1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 21 #include "exec/exec-all.h" 22 #include "translate.h" 23 #include "translate-a64.h" 24 #include "qemu/log.h" 25 #include "arm_ldst.h" 26 #include "semihosting/semihost.h" 27 #include "cpregs.h" 28 29 static TCGv_i64 cpu_X[32]; 30 static TCGv_i64 cpu_pc; 31 32 /* Load/store exclusive handling */ 33 static TCGv_i64 cpu_exclusive_high; 34 35 static const char *regnames[] = { 36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 40 }; 41 42 enum a64_shift_type { 43 A64_SHIFT_TYPE_LSL = 0, 44 A64_SHIFT_TYPE_LSR = 1, 45 A64_SHIFT_TYPE_ASR = 2, 46 A64_SHIFT_TYPE_ROR = 3 47 }; 48 49 /* 50 * Helpers for extracting complex instruction fields 51 */ 52 53 /* 54 * For load/store with an unsigned 12 bit immediate scaled by the element 55 * size. The input has the immediate field in bits [14:3] and the element 56 * size in [2:0]. 57 */ 58 static int uimm_scaled(DisasContext *s, int x) 59 { 60 unsigned imm = x >> 3; 61 unsigned scale = extract32(x, 0, 3); 62 return imm << scale; 63 } 64 65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 66 static int scale_by_log2_tag_granule(DisasContext *s, int x) 67 { 68 return x << LOG2_TAG_GRANULE; 69 } 70 71 /* 72 * Include the generated decoders. 73 */ 74 75 #include "decode-sme-fa64.c.inc" 76 #include "decode-a64.c.inc" 77 78 /* Table based decoder typedefs - used when the relevant bits for decode 79 * are too awkwardly scattered across the instruction (eg SIMD). 80 */ 81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); 82 83 typedef struct AArch64DecodeTable { 84 uint32_t pattern; 85 uint32_t mask; 86 AArch64DecodeFn *disas_fn; 87 } AArch64DecodeTable; 88 89 /* initialize TCG globals. */ 90 void a64_translate_init(void) 91 { 92 int i; 93 94 cpu_pc = tcg_global_mem_new_i64(tcg_env, 95 offsetof(CPUARMState, pc), 96 "pc"); 97 for (i = 0; i < 32; i++) { 98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 99 offsetof(CPUARMState, xregs[i]), 100 regnames[i]); 101 } 102 103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 104 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 105 } 106 107 /* 108 * Return the core mmu_idx to use for A64 load/store insns which 109 * have a "unprivileged load/store" variant. Those insns access 110 * EL0 if executed from an EL which has control over EL0 (usually 111 * EL1) but behave like normal loads and stores if executed from 112 * elsewhere (eg EL3). 113 * 114 * @unpriv : true for the unprivileged encoding; false for the 115 * normal encoding (in which case we will return the same 116 * thing as get_mem_index(). 117 */ 118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 119 { 120 /* 121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 122 * which is the usual mmu_idx for this cpu state. 123 */ 124 ARMMMUIdx useridx = s->mmu_idx; 125 126 if (unpriv && s->unpriv) { 127 /* 128 * We have pre-computed the condition for AccType_UNPRIV. 129 * Therefore we should never get here with a mmu_idx for 130 * which we do not know the corresponding user mmu_idx. 131 */ 132 switch (useridx) { 133 case ARMMMUIdx_E10_1: 134 case ARMMMUIdx_E10_1_PAN: 135 useridx = ARMMMUIdx_E10_0; 136 break; 137 case ARMMMUIdx_E20_2: 138 case ARMMMUIdx_E20_2_PAN: 139 useridx = ARMMMUIdx_E20_0; 140 break; 141 default: 142 g_assert_not_reached(); 143 } 144 } 145 return arm_to_core_mmu_idx(useridx); 146 } 147 148 static void set_btype_raw(int val) 149 { 150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 151 offsetof(CPUARMState, btype)); 152 } 153 154 static void set_btype(DisasContext *s, int val) 155 { 156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 157 tcg_debug_assert(val >= 1 && val <= 3); 158 set_btype_raw(val); 159 s->btype = -1; 160 } 161 162 static void reset_btype(DisasContext *s) 163 { 164 if (s->btype != 0) { 165 set_btype_raw(0); 166 s->btype = 0; 167 } 168 } 169 170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 171 { 172 assert(s->pc_save != -1); 173 if (tb_cflags(s->base.tb) & CF_PCREL) { 174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 175 } else { 176 tcg_gen_movi_i64(dest, s->pc_curr + diff); 177 } 178 } 179 180 void gen_a64_update_pc(DisasContext *s, target_long diff) 181 { 182 gen_pc_plus_diff(s, cpu_pc, diff); 183 s->pc_save = s->pc_curr + diff; 184 } 185 186 /* 187 * Handle Top Byte Ignore (TBI) bits. 188 * 189 * If address tagging is enabled via the TCR TBI bits: 190 * + for EL2 and EL3 there is only one TBI bit, and if it is set 191 * then the address is zero-extended, clearing bits [63:56] 192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 193 * and TBI1 controls addresses with bit 55 == 1. 194 * If the appropriate TBI bit is set for the address then 195 * the address is sign-extended from bit 55 into bits [63:56] 196 * 197 * Here We have concatenated TBI{1,0} into tbi. 198 */ 199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 200 TCGv_i64 src, int tbi) 201 { 202 if (tbi == 0) { 203 /* Load unmodified address */ 204 tcg_gen_mov_i64(dst, src); 205 } else if (!regime_has_2_ranges(s->mmu_idx)) { 206 /* Force tag byte to all zero */ 207 tcg_gen_extract_i64(dst, src, 0, 56); 208 } else { 209 /* Sign-extend from bit 55. */ 210 tcg_gen_sextract_i64(dst, src, 0, 56); 211 212 switch (tbi) { 213 case 1: 214 /* tbi0 but !tbi1: only use the extension if positive */ 215 tcg_gen_and_i64(dst, dst, src); 216 break; 217 case 2: 218 /* !tbi0 but tbi1: only use the extension if negative */ 219 tcg_gen_or_i64(dst, dst, src); 220 break; 221 case 3: 222 /* tbi0 and tbi1: always use the extension */ 223 break; 224 default: 225 g_assert_not_reached(); 226 } 227 } 228 } 229 230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 231 { 232 /* 233 * If address tagging is enabled for instructions via the TCR TBI bits, 234 * then loading an address into the PC will clear out any tag. 235 */ 236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 237 s->pc_save = -1; 238 } 239 240 /* 241 * Handle MTE and/or TBI. 242 * 243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 244 * for the tag to be present in the FAR_ELx register. But for user-only 245 * mode we do not have a TLB with which to implement this, so we must 246 * remove the top byte now. 247 * 248 * Always return a fresh temporary that we can increment independently 249 * of the write-back address. 250 */ 251 252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 253 { 254 TCGv_i64 clean = tcg_temp_new_i64(); 255 #ifdef CONFIG_USER_ONLY 256 gen_top_byte_ignore(s, clean, addr, s->tbid); 257 #else 258 tcg_gen_mov_i64(clean, addr); 259 #endif 260 return clean; 261 } 262 263 /* Insert a zero tag into src, with the result at dst. */ 264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 265 { 266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 267 } 268 269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 270 MMUAccessType acc, int log2_size) 271 { 272 gen_helper_probe_access(tcg_env, ptr, 273 tcg_constant_i32(acc), 274 tcg_constant_i32(get_mem_index(s)), 275 tcg_constant_i32(1 << log2_size)); 276 } 277 278 /* 279 * For MTE, check a single logical or atomic access. This probes a single 280 * address, the exact one specified. The size and alignment of the access 281 * is not relevant to MTE, per se, but watchpoints do require the size, 282 * and we want to recognize those before making any other changes to state. 283 */ 284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 285 bool is_write, bool tag_checked, 286 MemOp memop, bool is_unpriv, 287 int core_idx) 288 { 289 if (tag_checked && s->mte_active[is_unpriv]) { 290 TCGv_i64 ret; 291 int desc = 0; 292 293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); 298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 299 300 ret = tcg_temp_new_i64(); 301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 302 303 return ret; 304 } 305 return clean_data_tbi(s, addr); 306 } 307 308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 309 bool tag_checked, MemOp memop) 310 { 311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 312 false, get_mem_index(s)); 313 } 314 315 /* 316 * For MTE, check multiple logical sequential accesses. 317 */ 318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 319 bool tag_checked, int total_size, MemOp single_mop) 320 { 321 if (tag_checked && s->mte_active[0]) { 322 TCGv_i64 ret; 323 int desc = 0; 324 325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); 330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 331 332 ret = tcg_temp_new_i64(); 333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 334 335 return ret; 336 } 337 return clean_data_tbi(s, addr); 338 } 339 340 /* 341 * Generate the special alignment check that applies to AccType_ATOMIC 342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 343 * naturally aligned, but it must not cross a 16-byte boundary. 344 * See AArch64.CheckAlignment(). 345 */ 346 static void check_lse2_align(DisasContext *s, int rn, int imm, 347 bool is_write, MemOp mop) 348 { 349 TCGv_i32 tmp; 350 TCGv_i64 addr; 351 TCGLabel *over_label; 352 MMUAccessType type; 353 int mmu_idx; 354 355 tmp = tcg_temp_new_i32(); 356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 357 tcg_gen_addi_i32(tmp, tmp, imm & 15); 358 tcg_gen_andi_i32(tmp, tmp, 15); 359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 360 361 over_label = gen_new_label(); 362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 363 364 addr = tcg_temp_new_i64(); 365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 366 367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 368 mmu_idx = get_mem_index(s); 369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 370 tcg_constant_i32(mmu_idx)); 371 372 gen_set_label(over_label); 373 374 } 375 376 /* Handle the alignment check for AccType_ATOMIC instructions. */ 377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 378 { 379 MemOp size = mop & MO_SIZE; 380 381 if (size == MO_8) { 382 return mop; 383 } 384 385 /* 386 * If size == MO_128, this is a LDXP, and the operation is single-copy 387 * atomic for each doubleword, not the entire quadword; it still must 388 * be quadword aligned. 389 */ 390 if (size == MO_128) { 391 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 392 MO_ATOM_IFALIGN_PAIR); 393 } 394 if (dc_isar_feature(aa64_lse2, s)) { 395 check_lse2_align(s, rn, 0, true, mop); 396 } else { 397 mop |= MO_ALIGN; 398 } 399 return finalize_memop(s, mop); 400 } 401 402 /* Handle the alignment check for AccType_ORDERED instructions. */ 403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 404 bool is_write, MemOp mop) 405 { 406 MemOp size = mop & MO_SIZE; 407 408 if (size == MO_8) { 409 return mop; 410 } 411 if (size == MO_128) { 412 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 413 MO_ATOM_IFALIGN_PAIR); 414 } 415 if (!dc_isar_feature(aa64_lse2, s)) { 416 mop |= MO_ALIGN; 417 } else if (!s->naa) { 418 check_lse2_align(s, rn, imm, is_write, mop); 419 } 420 return finalize_memop(s, mop); 421 } 422 423 typedef struct DisasCompare64 { 424 TCGCond cond; 425 TCGv_i64 value; 426 } DisasCompare64; 427 428 static void a64_test_cc(DisasCompare64 *c64, int cc) 429 { 430 DisasCompare c32; 431 432 arm_test_cc(&c32, cc); 433 434 /* 435 * Sign-extend the 32-bit value so that the GE/LT comparisons work 436 * properly. The NE/EQ comparisons are also fine with this choice. 437 */ 438 c64->cond = c32.cond; 439 c64->value = tcg_temp_new_i64(); 440 tcg_gen_ext_i32_i64(c64->value, c32.value); 441 } 442 443 static void gen_rebuild_hflags(DisasContext *s) 444 { 445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 446 } 447 448 static void gen_exception_internal(int excp) 449 { 450 assert(excp_is_internal(excp)); 451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); 452 } 453 454 static void gen_exception_internal_insn(DisasContext *s, int excp) 455 { 456 gen_a64_update_pc(s, 0); 457 gen_exception_internal(excp); 458 s->base.is_jmp = DISAS_NORETURN; 459 } 460 461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 462 { 463 gen_a64_update_pc(s, 0); 464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 465 s->base.is_jmp = DISAS_NORETURN; 466 } 467 468 static void gen_step_complete_exception(DisasContext *s) 469 { 470 /* We just completed step of an insn. Move from Active-not-pending 471 * to Active-pending, and then also take the swstep exception. 472 * This corresponds to making the (IMPDEF) choice to prioritize 473 * swstep exceptions over asynchronous exceptions taken to an exception 474 * level where debug is disabled. This choice has the advantage that 475 * we do not need to maintain internal state corresponding to the 476 * ISV/EX syndrome bits between completion of the step and generation 477 * of the exception, and our syndrome information is always correct. 478 */ 479 gen_ss_advance(s); 480 gen_swstep_exception(s, 1, s->is_ldex); 481 s->base.is_jmp = DISAS_NORETURN; 482 } 483 484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 485 { 486 if (s->ss_active) { 487 return false; 488 } 489 return translator_use_goto_tb(&s->base, dest); 490 } 491 492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 493 { 494 if (use_goto_tb(s, s->pc_curr + diff)) { 495 /* 496 * For pcrel, the pc must always be up-to-date on entry to 497 * the linked TB, so that it can use simple additions for all 498 * further adjustments. For !pcrel, the linked TB is compiled 499 * to know its full virtual address, so we can delay the 500 * update to pc to the unlinked path. A long chain of links 501 * can thus avoid many updates to the PC. 502 */ 503 if (tb_cflags(s->base.tb) & CF_PCREL) { 504 gen_a64_update_pc(s, diff); 505 tcg_gen_goto_tb(n); 506 } else { 507 tcg_gen_goto_tb(n); 508 gen_a64_update_pc(s, diff); 509 } 510 tcg_gen_exit_tb(s->base.tb, n); 511 s->base.is_jmp = DISAS_NORETURN; 512 } else { 513 gen_a64_update_pc(s, diff); 514 if (s->ss_active) { 515 gen_step_complete_exception(s); 516 } else { 517 tcg_gen_lookup_and_goto_ptr(); 518 s->base.is_jmp = DISAS_NORETURN; 519 } 520 } 521 } 522 523 /* 524 * Register access functions 525 * 526 * These functions are used for directly accessing a register in where 527 * changes to the final register value are likely to be made. If you 528 * need to use a register for temporary calculation (e.g. index type 529 * operations) use the read_* form. 530 * 531 * B1.2.1 Register mappings 532 * 533 * In instruction register encoding 31 can refer to ZR (zero register) or 534 * the SP (stack pointer) depending on context. In QEMU's case we map SP 535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 536 * This is the point of the _sp forms. 537 */ 538 TCGv_i64 cpu_reg(DisasContext *s, int reg) 539 { 540 if (reg == 31) { 541 TCGv_i64 t = tcg_temp_new_i64(); 542 tcg_gen_movi_i64(t, 0); 543 return t; 544 } else { 545 return cpu_X[reg]; 546 } 547 } 548 549 /* register access for when 31 == SP */ 550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 551 { 552 return cpu_X[reg]; 553 } 554 555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 556 * representing the register contents. This TCGv is an auto-freed 557 * temporary so it need not be explicitly freed, and may be modified. 558 */ 559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 560 { 561 TCGv_i64 v = tcg_temp_new_i64(); 562 if (reg != 31) { 563 if (sf) { 564 tcg_gen_mov_i64(v, cpu_X[reg]); 565 } else { 566 tcg_gen_ext32u_i64(v, cpu_X[reg]); 567 } 568 } else { 569 tcg_gen_movi_i64(v, 0); 570 } 571 return v; 572 } 573 574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 575 { 576 TCGv_i64 v = tcg_temp_new_i64(); 577 if (sf) { 578 tcg_gen_mov_i64(v, cpu_X[reg]); 579 } else { 580 tcg_gen_ext32u_i64(v, cpu_X[reg]); 581 } 582 return v; 583 } 584 585 /* Return the offset into CPUARMState of a slice (from 586 * the least significant end) of FP register Qn (ie 587 * Dn, Sn, Hn or Bn). 588 * (Note that this is not the same mapping as for A32; see cpu.h) 589 */ 590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 591 { 592 return vec_reg_offset(s, regno, 0, size); 593 } 594 595 /* Offset of the high half of the 128 bit vector Qn */ 596 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 597 { 598 return vec_reg_offset(s, regno, 1, MO_64); 599 } 600 601 /* Convenience accessors for reading and writing single and double 602 * FP registers. Writing clears the upper parts of the associated 603 * 128 bit vector register, as required by the architecture. 604 * Note that unlike the GP register accessors, the values returned 605 * by the read functions must be manually freed. 606 */ 607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 608 { 609 TCGv_i64 v = tcg_temp_new_i64(); 610 611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 612 return v; 613 } 614 615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 616 { 617 TCGv_i32 v = tcg_temp_new_i32(); 618 619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 620 return v; 621 } 622 623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 624 { 625 TCGv_i32 v = tcg_temp_new_i32(); 626 627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 628 return v; 629 } 630 631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 632 * If SVE is not enabled, then there are only 128 bits in the vector. 633 */ 634 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 635 { 636 unsigned ofs = fp_reg_offset(s, rd, MO_64); 637 unsigned vsz = vec_full_reg_size(s); 638 639 /* Nop move, with side effect of clearing the tail. */ 640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 641 } 642 643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 644 { 645 unsigned ofs = fp_reg_offset(s, reg, MO_64); 646 647 tcg_gen_st_i64(v, tcg_env, ofs); 648 clear_vec_high(s, false, reg); 649 } 650 651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 652 { 653 TCGv_i64 tmp = tcg_temp_new_i64(); 654 655 tcg_gen_extu_i32_i64(tmp, v); 656 write_fp_dreg(s, reg, tmp); 657 } 658 659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 661 GVecGen2Fn *gvec_fn, int vece) 662 { 663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 664 is_q ? 16 : 8, vec_full_reg_size(s)); 665 } 666 667 /* Expand a 2-operand + immediate AdvSIMD vector operation using 668 * an expander function. 669 */ 670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 671 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 672 { 673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 674 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 675 } 676 677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 679 GVecGen3Fn *gvec_fn, int vece) 680 { 681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 683 } 684 685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 687 int rx, GVecGen4Fn *gvec_fn, int vece) 688 { 689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 691 is_q ? 16 : 8, vec_full_reg_size(s)); 692 } 693 694 /* Expand a 2-operand operation using an out-of-line helper. */ 695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 696 int rn, int data, gen_helper_gvec_2 *fn) 697 { 698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 699 vec_full_reg_offset(s, rn), 700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 701 } 702 703 /* Expand a 3-operand operation using an out-of-line helper. */ 704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 705 int rn, int rm, int data, gen_helper_gvec_3 *fn) 706 { 707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 708 vec_full_reg_offset(s, rn), 709 vec_full_reg_offset(s, rm), 710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 711 } 712 713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 714 * an out-of-line helper. 715 */ 716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 717 int rm, bool is_fp16, int data, 718 gen_helper_gvec_3_ptr *fn) 719 { 720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 722 vec_full_reg_offset(s, rn), 723 vec_full_reg_offset(s, rm), fpst, 724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 725 } 726 727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */ 728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn, 729 int rm, gen_helper_gvec_3_ptr *fn) 730 { 731 TCGv_ptr qc_ptr = tcg_temp_new_ptr(); 732 733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc)); 734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 735 vec_full_reg_offset(s, rn), 736 vec_full_reg_offset(s, rm), qc_ptr, 737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); 738 } 739 740 /* Expand a 4-operand operation using an out-of-line helper. */ 741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 742 int rm, int ra, int data, gen_helper_gvec_4 *fn) 743 { 744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 745 vec_full_reg_offset(s, rn), 746 vec_full_reg_offset(s, rm), 747 vec_full_reg_offset(s, ra), 748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 749 } 750 751 /* 752 * Expand a 4-operand + fpstatus pointer + simd data value operation using 753 * an out-of-line helper. 754 */ 755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 756 int rm, int ra, bool is_fp16, int data, 757 gen_helper_gvec_4_ptr *fn) 758 { 759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 vec_full_reg_offset(s, ra), fpst, 764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 765 } 766 767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 768 * than the 32 bit equivalent. 769 */ 770 static inline void gen_set_NZ64(TCGv_i64 result) 771 { 772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 774 } 775 776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 777 static inline void gen_logic_CC(int sf, TCGv_i64 result) 778 { 779 if (sf) { 780 gen_set_NZ64(result); 781 } else { 782 tcg_gen_extrl_i64_i32(cpu_ZF, result); 783 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 784 } 785 tcg_gen_movi_i32(cpu_CF, 0); 786 tcg_gen_movi_i32(cpu_VF, 0); 787 } 788 789 /* dest = T0 + T1; compute C, N, V and Z flags */ 790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 791 { 792 TCGv_i64 result, flag, tmp; 793 result = tcg_temp_new_i64(); 794 flag = tcg_temp_new_i64(); 795 tmp = tcg_temp_new_i64(); 796 797 tcg_gen_movi_i64(tmp, 0); 798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 799 800 tcg_gen_extrl_i64_i32(cpu_CF, flag); 801 802 gen_set_NZ64(result); 803 804 tcg_gen_xor_i64(flag, result, t0); 805 tcg_gen_xor_i64(tmp, t0, t1); 806 tcg_gen_andc_i64(flag, flag, tmp); 807 tcg_gen_extrh_i64_i32(cpu_VF, flag); 808 809 tcg_gen_mov_i64(dest, result); 810 } 811 812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 813 { 814 TCGv_i32 t0_32 = tcg_temp_new_i32(); 815 TCGv_i32 t1_32 = tcg_temp_new_i32(); 816 TCGv_i32 tmp = tcg_temp_new_i32(); 817 818 tcg_gen_movi_i32(tmp, 0); 819 tcg_gen_extrl_i64_i32(t0_32, t0); 820 tcg_gen_extrl_i64_i32(t1_32, t1); 821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 824 tcg_gen_xor_i32(tmp, t0_32, t1_32); 825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 826 tcg_gen_extu_i32_i64(dest, cpu_NF); 827 } 828 829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 830 { 831 if (sf) { 832 gen_add64_CC(dest, t0, t1); 833 } else { 834 gen_add32_CC(dest, t0, t1); 835 } 836 } 837 838 /* dest = T0 - T1; compute C, N, V and Z flags */ 839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 840 { 841 /* 64 bit arithmetic */ 842 TCGv_i64 result, flag, tmp; 843 844 result = tcg_temp_new_i64(); 845 flag = tcg_temp_new_i64(); 846 tcg_gen_sub_i64(result, t0, t1); 847 848 gen_set_NZ64(result); 849 850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 851 tcg_gen_extrl_i64_i32(cpu_CF, flag); 852 853 tcg_gen_xor_i64(flag, result, t0); 854 tmp = tcg_temp_new_i64(); 855 tcg_gen_xor_i64(tmp, t0, t1); 856 tcg_gen_and_i64(flag, flag, tmp); 857 tcg_gen_extrh_i64_i32(cpu_VF, flag); 858 tcg_gen_mov_i64(dest, result); 859 } 860 861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 862 { 863 /* 32 bit arithmetic */ 864 TCGv_i32 t0_32 = tcg_temp_new_i32(); 865 TCGv_i32 t1_32 = tcg_temp_new_i32(); 866 TCGv_i32 tmp; 867 868 tcg_gen_extrl_i64_i32(t0_32, t0); 869 tcg_gen_extrl_i64_i32(t1_32, t1); 870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 871 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 874 tmp = tcg_temp_new_i32(); 875 tcg_gen_xor_i32(tmp, t0_32, t1_32); 876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 877 tcg_gen_extu_i32_i64(dest, cpu_NF); 878 } 879 880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 881 { 882 if (sf) { 883 gen_sub64_CC(dest, t0, t1); 884 } else { 885 gen_sub32_CC(dest, t0, t1); 886 } 887 } 888 889 /* dest = T0 + T1 + CF; do not compute flags. */ 890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 891 { 892 TCGv_i64 flag = tcg_temp_new_i64(); 893 tcg_gen_extu_i32_i64(flag, cpu_CF); 894 tcg_gen_add_i64(dest, t0, t1); 895 tcg_gen_add_i64(dest, dest, flag); 896 897 if (!sf) { 898 tcg_gen_ext32u_i64(dest, dest); 899 } 900 } 901 902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 904 { 905 if (sf) { 906 TCGv_i64 result = tcg_temp_new_i64(); 907 TCGv_i64 cf_64 = tcg_temp_new_i64(); 908 TCGv_i64 vf_64 = tcg_temp_new_i64(); 909 TCGv_i64 tmp = tcg_temp_new_i64(); 910 TCGv_i64 zero = tcg_constant_i64(0); 911 912 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); 914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); 915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 916 gen_set_NZ64(result); 917 918 tcg_gen_xor_i64(vf_64, result, t0); 919 tcg_gen_xor_i64(tmp, t0, t1); 920 tcg_gen_andc_i64(vf_64, vf_64, tmp); 921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 922 923 tcg_gen_mov_i64(dest, result); 924 } else { 925 TCGv_i32 t0_32 = tcg_temp_new_i32(); 926 TCGv_i32 t1_32 = tcg_temp_new_i32(); 927 TCGv_i32 tmp = tcg_temp_new_i32(); 928 TCGv_i32 zero = tcg_constant_i32(0); 929 930 tcg_gen_extrl_i64_i32(t0_32, t0); 931 tcg_gen_extrl_i64_i32(t1_32, t1); 932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); 933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); 934 935 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 937 tcg_gen_xor_i32(tmp, t0_32, t1_32); 938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 939 tcg_gen_extu_i32_i64(dest, cpu_NF); 940 } 941 } 942 943 /* 944 * Load/Store generators 945 */ 946 947 /* 948 * Store from GPR register to memory. 949 */ 950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 951 TCGv_i64 tcg_addr, MemOp memop, int memidx, 952 bool iss_valid, 953 unsigned int iss_srt, 954 bool iss_sf, bool iss_ar) 955 { 956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 957 958 if (iss_valid) { 959 uint32_t syn; 960 961 syn = syn_data_abort_with_iss(0, 962 (memop & MO_SIZE), 963 false, 964 iss_srt, 965 iss_sf, 966 iss_ar, 967 0, 0, 0, 0, 0, false); 968 disas_set_insn_syndrome(s, syn); 969 } 970 } 971 972 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 973 TCGv_i64 tcg_addr, MemOp memop, 974 bool iss_valid, 975 unsigned int iss_srt, 976 bool iss_sf, bool iss_ar) 977 { 978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 979 iss_valid, iss_srt, iss_sf, iss_ar); 980 } 981 982 /* 983 * Load from memory to GPR register 984 */ 985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 986 MemOp memop, bool extend, int memidx, 987 bool iss_valid, unsigned int iss_srt, 988 bool iss_sf, bool iss_ar) 989 { 990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 991 992 if (extend && (memop & MO_SIGN)) { 993 g_assert((memop & MO_SIZE) <= MO_32); 994 tcg_gen_ext32u_i64(dest, dest); 995 } 996 997 if (iss_valid) { 998 uint32_t syn; 999 1000 syn = syn_data_abort_with_iss(0, 1001 (memop & MO_SIZE), 1002 (memop & MO_SIGN) != 0, 1003 iss_srt, 1004 iss_sf, 1005 iss_ar, 1006 0, 0, 0, 0, 0, false); 1007 disas_set_insn_syndrome(s, syn); 1008 } 1009 } 1010 1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1012 MemOp memop, bool extend, 1013 bool iss_valid, unsigned int iss_srt, 1014 bool iss_sf, bool iss_ar) 1015 { 1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1017 iss_valid, iss_srt, iss_sf, iss_ar); 1018 } 1019 1020 /* 1021 * Store from FP register to memory 1022 */ 1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1024 { 1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1026 TCGv_i64 tmplo = tcg_temp_new_i64(); 1027 1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1029 1030 if ((mop & MO_SIZE) < MO_128) { 1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1032 } else { 1033 TCGv_i64 tmphi = tcg_temp_new_i64(); 1034 TCGv_i128 t16 = tcg_temp_new_i128(); 1035 1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1038 1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1040 } 1041 } 1042 1043 /* 1044 * Load from memory to FP register 1045 */ 1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1047 { 1048 /* This always zero-extends and writes to a full 128 bit wide vector */ 1049 TCGv_i64 tmplo = tcg_temp_new_i64(); 1050 TCGv_i64 tmphi = NULL; 1051 1052 if ((mop & MO_SIZE) < MO_128) { 1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1054 } else { 1055 TCGv_i128 t16 = tcg_temp_new_i128(); 1056 1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1058 1059 tmphi = tcg_temp_new_i64(); 1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1061 } 1062 1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1064 1065 if (tmphi) { 1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1067 } 1068 clear_vec_high(s, tmphi != NULL, destidx); 1069 } 1070 1071 /* 1072 * Vector load/store helpers. 1073 * 1074 * The principal difference between this and a FP load is that we don't 1075 * zero extend as we are filling a partial chunk of the vector register. 1076 * These functions don't support 128 bit loads/stores, which would be 1077 * normal load/store operations. 1078 * 1079 * The _i32 versions are useful when operating on 32 bit quantities 1080 * (eg for floating point single or using Neon helper functions). 1081 */ 1082 1083 /* Get value of an element within a vector register */ 1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1085 int element, MemOp memop) 1086 { 1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1088 switch ((unsigned)memop) { 1089 case MO_8: 1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1091 break; 1092 case MO_16: 1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1094 break; 1095 case MO_32: 1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1097 break; 1098 case MO_8|MO_SIGN: 1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1100 break; 1101 case MO_16|MO_SIGN: 1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1103 break; 1104 case MO_32|MO_SIGN: 1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1106 break; 1107 case MO_64: 1108 case MO_64|MO_SIGN: 1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1110 break; 1111 default: 1112 g_assert_not_reached(); 1113 } 1114 } 1115 1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1117 int element, MemOp memop) 1118 { 1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1120 switch (memop) { 1121 case MO_8: 1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1123 break; 1124 case MO_16: 1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1126 break; 1127 case MO_8|MO_SIGN: 1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1129 break; 1130 case MO_16|MO_SIGN: 1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1132 break; 1133 case MO_32: 1134 case MO_32|MO_SIGN: 1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140 } 1141 1142 /* Set value of an element within a vector register */ 1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1144 int element, MemOp memop) 1145 { 1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1147 switch (memop) { 1148 case MO_8: 1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1150 break; 1151 case MO_16: 1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1153 break; 1154 case MO_32: 1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1156 break; 1157 case MO_64: 1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1166 int destidx, int element, MemOp memop) 1167 { 1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1169 switch (memop) { 1170 case MO_8: 1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1172 break; 1173 case MO_16: 1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1175 break; 1176 case MO_32: 1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1178 break; 1179 default: 1180 g_assert_not_reached(); 1181 } 1182 } 1183 1184 /* Store from vector register to memory */ 1185 static void do_vec_st(DisasContext *s, int srcidx, int element, 1186 TCGv_i64 tcg_addr, MemOp mop) 1187 { 1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1189 1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1192 } 1193 1194 /* Load from memory to vector register */ 1195 static void do_vec_ld(DisasContext *s, int destidx, int element, 1196 TCGv_i64 tcg_addr, MemOp mop) 1197 { 1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1199 1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1202 } 1203 1204 /* Check that FP/Neon access is enabled. If it is, return 1205 * true. If not, emit code to generate an appropriate exception, 1206 * and return false; the caller should not emit any code for 1207 * the instruction. Note that this check must happen after all 1208 * unallocated-encoding checks (otherwise the syndrome information 1209 * for the resulting exception will be incorrect). 1210 */ 1211 static bool fp_access_check_only(DisasContext *s) 1212 { 1213 if (s->fp_excp_el) { 1214 assert(!s->fp_access_checked); 1215 s->fp_access_checked = true; 1216 1217 gen_exception_insn_el(s, 0, EXCP_UDEF, 1218 syn_fp_access_trap(1, 0xe, false, 0), 1219 s->fp_excp_el); 1220 return false; 1221 } 1222 s->fp_access_checked = true; 1223 return true; 1224 } 1225 1226 static bool fp_access_check(DisasContext *s) 1227 { 1228 if (!fp_access_check_only(s)) { 1229 return false; 1230 } 1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1232 gen_exception_insn(s, 0, EXCP_UDEF, 1233 syn_smetrap(SME_ET_Streaming, false)); 1234 return false; 1235 } 1236 return true; 1237 } 1238 1239 /* 1240 * Check that SVE access is enabled. If it is, return true. 1241 * If not, emit code to generate an appropriate exception and return false. 1242 * This function corresponds to CheckSVEEnabled(). 1243 */ 1244 bool sve_access_check(DisasContext *s) 1245 { 1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1247 assert(dc_isar_feature(aa64_sme, s)); 1248 if (!sme_sm_enabled_check(s)) { 1249 goto fail_exit; 1250 } 1251 } else if (s->sve_excp_el) { 1252 gen_exception_insn_el(s, 0, EXCP_UDEF, 1253 syn_sve_access_trap(), s->sve_excp_el); 1254 goto fail_exit; 1255 } 1256 s->sve_access_checked = true; 1257 return fp_access_check(s); 1258 1259 fail_exit: 1260 /* Assert that we only raise one exception per instruction. */ 1261 assert(!s->sve_access_checked); 1262 s->sve_access_checked = true; 1263 return false; 1264 } 1265 1266 /* 1267 * Check that SME access is enabled, raise an exception if not. 1268 * Note that this function corresponds to CheckSMEAccess and is 1269 * only used directly for cpregs. 1270 */ 1271 static bool sme_access_check(DisasContext *s) 1272 { 1273 if (s->sme_excp_el) { 1274 gen_exception_insn_el(s, 0, EXCP_UDEF, 1275 syn_smetrap(SME_ET_AccessTrap, false), 1276 s->sme_excp_el); 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 /* This function corresponds to CheckSMEEnabled. */ 1283 bool sme_enabled_check(DisasContext *s) 1284 { 1285 /* 1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1287 * to be zero when fp_excp_el has priority. This is because we need 1288 * sme_excp_el by itself for cpregs access checks. 1289 */ 1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1291 s->fp_access_checked = true; 1292 return sme_access_check(s); 1293 } 1294 return fp_access_check_only(s); 1295 } 1296 1297 /* Common subroutine for CheckSMEAnd*Enabled. */ 1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1299 { 1300 if (!sme_enabled_check(s)) { 1301 return false; 1302 } 1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1304 gen_exception_insn(s, 0, EXCP_UDEF, 1305 syn_smetrap(SME_ET_NotStreaming, false)); 1306 return false; 1307 } 1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1309 gen_exception_insn(s, 0, EXCP_UDEF, 1310 syn_smetrap(SME_ET_InactiveZA, false)); 1311 return false; 1312 } 1313 return true; 1314 } 1315 1316 /* 1317 * Expanders for AdvSIMD translation functions. 1318 */ 1319 1320 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1321 gen_helper_gvec_2 *fn) 1322 { 1323 if (!a->q && a->esz == MO_64) { 1324 return false; 1325 } 1326 if (fp_access_check(s)) { 1327 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1328 } 1329 return true; 1330 } 1331 1332 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1333 gen_helper_gvec_3 *fn) 1334 { 1335 if (!a->q && a->esz == MO_64) { 1336 return false; 1337 } 1338 if (fp_access_check(s)) { 1339 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1340 } 1341 return true; 1342 } 1343 1344 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1345 { 1346 if (!a->q && a->esz == MO_64) { 1347 return false; 1348 } 1349 if (fp_access_check(s)) { 1350 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1351 } 1352 return true; 1353 } 1354 1355 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1356 { 1357 if (!a->q && a->esz == MO_64) { 1358 return false; 1359 } 1360 if (fp_access_check(s)) { 1361 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1362 } 1363 return true; 1364 } 1365 1366 /* 1367 * This utility function is for doing register extension with an 1368 * optional shift. You will likely want to pass a temporary for the 1369 * destination register. See DecodeRegExtend() in the ARM ARM. 1370 */ 1371 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1372 int option, unsigned int shift) 1373 { 1374 int extsize = extract32(option, 0, 2); 1375 bool is_signed = extract32(option, 2, 1); 1376 1377 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1378 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1379 } 1380 1381 static inline void gen_check_sp_alignment(DisasContext *s) 1382 { 1383 /* The AArch64 architecture mandates that (if enabled via PSTATE 1384 * or SCTLR bits) there is a check that SP is 16-aligned on every 1385 * SP-relative load or store (with an exception generated if it is not). 1386 * In line with general QEMU practice regarding misaligned accesses, 1387 * we omit these checks for the sake of guest program performance. 1388 * This function is provided as a hook so we can more easily add these 1389 * checks in future (possibly as a "favour catching guest program bugs 1390 * over speed" user selectable option). 1391 */ 1392 } 1393 1394 /* 1395 * This provides a simple table based table lookup decoder. It is 1396 * intended to be used when the relevant bits for decode are too 1397 * awkwardly placed and switch/if based logic would be confusing and 1398 * deeply nested. Since it's a linear search through the table, tables 1399 * should be kept small. 1400 * 1401 * It returns the first handler where insn & mask == pattern, or 1402 * NULL if there is no match. 1403 * The table is terminated by an empty mask (i.e. 0) 1404 */ 1405 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, 1406 uint32_t insn) 1407 { 1408 const AArch64DecodeTable *tptr = table; 1409 1410 while (tptr->mask) { 1411 if ((insn & tptr->mask) == tptr->pattern) { 1412 return tptr->disas_fn; 1413 } 1414 tptr++; 1415 } 1416 return NULL; 1417 } 1418 1419 /* 1420 * The instruction disassembly implemented here matches 1421 * the instruction encoding classifications in chapter C4 1422 * of the ARM Architecture Reference Manual (DDI0487B_a); 1423 * classification names and decode diagrams here should generally 1424 * match up with those in the manual. 1425 */ 1426 1427 static bool trans_B(DisasContext *s, arg_i *a) 1428 { 1429 reset_btype(s); 1430 gen_goto_tb(s, 0, a->imm); 1431 return true; 1432 } 1433 1434 static bool trans_BL(DisasContext *s, arg_i *a) 1435 { 1436 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1437 reset_btype(s); 1438 gen_goto_tb(s, 0, a->imm); 1439 return true; 1440 } 1441 1442 1443 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1444 { 1445 DisasLabel match; 1446 TCGv_i64 tcg_cmp; 1447 1448 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1449 reset_btype(s); 1450 1451 match = gen_disas_label(s); 1452 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1453 tcg_cmp, 0, match.label); 1454 gen_goto_tb(s, 0, 4); 1455 set_disas_label(s, match); 1456 gen_goto_tb(s, 1, a->imm); 1457 return true; 1458 } 1459 1460 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1461 { 1462 DisasLabel match; 1463 TCGv_i64 tcg_cmp; 1464 1465 tcg_cmp = tcg_temp_new_i64(); 1466 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1467 1468 reset_btype(s); 1469 1470 match = gen_disas_label(s); 1471 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1472 tcg_cmp, 0, match.label); 1473 gen_goto_tb(s, 0, 4); 1474 set_disas_label(s, match); 1475 gen_goto_tb(s, 1, a->imm); 1476 return true; 1477 } 1478 1479 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1480 { 1481 /* BC.cond is only present with FEAT_HBC */ 1482 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1483 return false; 1484 } 1485 reset_btype(s); 1486 if (a->cond < 0x0e) { 1487 /* genuinely conditional branches */ 1488 DisasLabel match = gen_disas_label(s); 1489 arm_gen_test_cc(a->cond, match.label); 1490 gen_goto_tb(s, 0, 4); 1491 set_disas_label(s, match); 1492 gen_goto_tb(s, 1, a->imm); 1493 } else { 1494 /* 0xe and 0xf are both "always" conditions */ 1495 gen_goto_tb(s, 0, a->imm); 1496 } 1497 return true; 1498 } 1499 1500 static void set_btype_for_br(DisasContext *s, int rn) 1501 { 1502 if (dc_isar_feature(aa64_bti, s)) { 1503 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1504 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); 1505 } 1506 } 1507 1508 static void set_btype_for_blr(DisasContext *s) 1509 { 1510 if (dc_isar_feature(aa64_bti, s)) { 1511 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1512 set_btype(s, 2); 1513 } 1514 } 1515 1516 static bool trans_BR(DisasContext *s, arg_r *a) 1517 { 1518 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1519 set_btype_for_br(s, a->rn); 1520 s->base.is_jmp = DISAS_JUMP; 1521 return true; 1522 } 1523 1524 static bool trans_BLR(DisasContext *s, arg_r *a) 1525 { 1526 TCGv_i64 dst = cpu_reg(s, a->rn); 1527 TCGv_i64 lr = cpu_reg(s, 30); 1528 if (dst == lr) { 1529 TCGv_i64 tmp = tcg_temp_new_i64(); 1530 tcg_gen_mov_i64(tmp, dst); 1531 dst = tmp; 1532 } 1533 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1534 gen_a64_set_pc(s, dst); 1535 set_btype_for_blr(s); 1536 s->base.is_jmp = DISAS_JUMP; 1537 return true; 1538 } 1539 1540 static bool trans_RET(DisasContext *s, arg_r *a) 1541 { 1542 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1543 s->base.is_jmp = DISAS_JUMP; 1544 return true; 1545 } 1546 1547 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1548 TCGv_i64 modifier, bool use_key_a) 1549 { 1550 TCGv_i64 truedst; 1551 /* 1552 * Return the branch target for a BRAA/RETA/etc, which is either 1553 * just the destination dst, or that value with the pauth check 1554 * done and the code removed from the high bits. 1555 */ 1556 if (!s->pauth_active) { 1557 return dst; 1558 } 1559 1560 truedst = tcg_temp_new_i64(); 1561 if (use_key_a) { 1562 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1563 } else { 1564 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1565 } 1566 return truedst; 1567 } 1568 1569 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1570 { 1571 TCGv_i64 dst; 1572 1573 if (!dc_isar_feature(aa64_pauth, s)) { 1574 return false; 1575 } 1576 1577 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1578 gen_a64_set_pc(s, dst); 1579 set_btype_for_br(s, a->rn); 1580 s->base.is_jmp = DISAS_JUMP; 1581 return true; 1582 } 1583 1584 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1585 { 1586 TCGv_i64 dst, lr; 1587 1588 if (!dc_isar_feature(aa64_pauth, s)) { 1589 return false; 1590 } 1591 1592 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1593 lr = cpu_reg(s, 30); 1594 if (dst == lr) { 1595 TCGv_i64 tmp = tcg_temp_new_i64(); 1596 tcg_gen_mov_i64(tmp, dst); 1597 dst = tmp; 1598 } 1599 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1600 gen_a64_set_pc(s, dst); 1601 set_btype_for_blr(s); 1602 s->base.is_jmp = DISAS_JUMP; 1603 return true; 1604 } 1605 1606 static bool trans_RETA(DisasContext *s, arg_reta *a) 1607 { 1608 TCGv_i64 dst; 1609 1610 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1611 gen_a64_set_pc(s, dst); 1612 s->base.is_jmp = DISAS_JUMP; 1613 return true; 1614 } 1615 1616 static bool trans_BRA(DisasContext *s, arg_bra *a) 1617 { 1618 TCGv_i64 dst; 1619 1620 if (!dc_isar_feature(aa64_pauth, s)) { 1621 return false; 1622 } 1623 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1624 gen_a64_set_pc(s, dst); 1625 set_btype_for_br(s, a->rn); 1626 s->base.is_jmp = DISAS_JUMP; 1627 return true; 1628 } 1629 1630 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1631 { 1632 TCGv_i64 dst, lr; 1633 1634 if (!dc_isar_feature(aa64_pauth, s)) { 1635 return false; 1636 } 1637 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1638 lr = cpu_reg(s, 30); 1639 if (dst == lr) { 1640 TCGv_i64 tmp = tcg_temp_new_i64(); 1641 tcg_gen_mov_i64(tmp, dst); 1642 dst = tmp; 1643 } 1644 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1645 gen_a64_set_pc(s, dst); 1646 set_btype_for_blr(s); 1647 s->base.is_jmp = DISAS_JUMP; 1648 return true; 1649 } 1650 1651 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1652 { 1653 TCGv_i64 dst; 1654 1655 if (s->current_el == 0) { 1656 return false; 1657 } 1658 if (s->trap_eret) { 1659 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1660 return true; 1661 } 1662 dst = tcg_temp_new_i64(); 1663 tcg_gen_ld_i64(dst, tcg_env, 1664 offsetof(CPUARMState, elr_el[s->current_el])); 1665 1666 translator_io_start(&s->base); 1667 1668 gen_helper_exception_return(tcg_env, dst); 1669 /* Must exit loop to check un-masked IRQs */ 1670 s->base.is_jmp = DISAS_EXIT; 1671 return true; 1672 } 1673 1674 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1675 { 1676 TCGv_i64 dst; 1677 1678 if (!dc_isar_feature(aa64_pauth, s)) { 1679 return false; 1680 } 1681 if (s->current_el == 0) { 1682 return false; 1683 } 1684 /* The FGT trap takes precedence over an auth trap. */ 1685 if (s->trap_eret) { 1686 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1687 return true; 1688 } 1689 dst = tcg_temp_new_i64(); 1690 tcg_gen_ld_i64(dst, tcg_env, 1691 offsetof(CPUARMState, elr_el[s->current_el])); 1692 1693 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1694 1695 translator_io_start(&s->base); 1696 1697 gen_helper_exception_return(tcg_env, dst); 1698 /* Must exit loop to check un-masked IRQs */ 1699 s->base.is_jmp = DISAS_EXIT; 1700 return true; 1701 } 1702 1703 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1704 { 1705 return true; 1706 } 1707 1708 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1709 { 1710 /* 1711 * When running in MTTCG we don't generate jumps to the yield and 1712 * WFE helpers as it won't affect the scheduling of other vCPUs. 1713 * If we wanted to more completely model WFE/SEV so we don't busy 1714 * spin unnecessarily we would need to do something more involved. 1715 */ 1716 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1717 s->base.is_jmp = DISAS_YIELD; 1718 } 1719 return true; 1720 } 1721 1722 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1723 { 1724 s->base.is_jmp = DISAS_WFI; 1725 return true; 1726 } 1727 1728 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1729 { 1730 /* 1731 * When running in MTTCG we don't generate jumps to the yield and 1732 * WFE helpers as it won't affect the scheduling of other vCPUs. 1733 * If we wanted to more completely model WFE/SEV so we don't busy 1734 * spin unnecessarily we would need to do something more involved. 1735 */ 1736 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1737 s->base.is_jmp = DISAS_WFE; 1738 } 1739 return true; 1740 } 1741 1742 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1743 { 1744 if (s->pauth_active) { 1745 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1746 } 1747 return true; 1748 } 1749 1750 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1751 { 1752 if (s->pauth_active) { 1753 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1754 } 1755 return true; 1756 } 1757 1758 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 1759 { 1760 if (s->pauth_active) { 1761 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1762 } 1763 return true; 1764 } 1765 1766 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 1767 { 1768 if (s->pauth_active) { 1769 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1770 } 1771 return true; 1772 } 1773 1774 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 1775 { 1776 if (s->pauth_active) { 1777 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 1778 } 1779 return true; 1780 } 1781 1782 static bool trans_ESB(DisasContext *s, arg_ESB *a) 1783 { 1784 /* Without RAS, we must implement this as NOP. */ 1785 if (dc_isar_feature(aa64_ras, s)) { 1786 /* 1787 * QEMU does not have a source of physical SErrors, 1788 * so we are only concerned with virtual SErrors. 1789 * The pseudocode in the ARM for this case is 1790 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 1791 * AArch64.vESBOperation(); 1792 * Most of the condition can be evaluated at translation time. 1793 * Test for EL2 present, and defer test for SEL2 to runtime. 1794 */ 1795 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 1796 gen_helper_vesb(tcg_env); 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 1803 { 1804 if (s->pauth_active) { 1805 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1806 } 1807 return true; 1808 } 1809 1810 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 1811 { 1812 if (s->pauth_active) { 1813 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1814 } 1815 return true; 1816 } 1817 1818 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 1819 { 1820 if (s->pauth_active) { 1821 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1822 } 1823 return true; 1824 } 1825 1826 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 1827 { 1828 if (s->pauth_active) { 1829 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1830 } 1831 return true; 1832 } 1833 1834 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 1835 { 1836 if (s->pauth_active) { 1837 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1838 } 1839 return true; 1840 } 1841 1842 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 1843 { 1844 if (s->pauth_active) { 1845 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1846 } 1847 return true; 1848 } 1849 1850 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 1851 { 1852 if (s->pauth_active) { 1853 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 1854 } 1855 return true; 1856 } 1857 1858 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 1859 { 1860 if (s->pauth_active) { 1861 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 1862 } 1863 return true; 1864 } 1865 1866 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 1867 { 1868 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 1869 return true; 1870 } 1871 1872 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 1873 { 1874 /* We handle DSB and DMB the same way */ 1875 TCGBar bar; 1876 1877 switch (a->types) { 1878 case 1: /* MBReqTypes_Reads */ 1879 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 1880 break; 1881 case 2: /* MBReqTypes_Writes */ 1882 bar = TCG_BAR_SC | TCG_MO_ST_ST; 1883 break; 1884 default: /* MBReqTypes_All */ 1885 bar = TCG_BAR_SC | TCG_MO_ALL; 1886 break; 1887 } 1888 tcg_gen_mb(bar); 1889 return true; 1890 } 1891 1892 static bool trans_ISB(DisasContext *s, arg_ISB *a) 1893 { 1894 /* 1895 * We need to break the TB after this insn to execute 1896 * self-modifying code correctly and also to take 1897 * any pending interrupts immediately. 1898 */ 1899 reset_btype(s); 1900 gen_goto_tb(s, 0, 4); 1901 return true; 1902 } 1903 1904 static bool trans_SB(DisasContext *s, arg_SB *a) 1905 { 1906 if (!dc_isar_feature(aa64_sb, s)) { 1907 return false; 1908 } 1909 /* 1910 * TODO: There is no speculation barrier opcode for TCG; 1911 * MB and end the TB instead. 1912 */ 1913 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 1914 gen_goto_tb(s, 0, 4); 1915 return true; 1916 } 1917 1918 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 1919 { 1920 if (!dc_isar_feature(aa64_condm_4, s)) { 1921 return false; 1922 } 1923 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 1924 return true; 1925 } 1926 1927 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 1928 { 1929 TCGv_i32 z; 1930 1931 if (!dc_isar_feature(aa64_condm_5, s)) { 1932 return false; 1933 } 1934 1935 z = tcg_temp_new_i32(); 1936 1937 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 1938 1939 /* 1940 * (!C & !Z) << 31 1941 * (!(C | Z)) << 31 1942 * ~((C | Z) << 31) 1943 * ~-(C | Z) 1944 * (C | Z) - 1 1945 */ 1946 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 1947 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 1948 1949 /* !(Z & C) */ 1950 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 1951 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 1952 1953 /* (!C & Z) << 31 -> -(Z & ~C) */ 1954 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 1955 tcg_gen_neg_i32(cpu_VF, cpu_VF); 1956 1957 /* C | Z */ 1958 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 1959 1960 return true; 1961 } 1962 1963 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 1964 { 1965 if (!dc_isar_feature(aa64_condm_5, s)) { 1966 return false; 1967 } 1968 1969 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 1970 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 1971 1972 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 1973 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 1974 1975 tcg_gen_movi_i32(cpu_NF, 0); 1976 tcg_gen_movi_i32(cpu_VF, 0); 1977 1978 return true; 1979 } 1980 1981 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 1982 { 1983 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 1984 return false; 1985 } 1986 if (a->imm & 1) { 1987 set_pstate_bits(PSTATE_UAO); 1988 } else { 1989 clear_pstate_bits(PSTATE_UAO); 1990 } 1991 gen_rebuild_hflags(s); 1992 s->base.is_jmp = DISAS_TOO_MANY; 1993 return true; 1994 } 1995 1996 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 1997 { 1998 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 1999 return false; 2000 } 2001 if (a->imm & 1) { 2002 set_pstate_bits(PSTATE_PAN); 2003 } else { 2004 clear_pstate_bits(PSTATE_PAN); 2005 } 2006 gen_rebuild_hflags(s); 2007 s->base.is_jmp = DISAS_TOO_MANY; 2008 return true; 2009 } 2010 2011 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2012 { 2013 if (s->current_el == 0) { 2014 return false; 2015 } 2016 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2017 s->base.is_jmp = DISAS_TOO_MANY; 2018 return true; 2019 } 2020 2021 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2022 { 2023 if (!dc_isar_feature(aa64_ssbs, s)) { 2024 return false; 2025 } 2026 if (a->imm & 1) { 2027 set_pstate_bits(PSTATE_SSBS); 2028 } else { 2029 clear_pstate_bits(PSTATE_SSBS); 2030 } 2031 /* Don't need to rebuild hflags since SSBS is a nop */ 2032 s->base.is_jmp = DISAS_TOO_MANY; 2033 return true; 2034 } 2035 2036 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2037 { 2038 if (!dc_isar_feature(aa64_dit, s)) { 2039 return false; 2040 } 2041 if (a->imm & 1) { 2042 set_pstate_bits(PSTATE_DIT); 2043 } else { 2044 clear_pstate_bits(PSTATE_DIT); 2045 } 2046 /* There's no need to rebuild hflags because DIT is a nop */ 2047 s->base.is_jmp = DISAS_TOO_MANY; 2048 return true; 2049 } 2050 2051 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2052 { 2053 if (dc_isar_feature(aa64_mte, s)) { 2054 /* Full MTE is enabled -- set the TCO bit as directed. */ 2055 if (a->imm & 1) { 2056 set_pstate_bits(PSTATE_TCO); 2057 } else { 2058 clear_pstate_bits(PSTATE_TCO); 2059 } 2060 gen_rebuild_hflags(s); 2061 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2062 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2063 return true; 2064 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2065 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2066 return true; 2067 } else { 2068 /* Insn not present */ 2069 return false; 2070 } 2071 } 2072 2073 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2074 { 2075 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2076 s->base.is_jmp = DISAS_TOO_MANY; 2077 return true; 2078 } 2079 2080 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2081 { 2082 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2083 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2084 s->base.is_jmp = DISAS_UPDATE_EXIT; 2085 return true; 2086 } 2087 2088 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2089 { 2090 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2091 return false; 2092 } 2093 2094 if (a->imm == 0) { 2095 clear_pstate_bits(PSTATE_ALLINT); 2096 } else if (s->current_el > 1) { 2097 set_pstate_bits(PSTATE_ALLINT); 2098 } else { 2099 gen_helper_msr_set_allint_el1(tcg_env); 2100 } 2101 2102 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2103 s->base.is_jmp = DISAS_UPDATE_EXIT; 2104 return true; 2105 } 2106 2107 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2108 { 2109 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2110 return false; 2111 } 2112 if (sme_access_check(s)) { 2113 int old = s->pstate_sm | (s->pstate_za << 1); 2114 int new = a->imm * 3; 2115 2116 if ((old ^ new) & a->mask) { 2117 /* At least one bit changes. */ 2118 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2119 tcg_constant_i32(a->mask)); 2120 s->base.is_jmp = DISAS_TOO_MANY; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2127 { 2128 TCGv_i32 tmp = tcg_temp_new_i32(); 2129 TCGv_i32 nzcv = tcg_temp_new_i32(); 2130 2131 /* build bit 31, N */ 2132 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2133 /* build bit 30, Z */ 2134 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2135 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2136 /* build bit 29, C */ 2137 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2138 /* build bit 28, V */ 2139 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2140 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2141 /* generate result */ 2142 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2143 } 2144 2145 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2146 { 2147 TCGv_i32 nzcv = tcg_temp_new_i32(); 2148 2149 /* take NZCV from R[t] */ 2150 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2151 2152 /* bit 31, N */ 2153 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2154 /* bit 30, Z */ 2155 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2156 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2157 /* bit 29, C */ 2158 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2159 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2160 /* bit 28, V */ 2161 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2162 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2163 } 2164 2165 static void gen_sysreg_undef(DisasContext *s, bool isread, 2166 uint8_t op0, uint8_t op1, uint8_t op2, 2167 uint8_t crn, uint8_t crm, uint8_t rt) 2168 { 2169 /* 2170 * Generate code to emit an UNDEF with correct syndrome 2171 * information for a failed system register access. 2172 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2173 * but if FEAT_IDST is implemented then read accesses to registers 2174 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2175 * syndrome. 2176 */ 2177 uint32_t syndrome; 2178 2179 if (isread && dc_isar_feature(aa64_ids, s) && 2180 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2181 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2182 } else { 2183 syndrome = syn_uncategorized(); 2184 } 2185 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2186 } 2187 2188 /* MRS - move from system register 2189 * MSR (register) - move to system register 2190 * SYS 2191 * SYSL 2192 * These are all essentially the same insn in 'read' and 'write' 2193 * versions, with varying op0 fields. 2194 */ 2195 static void handle_sys(DisasContext *s, bool isread, 2196 unsigned int op0, unsigned int op1, unsigned int op2, 2197 unsigned int crn, unsigned int crm, unsigned int rt) 2198 { 2199 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2200 crn, crm, op0, op1, op2); 2201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2202 bool need_exit_tb = false; 2203 bool nv_trap_to_el2 = false; 2204 bool nv_redirect_reg = false; 2205 bool skip_fp_access_checks = false; 2206 bool nv2_mem_redirect = false; 2207 TCGv_ptr tcg_ri = NULL; 2208 TCGv_i64 tcg_rt; 2209 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2210 2211 if (crn == 11 || crn == 15) { 2212 /* 2213 * Check for TIDCP trap, which must take precedence over 2214 * the UNDEF for "no such register" etc. 2215 */ 2216 switch (s->current_el) { 2217 case 0: 2218 if (dc_isar_feature(aa64_tidcp1, s)) { 2219 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2220 } 2221 break; 2222 case 1: 2223 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2224 break; 2225 } 2226 } 2227 2228 if (!ri) { 2229 /* Unknown register; this might be a guest error or a QEMU 2230 * unimplemented feature. 2231 */ 2232 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2233 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2234 isread ? "read" : "write", op0, op1, crn, crm, op2); 2235 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2236 return; 2237 } 2238 2239 if (s->nv2 && ri->nv2_redirect_offset) { 2240 /* 2241 * Some registers always redirect to memory; some only do so if 2242 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2243 * pairs which share an offset; see the table in R_CSRPQ). 2244 */ 2245 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2246 nv2_mem_redirect = s->nv1; 2247 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2248 nv2_mem_redirect = !s->nv1; 2249 } else { 2250 nv2_mem_redirect = true; 2251 } 2252 } 2253 2254 /* Check access permissions */ 2255 if (!cp_access_ok(s->current_el, ri, isread)) { 2256 /* 2257 * FEAT_NV/NV2 handling does not do the usual FP access checks 2258 * for registers only accessible at EL2 (though it *does* do them 2259 * for registers accessible at EL1). 2260 */ 2261 skip_fp_access_checks = true; 2262 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2263 /* 2264 * This is one of the few EL2 registers which should redirect 2265 * to the equivalent EL1 register. We do that after running 2266 * the EL2 register's accessfn. 2267 */ 2268 nv_redirect_reg = true; 2269 assert(!nv2_mem_redirect); 2270 } else if (nv2_mem_redirect) { 2271 /* 2272 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2273 * UNDEF to EL1. 2274 */ 2275 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2276 /* 2277 * This register / instruction exists and is an EL2 register, so 2278 * we must trap to EL2 if accessed in nested virtualization EL1 2279 * instead of UNDEFing. We'll do that after the usual access checks. 2280 * (This makes a difference only for a couple of registers like 2281 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2282 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2283 * an accessfn which does nothing when called from EL1, because 2284 * the trap-to-EL3 controls which would apply to that register 2285 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2286 */ 2287 nv_trap_to_el2 = true; 2288 } else { 2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2290 return; 2291 } 2292 } 2293 2294 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2295 /* Emit code to perform further access permissions checks at 2296 * runtime; this may result in an exception. 2297 */ 2298 gen_a64_update_pc(s, 0); 2299 tcg_ri = tcg_temp_new_ptr(); 2300 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2301 tcg_constant_i32(key), 2302 tcg_constant_i32(syndrome), 2303 tcg_constant_i32(isread)); 2304 } else if (ri->type & ARM_CP_RAISES_EXC) { 2305 /* 2306 * The readfn or writefn might raise an exception; 2307 * synchronize the CPU state in case it does. 2308 */ 2309 gen_a64_update_pc(s, 0); 2310 } 2311 2312 if (!skip_fp_access_checks) { 2313 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2314 return; 2315 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2316 return; 2317 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2318 return; 2319 } 2320 } 2321 2322 if (nv_trap_to_el2) { 2323 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2324 return; 2325 } 2326 2327 if (nv_redirect_reg) { 2328 /* 2329 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2330 * Conveniently in all cases the encoding of the EL1 register is 2331 * identical to the EL2 register except that opc1 is 0. 2332 * Get the reginfo for the EL1 register to use for the actual access. 2333 * We don't use the EL1 register's access function, and 2334 * fine-grained-traps on EL1 also do not apply here. 2335 */ 2336 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2337 crn, crm, op0, 0, op2); 2338 ri = get_arm_cp_reginfo(s->cp_regs, key); 2339 assert(ri); 2340 assert(cp_access_ok(s->current_el, ri, isread)); 2341 /* 2342 * We might not have done an update_pc earlier, so check we don't 2343 * need it. We could support this in future if necessary. 2344 */ 2345 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2346 } 2347 2348 if (nv2_mem_redirect) { 2349 /* 2350 * This system register is being redirected into an EL2 memory access. 2351 * This means it is not an IO operation, doesn't change hflags, 2352 * and need not end the TB, because it has no side effects. 2353 * 2354 * The access is 64-bit single copy atomic, guaranteed aligned because 2355 * of the definition of VCNR_EL2. Its endianness depends on 2356 * SCTLR_EL2.EE, not on the data endianness of EL1. 2357 * It is done under either the EL2 translation regime or the EL2&0 2358 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2359 * PSTATE.PAN is 0. 2360 */ 2361 TCGv_i64 ptr = tcg_temp_new_i64(); 2362 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2363 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2364 int memidx = arm_to_core_mmu_idx(armmemidx); 2365 uint32_t syn; 2366 2367 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2368 2369 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2370 tcg_gen_addi_i64(ptr, ptr, 2371 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2372 tcg_rt = cpu_reg(s, rt); 2373 2374 syn = syn_data_abort_vncr(0, !isread, 0); 2375 disas_set_insn_syndrome(s, syn); 2376 if (isread) { 2377 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2378 } else { 2379 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2380 } 2381 return; 2382 } 2383 2384 /* Handle special cases first */ 2385 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2386 case 0: 2387 break; 2388 case ARM_CP_NOP: 2389 return; 2390 case ARM_CP_NZCV: 2391 tcg_rt = cpu_reg(s, rt); 2392 if (isread) { 2393 gen_get_nzcv(tcg_rt); 2394 } else { 2395 gen_set_nzcv(tcg_rt); 2396 } 2397 return; 2398 case ARM_CP_CURRENTEL: 2399 { 2400 /* 2401 * Reads as current EL value from pstate, which is 2402 * guaranteed to be constant by the tb flags. 2403 * For nested virt we should report EL2. 2404 */ 2405 int el = s->nv ? 2 : s->current_el; 2406 tcg_rt = cpu_reg(s, rt); 2407 tcg_gen_movi_i64(tcg_rt, el << 2); 2408 return; 2409 } 2410 case ARM_CP_DC_ZVA: 2411 /* Writes clear the aligned block of memory which rt points into. */ 2412 if (s->mte_active[0]) { 2413 int desc = 0; 2414 2415 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2416 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2417 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2418 2419 tcg_rt = tcg_temp_new_i64(); 2420 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2421 tcg_constant_i32(desc), cpu_reg(s, rt)); 2422 } else { 2423 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2424 } 2425 gen_helper_dc_zva(tcg_env, tcg_rt); 2426 return; 2427 case ARM_CP_DC_GVA: 2428 { 2429 TCGv_i64 clean_addr, tag; 2430 2431 /* 2432 * DC_GVA, like DC_ZVA, requires that we supply the original 2433 * pointer for an invalid page. Probe that address first. 2434 */ 2435 tcg_rt = cpu_reg(s, rt); 2436 clean_addr = clean_data_tbi(s, tcg_rt); 2437 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2438 2439 if (s->ata[0]) { 2440 /* Extract the tag from the register to match STZGM. */ 2441 tag = tcg_temp_new_i64(); 2442 tcg_gen_shri_i64(tag, tcg_rt, 56); 2443 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2444 } 2445 } 2446 return; 2447 case ARM_CP_DC_GZVA: 2448 { 2449 TCGv_i64 clean_addr, tag; 2450 2451 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2452 tcg_rt = cpu_reg(s, rt); 2453 clean_addr = clean_data_tbi(s, tcg_rt); 2454 gen_helper_dc_zva(tcg_env, clean_addr); 2455 2456 if (s->ata[0]) { 2457 /* Extract the tag from the register to match STZGM. */ 2458 tag = tcg_temp_new_i64(); 2459 tcg_gen_shri_i64(tag, tcg_rt, 56); 2460 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2461 } 2462 } 2463 return; 2464 default: 2465 g_assert_not_reached(); 2466 } 2467 2468 if (ri->type & ARM_CP_IO) { 2469 /* I/O operations must end the TB here (whether read or write) */ 2470 need_exit_tb = translator_io_start(&s->base); 2471 } 2472 2473 tcg_rt = cpu_reg(s, rt); 2474 2475 if (isread) { 2476 if (ri->type & ARM_CP_CONST) { 2477 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2478 } else if (ri->readfn) { 2479 if (!tcg_ri) { 2480 tcg_ri = gen_lookup_cp_reg(key); 2481 } 2482 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2483 } else { 2484 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2485 } 2486 } else { 2487 if (ri->type & ARM_CP_CONST) { 2488 /* If not forbidden by access permissions, treat as WI */ 2489 return; 2490 } else if (ri->writefn) { 2491 if (!tcg_ri) { 2492 tcg_ri = gen_lookup_cp_reg(key); 2493 } 2494 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2495 } else { 2496 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2497 } 2498 } 2499 2500 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2501 /* 2502 * A write to any coprocessor register that ends a TB 2503 * must rebuild the hflags for the next TB. 2504 */ 2505 gen_rebuild_hflags(s); 2506 /* 2507 * We default to ending the TB on a coprocessor register write, 2508 * but allow this to be suppressed by the register definition 2509 * (usually only necessary to work around guest bugs). 2510 */ 2511 need_exit_tb = true; 2512 } 2513 if (need_exit_tb) { 2514 s->base.is_jmp = DISAS_UPDATE_EXIT; 2515 } 2516 } 2517 2518 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2519 { 2520 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2521 return true; 2522 } 2523 2524 static bool trans_SVC(DisasContext *s, arg_i *a) 2525 { 2526 /* 2527 * For SVC, HVC and SMC we advance the single-step state 2528 * machine before taking the exception. This is architecturally 2529 * mandated, to ensure that single-stepping a system call 2530 * instruction works properly. 2531 */ 2532 uint32_t syndrome = syn_aa64_svc(a->imm); 2533 if (s->fgt_svc) { 2534 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2535 return true; 2536 } 2537 gen_ss_advance(s); 2538 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2539 return true; 2540 } 2541 2542 static bool trans_HVC(DisasContext *s, arg_i *a) 2543 { 2544 int target_el = s->current_el == 3 ? 3 : 2; 2545 2546 if (s->current_el == 0) { 2547 unallocated_encoding(s); 2548 return true; 2549 } 2550 /* 2551 * The pre HVC helper handles cases when HVC gets trapped 2552 * as an undefined insn by runtime configuration. 2553 */ 2554 gen_a64_update_pc(s, 0); 2555 gen_helper_pre_hvc(tcg_env); 2556 /* Architecture requires ss advance before we do the actual work */ 2557 gen_ss_advance(s); 2558 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2559 return true; 2560 } 2561 2562 static bool trans_SMC(DisasContext *s, arg_i *a) 2563 { 2564 if (s->current_el == 0) { 2565 unallocated_encoding(s); 2566 return true; 2567 } 2568 gen_a64_update_pc(s, 0); 2569 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2570 /* Architecture requires ss advance before we do the actual work */ 2571 gen_ss_advance(s); 2572 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2573 return true; 2574 } 2575 2576 static bool trans_BRK(DisasContext *s, arg_i *a) 2577 { 2578 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2579 return true; 2580 } 2581 2582 static bool trans_HLT(DisasContext *s, arg_i *a) 2583 { 2584 /* 2585 * HLT. This has two purposes. 2586 * Architecturally, it is an external halting debug instruction. 2587 * Since QEMU doesn't implement external debug, we treat this as 2588 * it is required for halting debug disabled: it will UNDEF. 2589 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2590 */ 2591 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2592 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2593 } else { 2594 unallocated_encoding(s); 2595 } 2596 return true; 2597 } 2598 2599 /* 2600 * Load/Store exclusive instructions are implemented by remembering 2601 * the value/address loaded, and seeing if these are the same 2602 * when the store is performed. This is not actually the architecturally 2603 * mandated semantics, but it works for typical guest code sequences 2604 * and avoids having to monitor regular stores. 2605 * 2606 * The store exclusive uses the atomic cmpxchg primitives to avoid 2607 * races in multi-threaded linux-user and when MTTCG softmmu is 2608 * enabled. 2609 */ 2610 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2611 int size, bool is_pair) 2612 { 2613 int idx = get_mem_index(s); 2614 TCGv_i64 dirty_addr, clean_addr; 2615 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2616 2617 s->is_ldex = true; 2618 dirty_addr = cpu_reg_sp(s, rn); 2619 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2620 2621 g_assert(size <= 3); 2622 if (is_pair) { 2623 g_assert(size >= 2); 2624 if (size == 2) { 2625 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2626 if (s->be_data == MO_LE) { 2627 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2628 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2629 } else { 2630 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2631 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2632 } 2633 } else { 2634 TCGv_i128 t16 = tcg_temp_new_i128(); 2635 2636 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2637 2638 if (s->be_data == MO_LE) { 2639 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2640 cpu_exclusive_high, t16); 2641 } else { 2642 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2643 cpu_exclusive_val, t16); 2644 } 2645 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2646 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2647 } 2648 } else { 2649 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2650 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2651 } 2652 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2653 } 2654 2655 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2656 int rn, int size, int is_pair) 2657 { 2658 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2659 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2660 * [addr] = {Rt}; 2661 * if (is_pair) { 2662 * [addr + datasize] = {Rt2}; 2663 * } 2664 * {Rd} = 0; 2665 * } else { 2666 * {Rd} = 1; 2667 * } 2668 * env->exclusive_addr = -1; 2669 */ 2670 TCGLabel *fail_label = gen_new_label(); 2671 TCGLabel *done_label = gen_new_label(); 2672 TCGv_i64 tmp, clean_addr; 2673 MemOp memop; 2674 2675 /* 2676 * FIXME: We are out of spec here. We have recorded only the address 2677 * from load_exclusive, not the entire range, and we assume that the 2678 * size of the access on both sides match. The architecture allows the 2679 * store to be smaller than the load, so long as the stored bytes are 2680 * within the range recorded by the load. 2681 */ 2682 2683 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2684 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2685 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2686 2687 /* 2688 * The write, and any associated faults, only happen if the virtual 2689 * and physical addresses pass the exclusive monitor check. These 2690 * faults are exceedingly unlikely, because normally the guest uses 2691 * the exact same address register for the load_exclusive, and we 2692 * would have recognized these faults there. 2693 * 2694 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2695 * unaligned 4-byte write within the range of an aligned 8-byte load. 2696 * With LSE2, the store would need to cross a 16-byte boundary when the 2697 * load did not, which would mean the store is outside the range 2698 * recorded for the monitor, which would have failed a corrected monitor 2699 * check above. For now, we assume no size change and retain the 2700 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2701 * 2702 * It is possible to trigger an MTE fault, by performing the load with 2703 * a virtual address with a valid tag and performing the store with the 2704 * same virtual address and a different invalid tag. 2705 */ 2706 memop = size + is_pair; 2707 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2708 memop |= MO_ALIGN; 2709 } 2710 memop = finalize_memop(s, memop); 2711 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2712 2713 tmp = tcg_temp_new_i64(); 2714 if (is_pair) { 2715 if (size == 2) { 2716 if (s->be_data == MO_LE) { 2717 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2718 } else { 2719 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2720 } 2721 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2722 cpu_exclusive_val, tmp, 2723 get_mem_index(s), memop); 2724 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2725 } else { 2726 TCGv_i128 t16 = tcg_temp_new_i128(); 2727 TCGv_i128 c16 = tcg_temp_new_i128(); 2728 TCGv_i64 a, b; 2729 2730 if (s->be_data == MO_LE) { 2731 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2732 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2733 cpu_exclusive_high); 2734 } else { 2735 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2736 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2737 cpu_exclusive_val); 2738 } 2739 2740 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2741 get_mem_index(s), memop); 2742 2743 a = tcg_temp_new_i64(); 2744 b = tcg_temp_new_i64(); 2745 if (s->be_data == MO_LE) { 2746 tcg_gen_extr_i128_i64(a, b, t16); 2747 } else { 2748 tcg_gen_extr_i128_i64(b, a, t16); 2749 } 2750 2751 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 2752 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 2753 tcg_gen_or_i64(tmp, a, b); 2754 2755 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 2756 } 2757 } else { 2758 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 2759 cpu_reg(s, rt), get_mem_index(s), memop); 2760 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2761 } 2762 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 2763 tcg_gen_br(done_label); 2764 2765 gen_set_label(fail_label); 2766 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 2767 gen_set_label(done_label); 2768 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2769 } 2770 2771 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 2772 int rn, int size) 2773 { 2774 TCGv_i64 tcg_rs = cpu_reg(s, rs); 2775 TCGv_i64 tcg_rt = cpu_reg(s, rt); 2776 int memidx = get_mem_index(s); 2777 TCGv_i64 clean_addr; 2778 MemOp memop; 2779 2780 if (rn == 31) { 2781 gen_check_sp_alignment(s); 2782 } 2783 memop = check_atomic_align(s, rn, size); 2784 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2785 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 2786 memidx, memop); 2787 } 2788 2789 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 2790 int rn, int size) 2791 { 2792 TCGv_i64 s1 = cpu_reg(s, rs); 2793 TCGv_i64 s2 = cpu_reg(s, rs + 1); 2794 TCGv_i64 t1 = cpu_reg(s, rt); 2795 TCGv_i64 t2 = cpu_reg(s, rt + 1); 2796 TCGv_i64 clean_addr; 2797 int memidx = get_mem_index(s); 2798 MemOp memop; 2799 2800 if (rn == 31) { 2801 gen_check_sp_alignment(s); 2802 } 2803 2804 /* This is a single atomic access, despite the "pair". */ 2805 memop = check_atomic_align(s, rn, size + 1); 2806 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2807 2808 if (size == 2) { 2809 TCGv_i64 cmp = tcg_temp_new_i64(); 2810 TCGv_i64 val = tcg_temp_new_i64(); 2811 2812 if (s->be_data == MO_LE) { 2813 tcg_gen_concat32_i64(val, t1, t2); 2814 tcg_gen_concat32_i64(cmp, s1, s2); 2815 } else { 2816 tcg_gen_concat32_i64(val, t2, t1); 2817 tcg_gen_concat32_i64(cmp, s2, s1); 2818 } 2819 2820 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 2821 2822 if (s->be_data == MO_LE) { 2823 tcg_gen_extr32_i64(s1, s2, cmp); 2824 } else { 2825 tcg_gen_extr32_i64(s2, s1, cmp); 2826 } 2827 } else { 2828 TCGv_i128 cmp = tcg_temp_new_i128(); 2829 TCGv_i128 val = tcg_temp_new_i128(); 2830 2831 if (s->be_data == MO_LE) { 2832 tcg_gen_concat_i64_i128(val, t1, t2); 2833 tcg_gen_concat_i64_i128(cmp, s1, s2); 2834 } else { 2835 tcg_gen_concat_i64_i128(val, t2, t1); 2836 tcg_gen_concat_i64_i128(cmp, s2, s1); 2837 } 2838 2839 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 2840 2841 if (s->be_data == MO_LE) { 2842 tcg_gen_extr_i128_i64(s1, s2, cmp); 2843 } else { 2844 tcg_gen_extr_i128_i64(s2, s1, cmp); 2845 } 2846 } 2847 } 2848 2849 /* 2850 * Compute the ISS.SF bit for syndrome information if an exception 2851 * is taken on a load or store. This indicates whether the instruction 2852 * is accessing a 32-bit or 64-bit register. This logic is derived 2853 * from the ARMv8 specs for LDR (Shared decode for all encodings). 2854 */ 2855 static bool ldst_iss_sf(int size, bool sign, bool ext) 2856 { 2857 2858 if (sign) { 2859 /* 2860 * Signed loads are 64 bit results if we are not going to 2861 * do a zero-extend from 32 to 64 after the load. 2862 * (For a store, sign and ext are always false.) 2863 */ 2864 return !ext; 2865 } else { 2866 /* Unsigned loads/stores work at the specified size */ 2867 return size == MO_64; 2868 } 2869 } 2870 2871 static bool trans_STXR(DisasContext *s, arg_stxr *a) 2872 { 2873 if (a->rn == 31) { 2874 gen_check_sp_alignment(s); 2875 } 2876 if (a->lasr) { 2877 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2878 } 2879 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 2880 return true; 2881 } 2882 2883 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 2884 { 2885 if (a->rn == 31) { 2886 gen_check_sp_alignment(s); 2887 } 2888 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 2889 if (a->lasr) { 2890 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2891 } 2892 return true; 2893 } 2894 2895 static bool trans_STLR(DisasContext *s, arg_stlr *a) 2896 { 2897 TCGv_i64 clean_addr; 2898 MemOp memop; 2899 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2900 2901 /* 2902 * StoreLORelease is the same as Store-Release for QEMU, but 2903 * needs the feature-test. 2904 */ 2905 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2906 return false; 2907 } 2908 /* Generate ISS for non-exclusive accesses including LASR. */ 2909 if (a->rn == 31) { 2910 gen_check_sp_alignment(s); 2911 } 2912 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2913 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 2914 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2915 true, a->rn != 31, memop); 2916 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 2917 iss_sf, a->lasr); 2918 return true; 2919 } 2920 2921 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 2922 { 2923 TCGv_i64 clean_addr; 2924 MemOp memop; 2925 bool iss_sf = ldst_iss_sf(a->sz, false, false); 2926 2927 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 2928 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 2929 return false; 2930 } 2931 /* Generate ISS for non-exclusive accesses including LASR. */ 2932 if (a->rn == 31) { 2933 gen_check_sp_alignment(s); 2934 } 2935 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 2936 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 2937 false, a->rn != 31, memop); 2938 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 2939 a->rt, iss_sf, a->lasr); 2940 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2941 return true; 2942 } 2943 2944 static bool trans_STXP(DisasContext *s, arg_stxr *a) 2945 { 2946 if (a->rn == 31) { 2947 gen_check_sp_alignment(s); 2948 } 2949 if (a->lasr) { 2950 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 2951 } 2952 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 2953 return true; 2954 } 2955 2956 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 2957 { 2958 if (a->rn == 31) { 2959 gen_check_sp_alignment(s); 2960 } 2961 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 2962 if (a->lasr) { 2963 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 2964 } 2965 return true; 2966 } 2967 2968 static bool trans_CASP(DisasContext *s, arg_CASP *a) 2969 { 2970 if (!dc_isar_feature(aa64_atomics, s)) { 2971 return false; 2972 } 2973 if (((a->rt | a->rs) & 1) != 0) { 2974 return false; 2975 } 2976 2977 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 2978 return true; 2979 } 2980 2981 static bool trans_CAS(DisasContext *s, arg_CAS *a) 2982 { 2983 if (!dc_isar_feature(aa64_atomics, s)) { 2984 return false; 2985 } 2986 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 2987 return true; 2988 } 2989 2990 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 2991 { 2992 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 2993 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 2994 TCGv_i64 clean_addr = tcg_temp_new_i64(); 2995 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 2996 2997 gen_pc_plus_diff(s, clean_addr, a->imm); 2998 do_gpr_ld(s, tcg_rt, clean_addr, memop, 2999 false, true, a->rt, iss_sf, false); 3000 return true; 3001 } 3002 3003 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3004 { 3005 /* Load register (literal), vector version */ 3006 TCGv_i64 clean_addr; 3007 MemOp memop; 3008 3009 if (!fp_access_check(s)) { 3010 return true; 3011 } 3012 memop = finalize_memop_asimd(s, a->sz); 3013 clean_addr = tcg_temp_new_i64(); 3014 gen_pc_plus_diff(s, clean_addr, a->imm); 3015 do_fp_ld(s, a->rt, clean_addr, memop); 3016 return true; 3017 } 3018 3019 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3020 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3021 uint64_t offset, bool is_store, MemOp mop) 3022 { 3023 if (a->rn == 31) { 3024 gen_check_sp_alignment(s); 3025 } 3026 3027 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3028 if (!a->p) { 3029 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3030 } 3031 3032 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3033 (a->w || a->rn != 31), 2 << a->sz, mop); 3034 } 3035 3036 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3037 TCGv_i64 dirty_addr, uint64_t offset) 3038 { 3039 if (a->w) { 3040 if (a->p) { 3041 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3042 } 3043 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3044 } 3045 } 3046 3047 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3048 { 3049 uint64_t offset = a->imm << a->sz; 3050 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3051 MemOp mop = finalize_memop(s, a->sz); 3052 3053 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3054 tcg_rt = cpu_reg(s, a->rt); 3055 tcg_rt2 = cpu_reg(s, a->rt2); 3056 /* 3057 * We built mop above for the single logical access -- rebuild it 3058 * now for the paired operation. 3059 * 3060 * With LSE2, non-sign-extending pairs are treated atomically if 3061 * aligned, and if unaligned one of the pair will be completely 3062 * within a 16-byte block and that element will be atomic. 3063 * Otherwise each element is separately atomic. 3064 * In all cases, issue one operation with the correct atomicity. 3065 */ 3066 mop = a->sz + 1; 3067 if (s->align_mem) { 3068 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3069 } 3070 mop = finalize_memop_pair(s, mop); 3071 if (a->sz == 2) { 3072 TCGv_i64 tmp = tcg_temp_new_i64(); 3073 3074 if (s->be_data == MO_LE) { 3075 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3076 } else { 3077 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3078 } 3079 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3080 } else { 3081 TCGv_i128 tmp = tcg_temp_new_i128(); 3082 3083 if (s->be_data == MO_LE) { 3084 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3085 } else { 3086 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3087 } 3088 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3089 } 3090 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3091 return true; 3092 } 3093 3094 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3095 { 3096 uint64_t offset = a->imm << a->sz; 3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3098 MemOp mop = finalize_memop(s, a->sz); 3099 3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3101 tcg_rt = cpu_reg(s, a->rt); 3102 tcg_rt2 = cpu_reg(s, a->rt2); 3103 3104 /* 3105 * We built mop above for the single logical access -- rebuild it 3106 * now for the paired operation. 3107 * 3108 * With LSE2, non-sign-extending pairs are treated atomically if 3109 * aligned, and if unaligned one of the pair will be completely 3110 * within a 16-byte block and that element will be atomic. 3111 * Otherwise each element is separately atomic. 3112 * In all cases, issue one operation with the correct atomicity. 3113 * 3114 * This treats sign-extending loads like zero-extending loads, 3115 * since that reuses the most code below. 3116 */ 3117 mop = a->sz + 1; 3118 if (s->align_mem) { 3119 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3120 } 3121 mop = finalize_memop_pair(s, mop); 3122 if (a->sz == 2) { 3123 int o2 = s->be_data == MO_LE ? 32 : 0; 3124 int o1 = o2 ^ 32; 3125 3126 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3127 if (a->sign) { 3128 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3129 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3130 } else { 3131 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3132 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3133 } 3134 } else { 3135 TCGv_i128 tmp = tcg_temp_new_i128(); 3136 3137 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3138 if (s->be_data == MO_LE) { 3139 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3140 } else { 3141 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3142 } 3143 } 3144 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3145 return true; 3146 } 3147 3148 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3149 { 3150 uint64_t offset = a->imm << a->sz; 3151 TCGv_i64 clean_addr, dirty_addr; 3152 MemOp mop; 3153 3154 if (!fp_access_check(s)) { 3155 return true; 3156 } 3157 3158 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3159 mop = finalize_memop_asimd(s, a->sz); 3160 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3161 do_fp_st(s, a->rt, clean_addr, mop); 3162 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3163 do_fp_st(s, a->rt2, clean_addr, mop); 3164 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3165 return true; 3166 } 3167 3168 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3169 { 3170 uint64_t offset = a->imm << a->sz; 3171 TCGv_i64 clean_addr, dirty_addr; 3172 MemOp mop; 3173 3174 if (!fp_access_check(s)) { 3175 return true; 3176 } 3177 3178 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3179 mop = finalize_memop_asimd(s, a->sz); 3180 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3181 do_fp_ld(s, a->rt, clean_addr, mop); 3182 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3183 do_fp_ld(s, a->rt2, clean_addr, mop); 3184 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3185 return true; 3186 } 3187 3188 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3189 { 3190 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3191 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3192 MemOp mop; 3193 TCGv_i128 tmp; 3194 3195 /* STGP only comes in one size. */ 3196 tcg_debug_assert(a->sz == MO_64); 3197 3198 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3199 return false; 3200 } 3201 3202 if (a->rn == 31) { 3203 gen_check_sp_alignment(s); 3204 } 3205 3206 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3207 if (!a->p) { 3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3209 } 3210 3211 clean_addr = clean_data_tbi(s, dirty_addr); 3212 tcg_rt = cpu_reg(s, a->rt); 3213 tcg_rt2 = cpu_reg(s, a->rt2); 3214 3215 /* 3216 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3217 * and one tag operation. We implement it as one single aligned 16-byte 3218 * memory operation for convenience. Note that the alignment ensures 3219 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3220 */ 3221 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3222 3223 tmp = tcg_temp_new_i128(); 3224 if (s->be_data == MO_LE) { 3225 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3226 } else { 3227 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3228 } 3229 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3230 3231 /* Perform the tag store, if tag access enabled. */ 3232 if (s->ata[0]) { 3233 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3234 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3235 } else { 3236 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3237 } 3238 } 3239 3240 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3241 return true; 3242 } 3243 3244 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3245 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3246 uint64_t offset, bool is_store, MemOp mop) 3247 { 3248 int memidx; 3249 3250 if (a->rn == 31) { 3251 gen_check_sp_alignment(s); 3252 } 3253 3254 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3255 if (!a->p) { 3256 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3257 } 3258 memidx = get_a64_user_mem_index(s, a->unpriv); 3259 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3260 a->w || a->rn != 31, 3261 mop, a->unpriv, memidx); 3262 } 3263 3264 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3265 TCGv_i64 dirty_addr, uint64_t offset) 3266 { 3267 if (a->w) { 3268 if (a->p) { 3269 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3270 } 3271 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3272 } 3273 } 3274 3275 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3276 { 3277 bool iss_sf, iss_valid = !a->w; 3278 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3279 int memidx = get_a64_user_mem_index(s, a->unpriv); 3280 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3281 3282 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3283 3284 tcg_rt = cpu_reg(s, a->rt); 3285 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3286 3287 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3288 iss_valid, a->rt, iss_sf, false); 3289 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3290 return true; 3291 } 3292 3293 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3294 { 3295 bool iss_sf, iss_valid = !a->w; 3296 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3297 int memidx = get_a64_user_mem_index(s, a->unpriv); 3298 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3299 3300 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3301 3302 tcg_rt = cpu_reg(s, a->rt); 3303 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3304 3305 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3306 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3307 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3308 return true; 3309 } 3310 3311 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3312 { 3313 TCGv_i64 clean_addr, dirty_addr; 3314 MemOp mop; 3315 3316 if (!fp_access_check(s)) { 3317 return true; 3318 } 3319 mop = finalize_memop_asimd(s, a->sz); 3320 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3321 do_fp_st(s, a->rt, clean_addr, mop); 3322 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3323 return true; 3324 } 3325 3326 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3327 { 3328 TCGv_i64 clean_addr, dirty_addr; 3329 MemOp mop; 3330 3331 if (!fp_access_check(s)) { 3332 return true; 3333 } 3334 mop = finalize_memop_asimd(s, a->sz); 3335 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3336 do_fp_ld(s, a->rt, clean_addr, mop); 3337 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3338 return true; 3339 } 3340 3341 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3342 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3343 bool is_store, MemOp memop) 3344 { 3345 TCGv_i64 tcg_rm; 3346 3347 if (a->rn == 31) { 3348 gen_check_sp_alignment(s); 3349 } 3350 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3351 3352 tcg_rm = read_cpu_reg(s, a->rm, 1); 3353 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3354 3355 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3356 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3357 } 3358 3359 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3360 { 3361 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3362 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3363 MemOp memop; 3364 3365 if (extract32(a->opt, 1, 1) == 0) { 3366 return false; 3367 } 3368 3369 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3370 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3371 tcg_rt = cpu_reg(s, a->rt); 3372 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3373 a->ext, true, a->rt, iss_sf, false); 3374 return true; 3375 } 3376 3377 static bool trans_STR(DisasContext *s, arg_ldst *a) 3378 { 3379 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3380 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3381 MemOp memop; 3382 3383 if (extract32(a->opt, 1, 1) == 0) { 3384 return false; 3385 } 3386 3387 memop = finalize_memop(s, a->sz); 3388 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3389 tcg_rt = cpu_reg(s, a->rt); 3390 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3391 return true; 3392 } 3393 3394 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3395 { 3396 TCGv_i64 clean_addr, dirty_addr; 3397 MemOp memop; 3398 3399 if (extract32(a->opt, 1, 1) == 0) { 3400 return false; 3401 } 3402 3403 if (!fp_access_check(s)) { 3404 return true; 3405 } 3406 3407 memop = finalize_memop_asimd(s, a->sz); 3408 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3409 do_fp_ld(s, a->rt, clean_addr, memop); 3410 return true; 3411 } 3412 3413 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3414 { 3415 TCGv_i64 clean_addr, dirty_addr; 3416 MemOp memop; 3417 3418 if (extract32(a->opt, 1, 1) == 0) { 3419 return false; 3420 } 3421 3422 if (!fp_access_check(s)) { 3423 return true; 3424 } 3425 3426 memop = finalize_memop_asimd(s, a->sz); 3427 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3428 do_fp_st(s, a->rt, clean_addr, memop); 3429 return true; 3430 } 3431 3432 3433 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3434 int sign, bool invert) 3435 { 3436 MemOp mop = a->sz | sign; 3437 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3438 3439 if (a->rn == 31) { 3440 gen_check_sp_alignment(s); 3441 } 3442 mop = check_atomic_align(s, a->rn, mop); 3443 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3444 a->rn != 31, mop); 3445 tcg_rs = read_cpu_reg(s, a->rs, true); 3446 tcg_rt = cpu_reg(s, a->rt); 3447 if (invert) { 3448 tcg_gen_not_i64(tcg_rs, tcg_rs); 3449 } 3450 /* 3451 * The tcg atomic primitives are all full barriers. Therefore we 3452 * can ignore the Acquire and Release bits of this instruction. 3453 */ 3454 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3455 3456 if (mop & MO_SIGN) { 3457 switch (a->sz) { 3458 case MO_8: 3459 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3460 break; 3461 case MO_16: 3462 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3463 break; 3464 case MO_32: 3465 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3466 break; 3467 case MO_64: 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 } 3472 } 3473 return true; 3474 } 3475 3476 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3477 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3478 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3479 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3480 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3481 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3482 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3483 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3484 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3485 3486 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3487 { 3488 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3489 TCGv_i64 clean_addr; 3490 MemOp mop; 3491 3492 if (!dc_isar_feature(aa64_atomics, s) || 3493 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3494 return false; 3495 } 3496 if (a->rn == 31) { 3497 gen_check_sp_alignment(s); 3498 } 3499 mop = check_atomic_align(s, a->rn, a->sz); 3500 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3501 a->rn != 31, mop); 3502 /* 3503 * LDAPR* are a special case because they are a simple load, not a 3504 * fetch-and-do-something op. 3505 * The architectural consistency requirements here are weaker than 3506 * full load-acquire (we only need "load-acquire processor consistent"), 3507 * but we choose to implement them as full LDAQ. 3508 */ 3509 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3510 true, a->rt, iss_sf, true); 3511 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3512 return true; 3513 } 3514 3515 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3516 { 3517 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3518 MemOp memop; 3519 3520 /* Load with pointer authentication */ 3521 if (!dc_isar_feature(aa64_pauth, s)) { 3522 return false; 3523 } 3524 3525 if (a->rn == 31) { 3526 gen_check_sp_alignment(s); 3527 } 3528 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3529 3530 if (s->pauth_active) { 3531 if (!a->m) { 3532 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3533 tcg_constant_i64(0)); 3534 } else { 3535 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3536 tcg_constant_i64(0)); 3537 } 3538 } 3539 3540 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3541 3542 memop = finalize_memop(s, MO_64); 3543 3544 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3545 clean_addr = gen_mte_check1(s, dirty_addr, false, 3546 a->w || a->rn != 31, memop); 3547 3548 tcg_rt = cpu_reg(s, a->rt); 3549 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3550 /* extend */ false, /* iss_valid */ !a->w, 3551 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3552 3553 if (a->w) { 3554 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3555 } 3556 return true; 3557 } 3558 3559 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3560 { 3561 TCGv_i64 clean_addr, dirty_addr; 3562 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3563 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3564 3565 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3566 return false; 3567 } 3568 3569 if (a->rn == 31) { 3570 gen_check_sp_alignment(s); 3571 } 3572 3573 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3574 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3575 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3576 clean_addr = clean_data_tbi(s, dirty_addr); 3577 3578 /* 3579 * Load-AcquirePC semantics; we implement as the slightly more 3580 * restrictive Load-Acquire. 3581 */ 3582 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3583 a->rt, iss_sf, true); 3584 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3585 return true; 3586 } 3587 3588 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3589 { 3590 TCGv_i64 clean_addr, dirty_addr; 3591 MemOp mop = a->sz; 3592 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3593 3594 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3595 return false; 3596 } 3597 3598 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3599 3600 if (a->rn == 31) { 3601 gen_check_sp_alignment(s); 3602 } 3603 3604 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3605 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3606 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3607 clean_addr = clean_data_tbi(s, dirty_addr); 3608 3609 /* Store-Release semantics */ 3610 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3611 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3612 return true; 3613 } 3614 3615 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3616 { 3617 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3618 MemOp endian, align, mop; 3619 3620 int total; /* total bytes */ 3621 int elements; /* elements per vector */ 3622 int r; 3623 int size = a->sz; 3624 3625 if (!a->p && a->rm != 0) { 3626 /* For non-postindexed accesses the Rm field must be 0 */ 3627 return false; 3628 } 3629 if (size == 3 && !a->q && a->selem != 1) { 3630 return false; 3631 } 3632 if (!fp_access_check(s)) { 3633 return true; 3634 } 3635 3636 if (a->rn == 31) { 3637 gen_check_sp_alignment(s); 3638 } 3639 3640 /* For our purposes, bytes are always little-endian. */ 3641 endian = s->be_data; 3642 if (size == 0) { 3643 endian = MO_LE; 3644 } 3645 3646 total = a->rpt * a->selem * (a->q ? 16 : 8); 3647 tcg_rn = cpu_reg_sp(s, a->rn); 3648 3649 /* 3650 * Issue the MTE check vs the logical repeat count, before we 3651 * promote consecutive little-endian elements below. 3652 */ 3653 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3654 finalize_memop_asimd(s, size)); 3655 3656 /* 3657 * Consecutive little-endian elements from a single register 3658 * can be promoted to a larger little-endian operation. 3659 */ 3660 align = MO_ALIGN; 3661 if (a->selem == 1 && endian == MO_LE) { 3662 align = pow2_align(size); 3663 size = 3; 3664 } 3665 if (!s->align_mem) { 3666 align = 0; 3667 } 3668 mop = endian | size | align; 3669 3670 elements = (a->q ? 16 : 8) >> size; 3671 tcg_ebytes = tcg_constant_i64(1 << size); 3672 for (r = 0; r < a->rpt; r++) { 3673 int e; 3674 for (e = 0; e < elements; e++) { 3675 int xs; 3676 for (xs = 0; xs < a->selem; xs++) { 3677 int tt = (a->rt + r + xs) % 32; 3678 do_vec_ld(s, tt, e, clean_addr, mop); 3679 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3680 } 3681 } 3682 } 3683 3684 /* 3685 * For non-quad operations, setting a slice of the low 64 bits of 3686 * the register clears the high 64 bits (in the ARM ARM pseudocode 3687 * this is implicit in the fact that 'rval' is a 64 bit wide 3688 * variable). For quad operations, we might still need to zero 3689 * the high bits of SVE. 3690 */ 3691 for (r = 0; r < a->rpt * a->selem; r++) { 3692 int tt = (a->rt + r) % 32; 3693 clear_vec_high(s, a->q, tt); 3694 } 3695 3696 if (a->p) { 3697 if (a->rm == 31) { 3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3699 } else { 3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3701 } 3702 } 3703 return true; 3704 } 3705 3706 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3707 { 3708 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3709 MemOp endian, align, mop; 3710 3711 int total; /* total bytes */ 3712 int elements; /* elements per vector */ 3713 int r; 3714 int size = a->sz; 3715 3716 if (!a->p && a->rm != 0) { 3717 /* For non-postindexed accesses the Rm field must be 0 */ 3718 return false; 3719 } 3720 if (size == 3 && !a->q && a->selem != 1) { 3721 return false; 3722 } 3723 if (!fp_access_check(s)) { 3724 return true; 3725 } 3726 3727 if (a->rn == 31) { 3728 gen_check_sp_alignment(s); 3729 } 3730 3731 /* For our purposes, bytes are always little-endian. */ 3732 endian = s->be_data; 3733 if (size == 0) { 3734 endian = MO_LE; 3735 } 3736 3737 total = a->rpt * a->selem * (a->q ? 16 : 8); 3738 tcg_rn = cpu_reg_sp(s, a->rn); 3739 3740 /* 3741 * Issue the MTE check vs the logical repeat count, before we 3742 * promote consecutive little-endian elements below. 3743 */ 3744 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 3745 finalize_memop_asimd(s, size)); 3746 3747 /* 3748 * Consecutive little-endian elements from a single register 3749 * can be promoted to a larger little-endian operation. 3750 */ 3751 align = MO_ALIGN; 3752 if (a->selem == 1 && endian == MO_LE) { 3753 align = pow2_align(size); 3754 size = 3; 3755 } 3756 if (!s->align_mem) { 3757 align = 0; 3758 } 3759 mop = endian | size | align; 3760 3761 elements = (a->q ? 16 : 8) >> size; 3762 tcg_ebytes = tcg_constant_i64(1 << size); 3763 for (r = 0; r < a->rpt; r++) { 3764 int e; 3765 for (e = 0; e < elements; e++) { 3766 int xs; 3767 for (xs = 0; xs < a->selem; xs++) { 3768 int tt = (a->rt + r + xs) % 32; 3769 do_vec_st(s, tt, e, clean_addr, mop); 3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3771 } 3772 } 3773 } 3774 3775 if (a->p) { 3776 if (a->rm == 31) { 3777 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3778 } else { 3779 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3780 } 3781 } 3782 return true; 3783 } 3784 3785 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 3786 { 3787 int xs, total, rt; 3788 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3789 MemOp mop; 3790 3791 if (!a->p && a->rm != 0) { 3792 return false; 3793 } 3794 if (!fp_access_check(s)) { 3795 return true; 3796 } 3797 3798 if (a->rn == 31) { 3799 gen_check_sp_alignment(s); 3800 } 3801 3802 total = a->selem << a->scale; 3803 tcg_rn = cpu_reg_sp(s, a->rn); 3804 3805 mop = finalize_memop_asimd(s, a->scale); 3806 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 3807 total, mop); 3808 3809 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3810 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3811 do_vec_st(s, rt, a->index, clean_addr, mop); 3812 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3813 } 3814 3815 if (a->p) { 3816 if (a->rm == 31) { 3817 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3818 } else { 3819 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3820 } 3821 } 3822 return true; 3823 } 3824 3825 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 3826 { 3827 int xs, total, rt; 3828 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3829 MemOp mop; 3830 3831 if (!a->p && a->rm != 0) { 3832 return false; 3833 } 3834 if (!fp_access_check(s)) { 3835 return true; 3836 } 3837 3838 if (a->rn == 31) { 3839 gen_check_sp_alignment(s); 3840 } 3841 3842 total = a->selem << a->scale; 3843 tcg_rn = cpu_reg_sp(s, a->rn); 3844 3845 mop = finalize_memop_asimd(s, a->scale); 3846 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3847 total, mop); 3848 3849 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3850 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3851 do_vec_ld(s, rt, a->index, clean_addr, mop); 3852 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3853 } 3854 3855 if (a->p) { 3856 if (a->rm == 31) { 3857 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3858 } else { 3859 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3860 } 3861 } 3862 return true; 3863 } 3864 3865 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 3866 { 3867 int xs, total, rt; 3868 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3869 MemOp mop; 3870 3871 if (!a->p && a->rm != 0) { 3872 return false; 3873 } 3874 if (!fp_access_check(s)) { 3875 return true; 3876 } 3877 3878 if (a->rn == 31) { 3879 gen_check_sp_alignment(s); 3880 } 3881 3882 total = a->selem << a->scale; 3883 tcg_rn = cpu_reg_sp(s, a->rn); 3884 3885 mop = finalize_memop_asimd(s, a->scale); 3886 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 3887 total, mop); 3888 3889 tcg_ebytes = tcg_constant_i64(1 << a->scale); 3890 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 3891 /* Load and replicate to all elements */ 3892 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 3893 3894 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 3895 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 3896 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 3897 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3898 } 3899 3900 if (a->p) { 3901 if (a->rm == 31) { 3902 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3903 } else { 3904 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3905 } 3906 } 3907 return true; 3908 } 3909 3910 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 3911 { 3912 TCGv_i64 addr, clean_addr, tcg_rt; 3913 int size = 4 << s->dcz_blocksize; 3914 3915 if (!dc_isar_feature(aa64_mte, s)) { 3916 return false; 3917 } 3918 if (s->current_el == 0) { 3919 return false; 3920 } 3921 3922 if (a->rn == 31) { 3923 gen_check_sp_alignment(s); 3924 } 3925 3926 addr = read_cpu_reg_sp(s, a->rn, true); 3927 tcg_gen_addi_i64(addr, addr, a->imm); 3928 tcg_rt = cpu_reg(s, a->rt); 3929 3930 if (s->ata[0]) { 3931 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 3932 } 3933 /* 3934 * The non-tags portion of STZGM is mostly like DC_ZVA, 3935 * except the alignment happens before the access. 3936 */ 3937 clean_addr = clean_data_tbi(s, addr); 3938 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3939 gen_helper_dc_zva(tcg_env, clean_addr); 3940 return true; 3941 } 3942 3943 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 3944 { 3945 TCGv_i64 addr, clean_addr, tcg_rt; 3946 3947 if (!dc_isar_feature(aa64_mte, s)) { 3948 return false; 3949 } 3950 if (s->current_el == 0) { 3951 return false; 3952 } 3953 3954 if (a->rn == 31) { 3955 gen_check_sp_alignment(s); 3956 } 3957 3958 addr = read_cpu_reg_sp(s, a->rn, true); 3959 tcg_gen_addi_i64(addr, addr, a->imm); 3960 tcg_rt = cpu_reg(s, a->rt); 3961 3962 if (s->ata[0]) { 3963 gen_helper_stgm(tcg_env, addr, tcg_rt); 3964 } else { 3965 MMUAccessType acc = MMU_DATA_STORE; 3966 int size = 4 << s->gm_blocksize; 3967 3968 clean_addr = clean_data_tbi(s, addr); 3969 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 3970 gen_probe_access(s, clean_addr, acc, size); 3971 } 3972 return true; 3973 } 3974 3975 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 3976 { 3977 TCGv_i64 addr, clean_addr, tcg_rt; 3978 3979 if (!dc_isar_feature(aa64_mte, s)) { 3980 return false; 3981 } 3982 if (s->current_el == 0) { 3983 return false; 3984 } 3985 3986 if (a->rn == 31) { 3987 gen_check_sp_alignment(s); 3988 } 3989 3990 addr = read_cpu_reg_sp(s, a->rn, true); 3991 tcg_gen_addi_i64(addr, addr, a->imm); 3992 tcg_rt = cpu_reg(s, a->rt); 3993 3994 if (s->ata[0]) { 3995 gen_helper_ldgm(tcg_rt, tcg_env, addr); 3996 } else { 3997 MMUAccessType acc = MMU_DATA_LOAD; 3998 int size = 4 << s->gm_blocksize; 3999 4000 clean_addr = clean_data_tbi(s, addr); 4001 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4002 gen_probe_access(s, clean_addr, acc, size); 4003 /* The result tags are zeros. */ 4004 tcg_gen_movi_i64(tcg_rt, 0); 4005 } 4006 return true; 4007 } 4008 4009 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4010 { 4011 TCGv_i64 addr, clean_addr, tcg_rt; 4012 4013 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4014 return false; 4015 } 4016 4017 if (a->rn == 31) { 4018 gen_check_sp_alignment(s); 4019 } 4020 4021 addr = read_cpu_reg_sp(s, a->rn, true); 4022 if (!a->p) { 4023 /* pre-index or signed offset */ 4024 tcg_gen_addi_i64(addr, addr, a->imm); 4025 } 4026 4027 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4028 tcg_rt = cpu_reg(s, a->rt); 4029 if (s->ata[0]) { 4030 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4031 } else { 4032 /* 4033 * Tag access disabled: we must check for aborts on the load 4034 * load from [rn+offset], and then insert a 0 tag into rt. 4035 */ 4036 clean_addr = clean_data_tbi(s, addr); 4037 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4038 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4039 } 4040 4041 if (a->w) { 4042 /* pre-index or post-index */ 4043 if (a->p) { 4044 /* post-index */ 4045 tcg_gen_addi_i64(addr, addr, a->imm); 4046 } 4047 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4048 } 4049 return true; 4050 } 4051 4052 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4053 { 4054 TCGv_i64 addr, tcg_rt; 4055 4056 if (a->rn == 31) { 4057 gen_check_sp_alignment(s); 4058 } 4059 4060 addr = read_cpu_reg_sp(s, a->rn, true); 4061 if (!a->p) { 4062 /* pre-index or signed offset */ 4063 tcg_gen_addi_i64(addr, addr, a->imm); 4064 } 4065 tcg_rt = cpu_reg_sp(s, a->rt); 4066 if (!s->ata[0]) { 4067 /* 4068 * For STG and ST2G, we need to check alignment and probe memory. 4069 * TODO: For STZG and STZ2G, we could rely on the stores below, 4070 * at least for system mode; user-only won't enforce alignment. 4071 */ 4072 if (is_pair) { 4073 gen_helper_st2g_stub(tcg_env, addr); 4074 } else { 4075 gen_helper_stg_stub(tcg_env, addr); 4076 } 4077 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4078 if (is_pair) { 4079 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4080 } else { 4081 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4082 } 4083 } else { 4084 if (is_pair) { 4085 gen_helper_st2g(tcg_env, addr, tcg_rt); 4086 } else { 4087 gen_helper_stg(tcg_env, addr, tcg_rt); 4088 } 4089 } 4090 4091 if (is_zero) { 4092 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4093 TCGv_i64 zero64 = tcg_constant_i64(0); 4094 TCGv_i128 zero128 = tcg_temp_new_i128(); 4095 int mem_index = get_mem_index(s); 4096 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4097 4098 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4099 4100 /* This is 1 or 2 atomic 16-byte operations. */ 4101 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4102 if (is_pair) { 4103 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4104 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4105 } 4106 } 4107 4108 if (a->w) { 4109 /* pre-index or post-index */ 4110 if (a->p) { 4111 /* post-index */ 4112 tcg_gen_addi_i64(addr, addr, a->imm); 4113 } 4114 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4115 } 4116 return true; 4117 } 4118 4119 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4120 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4121 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4122 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4123 4124 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4125 4126 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4127 bool is_setg, SetFn fn) 4128 { 4129 int memidx; 4130 uint32_t syndrome, desc = 0; 4131 4132 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4133 return false; 4134 } 4135 4136 /* 4137 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4138 * us to pull this check before the CheckMOPSEnabled() test 4139 * (which we do in the helper function) 4140 */ 4141 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4142 a->rd == 31 || a->rn == 31) { 4143 return false; 4144 } 4145 4146 memidx = get_a64_user_mem_index(s, a->unpriv); 4147 4148 /* 4149 * We pass option_a == true, matching our implementation; 4150 * we pass wrong_option == false: helper function may set that bit. 4151 */ 4152 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4153 is_epilogue, false, true, a->rd, a->rs, a->rn); 4154 4155 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4156 /* We may need to do MTE tag checking, so assemble the descriptor */ 4157 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4158 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4159 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4160 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4161 } 4162 /* The helper function always needs the memidx even with MTE disabled */ 4163 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4164 4165 /* 4166 * The helper needs the register numbers, but since they're in 4167 * the syndrome anyway, we let it extract them from there rather 4168 * than passing in an extra three integer arguments. 4169 */ 4170 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4171 return true; 4172 } 4173 4174 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4175 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4176 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4177 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4178 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4179 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4180 4181 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4182 4183 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4184 { 4185 int rmemidx, wmemidx; 4186 uint32_t syndrome, rdesc = 0, wdesc = 0; 4187 bool wunpriv = extract32(a->options, 0, 1); 4188 bool runpriv = extract32(a->options, 1, 1); 4189 4190 /* 4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4192 * us to pull this check before the CheckMOPSEnabled() test 4193 * (which we do in the helper function) 4194 */ 4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4196 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4197 return false; 4198 } 4199 4200 rmemidx = get_a64_user_mem_index(s, runpriv); 4201 wmemidx = get_a64_user_mem_index(s, wunpriv); 4202 4203 /* 4204 * We pass option_a == true, matching our implementation; 4205 * we pass wrong_option == false: helper function may set that bit. 4206 */ 4207 syndrome = syn_mop(false, false, a->options, is_epilogue, 4208 false, true, a->rd, a->rs, a->rn); 4209 4210 /* If we need to do MTE tag checking, assemble the descriptors */ 4211 if (s->mte_active[runpriv]) { 4212 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4213 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4214 } 4215 if (s->mte_active[wunpriv]) { 4216 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4217 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4218 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4219 } 4220 /* The helper function needs these parts of the descriptor regardless */ 4221 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4222 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4223 4224 /* 4225 * The helper needs the register numbers, but since they're in 4226 * the syndrome anyway, we let it extract them from there rather 4227 * than passing in an extra three integer arguments. 4228 */ 4229 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4230 tcg_constant_i32(rdesc)); 4231 return true; 4232 } 4233 4234 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4235 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4236 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4237 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4238 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4239 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4240 4241 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4242 4243 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4244 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4245 { 4246 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4247 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4248 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4249 4250 fn(tcg_rd, tcg_rn, tcg_imm); 4251 if (!a->sf) { 4252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4253 } 4254 return true; 4255 } 4256 4257 /* 4258 * PC-rel. addressing 4259 */ 4260 4261 static bool trans_ADR(DisasContext *s, arg_ri *a) 4262 { 4263 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4264 return true; 4265 } 4266 4267 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4268 { 4269 int64_t offset = (int64_t)a->imm << 12; 4270 4271 /* The page offset is ok for CF_PCREL. */ 4272 offset -= s->pc_curr & 0xfff; 4273 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4274 return true; 4275 } 4276 4277 /* 4278 * Add/subtract (immediate) 4279 */ 4280 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4281 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4282 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4283 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4284 4285 /* 4286 * Add/subtract (immediate, with tags) 4287 */ 4288 4289 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4290 bool sub_op) 4291 { 4292 TCGv_i64 tcg_rn, tcg_rd; 4293 int imm; 4294 4295 imm = a->uimm6 << LOG2_TAG_GRANULE; 4296 if (sub_op) { 4297 imm = -imm; 4298 } 4299 4300 tcg_rn = cpu_reg_sp(s, a->rn); 4301 tcg_rd = cpu_reg_sp(s, a->rd); 4302 4303 if (s->ata[0]) { 4304 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4305 tcg_constant_i32(imm), 4306 tcg_constant_i32(a->uimm4)); 4307 } else { 4308 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4309 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4310 } 4311 return true; 4312 } 4313 4314 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4315 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4316 4317 /* The input should be a value in the bottom e bits (with higher 4318 * bits zero); returns that value replicated into every element 4319 * of size e in a 64 bit integer. 4320 */ 4321 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4322 { 4323 assert(e != 0); 4324 while (e < 64) { 4325 mask |= mask << e; 4326 e *= 2; 4327 } 4328 return mask; 4329 } 4330 4331 /* 4332 * Logical (immediate) 4333 */ 4334 4335 /* 4336 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4337 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4338 * value (ie should cause a guest UNDEF exception), and true if they are 4339 * valid, in which case the decoded bit pattern is written to result. 4340 */ 4341 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4342 unsigned int imms, unsigned int immr) 4343 { 4344 uint64_t mask; 4345 unsigned e, levels, s, r; 4346 int len; 4347 4348 assert(immn < 2 && imms < 64 && immr < 64); 4349 4350 /* The bit patterns we create here are 64 bit patterns which 4351 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4352 * 64 bits each. Each element contains the same value: a run 4353 * of between 1 and e-1 non-zero bits, rotated within the 4354 * element by between 0 and e-1 bits. 4355 * 4356 * The element size and run length are encoded into immn (1 bit) 4357 * and imms (6 bits) as follows: 4358 * 64 bit elements: immn = 1, imms = <length of run - 1> 4359 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4360 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4361 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4362 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4363 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4364 * Notice that immn = 0, imms = 11111x is the only combination 4365 * not covered by one of the above options; this is reserved. 4366 * Further, <length of run - 1> all-ones is a reserved pattern. 4367 * 4368 * In all cases the rotation is by immr % e (and immr is 6 bits). 4369 */ 4370 4371 /* First determine the element size */ 4372 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4373 if (len < 1) { 4374 /* This is the immn == 0, imms == 0x11111x case */ 4375 return false; 4376 } 4377 e = 1 << len; 4378 4379 levels = e - 1; 4380 s = imms & levels; 4381 r = immr & levels; 4382 4383 if (s == levels) { 4384 /* <length of run - 1> mustn't be all-ones. */ 4385 return false; 4386 } 4387 4388 /* Create the value of one element: s+1 set bits rotated 4389 * by r within the element (which is e bits wide)... 4390 */ 4391 mask = MAKE_64BIT_MASK(0, s + 1); 4392 if (r) { 4393 mask = (mask >> r) | (mask << (e - r)); 4394 mask &= MAKE_64BIT_MASK(0, e); 4395 } 4396 /* ...then replicate the element over the whole 64 bit value */ 4397 mask = bitfield_replicate(mask, e); 4398 *result = mask; 4399 return true; 4400 } 4401 4402 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4403 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4404 { 4405 TCGv_i64 tcg_rd, tcg_rn; 4406 uint64_t imm; 4407 4408 /* Some immediate field values are reserved. */ 4409 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4410 extract32(a->dbm, 0, 6), 4411 extract32(a->dbm, 6, 6))) { 4412 return false; 4413 } 4414 if (!a->sf) { 4415 imm &= 0xffffffffull; 4416 } 4417 4418 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4419 tcg_rn = cpu_reg(s, a->rn); 4420 4421 fn(tcg_rd, tcg_rn, imm); 4422 if (set_cc) { 4423 gen_logic_CC(a->sf, tcg_rd); 4424 } 4425 if (!a->sf) { 4426 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4427 } 4428 return true; 4429 } 4430 4431 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4432 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4433 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4434 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4435 4436 /* 4437 * Move wide (immediate) 4438 */ 4439 4440 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4441 { 4442 int pos = a->hw << 4; 4443 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4444 return true; 4445 } 4446 4447 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4448 { 4449 int pos = a->hw << 4; 4450 uint64_t imm = a->imm; 4451 4452 imm = ~(imm << pos); 4453 if (!a->sf) { 4454 imm = (uint32_t)imm; 4455 } 4456 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4457 return true; 4458 } 4459 4460 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4461 { 4462 int pos = a->hw << 4; 4463 TCGv_i64 tcg_rd, tcg_im; 4464 4465 tcg_rd = cpu_reg(s, a->rd); 4466 tcg_im = tcg_constant_i64(a->imm); 4467 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4468 if (!a->sf) { 4469 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4470 } 4471 return true; 4472 } 4473 4474 /* 4475 * Bitfield 4476 */ 4477 4478 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4479 { 4480 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4481 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4482 unsigned int bitsize = a->sf ? 64 : 32; 4483 unsigned int ri = a->immr; 4484 unsigned int si = a->imms; 4485 unsigned int pos, len; 4486 4487 if (si >= ri) { 4488 /* Wd<s-r:0> = Wn<s:r> */ 4489 len = (si - ri) + 1; 4490 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4491 if (!a->sf) { 4492 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4493 } 4494 } else { 4495 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4496 len = si + 1; 4497 pos = (bitsize - ri) & (bitsize - 1); 4498 4499 if (len < ri) { 4500 /* 4501 * Sign extend the destination field from len to fill the 4502 * balance of the word. Let the deposit below insert all 4503 * of those sign bits. 4504 */ 4505 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4506 len = ri; 4507 } 4508 4509 /* 4510 * We start with zero, and we haven't modified any bits outside 4511 * bitsize, therefore no final zero-extension is unneeded for !sf. 4512 */ 4513 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4514 } 4515 return true; 4516 } 4517 4518 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4519 { 4520 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4521 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4522 unsigned int bitsize = a->sf ? 64 : 32; 4523 unsigned int ri = a->immr; 4524 unsigned int si = a->imms; 4525 unsigned int pos, len; 4526 4527 tcg_rd = cpu_reg(s, a->rd); 4528 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4529 4530 if (si >= ri) { 4531 /* Wd<s-r:0> = Wn<s:r> */ 4532 len = (si - ri) + 1; 4533 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4534 } else { 4535 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4536 len = si + 1; 4537 pos = (bitsize - ri) & (bitsize - 1); 4538 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4539 } 4540 return true; 4541 } 4542 4543 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4544 { 4545 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4546 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4547 unsigned int bitsize = a->sf ? 64 : 32; 4548 unsigned int ri = a->immr; 4549 unsigned int si = a->imms; 4550 unsigned int pos, len; 4551 4552 tcg_rd = cpu_reg(s, a->rd); 4553 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4554 4555 if (si >= ri) { 4556 /* Wd<s-r:0> = Wn<s:r> */ 4557 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4558 len = (si - ri) + 1; 4559 pos = 0; 4560 } else { 4561 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4562 len = si + 1; 4563 pos = (bitsize - ri) & (bitsize - 1); 4564 } 4565 4566 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4567 if (!a->sf) { 4568 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4569 } 4570 return true; 4571 } 4572 4573 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4574 { 4575 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4576 4577 tcg_rd = cpu_reg(s, a->rd); 4578 4579 if (unlikely(a->imm == 0)) { 4580 /* 4581 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4582 * so an extract from bit 0 is a special case. 4583 */ 4584 if (a->sf) { 4585 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4586 } else { 4587 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4588 } 4589 } else { 4590 tcg_rm = cpu_reg(s, a->rm); 4591 tcg_rn = cpu_reg(s, a->rn); 4592 4593 if (a->sf) { 4594 /* Specialization to ROR happens in EXTRACT2. */ 4595 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4596 } else { 4597 TCGv_i32 t0 = tcg_temp_new_i32(); 4598 4599 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4600 if (a->rm == a->rn) { 4601 tcg_gen_rotri_i32(t0, t0, a->imm); 4602 } else { 4603 TCGv_i32 t1 = tcg_temp_new_i32(); 4604 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4605 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4606 } 4607 tcg_gen_extu_i32_i64(tcg_rd, t0); 4608 } 4609 } 4610 return true; 4611 } 4612 4613 /* 4614 * Cryptographic AES, SHA, SHA512 4615 */ 4616 4617 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4618 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4619 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4620 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4621 4622 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4623 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4624 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4625 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4626 4627 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4628 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4629 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4630 4631 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4632 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4633 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4634 4635 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4636 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4637 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4638 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4639 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4640 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4641 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4642 4643 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4644 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4645 4646 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4647 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4648 4649 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4650 { 4651 if (!dc_isar_feature(aa64_sm3, s)) { 4652 return false; 4653 } 4654 if (fp_access_check(s)) { 4655 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4656 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4657 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4658 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4659 unsigned vsz, dofs; 4660 4661 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 4662 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 4663 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 4664 4665 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 4666 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 4667 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 4668 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 4669 4670 /* Clear the whole register first, then store bits [127:96]. */ 4671 vsz = vec_full_reg_size(s); 4672 dofs = vec_full_reg_offset(s, a->rd); 4673 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); 4674 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 4675 } 4676 return true; 4677 } 4678 4679 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 4680 { 4681 if (fp_access_check(s)) { 4682 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 4683 } 4684 return true; 4685 } 4686 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 4687 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 4688 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 4689 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 4690 4691 static bool trans_XAR(DisasContext *s, arg_XAR *a) 4692 { 4693 if (!dc_isar_feature(aa64_sha3, s)) { 4694 return false; 4695 } 4696 if (fp_access_check(s)) { 4697 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 4698 vec_full_reg_offset(s, a->rn), 4699 vec_full_reg_offset(s, a->rm), a->imm, 16, 4700 vec_full_reg_size(s)); 4701 } 4702 return true; 4703 } 4704 4705 /* 4706 * Advanced SIMD copy 4707 */ 4708 4709 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 4710 { 4711 unsigned esz = ctz32(imm); 4712 if (esz <= MO_64) { 4713 *pesz = esz; 4714 *pidx = imm >> (esz + 1); 4715 return true; 4716 } 4717 return false; 4718 } 4719 4720 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 4721 { 4722 MemOp esz; 4723 unsigned idx; 4724 4725 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4726 return false; 4727 } 4728 if (fp_access_check(s)) { 4729 /* 4730 * This instruction just extracts the specified element and 4731 * zero-extends it into the bottom of the destination register. 4732 */ 4733 TCGv_i64 tmp = tcg_temp_new_i64(); 4734 read_vec_element(s, tmp, a->rn, idx, esz); 4735 write_fp_dreg(s, a->rd, tmp); 4736 } 4737 return true; 4738 } 4739 4740 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 4741 { 4742 MemOp esz; 4743 unsigned idx; 4744 4745 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4746 return false; 4747 } 4748 if (esz == MO_64 && !a->q) { 4749 return false; 4750 } 4751 if (fp_access_check(s)) { 4752 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 4753 vec_reg_offset(s, a->rn, idx, esz), 4754 a->q ? 16 : 8, vec_full_reg_size(s)); 4755 } 4756 return true; 4757 } 4758 4759 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 4760 { 4761 MemOp esz; 4762 unsigned idx; 4763 4764 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4765 return false; 4766 } 4767 if (esz == MO_64 && !a->q) { 4768 return false; 4769 } 4770 if (fp_access_check(s)) { 4771 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 4772 a->q ? 16 : 8, vec_full_reg_size(s), 4773 cpu_reg(s, a->rn)); 4774 } 4775 return true; 4776 } 4777 4778 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 4779 { 4780 MemOp esz; 4781 unsigned idx; 4782 4783 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4784 return false; 4785 } 4786 if (is_signed) { 4787 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 4788 return false; 4789 } 4790 } else { 4791 if (esz == MO_64 ? !a->q : a->q) { 4792 return false; 4793 } 4794 } 4795 if (fp_access_check(s)) { 4796 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4797 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 4798 if (is_signed && !a->q) { 4799 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4800 } 4801 } 4802 return true; 4803 } 4804 4805 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 4806 TRANS(UMOV, do_smov_umov, a, 0) 4807 4808 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 4809 { 4810 MemOp esz; 4811 unsigned idx; 4812 4813 if (!decode_esz_idx(a->imm, &esz, &idx)) { 4814 return false; 4815 } 4816 if (fp_access_check(s)) { 4817 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 4818 clear_vec_high(s, true, a->rd); 4819 } 4820 return true; 4821 } 4822 4823 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 4824 { 4825 MemOp esz; 4826 unsigned didx, sidx; 4827 4828 if (!decode_esz_idx(a->di, &esz, &didx)) { 4829 return false; 4830 } 4831 sidx = a->si >> esz; 4832 if (fp_access_check(s)) { 4833 TCGv_i64 tmp = tcg_temp_new_i64(); 4834 4835 read_vec_element(s, tmp, a->rn, sidx, esz); 4836 write_vec_element(s, tmp, a->rd, didx, esz); 4837 4838 /* INS is considered a 128-bit write for SVE. */ 4839 clear_vec_high(s, true, a->rd); 4840 } 4841 return true; 4842 } 4843 4844 /* 4845 * Advanced SIMD three same 4846 */ 4847 4848 typedef struct FPScalar { 4849 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4850 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 4851 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 4852 } FPScalar; 4853 4854 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) 4855 { 4856 switch (a->esz) { 4857 case MO_64: 4858 if (fp_access_check(s)) { 4859 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 4860 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 4861 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4862 write_fp_dreg(s, a->rd, t0); 4863 } 4864 break; 4865 case MO_32: 4866 if (fp_access_check(s)) { 4867 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 4868 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 4869 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 4870 write_fp_sreg(s, a->rd, t0); 4871 } 4872 break; 4873 case MO_16: 4874 if (!dc_isar_feature(aa64_fp16, s)) { 4875 return false; 4876 } 4877 if (fp_access_check(s)) { 4878 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 4879 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 4880 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 4881 write_fp_sreg(s, a->rd, t0); 4882 } 4883 break; 4884 default: 4885 return false; 4886 } 4887 return true; 4888 } 4889 4890 static const FPScalar f_scalar_fadd = { 4891 gen_helper_vfp_addh, 4892 gen_helper_vfp_adds, 4893 gen_helper_vfp_addd, 4894 }; 4895 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) 4896 4897 static const FPScalar f_scalar_fsub = { 4898 gen_helper_vfp_subh, 4899 gen_helper_vfp_subs, 4900 gen_helper_vfp_subd, 4901 }; 4902 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) 4903 4904 static const FPScalar f_scalar_fdiv = { 4905 gen_helper_vfp_divh, 4906 gen_helper_vfp_divs, 4907 gen_helper_vfp_divd, 4908 }; 4909 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) 4910 4911 static const FPScalar f_scalar_fmul = { 4912 gen_helper_vfp_mulh, 4913 gen_helper_vfp_muls, 4914 gen_helper_vfp_muld, 4915 }; 4916 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) 4917 4918 static const FPScalar f_scalar_fmax = { 4919 gen_helper_advsimd_maxh, 4920 gen_helper_vfp_maxs, 4921 gen_helper_vfp_maxd, 4922 }; 4923 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) 4924 4925 static const FPScalar f_scalar_fmin = { 4926 gen_helper_advsimd_minh, 4927 gen_helper_vfp_mins, 4928 gen_helper_vfp_mind, 4929 }; 4930 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) 4931 4932 static const FPScalar f_scalar_fmaxnm = { 4933 gen_helper_advsimd_maxnumh, 4934 gen_helper_vfp_maxnums, 4935 gen_helper_vfp_maxnumd, 4936 }; 4937 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) 4938 4939 static const FPScalar f_scalar_fminnm = { 4940 gen_helper_advsimd_minnumh, 4941 gen_helper_vfp_minnums, 4942 gen_helper_vfp_minnumd, 4943 }; 4944 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) 4945 4946 static const FPScalar f_scalar_fmulx = { 4947 gen_helper_advsimd_mulxh, 4948 gen_helper_vfp_mulxs, 4949 gen_helper_vfp_mulxd, 4950 }; 4951 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) 4952 4953 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4954 { 4955 gen_helper_vfp_mulh(d, n, m, s); 4956 gen_vfp_negh(d, d); 4957 } 4958 4959 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 4960 { 4961 gen_helper_vfp_muls(d, n, m, s); 4962 gen_vfp_negs(d, d); 4963 } 4964 4965 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 4966 { 4967 gen_helper_vfp_muld(d, n, m, s); 4968 gen_vfp_negd(d, d); 4969 } 4970 4971 static const FPScalar f_scalar_fnmul = { 4972 gen_fnmul_h, 4973 gen_fnmul_s, 4974 gen_fnmul_d, 4975 }; 4976 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) 4977 4978 static const FPScalar f_scalar_fcmeq = { 4979 gen_helper_advsimd_ceq_f16, 4980 gen_helper_neon_ceq_f32, 4981 gen_helper_neon_ceq_f64, 4982 }; 4983 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) 4984 4985 static const FPScalar f_scalar_fcmge = { 4986 gen_helper_advsimd_cge_f16, 4987 gen_helper_neon_cge_f32, 4988 gen_helper_neon_cge_f64, 4989 }; 4990 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) 4991 4992 static const FPScalar f_scalar_fcmgt = { 4993 gen_helper_advsimd_cgt_f16, 4994 gen_helper_neon_cgt_f32, 4995 gen_helper_neon_cgt_f64, 4996 }; 4997 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) 4998 4999 static const FPScalar f_scalar_facge = { 5000 gen_helper_advsimd_acge_f16, 5001 gen_helper_neon_acge_f32, 5002 gen_helper_neon_acge_f64, 5003 }; 5004 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) 5005 5006 static const FPScalar f_scalar_facgt = { 5007 gen_helper_advsimd_acgt_f16, 5008 gen_helper_neon_acgt_f32, 5009 gen_helper_neon_acgt_f64, 5010 }; 5011 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) 5012 5013 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, 5014 gen_helper_gvec_3_ptr * const fns[3]) 5015 { 5016 MemOp esz = a->esz; 5017 5018 switch (esz) { 5019 case MO_64: 5020 if (!a->q) { 5021 return false; 5022 } 5023 break; 5024 case MO_32: 5025 break; 5026 case MO_16: 5027 if (!dc_isar_feature(aa64_fp16, s)) { 5028 return false; 5029 } 5030 break; 5031 default: 5032 return false; 5033 } 5034 if (fp_access_check(s)) { 5035 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5036 esz == MO_16, 0, fns[esz - 1]); 5037 } 5038 return true; 5039 } 5040 5041 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5042 gen_helper_gvec_fadd_h, 5043 gen_helper_gvec_fadd_s, 5044 gen_helper_gvec_fadd_d, 5045 }; 5046 TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) 5047 5048 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5049 gen_helper_gvec_fsub_h, 5050 gen_helper_gvec_fsub_s, 5051 gen_helper_gvec_fsub_d, 5052 }; 5053 TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) 5054 5055 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5056 gen_helper_gvec_fdiv_h, 5057 gen_helper_gvec_fdiv_s, 5058 gen_helper_gvec_fdiv_d, 5059 }; 5060 TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) 5061 5062 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5063 gen_helper_gvec_fmul_h, 5064 gen_helper_gvec_fmul_s, 5065 gen_helper_gvec_fmul_d, 5066 }; 5067 TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) 5068 5069 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5070 gen_helper_gvec_fmax_h, 5071 gen_helper_gvec_fmax_s, 5072 gen_helper_gvec_fmax_d, 5073 }; 5074 TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) 5075 5076 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5077 gen_helper_gvec_fmin_h, 5078 gen_helper_gvec_fmin_s, 5079 gen_helper_gvec_fmin_d, 5080 }; 5081 TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) 5082 5083 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5084 gen_helper_gvec_fmaxnum_h, 5085 gen_helper_gvec_fmaxnum_s, 5086 gen_helper_gvec_fmaxnum_d, 5087 }; 5088 TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) 5089 5090 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5091 gen_helper_gvec_fminnum_h, 5092 gen_helper_gvec_fminnum_s, 5093 gen_helper_gvec_fminnum_d, 5094 }; 5095 TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) 5096 5097 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5098 gen_helper_gvec_fmulx_h, 5099 gen_helper_gvec_fmulx_s, 5100 gen_helper_gvec_fmulx_d, 5101 }; 5102 TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) 5103 5104 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5105 gen_helper_gvec_vfma_h, 5106 gen_helper_gvec_vfma_s, 5107 gen_helper_gvec_vfma_d, 5108 }; 5109 TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) 5110 5111 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5112 gen_helper_gvec_vfms_h, 5113 gen_helper_gvec_vfms_s, 5114 gen_helper_gvec_vfms_d, 5115 }; 5116 TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) 5117 5118 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5119 gen_helper_gvec_fceq_h, 5120 gen_helper_gvec_fceq_s, 5121 gen_helper_gvec_fceq_d, 5122 }; 5123 TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) 5124 5125 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5126 gen_helper_gvec_fcge_h, 5127 gen_helper_gvec_fcge_s, 5128 gen_helper_gvec_fcge_d, 5129 }; 5130 TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) 5131 5132 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5133 gen_helper_gvec_fcgt_h, 5134 gen_helper_gvec_fcgt_s, 5135 gen_helper_gvec_fcgt_d, 5136 }; 5137 TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) 5138 5139 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5140 gen_helper_gvec_facge_h, 5141 gen_helper_gvec_facge_s, 5142 gen_helper_gvec_facge_d, 5143 }; 5144 TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) 5145 5146 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5147 gen_helper_gvec_facgt_h, 5148 gen_helper_gvec_facgt_s, 5149 gen_helper_gvec_facgt_d, 5150 }; 5151 TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) 5152 5153 /* 5154 * Advanced SIMD scalar/vector x indexed element 5155 */ 5156 5157 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 5158 { 5159 switch (a->esz) { 5160 case MO_64: 5161 if (fp_access_check(s)) { 5162 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5163 TCGv_i64 t1 = tcg_temp_new_i64(); 5164 5165 read_vec_element(s, t1, a->rm, a->idx, MO_64); 5166 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5167 write_fp_dreg(s, a->rd, t0); 5168 } 5169 break; 5170 case MO_32: 5171 if (fp_access_check(s)) { 5172 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5173 TCGv_i32 t1 = tcg_temp_new_i32(); 5174 5175 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 5176 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); 5177 write_fp_sreg(s, a->rd, t0); 5178 } 5179 break; 5180 case MO_16: 5181 if (!dc_isar_feature(aa64_fp16, s)) { 5182 return false; 5183 } 5184 if (fp_access_check(s)) { 5185 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5186 TCGv_i32 t1 = tcg_temp_new_i32(); 5187 5188 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 5189 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); 5190 write_fp_sreg(s, a->rd, t0); 5191 } 5192 break; 5193 default: 5194 g_assert_not_reached(); 5195 } 5196 return true; 5197 } 5198 5199 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 5200 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 5201 5202 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 5203 { 5204 switch (a->esz) { 5205 case MO_64: 5206 if (fp_access_check(s)) { 5207 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 5208 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 5209 TCGv_i64 t2 = tcg_temp_new_i64(); 5210 5211 read_vec_element(s, t2, a->rm, a->idx, MO_64); 5212 if (neg) { 5213 gen_vfp_negd(t1, t1); 5214 } 5215 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5216 write_fp_dreg(s, a->rd, t0); 5217 } 5218 break; 5219 case MO_32: 5220 if (fp_access_check(s)) { 5221 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 5222 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 5223 TCGv_i32 t2 = tcg_temp_new_i32(); 5224 5225 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 5226 if (neg) { 5227 gen_vfp_negs(t1, t1); 5228 } 5229 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); 5230 write_fp_sreg(s, a->rd, t0); 5231 } 5232 break; 5233 case MO_16: 5234 if (!dc_isar_feature(aa64_fp16, s)) { 5235 return false; 5236 } 5237 if (fp_access_check(s)) { 5238 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 5239 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 5240 TCGv_i32 t2 = tcg_temp_new_i32(); 5241 5242 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 5243 if (neg) { 5244 gen_vfp_negh(t1, t1); 5245 } 5246 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 5247 fpstatus_ptr(FPST_FPCR_F16)); 5248 write_fp_sreg(s, a->rd, t0); 5249 } 5250 break; 5251 default: 5252 g_assert_not_reached(); 5253 } 5254 return true; 5255 } 5256 5257 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 5258 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 5259 5260 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 5261 gen_helper_gvec_3_ptr * const fns[3]) 5262 { 5263 MemOp esz = a->esz; 5264 5265 switch (esz) { 5266 case MO_64: 5267 if (!a->q) { 5268 return false; 5269 } 5270 break; 5271 case MO_32: 5272 break; 5273 case MO_16: 5274 if (!dc_isar_feature(aa64_fp16, s)) { 5275 return false; 5276 } 5277 break; 5278 default: 5279 g_assert_not_reached(); 5280 } 5281 if (fp_access_check(s)) { 5282 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 5283 esz == MO_16, a->idx, fns[esz - 1]); 5284 } 5285 return true; 5286 } 5287 5288 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 5289 gen_helper_gvec_fmul_idx_h, 5290 gen_helper_gvec_fmul_idx_s, 5291 gen_helper_gvec_fmul_idx_d, 5292 }; 5293 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 5294 5295 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 5296 gen_helper_gvec_fmulx_idx_h, 5297 gen_helper_gvec_fmulx_idx_s, 5298 gen_helper_gvec_fmulx_idx_d, 5299 }; 5300 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 5301 5302 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 5303 { 5304 static gen_helper_gvec_4_ptr * const fns[3] = { 5305 gen_helper_gvec_fmla_idx_h, 5306 gen_helper_gvec_fmla_idx_s, 5307 gen_helper_gvec_fmla_idx_d, 5308 }; 5309 MemOp esz = a->esz; 5310 5311 switch (esz) { 5312 case MO_64: 5313 if (!a->q) { 5314 return false; 5315 } 5316 break; 5317 case MO_32: 5318 break; 5319 case MO_16: 5320 if (!dc_isar_feature(aa64_fp16, s)) { 5321 return false; 5322 } 5323 break; 5324 default: 5325 g_assert_not_reached(); 5326 } 5327 if (fp_access_check(s)) { 5328 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 5329 esz == MO_16, (a->idx << 1) | neg, 5330 fns[esz - 1]); 5331 } 5332 return true; 5333 } 5334 5335 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 5336 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 5337 5338 5339 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 5340 * Note that it is the caller's responsibility to ensure that the 5341 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 5342 * mandated semantics for out of range shifts. 5343 */ 5344 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 5345 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 5346 { 5347 switch (shift_type) { 5348 case A64_SHIFT_TYPE_LSL: 5349 tcg_gen_shl_i64(dst, src, shift_amount); 5350 break; 5351 case A64_SHIFT_TYPE_LSR: 5352 tcg_gen_shr_i64(dst, src, shift_amount); 5353 break; 5354 case A64_SHIFT_TYPE_ASR: 5355 if (!sf) { 5356 tcg_gen_ext32s_i64(dst, src); 5357 } 5358 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 5359 break; 5360 case A64_SHIFT_TYPE_ROR: 5361 if (sf) { 5362 tcg_gen_rotr_i64(dst, src, shift_amount); 5363 } else { 5364 TCGv_i32 t0, t1; 5365 t0 = tcg_temp_new_i32(); 5366 t1 = tcg_temp_new_i32(); 5367 tcg_gen_extrl_i64_i32(t0, src); 5368 tcg_gen_extrl_i64_i32(t1, shift_amount); 5369 tcg_gen_rotr_i32(t0, t0, t1); 5370 tcg_gen_extu_i32_i64(dst, t0); 5371 } 5372 break; 5373 default: 5374 assert(FALSE); /* all shift types should be handled */ 5375 break; 5376 } 5377 5378 if (!sf) { /* zero extend final result */ 5379 tcg_gen_ext32u_i64(dst, dst); 5380 } 5381 } 5382 5383 /* Shift a TCGv src by immediate, put result in dst. 5384 * The shift amount must be in range (this should always be true as the 5385 * relevant instructions will UNDEF on bad shift immediates). 5386 */ 5387 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 5388 enum a64_shift_type shift_type, unsigned int shift_i) 5389 { 5390 assert(shift_i < (sf ? 64 : 32)); 5391 5392 if (shift_i == 0) { 5393 tcg_gen_mov_i64(dst, src); 5394 } else { 5395 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 5396 } 5397 } 5398 5399 /* Logical (shifted register) 5400 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5401 * +----+-----+-----------+-------+---+------+--------+------+------+ 5402 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | 5403 * +----+-----+-----------+-------+---+------+--------+------+------+ 5404 */ 5405 static void disas_logic_reg(DisasContext *s, uint32_t insn) 5406 { 5407 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 5408 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; 5409 5410 sf = extract32(insn, 31, 1); 5411 opc = extract32(insn, 29, 2); 5412 shift_type = extract32(insn, 22, 2); 5413 invert = extract32(insn, 21, 1); 5414 rm = extract32(insn, 16, 5); 5415 shift_amount = extract32(insn, 10, 6); 5416 rn = extract32(insn, 5, 5); 5417 rd = extract32(insn, 0, 5); 5418 5419 if (!sf && (shift_amount & (1 << 5))) { 5420 unallocated_encoding(s); 5421 return; 5422 } 5423 5424 tcg_rd = cpu_reg(s, rd); 5425 5426 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { 5427 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for 5428 * register-register MOV and MVN, so it is worth special casing. 5429 */ 5430 tcg_rm = cpu_reg(s, rm); 5431 if (invert) { 5432 tcg_gen_not_i64(tcg_rd, tcg_rm); 5433 if (!sf) { 5434 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5435 } 5436 } else { 5437 if (sf) { 5438 tcg_gen_mov_i64(tcg_rd, tcg_rm); 5439 } else { 5440 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 5441 } 5442 } 5443 return; 5444 } 5445 5446 tcg_rm = read_cpu_reg(s, rm, sf); 5447 5448 if (shift_amount) { 5449 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); 5450 } 5451 5452 tcg_rn = cpu_reg(s, rn); 5453 5454 switch (opc | (invert << 2)) { 5455 case 0: /* AND */ 5456 case 3: /* ANDS */ 5457 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); 5458 break; 5459 case 1: /* ORR */ 5460 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); 5461 break; 5462 case 2: /* EOR */ 5463 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); 5464 break; 5465 case 4: /* BIC */ 5466 case 7: /* BICS */ 5467 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); 5468 break; 5469 case 5: /* ORN */ 5470 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); 5471 break; 5472 case 6: /* EON */ 5473 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); 5474 break; 5475 default: 5476 assert(FALSE); 5477 break; 5478 } 5479 5480 if (!sf) { 5481 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5482 } 5483 5484 if (opc == 3) { 5485 gen_logic_CC(sf, tcg_rd); 5486 } 5487 } 5488 5489 /* 5490 * Add/subtract (extended register) 5491 * 5492 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| 5493 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5494 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | 5495 * +--+--+--+-----------+-----+--+-------+------+------+----+----+ 5496 * 5497 * sf: 0 -> 32bit, 1 -> 64bit 5498 * op: 0 -> add , 1 -> sub 5499 * S: 1 -> set flags 5500 * opt: 00 5501 * option: extension type (see DecodeRegExtend) 5502 * imm3: optional shift to Rm 5503 * 5504 * Rd = Rn + LSL(extend(Rm), amount) 5505 */ 5506 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) 5507 { 5508 int rd = extract32(insn, 0, 5); 5509 int rn = extract32(insn, 5, 5); 5510 int imm3 = extract32(insn, 10, 3); 5511 int option = extract32(insn, 13, 3); 5512 int rm = extract32(insn, 16, 5); 5513 int opt = extract32(insn, 22, 2); 5514 bool setflags = extract32(insn, 29, 1); 5515 bool sub_op = extract32(insn, 30, 1); 5516 bool sf = extract32(insn, 31, 1); 5517 5518 TCGv_i64 tcg_rm, tcg_rn; /* temps */ 5519 TCGv_i64 tcg_rd; 5520 TCGv_i64 tcg_result; 5521 5522 if (imm3 > 4 || opt != 0) { 5523 unallocated_encoding(s); 5524 return; 5525 } 5526 5527 /* non-flag setting ops may use SP */ 5528 if (!setflags) { 5529 tcg_rd = cpu_reg_sp(s, rd); 5530 } else { 5531 tcg_rd = cpu_reg(s, rd); 5532 } 5533 tcg_rn = read_cpu_reg_sp(s, rn, sf); 5534 5535 tcg_rm = read_cpu_reg(s, rm, sf); 5536 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); 5537 5538 tcg_result = tcg_temp_new_i64(); 5539 5540 if (!setflags) { 5541 if (sub_op) { 5542 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5543 } else { 5544 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5545 } 5546 } else { 5547 if (sub_op) { 5548 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5549 } else { 5550 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5551 } 5552 } 5553 5554 if (sf) { 5555 tcg_gen_mov_i64(tcg_rd, tcg_result); 5556 } else { 5557 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5558 } 5559 } 5560 5561 /* 5562 * Add/subtract (shifted register) 5563 * 5564 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 5565 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5566 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | 5567 * +--+--+--+-----------+-----+--+-------+---------+------+------+ 5568 * 5569 * sf: 0 -> 32bit, 1 -> 64bit 5570 * op: 0 -> add , 1 -> sub 5571 * S: 1 -> set flags 5572 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED 5573 * imm6: Shift amount to apply to Rm before the add/sub 5574 */ 5575 static void disas_add_sub_reg(DisasContext *s, uint32_t insn) 5576 { 5577 int rd = extract32(insn, 0, 5); 5578 int rn = extract32(insn, 5, 5); 5579 int imm6 = extract32(insn, 10, 6); 5580 int rm = extract32(insn, 16, 5); 5581 int shift_type = extract32(insn, 22, 2); 5582 bool setflags = extract32(insn, 29, 1); 5583 bool sub_op = extract32(insn, 30, 1); 5584 bool sf = extract32(insn, 31, 1); 5585 5586 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5587 TCGv_i64 tcg_rn, tcg_rm; 5588 TCGv_i64 tcg_result; 5589 5590 if ((shift_type == 3) || (!sf && (imm6 > 31))) { 5591 unallocated_encoding(s); 5592 return; 5593 } 5594 5595 tcg_rn = read_cpu_reg(s, rn, sf); 5596 tcg_rm = read_cpu_reg(s, rm, sf); 5597 5598 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); 5599 5600 tcg_result = tcg_temp_new_i64(); 5601 5602 if (!setflags) { 5603 if (sub_op) { 5604 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 5605 } else { 5606 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 5607 } 5608 } else { 5609 if (sub_op) { 5610 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); 5611 } else { 5612 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); 5613 } 5614 } 5615 5616 if (sf) { 5617 tcg_gen_mov_i64(tcg_rd, tcg_result); 5618 } else { 5619 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 5620 } 5621 } 5622 5623 /* Data-processing (3 source) 5624 * 5625 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 5626 * +--+------+-----------+------+------+----+------+------+------+ 5627 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | 5628 * +--+------+-----------+------+------+----+------+------+------+ 5629 */ 5630 static void disas_data_proc_3src(DisasContext *s, uint32_t insn) 5631 { 5632 int rd = extract32(insn, 0, 5); 5633 int rn = extract32(insn, 5, 5); 5634 int ra = extract32(insn, 10, 5); 5635 int rm = extract32(insn, 16, 5); 5636 int op_id = (extract32(insn, 29, 3) << 4) | 5637 (extract32(insn, 21, 3) << 1) | 5638 extract32(insn, 15, 1); 5639 bool sf = extract32(insn, 31, 1); 5640 bool is_sub = extract32(op_id, 0, 1); 5641 bool is_high = extract32(op_id, 2, 1); 5642 bool is_signed = false; 5643 TCGv_i64 tcg_op1; 5644 TCGv_i64 tcg_op2; 5645 TCGv_i64 tcg_tmp; 5646 5647 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ 5648 switch (op_id) { 5649 case 0x42: /* SMADDL */ 5650 case 0x43: /* SMSUBL */ 5651 case 0x44: /* SMULH */ 5652 is_signed = true; 5653 break; 5654 case 0x0: /* MADD (32bit) */ 5655 case 0x1: /* MSUB (32bit) */ 5656 case 0x40: /* MADD (64bit) */ 5657 case 0x41: /* MSUB (64bit) */ 5658 case 0x4a: /* UMADDL */ 5659 case 0x4b: /* UMSUBL */ 5660 case 0x4c: /* UMULH */ 5661 break; 5662 default: 5663 unallocated_encoding(s); 5664 return; 5665 } 5666 5667 if (is_high) { 5668 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ 5669 TCGv_i64 tcg_rd = cpu_reg(s, rd); 5670 TCGv_i64 tcg_rn = cpu_reg(s, rn); 5671 TCGv_i64 tcg_rm = cpu_reg(s, rm); 5672 5673 if (is_signed) { 5674 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5675 } else { 5676 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); 5677 } 5678 return; 5679 } 5680 5681 tcg_op1 = tcg_temp_new_i64(); 5682 tcg_op2 = tcg_temp_new_i64(); 5683 tcg_tmp = tcg_temp_new_i64(); 5684 5685 if (op_id < 0x42) { 5686 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); 5687 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); 5688 } else { 5689 if (is_signed) { 5690 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); 5691 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); 5692 } else { 5693 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); 5694 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); 5695 } 5696 } 5697 5698 if (ra == 31 && !is_sub) { 5699 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 5700 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); 5701 } else { 5702 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 5703 if (is_sub) { 5704 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5705 } else { 5706 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); 5707 } 5708 } 5709 5710 if (!sf) { 5711 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); 5712 } 5713 } 5714 5715 /* Add/subtract (with carry) 5716 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 5717 * +--+--+--+------------------------+------+-------------+------+-----+ 5718 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | 5719 * +--+--+--+------------------------+------+-------------+------+-----+ 5720 */ 5721 5722 static void disas_adc_sbc(DisasContext *s, uint32_t insn) 5723 { 5724 unsigned int sf, op, setflags, rm, rn, rd; 5725 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 5726 5727 sf = extract32(insn, 31, 1); 5728 op = extract32(insn, 30, 1); 5729 setflags = extract32(insn, 29, 1); 5730 rm = extract32(insn, 16, 5); 5731 rn = extract32(insn, 5, 5); 5732 rd = extract32(insn, 0, 5); 5733 5734 tcg_rd = cpu_reg(s, rd); 5735 tcg_rn = cpu_reg(s, rn); 5736 5737 if (op) { 5738 tcg_y = tcg_temp_new_i64(); 5739 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); 5740 } else { 5741 tcg_y = cpu_reg(s, rm); 5742 } 5743 5744 if (setflags) { 5745 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); 5746 } else { 5747 gen_adc(sf, tcg_rd, tcg_rn, tcg_y); 5748 } 5749 } 5750 5751 /* 5752 * Rotate right into flags 5753 * 31 30 29 21 15 10 5 4 0 5754 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5755 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | 5756 * +--+--+--+-----------------+--------+-----------+------+--+------+ 5757 */ 5758 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) 5759 { 5760 int mask = extract32(insn, 0, 4); 5761 int o2 = extract32(insn, 4, 1); 5762 int rn = extract32(insn, 5, 5); 5763 int imm6 = extract32(insn, 15, 6); 5764 int sf_op_s = extract32(insn, 29, 3); 5765 TCGv_i64 tcg_rn; 5766 TCGv_i32 nzcv; 5767 5768 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { 5769 unallocated_encoding(s); 5770 return; 5771 } 5772 5773 tcg_rn = read_cpu_reg(s, rn, 1); 5774 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); 5775 5776 nzcv = tcg_temp_new_i32(); 5777 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 5778 5779 if (mask & 8) { /* N */ 5780 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 5781 } 5782 if (mask & 4) { /* Z */ 5783 tcg_gen_not_i32(cpu_ZF, nzcv); 5784 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 5785 } 5786 if (mask & 2) { /* C */ 5787 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 5788 } 5789 if (mask & 1) { /* V */ 5790 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 5791 } 5792 } 5793 5794 /* 5795 * Evaluate into flags 5796 * 31 30 29 21 15 14 10 5 4 0 5797 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5798 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | 5799 * +--+--+--+-----------------+---------+----+---------+------+--+------+ 5800 */ 5801 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) 5802 { 5803 int o3_mask = extract32(insn, 0, 5); 5804 int rn = extract32(insn, 5, 5); 5805 int o2 = extract32(insn, 15, 6); 5806 int sz = extract32(insn, 14, 1); 5807 int sf_op_s = extract32(insn, 29, 3); 5808 TCGv_i32 tmp; 5809 int shift; 5810 5811 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || 5812 !dc_isar_feature(aa64_condm_4, s)) { 5813 unallocated_encoding(s); 5814 return; 5815 } 5816 shift = sz ? 16 : 24; /* SETF16 or SETF8 */ 5817 5818 tmp = tcg_temp_new_i32(); 5819 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 5820 tcg_gen_shli_i32(cpu_NF, tmp, shift); 5821 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 5822 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 5823 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 5824 } 5825 5826 /* Conditional compare (immediate / register) 5827 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 5828 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5829 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | 5830 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ 5831 * [1] y [0] [0] 5832 */ 5833 static void disas_cc(DisasContext *s, uint32_t insn) 5834 { 5835 unsigned int sf, op, y, cond, rn, nzcv, is_imm; 5836 TCGv_i32 tcg_t0, tcg_t1, tcg_t2; 5837 TCGv_i64 tcg_tmp, tcg_y, tcg_rn; 5838 DisasCompare c; 5839 5840 if (!extract32(insn, 29, 1)) { 5841 unallocated_encoding(s); 5842 return; 5843 } 5844 if (insn & (1 << 10 | 1 << 4)) { 5845 unallocated_encoding(s); 5846 return; 5847 } 5848 sf = extract32(insn, 31, 1); 5849 op = extract32(insn, 30, 1); 5850 is_imm = extract32(insn, 11, 1); 5851 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ 5852 cond = extract32(insn, 12, 4); 5853 rn = extract32(insn, 5, 5); 5854 nzcv = extract32(insn, 0, 4); 5855 5856 /* Set T0 = !COND. */ 5857 tcg_t0 = tcg_temp_new_i32(); 5858 arm_test_cc(&c, cond); 5859 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 5860 5861 /* Load the arguments for the new comparison. */ 5862 if (is_imm) { 5863 tcg_y = tcg_temp_new_i64(); 5864 tcg_gen_movi_i64(tcg_y, y); 5865 } else { 5866 tcg_y = cpu_reg(s, y); 5867 } 5868 tcg_rn = cpu_reg(s, rn); 5869 5870 /* Set the flags for the new comparison. */ 5871 tcg_tmp = tcg_temp_new_i64(); 5872 if (op) { 5873 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5874 } else { 5875 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); 5876 } 5877 5878 /* If COND was false, force the flags to #nzcv. Compute two masks 5879 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 5880 * For tcg hosts that support ANDC, we can make do with just T1. 5881 * In either case, allow the tcg optimizer to delete any unused mask. 5882 */ 5883 tcg_t1 = tcg_temp_new_i32(); 5884 tcg_t2 = tcg_temp_new_i32(); 5885 tcg_gen_neg_i32(tcg_t1, tcg_t0); 5886 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 5887 5888 if (nzcv & 8) { /* N */ 5889 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 5890 } else { 5891 if (TCG_TARGET_HAS_andc_i32) { 5892 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 5893 } else { 5894 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 5895 } 5896 } 5897 if (nzcv & 4) { /* Z */ 5898 if (TCG_TARGET_HAS_andc_i32) { 5899 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 5900 } else { 5901 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 5902 } 5903 } else { 5904 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 5905 } 5906 if (nzcv & 2) { /* C */ 5907 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 5908 } else { 5909 if (TCG_TARGET_HAS_andc_i32) { 5910 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 5911 } else { 5912 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 5913 } 5914 } 5915 if (nzcv & 1) { /* V */ 5916 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 5917 } else { 5918 if (TCG_TARGET_HAS_andc_i32) { 5919 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 5920 } else { 5921 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 5922 } 5923 } 5924 } 5925 5926 /* Conditional select 5927 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 5928 * +----+----+---+-----------------+------+------+-----+------+------+ 5929 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | 5930 * +----+----+---+-----------------+------+------+-----+------+------+ 5931 */ 5932 static void disas_cond_select(DisasContext *s, uint32_t insn) 5933 { 5934 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; 5935 TCGv_i64 tcg_rd, zero; 5936 DisasCompare64 c; 5937 5938 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { 5939 /* S == 1 or op2<1> == 1 */ 5940 unallocated_encoding(s); 5941 return; 5942 } 5943 sf = extract32(insn, 31, 1); 5944 else_inv = extract32(insn, 30, 1); 5945 rm = extract32(insn, 16, 5); 5946 cond = extract32(insn, 12, 4); 5947 else_inc = extract32(insn, 10, 1); 5948 rn = extract32(insn, 5, 5); 5949 rd = extract32(insn, 0, 5); 5950 5951 tcg_rd = cpu_reg(s, rd); 5952 5953 a64_test_cc(&c, cond); 5954 zero = tcg_constant_i64(0); 5955 5956 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { 5957 /* CSET & CSETM. */ 5958 if (else_inv) { 5959 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 5960 tcg_rd, c.value, zero); 5961 } else { 5962 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 5963 tcg_rd, c.value, zero); 5964 } 5965 } else { 5966 TCGv_i64 t_true = cpu_reg(s, rn); 5967 TCGv_i64 t_false = read_cpu_reg(s, rm, 1); 5968 if (else_inv && else_inc) { 5969 tcg_gen_neg_i64(t_false, t_false); 5970 } else if (else_inv) { 5971 tcg_gen_not_i64(t_false, t_false); 5972 } else if (else_inc) { 5973 tcg_gen_addi_i64(t_false, t_false, 1); 5974 } 5975 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 5976 } 5977 5978 if (!sf) { 5979 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5980 } 5981 } 5982 5983 static void handle_clz(DisasContext *s, unsigned int sf, 5984 unsigned int rn, unsigned int rd) 5985 { 5986 TCGv_i64 tcg_rd, tcg_rn; 5987 tcg_rd = cpu_reg(s, rd); 5988 tcg_rn = cpu_reg(s, rn); 5989 5990 if (sf) { 5991 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 5992 } else { 5993 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 5994 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 5995 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); 5996 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 5997 } 5998 } 5999 6000 static void handle_cls(DisasContext *s, unsigned int sf, 6001 unsigned int rn, unsigned int rd) 6002 { 6003 TCGv_i64 tcg_rd, tcg_rn; 6004 tcg_rd = cpu_reg(s, rd); 6005 tcg_rn = cpu_reg(s, rn); 6006 6007 if (sf) { 6008 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 6009 } else { 6010 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6011 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6012 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); 6013 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6014 } 6015 } 6016 6017 static void handle_rbit(DisasContext *s, unsigned int sf, 6018 unsigned int rn, unsigned int rd) 6019 { 6020 TCGv_i64 tcg_rd, tcg_rn; 6021 tcg_rd = cpu_reg(s, rd); 6022 tcg_rn = cpu_reg(s, rn); 6023 6024 if (sf) { 6025 gen_helper_rbit64(tcg_rd, tcg_rn); 6026 } else { 6027 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); 6028 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); 6029 gen_helper_rbit(tcg_tmp32, tcg_tmp32); 6030 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); 6031 } 6032 } 6033 6034 /* REV with sf==1, opcode==3 ("REV64") */ 6035 static void handle_rev64(DisasContext *s, unsigned int sf, 6036 unsigned int rn, unsigned int rd) 6037 { 6038 if (!sf) { 6039 unallocated_encoding(s); 6040 return; 6041 } 6042 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); 6043 } 6044 6045 /* REV with sf==0, opcode==2 6046 * REV32 (sf==1, opcode==2) 6047 */ 6048 static void handle_rev32(DisasContext *s, unsigned int sf, 6049 unsigned int rn, unsigned int rd) 6050 { 6051 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6052 TCGv_i64 tcg_rn = cpu_reg(s, rn); 6053 6054 if (sf) { 6055 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 6056 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 6057 } else { 6058 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 6059 } 6060 } 6061 6062 /* REV16 (opcode==1) */ 6063 static void handle_rev16(DisasContext *s, unsigned int sf, 6064 unsigned int rn, unsigned int rd) 6065 { 6066 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6067 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 6068 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6069 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); 6070 6071 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 6072 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 6073 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 6074 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 6075 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 6076 } 6077 6078 /* Data-processing (1 source) 6079 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6080 * +----+---+---+-----------------+---------+--------+------+------+ 6081 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | 6082 * +----+---+---+-----------------+---------+--------+------+------+ 6083 */ 6084 static void disas_data_proc_1src(DisasContext *s, uint32_t insn) 6085 { 6086 unsigned int sf, opcode, opcode2, rn, rd; 6087 TCGv_i64 tcg_rd; 6088 6089 if (extract32(insn, 29, 1)) { 6090 unallocated_encoding(s); 6091 return; 6092 } 6093 6094 sf = extract32(insn, 31, 1); 6095 opcode = extract32(insn, 10, 6); 6096 opcode2 = extract32(insn, 16, 5); 6097 rn = extract32(insn, 5, 5); 6098 rd = extract32(insn, 0, 5); 6099 6100 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) 6101 6102 switch (MAP(sf, opcode2, opcode)) { 6103 case MAP(0, 0x00, 0x00): /* RBIT */ 6104 case MAP(1, 0x00, 0x00): 6105 handle_rbit(s, sf, rn, rd); 6106 break; 6107 case MAP(0, 0x00, 0x01): /* REV16 */ 6108 case MAP(1, 0x00, 0x01): 6109 handle_rev16(s, sf, rn, rd); 6110 break; 6111 case MAP(0, 0x00, 0x02): /* REV/REV32 */ 6112 case MAP(1, 0x00, 0x02): 6113 handle_rev32(s, sf, rn, rd); 6114 break; 6115 case MAP(1, 0x00, 0x03): /* REV64 */ 6116 handle_rev64(s, sf, rn, rd); 6117 break; 6118 case MAP(0, 0x00, 0x04): /* CLZ */ 6119 case MAP(1, 0x00, 0x04): 6120 handle_clz(s, sf, rn, rd); 6121 break; 6122 case MAP(0, 0x00, 0x05): /* CLS */ 6123 case MAP(1, 0x00, 0x05): 6124 handle_cls(s, sf, rn, rd); 6125 break; 6126 case MAP(1, 0x01, 0x00): /* PACIA */ 6127 if (s->pauth_active) { 6128 tcg_rd = cpu_reg(s, rd); 6129 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6130 } else if (!dc_isar_feature(aa64_pauth, s)) { 6131 goto do_unallocated; 6132 } 6133 break; 6134 case MAP(1, 0x01, 0x01): /* PACIB */ 6135 if (s->pauth_active) { 6136 tcg_rd = cpu_reg(s, rd); 6137 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6138 } else if (!dc_isar_feature(aa64_pauth, s)) { 6139 goto do_unallocated; 6140 } 6141 break; 6142 case MAP(1, 0x01, 0x02): /* PACDA */ 6143 if (s->pauth_active) { 6144 tcg_rd = cpu_reg(s, rd); 6145 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6146 } else if (!dc_isar_feature(aa64_pauth, s)) { 6147 goto do_unallocated; 6148 } 6149 break; 6150 case MAP(1, 0x01, 0x03): /* PACDB */ 6151 if (s->pauth_active) { 6152 tcg_rd = cpu_reg(s, rd); 6153 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6154 } else if (!dc_isar_feature(aa64_pauth, s)) { 6155 goto do_unallocated; 6156 } 6157 break; 6158 case MAP(1, 0x01, 0x04): /* AUTIA */ 6159 if (s->pauth_active) { 6160 tcg_rd = cpu_reg(s, rd); 6161 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6162 } else if (!dc_isar_feature(aa64_pauth, s)) { 6163 goto do_unallocated; 6164 } 6165 break; 6166 case MAP(1, 0x01, 0x05): /* AUTIB */ 6167 if (s->pauth_active) { 6168 tcg_rd = cpu_reg(s, rd); 6169 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6170 } else if (!dc_isar_feature(aa64_pauth, s)) { 6171 goto do_unallocated; 6172 } 6173 break; 6174 case MAP(1, 0x01, 0x06): /* AUTDA */ 6175 if (s->pauth_active) { 6176 tcg_rd = cpu_reg(s, rd); 6177 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6178 } else if (!dc_isar_feature(aa64_pauth, s)) { 6179 goto do_unallocated; 6180 } 6181 break; 6182 case MAP(1, 0x01, 0x07): /* AUTDB */ 6183 if (s->pauth_active) { 6184 tcg_rd = cpu_reg(s, rd); 6185 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); 6186 } else if (!dc_isar_feature(aa64_pauth, s)) { 6187 goto do_unallocated; 6188 } 6189 break; 6190 case MAP(1, 0x01, 0x08): /* PACIZA */ 6191 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6192 goto do_unallocated; 6193 } else if (s->pauth_active) { 6194 tcg_rd = cpu_reg(s, rd); 6195 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6196 } 6197 break; 6198 case MAP(1, 0x01, 0x09): /* PACIZB */ 6199 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6200 goto do_unallocated; 6201 } else if (s->pauth_active) { 6202 tcg_rd = cpu_reg(s, rd); 6203 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6204 } 6205 break; 6206 case MAP(1, 0x01, 0x0a): /* PACDZA */ 6207 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6208 goto do_unallocated; 6209 } else if (s->pauth_active) { 6210 tcg_rd = cpu_reg(s, rd); 6211 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6212 } 6213 break; 6214 case MAP(1, 0x01, 0x0b): /* PACDZB */ 6215 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6216 goto do_unallocated; 6217 } else if (s->pauth_active) { 6218 tcg_rd = cpu_reg(s, rd); 6219 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6220 } 6221 break; 6222 case MAP(1, 0x01, 0x0c): /* AUTIZA */ 6223 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6224 goto do_unallocated; 6225 } else if (s->pauth_active) { 6226 tcg_rd = cpu_reg(s, rd); 6227 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6228 } 6229 break; 6230 case MAP(1, 0x01, 0x0d): /* AUTIZB */ 6231 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6232 goto do_unallocated; 6233 } else if (s->pauth_active) { 6234 tcg_rd = cpu_reg(s, rd); 6235 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6236 } 6237 break; 6238 case MAP(1, 0x01, 0x0e): /* AUTDZA */ 6239 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6240 goto do_unallocated; 6241 } else if (s->pauth_active) { 6242 tcg_rd = cpu_reg(s, rd); 6243 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6244 } 6245 break; 6246 case MAP(1, 0x01, 0x0f): /* AUTDZB */ 6247 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6248 goto do_unallocated; 6249 } else if (s->pauth_active) { 6250 tcg_rd = cpu_reg(s, rd); 6251 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); 6252 } 6253 break; 6254 case MAP(1, 0x01, 0x10): /* XPACI */ 6255 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6256 goto do_unallocated; 6257 } else if (s->pauth_active) { 6258 tcg_rd = cpu_reg(s, rd); 6259 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); 6260 } 6261 break; 6262 case MAP(1, 0x01, 0x11): /* XPACD */ 6263 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { 6264 goto do_unallocated; 6265 } else if (s->pauth_active) { 6266 tcg_rd = cpu_reg(s, rd); 6267 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); 6268 } 6269 break; 6270 default: 6271 do_unallocated: 6272 unallocated_encoding(s); 6273 break; 6274 } 6275 6276 #undef MAP 6277 } 6278 6279 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, 6280 unsigned int rm, unsigned int rn, unsigned int rd) 6281 { 6282 TCGv_i64 tcg_n, tcg_m, tcg_rd; 6283 tcg_rd = cpu_reg(s, rd); 6284 6285 if (!sf && is_signed) { 6286 tcg_n = tcg_temp_new_i64(); 6287 tcg_m = tcg_temp_new_i64(); 6288 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); 6289 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); 6290 } else { 6291 tcg_n = read_cpu_reg(s, rn, sf); 6292 tcg_m = read_cpu_reg(s, rm, sf); 6293 } 6294 6295 if (is_signed) { 6296 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 6297 } else { 6298 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 6299 } 6300 6301 if (!sf) { /* zero extend final result */ 6302 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 6303 } 6304 } 6305 6306 /* LSLV, LSRV, ASRV, RORV */ 6307 static void handle_shift_reg(DisasContext *s, 6308 enum a64_shift_type shift_type, unsigned int sf, 6309 unsigned int rm, unsigned int rn, unsigned int rd) 6310 { 6311 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 6312 TCGv_i64 tcg_rd = cpu_reg(s, rd); 6313 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); 6314 6315 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); 6316 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); 6317 } 6318 6319 /* CRC32[BHWX], CRC32C[BHWX] */ 6320 static void handle_crc32(DisasContext *s, 6321 unsigned int sf, unsigned int sz, bool crc32c, 6322 unsigned int rm, unsigned int rn, unsigned int rd) 6323 { 6324 TCGv_i64 tcg_acc, tcg_val; 6325 TCGv_i32 tcg_bytes; 6326 6327 if (!dc_isar_feature(aa64_crc32, s) 6328 || (sf == 1 && sz != 3) 6329 || (sf == 0 && sz == 3)) { 6330 unallocated_encoding(s); 6331 return; 6332 } 6333 6334 if (sz == 3) { 6335 tcg_val = cpu_reg(s, rm); 6336 } else { 6337 uint64_t mask; 6338 switch (sz) { 6339 case 0: 6340 mask = 0xFF; 6341 break; 6342 case 1: 6343 mask = 0xFFFF; 6344 break; 6345 case 2: 6346 mask = 0xFFFFFFFF; 6347 break; 6348 default: 6349 g_assert_not_reached(); 6350 } 6351 tcg_val = tcg_temp_new_i64(); 6352 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); 6353 } 6354 6355 tcg_acc = cpu_reg(s, rn); 6356 tcg_bytes = tcg_constant_i32(1 << sz); 6357 6358 if (crc32c) { 6359 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6360 } else { 6361 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); 6362 } 6363 } 6364 6365 /* Data-processing (2 source) 6366 * 31 30 29 28 21 20 16 15 10 9 5 4 0 6367 * +----+---+---+-----------------+------+--------+------+------+ 6368 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | 6369 * +----+---+---+-----------------+------+--------+------+------+ 6370 */ 6371 static void disas_data_proc_2src(DisasContext *s, uint32_t insn) 6372 { 6373 unsigned int sf, rm, opcode, rn, rd, setflag; 6374 sf = extract32(insn, 31, 1); 6375 setflag = extract32(insn, 29, 1); 6376 rm = extract32(insn, 16, 5); 6377 opcode = extract32(insn, 10, 6); 6378 rn = extract32(insn, 5, 5); 6379 rd = extract32(insn, 0, 5); 6380 6381 if (setflag && opcode != 0) { 6382 unallocated_encoding(s); 6383 return; 6384 } 6385 6386 switch (opcode) { 6387 case 0: /* SUBP(S) */ 6388 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6389 goto do_unallocated; 6390 } else { 6391 TCGv_i64 tcg_n, tcg_m, tcg_d; 6392 6393 tcg_n = read_cpu_reg_sp(s, rn, true); 6394 tcg_m = read_cpu_reg_sp(s, rm, true); 6395 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 6396 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 6397 tcg_d = cpu_reg(s, rd); 6398 6399 if (setflag) { 6400 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 6401 } else { 6402 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 6403 } 6404 } 6405 break; 6406 case 2: /* UDIV */ 6407 handle_div(s, false, sf, rm, rn, rd); 6408 break; 6409 case 3: /* SDIV */ 6410 handle_div(s, true, sf, rm, rn, rd); 6411 break; 6412 case 4: /* IRG */ 6413 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6414 goto do_unallocated; 6415 } 6416 if (s->ata[0]) { 6417 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, 6418 cpu_reg_sp(s, rn), cpu_reg(s, rm)); 6419 } else { 6420 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), 6421 cpu_reg_sp(s, rn)); 6422 } 6423 break; 6424 case 5: /* GMI */ 6425 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { 6426 goto do_unallocated; 6427 } else { 6428 TCGv_i64 t = tcg_temp_new_i64(); 6429 6430 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); 6431 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 6432 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); 6433 } 6434 break; 6435 case 8: /* LSLV */ 6436 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); 6437 break; 6438 case 9: /* LSRV */ 6439 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); 6440 break; 6441 case 10: /* ASRV */ 6442 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); 6443 break; 6444 case 11: /* RORV */ 6445 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); 6446 break; 6447 case 12: /* PACGA */ 6448 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { 6449 goto do_unallocated; 6450 } 6451 gen_helper_pacga(cpu_reg(s, rd), tcg_env, 6452 cpu_reg(s, rn), cpu_reg_sp(s, rm)); 6453 break; 6454 case 16: 6455 case 17: 6456 case 18: 6457 case 19: 6458 case 20: 6459 case 21: 6460 case 22: 6461 case 23: /* CRC32 */ 6462 { 6463 int sz = extract32(opcode, 0, 2); 6464 bool crc32c = extract32(opcode, 2, 1); 6465 handle_crc32(s, sf, sz, crc32c, rm, rn, rd); 6466 break; 6467 } 6468 default: 6469 do_unallocated: 6470 unallocated_encoding(s); 6471 break; 6472 } 6473 } 6474 6475 /* 6476 * Data processing - register 6477 * 31 30 29 28 25 21 20 16 10 0 6478 * +--+---+--+---+-------+-----+-------+-------+---------+ 6479 * | |op0| |op1| 1 0 1 | op2 | | op3 | | 6480 * +--+---+--+---+-------+-----+-------+-------+---------+ 6481 */ 6482 static void disas_data_proc_reg(DisasContext *s, uint32_t insn) 6483 { 6484 int op0 = extract32(insn, 30, 1); 6485 int op1 = extract32(insn, 28, 1); 6486 int op2 = extract32(insn, 21, 4); 6487 int op3 = extract32(insn, 10, 6); 6488 6489 if (!op1) { 6490 if (op2 & 8) { 6491 if (op2 & 1) { 6492 /* Add/sub (extended register) */ 6493 disas_add_sub_ext_reg(s, insn); 6494 } else { 6495 /* Add/sub (shifted register) */ 6496 disas_add_sub_reg(s, insn); 6497 } 6498 } else { 6499 /* Logical (shifted register) */ 6500 disas_logic_reg(s, insn); 6501 } 6502 return; 6503 } 6504 6505 switch (op2) { 6506 case 0x0: 6507 switch (op3) { 6508 case 0x00: /* Add/subtract (with carry) */ 6509 disas_adc_sbc(s, insn); 6510 break; 6511 6512 case 0x01: /* Rotate right into flags */ 6513 case 0x21: 6514 disas_rotate_right_into_flags(s, insn); 6515 break; 6516 6517 case 0x02: /* Evaluate into flags */ 6518 case 0x12: 6519 case 0x22: 6520 case 0x32: 6521 disas_evaluate_into_flags(s, insn); 6522 break; 6523 6524 default: 6525 goto do_unallocated; 6526 } 6527 break; 6528 6529 case 0x2: /* Conditional compare */ 6530 disas_cc(s, insn); /* both imm and reg forms */ 6531 break; 6532 6533 case 0x4: /* Conditional select */ 6534 disas_cond_select(s, insn); 6535 break; 6536 6537 case 0x6: /* Data-processing */ 6538 if (op0) { /* (1 source) */ 6539 disas_data_proc_1src(s, insn); 6540 } else { /* (2 source) */ 6541 disas_data_proc_2src(s, insn); 6542 } 6543 break; 6544 case 0x8 ... 0xf: /* (3 source) */ 6545 disas_data_proc_3src(s, insn); 6546 break; 6547 6548 default: 6549 do_unallocated: 6550 unallocated_encoding(s); 6551 break; 6552 } 6553 } 6554 6555 static void handle_fp_compare(DisasContext *s, int size, 6556 unsigned int rn, unsigned int rm, 6557 bool cmp_with_zero, bool signal_all_nans) 6558 { 6559 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 6560 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 6561 6562 if (size == MO_64) { 6563 TCGv_i64 tcg_vn, tcg_vm; 6564 6565 tcg_vn = read_fp_dreg(s, rn); 6566 if (cmp_with_zero) { 6567 tcg_vm = tcg_constant_i64(0); 6568 } else { 6569 tcg_vm = read_fp_dreg(s, rm); 6570 } 6571 if (signal_all_nans) { 6572 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6573 } else { 6574 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6575 } 6576 } else { 6577 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 6578 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 6579 6580 read_vec_element_i32(s, tcg_vn, rn, 0, size); 6581 if (cmp_with_zero) { 6582 tcg_gen_movi_i32(tcg_vm, 0); 6583 } else { 6584 read_vec_element_i32(s, tcg_vm, rm, 0, size); 6585 } 6586 6587 switch (size) { 6588 case MO_32: 6589 if (signal_all_nans) { 6590 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6591 } else { 6592 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6593 } 6594 break; 6595 case MO_16: 6596 if (signal_all_nans) { 6597 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6598 } else { 6599 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 6600 } 6601 break; 6602 default: 6603 g_assert_not_reached(); 6604 } 6605 } 6606 6607 gen_set_nzcv(tcg_flags); 6608 } 6609 6610 /* Floating point compare 6611 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 6612 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6613 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | 6614 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ 6615 */ 6616 static void disas_fp_compare(DisasContext *s, uint32_t insn) 6617 { 6618 unsigned int mos, type, rm, op, rn, opc, op2r; 6619 int size; 6620 6621 mos = extract32(insn, 29, 3); 6622 type = extract32(insn, 22, 2); 6623 rm = extract32(insn, 16, 5); 6624 op = extract32(insn, 14, 2); 6625 rn = extract32(insn, 5, 5); 6626 opc = extract32(insn, 3, 2); 6627 op2r = extract32(insn, 0, 3); 6628 6629 if (mos || op || op2r) { 6630 unallocated_encoding(s); 6631 return; 6632 } 6633 6634 switch (type) { 6635 case 0: 6636 size = MO_32; 6637 break; 6638 case 1: 6639 size = MO_64; 6640 break; 6641 case 3: 6642 size = MO_16; 6643 if (dc_isar_feature(aa64_fp16, s)) { 6644 break; 6645 } 6646 /* fallthru */ 6647 default: 6648 unallocated_encoding(s); 6649 return; 6650 } 6651 6652 if (!fp_access_check(s)) { 6653 return; 6654 } 6655 6656 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); 6657 } 6658 6659 /* Floating point conditional compare 6660 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 6661 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6662 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | 6663 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ 6664 */ 6665 static void disas_fp_ccomp(DisasContext *s, uint32_t insn) 6666 { 6667 unsigned int mos, type, rm, cond, rn, op, nzcv; 6668 TCGLabel *label_continue = NULL; 6669 int size; 6670 6671 mos = extract32(insn, 29, 3); 6672 type = extract32(insn, 22, 2); 6673 rm = extract32(insn, 16, 5); 6674 cond = extract32(insn, 12, 4); 6675 rn = extract32(insn, 5, 5); 6676 op = extract32(insn, 4, 1); 6677 nzcv = extract32(insn, 0, 4); 6678 6679 if (mos) { 6680 unallocated_encoding(s); 6681 return; 6682 } 6683 6684 switch (type) { 6685 case 0: 6686 size = MO_32; 6687 break; 6688 case 1: 6689 size = MO_64; 6690 break; 6691 case 3: 6692 size = MO_16; 6693 if (dc_isar_feature(aa64_fp16, s)) { 6694 break; 6695 } 6696 /* fallthru */ 6697 default: 6698 unallocated_encoding(s); 6699 return; 6700 } 6701 6702 if (!fp_access_check(s)) { 6703 return; 6704 } 6705 6706 if (cond < 0x0e) { /* not always */ 6707 TCGLabel *label_match = gen_new_label(); 6708 label_continue = gen_new_label(); 6709 arm_gen_test_cc(cond, label_match); 6710 /* nomatch: */ 6711 gen_set_nzcv(tcg_constant_i64(nzcv << 28)); 6712 tcg_gen_br(label_continue); 6713 gen_set_label(label_match); 6714 } 6715 6716 handle_fp_compare(s, size, rn, rm, false, op); 6717 6718 if (cond < 0x0e) { 6719 gen_set_label(label_continue); 6720 } 6721 } 6722 6723 /* Floating point conditional select 6724 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 6725 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6726 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | 6727 * +---+---+---+-----------+------+---+------+------+-----+------+------+ 6728 */ 6729 static void disas_fp_csel(DisasContext *s, uint32_t insn) 6730 { 6731 unsigned int mos, type, rm, cond, rn, rd; 6732 TCGv_i64 t_true, t_false; 6733 DisasCompare64 c; 6734 MemOp sz; 6735 6736 mos = extract32(insn, 29, 3); 6737 type = extract32(insn, 22, 2); 6738 rm = extract32(insn, 16, 5); 6739 cond = extract32(insn, 12, 4); 6740 rn = extract32(insn, 5, 5); 6741 rd = extract32(insn, 0, 5); 6742 6743 if (mos) { 6744 unallocated_encoding(s); 6745 return; 6746 } 6747 6748 switch (type) { 6749 case 0: 6750 sz = MO_32; 6751 break; 6752 case 1: 6753 sz = MO_64; 6754 break; 6755 case 3: 6756 sz = MO_16; 6757 if (dc_isar_feature(aa64_fp16, s)) { 6758 break; 6759 } 6760 /* fallthru */ 6761 default: 6762 unallocated_encoding(s); 6763 return; 6764 } 6765 6766 if (!fp_access_check(s)) { 6767 return; 6768 } 6769 6770 /* Zero extend sreg & hreg inputs to 64 bits now. */ 6771 t_true = tcg_temp_new_i64(); 6772 t_false = tcg_temp_new_i64(); 6773 read_vec_element(s, t_true, rn, 0, sz); 6774 read_vec_element(s, t_false, rm, 0, sz); 6775 6776 a64_test_cc(&c, cond); 6777 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 6778 t_true, t_false); 6779 6780 /* Note that sregs & hregs write back zeros to the high bits, 6781 and we've already done the zero-extension. */ 6782 write_fp_dreg(s, rd, t_true); 6783 } 6784 6785 /* Floating-point data-processing (1 source) - half precision */ 6786 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) 6787 { 6788 TCGv_ptr fpst = NULL; 6789 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 6790 TCGv_i32 tcg_res = tcg_temp_new_i32(); 6791 6792 switch (opcode) { 6793 case 0x0: /* FMOV */ 6794 tcg_gen_mov_i32(tcg_res, tcg_op); 6795 break; 6796 case 0x1: /* FABS */ 6797 gen_vfp_absh(tcg_res, tcg_op); 6798 break; 6799 case 0x2: /* FNEG */ 6800 gen_vfp_negh(tcg_res, tcg_op); 6801 break; 6802 case 0x3: /* FSQRT */ 6803 fpst = fpstatus_ptr(FPST_FPCR_F16); 6804 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); 6805 break; 6806 case 0x8: /* FRINTN */ 6807 case 0x9: /* FRINTP */ 6808 case 0xa: /* FRINTM */ 6809 case 0xb: /* FRINTZ */ 6810 case 0xc: /* FRINTA */ 6811 { 6812 TCGv_i32 tcg_rmode; 6813 6814 fpst = fpstatus_ptr(FPST_FPCR_F16); 6815 tcg_rmode = gen_set_rmode(opcode & 7, fpst); 6816 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6817 gen_restore_rmode(tcg_rmode, fpst); 6818 break; 6819 } 6820 case 0xe: /* FRINTX */ 6821 fpst = fpstatus_ptr(FPST_FPCR_F16); 6822 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); 6823 break; 6824 case 0xf: /* FRINTI */ 6825 fpst = fpstatus_ptr(FPST_FPCR_F16); 6826 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); 6827 break; 6828 default: 6829 g_assert_not_reached(); 6830 } 6831 6832 write_fp_sreg(s, rd, tcg_res); 6833 } 6834 6835 /* Floating-point data-processing (1 source) - single precision */ 6836 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) 6837 { 6838 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); 6839 TCGv_i32 tcg_op, tcg_res; 6840 TCGv_ptr fpst; 6841 int rmode = -1; 6842 6843 tcg_op = read_fp_sreg(s, rn); 6844 tcg_res = tcg_temp_new_i32(); 6845 6846 switch (opcode) { 6847 case 0x0: /* FMOV */ 6848 tcg_gen_mov_i32(tcg_res, tcg_op); 6849 goto done; 6850 case 0x1: /* FABS */ 6851 gen_vfp_abss(tcg_res, tcg_op); 6852 goto done; 6853 case 0x2: /* FNEG */ 6854 gen_vfp_negs(tcg_res, tcg_op); 6855 goto done; 6856 case 0x3: /* FSQRT */ 6857 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 6858 goto done; 6859 case 0x6: /* BFCVT */ 6860 gen_fpst = gen_helper_bfcvt; 6861 break; 6862 case 0x8: /* FRINTN */ 6863 case 0x9: /* FRINTP */ 6864 case 0xa: /* FRINTM */ 6865 case 0xb: /* FRINTZ */ 6866 case 0xc: /* FRINTA */ 6867 rmode = opcode & 7; 6868 gen_fpst = gen_helper_rints; 6869 break; 6870 case 0xe: /* FRINTX */ 6871 gen_fpst = gen_helper_rints_exact; 6872 break; 6873 case 0xf: /* FRINTI */ 6874 gen_fpst = gen_helper_rints; 6875 break; 6876 case 0x10: /* FRINT32Z */ 6877 rmode = FPROUNDING_ZERO; 6878 gen_fpst = gen_helper_frint32_s; 6879 break; 6880 case 0x11: /* FRINT32X */ 6881 gen_fpst = gen_helper_frint32_s; 6882 break; 6883 case 0x12: /* FRINT64Z */ 6884 rmode = FPROUNDING_ZERO; 6885 gen_fpst = gen_helper_frint64_s; 6886 break; 6887 case 0x13: /* FRINT64X */ 6888 gen_fpst = gen_helper_frint64_s; 6889 break; 6890 default: 6891 g_assert_not_reached(); 6892 } 6893 6894 fpst = fpstatus_ptr(FPST_FPCR); 6895 if (rmode >= 0) { 6896 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6897 gen_fpst(tcg_res, tcg_op, fpst); 6898 gen_restore_rmode(tcg_rmode, fpst); 6899 } else { 6900 gen_fpst(tcg_res, tcg_op, fpst); 6901 } 6902 6903 done: 6904 write_fp_sreg(s, rd, tcg_res); 6905 } 6906 6907 /* Floating-point data-processing (1 source) - double precision */ 6908 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) 6909 { 6910 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); 6911 TCGv_i64 tcg_op, tcg_res; 6912 TCGv_ptr fpst; 6913 int rmode = -1; 6914 6915 switch (opcode) { 6916 case 0x0: /* FMOV */ 6917 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); 6918 return; 6919 } 6920 6921 tcg_op = read_fp_dreg(s, rn); 6922 tcg_res = tcg_temp_new_i64(); 6923 6924 switch (opcode) { 6925 case 0x1: /* FABS */ 6926 gen_vfp_absd(tcg_res, tcg_op); 6927 goto done; 6928 case 0x2: /* FNEG */ 6929 gen_vfp_negd(tcg_res, tcg_op); 6930 goto done; 6931 case 0x3: /* FSQRT */ 6932 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); 6933 goto done; 6934 case 0x8: /* FRINTN */ 6935 case 0x9: /* FRINTP */ 6936 case 0xa: /* FRINTM */ 6937 case 0xb: /* FRINTZ */ 6938 case 0xc: /* FRINTA */ 6939 rmode = opcode & 7; 6940 gen_fpst = gen_helper_rintd; 6941 break; 6942 case 0xe: /* FRINTX */ 6943 gen_fpst = gen_helper_rintd_exact; 6944 break; 6945 case 0xf: /* FRINTI */ 6946 gen_fpst = gen_helper_rintd; 6947 break; 6948 case 0x10: /* FRINT32Z */ 6949 rmode = FPROUNDING_ZERO; 6950 gen_fpst = gen_helper_frint32_d; 6951 break; 6952 case 0x11: /* FRINT32X */ 6953 gen_fpst = gen_helper_frint32_d; 6954 break; 6955 case 0x12: /* FRINT64Z */ 6956 rmode = FPROUNDING_ZERO; 6957 gen_fpst = gen_helper_frint64_d; 6958 break; 6959 case 0x13: /* FRINT64X */ 6960 gen_fpst = gen_helper_frint64_d; 6961 break; 6962 default: 6963 g_assert_not_reached(); 6964 } 6965 6966 fpst = fpstatus_ptr(FPST_FPCR); 6967 if (rmode >= 0) { 6968 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); 6969 gen_fpst(tcg_res, tcg_op, fpst); 6970 gen_restore_rmode(tcg_rmode, fpst); 6971 } else { 6972 gen_fpst(tcg_res, tcg_op, fpst); 6973 } 6974 6975 done: 6976 write_fp_dreg(s, rd, tcg_res); 6977 } 6978 6979 static void handle_fp_fcvt(DisasContext *s, int opcode, 6980 int rd, int rn, int dtype, int ntype) 6981 { 6982 switch (ntype) { 6983 case 0x0: 6984 { 6985 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 6986 if (dtype == 1) { 6987 /* Single to double */ 6988 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 6989 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); 6990 write_fp_dreg(s, rd, tcg_rd); 6991 } else { 6992 /* Single to half */ 6993 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 6994 TCGv_i32 ahp = get_ahp_flag(); 6995 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 6996 6997 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); 6998 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 6999 write_fp_sreg(s, rd, tcg_rd); 7000 } 7001 break; 7002 } 7003 case 0x1: 7004 { 7005 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 7006 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7007 if (dtype == 0) { 7008 /* Double to single */ 7009 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); 7010 } else { 7011 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7012 TCGv_i32 ahp = get_ahp_flag(); 7013 /* Double to half */ 7014 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 7015 /* write_fp_sreg is OK here because top half of tcg_rd is zero */ 7016 } 7017 write_fp_sreg(s, rd, tcg_rd); 7018 break; 7019 } 7020 case 0x3: 7021 { 7022 TCGv_i32 tcg_rn = read_fp_sreg(s, rn); 7023 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); 7024 TCGv_i32 tcg_ahp = get_ahp_flag(); 7025 tcg_gen_ext16u_i32(tcg_rn, tcg_rn); 7026 if (dtype == 0) { 7027 /* Half to single */ 7028 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 7029 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7030 write_fp_sreg(s, rd, tcg_rd); 7031 } else { 7032 /* Half to double */ 7033 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 7034 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 7035 write_fp_dreg(s, rd, tcg_rd); 7036 } 7037 break; 7038 } 7039 default: 7040 g_assert_not_reached(); 7041 } 7042 } 7043 7044 /* Floating point data-processing (1 source) 7045 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 7046 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7047 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | 7048 * +---+---+---+-----------+------+---+--------+-----------+------+------+ 7049 */ 7050 static void disas_fp_1src(DisasContext *s, uint32_t insn) 7051 { 7052 int mos = extract32(insn, 29, 3); 7053 int type = extract32(insn, 22, 2); 7054 int opcode = extract32(insn, 15, 6); 7055 int rn = extract32(insn, 5, 5); 7056 int rd = extract32(insn, 0, 5); 7057 7058 if (mos) { 7059 goto do_unallocated; 7060 } 7061 7062 switch (opcode) { 7063 case 0x4: case 0x5: case 0x7: 7064 { 7065 /* FCVT between half, single and double precision */ 7066 int dtype = extract32(opcode, 0, 2); 7067 if (type == 2 || dtype == type) { 7068 goto do_unallocated; 7069 } 7070 if (!fp_access_check(s)) { 7071 return; 7072 } 7073 7074 handle_fp_fcvt(s, opcode, rd, rn, dtype, type); 7075 break; 7076 } 7077 7078 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ 7079 if (type > 1 || !dc_isar_feature(aa64_frint, s)) { 7080 goto do_unallocated; 7081 } 7082 /* fall through */ 7083 case 0x0 ... 0x3: 7084 case 0x8 ... 0xc: 7085 case 0xe ... 0xf: 7086 /* 32-to-32 and 64-to-64 ops */ 7087 switch (type) { 7088 case 0: 7089 if (!fp_access_check(s)) { 7090 return; 7091 } 7092 handle_fp_1src_single(s, opcode, rd, rn); 7093 break; 7094 case 1: 7095 if (!fp_access_check(s)) { 7096 return; 7097 } 7098 handle_fp_1src_double(s, opcode, rd, rn); 7099 break; 7100 case 3: 7101 if (!dc_isar_feature(aa64_fp16, s)) { 7102 goto do_unallocated; 7103 } 7104 7105 if (!fp_access_check(s)) { 7106 return; 7107 } 7108 handle_fp_1src_half(s, opcode, rd, rn); 7109 break; 7110 default: 7111 goto do_unallocated; 7112 } 7113 break; 7114 7115 case 0x6: 7116 switch (type) { 7117 case 1: /* BFCVT */ 7118 if (!dc_isar_feature(aa64_bf16, s)) { 7119 goto do_unallocated; 7120 } 7121 if (!fp_access_check(s)) { 7122 return; 7123 } 7124 handle_fp_1src_single(s, opcode, rd, rn); 7125 break; 7126 default: 7127 goto do_unallocated; 7128 } 7129 break; 7130 7131 default: 7132 do_unallocated: 7133 unallocated_encoding(s); 7134 break; 7135 } 7136 } 7137 7138 /* Floating-point data-processing (3 source) - single precision */ 7139 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, 7140 int rd, int rn, int rm, int ra) 7141 { 7142 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7143 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7144 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7145 7146 tcg_op1 = read_fp_sreg(s, rn); 7147 tcg_op2 = read_fp_sreg(s, rm); 7148 tcg_op3 = read_fp_sreg(s, ra); 7149 7150 /* These are fused multiply-add, and must be done as one 7151 * floating point operation with no rounding between the 7152 * multiplication and addition steps. 7153 * NB that doing the negations here as separate steps is 7154 * correct : an input NaN should come out with its sign bit 7155 * flipped if it is a negated-input. 7156 */ 7157 if (o1 == true) { 7158 gen_vfp_negs(tcg_op3, tcg_op3); 7159 } 7160 7161 if (o0 != o1) { 7162 gen_vfp_negs(tcg_op1, tcg_op1); 7163 } 7164 7165 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7166 7167 write_fp_sreg(s, rd, tcg_res); 7168 } 7169 7170 /* Floating-point data-processing (3 source) - double precision */ 7171 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, 7172 int rd, int rn, int rm, int ra) 7173 { 7174 TCGv_i64 tcg_op1, tcg_op2, tcg_op3; 7175 TCGv_i64 tcg_res = tcg_temp_new_i64(); 7176 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 7177 7178 tcg_op1 = read_fp_dreg(s, rn); 7179 tcg_op2 = read_fp_dreg(s, rm); 7180 tcg_op3 = read_fp_dreg(s, ra); 7181 7182 /* These are fused multiply-add, and must be done as one 7183 * floating point operation with no rounding between the 7184 * multiplication and addition steps. 7185 * NB that doing the negations here as separate steps is 7186 * correct : an input NaN should come out with its sign bit 7187 * flipped if it is a negated-input. 7188 */ 7189 if (o1 == true) { 7190 gen_vfp_negd(tcg_op3, tcg_op3); 7191 } 7192 7193 if (o0 != o1) { 7194 gen_vfp_negd(tcg_op1, tcg_op1); 7195 } 7196 7197 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7198 7199 write_fp_dreg(s, rd, tcg_res); 7200 } 7201 7202 /* Floating-point data-processing (3 source) - half precision */ 7203 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, 7204 int rd, int rn, int rm, int ra) 7205 { 7206 TCGv_i32 tcg_op1, tcg_op2, tcg_op3; 7207 TCGv_i32 tcg_res = tcg_temp_new_i32(); 7208 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16); 7209 7210 tcg_op1 = read_fp_hreg(s, rn); 7211 tcg_op2 = read_fp_hreg(s, rm); 7212 tcg_op3 = read_fp_hreg(s, ra); 7213 7214 /* These are fused multiply-add, and must be done as one 7215 * floating point operation with no rounding between the 7216 * multiplication and addition steps. 7217 * NB that doing the negations here as separate steps is 7218 * correct : an input NaN should come out with its sign bit 7219 * flipped if it is a negated-input. 7220 */ 7221 if (o1 == true) { 7222 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); 7223 } 7224 7225 if (o0 != o1) { 7226 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); 7227 } 7228 7229 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); 7230 7231 write_fp_sreg(s, rd, tcg_res); 7232 } 7233 7234 /* Floating point data-processing (3 source) 7235 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 7236 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7237 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | 7238 * +---+---+---+-----------+------+----+------+----+------+------+------+ 7239 */ 7240 static void disas_fp_3src(DisasContext *s, uint32_t insn) 7241 { 7242 int mos = extract32(insn, 29, 3); 7243 int type = extract32(insn, 22, 2); 7244 int rd = extract32(insn, 0, 5); 7245 int rn = extract32(insn, 5, 5); 7246 int ra = extract32(insn, 10, 5); 7247 int rm = extract32(insn, 16, 5); 7248 bool o0 = extract32(insn, 15, 1); 7249 bool o1 = extract32(insn, 21, 1); 7250 7251 if (mos) { 7252 unallocated_encoding(s); 7253 return; 7254 } 7255 7256 switch (type) { 7257 case 0: 7258 if (!fp_access_check(s)) { 7259 return; 7260 } 7261 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); 7262 break; 7263 case 1: 7264 if (!fp_access_check(s)) { 7265 return; 7266 } 7267 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); 7268 break; 7269 case 3: 7270 if (!dc_isar_feature(aa64_fp16, s)) { 7271 unallocated_encoding(s); 7272 return; 7273 } 7274 if (!fp_access_check(s)) { 7275 return; 7276 } 7277 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); 7278 break; 7279 default: 7280 unallocated_encoding(s); 7281 } 7282 } 7283 7284 /* Floating point immediate 7285 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 7286 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7287 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | 7288 * +---+---+---+-----------+------+---+------------+-------+------+------+ 7289 */ 7290 static void disas_fp_imm(DisasContext *s, uint32_t insn) 7291 { 7292 int rd = extract32(insn, 0, 5); 7293 int imm5 = extract32(insn, 5, 5); 7294 int imm8 = extract32(insn, 13, 8); 7295 int type = extract32(insn, 22, 2); 7296 int mos = extract32(insn, 29, 3); 7297 uint64_t imm; 7298 MemOp sz; 7299 7300 if (mos || imm5) { 7301 unallocated_encoding(s); 7302 return; 7303 } 7304 7305 switch (type) { 7306 case 0: 7307 sz = MO_32; 7308 break; 7309 case 1: 7310 sz = MO_64; 7311 break; 7312 case 3: 7313 sz = MO_16; 7314 if (dc_isar_feature(aa64_fp16, s)) { 7315 break; 7316 } 7317 /* fallthru */ 7318 default: 7319 unallocated_encoding(s); 7320 return; 7321 } 7322 7323 if (!fp_access_check(s)) { 7324 return; 7325 } 7326 7327 imm = vfp_expand_imm(sz, imm8); 7328 write_fp_dreg(s, rd, tcg_constant_i64(imm)); 7329 } 7330 7331 /* Handle floating point <=> fixed point conversions. Note that we can 7332 * also deal with fp <=> integer conversions as a special case (scale == 64) 7333 * OPTME: consider handling that special case specially or at least skipping 7334 * the call to scalbn in the helpers for zero shifts. 7335 */ 7336 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, 7337 bool itof, int rmode, int scale, int sf, int type) 7338 { 7339 bool is_signed = !(opcode & 1); 7340 TCGv_ptr tcg_fpstatus; 7341 TCGv_i32 tcg_shift, tcg_single; 7342 TCGv_i64 tcg_double; 7343 7344 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); 7345 7346 tcg_shift = tcg_constant_i32(64 - scale); 7347 7348 if (itof) { 7349 TCGv_i64 tcg_int = cpu_reg(s, rn); 7350 if (!sf) { 7351 TCGv_i64 tcg_extend = tcg_temp_new_i64(); 7352 7353 if (is_signed) { 7354 tcg_gen_ext32s_i64(tcg_extend, tcg_int); 7355 } else { 7356 tcg_gen_ext32u_i64(tcg_extend, tcg_int); 7357 } 7358 7359 tcg_int = tcg_extend; 7360 } 7361 7362 switch (type) { 7363 case 1: /* float64 */ 7364 tcg_double = tcg_temp_new_i64(); 7365 if (is_signed) { 7366 gen_helper_vfp_sqtod(tcg_double, tcg_int, 7367 tcg_shift, tcg_fpstatus); 7368 } else { 7369 gen_helper_vfp_uqtod(tcg_double, tcg_int, 7370 tcg_shift, tcg_fpstatus); 7371 } 7372 write_fp_dreg(s, rd, tcg_double); 7373 break; 7374 7375 case 0: /* float32 */ 7376 tcg_single = tcg_temp_new_i32(); 7377 if (is_signed) { 7378 gen_helper_vfp_sqtos(tcg_single, tcg_int, 7379 tcg_shift, tcg_fpstatus); 7380 } else { 7381 gen_helper_vfp_uqtos(tcg_single, tcg_int, 7382 tcg_shift, tcg_fpstatus); 7383 } 7384 write_fp_sreg(s, rd, tcg_single); 7385 break; 7386 7387 case 3: /* float16 */ 7388 tcg_single = tcg_temp_new_i32(); 7389 if (is_signed) { 7390 gen_helper_vfp_sqtoh(tcg_single, tcg_int, 7391 tcg_shift, tcg_fpstatus); 7392 } else { 7393 gen_helper_vfp_uqtoh(tcg_single, tcg_int, 7394 tcg_shift, tcg_fpstatus); 7395 } 7396 write_fp_sreg(s, rd, tcg_single); 7397 break; 7398 7399 default: 7400 g_assert_not_reached(); 7401 } 7402 } else { 7403 TCGv_i64 tcg_int = cpu_reg(s, rd); 7404 TCGv_i32 tcg_rmode; 7405 7406 if (extract32(opcode, 2, 1)) { 7407 /* There are too many rounding modes to all fit into rmode, 7408 * so FCVTA[US] is a special case. 7409 */ 7410 rmode = FPROUNDING_TIEAWAY; 7411 } 7412 7413 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 7414 7415 switch (type) { 7416 case 1: /* float64 */ 7417 tcg_double = read_fp_dreg(s, rn); 7418 if (is_signed) { 7419 if (!sf) { 7420 gen_helper_vfp_tosld(tcg_int, tcg_double, 7421 tcg_shift, tcg_fpstatus); 7422 } else { 7423 gen_helper_vfp_tosqd(tcg_int, tcg_double, 7424 tcg_shift, tcg_fpstatus); 7425 } 7426 } else { 7427 if (!sf) { 7428 gen_helper_vfp_tould(tcg_int, tcg_double, 7429 tcg_shift, tcg_fpstatus); 7430 } else { 7431 gen_helper_vfp_touqd(tcg_int, tcg_double, 7432 tcg_shift, tcg_fpstatus); 7433 } 7434 } 7435 if (!sf) { 7436 tcg_gen_ext32u_i64(tcg_int, tcg_int); 7437 } 7438 break; 7439 7440 case 0: /* float32 */ 7441 tcg_single = read_fp_sreg(s, rn); 7442 if (sf) { 7443 if (is_signed) { 7444 gen_helper_vfp_tosqs(tcg_int, tcg_single, 7445 tcg_shift, tcg_fpstatus); 7446 } else { 7447 gen_helper_vfp_touqs(tcg_int, tcg_single, 7448 tcg_shift, tcg_fpstatus); 7449 } 7450 } else { 7451 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7452 if (is_signed) { 7453 gen_helper_vfp_tosls(tcg_dest, tcg_single, 7454 tcg_shift, tcg_fpstatus); 7455 } else { 7456 gen_helper_vfp_touls(tcg_dest, tcg_single, 7457 tcg_shift, tcg_fpstatus); 7458 } 7459 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7460 } 7461 break; 7462 7463 case 3: /* float16 */ 7464 tcg_single = read_fp_sreg(s, rn); 7465 if (sf) { 7466 if (is_signed) { 7467 gen_helper_vfp_tosqh(tcg_int, tcg_single, 7468 tcg_shift, tcg_fpstatus); 7469 } else { 7470 gen_helper_vfp_touqh(tcg_int, tcg_single, 7471 tcg_shift, tcg_fpstatus); 7472 } 7473 } else { 7474 TCGv_i32 tcg_dest = tcg_temp_new_i32(); 7475 if (is_signed) { 7476 gen_helper_vfp_toslh(tcg_dest, tcg_single, 7477 tcg_shift, tcg_fpstatus); 7478 } else { 7479 gen_helper_vfp_toulh(tcg_dest, tcg_single, 7480 tcg_shift, tcg_fpstatus); 7481 } 7482 tcg_gen_extu_i32_i64(tcg_int, tcg_dest); 7483 } 7484 break; 7485 7486 default: 7487 g_assert_not_reached(); 7488 } 7489 7490 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 7491 } 7492 } 7493 7494 /* Floating point <-> fixed point conversions 7495 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7496 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7497 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | 7498 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ 7499 */ 7500 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) 7501 { 7502 int rd = extract32(insn, 0, 5); 7503 int rn = extract32(insn, 5, 5); 7504 int scale = extract32(insn, 10, 6); 7505 int opcode = extract32(insn, 16, 3); 7506 int rmode = extract32(insn, 19, 2); 7507 int type = extract32(insn, 22, 2); 7508 bool sbit = extract32(insn, 29, 1); 7509 bool sf = extract32(insn, 31, 1); 7510 bool itof; 7511 7512 if (sbit || (!sf && scale < 32)) { 7513 unallocated_encoding(s); 7514 return; 7515 } 7516 7517 switch (type) { 7518 case 0: /* float32 */ 7519 case 1: /* float64 */ 7520 break; 7521 case 3: /* float16 */ 7522 if (dc_isar_feature(aa64_fp16, s)) { 7523 break; 7524 } 7525 /* fallthru */ 7526 default: 7527 unallocated_encoding(s); 7528 return; 7529 } 7530 7531 switch ((rmode << 3) | opcode) { 7532 case 0x2: /* SCVTF */ 7533 case 0x3: /* UCVTF */ 7534 itof = true; 7535 break; 7536 case 0x18: /* FCVTZS */ 7537 case 0x19: /* FCVTZU */ 7538 itof = false; 7539 break; 7540 default: 7541 unallocated_encoding(s); 7542 return; 7543 } 7544 7545 if (!fp_access_check(s)) { 7546 return; 7547 } 7548 7549 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); 7550 } 7551 7552 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) 7553 { 7554 /* FMOV: gpr to or from float, double, or top half of quad fp reg, 7555 * without conversion. 7556 */ 7557 7558 if (itof) { 7559 TCGv_i64 tcg_rn = cpu_reg(s, rn); 7560 TCGv_i64 tmp; 7561 7562 switch (type) { 7563 case 0: 7564 /* 32 bit */ 7565 tmp = tcg_temp_new_i64(); 7566 tcg_gen_ext32u_i64(tmp, tcg_rn); 7567 write_fp_dreg(s, rd, tmp); 7568 break; 7569 case 1: 7570 /* 64 bit */ 7571 write_fp_dreg(s, rd, tcg_rn); 7572 break; 7573 case 2: 7574 /* 64 bit to top half. */ 7575 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); 7576 clear_vec_high(s, true, rd); 7577 break; 7578 case 3: 7579 /* 16 bit */ 7580 tmp = tcg_temp_new_i64(); 7581 tcg_gen_ext16u_i64(tmp, tcg_rn); 7582 write_fp_dreg(s, rd, tmp); 7583 break; 7584 default: 7585 g_assert_not_reached(); 7586 } 7587 } else { 7588 TCGv_i64 tcg_rd = cpu_reg(s, rd); 7589 7590 switch (type) { 7591 case 0: 7592 /* 32 bit */ 7593 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); 7594 break; 7595 case 1: 7596 /* 64 bit */ 7597 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); 7598 break; 7599 case 2: 7600 /* 64 bits from top half */ 7601 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); 7602 break; 7603 case 3: 7604 /* 16 bit */ 7605 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); 7606 break; 7607 default: 7608 g_assert_not_reached(); 7609 } 7610 } 7611 } 7612 7613 static void handle_fjcvtzs(DisasContext *s, int rd, int rn) 7614 { 7615 TCGv_i64 t = read_fp_dreg(s, rn); 7616 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); 7617 7618 gen_helper_fjcvtzs(t, t, fpstatus); 7619 7620 tcg_gen_ext32u_i64(cpu_reg(s, rd), t); 7621 tcg_gen_extrh_i64_i32(cpu_ZF, t); 7622 tcg_gen_movi_i32(cpu_CF, 0); 7623 tcg_gen_movi_i32(cpu_NF, 0); 7624 tcg_gen_movi_i32(cpu_VF, 0); 7625 } 7626 7627 /* Floating point <-> integer conversions 7628 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 7629 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7630 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | 7631 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ 7632 */ 7633 static void disas_fp_int_conv(DisasContext *s, uint32_t insn) 7634 { 7635 int rd = extract32(insn, 0, 5); 7636 int rn = extract32(insn, 5, 5); 7637 int opcode = extract32(insn, 16, 3); 7638 int rmode = extract32(insn, 19, 2); 7639 int type = extract32(insn, 22, 2); 7640 bool sbit = extract32(insn, 29, 1); 7641 bool sf = extract32(insn, 31, 1); 7642 bool itof = false; 7643 7644 if (sbit) { 7645 goto do_unallocated; 7646 } 7647 7648 switch (opcode) { 7649 case 2: /* SCVTF */ 7650 case 3: /* UCVTF */ 7651 itof = true; 7652 /* fallthru */ 7653 case 4: /* FCVTAS */ 7654 case 5: /* FCVTAU */ 7655 if (rmode != 0) { 7656 goto do_unallocated; 7657 } 7658 /* fallthru */ 7659 case 0: /* FCVT[NPMZ]S */ 7660 case 1: /* FCVT[NPMZ]U */ 7661 switch (type) { 7662 case 0: /* float32 */ 7663 case 1: /* float64 */ 7664 break; 7665 case 3: /* float16 */ 7666 if (!dc_isar_feature(aa64_fp16, s)) { 7667 goto do_unallocated; 7668 } 7669 break; 7670 default: 7671 goto do_unallocated; 7672 } 7673 if (!fp_access_check(s)) { 7674 return; 7675 } 7676 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); 7677 break; 7678 7679 default: 7680 switch (sf << 7 | type << 5 | rmode << 3 | opcode) { 7681 case 0b01100110: /* FMOV half <-> 32-bit int */ 7682 case 0b01100111: 7683 case 0b11100110: /* FMOV half <-> 64-bit int */ 7684 case 0b11100111: 7685 if (!dc_isar_feature(aa64_fp16, s)) { 7686 goto do_unallocated; 7687 } 7688 /* fallthru */ 7689 case 0b00000110: /* FMOV 32-bit */ 7690 case 0b00000111: 7691 case 0b10100110: /* FMOV 64-bit */ 7692 case 0b10100111: 7693 case 0b11001110: /* FMOV top half of 128-bit */ 7694 case 0b11001111: 7695 if (!fp_access_check(s)) { 7696 return; 7697 } 7698 itof = opcode & 1; 7699 handle_fmov(s, rd, rn, type, itof); 7700 break; 7701 7702 case 0b00111110: /* FJCVTZS */ 7703 if (!dc_isar_feature(aa64_jscvt, s)) { 7704 goto do_unallocated; 7705 } else if (fp_access_check(s)) { 7706 handle_fjcvtzs(s, rd, rn); 7707 } 7708 break; 7709 7710 default: 7711 do_unallocated: 7712 unallocated_encoding(s); 7713 return; 7714 } 7715 break; 7716 } 7717 } 7718 7719 /* FP-specific subcases of table C3-6 (SIMD and FP data processing) 7720 * 31 30 29 28 25 24 0 7721 * +---+---+---+---------+-----------------------------+ 7722 * | | 0 | | 1 1 1 1 | | 7723 * +---+---+---+---------+-----------------------------+ 7724 */ 7725 static void disas_data_proc_fp(DisasContext *s, uint32_t insn) 7726 { 7727 if (extract32(insn, 24, 1)) { 7728 /* Floating point data-processing (3 source) */ 7729 disas_fp_3src(s, insn); 7730 } else if (extract32(insn, 21, 1) == 0) { 7731 /* Floating point to fixed point conversions */ 7732 disas_fp_fixed_conv(s, insn); 7733 } else { 7734 switch (extract32(insn, 10, 2)) { 7735 case 1: 7736 /* Floating point conditional compare */ 7737 disas_fp_ccomp(s, insn); 7738 break; 7739 case 2: 7740 /* Floating point data-processing (2 source) */ 7741 unallocated_encoding(s); /* in decodetree */ 7742 break; 7743 case 3: 7744 /* Floating point conditional select */ 7745 disas_fp_csel(s, insn); 7746 break; 7747 case 0: 7748 switch (ctz32(extract32(insn, 12, 4))) { 7749 case 0: /* [15:12] == xxx1 */ 7750 /* Floating point immediate */ 7751 disas_fp_imm(s, insn); 7752 break; 7753 case 1: /* [15:12] == xx10 */ 7754 /* Floating point compare */ 7755 disas_fp_compare(s, insn); 7756 break; 7757 case 2: /* [15:12] == x100 */ 7758 /* Floating point data-processing (1 source) */ 7759 disas_fp_1src(s, insn); 7760 break; 7761 case 3: /* [15:12] == 1000 */ 7762 unallocated_encoding(s); 7763 break; 7764 default: /* [15:12] == 0000 */ 7765 /* Floating point <-> integer conversions */ 7766 disas_fp_int_conv(s, insn); 7767 break; 7768 } 7769 break; 7770 } 7771 } 7772 } 7773 7774 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, 7775 int pos) 7776 { 7777 /* Extract 64 bits from the middle of two concatenated 64 bit 7778 * vector register slices left:right. The extracted bits start 7779 * at 'pos' bits into the right (least significant) side. 7780 * We return the result in tcg_right, and guarantee not to 7781 * trash tcg_left. 7782 */ 7783 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 7784 assert(pos > 0 && pos < 64); 7785 7786 tcg_gen_shri_i64(tcg_right, tcg_right, pos); 7787 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); 7788 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); 7789 } 7790 7791 /* EXT 7792 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 7793 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7794 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | 7795 * +---+---+-------------+-----+---+------+---+------+---+------+------+ 7796 */ 7797 static void disas_simd_ext(DisasContext *s, uint32_t insn) 7798 { 7799 int is_q = extract32(insn, 30, 1); 7800 int op2 = extract32(insn, 22, 2); 7801 int imm4 = extract32(insn, 11, 4); 7802 int rm = extract32(insn, 16, 5); 7803 int rn = extract32(insn, 5, 5); 7804 int rd = extract32(insn, 0, 5); 7805 int pos = imm4 << 3; 7806 TCGv_i64 tcg_resl, tcg_resh; 7807 7808 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { 7809 unallocated_encoding(s); 7810 return; 7811 } 7812 7813 if (!fp_access_check(s)) { 7814 return; 7815 } 7816 7817 tcg_resh = tcg_temp_new_i64(); 7818 tcg_resl = tcg_temp_new_i64(); 7819 7820 /* Vd gets bits starting at pos bits into Vm:Vn. This is 7821 * either extracting 128 bits from a 128:128 concatenation, or 7822 * extracting 64 bits from a 64:64 concatenation. 7823 */ 7824 if (!is_q) { 7825 read_vec_element(s, tcg_resl, rn, 0, MO_64); 7826 if (pos != 0) { 7827 read_vec_element(s, tcg_resh, rm, 0, MO_64); 7828 do_ext64(s, tcg_resh, tcg_resl, pos); 7829 } 7830 } else { 7831 TCGv_i64 tcg_hh; 7832 typedef struct { 7833 int reg; 7834 int elt; 7835 } EltPosns; 7836 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; 7837 EltPosns *elt = eltposns; 7838 7839 if (pos >= 64) { 7840 elt++; 7841 pos -= 64; 7842 } 7843 7844 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); 7845 elt++; 7846 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); 7847 elt++; 7848 if (pos != 0) { 7849 do_ext64(s, tcg_resh, tcg_resl, pos); 7850 tcg_hh = tcg_temp_new_i64(); 7851 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); 7852 do_ext64(s, tcg_hh, tcg_resh, pos); 7853 } 7854 } 7855 7856 write_vec_element(s, tcg_resl, rd, 0, MO_64); 7857 if (is_q) { 7858 write_vec_element(s, tcg_resh, rd, 1, MO_64); 7859 } 7860 clear_vec_high(s, is_q, rd); 7861 } 7862 7863 /* TBL/TBX 7864 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 7865 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7866 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | 7867 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ 7868 */ 7869 static void disas_simd_tb(DisasContext *s, uint32_t insn) 7870 { 7871 int op2 = extract32(insn, 22, 2); 7872 int is_q = extract32(insn, 30, 1); 7873 int rm = extract32(insn, 16, 5); 7874 int rn = extract32(insn, 5, 5); 7875 int rd = extract32(insn, 0, 5); 7876 int is_tbx = extract32(insn, 12, 1); 7877 int len = (extract32(insn, 13, 2) + 1) * 16; 7878 7879 if (op2 != 0) { 7880 unallocated_encoding(s); 7881 return; 7882 } 7883 7884 if (!fp_access_check(s)) { 7885 return; 7886 } 7887 7888 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 7889 vec_full_reg_offset(s, rm), tcg_env, 7890 is_q ? 16 : 8, vec_full_reg_size(s), 7891 (len << 6) | (is_tbx << 5) | rn, 7892 gen_helper_simd_tblx); 7893 } 7894 7895 /* ZIP/UZP/TRN 7896 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 7897 * +---+---+-------------+------+---+------+---+------------------+------+ 7898 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | 7899 * +---+---+-------------+------+---+------+---+------------------+------+ 7900 */ 7901 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) 7902 { 7903 int rd = extract32(insn, 0, 5); 7904 int rn = extract32(insn, 5, 5); 7905 int rm = extract32(insn, 16, 5); 7906 int size = extract32(insn, 22, 2); 7907 /* opc field bits [1:0] indicate ZIP/UZP/TRN; 7908 * bit 2 indicates 1 vs 2 variant of the insn. 7909 */ 7910 int opcode = extract32(insn, 12, 2); 7911 bool part = extract32(insn, 14, 1); 7912 bool is_q = extract32(insn, 30, 1); 7913 int esize = 8 << size; 7914 int i; 7915 int datasize = is_q ? 128 : 64; 7916 int elements = datasize / esize; 7917 TCGv_i64 tcg_res[2], tcg_ele; 7918 7919 if (opcode == 0 || (size == 3 && !is_q)) { 7920 unallocated_encoding(s); 7921 return; 7922 } 7923 7924 if (!fp_access_check(s)) { 7925 return; 7926 } 7927 7928 tcg_res[0] = tcg_temp_new_i64(); 7929 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; 7930 tcg_ele = tcg_temp_new_i64(); 7931 7932 for (i = 0; i < elements; i++) { 7933 int o, w; 7934 7935 switch (opcode) { 7936 case 1: /* UZP1/2 */ 7937 { 7938 int midpoint = elements / 2; 7939 if (i < midpoint) { 7940 read_vec_element(s, tcg_ele, rn, 2 * i + part, size); 7941 } else { 7942 read_vec_element(s, tcg_ele, rm, 7943 2 * (i - midpoint) + part, size); 7944 } 7945 break; 7946 } 7947 case 2: /* TRN1/2 */ 7948 if (i & 1) { 7949 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); 7950 } else { 7951 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); 7952 } 7953 break; 7954 case 3: /* ZIP1/2 */ 7955 { 7956 int base = part * elements / 2; 7957 if (i & 1) { 7958 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); 7959 } else { 7960 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); 7961 } 7962 break; 7963 } 7964 default: 7965 g_assert_not_reached(); 7966 } 7967 7968 w = (i * esize) / 64; 7969 o = (i * esize) % 64; 7970 if (o == 0) { 7971 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 7972 } else { 7973 tcg_gen_shli_i64(tcg_ele, tcg_ele, o); 7974 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); 7975 } 7976 } 7977 7978 for (i = 0; i <= is_q; ++i) { 7979 write_vec_element(s, tcg_res[i], rd, i, MO_64); 7980 } 7981 clear_vec_high(s, is_q, rd); 7982 } 7983 7984 /* 7985 * do_reduction_op helper 7986 * 7987 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7988 * important for correct NaN propagation that we do these 7989 * operations in exactly the order specified by the pseudocode. 7990 * 7991 * This is a recursive function, TCG temps should be freed by the 7992 * calling function once it is done with the values. 7993 */ 7994 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, 7995 int esize, int size, int vmap, TCGv_ptr fpst) 7996 { 7997 if (esize == size) { 7998 int element; 7999 MemOp msize = esize == 16 ? MO_16 : MO_32; 8000 TCGv_i32 tcg_elem; 8001 8002 /* We should have one register left here */ 8003 assert(ctpop8(vmap) == 1); 8004 element = ctz32(vmap); 8005 assert(element < 8); 8006 8007 tcg_elem = tcg_temp_new_i32(); 8008 read_vec_element_i32(s, tcg_elem, rn, element, msize); 8009 return tcg_elem; 8010 } else { 8011 int bits = size / 2; 8012 int shift = ctpop8(vmap) / 2; 8013 int vmap_lo = (vmap >> shift) & vmap; 8014 int vmap_hi = (vmap & ~vmap_lo); 8015 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 8016 8017 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); 8018 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); 8019 tcg_res = tcg_temp_new_i32(); 8020 8021 switch (fpopcode) { 8022 case 0x0c: /* fmaxnmv half-precision */ 8023 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8024 break; 8025 case 0x0f: /* fmaxv half-precision */ 8026 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); 8027 break; 8028 case 0x1c: /* fminnmv half-precision */ 8029 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); 8030 break; 8031 case 0x1f: /* fminv half-precision */ 8032 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); 8033 break; 8034 case 0x2c: /* fmaxnmv */ 8035 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); 8036 break; 8037 case 0x2f: /* fmaxv */ 8038 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); 8039 break; 8040 case 0x3c: /* fminnmv */ 8041 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); 8042 break; 8043 case 0x3f: /* fminv */ 8044 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); 8045 break; 8046 default: 8047 g_assert_not_reached(); 8048 } 8049 return tcg_res; 8050 } 8051 } 8052 8053 /* AdvSIMD across lanes 8054 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8055 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8056 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8057 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 8058 */ 8059 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) 8060 { 8061 int rd = extract32(insn, 0, 5); 8062 int rn = extract32(insn, 5, 5); 8063 int size = extract32(insn, 22, 2); 8064 int opcode = extract32(insn, 12, 5); 8065 bool is_q = extract32(insn, 30, 1); 8066 bool is_u = extract32(insn, 29, 1); 8067 bool is_fp = false; 8068 bool is_min = false; 8069 int esize; 8070 int elements; 8071 int i; 8072 TCGv_i64 tcg_res, tcg_elt; 8073 8074 switch (opcode) { 8075 case 0x1b: /* ADDV */ 8076 if (is_u) { 8077 unallocated_encoding(s); 8078 return; 8079 } 8080 /* fall through */ 8081 case 0x3: /* SADDLV, UADDLV */ 8082 case 0xa: /* SMAXV, UMAXV */ 8083 case 0x1a: /* SMINV, UMINV */ 8084 if (size == 3 || (size == 2 && !is_q)) { 8085 unallocated_encoding(s); 8086 return; 8087 } 8088 break; 8089 case 0xc: /* FMAXNMV, FMINNMV */ 8090 case 0xf: /* FMAXV, FMINV */ 8091 /* Bit 1 of size field encodes min vs max and the actual size 8092 * depends on the encoding of the U bit. If not set (and FP16 8093 * enabled) then we do half-precision float instead of single 8094 * precision. 8095 */ 8096 is_min = extract32(size, 1, 1); 8097 is_fp = true; 8098 if (!is_u && dc_isar_feature(aa64_fp16, s)) { 8099 size = 1; 8100 } else if (!is_u || !is_q || extract32(size, 0, 1)) { 8101 unallocated_encoding(s); 8102 return; 8103 } else { 8104 size = 2; 8105 } 8106 break; 8107 default: 8108 unallocated_encoding(s); 8109 return; 8110 } 8111 8112 if (!fp_access_check(s)) { 8113 return; 8114 } 8115 8116 esize = 8 << size; 8117 elements = (is_q ? 128 : 64) / esize; 8118 8119 tcg_res = tcg_temp_new_i64(); 8120 tcg_elt = tcg_temp_new_i64(); 8121 8122 /* These instructions operate across all lanes of a vector 8123 * to produce a single result. We can guarantee that a 64 8124 * bit intermediate is sufficient: 8125 * + for [US]ADDLV the maximum element size is 32 bits, and 8126 * the result type is 64 bits 8127 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the 8128 * same as the element size, which is 32 bits at most 8129 * For the integer operations we can choose to work at 64 8130 * or 32 bits and truncate at the end; for simplicity 8131 * we use 64 bits always. The floating point 8132 * ops do require 32 bit intermediates, though. 8133 */ 8134 if (!is_fp) { 8135 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); 8136 8137 for (i = 1; i < elements; i++) { 8138 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); 8139 8140 switch (opcode) { 8141 case 0x03: /* SADDLV / UADDLV */ 8142 case 0x1b: /* ADDV */ 8143 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); 8144 break; 8145 case 0x0a: /* SMAXV / UMAXV */ 8146 if (is_u) { 8147 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); 8148 } else { 8149 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); 8150 } 8151 break; 8152 case 0x1a: /* SMINV / UMINV */ 8153 if (is_u) { 8154 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); 8155 } else { 8156 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); 8157 } 8158 break; 8159 default: 8160 g_assert_not_reached(); 8161 } 8162 8163 } 8164 } else { 8165 /* Floating point vector reduction ops which work across 32 8166 * bit (single) or 16 bit (half-precision) intermediates. 8167 * Note that correct NaN propagation requires that we do these 8168 * operations in exactly the order specified by the pseudocode. 8169 */ 8170 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8171 int fpopcode = opcode | is_min << 4 | is_u << 5; 8172 int vmap = (1 << elements) - 1; 8173 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, 8174 (is_q ? 128 : 64), vmap, fpst); 8175 tcg_gen_extu_i32_i64(tcg_res, tcg_res32); 8176 } 8177 8178 /* Now truncate the result to the width required for the final output */ 8179 if (opcode == 0x03) { 8180 /* SADDLV, UADDLV: result is 2*esize */ 8181 size++; 8182 } 8183 8184 switch (size) { 8185 case 0: 8186 tcg_gen_ext8u_i64(tcg_res, tcg_res); 8187 break; 8188 case 1: 8189 tcg_gen_ext16u_i64(tcg_res, tcg_res); 8190 break; 8191 case 2: 8192 tcg_gen_ext32u_i64(tcg_res, tcg_res); 8193 break; 8194 case 3: 8195 break; 8196 default: 8197 g_assert_not_reached(); 8198 } 8199 8200 write_fp_dreg(s, rd, tcg_res); 8201 } 8202 8203 /* AdvSIMD modified immediate 8204 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 8205 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8206 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | 8207 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ 8208 * 8209 * There are a number of operations that can be carried out here: 8210 * MOVI - move (shifted) imm into register 8211 * MVNI - move inverted (shifted) imm into register 8212 * ORR - bitwise OR of (shifted) imm with register 8213 * BIC - bitwise clear of (shifted) imm with register 8214 * With ARMv8.2 we also have: 8215 * FMOV half-precision 8216 */ 8217 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) 8218 { 8219 int rd = extract32(insn, 0, 5); 8220 int cmode = extract32(insn, 12, 4); 8221 int o2 = extract32(insn, 11, 1); 8222 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); 8223 bool is_neg = extract32(insn, 29, 1); 8224 bool is_q = extract32(insn, 30, 1); 8225 uint64_t imm = 0; 8226 8227 if (o2) { 8228 if (cmode != 0xf || is_neg) { 8229 unallocated_encoding(s); 8230 return; 8231 } 8232 /* FMOV (vector, immediate) - half-precision */ 8233 if (!dc_isar_feature(aa64_fp16, s)) { 8234 unallocated_encoding(s); 8235 return; 8236 } 8237 imm = vfp_expand_imm(MO_16, abcdefgh); 8238 /* now duplicate across the lanes */ 8239 imm = dup_const(MO_16, imm); 8240 } else { 8241 if (cmode == 0xf && is_neg && !is_q) { 8242 unallocated_encoding(s); 8243 return; 8244 } 8245 imm = asimd_imm_const(abcdefgh, cmode, is_neg); 8246 } 8247 8248 if (!fp_access_check(s)) { 8249 return; 8250 } 8251 8252 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { 8253 /* MOVI or MVNI, with MVNI negation handled above. */ 8254 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, 8255 vec_full_reg_size(s), imm); 8256 } else { 8257 /* ORR or BIC, with BIC negation to AND handled above. */ 8258 if (is_neg) { 8259 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); 8260 } else { 8261 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); 8262 } 8263 } 8264 } 8265 8266 /* AdvSIMD scalar pairwise 8267 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 8268 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8269 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | 8270 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 8271 */ 8272 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) 8273 { 8274 int u = extract32(insn, 29, 1); 8275 int size = extract32(insn, 22, 2); 8276 int opcode = extract32(insn, 12, 5); 8277 int rn = extract32(insn, 5, 5); 8278 int rd = extract32(insn, 0, 5); 8279 TCGv_ptr fpst; 8280 8281 /* For some ops (the FP ones), size[1] is part of the encoding. 8282 * For ADDP strictly it is not but size[1] is always 1 for valid 8283 * encodings. 8284 */ 8285 opcode |= (extract32(size, 1, 1) << 5); 8286 8287 switch (opcode) { 8288 case 0x3b: /* ADDP */ 8289 if (u || size != 3) { 8290 unallocated_encoding(s); 8291 return; 8292 } 8293 if (!fp_access_check(s)) { 8294 return; 8295 } 8296 8297 fpst = NULL; 8298 break; 8299 case 0xc: /* FMAXNMP */ 8300 case 0xd: /* FADDP */ 8301 case 0xf: /* FMAXP */ 8302 case 0x2c: /* FMINNMP */ 8303 case 0x2f: /* FMINP */ 8304 /* FP op, size[0] is 32 or 64 bit*/ 8305 if (!u) { 8306 if ((size & 1) || !dc_isar_feature(aa64_fp16, s)) { 8307 unallocated_encoding(s); 8308 return; 8309 } else { 8310 size = MO_16; 8311 } 8312 } else { 8313 size = extract32(size, 0, 1) ? MO_64 : MO_32; 8314 } 8315 8316 if (!fp_access_check(s)) { 8317 return; 8318 } 8319 8320 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8321 break; 8322 default: 8323 unallocated_encoding(s); 8324 return; 8325 } 8326 8327 if (size == MO_64) { 8328 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 8329 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 8330 TCGv_i64 tcg_res = tcg_temp_new_i64(); 8331 8332 read_vec_element(s, tcg_op1, rn, 0, MO_64); 8333 read_vec_element(s, tcg_op2, rn, 1, MO_64); 8334 8335 switch (opcode) { 8336 case 0x3b: /* ADDP */ 8337 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); 8338 break; 8339 case 0xc: /* FMAXNMP */ 8340 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8341 break; 8342 case 0xd: /* FADDP */ 8343 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); 8344 break; 8345 case 0xf: /* FMAXP */ 8346 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); 8347 break; 8348 case 0x2c: /* FMINNMP */ 8349 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); 8350 break; 8351 case 0x2f: /* FMINP */ 8352 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); 8353 break; 8354 default: 8355 g_assert_not_reached(); 8356 } 8357 8358 write_fp_dreg(s, rd, tcg_res); 8359 } else { 8360 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 8361 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 8362 TCGv_i32 tcg_res = tcg_temp_new_i32(); 8363 8364 read_vec_element_i32(s, tcg_op1, rn, 0, size); 8365 read_vec_element_i32(s, tcg_op2, rn, 1, size); 8366 8367 if (size == MO_16) { 8368 switch (opcode) { 8369 case 0xc: /* FMAXNMP */ 8370 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8371 break; 8372 case 0xd: /* FADDP */ 8373 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); 8374 break; 8375 case 0xf: /* FMAXP */ 8376 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); 8377 break; 8378 case 0x2c: /* FMINNMP */ 8379 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); 8380 break; 8381 case 0x2f: /* FMINP */ 8382 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); 8383 break; 8384 default: 8385 g_assert_not_reached(); 8386 } 8387 } else { 8388 switch (opcode) { 8389 case 0xc: /* FMAXNMP */ 8390 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); 8391 break; 8392 case 0xd: /* FADDP */ 8393 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); 8394 break; 8395 case 0xf: /* FMAXP */ 8396 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); 8397 break; 8398 case 0x2c: /* FMINNMP */ 8399 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); 8400 break; 8401 case 0x2f: /* FMINP */ 8402 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); 8403 break; 8404 default: 8405 g_assert_not_reached(); 8406 } 8407 } 8408 8409 write_fp_sreg(s, rd, tcg_res); 8410 } 8411 } 8412 8413 /* 8414 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) 8415 * 8416 * This code is handles the common shifting code and is used by both 8417 * the vector and scalar code. 8418 */ 8419 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, 8420 TCGv_i64 tcg_rnd, bool accumulate, 8421 bool is_u, int size, int shift) 8422 { 8423 bool extended_result = false; 8424 bool round = tcg_rnd != NULL; 8425 int ext_lshift = 0; 8426 TCGv_i64 tcg_src_hi; 8427 8428 if (round && size == 3) { 8429 extended_result = true; 8430 ext_lshift = 64 - shift; 8431 tcg_src_hi = tcg_temp_new_i64(); 8432 } else if (shift == 64) { 8433 if (!accumulate && is_u) { 8434 /* result is zero */ 8435 tcg_gen_movi_i64(tcg_res, 0); 8436 return; 8437 } 8438 } 8439 8440 /* Deal with the rounding step */ 8441 if (round) { 8442 if (extended_result) { 8443 TCGv_i64 tcg_zero = tcg_constant_i64(0); 8444 if (!is_u) { 8445 /* take care of sign extending tcg_res */ 8446 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); 8447 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8448 tcg_src, tcg_src_hi, 8449 tcg_rnd, tcg_zero); 8450 } else { 8451 tcg_gen_add2_i64(tcg_src, tcg_src_hi, 8452 tcg_src, tcg_zero, 8453 tcg_rnd, tcg_zero); 8454 } 8455 } else { 8456 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); 8457 } 8458 } 8459 8460 /* Now do the shift right */ 8461 if (round && extended_result) { 8462 /* extended case, >64 bit precision required */ 8463 if (ext_lshift == 0) { 8464 /* special case, only high bits matter */ 8465 tcg_gen_mov_i64(tcg_src, tcg_src_hi); 8466 } else { 8467 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8468 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); 8469 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); 8470 } 8471 } else { 8472 if (is_u) { 8473 if (shift == 64) { 8474 /* essentially shifting in 64 zeros */ 8475 tcg_gen_movi_i64(tcg_src, 0); 8476 } else { 8477 tcg_gen_shri_i64(tcg_src, tcg_src, shift); 8478 } 8479 } else { 8480 if (shift == 64) { 8481 /* effectively extending the sign-bit */ 8482 tcg_gen_sari_i64(tcg_src, tcg_src, 63); 8483 } else { 8484 tcg_gen_sari_i64(tcg_src, tcg_src, shift); 8485 } 8486 } 8487 } 8488 8489 if (accumulate) { 8490 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); 8491 } else { 8492 tcg_gen_mov_i64(tcg_res, tcg_src); 8493 } 8494 } 8495 8496 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ 8497 static void handle_scalar_simd_shri(DisasContext *s, 8498 bool is_u, int immh, int immb, 8499 int opcode, int rn, int rd) 8500 { 8501 const int size = 3; 8502 int immhb = immh << 3 | immb; 8503 int shift = 2 * (8 << size) - immhb; 8504 bool accumulate = false; 8505 bool round = false; 8506 bool insert = false; 8507 TCGv_i64 tcg_rn; 8508 TCGv_i64 tcg_rd; 8509 TCGv_i64 tcg_round; 8510 8511 if (!extract32(immh, 3, 1)) { 8512 unallocated_encoding(s); 8513 return; 8514 } 8515 8516 if (!fp_access_check(s)) { 8517 return; 8518 } 8519 8520 switch (opcode) { 8521 case 0x02: /* SSRA / USRA (accumulate) */ 8522 accumulate = true; 8523 break; 8524 case 0x04: /* SRSHR / URSHR (rounding) */ 8525 round = true; 8526 break; 8527 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 8528 accumulate = round = true; 8529 break; 8530 case 0x08: /* SRI */ 8531 insert = true; 8532 break; 8533 } 8534 8535 if (round) { 8536 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8537 } else { 8538 tcg_round = NULL; 8539 } 8540 8541 tcg_rn = read_fp_dreg(s, rn); 8542 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8543 8544 if (insert) { 8545 /* shift count same as element size is valid but does nothing; 8546 * special case to avoid potential shift by 64. 8547 */ 8548 int esize = 8 << size; 8549 if (shift != esize) { 8550 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); 8551 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); 8552 } 8553 } else { 8554 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8555 accumulate, is_u, size, shift); 8556 } 8557 8558 write_fp_dreg(s, rd, tcg_rd); 8559 } 8560 8561 /* SHL/SLI - Scalar shift left */ 8562 static void handle_scalar_simd_shli(DisasContext *s, bool insert, 8563 int immh, int immb, int opcode, 8564 int rn, int rd) 8565 { 8566 int size = 32 - clz32(immh) - 1; 8567 int immhb = immh << 3 | immb; 8568 int shift = immhb - (8 << size); 8569 TCGv_i64 tcg_rn; 8570 TCGv_i64 tcg_rd; 8571 8572 if (!extract32(immh, 3, 1)) { 8573 unallocated_encoding(s); 8574 return; 8575 } 8576 8577 if (!fp_access_check(s)) { 8578 return; 8579 } 8580 8581 tcg_rn = read_fp_dreg(s, rn); 8582 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); 8583 8584 if (insert) { 8585 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); 8586 } else { 8587 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); 8588 } 8589 8590 write_fp_dreg(s, rd, tcg_rd); 8591 } 8592 8593 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with 8594 * (signed/unsigned) narrowing */ 8595 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, 8596 bool is_u_shift, bool is_u_narrow, 8597 int immh, int immb, int opcode, 8598 int rn, int rd) 8599 { 8600 int immhb = immh << 3 | immb; 8601 int size = 32 - clz32(immh) - 1; 8602 int esize = 8 << size; 8603 int shift = (2 * esize) - immhb; 8604 int elements = is_scalar ? 1 : (64 / esize); 8605 bool round = extract32(opcode, 0, 1); 8606 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); 8607 TCGv_i64 tcg_rn, tcg_rd, tcg_round; 8608 TCGv_i32 tcg_rd_narrowed; 8609 TCGv_i64 tcg_final; 8610 8611 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { 8612 { gen_helper_neon_narrow_sat_s8, 8613 gen_helper_neon_unarrow_sat8 }, 8614 { gen_helper_neon_narrow_sat_s16, 8615 gen_helper_neon_unarrow_sat16 }, 8616 { gen_helper_neon_narrow_sat_s32, 8617 gen_helper_neon_unarrow_sat32 }, 8618 { NULL, NULL }, 8619 }; 8620 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { 8621 gen_helper_neon_narrow_sat_u8, 8622 gen_helper_neon_narrow_sat_u16, 8623 gen_helper_neon_narrow_sat_u32, 8624 NULL 8625 }; 8626 NeonGenNarrowEnvFn *narrowfn; 8627 8628 int i; 8629 8630 assert(size < 4); 8631 8632 if (extract32(immh, 3, 1)) { 8633 unallocated_encoding(s); 8634 return; 8635 } 8636 8637 if (!fp_access_check(s)) { 8638 return; 8639 } 8640 8641 if (is_u_shift) { 8642 narrowfn = unsigned_narrow_fns[size]; 8643 } else { 8644 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; 8645 } 8646 8647 tcg_rn = tcg_temp_new_i64(); 8648 tcg_rd = tcg_temp_new_i64(); 8649 tcg_rd_narrowed = tcg_temp_new_i32(); 8650 tcg_final = tcg_temp_new_i64(); 8651 8652 if (round) { 8653 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 8654 } else { 8655 tcg_round = NULL; 8656 } 8657 8658 for (i = 0; i < elements; i++) { 8659 read_vec_element(s, tcg_rn, rn, i, ldop); 8660 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 8661 false, is_u_shift, size+1, shift); 8662 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); 8663 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); 8664 if (i == 0) { 8665 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); 8666 } else { 8667 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 8668 } 8669 } 8670 8671 if (!is_q) { 8672 write_vec_element(s, tcg_final, rd, 0, MO_64); 8673 } else { 8674 write_vec_element(s, tcg_final, rd, 1, MO_64); 8675 } 8676 clear_vec_high(s, is_q, rd); 8677 } 8678 8679 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ 8680 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, 8681 bool src_unsigned, bool dst_unsigned, 8682 int immh, int immb, int rn, int rd) 8683 { 8684 int immhb = immh << 3 | immb; 8685 int size = 32 - clz32(immh) - 1; 8686 int shift = immhb - (8 << size); 8687 int pass; 8688 8689 assert(immh != 0); 8690 assert(!(scalar && is_q)); 8691 8692 if (!scalar) { 8693 if (!is_q && extract32(immh, 3, 1)) { 8694 unallocated_encoding(s); 8695 return; 8696 } 8697 8698 /* Since we use the variable-shift helpers we must 8699 * replicate the shift count into each element of 8700 * the tcg_shift value. 8701 */ 8702 switch (size) { 8703 case 0: 8704 shift |= shift << 8; 8705 /* fall through */ 8706 case 1: 8707 shift |= shift << 16; 8708 break; 8709 case 2: 8710 case 3: 8711 break; 8712 default: 8713 g_assert_not_reached(); 8714 } 8715 } 8716 8717 if (!fp_access_check(s)) { 8718 return; 8719 } 8720 8721 if (size == 3) { 8722 TCGv_i64 tcg_shift = tcg_constant_i64(shift); 8723 static NeonGenTwo64OpEnvFn * const fns[2][2] = { 8724 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, 8725 { NULL, gen_helper_neon_qshl_u64 }, 8726 }; 8727 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; 8728 int maxpass = is_q ? 2 : 1; 8729 8730 for (pass = 0; pass < maxpass; pass++) { 8731 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8732 8733 read_vec_element(s, tcg_op, rn, pass, MO_64); 8734 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8735 write_vec_element(s, tcg_op, rd, pass, MO_64); 8736 } 8737 clear_vec_high(s, is_q, rd); 8738 } else { 8739 TCGv_i32 tcg_shift = tcg_constant_i32(shift); 8740 static NeonGenTwoOpEnvFn * const fns[2][2][3] = { 8741 { 8742 { gen_helper_neon_qshl_s8, 8743 gen_helper_neon_qshl_s16, 8744 gen_helper_neon_qshl_s32 }, 8745 { gen_helper_neon_qshlu_s8, 8746 gen_helper_neon_qshlu_s16, 8747 gen_helper_neon_qshlu_s32 } 8748 }, { 8749 { NULL, NULL, NULL }, 8750 { gen_helper_neon_qshl_u8, 8751 gen_helper_neon_qshl_u16, 8752 gen_helper_neon_qshl_u32 } 8753 } 8754 }; 8755 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; 8756 MemOp memop = scalar ? size : MO_32; 8757 int maxpass = scalar ? 1 : is_q ? 4 : 2; 8758 8759 for (pass = 0; pass < maxpass; pass++) { 8760 TCGv_i32 tcg_op = tcg_temp_new_i32(); 8761 8762 read_vec_element_i32(s, tcg_op, rn, pass, memop); 8763 genfn(tcg_op, tcg_env, tcg_op, tcg_shift); 8764 if (scalar) { 8765 switch (size) { 8766 case 0: 8767 tcg_gen_ext8u_i32(tcg_op, tcg_op); 8768 break; 8769 case 1: 8770 tcg_gen_ext16u_i32(tcg_op, tcg_op); 8771 break; 8772 case 2: 8773 break; 8774 default: 8775 g_assert_not_reached(); 8776 } 8777 write_fp_sreg(s, rd, tcg_op); 8778 } else { 8779 write_vec_element_i32(s, tcg_op, rd, pass, MO_32); 8780 } 8781 } 8782 8783 if (!scalar) { 8784 clear_vec_high(s, is_q, rd); 8785 } 8786 } 8787 } 8788 8789 /* Common vector code for handling integer to FP conversion */ 8790 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, 8791 int elements, int is_signed, 8792 int fracbits, int size) 8793 { 8794 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8795 TCGv_i32 tcg_shift = NULL; 8796 8797 MemOp mop = size | (is_signed ? MO_SIGN : 0); 8798 int pass; 8799 8800 if (fracbits || size == MO_64) { 8801 tcg_shift = tcg_constant_i32(fracbits); 8802 } 8803 8804 if (size == MO_64) { 8805 TCGv_i64 tcg_int64 = tcg_temp_new_i64(); 8806 TCGv_i64 tcg_double = tcg_temp_new_i64(); 8807 8808 for (pass = 0; pass < elements; pass++) { 8809 read_vec_element(s, tcg_int64, rn, pass, mop); 8810 8811 if (is_signed) { 8812 gen_helper_vfp_sqtod(tcg_double, tcg_int64, 8813 tcg_shift, tcg_fpst); 8814 } else { 8815 gen_helper_vfp_uqtod(tcg_double, tcg_int64, 8816 tcg_shift, tcg_fpst); 8817 } 8818 if (elements == 1) { 8819 write_fp_dreg(s, rd, tcg_double); 8820 } else { 8821 write_vec_element(s, tcg_double, rd, pass, MO_64); 8822 } 8823 } 8824 } else { 8825 TCGv_i32 tcg_int32 = tcg_temp_new_i32(); 8826 TCGv_i32 tcg_float = tcg_temp_new_i32(); 8827 8828 for (pass = 0; pass < elements; pass++) { 8829 read_vec_element_i32(s, tcg_int32, rn, pass, mop); 8830 8831 switch (size) { 8832 case MO_32: 8833 if (fracbits) { 8834 if (is_signed) { 8835 gen_helper_vfp_sltos(tcg_float, tcg_int32, 8836 tcg_shift, tcg_fpst); 8837 } else { 8838 gen_helper_vfp_ultos(tcg_float, tcg_int32, 8839 tcg_shift, tcg_fpst); 8840 } 8841 } else { 8842 if (is_signed) { 8843 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); 8844 } else { 8845 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); 8846 } 8847 } 8848 break; 8849 case MO_16: 8850 if (fracbits) { 8851 if (is_signed) { 8852 gen_helper_vfp_sltoh(tcg_float, tcg_int32, 8853 tcg_shift, tcg_fpst); 8854 } else { 8855 gen_helper_vfp_ultoh(tcg_float, tcg_int32, 8856 tcg_shift, tcg_fpst); 8857 } 8858 } else { 8859 if (is_signed) { 8860 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); 8861 } else { 8862 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); 8863 } 8864 } 8865 break; 8866 default: 8867 g_assert_not_reached(); 8868 } 8869 8870 if (elements == 1) { 8871 write_fp_sreg(s, rd, tcg_float); 8872 } else { 8873 write_vec_element_i32(s, tcg_float, rd, pass, size); 8874 } 8875 } 8876 } 8877 8878 clear_vec_high(s, elements << size == 16, rd); 8879 } 8880 8881 /* UCVTF/SCVTF - Integer to FP conversion */ 8882 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, 8883 bool is_q, bool is_u, 8884 int immh, int immb, int opcode, 8885 int rn, int rd) 8886 { 8887 int size, elements, fracbits; 8888 int immhb = immh << 3 | immb; 8889 8890 if (immh & 8) { 8891 size = MO_64; 8892 if (!is_scalar && !is_q) { 8893 unallocated_encoding(s); 8894 return; 8895 } 8896 } else if (immh & 4) { 8897 size = MO_32; 8898 } else if (immh & 2) { 8899 size = MO_16; 8900 if (!dc_isar_feature(aa64_fp16, s)) { 8901 unallocated_encoding(s); 8902 return; 8903 } 8904 } else { 8905 /* immh == 0 would be a failure of the decode logic */ 8906 g_assert(immh == 1); 8907 unallocated_encoding(s); 8908 return; 8909 } 8910 8911 if (is_scalar) { 8912 elements = 1; 8913 } else { 8914 elements = (8 << is_q) >> size; 8915 } 8916 fracbits = (16 << size) - immhb; 8917 8918 if (!fp_access_check(s)) { 8919 return; 8920 } 8921 8922 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); 8923 } 8924 8925 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ 8926 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, 8927 bool is_q, bool is_u, 8928 int immh, int immb, int rn, int rd) 8929 { 8930 int immhb = immh << 3 | immb; 8931 int pass, size, fracbits; 8932 TCGv_ptr tcg_fpstatus; 8933 TCGv_i32 tcg_rmode, tcg_shift; 8934 8935 if (immh & 0x8) { 8936 size = MO_64; 8937 if (!is_scalar && !is_q) { 8938 unallocated_encoding(s); 8939 return; 8940 } 8941 } else if (immh & 0x4) { 8942 size = MO_32; 8943 } else if (immh & 0x2) { 8944 size = MO_16; 8945 if (!dc_isar_feature(aa64_fp16, s)) { 8946 unallocated_encoding(s); 8947 return; 8948 } 8949 } else { 8950 /* Should have split out AdvSIMD modified immediate earlier. */ 8951 assert(immh == 1); 8952 unallocated_encoding(s); 8953 return; 8954 } 8955 8956 if (!fp_access_check(s)) { 8957 return; 8958 } 8959 8960 assert(!(is_scalar && is_q)); 8961 8962 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 8963 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); 8964 fracbits = (16 << size) - immhb; 8965 tcg_shift = tcg_constant_i32(fracbits); 8966 8967 if (size == MO_64) { 8968 int maxpass = is_scalar ? 1 : 2; 8969 8970 for (pass = 0; pass < maxpass; pass++) { 8971 TCGv_i64 tcg_op = tcg_temp_new_i64(); 8972 8973 read_vec_element(s, tcg_op, rn, pass, MO_64); 8974 if (is_u) { 8975 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8976 } else { 8977 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 8978 } 8979 write_vec_element(s, tcg_op, rd, pass, MO_64); 8980 } 8981 clear_vec_high(s, is_q, rd); 8982 } else { 8983 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 8984 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); 8985 8986 switch (size) { 8987 case MO_16: 8988 if (is_u) { 8989 fn = gen_helper_vfp_touhh; 8990 } else { 8991 fn = gen_helper_vfp_toshh; 8992 } 8993 break; 8994 case MO_32: 8995 if (is_u) { 8996 fn = gen_helper_vfp_touls; 8997 } else { 8998 fn = gen_helper_vfp_tosls; 8999 } 9000 break; 9001 default: 9002 g_assert_not_reached(); 9003 } 9004 9005 for (pass = 0; pass < maxpass; pass++) { 9006 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9007 9008 read_vec_element_i32(s, tcg_op, rn, pass, size); 9009 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); 9010 if (is_scalar) { 9011 if (size == MO_16 && !is_u) { 9012 tcg_gen_ext16u_i32(tcg_op, tcg_op); 9013 } 9014 write_fp_sreg(s, rd, tcg_op); 9015 } else { 9016 write_vec_element_i32(s, tcg_op, rd, pass, size); 9017 } 9018 } 9019 if (!is_scalar) { 9020 clear_vec_high(s, is_q, rd); 9021 } 9022 } 9023 9024 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9025 } 9026 9027 /* AdvSIMD scalar shift by immediate 9028 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 9029 * +-----+---+-------------+------+------+--------+---+------+------+ 9030 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 9031 * +-----+---+-------------+------+------+--------+---+------+------+ 9032 * 9033 * This is the scalar version so it works on a fixed sized registers 9034 */ 9035 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) 9036 { 9037 int rd = extract32(insn, 0, 5); 9038 int rn = extract32(insn, 5, 5); 9039 int opcode = extract32(insn, 11, 5); 9040 int immb = extract32(insn, 16, 3); 9041 int immh = extract32(insn, 19, 4); 9042 bool is_u = extract32(insn, 29, 1); 9043 9044 if (immh == 0) { 9045 unallocated_encoding(s); 9046 return; 9047 } 9048 9049 switch (opcode) { 9050 case 0x08: /* SRI */ 9051 if (!is_u) { 9052 unallocated_encoding(s); 9053 return; 9054 } 9055 /* fall through */ 9056 case 0x00: /* SSHR / USHR */ 9057 case 0x02: /* SSRA / USRA */ 9058 case 0x04: /* SRSHR / URSHR */ 9059 case 0x06: /* SRSRA / URSRA */ 9060 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); 9061 break; 9062 case 0x0a: /* SHL / SLI */ 9063 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); 9064 break; 9065 case 0x1c: /* SCVTF, UCVTF */ 9066 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, 9067 opcode, rn, rd); 9068 break; 9069 case 0x10: /* SQSHRUN, SQSHRUN2 */ 9070 case 0x11: /* SQRSHRUN, SQRSHRUN2 */ 9071 if (!is_u) { 9072 unallocated_encoding(s); 9073 return; 9074 } 9075 handle_vec_simd_sqshrn(s, true, false, false, true, 9076 immh, immb, opcode, rn, rd); 9077 break; 9078 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ 9079 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ 9080 handle_vec_simd_sqshrn(s, true, false, is_u, is_u, 9081 immh, immb, opcode, rn, rd); 9082 break; 9083 case 0xc: /* SQSHLU */ 9084 if (!is_u) { 9085 unallocated_encoding(s); 9086 return; 9087 } 9088 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); 9089 break; 9090 case 0xe: /* SQSHL, UQSHL */ 9091 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); 9092 break; 9093 case 0x1f: /* FCVTZS, FCVTZU */ 9094 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); 9095 break; 9096 default: 9097 unallocated_encoding(s); 9098 break; 9099 } 9100 } 9101 9102 /* AdvSIMD scalar three different 9103 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 9104 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9105 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 9106 * +-----+---+-----------+------+---+------+--------+-----+------+------+ 9107 */ 9108 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) 9109 { 9110 bool is_u = extract32(insn, 29, 1); 9111 int size = extract32(insn, 22, 2); 9112 int opcode = extract32(insn, 12, 4); 9113 int rm = extract32(insn, 16, 5); 9114 int rn = extract32(insn, 5, 5); 9115 int rd = extract32(insn, 0, 5); 9116 9117 if (is_u) { 9118 unallocated_encoding(s); 9119 return; 9120 } 9121 9122 switch (opcode) { 9123 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9124 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9125 case 0xd: /* SQDMULL, SQDMULL2 */ 9126 if (size == 0 || size == 3) { 9127 unallocated_encoding(s); 9128 return; 9129 } 9130 break; 9131 default: 9132 unallocated_encoding(s); 9133 return; 9134 } 9135 9136 if (!fp_access_check(s)) { 9137 return; 9138 } 9139 9140 if (size == 2) { 9141 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9142 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9143 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9144 9145 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); 9146 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); 9147 9148 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); 9149 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); 9150 9151 switch (opcode) { 9152 case 0xd: /* SQDMULL, SQDMULL2 */ 9153 break; 9154 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9155 tcg_gen_neg_i64(tcg_res, tcg_res); 9156 /* fall through */ 9157 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9158 read_vec_element(s, tcg_op1, rd, 0, MO_64); 9159 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, 9160 tcg_res, tcg_op1); 9161 break; 9162 default: 9163 g_assert_not_reached(); 9164 } 9165 9166 write_fp_dreg(s, rd, tcg_res); 9167 } else { 9168 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); 9169 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); 9170 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9171 9172 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); 9173 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); 9174 9175 switch (opcode) { 9176 case 0xd: /* SQDMULL, SQDMULL2 */ 9177 break; 9178 case 0xb: /* SQDMLSL, SQDMLSL2 */ 9179 gen_helper_neon_negl_u32(tcg_res, tcg_res); 9180 /* fall through */ 9181 case 0x9: /* SQDMLAL, SQDMLAL2 */ 9182 { 9183 TCGv_i64 tcg_op3 = tcg_temp_new_i64(); 9184 read_vec_element(s, tcg_op3, rd, 0, MO_32); 9185 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, 9186 tcg_res, tcg_op3); 9187 break; 9188 } 9189 default: 9190 g_assert_not_reached(); 9191 } 9192 9193 tcg_gen_ext32u_i64(tcg_res, tcg_res); 9194 write_fp_dreg(s, rd, tcg_res); 9195 } 9196 } 9197 9198 static void handle_3same_64(DisasContext *s, int opcode, bool u, 9199 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) 9200 { 9201 /* Handle 64x64->64 opcodes which are shared between the scalar 9202 * and vector 3-same groups. We cover every opcode where size == 3 9203 * is valid in either the three-reg-same (integer, not pairwise) 9204 * or scalar-three-reg-same groups. 9205 */ 9206 TCGCond cond; 9207 9208 switch (opcode) { 9209 case 0x1: /* SQADD */ 9210 if (u) { 9211 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9212 } else { 9213 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9214 } 9215 break; 9216 case 0x5: /* SQSUB */ 9217 if (u) { 9218 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9219 } else { 9220 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9221 } 9222 break; 9223 case 0x6: /* CMGT, CMHI */ 9224 cond = u ? TCG_COND_GTU : TCG_COND_GT; 9225 do_cmop: 9226 /* 64 bit integer comparison, result = test ? -1 : 0. */ 9227 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); 9228 break; 9229 case 0x7: /* CMGE, CMHS */ 9230 cond = u ? TCG_COND_GEU : TCG_COND_GE; 9231 goto do_cmop; 9232 case 0x11: /* CMTST, CMEQ */ 9233 if (u) { 9234 cond = TCG_COND_EQ; 9235 goto do_cmop; 9236 } 9237 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); 9238 break; 9239 case 0x8: /* SSHL, USHL */ 9240 if (u) { 9241 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm); 9242 } else { 9243 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm); 9244 } 9245 break; 9246 case 0x9: /* SQSHL, UQSHL */ 9247 if (u) { 9248 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9249 } else { 9250 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9251 } 9252 break; 9253 case 0xa: /* SRSHL, URSHL */ 9254 if (u) { 9255 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); 9256 } else { 9257 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); 9258 } 9259 break; 9260 case 0xb: /* SQRSHL, UQRSHL */ 9261 if (u) { 9262 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9263 } else { 9264 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm); 9265 } 9266 break; 9267 case 0x10: /* ADD, SUB */ 9268 if (u) { 9269 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); 9270 } else { 9271 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); 9272 } 9273 break; 9274 default: 9275 g_assert_not_reached(); 9276 } 9277 } 9278 9279 /* Handle the 3-same-operands float operations; shared by the scalar 9280 * and vector encodings. The caller must filter out any encodings 9281 * not allocated for the encoding it is dealing with. 9282 */ 9283 static void handle_3same_float(DisasContext *s, int size, int elements, 9284 int fpopcode, int rd, int rn, int rm) 9285 { 9286 int pass; 9287 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9288 9289 for (pass = 0; pass < elements; pass++) { 9290 if (size) { 9291 /* Double */ 9292 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 9293 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 9294 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9295 9296 read_vec_element(s, tcg_op1, rn, pass, MO_64); 9297 read_vec_element(s, tcg_op2, rm, pass, MO_64); 9298 9299 switch (fpopcode) { 9300 case 0x1f: /* FRECPS */ 9301 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9302 break; 9303 case 0x3f: /* FRSQRTS */ 9304 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); 9305 break; 9306 case 0x7a: /* FABD */ 9307 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); 9308 gen_vfp_absd(tcg_res, tcg_res); 9309 break; 9310 default: 9311 case 0x18: /* FMAXNM */ 9312 case 0x19: /* FMLA */ 9313 case 0x1a: /* FADD */ 9314 case 0x1b: /* FMULX */ 9315 case 0x1c: /* FCMEQ */ 9316 case 0x1e: /* FMAX */ 9317 case 0x38: /* FMINNM */ 9318 case 0x39: /* FMLS */ 9319 case 0x3a: /* FSUB */ 9320 case 0x3e: /* FMIN */ 9321 case 0x5b: /* FMUL */ 9322 case 0x5c: /* FCMGE */ 9323 case 0x5d: /* FACGE */ 9324 case 0x5f: /* FDIV */ 9325 case 0x7c: /* FCMGT */ 9326 case 0x7d: /* FACGT */ 9327 g_assert_not_reached(); 9328 } 9329 9330 write_vec_element(s, tcg_res, rd, pass, MO_64); 9331 } else { 9332 /* Single */ 9333 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 9334 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 9335 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9336 9337 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 9338 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 9339 9340 switch (fpopcode) { 9341 case 0x1f: /* FRECPS */ 9342 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9343 break; 9344 case 0x3f: /* FRSQRTS */ 9345 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); 9346 break; 9347 case 0x7a: /* FABD */ 9348 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); 9349 gen_vfp_abss(tcg_res, tcg_res); 9350 break; 9351 default: 9352 case 0x18: /* FMAXNM */ 9353 case 0x19: /* FMLA */ 9354 case 0x1a: /* FADD */ 9355 case 0x1b: /* FMULX */ 9356 case 0x1c: /* FCMEQ */ 9357 case 0x1e: /* FMAX */ 9358 case 0x38: /* FMINNM */ 9359 case 0x39: /* FMLS */ 9360 case 0x3a: /* FSUB */ 9361 case 0x3e: /* FMIN */ 9362 case 0x5b: /* FMUL */ 9363 case 0x5c: /* FCMGE */ 9364 case 0x5d: /* FACGE */ 9365 case 0x5f: /* FDIV */ 9366 case 0x7c: /* FCMGT */ 9367 case 0x7d: /* FACGT */ 9368 g_assert_not_reached(); 9369 } 9370 9371 if (elements == 1) { 9372 /* scalar single so clear high part */ 9373 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 9374 9375 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); 9376 write_vec_element(s, tcg_tmp, rd, pass, MO_64); 9377 } else { 9378 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9379 } 9380 } 9381 } 9382 9383 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); 9384 } 9385 9386 /* AdvSIMD scalar three same 9387 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 9388 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9389 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 9390 * +-----+---+-----------+------+---+------+--------+---+------+------+ 9391 */ 9392 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) 9393 { 9394 int rd = extract32(insn, 0, 5); 9395 int rn = extract32(insn, 5, 5); 9396 int opcode = extract32(insn, 11, 5); 9397 int rm = extract32(insn, 16, 5); 9398 int size = extract32(insn, 22, 2); 9399 bool u = extract32(insn, 29, 1); 9400 TCGv_i64 tcg_rd; 9401 9402 if (opcode >= 0x18) { 9403 /* Floating point: U, size[1] and opcode indicate operation */ 9404 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); 9405 switch (fpopcode) { 9406 case 0x1f: /* FRECPS */ 9407 case 0x3f: /* FRSQRTS */ 9408 case 0x7a: /* FABD */ 9409 break; 9410 default: 9411 case 0x1b: /* FMULX */ 9412 case 0x5d: /* FACGE */ 9413 case 0x7d: /* FACGT */ 9414 case 0x1c: /* FCMEQ */ 9415 case 0x5c: /* FCMGE */ 9416 case 0x7c: /* FCMGT */ 9417 unallocated_encoding(s); 9418 return; 9419 } 9420 9421 if (!fp_access_check(s)) { 9422 return; 9423 } 9424 9425 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); 9426 return; 9427 } 9428 9429 switch (opcode) { 9430 case 0x1: /* SQADD, UQADD */ 9431 case 0x5: /* SQSUB, UQSUB */ 9432 case 0x9: /* SQSHL, UQSHL */ 9433 case 0xb: /* SQRSHL, UQRSHL */ 9434 break; 9435 case 0x8: /* SSHL, USHL */ 9436 case 0xa: /* SRSHL, URSHL */ 9437 case 0x6: /* CMGT, CMHI */ 9438 case 0x7: /* CMGE, CMHS */ 9439 case 0x11: /* CMTST, CMEQ */ 9440 case 0x10: /* ADD, SUB (vector) */ 9441 if (size != 3) { 9442 unallocated_encoding(s); 9443 return; 9444 } 9445 break; 9446 case 0x16: /* SQDMULH, SQRDMULH (vector) */ 9447 if (size != 1 && size != 2) { 9448 unallocated_encoding(s); 9449 return; 9450 } 9451 break; 9452 default: 9453 unallocated_encoding(s); 9454 return; 9455 } 9456 9457 if (!fp_access_check(s)) { 9458 return; 9459 } 9460 9461 tcg_rd = tcg_temp_new_i64(); 9462 9463 if (size == 3) { 9464 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 9465 TCGv_i64 tcg_rm = read_fp_dreg(s, rm); 9466 9467 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); 9468 } else { 9469 /* Do a single operation on the lowest element in the vector. 9470 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with 9471 * no side effects for all these operations. 9472 * OPTME: special-purpose helpers would avoid doing some 9473 * unnecessary work in the helper for the 8 and 16 bit cases. 9474 */ 9475 NeonGenTwoOpEnvFn *genenvfn; 9476 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 9477 TCGv_i32 tcg_rm = tcg_temp_new_i32(); 9478 TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); 9479 9480 read_vec_element_i32(s, tcg_rn, rn, 0, size); 9481 read_vec_element_i32(s, tcg_rm, rm, 0, size); 9482 9483 switch (opcode) { 9484 case 0x1: /* SQADD, UQADD */ 9485 { 9486 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9487 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, 9488 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, 9489 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, 9490 }; 9491 genenvfn = fns[size][u]; 9492 break; 9493 } 9494 case 0x5: /* SQSUB, UQSUB */ 9495 { 9496 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9497 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, 9498 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, 9499 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, 9500 }; 9501 genenvfn = fns[size][u]; 9502 break; 9503 } 9504 case 0x9: /* SQSHL, UQSHL */ 9505 { 9506 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9507 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 9508 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 9509 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 9510 }; 9511 genenvfn = fns[size][u]; 9512 break; 9513 } 9514 case 0xb: /* SQRSHL, UQRSHL */ 9515 { 9516 static NeonGenTwoOpEnvFn * const fns[3][2] = { 9517 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 9518 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 9519 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 9520 }; 9521 genenvfn = fns[size][u]; 9522 break; 9523 } 9524 case 0x16: /* SQDMULH, SQRDMULH */ 9525 { 9526 static NeonGenTwoOpEnvFn * const fns[2][2] = { 9527 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, 9528 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, 9529 }; 9530 assert(size == 1 || size == 2); 9531 genenvfn = fns[size - 1][u]; 9532 break; 9533 } 9534 default: 9535 g_assert_not_reached(); 9536 } 9537 9538 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm); 9539 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); 9540 } 9541 9542 write_fp_dreg(s, rd, tcg_rd); 9543 } 9544 9545 /* AdvSIMD scalar three same FP16 9546 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 9547 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9548 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 9549 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ 9550 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 9551 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 9552 */ 9553 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, 9554 uint32_t insn) 9555 { 9556 int rd = extract32(insn, 0, 5); 9557 int rn = extract32(insn, 5, 5); 9558 int opcode = extract32(insn, 11, 3); 9559 int rm = extract32(insn, 16, 5); 9560 bool u = extract32(insn, 29, 1); 9561 bool a = extract32(insn, 23, 1); 9562 int fpopcode = opcode | (a << 3) | (u << 4); 9563 TCGv_ptr fpst; 9564 TCGv_i32 tcg_op1; 9565 TCGv_i32 tcg_op2; 9566 TCGv_i32 tcg_res; 9567 9568 switch (fpopcode) { 9569 case 0x07: /* FRECPS */ 9570 case 0x0f: /* FRSQRTS */ 9571 case 0x1a: /* FABD */ 9572 break; 9573 default: 9574 case 0x03: /* FMULX */ 9575 case 0x04: /* FCMEQ (reg) */ 9576 case 0x14: /* FCMGE (reg) */ 9577 case 0x15: /* FACGE */ 9578 case 0x1c: /* FCMGT (reg) */ 9579 case 0x1d: /* FACGT */ 9580 unallocated_encoding(s); 9581 return; 9582 } 9583 9584 if (!dc_isar_feature(aa64_fp16, s)) { 9585 unallocated_encoding(s); 9586 } 9587 9588 if (!fp_access_check(s)) { 9589 return; 9590 } 9591 9592 fpst = fpstatus_ptr(FPST_FPCR_F16); 9593 9594 tcg_op1 = read_fp_hreg(s, rn); 9595 tcg_op2 = read_fp_hreg(s, rm); 9596 tcg_res = tcg_temp_new_i32(); 9597 9598 switch (fpopcode) { 9599 case 0x07: /* FRECPS */ 9600 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9601 break; 9602 case 0x0f: /* FRSQRTS */ 9603 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 9604 break; 9605 case 0x1a: /* FABD */ 9606 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 9607 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 9608 break; 9609 default: 9610 case 0x03: /* FMULX */ 9611 case 0x04: /* FCMEQ (reg) */ 9612 case 0x14: /* FCMGE (reg) */ 9613 case 0x15: /* FACGE */ 9614 case 0x1c: /* FCMGT (reg) */ 9615 case 0x1d: /* FACGT */ 9616 g_assert_not_reached(); 9617 } 9618 9619 write_fp_sreg(s, rd, tcg_res); 9620 } 9621 9622 /* AdvSIMD scalar three same extra 9623 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 9624 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9625 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 9626 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ 9627 */ 9628 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, 9629 uint32_t insn) 9630 { 9631 int rd = extract32(insn, 0, 5); 9632 int rn = extract32(insn, 5, 5); 9633 int opcode = extract32(insn, 11, 4); 9634 int rm = extract32(insn, 16, 5); 9635 int size = extract32(insn, 22, 2); 9636 bool u = extract32(insn, 29, 1); 9637 TCGv_i32 ele1, ele2, ele3; 9638 TCGv_i64 res; 9639 bool feature; 9640 9641 switch (u * 16 + opcode) { 9642 case 0x10: /* SQRDMLAH (vector) */ 9643 case 0x11: /* SQRDMLSH (vector) */ 9644 if (size != 1 && size != 2) { 9645 unallocated_encoding(s); 9646 return; 9647 } 9648 feature = dc_isar_feature(aa64_rdm, s); 9649 break; 9650 default: 9651 unallocated_encoding(s); 9652 return; 9653 } 9654 if (!feature) { 9655 unallocated_encoding(s); 9656 return; 9657 } 9658 if (!fp_access_check(s)) { 9659 return; 9660 } 9661 9662 /* Do a single operation on the lowest element in the vector. 9663 * We use the standard Neon helpers and rely on 0 OP 0 == 0 9664 * with no side effects for all these operations. 9665 * OPTME: special-purpose helpers would avoid doing some 9666 * unnecessary work in the helper for the 16 bit cases. 9667 */ 9668 ele1 = tcg_temp_new_i32(); 9669 ele2 = tcg_temp_new_i32(); 9670 ele3 = tcg_temp_new_i32(); 9671 9672 read_vec_element_i32(s, ele1, rn, 0, size); 9673 read_vec_element_i32(s, ele2, rm, 0, size); 9674 read_vec_element_i32(s, ele3, rd, 0, size); 9675 9676 switch (opcode) { 9677 case 0x0: /* SQRDMLAH */ 9678 if (size == 1) { 9679 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); 9680 } else { 9681 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); 9682 } 9683 break; 9684 case 0x1: /* SQRDMLSH */ 9685 if (size == 1) { 9686 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); 9687 } else { 9688 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); 9689 } 9690 break; 9691 default: 9692 g_assert_not_reached(); 9693 } 9694 9695 res = tcg_temp_new_i64(); 9696 tcg_gen_extu_i32_i64(res, ele3); 9697 write_fp_dreg(s, rd, res); 9698 } 9699 9700 static void handle_2misc_64(DisasContext *s, int opcode, bool u, 9701 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, 9702 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) 9703 { 9704 /* Handle 64->64 opcodes which are shared between the scalar and 9705 * vector 2-reg-misc groups. We cover every integer opcode where size == 3 9706 * is valid in either group and also the double-precision fp ops. 9707 * The caller only need provide tcg_rmode and tcg_fpstatus if the op 9708 * requires them. 9709 */ 9710 TCGCond cond; 9711 9712 switch (opcode) { 9713 case 0x4: /* CLS, CLZ */ 9714 if (u) { 9715 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 9716 } else { 9717 tcg_gen_clrsb_i64(tcg_rd, tcg_rn); 9718 } 9719 break; 9720 case 0x5: /* NOT */ 9721 /* This opcode is shared with CNT and RBIT but we have earlier 9722 * enforced that size == 3 if and only if this is the NOT insn. 9723 */ 9724 tcg_gen_not_i64(tcg_rd, tcg_rn); 9725 break; 9726 case 0x7: /* SQABS, SQNEG */ 9727 if (u) { 9728 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); 9729 } else { 9730 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); 9731 } 9732 break; 9733 case 0xa: /* CMLT */ 9734 cond = TCG_COND_LT; 9735 do_cmop: 9736 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ 9737 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); 9738 break; 9739 case 0x8: /* CMGT, CMGE */ 9740 cond = u ? TCG_COND_GE : TCG_COND_GT; 9741 goto do_cmop; 9742 case 0x9: /* CMEQ, CMLE */ 9743 cond = u ? TCG_COND_LE : TCG_COND_EQ; 9744 goto do_cmop; 9745 case 0xb: /* ABS, NEG */ 9746 if (u) { 9747 tcg_gen_neg_i64(tcg_rd, tcg_rn); 9748 } else { 9749 tcg_gen_abs_i64(tcg_rd, tcg_rn); 9750 } 9751 break; 9752 case 0x2f: /* FABS */ 9753 gen_vfp_absd(tcg_rd, tcg_rn); 9754 break; 9755 case 0x6f: /* FNEG */ 9756 gen_vfp_negd(tcg_rd, tcg_rn); 9757 break; 9758 case 0x7f: /* FSQRT */ 9759 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); 9760 break; 9761 case 0x1a: /* FCVTNS */ 9762 case 0x1b: /* FCVTMS */ 9763 case 0x1c: /* FCVTAS */ 9764 case 0x3a: /* FCVTPS */ 9765 case 0x3b: /* FCVTZS */ 9766 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9767 break; 9768 case 0x5a: /* FCVTNU */ 9769 case 0x5b: /* FCVTMU */ 9770 case 0x5c: /* FCVTAU */ 9771 case 0x7a: /* FCVTPU */ 9772 case 0x7b: /* FCVTZU */ 9773 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); 9774 break; 9775 case 0x18: /* FRINTN */ 9776 case 0x19: /* FRINTM */ 9777 case 0x38: /* FRINTP */ 9778 case 0x39: /* FRINTZ */ 9779 case 0x58: /* FRINTA */ 9780 case 0x79: /* FRINTI */ 9781 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); 9782 break; 9783 case 0x59: /* FRINTX */ 9784 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); 9785 break; 9786 case 0x1e: /* FRINT32Z */ 9787 case 0x5e: /* FRINT32X */ 9788 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); 9789 break; 9790 case 0x1f: /* FRINT64Z */ 9791 case 0x5f: /* FRINT64X */ 9792 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); 9793 break; 9794 default: 9795 g_assert_not_reached(); 9796 } 9797 } 9798 9799 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, 9800 bool is_scalar, bool is_u, bool is_q, 9801 int size, int rn, int rd) 9802 { 9803 bool is_double = (size == MO_64); 9804 TCGv_ptr fpst; 9805 9806 if (!fp_access_check(s)) { 9807 return; 9808 } 9809 9810 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); 9811 9812 if (is_double) { 9813 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9814 TCGv_i64 tcg_zero = tcg_constant_i64(0); 9815 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9816 NeonGenTwoDoubleOpFn *genfn; 9817 bool swap = false; 9818 int pass; 9819 9820 switch (opcode) { 9821 case 0x2e: /* FCMLT (zero) */ 9822 swap = true; 9823 /* fallthrough */ 9824 case 0x2c: /* FCMGT (zero) */ 9825 genfn = gen_helper_neon_cgt_f64; 9826 break; 9827 case 0x2d: /* FCMEQ (zero) */ 9828 genfn = gen_helper_neon_ceq_f64; 9829 break; 9830 case 0x6d: /* FCMLE (zero) */ 9831 swap = true; 9832 /* fall through */ 9833 case 0x6c: /* FCMGE (zero) */ 9834 genfn = gen_helper_neon_cge_f64; 9835 break; 9836 default: 9837 g_assert_not_reached(); 9838 } 9839 9840 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9841 read_vec_element(s, tcg_op, rn, pass, MO_64); 9842 if (swap) { 9843 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9844 } else { 9845 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9846 } 9847 write_vec_element(s, tcg_res, rd, pass, MO_64); 9848 } 9849 9850 clear_vec_high(s, !is_scalar, rd); 9851 } else { 9852 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9853 TCGv_i32 tcg_zero = tcg_constant_i32(0); 9854 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9855 NeonGenTwoSingleOpFn *genfn; 9856 bool swap = false; 9857 int pass, maxpasses; 9858 9859 if (size == MO_16) { 9860 switch (opcode) { 9861 case 0x2e: /* FCMLT (zero) */ 9862 swap = true; 9863 /* fall through */ 9864 case 0x2c: /* FCMGT (zero) */ 9865 genfn = gen_helper_advsimd_cgt_f16; 9866 break; 9867 case 0x2d: /* FCMEQ (zero) */ 9868 genfn = gen_helper_advsimd_ceq_f16; 9869 break; 9870 case 0x6d: /* FCMLE (zero) */ 9871 swap = true; 9872 /* fall through */ 9873 case 0x6c: /* FCMGE (zero) */ 9874 genfn = gen_helper_advsimd_cge_f16; 9875 break; 9876 default: 9877 g_assert_not_reached(); 9878 } 9879 } else { 9880 switch (opcode) { 9881 case 0x2e: /* FCMLT (zero) */ 9882 swap = true; 9883 /* fall through */ 9884 case 0x2c: /* FCMGT (zero) */ 9885 genfn = gen_helper_neon_cgt_f32; 9886 break; 9887 case 0x2d: /* FCMEQ (zero) */ 9888 genfn = gen_helper_neon_ceq_f32; 9889 break; 9890 case 0x6d: /* FCMLE (zero) */ 9891 swap = true; 9892 /* fall through */ 9893 case 0x6c: /* FCMGE (zero) */ 9894 genfn = gen_helper_neon_cge_f32; 9895 break; 9896 default: 9897 g_assert_not_reached(); 9898 } 9899 } 9900 9901 if (is_scalar) { 9902 maxpasses = 1; 9903 } else { 9904 int vector_size = 8 << is_q; 9905 maxpasses = vector_size >> size; 9906 } 9907 9908 for (pass = 0; pass < maxpasses; pass++) { 9909 read_vec_element_i32(s, tcg_op, rn, pass, size); 9910 if (swap) { 9911 genfn(tcg_res, tcg_zero, tcg_op, fpst); 9912 } else { 9913 genfn(tcg_res, tcg_op, tcg_zero, fpst); 9914 } 9915 if (is_scalar) { 9916 write_fp_sreg(s, rd, tcg_res); 9917 } else { 9918 write_vec_element_i32(s, tcg_res, rd, pass, size); 9919 } 9920 } 9921 9922 if (!is_scalar) { 9923 clear_vec_high(s, is_q, rd); 9924 } 9925 } 9926 } 9927 9928 static void handle_2misc_reciprocal(DisasContext *s, int opcode, 9929 bool is_scalar, bool is_u, bool is_q, 9930 int size, int rn, int rd) 9931 { 9932 bool is_double = (size == 3); 9933 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 9934 9935 if (is_double) { 9936 TCGv_i64 tcg_op = tcg_temp_new_i64(); 9937 TCGv_i64 tcg_res = tcg_temp_new_i64(); 9938 int pass; 9939 9940 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 9941 read_vec_element(s, tcg_op, rn, pass, MO_64); 9942 switch (opcode) { 9943 case 0x3d: /* FRECPE */ 9944 gen_helper_recpe_f64(tcg_res, tcg_op, fpst); 9945 break; 9946 case 0x3f: /* FRECPX */ 9947 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); 9948 break; 9949 case 0x7d: /* FRSQRTE */ 9950 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); 9951 break; 9952 default: 9953 g_assert_not_reached(); 9954 } 9955 write_vec_element(s, tcg_res, rd, pass, MO_64); 9956 } 9957 clear_vec_high(s, !is_scalar, rd); 9958 } else { 9959 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9960 TCGv_i32 tcg_res = tcg_temp_new_i32(); 9961 int pass, maxpasses; 9962 9963 if (is_scalar) { 9964 maxpasses = 1; 9965 } else { 9966 maxpasses = is_q ? 4 : 2; 9967 } 9968 9969 for (pass = 0; pass < maxpasses; pass++) { 9970 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 9971 9972 switch (opcode) { 9973 case 0x3c: /* URECPE */ 9974 gen_helper_recpe_u32(tcg_res, tcg_op); 9975 break; 9976 case 0x3d: /* FRECPE */ 9977 gen_helper_recpe_f32(tcg_res, tcg_op, fpst); 9978 break; 9979 case 0x3f: /* FRECPX */ 9980 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); 9981 break; 9982 case 0x7d: /* FRSQRTE */ 9983 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); 9984 break; 9985 default: 9986 g_assert_not_reached(); 9987 } 9988 9989 if (is_scalar) { 9990 write_fp_sreg(s, rd, tcg_res); 9991 } else { 9992 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 9993 } 9994 } 9995 if (!is_scalar) { 9996 clear_vec_high(s, is_q, rd); 9997 } 9998 } 9999 } 10000 10001 static void handle_2misc_narrow(DisasContext *s, bool scalar, 10002 int opcode, bool u, bool is_q, 10003 int size, int rn, int rd) 10004 { 10005 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element 10006 * in the source becomes a size element in the destination). 10007 */ 10008 int pass; 10009 TCGv_i32 tcg_res[2]; 10010 int destelt = is_q ? 2 : 0; 10011 int passes = scalar ? 1 : 2; 10012 10013 if (scalar) { 10014 tcg_res[1] = tcg_constant_i32(0); 10015 } 10016 10017 for (pass = 0; pass < passes; pass++) { 10018 TCGv_i64 tcg_op = tcg_temp_new_i64(); 10019 NeonGenNarrowFn *genfn = NULL; 10020 NeonGenNarrowEnvFn *genenvfn = NULL; 10021 10022 if (scalar) { 10023 read_vec_element(s, tcg_op, rn, pass, size + 1); 10024 } else { 10025 read_vec_element(s, tcg_op, rn, pass, MO_64); 10026 } 10027 tcg_res[pass] = tcg_temp_new_i32(); 10028 10029 switch (opcode) { 10030 case 0x12: /* XTN, SQXTUN */ 10031 { 10032 static NeonGenNarrowFn * const xtnfns[3] = { 10033 gen_helper_neon_narrow_u8, 10034 gen_helper_neon_narrow_u16, 10035 tcg_gen_extrl_i64_i32, 10036 }; 10037 static NeonGenNarrowEnvFn * const sqxtunfns[3] = { 10038 gen_helper_neon_unarrow_sat8, 10039 gen_helper_neon_unarrow_sat16, 10040 gen_helper_neon_unarrow_sat32, 10041 }; 10042 if (u) { 10043 genenvfn = sqxtunfns[size]; 10044 } else { 10045 genfn = xtnfns[size]; 10046 } 10047 break; 10048 } 10049 case 0x14: /* SQXTN, UQXTN */ 10050 { 10051 static NeonGenNarrowEnvFn * const fns[3][2] = { 10052 { gen_helper_neon_narrow_sat_s8, 10053 gen_helper_neon_narrow_sat_u8 }, 10054 { gen_helper_neon_narrow_sat_s16, 10055 gen_helper_neon_narrow_sat_u16 }, 10056 { gen_helper_neon_narrow_sat_s32, 10057 gen_helper_neon_narrow_sat_u32 }, 10058 }; 10059 genenvfn = fns[size][u]; 10060 break; 10061 } 10062 case 0x16: /* FCVTN, FCVTN2 */ 10063 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ 10064 if (size == 2) { 10065 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); 10066 } else { 10067 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 10068 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 10069 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10070 TCGv_i32 ahp = get_ahp_flag(); 10071 10072 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); 10073 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 10074 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 10075 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); 10076 } 10077 break; 10078 case 0x36: /* BFCVTN, BFCVTN2 */ 10079 { 10080 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 10081 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); 10082 } 10083 break; 10084 case 0x56: /* FCVTXN, FCVTXN2 */ 10085 /* 64 bit to 32 bit float conversion 10086 * with von Neumann rounding (round to odd) 10087 */ 10088 assert(size == 2); 10089 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); 10090 break; 10091 default: 10092 g_assert_not_reached(); 10093 } 10094 10095 if (genfn) { 10096 genfn(tcg_res[pass], tcg_op); 10097 } else if (genenvfn) { 10098 genenvfn(tcg_res[pass], tcg_env, tcg_op); 10099 } 10100 } 10101 10102 for (pass = 0; pass < 2; pass++) { 10103 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); 10104 } 10105 clear_vec_high(s, is_q, rd); 10106 } 10107 10108 /* Remaining saturating accumulating ops */ 10109 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, 10110 bool is_q, int size, int rn, int rd) 10111 { 10112 bool is_double = (size == 3); 10113 10114 if (is_double) { 10115 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10116 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10117 int pass; 10118 10119 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 10120 read_vec_element(s, tcg_rn, rn, pass, MO_64); 10121 read_vec_element(s, tcg_rd, rd, pass, MO_64); 10122 10123 if (is_u) { /* USQADD */ 10124 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10125 } else { /* SUQADD */ 10126 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10127 } 10128 write_vec_element(s, tcg_rd, rd, pass, MO_64); 10129 } 10130 clear_vec_high(s, !is_scalar, rd); 10131 } else { 10132 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10133 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10134 int pass, maxpasses; 10135 10136 if (is_scalar) { 10137 maxpasses = 1; 10138 } else { 10139 maxpasses = is_q ? 4 : 2; 10140 } 10141 10142 for (pass = 0; pass < maxpasses; pass++) { 10143 if (is_scalar) { 10144 read_vec_element_i32(s, tcg_rn, rn, pass, size); 10145 read_vec_element_i32(s, tcg_rd, rd, pass, size); 10146 } else { 10147 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); 10148 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10149 } 10150 10151 if (is_u) { /* USQADD */ 10152 switch (size) { 10153 case 0: 10154 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10155 break; 10156 case 1: 10157 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10158 break; 10159 case 2: 10160 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10161 break; 10162 default: 10163 g_assert_not_reached(); 10164 } 10165 } else { /* SUQADD */ 10166 switch (size) { 10167 case 0: 10168 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10169 break; 10170 case 1: 10171 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10172 break; 10173 case 2: 10174 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd); 10175 break; 10176 default: 10177 g_assert_not_reached(); 10178 } 10179 } 10180 10181 if (is_scalar) { 10182 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64); 10183 } 10184 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); 10185 } 10186 clear_vec_high(s, is_q, rd); 10187 } 10188 } 10189 10190 /* AdvSIMD scalar two reg misc 10191 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 10192 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10193 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 10194 * +-----+---+-----------+------+-----------+--------+-----+------+------+ 10195 */ 10196 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) 10197 { 10198 int rd = extract32(insn, 0, 5); 10199 int rn = extract32(insn, 5, 5); 10200 int opcode = extract32(insn, 12, 5); 10201 int size = extract32(insn, 22, 2); 10202 bool u = extract32(insn, 29, 1); 10203 bool is_fcvt = false; 10204 int rmode; 10205 TCGv_i32 tcg_rmode; 10206 TCGv_ptr tcg_fpstatus; 10207 10208 switch (opcode) { 10209 case 0x3: /* USQADD / SUQADD*/ 10210 if (!fp_access_check(s)) { 10211 return; 10212 } 10213 handle_2misc_satacc(s, true, u, false, size, rn, rd); 10214 return; 10215 case 0x7: /* SQABS / SQNEG */ 10216 break; 10217 case 0xa: /* CMLT */ 10218 if (u) { 10219 unallocated_encoding(s); 10220 return; 10221 } 10222 /* fall through */ 10223 case 0x8: /* CMGT, CMGE */ 10224 case 0x9: /* CMEQ, CMLE */ 10225 case 0xb: /* ABS, NEG */ 10226 if (size != 3) { 10227 unallocated_encoding(s); 10228 return; 10229 } 10230 break; 10231 case 0x12: /* SQXTUN */ 10232 if (!u) { 10233 unallocated_encoding(s); 10234 return; 10235 } 10236 /* fall through */ 10237 case 0x14: /* SQXTN, UQXTN */ 10238 if (size == 3) { 10239 unallocated_encoding(s); 10240 return; 10241 } 10242 if (!fp_access_check(s)) { 10243 return; 10244 } 10245 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); 10246 return; 10247 case 0xc ... 0xf: 10248 case 0x16 ... 0x1d: 10249 case 0x1f: 10250 /* Floating point: U, size[1] and opcode indicate operation; 10251 * size[0] indicates single or double precision. 10252 */ 10253 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 10254 size = extract32(size, 0, 1) ? 3 : 2; 10255 switch (opcode) { 10256 case 0x2c: /* FCMGT (zero) */ 10257 case 0x2d: /* FCMEQ (zero) */ 10258 case 0x2e: /* FCMLT (zero) */ 10259 case 0x6c: /* FCMGE (zero) */ 10260 case 0x6d: /* FCMLE (zero) */ 10261 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); 10262 return; 10263 case 0x1d: /* SCVTF */ 10264 case 0x5d: /* UCVTF */ 10265 { 10266 bool is_signed = (opcode == 0x1d); 10267 if (!fp_access_check(s)) { 10268 return; 10269 } 10270 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); 10271 return; 10272 } 10273 case 0x3d: /* FRECPE */ 10274 case 0x3f: /* FRECPX */ 10275 case 0x7d: /* FRSQRTE */ 10276 if (!fp_access_check(s)) { 10277 return; 10278 } 10279 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); 10280 return; 10281 case 0x1a: /* FCVTNS */ 10282 case 0x1b: /* FCVTMS */ 10283 case 0x3a: /* FCVTPS */ 10284 case 0x3b: /* FCVTZS */ 10285 case 0x5a: /* FCVTNU */ 10286 case 0x5b: /* FCVTMU */ 10287 case 0x7a: /* FCVTPU */ 10288 case 0x7b: /* FCVTZU */ 10289 is_fcvt = true; 10290 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 10291 break; 10292 case 0x1c: /* FCVTAS */ 10293 case 0x5c: /* FCVTAU */ 10294 /* TIEAWAY doesn't fit in the usual rounding mode encoding */ 10295 is_fcvt = true; 10296 rmode = FPROUNDING_TIEAWAY; 10297 break; 10298 case 0x56: /* FCVTXN, FCVTXN2 */ 10299 if (size == 2) { 10300 unallocated_encoding(s); 10301 return; 10302 } 10303 if (!fp_access_check(s)) { 10304 return; 10305 } 10306 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); 10307 return; 10308 default: 10309 unallocated_encoding(s); 10310 return; 10311 } 10312 break; 10313 default: 10314 unallocated_encoding(s); 10315 return; 10316 } 10317 10318 if (!fp_access_check(s)) { 10319 return; 10320 } 10321 10322 if (is_fcvt) { 10323 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 10324 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 10325 } else { 10326 tcg_fpstatus = NULL; 10327 tcg_rmode = NULL; 10328 } 10329 10330 if (size == 3) { 10331 TCGv_i64 tcg_rn = read_fp_dreg(s, rn); 10332 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10333 10334 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); 10335 write_fp_dreg(s, rd, tcg_rd); 10336 } else { 10337 TCGv_i32 tcg_rn = tcg_temp_new_i32(); 10338 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 10339 10340 read_vec_element_i32(s, tcg_rn, rn, 0, size); 10341 10342 switch (opcode) { 10343 case 0x7: /* SQABS, SQNEG */ 10344 { 10345 NeonGenOneOpEnvFn *genfn; 10346 static NeonGenOneOpEnvFn * const fns[3][2] = { 10347 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 10348 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 10349 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, 10350 }; 10351 genfn = fns[size][u]; 10352 genfn(tcg_rd, tcg_env, tcg_rn); 10353 break; 10354 } 10355 case 0x1a: /* FCVTNS */ 10356 case 0x1b: /* FCVTMS */ 10357 case 0x1c: /* FCVTAS */ 10358 case 0x3a: /* FCVTPS */ 10359 case 0x3b: /* FCVTZS */ 10360 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10361 tcg_fpstatus); 10362 break; 10363 case 0x5a: /* FCVTNU */ 10364 case 0x5b: /* FCVTMU */ 10365 case 0x5c: /* FCVTAU */ 10366 case 0x7a: /* FCVTPU */ 10367 case 0x7b: /* FCVTZU */ 10368 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), 10369 tcg_fpstatus); 10370 break; 10371 default: 10372 g_assert_not_reached(); 10373 } 10374 10375 write_fp_sreg(s, rd, tcg_rd); 10376 } 10377 10378 if (is_fcvt) { 10379 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 10380 } 10381 } 10382 10383 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ 10384 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, 10385 int immh, int immb, int opcode, int rn, int rd) 10386 { 10387 int size = 32 - clz32(immh) - 1; 10388 int immhb = immh << 3 | immb; 10389 int shift = 2 * (8 << size) - immhb; 10390 GVecGen2iFn *gvec_fn; 10391 10392 if (extract32(immh, 3, 1) && !is_q) { 10393 unallocated_encoding(s); 10394 return; 10395 } 10396 tcg_debug_assert(size <= 3); 10397 10398 if (!fp_access_check(s)) { 10399 return; 10400 } 10401 10402 switch (opcode) { 10403 case 0x02: /* SSRA / USRA (accumulate) */ 10404 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; 10405 break; 10406 10407 case 0x08: /* SRI */ 10408 gvec_fn = gen_gvec_sri; 10409 break; 10410 10411 case 0x00: /* SSHR / USHR */ 10412 if (is_u) { 10413 if (shift == 8 << size) { 10414 /* Shift count the same size as element size produces zero. */ 10415 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), 10416 is_q ? 16 : 8, vec_full_reg_size(s), 0); 10417 return; 10418 } 10419 gvec_fn = tcg_gen_gvec_shri; 10420 } else { 10421 /* Shift count the same size as element size produces all sign. */ 10422 if (shift == 8 << size) { 10423 shift -= 1; 10424 } 10425 gvec_fn = tcg_gen_gvec_sari; 10426 } 10427 break; 10428 10429 case 0x04: /* SRSHR / URSHR (rounding) */ 10430 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; 10431 break; 10432 10433 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10434 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; 10435 break; 10436 10437 default: 10438 g_assert_not_reached(); 10439 } 10440 10441 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); 10442 } 10443 10444 /* SHL/SLI - Vector shift left */ 10445 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, 10446 int immh, int immb, int opcode, int rn, int rd) 10447 { 10448 int size = 32 - clz32(immh) - 1; 10449 int immhb = immh << 3 | immb; 10450 int shift = immhb - (8 << size); 10451 10452 /* Range of size is limited by decode: immh is a non-zero 4 bit field */ 10453 assert(size >= 0 && size <= 3); 10454 10455 if (extract32(immh, 3, 1) && !is_q) { 10456 unallocated_encoding(s); 10457 return; 10458 } 10459 10460 if (!fp_access_check(s)) { 10461 return; 10462 } 10463 10464 if (insert) { 10465 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); 10466 } else { 10467 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); 10468 } 10469 } 10470 10471 /* USHLL/SHLL - Vector shift left with widening */ 10472 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, 10473 int immh, int immb, int opcode, int rn, int rd) 10474 { 10475 int size = 32 - clz32(immh) - 1; 10476 int immhb = immh << 3 | immb; 10477 int shift = immhb - (8 << size); 10478 int dsize = 64; 10479 int esize = 8 << size; 10480 int elements = dsize/esize; 10481 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 10482 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 10483 int i; 10484 10485 if (size >= 3) { 10486 unallocated_encoding(s); 10487 return; 10488 } 10489 10490 if (!fp_access_check(s)) { 10491 return; 10492 } 10493 10494 /* For the LL variants the store is larger than the load, 10495 * so if rd == rn we would overwrite parts of our input. 10496 * So load everything right now and use shifts in the main loop. 10497 */ 10498 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); 10499 10500 for (i = 0; i < elements; i++) { 10501 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); 10502 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); 10503 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); 10504 write_vec_element(s, tcg_rd, rd, i, size + 1); 10505 } 10506 } 10507 10508 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ 10509 static void handle_vec_simd_shrn(DisasContext *s, bool is_q, 10510 int immh, int immb, int opcode, int rn, int rd) 10511 { 10512 int immhb = immh << 3 | immb; 10513 int size = 32 - clz32(immh) - 1; 10514 int dsize = 64; 10515 int esize = 8 << size; 10516 int elements = dsize/esize; 10517 int shift = (2 * esize) - immhb; 10518 bool round = extract32(opcode, 0, 1); 10519 TCGv_i64 tcg_rn, tcg_rd, tcg_final; 10520 TCGv_i64 tcg_round; 10521 int i; 10522 10523 if (extract32(immh, 3, 1)) { 10524 unallocated_encoding(s); 10525 return; 10526 } 10527 10528 if (!fp_access_check(s)) { 10529 return; 10530 } 10531 10532 tcg_rn = tcg_temp_new_i64(); 10533 tcg_rd = tcg_temp_new_i64(); 10534 tcg_final = tcg_temp_new_i64(); 10535 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); 10536 10537 if (round) { 10538 tcg_round = tcg_constant_i64(1ULL << (shift - 1)); 10539 } else { 10540 tcg_round = NULL; 10541 } 10542 10543 for (i = 0; i < elements; i++) { 10544 read_vec_element(s, tcg_rn, rn, i, size+1); 10545 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, 10546 false, true, size+1, shift); 10547 10548 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); 10549 } 10550 10551 if (!is_q) { 10552 write_vec_element(s, tcg_final, rd, 0, MO_64); 10553 } else { 10554 write_vec_element(s, tcg_final, rd, 1, MO_64); 10555 } 10556 10557 clear_vec_high(s, is_q, rd); 10558 } 10559 10560 10561 /* AdvSIMD shift by immediate 10562 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 10563 * +---+---+---+-------------+------+------+--------+---+------+------+ 10564 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | 10565 * +---+---+---+-------------+------+------+--------+---+------+------+ 10566 */ 10567 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) 10568 { 10569 int rd = extract32(insn, 0, 5); 10570 int rn = extract32(insn, 5, 5); 10571 int opcode = extract32(insn, 11, 5); 10572 int immb = extract32(insn, 16, 3); 10573 int immh = extract32(insn, 19, 4); 10574 bool is_u = extract32(insn, 29, 1); 10575 bool is_q = extract32(insn, 30, 1); 10576 10577 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ 10578 assert(immh != 0); 10579 10580 switch (opcode) { 10581 case 0x08: /* SRI */ 10582 if (!is_u) { 10583 unallocated_encoding(s); 10584 return; 10585 } 10586 /* fall through */ 10587 case 0x00: /* SSHR / USHR */ 10588 case 0x02: /* SSRA / USRA (accumulate) */ 10589 case 0x04: /* SRSHR / URSHR (rounding) */ 10590 case 0x06: /* SRSRA / URSRA (accum + rounding) */ 10591 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); 10592 break; 10593 case 0x0a: /* SHL / SLI */ 10594 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10595 break; 10596 case 0x10: /* SHRN */ 10597 case 0x11: /* RSHRN / SQRSHRUN */ 10598 if (is_u) { 10599 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, 10600 opcode, rn, rd); 10601 } else { 10602 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); 10603 } 10604 break; 10605 case 0x12: /* SQSHRN / UQSHRN */ 10606 case 0x13: /* SQRSHRN / UQRSHRN */ 10607 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, 10608 opcode, rn, rd); 10609 break; 10610 case 0x14: /* SSHLL / USHLL */ 10611 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); 10612 break; 10613 case 0x1c: /* SCVTF / UCVTF */ 10614 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, 10615 opcode, rn, rd); 10616 break; 10617 case 0xc: /* SQSHLU */ 10618 if (!is_u) { 10619 unallocated_encoding(s); 10620 return; 10621 } 10622 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); 10623 break; 10624 case 0xe: /* SQSHL, UQSHL */ 10625 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); 10626 break; 10627 case 0x1f: /* FCVTZS/ FCVTZU */ 10628 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); 10629 return; 10630 default: 10631 unallocated_encoding(s); 10632 return; 10633 } 10634 } 10635 10636 /* Generate code to do a "long" addition or subtraction, ie one done in 10637 * TCGv_i64 on vector lanes twice the width specified by size. 10638 */ 10639 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, 10640 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) 10641 { 10642 static NeonGenTwo64OpFn * const fns[3][2] = { 10643 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, 10644 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, 10645 { tcg_gen_add_i64, tcg_gen_sub_i64 }, 10646 }; 10647 NeonGenTwo64OpFn *genfn; 10648 assert(size < 3); 10649 10650 genfn = fns[size][is_sub]; 10651 genfn(tcg_res, tcg_op1, tcg_op2); 10652 } 10653 10654 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, 10655 int opcode, int rd, int rn, int rm) 10656 { 10657 /* 3-reg-different widening insns: 64 x 64 -> 128 */ 10658 TCGv_i64 tcg_res[2]; 10659 int pass, accop; 10660 10661 tcg_res[0] = tcg_temp_new_i64(); 10662 tcg_res[1] = tcg_temp_new_i64(); 10663 10664 /* Does this op do an adding accumulate, a subtracting accumulate, 10665 * or no accumulate at all? 10666 */ 10667 switch (opcode) { 10668 case 5: 10669 case 8: 10670 case 9: 10671 accop = 1; 10672 break; 10673 case 10: 10674 case 11: 10675 accop = -1; 10676 break; 10677 default: 10678 accop = 0; 10679 break; 10680 } 10681 10682 if (accop != 0) { 10683 read_vec_element(s, tcg_res[0], rd, 0, MO_64); 10684 read_vec_element(s, tcg_res[1], rd, 1, MO_64); 10685 } 10686 10687 /* size == 2 means two 32x32->64 operations; this is worth special 10688 * casing because we can generally handle it inline. 10689 */ 10690 if (size == 2) { 10691 for (pass = 0; pass < 2; pass++) { 10692 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10693 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10694 TCGv_i64 tcg_passres; 10695 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); 10696 10697 int elt = pass + is_q * 2; 10698 10699 read_vec_element(s, tcg_op1, rn, elt, memop); 10700 read_vec_element(s, tcg_op2, rm, elt, memop); 10701 10702 if (accop == 0) { 10703 tcg_passres = tcg_res[pass]; 10704 } else { 10705 tcg_passres = tcg_temp_new_i64(); 10706 } 10707 10708 switch (opcode) { 10709 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10710 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); 10711 break; 10712 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10713 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); 10714 break; 10715 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10716 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10717 { 10718 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); 10719 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); 10720 10721 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); 10722 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); 10723 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, 10724 tcg_passres, 10725 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); 10726 break; 10727 } 10728 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10729 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10730 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10731 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10732 break; 10733 case 9: /* SQDMLAL, SQDMLAL2 */ 10734 case 11: /* SQDMLSL, SQDMLSL2 */ 10735 case 13: /* SQDMULL, SQDMULL2 */ 10736 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); 10737 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 10738 tcg_passres, tcg_passres); 10739 break; 10740 default: 10741 g_assert_not_reached(); 10742 } 10743 10744 if (opcode == 9 || opcode == 11) { 10745 /* saturating accumulate ops */ 10746 if (accop < 0) { 10747 tcg_gen_neg_i64(tcg_passres, tcg_passres); 10748 } 10749 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 10750 tcg_res[pass], tcg_passres); 10751 } else if (accop > 0) { 10752 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10753 } else if (accop < 0) { 10754 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 10755 } 10756 } 10757 } else { 10758 /* size 0 or 1, generally helper functions */ 10759 for (pass = 0; pass < 2; pass++) { 10760 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 10761 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10762 TCGv_i64 tcg_passres; 10763 int elt = pass + is_q * 2; 10764 10765 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); 10766 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); 10767 10768 if (accop == 0) { 10769 tcg_passres = tcg_res[pass]; 10770 } else { 10771 tcg_passres = tcg_temp_new_i64(); 10772 } 10773 10774 switch (opcode) { 10775 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 10776 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 10777 { 10778 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); 10779 static NeonGenWidenFn * const widenfns[2][2] = { 10780 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10781 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10782 }; 10783 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10784 10785 widenfn(tcg_op2_64, tcg_op2); 10786 widenfn(tcg_passres, tcg_op1); 10787 gen_neon_addl(size, (opcode == 2), tcg_passres, 10788 tcg_passres, tcg_op2_64); 10789 break; 10790 } 10791 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 10792 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 10793 if (size == 0) { 10794 if (is_u) { 10795 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); 10796 } else { 10797 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); 10798 } 10799 } else { 10800 if (is_u) { 10801 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); 10802 } else { 10803 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); 10804 } 10805 } 10806 break; 10807 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 10808 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 10809 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ 10810 if (size == 0) { 10811 if (is_u) { 10812 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); 10813 } else { 10814 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); 10815 } 10816 } else { 10817 if (is_u) { 10818 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); 10819 } else { 10820 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10821 } 10822 } 10823 break; 10824 case 9: /* SQDMLAL, SQDMLAL2 */ 10825 case 11: /* SQDMLSL, SQDMLSL2 */ 10826 case 13: /* SQDMULL, SQDMULL2 */ 10827 assert(size == 1); 10828 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); 10829 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 10830 tcg_passres, tcg_passres); 10831 break; 10832 default: 10833 g_assert_not_reached(); 10834 } 10835 10836 if (accop != 0) { 10837 if (opcode == 9 || opcode == 11) { 10838 /* saturating accumulate ops */ 10839 if (accop < 0) { 10840 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 10841 } 10842 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 10843 tcg_res[pass], 10844 tcg_passres); 10845 } else { 10846 gen_neon_addl(size, (accop < 0), tcg_res[pass], 10847 tcg_res[pass], tcg_passres); 10848 } 10849 } 10850 } 10851 } 10852 10853 write_vec_element(s, tcg_res[0], rd, 0, MO_64); 10854 write_vec_element(s, tcg_res[1], rd, 1, MO_64); 10855 } 10856 10857 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, 10858 int opcode, int rd, int rn, int rm) 10859 { 10860 TCGv_i64 tcg_res[2]; 10861 int part = is_q ? 2 : 0; 10862 int pass; 10863 10864 for (pass = 0; pass < 2; pass++) { 10865 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10866 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 10867 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); 10868 static NeonGenWidenFn * const widenfns[3][2] = { 10869 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, 10870 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, 10871 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, 10872 }; 10873 NeonGenWidenFn *widenfn = widenfns[size][is_u]; 10874 10875 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10876 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); 10877 widenfn(tcg_op2_wide, tcg_op2); 10878 tcg_res[pass] = tcg_temp_new_i64(); 10879 gen_neon_addl(size, (opcode == 3), 10880 tcg_res[pass], tcg_op1, tcg_op2_wide); 10881 } 10882 10883 for (pass = 0; pass < 2; pass++) { 10884 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 10885 } 10886 } 10887 10888 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) 10889 { 10890 tcg_gen_addi_i64(in, in, 1U << 31); 10891 tcg_gen_extrh_i64_i32(res, in); 10892 } 10893 10894 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, 10895 int opcode, int rd, int rn, int rm) 10896 { 10897 TCGv_i32 tcg_res[2]; 10898 int part = is_q ? 2 : 0; 10899 int pass; 10900 10901 for (pass = 0; pass < 2; pass++) { 10902 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 10903 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 10904 TCGv_i64 tcg_wideres = tcg_temp_new_i64(); 10905 static NeonGenNarrowFn * const narrowfns[3][2] = { 10906 { gen_helper_neon_narrow_high_u8, 10907 gen_helper_neon_narrow_round_high_u8 }, 10908 { gen_helper_neon_narrow_high_u16, 10909 gen_helper_neon_narrow_round_high_u16 }, 10910 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, 10911 }; 10912 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; 10913 10914 read_vec_element(s, tcg_op1, rn, pass, MO_64); 10915 read_vec_element(s, tcg_op2, rm, pass, MO_64); 10916 10917 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); 10918 10919 tcg_res[pass] = tcg_temp_new_i32(); 10920 gennarrow(tcg_res[pass], tcg_wideres); 10921 } 10922 10923 for (pass = 0; pass < 2; pass++) { 10924 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); 10925 } 10926 clear_vec_high(s, is_q, rd); 10927 } 10928 10929 /* AdvSIMD three different 10930 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 10931 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10932 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | 10933 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ 10934 */ 10935 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) 10936 { 10937 /* Instructions in this group fall into three basic classes 10938 * (in each case with the operation working on each element in 10939 * the input vectors): 10940 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra 10941 * 128 bit input) 10942 * (2) wide 64 x 128 -> 128 10943 * (3) narrowing 128 x 128 -> 64 10944 * Here we do initial decode, catch unallocated cases and 10945 * dispatch to separate functions for each class. 10946 */ 10947 int is_q = extract32(insn, 30, 1); 10948 int is_u = extract32(insn, 29, 1); 10949 int size = extract32(insn, 22, 2); 10950 int opcode = extract32(insn, 12, 4); 10951 int rm = extract32(insn, 16, 5); 10952 int rn = extract32(insn, 5, 5); 10953 int rd = extract32(insn, 0, 5); 10954 10955 switch (opcode) { 10956 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ 10957 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ 10958 /* 64 x 128 -> 128 */ 10959 if (size == 3) { 10960 unallocated_encoding(s); 10961 return; 10962 } 10963 if (!fp_access_check(s)) { 10964 return; 10965 } 10966 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); 10967 break; 10968 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ 10969 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ 10970 /* 128 x 128 -> 64 */ 10971 if (size == 3) { 10972 unallocated_encoding(s); 10973 return; 10974 } 10975 if (!fp_access_check(s)) { 10976 return; 10977 } 10978 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); 10979 break; 10980 case 14: /* PMULL, PMULL2 */ 10981 if (is_u) { 10982 unallocated_encoding(s); 10983 return; 10984 } 10985 switch (size) { 10986 case 0: /* PMULL.P8 */ 10987 if (!fp_access_check(s)) { 10988 return; 10989 } 10990 /* The Q field specifies lo/hi half input for this insn. */ 10991 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 10992 gen_helper_neon_pmull_h); 10993 break; 10994 10995 case 3: /* PMULL.P64 */ 10996 if (!dc_isar_feature(aa64_pmull, s)) { 10997 unallocated_encoding(s); 10998 return; 10999 } 11000 if (!fp_access_check(s)) { 11001 return; 11002 } 11003 /* The Q field specifies lo/hi half input for this insn. */ 11004 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, 11005 gen_helper_gvec_pmull_q); 11006 break; 11007 11008 default: 11009 unallocated_encoding(s); 11010 break; 11011 } 11012 return; 11013 case 9: /* SQDMLAL, SQDMLAL2 */ 11014 case 11: /* SQDMLSL, SQDMLSL2 */ 11015 case 13: /* SQDMULL, SQDMULL2 */ 11016 if (is_u || size == 0) { 11017 unallocated_encoding(s); 11018 return; 11019 } 11020 /* fall through */ 11021 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ 11022 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ 11023 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ 11024 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ 11025 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 11026 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 11027 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ 11028 /* 64 x 64 -> 128 */ 11029 if (size == 3) { 11030 unallocated_encoding(s); 11031 return; 11032 } 11033 if (!fp_access_check(s)) { 11034 return; 11035 } 11036 11037 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); 11038 break; 11039 default: 11040 /* opcode 15 not allocated */ 11041 unallocated_encoding(s); 11042 break; 11043 } 11044 } 11045 11046 /* Logic op (opcode == 3) subgroup of C3.6.16. */ 11047 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) 11048 { 11049 int rd = extract32(insn, 0, 5); 11050 int rn = extract32(insn, 5, 5); 11051 int rm = extract32(insn, 16, 5); 11052 int size = extract32(insn, 22, 2); 11053 bool is_u = extract32(insn, 29, 1); 11054 bool is_q = extract32(insn, 30, 1); 11055 11056 if (!fp_access_check(s)) { 11057 return; 11058 } 11059 11060 switch (size + 4 * is_u) { 11061 case 0: /* AND */ 11062 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); 11063 return; 11064 case 1: /* BIC */ 11065 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); 11066 return; 11067 case 2: /* ORR */ 11068 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); 11069 return; 11070 case 3: /* ORN */ 11071 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); 11072 return; 11073 case 4: /* EOR */ 11074 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); 11075 return; 11076 11077 case 5: /* BSL bitwise select */ 11078 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0); 11079 return; 11080 case 6: /* BIT, bitwise insert if true */ 11081 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0); 11082 return; 11083 case 7: /* BIF, bitwise insert if false */ 11084 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0); 11085 return; 11086 11087 default: 11088 g_assert_not_reached(); 11089 } 11090 } 11091 11092 /* Pairwise op subgroup of C3.6.16. 11093 * 11094 * This is called directly or via the handle_3same_float for float pairwise 11095 * operations where the opcode and size are calculated differently. 11096 */ 11097 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, 11098 int size, int rn, int rm, int rd) 11099 { 11100 TCGv_ptr fpst; 11101 int pass; 11102 11103 /* Floating point operations need fpst */ 11104 if (opcode >= 0x58) { 11105 fpst = fpstatus_ptr(FPST_FPCR); 11106 } else { 11107 fpst = NULL; 11108 } 11109 11110 if (!fp_access_check(s)) { 11111 return; 11112 } 11113 11114 /* These operations work on the concatenated rm:rn, with each pair of 11115 * adjacent elements being operated on to produce an element in the result. 11116 */ 11117 if (size == 3) { 11118 TCGv_i64 tcg_res[2]; 11119 11120 for (pass = 0; pass < 2; pass++) { 11121 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11122 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11123 int passreg = (pass == 0) ? rn : rm; 11124 11125 read_vec_element(s, tcg_op1, passreg, 0, MO_64); 11126 read_vec_element(s, tcg_op2, passreg, 1, MO_64); 11127 tcg_res[pass] = tcg_temp_new_i64(); 11128 11129 switch (opcode) { 11130 case 0x17: /* ADDP */ 11131 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 11132 break; 11133 case 0x58: /* FMAXNMP */ 11134 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11135 break; 11136 case 0x5a: /* FADDP */ 11137 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11138 break; 11139 case 0x5e: /* FMAXP */ 11140 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11141 break; 11142 case 0x78: /* FMINNMP */ 11143 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11144 break; 11145 case 0x7e: /* FMINP */ 11146 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11147 break; 11148 default: 11149 g_assert_not_reached(); 11150 } 11151 } 11152 11153 for (pass = 0; pass < 2; pass++) { 11154 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 11155 } 11156 } else { 11157 int maxpass = is_q ? 4 : 2; 11158 TCGv_i32 tcg_res[4]; 11159 11160 for (pass = 0; pass < maxpass; pass++) { 11161 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11162 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11163 NeonGenTwoOpFn *genfn = NULL; 11164 int passreg = pass < (maxpass / 2) ? rn : rm; 11165 int passelt = (is_q && (pass & 1)) ? 2 : 0; 11166 11167 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); 11168 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); 11169 tcg_res[pass] = tcg_temp_new_i32(); 11170 11171 switch (opcode) { 11172 case 0x17: /* ADDP */ 11173 { 11174 static NeonGenTwoOpFn * const fns[3] = { 11175 gen_helper_neon_padd_u8, 11176 gen_helper_neon_padd_u16, 11177 tcg_gen_add_i32, 11178 }; 11179 genfn = fns[size]; 11180 break; 11181 } 11182 case 0x14: /* SMAXP, UMAXP */ 11183 { 11184 static NeonGenTwoOpFn * const fns[3][2] = { 11185 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, 11186 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, 11187 { tcg_gen_smax_i32, tcg_gen_umax_i32 }, 11188 }; 11189 genfn = fns[size][u]; 11190 break; 11191 } 11192 case 0x15: /* SMINP, UMINP */ 11193 { 11194 static NeonGenTwoOpFn * const fns[3][2] = { 11195 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, 11196 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, 11197 { tcg_gen_smin_i32, tcg_gen_umin_i32 }, 11198 }; 11199 genfn = fns[size][u]; 11200 break; 11201 } 11202 /* The FP operations are all on single floats (32 bit) */ 11203 case 0x58: /* FMAXNMP */ 11204 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11205 break; 11206 case 0x5a: /* FADDP */ 11207 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11208 break; 11209 case 0x5e: /* FMAXP */ 11210 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11211 break; 11212 case 0x78: /* FMINNMP */ 11213 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11214 break; 11215 case 0x7e: /* FMINP */ 11216 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11217 break; 11218 default: 11219 g_assert_not_reached(); 11220 } 11221 11222 /* FP ops called directly, otherwise call now */ 11223 if (genfn) { 11224 genfn(tcg_res[pass], tcg_op1, tcg_op2); 11225 } 11226 } 11227 11228 for (pass = 0; pass < maxpass; pass++) { 11229 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 11230 } 11231 clear_vec_high(s, is_q, rd); 11232 } 11233 } 11234 11235 /* Floating point op subgroup of C3.6.16. */ 11236 static void disas_simd_3same_float(DisasContext *s, uint32_t insn) 11237 { 11238 /* For floating point ops, the U, size[1] and opcode bits 11239 * together indicate the operation. size[0] indicates single 11240 * or double. 11241 */ 11242 int fpopcode = extract32(insn, 11, 5) 11243 | (extract32(insn, 23, 1) << 5) 11244 | (extract32(insn, 29, 1) << 6); 11245 int is_q = extract32(insn, 30, 1); 11246 int size = extract32(insn, 22, 1); 11247 int rm = extract32(insn, 16, 5); 11248 int rn = extract32(insn, 5, 5); 11249 int rd = extract32(insn, 0, 5); 11250 11251 int datasize = is_q ? 128 : 64; 11252 int esize = 32 << size; 11253 int elements = datasize / esize; 11254 11255 if (size == 1 && !is_q) { 11256 unallocated_encoding(s); 11257 return; 11258 } 11259 11260 switch (fpopcode) { 11261 case 0x58: /* FMAXNMP */ 11262 case 0x5a: /* FADDP */ 11263 case 0x5e: /* FMAXP */ 11264 case 0x78: /* FMINNMP */ 11265 case 0x7e: /* FMINP */ 11266 if (size && !is_q) { 11267 unallocated_encoding(s); 11268 return; 11269 } 11270 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, 11271 rn, rm, rd); 11272 return; 11273 case 0x1f: /* FRECPS */ 11274 case 0x3f: /* FRSQRTS */ 11275 case 0x7a: /* FABD */ 11276 if (!fp_access_check(s)) { 11277 return; 11278 } 11279 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); 11280 return; 11281 11282 case 0x1d: /* FMLAL */ 11283 case 0x3d: /* FMLSL */ 11284 case 0x59: /* FMLAL2 */ 11285 case 0x79: /* FMLSL2 */ 11286 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) { 11287 unallocated_encoding(s); 11288 return; 11289 } 11290 if (fp_access_check(s)) { 11291 int is_s = extract32(insn, 23, 1); 11292 int is_2 = extract32(insn, 29, 1); 11293 int data = (is_2 << 1) | is_s; 11294 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 11295 vec_full_reg_offset(s, rn), 11296 vec_full_reg_offset(s, rm), tcg_env, 11297 is_q ? 16 : 8, vec_full_reg_size(s), 11298 data, gen_helper_gvec_fmlal_a64); 11299 } 11300 return; 11301 11302 default: 11303 case 0x18: /* FMAXNM */ 11304 case 0x19: /* FMLA */ 11305 case 0x1a: /* FADD */ 11306 case 0x1b: /* FMULX */ 11307 case 0x1c: /* FCMEQ */ 11308 case 0x1e: /* FMAX */ 11309 case 0x38: /* FMINNM */ 11310 case 0x39: /* FMLS */ 11311 case 0x3a: /* FSUB */ 11312 case 0x3e: /* FMIN */ 11313 case 0x5b: /* FMUL */ 11314 case 0x5c: /* FCMGE */ 11315 case 0x5d: /* FACGE */ 11316 case 0x5f: /* FDIV */ 11317 case 0x7d: /* FACGT */ 11318 case 0x7c: /* FCMGT */ 11319 unallocated_encoding(s); 11320 return; 11321 } 11322 } 11323 11324 /* Integer op subgroup of C3.6.16. */ 11325 static void disas_simd_3same_int(DisasContext *s, uint32_t insn) 11326 { 11327 int is_q = extract32(insn, 30, 1); 11328 int u = extract32(insn, 29, 1); 11329 int size = extract32(insn, 22, 2); 11330 int opcode = extract32(insn, 11, 5); 11331 int rm = extract32(insn, 16, 5); 11332 int rn = extract32(insn, 5, 5); 11333 int rd = extract32(insn, 0, 5); 11334 int pass; 11335 TCGCond cond; 11336 11337 switch (opcode) { 11338 case 0x13: /* MUL, PMUL */ 11339 if (u && size != 0) { 11340 unallocated_encoding(s); 11341 return; 11342 } 11343 /* fall through */ 11344 case 0x0: /* SHADD, UHADD */ 11345 case 0x2: /* SRHADD, URHADD */ 11346 case 0x4: /* SHSUB, UHSUB */ 11347 case 0xc: /* SMAX, UMAX */ 11348 case 0xd: /* SMIN, UMIN */ 11349 case 0xe: /* SABD, UABD */ 11350 case 0xf: /* SABA, UABA */ 11351 case 0x12: /* MLA, MLS */ 11352 if (size == 3) { 11353 unallocated_encoding(s); 11354 return; 11355 } 11356 break; 11357 case 0x16: /* SQDMULH, SQRDMULH */ 11358 if (size == 0 || size == 3) { 11359 unallocated_encoding(s); 11360 return; 11361 } 11362 break; 11363 default: 11364 if (size == 3 && !is_q) { 11365 unallocated_encoding(s); 11366 return; 11367 } 11368 break; 11369 } 11370 11371 if (!fp_access_check(s)) { 11372 return; 11373 } 11374 11375 switch (opcode) { 11376 case 0x01: /* SQADD, UQADD */ 11377 if (u) { 11378 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size); 11379 } else { 11380 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size); 11381 } 11382 return; 11383 case 0x05: /* SQSUB, UQSUB */ 11384 if (u) { 11385 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size); 11386 } else { 11387 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size); 11388 } 11389 return; 11390 case 0x08: /* SSHL, USHL */ 11391 if (u) { 11392 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size); 11393 } else { 11394 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size); 11395 } 11396 return; 11397 case 0x0c: /* SMAX, UMAX */ 11398 if (u) { 11399 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size); 11400 } else { 11401 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size); 11402 } 11403 return; 11404 case 0x0d: /* SMIN, UMIN */ 11405 if (u) { 11406 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size); 11407 } else { 11408 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size); 11409 } 11410 return; 11411 case 0xe: /* SABD, UABD */ 11412 if (u) { 11413 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size); 11414 } else { 11415 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size); 11416 } 11417 return; 11418 case 0xf: /* SABA, UABA */ 11419 if (u) { 11420 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size); 11421 } else { 11422 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size); 11423 } 11424 return; 11425 case 0x10: /* ADD, SUB */ 11426 if (u) { 11427 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); 11428 } else { 11429 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); 11430 } 11431 return; 11432 case 0x13: /* MUL, PMUL */ 11433 if (!u) { /* MUL */ 11434 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); 11435 } else { /* PMUL */ 11436 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b); 11437 } 11438 return; 11439 case 0x12: /* MLA, MLS */ 11440 if (u) { 11441 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size); 11442 } else { 11443 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size); 11444 } 11445 return; 11446 case 0x16: /* SQDMULH, SQRDMULH */ 11447 { 11448 static gen_helper_gvec_3_ptr * const fns[2][2] = { 11449 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h }, 11450 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s }, 11451 }; 11452 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]); 11453 } 11454 return; 11455 case 0x11: 11456 if (!u) { /* CMTST */ 11457 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size); 11458 return; 11459 } 11460 /* else CMEQ */ 11461 cond = TCG_COND_EQ; 11462 goto do_gvec_cmp; 11463 case 0x06: /* CMGT, CMHI */ 11464 cond = u ? TCG_COND_GTU : TCG_COND_GT; 11465 goto do_gvec_cmp; 11466 case 0x07: /* CMGE, CMHS */ 11467 cond = u ? TCG_COND_GEU : TCG_COND_GE; 11468 do_gvec_cmp: 11469 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), 11470 vec_full_reg_offset(s, rn), 11471 vec_full_reg_offset(s, rm), 11472 is_q ? 16 : 8, vec_full_reg_size(s)); 11473 return; 11474 } 11475 11476 if (size == 3) { 11477 assert(is_q); 11478 for (pass = 0; pass < 2; pass++) { 11479 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 11480 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 11481 TCGv_i64 tcg_res = tcg_temp_new_i64(); 11482 11483 read_vec_element(s, tcg_op1, rn, pass, MO_64); 11484 read_vec_element(s, tcg_op2, rm, pass, MO_64); 11485 11486 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); 11487 11488 write_vec_element(s, tcg_res, rd, pass, MO_64); 11489 } 11490 } else { 11491 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 11492 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11493 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11494 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11495 NeonGenTwoOpFn *genfn = NULL; 11496 NeonGenTwoOpEnvFn *genenvfn = NULL; 11497 11498 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); 11499 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); 11500 11501 switch (opcode) { 11502 case 0x0: /* SHADD, UHADD */ 11503 { 11504 static NeonGenTwoOpFn * const fns[3][2] = { 11505 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, 11506 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, 11507 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, 11508 }; 11509 genfn = fns[size][u]; 11510 break; 11511 } 11512 case 0x2: /* SRHADD, URHADD */ 11513 { 11514 static NeonGenTwoOpFn * const fns[3][2] = { 11515 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, 11516 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, 11517 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, 11518 }; 11519 genfn = fns[size][u]; 11520 break; 11521 } 11522 case 0x4: /* SHSUB, UHSUB */ 11523 { 11524 static NeonGenTwoOpFn * const fns[3][2] = { 11525 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, 11526 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, 11527 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, 11528 }; 11529 genfn = fns[size][u]; 11530 break; 11531 } 11532 case 0x9: /* SQSHL, UQSHL */ 11533 { 11534 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11535 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, 11536 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, 11537 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, 11538 }; 11539 genenvfn = fns[size][u]; 11540 break; 11541 } 11542 case 0xa: /* SRSHL, URSHL */ 11543 { 11544 static NeonGenTwoOpFn * const fns[3][2] = { 11545 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, 11546 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, 11547 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, 11548 }; 11549 genfn = fns[size][u]; 11550 break; 11551 } 11552 case 0xb: /* SQRSHL, UQRSHL */ 11553 { 11554 static NeonGenTwoOpEnvFn * const fns[3][2] = { 11555 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, 11556 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, 11557 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, 11558 }; 11559 genenvfn = fns[size][u]; 11560 break; 11561 } 11562 default: 11563 g_assert_not_reached(); 11564 } 11565 11566 if (genenvfn) { 11567 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2); 11568 } else { 11569 genfn(tcg_res, tcg_op1, tcg_op2); 11570 } 11571 11572 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 11573 } 11574 } 11575 clear_vec_high(s, is_q, rd); 11576 } 11577 11578 /* AdvSIMD three same 11579 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 11580 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11581 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | 11582 * +---+---+---+-----------+------+---+------+--------+---+------+------+ 11583 */ 11584 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) 11585 { 11586 int opcode = extract32(insn, 11, 5); 11587 11588 switch (opcode) { 11589 case 0x3: /* logic ops */ 11590 disas_simd_3same_logic(s, insn); 11591 break; 11592 case 0x17: /* ADDP */ 11593 case 0x14: /* SMAXP, UMAXP */ 11594 case 0x15: /* SMINP, UMINP */ 11595 { 11596 /* Pairwise operations */ 11597 int is_q = extract32(insn, 30, 1); 11598 int u = extract32(insn, 29, 1); 11599 int size = extract32(insn, 22, 2); 11600 int rm = extract32(insn, 16, 5); 11601 int rn = extract32(insn, 5, 5); 11602 int rd = extract32(insn, 0, 5); 11603 if (opcode == 0x17) { 11604 if (u || (size == 3 && !is_q)) { 11605 unallocated_encoding(s); 11606 return; 11607 } 11608 } else { 11609 if (size == 3) { 11610 unallocated_encoding(s); 11611 return; 11612 } 11613 } 11614 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); 11615 break; 11616 } 11617 case 0x18 ... 0x31: 11618 /* floating point ops, sz[1] and U are part of opcode */ 11619 disas_simd_3same_float(s, insn); 11620 break; 11621 default: 11622 disas_simd_3same_int(s, insn); 11623 break; 11624 } 11625 } 11626 11627 /* 11628 * Advanced SIMD three same (ARMv8.2 FP16 variants) 11629 * 11630 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 11631 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11632 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | 11633 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ 11634 * 11635 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE 11636 * (register), FACGE, FABD, FCMGT (register) and FACGT. 11637 * 11638 */ 11639 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) 11640 { 11641 int opcode = extract32(insn, 11, 3); 11642 int u = extract32(insn, 29, 1); 11643 int a = extract32(insn, 23, 1); 11644 int is_q = extract32(insn, 30, 1); 11645 int rm = extract32(insn, 16, 5); 11646 int rn = extract32(insn, 5, 5); 11647 int rd = extract32(insn, 0, 5); 11648 /* 11649 * For these floating point ops, the U, a and opcode bits 11650 * together indicate the operation. 11651 */ 11652 int fpopcode = opcode | (a << 3) | (u << 4); 11653 int datasize = is_q ? 128 : 64; 11654 int elements = datasize / 16; 11655 bool pairwise; 11656 TCGv_ptr fpst; 11657 int pass; 11658 11659 switch (fpopcode) { 11660 case 0x7: /* FRECPS */ 11661 case 0xf: /* FRSQRTS */ 11662 case 0x1a: /* FABD */ 11663 pairwise = false; 11664 break; 11665 case 0x10: /* FMAXNMP */ 11666 case 0x12: /* FADDP */ 11667 case 0x16: /* FMAXP */ 11668 case 0x18: /* FMINNMP */ 11669 case 0x1e: /* FMINP */ 11670 pairwise = true; 11671 break; 11672 default: 11673 case 0x0: /* FMAXNM */ 11674 case 0x1: /* FMLA */ 11675 case 0x2: /* FADD */ 11676 case 0x3: /* FMULX */ 11677 case 0x4: /* FCMEQ */ 11678 case 0x6: /* FMAX */ 11679 case 0x8: /* FMINNM */ 11680 case 0x9: /* FMLS */ 11681 case 0xa: /* FSUB */ 11682 case 0xe: /* FMIN */ 11683 case 0x13: /* FMUL */ 11684 case 0x14: /* FCMGE */ 11685 case 0x15: /* FACGE */ 11686 case 0x17: /* FDIV */ 11687 case 0x1c: /* FCMGT */ 11688 case 0x1d: /* FACGT */ 11689 unallocated_encoding(s); 11690 return; 11691 } 11692 11693 if (!dc_isar_feature(aa64_fp16, s)) { 11694 unallocated_encoding(s); 11695 return; 11696 } 11697 11698 if (!fp_access_check(s)) { 11699 return; 11700 } 11701 11702 fpst = fpstatus_ptr(FPST_FPCR_F16); 11703 11704 if (pairwise) { 11705 int maxpass = is_q ? 8 : 4; 11706 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11707 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11708 TCGv_i32 tcg_res[8]; 11709 11710 for (pass = 0; pass < maxpass; pass++) { 11711 int passreg = pass < (maxpass / 2) ? rn : rm; 11712 int passelt = (pass << 1) & (maxpass - 1); 11713 11714 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); 11715 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); 11716 tcg_res[pass] = tcg_temp_new_i32(); 11717 11718 switch (fpopcode) { 11719 case 0x10: /* FMAXNMP */ 11720 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, 11721 fpst); 11722 break; 11723 case 0x12: /* FADDP */ 11724 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11725 break; 11726 case 0x16: /* FMAXP */ 11727 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11728 break; 11729 case 0x18: /* FMINNMP */ 11730 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, 11731 fpst); 11732 break; 11733 case 0x1e: /* FMINP */ 11734 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); 11735 break; 11736 default: 11737 g_assert_not_reached(); 11738 } 11739 } 11740 11741 for (pass = 0; pass < maxpass; pass++) { 11742 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); 11743 } 11744 } else { 11745 for (pass = 0; pass < elements; pass++) { 11746 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 11747 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 11748 TCGv_i32 tcg_res = tcg_temp_new_i32(); 11749 11750 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); 11751 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); 11752 11753 switch (fpopcode) { 11754 case 0x7: /* FRECPS */ 11755 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11756 break; 11757 case 0xf: /* FRSQRTS */ 11758 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); 11759 break; 11760 case 0x1a: /* FABD */ 11761 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); 11762 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); 11763 break; 11764 default: 11765 case 0x0: /* FMAXNM */ 11766 case 0x1: /* FMLA */ 11767 case 0x2: /* FADD */ 11768 case 0x3: /* FMULX */ 11769 case 0x4: /* FCMEQ */ 11770 case 0x6: /* FMAX */ 11771 case 0x8: /* FMINNM */ 11772 case 0x9: /* FMLS */ 11773 case 0xa: /* FSUB */ 11774 case 0xe: /* FMIN */ 11775 case 0x13: /* FMUL */ 11776 case 0x14: /* FCMGE */ 11777 case 0x15: /* FACGE */ 11778 case 0x17: /* FDIV */ 11779 case 0x1c: /* FCMGT */ 11780 case 0x1d: /* FACGT */ 11781 g_assert_not_reached(); 11782 } 11783 11784 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 11785 } 11786 } 11787 11788 clear_vec_high(s, is_q, rd); 11789 } 11790 11791 /* AdvSIMD three same extra 11792 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 11793 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11794 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | 11795 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ 11796 */ 11797 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) 11798 { 11799 int rd = extract32(insn, 0, 5); 11800 int rn = extract32(insn, 5, 5); 11801 int opcode = extract32(insn, 11, 4); 11802 int rm = extract32(insn, 16, 5); 11803 int size = extract32(insn, 22, 2); 11804 bool u = extract32(insn, 29, 1); 11805 bool is_q = extract32(insn, 30, 1); 11806 bool feature; 11807 int rot; 11808 11809 switch (u * 16 + opcode) { 11810 case 0x10: /* SQRDMLAH (vector) */ 11811 case 0x11: /* SQRDMLSH (vector) */ 11812 if (size != 1 && size != 2) { 11813 unallocated_encoding(s); 11814 return; 11815 } 11816 feature = dc_isar_feature(aa64_rdm, s); 11817 break; 11818 case 0x02: /* SDOT (vector) */ 11819 case 0x12: /* UDOT (vector) */ 11820 if (size != MO_32) { 11821 unallocated_encoding(s); 11822 return; 11823 } 11824 feature = dc_isar_feature(aa64_dp, s); 11825 break; 11826 case 0x03: /* USDOT */ 11827 if (size != MO_32) { 11828 unallocated_encoding(s); 11829 return; 11830 } 11831 feature = dc_isar_feature(aa64_i8mm, s); 11832 break; 11833 case 0x04: /* SMMLA */ 11834 case 0x14: /* UMMLA */ 11835 case 0x05: /* USMMLA */ 11836 if (!is_q || size != MO_32) { 11837 unallocated_encoding(s); 11838 return; 11839 } 11840 feature = dc_isar_feature(aa64_i8mm, s); 11841 break; 11842 case 0x18: /* FCMLA, #0 */ 11843 case 0x19: /* FCMLA, #90 */ 11844 case 0x1a: /* FCMLA, #180 */ 11845 case 0x1b: /* FCMLA, #270 */ 11846 case 0x1c: /* FCADD, #90 */ 11847 case 0x1e: /* FCADD, #270 */ 11848 if (size == 0 11849 || (size == 1 && !dc_isar_feature(aa64_fp16, s)) 11850 || (size == 3 && !is_q)) { 11851 unallocated_encoding(s); 11852 return; 11853 } 11854 feature = dc_isar_feature(aa64_fcma, s); 11855 break; 11856 case 0x1d: /* BFMMLA */ 11857 if (size != MO_16 || !is_q) { 11858 unallocated_encoding(s); 11859 return; 11860 } 11861 feature = dc_isar_feature(aa64_bf16, s); 11862 break; 11863 case 0x1f: 11864 switch (size) { 11865 case 1: /* BFDOT */ 11866 case 3: /* BFMLAL{B,T} */ 11867 feature = dc_isar_feature(aa64_bf16, s); 11868 break; 11869 default: 11870 unallocated_encoding(s); 11871 return; 11872 } 11873 break; 11874 default: 11875 unallocated_encoding(s); 11876 return; 11877 } 11878 if (!feature) { 11879 unallocated_encoding(s); 11880 return; 11881 } 11882 if (!fp_access_check(s)) { 11883 return; 11884 } 11885 11886 switch (opcode) { 11887 case 0x0: /* SQRDMLAH (vector) */ 11888 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); 11889 return; 11890 11891 case 0x1: /* SQRDMLSH (vector) */ 11892 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); 11893 return; 11894 11895 case 0x2: /* SDOT / UDOT */ 11896 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, 11897 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); 11898 return; 11899 11900 case 0x3: /* USDOT */ 11901 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); 11902 return; 11903 11904 case 0x04: /* SMMLA, UMMLA */ 11905 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, 11906 u ? gen_helper_gvec_ummla_b 11907 : gen_helper_gvec_smmla_b); 11908 return; 11909 case 0x05: /* USMMLA */ 11910 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); 11911 return; 11912 11913 case 0x8: /* FCMLA, #0 */ 11914 case 0x9: /* FCMLA, #90 */ 11915 case 0xa: /* FCMLA, #180 */ 11916 case 0xb: /* FCMLA, #270 */ 11917 rot = extract32(opcode, 0, 2); 11918 switch (size) { 11919 case 1: 11920 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, 11921 gen_helper_gvec_fcmlah); 11922 break; 11923 case 2: 11924 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11925 gen_helper_gvec_fcmlas); 11926 break; 11927 case 3: 11928 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, 11929 gen_helper_gvec_fcmlad); 11930 break; 11931 default: 11932 g_assert_not_reached(); 11933 } 11934 return; 11935 11936 case 0xc: /* FCADD, #90 */ 11937 case 0xe: /* FCADD, #270 */ 11938 rot = extract32(opcode, 1, 1); 11939 switch (size) { 11940 case 1: 11941 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11942 gen_helper_gvec_fcaddh); 11943 break; 11944 case 2: 11945 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11946 gen_helper_gvec_fcadds); 11947 break; 11948 case 3: 11949 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, 11950 gen_helper_gvec_fcaddd); 11951 break; 11952 default: 11953 g_assert_not_reached(); 11954 } 11955 return; 11956 11957 case 0xd: /* BFMMLA */ 11958 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); 11959 return; 11960 case 0xf: 11961 switch (size) { 11962 case 1: /* BFDOT */ 11963 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); 11964 break; 11965 case 3: /* BFMLAL{B,T} */ 11966 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, 11967 gen_helper_gvec_bfmlal); 11968 break; 11969 default: 11970 g_assert_not_reached(); 11971 } 11972 return; 11973 11974 default: 11975 g_assert_not_reached(); 11976 } 11977 } 11978 11979 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, 11980 int size, int rn, int rd) 11981 { 11982 /* Handle 2-reg-misc ops which are widening (so each size element 11983 * in the source becomes a 2*size element in the destination. 11984 * The only instruction like this is FCVTL. 11985 */ 11986 int pass; 11987 11988 if (size == 3) { 11989 /* 32 -> 64 bit fp conversion */ 11990 TCGv_i64 tcg_res[2]; 11991 int srcelt = is_q ? 2 : 0; 11992 11993 for (pass = 0; pass < 2; pass++) { 11994 TCGv_i32 tcg_op = tcg_temp_new_i32(); 11995 tcg_res[pass] = tcg_temp_new_i64(); 11996 11997 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); 11998 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); 11999 } 12000 for (pass = 0; pass < 2; pass++) { 12001 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12002 } 12003 } else { 12004 /* 16 -> 32 bit fp conversion */ 12005 int srcelt = is_q ? 4 : 0; 12006 TCGv_i32 tcg_res[4]; 12007 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); 12008 TCGv_i32 ahp = get_ahp_flag(); 12009 12010 for (pass = 0; pass < 4; pass++) { 12011 tcg_res[pass] = tcg_temp_new_i32(); 12012 12013 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); 12014 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 12015 fpst, ahp); 12016 } 12017 for (pass = 0; pass < 4; pass++) { 12018 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); 12019 } 12020 } 12021 } 12022 12023 static void handle_rev(DisasContext *s, int opcode, bool u, 12024 bool is_q, int size, int rn, int rd) 12025 { 12026 int op = (opcode << 1) | u; 12027 int opsz = op + size; 12028 int grp_size = 3 - opsz; 12029 int dsize = is_q ? 128 : 64; 12030 int i; 12031 12032 if (opsz >= 3) { 12033 unallocated_encoding(s); 12034 return; 12035 } 12036 12037 if (!fp_access_check(s)) { 12038 return; 12039 } 12040 12041 if (size == 0) { 12042 /* Special case bytes, use bswap op on each group of elements */ 12043 int groups = dsize / (8 << grp_size); 12044 12045 for (i = 0; i < groups; i++) { 12046 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 12047 12048 read_vec_element(s, tcg_tmp, rn, i, grp_size); 12049 switch (grp_size) { 12050 case MO_16: 12051 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12052 break; 12053 case MO_32: 12054 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); 12055 break; 12056 case MO_64: 12057 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); 12058 break; 12059 default: 12060 g_assert_not_reached(); 12061 } 12062 write_vec_element(s, tcg_tmp, rd, i, grp_size); 12063 } 12064 clear_vec_high(s, is_q, rd); 12065 } else { 12066 int revmask = (1 << grp_size) - 1; 12067 int esize = 8 << size; 12068 int elements = dsize / esize; 12069 TCGv_i64 tcg_rn = tcg_temp_new_i64(); 12070 TCGv_i64 tcg_rd[2]; 12071 12072 for (i = 0; i < 2; i++) { 12073 tcg_rd[i] = tcg_temp_new_i64(); 12074 tcg_gen_movi_i64(tcg_rd[i], 0); 12075 } 12076 12077 for (i = 0; i < elements; i++) { 12078 int e_rev = (i & 0xf) ^ revmask; 12079 int w = (e_rev * esize) / 64; 12080 int o = (e_rev * esize) % 64; 12081 12082 read_vec_element(s, tcg_rn, rn, i, size); 12083 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); 12084 } 12085 12086 for (i = 0; i < 2; i++) { 12087 write_vec_element(s, tcg_rd[i], rd, i, MO_64); 12088 } 12089 clear_vec_high(s, true, rd); 12090 } 12091 } 12092 12093 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, 12094 bool is_q, int size, int rn, int rd) 12095 { 12096 /* Implement the pairwise operations from 2-misc: 12097 * SADDLP, UADDLP, SADALP, UADALP. 12098 * These all add pairs of elements in the input to produce a 12099 * double-width result element in the output (possibly accumulating). 12100 */ 12101 bool accum = (opcode == 0x6); 12102 int maxpass = is_q ? 2 : 1; 12103 int pass; 12104 TCGv_i64 tcg_res[2]; 12105 12106 if (size == 2) { 12107 /* 32 + 32 -> 64 op */ 12108 MemOp memop = size + (u ? 0 : MO_SIGN); 12109 12110 for (pass = 0; pass < maxpass; pass++) { 12111 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 12112 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 12113 12114 tcg_res[pass] = tcg_temp_new_i64(); 12115 12116 read_vec_element(s, tcg_op1, rn, pass * 2, memop); 12117 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); 12118 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); 12119 if (accum) { 12120 read_vec_element(s, tcg_op1, rd, pass, MO_64); 12121 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); 12122 } 12123 } 12124 } else { 12125 for (pass = 0; pass < maxpass; pass++) { 12126 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12127 NeonGenOne64OpFn *genfn; 12128 static NeonGenOne64OpFn * const fns[2][2] = { 12129 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, 12130 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, 12131 }; 12132 12133 genfn = fns[size][u]; 12134 12135 tcg_res[pass] = tcg_temp_new_i64(); 12136 12137 read_vec_element(s, tcg_op, rn, pass, MO_64); 12138 genfn(tcg_res[pass], tcg_op); 12139 12140 if (accum) { 12141 read_vec_element(s, tcg_op, rd, pass, MO_64); 12142 if (size == 0) { 12143 gen_helper_neon_addl_u16(tcg_res[pass], 12144 tcg_res[pass], tcg_op); 12145 } else { 12146 gen_helper_neon_addl_u32(tcg_res[pass], 12147 tcg_res[pass], tcg_op); 12148 } 12149 } 12150 } 12151 } 12152 if (!is_q) { 12153 tcg_res[1] = tcg_constant_i64(0); 12154 } 12155 for (pass = 0; pass < 2; pass++) { 12156 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12157 } 12158 } 12159 12160 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) 12161 { 12162 /* Implement SHLL and SHLL2 */ 12163 int pass; 12164 int part = is_q ? 2 : 0; 12165 TCGv_i64 tcg_res[2]; 12166 12167 for (pass = 0; pass < 2; pass++) { 12168 static NeonGenWidenFn * const widenfns[3] = { 12169 gen_helper_neon_widen_u8, 12170 gen_helper_neon_widen_u16, 12171 tcg_gen_extu_i32_i64, 12172 }; 12173 NeonGenWidenFn *widenfn = widenfns[size]; 12174 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12175 12176 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); 12177 tcg_res[pass] = tcg_temp_new_i64(); 12178 widenfn(tcg_res[pass], tcg_op); 12179 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); 12180 } 12181 12182 for (pass = 0; pass < 2; pass++) { 12183 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 12184 } 12185 } 12186 12187 /* AdvSIMD two reg misc 12188 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 12189 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12190 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | 12191 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ 12192 */ 12193 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) 12194 { 12195 int size = extract32(insn, 22, 2); 12196 int opcode = extract32(insn, 12, 5); 12197 bool u = extract32(insn, 29, 1); 12198 bool is_q = extract32(insn, 30, 1); 12199 int rn = extract32(insn, 5, 5); 12200 int rd = extract32(insn, 0, 5); 12201 bool need_fpstatus = false; 12202 int rmode = -1; 12203 TCGv_i32 tcg_rmode; 12204 TCGv_ptr tcg_fpstatus; 12205 12206 switch (opcode) { 12207 case 0x0: /* REV64, REV32 */ 12208 case 0x1: /* REV16 */ 12209 handle_rev(s, opcode, u, is_q, size, rn, rd); 12210 return; 12211 case 0x5: /* CNT, NOT, RBIT */ 12212 if (u && size == 0) { 12213 /* NOT */ 12214 break; 12215 } else if (u && size == 1) { 12216 /* RBIT */ 12217 break; 12218 } else if (!u && size == 0) { 12219 /* CNT */ 12220 break; 12221 } 12222 unallocated_encoding(s); 12223 return; 12224 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ 12225 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ 12226 if (size == 3) { 12227 unallocated_encoding(s); 12228 return; 12229 } 12230 if (!fp_access_check(s)) { 12231 return; 12232 } 12233 12234 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); 12235 return; 12236 case 0x4: /* CLS, CLZ */ 12237 if (size == 3) { 12238 unallocated_encoding(s); 12239 return; 12240 } 12241 break; 12242 case 0x2: /* SADDLP, UADDLP */ 12243 case 0x6: /* SADALP, UADALP */ 12244 if (size == 3) { 12245 unallocated_encoding(s); 12246 return; 12247 } 12248 if (!fp_access_check(s)) { 12249 return; 12250 } 12251 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); 12252 return; 12253 case 0x13: /* SHLL, SHLL2 */ 12254 if (u == 0 || size == 3) { 12255 unallocated_encoding(s); 12256 return; 12257 } 12258 if (!fp_access_check(s)) { 12259 return; 12260 } 12261 handle_shll(s, is_q, size, rn, rd); 12262 return; 12263 case 0xa: /* CMLT */ 12264 if (u == 1) { 12265 unallocated_encoding(s); 12266 return; 12267 } 12268 /* fall through */ 12269 case 0x8: /* CMGT, CMGE */ 12270 case 0x9: /* CMEQ, CMLE */ 12271 case 0xb: /* ABS, NEG */ 12272 if (size == 3 && !is_q) { 12273 unallocated_encoding(s); 12274 return; 12275 } 12276 break; 12277 case 0x3: /* SUQADD, USQADD */ 12278 if (size == 3 && !is_q) { 12279 unallocated_encoding(s); 12280 return; 12281 } 12282 if (!fp_access_check(s)) { 12283 return; 12284 } 12285 handle_2misc_satacc(s, false, u, is_q, size, rn, rd); 12286 return; 12287 case 0x7: /* SQABS, SQNEG */ 12288 if (size == 3 && !is_q) { 12289 unallocated_encoding(s); 12290 return; 12291 } 12292 break; 12293 case 0xc ... 0xf: 12294 case 0x16 ... 0x1f: 12295 { 12296 /* Floating point: U, size[1] and opcode indicate operation; 12297 * size[0] indicates single or double precision. 12298 */ 12299 int is_double = extract32(size, 0, 1); 12300 opcode |= (extract32(size, 1, 1) << 5) | (u << 6); 12301 size = is_double ? 3 : 2; 12302 switch (opcode) { 12303 case 0x2f: /* FABS */ 12304 case 0x6f: /* FNEG */ 12305 if (size == 3 && !is_q) { 12306 unallocated_encoding(s); 12307 return; 12308 } 12309 break; 12310 case 0x1d: /* SCVTF */ 12311 case 0x5d: /* UCVTF */ 12312 { 12313 bool is_signed = (opcode == 0x1d) ? true : false; 12314 int elements = is_double ? 2 : is_q ? 4 : 2; 12315 if (is_double && !is_q) { 12316 unallocated_encoding(s); 12317 return; 12318 } 12319 if (!fp_access_check(s)) { 12320 return; 12321 } 12322 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); 12323 return; 12324 } 12325 case 0x2c: /* FCMGT (zero) */ 12326 case 0x2d: /* FCMEQ (zero) */ 12327 case 0x2e: /* FCMLT (zero) */ 12328 case 0x6c: /* FCMGE (zero) */ 12329 case 0x6d: /* FCMLE (zero) */ 12330 if (size == 3 && !is_q) { 12331 unallocated_encoding(s); 12332 return; 12333 } 12334 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); 12335 return; 12336 case 0x7f: /* FSQRT */ 12337 if (size == 3 && !is_q) { 12338 unallocated_encoding(s); 12339 return; 12340 } 12341 break; 12342 case 0x1a: /* FCVTNS */ 12343 case 0x1b: /* FCVTMS */ 12344 case 0x3a: /* FCVTPS */ 12345 case 0x3b: /* FCVTZS */ 12346 case 0x5a: /* FCVTNU */ 12347 case 0x5b: /* FCVTMU */ 12348 case 0x7a: /* FCVTPU */ 12349 case 0x7b: /* FCVTZU */ 12350 need_fpstatus = true; 12351 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12352 if (size == 3 && !is_q) { 12353 unallocated_encoding(s); 12354 return; 12355 } 12356 break; 12357 case 0x5c: /* FCVTAU */ 12358 case 0x1c: /* FCVTAS */ 12359 need_fpstatus = true; 12360 rmode = FPROUNDING_TIEAWAY; 12361 if (size == 3 && !is_q) { 12362 unallocated_encoding(s); 12363 return; 12364 } 12365 break; 12366 case 0x3c: /* URECPE */ 12367 if (size == 3) { 12368 unallocated_encoding(s); 12369 return; 12370 } 12371 /* fall through */ 12372 case 0x3d: /* FRECPE */ 12373 case 0x7d: /* FRSQRTE */ 12374 if (size == 3 && !is_q) { 12375 unallocated_encoding(s); 12376 return; 12377 } 12378 if (!fp_access_check(s)) { 12379 return; 12380 } 12381 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); 12382 return; 12383 case 0x56: /* FCVTXN, FCVTXN2 */ 12384 if (size == 2) { 12385 unallocated_encoding(s); 12386 return; 12387 } 12388 /* fall through */ 12389 case 0x16: /* FCVTN, FCVTN2 */ 12390 /* handle_2misc_narrow does a 2*size -> size operation, but these 12391 * instructions encode the source size rather than dest size. 12392 */ 12393 if (!fp_access_check(s)) { 12394 return; 12395 } 12396 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12397 return; 12398 case 0x36: /* BFCVTN, BFCVTN2 */ 12399 if (!dc_isar_feature(aa64_bf16, s) || size != 2) { 12400 unallocated_encoding(s); 12401 return; 12402 } 12403 if (!fp_access_check(s)) { 12404 return; 12405 } 12406 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); 12407 return; 12408 case 0x17: /* FCVTL, FCVTL2 */ 12409 if (!fp_access_check(s)) { 12410 return; 12411 } 12412 handle_2misc_widening(s, opcode, is_q, size, rn, rd); 12413 return; 12414 case 0x18: /* FRINTN */ 12415 case 0x19: /* FRINTM */ 12416 case 0x38: /* FRINTP */ 12417 case 0x39: /* FRINTZ */ 12418 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); 12419 /* fall through */ 12420 case 0x59: /* FRINTX */ 12421 case 0x79: /* FRINTI */ 12422 need_fpstatus = true; 12423 if (size == 3 && !is_q) { 12424 unallocated_encoding(s); 12425 return; 12426 } 12427 break; 12428 case 0x58: /* FRINTA */ 12429 rmode = FPROUNDING_TIEAWAY; 12430 need_fpstatus = true; 12431 if (size == 3 && !is_q) { 12432 unallocated_encoding(s); 12433 return; 12434 } 12435 break; 12436 case 0x7c: /* URSQRTE */ 12437 if (size == 3) { 12438 unallocated_encoding(s); 12439 return; 12440 } 12441 break; 12442 case 0x1e: /* FRINT32Z */ 12443 case 0x1f: /* FRINT64Z */ 12444 rmode = FPROUNDING_ZERO; 12445 /* fall through */ 12446 case 0x5e: /* FRINT32X */ 12447 case 0x5f: /* FRINT64X */ 12448 need_fpstatus = true; 12449 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { 12450 unallocated_encoding(s); 12451 return; 12452 } 12453 break; 12454 default: 12455 unallocated_encoding(s); 12456 return; 12457 } 12458 break; 12459 } 12460 default: 12461 unallocated_encoding(s); 12462 return; 12463 } 12464 12465 if (!fp_access_check(s)) { 12466 return; 12467 } 12468 12469 if (need_fpstatus || rmode >= 0) { 12470 tcg_fpstatus = fpstatus_ptr(FPST_FPCR); 12471 } else { 12472 tcg_fpstatus = NULL; 12473 } 12474 if (rmode >= 0) { 12475 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12476 } else { 12477 tcg_rmode = NULL; 12478 } 12479 12480 switch (opcode) { 12481 case 0x5: 12482 if (u && size == 0) { /* NOT */ 12483 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); 12484 return; 12485 } 12486 break; 12487 case 0x8: /* CMGT, CMGE */ 12488 if (u) { 12489 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); 12490 } else { 12491 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); 12492 } 12493 return; 12494 case 0x9: /* CMEQ, CMLE */ 12495 if (u) { 12496 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); 12497 } else { 12498 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); 12499 } 12500 return; 12501 case 0xa: /* CMLT */ 12502 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); 12503 return; 12504 case 0xb: 12505 if (u) { /* ABS, NEG */ 12506 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); 12507 } else { 12508 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); 12509 } 12510 return; 12511 } 12512 12513 if (size == 3) { 12514 /* All 64-bit element operations can be shared with scalar 2misc */ 12515 int pass; 12516 12517 /* Coverity claims (size == 3 && !is_q) has been eliminated 12518 * from all paths leading to here. 12519 */ 12520 tcg_debug_assert(is_q); 12521 for (pass = 0; pass < 2; pass++) { 12522 TCGv_i64 tcg_op = tcg_temp_new_i64(); 12523 TCGv_i64 tcg_res = tcg_temp_new_i64(); 12524 12525 read_vec_element(s, tcg_op, rn, pass, MO_64); 12526 12527 handle_2misc_64(s, opcode, u, tcg_res, tcg_op, 12528 tcg_rmode, tcg_fpstatus); 12529 12530 write_vec_element(s, tcg_res, rd, pass, MO_64); 12531 } 12532 } else { 12533 int pass; 12534 12535 for (pass = 0; pass < (is_q ? 4 : 2); pass++) { 12536 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12537 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12538 12539 read_vec_element_i32(s, tcg_op, rn, pass, MO_32); 12540 12541 if (size == 2) { 12542 /* Special cases for 32 bit elements */ 12543 switch (opcode) { 12544 case 0x4: /* CLS */ 12545 if (u) { 12546 tcg_gen_clzi_i32(tcg_res, tcg_op, 32); 12547 } else { 12548 tcg_gen_clrsb_i32(tcg_res, tcg_op); 12549 } 12550 break; 12551 case 0x7: /* SQABS, SQNEG */ 12552 if (u) { 12553 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); 12554 } else { 12555 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); 12556 } 12557 break; 12558 case 0x2f: /* FABS */ 12559 gen_vfp_abss(tcg_res, tcg_op); 12560 break; 12561 case 0x6f: /* FNEG */ 12562 gen_vfp_negs(tcg_res, tcg_op); 12563 break; 12564 case 0x7f: /* FSQRT */ 12565 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); 12566 break; 12567 case 0x1a: /* FCVTNS */ 12568 case 0x1b: /* FCVTMS */ 12569 case 0x1c: /* FCVTAS */ 12570 case 0x3a: /* FCVTPS */ 12571 case 0x3b: /* FCVTZS */ 12572 gen_helper_vfp_tosls(tcg_res, tcg_op, 12573 tcg_constant_i32(0), tcg_fpstatus); 12574 break; 12575 case 0x5a: /* FCVTNU */ 12576 case 0x5b: /* FCVTMU */ 12577 case 0x5c: /* FCVTAU */ 12578 case 0x7a: /* FCVTPU */ 12579 case 0x7b: /* FCVTZU */ 12580 gen_helper_vfp_touls(tcg_res, tcg_op, 12581 tcg_constant_i32(0), tcg_fpstatus); 12582 break; 12583 case 0x18: /* FRINTN */ 12584 case 0x19: /* FRINTM */ 12585 case 0x38: /* FRINTP */ 12586 case 0x39: /* FRINTZ */ 12587 case 0x58: /* FRINTA */ 12588 case 0x79: /* FRINTI */ 12589 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); 12590 break; 12591 case 0x59: /* FRINTX */ 12592 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); 12593 break; 12594 case 0x7c: /* URSQRTE */ 12595 gen_helper_rsqrte_u32(tcg_res, tcg_op); 12596 break; 12597 case 0x1e: /* FRINT32Z */ 12598 case 0x5e: /* FRINT32X */ 12599 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); 12600 break; 12601 case 0x1f: /* FRINT64Z */ 12602 case 0x5f: /* FRINT64X */ 12603 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); 12604 break; 12605 default: 12606 g_assert_not_reached(); 12607 } 12608 } else { 12609 /* Use helpers for 8 and 16 bit elements */ 12610 switch (opcode) { 12611 case 0x5: /* CNT, RBIT */ 12612 /* For these two insns size is part of the opcode specifier 12613 * (handled earlier); they always operate on byte elements. 12614 */ 12615 if (u) { 12616 gen_helper_neon_rbit_u8(tcg_res, tcg_op); 12617 } else { 12618 gen_helper_neon_cnt_u8(tcg_res, tcg_op); 12619 } 12620 break; 12621 case 0x7: /* SQABS, SQNEG */ 12622 { 12623 NeonGenOneOpEnvFn *genfn; 12624 static NeonGenOneOpEnvFn * const fns[2][2] = { 12625 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, 12626 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, 12627 }; 12628 genfn = fns[size][u]; 12629 genfn(tcg_res, tcg_env, tcg_op); 12630 break; 12631 } 12632 case 0x4: /* CLS, CLZ */ 12633 if (u) { 12634 if (size == 0) { 12635 gen_helper_neon_clz_u8(tcg_res, tcg_op); 12636 } else { 12637 gen_helper_neon_clz_u16(tcg_res, tcg_op); 12638 } 12639 } else { 12640 if (size == 0) { 12641 gen_helper_neon_cls_s8(tcg_res, tcg_op); 12642 } else { 12643 gen_helper_neon_cls_s16(tcg_res, tcg_op); 12644 } 12645 } 12646 break; 12647 default: 12648 g_assert_not_reached(); 12649 } 12650 } 12651 12652 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 12653 } 12654 } 12655 clear_vec_high(s, is_q, rd); 12656 12657 if (tcg_rmode) { 12658 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12659 } 12660 } 12661 12662 /* AdvSIMD [scalar] two register miscellaneous (FP16) 12663 * 12664 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 12665 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12666 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | 12667 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ 12668 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 12669 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 12670 * 12671 * This actually covers two groups where scalar access is governed by 12672 * bit 28. A bunch of the instructions (float to integral) only exist 12673 * in the vector form and are un-allocated for the scalar decode. Also 12674 * in the scalar decode Q is always 1. 12675 */ 12676 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) 12677 { 12678 int fpop, opcode, a, u; 12679 int rn, rd; 12680 bool is_q; 12681 bool is_scalar; 12682 bool only_in_vector = false; 12683 12684 int pass; 12685 TCGv_i32 tcg_rmode = NULL; 12686 TCGv_ptr tcg_fpstatus = NULL; 12687 bool need_fpst = true; 12688 int rmode = -1; 12689 12690 if (!dc_isar_feature(aa64_fp16, s)) { 12691 unallocated_encoding(s); 12692 return; 12693 } 12694 12695 rd = extract32(insn, 0, 5); 12696 rn = extract32(insn, 5, 5); 12697 12698 a = extract32(insn, 23, 1); 12699 u = extract32(insn, 29, 1); 12700 is_scalar = extract32(insn, 28, 1); 12701 is_q = extract32(insn, 30, 1); 12702 12703 opcode = extract32(insn, 12, 5); 12704 fpop = deposit32(opcode, 5, 1, a); 12705 fpop = deposit32(fpop, 6, 1, u); 12706 12707 switch (fpop) { 12708 case 0x1d: /* SCVTF */ 12709 case 0x5d: /* UCVTF */ 12710 { 12711 int elements; 12712 12713 if (is_scalar) { 12714 elements = 1; 12715 } else { 12716 elements = (is_q ? 8 : 4); 12717 } 12718 12719 if (!fp_access_check(s)) { 12720 return; 12721 } 12722 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); 12723 return; 12724 } 12725 break; 12726 case 0x2c: /* FCMGT (zero) */ 12727 case 0x2d: /* FCMEQ (zero) */ 12728 case 0x2e: /* FCMLT (zero) */ 12729 case 0x6c: /* FCMGE (zero) */ 12730 case 0x6d: /* FCMLE (zero) */ 12731 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); 12732 return; 12733 case 0x3d: /* FRECPE */ 12734 case 0x3f: /* FRECPX */ 12735 break; 12736 case 0x18: /* FRINTN */ 12737 only_in_vector = true; 12738 rmode = FPROUNDING_TIEEVEN; 12739 break; 12740 case 0x19: /* FRINTM */ 12741 only_in_vector = true; 12742 rmode = FPROUNDING_NEGINF; 12743 break; 12744 case 0x38: /* FRINTP */ 12745 only_in_vector = true; 12746 rmode = FPROUNDING_POSINF; 12747 break; 12748 case 0x39: /* FRINTZ */ 12749 only_in_vector = true; 12750 rmode = FPROUNDING_ZERO; 12751 break; 12752 case 0x58: /* FRINTA */ 12753 only_in_vector = true; 12754 rmode = FPROUNDING_TIEAWAY; 12755 break; 12756 case 0x59: /* FRINTX */ 12757 case 0x79: /* FRINTI */ 12758 only_in_vector = true; 12759 /* current rounding mode */ 12760 break; 12761 case 0x1a: /* FCVTNS */ 12762 rmode = FPROUNDING_TIEEVEN; 12763 break; 12764 case 0x1b: /* FCVTMS */ 12765 rmode = FPROUNDING_NEGINF; 12766 break; 12767 case 0x1c: /* FCVTAS */ 12768 rmode = FPROUNDING_TIEAWAY; 12769 break; 12770 case 0x3a: /* FCVTPS */ 12771 rmode = FPROUNDING_POSINF; 12772 break; 12773 case 0x3b: /* FCVTZS */ 12774 rmode = FPROUNDING_ZERO; 12775 break; 12776 case 0x5a: /* FCVTNU */ 12777 rmode = FPROUNDING_TIEEVEN; 12778 break; 12779 case 0x5b: /* FCVTMU */ 12780 rmode = FPROUNDING_NEGINF; 12781 break; 12782 case 0x5c: /* FCVTAU */ 12783 rmode = FPROUNDING_TIEAWAY; 12784 break; 12785 case 0x7a: /* FCVTPU */ 12786 rmode = FPROUNDING_POSINF; 12787 break; 12788 case 0x7b: /* FCVTZU */ 12789 rmode = FPROUNDING_ZERO; 12790 break; 12791 case 0x2f: /* FABS */ 12792 case 0x6f: /* FNEG */ 12793 need_fpst = false; 12794 break; 12795 case 0x7d: /* FRSQRTE */ 12796 case 0x7f: /* FSQRT (vector) */ 12797 break; 12798 default: 12799 unallocated_encoding(s); 12800 return; 12801 } 12802 12803 12804 /* Check additional constraints for the scalar encoding */ 12805 if (is_scalar) { 12806 if (!is_q) { 12807 unallocated_encoding(s); 12808 return; 12809 } 12810 /* FRINTxx is only in the vector form */ 12811 if (only_in_vector) { 12812 unallocated_encoding(s); 12813 return; 12814 } 12815 } 12816 12817 if (!fp_access_check(s)) { 12818 return; 12819 } 12820 12821 if (rmode >= 0 || need_fpst) { 12822 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); 12823 } 12824 12825 if (rmode >= 0) { 12826 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 12827 } 12828 12829 if (is_scalar) { 12830 TCGv_i32 tcg_op = read_fp_hreg(s, rn); 12831 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12832 12833 switch (fpop) { 12834 case 0x1a: /* FCVTNS */ 12835 case 0x1b: /* FCVTMS */ 12836 case 0x1c: /* FCVTAS */ 12837 case 0x3a: /* FCVTPS */ 12838 case 0x3b: /* FCVTZS */ 12839 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12840 break; 12841 case 0x3d: /* FRECPE */ 12842 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12843 break; 12844 case 0x3f: /* FRECPX */ 12845 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); 12846 break; 12847 case 0x5a: /* FCVTNU */ 12848 case 0x5b: /* FCVTMU */ 12849 case 0x5c: /* FCVTAU */ 12850 case 0x7a: /* FCVTPU */ 12851 case 0x7b: /* FCVTZU */ 12852 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12853 break; 12854 case 0x6f: /* FNEG */ 12855 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12856 break; 12857 case 0x7d: /* FRSQRTE */ 12858 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12859 break; 12860 default: 12861 g_assert_not_reached(); 12862 } 12863 12864 /* limit any sign extension going on */ 12865 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); 12866 write_fp_sreg(s, rd, tcg_res); 12867 } else { 12868 for (pass = 0; pass < (is_q ? 8 : 4); pass++) { 12869 TCGv_i32 tcg_op = tcg_temp_new_i32(); 12870 TCGv_i32 tcg_res = tcg_temp_new_i32(); 12871 12872 read_vec_element_i32(s, tcg_op, rn, pass, MO_16); 12873 12874 switch (fpop) { 12875 case 0x1a: /* FCVTNS */ 12876 case 0x1b: /* FCVTMS */ 12877 case 0x1c: /* FCVTAS */ 12878 case 0x3a: /* FCVTPS */ 12879 case 0x3b: /* FCVTZS */ 12880 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); 12881 break; 12882 case 0x3d: /* FRECPE */ 12883 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); 12884 break; 12885 case 0x5a: /* FCVTNU */ 12886 case 0x5b: /* FCVTMU */ 12887 case 0x5c: /* FCVTAU */ 12888 case 0x7a: /* FCVTPU */ 12889 case 0x7b: /* FCVTZU */ 12890 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); 12891 break; 12892 case 0x18: /* FRINTN */ 12893 case 0x19: /* FRINTM */ 12894 case 0x38: /* FRINTP */ 12895 case 0x39: /* FRINTZ */ 12896 case 0x58: /* FRINTA */ 12897 case 0x79: /* FRINTI */ 12898 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); 12899 break; 12900 case 0x59: /* FRINTX */ 12901 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); 12902 break; 12903 case 0x2f: /* FABS */ 12904 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); 12905 break; 12906 case 0x6f: /* FNEG */ 12907 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); 12908 break; 12909 case 0x7d: /* FRSQRTE */ 12910 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); 12911 break; 12912 case 0x7f: /* FSQRT */ 12913 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); 12914 break; 12915 default: 12916 g_assert_not_reached(); 12917 } 12918 12919 write_vec_element_i32(s, tcg_res, rd, pass, MO_16); 12920 } 12921 12922 clear_vec_high(s, is_q, rd); 12923 } 12924 12925 if (tcg_rmode) { 12926 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 12927 } 12928 } 12929 12930 /* AdvSIMD scalar x indexed element 12931 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12932 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12933 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12934 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ 12935 * AdvSIMD vector x indexed element 12936 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 12937 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12938 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | 12939 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ 12940 */ 12941 static void disas_simd_indexed(DisasContext *s, uint32_t insn) 12942 { 12943 /* This encoding has two kinds of instruction: 12944 * normal, where we perform elt x idxelt => elt for each 12945 * element in the vector 12946 * long, where we perform elt x idxelt and generate a result of 12947 * double the width of the input element 12948 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). 12949 */ 12950 bool is_scalar = extract32(insn, 28, 1); 12951 bool is_q = extract32(insn, 30, 1); 12952 bool u = extract32(insn, 29, 1); 12953 int size = extract32(insn, 22, 2); 12954 int l = extract32(insn, 21, 1); 12955 int m = extract32(insn, 20, 1); 12956 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ 12957 int rm = extract32(insn, 16, 4); 12958 int opcode = extract32(insn, 12, 4); 12959 int h = extract32(insn, 11, 1); 12960 int rn = extract32(insn, 5, 5); 12961 int rd = extract32(insn, 0, 5); 12962 bool is_long = false; 12963 int is_fp = 0; 12964 bool is_fp16 = false; 12965 int index; 12966 TCGv_ptr fpst; 12967 12968 switch (16 * u + opcode) { 12969 case 0x08: /* MUL */ 12970 case 0x10: /* MLA */ 12971 case 0x14: /* MLS */ 12972 if (is_scalar) { 12973 unallocated_encoding(s); 12974 return; 12975 } 12976 break; 12977 case 0x02: /* SMLAL, SMLAL2 */ 12978 case 0x12: /* UMLAL, UMLAL2 */ 12979 case 0x06: /* SMLSL, SMLSL2 */ 12980 case 0x16: /* UMLSL, UMLSL2 */ 12981 case 0x0a: /* SMULL, SMULL2 */ 12982 case 0x1a: /* UMULL, UMULL2 */ 12983 if (is_scalar) { 12984 unallocated_encoding(s); 12985 return; 12986 } 12987 is_long = true; 12988 break; 12989 case 0x03: /* SQDMLAL, SQDMLAL2 */ 12990 case 0x07: /* SQDMLSL, SQDMLSL2 */ 12991 case 0x0b: /* SQDMULL, SQDMULL2 */ 12992 is_long = true; 12993 break; 12994 case 0x0c: /* SQDMULH */ 12995 case 0x0d: /* SQRDMULH */ 12996 break; 12997 case 0x1d: /* SQRDMLAH */ 12998 case 0x1f: /* SQRDMLSH */ 12999 if (!dc_isar_feature(aa64_rdm, s)) { 13000 unallocated_encoding(s); 13001 return; 13002 } 13003 break; 13004 case 0x0e: /* SDOT */ 13005 case 0x1e: /* UDOT */ 13006 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { 13007 unallocated_encoding(s); 13008 return; 13009 } 13010 break; 13011 case 0x0f: 13012 switch (size) { 13013 case 0: /* SUDOT */ 13014 case 2: /* USDOT */ 13015 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { 13016 unallocated_encoding(s); 13017 return; 13018 } 13019 size = MO_32; 13020 break; 13021 case 1: /* BFDOT */ 13022 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13023 unallocated_encoding(s); 13024 return; 13025 } 13026 size = MO_32; 13027 break; 13028 case 3: /* BFMLAL{B,T} */ 13029 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { 13030 unallocated_encoding(s); 13031 return; 13032 } 13033 /* can't set is_fp without other incorrect size checks */ 13034 size = MO_16; 13035 break; 13036 default: 13037 unallocated_encoding(s); 13038 return; 13039 } 13040 break; 13041 case 0x11: /* FCMLA #0 */ 13042 case 0x13: /* FCMLA #90 */ 13043 case 0x15: /* FCMLA #180 */ 13044 case 0x17: /* FCMLA #270 */ 13045 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { 13046 unallocated_encoding(s); 13047 return; 13048 } 13049 is_fp = 2; 13050 break; 13051 case 0x00: /* FMLAL */ 13052 case 0x04: /* FMLSL */ 13053 case 0x18: /* FMLAL2 */ 13054 case 0x1c: /* FMLSL2 */ 13055 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) { 13056 unallocated_encoding(s); 13057 return; 13058 } 13059 size = MO_16; 13060 /* is_fp, but we pass tcg_env not fp_status. */ 13061 break; 13062 default: 13063 case 0x01: /* FMLA */ 13064 case 0x05: /* FMLS */ 13065 case 0x09: /* FMUL */ 13066 case 0x19: /* FMULX */ 13067 unallocated_encoding(s); 13068 return; 13069 } 13070 13071 switch (is_fp) { 13072 case 1: /* normal fp */ 13073 unallocated_encoding(s); /* in decodetree */ 13074 return; 13075 13076 case 2: /* complex fp */ 13077 /* Each indexable element is a complex pair. */ 13078 size += 1; 13079 switch (size) { 13080 case MO_32: 13081 if (h && !is_q) { 13082 unallocated_encoding(s); 13083 return; 13084 } 13085 is_fp16 = true; 13086 break; 13087 case MO_64: 13088 break; 13089 default: 13090 unallocated_encoding(s); 13091 return; 13092 } 13093 break; 13094 13095 default: /* integer */ 13096 switch (size) { 13097 case MO_8: 13098 case MO_64: 13099 unallocated_encoding(s); 13100 return; 13101 } 13102 break; 13103 } 13104 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { 13105 unallocated_encoding(s); 13106 return; 13107 } 13108 13109 /* Given MemOp size, adjust register and indexing. */ 13110 switch (size) { 13111 case MO_16: 13112 index = h << 2 | l << 1 | m; 13113 break; 13114 case MO_32: 13115 index = h << 1 | l; 13116 rm |= m << 4; 13117 break; 13118 case MO_64: 13119 if (l || !is_q) { 13120 unallocated_encoding(s); 13121 return; 13122 } 13123 index = h; 13124 rm |= m << 4; 13125 break; 13126 default: 13127 g_assert_not_reached(); 13128 } 13129 13130 if (!fp_access_check(s)) { 13131 return; 13132 } 13133 13134 if (is_fp) { 13135 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); 13136 } else { 13137 fpst = NULL; 13138 } 13139 13140 switch (16 * u + opcode) { 13141 case 0x0e: /* SDOT */ 13142 case 0x1e: /* UDOT */ 13143 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13144 u ? gen_helper_gvec_udot_idx_b 13145 : gen_helper_gvec_sdot_idx_b); 13146 return; 13147 case 0x0f: 13148 switch (extract32(insn, 22, 2)) { 13149 case 0: /* SUDOT */ 13150 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13151 gen_helper_gvec_sudot_idx_b); 13152 return; 13153 case 1: /* BFDOT */ 13154 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13155 gen_helper_gvec_bfdot_idx); 13156 return; 13157 case 2: /* USDOT */ 13158 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, 13159 gen_helper_gvec_usdot_idx_b); 13160 return; 13161 case 3: /* BFMLAL{B,T} */ 13162 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, 13163 gen_helper_gvec_bfmlal_idx); 13164 return; 13165 } 13166 g_assert_not_reached(); 13167 case 0x11: /* FCMLA #0 */ 13168 case 0x13: /* FCMLA #90 */ 13169 case 0x15: /* FCMLA #180 */ 13170 case 0x17: /* FCMLA #270 */ 13171 { 13172 int rot = extract32(insn, 13, 2); 13173 int data = (index << 2) | rot; 13174 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 13175 vec_full_reg_offset(s, rn), 13176 vec_full_reg_offset(s, rm), 13177 vec_full_reg_offset(s, rd), fpst, 13178 is_q ? 16 : 8, vec_full_reg_size(s), data, 13179 size == MO_64 13180 ? gen_helper_gvec_fcmlas_idx 13181 : gen_helper_gvec_fcmlah_idx); 13182 } 13183 return; 13184 13185 case 0x00: /* FMLAL */ 13186 case 0x04: /* FMLSL */ 13187 case 0x18: /* FMLAL2 */ 13188 case 0x1c: /* FMLSL2 */ 13189 { 13190 int is_s = extract32(opcode, 2, 1); 13191 int is_2 = u; 13192 int data = (index << 2) | (is_2 << 1) | is_s; 13193 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 13194 vec_full_reg_offset(s, rn), 13195 vec_full_reg_offset(s, rm), tcg_env, 13196 is_q ? 16 : 8, vec_full_reg_size(s), 13197 data, gen_helper_gvec_fmlal_idx_a64); 13198 } 13199 return; 13200 13201 case 0x08: /* MUL */ 13202 if (!is_long && !is_scalar) { 13203 static gen_helper_gvec_3 * const fns[3] = { 13204 gen_helper_gvec_mul_idx_h, 13205 gen_helper_gvec_mul_idx_s, 13206 gen_helper_gvec_mul_idx_d, 13207 }; 13208 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 13209 vec_full_reg_offset(s, rn), 13210 vec_full_reg_offset(s, rm), 13211 is_q ? 16 : 8, vec_full_reg_size(s), 13212 index, fns[size - 1]); 13213 return; 13214 } 13215 break; 13216 13217 case 0x10: /* MLA */ 13218 if (!is_long && !is_scalar) { 13219 static gen_helper_gvec_4 * const fns[3] = { 13220 gen_helper_gvec_mla_idx_h, 13221 gen_helper_gvec_mla_idx_s, 13222 gen_helper_gvec_mla_idx_d, 13223 }; 13224 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13225 vec_full_reg_offset(s, rn), 13226 vec_full_reg_offset(s, rm), 13227 vec_full_reg_offset(s, rd), 13228 is_q ? 16 : 8, vec_full_reg_size(s), 13229 index, fns[size - 1]); 13230 return; 13231 } 13232 break; 13233 13234 case 0x14: /* MLS */ 13235 if (!is_long && !is_scalar) { 13236 static gen_helper_gvec_4 * const fns[3] = { 13237 gen_helper_gvec_mls_idx_h, 13238 gen_helper_gvec_mls_idx_s, 13239 gen_helper_gvec_mls_idx_d, 13240 }; 13241 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 13242 vec_full_reg_offset(s, rn), 13243 vec_full_reg_offset(s, rm), 13244 vec_full_reg_offset(s, rd), 13245 is_q ? 16 : 8, vec_full_reg_size(s), 13246 index, fns[size - 1]); 13247 return; 13248 } 13249 break; 13250 } 13251 13252 if (size == 3) { 13253 g_assert_not_reached(); 13254 } else if (!is_long) { 13255 /* 32 bit floating point, or 16 or 32 bit integer. 13256 * For the 16 bit scalar case we use the usual Neon helpers and 13257 * rely on the fact that 0 op 0 == 0 with no side effects. 13258 */ 13259 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13260 int pass, maxpasses; 13261 13262 if (is_scalar) { 13263 maxpasses = 1; 13264 } else { 13265 maxpasses = is_q ? 4 : 2; 13266 } 13267 13268 read_vec_element_i32(s, tcg_idx, rm, index, size); 13269 13270 if (size == 1 && !is_scalar) { 13271 /* The simplest way to handle the 16x16 indexed ops is to duplicate 13272 * the index into both halves of the 32 bit tcg_idx and then use 13273 * the usual Neon helpers. 13274 */ 13275 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13276 } 13277 13278 for (pass = 0; pass < maxpasses; pass++) { 13279 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13280 TCGv_i32 tcg_res = tcg_temp_new_i32(); 13281 13282 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); 13283 13284 switch (16 * u + opcode) { 13285 case 0x08: /* MUL */ 13286 case 0x10: /* MLA */ 13287 case 0x14: /* MLS */ 13288 { 13289 static NeonGenTwoOpFn * const fns[2][2] = { 13290 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, 13291 { tcg_gen_add_i32, tcg_gen_sub_i32 }, 13292 }; 13293 NeonGenTwoOpFn *genfn; 13294 bool is_sub = opcode == 0x4; 13295 13296 if (size == 1) { 13297 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); 13298 } else { 13299 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); 13300 } 13301 if (opcode == 0x8) { 13302 break; 13303 } 13304 read_vec_element_i32(s, tcg_op, rd, pass, MO_32); 13305 genfn = fns[size - 1][is_sub]; 13306 genfn(tcg_res, tcg_op, tcg_res); 13307 break; 13308 } 13309 case 0x0c: /* SQDMULH */ 13310 if (size == 1) { 13311 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, 13312 tcg_op, tcg_idx); 13313 } else { 13314 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, 13315 tcg_op, tcg_idx); 13316 } 13317 break; 13318 case 0x0d: /* SQRDMULH */ 13319 if (size == 1) { 13320 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, 13321 tcg_op, tcg_idx); 13322 } else { 13323 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, 13324 tcg_op, tcg_idx); 13325 } 13326 break; 13327 case 0x1d: /* SQRDMLAH */ 13328 read_vec_element_i32(s, tcg_res, rd, pass, 13329 is_scalar ? size : MO_32); 13330 if (size == 1) { 13331 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, 13332 tcg_op, tcg_idx, tcg_res); 13333 } else { 13334 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, 13335 tcg_op, tcg_idx, tcg_res); 13336 } 13337 break; 13338 case 0x1f: /* SQRDMLSH */ 13339 read_vec_element_i32(s, tcg_res, rd, pass, 13340 is_scalar ? size : MO_32); 13341 if (size == 1) { 13342 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, 13343 tcg_op, tcg_idx, tcg_res); 13344 } else { 13345 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, 13346 tcg_op, tcg_idx, tcg_res); 13347 } 13348 break; 13349 default: 13350 case 0x01: /* FMLA */ 13351 case 0x05: /* FMLS */ 13352 case 0x09: /* FMUL */ 13353 case 0x19: /* FMULX */ 13354 g_assert_not_reached(); 13355 } 13356 13357 if (is_scalar) { 13358 write_fp_sreg(s, rd, tcg_res); 13359 } else { 13360 write_vec_element_i32(s, tcg_res, rd, pass, MO_32); 13361 } 13362 } 13363 13364 clear_vec_high(s, is_q, rd); 13365 } else { 13366 /* long ops: 16x16->32 or 32x32->64 */ 13367 TCGv_i64 tcg_res[2]; 13368 int pass; 13369 bool satop = extract32(opcode, 0, 1); 13370 MemOp memop = MO_32; 13371 13372 if (satop || !u) { 13373 memop |= MO_SIGN; 13374 } 13375 13376 if (size == 2) { 13377 TCGv_i64 tcg_idx = tcg_temp_new_i64(); 13378 13379 read_vec_element(s, tcg_idx, rm, index, memop); 13380 13381 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13382 TCGv_i64 tcg_op = tcg_temp_new_i64(); 13383 TCGv_i64 tcg_passres; 13384 int passelt; 13385 13386 if (is_scalar) { 13387 passelt = 0; 13388 } else { 13389 passelt = pass + (is_q * 2); 13390 } 13391 13392 read_vec_element(s, tcg_op, rn, passelt, memop); 13393 13394 tcg_res[pass] = tcg_temp_new_i64(); 13395 13396 if (opcode == 0xa || opcode == 0xb) { 13397 /* Non-accumulating ops */ 13398 tcg_passres = tcg_res[pass]; 13399 } else { 13400 tcg_passres = tcg_temp_new_i64(); 13401 } 13402 13403 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); 13404 13405 if (satop) { 13406 /* saturating, doubling */ 13407 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, 13408 tcg_passres, tcg_passres); 13409 } 13410 13411 if (opcode == 0xa || opcode == 0xb) { 13412 continue; 13413 } 13414 13415 /* Accumulating op: handle accumulate step */ 13416 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13417 13418 switch (opcode) { 13419 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13420 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13421 break; 13422 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13423 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); 13424 break; 13425 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13426 tcg_gen_neg_i64(tcg_passres, tcg_passres); 13427 /* fall through */ 13428 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13429 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, 13430 tcg_res[pass], 13431 tcg_passres); 13432 break; 13433 default: 13434 g_assert_not_reached(); 13435 } 13436 } 13437 13438 clear_vec_high(s, !is_scalar, rd); 13439 } else { 13440 TCGv_i32 tcg_idx = tcg_temp_new_i32(); 13441 13442 assert(size == 1); 13443 read_vec_element_i32(s, tcg_idx, rm, index, size); 13444 13445 if (!is_scalar) { 13446 /* The simplest way to handle the 16x16 indexed ops is to 13447 * duplicate the index into both halves of the 32 bit tcg_idx 13448 * and then use the usual Neon helpers. 13449 */ 13450 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); 13451 } 13452 13453 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { 13454 TCGv_i32 tcg_op = tcg_temp_new_i32(); 13455 TCGv_i64 tcg_passres; 13456 13457 if (is_scalar) { 13458 read_vec_element_i32(s, tcg_op, rn, pass, size); 13459 } else { 13460 read_vec_element_i32(s, tcg_op, rn, 13461 pass + (is_q * 2), MO_32); 13462 } 13463 13464 tcg_res[pass] = tcg_temp_new_i64(); 13465 13466 if (opcode == 0xa || opcode == 0xb) { 13467 /* Non-accumulating ops */ 13468 tcg_passres = tcg_res[pass]; 13469 } else { 13470 tcg_passres = tcg_temp_new_i64(); 13471 } 13472 13473 if (memop & MO_SIGN) { 13474 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); 13475 } else { 13476 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); 13477 } 13478 if (satop) { 13479 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, 13480 tcg_passres, tcg_passres); 13481 } 13482 13483 if (opcode == 0xa || opcode == 0xb) { 13484 continue; 13485 } 13486 13487 /* Accumulating op: handle accumulate step */ 13488 read_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13489 13490 switch (opcode) { 13491 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ 13492 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], 13493 tcg_passres); 13494 break; 13495 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ 13496 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], 13497 tcg_passres); 13498 break; 13499 case 0x7: /* SQDMLSL, SQDMLSL2 */ 13500 gen_helper_neon_negl_u32(tcg_passres, tcg_passres); 13501 /* fall through */ 13502 case 0x3: /* SQDMLAL, SQDMLAL2 */ 13503 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, 13504 tcg_res[pass], 13505 tcg_passres); 13506 break; 13507 default: 13508 g_assert_not_reached(); 13509 } 13510 } 13511 13512 if (is_scalar) { 13513 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); 13514 } 13515 } 13516 13517 if (is_scalar) { 13518 tcg_res[1] = tcg_constant_i64(0); 13519 } 13520 13521 for (pass = 0; pass < 2; pass++) { 13522 write_vec_element(s, tcg_res[pass], rd, pass, MO_64); 13523 } 13524 } 13525 } 13526 13527 /* C3.6 Data processing - SIMD, inc Crypto 13528 * 13529 * As the decode gets a little complex we are using a table based 13530 * approach for this part of the decode. 13531 */ 13532 static const AArch64DecodeTable data_proc_simd[] = { 13533 /* pattern , mask , fn */ 13534 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, 13535 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, 13536 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, 13537 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, 13538 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, 13539 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ 13540 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ 13541 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, 13542 { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, 13543 { 0x0e000000, 0xbf208c00, disas_simd_tb }, 13544 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, 13545 { 0x2e000000, 0xbf208400, disas_simd_ext }, 13546 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, 13547 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, 13548 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, 13549 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, 13550 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, 13551 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ 13552 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, 13553 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, 13554 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, 13555 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, 13556 { 0x00000000, 0x00000000, NULL } 13557 }; 13558 13559 static void disas_data_proc_simd(DisasContext *s, uint32_t insn) 13560 { 13561 /* Note that this is called with all non-FP cases from 13562 * table C3-6 so it must UNDEF for entries not specifically 13563 * allocated to instructions in that table. 13564 */ 13565 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); 13566 if (fn) { 13567 fn(s, insn); 13568 } else { 13569 unallocated_encoding(s); 13570 } 13571 } 13572 13573 /* C3.6 Data processing - SIMD and floating point */ 13574 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) 13575 { 13576 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { 13577 disas_data_proc_fp(s, insn); 13578 } else { 13579 /* SIMD, including crypto */ 13580 disas_data_proc_simd(s, insn); 13581 } 13582 } 13583 13584 static bool trans_OK(DisasContext *s, arg_OK *a) 13585 { 13586 return true; 13587 } 13588 13589 static bool trans_FAIL(DisasContext *s, arg_OK *a) 13590 { 13591 s->is_nonstreaming = true; 13592 return true; 13593 } 13594 13595 /** 13596 * is_guarded_page: 13597 * @env: The cpu environment 13598 * @s: The DisasContext 13599 * 13600 * Return true if the page is guarded. 13601 */ 13602 static bool is_guarded_page(CPUARMState *env, DisasContext *s) 13603 { 13604 uint64_t addr = s->base.pc_first; 13605 #ifdef CONFIG_USER_ONLY 13606 return page_get_flags(addr) & PAGE_BTI; 13607 #else 13608 CPUTLBEntryFull *full; 13609 void *host; 13610 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); 13611 int flags; 13612 13613 /* 13614 * We test this immediately after reading an insn, which means 13615 * that the TLB entry must be present and valid, and thus this 13616 * access will never raise an exception. 13617 */ 13618 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, 13619 false, &host, &full, 0); 13620 assert(!(flags & TLB_INVALID_MASK)); 13621 13622 return full->extra.arm.guarded; 13623 #endif 13624 } 13625 13626 /** 13627 * btype_destination_ok: 13628 * @insn: The instruction at the branch destination 13629 * @bt: SCTLR_ELx.BT 13630 * @btype: PSTATE.BTYPE, and is non-zero 13631 * 13632 * On a guarded page, there are a limited number of insns 13633 * that may be present at the branch target: 13634 * - branch target identifiers, 13635 * - paciasp, pacibsp, 13636 * - BRK insn 13637 * - HLT insn 13638 * Anything else causes a Branch Target Exception. 13639 * 13640 * Return true if the branch is compatible, false to raise BTITRAP. 13641 */ 13642 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 13643 { 13644 if ((insn & 0xfffff01fu) == 0xd503201fu) { 13645 /* HINT space */ 13646 switch (extract32(insn, 5, 7)) { 13647 case 0b011001: /* PACIASP */ 13648 case 0b011011: /* PACIBSP */ 13649 /* 13650 * If SCTLR_ELx.BT, then PACI*SP are not compatible 13651 * with btype == 3. Otherwise all btype are ok. 13652 */ 13653 return !bt || btype != 3; 13654 case 0b100000: /* BTI */ 13655 /* Not compatible with any btype. */ 13656 return false; 13657 case 0b100010: /* BTI c */ 13658 /* Not compatible with btype == 3 */ 13659 return btype != 3; 13660 case 0b100100: /* BTI j */ 13661 /* Not compatible with btype == 2 */ 13662 return btype != 2; 13663 case 0b100110: /* BTI jc */ 13664 /* Compatible with any btype. */ 13665 return true; 13666 } 13667 } else { 13668 switch (insn & 0xffe0001fu) { 13669 case 0xd4200000u: /* BRK */ 13670 case 0xd4400000u: /* HLT */ 13671 /* Give priority to the breakpoint exception. */ 13672 return true; 13673 } 13674 } 13675 return false; 13676 } 13677 13678 /* C3.1 A64 instruction index by encoding */ 13679 static void disas_a64_legacy(DisasContext *s, uint32_t insn) 13680 { 13681 switch (extract32(insn, 25, 4)) { 13682 case 0x5: 13683 case 0xd: /* Data processing - register */ 13684 disas_data_proc_reg(s, insn); 13685 break; 13686 case 0x7: 13687 case 0xf: /* Data processing - SIMD and floating point */ 13688 disas_data_proc_simd_fp(s, insn); 13689 break; 13690 default: 13691 unallocated_encoding(s); 13692 break; 13693 } 13694 } 13695 13696 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 13697 CPUState *cpu) 13698 { 13699 DisasContext *dc = container_of(dcbase, DisasContext, base); 13700 CPUARMState *env = cpu_env(cpu); 13701 ARMCPU *arm_cpu = env_archcpu(env); 13702 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 13703 int bound, core_mmu_idx; 13704 13705 dc->isar = &arm_cpu->isar; 13706 dc->condjmp = 0; 13707 dc->pc_save = dc->base.pc_first; 13708 dc->aarch64 = true; 13709 dc->thumb = false; 13710 dc->sctlr_b = 0; 13711 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 13712 dc->condexec_mask = 0; 13713 dc->condexec_cond = 0; 13714 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 13715 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 13716 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 13717 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 13718 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 13719 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 13720 #if !defined(CONFIG_USER_ONLY) 13721 dc->user = (dc->current_el == 0); 13722 #endif 13723 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 13724 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 13725 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 13726 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 13727 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 13728 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 13729 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 13730 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 13731 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 13732 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 13733 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 13734 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 13735 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 13736 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 13737 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 13738 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 13739 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 13740 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 13741 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 13742 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 13743 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 13744 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 13745 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 13746 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 13747 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 13748 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 13749 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 13750 dc->vec_len = 0; 13751 dc->vec_stride = 0; 13752 dc->cp_regs = arm_cpu->cp_regs; 13753 dc->features = env->features; 13754 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 13755 dc->gm_blocksize = arm_cpu->gm_blocksize; 13756 13757 #ifdef CONFIG_USER_ONLY 13758 /* In sve_probe_page, we assume TBI is enabled. */ 13759 tcg_debug_assert(dc->tbid & 1); 13760 #endif 13761 13762 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 13763 13764 /* Single step state. The code-generation logic here is: 13765 * SS_ACTIVE == 0: 13766 * generate code with no special handling for single-stepping (except 13767 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 13768 * this happens anyway because those changes are all system register or 13769 * PSTATE writes). 13770 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 13771 * emit code for one insn 13772 * emit code to clear PSTATE.SS 13773 * emit code to generate software step exception for completed step 13774 * end TB (as usual for having generated an exception) 13775 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 13776 * emit code to generate a software step exception 13777 * end the TB 13778 */ 13779 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 13780 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 13781 dc->is_ldex = false; 13782 13783 /* Bound the number of insns to execute to those left on the page. */ 13784 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 13785 13786 /* If architectural single step active, limit to 1. */ 13787 if (dc->ss_active) { 13788 bound = 1; 13789 } 13790 dc->base.max_insns = MIN(dc->base.max_insns, bound); 13791 } 13792 13793 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 13794 { 13795 } 13796 13797 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 13798 { 13799 DisasContext *dc = container_of(dcbase, DisasContext, base); 13800 target_ulong pc_arg = dc->base.pc_next; 13801 13802 if (tb_cflags(dcbase->tb) & CF_PCREL) { 13803 pc_arg &= ~TARGET_PAGE_MASK; 13804 } 13805 tcg_gen_insn_start(pc_arg, 0, 0); 13806 dc->insn_start_updated = false; 13807 } 13808 13809 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 13810 { 13811 DisasContext *s = container_of(dcbase, DisasContext, base); 13812 CPUARMState *env = cpu_env(cpu); 13813 uint64_t pc = s->base.pc_next; 13814 uint32_t insn; 13815 13816 /* Singlestep exceptions have the highest priority. */ 13817 if (s->ss_active && !s->pstate_ss) { 13818 /* Singlestep state is Active-pending. 13819 * If we're in this state at the start of a TB then either 13820 * a) we just took an exception to an EL which is being debugged 13821 * and this is the first insn in the exception handler 13822 * b) debug exceptions were masked and we just unmasked them 13823 * without changing EL (eg by clearing PSTATE.D) 13824 * In either case we're going to take a swstep exception in the 13825 * "did not step an insn" case, and so the syndrome ISV and EX 13826 * bits should be zero. 13827 */ 13828 assert(s->base.num_insns == 1); 13829 gen_swstep_exception(s, 0, 0); 13830 s->base.is_jmp = DISAS_NORETURN; 13831 s->base.pc_next = pc + 4; 13832 return; 13833 } 13834 13835 if (pc & 3) { 13836 /* 13837 * PC alignment fault. This has priority over the instruction abort 13838 * that we would receive from a translation fault via arm_ldl_code. 13839 * This should only be possible after an indirect branch, at the 13840 * start of the TB. 13841 */ 13842 assert(s->base.num_insns == 1); 13843 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); 13844 s->base.is_jmp = DISAS_NORETURN; 13845 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 13846 return; 13847 } 13848 13849 s->pc_curr = pc; 13850 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 13851 s->insn = insn; 13852 s->base.pc_next = pc + 4; 13853 13854 s->fp_access_checked = false; 13855 s->sve_access_checked = false; 13856 13857 if (s->pstate_il) { 13858 /* 13859 * Illegal execution state. This has priority over BTI 13860 * exceptions, but comes after instruction abort exceptions. 13861 */ 13862 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 13863 return; 13864 } 13865 13866 if (dc_isar_feature(aa64_bti, s)) { 13867 if (s->base.num_insns == 1) { 13868 /* 13869 * At the first insn of the TB, compute s->guarded_page. 13870 * We delayed computing this until successfully reading 13871 * the first insn of the TB, above. This (mostly) ensures 13872 * that the softmmu tlb entry has been populated, and the 13873 * page table GP bit is available. 13874 * 13875 * Note that we need to compute this even if btype == 0, 13876 * because this value is used for BR instructions later 13877 * where ENV is not available. 13878 */ 13879 s->guarded_page = is_guarded_page(env, s); 13880 13881 /* First insn can have btype set to non-zero. */ 13882 tcg_debug_assert(s->btype >= 0); 13883 13884 /* 13885 * Note that the Branch Target Exception has fairly high 13886 * priority -- below debugging exceptions but above most 13887 * everything else. This allows us to handle this now 13888 * instead of waiting until the insn is otherwise decoded. 13889 */ 13890 if (s->btype != 0 13891 && s->guarded_page 13892 && !btype_destination_ok(insn, s->bt, s->btype)) { 13893 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); 13894 return; 13895 } 13896 } else { 13897 /* Not the first insn: btype must be 0. */ 13898 tcg_debug_assert(s->btype == 0); 13899 } 13900 } 13901 13902 s->is_nonstreaming = false; 13903 if (s->sme_trap_nonstreaming) { 13904 disas_sme_fa64(s, insn); 13905 } 13906 13907 if (!disas_a64(s, insn) && 13908 !disas_sme(s, insn) && 13909 !disas_sve(s, insn)) { 13910 disas_a64_legacy(s, insn); 13911 } 13912 13913 /* 13914 * After execution of most insns, btype is reset to 0. 13915 * Note that we set btype == -1 when the insn sets btype. 13916 */ 13917 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 13918 reset_btype(s); 13919 } 13920 } 13921 13922 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 13923 { 13924 DisasContext *dc = container_of(dcbase, DisasContext, base); 13925 13926 if (unlikely(dc->ss_active)) { 13927 /* Note that this means single stepping WFI doesn't halt the CPU. 13928 * For conditional branch insns this is harmless unreachable code as 13929 * gen_goto_tb() has already handled emitting the debug exception 13930 * (and thus a tb-jump is not possible when singlestepping). 13931 */ 13932 switch (dc->base.is_jmp) { 13933 default: 13934 gen_a64_update_pc(dc, 4); 13935 /* fall through */ 13936 case DISAS_EXIT: 13937 case DISAS_JUMP: 13938 gen_step_complete_exception(dc); 13939 break; 13940 case DISAS_NORETURN: 13941 break; 13942 } 13943 } else { 13944 switch (dc->base.is_jmp) { 13945 case DISAS_NEXT: 13946 case DISAS_TOO_MANY: 13947 gen_goto_tb(dc, 1, 4); 13948 break; 13949 default: 13950 case DISAS_UPDATE_EXIT: 13951 gen_a64_update_pc(dc, 4); 13952 /* fall through */ 13953 case DISAS_EXIT: 13954 tcg_gen_exit_tb(NULL, 0); 13955 break; 13956 case DISAS_UPDATE_NOCHAIN: 13957 gen_a64_update_pc(dc, 4); 13958 /* fall through */ 13959 case DISAS_JUMP: 13960 tcg_gen_lookup_and_goto_ptr(); 13961 break; 13962 case DISAS_NORETURN: 13963 case DISAS_SWI: 13964 break; 13965 case DISAS_WFE: 13966 gen_a64_update_pc(dc, 4); 13967 gen_helper_wfe(tcg_env); 13968 break; 13969 case DISAS_YIELD: 13970 gen_a64_update_pc(dc, 4); 13971 gen_helper_yield(tcg_env); 13972 break; 13973 case DISAS_WFI: 13974 /* 13975 * This is a special case because we don't want to just halt 13976 * the CPU if trying to debug across a WFI. 13977 */ 13978 gen_a64_update_pc(dc, 4); 13979 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 13980 /* 13981 * The helper doesn't necessarily throw an exception, but we 13982 * must go back to the main loop to check for interrupts anyway. 13983 */ 13984 tcg_gen_exit_tb(NULL, 0); 13985 break; 13986 } 13987 } 13988 } 13989 13990 const TranslatorOps aarch64_translator_ops = { 13991 .init_disas_context = aarch64_tr_init_disas_context, 13992 .tb_start = aarch64_tr_tb_start, 13993 .insn_start = aarch64_tr_insn_start, 13994 .translate_insn = aarch64_tr_translate_insn, 13995 .tb_stop = aarch64_tr_tb_stop, 13996 }; 13997