
13462                 }
13463 
13464                 tcg_res[pass] = tcg_temp_new_i64();
13465 
13466                 if (opcode == 0xa || opcode == 0xb) {
13467                     /* Non-accumulating ops */
13468                     tcg_passres = tcg_res[pass];
13469                 } else {
13470                     tcg_passres = tcg_temp_new_i64();
13471                 }
13472 
13473                 if (memop & MO_SIGN) {
13474                     gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13475                 } else {
13476                     gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13477                 }
13478                 if (satop) {
13479                     gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13480                                                       tcg_passres, tcg_passres);
13481                 }
13482 
13483                 if (opcode == 0xa || opcode == 0xb) {
13484                     continue;
13485                 }
13486 
13487                 /* Accumulating op: handle accumulate step */
13488                 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13489 
13490                 switch (opcode) {
13491                 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13492                     gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13493                                              tcg_passres);
13494                     break;
13495                 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13496                     gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13497                                              tcg_passres);
13498                     break;
13499                 case 0x7: /* SQDMLSL, SQDMLSL2 */
13500                     gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13501                     /* fall through */
13502                 case 0x3: /* SQDMLAL, SQDMLAL2 */
13503                     gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13504                                                       tcg_res[pass],
13505                                                       tcg_passres);
13506                     break;
13507                 default:
13508                     g_assert_not_reached();
13509                 }
13510             }
13511 
13512             if (is_scalar) {
13513                 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13514             }
13515         }
13516 
13517         if (is_scalar) {
13518             tcg_res[1] = tcg_constant_i64(0);
13519         }
13520 
13521         for (pass = 0; pass < 2; pass++) {
13522             write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13523         }
13524     }
13525 }
13526 
13527 /* C3.6 Data processing - SIMD, inc Crypto
13528  *
13529  * As the decode gets a little complex we are using a table based
13530  * approach for this part of the decode.
13531  */
13532 static const AArch64DecodeTable data_proc_simd[] = {
13533     /* pattern  ,  mask     ,  fn                        */
13534     { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13535     { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13536     { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13537     { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13538     { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13539     { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13540     /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13541     { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13542     { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13543     { 0x0e000000, 0xbf208c00, disas_simd_tb },
13544     { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13545     { 0x2e000000, 0xbf208400, disas_simd_ext },
13546     { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13547     { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13548     { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13549     { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13550     { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13551     { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13552     { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13553     { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13554     { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13555     { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13556     { 0x00000000, 0x00000000, NULL }
13557 };
13558 
13559 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13560 {
13561     /* Note that this is called with all non-FP cases from
13562      * table C3-6 so it must UNDEF for entries not specifically
13563      * allocated to instructions in that table.
13564      */
13565     AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13566     if (fn) {
13567         fn(s, insn);
13568     } else {
13569         unallocated_encoding(s);
13570     }
13571 }
13572 
13573 /* C3.6 Data processing - SIMD and floating point */
13574 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13575 {
13576     if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13577         disas_data_proc_fp(s, insn);
13578     } else {
13579         /* SIMD, including crypto */
13580         disas_data_proc_simd(s, insn);
13581     }
13582 }
13583 
13584 static bool trans_OK(DisasContext *s, arg_OK *a)
13585 {
13586     return true;
13587 }
13588 
13589 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13590 {
13591     s->is_nonstreaming = true;
13592     return true;
13593 }
13594 
13595 /**
13596  * is_guarded_page:
13597  * @env: The cpu environment
13598  * @s: The DisasContext
13599  *
13600  * Return true if the page is guarded.
13601  */
13602 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13603 {
13604     uint64_t addr = s->base.pc_first;
13605 #ifdef CONFIG_USER_ONLY
13606     return page_get_flags(addr) & PAGE_BTI;
13607 #else
13608     CPUTLBEntryFull *full;
13609     void *host;
13610     int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13611     int flags;
13612 
13613     /*
13614      * We test this immediately after reading an insn, which means
13615      * that the TLB entry must be present and valid, and thus this
13616      * access will never raise an exception.
13617      */
13618     flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13619                               false, &host, &full, 0);
13620     assert(!(flags & TLB_INVALID_MASK));
13621 
13622     return full->extra.arm.guarded;
13623 #endif
13624 }
13625 
13626 /**
13627  * btype_destination_ok:
13628  * @insn: The instruction at the branch destination
13629  * @bt: SCTLR_ELx.BT
13630  * @btype: PSTATE.BTYPE, and is non-zero
13631  *
13632  * On a guarded page, there are a limited number of insns
13633  * that may be present at the branch target:
13634  *   - branch target identifiers,
13635  *   - paciasp, pacibsp,
13636  *   - BRK insn
13637  *   - HLT insn
13638  * Anything else causes a Branch Target Exception.
13639  *
13640  * Return true if the branch is compatible, false to raise BTITRAP.
13641  */
13642 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13643 {
13644     if ((insn & 0xfffff01fu) == 0xd503201fu) {
13645         /* HINT space */
13646         switch (extract32(insn, 5, 7)) {
13647         case 0b011001: /* PACIASP */
13648         case 0b011011: /* PACIBSP */
13649             /*
13650              * If SCTLR_ELx.BT, then PACI*SP are not compatible
13651              * with btype == 3.  Otherwise all btype are ok.
13652              */
13653             return !bt || btype != 3;
13654         case 0b100000: /* BTI */
13655             /* Not compatible with any btype.  */
13656             return false;
13657         case 0b100010: /* BTI c */
13658             /* Not compatible with btype == 3 */
13659             return btype != 3;
13660         case 0b100100: /* BTI j */
13661             /* Not compatible with btype == 2 */
13662             return btype != 2;
13663         case 0b100110: /* BTI jc */
13664             /* Compatible with any btype.  */
13665             return true;
13666         }
13667     } else {
13668         switch (insn & 0xffe0001fu) {
13669         case 0xd4200000u: /* BRK */
13670         case 0xd4400000u: /* HLT */
13671             /* Give priority to the breakpoint exception.  */
13672             return true;
13673         }
13674     }
13675     return false;
13676 }
13677 
13678 /* C3.1 A64 instruction index by encoding */
13679 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13680 {
13681     switch (extract32(insn, 25, 4)) {
13682     case 0x5:
13683     case 0xd:      /* Data processing - register */
13684         disas_data_proc_reg(s, insn);
13685         break;
13686     case 0x7:
13687     case 0xf:      /* Data processing - SIMD and floating point */
13688         disas_data_proc_simd_fp(s, insn);
13689         break;
13690     default:
13691         unallocated_encoding(s);
13692         break;
13693     }
13694 }
13695 
13696 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13697                                           CPUState *cpu)
13698 {
13699     DisasContext *dc = container_of(dcbase, DisasContext, base);
13700     CPUARMState *env = cpu_env(cpu);
13701     ARMCPU *arm_cpu = env_archcpu(env);
13702     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13703     int bound, core_mmu_idx;
13704 
13705     dc->isar = &arm_cpu->isar;
13706     dc->condjmp = 0;
13707     dc->pc_save = dc->base.pc_first;
13708     dc->aarch64 = true;
13709     dc->thumb = false;
13710     dc->sctlr_b = 0;
13711     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13712     dc->condexec_mask = 0;
13713     dc->condexec_cond = 0;
13714     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
13715     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
13716     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
13717     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
13718     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
13719     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13720 #if !defined(CONFIG_USER_ONLY)
13721     dc->user = (dc->current_el == 0);
13722 #endif
13723     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
13724     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
13725     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
13726     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
13727     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
13728     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
13729     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
13730     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
13731     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
13732     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
13733     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
13734     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
13735     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
13736     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
13737     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
13738     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
13739     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
13740     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
13741     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
13742     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
13743     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
13744     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
13745     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
13746     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
13747     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
13748     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
13749     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
13750     dc->vec_len = 0;
13751     dc->vec_stride = 0;
13752     dc->cp_regs = arm_cpu->cp_regs;
13753     dc->features = env->features;
13754     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
13755     dc->gm_blocksize = arm_cpu->gm_blocksize;
13756 
13757 #ifdef CONFIG_USER_ONLY
13758     /* In sve_probe_page, we assume TBI is enabled. */
13759     tcg_debug_assert(dc->tbid & 1);
13760 #endif
13761 
13762     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
13763 
13764     /* Single step state. The code-generation logic here is:
13765      *  SS_ACTIVE == 0:
13766      *   generate code with no special handling for single-stepping (except
13767      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13768      *   this happens anyway because those changes are all system register or
13769      *   PSTATE writes).
13770      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13771      *   emit code for one insn
13772      *   emit code to clear PSTATE.SS
13773      *   emit code to generate software step exception for completed step
13774      *   end TB (as usual for having generated an exception)
13775      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13776      *   emit code to generate a software step exception
13777      *   end the TB
13778      */
13779     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
13780     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
13781     dc->is_ldex = false;
13782 
13783     /* Bound the number of insns to execute to those left on the page.  */
13784     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13785 
13786     /* If architectural single step active, limit to 1.  */
13787     if (dc->ss_active) {
13788         bound = 1;
13789     }
13790     dc->base.max_insns = MIN(dc->base.max_insns, bound);
13791 }
13792 
13793 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13794 {
13795 }
13796 
13797 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13798 {
13799     DisasContext *dc = container_of(dcbase, DisasContext, base);
13800     target_ulong pc_arg = dc->base.pc_next;
13801 
13802     if (tb_cflags(dcbase->tb) & CF_PCREL) {
13803         pc_arg &= ~TARGET_PAGE_MASK;
13804     }
13805     tcg_gen_insn_start(pc_arg, 0, 0);
13806     dc->insn_start_updated = false;
13807 }
13808 
13809 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13810 {
13811     DisasContext *s = container_of(dcbase, DisasContext, base);
13812     CPUARMState *env = cpu_env(cpu);
13813     uint64_t pc = s->base.pc_next;
13814     uint32_t insn;
13815 
13816     /* Singlestep exceptions have the highest priority. */
13817     if (s->ss_active && !s->pstate_ss) {
13818         /* Singlestep state is Active-pending.
13819          * If we're in this state at the start of a TB then either
13820          *  a) we just took an exception to an EL which is being debugged
13821          *     and this is the first insn in the exception handler
13822          *  b) debug exceptions were masked and we just unmasked them
13823          *     without changing EL (eg by clearing PSTATE.D)
13824          * In either case we're going to take a swstep exception in the
13825          * "did not step an insn" case, and so the syndrome ISV and EX
13826          * bits should be zero.
13827          */
13828         assert(s->base.num_insns == 1);
13829         gen_swstep_exception(s, 0, 0);
13830         s->base.is_jmp = DISAS_NORETURN;
13831         s->base.pc_next = pc + 4;
13832         return;
13833     }
13834 
13835     if (pc & 3) {
13836         /*
13837          * PC alignment fault.  This has priority over the instruction abort
13838          * that we would receive from a translation fault via arm_ldl_code.
13839          * This should only be possible after an indirect branch, at the
13840          * start of the TB.
13841          */
13842         assert(s->base.num_insns == 1);
13843         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
13844         s->base.is_jmp = DISAS_NORETURN;
13845         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
13846         return;
13847     }
13848 
13849     s->pc_curr = pc;
13850     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
13851     s->insn = insn;
13852     s->base.pc_next = pc + 4;
13853 
13854     s->fp_access_checked = false;
13855     s->sve_access_checked = false;
13856 
13857     if (s->pstate_il) {
13858         /*
13859          * Illegal execution state. This has priority over BTI
13860          * exceptions, but comes after instruction abort exceptions.
13861          */
13862         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
13863         return;
13864     }
13865 
13866     if (dc_isar_feature(aa64_bti, s)) {
13867         if (s->base.num_insns == 1) {
13868             /*
13869              * At the first insn of the TB, compute s->guarded_page.
13870              * We delayed computing this until successfully reading
13871              * the first insn of the TB, above.  This (mostly) ensures
13872              * that the softmmu tlb entry has been populated, and the
13873              * page table GP bit is available.
13874              *
13875              * Note that we need to compute this even if btype == 0,
13876              * because this value is used for BR instructions later
13877              * where ENV is not available.
13878              */
13879             s->guarded_page = is_guarded_page(env, s);
13880 
13881             /* First insn can have btype set to non-zero.  */
13882             tcg_debug_assert(s->btype >= 0);
13883 
13884             /*
13885              * Note that the Branch Target Exception has fairly high
13886              * priority -- below debugging exceptions but above most
13887              * everything else.  This allows us to handle this now
13888              * instead of waiting until the insn is otherwise decoded.
13889              */
13890             if (s->btype != 0
13891                 && s->guarded_page
13892                 && !btype_destination_ok(insn, s->bt, s->btype)) {
13893                 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
13894                 return;
13895             }
13896         } else {
13897             /* Not the first insn: btype must be 0.  */
13898             tcg_debug_assert(s->btype == 0);
13899         }
13900     }
13901 
13902     s->is_nonstreaming = false;
13903     if (s->sme_trap_nonstreaming) {
13904         disas_sme_fa64(s, insn);
13905     }
13906 
13907     if (!disas_a64(s, insn) &&
13908         !disas_sme(s, insn) &&
13909         !disas_sve(s, insn)) {
13910         disas_a64_legacy(s, insn);
13911     }
13912 
13913     /*
13914      * After execution of most insns, btype is reset to 0.
13915      * Note that we set btype == -1 when the insn sets btype.
13916      */
13917     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13918         reset_btype(s);
13919     }
13920 }
13921 
13922 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13923 {
13924     DisasContext *dc = container_of(dcbase, DisasContext, base);
13925 
13926     if (unlikely(dc->ss_active)) {
13927         /* Note that this means single stepping WFI doesn't halt the CPU.
13928          * For conditional branch insns this is harmless unreachable code as
13929          * gen_goto_tb() has already handled emitting the debug exception
13930          * (and thus a tb-jump is not possible when singlestepping).
13931          */
13932         switch (dc->base.is_jmp) {
13933         default:
13934             gen_a64_update_pc(dc, 4);
13935             /* fall through */
13936         case DISAS_EXIT:
13937         case DISAS_JUMP:
13938             gen_step_complete_exception(dc);
13939             break;
13940         case DISAS_NORETURN:
13941             break;
13942         }
13943     } else {
13944         switch (dc->base.is_jmp) {
13945         case DISAS_NEXT:
13946         case DISAS_TOO_MANY:
13947             gen_goto_tb(dc, 1, 4);
13948             break;
13949         default:
13950         case DISAS_UPDATE_EXIT:
13951             gen_a64_update_pc(dc, 4);
13952             /* fall through */
13953         case DISAS_EXIT:
13954             tcg_gen_exit_tb(NULL, 0);
13955             break;
13956         case DISAS_UPDATE_NOCHAIN:
13957             gen_a64_update_pc(dc, 4);
13958             /* fall through */
13959         case DISAS_JUMP:
13960             tcg_gen_lookup_and_goto_ptr();
13961             break;
13962         case DISAS_NORETURN:
13963         case DISAS_SWI:
13964             break;
13965         case DISAS_WFE:
13966             gen_a64_update_pc(dc, 4);
13967             gen_helper_wfe(tcg_env);
13968             break;
13969         case DISAS_YIELD:
13970             gen_a64_update_pc(dc, 4);
13971             gen_helper_yield(tcg_env);
13972             break;
13973         case DISAS_WFI:
13974             /*
13975              * This is a special case because we don't want to just halt
13976              * the CPU if trying to debug across a WFI.
13977              */
13978             gen_a64_update_pc(dc, 4);
13979             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
13980             /*
13981              * The helper doesn't necessarily throw an exception, but we
13982              * must go back to the main loop to check for interrupts anyway.
13983              */
13984             tcg_gen_exit_tb(NULL, 0);
13985             break;
13986         }
13987     }
13988 }
13989 
13990 const TranslatorOps aarch64_translator_ops = {
13991     .init_disas_context = aarch64_tr_init_disas_context,
13992     .tb_start           = aarch64_tr_tb_start,
13993     .insn_start         = aarch64_tr_insn_start,
13994     .translate_insn     = aarch64_tr_translate_insn,
13995     .tb_stop            = aarch64_tr_tb_stop,
13996 };
13997